N
N

N

HAL

open science

Experimental data assimilation: learning-based
estimation for state-space models

Mona Buisson-Fenet

» To cite this version:

Mona Buisson-Fenet. Experimental data assimilation: learning-based estimation for state-space mod-

els. Automatic. Université Paris sciences et lettres, 2023. English. NNT: 2023UPSLMO018 .

04421986v1

HAL Id: tel-04421986
https://pastel.hal.science/tel-04421986v1
Submitted on 31 Aug 2023 (v1), last revised 28 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-04421986v1
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a Mines Paris — PSL

Experimental data assimilation:
learning-based estimation for state-space models

Assimilation de données expérimentales :
estimation a base d’apprentissage pour modeles sous
forme d’état

Soutenue par Composition du jury :
Mona Buisson-Fenet David RYCKELYNCK Président du jury
Le 27 avril 2023 Mines Paris

loannis STEFANOU Rapporteur

, Ecole Centrale de Nantes
Ecole doctorale n°621

Ingénierie des Systémes,
Matériaux, Mécanique,

Energétique Madiha NADRI Examinateur
Université Claude Bernard Lyon 1

Bahman GHARESIFARD Rapporteur
University of California, Los Angeles

Valéry MORGENTHALER Examinateur
Spécialité Ansys Inc
I_’Iathemathue et Automa- Sebastian TRIMPE Directeur de thése
tique RWTH Aachen University

Florent DI MEGLIO Directeur de these

Mines Paris

A | psL#

MINES PARIS

MINES PARIS

DOCTORAL THESIS

Experimental data assimilation:
learning-based estimation for
state-space models

Author: Supervisors:
Mona BUISSON-FENET Florent DI MEGLIO
Sebastian TRIMPE

Valéry MORGENTHALER

Centre Automatique et Systémes - Mines Paris - PSL
Institute for Data Science in Mechanical Engineering - RWTH Aachen University
Ansys France Research Team

A psix L T

\nsys

iii

Résumé

La modélisation et la simulation numérique de processus complexes sont au-
jourd’hui des éléments essentiels du développement industriel. De par la récente
augmentation des capacités de génération, de collecte et de traitement des données,
les méthodes basées sur 1'apprentissage apparaissent aujourd ’hui comme un complé-
ment prometteur a la modélisation physique. Unir ces deux points de vue permettrait
notamment de créer des jumeaux digitaux : des reproductions numériques exactes
d’objets physiques combinant un modéle de simulation haute-fidélité et des données
expérimentales recueillies sur le systéme réel. Cependant, les données disponibles sur
les plateformes physiques sont généralement bruitées et tous les états ne peuvent pas
étre mesurés. Notre objectif est d’extraire des informations de ces données expérimentales
sur le modéle sous forme d’état sous-jacent. Pour ce faire, nous combinons des concepts
issus du design d’observateurs non linéaires et du machine learning.

Dans une premiere partie, nous supposons que le systeme doit étre identifié a
partir des données : cette information prend la forme d"un modele dynamique. En
raison de la nature partielle des observations et d'un modele imparfait, il est nécessaire
d’estimer conjointement 1’état sous-jacent et sa dynamique. Nous commencons par
supposer que le systéme est dans la forme canonique observable, ce qui permet
de construire un observateur grand gain, et de l'interconnecter avec un processus
gaussien approximant la dynamique. La convergence conjointe de l'état estimé et de
la dynamique peut alors étre prouvée pour cette combinaison. Nous étendons ensuite
ces idées a des systemes plus généraux en combinant les équations différentielles
ordinaires neuronales avec un modele basé sur un observateur, qui fait correspondre
les observations a 1’état latent initial.

Dans une deuxieme partie, nous nous éloignons de la motivation initiale des
jumeaux numériques et supposons que cette information porte sur 'estimation d’état
elle-méme. Nous commencons par définir la distinguabilité pour les systémes stochas-
tiques non linéaires, puis nous la quantifions a partir de données de sortie a 1’aide de
méthodes statistiques. Cela permet d’évaluer dans quelle mesure les états initiaux
et les configurations des capteurs peuvent étre distingués a partir de ces données.
Nous utilisons ensuite des réseaux de neurones pour approximer une transformation
permettant le design d’observateurs de Kazantis-Kravaris / Luenberger numériques,
et nous proposons un critere empirique qui guide le réglage de 'observateur.

Abstract

Numerical simulation and modeling of complex processes is a critical part of
industrial development. With the recent increase in data generation, collection, and
processing capabilities, learning-based methods appear as a promising addition to
physics-based modeling. Uniting both views is an appealing prospect, e.g., to create
digital twins: exact numerical replicas of physical objects combining a high-fidelity
simulation model with experimental data gathered on the real system. However, the
data available from physical platforms is typically imperfect; for example, it may
be noisy and not cover all state variables. Our aim is to extract information from this
experimental data about the underlying state-space model that explains it. For this, we
combine concepts from nonlinear observer design and modern machine learning.

In a first part, we assume the system needs to be identified from data: this
information takes the form of a dynamics model. Due to the partial nature of the
observations and an imperfect model, it is necessary to jointly estimate the underlying
latent state and its dynamics. We start by assuming the system is in the observable
canonical form, allowing to build a high-gain observer, and interconnect it with a
Gaussian process dynamics model. We prove joint convergence of the state and
dynamics estimates for this combination. We then extend these ideas to more general
systems by coupling neural ordinary differential equations with an observer-based
recognition model that maps the observations to the initial latent state.

In a second part, we shift the focus away from the initial motivation of digital
twins and assume this information relates to state estimation itself. We start by
defining distinguishability for nonlinear stochastic systems, then quantify it given
a set of output samples using statistical methods. This allows for assessing how
distinguishable initial states and sensor configurations are given this data. We then
make use of neural networks to approximate a transformation enabling general
nonlinear observer design with Kazantis-Kravaris / Luenberger observers, and derive
an empirical criterion that guides the tuning of the observer.

Contents
Abstract
Résumé
1 Introduction - version francgaise
1.1 Travauxconnexes ittt
1.2 Structuredelathese0 ..
1.3 Publications e
2 Introduction
21 Relatedwork.
2.2 Outlineofthethesis.
23 Publications
3 Mathematical tools
3.1 Learning dynamics with Gaussian processes
3.1.1 Preliminaries on Gaussian processes
Sparse approximations L L
3.1.2 Gaussian process state-spacemodels
Physical priorsinGPSSMs
Joint inference and learning for GPSSMs
3.2 Deep learning for dynamical systems
3.2.1 Introduction to feed-forward neural networks
3.2.2 Neural networks for physical systems
Physics-informed neural networks
Recurrent neural networks
Neural ordinary differential equations
33 Kernelmethods
3.3.1 Reproducing kernel Hilbertspaces
3.3.2 Statistical testing withkernels
3.4 The Katzantis-Kravaris/Luenberger observer
3.4.1 Autonomous KKLobservers
3.4.2 Extensions to nonautonomous systems
3.4.3 Numerical KKLobservers
I Nonlinear observer theory for dynamics model learning
4 Joint state and dynamics estimation in the observable canonical form

41 Introduction
42 Problem formulation and proposed framework
421 High-gainobserver
422 Reminder on Gaussian processes
423 Learningmethod
4.3 Theoretical guarantees 0 oL

vii

iii

13
13
14
15
16
17
17
18
18
20
20
20
21
21
21
23
24
24
26
27

29

viii

4.3.1 Smoothnessof GPmodels 36

43.2 Practicalconvergence 39

433 Asymptoticconvergence 40

44 Numerical simulations 43
441 Duffingoscillator o oo oL 43

442 Nonlinear mass-spring-masssystem 46

45 Comparisontopreviouswork Lo L oL 47
451 Summaryofmethod2 47

452 Trade-offs e 49

4.5.3 Numerical illustration 50

4.6 Performanceimprovements 54
46.1 Backward smoothing 54

4.6.2 Adaptiveobservergain 56

4.7 Extension: Ansys Fluentusecase 57
471 Reduced order modeling 58

472 CorrectingtheROM 59

4.7.3 Discussion on the EKFextension 61

4.8 DISCUSSION v v v it e 61
49 Conclusionandoutlook 63
Learning NODEs from partial observations with recognition models 65
51 Introduction e 65
52 Relatedwork. e 67
521 Systemtheory o L. 67
System identification o oo 67
Observerdesign 67

522 Learning dynamical systems 68
Physics-awaremodels 68

Partial observations 68

5.3 Problemstatement 69
54 Recognitionmodels L oo o oo 71
54.1 Generalapproaches 72
Directmethod 72

Recurrent recognitionmodels 72

54.2 KKL-based recognitionmodels 73
Autonomoussystems L L 73
Nonautonomous systems 75

Jointly optimizing the gain matrix 75

Conclusion on KKL recognition. 76

5.5 Enforcing physical knowledge. 76
5.5.1 Regularizingpriors 76

5.5.2 Structural constraints. 77

56 Experiments 77
5.6.1 Pointers for training NODEs in practice 78

5.6.2 Benchmark of recognitionmodels 79
Earthquakemodel 80
FitzHugh-Nagumomodel 81
VanderPoloscillator 83
Ablationstudies e 84

5.6.3 Harmonic oscillator with increasing priors 84

Nostructure o o e e e 86

II

Hamiltonian state-spacemodel

Imposing position and velocity

Parametric system identification

Extended state-spacemodel

5.6.4 Experimental dataset from a robotic exoskeleton
Datacollection
Dataprocessing oo

Evaluation o L

Conclusion on the experimental dataset

57 Discussion e
571 Kernelview

58 Conclusion L

Machine learning for data-driven observers

Data-driven observability analysis for nonlinear stochastic systems
6.1 Introduction
6.1.1 Relatedwork o o
Stochastic observability
Metricizing observability
Kernel mean embeddings
6.1.2 Notations
6.2 Observability 0
6.2.1 Deterministic distinguishability
6.2.2 Distributional distinguishability
6.2.3 Noise and distinguishability
Measurementnoise Lo L oL L
Linearsystems
6.3 Measuring distributional observability
6.3.1 The MMD to measure relative distinguishability
Background o oo oo
A metric of distinguishability
6.3.2 Finite-sample approximation
Background - finite-sample MMDo
A two-sample test of distinguishability
From qualitative properties to samplebounds
6.4 Experimentalresults,
6.4.1 Case of linear systems: illustration of Theorem6
Distributional and deterministic distinguishability
Recovering the classes of indistinguishability
6.4.2 Analyzing observability in the state-space
6.4.3 Analyzing sensor configurations on hardware
Choosing a sensor configuration
Consequences for observer behavior
6.44 Influence of hyperparameters
6.5 Conclusionand outlook

iX

87
88
88
88
89
90
91
92
94
96
96
97

7 Towards gain tuning for numerical KKL observers

7.1 Introduction
7.1.1 Reminder on KKL

7.2 A gain tuning criterion .

7.3 Numerical methods . . .

observers

7.3.1 Backward-forward sampling
7.3.2 Trajectory-based sampling

7.3.3 Parametrization .
74 Results

74.1 Reverse Duffing oscillator
742 VanderPoloscillator

7.4.3 Furuta pendulum
7.4.4 Conclusion on the

supervised approach

7.5 Towards joint optimization. 0L

7.5.1 Autoencoders . .
7.5.2 Jointly optimizing
7.5.3 Conclusion on the
7.6 Conclusion and outlook
8 Conclusion - version frangaise

9 Conclusion

Bibliography

thegainmatrix
unsupervised approach

125
125
127
128
130
130
131
131
132
132
134
137
142
142
142
143
144
145

149

153

157

List

4.1
4.2
43
44
4.5
4.6
4.7
4.8
49
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

5.1
52
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4

xi

of Figures

Structure of the framework 33
Error metrics for the Duffing oscillator 44
Phase portrait of the Duffing oscillator 45
Test trajectory for the Duffing oscillator 45
Diagram of the mass-spring-mass system 46
Error metrics for the mass-spring-mass system 48
Estimated test trajectory for the mass-spring-mass system. 49
Predicted test trajectory for the mass-spring-mass system 49
Comparison of methods 1 and 2 with recursive least squares 52
Comparison of methods 1 and 2 for the Duffing oscillator 53
Comparison of methods 1 and 2 for the mass-spring-mass system . . . 54
Backward smoothing for the mass-spring-mass system 55
Gain adaptation for the mass-spring-mass system 57
Test trajectory with gain adaptation for the mass-spring-mass system . 57
Diagram of the Ansys Fluentusecase 58
Fluent use case with DynaROM model 59
Fluent use case with GP priormodel 60
Test trajectories of the Fluentusecase 62
Test trajectories for the Fluent use case at unseen point 63
Test trajectories of the Fluent use case with inaccurate initial guess . . . 64
Diagram of structured NODEs 67
Mlustration of KKL recognitionmodels 73
Test trajectory of the earthquakemodel 81
Box plot of recognition methods for the earthquake model 81
Test trajectory of the FitzHugh-Nagumomodel 82
Box plot of recognition methods for the FitzHugh-Nagumo model . . . 83
Test trajectory of the Van der Polmodel 85
Test trajectory of the Van der Pol model with measurement noise . . . 86
Box plot of recognition methods for the Van der Pol oscillator 87
Ablation study for the earthquakemodel 87
Ablation study for the Van der Polmodel 88
NODEs with varying priors for the harmonic oscillator 89
Robotic exoskeleton by Wandercraft 89
Short test trajectories for the robotics dataset 90
Long test trajectories for the robotics dataset 91
EKEF on test trajectories of the robotics dataset with y = (x1,x4) 92
EKF on test trajectories of the robotics dataset withy =x; 93
Test trajectory over the whole robotics dataset 95
Datasets of two LTI systems 114
MMD heatmap of the linear system with non-zero mean noise 115
MMD heatmaps for the Duffing oscillator 117

Datasets for the pendulum experiment 118

Xii

6.5
6.6
6.7

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
711
7.12
7.13
7.14
7.15
7.16
717

Estimation error of the EKF for the pendulum experiment 120
Output distribution of the EKF for the pendulum experiment 121
Trajectories of the pendulum with different noise levels 122
Diagram of the numerical KKL observer, supervised setting 127
Empirical gain tuning criterion for the reverse Duffing oscillator 133
Noisy test trajectories of the reverse Duffing oscillator 134
Extrapolation with the reverse Duffing oscillator 135
Empirical gain tuning criterion for the Van der Pol oscillator 135
Noisy test trajectories of the Van der Pol oscillator 136
Estimation error for the Van der Pol oscillator 136
Heatmap of the estimation error for the Van der Pol oscillator 137
Empirical gain tuning criterion for the pendulum 138
Estimation error for a simulated test trajectory of the pendulum 139
Noisy test trajectories of the Furuta pendulum 139
Estimation error for a real test trajectory of the pendulum 140
Simulation and experiment for the Furuta pendulum 141
Diagram of the numerical KKL observer, unsupervised setting 143

Test trajectory for the reverse Duffing oscillator, unsupervised setting . 144
Eigenvalues of D for the reverse Duffing oscillator, unsupervised setting145
Supervised approach with Dt for the reverse Duffing oscillator 145

Abbreviations

ROM
GP
GPSSM
NN
PINN
AE
RNN
LSTM
GRU
ODE
PDE
SDE
NODE
RKHS
KME
MMD
KRR
RV
KF
EKF
KKL
HGO
RMSE
RK4
RK4/5
SVD
LTI
PBN
LHS
resp.
ii.d.
ie.,
eg.,
w.r.t.
iff.

Reduced Order Model

Gaussian Process

Gaussian Process State-Space Model
Neural Network

Physics-Informed Neural Network
AutoEncoder

Recurrent Neural Network

Long Short-Term Memory

Gatred Recurrent Unit

Ordinary Differential Equation

Partial Differential Equation
Stochastic Differential Equation
Neural Ordinary Differential Equation
Reproducing Kernel Hilbert Space
Kernel Mean Embedding

Maximum Mean Discrepancy

Kernel Ridge Regression

Random Variable

Kalman Filter

Extended Kalman Filter
Kazantis-Kravaris / Luenberger
High-Gain Observer

Root Mean Squared Error

Explicit Runge-Kutta method of order 4
Explicit Runge-Kutta method of order 5(4) [1]
Singular Value Decomposition

Linear Time-Invariant

Probabilistic Boolean Network

Latin Hypercube Sampling
respectively

independent and identically distributed
id est

exempli gratia

with respect to

if and only if

xiii

Chapter 1
Introduction - version francaise

La simulation numérique est un élément essentiel du développement industriel.
Elle permet de tester différents choix de conception et d’évaluer des stratégies plus
rapidement et a moindre cotit que le prototypage standard. Certaines entreprises,
dont Ansys, ont contribué a ce développement en produisant des simulateurs haute
fidélité qui prédisent avec précision le comportement des systemes physiques. De
nombreux domaines ou industries s’appuient sur les simulateurs d’Ansys pour
examiner des projets futurs, qu’il s’agisse de simulations de champs d’écoulement
pour l'industrie aéronautique ou de modéles de moteurs magnétiques pour les
voitures électriques. Malgré cela, la simulation numérique est encore confrontée
a de nombreux défis, tels que 'augmentation de la vitesse de calcul ou I'amélioration
des modeéles, rendus imprécis par des phénomenes non modélisés ou des parametres
dont la valeur réelle ne peut qu’étre approximée.

La multiplication des dispositifs de collecte de données et des capacités de calcul
sur les plateformes physiques ouvre des possibilités supplémentaires : comment
I'industrie peut-elle tirer parti des capacités de la simulation numérique, tout en
profitant des données expérimentales qu’elle géneére ? De telles interrogations ont
conduit au concept de jumeaux digitaux [2]-[5]. Les jumeaux digitaux visent a créer
une réplique numérique exacte d'un objet physique, en combinant un modéle de
simulation haute fidélité avec des données expérimentales enregistrées sur le systeme.
La premiére étape consiste a construire des modéles de simulation fonctionnant en
temps quasi-réel. En effet, les simulateurs haute fidélité décrivant un processus
physique complexe peuvent nécessiter plusieurs jours ou semaines de calcul, de sorte
que des mises a jour incrémentelles du modéle en fonction des observations peuvent
s’avérer irréalisables. La question de la fusion des données expérimentales dans le
modele de simulation peut ensuite étre abordée.

Ansys travaille a 'extension de sa suite logicielle pour inclure de tels projets.
Pour relever le défi de la vitesse de calcul, Ansys développe un logiciel interne
de modélisation d’ordre réduit et d’identification de systemes non linéaires appelé
DynaROM, qui apprend un modele d’ordre réduit (“reduced order model”, ROM)
a partir de scénarios d’entrainement générés par des simulations haute fidélité. En
particulier, la dimension de l’état latent du ROM est déduite en le construisant
itérativement jusqu’a ce qu’une précision souhaitée soit atteinte, et de nombreux
autres hyperparametres peuvent étre choisis automatiquement. Ce ROM peut alors
prédire des comportements complexes tels que la fatigue des grandes turbines a
gaz [6] ou I’évolution spécifique au patient des dissections aortiques [7] en temps
proche du temps réel. D’une maniere générale, la construction de modeles a la fois
précis et légers est un défi majeur pour la création de jumeaux numériques. De
nombreuses idées de recherche émergent pour y parvenir, comme 1'utilisation de
classificateurs pour choisir entre des ROM locaux [5], [8], [9] ou le remplacement
de parties de simulateurs numériques par des modeles d’apprentissage profond
formés a partir de données de simulation comme dans DynaROM [10]. Ces nouvelles
directions de recherche motivent cette these.

2 Chapter 1. Introduction - version frangaise

La question de I’analyse des données expérimentales des systemes dynamiques
intéresse différentes communautés. Dans ce travail, nous proposons de combiner des
résultats issus de la théorie du contrdle d"une part, et la puissance de régression de
I'apprentissage automatique moderne d’autre part. Nous proposons de nouvelles
méthodes a cette intersection. La collecte de données sur les systémes complexes
est coliteuse et toutes les variables du systéme ne peuvent pas étre mesurées. Par
conséquent, les principaux défis techniques résident dans la nature partielle et bruitée
des observations, associée a un modele imparfait. L'analyse doit donc permettre
d’estimer a la fois la dynamique et I’état du systéme. Nous supposons que les
systemes physiques en question peuvent étre représentés par des modeles sous
forme d’état (“state-space model”, SSM), car il s’agit d"un point de vue bien établi
pour lequel il existe de nombreux résultats a la fois en théorie du controle et en
apprentissage automatique, étant donné qu’il rend I'état sous-jacent explicite. Notre
objectif est alors de développer des méthodes génériques pour extraire des informations de
données expérimentales provenant d’un modéle d’espace d’état sous-jacent.

1.1 Travaux connexes

A cette fin, nous intégrons des concepts issus de ’apprentissage automatique et de
la théorie du contréle. Dans cette section, nous donnons un bref apercu de 1’état de
I'art sur ce sujet, dans les deux communautés et a leur interface. Nous faisons la
distinction entre I'identification du systéme d"une part, c’est-a-dire la détermination
de la dynamique a partir d’observations, et 'estimation de I'état d’autre part, c’est-a-
dire I'inférence de I’état latent. Nous soulignons les lacunes présentes dans chaque
direction de recherche et insérons nos contributions dans cette vue d’ensemble. Nous
nous concentrons principalement sur les travaux qui sont pertinents pour cette thése ;
une introduction plus technique aux travaux les plus appropriés est donnée au Ch. 3.
Les travaux directement reliés sont discutés plus en détail dans chaque chapitre
correspondant.

L’apprentissage automatique a récemment eu beaucoup de succes dans de nom-
breuses taches statiques telles que le traitement d’images ou la génération de discours.
Toutefois, des méthodes capables de s’attaquer a la complexité, aux autocorrélations
et au manque de données du monde physique restent a découvrir. C’est pourquoi
il existe une communauté croissante a l'interface entre apprentissage automatique
et théorie des systémes. Cette communauté mene des recherches sur de nombreux
sujets, comme 'apprentissage par renforcement [11], [12] ou le contrdle basé sur
I'apprentissage [13], [14]. Le sujet de 'identification des systemes se situe naturelle-
ment a cette interface, puisqu’il vise a déduire les inconnues d"un SSM sous-jacent
a partir de mesures. Ces inconnues peuvent par exemple étre le nombre d’états, les
parametres d’un modele analytique ou des parties entieres du modele. De nom-
breuses méthodes ont été développées dans la littérature classique de la théorie du
contrdle pour traiter I'incertitude portant sur ces parametres. Pour le cas linéaire, les
“subspace methods” visant a estimer les matrices du systeme sont bien établies [15]. Il
n’existe pas de vision unifiée pour les systémes non linéaires [16], [17], mais de nom-
breuses approches parmi lesquelles choisir en fonction du cas d"usage en question.
Celles-ci vont des méthodes basées sur I'optimisation qui estiment les parameétres
inconnus d’un modéle donné en utilisant les moindres carrés ou des fonctions de
colit apparentées [18]-[20], aux méthodes bayésiennes qui se concentrent sur les
estimations probabilistes ou a posteriori [21], [22], ou aux modeles boite noire qui ap-
proximent les parties inconnues du modele sur une base de fonctions appropriée [23].

1.1. Travaux connexes 3

Cependant, la plupart de ces méthodes classiques sont spécifiques a un systeme
et nécessitent des connaissances spécifiques. C’est pourquoi les travaux récents
s’appuient sur l'apprentissage automatique moderne pour élaborer des algorithmes
d’identification de systemes plus généraux. Par exemple, les modeles de processus
gaussien sous forme d’état (“Gaussian process state-space models”, GPSSM) [24],
[25] ont obtenu des résultats prometteurs grace a leur efficacité d’échantillonnage
et a leur formulation analytique, qui permet notamment des garanties [26], [27].
Cependant, I'apprentissage des GPSSM a partir d’observations partielles reste un
probleme ouvert, et la plupart des approches existantes reposent sur une optimisation
non convexe lourde et n’offrent pas de garanties d’approximation. Ce point est abordé
dans la Sec. 3.1 apres une introduction plus technique. Nous étudions 'apprentissage
de tels modeles a partir de mesures partielles dans le Ch. 4.

Une autre ligne de travail se concentre sur 'utilisation de réseaux de neurones
profonds pour apprendre des modeles de dynamique. Par exemple, I'identification
sparse dans une bibliotheque de lois physiques [28], [29], les réseaux de neurones
récurrents (“recurrent neural networks”, RNN) [30], [31], ou les équations différen-
tielles ordinaires neuronales (“neural ordinary differential equations”, NODE) [32],
[33] ont été utilisés pour identifier des systemes dynamiques. Ces techniques re-
posent souvent sur une transformation de la sortie vers les coordonnées latentes
dans lesquelles la dynamique est apprise, transformation qui peut prendre la forme
d’un autoencodeur [28], [34]. La question générale de l’application des connaissances
physiques dans les modeles d’apprentissage profond a également suscité un intérét
significatif [4], [35]-[37]. Néanmoins, des approches générales mais qui peuvent
étre adaptées aux connaissances physiques disponibles et qui peuvent apprendre
a partir d’observations partielles restent a développer. Nous construisons une telle
approche basée sur les NODE dans le chapitre 5. Un résumé de cette littérature
est fourni dans la Sec. 3.2. Inversement, les méthodes d’apprentissage automatique
peuvent également bénéficier de I'éclairage de la théorie du controle. Par exemple,
les capacités d’approximation des RNN [38] ou des NODE [39] ont été étudiées par le
biais du controle optimal.

L’estimation d’état se situe également a l'interface entre la modélisation sous
forme d’état et I'analyse des données, car elle vise a déduire I'état latent complet d'un
SSM a partir d’observations partielles. C’est pourquoi des tentatives ont été faites
pour exploiter les outils d’apprentissage automatique afin de résoudre des taches
d’estimation d’état [40], [41]. Dans la littérature classique de théorie du controle,
on parle également de design d’bservateurs. Bien qu’il n’existe pas d’observateur
universel établi pour les systemes non linéaires [42], [43], certains modéles généraux
existent, tels que les observateurs grand gain [44], les filtres de Kalman étendus
(“extended Kalman filter”, EKF) [45], ou les observateurs de Kazantis-Kravaris /
Luenberger (KKL) [46], [47]. Plus de détails sont donnés dans la Sec. 3.4. Ces
approches peuvent aider a extraire des informations d’observations partielles et
a préconditionner les problemes d’apprentissage correspondants. Par ailleurs, les
outils modernes de régression non linéaire peuvent fournir une approximation de
certaines fonctions difficiles & déterminer analytiquement dans les résultats classiques,
méme lorsqu’une transformation en coordonnées canoniques est nécessaire, comme
pour les observateurs grand gain ou les observateurs KKL. Eploiter I’apprentissage
automatique a donc le potentiel de rendre ces observateurs universels plus facilement
applicables en pratique. Nous explorons cette direction dans le Ch. 7.

Enfin, des outils statistiques tels que les méthodes a noyaux [48] peuvent égale-
ment servir a analyser les données expérimentales. Ils ont plutot été utilisés comme

4 Chapter 1. Introduction - version frangaise

outils de régression pour identifier des systémes dynamiques, mais peuvent égale-
ment bénéficier d’applications plus larges en examinant des objets plus complexes
tels que les distributions de probabilité. Ceci permet de comparer les mesures des
systemes stochastiques et ce qu’elles révelent sur le SSM sous-jacent. Par exemple,
la propriété d’observabilité est difficile a définir et encore plus a vérifier pour les
systemes stochastiques non linéaires ; I’évaluation statistique des données de sortie
permet de faire un pas dans cette direction, comme cela est étudié dans le Ch. 6. Un
bref apercu de ces méthodes est donné dans la Sec. 3.3.

1.2 Structure de la theése

Dans cette theése, nous développons des méthodes génériques pour extraire des infor-
mations des données expérimentales générées par un systeme dynamique. Chaque
méthode est développée dans un contexte spécifique, pour un sous-probléme spéci-
fique, et correspond a I'un des articles listés ci-dessous. Une introduction technique
est fournie dans Ch. 3, puis les principales contributions sont détaillées dans Ch. 4-7.

Nous examinons deux axes de travail. Dans une premiere partie, nous nous
appuyons sur des résultats de théorie des observateurs non linéaires pour améliorer
I"apprentissage des modéles dynamiques. Plus précisément, nous visons a affiner les
SSMs tels que ceux obtenus a partir de simulateurs numériques avec des données
expérimentales. Pour ce faire, nous nous appuyons sur des résultats théoriques de
design d’observateurs non linéaires pour formuler des problemes de régression adap-
tés a I’apprentissage d"une représentation spécifique de 'espace d’état a partir des
données. Dans une deuxiéme partie, nous utilisons des techniques d’apprentissage
automatique pour permettre le design d’observateurs non linéaires. Nous étudions
d’abord comment évaluer I'observabilité des systemes stochastiques avec des méth-
odes statistiques, puis comment guider le réglage des observateurs KKL numériques.
La these est structurée autour des méthodes proposées comme suit :

Le chapitre 3 présente les principaux outils mathématiques nécessaires aux méth-
odes présentées dans cette these. Apres une bréve introduction sur les processus
gaussiens, il fournit les principaux concepts des réseaux de neurones profonds pour
I'apprentissage des systémes dynamiques. Il comprend également un apercu succinct
des méthodes a noyaux nécessaires pour comparer les distributions de sortie des
systemes stochastiques, avant d’exposer le type d’observateur non linéaire le plus
utilisé dans cette these : I'observateur KKL.

Le chapitre 4 se concentre sur une forme spécifique de SSM, la forme observable
canonique avec une non linéarité inconnue. Dans ce cas, les observateurs grand gain
garantissent une estimation précise de I'état. Nous interconnectons un tel observateur
avec un processus gaussien approximant la non linéarité et montrons que 1’état et le
modele dynamique convergent lorsqu’ils sont mis a jour de maniére cyclique.

Le chapitre 5 étend cette derniére approche aux systemes non linéaires généraux
avec différents degrés de connaissances préalables, en utilisant la formulation flex-
ible des équations différentielles ordinaires neuronales (NODE). Pour permettre
I'apprentissage de NODE a partir d’observations partielles, nous proposons un mod-
ele de reconnaissance qui associe la trajectoire de sortie a 1’état latent initial. En
particulier, I’exploitation des résultats de la conception des observateurs conduit a un
modele de reconnaissance spécifique adapté aux observateurs KKL.

Le chapitre 6 met 1’accent non plus sur l'identification du systeme mais sur
I'estimation de 1’état. Plus précisément, nous appliquons des méthodes a noyaux

1.3. Publications 5

pour comparer les distributions de mesures provenant de systemes non linéaires
stochastiques et quantifier le degré d’observabilité des états initiaux et des configura-
tions des capteurs a partir de ces données.

Le chapitre 7 étudie ensuite comment "apprentissage profond peut permettre
d’obtenir des observateurs KKL utilisables en pratique en approximant la transfor-
mation nécessaire. En particulier, nous proposons de guider la calibration de ces
observateurs numériques par le biais d"un critere empirique calculé sur le réseau de
neurones modélisant cette transformation.

Pour chacune des méthodes présentées, le code est disponible en open source
pour explorer ses capacités et reproduire les résultats :

* Le code correspondant aux Ch. 4-5 : github.com/monabf/obsGP recogNODE git;
* Le code correspondant au Ch. 6 : github.com/PFMassiani/data-obs.git;

* Le code correspondant au Ch. 7 : github.com/monabf/learn observe KKL git.

1.3 Publications
Certains des résultats de cette these ont été publiés ou soumis pour publication :

Correspondant au Ch. 4 :

[49] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Joint state and
dynamics estimation with high-gain observers and Gaussian process models,” IEEE
Control Systems Letters, vol. 5, no. 5, pp. 1627-1632, 2021

Correspondant au Ch. 5:

[50] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Recognition
Models to Learn Dynamics from Partial Observations with Neural ODEs,” Transac-
tions on Machine Learning Research, 2023. [Online]. Available: https://openreview.net/
forum?id=LTAdaRM29K

Correspondant au Ch. 6 :

[51] P-F. Massiani, M. Buisson-Fenet, F. Solowjow, F. Di Meglio, and S. Trimpe,
“Data-Driven Observability Analysis for Nonlinear Stochastic Systems,” Preprint
arXiv:2302.11979, 2023. (The first two authors contributed equally)

Correspondant auo Ch. 7 :
[52] M. Buisson-Fenet, L. Bahr, and F. Di Meglio, “Towards gain tuning for numerical
KKL observers,” Preprint arXiv:2204.00318, 2022

https://github.com/monabf/obsGP_recogNODE.git
https://github.com/PFMassiani/data-obs.git
https://github.com/monabf/learn_observe_KKL.git
https://openreview.net/forum?id=LTAdaRM29K
https://openreview.net/forum?id=LTAdaRM29K

Chapter 2
Introduction

Numerical simulation is an essential part of industrial development. It enables
testing different design choices and evaluating strategies faster and at a lower cost
than standard prototyping. Companies such as Ansys have pushed this development
forward by producing high-fidelity simulators that precisely predict the behavior
of physical systems. Many fields or industries rely on Ansys simulators to examine
future projects, from flow-field simulations for the aeronautical industry to models
of magnetic motors for electric cars. Even so, numerical simulation faces ongoing
challenges, such as increasing the computational speed or improving the models,
made imprecise by unmodeled phenomena or parameters that can only be inferred
approximately.

The multiplication of data-collecting devices and computing capabilities on phys-
ical platforms now gives rise to additional challenges and possibilities: how can the
industry leverage the abilities of numerical simulation, while taking advantage of
the experimental data its assets generate? Such interrogations lead to the concept
of digital twins [2]-[5]. Digital twins aim to create an exact numerical replica of a
physical object, by combining a high-fidelity simulation model with experimental
data gathered on the system. The first step on this path is to construct simulation
models running nearly in real-time. Indeed, high-fidelity simulators describing a
complex physical process may take several days or weeks to compute, such that
incremental updates of the model to match observations can be intractable. Then, the
question of merging experimental data into the simulation model can be addressed.

Ansys is working to extend their software suite to include such prospects. To
tackle the challenge of computational speed, Ansys is building an in-house reduced or-
der modeling and nonlinear system identification software called DynaROM, which
learns a reduced order model (ROM) from training scenarios generated by high-
fidelity simulations. In particular, the dimension of the ROM’s latent state is inferred
by building it iteratively until a desired accuracy is reached, and many other hy-
perparameters can be chosen automatically. This ROM can then predict complex
behaviors such as the fatigue of large gas turbines [6] or the patient-specific evolution
of aortic dissections [7] approximately in real-time. Generally, building both accurate
and lightweight models is a key challenge for creating digital twins. Many research
ideas are emerging to achieve this, e.g., training classifiers to choose between local
ROMs [5], [8], [9] or replacing parts of numerical simulators with deep learning mod-
els trained from simulation data as in DynaROM [10]. These new research directions
motivate this thesis.

The general topic of analyzing experimental data from dynamical systems is of
interest for different communities. In this work, we propose to combine structural
results stemming from control theory on the one hand, and the data processing and
regression power of modern machine learning on the other hand. We present novel
methods at this intersection. Data collection on complex systems is costly and not
all system variables can be measured. Hence, the main technical challenges lie in
the partial, noisy and scarce nature of the observations, paired with an imperfect
model. The analysis should thus cover both the dynamics and the state of the system.

8 Chapter 2. Introduction

We assume that the physical systems at hand can be represented by state-space
models (SSMs), as this is a well-established view for which there are many results
both in control theory and in machine learning, considering it makes the underlying
state explicit. Our goal is then to develop generic methods for extracting information from
experimental data on an underlying state-space model.

2.1 Related work

To this end, we integrate concepts from control theory and machine learning. In
this section, we give a brief overview of the state of the art on this overarching
topic, in both communities and at their interface. We distinguish between system
identification on the one hand, i.e., determining the dynamics from observations, and
state estimation on the other hand, i.e., inferring the latent state. We highlight the
gaps in each research direction and insert our contributions into this overview. We
mainly focus on works that are relevant for the thesis; a more technical introduction
to the most appropriate ones is given in Ch. 3. Directly related work is discussed in
more detail in each corresponding chapter.

Machine learning has shown recent success in many static tasks such as image
processing or speech generation. However, the search for consistent methods that
can tackle the complexity, autocorrelations, and lack of data of the physical world is
still open. Hence, there is a growing community at the interface between machine
learning and system theory. This community is conducting research on many topics,
e.g., reinforcement learning [11], [12] and learning-based control [13], [14]. The
subject of system identification is naturally at this interface, as it aims to infer the
unknowns of an underlying SSM from measurements. These unknowns can for
example be the number of states, parameters of an analytical model, or whole parts
of the model. Many methods have been developed in the classic control theory
literature to deal with parameter uncertainty. For the linear case, subspace methods
aiming to estimate the system matrices are well established [15]. There is no unifying
view for nonlinear systems [16], [17], but many approaches from which to choose
depending on the use case at hand. These range from optimization-based methods
that estimate the unknown parameters of a given model using least squares or related
cost functions [18]-[20], Bayesian methods that focus on probabilistic or a posteriori
estimates [21], [22], or black-box models that approximate the unknown parts of the
model on a suitable basis of functions [23].

However, most of these classic methods are system-specific and require expert
knowledge. Hence, recent works leverage modern machine learning to build more
general system identification algorithms. For example, Gaussian process state-space
models (GPSSMs) [24], [25] have shown promising results thanks to their sample effi-
ciency and analytical formulation, which notably allows for control guarantees [26],
[27]. However, learning GPSSMs from partial observations remains an open problem,
and most existing approaches rely on heavy nonconvex optimization and do not offer
approximation guarantees. This is discussed in Sec. 3.1 following a more technical
introduction. We investigate learning such models from partial measurements in
Ch. 4.

Another line of work focuses on using deep neural networks to learn dynamics
models. For example, sparse identification in a library of physical laws [28], [29],
recurrent neural networks (RNNs) [30], [31], or neural ordinary differential equations
(NODEs) [32], [33] have been used to identify dynamical systems. These techniques
often rely on a transformation from the output to the latent coordinates in which the

2.2. Outline of the thesis 9

dynamics are learned, which can be in the form of an autoencoder [28], [34]. The
general question of enforcing physical knowledge in deep learning models has also
sparked significant interest [4], [35]-[37]. Nevertheless, approaches that are general
but can be adapted to the physical knowledge at hand and can learn from partial
observations are still needed. We construct one such approach based on NODEs in
Ch. 5. A summary of this literature is provided in Sec. 3.2. Conversely, machine
learning methods can also benefit from the lens of control theory. For example, the
approximation capabilities of RNNs [38] or NODEs [39] have been investigated via
optimal control.

The topic of state estimation is also at the interface between state-space modeling
and data analysis, as it aims at inferring the complete latent state of an SSM from
partial observations. Hence, there have been attempts to leverage machine learning
tools for solving state estimation tasks [40], [41]. In the classical literature on control
theory, this is also denoted as observer design. Though there is no established uni-
versal observer for nonlinear systems [42], [43], some general designs exist, such as
high-gain observers [44], extended Kalman filters (EKF) [45], or Kazantis-Kravaris
/ Luenberger (KKL) observers [46], [47]. More details are given in Sec. 3.4. These
approaches can help extract information from partial observations and precondi-
tion the corresponding machine learning problems. Alternatively, modern tools for
nonlinear regression can approximate some of the analytically intractable functions
present in classic results, e.g., when a transformation to some canonical coordinates
is needed, as for high-gain or KKL observers. Hence, exploiting machine learning
has the potential to make universal nonlinear observers more applicable in practice.
We explore this direction in Ch. 7.

Finally, statistical tools such as kernel methods [48] can also serve to analyze
experimental data. They have been used as regression tools for identifying dynamical
systems, but can also benefit wider applications by examining more complex objects
such as probability distributions. This enables comparing the measurements of
stochastic systems and what they reveal about the underlying SSM. For example, the
property of observability is nontrivial to define and even more to verify for nonlinear
stochastic systems; statistical evaluation of output data enables a step in that direction,
as investigated in Ch. 6. A brief overview of these methods is given in Sec. 3.3.

2.2 Qutline of the thesis

In this thesis, we develop generic methods for extracting information from experimental
data generated by a dynamical system. Each method is developed in a specific context,
for a specific sub-problem, and corresponds to one of the papers listed below. A
technical introduction is provided in Ch. 3, while the main contributions are detailed
in Ch. 4-7.

We pursue two lines of work. In a first part, we draw on results from nonlinear
observer theory to improve model learning. More specifically, we aim to refine SSMs
such as those obtained from numerical simulators with experimental data. For this,
we leverage theoretical results from nonlinear observer design to formulate regression
problems tailored to learning a specific state-space representation from the given
data. In a second part, we employ machine learning techniques to enable data-driven
observers. We first investigate how to assess the observability of stochastic systems
with statistical methods, then how to guide the tuning of numerical KKL observers.
The thesis is structured around the proposed methods as follows:

10 Chapter 2. Introduction

Chapter 3 presents the main mathematical tools needed for the methods presented
in this thesis. After briefly introducing Gaussian process models, it provides the main
concepts of deep neural networks for learning dynamical systems. It also includes
a succinct overview of kernel methods needed to compare output distributions of
stochastic systems, before exposing the type of nonlinear observer most used in this
thesis: the KKL observer.

Chapter 4 focuses on a specific form of SSM, the canonical observable form with
unknown nonlinearity. In that case, high-gain observers guarantee accurate state
estimation. We interconnect the observer with a Gaussian process model for the
nonlinearity, and show that both the state and dynamics model converge when
updated cyclically.

Chapter 5 extends this latest approach to general nonlinear systems with vary-
ing degrees of prior knowledge, making use of the flexible formulation of neural
ordinary differential equations (NODEs). To enable learning the NODE from partial
observations, a recognition model maps the output trajectory to the initial latent state.
In particular, leveraging results from observer design leads to a specific recognition
model tailored to KKL observers.

Chapter 6 shifts the focus from system identification to state estimation. More
specifically, we apply kernel methods to compare distributions of measurements from
stochastic nonlinear systems, and quantify how observable initial states and sensor
configurations are given this data.

Chapter 7 then investigates how deep learning can enable practical KKL observers
by approximating the necessary transformation. In particular, we propose to guide
the tuning of such numerical observers via an empirical criterion computed on the
neural network approximator.

For each of the presented methods, open-source code is available to explore its
capabilities and reproduce the results:

e Code for Ch. 4-5 is available at: github.com/monabf/obsGP recogNODE git;
¢ Code for Ch. 6 is available at: github.com/PFMassiani/data-obs.git;

e Code for Ch. 7 is available at: github.com/monabf/learn observe KKL git.

2.3 Publications

Some of the results of this thesis have been published or submitted for publication:

Corresponding to Ch. 4:

[49] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Joint state and
dynamics estimation with high-gain observers and Gaussian process models,” IEEE
Control Systems Letters, vol. 5, no. 5, pp. 1627-1632, 2021

Corresponding to Ch. 5:

[50] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Recognition
Models to Learn Dynamics from Partial Observations with Neural ODEs,” Transac-
tions on Machine Learning Research, 2023. [Online]. Available: https://openreview.net/
forum?id=LTAdaRM29K

Corresponding to Ch. 6:

https://github.com/monabf/obsGP_recogNODE.git
https://github.com/PFMassiani/data-obs.git
https://github.com/monabf/learn_observe_KKL.git
https://openreview.net/forum?id=LTAdaRM29K
https://openreview.net/forum?id=LTAdaRM29K

2.3. Publications 11

[51] P-F. Massiani, M. Buisson-Fenet, F. Solowjow, E. Di Meglio, and S. Trimpe,
“Data-Driven Observability Analysis for Nonlinear Stochastic Systems,” Preprint
arXiv:2302.11979, 2023. (The first two authors contributed equally)

Corresponding to Ch. 7:
[52] M. Buisson-Fenet, L. Bahr, and F. Di Meglio, “Towards gain tuning for numerical
KKL observers,” Preprint arXiv:2204.00318, 2022

13

Chapter 3
Mathematical tools

Résumé Ce chapitre présente les principaux concepts et outils mathématiques util-
isés dans cette thése. En premier lieu, certaines méthodes de modélisation de systémes
dynamiques a partir de données sont brievement introduites. Nous commencons
par les processus gaussiens, en particulier pour les modeles sous forme d’état, et
leur utilisation pour 1’apprentissage de dynamiques dans la Sec. 3.1. Nous discutons
ensuite de 'utilisation des modeles d’apprentissage profond pour 'identification des
systémes dynamiques dans la Sec. 3.2. Nous examinons ensuite certaines approches
d’apprentissage profond particulierement bien adaptées aux systémes dynamiques :
les équations différentielles ordinaires neuronales et les réseaux de neurones récur-
rents. Par la suite, 'accent est mis sur 'estimation d’état a partir de données de
mesure. Pour cela, nous présentons succinctement les méthodes a noyaux utilisées
pour analyser des données statistiques dans la Sec. 3.3, en particulier un test statistique
pour distinguer deux distributions a partir d’échantillons. Enfin, nous présentons
un observateur d’état non linéaire particulier dans la Sec. 3.4 : 1’observateur de
Katzantis-Kravaris/Luenberger, dont nous rappelons les principaux résultats.

Abstract This chapter presents the main mathematical concepts and tools used
in this thesis. First, some methods for modeling dynamical systems from data are
briefly introduced. We start with Gaussian processes, and in particular Gaussian
process state-space models and their use for dynamics learning in Sec. 3.1. We
then discuss the use of deep learning models for identifying dynamical systems in
Sec. 3.2. Then, the focus shifts to state estimation from measurement data. For this,
we succinctly introduce kernel methods used to analyze statistical data in Sec. 3.3,
in particular a kernel two-sample test to distinguish distributions based on samples.
Finally, we present a specific nonlinear state observer in Sec. 3.4: the Katzantis-
Kravaris/Luenberger observer, for which we recall the main results.

Notations In this thesis, all vectors are column vectors by convention, and the norm
considered is the Euclidean ¢, norm for vectors and matrices denoted by |-|, unless
stated otherwise.

3.1 Learning dynamics with Gaussian processes

Gaussian processes (GPs) are a powerful machine learning framework, with good
sample efficiency, providing probabilistic estimates. In Ch. 4, we focus on their use
for regression problems. GPs have gained interest over the last years; an extensive
overview is provided in [53]. In this section, we briefly introduce their mathematical
formulation, then discuss their recent application to system identification, and the
main trends to overcome their initial shortcomings in this context.

14 Chapter 3. Mathematical tools

3.1.1 Preliminaries on Gaussian processes

Let us recall the main definitions and interpretations of GPs as a tool for statistical
regression; see [53] for an overview.

Definition 1 ([53, Sec. 2.2]). A Gaussian process (GP) is a collection of random variables,
any finite subset of which is jointly normally distributed. A GP can be indexed over a set
X. In other words, if f is a GP, it associates each subset X € X with a collection of jointly
normally distributed random variables f(X) = (f(x;))x,ex. It is fully characterized by its
mean function m(-) and its covariance function k(-,-).

For simplicity, we assume m = 0; see [53, Sec. 2.7] for a discussion. Let X = R"x
and consider a finite subset X € X:

X=(xo ... xp) (3.1)
where each x; € R%, and a set of measured outputs

Y=(yo ... Yn) (3.2)

such that

yi = f(xi) + €, (3.3)

where each y; € R and each ¢; is a realization of Gaussian measurement noise of
variance ¢7.

Definition 1 implies a consistency requirement, i.e., that any collection of values
f(x) be consistently normally distributed. Hence, the prediction of f at a new,
unobserved point x can be obtained by conditioning over the inputs X and outputs
Y knowing 02. More precisely, it is normally distributed with posterior mean and
variance, respectively given by

u(x|X,Y) =k(x)" (K +02L,) 'Y (3.4)
o?(x|X,Y) = k(x,x) —k(x) " (K + ¢21,,) " k(x) (3.5)

where T, is the identity matrix of size 1, k is the kernel function, K = (k(x;, x;)) X, x;€X
is the covariance matrix, and k(x) = (k(x;, x))x,ex. This straightforwardly extends to
multiple test points by considering their covariance matrix instead of the variance at
one point. By a slight abuse of notation, for any fixed x, the probability of drawing
the associated value f(x) conditioned on the data follows a normal distribution
N (p(x),0%(x)). This is denoted as the posterior distribution of f at x, and it is the
formula we will mostly use to apply GP regression in practice.

If the output is of dimension dy, > 1, one can assume all output dimensions are
independent and select one kernel function for each.

Definition 2. In the case of d, independent output dimensions with d,, different kernels, we
obtain a posterior covariance matrix of the form

0% (x) 0
2(x) = - , (3.6)

3.1. Learning dynamics with Gaussian processes 15

where ?(x) is the posterior variance for the i'" output dimension as per definition (3.5),

using the i kernel. We then define the scalar posterior variance in the multioutput case as
1/d
o2 (x) = [Z(x)| /™. (37)

In this thesis, we always consider the scalar posterior variance when making
predictions, be it (3.5) for a single output dimension or (3.7) for multiple independent
output dimensions. Otherwise, one can formulate the posterior distribution for
multioutput GPs as in [54] so that the output dimensions correlate, at the cost of
significant computational overhead.

Function properties such as smoothness or periodicity can be encoded in the
choice of the kernel k(-, -), which acts as a similarity measure for the values of f(-).
This kernel usually depends on some so-called hyperparameters, often obtained by
maximizing the data marginal log-likelihood

n

1 1
log p(Y|X) = —EYT(K—kaezl[dx)‘l - E1og\1<+a§11nx\ -3

log2r, (3.8)
with a gradient-based optimization method and multiple starts. In this thesis, we
mainly use the anisotropic squared exponential kernel

dy L
k(x,x") = s*exp (- (xlxl)z) (3.9)

Lo

where the hyperparameters are | = (1y,...,l;.) " the vector of lengthscales and s?
the scaling factor. For so-called universal kernels such as the squared exponential,
given any choice of hyperparameters, the GP posterior mean can approximate any
sufficiently smooth function arbitrarily well as the amount of data grows to infinity,
i.e., it has a property of universal approximation [53], [55]. However, for a fixed
amount of data, learning performance can significantly degrade if the kernel or its
parameters are badly chosen, even though overfitting tends to be less of a problem
for GP regression than for most other machine learning frameworks [26], [56].

Sparse approximations

GP models tend to be computationally heavy as adding a new data point requires
the inversion of the large covariance matrix K, for which the temporal complexity is
O(n®). Therefore, constructing scalable GP models that maintain performance while
speeding up computations is an active area of research. This is particularly relevant
for performing system identification with GPs, as the amount of data grows over
time.

A first approach is to design sparse approximations of GPs. An overview of the
most important methods is provided in [53, Ch. 8], and more recently in [57]. Most
sparse approximations rely on a vector of inducing variables, which are values of the
GP at artificially chosen inducing inputs. It is then assumed that the function values
at the test points are conditionally independent of those at the training inputs given
these inducing variables, and the posterior distribution conditioned on the induc-
ing variables is approximated in a computationally efficient fashion. The inducing
variables can be a subset of the data, or optimized jointly with the hyperparameters.

Another line of work consists in directly approximating the GP posterior distri-
bution: this method is denoted variational inference [58]-[60]. Variational inference
approximates a conditional distribution p(z|x), where z are the latent variables while

16 Chapter 3. Mathematical tools

x are the observations, with a simpler distribution g(z), such as a mixture of Gaus-
sians, whose parameters are optimized to best fit the true distribution. Here, the latent
variables z often play the same role as the inducing variables for classical sparse GPs,
and are jointly optimized with the natural parameters of 4. All variational parameters
are chosen by minimizing the Kullback-Leibler divergence between the exact and
approximate posterior, which boils down to maximizing the evidence lower bound
(ELBO):

ELBO(g) = E [log p(x,z)] — E [log4(z)], (3.10)

where g(z) is known and p(x, z) can be computed explicitly in the case of GPs, or
through approximate inference. The ELBO is generally nonconvex, but this procedure
can take advantage of recent tools such as stochastic or distributed optimization to
find a suitable local optimum, and results in an approximate posterior which is easy
to sample, yielding fast predictions.

Finally, some other works focus on recursive approximations to speed up training,
e.g., [61].

3.1.2 Gaussian process state-space models

GPs have become a popular tool for learning dynamical systems [24], [62], with
applications among others in robotics [14], safe learning or exploration [26], [27], [63],
or reinforcement learning [64], [65]. They provide an analytical formulation, which is
suitable for further analysis, in particular for giving probabilistic guarantees [66], [67]
or for uncertainty-based active learning [68], [69]. They are also data-efficient [25] and
provide an automatic trade-off between model smoothness and data fitness through
the Bayesian approach [69].

The modeling problem is often formulated as a Gaussian process state-space
model (GPSSM) [70], i.e., a discrete-time state-space model of form

X1 = f(x) +1
vi = hx) +e (3.11)

where x € R% is the state of the system, y € IR% is the measured output, and 7 resp. €
are Gaussian process resp. measurement noise. The transition or dynamics function
f and the measurement function / are assumed to be GPs, usually with independent
output dimensions.

Collecting observations of (3.11) naturally leads to a dataset that grows over time;
sparse approximations with a fixed number of inducing variables can alleviate this is-
sue. In any case, sampling from GPSSMs is highly nontrivial. Indeed, for a given state
xo, the next state x; follows a normal distribution as per (3.11), but not necessarily
the following states: if f is simply deterministic but nonlinear, it deforms the normal
distribution. Hence, exact sampling can quickly get computationally intractable, so
that approximations have been investigated. For example, one can linearize the GP
posterior to maintain Gaussian distributions over several time steps, or use moment
matching to approximate the posterior at each time step by a Gaussian, whose mean
and variance are computed with exact inference [25, Sec. 4]. However, this is still com-
putationally expensive and can degrade performance. Recent research thus proposes
more sophisticated approximations [71]. Since sampling from the posterior is already
complex, h is often assumed to be a linear, deterministic function for simplicity. Other
than these, several more practical interpretations of GPSSMs have been suggested

3.1. Learning dynamics with Gaussian processes 17

to circumvent the sampling difficulty [26, Sec. 2.3]. The deterministic view only uses
the mean of the GP posterior distribution as a function approximator, disregarding
the probabilistic aspects. The stochastic view draws independent samples at each
time step, while the belief-space interpretation considers a deterministic transition
function for the mean on the one hand, and the variance on the other hand. In Ch. 4
of this thesis, we follow the deterministic view: we use the mean of the GP poste-
rior distribution as a function approximator to estimate the true dynamics, without
considering the probabilistic aspects. For the graphical representations, we simply
show the variance at the given deterministic point for illustration purposes, but only
consider the mean in all computations and interpretations.

Physical priors in GPSSMs

One of the advantages of GPSSMs is that many forms of prior knowledge about the
physical system can be included. For example, if the function generating the data is
known to be periodic, this can be encoded via a periodic kernel of form

dy s 2 o
k(x,x") = s*exp (—) 2sin (7T|;C2 ad |/P)> (3.12)
i=1 i

where s is a scaling parameter, [= (I, ..., l,,lx)T is the vector of lengthscales and p is
the period.

Some structural constraints directly lead to a modified posterior distribution,
so that the resulting samples necessarily satisfy them, e.g., mechanical force con-
straints [72]-[74] or linear ordinary differential equations (ODEs) with constant coeffi-
cients [75]. Other properties such as conservation laws can be enforced by suitable
numerical integrators in specific cases, such as symplectic integrators for Hamiltonian
systems; embedding a chosen integrator into a variational approximation of the GP
posterior [76] or combining exact GP inference with variational integrators [77] also
leads to structure-preserving predictions.

Stability constraints can also be imposed, e.g., using control Lyapunov func-
tions [26], [78]. For example, if the equilibrium points of the system are known,
or their number is known and they are inferred from data, they can be enforced
in the GP model f by treating them as virtual inputs x such that f(x) = x. This
yields an updated posterior distribution. Then, a virtual control u is added to the GP
such that the prediction at a test point x; is f(x;) + u(x;). This control law u(-) is ob-
tained by solving a convex optimization problem, ensuring that all equilibrium points
are asymptotically stable for a given convex Lyapunov functional, while minimally
perturbing the GP model. This yields an accurate and stable GPSSM [78].

Finally, it is also possible to model the residuals of a known dynamics function
with GPSSMs [79], i.e., learn the difference between the ground truth and a prior
model, by fitting the GP to observations from which the prior predictions have been
subtracted, or, equivalently, by using the known function as m in the GP posterior
mean (3.4).

Joint inference and learning for GPSSMs

Many works on GPSSMs assume full state observations are available. However, if
only partial observations y can be collected, identifying the GPSSM becomes much
more complex. Indeed, not only do f and & need to be inferred from data (learning
problem), but the posterior distribution of the unknown latent state x given the

18 Chapter 3. Mathematical tools

observations is also needed (inference problem): this is denoted as joint inference and
learning.

One of the most widespread takes on this problem is variational inference [58].
As seen in Sect. 3.1.1, variational inference consists in approximating a complex
conditional distribution with a simpler distribution g, then optimizing the parameters
of g to minimize the ELBO. This approach can be used not only to speed up predictions
as in [59], but also to perform joint inference and learning in GPSSMs [80]. In this
case, the GPSSM is augmented with inducing variables u which are jointly normally
distributed with the latent function values. The approximating distribution g is chosen
such that it factorizes similarly to the joint distribution of a GPSSM, and the ELBO is
computed explicitly. Then, stochastic gradient descent is performed to optimize all
hyperparameters and variational parameters, which describe the distribution of the
inducing variables. This approach yields a tractable posterior distribution even for a
latent space that is larger than the observation space. It has since been expanded to
improve prediction accuracy by imposing a more structured variational distribution,
parametrized by a bi-directional recognition model [81], taking into account temporal
correlations between the latent states [82], treating the temporal states jointly through
the Laplace approximation [83], or running a backward pass during inference to
take several observations into account and predict even unstable systems [84]. A
closed-form, full analytical variational inference scheme is also presented in [85].

Another line of work applies the expectation-maximization algorithm [70]. Af-
ter introducing a set of inducing variables also denoted pseudo training set, the
algorithm alternates between inference steps, in which the posterior distribution is
approximated given all current hyperparameters and inducing variables, and learn-
ing steps, in which these parameters are updated to maximize a lower bound on the
log-likelihood of the training data given the parameters.

3.2 Deep learning for dynamical systems

Deep learning utilizes deep artificial neural networks to solve tasks based on data.
Many textbooks and resources are available to understand these notions and apply
them in practice, e.g., [86]-[88]. Different types of architectures of neural networks
exist in the literature and serve different purposes: in image processing, convolutional
neural networks apply a moving filter over the input image to extract a feature map
that captures spatial correlations; in time series and natural language processing,
long short-term memory networks (LSTMs) have been successful by retaining both a
long-term cell state and a short-term hidden state that are combined with the current
input via a series of gates; in data compression, autoencoders learn a projection of the
input into a lower-dimensional space and back to the original space... In this section,
we merely graze the surface of deep learning by shortly introducing the tools that are
most relevant for this thesis. We start with a technical introduction to one of the most
basic types of neural networks: multilayer perceptrons, which we will mainly use in
the following chapters. We then succinctly describe a few other architectures that are
meaningful for the topics at hand.

3.2.1 Introduction to feed-forward neural networks

An artificial neural network (NN) is a structure that takes an input x and returns an
output fp(x), where 6 are the parameters of the network. The output of a single layer
is given by a(wa + b), where x is the input to the layer, w is a vector of weights, b a

3.2. Deep learning for dynamical systems 19

vector of biases, and a is a (generally nonlinear) activation function. For feed-forward
networks, the output of each layer serves as input to the next, and all weights and
biases are concatenated into one vector of parameters 6. More complex architectures
can also include loops or cycles to keep information inside the network.

In supervised learning, the data is labeled: for each input x, there is a known
output y. The parameters of the NN are then adapted for the estimated output fy(x)
to match the true output y on a training set of N points as closely as possible, usually
by minimizing an empirical risk in the form of a least squares loss:

Z|yl fo(xi)|" (3.13)

This is denoted as training the network. This optimization is typically conducted by
iteratively updating the parameters following a stochastic gradient descent scheme.
At each step, such methods compute the average gradient on a random subset of
training examples called minibatch, until a convergence criterion is met. They have
been further improved, e.g., by accelerating the descent with momentum [89] or
using an adaptive step size. In this thesis, we mainly use Adam [90], one of the most
prominent algorithms to date.

To minimize the loss L with gradient descent methods, it is necessary to compute
the gradient of L w.r.t. the network parameters 0. This is at the core of NN training,
and is achieved with backpropagation. This procedure relies on the chain rule: since the
output of the NN is obtained by applying a series of simple operations to the input
layer by layer, one can compute the gradient of the output w.r.t. each parameter by
going backwards through all the layers using the chain rule [88, Ch. 1],[87, Sect. 4.6].
This can be computed analytically for a fixed NN. However, most modern machine
learning libraries have tools for automatic differentiation [91]: when describing a
series of operations such as the layers of a NN, a computational graph is built that
keeps track of the dependencies and intermediate derivatives. This is the forward
pass. Then, the backward pass is called given a scalar value for the loss: it goes
through all operations again and combines the necessary partial derivatives using the
chain rule. Stochastic gradient descent can then be applied with the current gradient
computation for the current minibatch. Note that efficient automatic differentiation
is one of the main ingredients that has enabled the success of deep learning, and it
can now be used in many other fields thanks to optimized general-purpose libraries
such as JAX. In this thesis, we use PyTorch, which enables automatic differentiation
through the autograd package and the jacrev package for more complex operations.

Many practical aspects should be considered for successfully training a NN on a
supervised learning task. For example, overfitting remains one of the main issues:
it is possible to minimize the empirical risk by exactly reproducing all training
examples, but this leads to a model that is incapable of generalizing, i.e., correctly
predicting examples outside of the training set. Tricks such as regularization (adding
terms to the loss that penalize a norm of 6), early stopping (monitoring the loss
on a separate validation set and stopping when it starts to rise) or cross-validation
(training several models on different subsets of training and validation data) help
alleviate this issue. Such practical considerations are necessary to obtain accurate
NN models; an overview and best practices are presented in [88], [92]. They are not
further discussed in this thesis, except for relevant aspects that have influenced some
concrete examples.

This brief introduction describes feed-forward NNs, which include multilayer
perceptrons, i.e., vanilla NNs, simply denoted as NNs in the following chapters,

https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://pytorch.org
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/functorch/stable/notebooks/jacobians_hessians.html

20 Chapter 3. Mathematical tools

but also convolutional NNs. In this thesis, we mainly use multilayer perceptrons as
function approximators in a supervised context, and a few other types of architectures
concisely introduced in the next section.

3.2.2 Neural networks for physical systems

Great effort has recently been made to bridge the gap between the latest advances
in deep learning and more established results or concepts in the physical sciences.
Overviews of the works on integrating deep learning into studies of physical systems
are given in [4], [35]-[37]. We briefly introduce the types of models that are most
relevant for this thesis in the next sections. Note that for many of these works, the
coordinate system in which physical knowledge can be included is not assumed to be
the observed coordinates. Hence, a change of variables on the state of the underlying
SSM is often learned jointly, commonly in the form of an autoencoder [29], [93].

Physics-informed neural networks

In the seminal paper [94], solutions of known partial differential equations (PDEs) are
approximated with deep NNs. This approach is denoted as physics-informed neural
networks (PINNSs). The solution u(t, x) is approximated by a NN whose parameters
are optimized to minimize the least squares loss L, + L¢, where L, penalizes the
error on a dataset of trajectories, while Ly computes the differential operator applied
to the NN model on a spatio-temporal grid using automatic differentiation, and
penalizes the residuals of that differential equation. The addition of the unsupervised
penalty Ly is expected to have regularization properties and enable some level of
extrapolation, usually a shortcoming of NNs. The method is demonstrated on both
continuous and discrete-time systems and can capture the nonlinear behavior of the
solution even with a low number of data points if the dataset is informative enough.
It is also possible to optimize some unknown parameters of the PDE jointly with the
solution.

PINNSs have since been used for various applications and combined with several
other concepts and frameworks. For example, in [95], PINNs are combined with
Lyapunov stability theory to learn regions of attraction of autonomous dynamical
systems; in [96], they are merged with autoencoders to discover internal variables
and adapted to integrate the laws of thermodynamics and describe the behavior
of complex inelastic materials. A related method, which retrospectively falls into
the same category, is the line of work on Hamiltonian and Lagrangian networks
originating from [97]-[99] (see [100] for an overview). The system is assumed to
follow Hamiltonian (resp. Lagrangian) dynamics, and the Hamiltonian (resp. La-
grangian) function is approximated with a NN by penalizing the residuals of the
corresponding PDE on a set of training points. The resulting dynamics are then used
to predict the evolution of the system. This approach has also led to many applica-
tions and extensions. For example, in [101], standard Hamiltonian NNs are extended
to learn dissipative systems, whose dynamics are the addition of a conservative and
a dissipative field, approximated jointly by two NNs.

Recurrent neural networks

Recurrent neural networks (RNNs) are structurally different from feed-forward net-
works [87, Ch. 7]. While the latter are designed for independent input points, RNNs
are built for sequential inputs. They capture temporal correlations by storing the

3.3. Kernel methods 21

information contained in previous time steps in a so-called memory, in the form
of a hidden state that is passed on through a feedback loop in the recurrent lay-
ers. Backpropagation is then used to train the network by unfolding this feedback
loop, i.e., tracing back the sequence of operations necessary to obtain the output
for each time step in the input sequence. There are different architectures of RNNs
used for various applications. In particular, the hidden state and input are com-
bined through so-called gates, whose parameters are also optimized during training.
LSTMs [102], [87, Sect. 7.5] are a form of RNNSs that is widely used in natural language
processing, where a hidden and a cell state keep track of a short-term and a long-term
context. At each time step, these two states are updated and combined with the new
information from the current input through a forget gate, an input gate and an output
gate to produce the output.

In this thesis, we shortly make use of gated recurrent units (GRUs), first introduced
in [103]. In this type of RNN, one hidden state is kept in the recurrent layer through a
feedback loop. At each time step in the input sequence, this hidden state is updated
via a combination of update and reset gates, then the output is predicted. GRUs
have been successfully applied for time series forecasting and other sequential data
processing tasks.

Neural ordinary differential equations

Neural ordinary differential equations (NODEs) were first proposed in [32] and have
since gained significant interest. They aim to learn a vector field that generates
the data with a feed-forward NN; see [33] for an overview. Contrarily to PINNS,
we are not approximating the solution of a known ODE (or PDE), but rather the
vector field that characterizes this ODE using known solutions, i.e., trajectories. The
network is trained by minimizing the difference between the trajectory resulting from
the current model and the true trajectory, usually by automatically differentiating
through the numerical solver used for simulating the current estimate. NODEs can be
interpreted as continuous-depth neural networks, as the input evolves continuously
during the forward pass. These models have found various applications, from image
classification [33] or analysis of complex materials [104] to generative models for
climate forecasting [105]. Their formulation is particularly natural for modeling
dynamical systems with different degrees of prior knowledge. We introduce NODEs
more formally, go deeper into the related work and investigate this last direction in
Ch. 5.

3.3 Kernel methods

Kernel methods are an active research area related to statistical learning theory [48].
They form a modular framework that can efficiently solve many machine learning
tasks. In the following sections, we give the minimal intuitive treatment necessary to
introduce the tools used in Ch. 6 of this thesis.

3.3.1 Reproducing kernel Hilbert spaces

Kernel methods rely on the theory of reproducing kernel Hilbert spaces (RKHSs). An
intuitive introduction can be found in [106]; see [48], [107] for more details.

Kernel methods can be motivated as follows [106]. Many classical learning algo-
rithms mainly compute inner products between data points. These can be interpreted

22 Chapter 3. Mathematical tools

as similarity measures between samples. Kernel methods replace these inner prod-
ucts, which may be too restrictive for the learning problem at hand, with more flexible,
possibly nonlinear similarity measures. This is achieved by embedding the input x
into a feature ®(x), possibly high-dimensional, then computing the similarity mea-
sures directly in the feature space. In the context of kernel methods, the feature space
is an RKHS, i.e., a Hilbert space over functions in which the evaluation functionals
are bounded [106, Def. 2.4]. It can be shown that RKHSs have the point evaluation
property: for any input x, there is a representer function in the RKHS that expresses
the evaluation f(x) as an inner product, for any f in the RKHS; see [106, Sec. 2.2] for
details. We now introduce these tools more formally.

Let X be a set. A kernel k: X x X — R is said to be positive definite if it satisfies
the symmetry property

k(x,y) = k(y, x) Vxye X (3.14)

and the positivity property

N
Z cicjk(xi, xj) > 0 Ve €Rx; € X,ie{l,...,N} (3.15)
i=1j=1

This corresponds to its Gram matrix (k(x;, x;)); je(1,..,n} being positive semi-definite.
It is shown in [108] that for any fixed, positive definite kernel k, there exists a unique
corresponding RKHS denoted by Hy. This RKHS [109, Def. 2.3] is a Hilbert space
over the functions from & to R, equipped with an inner product (-, -)3,, for which
the canonical feature map

ky:y € X —k(x,y) (3.16)
belongs to Hy and has the reproducing property
fO) = (fkdw, VfEHxeX. (3.17)

Hence, k is called a reproducing kernel. Thus, the feature map k, represents point
evaluation [106, Prop. 2.1], i.e., any function f € Hj can be represented with the
reproducing kernel as

f(x):icikxi(x):ic k(xi,x) = (f, k)2, VxedX, (3.18)

i=1 i=1

with coefficients c¢; € R. The reproducing kernel can also be interpreted as a similarity
measure between inputs, such that the feature map acts as a similarity measure
between x and all other points in X'. In particular, we have the so-called kernel trick:

k('x’y> = <kX/k]/>7'[k v x/y € X, (319)

which enables easy computations of scalar products of finite linear combinations
of the reproducing kernel ky. Hence, instead of working in the unstructured set
X, one can work in the structured Hilbert space #Hj, in which an inner product
and the corresponding norm are defined, and in which the kernel trick enables fast
computations.

This view is widely used in statistical learning theory, specifically due to the
generalized representer theorem [110]. Roughly speaking, this representer theorem

3.3. Kernel methods 23

states that given a finite number of training points x; and corresponding observations
yi,i € {1,...,N}, concatenated in X, Y, any solution of the regularized empirical risk
minimization problem

minE(X,Y,f) + R]y, (3.20)

where E is an error functional depending on x;, y; and the estimated values f(x;),
i €{l,...,N}, and R is a strictly increasing real-valued regularization term, is of the
form

o

) =) wik(x;,) (3.21)

i=1

witha; € R, i € {1,..., N} some coefficients. Hence, any solution of the regularized
empirical risk minimization problem in Hy can be written as a linear combination of
the kernel values at the training points. In particular, the kernel Ridge regression

N

. 2 2
min = fx)|"+ A 3.22
min Y-l Fl) + Ml 62)

with A > 0 falls into this category. The solution is necessarily of form (3.21), the
vector a* of coefficients

o = (K+ ALY, (3.23)

where K;; = k(x;,x;), i,j € {1,...,N} being a possible solution (unique if K is
invertible). This is obtained by replacing the form of f* into the cost function and
setting its gradient to be zero at the optimum [109, Th. 3.4].

To conclude, choosing a positive definite kernel k amounts to choosing a similarity
measure between the points x, so that in the corresponding RKHS denoted Hy, every
function can be represented based on this similarity measure. Nonlinear regression
problems then lead to solutions in the form of linear combinations of the similarity
measure evaluated at the training points. Casting certain problems into an RKHS
enables manipulating complex objects in a structured space, and reduces them to a
finite number of evaluations of the kernel function.

Note that Gaussian processes presented in Sect. 3.1 are related to kernel methods.
In particular, the solution of the kernel Ridge regression problem of form (3.21) with
a* above is the posterior mean of a GP model with 02 = A. However, interpreting
the covariance in this context remains a topic of investigation; see [53, Ch. 6][109] for
more details.

3.3.2 Statistical testing with kernels

Kernel machines embed a point x € A" into a feature space through a so-called
feature map k,, corresponding to the chosen similarity measure. However, X needs
not be a set of points: a reproducing kernel and the corresponding RKHS can be
defined over more complex objects, e.g., graphs, strings or images. In particular,
probability distributions can be represented as objects in an RKHS through kernel
mean embeddings [106]. Let IP be a probability distribution on X’; its kernel mean

24 Chapter 3. Mathematical tools

embedding (KME) denoted pup is given by

Up : P—R
X /X k(x,x")dP(x") = Exp [k(x, X)]. (3.24)

This is the average value of k(-, X), where X ~ IP. One can then compare such KMEs
in the RKHS. For example, the maximum mean discrepancy (MMD) between two
distributions IP and Q is defined as the distance between their embeddings in the
RKHS:

MMDI(P, Q] = |up — paly,- (3.25)

These KMEs pave the way to manipulating probability distributions in a struc-
tured space. Though the theoretical values of the KME and MMD often cannot be
computed analytically, they can be estimated empirically from independent and iden-
tically distributed (i.i.d.) samples from the source distributions IP and Q [106]. This
enables constructing a kernel two-sample test [111] to compare distributions based
on samples. The statistic in this test is the empirical estimate of the MMD. Given
concentration bounds on this estimate, a threshold can be determined depending
on the number of samples, such that if the empirical MMD is above this threshold,
then IP and Q are different with high probability. Such lines of work comparing
distributions based on their KMEs have since led to many applications, and efforts
are made to extend them to stochastic dynamical systems, e.g., to determine whether
two sets of full-state measurements stem from the same stochastic system [112]. In
Ch. 6, we make use of these concepts to develop a data-based observability test for
nonlinear stochastic systems.

3.4 The Katzantis-Kravaris/Luenberger observer

Nonlinear observer design is a broad and active research field, whose aim is to
estimate the state of nonlinear systems from partial measurements. There is no
established design with convergence guarantees for general nonlinear systems, as one
of the most widely used observers is the extended Kalman filter (EKF) [45], which only
provides local convergence guarantees. The Katzantis-Kravaris/Luenberger (KKL)
observer, also denoted nonlinear Luenberger observer, provides global convergence
guarantees and has recently gained interest. However, many questions remain open
to make it applicable in practice. In this thesis, we use the KKL observer as a general
state estimator and investigate how to tune it. We briefly recall the results on this
subject that are most relevant for this in the following sections.

3.4.1 Autonomous KKL observers

We first recall the main existence results of KKL observers for autonomous systems.
Consider the following autonomous nonlinear dynamical system

1= f(x),
y = h(x) (3.26)

where x € R% is the state, y € IR% is the measured output, f is a C! function and / is
a continuous function. The goal of observer design is to compute an estimate of the

3.4. The Katzantis-Kravaris/Luenberger observer 25

state x () using the past values of the output y(s), 0 < s < t. We make the following
assumptions:

Assumption 1. There exists a compact set X such that for any solution x of (3.26), x(t) € X
Vt>0.

Assumption 2. There exists an open bounded set O containing X such that (3.26) is
backward O-distinguishable on X, i.e., for any trajectories x, and x, of (3.26), there exists
t > 0 such that for any t > F such that (x,(t), xp(t)) € X x X and x,(t) # x,(t), there

exists s € [t —t, t] such that
h(xa(s)) # h(xp(s))

and (x,(7),x5(7)) € O x O forall T € [s,t]. In other words, their respective outputs
become different in backward finite time before leaving O.

This assumption is denoted backward distinguishability. It means that the current
state is uniquely determined by the past values of the output. On the contrary,
(forward) distinguishability means that the initial state is uniquely determined by the
future values of the output. If the solutions of (3.26) are unique, e.g., if f is C!, these
two notions are equivalent.

The following Theorem derived in Andrieu and Praly [47] proves the existence of
a KKL observer.

Theorem 1 (Andrieu and Praly [47]). Suppose Assumptions 1 and 2 hold. Define d, =
dy(dy + 1). Then, there exists { > 0 and a set S of zero measure in C% such that for
any matrix D € R%*4: with eigenvalues (Ay,...,Az.) in C%=\ S with RA; < —4,i €
{1,...,d;},and any F € R% >4 sych that (D, F) is controllable, there exists an injective
mapping T : R% — R% that satisfies the following equation on X

o7

i (x)f(x) = DT (x) + Fh(x), (3.27)

and its left inverse T* : R% — R% such that the trajectories of (3.26) remaining in X and
any trajectory of

z=Dz+Fy (3.28)
satisfy
[2(t) = T (x(1))] < M|z(0) — T (x(0)) [e~"=" (3:29)
for some M > 0 and with
Amin = min {|RA1],..., [RA4|}. (3.30)
This yields
lim |x(f) — T*(z(t))| = 0. (3.31)

t—+o0c0

In practice, the estimate £(t) = 7 *(z(t)) of x(t) is obtained by solving (3.28)
numerically from an arbitrary initial condition z(0), which is not necessarily 7 (x(0))
as x(0) is generally unknown in a state estimation context. Therefore, there is an initial
transient period during which z(t) is not yet close to 7 (x(t)) hence the estimated state
%(t) is not close to x(t). The length of this transient depends on Amin, exponentially
for z, but in a nonlinear fashion that depends on 7 for %.

26 Chapter 3. Mathematical tools

Remark 1. According to this result, z € C%@+1), Therefore, in order to represent this filter
with real numbers only, we need d, = 2d,(dx + 1). However, in practice, we assume that the
dy(dx + 1) complex eigenvalues needed for D are complex conjugates, such that we only need
dimension d, = dy(dy + 1) to represent the real filter z € R%.

This problem formulation in which one seeks a transformation to a normal system
form, for which existence and regularity results are known, is common in systems
theory. Therefore, results on this topic may enable extensions to other, similar con-
texts. For example, many works on learning nonlinear SSMs rely on a coordinate
transformation from the observed coordinates to some suitable latent coordinates,
which is often approximated by an autoencoder [29], [93].

Remark 2. For any ODE of general form %(t) = f(t,x(t)) where f is continuously
differentiable (C'), there is a unique maximal solution [113]. It is then possible to run the
ODE “in backward time” or equivalently “backward in time”, i.e., write out the solution
from a given instant t in decreasing time, with the change of variables y(t') = x(—t),
ie,y(t') = —f(¥,y(t)). This can become useful for KKL observers, e.g., for estimating the
initial condition x(0) instead of the current state x(t) by running the observer backward in
time for long enough.

3.4.2 Extensions to nonautonomous systems

These results are extended to nonautonomous systems in [114]. The system equations
are then

x = f(x,u)
y=h(x,u) (3.32)

where u € U is the input of dimension d,. Assumption 2 naturally extends to
nonautonomous systems if it is true for any fixed input u of interest. The following
theorem proves the existence of a KKL observer in the nonautonomous case.

Theorem 2 (Bernard and Andrieu [114]). Take some fixed input u € U. Suppose Assump-
tions 1 and 2 hold for this u with a certain t, > 0. Define d, = d,(dx + 1). Then, there
exists a set S of zero measure in C% such that for any diagonalizable matrix D € C%*% with
eigenvalues (A1,...,Ag,) in C%=\ S with RA; < 0,i € {1,...,d.}, and any F € C%>4x
such that (D, F) is controllable, there exists a mapping T, : R x R% — C% that satisfies
the following equation on X

a;j(t,x)f(x,u(t)) + aa?(t,x) = DT,(t,x) + Fh(x,u(t)), (3.33)
and a mapping T,* : R x C% — R% such that T,(t,-) and T, (t,-) only depend on the past
values of u on [0, t], and T, (t, -) is injective ¥ t > t,, with a left-inverse T,; (t,-) on X. Then,
the trajectories of (3.26) remaining in X and any trajectory of

z =Dz + Fy, (3.34)

satisfy
|2(t) = Tu(t, x(£))| < M|2(0) — To (0, x(0)) e~ mint (3.35)

3.4. The Katzantis-Kravaris/Luenberger observer 27

for some M > 0 and with

Amm:min{|§RA1],...,|§R)tdZ]}. (336)
This yields
Tim [x(1) = T, (1,2(1))] = 0. (3:7)

The main differences with the autonomous case are that the eigenvalues no longer
need to be sufficiently large and that 7 is time-dependent. Crucially, it depends
on the entire history of the input u([0,t]) and becomes injective for t > f, with £,
from the backward distinguishability assumption. This rapidly leads to numerical
intractability if no analytical expression of 7, is available.

A potential solution is to consider inputs structured by an ODE and rely on
functional observers [115]. Assume an autonomous system is only backward distin-
guishable with respect to a function of the state g(x), i.e., q(x,(t)) # q(xp(t)) implies
that there exists s € [t — [, t] such that h(x,(s)) # h(xp(s)) as in Assumption 2. Then,
a KKL observer of that function can be built as in Sect. 3.4.1, i.e., it can be shown that
there exists a continuous function 7 that transforms x into z and a globally defined,
uniformly continuous map 7 such that 7(7 (x)) = g(x). We then have

lim [q(x(t)) — T(=(6))] = 0. (338)

It is shown in [115] that the previous results for autonomous KKL observers extend
to this case, i.e., with static mappings 7 and 7.

Consider again the nonautonomous system (3.32). Assume the input u can be

generated by an auxiliary dynamical system of state w € R%, so that we have the
complete system

w=1(w), u=-s(w)

x = f(x,u), y=h(x,u). (3.39)
This leads to the functional observer described in [115, Sect. III], where X = (x, w) is
the extended state, Y = (y, u) is the extended output, and q(X) = x is the functional

w.r.t. which the system is distinguishable. Hence, an autonomous KKL observer can
be designed for (3.39) as in Sect. 3.4.1, and we have

lim |x(f) —7(z(t))| =0 (3.40)

t—+too

where
z = Dz + FY. (3.41)

When a finite-dimensional of the input is known, a static KKL observer can thus be
designed, at the cost of a higher dimension d, = (d, + d,)(dx +dw +1).

3.4.3 Numerical KKL observers

The previous results show the existence of the transformations 7 and 7*, proving
the global convergence of the corresponding observer under weak observability
assumptions. However, in general, it is not possible to compute these transformations
analytically. Hence, it has been proposed to approximate them numerically with

28 Chapter 3. Mathematical tools

neural networks [116]. We refer to these as numerical KKL observers; the aim is to
learn to observe, i.e., assuming the dynamics are known, learn to estimate the state
from measurements. This is done in a supervised fashion, by generating simulations
of the full state of the plant/observer system.

Starting from a grid of points in X, the system is simulated forward in time
for “long enough”, i.e., until it can be considered that the observer has converged.
The trajectory in z is simulated jointly for a given pair (D, F), so that a dataset
of points (x;,z;), i € {1,...,N} is obtained. The mappings 7 : x +— zand 7" :
z — x are approximated with two feed-forward NNs based on this dataset. The
learned observer can then be applied to estimate the full state x from experimental
measurements y.

In the autonomous case, this simply consists in simulating z forward in time for a
new output trajectory and computing the corresponding estimated state £ = 7 *(z).
As for the nonautonomous case, the authors of [116] focus on input-affine systems of
form

x=f(x)+g(x)u
y =h(x) (3.42)

and apply a methodology proposed in [114]. In this special case, one can generate
the training set with a nominal control input u°(+), learn the transformations, then
simulate the corresponding observer with any other input u(-) as

z=Dz+ Fy+ %Z;(t, T*(t,2))g(T*(t,z)) (u — u®). (3.43)
If the observer converges sufficiently fast compared to the Lipschitz constant of the
extra term in Z, then it is shown in [114], [116] that the previous results extend and
the corresponding estimate £ = 7 *(t,z) converges asymptotically to the true state.
From the seminal paper [116], this line of work has since been extended, i.e., to
discrete-time systems [117] or by improving the performance [118]. We further build
onitin Ch.7.

29

Partl

Nonlinear observer theory for
dynamics model learning

This thesis is motivated by the growing topic of digital twins, which has recently
gained interest at Ansys. A digital twin is a numerical replica of a physical object, able
to simulate its behavior with high fidelity. This enables investigating the dynamic
evolution of the system at a lower cost, in order to ease the design, examine different
scenarios, or evaluate the influence of certain parameters over time, for example how
wear affects the system.

For digital twins to reach and maintain the desired level of accuracy over time,
they need to be regularly updated with experimental data from the physical system.
However, simulation models are often complex and high-dimensional, while the
experimental data is often partial and noisy, as not all aspects of the dynamics can be
measured accurately. Therefore, refining the dynamics model with experimental data
is both a relevant and challenging task. In this first part of the thesis, we leverage
concepts from observer design to enable system identification with machine learning.
We first focus on systems in the observable canonical form in Ch. 4, and interconnect
a high-gain observer with a Gaussian process model of the dynamics, for which joint
convergence of the state and dynamics estimation can be shown. We then consider
a more general setting in Ch. 5, and combine neural ordinary differential equations
with recognition models based on Kazantis-Kravaris / Luenberger observers to learn
a flexible state-space model from partial observations.

31

Chapter 4

Joint state and dynamics estimation in the
observable canonical form

Résumé Dans ce chapitre, une forme particuliere de systeme est considérée : la
forme canonique observable, et un algorithme d’estimation de l'état et de la dy-
namique de fagon conjointe est formulé. Pour cela, nous proposons d’interconnecter
un observateur grand gain et un processus gaussien approximant la dynamique.
L’observateur fournit des estimations d’état, qui servent de données d’apprentissage
pour le modele dynamique. Le modéle, mis a jour a son tour, est ensuite utilisé pour
améliorer 1'observateur. La convergence conjointe de 1'observateur et du modele
dynamique est prouvée pour un gain suffisamment élevé, aux perturbations pres.
L’apprentissage simultané de la dynamique et I’estimation de 1’état sont illustrés dans
des simulations d"un oscillateur non linéaire et d'un systéme masse-ressort-masse.
Une comparaison quantitative avec les travaux antérieurs, des améliorations de la
méthode et une extension pour aborder un cas d’usage impliquant un modele de
simulation Ansys sont ensuite présentées.

Abstract In this chapter, we focus on a particular type of system: the observable
canonical form, and jointly perform state and dynamics estimation. We propose in-
terconnecting a high-gain observer and a dynamics learning framework, specifically
a Gaussian process model. The observer provides state estimates, which serve as
the training data for the dynamics model. The updated model, in turn, is used to
improve the observer. Joint convergence of the observer and the dynamics model is
proved for high enough gain, up to the measurement and process perturbations. Si-
multaneous dynamics learning and state estimation are demonstrated in simulations
of a nonlinear oscillator and a mass-spring-mass system. A quantitative comparison
to previous work, improvements of the method, and an extension to tackle a use case
involving an Ansys simulation model are then presented.

Parts of this chapter are published in the IEEE Control Systems Letters under the
title Joint State and Dynamics Estimation with High-Gain Observers and Gaussian Process
Models [49].

4.1 Introduction

In this chapter, we propose an approach combining nonlinear state estimation and
Gaussian processes to learn the dynamics of a system in observable canonical form
from partial observations. On the one hand, reconstructing the full state of a system
from noisy, partial measurements falls into the area of state estimation and observer
design. On the other hand, most existing approaches for learning dynamics models
require knowing the full state [14]. Therefore, joint state estimation and dynamics
learning are needed, a problem often referred to in the machine learning community
as inference and learning [70].

32 Chapter 4. Joint state and dynamics estimation in the observable canonical form

The design of observers for nonlinear systems is a complex task for which various
approaches have been investigated (see [42], [43] for an overview). We focus on the
fairly large class of systems that can be expressed in the so-called observable canonical
form (see Sec. 4.2). For these systems, one can design high-gain observers (HGOs),
which rely on a triangular structure with increasing gain power to compensate for
the nonlinearity farther from the measurement. HGOs have been used for a wide
variety of applications [119], [120]. In particular, they provide robustness to model
uncertainty, as practical convergence can be proved for high enough gain, given only
an upper bound on the nonlinearity [44].

Learning dynamics models is also an active research topic. In particular, Gaussian
process (GP) state-space models are increasingly used [24], [68]. These nonparametric
models exhibit many advantageous properties for learning dynamical systems: they
are flexible, data-efficient, probabilistic, and can easily incorporate prior knowledge
(see Sec. 3.1 and [53] for details). Thanks to their analytical formulation, GPs also
allow for theoretical guarantees, see e.g., [67], [78], which is often desirable for control
applications.

The problem of joint inference and learning for GP state-space models is tackled
in its most general form in [70] using the expectation-maximization algorithm. In
the first step, measurements are collected and the posterior distribution of the GP is
computed. In the second step, all hyperparameters, including the pseudo inputs and
outputs representing the evolution of the latent states, are optimized to maximize
the data log-likelihood. Improvements of this approach have been proposed, e.g., by
shifting to variational inference [80] while incorporating additional structure [81],
[82], [84]; see Sec. 3.1 for more details. However, the optimization procedure remains
high-dimensional and nonconvex. This leads to a high computational burden and
a risk of overfitting, which can make the models difficult to train. Furthermore, no
theoretical guarantees are yet provided for such methods.

Recent works tackle this problem by combining observer design and data-driven
dynamics learning with universal approximators. The model is learned with a neural
network using smooth, continuous-time weight update laws [41], [121] or a basis
expansion [122], then incorporated into an observer built as a copy of the system
with added linear output injection terms. Limited theoretical guarantees have been
shown [41], [122], but joint convergence has only been proved if suitable gains can
be found by solving a large set of linear matrix inequalities [121]. However, this
yields an unusual neural network model for f and an observer with a high number
of parameters left to tune, limiting the practical use of the framework.

In this chapter, we combine the predictive power of machine learning with ex-
isting convergence results for state estimation. Our main contribution is the design
of a framework for simultaneous state and dynamics estimation, by combining an
HGO that estimates the full state from measurements and a GP model that learns
the unknown nonlinearity. Convergence guarantees for both the observer and the
dynamics model are provided; practical applicability is discussed and demonstrated
in simulations. This builds upon the scheme proposed in [123], in which the nonlin-
earity is considered as a state with partially known dynamics in an extended HGO,
and learned by an identifier satisfying certain requirements. The key difference of our
approach is to directly learn a discrete model of the nonlinearity instead of differenti-
ating it and extending the observer. This enables considering controlled systems and
input-dependent nonlinearities, and decreasing the error in the data used for regres-
sion. Furthermore, it reduces the dimensionality of the observer, which attenuates
noise amplification by the HGO. We also show that more flexible, non-parametric

4.2. Problem formulation and proposed framework 33

State estimation

| }

Update observer Update GP
&= A + Bf;_1(#,u) + D(u) + Ag)(y — Ci) X = (@(t:),u(t) 5 ¥ = (#n(tisn)

i |

Dynamics estimation

Data Yy —» — Final model

Figure 4.1: Structure of the framework: after each cycle, an updated model f] is
computed, and the observer is adapted.

models such as GPs can learn the input-dependent dynamics while satisfying the
smoothness assumptions which are necessary to prove joint convergence.

After formalizing the problem, we present the proposed framework in Sec. 4.2.
In Sec. 4.3 we show joint convergence of both state and dynamics estimation, then
demonstrate our approach on numerical examples in Sec. 4.4. A comparison to related
work is given in Sec. 4.5 and improvements to the method in Sec. 4.6. We propose
an extension in Sec. 4.7, motivated by an Ansys use case. Finally, we discuss the
limitations in Sec. 4.8, before concluding in Sec. 4.9.

4.2 Problem formulation and proposed framework

We consider a dynamical system with state x € R%, output y € IR, and control input
u € R% bounded at each time step, where d,, d, € IN. For ease of notation, we focus
on the single-output case, but all results extend to multiple outputs by concatenation.
We assume the following observable canonical form

X =Ax+Bf(x,u)+ D(u) +d,
y=Cx+e 4.1)

with f an unknown nonlinearity acting on the last state x;, while the rest of the
dynamics follows a chain of integrators:

.
~(O41 Ly _ (Oa4,—1 _ 1
a= (% o) m=(0r) efo)

The input function D : R% — R% is continuous and known while d € R%, e € R
are unknown disturbances, typically considered deterministic (see Remark 4). All
vectors are column vectors; O, denotes a vector of d, zeros, while Il is the identity
matrix of size dy. A broad class of systems can be transformed into this canonical
form without knowing f, e.g., all differentially observable systems [42, Sec. 7.1]. We
aim to compute an estimate £ of the full state from measurements y, while jointly
learning a model f of f. We make the following assumptions on (4.1).

Assumption 3. The true nonlinearity f is Lipschitz continuous of constant Ly. There exist
compact sets X and U such that x(t) € X, u(t) e U ¥Vt > 0.

Since f is continuous on a compact space, its absolute value on X x U is also
bounded by fmax-

The proposed observer follows a cyclic structure, illustrated in Figure 4.1. During
cycle number j € IN*, the observer produces an estimated state trajectory based on

34 Chapter 4. Joint state and dynamics estimation in the observable canonical form

measurements and on the current dynamics model fj_l. This data is sampled and
saved. At the end of the cycle, the model is updated based on the available estimated
data. It produces an estimate f;, which is then used by the observer for the next cycle.

4.2.1 High-gain observer

During cycle number j, the HGO performs state estimation using the current model
of the dynamics f; 1:

%= A%+ Bfi_1(%,u) + D(u) + A(g)(y — C%). (4.2)

The gain is denoted ¢ > 1, while A(g) is the gain matrix following a standard
high-gain construction:

A(g) == (gL1 §°L1 --- g™Lg), (4.3)

with L = (L --- Ly) € R% such that A — LC is Hurwitz. Equation (4.2) corre-
sponds to the observer block in Figure 4.1. We make the following assumption, which
is ensured by our dynamics model described hereafter.

Assumption 4. Forall j € N, f] is continuous and its norm is bounded by fmax.

Hence, we can pick X large enough such that £(¢) € X Vt > 0. With Assumptions
3-4, the error on the nonlinearity f(x,u) — f(x,u) is bounded. Then, as proved in
[44] and used in the literature on HGOs, practical convergence in finite time can be
shown in the absence of disturbances: for a given error level v > 0 and a given time
f > 0, there exists a gain g high enough to ensure that for all t > £, |2(t) — x(t)| < v.
Hence, no matter how bad the approximation f of f is, as long as an upper bound of
the difference is known, the practical convergence of the observer can be guaranteed
for high enough gain. We leverage this property to build our method.

4.2.2 Reminder on Gaussian processes

In this chapter, we focus on Gaussian processes (GPs). However, any learning
algorithm that satisfies our assumptions detailed in Sec. 4.3 can be used.

Recall the preliminaries on GPs presented in Sec. 3.1. We simply remind the reader
that when f is a GP, given a dataset (X, Y) with Gaussian noise of variance ¢Z > 0 on
the output, the prediction f(x) at an unobserved point x is normally distributed with
posterior mean and variance

u(x|X,Y) = k(x) " (K+ 1)ty (4.4)
o (x|X,Y) = k(x,x) — k(x) " (K + ¢2T) 'k(x), (4.5)

where I is the identity matrix of suitable dimension, K = (k(x;, xj))x,x;ex is the
covariance matrix of X, and k(x) = (k(x;, x))y,ex. The kernel k usually depends on
some hyperparameters, which are considered fixed in this work.

Assumption 5. The kernel k is positive definite (see Sec. 3.3), Lipschitz continuous of
constant Ly, and its norm is bounded by kmax:

|k(x,y) = k(x',y)| < Li|x — x| (4.6)

and |k(x,y)| < kmax for any (x,y) in X2.

4.2. Problem formulation and proposed framework 35

This is the case for most commonly used covariance functions, such as the squared
exponential. GPs are increasingly used for learning dynamics thanks to their flex-
ibility, data efficiency, and analytical formulation. In this work, we follow the de-
terministic interpretation (see Sec. 3.1) and use the GP posterior mean as a function
approximator to estimate f.

4.2.3 Learning method

The state trajectory estimated by the observer is used to learn the dynamics model f
through batch updates. For each update indexed by j € IN*, a dataset of length N is
constructed by sampling this trajectory with period At, starting from the last sample
collected at ¢;:

2tn) T ultin) "
X] — .. c RNX(dx+du)
xA(tjll)T u(tjll)T

Y= (2a(tin-1) -+ Ralty) € RN (4.7)

where x; denotes the last dimension of x, and we denote t; — NAt the time N samples
ago by t; n. Since the nonlinearity acts on the last dimension, x; is the only output
that needs to be collected. The size N of the dataset acts as a moving window of
length N over the estimated trajectory. The j update f] is learned from inputs X;
and outputs Y, then used in the observer (4.2) for the next cycle. It can be updated
offline since this may necessitate more computing power, and the updates are not
necessarily periodic. The model learned from (4.7) is
wiC1XGY)) = k() T (Kj+oTn) 7Y, (48)

with Kj = (k(xi, x1))x,mex;, kj(x) = (k(xi,x))xex;. For the formulation of the GP
posterior and the theoretical guarantees, Gaussian measurement noise of variance
02 > 0 is assumed. However, this need not be the case in reality as we only use the
GP as a function approximator and ¢Z, similarly to other hyperparameters, is chosen
in practice for calibration purposes.

We perform nonlinear regression to estimate the mapping p : (£, u) — £;(t + At).
However, f in the observer corresponds to the continuous time derivative of %;.
Hence, we form f] with a Euler differentiation step:

A 1
f]-(f,u) = E(‘u](a?,u|X], Y]) — J?d). (49)

There are numerically more advantageous schemes for numerical differentiation,
e.g., central differences. However, these require querying the GP model at different
time steps, e.g., (£(t — At/2),u(t — At/2)). Therefore, we do not implement them in
this chapter, but expect that enabling such schemes would improve the performance
of the method.

To guarantee the boundedness of f, we saturate it directly in the observer by

imposing ‘ f ‘ < fmax. The model (4.9) corresponds to the GP block in Figure 4.1;
given the continuity of (4.8) and this saturation, it satisfies Assumption 4.

Remark 3. The choice of At results from a trade-off: small enough to keep the numerical error
from (4.9) low, large enough to see a real difference between two samples. Learning a discrete

36 Chapter 4. Joint state and dynamics estimation in the observable canonical form

model from the estimated trajectory prevents us from building an extended state observer,
contrarily to [123].

4.3 Theoretical guarantees

As stated previously, HGOs are robust to model uncertainty for systems in the observ-
able canonical form. This enables us to decouple the procedures of state estimation
and dynamics learning, as detailed above. Indeed, thanks to this robustness, con-
vergence guarantees for the observer can still be obtained even in the worst-case
scenario, i.e., with maximal but bounded model error, at the cost of a high gain.
These convergence properties are then transferred to the dynamics model through
its smoothness w.r.t. the dataset used for learning. Both practical and asymptotic
convergence results are provided for the complete estimation scheme.

In the following proofs, we focus on the /; norm for vectors and matrices, denoted
by ||, but equivalent bounds can be obtained for any vector norm and its induced
matrix norm.

4.3.1 Smoothness of GP models

We first give a technical result on the smoothness of GP models, showing that the
posterior mean is Lipschitz continuous not onlyw.r.t. the test point but also w.r.t. the
training dataset.

Lemma 1. Under Assumptions 3-5, the dynamics model f as defined in (4.9) is Lipschitz
continuous with respect to each of its variables: (x,u) — f(x,u|X,Y) with constant L., and
(X,Y) — f(x,u|X,Y) with constant L,.

Proof. The Lipschitz continuity of the GP posterior mean and variance w.r.t. a test
point are given in [67, Th. 3.1]; we derive this result again for the mean in our
notations. We fix two test points x, X’ € X x U, where x = (x,u) is the extended
state, the dataset (X, Y) used for learning, and a kernel k which is Li-Lipschitz. When
the dataset (X, Y) is fixed, we omit the dependency on it for simplicity. We have:

() = 1) < [k(x) — k()| (K+ 02Dy (4.10)

where y is the mean of the GP learned on X, Y with k. The covariance matrix K
is symmetric, positive semidefinite by definition, hence K = K + ¢2I is symmetric,
positive definite given g2 > 0. Therefore, K is invertible and K~! is diagonalizable
with eigenvalues upper bounded by 1/¢2, which yields

) 1
K‘1’ <= @.11)

o?

Since all N terms of Y live on a compact space, there exists Ymax > 0 such that
|Yi] < Ymax Vi € 1,...,N, hence |Y| < YmaxVN. Since the covariance function is
Li-Lipschitz, we have |k(x) — k(x')| < Lyv/'N|x — x'|, and we obtain

n(x) —u(x)] < %YmaxN\z—M = Ly |x — x| (4.12)

4.3. Theoretical guarantees 37

as in [67]. Adding the Euler differentiation step proves the first claim of the lemma:

P =)| = | g e@) = x0) — 5 (e —)
< Lg‘+1}z—£/\=Lx\z—z’, (4.13)

- At

where x; is the last entry of x in x = (x, u).

The Lipschitz continuity of the GP posterior w.r.t. the dataset is less often consid-
ered, though it is investigated in [69, Th. 1] for the posterior variance.

Consider two datasets (X,Y) and (X', Y’) such that at least one entry differs
between X and X’ resp. Y and Y’, the corresponding vectors k(-) and k'(-) and
covariance matrices K and K’ as defined in Sec. 4.2.2, and a fixed test point x. We
have

(x]X,Y) = p(x[XY)| < [u(x]XY) = p(x|X Y| + [p(x] X, Y') = p(x] X, 1;’)\- |
414

The first term can be explicitly written as

(X, Y) = p(xlX, Y| = k@) (K+ 02D~ (Y = Y)

k

< ;‘gx VN|Y - Y| (4.15)

with the Cauchy-Schwartz inequality, the bound on the absolute value of k(-,)
and (4.11). The second term can again be separated as

X, Y) = (X, Y] < k@) T (K+ a2 7Y =K (2) (K+ 021 7Y

+ K (x) T (K+a2D) 7Y — K (2) T (K 4 021)Y'|. (4.16)

Due to the previous bounds and the Lipschitz continuity of the kernel (Assumption 5),
with K’ = K’ + ¢21, this first term can be bounded as

< Yo /Nlk(x) ~ K ()|
€
Y

;‘ez"‘xx/NLk]X—x’}F

me
< (Teza \/ N(dx ‘f’du)Lk‘X_ X'

where || is the Frobenius norm and (d, + d,,) is the number of columns of X. The
second term in (4.16) can be bounded as

k(x)TKflyl o k/(E)TKfly/

<

) (4.17)

K(x)"(K+ D)~ Y — K (x) " (K 4+ 21) 1Y

S krnaXYmaxZ\]‘IZ_1 - KI_1’~ (418)

We then use a modified form of Hua’s identity on matrices [124]. Assuming all
necessary matrices are invertible, the standard form of this identity is

A—(A '+ (B 1-A))l = ABA. (4.19)

38 Chapter 4. Joint state and dynamics estimation in the observable canonical form

Rearranging the terms and taking the inverse yields
B'1-A)'=-A"14+(A-ABA) (4.20)
Then, making the change of variables from B~! to B and multiplying by —1 gives
(A-B) '=A"1-(A-AB'A), (4.21)
and factorizing the last term by B — A on the left side gives
(A-B)'=A1+A'B(A-B)". (4.22)
Set A = K+ 021 = K, and B = K — K’ a perturbation of A. Since K and K’ are
symmetric, positive definite, A and A — B are invertible. Using (4.22) with this choice
of A, B yields:
K'-—R1=_-KYK-K)KL (4.23)

Then, we have with basic norm inequalities and using the Lipschitz continuity of k,
by denoting K = (k(x;, xj) — k(x;, Xj))ijef1,. N}

|[K—K'| <|K—K[+|K-K|,

N
< 2Lk¢ NY |x — x)|* <2LVN|X - X| .
i=1

< 2Lgy/ (dx +du)N|X = X'|. (4.24)

Hence, we obtain by replacing (4.23) into (4.18) and using the previous bound

2

< pkmaxYmax LN*/2y/ (dx +) [X = X'|. - (4.25)
€

Putting (4.15), (4.17) and (4.25) together yields

max Ymax

o2 VN|Y - Y| + o Liy/ N(dx +du) | X — X'|
2 /

+ EékmameaXLkNﬂ/2 (dx + du) ‘X — X/}

= L(|X = X|+ |y =Y|). (4.26)

k/(z)kalyl o k/(K)TK/flyl

k
(XX, Y) — p(x|X, Y')| <

Adding the Euler differentiation step concludes the proof:

FIX,Y) - FlX,Y)

- 'Alt(‘u(x]X, Y) —xy) — i(ﬂ(le’, Y') = x4)

L; / /
< (X =X[+[y =Y
= L(X =X+ |y =Y, 4.27)

where x, is the last entry of x in x = (x, u). O

4.3. Theoretical guarantees 39

Since the dataset (Xj, Y]) is constructed from state estimation samples, the error
in this data directly depends on the state estimation error. This corresponds to the
stability requirement in [123]. Then, Lemma 1 guarantees that any state estimation
error in the dataset is smoothly transferred to the obtained model. This is essential to
obtain stability guarantees and corresponds to the regularity requirement in [123].
While we focus on GPs, any learning algorithm satisfying Lemma 1 based on a dataset
constructed as in (4.7) can be used in our framework, to produce an observer and a
dynamics model that can both be used for further control tasks.

4.3.2 Practical convergence

We denote:
d=(g7'dr -+ g ™da,)
x = (x,u)
= (%u)
)y = max {[x(0)] £ < 7}
limsup hj(x(t)) = lim lim (sup iy (x(t))) (4.28)

for a sequence of functions {I;},1 € N. Ata given j € IN¥, J; is the nonlinearity that

would have been learned if the true data X;‘, Y* had been available, i.e., if the state

x(t) had been directly available for sampling according to (4.7) instead of its estimate
%(t). The prediction error is written as

ei(-) = fi() = (), (4.29)

while ej() = f]*() — f(+) is the optimal prediction error that would have been
obtained if the true state had been available instead of an estimate. We now state a
first result on the practical convergence of the proposed framework.

Theorem 3. For system (4.1)—(4.2) with (4.9) under Assumptions 3-5, for any given error
level v > 0, any time £ > 0, there exists a gain ¢* large enough such that for all g > g%,
t > tand j € N* such that t < ti<tin the absence of disturbances (d = € = 0), we have
forany fixed x € X X U:

A

max{]f(t) —x(O)],|fi(x) —f]-*(g)’} <. (4.30)

Proof. The proof follows three steps.

Step 1. During a given cycle indexed by some fixed j € N, with t; > t > t; 4, the
model error at any point x can be bounded by the maximal error:

N

fi(x) = f (1)\ < frmax + fmax- (4.31)

Hence, the scaled error dynamics denoted by {(t,j) = col(g'~*(%;(t) — x;(t))),
i €{1,..,d,} follow a triangular structure suitable for the use of high-gain observers:

§(tj) = §(A—=LO)(t,]) + &' " *B(fi-1(%,u) — f(x,u)) — H(g)d +gLe, (4.32)

40 Chapter 4. Joint state and dynamics estimation in the observable canonical form

where H(g) = (1 --- g¢'"%)and A — LC is Hurwitz. As shown in standard practi-
cal convergence proofs for HGOs [44], [123], this scaled error system obtained for the
HGO combined with Assumptions 3 — 4 enables the proof of practical convergence.
For all j € IN*, no matter the current estimation fj,l, there exists g* > 1 and po, p1,
p1 > Osuch that V ¢ > g™

|2:(£) — xi(t)| <max {g' ' poe P18 |£(0) — x(0)|, 18" "1, 028" ! |(d €) |, }

= M (1), (4.33)

where d = col(g7d;), i € {1,...,d.}. Notice that M;(t) < M;(t) if i < jfor g > 1and
t fixed, and that for fixed i, the first term in M;(t) decreases as t increases, while the
last term increases.

Step 2. The key then lies in bounding the error on X; and Y; as

* * 2
‘XJ'_X]' S’XJ'_X]' JZZ{’CZ (tj1) = xit;p)]|
N dy
<Y Y Mi(t)? < VANMy(tin, tia), (4.34)
1=1i=1
N-1 2
‘Yj_Y]'* < ’Y]_Y]‘* = L Ra(ti) — xa(tjn)|
N-1 _
<Y My (8)2 < VNMy(tnoa,t), (4.35)
1=0

where My(t,#') = max {gdx*lpoefplgt\ﬁ(O) x(0)], pl,ng 1 (d,e }t,} This boils
down to showing that the error on the input and output datasets used to learn
f} decreases as the state estimation error decreases, with a delay of N sampling
time steps corresponding to the time before earlier samples with a larger error are
forgotten.

Step 3. Notice that the first term in M;(t,t') decreases when t increases, while the
third increases when t' increases. With the Lipschitz-continuity assumption on f;,
this yields

f(x) — fr ()| < L (] x; -

Combining (4.33) and (4.36) as such leads to a joint practical convergence result, with
an additional term corresponding to the disturbances. In the absence of disturbances,
i.e., with d = € = 0, this concludes the proof.

‘Y Y;

) < LaVN(1+ Vo) Maltin). (4:36)

O

4.3.3 Asymptotic convergence

Theorem 3 shows that the practical convergence guarantees obtained for HGOs with
bounded nonlinearity extend to the complete error system. Both the state estimation
error and the error made by the dynamics model due to seeing only estimated instead

4.3. Theoretical guarantees 41

of true data can be made arbitrarily small arbitrarily fast, up to the disturbances, at
the cost of a high gain. We now present an asymptotic convergence result arising
from the practical convergence of HGOs in the presence of model uncertainty, by
bounding this uncertainty depending on the data, the test point, and the optimal *.

Theorem 4. For system (4.1)—(4.2) with (4.9) under Assumptions 3-5, there exist constants
c,c’ > 0and a gain g* > 0 large enough such that ¥ ¢ > ¢*, Vi € {1, ...,d.} and for any
fixed test point x € X x U, we have

& (x,u)

,cg' tlim sup|(d, €)| } ,

t—o0

limsup|%;(t) — x;(t)| < max {gi_d*‘ lim sup

t—rc0 t+j—00

(4.37)

t+j—oo t+j—roo

limsup |fj(x) — f]* (g)) < ¢’ max {lim sup‘s}‘(x,u) , g% 1 lirtnsup\(d_,e) } . (4.38)
—00

Proof. The proof follows the same line of thought as the proof of Theorem 3. First,
using definition (4.29) and Lemma 1, we show that for any fixed j € IN*, (x, %, u) €
X x X x U, there exists ¢c; > 0 such that

A A

fra(®u) = fxu)| < [fia(®u) = fa (o) + e (xw)

< Cl<|92 — x|+ ‘Xj—l - X}k—ll + ‘Yj—l - Yj*—l‘ + ‘5;—1(9@“)‘)-
(4.39)

Step 1. During a given cycle indexed by some fixed j € N*, t; > t > t; 1, with x, %,
u the values of the state, estimated state and control input of system (4.1)—(4.2) at t,
we have the same error dynamics

§(tj) = g(A—LO)(t,j) + 8"~ *B(fi-1(%,u) — f(x,u)) + H(g)d +gLe (4.40)

with {(t,7) = col(g' 7 (#;(t) — x;(t))) and H(g) = (1 --- g'™%).

By definition of { and assuming ¢ > 1, we have |£ — x| < ¢%~1|Z|. With Lya-
punov arguments and replacing (4.39) into (4.40), the linear part of the system is
stable: taking V() = 1|¢|%, we have V({) < (§Amax(A — LC) +¢1)V({) where the
maximum eigenvalue of a matrix M is denoted by Amax(M), and since A — LC is
Hurwitz, stability is obtained for g large enough. Thus, taking the other terms into
account similarly to [123] and with standard high-gain arguments as presented in
[44], there exists ¢; > 0,7 € {2,...,6}, g1 > 1 high enough such that ¥V g > ¢

/C5’(d_/ 6)

—d
,C48 *

87—1 (x,u) t

C(t, /)] < max {Cze%(”“) C(tj-1,7)

Co g’d" (

Xi_q — X;Ll‘ n ‘YH - Y;;l‘) } (4.41)
Step 2. Going to the limit in time and in number of cycles and using (4.34)-(4.35), we

see that there exists ¢; > 0 such that

lim sup (‘X]- - Xj

t4j—ro0

-y

) < gt “f“. sup|Z(t,). (4.42)
+j—o0

42 Chapter 4. Joint state and dynamics estimation in the observable canonical form

Therefore, using the definition of lim sup, we have by injecting (4.42) into (4.41) that
there exists g» > max {cy, csc7} such that V g > go:

t—o0

limsup|{(t, j)| < max {gldx lim Sup‘e}f(x,u) ,¢5limsup|(d, e)|} . (4.43)

t+j—o00 t+j—00

This directly yields the first claim

t—o0

limsup|%;(t) — x;(t)| < max {gi_dx limsup‘s}f(x,u)

t—o0 t+j—00

,c5¢ " lim sup|(d, €)] })
(4.44)

Step 3. Lemma 1 yields the second claim for any fixed test point x € X x U

limsup‘f}(l) _J?]*(E)’ < cgmax {limsup & (x,u) ,gdx—llimsup|(d_,e)‘}, (4.45)

t+j—r00 j—oo t—ro0

with cg > 0. Using the same error decomposition as (4.39) also yields:

,gd"’1 lim sup] (d,€) ‘ }

t—o0

limsup‘fj(g) —f(g)‘ <cgcg max limsup‘s}‘(x,u)
t+j—oo j—oo

+ co lim sup‘s}'f (x) ‘ (4.46)

j—o0
with cg > 0.

O]

Theorem 4 bounds the difference between f and f* that would have been obtained
using true instead of estimated data for learning, without any assumption on the
tit of the GP. If ¢* is zero, both the state estimation and the prediction error are
input-to-state stable w.r.t. the disturbances. If there are also no disturbances, they
converge asymptotically. Since GPs with universal kernels are universal function
approximators, e* can get very small (it converges up to the numerical errors due to
the Euler differentiation) as the number of samples grows to infinity, if the samples
are densely distributed over X x U, i.e., if the state-action space is well explored.
However, if the hyperparameters of the GP do not enable a good fit or if the data
is not rich enough, then €* may be large. We further note that it is also possible to

bound ’ f](g) — f(x) ’ similarly to (4.38) using the same error decomposition as (4.39):

aterm ¢} (x) appears, representing the optimal error due to the GP model at the test

point x. This is derived in (4.46).

Remark 4. Nowhere do we use the form of d and €. In principle, they could also be realizations
of stochastic processes. However, Theorem 4 may then not be as meaningful as, depending on
the process, lim sup may not exist.

Remark 5. The proposed framework is modular: any regressor f can be used seamlessly
instead of the GP. If Assumptions 3—4 and Lemma 1 are satisfied, the same theoretical
guarantees will hold. This is the case for models of the form f(-) = 81 c(-), where 0 is a
parameter to be learned from data following a Lipschitz procedure (such as recursive least
squares), and o is a known, Lipschitz continuous feature map. Other observer designs

4.4. Numerical simulations 43

providing guarantees similar to HGOs could also be considered, e.g., sliding mode observers
[125]. Conversely, some machine learning techniques such as neural networks do not exhibit
similar regqularity properties as they result from a nonconvex optimization procedure.

Remark 6. In practice, one can learn the residual model piyes : (%, u) — 24(t + At) — %5 —
AtDy (u) instead of p, and use p (%, u) = res(£, u) + £4 + AtDy (1) for prediction. This
eases the training process by incorporating prior knowledge into the regression problem, while
minimally changing the form of Y;, which leads to a factor (V24 \/dy) instead of (14 /dy)
in (4.36) and maintains the theoretical guarantees.

4.4 Numerical simulations

We now demonstrate the proposed approach with numerical simulations of two
nonlinear systems. For each experiment, we go over ten cycles, i.e., we run the HGO
for a certain time given measurements, then update the GP model with the estimated
trajectory, include the new GP into the HGO, and run again ten times.

4.4.1 Duffing oscillator

We start by evaluating the proposed framework on simulations of the Duffing oscilla-
tor. The dynamics of this two-dimensional system can be described as follows, with

x = (x xz)T’
% = <8 (1)> x — (2) (wxy + B + 6x2) + <(1)> u (4.47)

y=(1 0)x+e.

The system is already in the observable canonical form. We simulate it with a Runge-
Kutta method of order 5(4) (RK4/5) with adaptive step size [1], for 10 cycles of
30 seconds gathering 500 samples per cycle (At = 0.06s). The observer receives
measurements corrupted by Gaussian measurement noise of variance ¢ = 107> (no
process noise) and estimates the full state trajectory, which is then used by the GP
for learning. The dataset is built according to (4.7). Weseta = -1, =1, = 0.3,
u(t) = 0.4cos(1.2t), N = 3000, g = 8, L = (5,5)". We use a squared exponential
kernel with fixed hyperparameters, whose values have been optimized over a subset
of data at the beginning of the experiment, leading to a scaling parameter 110 and
lengthscales (5, 15,150).

At the end of each cycle, we evaluate the current model on ten test trajectories
of length 18 s with random initialization: three obtained using random control, four
using u(t) = 0.4 cos(1.2t), and three with u(t) = 0. These test trajectories are either
used for open loop predictions (from the correct initial condition, the current dynamics
model predicts the trajectory) or closed loop estimations (the current dynamics model
is used inside the HGO to estimate the trajectory given the measurement and an
arbitrary initial condition). We refer to these evaluations as open loop resp. closed
loop test trajectories, or as predictions resp. estimations. We also compute the error
of the learned model ;1 compared to the ground truth over a random grid of points,
along with the estimation error of the observer over the last cycle. For these different
metrics, we compute the root mean squared error (RMSE) over a given sequence of

44 Chapter 4. Joint state and dynamics estimation in the observable canonical form

0.045 0.09
0.040 0.08
0.07
0.035
0.06
& 0.030 §
2 2 0.05
0.025 0.04
0.020 0.03
0.02
0.015
0 2 4 6 8 0 2 4 6 8
Number of cycles Number of cycles
(a) GP predictions over a grid (b) State estimation over the last cycle
0.13
8
0.12
o 0 0.11
= 2 0.10
0.09
2
0.08
0 0.07
0 2 4 6 8 10 0 2 4 6 8 10
Number of cycles Number of cycles
(c) Ten random open loop test trajectories (d) Ten random closed loop test trajecto-

ries

Figure 4.2: Learning the dynamics of the Duffing oscillator (4.47): different error
metrics over ten cycles.

time instants f; withi € {1,..., N}, as

N

RMSE(%,x) :=

1 N
(xj(t:) — £j(t:))? (4.48)
=1

N

1

]

I
—

where x is the ground truth and £ is the estimated value to be compared.

Examples of the obtained results are provided in Figures 4.2—4.4. We observe that
all considered metrics decrease over the cycles of state and dynamics estimation. In
particular, the dynamics model is accurate enough after ten cycles to predict a test
trajectory despite the chaotic nature of the system, as seen in Fig. 4.3: the prediction
error accumulates over time as expected, but stays low enough to attain accurate
predictions. The improved dynamics model also leads to improved state estimation,
as seen in Fig. 4.4, where the delay in the prediction has been corrected.

Remark 7. We follow the deterministic view (see Sec. 3.1.2) and focus on the GP posterior
mean, used as a function approximator for f (up to the numerical differentiation step). In the
following plots, we only show the variance at each deterministic point in the trajectory for
illustration purposes, all computations focus on the mean.

4.4. Numerical simulations 45

2
1
1
0
o O o
= =
—1 -1
— True
2 — Predicted _p — Predicted
3 X Initial state X Initial state
-2 -1 0 1 2 -2 —1 0 1 2
X1 X1
(a) After one cycle (b) After ten cycles

Figure 4.3: Phase portrait of the Duffing oscillator (4.47), for an open loop test
trajectory after one and ten cycles.

1.0 1.0
o ‘\\ £,
05 / N 05 NWA
S / s ‘\ Y \\
0.0 / 0.0 \ / ./
~ ~ / J
/ A
© 05 . © 05 \
-1.0 . -1.0 P,
/ — True / True
—-15 Estimated -15 Estimated
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
t t
(a) Before learning (b) After ten cycles

Figure 4.4: True and estimated trajectory of x, for the Duffing oscillator (4.47), for a
closed loop test trajectory before any learning and after ten cycles.

Remark 8. In our code, we simulate all continuous-time dynamics such as HGOs with an
RK4/5 solver. However, to simulate the open loop test trajectories, we mix an explicit Euler
step with a direct query of the discrete GP model, as follows:

x(t+At)=(1 ... 1 0)= <x(t) + At(Ax(t) —|—D(u(t)))> + Bu(x(t), u(t))
= x() + AH(AX(E) + D(u(1))) + Byt (), (1) (4.49

where y is the current GP model, pi,,s the current residual model, and x denotes the element-
wise product. This enables directly using the GP model instead of differentiating it numerically
to simulate continuous-time dynamics. For fairness, all open loop test trajectories with all
methods are predicted using explicit Euler. This is enough for our academic example, however,
we would expect higher performance with a more advanced numerical solver such as RK4/5
for all continuous parts, combined with a discrete model when needed.

46 Chapter 4. Joint state and dynamics estimation in the observable canonical form

Figure 4.5: Diagram of the mass-spring-mass system.

4.4.2 Nonlinear mass-spring-mass system

We also demonstrate the performance of the proposed approach on a mass-spring-
mass system with a nonlinear spring, as illustrated in Figure 4.5, and motivated by
series-elastic actuators, e.g., [126]. We assume the system can be described by

mi%1 = fi(x2 — x1)
moXy = — fr(x2 — x1) + 1, (4.50)

where x1, x; are the positions of the two objects, m; = mp = 1 are their masses, and
fx(+) is some unknown nonlinear function representing the spring dynamics.

Assuming system (4.50) is differentially observable of order 4 (see [42] and refer-
ences therein), it can be transformed into the observable canonical form (4.1). This is
done by introducing a new state z € R4, taking z; = x; and computing the successive
derivatives of z;. As in (4.1), this yields

2 =Az+ Bf(z,u)+d (4.51)
y=Cz+e,

where f is an unknown nonlinearity. The proposed approach can directly be applied
to (4.51) without further knowledge about f. In our simulations, we use fi(-) =
ki(+) + ka(+)® with k; = 0.3, ko = 0.1 the spring constants. This yields for the true
system in observable canonical form:

3k2 6k2
f(z,u) = e (u— (m + m2)23)v% + m—lvlv% +

k1
mymip

3| myz3 kq 3 m123 2
X = 2k2 + (?)kz) +<2k2> ’
3 2
B = 3| myzz k1 L (M
2k, 3k, 2k,)’
Z4
LI &v%'
mq mq

(u— (my +mp)z3z), (4.52)

v =a+p, vy =

We simulate (4.51) with d, € Gaussian noise of standard deviation ¢; = 0. = 10™*
for ten cycles of 15 seconds each, sampled at At = 0.06s. We set u(t) = 0.4 cos(1.2t),
N = 3000, ¢ = 10, L = (5,5,3,1) ", and fo = 0. We use a squared exponential
kernel whose hyperparameters are fixed by maximizing the marginal log-likelihood
on a subset of data offline, leading to a scaling parameter 3.5 and lengthscales
(150,150,1.5,2.5,2.5). We run 10 experiments from 10 random initial conditions
with x; € [0,0.1], xo € [0.1,0.2], and x4, ¥, € [—0.005,0.005]". For each, we start by
precomputing a grid of random states and inputs, along with 50 test trajectories of

1Code to reproduce the results is available at github.com/monabf/obsGP recogNODE git.

https://github.com/monabf/obsGP_recogNODE.git

4.5. Comparison to previous work 47

12 s, using a random initial state and one of three control strategies: random control,
u(t) = 0.4cos(1.2t), or u(t) = 0.

As for the Duffing oscillator, we evaluate both the observer and the model at the
end of every cycle, for each experiment. The observer (4.2) containing the current
model is evaluated by computing the RMSE between true and estimated trajectory
over the last cycle, but also over the test trajectories, given 2(ty) = (y(t),0,0,0)"
and y(t). The model (4.9) is evaluated by computing the RMSE of one step ahead
predictions over the precomputed grid, and the RMSE of the predicted test trajectories,
given the initial state but no measurements.

We observe joint convergence of the observer and the dynamics model for all
experiments. The error in all considered metrics decreases over time, as depicted
in Figure 4.6. The numbers themselves are not necessarily meaningful, but their
decreasing behavior and the visual results before and after a few cycles are significant.
The variance is due to having different initial conditions, evaluation grids, and test
trajectories for each run rather than a different performance of the method. The
remaining error is caused by the measurement and process noise, along with the
irreducible model error given the available data. A test trajectory as estimated by the
observer is presented in Figure 4.7. Before the model is learned Fig.4.7a, the observer’s
estimates are delayed compared to the true state, because the observer waits for
correction from the measurements. Once the model has been learned Fig.4.7b, the
observer can anticipate and produce accurate estimates without delay. The phase
portrait of another test trajectory predicted by the dynamics model is also depicted
in Figure 4.8. It shows the final model can predict the first 100 time steps accurately,
then deviates.

4.5 Comparison to previous work

The proposed framework is inspired by [123]. In this section, we recall the main
idea of this alternative approach, qualitatively describe its main characteristics, then
illustrate them with numerical simulations. In the following, we denote the method
presented in Sec. 4.2 as method 1, which learns a model f. The framework presented
in [123] is referred to as method 2, which learns a model ¢.

451 Summary of method 2

In [123], the analysis is restricted to autonomous systems. We slightly extend it to
allow for comparison with method 1, and consider a system in observable canonical
form with an unknown nonlinearity, as in (4.1):

x = Ax+ Bf(x)+ D(u), (4.53)

where it is assumed that f does not depend on u. The unknown nonlinearity is
represented by a parametric model ¢(x), whose parameters 6 need to be estimated.
This model can be a least squares identifier, e.g., $(x) = 6'c(x) where o(-) is a
known feature vector, a wavelet decomposition, or any other type of parametric
model. The objective is the same as in this chapter: jointly estimating the state and
the nonlinearity. However, the implementation varies. In [123], the nonlinear part of
the dynamics f(x) is approximated by adding an extra state ¢, which is estimated
together with the underlying state x by an extended observer, i.e., an HGO with one

48 Chapter 4. Joint state and dynamics estimation in the observable canonical form

0.013 025
0.012 0.20
0.15
g 0.011 @ 016
Z Z
0.010 0.05
0.00
0.009
—0.05
0 2 4 6 8 0 2 4 6 8
Number of cycles Number of cycles
(a) GP predictions over a grid (b) State estimation over the last cycle
25
0.75
20
15 0.70
2 &
2 10 > 0.65
5 0.60
0 0.55
0 2 4 6 8 10 0 2 4 6 8 10
Number of cycles Number of cycles
(c) Prediction of test trajectories (d) Estimation of test trajectories

Figure 4.6: RMSE of metrics over 10 simulations of the mass-spring-mass system
(4.51) (mean = 2 standard deviations).

more state compared to (4.2). The dynamics of this observer are given by

X = A2+ B¢+ D(u) + A1(g)(y — C%)
¢ = 2 (%)(A% + Bz + D)) + Aa(g)(y — C2) @54)

where ¢ is the current model of the nonlinearity and

A@g)i= (sl gL - ghLy g%Law) = @;gg) (4.55)

Similarly to method 1, the robustness of HGOs against model errors is leveraged to
show that both £ and ¢ converge practically to their true value for ¢ high enough.
As in method 1, the estimated state trajectories are used cyclically to update the
model of the nonlinearity ¢. However, method 2 learns a model ¢ : £ — ¢ by
adapting the parameters 6, with an adaptation law that is smooth w.r.t. the estimated
trajectories (regularity requirement, corresponding to our Lemma 1). For example, a
recursive least squares procedure falls under this category: 6 is selected to minimize
Y;|0T o (£(t;)) — &(t;)| over the available samples i. Similarly to Th. 4, it is then shown
that for ¢ high enough, £ converges asymptotically to the true state while 6 converges

4.5. Comparison to previous work

— True

0.50 Estimated

0.00 0.05 0.10 0.15
t

(a) Before learning

N

0.20

49

0.75 — True

Estimated

0.00 0.05 0.10 0.15 0.20
t

(b) After ten cycles

Figure 4.7: Estimation of a test trajectory of z4 (random control).

1.0

X4

Initial state

-1.0 -0.5 0.0

x3

(a) After one cycle

0.5
Py
0.0
— True
—05 —— Predicted
X

0.5

0.6
0.4
0.2
0.0
-0.2

— True
04 Predicted

X Initial state
-0.6 —0.4 —0.2 0.0 0.2 0.4
X3
(b) After ten cycles

Figure 4.8: Prediction of a test trajectory of z4 against z3 with sine control (mean =+ 2
standard deviations).

to its optimal value given the form of the model ¢.

4.5.2 Trade-offs

Method 1 presented in Sec. 4.2 and method 2 presented in [123] are similar, but exhibit
different trade-offs. In this section, we make these explicit before illustrating them

with numerical results.

The main difference between methods 1 and 2 lies in how the data is collected for
learning the dynamics model. In method 2, the nonlinearity is considered as an extra
state and the HGO is extended to estimate it in continuous time, then a continuous
dynamics model ¢ : £ — ¢ is learned. This regression problem is formulated directly
in continuous time. However, there are several limitations:

e A state ¢ has been added to the HGO, so that it has one extra dimension
compared to method 1. Hence, measurement noise is even more amplified on ¢
which is then used for learning 43, so that the obtained model is more sensitive

to noise.

50 Chapter 4. Joint state and dynamics estimation in the observable canonical form

* The extended HGO (4.54) includes the derivative of ¢ in its dynamics. However,
the derivative of an approximation is often a poor fit for the true derivative, so
this term possibly contains a lot of error.

* Because ¢ is differentiated to be used in (4.54), it cannot include a dependency
in u. In fact, in [123], the framework is discussed only for autonomous systems.
We have added the term D(u), which does not influence the rest of the method,
but ¢ being independent of u remains a strong restriction, most of all for systems
that need to be transformed into the observable canonical form so that f in the
transformed coordinates will depend on u in many cases.

On the contrary, in method 1, the HGO only estimates £, and learns a discrete model
i % — X%4(t+ At). This more direct procedure, without extending the observer,
avoids the previous issues by learning a discrete model directly from estimates of
x. Hence, it usually leads to a more accurate dynamics model and therefore more
accurate open loop predictions. However, if this discrete model needs to be used in
a continuous-time scheme, for example for simulating it inside a numerical solver
with a different time step, or using it inside a continuous-time observer, then it has to
be numerically differentiated as in (4.9). For example, at the end of each cycle, we
update the continuous-time HGO (4.2) with a Euler differentiation step:

y]-(f,u) — .’fd

t=A%+B
X X+ A

+ D(u) + A(g)(y — Cx) (4.56)
where yi; is the current GP model. This adds a numerical error that deteriorates the
performance of the continuous model compared to its discrete counterpart. However,
it would be possible to use higher order numerical schemes such as central differences
by retaining the predictions of the GP at different time steps, which would reduce the
numerical error. We leave this open for future work.

4.5.3 Numerical illustration

We now illustrate the previous points with numerical simulations. Note that com-
paring both methods quantitatively is not straightforward. Hence, the following
numerical results are mere illustrations of the trade-offs faced by both approaches
rather than thorough quantitative comparisons. In particular, the observer has an
extra dimension for method 2, so that the gain matrices

A—LiC 4.57)
<64T §>—L2 (C o) (4.58)

for methods 1 and 2 respectively do not have the same dimension. There is no simple
method to choose these gains so that both designs have “the same” tuning and can be
compared objectively. Therefore, we tune them by hand such that the resulting HGO
has similar performance for both methods. This leads to L; = (5,5) resp. L, = (5,5,1)
with ¢ = 8 for the Duffing oscillator, and L; = (5,5,3,1) resp. L, = (5,5,5,2,1) with
g = 10 for the mass-spring-mass system.

We examine all possible combinations: a parametric model (as in [123]) in combi-
nation with either our HGO (4.2) or the extended HGO (4.54), or a GP model (as in
Sec. 4.2) combined with either our HGO or the extended HGO.

4.5. Comparison to previous work 51

Parametric model We start with simulations of the Duffing oscillator (4.47) with
sinusoidal control u(t) = 0.4 cos(1.2t). We choose a parametric model:

u(x) =6/ c(x),
$(x) = 65 (x),
o(x):=(-x1 - —x2), (4.59)

where o(x) is a feature vector. In general, method 1 learns a discrete model y :
%(t) — %;(t + At). As discussed in Remark 6, we rather learn a residual model
Ures = (X,u) — X4(t + At) — %;(t) — u(t)At instead of y, and use p(%, u) = pres (%, u) +
%4(t) + u(t)At for prediction. This enables formulating a linear regression problem
that includes all available prior knowledge, and taking out the influence of u so that
the parametric model only depends on x, as in [123]. We consider the ground truth
to be 61 ~ (—0.02996219, 0.02985621, 0.00972681) for method 1, which was obtained
with a linear regression on the true data (without the observer). On the other hand,
method 2 learns a continuous model ¢ : £(t) — ¢&(t) with a true parameter vector
6 = (—1,1,0.3). We use a linear least squares regression to estimate both parameter
vectors from the corresponding datasets, obtained with the corresponding observers.
We set d = 0 (no process noise) and € to Gaussian noise of variance 02 = 10~>. We run
each method for ten cycles of 15 seconds for the Duffing oscillator with At = 0.03s,
the other parameters set as in Sec. 4.4.1.

In Figure 4.9, the state estimation RMSE, relative parameter error, and RMSE over
an arbitrary test trajectory over 50 cycles are shown. As expected, all three errors
decrease over time and converge up to the optimal model error and the perturbations.
The final state estimation error is similar for both methods, the effect of the numerical
error introduced by the Euler differentiation step in method 1 and higher noise
amplification due to the extra dimension in method 2 appear to balance each other
out. However, the relative error on the parameters is much lower with method 1
than with method 2, and drops much faster. This is consistent with our claim that
method 1 yields a more accurate dynamics model with a given amount of samples,
by incorporating less bias into the data and directly learning a discrete model. We
also compare both parametric models by simulating a test trajectory with known
initial state, using an RK4/5 numerical solver for both continuous models (with the
Euler differentiation step for method 1, and natively in method 2). We obtain similar
results as for the previous plot, though the error remains relatively high due to the
chaotic nature of the considered system, which quickly accumulates numerical errors
and errors on the parameters.

Gaussian process model We also run the same comparison with a GP model instead
of a parametric model, for both the Duffing oscillator and the mass-spring-mass
system presented earlier, in the same settings as in Sec. 4.4. In Figure 4.10, we
compare the state estimation (top row) and the open loop prediction (bottom row)
over one random trajectory of the Duffing oscillator. Though both observers show
similar performance, the extended observer of method 2 (right) has higher peaking
and noise amplification due to the higher dimensionality. The predictions of the
dynamics model obtained with method 1 (left) also stay accurate longer than those
obtained with method 2 (right). This is again consistent with our claim that a discrete
model learned directly from sampled trajectories yields a more accurate dynamics
model, which in turn helps to obtain a more accurate observer. The results of the mass-
spring-mass system presented in Figure 4.11 are consistent with this analysis, but the

52 Chapter 4. Joint state and dynamics estimation in the observable canonical form

0.12

0.10

0.08

0.06

RMSE

0.04

0.02

0.00

0 10 20 30 40 50

Number of cycles

(a) State estimation error, method 1

1.0
0.8

0.6

Relative error

0.4

0.2

0.0

0 10 20 30 40 50
Number of cycles

(c) Relative parameter error, method 1

3500
3000
2500
2000
%)
>
~ 1500
1000

500

0

0 10 20 30 40 50

Number of cycles

(e) RMSE over test trajectory, method 1

RMSE

Relative error

0.06
0.04

0.02

10 20 30 40 50
Number of cycles

(b) State estimation error, method 2

1.0
0.8
0.6
0.4
0.2
0.0

0 10 20 30 40 50
Number of cycles

(d) Relative parameter error, method 2

3500
3000

2500

0 10 20 30 40 50
Number of cycles

(f) RMSE over test trajectory, method 2

Figure 4.9: Comparison of methods 1 and 2 using a parametric model and recursive

least squares to learn the dynamics of the Duffing oscillator. We plot the state

estimation RMSE over the last cycle, the relative parameter error ’é - 9| /60|, where

0 is the true parameter vector and § its current estimate, and the RMSE over an
arbitrary test trajectory.

4.5. Comparison to previous work 53

0.75 \ True — True
0.50 \ Estimated 0.5 Estimated
\ y
025 \ f/ \ ra \ \ 7
! \ / \\ Vs \ ”

0.00 \ N/ N/ 0.0 \ \ / \ A

\ \ A \ W

\ \/ \/

o \

“ 025 | - ‘ \
/ M —05 /

a
X2
-

—0.50
—0.75 / |
ny AS
~1.00 / —1.0 /
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
t t
(a) Estimation of x,, method 1 (b) Estimation of x5, method 2

0.75 —— True

0.50 —— Predicted 0.5

025 X Initial state

0.00 0.0

8 g
" 025
—0.50 —-0.5
— True
—0.75 —— Predicted
~1.00 ~1.0 X Initial state
—-1.5 —1.0 —0.5 0.0 —-1.5 —-1.0 —0.5 0.0 0.5 1.0
X1 X1
(c) Prediction of x; against x1, method 1 (d) Prediction of x; against x1, method 2

Figure 4.10: Comparison of methods 1 and 2 using a GP model to learn the dynamics
of the Duffing oscillator: one random test trajectory with random control, after ten
cycles.

difference between both methods is more important due to the higher dimensionality
of the system and the more complex, input-dependent nonlinearity.

54 Chapter 4. Joint state and dynamics estimation in the observable canonical form

— True
— True }
10 Estimated 2 Estimated
1
05 0 TN g
- a = ~—— e
S AN e =
(/' \ / —1
0.0 / \ /
\ / —2
\z/"“~ \\"/\
—05 -3
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
(a) Estimation of z4, method 1 (b) Estimation of z4, method 2
0.6
— True 025
04 —— Predicted
0.00
0.2 —0.25
—— True
= 3 —0.50
=00 = —— Predicted
—0.75
—-0.2
—1.00
—-04 —1.25
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
(c) Prediction of z4, method 1 (d) Prediction of z4, method 2

Figure 4.11: Comparison of methods 1 and 2 using a GP model to learn the dynamics
of the mass-spring-mass system: one random test trajectory with random control,
after ten cycles.

4.6 Performance improvements

The proposed method seems promising, however, its application to real-world data
remains challenging. In this section, we propose two extensions for improving its
performance and demonstrate them on numerical simulations.

4.6.1 Backward smoothing

Due to the asymptotic convergence of the observer, the estimation of £(t) at the end
of each cycle is more accurate than at the beginning. Since model learning is time-
consuming and will probably not run in real-time, it may be interesting to smooth
out the trajectory estimated by the observer before updating the dynamics model.
This method of going back and forth along a trajectory with an observer is referred to
as back and forth nudging [127], [128]. It can be used after the measurements have
been recorded to smooth out the estimated past trajectory, and even converge to the
true trajectory in the absence of noise.

We propose to use a backward HGO with gains chosen appropriately, i.e., differ-
ently from the forward gains. The back and forth nudging algorithm [127], [128] runs
an observer forward in time and a different observer backward in time, which in the

4.6. Performance improvements 55

0.6
— True

1.0 Estimated 0.4 /\\’/' /\“/\\
0.2 /

0.5

! 5

X4

0.0

™
\ /
0.0 / \ / ~02
LA N
05

—04 ¢ #\, //‘\ —— True
/

AN
/

Estimated

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t

(a) Without smoothing (b) With smoothing

Figure 4.12: Comparison between two estimated trajectories of the mass-spring-mass
system after ten cycles, with and without smoothing.

linear case leads to two different stability conditions for the error system:

=>

$=A%+Ky—Cz) tel0T
t=Ax—K(y—Cx) telT,0 (4.60)

the observers in forward and backward time respectively, leading to the stability
conditions for the error system

A—KC=<0
A+KC 0. (4.61)

We apply this idea to the previous numerical simulations. Note that due to the
chaotic nature of the considered systems, the accumulation of numerical errors can
lead to large changes in the obtained solution between forward and backward pass.
We avoid this effect by lowering the relative solver tolerance to 10~.

We choose the gain matrix of the HGO to satisfy the given stability conditions,
with the same eigenvalues (in absolute value) and the same gain for the forward and
backward pass. Since the signal after the backward pass is noncausal, it may be hard
to fit a causal dynamics model to this signal. Therefore, we run one forward, one
backward, and again one forward pass, and use this estimated trajectory for learning,
which has been smoothed but is still structurally similar to the original estimate. The
results on the Duffing and the mass-spring-mass use cases are roughly the same after
ten cycles as they were before smoothing, which is consistent since smoothing mainly
plays a role during the first cycle, when the estimate of the initial condition is most
off. However, it helps kickstart our adaptive observer by providing a better initial
dataset. It also provides much smoother closed loop test trajectories estimated by
the observer, since it smoothes out the initial transient. This is illustrated in Figure
4.12, where two similar estimated test trajectories are compared with and without
smoothing: it is clear that the initial peaking phenomenon has been reduced in the
second figure.

56 Chapter 4. Joint state and dynamics estimation in the observable canonical form

4.6.2 Adaptive observer gain

In the proposed framework, the dynamics model is adapted cyclically, then included
in the observer. Therefore, the state estimates become more accurate after each cycle
thanks to an updated dynamics model. The gain of the observer needs to be high for
the initial estimates to be accurate enough to learn an initial dynamics model, so as
to kickstart the joint convergence. However, as this model gets closer to the ground
truth, there is no need for the gain to be so high. When possible, lowering the gain is
desirable to reduce peaking and noise sensitivity. Hence, lowering the gain as the
dynamics model improves would maintain the convergence of the framework while
enhancing practical performance.

High-gain observers with adaptive gain have been investigated in the litera-
ture. However, the proposed adaptation laws are often nondecreasing: most works
start with a low gain and increase it until the desired convergence level is reached,
e.g., [129]. In our settings, the opposite type of adaptation is needed: we start with a
high gain to ensure accurate state estimates even with large model errors, then wish
to decrease it as the model error shrinks while the model is being learned. Recent ap-
proaches discussed in [130] search for an appropriate gain by decreasing it if the state
estimation error is decreasing, and increasing it otherwise. However, information
about the nonlinearity and the noise level is necessary. As opposed to these previous
approaches, the adaptation law proposed in [130] directly depends on the output
error of the system, and is designed to increase the gain if this error has been too large
for a certain time and decrease it otherwise. Under the assumption that the model
error is bounded and Lipschitz w.r.t. the measurement noise, and using only upper
bounds on these constants, along with some more formal but classic assumptions,
it is shown that asymptotically, the mean state estimation error is bounded by a
quantity depending on some user-chosen parameters and the noise. Without model
error, this result reduces to the state estimation error being input-to-state stable to
the measurement noise, and with neither model error nor measurement noise, to
asymptotic practical convergence. A related method is proposed in [131], with a
switch between a high-gain and a Kalman mode depending on the output error over
a time interval.

We combine the adaptation law proposed in [130] with our framework. The gain
of the HGO g is now a time-dependent function, satisfying the ODE

PR ACAES) (4.62)

with 7 = C# the estimated output and ¢ the adaptation law defined as

927 —y) = pi((7 -y = p2)g" ™ + g’;;), (4.63)

where p1, p2 and b € [0,1/2] are user-defined parameters. Some tuning is necessary:
the values of p, and b influence the threshold at which the gain stabilizes (a low p, and
higher b are necessary to obtain a reasonably high final gain), while the combination
of p1 and b influences the rate of convergence (high p; for fast convergence, and low b
for a more exponential profile). We set p; = 4, p» = 0.002, b = 0.2 and g(0) = 12, such
that the gain decreases fast enough to see a significant difference in our experiments
but slowly enough for the lower gain to be compensated by a better dynamics model.
The value of the gain over time in one experiment with the mass-spring-mass system
is shown in Fig. 4.13. We obtain satisfying results: the dynamics model converges to
a good estimate of f, while the final observer has a lower gain and therefore better

4.7. Extension: Ansys Fluent use case 57

0 500 1000 1500 2000 2500
Time steps

Figure 4.13: Evolution of the adapted gain over time, for the mass-spring-mass
system.

— True 0.4
Estimated

0.3

0.2
0.2

01 ra
= S |
/ b 00
0.0 /J '/

o1 \vM// \'\ / 02

Nl —— Predicted

Xy

— True

-0.2 X Initial state
—0.4
0.00 0.05 0.10 0.15 0.20 —0.4 —0.2 0.0 0.2 0.4
t x3
(a) Closed loop test trajectory (b) Open loop test trajectory

Figure 4.14: Test trajectories of the mass-spring-mass system after ten cycles, with
adapted gain. To be compared with Fig. 4.8-4.7.

performance in the presence of measurement noise. This is demonstrated in Fig. 4.14,
which depicts one open loop and one closed loop test trajectory. Compared to Fig. 4.8
4.7 with fixed gain ¢ = 10, the prediction accuracy in open loop is similar while the
state estimate is less noisy due to the lower final gain. The quality of the obtained
observer and dynamics model then depends on the user’s choices and on how fast
the learning procedure takes place. Overall, with this extension of the proposed
framework, the user can start from a rather high gain and no system knowledge, and
obtain an accurate dynamics model and an observer with relatively low gain.

4.7 Extension: Ansys Fluent use case

We now apply the proposed method for joint state and dynamics estimation to a more
complex use case constructed using Ansys software. It consists of a fluid dynamics
system for which a prior model is known, but inaccurate due to changes in the system.
We aim at correcting the dynamics model using partial observations.

58 Chapter 4. Joint state and dynamics estimation in the observable canonical form

Figure 4.15: Diagram of the elbow conduct in the Ansys Fluent use case. The
temperature sensor on the surface of the conduct is located towards the end, after
the fluids have mixed.

We simulate the mixture of hot steam and air in an elbow-shaped conduct with
two inputs and one output, as illustrated in Figure 4.15. This fluid dynamics sim-
ulation is run in Ansys Fluent, and the temperature evolution in the solid conduct
while the two fluids mix is computed over a field of about 2 x 10* points in time
for 10* seconds. We generate two datasets: one with a heat transfer coefficient of
5W.m~2.K~! for the conduct, corresponding to the known system over which the
prior dynamics model is learned, and a modified dataset with a heat transfer coeffi-
cient of 8W.m~2.K~1, corresponding to the true physical system after some change
in the dynamics, e.g., due to wear. Then, the input-output behavior of the origi-
nal dataset is learned to build a prior model of the system, representing our initial
knowledge of it. In the last step, we refine this prior using partial measurements of
the “true” system, i.e., the modified dataset, which represents the physical system,
slightly different from the theoretical one.

4.71 Reduced order modeling

We now describe how we obtain this prior model, first by learning a reduced order
model (ROM) with Ansys DynaROM, then by fitting a GP.

To model the input-output behavior of the original system, a rectangular singular
value decomposition (SVD) of the temperature field on the surface of the solid conduct
is computed. The evolution of the first five modes is recorded:

Tfield ~ UXV* = UM, (464)

where T4 is the whole spatiotemporal temperature field over N = 2 X 10* points
and n = 10* time steps, U is an n by 5 matrix containing the value of the five SVD
modes at each time step, and M is a 5 by N matrix containing the SVD coefficients of
each point in the temperature field. The five SVD modes in U serve as state, so that
x(t) at time f is a linear interpolation between the corresponding lines in U, while the
fluid temperature and velocity at the secondary outlet (small tube on the left) serve
as two inputs u(t) to the system. The data consists of four scenarios with different
control strategies: step, sinusoidal at two different frequencies, and triangle inputs.
Note that this use case and these scenarios are used at Ansys as demonstrators for
DynaROM. In all subsequent graphs, we use C' x(t) as ground truth, where C is
the vector of SVD coefficients of the considered point in the temperature field, and
x(t) is the vector of SVD modes given by the Ansys SVD tool at the given time step.
Hence, the trajectories marked as “True” are not directly the measurements, but the

4.7. Extension: Ansys Fluent use case 59

N/ 7 AT A S ——
\ 7\ 7\ /\ /\ /
AL NS SN SAS NSNS NSNS \\ . /
\/ \/ A \/ \/ Y / B
S
%
o~ ™ / N /
AT // ™~
/
- o~
a8 £
—
(a) Scenario 3 (b) Scenario 4

Figure 4.16: Test scenarios with the original dataset (before modification): predictions

of the DynaROM model, mapped to the temperature at the sensor location via its

SVD coefficients. Input above, output below, with the true trajectory in mustard and
the prediction in pink.

reconstitution of this measurement given the SVD decomposition, which is very close
to the true measurement in this example when using 5 modes.

The prior model is learned on the first two scenarios, then tested on the two
next ones. We learn a first model with Ansys DynaROM, which iteratively and
automatically determines how many hidden states are necessary to explain the data.
Here, we consider 5 SVD modes after some trial and error with DynaROM, showing
that d, = 5 is enough to obtain satisfying accuracy. The trained ROM fits the original
training and test scenarios with high accuracy and rather short training time, thanks to
the efficient implementation including automatic hyperparameter tuning features. Its
performance is illustrated in Fig. 4.16 on the test scenarios. This gives us confidence in
the design of the experiment: with d, = 5 and the chosen training and test scenarios,
it should be possible to fit the original dataset and obtain a prior model on the whole
state.

For ease of implementation, we do not directly use the Ansys ROM as our
prior model. Instead, once DynaROM has provided us with a proof of concept
and validation of the settings, we fit a GP model to the original dataset to obtain a
prior GP model, which we can then directly refine given measurements from the
modified dataset. Since 20* data samples are available for learning, which is in-
tractable for vanilla GPs, we use the sparse approximation “VarDTC” (see Sec. 3.1.1
and [57] for an overview) and only keep 500 points in memory. We also optimize
the hyperparameters of the squared exponential kernel offline on the first 2000 data
points without sparsification, which yields a scaling factor of 10 and lengthscales
(150, 80,90, 90,90, 150, 150). The obtained model, further denoted f;, maps an SVD
state (x(t),u(t)) of dimension d, = 5 and an input of dimension d,, = 2 to x(t + At).
Its performance is illustrated in Fig. 4.17, where it is shown that the prior GP model
can accurately predict the test scenarios of the original dataset.

4.7.2 Correcting the ROM

Once the prior model has been trained, we apply our framework to refine it using
partial measurements from the modified system, instead of whole state data (full
SVD modes). The measurement is the temperature at one point of the conduct,
corrupted with Gaussian noise of variance 0.0026, to mimic a single sensor measuring

60 Chapter 4. Joint state and dynamics estimation in the observable canonical form

350 True 350 True

—— Predicted —— Predicted

4
340 340

330 330

Y

320 320

310 310

300 300

t t

(a) Scenario 3 (b) Scenario 4

Figure 4.17: Test scenarios with the original dataset (before modification): predictions
of the prior GP model, mapped to the temperature at the sensor location via its SVD
coefficients.

the temperature field at a specific point (in orange in Figure 4.15). This serves as
the partial, noisy output of the system: we have y = Cx + €, where C is the vector
of SVD coefficients at this specific point in the temperature field (we assume the
SVD decomposition computed for the original system is still valid for the modified
one). We can now plug this y into our joint state and dynamics estimation method,
estimate the state trajectory £, and update the discrete GP model from it. However,
the prior model learned from the original dataset is not in the observable canonical
form. We cannot transform the coordinate system as for the mass-spring-mass system,
as it will be necessary to recover the temperature at any point from the predicted
value of the SVD modes using the SVD decomposition. Therefore, we implement
an extended Kalman filter (EKF) instead of an HGO, using the prior model as the
dynamics to be linearized in the EKF and relying on it to obtain reasonably accurate
state estimates. We then construct and learn a GP model as previously described,
learning the residuals” of the prior model. This does not exactly fit into our theoretical
guarantees, but demonstrates the performance of the proposed method in a large-
scale, practical setting.

We run two cycles of state estimation followed by a GP update, over the two
training scenarios. The initial conditions of the scenarios are considered known, since
they were chosen by the user to train the prior model on simulation data. Starting
with a good initial guess eases the task of the observer, yielding more accurate training
trajectories for the dynamics model. With a reasonably accurate prior model and
after tuning the EKF, we obtain convincing results: the state trajectories estimated
by the EKF are accurate enough to improve the dynamics model iteratively from the
partial, noisy measurement data. The results are illustrated in Fig. 4.18, where the
temperature at the sensor in the test scenarios is shown. The refined model, trained
using the state trajectories estimated from the sensor measurements, can predict
the output much better than the prior model (prediction RMSE reduced by 81% for
scenario 3, 58% for scenario 4). The same predictions at another, unobserved location
in the temperature field are presented in Fig. 4.19. The refined model also yields a
reduction in RMSE of 56% for scenario 3, 46% for scenario 4.

ZRecall that learning the residuals of a prior model means learning the mapping from the inputs to
the difference between the output of the prior and the observed output.

4.8. Discussion 61

It is also possible to start with a different value of £(0), e.g., zero. However, this
leads to a large transient in the estimated trajectories, which needs to be cut out from
the training data. With only limited scenarios to learn from, this loss of information
degrades the performance of the obtained dynamics model. As an example, we show
in Fig. 4.20 the prediction at the sensor location and at the test point with £(0) = 0,
where the first hundred time steps of the estimated trajectories have been cut out of
the training data. The prior model remains the same. The accuracy still improves
compared to the prior, but the performance degrades compared to Fig. 4.18-4.19, most
of all at the beginning of the trajectory. Nonetheless, workarounds for this problem
can be envisioned, such as starting from a reasonable initial guess or smoothing
the trajectory estimated by the EKF. For example, the equivalent in this context of
adding a backward pass to smooth out the trajectory estimated by the HGO is to run a
Rauch-Tung-Striebel smoother over the trajectory estimated by the EKF [132, Sec. 8.2].
This smoother somewhat reduces the transient of the EKF, but it is too dependent on
the EKF estimates to completely correct it in a back and forth nudging fashion.

4.7.3 Discussion on the EKF extension

The previous results demonstrate that the proposed cyclic framework can be extended
even when our assumptions are not satisfied, provided a reasonably accurate prior
model and initial state estimates for the first cycle. This use case is meant to mimic
the problem of hybrid digital twins: a high-fidelity simulator (Fluent) is used to
generate the original dataset and learn a prior model of the system (either a ROM,
a prior GP, or some other type). Then, noisy and partial physical measurements
(temperature sensor on the conduct) are used to refine the model with a GP to
account for changes in the dynamics (modified dataset), such as wear or parameter
deviation over time. It serves as proof of concept that the proposed framework
can function in industrial settings to fine-tune digital twins using partial physical
measurements. However, no convergence guarantees are provided for this extension
using the EKF, and hyperparameter tuning can be challenging: the EKF gains, the GP
hyperparameters, and the training data need to be well chosen.

4.8 Discussion

In this chapter, we propose a framework for joint state and dynamics estimation of sys-
tems in the observable canonical form. Though the method shows promising results,
it has some limitations that require further investigation. On the observer side, Theo-
rems 3 and 4, like all theoretical guarantees for HGOs, only hold for high enough gain.
However, using a large gain can be prohibitive in practice, mostly in high dimensions
or with high measurement noise, as HGOs suffer from peaking and noise amplifica-
tion. This can be seen in Figure 4.7, where peaking is present and the measurement
noise is already visible though it was rather low in the simulations (¢ = 10~%), mak-
ing it difficult to deal with much higher noise levels. These effects can be mitigated by
changing the gain Khalil_highgain_meas_noise_switche\bar {d}ain or using a cas-
cade of HGOs [120], [133]. In future work, these could be combined with our method
to allow for higher noise levels. We are also limited by the observable canonical form:
many systems can be transformed into this form without knowledge of the dynamics,
as in Sec. 4.4, but the transformation back into the original coordinates remains un-
known. Using an EKF instead of the HGO as in the last section circumvents some of
these issues, however, EKFs are notably hard to tune and not very robust to model

62 Chapter 4. Joint state and dynamics estimation in the observable canonical form

350 T— True 350 T— True
—— Predicted —— Predicted
340 340
330 330
.
320 320
310 310
300 300
0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) Scenario 3, prior model (b) Scenario 3, after learning
350 T— True 350 T— True
—— Predicted —— Predicted
340 340
330 330
=N
320 320
310 310
300 300
0 2 4 6 8 10 0 2 4 6 8 10

(c) Scenario 4, prior model

(d) Scenario 4, after learning

Figure 4.18: Test scenarios before and after refining the dynamics model for the
Ansys Fluent use case. The noisy measurement and predicted output (open loop)
are shown; the updated GP model learns the residuals of the prior model.

errors, such that a reasonably accurate prior model of the dynamics is needed. In the
next chapter, we extend this methodology to more general classes of systems, at the
cost of the theoretical guarantees provided by HGOs.

On the learning side, we assume f is Lipschitz continuous w.r.t. the training data.
This is the case for GPs with fixed hyperparameters. However, as soon as a nonconvex
optimization procedure is involved, e.g., for online hyperparameter tuning or for
training a neural network instead of a GP, this assumption is not satisfied as the
obtained solution can change non smoothly if the training data changes. In this case,
Theorems 3 and 4 do not hold. In practice, such tools can often still be used while
maintaining performance. Another limitation of GPs is the dimensionality: as the
computation of the posterior scales at O(N?), the GP model can only deal with up
to about 10* data samples. The sliding window of length N used in (4.7) deals with
this issue but leads to the loss of possibly useful data. Other methods such as sparse
GP approximations [57] can be more efficient in practice, as shown in the Fluent use
case, but the theoretical guarantees do not extend to these approximations based on
nonconvex optimization.

4.9. Conclusion and outlook 63
320 —— True 320 — True
—— Predicted —— Predicted
315 315
=310 =310
305 305
300 300
0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) Scenario 3, prior model (b) Scenario 3, after learning
0 —— True 320 — True
—— Predicted —— Predicted
315 315
=310 =310
305 305
300 300
0 2 4 6 8 10 0 2 4 6 8 10

(c) Scenario 4, prior model

(d) Scenario 4, after learning

Figure 4.19: Test scenarios before and after refining the dynamics model for the

Ansys Fluent use case. The true and predicted output (open loop) at another,

unobserved point in the temperature field are shown; the updated GP model learns
the residuals of the prior model.

4.9 Conclusion and outlook

Due to the imperfect state data provided by most physical platforms, joint estimation
of state and dynamics is at the core of dynamics model learning from experimental
data. This is a challenging problem in general: few approaches exist, even fewer pro-
vide convergence guarantees. In this chapter, we propose a framework for joint state
estimation and dynamics learning of nonlinear systems in the observable canonical
form. A high-gain observer estimates the state trajectory, which is used for learning
the nonlinearity with a non-parametric Gaussian process model. Practical and asymp-
totic convergence of both the state and dynamics estimation can be guaranteed, so
that after convergence, the observer and the dynamics model can be used for fur-
ther control tasks. Simultaneous model learning and improved state estimation are
demonstrated on two academic examples. We then discuss a quantitative comparison
to the most related existing work, which inspired our method. We also propose two
methodological improvements: running the observer in a back and forth nudging
manner to smooth out the data before each learning cycle, and adapting the observer
gain as the dynamics model improves. An extension of the method is investigated,
where replacing the HGO with an EKF circumvents the assumption of observable

64 Chapter 4. Joint state and dynamics estimation in the observable canonical form

340 —— True
—— Predicted

330

=320

310

(a) Scenario 3, sensor location

— True
340 —— Predicted
330
=
320
310
300

t

(c) Scenario 4, sensor location

—— True
—— Predicted

315

310

305

300

(b) Scenario 3, unseen location

—— True
—— Predicted

315

310

305

300

(d) Scenario 4, unseen location

Figure 4.20: Test scenarios after refining the dynamics model for the Ansys Fluent

use case, at the sensor location (left) and at an unobserved point (right). The updated

GP has improved compared to the prior model, but the performance is degraded
due to the inaccurate initial guess £(0).

canonical form so that a general prior model can be refined with measurement data.
This is demonstrated on a larger scale use case provided by Ansys.

We now look to extend the methodology further, by leveraging deep learning
and automatic differentiation techniques to learn dynamics models from partial
observations with varying degrees of prior knowledge.

65

Chapter 5

Learning neural ODEs from partial
observations with recognition models

Résumé L’identification de systémes dynamiques a partir de données expérimen-
tales est une tache particulierement difficile, entre autres parce que les données
disponibles sont rarement denses et représentatives. Les connaissances préalables
sur le modele améliorent généralement l'efficacité de 'identification, mais 1'étendue
de ces connaissances varie en fonction de I’application, et des modeles spécifiques a
chaque cas d'usage sont souvent nécessaires. Les équations différentielles ordinaires
neuronales donnent un cadre flexible pour 'identification de systémes et peuvent
incorporer un large spectre de connaissances physiques, donnant une interprétabilité
physique a 'espace latent résultant. Dans le cas d’observations partielles, cependant,
les données ne peuvent pas étre directement mises en correspondance avec l'état
latent de I’équation différentielle ordinaire. Nous proposons donc des modeles de
reconnaissance, notamment inspirés de la théorie des observateurs non linéaires,
pour relier les observations partielles a 1’état latent. Nous illustrons la performance
de I'approche proposée sur des simulations numériques et sur des données expéri-
mentales provenant d'un exosquelette robotique.

Abstract Identifying dynamical systems from experimental data is a notably diffi-
cult task, in particular due to the difficulty of collecting dense and representative data.
Prior knowledge generally improves the model’s sample efficiency, but the extent
of this knowledge varies with the application, and customized models are often
needed. Neural ordinary differential equations can be written as a flexible framework
for system identification and can incorporate a broad spectrum of physical insight,
giving physical interpretability to the resulting latent space. In the case of partial
observations, however, the data points cannot directly be mapped to the latent state
of the ODE. Hence, we propose to design recognition models, in particular inspired
by nonlinear observer theory, to link the partial observations to the latent state. We
demonstrate the performance of the proposed approach on numerical simulations
and on an experimental dataset from a robotic exoskeleton.

Parts of this chapter are published in the Transactions of Machine Learning Research
under the title Recognition Models to Learn Dynamics from Partial Observations with
Neural ODEs [50].

5.1 Introduction

The dynamic behavior of complex physical systems often follows a certain structure.
Mathematically, this structure is captured by differential equations, e.g., the laws of
physics. However, even an accurate model cannot account for all aspects of a physical
phenomenon, and physical parameters can only be measured with uncertainty. Data-
driven methods aim to enhance our predictive capabilities for complex systems based
on experimental data.

66 Chapter 5. Learning NODEs from partial observations with recognition models

We focus on dynamical systems and design an end-to-end method for learning
them from experimental data. We investigate State-Space Models (SSMs), which are
common in system theory, as many modern control synthesis methods build on them
and the states are often amenable to physical interpretation. For many systems of
interest, some degree of prior knowledge is available. It is desirable to include this
knowledge in the SSM. To this end, we consider neural ordinary differential equations
(NODEs), which were introduced by [32] and have since sparked significant interest,
e.g., [39], [104], [134], [135]. They aim to approximate a vector field that generates
the observed data following a continuous-time ODE with a neural network. Their
formulation is general enough to avoid needing a new design for each new system,
but can also enforce a wide range of physical insight, allowing for a meaningful and
interpretable model. Specific approaches have been proposed to include different
priors, which we briefly recall; we present a unified view and include them in the
proposed end-to-end framework.

Learning an SSM satisfying these priors amounts to learning the dynamics in a
specific set of coordinates. However, experimental data is typically only partial, as
not all of these coordinates, or states, are measured. This is a common problem in
machine learning, where the existence of an underlying state that can explain the data
is often assumed. In the systems and control community, estimating this underlying
state from partial observations is known as state estimation or observer design. An
observer is an algorithm that estimates the full latent state given a history of partial
measurements and control inputs [42], [43]. While observer design provides the
theoretical framework for latent state estimation, such as convergence guarantees
of the estimate to the true state, it has not received much attention in the machine
learning community. Hence, we propose to leverage concepts from nonlinear observer
design to learn NODEs with physical priors from partial observations.

We design so-called recognition models to map the partial observations to the latent
state. We discuss several approaches, in particular based on a type of nonlinear
observers called Kazantzis-Kravaris/Luenberger (KKL) observers [46], [47]. We show
that the KKL-based recognition models perform well and have desirable properties,
e.g., a given size for the internal state. Such recognition models can then be embedded
in the NODE formulation or any other optimization-based system identification
algorithm. Our main contributions can be summarized as follows:

e We discuss related work in more detail in Sec. 5.2;

¢ In Sec. 5.3, we formulate structured NODE:s as a flexible framework for learning
dynamics from partial observations, which enables enforcing a broad spectrum
of physical knowledge;

* We introduce recognition models to link the observations and the underlying
state of the NODE in Sec. 5.4, then propose several forms based on nonlinear
observer design;

¢ We investigate how a wide spectrum of prior knowledge can be included in the
NODE formulation in Sec. 5.5, and position existing works on this spectrum;

* We compare the proposed recognition models in a simulation benchmark in
Sec. 5.6.2 and on a numerical example in Sec. 5.6.3;

¢ We then apply the proposed approach to an experimental dataset obtained
on a robotic exoskeleton in Sec. 5.6.4, illustrating the possibility of learning a
physically sound model of complex dynamics from real-world data.

5.2. Related work 67

Black-box ODEs Structured ODEs Parametric models

Increasing prior knowledge

Regularizing priors Structural priors
Extra terms in the cost function Constraints or form of the optimization problem

Figure 5.1: SSMs can include a broad spectrum of physical knowledge. On the
left, purely data-based formulations such as latent NODEs are general but tend to
violate physical principles and have trouble generalizing. On the right, parametric
models can be identified from data: they extrapolate well but are system-specific
and require expert knowledge. One can bridge this gap by including the available
physical knowledge in an NODE formulation (5.2), in particular “regularizing”
priors (extra terms in the cost function) or “structural” priors (constraints or form of
the optimization problem).

Combining these yields an end-to-end framework for learning physical systems from
partial observations. Finally, we discuss the limitations of the proposed approach and
possible future work in Sec. 5.7.

5.2 Related work

The proposed method is based on two research areas: nonlinear observer design and
machine learning for dynamical systems. We give an overview of the main trends
and the most related methods on these topics.

5.2.1 System theory

In system theory, many subfields are concerned with the study of dynamical systems
from experimental data.

System identification

The area of system identification aims at finding a possible dynamics model given a
finite amount of partial measurements [16], [17], [136]. For linear systems, a suitable
set of system matrices can be identified using subspace methods [15]. For nonlinear
systems, most state-of-the-art techniques aim at estimating the variables of a given
parametric model using Bayesian parameter estimation [21] or optimization-based
methods [18]-[20], or a decomposition of its dynamics on a suitable basis of functions
[23]. These classical methods tend to be system-specific: they require expert knowl-
edge to construct a parametric model or precisely pick the hypothesis class in which
it will be approximated. NODEs are a general tool for system identification in case
no parametric model is available, in which a broad range of physical knowledge can
be included by adapting the formulation.

Observer design

When identifying a state-space model from partial observations, the unknown latent
state must be estimated. This is the objective of state observers or estimators, which

68 Chapter 5. Learning NODEs from partial observations with recognition models

infer the state from observations by designing an auxiliary system driven by the
measurement (see [42], [43] for an overview). Observers often assume an accurate
dynamics model, but designs that can deal with imperfect models are also available.
In that case, the unknown parts of the dynamics can be overridden through high-gain
or sliding-mode designs to enable convergence [49], [125]. Otherwise, the unknown
parameters can be seen as extra states with constant dynamics, and extended state
observers can be designed, such that the estimated state and parameters converge
asymptotically [137]. Some concepts from observer theory can be leveraged to im-
prove upon existing approaches for learning dynamics from partial observations,
which require estimating the unknown latent state.

5.2.2 Learning dynamical systems

Learning dynamical systems from data is also investigated in machine learning [14],
[35]. We focus on settings considered realistic in system identification, i.e., methods
that allow for control and partial observations, and can ensure certain physical
properties.

Physics-aware models

The dynamics models obtained from machine learning often struggle with general-
ization and do not satisfy important physical principles such as conservation laws.
Therefore, there have been efforts to bring together machine learning and first princi-
ples to learn physics-aware models; see [4], [36], [37] for an overview of these efforts
in deep learning. In general, there are two takes on including physical knowledge in
data-driven models, as illustrated in Fig. 5.1. On the one hand, “regularizing” priors
can be included by adding terms to the cost function to penalize certain aspects. The
most common case is when a prior model of the system is available from first princi-
ples. This is investigated in [138], [139] for full state observations; more details are
available in Sec. 5.5.1. On the other hand, structural properties such as conservation
laws can be enforced by constraints or a specific form of the optimization problem.
This improves the performance and interpretability of the model; see Sec. 5.5.2 for a
closer examination. However, little previous work on NODEs assumes partial and
noisy measurements of system trajectories.

There exist various other methods to learn physics-aware dynamics models, such
as Bayesian approaches, in which prior knowledge can be enforced in the form of the
kernel [140], by structural constraints [73], [74], [76], or by estimating the variables of
a parametric model [21]. In this work, we focus on NODEs, which leverage the pre-
dictive power of deep learning while enforcing a broad range of physical knowledge
in the problem formulation. Note that this distinction between “regularizing” and
“structural” prior knowledge can also be applied to other approaches: for example,
constructing task-specific kernels for Gaussian process models can be seen as a soft
form of prior knowledge, while Bayesian parameter estimation inside a parametric
model [21] is a form of structural constraint.

Partial observations

Most NODE frameworks for dynamical systems assume full state measurements.
Partial observations greatly increase the complexity of the problem: the latent state
is unknown, leading to a large number of possible state-space representations. In
this case, the question of linking the observations with the latent state needs to

5.3. Problem statement 69

be tackled. In Bayesian approaches, the distribution over the initial state can be
directly conditioned on the first observations then approximated by a so-called
recognition model [65], [81], [82]. Such an approach has also been used for Bayesian
extensions of NODEs, where the NODE describes the dynamics of the latent state
while the distribution of the initial latent variable given the observations and vice
versa are approximated by encoder and decoder networks [141], [142]. The encoder
network, which links observations to latent state by a deterministic mapping or by
approximating the conditional distribution, can also be a Recurrent Neural Network
(RNN) [105], [134], [143], [144] or an autoencoder [29], [104]. The particular case
in which the latent ODE is linear and evolves according to the Koopman operator
(that can be jointly approximated) is investigated in [145], [146]. In general, little
insight into the desired latent representation is provided. This leads to difficulties
for the obtained models to generalize, but also with their interpretability: often in
a control environment, the states should have a physical meaning. Therefore, we
propose to learn a recognition model that maps the observations to the latent state,
while enforcing physical knowledge in the latent space.

5.3 Problem statement

Consider a general continuous-time nonlinear system

x(t) = f(x(t), u(t)) y(t) = h(x(t),u(t)) +e(t) (5.1)
x(0) = xo

where x(t) € R% is the state, u(t) € R% is the control input, y(t) € R% is the mea-
sured output, and f, h are the true dynamics and measurement functions, assumed
continuously differentiable. We denote x(t) the derivative of x w.r.t. time f, and
generally omit the time dependency. We only have access to partial measurements
y corrupted by noise €, the control input u, and the measurement function h: the
dynamics f and the state x are unknown. We assume that the solutions to (5.1) are
well-defined and aim to estimate f.

The objective of NODEs [32] is to learn a vector field that generates the data
through an ODE, possibly up to an input and output transformation; see [33] for an
overview. This type of model has recently sparked widespread interest: applications
ranging from the analysis of complex materials [104] to neural activity [143] or
climate factors [147] have been proposed, and their controllability and approximation
properties are under investigation [39]. While the interpretation of this formulation
for general machine learning tasks remains open, it is very natural for SSMs: learning
the NODE boils down to approximating the dynamics with a neural network.

However, there is no unifying framework for applying NODEs to dynamical
systems in realistic settings, i.e., with partial and noisy trajectory data, with a control
input, and using all available physical knowledge.

Assume we have access to N measured trajectories indexed by j, denoted y/ and
sampled at times t;, i € {0,...,n — 1}. We approximate the true dynamics f with a

neural network fg of weights 0. If the initial conditions x{) are known, learning fy can

70 Chapter 5. Learning NODEs from partial observations with recognition models

be formulated as the following optimization problem:

2

. i o
min nN]Z; ;’y = L(0) (5.2)
s.t. X = fo(xl,ul) v = h(x,u)

X (0) = x),

where the constraint is valid for all j € {1,..., N}.

Solving NODEs Optimizing 6 to find a local optimum of (5.2) requires computing
the gradient of L(0), for which several methods have been proposed. The forward
sensitivity method consists in computing 95 (6) explicitly, in which the derivative of
the flow A(t;) := %% (¢;) at each time step intervenes. This sensitivity is the solution to
another ODE, which depends on the gradient of fy with respect to x and 6. By solving
the ODE on x and A simultaneously in forward time, one can compute the gradient of
L(0). However, this method is computationally demanding, as it requires solving the
ODE on the d, x dy matrix A for all ¢; at each iteration of the optimization. It is known
in the computational physics community [148], [149] that the adjoint sensitivity
method is a computationally more efficient alternative to obtain the gradient of a cost
function depending on the state of a parametrized ODE when L is scalar and dj is
large. This method introduces continuous-time Lagrange multipliers to formulate the
dual problem of (5.2). Thus, instead of simulating the ODE on the large sensitivity
matrix A, it solves sequentially smaller ODEs and integral equations in backward
time. Details on these methods are provided in [18], [33], [148]. We opt for automatic
differentiation through the numerical solver (torchdiffeq by [32]). This is faster than
the two previous methods since no other ODEs need to be solved, but has higher
memory requirements due to the potentially large computational graph. It is also
exact since no approximations are made, but dependent on the particular solver and
options.

Problem (5.2) is not well-posed: for a given state trajectory, there exist several
state-space representations f that can generate the data. This is known as the uniden-
tifiability problem [150]. The key problems to obtain meaningful solutions to (5.2)
are:

(i) enforcing physical knowledge to learn a state-space representation that not only
explains the data, but is also physically meaningful;

(ii) dealing with partial observations, i.e., unknown latent state and in particular
unknown xg.

Problem (i) has been addressed in the literature for some particular cases, as presented
in Sec. 5.5, by including the available physical knowledge in the form of “regularizing’
or “structural” priors (see Fig. 5.1 and related work in Sec. 5.2.2). We denote the
general approach of adapting (5.2) to build physics-aware NODEs as structured
NODEs, and apply it to examples with varying prior knowledge.

Problem (ii) remains largely open. For fixed fy and u, each prediction made during
training for a given measured trajectory is determined by the corresponding xy; hence,
estimating this initial state is critical. We tackle (ii) by designing recognition models
in Sec. 5.4. We combine them with structured NODEs to simultaneously address
(i) and (ii). This yields an end-to-end framework for system identification based on
physical knowledge and partial, noisy observations, a common setting in practice;

7

5.4. Recognition models 71

we apply it to several examples in Sec. 5.6. While some of the components needed
for this framework exist in the literature, e.g., on building physics-aware NODEs
(Sec. 5.2.2), the vision of recognition models, the presentation in a unified framework
and the application to relevant practical cases are novel.

Remark 9. The considered setting, where h in (5.2) is known, is generally regarded as
realistic in system identification, since y is measured by sensors, and u is chosen by the user,
who often knows which part of the state is being measured. However, if that is not the case, it
is possible to train an output network hy jointly with fy. This adds more parameters to the
optimization problem but has no consequences on the recognition model or the structure that
can be imposed on the latent state.

Remark 10. The length and sampling times of the training trajectories need not be fixed.
As long as they are known, we can interpolate the signals, compute the loss and perform
optimization. However, if all trajectories have the same sampling times (or when simulating
over the overarching set of sampling times from which all individual samples can be extracted),
then all simulations can be run in parallel, which is computationally more efficient. Also, it
would be beneficial to optimize all model parameters hierarchically: learn a first model on
short training trajectories, which leads to a simpler optimization problem [151], then fine-tune
it on increasingly long trajectories, e.g., by increasing n by a factor once an error threshold
is reached. However, this and other procedures for increasing final accuracy necessitate
extra implementation efforts and are not directly relevant for this work. In the following, we
consider that the sampling times are the same for all trajectories and optimize for the full
trajectory directly.

5.4 Recognition models

In the case of partial observations, the initial condition xg in (5.2) is unknown and
needs to be estimated jointly with fy. Estimating xo from partial observations is
directly related to state estimation: while observers run forward in time to estimate
the state asymptotically, we formulate this recognition problem as an optimization
problem running backward in time to estimate the initial condition, akin to a receding
horizon observer [152]. Therefore, the lens of observer design is well suited for
investigating recognition models, though it has not been often considered. For
example, whether the state can be estimated from the output is a precise notion in
system theory called observability [42]:

Definition 3. Initial conditions x,, xy, are uniformly distinguishable in time t. > 0 if for
any input u : R +— R%

Yaul(t) = you(t) VE € [0,t] = xa = xp, (5.3)

where Ya (resp. Yy) is the output of (5.1) given input u and initial condition x, (resp. xy,).
System (5.1) is observable (in t.) if all initial conditions are uniformly distinguishable.

Hence, if (5.2) is observable, then x(0) is uniquely determined by y and u over
[0, tc] for t. large enough. This assumption is necessary, otherwise there is no hope of
approximating f with fy from the observations only. In the rest of the chapter, we
indistinctly refer to a system as “observable” or “uniformly distinguishable”.

In system identification, the unknown initial condition is usually directly opti-
mized as a free variable: it needs to be optimized again for each new trajectory and
cannot be used as such for prediction. Instead, we propose to estimate it from the

72 Chapter 5. Learning NODEs from partial observations with recognition models

observations by learning a recognition model ¢y that links the output to the initial
state, similarly to [152]. The term recognition model has been used to designate
approximating the initial latent state conditioned on partial observations [65], [81],
[82], [134]. For NODEs, recognition models have also been called augmentation
strategies [33], [153]-[155]. Hence, we predict the initial latent state of the NODE as
x(0) = (z(t;)), where z(t.) is the input of the recognition model. In what follows,
we propose different methods for finding a suitable z(#.). Concatenating the weights
of fp and 1y into O leads to the modified problem:

1 N n-1,) 2
i T(+:) — 1/ (+:
g o Y|y -y w) (5.4

s.t. x] :fg(xj,uj) y] :h(xj,uj)

5.4.1 General approaches

Some recognition methods have been proposed in the literature, not necessarily for
system identification with NODEs, but rather for probabilistic [65] or generative [141]
models. We draw inspiration from them and rewrite them to fit into our general
framework, leading to the following.

Direct method

The most straightforward approach is to stack the observations and learn a mapping
from

Z(te) = Yy, = W(0),-. ., y(kc)) (5.5)

to the initial latent state. For nonautonomous systems, the first inputs should also
be taken into account, which yields z(t.) = (z or? g,). We denote this as the direct
method. Variants of this approach have been used for approximating the distribution
over the initial state conditioned on y , e.g., for joint inference and learning of
Gaussian process state-space models [65], [81], [82]. Augmentation strategies for
NODEs [33], [153]-[155] are often particular cases with t, = 0. However, for many
nonlinear systems, this is too little information to estimate x(0). There are few works
on NODE-based system identification from partial observations, some of which train
a recognition model from v, [141] [142], [156], or learn the dynamics of Y., [157].
As justified by the observablhty assumption, for ¢, large enough this i is all the
information needed to estimate x(0). However, for large t., the input dimension
becomes arbitrarily high, which in turn aggravates the identification of 5. Also, the
observations are not preprocessed in any way, though they may be noisy.

Recurrent recognition models

Latent NODEs [32], [134], [144] also use a recognition model to estimate the initial
latent state from observations, though this may not be the state of an SSM. This
recognition model is a Recurrent Neural Network (RNN) in [32] and an RNN com-
bined with a second NODE in [134]. These methods go through the information
contained in (yo_tc, ugy,) in backward time, process it through the current network

parameters, then feed it to the recognition network g, which is trained jointly with

5.4. Recognition models 73

y(to)) Y(tn)

£ _ Measured output
y(tn— 1) t‘P

) T X t A T Estimated output

® W./—\.\/. /_\6 z (tn—l) ® Latent state
ODE Solve (f@, Zo, to, ey tnfl)

t() tc tn—l

Figure 5.2: Illustration of the proposed method. The KKL observer runs backward in
time over the observations on [, 0], estimates the initial latent state, then the NODE
model runs forward to predict the following trajectory.

the (ODE-)RNN. We consider this baseline in the numerical results: we combine a
Gated Recurrent Unit (GRU) of internal dimension d, run in backward time so that
Z(t.) is the output of the GRU, and an output network ¢g. See Sec. 3.2.2 for more
details on RNNs and GRUs in particular. We denote this method from [32] as RNN+.
More complex models are now being developed on top of latent NODEs, e.g., [144],
to improve the robustness of this combination of RNN recognition with ODE latent
dynamics modeling w.r.t. irregular sampling times and gaps in the observations.

We now propose a novel type of recognition model based on nonlinear observer
design, leading to different choices of Z(t.). See Table 5.1 for a summary of the
proposed recognition methods.

5.4.2 KKL-based recognition models

As discussed in Sec. 3.4, the Kazantzis-Kravaris/Luenberger (KKL) observer [46],
[47] is a particular algorithm for nonlinear state estimation. Roughly speaking,
KKL observers rely on building a linear filter of the measurement: an auxiliary
dynamical system of internal state z with known dimension d, is simulated, taking
the measurement as input and filtering it to extract the information it contains. The
observer state satisfies

z=Dz+Fy
z(0) = zo (5.6)

where z € R% with d, = dy(dx + 1) and z is an arbitrary initial condition. In this
system, y is the continuous-time measurement from (5.1), or an interpolation between
the discrete observations y(t;). The parameters D and F are chosen such that D is
Hurwitz, i.e., all eigenvalaes are in the left half-plane, and (D, F) is a controllable
pair, i.e.,, the matrix (F DF ... D%~!F) has full rank [158]. Thanks to the stability
of (5.6), the internal state z “forgets” its arbitrary initial condition zg and converges
asymptotically to a value depending on the history of y. The speed of this convergence
depends among others on the gain matrix D. Under certain conditions, this value
uniquely determines, in turn, the value of the unmeasured state. More details are
given in Sec. 3.4.

Autonomous systems

For autonomous systems, i.e., u = 0, it is shown in [47] that if the eigenvalues of D
have sufficiently large negative real parts, then there exists an injective transformation

74 Chapter 5. Learning NODEs from partial observations with recognition models

T and its left inverse T * such that

[x(t) = T*(=(1)] =0,)
where x is the “true” underlying state of the system in the given state-space represen-
tation, meaning that 7 *(z(t)) with z(t) from (5.6) is an observer for x(t). However,
T* cannot be computed analytically in general. Therefore, it has been proposed to
learn it from full-state simulations [116], as further discussed in Ch. 7.

As D is Hurwitz and 7 resp. 7* transform x into z resp. z into x, running the
observer (5.6) forward in time yields x(¢.) =~ 7*(z(t.))) for t. large enough. However,
this approach “throws away” the data ., which is used to simulate z on [0, t.] but
not for dynamics estimation afterward, since the trajectory starts at x(t;) = ¢g(z(t.))
with x the estimated NODE state. Therefore, we assume the system (5.1) is not
backward but forward distinguishable, i.e., each state is uniquely determined by the
previous values of the output and input; these two notions are equivalent when f is
Clin particular. Then, as discussed in Sec. 3.4, the KKL observer also converges in
backward time. Hence, running it backward in time on [t, 0] yields x(0) ~ 7*(z(0)))
for t. large enough; we then set x(0) = 15(z(0)) and use all data yo., for learning
the NODE. Note that the transformations 7, 7" are not necessarily the same as the
transformations for the forward observer, as the forward system may be more or less
observable compared to the backward system.

Hence, we propose to train a recognition model x(0) = ¢9(z(0)), where z(0) is
the result of (5.6) run backward in time for ¢, from an arbitrary initial condition z(t.).
This is further denoted as the KKL method, illustrated in Fig. 5.2. See Table 5.1 for a
summary of the proposed methods.

Remark 11. Directly learning an output predictor from partial observations with the KKL
methodology has also been proposed in the literature, in particular under the name Deep-
KKL [159].Indeed, if the state-space representation of interest with state x is observable, then
a KKL observer can be designed, that forgets its arbitrary initial condition zo and converges
to z(t) such that z(t) ~ T (x(t)) and x(t) ~ T *(z(t)) for t large enough. If the function
h = ho T* is approximated from trajectories of partial observations using standard super-
vised learning techniques, and if the true initial condition z(0) = T (x(0)) is known, then
simulating

z = Dz + Fh(z) (5.8)

forward in time predicts the output y of the system. In practice the true initial condition is
unknown, but a few samples of the measurement yo.;, can be used to initialize the predictor: if
t. is large enough, thanks to the convergence of the observer, running the KKL observer (5.6)
over [0, t.| yields a value z(0) which is close to the true T (x(0)). The rest of the trajectory
y(t), t > t. can then be predicted in open loop. This is an efficient way to initialize the system
in z and builds an accurate output predictor, as investigated in DeepKKL [159].

If no prior knowledge about the underlying system is available, or no physical interpre-
tation of the states is required, then learning such an output predictor might be a sufficient
solution. The architecture of this predictor can be based on KKL observer design [159], on
other theoretical results such as the existence of the Koopman operator [145], or on a general
deep learning architecture justified by observability assumptions [160]. However, if the user
is interested in a physically meaningful SSM, then a recognition model that maps the KKL
state z to the physical coordinates is needed.

5.4. Recognition models 75

Nonautonomous systems

When extending the previous results to nonautonomous systems, 7 not only depends
on z(t) but also on time, in particular on the past values of #, and becomes injective
for t > t. with t. from the backward distinguishability assumption [114]. In the
context of recognition models, this dependency on u over [0, t] can be made explicit
by running the observer (5.6) backward in time then training a recognition model
x(0) = Po(z(t;)) with z(t.) = (z(0), ugy,). This is still denoted as the KKL method,
for nonautonomous systems.

If the signal u can be represented as the output of an auxiliary system of inner
state w with dimension d,, then one can go back to a static transformation 7 with
z € R* and d, = (dy +dy)(dx +d, + 1) by considering the extended dynamical
system X = (x, w) " with extended output Y = (y, u)". We consider q(X) = x as the
observable part of this extended system and build a KKL observer for this part only.
It is shown in [115] that the static observer

z=Dz+FY
z(0) = zp (5.9)

leads to the same results as for autonomous systems. The time dependency in T
disappears at the cost of a higher dimension: d, = (d, +d,)(dx + dw + 1). More
details on KKL observers for nonautonomous systems and in particular functional
KKL observers are provided in Sec. 3.4.2. This functional approach leads to an
alternative recognition model denoted KKLu: x(0) = 15(z(0)) where z is the solution
of (5.9) simulated backward in time for ¢, from an arbitrary initial condition, and d,,
is chosen large enough to generate u (e.g., d,, = 3 for a sinusoidal u).

Jointly optimizing the gain matrix

With any KKL-based recognition model, the choice of D in (5.6) — resp. (5.9) —is
critical since it controls the convergence rate of z. Hence, we propose to optimize
D jointly with 6 by including the ODE on z in the optimization problem, as in [159].
This leads to a computational overhead but improves the performance.

In our experiments, we optimize D jointly with all other parameters once, then
reuse the obtained value of D for all corresponding experiments. We set F = 14,4,
and initialize D with the following method. We compute the poles p; of a Butterworth
filter of order d, and cut-off frequency 27tw, and set each block of D as

; if p; is real
D; = {p P (5.10)

(—éRi‘f;i ;Q) otherwise
such that D is a block-diagonal matrix, and its eigenvalues are the poles of the filter.
This choice ensures that the pair (D, F) is controllable and that D is Hurwitz and
has physically meaningful eigenvalues. Other possibilities exist, such as choosing
D in companion form, as a negative diagonal, etc. However, we found that this
strategy leads to the best performance for the considered use cases. We pick w. =1
for the systems of the recognition model benchmark and the harmonic oscillator with
unknown frequency. For the robotics dataset, we initialize as D = diag(—1,..., —d;).
However, this choice is somewhat arbitrary, and the previous method with w. = 10
shows similar performance. Principled methods for setting (D, F) are still needed for

76 Chapter 5. Learning NODEs from partial observations with recognition models

easing the practical use of KKL observers; setting D to a HiPPO matrix [30], [161],
[162] could be an interesting first step.

Conclusion on KKL recognition

For t. large enough, the transformation 7* approximated by ¢y is guaranteed to
exist for a known dimension d,. The KKL observer also filters the information and
provides a low-dimensional input to g, which is expected to be easier to train. The
RNN-based recognition models are close to learning a discrete-time observer with
unknown dynamics: this is similar, but provides no theoretical argument for choosing
the internal dimension of the RNN, no guarantee for the existence of a recognition
model in form of an RNN, no physical interpretation for the behavior of the obtained
observer, and leads to many more free parameters.

5.5 Enforcing physical knowledge

The aim of learning dynamical systems is generally to monitor, predict or control their
behavior, tasks for which physically meaningful states are often necessary. One of the
main advantages of the NODE formulation is that it is general: it can conceptually
be applied to any observable system, contrarily to many classical, system-specific
identification methods. However, it is also very straightforward to include physical
knowledge in the optimization problem (5.4), which eases the generalization but also
the interpretation of the obtained models. The extent of this physical knowledge
varies depending on the use case, forming a broad spectrum illustrated in Fig. 5.1. As
we shall show, NODEs can easily be adapted to move from one end of the spectrum
to the other by changing (5.4): no knowledge at all will lead to one of infinitely
many possible state-space representations, while for very strong priors, only one
representation may remain feasible. Specific forms of prior knowledge have been
proposed in the literature and are categorized below. Our contribution is to formulate
a unifying view that can cover the whole spectrum of system identification illustrated
in Fig. 5.1, on which these works can be positioned. Further, we combine this with
partial observations, which have rarely been considered in the literature.

5.5.1 Regularizing priors

7

The first approach to include physical knowledge in NODEs is to add “regularizing’
priors to the optimization problem. The most common case is when a prior model of
the system, denoted fy, is available from first principles. We can then learn a residual
NODE on top of fy, while penalizing the norm of fy to correct the prior only as much
as necessary to fit the observations. This is investigated in [138], [139] for full state
observations. It yields the modified optimization problem:

N n—
min L(6 Zd — 21 ;’fg (2 (), ul (1)) (5.11)
st = fo(xd W)+ fo(x,)y =h(x, W)

2 (0) = (2 (tc))

where A is a scaling factor set by the user. This scaling factor can be set by trial and
error, then iterated over as in [138]; it characterizes how much the prior model should
be trusted. Note that in the case of partial observations, this penalizes the norm of

5.6. Experiments 77

the residuals along the trajectory given by the current dynamics, which could be
somewhat of a circular dependency and lead to undesirable local optima; hence, we
start with low values of A.

Other quantities can be known a priori and enforced similarly to (5.11), such as
the total energy of the system [163] or stability through a Lyapunov-inspired cost
function [157], [164].

5.5.2 Structural constraints

Structural knowledge about the system can also be available and enforced by “struc-
tural” constraints, or a specific form of the optimization problem. As an example, if
the system is known to be Hamiltonian, we can write:

min L(6) (5.12)

0
s.t. q] — aaI_Ie(xj, u]) p] — —aaI_Ie(xj’ u])

K(0) =yp(Z (k) ¥ =h(x,)

where x = (g, p) are the generalized coordinates and Hy is the approximate Hamilto-
nian. This yields a more difficult optimization problem, but improves the performance
and interpretability of the model, particularly for long-term predictions. This line of
work originates from [97]-[99] (see [100] for an overview) and has been extended to
NODEs for Hamiltonian and port-Hamiltonian systems [165]-[167], but also to en-
force more general energy-based structures [164], [168], the rules of electromagnetism
[169] or those of thermodynamics [104]. However, these studies consider full state or
even acceleration measurements to directly approximate the function of interest.

The above describes a family of optimization problems for dynamics learning;:
without prior knowledge (5.4), with “regularizing” priors (here a residual model)
(5.11), and with “structural” priors (here a Hamiltonian structure) (5.12). While indi-
vidual instances have been proposed in prior work, we regard the NODE formulation
as a flexible framework for system identification: the whole spectrum of prior knowl-
edge in Fig. 5.1 can be covered by mixing and matching such instances. We combine
this view with recognition models for dealing with partial observations, and apply
this empirically.

5.6 Experiments

We demonstrate the ability of the proposed approach to learn dynamics from partial
observations with varying degrees of prior knowledge, illustrated in Fig. 5.1. Recog-
nition models are critical when such prior knowledge is available: one is not looking
for any latent space, but for one that has a specific structure, and learning a mapping
from the observations to this specific latent state is difficult. Hence, we combine
recognition with physical priors in the following. We first compare the different
recognition models in combination with NODEs. We then provide an extensive case
study on the harmonic oscillator, often used in the literature, learning its dynamics
from partial measurements with increasing priors. Finally, we apply our approach
to a complex use case with experimental data obtained on a robotic exoskeleton'.
All models are evaluated w.r.t. their prediction capabilities: given (Yo:t., Uo:,) for a

ICode to reproduce the experiments is available at github.com/monabf/obsGP recogNODE git.

https://github.com/monabf/obsGP_recogNODE.git

78 Chapter 5. Learning NODEs from partial observations with recognition models

Method zZ(t.) for autonomous zZ(t.) for nonautonomous
te =0 y(0) (y(0),u(0))
direct You, (g 0t Uoyt,)
RNN+ GRU over Y, 0 GRU over (ztc:o, Ut.0)
KKL KKL over ytc: 0 KKL over ztc: o concatenated with wug.,
KKLu n/a functional KKL over (ytc: o U0)

Table 5.1: Summary of the proposed recognition methods for autonomous (center)
and nonautonomous systems (right), all run backward in time. The recognition
model 1y is trained with x(0) = y(Z(tc)). See Sec. 5.4 for more details.

number of test trajectories, we estimate the initial state, predict the further output,
then compute the RMSE over the whole predicted trajectory.

Remark 12. Note that there is a large part of randomness in the different experiments: the
training and validation trajectories, the test set, and the noise are all realizations of random
processes. Hence, results may vary, and obtaining consistent results to rigorously compare the
different methods without any statistical variations would require running more experiments
per setting.

5.6.1 Pointers for training NODEs in practice

We start with a few practical recommendations to train NODEs for dynamical systems,
which we have gathered during our experiments.

¢ If some of the initial conditions in the dataset are known, then imposing them
reduces the learning effort by several orders of magnitude and should be used
to build a first model which can learn at least the behavior from these known
initial conditions.

¢ Preprocessing the data is an important first step. For example, consider filtering
the available training trajectories if they are noisy, subsampling or cutting them.
Experiment design is also crucial, as the training data should be rich enough to
display all relevant types of system behavior.

¢ Asshown in [151], it is preferable to learn from many short training trajectories
rather than from fewer longer ones, as this smooths out the cost function and
its gradient and makes the optimization problem more amenable. It is also
preferable to avoid chaotic behaviors or regimes in which small changes in
6 lead to large changes in the observed trajectory, which is more often the
case with very long trajectories. For example, with the Hamiltonian model
of the harmonic oscillator, the model converges for any sampling time and
any number of training trajectories of 3s, whereas it does not if they are 65
long. Hence, rather use many short trajectories, if necessary by making small
sub-trajectories from longer ones and adding continuity constraints as in [151].

¢ Normalization is a necessary step for most machine learning algorithms. To
avoid numerical issues, we scale and unscale each input and output of the
NODE so that each point that goes into the NN is normalized. However, scaling
the inputs x(t) is not straightforward when only partial observations y(t) are

5.6. Experiments 79

available. We choose to normalize the y(+) signal, then normalize the x(-) signal
with the same scaler as y(-) on the measured dimensions and the mean of that
scaler on the other dimensions, and to use these normalized quantities in all
cost functions during optimization.

¢ Adding a control input to the NODE model has not been considered much in the
literature, but it is crucial in control systems. When simulating the NODE, we
interpolate linearly between the control and measurement samples. On the one
hand, it is beneficial to have seen many values of the control input for learning
a generalizable model. On the other hand, adding a control input increases the
computational overhead by increasing the dimensionality of the NODE and
by making simulations more time-consuming. Especially when inputs vary
very fast, e.g., for random control inputs, the solver needs to take small steps
to simulate the NODE, which is done at every optimization step, leading to an
overall slower solution. Hence, the inputs and the training trajectories should
be smooth enough to allow for the optimization to converge reliably.

¢ It can help to warm start the optimization, for example by learning the residuals
of a prior model, or starting from the closest linear time-invariant (LTI) model.

¢ Ideally, the optimization should be run hierarchically: first training on short
trajectories, then fine-tuning on longer ones.

* As often in deep learning, some hyperparameters such as the learning rate
scheduler, weight decay, optimization routine, or minibatch size influence the
performance and should be chosen carefully.

e Finally, the NN design chosen to approximate the dynamics should be flexible
enough to represent the chosen system, but needs not be as large as for some
other applications in machine learning. The problem still needs to be over-
parametrized enough such that there are many equally good local optima that
we can hope to find; however, after a while adding parameters only enables
the optimization process to reach the same plateau in fewer iterations, but
each iteration takes longer, so it is not advantageous anymore. We recommend
Tanh or SiLU as activation functions, which are flexible but smooth enough to
represent dynamical systems. Consider using a parsimonious NN design or a
structure that is adapted to the setting at hand, for example a Convolutional
Neural Network (CNN) if spatial dependencies should be captured.

This list is not exhaustive, but can help a user apply the proposed framework to
experimental data.

5.6.2 Benchmark of recognition models

In this section, we illustrate that the proposed recognition models can estimate the
initial condition of a system from partial and noisy observations. We simulate the
three following systems, the underlying physical state serves as ground truth.

80 Chapter 5. Learning NODEs from partial observations with recognition models

Earthquake model

A simplified model of the effects of an earthquake on a two-story building is presented
in [170], and an NODE is trained for it in [171]. This model reads

X1 = X»
Xy = %(xg, —2x1) — Fow? cos(wt)

5(3 = X4
. k 2
X4 = %(xl — x3) — Fow* cos(wt)

where x; and x3 are the positions of the first resp. second floor, x; resp. x4 their
velocities, Fow? cos(wt) is the perturbation caused by the earthquake and only x; is
observed, corrupted by Gaussian noise of variance 2 = 10~4. We consider the oscil-
lation caused by the earthquake as a disturbance, which is known when simulating
training trajectories and unknown to the recognition model: we estimate x(0) from
Yo only.

We aim to learn a recognition model that estimates x(0) using only y o, With the
methods described above. We set t. = 40 x At = 40 x 0.03 = 1.2, which seems
enough to reconstitute the initial condition (after trial and error), N = 50 (each sample
corresponds to a random initial condition, random Fy and random w), n = 100. We
design 1y (and possibly fy) as a fully connected feed-forward network, i.e., a multi-
layer perceptron, with two hidden layers containing 50 neurons each, and two fully
connected input and output layers with bias terms. The RNN+ model is set to have
the same internal dimension d, = dy(dx + 1) = 5 as the KKL model. We notice that
t. large enough and enough parameters in ¥y, i.e., enough flexibility of the model,
are needed for good generalization performance. Also, we pick the sampling time
At = 0.03s low enough such that the obtained trajectories are reasonably smooth,
otherwise analyzing the results quantitatively becomes difficult due to interpolation
errors becoming large.

We train ten recognition models with each proposed method. For evaluation,
we randomly select 100 test trajectories (also 3 s) with random initial conditions and
random input oscillation, estimate the initial condition from . , then compute the
RMSE over the predicted output. We try two settings: either learning a full NODE
model, or having a known dynamics model in which only the main parameter k/m
is optimized jointly with the recognition model. This corresponds to the far left
(black-box ODE) and far right (parametric model) ends of the spectrum in Fig. 5.1. In
our example, we have k/m = 10, but we initialize its estimate to a random value in
the interval [8, 12]. As usual, this problem is not well-posed and there are many local
optima. Therefore, we can only hope to converge to a good estimate by starting from
a reasonable guess of the main parameter. All other aspects are fixed, including the
optimization routine, though it has been shown that for parametric optimization, trust
region optimization routines with multiple starts often lead to better results [20]. For
the full NODE model, we evaluate the different recognition models by computing the
RMSE on the predicted output only, since the coordinate system for x(t) is not fixed
and a different coordinate system is found in each experiment. For the parametric
model, we compute the RMSE on the whole estimated trajectory over all test scenarios,
since the coordinate system for x(t) is fixed. The results are shown in Figure 5.4. We
observe that the KKL-based models achieve higher performance, which seems to

5.6. Experiments 81

— True
04 - —— Predicted 10 050 1
Observed
02 025 10
/ 05
J 05
- 00 Y - 5 0 -
o2 e 00 ~025 00
~050

—04 / 05 -05
-075
—0.6 ~10

000 002 0.04 006 008 0.10 000 002 0.04 0.06 008 010 000 002 004 006 008 010 0.00 0.02 004 006 008 0.10

(a) x1 (b) x2 (c) 11 (d) %2

Figure 5.3: Test trajectory of the parametric earthquake model with KKL recognition:
the initial condition is estimated from You jointly with the model parameters.

——— - ?

0.1 0.2

RMSE
RMSE
=3
=~

0.0 0.0
direct RNN+ KKL direct RNN+ KKL

(a) Full NODE: output error (b) Parametric model: full state error

Figure 5.4: Results of the obtained earthquake recognition models. We show the

RMSE on the prediction of the output when a full NODE model is learned (left

column) and of the whole test trajectories when a parametric model is learned (right

column). Ten recognition models were trained with the methods direct (left), RNN+

(center), and KKL (right). The direct method with t, = 0 is not shown here for
scaling, but the mean RMSE is over 0.6.

indicate that the optimization problem based on z(0) is better conditioned than that
based on y.,. An example test trajectory with KKL recognition is shown in Fig. 5.3
for the parametric model, as it is in the same coordinate system as the ground truth.

FitzHugh-Nagumo model

This model represents a relaxation oscillation in an excitable system. It is a simplified
representation of the behavior of a spiking neuron: an external stimulus is received,
leading to a short, nonlinear increase of membrane voltage then a slower, linear
recovery channel mimicking the opening and closing of ion channels [172]. The
dynamics are written as

1
T‘J:E(v—v3—u)—|—lext

=yv—u+p
y=0v-+e, (5.14)

82 Chapter 5. Learning NODEs from partial observations with recognition models

True
o8 208\ Predicted

X Initial state

Observed

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

True ‘

Predicted
X Initial state

— True
—— Predicted
Observed

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 -1.0 -05 0.0 0.5 1.0

\ True \

Predicted
X Initial state

2N True 10 1.0
N —— Predicted

05 \ Observed 08 08
00 \ 06 06

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 -1.0 —05 0.0 0.5 1.0
t t X

(@u (b) v (c) Phase portrait

Figure 5.5: Test trajectory of the parametric FitzZHugh-Nagumo model: the initial
condition is estimated from You jointly with the model parameters. We use direct

(top), RNN+ (center) and KKL zbottom) recognition, on three random but similar
test trajectories.

where v is the membrane potential, u is the value of the recovery channel, I, is the
value of the external stimulus (here a constant), € = 0.1 is a time scale parameter, and
v = 1.5, B = 0.8 are kinetic parameters. Only v is measured, corrupted by Gaussian
measurement noise € of variance (73 =5x10"4.

We aim to learn a recognition model that estimates (v(0),%(0)) using y, - and

Iyt with the methods described above. All parameters are set as for the earthquake
model above.

As above, we train ten recognition models with each proposed method and
evaluate each on 100 test trajectories of random initial conditions and random input
oscillation. We either learn a full NODE model or a parametric model for which we
estimate the main dynamic parameters €, B, and <y jointly with the recognition model,
initialized randomly in [0.05,0.15], [0.75,2.25] and [0.4,1.2] resp. . We evaluate as
above. The results are shown in Fig. 5.6; we observe once again that the KKL-based
methods lead to lower error. An example test trajectory with different recognition
models is shown in Fig. 5.5 for the parametric model, as it is in the same coordinate
system as the ground truth.

5.6. Experiments 83

0.25
0.20 0.20
0.15
m 0.15 m
[92] wn
2 2
0.10 0.10
0.05 0.05
0.00 _ 0.00 -
direct RNN+ KKL direct RNN+ KKL
(a) Full NODE: output error (b) Parametric model: full state error

Figure 5.6: Results of the obtained FitzHugh-Nagumo recognition models. We show

the RMSE on the prediction of the output when a full NODE model is learned (left

column) and of the whole test trajectories when a parametric model is learned (right

column). Ten recognition models were trained with the methods direct (left), RNN+

(center), and KKL (right). The direct method with t; = 0 is not shown here for
scaling, but the mean RMSE is over 0.4.

Van der Pol oscillator

Consider the nonlinear Van der Pol oscillator of dynamics

X1 =Xx2
X =u(l—x3)xo —x1 +u
y=x1+e (5.15)

where x1, x; are the states, u = 1.2sin(wt) is a sinusoidal control input, and y = 1
is a damping parameter. Only x; is measured, corrupted by Gaussian measurement
noise € of variance ¢ = 107°.

We aim to learn a recognition model that estimates x(0) using Y,,, and ug;, with
the methods described above. All parameters are set as for the eartchquake model
above. Since u is a sinusoidal control input of varying frequency, it can be generated

by

601 = Wy, (5.16)
Wy = —wswi,
w3 =0

and u = wj, where wy, w, are the internal states of the sinusoidal system and w3 > 0
is its frequency. Hence, we can use the KKLu recognition model with d,, = 3. The
RNN+ model is set to have the same internal dimension d, as the KKLu model.

As with the previous systems, we train ten recognition models with each proposed
method and evaluate the results on 100 test trajectories with random initial conditions
and random input frequency. We also consider either a full NODE model, or a
parametric model for which y is jointly estimated, from a random initial guess in
[0.5,1.5]. We evaluate as above. The corresponding box plots are shown in Fig. 5.9.
We observe that in both settings, the performance with the different recognition
models is very similar. Thus, the hierarchy of the different recognition models slightly

84 Chapter 5. Learning NODEs from partial observations with recognition models

varies with other hyperparameters, such as the level of measurement noise, as seen
in the ablation study (Fig. 5.11). An example test trajectory with different recognition
models is shown in Fig. 5.7 for the parametric model, as it is in the same coordinate
system as the ground truth. The different levels of noise are illustrated in Fig. 5.8.

Ablation studies

In the previous benchmark, we choose all hyperparameters such that the comparison
is as fair as possible. For example, 1y is the same neural network in all cases, the
dimension of the internal recognition state is the same for the RNN+ and KKL
baselines (d, of the standard KKL for autonomous systems, d, of the functional KKL
for nonautonomous systems). We now investigate the impact of two of the main
parameters on the performance of each approach for the full NODE models: ¢, and
02, the variance of the Gaussian measurement noise added on top of the true output
to create the training data.

For the study on f., we focus on the earthquake system. We run the same experi-
ments as before with t. in {5, 10,20, 40, 60,100} xAt, where At = 0.03s. As depicted
in Fig. 5.10, when ¢, is too low it becomes difficult to estimate x(0) from the infor-
mation contained in y : the system loses observability. It seems the threshold of

observability is around ;fc = 30At = 0.9s, since the RMSE over the test trajectories
stabilizes for higher values. For this system, the KKL method reaches the lowest error
and keeps improving for higher values of t.: the higher t., the more the observer has
converged, the closer the relationship x(0) ~ 7*(z(0)) is and the easier it seems to
learn . For the other methods, t. seems to have less influence once the threshold of
observability is reached since there is no notion of convergence over time.

For the study on 062, we focus on the Van der Pol oscillator. We test for values
in {1075,107%,1073,1072,10" '} and obtain the results in Fig. 5.11. As expected, the
higher the measurement noise variance, the higher the prediction error on the test
trajectories. We again observe a threshold effect, under which further reduction of
the noise variance leads to little improvement in the prediction accuracy. Note that
for the KKL-based methods, we optimized D once for each noise level from the same
initial value, then used this optimized value for all ten experiments. If D is only
optimized for a specific noise level, then the performance is degraded at the others,
for which this value might filter too much or too little.

5.6.3 Harmonic oscillator with increasing priors

We now illustrate how NODEs with KKL-based recognition can be combined with
physics-aware approaches to cover the different degrees of structure illustrated in
Fig. 5.1. We simulate an autonomous harmonic oscillator with unknown frequency:

X1 = Xo,

X = —w?xy, (5.17)

where w? > 0 is the unknown frequency of the oscillator and y = x; is measured,
corrupted by Gaussian noise of standard deviation ¢ = 0.01. Various designs have
been proposed to identify both the state and the model, i.e., the frequency, for example
subspace methods, or extended state-space models combined with a nonlinear ob-
server; see [137] and references therein. We demonstrate that our unifying framework
can solve this problem while enforcing increasing physical knowledge. The results

5.6. Experiments

—— True
Predicted

20
— True
15 — Predicted
2 2
Observed
1.0
Z 05 2! g1
0.0
/ 0 0
—05 /
:7/ . 1 X Initial state

000 002 004 006 008 010 000 002 004 006 008 010 ~10 -05 00 05 10 15 20
t t X1
2.0
True
15 — Predicted
Observed
1.0
= &
0.5
0.0 - . True
& —— Predicted
—05 \\\»M/) - X Initial state

20)]
— True -
15— Predicted . X
Observed

1.0
= g :

05 X .

0.0 : . —— True

X 5 —— Predicted
—0.5 Mg X Initial state
1.0 -1.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 —0.5 0.0 0.5 1.0 15 2.0
t t X
20 — True 3 3
—— Predicted
15 Observed) N
1.0
o o

£ 05 £ g

0.0

0 0 True
Predicted
X Initial state
1 -1
0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 -1 0 1 2
t t x
(a) x1 (b) xp (c) Phase portrait

Figure 5.7: Test trajectory of the parametric Van der Pol model: the initial condition
is estimated from y, . jointly with the model parameters. We use direct (top), RNN+,

KKL, and KKLu (bottom) recognition, on four random but similar test trajectories
with 02 = 1073.

86 Chapter 5. Learning NODEs from partial observations with recognition models

- 1.0 / o
b 0.5
0.5 /
£ 0.0
True
0.0 /,/ Predicted —05
2 Observed 10
—0.5
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
t t
2.0 25
True
15 Predicted 2.0
Observed 15
1.0
1.0
= g
0.5 0.5
0.0 0.0
e —05
—0.5 sz
-1.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
t t
(a) x1 (b) x2

Figure 5.8: Test trajectory of the parametric Van der Pol model with KKL recognition.
The Gaussian measurement noise has variance ¢Z = 107> above, 10~3 below.

are depicted in Table. 5.2 with a KKL recognition model, w = 1, N = 20 trajectories
of 3 s for training and hundred trajectories of 9's for testing.

The obtained results are illustrated in Figure 5.12 with the KKL recognition model.
We show the prediction of a random test trajectory with random initial state: the
outputy, is measured for this trajectory, used by the recognition model to estimate

x(0). Then, the learned NODE is simulated to predict the whole state trajectory for
500 time steps, i.e., ten times longer than the training time to illustrate the long-term
behavior. For the quantitative results presented in Table. 5.2, we predict on test
trajectories of 150 time steps, i.e., three times the training time. These make the
long-term performance difference due to the degree of prior knowledge less visible,
but lead to more consistent and quantitatively comparable results (with the long
test trajectories, the interquartile range of the experiments is very large due to error
accumulation which can possibly diverge over a long prediction horizon).

We train the dynamics and recognition model ten times in each setting, for recog-
nition models direct, RNN+, and KKL. The mean RMSE over hundred short test
trajectories is given in Table 5.2.

No structure

First, the NODE is trained without any structure (Fig. 5.12a), which leads to one of
many possible state-space models: it fits the observations in x; but finds another
coordinate system for the unmeasured state, as expected for general latent NODEs. It
also does not conserve energy, which is not surprising when no structure is imposed,
as discussed e.g., in [98].

5.6. Experiments 87

0.08 0.08
2 é &
[92] wn
5 0.04 = 0.04
>
0.02 0.02
0.00 - 0.00 _
direct RNN+ KKL KKLu direct RNN+ KKL KKLu
(a) Full NODE: output error (b) Parametric model: full state error

Figure 5.9: Results of the obtained Van der Pol recognition models. We show the

RMSE on the prediction of the output when a full NODE model is learned (left

column) and of the whole test trajectories when a parametric model is learned (right

column). Ten recognition models were trained with the methods direct (left), RNN+,

KKL, and KKLu (right). The direct method with f. = 0 is not shown here for scaling,
but the mean RMSE is over 0.6.

" i :::{'_l:_ - -
2 ;T§;i% %?%?% iﬁgi

0.7

0.2
0.1 0.1 0.1

0.0 0.0 0.0
5 10 20 40 60 100 5 10 20 40 60 100

te £ te

(a) direct (b) RNN+ (c) KKL

Figure 5.10: Training an NODE and a recognition model for the earthquake model
for different lengths of ¢; (in number of time steps). We train ten models for each
method.

Hamiltonian state-space model

We now assume the user has some physical insight about the system at hand
(Fig. 5.12b): it derives from a Hamiltonian function, i.e., there exists H such that

. OH . OH
Xy = BTCZ(X)' Xy = —Tm(x)~ (5.18)

We approximate H directly with a neural network Hy of weights 6, such that the
NODE has form (5.18), as in (5.12) with x; = g, xo = p. This formulation enforces the
constraint that the dynamics derive from a Hamiltonian function, whose choice is
free. In that case, we do not necessarily find the "physical" state-space realization, as
several Hamiltonian functions can fit the data. However, the obtained state-space
model conserves energy due to the Hamiltonian structure: we learn the dynamics up
to a symplectomorphism [34].

88 Chapter 5. Learning NODEs from partial observations with recognition models

RMSE

00
2 -1 5 4 3 2 -1 5 4 3 2 -

3 -3 -2 -1
log(2) log(0?) log(0?)

¢ g ¢
02 l — 0. ; 0.2 % 02 —
V= = L = Y e e ’ _ L

(a) direct (b) RNN+ (c) KKL (d) KKLu

Figure 5.11: Training an NODE and a recognition model for the Van der Pol model
for different values of 02. We train ten models for each method.

Imposing position and velocity

We now impose a somewhat stronger structure (Fig. 5.12¢):
X1 = Xo, Xy = —VH(xl), (5.19)

where only the dynamics of x; need to be learned. This enables the NODE to re-
cover both the initial state and the unknown part of the dynamics in the imposed
coordinates while also conserving energy, as this is a particular case of Hamiltonian
dynamics with Hamiltonian function %x% + H(xq).

Parametric system identification
We now directly learn a parametric model of the harmonic oscillator (Fig. 5.12d):

H=x, B=-win,
where w > 01is the unknown frequency. We approximate w with a parameter 6, which
is initialized randomly in [0.5, 2]. We obtain excellent results with this method, as 6 is
estimated correctly up to 1072, and the trained recognition model gives satisfying
results. This demonstrates that our framework can recover both the dynamics and
the recognition model in the physical coordinates imposed by the parametric model
from partial and noisy measurements in this simple use case.

Extended state-space model

Finally, we consider the extended state-space model (Fig. 5.12¢)

5(1 = Xo, XQ = —X3X2, 5(3 =0 (520)
where x3 = w? is a constant state representing the unknown frequency. In this case,
the dynamics are completely known and only the recognition model is left to train, to
estimate the initial condition x(0) € R3, where x3(0) is the unknown frequency. This
is the same degree of structure as the parametric model: the dynamics are known
up to the frequency. However, it also is a more open problem: since we learn a
recognition model for x(0) € R3, for each new trajectory, we estimate a new value
of the frequency x3(0), which was considered the same across all trajectories for the
previous methods. Therefore, with this setting, we also obtain models that can predict
energy-preserving trajectories in the physical parameters, but with lower accuracy
due to this extra degree of freedom.

5.6. Experiments 89

10 10 06 —
075 ~ ~
04 ; /
05 05 0504
-~ 02 0
VR 2 00 2 00 el
05 05 B
04 050 /
075
10 0 06
0. 10 05 0o 05 10 10 05 00 05 10 050 025 000 025 050 0 0

(a) No structure (b) Hamiltonian (c) X1 = xo (d) Parametric (e) Extended

Figure 5.12: Structured NODE:s for the harmonic oscillator, with KKL recognition
and increasing priors. The true trajectory is in green, and the prediction of a long
trajectory (305s) in blue to illustrate the long-term accuracy. Increasing structure
yields a more interpretable, but also a more accurate model, except for (e) which
solves a more open problem (a new frequency is estimated for each trajectory).

Method (a) (b) (c) (d) (e)

direct 0.040 (0.011) 0.050 (0.033) 0.035 (0.008) 0.029 (0.005) 0.080 (0.041)
RNN+ 0.057 (0.014) 0.055 (0.012) 0.048 (0.003) 0.037 (0.006) 0.052 (0.011)
KKL 0.036 (0.010) 0.042 (0.011) 0.036 (0.004) 0.032 (0.003) 0.049 (0.003)

Table 5.2: Recognition models for the harmonic oscillator. We train ten models for

each setting, then compute the median and interquartile range (in parentheses) of

the RMSE on the predicted output for a hundred short test trajectories of 9s. In most
cases, KKL recognition leads to more accurate predictions.

The results in Fig. 5.12 illustrate that NODEs with recognition models can incorpo-
rate gradual priors for learning SSMs from partial and noisy observations. Note that
standard methods tailored to the harmonic oscillator may perform better, however,
they are not as general nor as flexible.

5.6.4 Experimental dataset from a robotic exoskeleton

We demonstrate the performance of the proposed framework on a real-world dataset.

Figure 5.13: Robotic exoskeleton by Wandercraft.

90 Chapter 5.

0.00 0.05 0.15

02
01
T 00 =
—01
02
0.00 05 010

0.00 0.05 0.10 015 0.20
t

(a) Prior model (b) No structure

0150

0.140
020 0.00 0.05 0. m

0.148 0.148
0.146 0.146
Yo 0.144
0.142 0142
0.140
2
05 0. 10 0.1

(c) #1/3 = X2/4

Learning NODE:s from partial observations with recognition models

0.150
0.148
o146
0.144
0.142

0.140
0.00 005 0.10 015 0.20
t

02
0.1
0.0

-01

02
0.00 0.05 0.10 015 020
t

(d) Residuals and (c)

Figure 5.14: Structured NODEs and KKL recognition on the robotics dataset. The
dynamics and KKL recognition models are learned from 265 measurements of 0.2s
with inputs of varying frequencies. We test on 163 trajectories of 0.2 s from the same
input frequencies to evaluate data fitting in the trained regime, and compute the
RMSE: we obtain resp. 5.6 (a), 0.16 (b), 0.18 (c), 0.31 (d). We show one such test
trajectory (x; top row, x4 bottom row) from an unknown initial condition.

Short Long Long Long
Recognition rollouts in rollouts rollouts rollouts
model trained with unseen with EKF: with EKF:

regime frequencies y = (x1,x4) y=x
direct 0.11 0.58 0.12 0.44
RNN+ 0.15 0.54 0.15 0.31
KKL 0.17 0.60 0.12 0.37
KKLu 0.18 0.65 0.11 0.34

Table 5.3: RMSE on test trajectories for the robotics dataset while imposing X1 /3 =
Xy /4. We trained only one model per method; hence, the results only illustrate that
all methods are comparable.

Data collection

We use a set of measurements collected from a robotic exoskeleton at Wandercraft?,
presented in [173] and Fig. 5.13. This robot features mechanical deformations at weak
points of the structure that are neither captured by computer-assisted design modeling
nor measured by encoders. These deformations, when measured by a motion capture
device, can be shown to account for significant errors in foot placement. Further, they
exhibit nonlinear spring-like dynamics that complicate control design.

The dataset is obtained by fixing the robot basin to a wall and sending a sinusoidal
excitation signal to the front hip motor at different frequencies between 2 Hz and
16 Hz. The sagittal hip angle is measured by an encoder, while the angular velocity of
the thigh is measured by a gyroscope. In [173], first results are obtained using linear
system identification: the observed deformation is modeled as a linear spring in the
hip, and this model is linearized around an equilibrium point, then its parameters are

2More details on the robot, the dataset and the methods applied at Wandercraft are provided in
Section 4.1.2.1 of [173].

5.6. Experiments 91

0.144
0.144 0144
0.143

0142 0142

0140 =0.141
0.140 0.140
0139

0.136 0138 0138

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0

02

0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 0.0 02 04 06 08 10
t t t t

(a) Prior model (b) No structure (c) %1/3 = xp/4 (d) Residuals and (c)

Figure 5.15: Structured NODEs and KKL recognition on the robotics dataset. After

training the NODE on trajectories of 0.2s from a subset of the input frequencies,

we also test on 52 trajectories of 2 s from other input frequencies, to evaluate gen-

eralization capabilities (cut at 1 s on plots for visibility). Computing the prediction

RMSE for the different structure settings yields: 110 (a), 0.72 (b), 0.66 (c), 1.2 (d). We

show one such test trajectory (x; top row, x4 bottom row) from an unknown initial
condition.

identified. These estimates are sufficient for tuning a robust controller to compensate
for the deformation. We aim to learn a more accurate model of this dynamical system
of dimension d, = 4, where y = (x1, x4) is measured, by identifying the nonlinear
deformation terms.

Data processing

We start by preprocessing the signal: for each input frequency and corresponding
trajectory, we compute the FFT of y, apply a Gaussian window at f. = 50Hz on the
spectrum, then apply an inverse FFT and slice out the beginning and the end (100
time steps) of each signal to get rid of the border effects. For u, which is not very noisy,
we rather apply a Butterworth filter of order 2 and cut-off frequency 200 Hz. We cut
the long trajectories for each input frequency in slices of 200 samples, and stack these
training trajectories of length 0.2 s together to form our set of training trajectories.
Hence, all trajectories have the same sampling times and can be simulated in parallel
easily. We choose a length of 0.2 s because it seems long enough to capture some of
the dynamics even in the low-frequency regime, but also short enough to remain
acceptable in the high-frequency regime, as discussed in Remark 10.

Normalization is also an important aspect of the implementation: all losses and
evaluation metrics are scaled to the same range, so that all loss terms play a similar
role and remain within a similar range. This ensures that the values on which the
optimization is based are always numerically tractable for the chosen solver. Different
scaling possibilities are discussed in Sec. 5.2.3 of [18]. In our case, since we do not
know in advance the values that x(t) will take, we compute the mean and standard
deviation of the samples in y() and u(t) and scale all outputs y(t) resp. inputs u(t)
according to these. We also scale all states x(t) or derivatives x(f) using the scaler on
y(t) for the dimensions that are measured (x; and x4), and a mean of the scaler on

92 Chapter 5. Learning NODEs from partial observations with recognition models

0.150 0.150

0.145 {\ [\ A [\ / 0.145
— True

m0,140 —— Predicted >0,140

0.135 0.135

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
¢ t
0.3
0.2
0.2 |
0.1
0.1
= 0.0 = 0.0
—-0.1 01
|
u —-0.2
—-0.3
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t t
(a) Prior model (b) NODE with %13 = x4

Figure 5.16: State estimation with an EKF on the robotics dataset, with y = (x1, x4).
After training the NODE with KKL recognition while imposing %1 ,3 = x3,4, we
run the EKF on long test trajectories from unseen input frequencies. Both prior
and learned models are able to reconstitute the output (x; top row, x4 bottom row).
However, the performance difference indicates that the states estimated by the
NODE are indeed more accurate and can be used for downstream tasks.

y(t) for the other dimensions. This arbitrary choice seems to ensure that all scaled
values of x(t) stay within a reasonable range.

Evaluation

We investigate three settings: no structure (b), imposing ¥; = x2 and X3 = x4 (c), and
learning the residual of the prior linear model on top of this structure as in [138], by
using f = fii, + fo as the dynamics, where fj;;, is the linear prior (d). We train from a
subset of input frequencies: {2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,11, 13, 15} Hz. We use a
random subset of N = 265 training trajectories, and a subset of validation trajectories
for early stopping. We then evaluate on 163 test trajectories of 0.2 s from these input
frequencies, to evaluate data fitting in the trained regime. We also evaluate on 52
longer (2 s) test trajectories from other input frequencies, to evaluate the interpolation
capabilities of the learned model: {2, 3, 4,5, 6,7, 8,9, 10, 12, 15, 17} Hz. We use
the Adam [90] optimizer with a decaying learning rate starting at 8 x 1072 for the
first two settings, 5 x 1073 for the third setting. For all recognition models, we set
t. = 0.1s. For KKL recognition, we set d, = 10, F = 14, xd,, which yields 110 for
the dimension of (z(t.), uo.,), and optimize D for each setting after initialization at

5.6. Experiments 93

0.150
0.17 a
0.145
0.16
— True
= . =
—— Predicted
015 0.140
0.14 0.135 u
0.13
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t t
0.6 0.2 h n ﬂ
0.4 01
s 02 = 0.0
0.0 ‘ —0.1
: 1
i 0.2 u
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
t t
(a) Prior model (b) NODE with %7 /3 = xp/4

Figure 5.17: State estimation with an EKF on the robotics dataset, with y = x;.

After training the NODE with KKL recognition while imposing %1 /3 = Xx3,4, we run

the EKF on long test trajectories from unseen input frequencies. When measuring

only x1, the EKF using the prior model is off (x; top row, x4 bottom row), while it

provides reasonable estimates in most frequency regimes when using the learned
model.

diag(—1,...,—10). For KKLu recognition, we set d, = 50, F = 1 dy and optimize
D after initialization at diag(—2, ..., —100). For direct and RNN+, we use the same
information contained in (y, 0L 1o,) and the same size of the RNN+ latent state as for

KKLu, i.e., dimension 50. Both recognition and dynamics models are feed-forward
networks with five hidden layers of resp. 50 and 100 neurons with SiLU activation.

Due to the significant computational efforts necessary to run these experiments,
we only have one result per setting, so that comparisons are only indicative. The
obtained results demonstrate that structured NODEs with recognition models can
identify nonlinear systems from experimental data, i.e., partial and noisy observa-
tions.

Open-loop test trajectories One short test trajectory in the trained frequency regime
is shown in Fig. 5.14 and illustrates the data fitting capabilities in all three settings and
for the linear prior model. The learned models can fit data from a complex nonlinear
system excited with different input frequencies, and somewhat generalize to unseen
frequencies, as illustrated in Fig. 5.15. The predictions are not perfect, but much more
accurate than those of the prior model, as seen in Fig. 5.14-5.15; this is enough to

94 Chapter 5. Learning NODEs from partial observations with recognition models

be used in closed-loop tasks such as control or monitoring. Imposing x1,3 = x2,4
leads to similar performance as without structure, but a physically meaningful state-
space representation that can be interpreted in terms of position and velocity. Due
to the inaccurate predictions of the prior model, learning its residuals leads to lower
performance.

Recognition models With all levels of prior knowledge, the different recognition
models lead to comparable results, as illustrated in Table 5.3. For this complex and
nonautonomous use case, the direct and RNN+ recognition methods seem easier to
train. However, they also take longer due to having more parameters. The KKL and
KKLu methods lead to similar performance. To obtain these results, the choice of the
gain matrix D was critical. Rigorous analysis of the role of this parameter remains a
relevant task for future work [52].

Using the model in an EKF We also evaluate the learned model inside an extended
Kalman filter (EKF). The EKF is a classical state estimation tool for nonlinear systems,
that takes the measurement and control as input and outputs a probabilistic estimate
of the current underlying state. At each time step, it linearizes the dynamics model
and output map then proceeds as a linear Kalman filter to estimate the mean and
covariance of the current state [174]. In standard applications, the mean of this
estimate is then used for control or monitoring of the unmeasured system states. We
implement an EKF which receives either y = h(x) = (x1,x4) oronly y = h(x) = x4 as
the measurement, and uses the linear prior or an NODE as dynamics function. In both
cases, the NODE estimates are more accurate than those obtained with the linear prior
model, as shown in Fig. 5.16-5.17 for a long test trajectory with an input frequency
outside of the training regime. As expected, the accuracy for y = (x1,x4) is high since
we are directly estimating the output. However, the performance difference indicates
that the NODE is more accurate and should enable meaningful state estimation for
downstream tasks. When y = x, the EKF using the prior model is off, while it
provides reasonable estimates in most frequency regimes when using the learned
model.

Full open-loop test trajectory Finally, we also run one long open loop test trajectory
over the whole experiment: we estimate the initial state with KKL recognition from
the first few measurements, then go over all input frequencies one after the other as
they were selected to generate the data. The results, depicted in Fig. 5.18, show that
the obtained NODE does not diverge and stays reasonably close to the data even for
very long test trajectories in unseen frequency regimes. On the contrary, the linear
prior model is far off and stabilizes around the wrong equilibrium point. Interestingly,
these long-term predictions are more accurate with KKLu recognition as with KKL,
as illustrated in Fig. 5.18.

Conclusion on the experimental dataset

Overall, we find that structured NODEs are able to fit this complex nonlinear dy-
namical system using experimental data and realistic settings. The predictions of
the obtained models are not perfect, but they are much better than those of the prior
model, such that they could probably be used to improve feedforward control. This is
confirmed by implementing an EKF that uses the learned models for state estimation.
Adding structure leads to similar performance, but to a model that can be physically

5.6. Experiments 95

1.0 =
015 0.155
0.8
0.150
0.14
3\0.6 — True 0.145
—— Predicted =~ ~0.13 =
0.140
04 0.12
0.135
02 0.11 True. True
- —— Predicted 0.130 Predicted
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
t t t
1.00
0.75
0.50
> 025
0.00
—0.25
—0.50
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

t t t

(a) Prior model, KKL recognition (b) NODE, KKL recognition (c) NODE, KKLu recognition

1.0
0155 0.155 True T
— i o {
08 0.150 Predicted | | ‘ | i |
0.150 Ty
0.145
0.6 —— True 0.145
0.140 145
= —— Predicted = =
0.135 |
04 | 0.140
0.130 I
0.135 |
02 0.125 i AR RRAAA
0120 —— Predicted 0130 1
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
t t t
03
1.00 02 ﬂ n
02
075 o1
0.50 0.1
0.0 EN
= 025 - 0.0
0.00 —01 ~01
~025
~02 ~02
~050
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
t t t
(d) Zoom on (a) (e) Zoom on (b) (f) Zoom on (c)

Figure 5.18: Test trajectory over the whole experiment with the robotics dataset,

using either the linear prior model (left) or the NODE model with %y,3 = x5/4

(middle and right), and KKL (left and middle) or KKLu (right) recognition. A zoom
into the beginning of the trajectories is also provided.

96 Chapter 5. Learning NODEs from partial observations with recognition models

interpreted in terms of position and velocity. In the third setting (hard constraints
and residual model), the accuracy is lower. This is due to the inaccuracy of the prior
model predictions.

5.7 Discussion

The results herein illustrate that observer theory and, in particular, KKL observers
are suitable for building recognition models. To the best of our knowledge, this
work is the first to propose this connection, hence, it also points to remaining open
questions. In particular, the choice of (D, F) plays a role in the performance of
KKL observers [52], and methods for tuning them are still needed. Setting (D, F) to
HiPPO matrices [30], [161], [162], particular forms of LTI systems that have desirable
properties of continuous-time memorization, could be an interesting first step. A
better understanding of the performance of recognition models in general would also
be of interest. In particular, assessing this performance a priori depending on how
observable a region of the state-space is could help generate more informative data,
by indicating where in the state-space the observations are best suited for identifying
the dynamics.

Incidentally, NODEs can be combined with Convolutional Neural Networks to
capture spatial dependencies and learn Partial Differential Equations (PDEs). This is
illustrated in [138], [156] and presented explicitly in [175], [176]. In this work, we only
consider dynamical systems that can be modeled by ODEs, but expect the proposed
approach to extend to PDEs.

5.7.1 Kernel view

On a different note, the NODE formulation for learning the residuals of a prior model
(5.11) is similar to kernel Ridge regression [177]. In the most common case, kernel
Ridge regression (KRR) is formulated as a nonlinear least-squares regression:

N
. 2
i— f(xi A 21
]r(relglkgly fE)F + Alfly, (5.21)

where f is the function to be optimized over a reproducing Hilbert space (RKHS) H
with a fixed positive definite kernel k, |-|;, is the RKHS norm and (x;, ;) are input
and output samples. See Sec. 3.3 for a more detailed introduction to kernel methods.
This problem formulation has similarities with (5.11), but the term f(x;) is static in
general KRR. For it to correspond to (5.11), we would ideally need h(x(t;)) instead of
f(x;), where x is the solution of an ODE of dynamics f € Hj. This would boil down
to a different KRR formulation with an integral constraint.

Embedding residual model learning into a KRR formulation would be advanta-
geous: if an equivalent of the representer theorem (see Sec. 3.3) could be given for
this formulation, then the solution of this problem would be a linear combination
of terms k(x;,-) and thus the search space would be finite-dimensional, enabling
efficient computations and theoretical guarantees, which are not given for NODEs.

We can conclude that kernel methods are conceptually well suited for prob-
lem (5.11), and there is hope for theoretical guarantees. However, standard results
such as KRR cannot be used directly for this problem since the cost function consists
in implicit function evaluations, as the solution f only appears in the ODE satisfied
by x. To circumvent this, one could consider a discrete model, e.g., the output of a
numerical solver for this ODE, and consider each discrete point as a constraint for

5.8. Conclusion 97

the KRR, which could fit into the extension by [178], [179]. Another possibility would
be to look for a representer theorem that can take integral constraints into account, as
is done for linear differential operators in [178], [179]. We leave this path open for
future work.

5.8 Conclusion

As discussed in the previous chapter, in many practical cases, learning an SSM from
experimental data involves jointly estimating the state and the dynamics. For systems
in the observable canonical form, an HGO can be combined with a GP model and
yield theoretical guarantees of joint convergence, as shown in Ch. 4. For more general
systems, i.e., with a degree of prior knowledge that can vary from none to enforcing
certain constraints or even a parametric model, the general formulation of NODEs
is well suited. However, learning physically sound dynamics in realistic settings,
i.e., with control inputs and partial, noisy observations, remains challenging. To
achieve this, recognition models are needed to efficiently link the observations to the
latent state. We show that notions from observer theory can be leveraged to construct
such models; for example, KKL observers can filter the information contained in the
observations to produce an input of fixed dimension for which a suitable recognition
model is guaranteed to exist. We propose to combine recognition models and existing
methods for physics-aware NODEs to build a unifying framework, which can learn
physically interpretable models in realistic settings. We illustrate the performance of
KKL-based recognition in numerical simulations, then demonstrate that the proposed
end-to-end framework can learn SSMs from partial observations with an experimental
robotics dataset. While these observer-based recognition models are demonstrated
in the context of NODEs, they are a separate contribution, which can also be used
in various system identification methods; they could be combined with e.g., Neural
Controlled Differential Equations [180], Bayesian extensions of NODEs [141], [142],
[181] or in general with optimization-based system identification methods [18], [19].

99

PartIl

Machine learning for data-driven
observers

In the first part of the thesis, we leverage concepts from nonlinear observer theory
to improve dynamics learning from experimental data. We now turn this around
and draw on machine learning techniques to enable state estimation. Specifically, the
notion of observability itself, i.e., the possibility to reconstruct the latent state from
the output, is only simple to assess for linear systems. For nonlinear systems, observ-
ability is generally assumed, but it is not uniform over the state-space and cannot
easily be analyzed. Therefore, we make use of statistical tools to analyze observability
directly from output data in Ch. 6. Also, there are few generic observer designs
for nonlinear systems. The KKL observer is one of them, and it has recently been
shown that machine learning methods can make it more applicable in practice [116].
However, these numerical KKL observers have free parameters that need to be tuned;
we propose an empirical criterion to guide the tuning procedure in Ch. 7.

101

Chapter 6

Data-driven observability analysis for
nonlinear stochastic systems

Résumé La distinguabilité et, par extension, 1'observabilité sont des propriétés
essentielles des systémes dynamiques. Etablir ces propriétés est complexe, en par-
ticulier lorsqu’aucun modéle analytique n’est disponible et qu’elles doivent étre
déduites directement des données de mesure. La présence de bruit complique encore
cette analyse, car les notions standard de distinguabilité sont adaptées aux systemes
déterministes. Nous nous appuyons sur la distinguabilité distributionnelle, qui étend
la notion déterministe en comparant les distributions de sorties des systemes stochas-
tiques. Nous montrons d’abord que les deux concepts sont équivalents pour une
classe de systemes qui inclut les systemes linéaires. Nous présentons ensuite une
méthode pour évaluer et quantifier la distinguabilité distributionnelle a partir des
données de sortie. Plus précisément, nous introduisons une quantification mesurant
la quantité de données nécessaires pour distinguer deux états initiaux, ce qui induit
un spectre continu de distinguabilité. Nous proposons ensuite un test statistique pour
déterminer un seuil au-dessus duquel deux états peuvent étre considérés comme dis-
tinguables avec un niveau de confiance élevé. Nous illustrons ces outils en calculant
des cartes de distinguabilité sur 1’espace d’état en simulation, puis nous tirons parti
du test statistique pour comparer différentes configurations de capteurs a partir de
données expérimentales.

Abstract Distinguishability and, by extension, observability are key properties of
dynamical systems. Establishing these properties is challenging, especially when no
analytical model is available and they are to be inferred directly from measurement
data. The presence of noise further complicates this analysis, as standard notions of
distinguishability are tailored to deterministic systems. We build on distributional
distinguishability, which extends the deterministic notion by comparing the distri-
butions of the outputs of stochastic systems. We first show that both concepts are
equivalent for a class of systems that includes linear systems. We then present a
method to assess and quantify distributional distinguishability from output data.
Specifically, we introduce a quantification measuring how much data is required
to tell apart two initial states, inducing a continuous spectrum of distinguishability.
We then propose a statistical test to determine a threshold above which two states
can be considered distinguishable with high confidence. We illustrate these tools
by computing maps of distinguishability over the state-space in simulation, then
leverage the statistical test to compare sensor configurations on hardware.

Parts of this chapter are under review under the title Data-Driven Observability Anal-
ysis for Nonlinear Stochastic Systems [51]. This work was conducted in collaboration
with Pierre-Francois Massiani from the Institute for Data Science in Mechanical Engi-
neering, RWTH Aachen University. The first two authors contributed equally to this

102 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

submission [51] and thus to the results of this chapter. In particular, they jointly devel-
oped the main ideas, established the theoretical results, conducted the experiments,
and wrote the article.

6.1 Introduction

Distinguishability is the property that allows telling apart different initial states from
output measurements; observability then refers to all states being distinguishable. It
is a core assumption in observer design, and there exist multiple sufficient criteria to
establish observability from analytical models [43]. However, in many cases, such
an analytical model is either unavailable or impractical to work with. Examples
involve engineering systems with intractable models [5], black-box simulators [10],
[23], or systems that are only partially or imperfectly modeled such that the derived
properties may not transfer to the real world. In contrast, we often have access to
measurement data generated by these systems. In this chapter, we propose to infer the
observability of the underlying system from such data, without relying on an explicit
model of the dynamics.

In many cases, measurements are corrupted by noise. Yet, the standard definition
of observability is tailored to deterministic systems [113], and noise is often treated as
a perturbation against which an observer should be robust [182]. This perspective
circumvents defining stochastic observability by focusing on the robustness of the
specific observer. In contrast, we start by defining an inherent notion of observability
for stochastic systems. We argue that there is a broad class of reasonable definitions,
each corresponding to a way of comparing the underlying stochastic processes [183]-
[188]. We generalize distributional distinguishability, first defined for probabilistic
boolean networks (PBNs) [183], to arbitrary nonlinear systems. It consists in compar-
ing the distributions of the output. We show that distributional distinguishability is
a reasonable generalization of the deterministic notion by proving that the stochas-
tic and nominal systems share the same classes of indistinguishability under some
assumptions, which include linear systems.

Our main contribution is then a method to assess and quantify this distributional
distinguishability from measurement data. To achieve this, we propose to use a metric
between the distributions of output measurements; its value reflects how different
these distributions are. We choose the maximum mean discrepancy (MMD) [106]
as this metric, for three reasons. First, it takes values in a continuous set, which
induces a continuous spectrum of relative distinguishability on which some pairs
are more distinguishable than others. Second, it can be estimated from data, hereby
establishing distinguishability of initial distributions with high confidence given the
data (absolute distinguishability) through statistical testing. Third, its continuous
value is interpreted as how easily two initial distributions can be told apart, in the
sense of how much data the test requires.

We validate the proposed tools in simulation and on hardware. We first demon-
strate using the finite-sample MMD to evaluate and quantify distinguishability. We
experimentally recover the nominal system’s analytical classes of indistinguishability
in the cases covered by our theoretical results, and empirically demonstrate how the
metric increases as we get farther from a state’s class of indistinguishability. This also
enables evaluating the influence of the noise on said classes. Further, we illustrate
the difference between our test and empirical Gramians [189], a tool for data-driven
weak observability analysis. This difference mainly resides in the property evaluated:
distinguishability, or weak observability. The latter is local, while our test recovers a

6.1. Introduction 103

state’s whole class of indistinguishability. We then use the proposed test on a Furuta
pendulum for experiment design by checking whether removing specific sensors
harms observability. Finally, we begin bridging the gap between the proposed tools
and observer design by showcasing how an observer outputs the same distribution
over estimated trajectories when the system is initialized in indistinguishable states.
This is a first step towards using our tools for a priori error analysis in observer
design; the MMD indicates which states observers will fail to distinguish.

This chapter is structured as follows. We first discuss related work in Sec. 6.1.1.
We then introduce deterministic and distributional distinguishability in Sec. 6.2, and
investigate the relationship between these two notions in specific cases in Sec. 6.2.3.
We propose to quantify distributional distinguishability with the MMD in Sec. 6.3,
and evaluate the presented tools in Sec. 6.4 before concluding in Sec. 6.5.

6.1.1 Related work

We propose a method to assess and quantify observability from output data without
explicitly relying on a dynamics model. To the best of our knowledge, such a model-
free, data-driven analysis has never been proposed for nonlinear stochastic systems.
We start by reviewing existing notions of stochastic observability and distinguishabil-
ity and corresponding metrics. Finally, we present an essential concept for the metric
we propose: kernel mean embeddings (KMEs).

Stochastic observability

Noise is often treated as a perturbation against which observers should be robust [182];
stochastic observability then reduces to (approximate) convergence of usual observers,
possibly up to some probability [190]. Despite its practical appeal, this approach ties
observability (a system property) to the observer (a design choice), and neglects the
question of how noise affects observability independently of the chosen observer.
Answering it requires defining observability for a stochastic system; yet, there is no
consensus over such a definition [189].

Many approaches deal with linear systems and rely on the superposition principle
to define the observability of the whole system directly [191]. Extensions to non-
linear systems typically result in local notions of observability. A relevant example
is stochastic Gramians [189], a generalization of empirical Gramians of nonlinear
systems [192], [193]. Similarly to our method, they enable a data-driven analysis of
observability with the important difference that they build on local weak observability
instead of distinguishability, which only provides local information, as we illustrate
in Sec. 6.4.

Competing approaches aim at generalizing distinguishability [113] of (distributions
over) initial states, rather than observability. Core to these approaches is a way to
compare the underlying stochastic processes induced by the stochastic initial state,
dynamics, and measurement. Since stochastic processes can be compared in many
more ways than deterministic trajectories, there exist different notions of distinguisha-
bility for stochastic systems. Examples involve probabilistic Boolean networks [183]—-
[185] and other linear systems [186]-[188]; their corresponding definitions of dis-
tinguishability are not always explicit, but can be straightforwardly adapted from
those of observability. Interestingly, the relationship between such definitions and
the existence of a probabilistic observer has not been studied, unlike for deterministic
systems [43]. Our approach builds on distributional distinguishability [183], and we
show that it is equivalent to observability of the nominal system in certain cases, such

104 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

as linear dynamics or additive measurement noise. One advantage of this notion
is also its amenability to statistical tests provided independent realizations of the
system.

Metricizing observability

A practical way to check observability is to summarize it in a scalar value or function.
For linear systems, such a metric is given by the rank of the observability matrix or,
equivalently, of the observability Gramian [194]. An alternative is the largest singular
value of the Gramian, introducing a continuous scale and enabling a quantification
of observability. These metrics translate locally to nonlinear systems with empirical
Gramians [192]; they inform on the weak observability of each state. Gramians and
their corresponding metrics have also been extended for stochastic systems [189].
They are formally defined for linear systems with additive or multiplicative noise,
and extensions towards arbitrary nonlinear systems are only hinted at [189, Sec. 5].
While our theoretical analysis shares similar restrictions, our approach differs in that:

(i) our definition and quantification are readily applicable to both linear and
nonlinear stochastic systems;

(ii) we quantify distinguishability of two initial states, instead of weak observability.

Finally, there is a body of research that defines observability [195] and observ-
ability metrics [196] based on information-theoretic properties of the output. This
definition strongly differs from our approach, which is thus of independent interest.

Kernel mean embeddings

Our quantification of observability relies on KMEs of probability distributions [106];
see Sec. 3.3 for a more formal introduction. In short, these embeddings represent
probability distributions in a high-dimensional reproducing kernel Hilbert space
(RKHS) where scalar products can be performed efficiently and often estimated from
data. Therefrom developed many methods to model and compare random variables,
such as modeling of conditional relations [197] or Bayesian inference [198]. Essential
for this work is the MMD, a distance between probability distributions that can be
estimated from data [199]. The MMD was leveraged in a distribution-free two-sample
test able to compare probability distributions from independent samples [111]. We
heavily rely on both the MMD and this test, which requires independent samples
from the same distributions. This can be problematic for dynamical systems, where
the future greatly depends on the past. Some approaches alleviate this problem with
mixing [112]; in contrast, we assume independent reinitializations of the system.

6.1.2 Notations

The Borel o-algebra of an open set S C R" is denoted by B(S), and M/ (S) is
the set of probability measures on (S, 3(S)). We assume open sets X C R% and
Y C R%, respectively called state and output spaces, and equip them with their Borel
o-algebras. All random variables are defined on a probability space ((}, A, IP). For a
random variable Z, the notation Z € S means that Z takes values in (S, B(S)), and
Xz is the characteristic function of Z. We denote random variables by capital letters
and deterministic quantities by lowercase letters.

6.2. Observability 105

6.2 Observability

We first recall a definition of observability for deterministic systems (Sec. 6.2.1), then
extend this notion to nonlinear stochastic systems by generalizing distributional
distinguishability of PBNs (Sec. 6.2.2). This sets the stage for our first contribution:
showing that, for linear dynamics or certain nonlinear systems, the two notions are
equivalent (Sec. 6.2.3).

For simplicity, we focus on autonomous systems. All concepts and results translate
to control systems by considering distinguishability for a specific controller, as is
commonly done [113], [192].

6.2.1 Deterministic distinguishability

Consider a deterministic, autonomous system

xpr1 = f(xi),
Y = h(xt), (61)

with arbitrary initial condition xg € X. The function f : X — X is the dynamics,
and /1 : X — Y is the output map. We denote by ¢(t,x9) € X the trajectory of (6.1)
initialized in xo, at time t. Additionally, define the output trajectory up to time T € IN
of (6.1) initialized in x as

(T, x0) = (h($(0,x0)), .., h(¢(T,x))) € YT (6.2)
We can then define distinguishability and observability as:

Definition 4 (Sontag [113, Chapter 6]). Let T € IN, and let x,, x, € X be two initial states
of (6.1). We say that x, and xy, are distinguishable (in time T) if (T, xa) # (T, xp).
Otherwise, we say that they are indistinguishable (in time T). Finally, the system is
observable (in time T) if all different initial states are distinguishable.

Intuitively, indistinguishable states produce the same output until time T. It is
thus impossible to tell them apart by looking only at the output sequence. In contrast,
distinguishability means that the outputs differ after some time.

Definition 4 is binary, meaning that an infinitesimal difference between trajecto-
ries can make two states distinguishable. This becomes problematic in practice, in
particular for stochastic systems, where two sample paths from the same initial point
will differ almost surely for nontrivial noise, dynamics, and measurement.

6.2.2 Distributional distinguishability

We therefore need a generalized notion of distinguishability to handle stochastic
systems. They come with the additional hurdle that output measurements are now
random variables (RVs). Hence, the question of distinguishability pertains to the
more general problem of how to compare stochastic processes. There are many
suitable ways to define the “equivalence” of stochastic processes, each leading to
a specific notion of stochastic observability [183], [185]. We focus on distributional
distinguishability, since the similarity with the deterministic case makes it a natural
extension and because, as we will show, it lends itself to data-driven evaluation.

106 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

Consider a stochastic dynamical system of the form

X1 = F(thﬂt),
Yy = H(X;,), (6.3)

The state X; and output Y; are now RVs taking values in X and Y, resp. . The RV
1: € R% represents the stochastic part of the dynamics, and €; € R% the one of the
measurement. We assume that (6.3) is a noisy version of (6.1), thatis, F(x,0) = f(x)
and H(x,0) = h(x). If F is linear, i.e., F(x,n) = A - x + Q - n, we recover the classical
case of a linear system with additive process noise. If, additionally, (7;); is a family of
Gaussian, independent variables, then (X;); is a discrete-time Ornstein-Uhlenbeck
process.

We allow stochastic initializations, meaning that there exists an initial distribu-
tion u defined on X such that Xy ~ . We assume that #; and €; are independent of
the past states (X;)s<;. We do not make further assumptions on the noise; e.g., we
allow non-centered or autocorrelated noise. Finally, we denote by (¢, 1) the random
trajectory of (6.3) initialized as per y, at time t € IN, and define

I(T,u) = (H(®(0,u),€0), ..., H®(T,p),er)) € YT, (6.4)

the random output trajectory up to time T € IN. We denote its law by ll’;. We are now
ready to generalize distributional distinguishability, first introduced for PBNs [183],
as follows:

Definition 5 (Distributional distinguishability). Let T € IN, and let ua, pip, be two initial
distributions of (6.3). We say that u, and py, are distributionally distinguishable (in time
T)if P}, # P}, . Otherwise, we say that they are distributionally indistinguishable (in
time T). Finally, the system is distributionally observable (in time T) if all different initial
distributions are distributionally distinguishable.

Distributional observability thus compares the laws of the random trajectories
instead of comparing the trajectories themselves, as Definition 4 does. Intuitively, it
focuses on whether one can tell apart different initial distributions by repeating the
experiment multiple times.

Since distributional distinguishability is defined for arbitrary initial distributions,
it is also meaningful to talk about distributional distinguishability of initial states; the
initial distributions involved are then accordingly-centered Diracs. In this case, we
abuse notations and use x directly instead of &, in ®(t,-),T(T,), and IPT.

6.2.3 Noise and distinguishability

Distributional observability reduces to the classical, deterministic notion when the
system is deterministic with deterministic initializations; the distributions of ®(T, x,)
and (T, xp) are then Diracs and are thus equal iff. the variables are equal almost
surely. Therefore, we study whether noise influences distinguishability. In particular,
can introducing noise make two states distinguishable? Conversely, can noise hide
the difference between nominally-distinguishable initial states? In general, yes; the
classes of indistinguishability of the nominal and noisy systems differ, as we illustrate
in Sec. 6.4. In this section, we study conditions under which the noise does not
influence distinguishability. We start with measurement noise and show that, under
a technical assumption, it does not affect distinguishability. This implies that the
deterministic and stochastic notions coincide in the absence of process noise. We then
treat linear systems, for which this equivalence always holds.

6.2. Observability 107

Measurement noise

We start with the following assumption to restrict the influence of measurement noise
to the output of h:

Assumption 6. There exists a measurable function K : Y x R% — Y such that H(x,e) =
K(h(x),e).

This enables introducing the output before its corruption by measurement noise,
an RV denoted by Y; = h(X;) independent of €;.

Assumption 7. Forall vy, v, € M (YY) with v, # v, there exists A € B(YTT) such
that, by applying K element-wise,

o PIK(,€) € Aldua(4) # [PIK(,€) € Aldw(1). (65)

This assumption is a generalized injectivity condition: it requires the mapping from
a distribution v of I" to the output distribution after corruption by measurement noise
to be injective, where = (YO, e, YT) is the output trajectory before the measurement
noise. It ensures that if two distributions of T are distinct, they remain different after
applying measurement noise.

Example 1 (Additive noise). Assumption 7 is satisfied for additive noise. Indeed, assume
K(§,e) = 9 +e, and take vy, v, € M7 (YT two distinct probability measures. Let
[y ~ va, Ty ~ v, and assume that T, Ty, and € are independent. By definition, we have for
all A € B(YT*1):

|, PIK(1,€) € Aldv(4) = PIK(T; €) € 4], (6.6)

where i € {a,b}. Therefore, Assumption 7 is satisfied iff. T2 + € and Ty, + € have differ-
ent laws, iff. Xy . # Xy, ;.. By independence of the noise, Xy . = Xy - Xe. Therefore,
Assumption 7 holds iff. Xy # Xy, , which is true since vy # vy, by assumption.

Importantly, Assumption 7 enables decoupling the effect of measurement and
process noise on distributional distinguishability; measurement noise then does not
affect distinguishability.

Theorem 5. Let pa, pup € M7 (X) be two initial distributions, and let Assumption 6
hold. If u, and wy, are distributionally distinguishable, the distributions of the correspond-
ing output trajectories before corruption by measurement noise 'y = (h(®(t, ua))]_, and
[y = (W(D(t, up)) L, differ. Under Assumption 7, the converse is also true.

Proof. Let pa, piy € M7 (X) be distinguishable, and take A € B(YT'1) such that
P, [A] # P/ [A]. Leti € {a,b}, and v; be the distribution of I MarginalizinAg
I'(T, p;) the noisy output trajectory on its counterpart without measurement noise I’;
yields

PLIAI=P[N(T,p) € Al = [PK(1,€) € Adui(7), (67)
where P [K(§, €) € A] is the probability of the observation lying in A given that the
nominal observation is 4. It is thus independent of y, and py,, as it only depends
on the measurement noise. Since P}, [A] # IP}; [A], (6.7) implies that the integral of
IP [K(-,€) € A] differs when considered w.r.t. v, and v3,. Therefore, v, # 14, yielding

108 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

the first claim. Conversely, assume that v, and 1}, the distributions of the output
trajectories without measurement noise I', resp. I', differ. Assumption 7 ensures the
existence of A € B(YT*!) such that

Lo PIK(T€) € Aldn(9) # [PK(5,€) € Alaw(). (68

YT+1

By (6.7), this shows]P;a # P1 , hence u,, yyp are distributionally distinguishable. This

Ho”
concludes the proof. O

Corollary 1. Let Assumptions 6 and 7 hold. Assume that there is no process noise, i.e.,
¢ = 0 almost surely for all t. Let x4, x, € X. Then, x, and xy, are distinguishable for (6.1)
iff. they are distributionally distinguishable for (6.3).

Proof. By Theorem 5, x, and x}, are distributionally distinguishable iff. the corre-
sponding output trajectories without measurement noise ', and I, have different
distributions. From 7 = 0 almost surely, we have V x € X, (h(®(t,x))_, = v(T, x)
almost surely: the trajectory without measurement noise and the nominal trajectory
are equal almost surely. Hence, x, and x, are distributionally distinguishable iff. the
corresponding deterministic trajectories differ, which is the definition of distinguisha-
bility as per Definition 4. O

Unfortunately, this corollary does not generalize to non-zero process noise, as we
illustrate on an example in Sec. 6.4. We expect that such a generalization requires
strong joint assumptions on the noise and dynamics, in the absence of which the
trajectories of the nominal and noisy systems need not correlate.

Linear systems

For linear systems, however, the superposition principle enables such a generaliza-
tion.

Theorem 6. Assume that (6.3) is linear, i.e., F(x,n) = Ax + Qnand H(x,e) = Cx + Re.
Then, two initial states x,, x, € X are distributionally distinguishable iff. they are distin-
guishable for (6.1). Additionally, (6.3) is distributionally observable iff. (6.1) is observable.

This guarantees that, for linear systems, noise preserves the classes of indistinguisha-
bility under the single assumption that the noise is independent of the past trajectory.
Additionally, Kalman’s criterion on the observability matrix enables checking dis-
tributional observability. We emphasize that the second claim is not a consequence
of the first one; distributional observability requires all initial distributions to be
distinguishable rather than initial states. This statement thus means that, for a linear
system, distinguishability of all initial states ensures observability; there is no gain in
considering initial distributions.

Proof. For u € M{ (X), the superposition principle holds:
[(T,u)=T(T,0)+ (T, u), (6.9)

where we abusively denote (T, Xo) with Xg ~ u by (T,). In other words, the
stochastic output trajectory is composed of the trajectory initialized at zero, whose
randomness is only due to the process and measurement noise, and the deterministic
trajectory initialized according to y, whose randomness is only due to the random

6.3. Measuring distributional observability 109

initialization. Crucially, I'(T,0) and (T,) are thus independent. Hence, we have
Xr(rg = Ar(ro) Xyt

We now move on to the main proof. Let x,,x, € X. We have the following
equivalences: they are distributionally indistinguishable iff. P} = P] , iff. Xr(Txy) =
Xr(T,y) - Xoy(16,,) = XW(T,%), iff. ¥(T,x,) = (T, x,). This shows that x, and x, are
distributionally indistinguishable iff. they are deterministically indistinguishable.

From this, we immediately have that distributional observability implies deter-
ministic observability: if all pairs of initial states are distributionally distinguishable,
then they are deterministically distinguishable, thus the nominal system is observable.
To complete the proof of the second statement, we now show that the converse is
also true. Assume deterministic observability, and let j, i, € M (X) be two initial
distributions with IP;a = IP;b. We show p, = pp. A similar reasoning as previously
shows X, (1,.) = Xy (T), 1€, V(T, pa) and ¥ (T,) have the same law and, thus, pa
and yy, coincide on all sets A in the o-algebra S = ¢~ 1(T, B(YT*!)) c B(X). We
show S = B(X). From observability of (6.1), v(T, -) is injective. Since it is also linear,
it admits a continuous (and thus, measurable) left inverse, say, A : YT 1 — X. We
are now ready to conclude. Take A € B(X), and define B= A"1(A) € B(YTT!). We
have, by definition of A as a left inverse of v, 7 ~!(T,B) = v~ }(T,A"1(A)) = A. This
shows that A € S, i.e., that B(X) = S. Therefore, y,(A) = up(A) for all A € B(X),
which shows distributional observability of (6.3). O

Albeit distributional and deterministic distinguishability differ in general, it is
reasonable to expect that a small amount of noise only mildly affects the distinguisha-
bility of two states. In the next section, we propose a quantification of distinguishability
to formalize the above intuition, and a method to estimate it from output data.

6.3 Measuring distributional observability

Distributional observability is defined as the equality of certain probability distribu-
tions. We propose to extend this binary notion to a continuous spectrum of relative
distinguishability by quantifying it with the MMD, a distance between said distribu-
tions measuring how easily they can be told apart. Additionally, the MMD can be
estimated from data. This leads to our main methodological contribution: use output
measurements to:

(i) approximate relative distinguishability;

(ii) leverage a two-sample test [111] to assess distributional observability with high
confidence from output measurements.

6.3.1 The MMD to measure relative distinguishability
Background

The background necessary to define the MMD and state the results that justify our
method is provided in Sec. 3.3. In particular, we denote the KME of the distribution IP
by up. In general, the MMD is only a semi-metric, since the embedding IP — up may
not be injective. Kernels for which it is injective are called characteristic [200]; they
include the squared exponential kernel. From now on, we assume a characteristic
kernel.

110 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

Remark 13 (A kernel on trajectories). We emphasize that the considered kernel k is defined
on the output trajectory space YT, and not on the state-space X nor on the output space Y.
Alternatively to defining a kernel on YT+ directly, one can construct it from a base kernel ¢
defined on Y by taking k = @[_, £ [200], where @ denotes the tensor product. For instance,
the expression of a squared exponential kernel on YT with scalar width ¢ > 0, which is
known to be characteristic [106, Table 3.1], is

T dy
k(')’a/ ')’b) = exp Z Z Yait — Vb, zt ’ (6.10)
=0i=1

where ya, 7, € R(TTD*4

s=1.

v are output trajectories. In this chapter, we fix the scaling parameter

A metric of distinguishability

The value of the MMD thus indicates whether initial distributions are distinguishable.

Proposition 1. Let p,, py, be two initial distributions. Assume that the kernel k is character-
istic. Then, MMDI(IP}, , P}, | = 0 iff. pa and py, are distributionally indistinguishable.

Proof. The MMD is a metric when the kernel is characteristic [200], which implies that
MMD? [P},)] = 0iff. P] = TP}, . The result then follows from Definition 5. [

The information the MMD carries is richer than a simple yes-or-no indication.
Indeed, it takes continuous values; low values reveal similar distributions. Therefore,
the MMD extends the binary notion of absolute distinguishability to a continuous
spectrum of relative distinguishability, on which some pairs of initial distributions
are more (or less) distinguishable than others. We postpone further interpreting this
value to Sec. 6.3.2.

6.3.2 Finite-sample approximation

To access both the relative and absolute notions, one needs to evaluate the MMD.
We rely on a finite-sample approximation [111] for this and use a two-sample test to
conclude on absolute distinguishability, since the approximation is never exactly 0.
Finally, this test helps refine the interpretation of the MMD value.

Background - finite-sample MMD

While a closed-form formula is often unattainable or requires perfect system knowl-
edge, the MMD can be approximated from independent samples of output trajectories
by the following empirical estimator.

Theorem 7 (Gretton, Borgwardt, Rasch, et al. [111]). Let pa, py, be two initial distributions.
LetTan, ..., am be independent copies of T'(ya, T), and Ty, 4, . .., Ty, independent copies of
T'(pp, T). Assume that k is bounded, i.e., 0 < k < K for some K € R. Then,

m mn

1 1 2
MMD% [m’ 7’1] = W Z k(ra 17 Fa] 2 Z k Fb ir Fb]) % Z k(ra,l‘,]._'b’]) (611)
i,j=1 ij=1 i,j=1

6.3. Measuring distributional observability 111

converges in probability to MMD? []P%Tla’IPPle] with the following concentration bound for

€ > 0:
T 1T K K
P | [MMD, [m,n] - MMD[P] P11 >2 (/= 41/ | +e
62 mn
< _L . , .
_2exp[2K m—i—n] (6.12)

The outcome of (6.11) is a noisy, biased, and finite-sample approximation of the
population value MMD[P, P} .

In practice, we quantify the distinguishability of two initial distributions u, and
up using two datasets of output trajectories. We initialize the system multiple times
as per y, resp. pp and obtain Dy, = {vait,t € {0,..., T},i € {1,..., m}} and
Dy, = {mw,nt€{0,..., T}, i€ {1, ..., n}}, where v, resp. 1y, is the realization
of I', ; resp. I', ; at time . We then compute the estimator (6.11) on these two datasets.
We can rely on the value of the estimator to approximate relative distinguishability,
however, we cannot use it directly to check absolute distinguishability. Instead, we
use a statistical test.

A two-sample test of distinguishability

To determine whether two initial distributions y, and py, are distinguishable from the
value of 6.11, we perform a statistical test of the null hypothesis

Ho: P, =P, vs. Hpi: P, #P}. (6.13)

Such a test checking for the equality of two distributions based on samples is called a
two-sample test. We propose to use one based on the concentration bound (6.12) [111].
One specifies an acceptable Type I risk & € (0,1), and the test provides an acceptance
region threshold; if the outcome of (6.11) falls outside of that region, one rejects the null
hypothesis Hy with confidence level at least 1 — «.

Proposition 2. Let « € (0,1). Under the setting of Theorem 7 with n = m, consider a
realization of MMDy, [m, m|. If this empirical estimate is such that

MMD, [, m] > \/% (1 n \/21noc‘1> = K, (6.14)

then g, and py, are distributionally distinguishable in time T with confidence level 1 — «.
Proof. This immediately follows from [111, Corollary 9]. O

The threshold « is conservative for many practical applications. It is common to
use bootstrapping instead, as suggested in [111] and implemented in their original code.
Bootstrapping [201] is a well-known statistical technique to estimate a population
value by artificially resampling a given set of samples. Typically, one can draw
a new such set n times by sampling with replacement from the original samples
each time. Then, the population value can be computed for these n sets of samples,
and its histogram or other aspects of this empirical distribution can be studied. In
particular, for the two-sample test of Prop. (2), one considers the aggregated data,
i.e., the concatenation of D;, and D,,, described above. One resamples this aggregated
dataset n times by shuffling the samples, which is equivalent to resampling the labels
of each realization. The population value to compute is then the MMD between the

112 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

first and the last m samples of the concatenated dataset. This value is computed
n = 1000 times after resampling, and « is set to the (1 — &)-quantile of these MMD
values. We use this bootstrapped value described in [111] for « in Sec. 6.4.

From qualitative properties to sample bounds

In Sec. 6.3.1, we interpreted the MMD as a measure of distinguishability based on the
argument that it takes values in a continuous set. The two-sample test of Proposition 2
allows us to refine this interpretation: the value of the MMD indicates how much
data is required for the test to successfully reject the null hypothesis Hy with high
confidence. In other words, the MMD provides a sample bound for the test to achieve
a specific Type Il error g € (0,1)".

Corollary 2. Let B € (0,1). Under the setting of Theorem 7 with n = m, assume that the
null hypothesis is incorrect and let z = MMD[]PZ, P!] > 0. Assume that

o K (vt s f)) 619

Then, the null hypothesis is rejected with probability at least 1 —

Proof. We first denote MMDy[m, m] by x, and introduce A,, = {x < «x} the test’s
acceptance region of level p and B,, = {|x — z| < J} the high-probability region of
the concentration bound (6.12), with

6—2’/—111 5—2\/7<2—|—1/1n> (6.16)

Hy is rejected if A, N By, = @, i.e., if it is not possible for the empirical MMD estimate
to be both under the rejection threshold x and in the high-probability region close to
the true MMD value z. Notice that x < z — ¢ implies that if x < x, then |z — x| > 4.
Thus, if we pick x € Ay, then |z — x| > §,i.e., x € BS;: Ay, C BS,. This is equivalent to
Ay N By = @ and yields P[A,,] < P[BS;]. Hence, it is sufficient for Hy to be rejected
with probability at least 1 — 8 to have:

(i) xk<z—96;
(i) P[BS] < B.

Replacing the value of € chosen above into (6.12) yields (ii). Then, replacing the value
of x in (6.14) and the value of § above into (i) yields (6.15). Therefore, the bound (6.15)
guarantees (i) and (ii), which is sufficient to ensure that Hy is rejected with probability
atleast1 — . O

Albeit the threshold (6.15) depends on z and thus cannot be used in practice to
guide data collection, it sheds light on the interpretation of the MMD by translating a
qualitative property (it measures how different outputs from two initial distributions
are) into practical considerations (how much data is required to tell them apart). Intu-
itively, initial distributions leading to a high MMD can be told apart with confidence
given only a small number of output trajectories.

1 As discussed in [111], it is impossible to find such a bound without assumptions on the distributions
at hand. In what follows, the assumption consists in assuming that z = MMD []PPT,, PT] > 0 is known.

6.4. Experimental results 113

6.4 Experimental results

The proposed tools enable a data-driven observability analysis of nonlinear stochastic
systems. We first verify that adding noise preserves distributional observability for
linear systems, as stated in Theorem 6. We then illustrate the real-valued quantifi-
cation by computing it on the whole state-space for a nonlinear Duffing oscillator,
revealing a continuous increase as we get away from the class of indistinguishability.
This also enables measuring the effects of both measurement and process noise on
said classes, illustrating the results of Sec. 6.2.3. Finally, we demonstrate on a Furuta
pendulum how to test whether a sensor configuration distinguishes certain states,
with implications on experiment design”.

Remark 14. We have focused on discrete-time systems; yet, dynamical systems are often
described in continuous time and only the sensor measurements are discrete-time. This
discrepancy is not problematic: first, the results of Sec. 6.3 still hold if the state is a continuous-
time process, even though we have not considered it for clarity. Second, and more practically,
most of the following examples are stochastic differential equations (SDEs) solved numerically
with a fixed time-step (using [202]), and are thus effectively discrete-time processes. Therefore,
the proposed methodology applies seamlessly to discrete-time and continuous-time systems,
and we use both in the following sections.

In the following, we use « = 0.05 and a standard squared exponential kernel (6.10).
A common heuristic to select the width parameter ¢ is to pick the median pairwise
distance between the data sets at hand [111]. It is not directly applicable here, however:
our interpretation of the MMD as a measure of relative distinguishability (Sec. 6.3.1)
requires that o be the same for all points to be compared. Indeed, comparing different
values of MMD is only meaningful if the underlying embeddings are all in the same
RKHS, that is, use the same kernel function and parameter values. Therefore, we
suggest the following meta-heuristic. We start by computing the heuristic by [111]
for each pair of datasets of interest. Then, we set ¢ as the 0.1-quantile of all previous
values. These low values correspond to distributions that are indistinguishable, or
hardly distinguishable, so ¢ has the correct order of magnitude for the noise of the
system. We run all experiments with the fixed value of ¢ given by this meta-heuristic;
the exact value is given in each section. This strategy leads to satisfying results in all
our use cases, however, it is but an arbitrary choice; one should ensure ¢ is set to a
suitable order of magnitude, otherwise the problem might be badly conditioned and
all MMD values close to 0.

6.4.1 Case of linear systems: illustration of Theorem 6

Theorem 6 states that, for linear systems, the presence of noise does not alter distin-
guishability between two states and, by extension, observability. We illustrate this
numerically in the following sections. We first check that the absolute distinguisha-
bility of a linear stochastic system as determined by our statistical test from noisy
output data is consistent with the distinguishability of the nominal system. We then
showcase that the empirical class of indistinguishability recovered by the test for the
stochastic system is indeed the same as the analytical class of indistinguishability of
the nominal system.

Remark 15. For a deterministic, linear time-invariant (LTI) system, be it continuous-time
or discrete-time, we have y; = Cx;. Kalman's observability criterion [113, Sec. 6.2] for LTI

2Code to reproduce the results is available at github.com/PFMassiani/data-obs git.

https://github.com/PFMassiani/data-obs.git

114 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

4 x Dataset 1
x Dataset 2

y
|
N o
X M BT RO

x Dataset 1
x L % Dataset 2 * }
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
(a) LTI system (6.20) (b) LTI system (6.21)

Figure 6.1: Data collected from two linear stochastic systems with process and

measurement noise. The proposed statistical test evaluates the left dataset as distin-

guishable, but not the right one; this is confirmed by the deterministic observability
of these linear systems, but is not obvious from looking at the measurements.

systems states that the system is observable iff. the observability matrix

C

CA
0= , (6.17)

cAd-1

has rank d, where d, is the dimension of the state and A is the state transition matrix. The
unobservable subspace of the system is then ker(O). In particular, the class of indistin-
guishability of any initial state x, is the set of states from which it is indistinguishable; this
class is straightforwardly

d—1 ,
xa+ () (CA)*. (6.18)
=0

Distributional and deterministic distinguishability

We first show that two distinguishable (resp. indistinguishable) states for the nominal
system are indeed identified as distributionally distinguishable (resp. indistinguish-
able) by our statistical test. We illustrate this numerically on two discrete-time
stochastic LTI systems of the form:

X1 = AXy + QW;,

(6.19)
Yt = CXt + €4,

first a discretized model of a harmonic oscillator with

1 0.01 T
A_(_O.Ol ¢) c=(0, (6.20)

6.4. Experimental results 115

2.0

1.51
1.01
0.5 1

N\

& 0.071
—0.51
—1.01
—1.51

—2.0- T T
-2 -1 0 1 2
Xp,1

Figure 6.2: MMD over a grid for linear system (6.22) and reference point x, =

(1.5,0.5) (white star). The empirical class of indistinguishability (red points) is

computed from output data from the noisy system. It matches the analytical class of
indistinguishability of the nominal system.

then the following system with

02 —04 T
A_(_0‘6 _0.8>, C=(1 2, (6.21)

where W; ~ N (0,0.1) is Gaussian process noise, Q = 0.011, and ; ~ N (0,0.1) is
Gaussian measurement noise. We collect a set of 100 output trajectories of length 30s
from Gaussian initial distributions of covariance 0.0011, and means x, = (0,1) and
xp, = (0,2) for (6.20), resp. x = (0,1) and x;, = (2,0) for (6.21).

The datasets are shown in Fig. 6.1: the initial mean is chosen to have the same
initial measurement value Yj for both datasets, and the influence of the initial spread
and the noise are visible. Kalman’s observability criterion shows that (6.20) is observ-
able, but not (6.21). For (6.21), we have C* = span{(—2,1)} and x, = xa — (—2,1),
so that x}, is indistinguishable from x, as per Remark 15. However, the presence of
noise makes this difficult to see from output trajectories: from a visual inspection of
Fig. 6.1, it is not clear that the trajectories of Fig. 6.1b are from the same distributions
while those of Fig. 6.1a are not. In contrast, the test of Prop. 2 is able to find this:
it triggers in the first case but not in the second (with ¢ = 30 resp. 80), which is
consistent with the analytical results. This also illustrates that statistical testing can
assess absolute distinguishability from noisy output data.

Recovering the classes of indistinguishability

We now show that the test can recover a state’s whole empirical class of indistin-
guishability. According to Th. 6, this class should be the same for a stochastic system
and the corresponding nominal system. We verify this numerically on the following
continuous-time LTI system:

dXt = AXtdt -+ A() sin(wt)dt + Z‘.th,

(6.22)
Yy = CXi +ey,

116 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

where

-2 -1 T
A:<_1 _2>, c=(-1 1), (6.23)

dW; is an independent, two-dimensional Wiener process, Ag = (3,3), w = 2, % =
0.1I,, and e; ~ N/ (0,0.01) is Gaussian measurement noise. The term A sin(wt)dt +
YdW; is a non-centered process perturbation. Kalman’s observability criterion shows
that the undisturbed linear system (A, C) is not observable. We have C* = span{(1,1)}
and (CA)* = span{(1,1)}. Thus, according to Remark 15, the class of indistinguisha-
bility of x, for the nominal system is x, + span{(1,1) }. We show experimentally that
the non-centered noise in (6.22) preserves this class of indistinguishability.

We select a reference point x, = (1.5,0.5) and simulate n = 30 output trajectories
for 2s starting from x,, with time steps of length At = 0.01s, yielding discrete
trajectories of length T = 200. These trajectories constitute a dataset of samples from
IPT . We emphasize that the process noise has nonzero mean over the simulation time.

We then build a grid of 50 x 50 points and simulate m = 30 output trajectories
starting from each point xy, in that grid. We compute the MMD between the dataset
from x, and the one from each xy,, using a squared exponential kernel with ¢ = 5. The
results are depicted in Figure 6.2. We observe that the test of Prop. 2 does not trigger
along the diagonal x, + C* (red dots), and triggers everywhere else, empirically
identifying this set as the class of distributional indistinguishability of x, given the
output data. This indeed corresponds to the class of deterministic indistinguishability
of x, for the unperturbed version of (6.22), as predicted by Theorem 6. We observe
that not only does the test recover this class, but the MMD acts as a distance from it:
the farther xy, is from x, + C*, the higher the MMD.

6.4.2 Analyzing observability in the state-space

The proposed approach can also be used to analyze distinguishability quantitatively,
directly in the state-space, for arbitrary nonlinear systems. We illustrate this with an
undamped, unforced Duffing oscillator, often used in nonlinear observer design [203]:

dX; = Xpdt + bidWy,
dXp = (Xg — X3)dt + bydWyy, (6.24)

where dW; ¢, dW,; are independent Wiener processes. The nominal system is Hamil-
tonian and conserves the quantity

h(x) = —%x% + %x% + %x‘f (6.25)
along its trajectories. We consider the output map Y; = h(X;) + €; with measurement
noise € ~ N (0,0.5), and two different settings: low process noise with b; = b, = 0.05
and high process noise with by = b, = 0.5. Importantly, the trajectories of the
stochastic system do not conserve h because of process noise.

Given an arbitrary point x,, we aim to determine its class of indistinguishability
from samples of the stochastic system. For this, we generate n = 50 output trajectories
of 1s initialized in x,, and m = 50 trajectories in each other point x;, on a 100 x 100
grid, with At = 0.001s (T = 1000). We then compute the empirical MMD (6.11)
between the resulting datasets, with a squared exponential kernel and ¢ = 1500.

6.4. Experimental results

Xp,2

Xp,2

-2 -1 0 1 2 -2 -1 0 1 2
Xp1 Xb,1
(a) Xa = (1,0,5), bl = b2 =0.05 (b) Xa — (0, 1), bl = bz =0.05

-2 -1 0 1 2 -2 -1 0 1 2
Xp1 Xp,1
(c) xa = (0.2,0.8), by = by = 0.05 (d) xa = (0.2,0.8), b = b, = 0.5

Figure 6.3: MMD over an x,-grid for the Duffing oscillator (6.24) for different values
of x, (white stars). The trajectory without noise (orange) initialized in x, is known
to be a subset of the class of indistinguishability. The states where the test does not
trigger (red points) constitute the empirical class of indistinguishability. The process
noise is low in Fig. 6.3a—6.3c, for which only the reference point varies, while the
system in Fig. 6.3d is a noisier version of that in Fig. 6.3c. In Fig. 6.3a, the empirical
class of indistinguishability contains not only the trajectory starting from x,, but also
its symmetric w.r.t. the origin. In Fig. 6.3d, the empirical class of distinguishability
differs from that in Fig. 6.3c due to the significant process noise. In all cases, vectors
generating the null space of the nominal system’s empirical Gramian (white arrows)
are tangent to its class of indistinguishability.

117

118 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

Datasets

Dataset 1
Dataset 2 &

—-0.5 0.0 0.5 1.0
01

Figure 6.4: Left, the Qube Servo 2 by Quanser [204]. Right, the experimental data

collected on this Furuta pendulum. Only the first two states (61,6;) are shown.

The system is initialized around x, = (0,0,0,0) for the first dataset, and x, =

(7r /4,0,0,0) for the second one. Forty trajectories from each dataset are shown
(randomly sampled).

Fig. 6.3 shows the resulting MMD maps for two values of x, and for the different
levels of process noise. For low process noise (Fig. 6.3a—6.3¢c), the MMD increases
as the discrepancy in / in the initial states does; the states get more easily distin-
guishable. Additionally, the empirical class of indistinguishability (red squares)
recovers the nominal system’s one, which indeed contains the deterministic trajectory
starting from x, (orange curve), where /1 is constant. For higher levels of process
noise (Fig. 6.3d), the empirical class is deformed, illustrating that Corol. 1 does not
generalize without further assumptions. This continuous effect of the level of process
noise on the classes highlights the interest of a continuous-valued metric of relative
distinguishability; states identified as distinguishable by the test may still be difficult
to distinguish. These plots thus show which regions of the state-space are more or
less distinguishable from the chosen x,, from short and noisy output trajectories.

Remark 16. For comparison, we also compute the empirical observability Gramian of the
nominal system at x, [192, Eq. 4]. If the null space N of this empirical Gramian is {0}
in the limit € — 0, then the system is weakly observable in x, [192, Thm. 2]. Based
on [192, Eq. (14)], we thus interpret N as the “direction of weak unobservability” in x,. We
approximate the assumption € — 0 by taking € = 0.1 and considering the eigenspace of
the smallest eigenvalue of the Gramian, which is several orders of magnitude smaller than
the largest one. Fig. 6.3 shows the resulting approximation of N by plotting a generating
vector. We find that null space is the tangent space to the class of indistinguishability our test
finds for low process noise. In other words, empirical Gramians provide the local directions of
indistinguishability, while our test recovers the whole class. Recovering the information on
local observability of x, could also be achieved with our test; e.g., by checking the test outcome
in an xy-spherical shell centered in x,. Indeed, states very close to x, will never trigger it
due to finite-sample approximations, and should thus be excluded. We leave this question of
recovering notions of local observability from the test outcome for future work.

6.4. Experimental results 119

6.4.3 Analyzing sensor configurations on hardware

When studying an experimental system, one can sometimes choose between possible
sensor configurations, whose respective benefits may be uncertain. The system may
be observable and allow for building an observer to achieve further downstream
tasks in some of these configurations, but not in others. We now demonstrate how the
proposed tools can help compare these configurations from measurements. For this,
we collect hardware data on a Furuta pendulum: the Qube Servo 2 by Quanser [204],
depicted in Fig. 6.4. The pendulum consists of two arms, the first of which is actuated,
with respective angular positions (6,0,) € R? (in radians), where 6; = 0 is arbitrary
and 6, = 0 corresponds to the upright position. The state is then (61,6, 91,92).
We collect a set of output trajectories by initializing the system by hand close to
xa = (0,0,0,0) resp. xp, = (77/4,0,0,0). We measure both angles with encoders and
corrupt these measurements with centered Gaussian noise of variance 02 = 0.001 rad?
independently on each dimension, in order to further complicate the experiment. The
output trajectories of 9.75 s are sampled with At = 0.01s°. A subset of the resulting
dataset is plotted in Fig. 6.4.

Choosing a sensor configuration

We consider three possible settings: y = (61,62), y = 61 and y = 6. Our goal
is to determine from the collected samples which of these configurations enable
distinguishing the initial states, a necessary condition to provably reconstruct the
whole state of the system.

For this, we run the kernel two-sample test of Prop. 2 ten times in all three settings,
and present the results in Table 6.1. The value of ¢ is chosen as per the proposed meta-
heuristic, and given in Table 6.1. The test triggers every time when y = (61,6,) or
y = 61, indicating that the initial distributions are distinguishable with these outputs
with high confidence. In contrast, it never triggers when y = 6,; the data does not
allow to distinguish between x, and x;, when only measuring 6,. This generalizes to
the nonlinear system the conclusion obtained by linearizing the dynamics; Kalman’s
observability criterion states that the model is not locally observable around the origin
for y = 6>, while it is in the other configurations.

Remark 17. The test evaluates the distinguishability of the initial distributions y, and
whereas, in practice, one is often concerned with the distinguishability of the initial states
Xa and xp; yet, ua and py are not Diracs. This could lead to a false interpretation of the
test result. For example, if xa = xp but p, # uy (e.g., one has much more spread than
the other), the output distributions may differ: the test would then trigger, although x, and
xyp, are indistinguishable. To interpret the test result as distinguishability induced by the
dynamics and not as an artifact introduced by non-ideal initial distributions, the support
of the latter should be as narrow as possible around x, and xy,. This is theoretically sound
due to the continuity of the MMD: if the support of u, and wy, is sufficiently small then
MMDI[P), , P, | is close to MMD[P{ , P].

In practice, several methods can ensure a small spread, such as careful reinitial-
izations of the system or discarding trajectories that are too far from the desired
initial states. We initialize the system by hand, such that some randomness is always
present, but stay in the same experimental conditions for all trajectories. To demon-
strate robustness to this issue, we run our experiments multiple times by selecting
only n = m = 40 trajectories randomly from each initial distribution.

3Thanks to Sebastian Giedyk for his help collecting the experimental data.

120 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

Dataset 1
— 0
10° — 0 10°
g Dataset 2 I '\W
5 Ads 4o 61 5 e
g 10-1 ml’ VI" PIJ"‘L"H"’J'W'A" i \"ﬁ(w“‘ 0, g 10-1 ‘
S 1‘\ S
E m £
2 H 2
53} " v“l& iy A i f || ! [Sa] \,r ol ol Ih bkt V W !
10-2 rf‘.m fnlm“l'ﬂ“ /] ““m Vi ‘\'\‘I 4' ‘M W i NMWHJ‘ "‘l}‘ J'W‘ “"“N‘ M h “'}lw‘“""ml{‘“"'k‘t"":‘&f‘\ﬂﬁ’
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
(@y =06 b))y =6

Figure 6.5: Estimation error of the EKF for each choice of measurement, for states

(61,62) and on each dataset. For each run, we only consider the mean of the EKF,

then plot the median and {0.25,0.75}-quantiles over the ten runs, i.e., ten subsets

m = n = 40 of the experimental datasets. The EKF correctly reconstructs the state

in the observable case (left). When y = 6, (right), the state 6, is not observable, the
EKF does not converge correctly and the estimation error remains high.

Measurement y=(01,6) y=0 y=6,

o 1300 1300 2500
MV, 1.40 250 034
Trigger (% of trials) 100 100 0

Table 6.1: Results for the Furuta pendulum initialized in x, = (0,0,0,0) and x}, =
(1t/4,0,0,0), averaged over ten tests. Only the first two configurations are identified
as distinguishable.

Consequences for observer behavior

Beyond choosing sensor configurations, the information provided by our test can also
help in understanding the behavior of observers that fail to converge. An observer
initialized in two distributionally indistinguishable initial states takes as input the
same output distributions. Therefore, the output of the observer itself has the same
distribution; its estimates are the same on the whole class of indistinguishability. In
other words, the observer fails to distinguish the states.

We demonstrate this by implementing an extended Kalman filter (EKF) based on
a model of the pendulum and taking y as input. We run the EKF on our data set in
the two settings y = 6, (distinguishable) and y = 6, (indistinguishable). The observer
converges in the first case, but not in the second one (Fig. 6.5). More interestingly,
we estimate the evolution of the distribution of sin(6;) as estimated by the EKF
(Fig. 6.6). In the distinguishable case (Fig. 6.6a), the two output distributions of
the EKF differ, whereas they appear to be the same in the indistinguishable case
(Fig. 6.6b). This gives a precise meaning to the idea that an observer can estimate the
class of indistinguishability of the initial state, which our test can determine.

6.4. Experimental results 121

/7
15
1.0
1.0
0.5 0.5
(=1 = 0.
500 { 1 <+ =
—-05
—05 -1.0
—-1.5
/7
01 02 03 044 1.0 3.0 50 7.0 9.0 0.1 0.2 A4 Ti 10 3.0 50 7.0 9.0
Time Time
@y =106 (b)y =06,

Figure 6.6: Evolution of the distribution of sin(6) estimated by the EKFE. For each

run, we only consider the mean of the EKF, then interpolate the distributions by

kernel density estimation over the ten runs. In the distinguishable case (left), the

distributions differ during the transient and converge as the measurements do. In

the indistinguishable case (right), the distributions remain similar; the output of the
observer is statistically the same for both initial states.

6.4.4 Influence of hyperparameters

Some hyperparameters play an important role in the observed results. In this section,
we discuss the influence of the signal-to-noise ratio in more detail. However, this is
not the only relevant parameter. For example, the width ¢ for the squared exponential
kernel is discussed at the beginning of Sec. 6.4. Data normalization, the choice of the
grid for the MMD heatmaps and the number of trajectories per point are also crucial.
For these, it is worth noting that generating or gathering data is often a costly process:
more data will most of the time make the statistical analysis more accurate, but at
a high cost. The length T of the measured trajectories also affects the results: as T
grows, the states can become more distinguishable, e.g., if the trajectories become
different only for T long enough, or less distinguishable, e.g., if the system has a
limit cycle and all trajectories become similar for long T. This can lead to different
MMD profiles. We do not discuss these choices further, and focus on the role of the
signal-to-noise ratio in the following.

We illustrate its influence by modifying the variance ¢ of the Gaussian measure-
ment noise added to the dataset of the Furuta pendulum. The resulting datasets are
presented in Fig. 6.7. In Table 6.2, we show the percentage of tests that trigger for
these values of 02 (from ten trials). For y = 6,, 02 does not influence the test result:
the initial states are indistinguishable even without noise. For y = 0, the test remains
accurate even with 02 = 1 though the datasets already seem indistinguishable to the
human eye. Nevertheless, the performance drops if the noise gets too high, as we can
see for o2 = 10. Interestingly, the accuracy decreases more quickly with y = (01, 65):
for 02 = 0.1, the test triggers in less than half of the trials. We interpret this as the
distinguishable data, i.e., 61, getting diluted into more indistinguishable data by also
measuring 6. This can also be seen in Table 6.1, where the ratio of the MMD over the
test threshold averaged over ten trials is closer to one when measuring both 6; and 6,
than when measuring only 6;.

These parameters greatly influence not only the result of the test, and therefore
the shape of the empirical classes of indistinguishability, but also the value of the

122 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

1.0 x Dataset 1 6 x Dataset 1
»* Dataset 2 x Dataset 2
5
0.5 4
BN =3
0.0
2
—0.5 1
0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time
(@) y = 6; with ¢2 = 0.001 (b) y = 6, with ¢ = 0.001
2.0 X .
x Dataset 1 k x Dataset 1
15 % Dataset 2 . Dataset 2
% o
1.0 o -
0.5
= 00
—0.5
—1.0
~15 Sl
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time
(c)y = 6, with g2 = 0.1 (d)y = 6, with ¢2 = 0.1
15 . 20
x x Dataset 1 - > % Dataset 1
x x « ¥
10 & 3 ‘ R 5 ¢ % Dataset2 15 .
5 10
= 9 = 0
0
-5
—5
—-10 : 3
x % : X % ~10 % X ~ 2 % X .
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time
(e) y = 0; with 02 =10 (f) y = 6, with 62 = 10

Figure 6.7: Trajectories of the Furuta pendulum corrupted by different levels of

Gaussian measurement noise of variance o2. After recording, the start of all exper-

iments is realigned and they are interpolated over the same time axis. For some

experiments, 6, (0) is close to 7; this is due to this interpolation between values close
to 27t and values close to zero at the start.

6.5. Conclusion and outlook 123

Measurement y = (61,60,) y=0; y=206;

02 = 0.001 100 100 0
02 =0.01 100 100 0
02 =0.1 40 100 0

02 =1 10 100 0
02 =10 0 20 0

Table 6.2: Results for the Furuta pendulum initialized in x, = (0,0,0,0) and x, =

(71/4,0,0,0) for different levels of measurement noise. The percentage from ten

trials in which the test triggers is shown. The first two settings are distinguishable,
but the third is not.

metric itself, and therefore the MMD heatmaps. However, these heatmaps are less
sensitive to changes in the hyperparameters. Indeed, these changes may lead to more
or less accurate MMD estimates, but the relative values remain similar. Thus, the
shape of the heatmap also does, and can be straightforwardly interpreted in terms of
low or high relative distinguishability w.r.t. the reference point. On the other hand,
the statistical test returns a binary answer on the absolute distinguishability; higher or
lower MMD due to slight variations of these hyperparameters can go over or under
the test threshold x and change this answer.

As an example, we take x, = (0,1) and xp, = (V1 + V3, 0) for the Duffing oscilla-
tor (6.24), which both lead to i(x) = 0.5 constant along nominal trajectories. Hence,
these two points are indistinguishable for the nominal system. We generate m = 1000
trajectories initialized in each of these points. Without any measurement noise, these
output trajectories are not quite equal due to the accumulation of numerical errors,
and the test identifies them as distinguishable. With little Gaussian measurement
noise (variance ¢ < 0.05), the trajectories are still identified as distributionally distin-
guishable. For 02 > 0.05, they become distributionally indistinguishable. However,
in all three cases, the MMD between the reference point x, and the point x}, is low
relatively to the rest of the grid, as seen in Fig. 6.3b. Thus, the MMD heatmap shows
a form of the indistinguishability class of x, that includes x;,. Therefore, when in-
vestigating relative distinguishability in the state-space, which is expected to vary
continuously, one should rather focus on the MMD heatmap than on the test results.
Conversely, when searching for a binary answer on absolute distinguishability, one
can choose a few points that are representative of the system in some sense, and gather
data from these points to run the statistical test; this allows for sensor configuration
studies as in Sec. 6.4.3.

6.5 Conclusion and outlook

In this chapter, we present a method to assess the observability of nonlinear stochastic
systems from data without explicitly relying on a dynamics model, and without
assumptions on the noise; this is the first such method to the best of our knowledge.

We start by extending distributional distinguishability to arbitrary nonlinear
stochastic systems and investigate its relationship to deterministic observability,
showing that both notions are equivalent for certain classes of systems which include
linear systems. We then introduce the MMD and a finite-sample estimate thereof to
quantify distinguishability of initial states from noisy output trajectories. We leverage
the MMD for a statistical test of distinguishability, hereby interpreting its value as

124 Chapter 6. Data-driven observability analysis for nonlinear stochastic systems

how much data is required to tell initial states apart with confidence. Finally, we
illustrate the proposed tools and notions in simulation and on hardware. We reveal
experimentally the relationship between noise and distinguishability, emphasizing
the interest of a continuous metric. We expect that these tools can become useful for a
priori error analysis of observers and thus benefit observer design. For example, the
proposed statistical test could be used for experiment design: as shown in Sec. 6.4.3,
it can help determine a priori which sensors are necessary to build an observer.
Computing MMD heatmaps as in Sec. 6.4.2 could also ease downstream tasks such as
tuning an observer: by comparing the estimation error of the observer with the MMD
values, a user could know whether the considered states are easily distinguishable, in
which case it is worth spending more effort on tuning the observer, or whether this is
hardly the case, so that the estimation error can mainly be explained by the lack of
observability.

One important assumption we make is the access to independent reinitializations
of the system. However, this is data-inefficient (since a whole trajectory only informs
on its initial state), and sometimes unrealistic or unwanted (e.g., if the system cannot
be reinitialized easily). An interesting future lead is to alleviate this assumption, e.g.,
by leveraging mixing properties [112].

The theoretical analysis of distributional observability that we propose can also
be pushed further, e.g., by characterizing other classes of measurement noise that
satisfy Assumption 7, or by finding sufficient conditions on the dynamics such that
classes of process noise preserve distinguishability.

After investigating in this chapter how statistical tools can be used to analyze
observability properties from output data, we leverage modern machine learning
techniques to design observers. In the next chapter, we examine how deep learning
can be used to approximate KKL observers and how to tune such numerical observers.

125

Chapter 7

Towards gain tuning for numerical KKL
observers

Résumé Ce chapitre présente une premiere étape vers le tuning d’observateurs
généraux pour les systémes non linéaires. En s’appuyant sur des résultats récents con-
cernant les observateurs de Kazantzis-Kravaris/Luenberger (KKL), nous proposons
un critere empirique pour guider la calibration de 1’observateur, en cherchant un
compromis entre la performance transitoire et la sensibilité au bruit de mesure. Nous
paramétrons la matrice de gain et évaluons ce critére sur une famille d’observateurs
pour différentes valeurs du parametre. Nous utilisons ensuite des réseaux neuronaux
pour apprendre la fonction reliant 1’état de I'observateur a 1’état dans les coordonnées
physiques, et présentons une nouvelle méthode pour échantillonner efficacement
I'espace d’état pour la régression. Nous illustrons les mérites de cette approche par
des simulations numériques.

Abstract This chapter presents a first step towards tuning observers for general
nonlinear systems. Relying on recent results around Kazantzis-Kravaris/Luenberger
(KKL) observers, we propose an empirical criterion to guide the calibration of the
observer, by trading off transient performance and sensitivity to measurement noise.
We parametrize the gain matrix and evaluate this criterion over a family of observers
for different parameter values. We then use neural networks to learn the mapping
between the observer and the physical coordinates, and present a novel method
to sample the state-space efficiently for regression. We illustrate the merits of this
approach in numerical simulations.

Parts of this chapter are under review under the title Towards Gain Tuning for Numerical
KKL Observers [52]. This work was conducted in collaboration with Lukas Bahr, who
pursued his master’s thesis jointly at the Centre Automatique et Systémes - Mines
Paris, PSL and at the Institute for Data Science in Mechanical Engineering, RWTH
Aachen University, under the supervision of Mona Buisson-Fenet. He contributed as
a co-author of the submission, focusing mostly on implementation and on developing
a toolbox for numerical KKL!.

7.1 Introduction

As discussed in previous chapters, the measurements gathered on physical platforms
are often partial and noisy. Estimating the underlying state from these partial ob-
servations is thus a critical task in system theory. However, there is no established
observer design with convergence guarantees for general nonlinear systems. The
Kazantis-Kravaris / Luenberger (KKL) observer could be such a general observer,
and has recently gained interest. For such observers to be applicable in practice,

1Toolbox available at github.com /Centre-automatiq ue-et-systemes/learn observe KKL.git.

https://github.com/Centre-automatique-et-systemes/learn_observe_KKL.git

126 Chapter 7. Towards gain tuning for numerical KKL observers

many aspects should be investigated, including how to tune their free parameters.
Therefore, in this chapter, we propose a numerical method to calibrate KKL observers.

The original design of Luenberger observers for linear systems can be found
in [205]. It consists in finding a linear mapping between the system dynamics and a
linear filter of the measurement. Under appropriate observability assumptions and
filter design, the Sylvester equation satisfied by the mapping has a unique injective
solution. Its left-inverse, along with the filter, can be used to compute a convergent
state estimate.

This design encompasses important degrees of freedom: the matrices defining the
filter or, equivalently, the poles and zeros of the filter transfer function. To study their
effect on state estimation performance, one must consider the effect of the mapping,
which modifies the response, among others to measurement noise. For autonomous
linear systems, the problem of tuning these degrees of freedom is essentially solved
by the stationary Kalman filter [206]. Rather than directly assigning closed-loop
eigenvalues, one can weigh the relative confidence in the measurement and the
dynamic model and find the observer gains that are optimal for the metric defined by
these weights.

The extension of these approaches to nonlinear systems is nontrivial. Indeed, there
are few generic nonlinear observer designs; a review of these can be found in [42], [43].
Among the most commonly used are the high-gain observer (HGO) [207], [208] and
the extended Kalman filter (EKF) [45]. The EKF consists in linearizing the observer
dynamics around the current estimate to compute the optimal gain depending on
chosen weights, akin to the linear case. There are, however, only local convergence
guarantees [209]. Conversely, the HGO relies on a change of variables to bring the
system into observable canonical form, and high gains to “dominate” the Lipschitz
constant of the nonlinearity. The stability guarantees come at the price of possibly
poor transient performance (the so-called “peaking” phenomenon [210]) and high
sensitivity to noise. While recent contributions aim at reducing these detrimental
features thanks, e.g., to dynamic extensions [120], the question of gain tuning and
performance criteria remains open. In particular, in [120], the sensitivity to noise is
examined a posteriori through numerous simulations.

In this chapter, we develop a tuning methodology for KKL observers that does
not rely on extensive tests, inspired by the Kalman filter or He, control. The KKL
design [46], [47] extends the results of [205] to nonlinear systems. It maps the system
dynamics to a stable linear filter of the measured output, called the observer dynamics.
The existence and injectivity of this mapping are guaranteed by mild observability
conditions, which makes this design relatively generic. The contraction properties of
the observer dynamics ensure convergence of the state estimates. The main challenge
consists in computing said mapping and its left inverse, along with tuning the free
parameters of the observer.

In [116], a method is proposed to approximate the mapping by performing nonlin-
ear regression on datasets generated from trajectories of the system and the observer.
Given fixed observer parameters, a neural network approximates the considered
mapping, which is then used to compute state estimates from observer values. This
methodology, which we denote by numerical KKL and illustrate in Fig. 7.1, makes
KKL observers applicable even when the transformations cannot be computed ana-
lytically. However, the free parameters of the observer still play an essential role and
need to be chosen appropriately.

In this chapter, we build on the approach of [116] and propose a first step to-
wards calibration of the observer. Our main contribution is a procedure to select
the gain matrix using a tuning criterion that, in some sense, trades off the transient

7.1. Introduction 127

NS
>

ODE

.\ z solver *
z(0) =0 T

Figure 7.1: Diagram of the learned KKL observer. First, we solve the ordinary differ-
ential equation (7.2) for the measurement y generated from the original system (7.1).
Then, the estimate £ is computed as 7,"(z), where 7,* approximates 7 *.

performance against the sensitivity to measurement noise. We start by setting this
matrix based on a pre-defined filter, parametrized by its cut-off frequency w.. We
then approximate the KKL mapping for different values of this parameter w, using
neural networks, either independently or by learning the mapping as a function of w..
This approximation is enabled by appropriately sampling the state-space, improved
upon [116]. Computing the proposed criterion for all values of the parametrized gain
matrix leads to an optimal calibration for the observer, in the sense of the proposed
empirical criterion. Numerical simulations illustrate the approach.

This chapter is organized as follows. In Sec. 7.1.1, we briefly recall the main equa-
tions of KKL observers. In Sec. 7.2, we propose an empirical gain tuning criterion,
then detail our numerical approach for state-space sampling, observer parametriza-
tion and nonlinear regression in Sec. 7.3. We illustrate the merits of the approach
through numerical simulations in Sec. 7.4. Then, we investigate another point of view
using autoencoders in Sec. 7.5, before concluding in Sec. 7.6

7.1.1 Reminder on KKL observers

Recall the preliminaries on KKL observers presented in Sec. 3.4. We consider the
autonomous nonlinear dynamical system

1= f(x) 7.1)

y=h(x)
where x € R% is the state, y € R% is the measured output, f is a continuously
differentiable function (C') and # is a continuous function. Assume there exists a
compact set X’ such that for any solution of interest x to (7.1), x(¢) € X forall t > 0.
Under the assumptions and results presented in Sec. 3.4, there exists a continuous
injective mapping 7 : R% — C% and its continuous left inverse 7* : C* — R% such
that the trajectories of (7.1) remaining in X and any trajectory of

z=Dz+Fy (7.2)
satisfy

lim |77*(z(t)) — x(t)| = 0. (7.3)

t——+o0

128 Chapter 7. Towards gain tuning for numerical KKL observers

Equivalently, for all trajectories of (7.1) remaining in X, T is an injective solution of
the following partial differential equation (PDE):

d
a:(x) F(x) = DT (x) + Eh(x). (7.4)
Thus, implementing a KKL observer involves the following steps:
1. Choose matrices D and F

2. Compute the corresponding transformation 7*

3. Simulate (7.2) from an arbitrary z(0) and compute the estimate £(t) = 7*(z(t)).

In [116], a method to complete step 2 by performing nonlinear regression on
trajectories of (7.1) and (7.2) is proposed. In this chapter, we build on this supervised
approach denoted by numerical KKL and illustrated in Fig. 7.1. We propose to assist
the user in completing step 1 by defining an empirical performance criterion to
optimize.

7.2 A gain tuning criterion

Consider the dynamical system (7.1) and associated observer dynamics (7.2). Denote
x, z their solutions starting resp. at x(0) and 7 (x(0)). Assume now that the measure-
ment y is corrupted by an unknown noise vector € € R%, so that y(t) = h(x(t)) +e(t).
Denote Z the corresponding solution of (7.2) starting at an arbitrary initial condition z,
and Z = £ — z the estimation error due to both the initial error and the measurement
noise. In general, we aim to choose D such that the overall error on the estimated state
% is minimized, where £ = 7 *(2), similarly to [211]. The following result provides a
criterion for tuning D, which we then apply to the approximated transformation.

Proposition 3. Suppose the assumptions and results of Sec. 3.4 hold. Further, assume that
T is Lipschitz continuous of constant L. Then, we have

£ = x|p2 < L(|Gelwlel 2 + |Gelgl2(0)]) 7.5)

where |-| is the Euclidean norm, |-|;» and |-| 2 are the L? resp. H? norms, and the Hoo norm
is defined as

|Gl = sup|G(jw)] (7.6)

with Ge(s) = (sly, — D)~ F the transfer function from € to , and G, (s) = (sl — D)™
from Z(0) to Z.

Proof. By Lipschitz continuity of 7*, we have
g =aff = [T 0) = T GO)Pat
< L7272, (7.7)
The Laplace transform applied to the dynamics of Z yields

z(s) = (sll, — D)~'Fe(s) 4 (s, — D)~ '2(0)
= Ge(s)e(s) + Gz(s)z(0), (7.8)

7.2. A gain tuning criterion 129

where we denote the Laplace transform of a signal f(t) by f(s). Applying standard
results on signal norms for linear systems [212] yields B

1212 = |2lr2 < [Geloolé]r2 + [Gelp2|2(0) - (7.9)
Replacing (7.9) in (7.7) concludes the proof. O

Proposition 3 exhibits a standard trade-off in linear system theory, between sensi-
tivity to noise through the term in |€|;, and convergence speed through the term in
|2(0)|. In this chapter, we propose a heuristic that guides the choice of D such that
the error on the estimate £ is minimized.

Remark 18. Proposition 3 relies on the assumption that T * is Lipschitz continuous. This is
not true in general; however, we approximate T with the neural network model 7;*, which
is Lipschitz if its activation function is and if its weights are bounded [213]. Its Lipschitz
constant can be approximated empirically, for example by computing its maximum over a
regular grid of n samples z;. However, the maximum value is subject to outliers and tends to
vary strongly between models.

In light of this remark, we propose the following empirical criterion

#(D) = [J|(|Gel o + |Gzl p2)

oT*)
= | = (z; 7.10
J (‘ 0z () je{l,- n} 710

where we consider the Euclidean norm of | rather than its infinity norm. This is an
approximate bound for the constants on the right-hand side of (7.5). This heuristic
trades off the transient performance through |G, |, and the noise sensitivity through
|Ge|o, and |J|. In our experiments, we consider a family of matrices D indexed by a
scalar parameter w.. We compute « for different D(w,.) and pick the value of w, that
minimizes it.

Remark 19. The bound (7.7) is conservative, and the choice of the L* norm is somewhat
arbitrary. In practice, one could consider a variety of criteria by weighting different norms
of g, Ge, and G;. For example, in the linear case where T, T are matrices, we have

£(s) —x(s) = (slly, — T*DT) '"T*Fe(s) + (sly. — T*DT) 1(£(0) — x(0)). (7.11)

Another criterion could be the Ho, norm of an analogy of this transfer function (7.11) for
the nonlinear case using the empirical gradients. Previous works investigate the sensitivity
of linear Luenberger observers to measurement noise [214], [215] or even propose iterative
schemes to adapt the gain based on the output error for nonlinear systems [216]. However,
there seems to be little research on principled tuning guidelines even for linear Luenberger
observers.

Remark 20. Note also that there are more advanced methods for estimating the Lipschitz
constant of 'Ty* [213]; we focus on the simpler criterion (7.10), which is enough to exhibit
some of the trade-offs faced when tuning D.

In the next section, we present a method to improve the regression process by
carefully generating the dataset and propose a possible parameterization of D, before
illustrating the merits of the criterion in Sec. 7.4.

130 Chapter 7. Towards gain tuning for numerical KKL observers

7.3 Numerical methods

As in [116], we approximate the transformation 7 * by a neural network? of weights 6.
The resulting observer is illustrated in Fig. 7.1: we feed the measurement y into the
observer dynamics (7.2), then apply the neural network model 7,*. To train 7, i.e.
perform nonlinear regression, a dataset of N pairs (x;,z;),i € {1,..., N} needs to be
generated from trajectories of (7.1), (7.2). The construction of this dataset represents
an important challenge, as the observer state z converges towards 7 (x) only after
a transient period whose length depends on D. This transient is not suitable for
gathering data to learn the transformation, since we do not have x ~ 7*(z) during
the transient. However, for autonomous nonlinear systems, the trajectories tend to
converge towards the w-limit sets [217] of the dynamics, so that the points (x;, z;)
after the transient tend to be close to these w-limit sets, leading to an uninformative
dataset. For example, if the system has a limit cycle, then even points selected
uniformly over X’ will be close to this limit cycle after the transient of the observer, so
that not all of the state-space is sampled. We solve this problem in Sec. 7.3.1.
Further, to calibrate the observer using the gain tuning criterion (7.10), the gain
matrix D needs to be parametrized by a scalar w,. Then, one can either learn a model
T," for each value of w, independently, or learn the transformation as a function
of w.. This yields a more difficult regression problem but avoids learning a new
transformation each time the pair (D, F) is changed. This is discussed in Sec. 7.3.3.

7.3.1 Backward-forward sampling

The choice of (xj, z;) pairs is critical to numerically approximate 7 *. In [116], inspired
by [218], the authors propose to first generate an arbitrary grid of initial conditions
(x(0),z(0)) using standard statistical methods such as Latin hypercube sampling
(LHS). Then, relying on the observer’s stability, meaning that it forgets its arbitrary
initial condition z(0) after some time, the dynamics x(t) and z(t) are simulated
forward in time for f., where ¢, is chosen large enough such that z(f.) is “close” to its
steady-state. Finally, the beginning of the solutions (x(t),z(t)) for t < t. is removed
from the dataset.

Unfortunately, this approach lets the dynamics dictate the position of the (x;, z;)
pairs: for large values of ¢, they are bound to be located close to the w-limit sets
of the system [217]. However, it is desirable to have training samples all over the
state-space, especially in regions where the function 7 * is less smooth and therefore
more difficult to approximate.

We propose the following methodology to generate an arbitrary dataset of (x;, z;)
pairs.

1. Choose N initial conditions x;(0) € X, i € {1,...,N} using a uniform grid,
LHS, or any other method.

2. Simulate the system X = f(x) from x;(0) backward in time for t. seconds.

3. If the system diverges in backward finite time, then f should be saturated
smoothly outside of X’ as suggested in [47], [114]. An example of saturation is
provided in Sec. 7.4.3.

2Note that 7 can also be approximated using the same methodology, but is not necessary for state
estimation. Hence, we focus on 7 *.

7.3. Numerical methods 131

4. Simulate both systems ¥ = f(x) and z = Dz + Fy with y = h(x), starting from
x;j(—t.) obtained previously and z;(—f.) = zo, where z(is an arbitrary initial
condition, for . seconds forward in time.

5. Set the training dataset to (x;,z;) = (x;(0),z;(0)) as obtained from backward-
forward simulation.

With this approach, the user can set the training points x; a priori and obtain the
corresponding z; without the system dynamics modifying the desired state-space
grid.

7.3.2 Trajectory-based sampling

Due to the curse of dimensionality, a large amount of data is necessary to learn 7*
with d, > 4. To limit the computations, one can generate data along realistic trajecto-
ries of the system. For this, we select a fixed number of initial conditions x;(0) (using
LHS or any other sampling scheme), use backward-forward sampling to obtain the
corresponding z;(0) values, then run a joint simulation of both the x and z trajectories
for a fixed time. Sampling along these trajectories yields a dataset of (x;, z;) values.
This is to be contrasted with backward-forward sampling: if the system has a limit
cycle, many of the samples will be close to it. However, an appropriate choice of
the initial states and trajectory length can counterbalance this effect. Overall, this
hybrid sampling scheme combining backward-forward sampling and samples along
trajectories helps build an informative dataset efficiently, by generating more data in
regions where the system goes more often, instead of densely sampling the whole
state-space.

7.3.3 Parametrization

To evaluate the proposed gain tuning criterion, we parametrize D by a scalar w.
Several parametrizations can be considered, for example choosing D as a given
diagonal matrix multiplied by a factor. In this chapter, we propose to use a d,-order
Bessel filter with cut-off frequency 27tw,, while F = 14,4, is fixed to guarantee the
controllability of (D, F). We choose D by setting its eigenvalues to be the filter’s
poles. For any set of poles (p1, ..., pn) where p poles are real and m poles are complex
conjugates such that n = p 4-2m, we choose D as the following block-diagonal matrix:

Droe 0 pi if p; is real
D = /Di = Rp: Spi) (712)
0 - Dpim (,gpi §RP1’) otherwise

The choice of parametrization influences the performance of the obtained models. In
this chapter, we focus on this Bessel parametrization because it provides a certain
physical interpretation — the behavior of Bessel filters is well-known in linear filtering
and characterized by the cut-off frequency — and because it shows good performance
in our experiments. We have also considered other possibilities such as Butterworth
filters, which lead to similar performance, or using a diagonal or identity matrix
multiplied by a factor, so that this factor is the parameter to be optimized. However,
it is still unclear how to pick a suitable form for D for a given system. Analyzing
these different possibilities further could be an interesting topic for future work.

We can then compute the gain tuning criterion (7.10) for different values of we.
For this, we can:

132 Chapter 7. Towards gain tuning for numerical KKL observers

(i) learn a model 7,* for each value of interest;

(ii) learn a family of transformations 7 * as functions of w,: the transformation to
approximate is then 7, (z, w,).

Option (i) requires training several neural networks independently for each value of
D, which can be tedious. Also, if the observer needs to be fine-tuned, a new model
will be required. Option (ii) yields a more challenging regression problem, hence
training will require more data and a careful design, but also yields a single model
for all values of D. The user can then choose an acceptable value of D for the use case
at hand and directly use the previous model. Alternatively, they can train again for
this specific value of D to obtain a more accurate approximation for this particular
choice. This approach can be advantageous for low-dimensional problems or when
the observer will be needed in different experimental conditions without re-training.
In the next section, we illustrate the relevance of criterion (7.10) for choosing D in
numerical simulations, using the proposed sampling scheme and parametrization.

7.4 Results

We now evaluate the proposed approach on simulations of three nonlinear systems®.

We demonstrate that D can be tuned a posteriori by optimizing a metric such as (7.10),
and show that it is a relevant criterion for choosing D so as to limit the noise sensitivity
of the state estimate. We learn the observer as a function of w, for the first two systems
(option (i)), and independently for different values of w, for the third system (option
(ii)). Note that the model can eventually be trained again after selecting w. to reach
higher accuracy.*

To simulate the first two systems, we use an explicit Runge-Kutta method of order
4 (RK4) with a fixed time step of 0.001 s; an explicit Runge-Kutta method of order 5(4)
with adaptive step size (RK4/5) [1] is used for the third system. This seems accurate
enough for backward-forward sampling in our examples, but future users should
make sure the chosen solver ensures low numerical error to simulate f backward
then forward in time for ¢, and obtain the corresponding value of z.

7.4.1 Reverse Duffing oscillator

The reverse Duffing oscillator

A3
{7{1 — y=x 713)
X2 = —X1

is a nonlinear system whose solutions evolve on invariant compact sets. We choose
a set of hundred even-spaced values for w,, in [0.03,1]. Then, LHS is used to select
N = 5,000 samples x; € [—1, 1]2 for each value of w,. The corresponding z; samples
are computed using backward-forward sampling as described in Sec. 7.3.1. The
training data is normalized to ease the optimization process. For each given w,, D is
computed following (7.12), while F = (1,1,1). The time ¢, after which we consider
that the observer has converged is set to ﬁ%D)’ where A, (D) is the minimum
absolute value of the real part of the eigenvalues of D, such that it is different for

3Note that for our empirical criterion (7.10) to be meaningful, the variables should be normal-
ized [219]. In these academic examples, the variables can be considered scaled.
“4Code to reproduce the results is available at github.com/monabf/learn observe KKL git.

https://github.com/monabf/learn_observe_KKL.git

7.4. Results 133

8 a(we)
n
6
4
2
0
0.0 0.2 0.4 0.6 0.8 1.0
We

Figure 7.2: Proposed gain tuning criterion (7.10) for the reverse Duffing oscillator,

divided by n = 10,000 points used to compute % (zj). The infinity and H, norms
are high for low values of w,, while the gradient of the approximate transformation
is high for high values. Choosing w, = 0.15 appears to be optimal w.r.t. this metric.

each value of w.. The neural networks are multi-layer perceptrons with five hidden
layers of size 50 and SiLU activation, which is Lipschitz continuous and shows good
performance. We train 7," by minimizing

LiO) =5 ¥ e (zwe) . (7.14)

XisZi,We;

We approximate 7 *(z, w.) over the training data as a function of w,, then compute
the criterion (7.10) for each value of w, over a uniform grid of n = 10, 000 test points
zj, also obtained with backward-forward sampling from a uniform grid in x. The
empirical criterion is shown in Fig. 7.2.

The choice of w, greatly influences the performance of the learned observer, as
seen in Fig. 7.3. In our simulations, lower values of w, lead to a long convergence time
and large overshoot, which corresponds to high values of |G;| ;.. However, low w,
also yields a high signal-to-noise ratio in z, such that the observer is relatively robust
to measurement noise. This is illustrated in the left column of Fig. 7.3. On the other
hand, high values of w, lead to a high gradient of 7,": the approximate transformation
is not smooth and therefore very sensitive to changes in z, hence to measurement
noise. The signal-to-noise ratio in z is also low due to the fast eigenvalues of D.
This is depicted at the bottom right of Fig. 7.3. In the central column of Fig. 7.3, we
select w, = 0.15 the optimal value according to criterion (7.10). This setting yields an
acceptable trade-off between these different aspects: both transient overshoot and
noise sensitivity remain limited. Hence, the proposed gain tuning criterion leads to
satisfying performance for this use case.

Further, the transformation seems more difficult to learn for low values of w, and
less able to extrapolate to unseen values, as seen in Fig. 7.4. A possible explanation
is that the existence and injectivity of 7 solution to (7.4) is only guaranteed for
eigenvalues of D with large enough real parts in absolute value [42], [47], such that
low values of w, can violate the existence guarantee for 7 *. We observe that higher

134 Chapter 7. Towards gain tuning for numerical KKL observers

0 Test trajectory for w, = 0.03, RMSE = 0.44 Test trajectory for w, = 0.15, RMSE = 0.055 Test trajectory for w. = 1, RMSE = 0.049

y
—
—

X1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Test trajectory for w, = 0.03, RMSE = 0.51 Test trajectory for w. = 0.15, RMSE = 0.063 Test trajectory for we = 1, RMSE = 0.29
15

3.0 i —
B T 10

0.5

= =00
0.0
-0.5
1.0 1.0
2.0 1.5
0 10 20 30 40 50
t
Test trajectory for we = 0.15, RMSE = 0.073 Test trajectory for w, = 1, RMSE = 0.42
vy 2.0
—
1.0
=00
1.0
-2.0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
t t t
(a) we =0.03 (b) we = 0.15 (©w:=1

Figure 7.3: Estimated trajectories of the reverse Dulffing oscillator for x(0) =

(0.6,0.6), without measurement noise at the top, with Gaussian measurement noise

N(0,0.25) in the middle and AN (0,0.5) at the bottom. For each setting, we com-

pute the root mean squared error (RMSE) over the whole trajectory. For low w,

(left), we observe long transients. For high w, (right), the estimate is sensitive to

high-frequency noise. For w. = 0.15 (middle), it is accurate and relatively robust to
measurement noise.

values lead to a better data fit, and better generalization capabilities, even when
learning a separate model for each value of w..

7.4.2 Van der Pol oscillator

The autonomous Van der Pol oscillator

X1 =x2
J'Cz = (1 — x%)xz — X1 Y ! ()

admits a unique, globally attractive limit cycle. However, its trajectories diverge in
finite backward time, rendering backward-forward sampling numerically intractable.

7.4. Results 135

/
/

/
£ 00 00 w
|
-05 -05 /
-1.0 8 S -10
“V
-10

—05 0.0 05 1.0 -1.0 —05 0.0 0.5 1.0

-1.0 -05 0.0 0.5 1.0
X x X

(a) we = 0.03 (b) we = 0.15 (Q)we=1

Figure 7.4: Two test trajectories of the reverse Duffing oscillator with x(0) = (0.6,0.6)

resp. x(0) = (1.5,1.5). The first one is inside the training domain X colored in grey,

the second one is outside. We initiate the observer at z(0) = T5(x(0)) to avoid the

transient for plotting. With low we, the transformation 7 is more difficult to learn
and less able to extrapolate to unseen points.

1.8 a(we)
1.6
1.4
1.2
1.0
0.8
0.6

0.4
0.0 0.2 0.4 0.6 0.8 1.0

We

Figure 7.5: Proposed gain tuning criterion (7.10) for the saturated Van der Pol
example, divided by n = 10,000. Choosing w, = 0.2 appears to be optimal w.r.t. this
metric.

As suggested in [47], [114], we rather consider the modified system

1 if |x| <r
g(x)=<¢0 if x| >r+d (7.16)
p(|x| —r) otherwise

where f is the dynamics function (7.15) and g is a Lipschitz saturation function. The
compact of interest in which we learn the observer is X = [~2.7,2.7]?, and we set
r = 3and d = 7 such that the set outside of which we saturate is {x € R?, |x| < 3} and
the set outside of which the saturated dynamics are zero is {x € R?, |x| < 10}. The
function p(+) is chosen as a polynomial of order three such that p(0) =1, p’(0) =0,
p(d) = 0and p'(d) = 0, which guarantees that ¢ be C.

This modified system has the same trajectories as (7.15) inside X but does not

136 Chapter 7. Towards gain tuning for numerical KKL observers

Test trajectory for w, = 0.03, RMSE = 0.25

Test trajectory for w, = 0.2, RMSE = 0.05 Test trajectory for w, = 1, RMSE = 0.15

5 30 0 5 10 15 20 25 30
t t t
Test trajectory for w. = 0.03, RMSE = 0.25 Test trajectory for w. = 0.2, RMSE = 0.05 Test trajectory for w. = 1, RMSE = 0.15
i e A . 3 ey
Aooh % oA i 4 °
2 H ’f A = £ 2 H | - £ ‘h 1 = R
Aoaooh Ao i 5 2) 1 ,/\ 3
1 R 1 I 1 1 ! J‘ 7l |
/ l\ ran1 1/’ ‘ﬁ f é /A /o ’/ | // ll i r L ‘k i
N Y W i] o w VA . I\ /’ | /‘ \
S R A N S W N/ W A A O A ORI 7 AR
-1 \\ ! \\ l’ \\ R’ \\ ; -1 \\ f‘ \ [‘ \\ 't \\ f -1 ! \ 1 A ’4) 1’ y [
VR VR VR YRRRVERRY R AV
. VY MM, I VMY \ i \ |
4 W iy | ¥ | i \ ? w i
1} ¥ ¥ iy Y [v i s V { 1
2 5 10 15 20 25 30 0 5 0 15 20 25 30 0 5 0 15 20 25 30
t t t
(@) w. = 0.03 (b) w, =0.2 ©Qw:=1

Figure 7.6: Estimated trajectories (x; above, x, below) of the Van der Pol oscillator

for x(0) = (0.1,0.1), with Gaussian measurement noise N(0,0.25). For low w;

(left), we observe long transients and an inaccurate model at the turning points

of the limit cycle. For high w, (right), the estimate is sensitive to high-frequency

noise. Choosing w, = 0.2 (middle) yields a compromise between the accuracy of the
learned transformation and its sensitivity to measurement noise.

0.7

0.6

Figure 7.7: Estimation error | — x| for a test trajectory of the Van der Pol oscillator
starting at x(0) = (0.1,0.1), with Gaussian noise A (0, 0.25) on the measurement.

diverge in backward time from any initial condition in X'. As investigated in [114], the
existence and injectivity of a suitable transformation 7 is guaranteed on &X', however
this transformation is not unique. In particular, it depends on the chosen saturation
function outside of X. However, due to the saturation, the broader space O + d,

7.4. Results 137

1

3 101
—
e
1072 3@
X c
.C
J ©
g
-1073 &
m
104

Figure 7.8: Heatmap of the state estimation error at w, = 0.2 on a uniform grid
over the training space [—2.7,2.7]% for the saturated Van der Pol oscillator. The
backward and forward sampling methodology enables a relatively homogenous
approximation of 7" over the chosen state-space grid. A test trajectory for x(0) =
(0.1,0.1) is also represented (true trajectory in blue, estimated in orange).

outside of which the dynamics are zero is backward invariant, such that there is a
unique admissible transformation 7 that is valid on all of O + 4.

As in Sec. 7.4.1, we choose a set of hundred even-spaced values for w,, in [0.03, 1].
Then, LHS is used to select N = 5,000 samples x; € [—2.7, 2.7]? for each value of w,,
the corresponding z; samples are computed with backward-forward sampling, D is
set to (7.12), F to (1, 1, 1), and ¢ to ﬁ%D)' The same NN model and loss function are
used, with the same hyperparameters.

The empirical criterion is shown in Fig. 7.5. Again, we observe the trade-off
between peaking represented in |G;|;» and smoothness represented in |Ge|,, and in
the gradient of 7,*. This is illustrated in Fig. 7.6 and 7.7. A heatmap of the estimation
error on a uniform grid over [—2.7,2.7]? is also represented in Fig. 7.8, along with a
test trajectory, showing that the performance of the observer is relatively homogenous
over the state-space thanks to backward-forward sampling.

7.4.3 Furuta pendulum

We then consider simulations of a rotational inverted pendulum or Furuta pendulum:
the Qube Servo 2 by Quanser [204], previously studied in Ch. 6 and illustrated
in Fig. 6.4. To generate the training data, we use the BlueRiverTech simulation
model available online. In this chapter, we focus on learning KKL observers for
autonomous systems. Hence, the scenarios of interest consist in lifting the pendulum
to some initial position, then dropping it and recording the corresponding stabilizing
trajectory. However, in this autonomous case, the provided simulation model reaches
its limits. Indeed, many nonlinear terms such as damping and friction effects, which
are not precisely known but negligible compared to the torque imposed by the
motor when the pendulum is actuated and the oscillations are small, now become
dominant. In particular, the value of 6; at the equilibrium is not determined by the

https://github.com/BlueRiverTech/quanser-openai-driver/blob/main/gym_brt/quanser/qube_simulator.py
https://github.com/BlueRiverTech/quanser-openai-driver/blob/main/gym_brt/quanser/qube_simulator.py

138 Chapter 7. Towards gain tuning for numerical KKL observers

=

60
50
40

30

1 2 3 4 5
We

Figure 7.9: Proposed gain tuning criterion (7.10) for the pendulum, divided by
n = 50,000. Choosing w, = 1.9 appears to be optimal w.r.t. this metric.

equations of the dynamics. Therefore, the value at which it stabilizes is free according
to the simulation model and only depends on unmodeled effects such as friction,
electromagnetic damping, and the wire holding the rotary arm back. For example, for
close enough initial conditions, the hardware system stabilizes at values of 8; close
to zero, whereas these values are much further away in simulation. We conclude
that the simulation model is highly sensitive to the values of the parameters and the
initial condition, particularly for the value of 6; at the equilibrium, even more so in
unactuated settings. To improve the accuracy of the simulations compared to the
hardware data, we re-identify its parameters (motor resistance, back electromotive
force constant, viscous damping coefficients in both joints) using a set of trajectories
recorded on the hardware® and least-squares optimization on both outputs (61, 65).
The predictions of this updated model are closer to the experimental data than the
original simulations. We use this somewhat improved model as our simulator for
generating the training data.

We model this system with a state of dimension four, two angles (61,6,) and
two angular velocities (91,92). We measure y = 6;; in this setting, the system is
locally observable (the observation matrix of its linearized version has rank dy) as
discussed in Ch. 6. However, its trajectories diverge in finite backward time. Hence,
as suggested in [47], [114], we consider the modified system

1= f(x)g(x),
1 if x| <r
g(x) =<0 if x| >r+d (7.17)
p(|x| —r) otherwise

where f is the dynamics model of the pendulum and g is a saturation function as in
Sec.7.4.2. We set r = 50 and d = 100. The function p(-) is a polynomial of order three
chosen such that g be C'.

Due to the curse of dimensionality, a large amount of data is necessary to learn

5Thanks to Sebastian Giedyk for his help collecting the experimental data.

7.4.

X1

X2

Results 139
15.0
12.5
10.0
=
[
« 75
5.0
2.5
0.0
0 2 4 6 8
t
Figure 7.10: Estimation error for a simulated test trajectory of the pendulum starting
at x(0) = (0.1,0.1,0,0), with Gaussian noise A (0,0.025) on the measurement. We
observe a high sensitivity to noise for high values of w. (RMSE = 2.6 for w, = 5).
In contrast, the sensitivity to noise is lower for low values of w,, but with long
transients, which leads to RMSE = 3.2 for w, = 1. The value w, = 1.9 compromises
between transient performance and sensitivity to noise (RMSE = 0.9).
0.8
0.8
0.6
0.6
04
0.4
02
- 02
0.0
0.0
—0.2
—0.2
0.4
04
—0.6
0 2 4 6 8 0 2 4 6 8
t t
S X2 r‘ A a 1 - R I X2
5 Ik . 5 g s
intly YT :
P dp REE NI |
MR NAN i AT T
RNV P PUTE LI i n
s VA eee=— g b R AN
i "l[”lu\’\, i “\,H‘! AT T
IR SRR LA ANE
VR oW
1‘{,-\} 1};%,‘5"'.1"\‘!
/? i
0 2 4 6 8 0 2 4 6 8
t t
(a) Simulation (b) Experiment

Figure 7.11: Estimated trajectories (¢ above, 6, below) of the Furuta pendulum with

we = 1.9, without measurement noise. The trajectory obtained from simulation (left)

leads to reasonable performance, while the one obtained from an experiment (right)
is not smooth.

140 Chapter 7. Towards gain tuning for numerical KKL observers

175
15.0
125

? 10.0

«

7.5

5.0 «

i
)

|

2.5

|
ARG

VA A I LT
VA1l Ly

0.0

Figure 7.12: Estimation error | — x| for an experimental test trajectory of the pendu-

lum, recorded on the hardware, with Gaussian noise N (0,0.025) on the measure-

ment. The accuracy is lower due to model errors, however, choosing w, = 1.9 again

appears as a suitable compromise between the influence of measurement noise and
the transient performance.

T*. Hence, we employ trajectory-based sampling as described in Sec. 7.3.2. We select
500 samples in the hypercube [[—0.5,0.5],[—0.5,0.5], [-0.1,0.1],[—0.1,0.1]] around
the upward equilibrium position, use backward-forward sampling to obtain the
corresponding z values, then run a joint simulation of both the x and z trajectories
for 8s, sampled with time steps of 0.04s. These trajectories then serve as training
data, after remapping 6; to [—7t, 7r] and 6, to [0, 27| for continuous data. This leads
to N = 10° points for each of 41 evenly spaced values of w, € [1,5].

Learning the transformation 7* as a function of w, as with the previous systems
quickly becomes intractable for this higher-dimensional system. Hence, we learn
an independent transformation for each considered value of w,, then compute the
criterion (7.10) to choose a final model, as presented in option (ii) above.

We compute the empirical criterion (7.10) for each value of w, independently on
a grid of n = 50, 000 points and obtain Fig. 7.9. The criterion fluctuates locally due
to the varying accuracy of the learned model for each w,. The minimum is reached
at w, = 1.9, which again seems to be a good compromise between long transients
and sensitivity to measurement noise. This is illustrated in Fig. 7.10 on a simulated
test trajectory: high values of w, lead to sensitivity to high-frequency measurement
noise, low values to long transients whenever the estimate is off, and w, = 1.9 to an
acceptable trade-off.

We also test the learned observer on real test trajectories recorded on the hardware.
The simulation model is inaccurate compared to the hardware data, as depicted in
Fig. 7.13, where it is shown that the measurement and the observer state z differ for
an experiment and the corresponding simulation. Therefore, the observer is bound to
yield a higher estimation error on the experimental test trajectories. In particular, the
estimated trajectory is not smooth, due to a combination of querying the observer
outside of the training set, model errors in that training data, and overfitting. This
is illustrated in Fig. 7.11. However, even if the accuracy of the estimated trajectory
is rather low, its response to measurement noise is similar, and exhibits the same
trade-offs as for simulation data. Hence, choosing w. = 1.9 as per the gain tuning

141

7.4. Results

© © w
T c ! T g T g !
g2 i 2 9 e N -
£ % , C £z , c T
23 ¢ e 8 3) 3 &
2E ¢ 2 2 28 £
o A m, © SSRNY)) © |SSIN9)) v © mu. %
“2 i i o 2 &
1 1 12 ==
1 1 > < O
1 1 .. e C
R, = Tt m .hau...v
uuuuuuuuuu < - = <t - n|:|1||||l||||n\ <+ - .m e
— o || === Lo @]
..... N N B ISR ..m
_ —_~ = e = = = ©
.................... Q) o mmmmz==s =)
..... 2 ——— Z = 2 o
P -~ ======----. | | eeemmemd === =
P i Ry ~
S I N o) m
. = R 1m
5 2
~ >_= V)
o =} = o e
mu -—
= o o o <
T 8 8 3 8 3 8§ 8 = g 8 g 3 S S) S S) S W m m
S & & 8 S o o o =] S S S =] S IS} IS} =] =] g =
T T [, _ _ o=
1z €z sz .hnw L =
9]
L E
o] T (e} e — e
e Eg | i £ g “ Z387
g g ! 3 8 ! g g } <= O
p= i & £ \ g B \ o)
R= \ H T) BoERC] > o
o o= 7 o= \ o= t L = .=
ol { o B Y W =] K = o
&g g&E %z > g3
M & B¢ © o ® g © SR < © a9
i b p .
. Ky i = | 2 T
1 I < H I= =
i i ! =t ' as g +
VTS /l\l\« -—
Teoe—— == c =
= D it (N N N NN SN oL, = <+ - v g
uuuuuuuuuu <+ - - _lz== <+ = m 3]
............ o~ <K
= P | N =ETEES N mlv .m
....... —_ = —
— L S T TP o P e o w g
....................... < L
coooreEsETT T T T T e— | T T c Q.
... <zZIIZ o o X
||||||||| I T N O O U e M M
e e K ©
e
. _w L
==~ o (=} = nb/
0 [Ie} (=) 1o} (=) Lo (=3 s} mo.m
© % o o o w © s 2 8 8 8 2 S 8 8 8 & 8 85 i m
S S ° S 2 S 9 S S s = 2 9 S 6 8 5 § & o
h iz vz

142 Chapter 7. Towards gain tuning for numerical KKL observers

criterion (7.10) appears to be the best possible compromise, as showcased in Fig. 7.12.

7.4.4 Conclusion on the supervised approach

These results constitute a first step towards gain tuning for nonlinear observers.
They can be considered as a proof of concept, showing that it is possible to tune the
gains of numerical KKL observers by parametrizing the gain matrix with a scalar
w, then optimizing this scalar w.r.t. certain metrics. Note that many such metrics
could be considered depending on the use case at hand. We propose the gain tuning
criterion (7.10), which displays relevant aspects of the trade-off faced when choosing
D as illustrated by our results, but other quantities could also be helpful.

7.5 Towards joint optimization

In the previous sections, we approximate the transformation 7* (and 7 if needed)
using supervised learning. This approach does not permit optimizing D jointly with
the transformations, as D needs to be fixed to build the dataset (x;,z;). To address
this shortcoming, we propose another approach based on an unsupervised learning
framework: autoencoders.

7.5.1 Autoencoders

Finding latent representations of the available data is an active research area in
machine learning. In this regard, most state-of-the-art techniques are based on
autoencoders (AE). These consist in two NNs that are trained jointly to learn the
projection of an input into a latent space and back into the original space. Their
aim is usually to find a meaningful, lower-dimensional representation of the data,
in order to ease downstream tasks such as analysis or classification [220], to find a
set of coordinates sufficient to predict the behavior of a system [29], [93], [104], or to
generate synthetic samples [221].

Autoencoders can also embed an input into a space with some known structure.
This structure can be probabilistic, as often for variational AEs [222], but can also
derive from some known behavior of the latent space. For example, in [145], the
authors propose an AE framework to learn a linear approximation of general non-
linear systems relying on the Koopman operator. The AE model approximates the
projection from the original coordinates to the corresponding Koopman coordinates,
in which the system behaves linearly, and back. The linear but infinite-dimensional
Koopman operator that acts in these coordinates is approximated by a matrix jointly
with the AE, by enforcing that the latent state follows linear dynamics driven by this
operator.

Similarly to [145], we propose to learn 7 and 7 as a deterministic AE such
that the latent variable z satisfies (7.2). As presented in Sec. 7.1.1 and contrarily to
standard AE models, under the assumptions at hand, the existence of suitable 7
and 7" is guaranteed with a fixed dimension d, and a fixed structure of the latent
space. Note that this idea has recently been proposed in [117] for discrete-time KKL
observers. We have investigated it in parallel, intending to compare supervised and
unsupervised approaches and to optimize D jointly with the NNs.

The AE is trained on N samples x; obtained from a chosen sampling method;
there is no need to sample z, which eases the data generation process and significantly
reduces the overall computational needs, as most of the computational power is spent
on simulating the training data. It consists of two neural networks: an encoder and a

7.5. Towards joint optimization 143

&>

O (e f(@i) ~ DT (=) ~ Fh(z:)

12

Figure 7.14: Structure of the autoencoder. The AE learns 7, 7* by minimizing the
loss (7.18) made up of the PDE (7.4) and the reconstruction error between £ and x.

decoder. The encoder 7y maps the input to the latent state z = 7y(x), and the decoder
T,* maps it back to a reconstructed input £ = 7,"(z). During training, the weights of
both NN concatenated into 6 are updated to minimize the following cost function:

oTs 2
Lae(6 ZAlxz To (To(x:))|* + 5y (Xi)f(xi) = DTo(xi) — Fh(x;)| . (7.18)

The cost function is made up of two parts. First, the reconstruction loss, i.e., the
mean squared error between x; and 7,*(7g(x;)), enforces x = T,*(Tg(x)). Second, the
PDE (7.4) on T is enforced on the grid of x;. Therefore, minimizing (7.18) boils down
to approximating an invertible solution of (7.4). The loss terms are weighted by the
scalar A. The architecture of the AE model is illustrated in Fig. 7.14. To train this
model, a grid of N data points x; is generated with LHS or any other method, then
the weights 0 are optimized using gradient-based methods to minimize (7.18). Note
that this type of loss function is closely related to physics-informed neural networks
(Sec. 3.2.2); insights from this line of work could be used to improve the performance
of this unsupervised method.

7.5.2 Jointly optimizing the gain matrix

One of the advantages of the AE model in Fig. 7.14 is that it enables optimizing D
jointly with the network weights. This has already been implemented in the context
of nonlinear system identification, e.g., in [159]. It can be done naturally by adding D
to the model parameters when minimizing (7.18).

We train the AE in the same settings as the previous experiments on the reverse
Duffing oscillator (7.13) with A = 0.1 and N = 70,000. We initialize D as (7.12) with
we = 0.2. After training, D has almost the same eigenvalues as at the initialization,
and we observe similar performance to the previous supervised method, as illustrated
in Fig. 7.15. Initializing with w, = 0.5 slightly deteriorates the performance (RMSE =
0.075 on the test trajectory in Fig. 7.15) while the eigenvalues of D slightly decrease
during training; they slightly increase when initializing with w. = 0.1 (RMSE = 0.095).
The results are depicted in Fig. 7.16. Looking at test trajectories with noise, similarly
to Fig. 7.3, seems to indicate that w, ~ 0.2 is also optimal for the AE model in terms
of robustness to measurement noise. Overall, the eigenvalues of D seem to move
towards real values around (—1, -2, —3), as seen in Fig. 7.16¢, which has the best

144 Chapter 7. Towards gain tuning for numerical KKL observers

Test trajectory, RMSE = 0.0657
1.0

emaeerwesm —— True
p 7 Estimated
0.5 P X
z
g 0.0 : |
i i
—05 ’
3
~1.0 .l
—0.5 0.0 0.5
X1

Figure 7.15: Estimated trajectory of the reverse Duffing oscillator starting at x(0) =

(0.6,0.6) using an autoencoder and optimizing D jointly with the model weights. D

is initialized as (7.12) with w, = 0.2, and the measurement is corrupted by Gaussian
noise NV (0,0.5) as in the bottom line of Fig. 7.3.

performance in terms of RMSE on test trajectories without noise. Setting D to the
corresponding diagonal matrix indeed yields similar performance.

The value of D obtained by joint optimization in the unsupervised setting is
different from a Bessel form, and could potentially lead to other parametrizations
of D. We investigate this by taking the optimal value obtained for w, = 0.5 (best
performance without noise), denoted Doyt and shown in Fig. 7.16¢, and run the
supervised approach again with D (k) = kDqpt where k is a free parameter. This new
parametrization based on multiplying the gain matrix as optimized by the AE model
by a factor leads to similar results as in Fig. 7.3. The corresponding gain criterion and
a test trajectory corresponding to the bottom line of Fig. 7.3 are shown in Fig. 7.17.
This again highlights that the parametrization of D is an important design choice,
and that more experiments should be conducted to explore the different possibilities.

Training the same settings with the Van der Pol oscillator leads to similar per-
formance as the supervised approach for high w, (around 1). However, for lower
values, the transformation again seems more demanding to learn, and we do not
manage to train it for w, < 0.5. This can be attributed to the existence and injectivity
of 7 being guaranteed only for high enough w, such that the transformation may
be less smooth for low w, and more difficult to approximate, even more so with
unsupervised learning techniques which are widely recognized as more complicated
to train.

7.5.3 Conclusion on the unsupervised approach

These experiments demonstrate that it is possible to learn KKL observers by training
an autoencoder from samples in X only, and to optimize the tuning parameters jointly
with the model weights. With this unsupervised method also, initializing D as (7.12)
with w,. ~ 0.2 yields good performance in the presence of noise.

7.6. Conclusion and outlook 145

04 * Initial * ops ¥ Initial) 2 . X Initial
¢ Final ’ ¢ Final . ® Final
0.50
02 s 1
0.25

—0.25
-02 -1
—0.50

04 -0.75 2

—25 -2.0 —15 -1.0 —05 -1.6 —14 -12 -1.0 -35 =30 -25 -20 -15 -10
R R R

(@) w, =0.1 (b) w, =0.2 (¢c) we =05

Figure 7.16: Evolution of the eigenvalues of D for the reverse Duffing oscillator in
the unsupervised setting. D is initialized as (7.12) for different values of w,, then
optimized jointly with the AE.

> a(k) Test trajectory for w, = 0.5, RMSE = 0.075
n
4 2 y
s— Y
1 [
3
s 0
2
-1
1
-2
0.5 1.0 1.5 2.0 0 10 20 30 40 50
k t
(a) Gain criterion (b) Test trajectory with w, = 0.5

Figure 7.17: Supervised approach for the reverse Duffing oscillator, with Dgpt ob-

tained by joint optimization and multiplied by a factor k. The empirical gain criterion

(left) is minimal for k = 0.5, which leads to a similar performance on a test trajectory
(right) as w, = 0.15 with the Bessel gain matrix in Fig. 7.3.

From then on, it is possible to add other terms to (7.18) to penalize other aspects,
e.g., noise sensitivity, by adding our gain tuning criterion (7.10) which depends both
on 0 and on D to the loss. This could be a good direction for future research, but
requires significant implementation efforts to implement cost functions resembling
(7.10) in automatic differentiation software such as PyTorch. Therefore, we leave this
open for future work, once more control-theoretic or signal analysis functions are
added to such software.

7.6 Conclusion and outlook

In this chapter, we tackle the problem of gain tuning for KKL observers of autonomous
nonlinear systems. We propose to numerically approximate the observer from simu-
lation data, as introduced in [116], with an improved backward-forward sampling
scheme. We parametrize the observer dynamics matrix D with a scalar w,, derive
an empirical criterion for tuning it, and demonstrate on numerical examples that it

146 Chapter 7. Towards gain tuning for numerical KKL observers

encompasses some relevant aspects of its influence on the performance. We propose
to either learn an observer for each value of w, of interest, or to directly learn a family
of models that also takes this parameter as an input.

Similarly to [117], [145], it is also possible to learn a model of 7 and 7 * jointly
using an autoencoder structure, such that the latent variable z satisfies (7.2). The cost
function is then made up of a reconstruction loss and a loss on the PDE (7.4) satisfied
by T, such that an invertible solution to (7.4) is approximated on a grid of samples
of x. This approach enables the user to optimize D jointly with the models 7y, 7,* and
to add terms to the cost functions to penalize other aspects, such as the criterion (7.10).
However, it is also more difficult to train than the supervised approach.

Further recent research aims at improving the accuracy of learning-based KKL
observers, which could be combined with the insights provided in this chapter
for future use. For example, in [118], the supervised and unsupervised settings
proposed above are mixed to learn a PINN: both 7y and 7," are learned jointly by
minimizing the AE loss (7.18), but supervised training points (x;, z;) are generated and
atermin |z; — Tp(x;)| is added to the AE loss. This problem formulation, along with
other practical considerations, lead to more accurate results than the supervised or
unsupervised methods taken separately. In [223], the learning problem is formulated
with NODEs, so that the parameters 6 are updated to fit the trajectory of £ = 7,"(z),
with Z = Dgz + Fy, to a true trajectory of the system. Dy is optimized jointly and
noise is added to the training data for more robustness. This also leads to satisfactory
results for the resulting numerical KKL.

Many questions remain open. As often in machine learning, it is unclear how to
sample the state-space to optimally generate the training set. Iterative active learning
procedures can be envisioned, for example by learning the observer, then resampling
in the parts of the state-space with the highest error, and learning again until the de-
sired accuracy is achieved everywhere. Such mesh refinement techniques [224] based
on a performance criterion, e.g., the gradient of 7* or the estimation error, could help
improve the performance of the obtained observer. However, they require computing
T at many points, which can be sped up e.g., with surrogate models [225], over a
grid of z; points which is necessarily irregular since they correspond to the originally
chosen x; points. Each new grid and corresponding model are also expensive to
compute. Hence, these considerations seem to induce extensive computations for
limited gain. Selecting the state-space grid a priori to achieve a given accuracy on the
transformations could also be considered, as investigated in [218], but assumptions
on the smoothness of 7 are needed.

Extending KKL observers to nonautonomous systems is investigated in [114];
adapting the learning-based methodology to such systems is also a topic for future
research. First attempts are proposed in [116], [223] for control-affine systems, for
which the transformation along an unseen control input can be derived from the
transformation learned with a given input trajectory. Another promising path could
be functional observers [115], where an observable function of the state is estimated
directly. This can be useful for output feedback, but also for extending the method to
nonlinear systems: if the input can be modeled by an auxiliary dynamical system,
then a functional observer can be built for the original state, i.e., a part of this extended
system, as a numerical KKL. However, this requires also sampling the auxiliary state
that generates the output; the curse of dimensionality and the resulting amount of
necessary data could hinder such approaches.

Analyzing the performance of the learned observer is also nontrivial. When
computing the estimation error over the state-space, a given error level in a given
region can either be caused by approximation errors (a purely numerical issue) or

7.6. Conclusion and outlook 147

by reduced observability in that region. It would be useful to understand how to
disentangle these two aspects, such that the performance of the approximate observer
can be characterized a priori. The methods investigated in Chapter 6 could be a first
step, as they enable analyzing distinguishability quantitatively in the state-space
using output data. Comparing the heatmap of the estimation error with a given
observer and the distinguishability heatmap should reveal in which regions the
observer could be tuned to reach high estimation accuracy, and in which regions this
is unlikely due to low distinguishability.

149

Chapter 8
Conclusion - version francaise

Les applications de 1’apprentissage automatique aux secteurs industriels sont por-
teuses de nombreuses promesses, allant d’éviter les temps de panne grace a la main-
tenance prédictive a I’automatisation de taches complexes a 1’aide de capteurs bon
marché et robustes. La combinaison de ces techniques avec les outils classiques de la
théorie des systemes et de la simulation numérique ouvre de nouvelles portes, comme
la possibilité de créer des jumeaux digitaux, c’est-a-dire des répliques numériques de
systémes physiques. Pour ce faire, la premiere étape nécessaire est de construire des
modeles de simulation fonctionnant presque en temps réel, par exemple en apprenant
des modeles d’ordre réduit avec Ansys DynaROM. Ensuite, le modéle numérique
peut étre affiné a I’aide de données expérimentales provenant du systéme physique.
Plus généralement, il y a un intérét croissant pour 1'exploitation des données générées
par les plateformes physiques, tout en utilisant la compréhension de la théorie des
systemes. Dans cette these, nous développons des méthodes génériques pour extraire
des informations des données expérimentales générées par un systeme dynamique.

Résumé

Dans la premiére partie, nous nous concentrons sur I’amélioration des modéles sous
forme d’état (SSM) avec des observations partielles. Dans le Ch. 4, nous supposons
une forme canonique observable spécifique et nous interconnectons un observateur
grand gain (HGO) avec un modéle de processus gaussien discret, qui est réguliére-
ment mis a jour avec les trajectoires d’état completes estimées par 1’observateur. En
tirant parti de la robustesse des observateurs grand gain aux erreurs de modele, nous
prouvons la convergence conjointe de l’état estimé et du modele dynamique. Cette
nouvelle approche permet d’associer des garanties théoriques et des capacités de
modélisation universelles. Remplacer le HGO par un filtre de Kalman étendu (EKF)
permet d’étendre la méthodologie a des représentations générales de 1’espace d’état, a
condition que le modele a priori soit raisonnablement précis. Cependant, les HGO et
les EKF présentent tous deux des limites pratiques, telles que la robustesse au bruit de
mesure et a 1’erreur de modéle. C’est pourquoi nous proposons une formulation plus
générale dans le Ch. 5, basée sur des équations différentielles ordinaires neuronales
(NODEs). Ce cadre flexible permet d’appliquer un large éventail de connaissances
préalables sur le SSM sous-jacent. En le combinant avec un modéle de reconnaissance
basé sur les observateurs de Kazantis-Kravaris / Luenberger (KKL) pour faire corre-
spondre les mesures a I’état latent initial de la NODE, on obtient une méthodologie
“end-to-end” pour I’apprentissage de la dynamique a partir d’observations partielles
avec différents degrés de connaissances préalables. Les méthodes proposées sont
générales et conduisent a des performances acceptables compte tenu des parametres
donnés

Dans la deuxieme partie, nous passons de l'identification du systéme a 1’estimation

150 Chapter 8. Conclusion - version francaise

de l'état. Dans le Ch. 6, nous examinons comment mesurer ’'observabilité des sys-
témes stochastiques non linéaires. Nous définissons la distinguabilité distribution-
nelle pour de tels systemes comme le fait d’avoir des distributions de sortie différentes,
et nous montrons qu’elle étend la notion déterministe. Nous proposons ensuite une
nouvelle quantification de la distinguabilité distributionnelle a partir des données de
sortie, en utilisant des méthodes a noyaux pour comparer les distributions a partir
d’échantillons. Nous appliquons également un test statistique pour déterminer a par-
tir de quel seuil deux distributions initiales peuvent étre considérées comme distinctes
avec un niveau de confiance élevé. Dans le chapitre Ch. 7, nous étudions le design
d’observateurs KKL pour les systémes non linéaires généraux. Nous nous appuyons
sur les observateurs KKL dits numériques, ou la transformation de 1’observateur
aux coordonnées physiques est apprise a partir de données de simulation, et nous
proposons un premier critére empirique pour calibrer la matrice de gain libre. Les
deux méthodes réduisent un probleme de dimension infinie, c’est-a-dire I'évaluation
de I'observabilité ou le calcul d"une transformation entre des représentations appro-
priées de l'espace d’état, a de nombreuses simulations numériques et des approches
“brute force”, c’est-a-dire la comparaison de distributions ou I'apprentissage d"une
approximation basée sur des échantillons. Cela permet de résoudre les probléemes
considérés en faible dimension.

Discussion

Les approches résumées ci-dessus ont été obtenues en combinant des résultats
théoriques de théorie du contrdle avec des concepts et des outils d’apprentissage
automatique, afin d’extraire des informations des données expérimentales sur le SSM
sous-jacent. L'association de ces deux points de vue permet d’aborder de nouveaux
problemes et conduit a de nouveaux résultats. Les preuves de concept fournies dans
cette thése sont suffisamment génériques pour étre adaptées a de nombreux cas
d’usage, cependant, davantage de travail théorique et de connaissances pratiques
sont nécessaires pour décider comment les adapter et maximiser les performances.

En particulier, la plupart des techniques d’apprentissage automatique et de théorie
du controle nécessitent, en pratique, une quantité importante de calibration et de
réglages. Les outils étudiés dans cette these automatisent certains aspects en fa-
vorisant des méthodes génériques, en s’appuyant sur des modeles universels tels
que les GP avec des noyaux exponentiels ou en ayant une dimension fixe pour 1’état
latent dans les modeles de reconnaissance KKL. Cependant, elles héritent toujours
du besoin de calibration : I'architecture du réseau neuronal, les hyperparametres du
noyau, le taux d’apprentissage, les gains de 1’observateur, etc, jouent tous un role
important, mais il n’est pas simple de les définir. Nous proposons une telle heuris-
tique pour le réglage des observateurs KKL numériques dans le Ch. 7, mais d’autres
choix tels que la forme de la matrice de gain restent non spécifiés. L'exécution des
méthodes proposées dans la pratique nécessite souvent une compréhension et des
astuces spécifiques a chaque cas.

Des travaux théoriques sont donc encore nécessaires pour comprendre et prédire
quand ces méthodes échoueront. C’est particulierement vrai lorsqu’on utilise des
modeles d’apprentissage profond, dont les performances sont encore difficiles a
prévoir. D’autres domaines de l’apprentissage automatique, tels que les méthodes
a noyau, ont récemment montré leur applicabilité pratique tout en étant théorique-
ment bien fondées, et en permettant plus facilement une analyse et des garanties
analytiques. L'extension de ces méthodes aux problemes étudiés dans cette theése,

Chapter 8. Conclusion - version frangaise 151

tels que I'apprentissage des résidus d"un modele préalable a partir d’observations
partielles comme dans le Ch. 5 ou la distinction entre des distributions a partir de
données comme dans le Ch. 6, pourrait étre une perspective intéressante. Par exem-
ple, I’élaboration d"un théoréme du représentant pour apprendre les SSM a partir
d’observations, comme indiqué dans la Sec. 5.7, pourrait conduire & des modéles
applicables en pratique et assortis de garanties.

Au cours de cette these, nous avons pu constater que la collecte de données
physiques est un processus cotiteux. C’est pourquoi la construction de simulateurs
haute fidélité pour générer des données virtuelles ou pour les utiliser en tant que
modeles a priori est d'un grand intérét. Néanmoins, les besoins informatiques restent
des problemes majeurs pour la plupart des méthodes basées sur I'apprentissage. Bien
que de nombreux outils modernes soient efficaces d"un point de vue informatique
(par exemple, I'entrainement rapide de réseaux de neurones par des méthodes de
descente de gradient stochastique), la génération, la collecte et la manipulation de
données passent toujours trés mal a I’échelle. Par exemple, ’apprentissage supervisé
d’un observateur numérique KKL devient impossible pour dx > 4 environ, en raison
de la nécessité d’échantillonner R% et R%:. Il est également important de se demander
si la quantité de calcul et l'utilisation associée des ressources nécessaires a 1’'exécution
de ces méthodes valent le gain de performance obtenu. Par exemple, I’entrainement
d’une NODE avec un modele de reconnaissance est un processus intensif en termes de
ressources informatiques et humaines ; il ne devrait étre entrepris que si des modeles
plus simples ne peuvent étre utilisés et si le gain attendu d"un modele dynamique
plus précis le justifie.

Nous avons également eu 'occasion d’appliquer ces idées a des cas d"usage plus
industriels, tels que les données Fluent dans le Ch. 4 ou les données Wandercraft
dans le Ch. 5. Ces cas plus complexes ont montré qu’il est nécessaire d’adapter nos
approches générales non seulement au systéme en question, mais aussi aux objectifs
du modeéle. Par exemple, la calibration des poles d’un observateur numérique KKL,
comme dans le Ch. 7, implique de connaitre les niveaux de bruit susceptibles d’étre
rencontrés et les priorités fixées. Dans le Ch. 7, nous proposons un critére empirique
qui établit un compromis entre la sensibilité au bruit de mesure et les performances
transitoires, mais d’autres cas d’"usage pourraient conduire a d’autres préférences
et donc a d’autres criteres. Les futurs utilisateurs devront donc réfléchir au type
d’informations qu’ils cherchent a extraire de leurs données expérimentales et a la
maniere dont le modeéle résultant sera utilisé.

Perspectives

Les travaux menés dans le cadre de cette thése peuvent étre étendus selon deux voies
principales. D’une part, on pourrait exploiter des résultats théoriques généraux pour
améliorer la performance des méthodes combinant théorie du contréle et apprentis-
sage automatique. Par exemple, des résultats d’optimisation peuvent étre mis a profit
pour améliorer l'identification des systemes formulée dans la premiere partie de la
these. Par exemple, il est démontré dans [151] que les longues trajectoires peuvent
faire diverger la fonction de cotit dans de tels problemes ; par conséquent, des trajec-
toires plus courtes conduisent a des conditions plus réalisables pour l'identification du
systeme. Ces connaissances sont utilisées dans le Ch. 5. Les résultats théoriques sur
les observateurs KKL justifient également les modéles de reconnaissance proposés
dans le Ch. 5 et les observateurs numériques du Ch. 7. D’autres résultats pour-
raient étre utilisés pour concevoir des stratégies d’échantillonnage plus informatives,

152 Chapter 8. Conclusion - version francaise

e.g., des garanties d’approximation sur la finesse de la grille nécessaire pour approx-
imer une transformation selon son degré de continuité, comme dans [218]. Il existe
peu de résultats théoriques décrivant les performances des méthodes d’apprentissage
profond pour des applications en théorie du contrdle [38], [39] ; ils pourraient étre
étendus, ou d’autres approches facilitant 1’analyse théorique, telles que les méthodes
a noyaux, pourraient étre envisagées.

D’autre part, il est possible de se concentrer sur des types particuliers de sys-
témes et de tirer parti de leurs caractéristiques spécifiques. Les systémes présentant
des invariances, par exemple conservant une fonction hamiltonienne le long des
trajectoires, ont fait I'objet d’'une grande attention, comme nous I’avons vu au Ch. 5.
D’autres invariances, telles que les symétries, pourraient étre exploitées, par exemple
en construisant des observateurs KKL invariants. Ceux-ci pourraient étre formés dans
une partie de 1’'espace d’état comme dans Ch. 7, puis étendus a d’autres parties grace
a leur invariance. Connaitre les propriétés de stabilité d'un systeme peut également
faciliter son identification, comme cela a été examiné dans [78], [164], et pourrait étre
combiné avec les considérations du Ch. 5.

Tout au long de cette thése, nous nous effor¢ons de développer des méthodes
génériques qui peuvent étre adaptées a de nombreux cas d’usage, en laissant de la
place a la flexibilité. Par exemple, la combinaison d"un HGO et d’un GP proposée
dans le Ch. 4 peut étre utilisée pour apprendre les résidus d"un modeéle a priori, ou
les modéles NODE proposés dans le Ch. 5 peuvent étre adaptés a un grand spectre
de connaissances physiques. Tout le code nécessaire pour reproduire les résultats est
open source et disponible en ligne ; voir la Sec. 2.2 pour une description détaillée.
Nous nous sommes efforcés de rendre ce code modulaire et facile a manipuler pour
de futurs utilisateurs. Nous encourageons donc tout lecteur a télécharger le code et a
utiliser les leviers fournis pour I’adapter a son propre cas d"usage.

153

Chapter 9
Conclusion

Applications of machine learning to industrial sectors carry many promises, from
avoiding breakdown time through predictive maintenance to automatizing complex
tasks based on cheap and robust sensors. Combining these techniques with classical
tools from system theory and numerical simulation opens new doors, such as the
possibility to create digital twins, i.e., numerical replicas of physical systems. For
this, the first necessary step is to build simulation models running nearly in real-time,
e.g., by learning reduced order models with Ansys DynaROM. Then, the numerical
model can be refined given experimental data from the physical system. More
generally, there is a rising interest in leveraging the data generated by physical
platforms, while making use of system theoretic understanding. In this thesis, we
develop generic methods for extracting information from experimental data generated by a
dynamical system.

Summary

In the first part, we focus on improving state-space models (SSMs) with partial obser-
vations. In Ch. 4, we assume a specific observable canonical form, and interconnect a
high-gain observer (HGO) with a discrete Gaussian process (GP) model, which is reg-
ularly updated with the full state trajectories estimated by the observer. Leveraging
the robustness to model errors of HGOs, we prove joint convergence of both the esti-
mated state and dynamics model. This novel approach enables associating theoretical
guarantees and universal modeling capabilities. Replacing the HGO with an extended
Kalman filter (EKF) extends the methodology to general state-space representations
given a reasonably accurate prior model. However, both HGOs and EKFs display
practical limitations, such as robustness to measurement noise resp. model error.
Therefore, we propose a more general formulation in Ch. 5 based on neural ordinary
differential equations (NODEs). This flexible framework can enforce a wide spectrum
of prior knowledge on the underlying SSM. Combining it with a recognition model
based on Kazantis-Kravaris / Luenberger (KKL) observers to map the measurements
to the initial latent state of the NODE yields an end-to-end framework for learning
dynamics from partial observations with varying degrees of prior knowledge. The
proposed methods are general and lead to acceptable performance given the wide
settings.

In the second part, we shift the focus from system identification to state estimation.
In Ch. 6, we examine how to measure the observability of nonlinear stochastic systems.
We define distributional distinguishability for such systems as having different output
distributions, and show it extends the deterministic notion. We then propose a novel
quantification of distributional distinguishability from output data, making use of
kernel methods to compare distributions from samples. We also apply a statistical test
to determine above which threshold two initial distributions can be considered distin-
guishable with high confidence. In Ch. 7, we investigate designing KKL observers for
general nonlinear systems. We build on so-called numerical KKL observers, where

154 Chapter 9. Conclusion

the transformation from the observer to the physical coordinates is learned from
simulation data, and propose a first empirical criterion to tune the free gain matrix.
Both methods reduce an infinite dimensional problem, i.e., assessing observability or
computing a transformation between suitable state-space representations, to many
numerical simulations and brute force approaches, i.e., comparing distributions or
learning an approximation based on samples. This renders the problems feasible in
low dimensions.

Discussion

The approaches summarized above have been obtained by combining theoretical
results from control theory with concepts and tools from machine learning, in order
to extract information from experimental data about the underlying SSM. Joining
these two views enables tackling new problems and leads to new results. The proofs
of concept provided in this thesis are generic enough to be adapted to many use cases,
however, more theoretical work and practical insight are necessary to decide how to
adapt them and maximize performance.

In particular, most techniques in both machine learning and control theory require
a significant amount of tuning in practice. The tools investigated in this thesis
automate some aspects by favoring generic methods, e.g., relying on universal models
such as GPs with squared exponential kernels or having a fixed dimension for the
latent state in KKL recognition models. However, they still inherit the need for tuning:
the architecture of the neural network, hyperparameters of the kernel, learning
rate, gains of the observer, etc, all play an important role, yet setting them is not
straightforward. Hence, heuristics that guide the choice of such parameters are
still needed; we propose such a heuristic for tuning numerical KKL observers in
Ch. 7, but other design choices such as the form of the KKL gain matrix remain
unspecified. Executing the proposed methods in practice often requires case-specific
understanding and “tricks”.

Thus, theoretical work is still needed to understand and predict when such meth-
ods will fail. This is especially true when utilizing deep learning models, whose
performance is still difficult to foretell. Other fields of machine learning such as
kernel methods have recently shown their practical applicability while being theoreti-
cally well-founded, and more easily allowing for analytical analysis and guarantees.
Extending these methods to the problems investigated in this thesis, such as learning
the residuals of a prior model from partial observations as in Ch. 5 or telling distribu-
tions apart from data as in Ch. 6, could be an interesting perspective. For example,
deriving a representer theorem for utilizing kernel Ridge regression to learn SSMs
from observations as discussed in Sec. 5.7 could lead to practically applicable models
that bear guarantees.

Over the course of this thesis, we have experienced firsthand that collecting phys-
ical data is an expensive process. Thus, building high-fidelity simulators to generate
virtual data or to be used as priors is of major interest. Nonetheless, scalability and
computational needs remain major issues for most learning-based methods. Though
many modern tools are computationally efficient (e.g., the fast training of neural net-
works through stochastic gradient descent methods), data generation, collection, and
manipulation are still strongly subject to the curse of dimensionality. For example,
training a numerical KKL observer in a supervised fashion becomes intractable for
dy > 4 approximately, due to the need to sample R% and R%:. Whether the amount
of computation and associated usage of resources necessary to run these methods are

Chapter 9. Conclusion 155

worth the obtained performance gain is also an open question. For instance, training
an NODE with a recognition model is an intensive process in both computational
and human resources; it should only be attempted if simpler models cannot be used,
and if the gain expected from a more accurate dynamics model justifies it.

We have also had the opportunity to apply our ideas to more industrial use cases,
such as the Fluent dataset in Ch. 4 or the Wandercraft dataset in Ch. 5. These have
shown that larger systems require tailoring our broad approaches not only to the
system at hand, but also to the objectives of the model. For example, tuning the poles
of a numerical KKL observer as in Ch. 7 involves knowing the noise levels that may
be encountered and the priorities that may be set. In Ch. 7, we propose an empirical
criterion that trades off sensitivity to measurement noise and transient performance,
but other use cases could lead to other preferences and therefore other criteria. Hence,
future users should reflect on the type of information they may seek to extract from
their experimental data, and on how the resulting model may be used.

Perspectives

The work conducted in this thesis can be further extended by pursuing two main
paths. On the one hand, one could exploit general theoretical results to enhance
the performance of methods combining control theory and machine learning. For
example, findings in optimization can be leveraged to improve system identification
as formulated in the first part of the thesis. It is shown in [151] that long trajectories
can lead the objective function in such problems to diverge; hence, shorter trajectories
lead to more feasible conditions for optimization-based system identification. This
knowledge is utilized in Ch. 5. Theoretical results on the KKL observer also enable
the recognition models proposed in Ch. 5 and the numerical observers from Ch. 7,
e.g., having an upper bound for the dimension 4, of the observer state and knowing
the transformation 7 is injective. Other findings could be drawn upon to design
more informative sampling strategies, e.g., approximation guarantees on the fineness
of the grid necessary to approximate a transformation based on its smoothness, as
in [218]. There are few theoretical results to describe the performance of deep learning
methods for applications in control theory [38], [39]; they could be further extended,
or other approaches facilitating the theoretical analysis, such as kernel methods, could
be envisioned.

On the other hand, one could focus on particular types of systems and leverage
their specific characteristics. Systems with invariances, e.g., that conserve a Hamilto-
nian function along trajectories, have drawn great attention, as discussed in Ch. 5.
Other invariances such as symmetries could be exploited, for example by building
invariant KKL observers. These could be trained in a part of the state-space as in
Ch. 7, then extended to other parts thanks to their invariance. Knowing the stability
properties of a system can also ease its identification, as examined in [78], [164], and
could be combined with the considerations in Ch. 5.

Throughout this thesis, we attempt to develop generic methods that can be
adapted to many use cases, by leaving room for flexibility. For example, the combina-
tion of HGO and GP model proposed in Ch. 4 can be used to learn the residuals of a
prior model, or the NODE models proposed in Ch. 5 can enforce a wide spectrum
of prior knowledge. All code needed to reproduce the results is open source and
available online; see Sec. 2.2 for a detailed description. We strive to make this code
modular and easy to manipulate for future users. Therefore, we encourage any reader

156 Chapter 9. Conclusion

to download the code and make use of the provided flexibilities to adapt it to their
own use case.

157

Bibliography

(1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]

J.R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,”
Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19-26, 1980.

H. van der Valk, H. Hafle, F. Moller, M. Arbter,]. L. Henning, and B. Otto, “A
taxonomy of digital twins,” in Proceedings of the 26th Americas Conference on
Information Systems, 2020.

F. Tao and Q. Qi, “Make More Digital Twins,” Nature, vol. 573, no. 7775,
pp- 490-491, 2019.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6,
pp- 422-440, 2021.

A. Aublet, F. N'Guyen, H. Proudhon, and D. Ryckelynck, “Multimodal data
augmentation for digital twining assisted by artificial intelligence in mechanics
of materials,” Frontiers in Materials, vol. 9, 2022.

A. Dubey, R. Relan, U. Lohse, and J. Szwedowicz, “A Nonlinear Dynamic
Reduced-Order Model for a Large Gas Turbine Outer Casing Low Cycle
Fatigue Prediction,” in Proceedings of the ASME Gas Turbine India Conference,
2021.

J. Tomasi, F. Le Bars, C. Shao, et al., “Patient-specific and real-time model
of numerical simulation of the hemodynamics of type B aortic dissections,”
Medical Hypotheses, vol. 135, p. 109477, 2020.

T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck, “Data Augmentation
and Feature Selection for Automatic Model Recommendation in Computa-
tional Physics,” Mathematical and Computational Applications, vol. 26, no. 1,
p. 17,2021,

T. Daniel, F. Casenave, N. Akkari, A. Ketata, and D. Ryckelynck, “Physics-
informed cluster analysis and a priori efficiency criterion for the construction
of local reduced-order bases,” Journal of Computational Physics, vol. 458, 2022.

G. El Haber, J. Viquerat, A. Larcher, et al., “Deep learning model to assist
multiphysics conjugate problems,” Physics of Fluids, vol. 34, no. 1, 2022.

T. Wang, X. Bao, I. Clavera, et al., “Benchmarking model-based reinforcement
learning,” Preprint arXiv:1907.02057, pp. 1-25, 2019.

J. Ibarz,]J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to
train your robot with deep reinforcement learning: lessons we have learned,”
International Journal of Robotics Research, pp. 1-24, 2021.

A. Fabisch, C. Petzoldt, M. Otto, and F. Kirchner, “A Survey of Behavior
Learning Applications in Robotics - State of the Art and Perspectives,” Preprint
arXiv:1906.01868, pp. 1-38, 2018.

D. Nguyen-Tuong and]. Peters, “Model learning for robot control: A survey,”
Cognitive Processing, vol. 12, pp. 319-340, 2011.

M. Viberg, “Subspace-based methods for the identification of linear time-
invariant systems,” Automatica, vol. 31, no. 12, pp. 1835-1851, 1995.

[29]

[30]

Bibliography

J. Schoukens and L. Ljung, “Nonlinear System Identification: A User-Oriented
Roadmap,” IEEE Control Systems Magazine, vol. 39, no. 6, pp. 28-99, 2019.

L. Ljung, System Identification: Theory for the User. Englewood Cliffs, New
Jersey: Prentice Hall PTR, 1987.

K. Schittkowski, Numerical Data Fitting in Dynamical Systems. Springer, Boston,
MA, 2002.

A.F. Villaverde, D. Pathirana, F. Frohlich, J. Hasenauer, and J. R. Banga, “A
protocol for dynamic model calibration,” Preprint arXiv:1902.11136, 2021.

A. Raue, M. Schilling, J. Bachmann, et al., “Lessons Learned from Quantitative
Dynamical Modeling in Systems Biology,” PLoS ONE, vol. 8, no. 9, 2013.

N. Galioto and A. A. Gorodetsky, “Bayesian system ID: optimal management
of parameter, model, and measurement uncertainty,” Nonlinear Dynamics,
vol. 102, pp. 241-267, 2020.

A. Wigren, J. Wéagberg, F. Lindsten, A. G. Wills, and T. B. Schon, “Nonlinear
System Identification: Learning While Respecting Physical Models Using a
Sequential Monte Carlo Method,” IEEE Control Systems Magazine, vol. 42, no. 1,
pp- 75-102, 2022.

J. Sjoberg, Q. Zhang, L. Ljung, et al., “Nonlinear black-box modeling in system
identification: a unified overview,” Automatica, vol. 31, no. 12, pp. 1691-1724,
1995.

J. Kocijan, Modelling and Control of Dynamic Systems Using Gaussian Process
Models (Advances in Industrial Control). Springer International Publishing,
2016.

M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-
efficient learning in robotics and control,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 2, pp. 408-423, 2015.

J. Umlauft, “Safe Learning Control for Gaussian Process Models,” Ph.D. dis-
sertation, Technische Universitat Miinchen, 2020.

A. A. Ahmadi, A. Chaudhry, V. Sindhwani, and S. Tu, “Safely learning dy-
namical systems from short trajectories,” in Proceedings of the 3rd Conference on
Learning for Dynamics and Control, vol. 144, 2021, pp. 498-509.

K. Champion, B. Lusch, J. Nathan Kutz, and S. L. Brunton, “Data-driven
discovery of coordinates and governing equations,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 116, no. 45, pp. 22 445-
22451, 2019.

J. Bakarji, K. Champion, J. N. Kutz, and S. L. Brunton, “Discovering Govern-
ing Equations from Partial Measurements with Deep Delay Autoencoders,”
Preprint arXiv:2201.05136, 2022.

A.Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “HiPPO: Recurrent memory with
optimal polynomial projections,” in Advances in Neural Information Processing
Systems, 2020.

A. P. Trischler and G. M. D’Eleuterio, “Synthesis of recurrent neural networks
for dynamical system simulation,” Neural Networks, vol. 80, pp. 67-78, 2016.

R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural Ordinary
Differential Equations,” in Advances in Neural Information Processing Systems,
2018, 6572-6583.

Bibliography 159

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissecting neural
ODEs,” in Advances in Neural Information Processing Systems, 2020, pp. 3952—
3963.

T. Bertalan, F. Dietrich, I. Mezi¢, and I. G. Kevrekidis, “On learning Hamilto-
nian systems from data,” Chaos, vol. 29, no. 12, 2019.

C. M. Legaard, T. Schranz, G. Schweiger, et al., “Constructing Neural Network-
Based Models for Simulating Dynamical Systems,” ACM Computing Surveys,
vol. 1, no. 1, 2021.

R. Wang and R. Yu, “Physics-Guided Deep Learning for Dynamical Systems:
A survey,” Preprint arXiv:2107.01272, 2021.

S. A. Faroughi, N. M. Pawar, C. Fernandes, S. Das, N. K. Kalantari, and S.
Kourosh Mahjour, “Physics-Guided, Physics-Informed, and Physics-Encoded
Neural Networks in Scientific Computing,” Preprint arXiv:2211.07377, 2022.

P. Tabuada and B. Gharesifard, “Universal Approximation Power of Deep
Residual Neural Networks via Nonlinear Control Theory,” in Proceedings of
the International Conference on Learning Representations, 2021.

K. Elamvazhuthi, B. Gharesifard, A. L. Bertozzi, and S. Osher, “Neural ODE
Control for Trajectory Approximation of Continuity Equation,” IEEE Control
Systems Letters, vol. 6, pp. 3152-3157, 2022.

M. Marchi, J. Bunton, B. Gharesifard, and P. Tabuada, “Safety and Stability
Guarantees for Control Loops with Deep Learning Perception,” IEEE Control
Systems Letters, vol. 6, pp. 1286-1291, 2022.

F. Abdollahi, H. A. Talebi, and R. V. Patel, “A stable neural network observer
with application to flexible-joint manipulators,” IEEE Transactions on Neural
Networks, vol. 17, no. 1, pp. 118-129, 2006.

P. Bernard, “Observer Design for Nonlinear Systems,” in Lecture Notes in
Control and Information Sciences, vol. 479, Springer International Publishing,
2019.

P. Bernard, V. Andrieu, and D. Astolfi, “Observer Design for Continuous-Time
Dynamical Systems,” Annual Reviews in Control, 2022.

A. Tornambé, “High-gain observers for non-linear systems,” International
Journal of Systems Science, vol. 23, no. 9, pp. 1475-1489, 1992.

A. Gelb, Applied Optimal Estimation. The MIT Press, 1974.

N. Kazantzis and C. Kravaris, “Nonlinear observer design using lyapunov’s
auxiliary theorem,” Systems & Control Letters, vol. 34, no. 5, pp. 241-247, 1998.

V. Andrieu and L. Praly, “On the existence of a Kazantzis-Kravaris/Luenberger
observer,” SIAM Journal on Control and Optimization, vol. 45, no. 2, pp. 422-456,
2006.

B. Scholkopf and A. J. Smola, Learning with Kernels - Support Vector Machines,
Regularization, Optimization, and Beyond (Adaptive Computation and Machine
Learning). The MIT Press, 2018.

M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Joint state
and dynamics estimation with high-gain observers and Gaussian process
models,” IEEE Control Systems Letters, vol. 5, no. 5, pp. 1627-1632, 2021.

160

[50]

[58]

[59]

[60]

[62]

[63]

[64]

Bibliography

M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio, “Recognition
Models to Learn Dynamics from Partial Observations with Neural ODEs,”
Transactions on Machine Learning Research, 2023.

P.-F. Massiani, M. Buisson-Fenet, F. Solowjow, F. Di Meglio, and S. Trimpe,
“Data-Driven Observability Analysis for Nonlinear Stochastic Systems,” Preprint
arXiv:2302.11979, 2023.

M. Buisson-Fenet, L. Bahr, and F. Di Meglio, “Towards gain tuning for numer-
ical KKL observers,” Preprint arXiv:2204.00318, 2022.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning.
The MIT Press, 2006.

M. A. Alvarez, D. Luengo, M. K. Titsias, and N. D. Lawrence, “Variational
inducing kernels for sparse convolved multiple output Gaussian processes,”
Preprint arXiv:0912.3268, pp. 1-22, 2009.

I. Steinwart and A. Christmann, Support Vector Machines. Springer, New York,
NY, 2008.

D. K. Duvenaud, “Automatic model construction with Gaussian processes,”
Ph.D. dissertation, University of Cambridge, Pembroke College, 2014.

J. Quifionero-Candela and C. E. Rasmussen, “A unifying view of sparse ap-
proximate Gaussian process regression,” Journal of Machine Learning Research,
vol. 6, pp. 1939-1959, 2005.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational Inference: A
Review for Statisticians,” Journal of the American Statistical Association, vol. 112,
no. 518, pp. 859-877, 2017.

M. K. Titsias, “Variational Learning of Inducing Variables in Sparse Gaus-
sian Processes,” in Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics, vol. 5, Clearwater Beach, Florida, 2009, pp. 567-574.

J. Hensman, A. G. Matthews, and Z. Ghahramani, “Scalable variational Gaus-
sian process classification,” in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, vol. 38, San Diego, CA, USA, 2015, pp. 351-
360.

M. E. Huber, “Recursive Gaussian process regression,” Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 3362-3366,
2013.

M. Liu, G. Chowdhary, B. Castra Da Silva, S. Y. Liu, and J. P. How, “Gaussian
Processes for Learning and Control: A Tutorial with Examples,” IEEE Control
Systems Magazine, vol. 38, no. 5, pp. 53-86, 2018.

T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model
predictive control for safe exploration,” Proceedings of the 57th IEEE Conference
on Decision and Control, pp. 6059-6066, 2018.

M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” Proceedings of the 28th International Confer-
ence on Machine Learning, pp. 465-472, 2011.

A. Doert, C. Daniel, D. Nguyen-Tuong, et al., “Optimizing long-term predic-

tions for model-based policy search,” Proceedings of the 1st Conference on Robot
Learning, vol. 78, pp. 227-238, 2017.

Bibliography 161

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design,” Proceedings of
the International Conference on Machine Learning, pp. 1015-1022, 2010.

A. Lederer, J. Umlauft, and S. Hirche, “Uniform Error Bounds for Gaussian
Process Regression with Application to Safe Control,” in Advances in Neural
Information Processing Systems, 2019, pp. 657-667.

M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively Learning Gaussian
Process Dynamics,” in Proceedings of the 2nd Conference on Learning for Dynamics
and Control, vol. 120, 2020, pp. 5-15.

A. Capone, G. Noske, J. Umlauft, T. Beckers, A. Lederer, and S. Hirche, “Local-
ized active learning of Gaussian process state space models,” in Proceedings of
the 2nd Conference on Learning for Dynamics and Control, vol. 120, 2020, pp. 160-
169.

R. Turner, M. P. Deisenroth, and C. E. Rasmussen, “State-Space Inference
and Learning with Gaussian Processes,” Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, pp. 868-875, 2010.

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth,
“Efficiently sampling functions from Gaussian process posteriors,” in Proceed-
ings of the 37th International Conference on Machine Learning, vol. 119, 2020,
pp. 10223-10233.

A. R. Geist and S. Trimpe, “Learning Constrained Dynamics with Gauss
Principle adhering Gaussian Processes,” in Proceedings of the 2nd Conference on
Learning for Dynamics and Control, 2020.

L. Rath, A. R. Geist, and S. Trimpe, “Using Physics Knowledge for Learn-
ing Rigid-body Forward Dynamics with Gaussian Process Force Priors,” in
Proceedings of the 5th Conference on Robot Learning, 2021, pp. 101-111.

A. R. Geist and S. Trimpe, “Structured learning of rigid-body dynamics : A
survey and unified view,” GAMM-Mitteilungen, no. 44:€202100009, 2021.

A. Besginow and M. Lange-Hegermann, “Constraining Gaussian Processes
to Systems of Linear Ordinary Differential Equations,” in Advances in Neural
Information Processing Systems, 2022.

K. Ensinger, F. Solowjow, M. Tiemann, and S. Trimpe, “Structure-preserving
Gaussian Process Dynamics,” Preprint arXiv:2102.01606, 2022.

J. Briiddigam, M. Schuck, A. Capone, S. Sosnowski, and S. Hirche, “Structure-
Preserving Learning Using Gaussian Processes and Variational Integrators,”
in Proceedings of the 4th Conference on Learning for Dynamics and Control, vol. 168,
2022.

J. Umlauft and S. Hirche, “Learning stochastically stable Gaussian process
state-space models,” IFAC Journal of Systems and Control, vol. 12, 2020.

A. Capone and S. Hirche, “Interval observers for a class of nonlinear systems
using Gaussian process models,” Proceedings of the European Control Conference,
pp. 1350-1355, 2019.

R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian process state-
space models,” vol. 4, 2014, pp. 3680-3688.

S. Eleftheriadis, T. F. Nicholson, M. P. Deisenroth, and]J. Hensman, “Identifica-
tion of Gaussian process state space models,” in Advances in Neural Information
Processing Systems, 2017, pp. 5310-5320.

162

[82]

[86]
[87]

[88]

[92]

[93]

[95]

[96]

Bibliography

A. Doerr, C. Daniel, M. Schiegg, et al., “Probabilistic recurrent state-space
models,” Proceedings of the 35th International Conference on Machine Learning,
J. Dy and A. Krause, Eds., pp. 1280-1289, 2018.

J. Lindinger, B. Rakitsch, and C. Lippert, Laplace Approximated Gaussian Process
State-Space Models, 2022.

S. Melchior, F. Berkenkamp, S. Curi, and A. Krause, “Structured Variational
Inference in Unstable Gaussian Process State Space Models,” in Proceedings of
the 2nd Conference on Learning for Dynamics and Control, vol. 120, 2020, pp. 147-
157.

A. D. Ialongo, M. Van Der Wilk, and C. E. Rasmussen, “Closed-form Inference
and Prediction in Gaussian Process State-Space Models,” in Advances in Neural
Information Processing Systems, 2017.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

S. Skansi, Introduction to Deep Learning - From Logical Calculus to Artifical Intelli-
gence. Springer, 2018.

G. B. Orr and K.-R. Miiller, Neural Networks: Tricks of the Trade (Lecture Notes
in Computer Science). Springer-Verlag Berlin Heidelberg, 1998.

Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, 372—376,
1983.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the 3rd International Conference on Learning Representations, 2015.

A. Giine,, G. Baydin, B. A. Pearlmutter, and J. M. Siskind, “Automatic Differ-
entiation in Machine Learning: a Survey,” Journal of Machine Learning Research,
vol. 18, no. 153, pp. 143, 2018.

M. Ekman, Learning Deep Learning: Theory and Practice of Neural Networks,
Computer Vision, NLP, and Transformers using TensorFlow. Addison-Wesley Pro-
fessional.

S. L. Brunton, J. L. Proctor, J. N. Kutz, and W. Bialek, “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 113, no. 15, pp. 3932-3937, 2016.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686-707, 2019.

C. Scharzenberger and]. Hays, “Learning To Estimate Regions Of Attrac-
tion Of Autonomous Dynamical Systems Using Physics-Informed Neural
Networks,” Preprint arXiv:2111.09930, 2021.

F. Masi and I. Stefanou, “Multiscale modeling of inelastic materials with
Thermodynamics-based Artificial Neural Networks (TANN),” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 398, 2022.

M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian Networks: Using Physics
as Model Prior for Deep Learning,” in Proceedings of the International Conference
on Learning Representations, 2019.

Bibliography 163

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian Neural Networks,”
in Advances in Neural Information Processing Systems, 2019.

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho,
“Lagrangian Neural Networks,” in ICLR 2020 Workshop on Integration of Deep
Neural Models and Differential Equations, 2020.

Y. D. Zhong, B. Dey, and A. Chakraborty, “Benchmarking Energy-Conserving
Neural Networks for Learning Dynamics from Data,” in Proceedings of the 3rd
Conference on Learning for Dynamics and Control, vol. 144, 2021, pp. 1218-1229.

A. Sosanya and S. Greydanus, “Dissipative Hamiltonian Neural Networks:
Learning Dissipative and Conservative Dynamics Separately,” Preprint arXiv:
2201.10085, 2022.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio, “On the Properties
of Neural Machine Translation: Encoder-Decoder Approaches,” in Proceedings
of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
2014, pp. 103-111.

F. Masi and I. Stefanou, “Evolution TANN and the discovery of the internal
variables and evolution equations in solid mechanics,” Preprint arXiv:2209.13269,
2022.

E. de Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-Bayes: Contin-
uous modeling of sporadically-observed time series,” in Advances in Neural
Information Processing Systems, 2019.

K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Scholkopf, “Kernel mean
embedding of distributions: A review and beyond,” Foundations and Trends in
Machine Learning, 2017.

A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Proba-
bility and Statistics. Springer New York, NY, 2004.

N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American
Mathematical Society, vol. 68, no. 3, pp. 337404, 1950.

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. Sriperumbudur, “Gaussian
Processes and Kernel Methods : A Review on Connections and Equivalences,”
Preprint arXiv:1807.02582, 2018.

B. Scholkopf, R. Herbrich, and A. J. Smola, “A Generalized Representer The-
orem,” in Proceedings of the 14th Annual Conference on Computational Learning
Theory, Springer Berlin Heidelberg, 2001, pp. 416-426.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, “A
kernel two-sample test,” Journal of Machine Learning Research, vol. 13, pp. 723-
773,2012.

F. Solowjow, D. Baumann, C. Fiedler, A. Jocham, T. Seel, and S. Trimpe, “A
Kernel Two-sample Test for Dynamical Systems,” Preprint arXiv:2004.11098,
2021.

E. D. Sontag, Mathematical Control Theory - Deterministic Finite Dimensional
Systems, 2nd ed. Springer-Verlag New York, 1998.

P. Bernard and V. Andrieu, “Luenberger Observers for Nonautonomous Non-
linear Systems,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 270-
281, 2019.

164

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Bibliography

M. Spirito, P. Bernard, and L. Marconi, “On the existence of robust functional
KKL observers,” in Proceedings of the American Control Conference, 2022.

L da Costa Ramos, F Di Meglio, L. F. Figuiera da Silva, P Bernard, and V Mor-
genthaler, “Numerical design of Luenberger observers for nonlinear systems,”
in Proceedings of the 59th Conference on Decision and Control, 2020, pp. 5435-5442.

J. Peralez and M. Nadri, “Deep Learning-based Luenberger observer design
for discrete-time nonlinear systems,” in Proceedings of the IEEE Conference on
Decision and Control, IEEE, 2021, pp. 4370-4375.

M. U. B. Niazi, J. Cao, X. Sun, A. Das, and K. H. Johansson, “Learning-
based Design of Luenberger Observers for Autonomous Nonlinear Systems,”
Preprint arXiv:2210.01476, 2022.

A. M. Dabroom and H. K. Khalil, “Discrete-time implementation of high-gain
observers for numerical differentiation,” International Journal of Control, vol. 72,
no. 17, pp. 1523-1537, 1999.

D. Astolfi, L. Marconi, L. Praly, and A. R. Teel, “Low-power peaking-free
high-gain observers,” Automatica, vol. 98, pp. 169-179, 2018.

A. Chakrabarty, A. Zemouche, R. Rajamani, and M. Benosman, “Robust Data-
Driven Neuro-Adaptive Observers with Lipschitz Activation Functions,” in
Proceedings of the 58th IEEE Conference on Decision and Control, 2019, pp. 2862—
2867.

A. Chakrabarty and M. Benosman, “Safe learning-based observers for un-
known nonlinear systems using Bayesian optimization,” Automatica, vol. 133,
2021.

M. Bin and L. Marconi, “Model Identification and Adaptive State Observation
for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control,
vol. 66, no. 12, pp. 5621 -5636, 2020.

P. M. Cohn, Further Algebra and Applications. Springer-Verlag London Ltd.,
2003.

Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, “Sliding Mode Control
and Observation,” in Control Engineering, Birkhduser, New York, 2016.

I. Thorson and D. Caldwell, “A nonlinear series elastic actuator for highly dy-
namic motions,” IEEE International Conference on Intelligent Robots and Systems,
pp. 390-394, 2011.

D. Auroux and J. Blum, “Back and forth nudging algorithm for data assimila-
tion problems,” Comptes Rendus I’ Académie des Sciences, Série I, Mathématique,
vol. 340, no. 12, pp. 873-878, 2005.

D. Auroux and J. Blum, “A nudging-based data assimilation method: The
Back and Forth Nudging (BFN) algorithm,” Nonlinear Processes in Geophysics,
vol. 15, no. 2, pp. 305-319, 2008.

E. Bullinger and F. Allgéwer, “An Adaptive High-Gain Observer,” in Proceed-
ings of the IEEE Conference on Decision and Control, 1997, pp. 4348-4353.

R. G. Sanfelice and L. Praly, “On the performance of high-gain observers
with gain adaptation under measurement noise,” Automatica, vol. 47, no. 10,
pp. 2165-2176, 2011.

N. Boizot, E. Busvelle, and J. P. Gauthier, “An adaptive high-gain observer for
nonlinear systems,” Automatica, vol. 46, no. 9, pp. 1483-1488, 2010.

Bibliography 165

[132]

[133]

[134]

[135]

[136]
[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

S. Sarkkd, “Bayesian Filtering and Smoothing,” in Institute of Mathematical
Statistics Textbooks, Cambridge University Press, 2010, pp. 1-232.

K. Esfandiari and M. Shakarami, “Bank of High-Gain Observers in Output
Feedback Control: Robustness Analysis Against Measurement Noise,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-12, 2019.

Y. Rubanova, R. T. Chen, and D. Duvenaud, “Latent ODEs for irregularly-
sampled time series,” in Advances in Neural Information Processing Systems,
2019.

F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu, “Neural Networks
with Physics-Informed Architectures and Constraints for Dynamical Systems
Modeling,” in Proceedings of the 4th Conference on Learning for Dynamics and
Control, vol. 168, 2022, pp. 263-277.

O. Nelles, Nonlinear System Identification. Springer, Berlin, Heidelberg, 2001.

L Praly, L Marconi, and A Isidori, “A new observer for an unknown harmonic
oscillator,” in Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems, 2006, pp. 996-1001.

Y. Yin, V. Le Guen,]. Dona, et al., “ Augmenting physical models with deep net-
works for complex dynamics forecasting,” in Proceedings of the 9th International
Conference on Learning Representations, 2021.

V. Mehta, I. Char, W. Neiswanger, et al., “Neural Dynamical Systems,” in
International Conference on Learning Representations - Integration of Deep Neural
Models and Differential Equations Workshop, 2020.

J. L. Wu, C. Michelén-Strofer, and H. Xiao, “Physics-informed covariance
kernel for model-form uncertainty quantification with application to turbulent
flows,” Computers and Fluids, vol. 193, 2019.

C. Yildiz, M. Heinonen, and H. Lahdesmiki, “ODE2VAE: Deep generative
second order ODEs with Bayesian neural networks,” in Advances in Neural
Information Processing Systems, 2019.

A. Norcliffe, C. Bodnar, B. Day, J. Moss, and P. Lio, “Neural ODE Processes,”
in Proceedings of the International Conference on Learning Representations, 2021.

T. Doyeon, K. Thomas, Z. Luo, J. W. Pillow, and C. D. Brody, “Inferring Latent
Dynamics Underlying Neural Population Activity via Neural Differential
Equations,” in Proceedings of the 38th International Conference on Machine Learn-
ing, 2021, pp. 5551-5561.

F. M. Abushaqra, H. Xue, Y. Ren, and E. D. Salim, “CrossPyramid: Neural

Ordinary Differential Equations Architecture for Partially-observed Time-
series,” Preprint arXiv:2212.03560, 2022.

B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nature Communications, vol. 9, 2018.

P. Bevanda, M. Beier, S. Kerz, A. Lederer, S. Sosnowski, and S. Hirche, “Koop-

manizingFlows: Diffeomorphically Learning Stable Koopman Operators,”
Preprint arXiv:2112.04085, 2021.

J. Hwang, J. Choi, H. Choi, K. Lee, D. Lee, and N. Park, “Climate Modeling
with Neural Diffusion Equations,” Preprint arXiv:2111.06011, 2021.

M. Alexe and A. Sandu, “Forward and adjoint sensitivity analysis with con-
tinuous explicit Runge-Kutta schemes,” Applied Mathematics and Computation,
vol. 208, no. 2, pp. 328-346, 2009.

166

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Bibliography

A. Sandu, D. N. Daescu, and G. R. Carmichael, “Direct and adjoint sensitivity
analysis of chemical kinetic systems with KPP: Part I - Theory and software
tools,” Atmospheric Environment, vol. 37, no. 36, pp. 5083-5096, 2003.

H. Aliee, F.]. Theis, and N. Kilbertus, “Beyond Predictions in Neural ODEs:
Identification and Interventions,” Preprint arXiv:2106.12430, 2021.

A. H. Ribeiro, K. Tiels, J]. Umenberger, T. B. Schon, and L. A. Aguirre, “On the
smoothness of nonlinear system identification,” Automatica, vol. 121, 2020.

D. Georges, “Machine Learning for Receding Horizon Observer Design :
Application to Traffic Density Estimation,” in Proceedings of the 1st Virtual IFAC
World Congress, Berlin, Germany, 2020.

E. Dupont, A. Doucet, and Y. W. Teh, “Augmented Neural ODEs,” in Advances
in Neural Information Processing Systems, 2019.

M. Chalvidal, M. Ricci, R. VanRullen, and T. Serre, “Go with the Flow: Adap-
tive Control for Neural ODEs,” in Proceedings of the International Conference on
Learning Representations, 2021.

A. Norcliffe, C. Bodnar, B. Day, N. Simidjievski, and P. Lio, “On second order
behaviour in augmented neural ODEs,” in The Symbiosis of Deep Learning and
Differential Equations Workshop (NeurIPS 2021), 2021.

I. Ayed, E. D. Bezenac, A. Pajot, and P. Gallinari, “Learning the Spatio-Temporal
Dynamics of Physical Processes from Partial Observations,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020,
pp. 3232-3236.

A. Schlaginhaufen, P. Wenk, A. Krause, and F. Dorfler, “Learning Stable Deep
Dynamics Models for Partially Observed or Delayed Dynamical Systems,” in
Advances in Neural Information Processing Systems, 2021.

T. Kailath, Linear Systems. Englewood Cliffs, New Jersey: Prentice Hall PTR,
1980.

S. Janny, V. Andrieu, M. Nadri, and C. Wolf, “Deep KKL: Data-driven Output
Prediction for Non-Linear Systems,” in Proceedings of the IEEE Conference on
Decision and Control, 2021.

S. Janny, Q. Possamai, L. Bako, M. Nadri, and C. Wolf, “Learning Reduced
Nonlinear State-Space Models : an Output-Error Based Canonical Approach,”
in Proceedings of the 61st IEEE Conference on Decision and Control, 2022.

A. Gu, K. Goel, and C. Ré, “Efficiently Modeling Long Sequences with Struc-
tured State Spaces,” in Proceedings of the International Conference on Learning
Representations, 2022.

A. Gu, I. Johnson, K. Goel, et al., “Combining Recurrent, Convolutional, and
Continuous-time Models with Linear State-Space Layers,” in Advances in
Neural Information Processing Systems, 2021, pp. 572-585.

J. Eichelsdorfer, S. Kaltenbach, and P.-S. Koutsourelakis, “Physics-enhanced
Neural Networks in the Small Data Regime,” Workshop on Machine Learning
and the Physical Sciences (NeurIPS 2021), 2021.

G. Manek and J. Zico Kolter, “Learning stable deep dynamics models,” in
Advances in Neural Information Processing Systems, 2019.

Y. D. Zhong, B. Dey, and A. Chakraborty, “Symplectic ODE-Net: Learning
Hamiltonian Dynamics with Control,” in International Conference on Learning
Representations, 2020.

Bibliography 167

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

S. Massaroli, M. Poli, M. Bin, J. Park, A. Yamashita, and H. Asama, “Stable
Neural Flows,” Preprint arXiv:2003.08063, 2020.

M. Zakwan, L. Di Natale, B. Svetozarevic, P. Heer, C. N. Jones, and G. Fer-
rari Trecate, “Physically Consistent Neural ODEs for Learning Multi-Physics
Systems,” Preprint arXiv:2211.06130, 2022.

K. L. Course, T. W. Evans, and P. B. Nair, “Weak Form Generalized Hamilto-
nian Learning,” in Advances in Neural Information Processing Systems, 2020.

M. Zhu, J. Moss, and P. Lio, “Modular Neural Ordinary Differential Equa-
tions,” Preprint arXiv:2109.07359v2, 2019.

B. Winkel. “2017 - Gustafson, G. B. - Differential Equations Course Materials.”
(2017), [Online]. Available: https://www.simiode.org/resources/3892.

D. Karlsson and O. Svanstrom, “Modelling Dynamical Systems Using Neural
Ordinary Differential Equations,” Master’s thesis in Complex Adaptive Sys-
tems, Chalmers University of Technology, Department of Physics, Tech. Rep.,
2019.

Q. Clairon and A. Samson, “Optimal control for estimation in partially ob-
served elliptic and hypoelliptic linear stochastic differential equations,” Statis-
tical Inference for Stochastic Processes, vol. 23, pp. 105-127, 2020.

M. Vigne, “Estimation and Control of the Deformations of an Exoskeleton
using Inertial Sensors,” Ph.D. dissertation, Mines ParisTech - Université PSL,
2021.

A.J. Krener, “The Convergence of the Extended Kalman Filter,” in Directions
in Mathematical Systems Theory and Optimization - Lecture Notes in Control and
Information Sciences, vol. 286, Springer-Verlag Berlin Heidelberg, 2003, pp. 173-
182.

A. Dulny, A. Hotho, and A. Krause, “NeuralPDE: Modelling Dynamical
Systems from Data,” Preprint arXiv:2111.07671, 2021.

X. Xu, A. Hasan, K. Elkhalil, J. Ding, and V. Tarokh, “Characteristic Neural
Ordinary Differential Equations,” Preprint arXiv:2111.13207, 2021.

C. Saunders, A. Gammerman, and V. Vovk, “Ridge Regression Learning Algo-
rithm in Dual Variables,” in Proceedings of the 15th International Conference on
Machine Learning, 1998, pp. 515-521.

Z.5zabo, Z. Szab6, H. S.-c. Kernel, and M. Advances, “Hard Shape-Constrained
Kernel Machines,” in Advances in Neural Information Processing Systems, 2020.

P.-C. Aubin-Frankowski and Z. Szabo, “Handling Hard Affine SDP Shape
Constraints in RKHSs,” no. 1955, 2021.

P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential
equations for irregular time series,” in Advances in Neural Information Processing
Systems, 2020.

P. Hegde, C. Yildiz, H. Lahdesmaki, S. Kaski, and M. Heinonen, “Variational
multiple shooting for Bayesian ODEs with Gaussian processes,” in Proceedings
of the 38th Conference on Uncertainty in Artificial Intelligence, 2022, pp. 790-799.
D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches.
John Wiley & Sons, 2006.

R. Li, Q. Zhang,]. Zhang, and T. Chu, “Distributional observability of proba-
bilistic Boolean networks,” Systems & Control Letters, 2021.

https://www.simiode.org/resources/3892

168

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Bibliography

E. Fornasini and M. E. Valcher, “Observability and Reconstructibility of Prob-
abilistic Boolean Networks,” IEEE Control Systems Letters, vol. 4, pp. 319-324,
2020.

R. Zhou, Y. Guo, and W. Gui, “Set reachability and observability of probabilis-
tic boolean networks,” Automatica, 2019.

I. Hwang, H. Balakrishnan, and C. Tomlin, “Observability criteria and estima-
tor design for stochastic linear hybrid systems,” in Proceedings of the European
Control Conference, 2003.

W. Zhang and B.-S. Chen, “On stabilizability and exact observability of stochas-
tic systems with their applications,” Automatica, vol. 40, pp. 87-94, 2004.

H. Sun and M. Li, “Exact observability /exact detectability and spectrum
assignment of stochastic systems,” in World Congress on Intelligent Control and
Automation, 2010, pp. 3786-3790.

N. Powel and K. A. Morgansen, “Empirical Observability Gramian for Stochas-
tic Observability of Nonlinear Systems,” 2020, Preprint arXiv:2006.07451.

Y. Sunahara, S. Aihara, and M. Shiraiwa, “The stochastic observability for
noisy non-linear stochastic systems,” International Journal of Control, pp. 461—
480, 1975.

V. Dragan and T. Morozan, “Stochastic observability and applications,” IMA
Journal of Mathematical Control and Information, vol. 21, pp. 323-344, 2004.

N. D. Powel and K. A. Morgansen, “Empirical observability Gramian rank con-
dition for weak observability of nonlinear systems with control,” in Proceedings
of the 54th IEEE Conference on Decision and Control, IEEE, 2015, pp. 6342-6348.

C. Himpe. “Emgr—The Empirical Gramian Framework.” (2018), [Online].
Available: https://www.mdpi.com/1999-4893/11/7/91 (visited on 05/31/2022).

C.-T. Chen, Linear System Theory and Design, 3rd ed. Oxford University Press,
1999.

A.R. Liu and R. R. Bitmead, “Stochastic observability in network state estima-
tion and control,” Automatica, vol. 47, pp. 65-78, 2011.

Y. Subasi and M. Demirekler, “Quantitative measure of observability for linear
stochastic systems,” Automatica, vol. 50, pp. 1669-1674, 2014.

L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of conditional
distributions: A unified kernel framework for nonparametric inference in
graphical models,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 98-111,
2013.

K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule: Bayesian inference
with positive definite kernels,” The Journal of Machine Learning Research, vol. 14,
no. 1, pp. 3753-3783, 2013.

K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Scholkopf, and
A.J. Smola, “Integrating structured biological data by kernel maximum mean
discrepancy,” Bioinformatics, vol. 22, no. 14, pp. 49-57, 2006.

B. K. Sriperumbudur, K. Fukumizu, and G. R. G. Lanckriet, “Universality,
Characteristic Kernels and RKHS Embedding of Measures,” Journal of Machine
Learning Research, 2011.

https://www.mdpi.com/1999-4893/11/7/91

Bibliography 169

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

B. Efron, “Bootstrap methods: Another look at the jackknife,” in Breakthroughs
in Statistics: Methodology and Distribution. Springer New York, 1992, pp. 569—
593.

M. J. Aburn and Y. Ram, Numerical integration of stochastic differential equations
(SDEs), Accessed Sept. 7, 2022, 2022.

D. Astolfi, R. Postoyan, and D. Nesic, “Uniting local and global observers for
the state estimation of nonlinear continuous-time systems,” in Proceedings of
the 56th IEEE Conference on Decision and Control, 2018, pp. 3039-3044.

Quanser, Quanser courseware and resources, https: // www.quanser.com/ products/
qube-servo-2/,2022. (visited on 07/12/2022).

D. Luenberger, “Observers for multivariable systems,” IEEE Transactions on
Automatic Control, vol. 11, no. 2, pp. 190-197, 1966.

R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory,” Journal of Basic Engineering, vol. 83, pp. 95-108, 1 1961.

G. Bornard and H. Hammouri, “A high gain observer for a class of uniformly
observable systems,” in Proceedings of the 30th IEEE Conference on Decision and
Control, 1991, pp. 1494 —1496.

H. K. Khalil and L. Praly, “High-gain observers in nonlinear feedback control,”
International Journal of Robust and Nonlinear Control, vol. 24, pp. 993-1015, 2014.

A.]. Krener, “The convergence of the Extended Kalman Filter,” in Directions in
mathematical systems theory and optimization, Springer-Verlag Berlin Heidelberg,
2003, pp. 173-182.

M. Maggiore and K. M. Passino, “A separation principle for a class of non-uco
systems,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1122-1133,
2003.

N. Henwood, “Estimation en ligne de parametres de machines electriques
pour véhicule en vue d"un suivi de la température de ses composants,” Ph.D.
dissertation, Mines ParisTech, 2014.

H. Toivonen, “Signal and system norms,” Lecture Notes for the Course " Advanced
Control Methods”, 2010.

K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks:
Analysis and efficient estimation,” Advances in Neural Information Processing
Systems, pp. 3835-3844, 2018.

A. McGlinchey and O. Mason, “Bounding the 12 sensitivity for positive linear
observers,” in Proceedings of the European Control Conference, 2018, pp. 1214—
1219.

S. Nikiin, “Sensitivity of Luenberger Observers, e-Oberservability and Uncer-
tainty Relations,” Universitdt Kaiserslautern - Fachbereich Mathematik, Tech.
Rep., 1992.

J. W. Xu, D. Erdogmus, and J. C. Principe, “Minimum error entropy Luen-
berger observer,” in Proceedings of the American Control Conference, IEEE, 2005,
pp. 1923-1928.

N. Rouche, P. Habets, and M. Laloy, Stability theory by Liapunov’s direct method.
Springer New York, NY, 1977, vol. 22.

L. Marconi and L. Praly, “Uniform practical nonlinear output regulation,”
IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1184-1202, 2008.

https://www.quanser.com/products/qube-servo-2/
https://www.quanser.com/products/qube-servo-2/

170

[219]

[220]

[221]

[222]

[223]

[224]

[225]

Bibliography

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and
Design. John Wiley & Sons, 2005.

M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in autoencoder-
based representation learning,” in Third workshop on Bayesian Deep Learning
(NeurIPS 2018), 2018.

C. Doersch, “Tutorial on Variational Autoencoders,” Preprint arXiv:1606.05908,
pp- 1-23, 2016.

D. P.Kingma and M. Welling, “ Auto-Encoding Variational Bayes,” International
Conference on Learning Representations, 2013.

K. Miao and K. Gatsis, “Learning Robust State Observers using Neural ODEs
(longer version),” Preprint arXiv:2212.00866, 2022.

K. Pons and M. Ersoy, “Adaptive mesh refinement method . Part 1 : Automatic
thresholding based on a distribution function,” HAL preprint hal-01330679,
2016.

K. K. Vu, C. Ambrosio, Y. Hamadi, and L. Liberti, “Surrogate-based methods
for black-box optimization,” International Transactions in Operational Research,
vol. 24, no. 3, pp. 393-424, 2017.

RESUME

La modélisation et la simulation numérique de processus complexes sont aujourd’hui des éléments essentiels du dévelop-
pement industriel. De par la récente augmentation des capacités de génération, de collecte et de traitement des données,
les méthodes basées sur I'apprentissage apparaissent aujourd’hui comme un complément prometteur a la modélisation
physique. Unir ces deux points de vue permettrait notamment de créer des jumeaux digitaux : des reproductions nu-
mériques exactes d’'objets physiques combinant un modéle de simulation haute-fidélité et des données expérimentales
recueillies sur le systéme réel. Cependant, les données disponibles sur les plateformes physiques sont généralement
bruitées et tous les états ne peuvent pas étre mesurés. Notre objectif est d’extraire des informations de ces données
expérimentales sur le modéle sous forme d’état sous-jacent.

D’'une part, si le systeme doit étre identifié a partir des données, cette information peut prendre la forme d’'un modele
dynamique. En raison de la nature partielle des observations, il est nécessaire d’estimer conjointement I'état sous-jacent
et sa dynamique. Nous exploitons des concepts d’estimation d’état dans des méthodes modernes d’apprentissage de la
dynamique pour réaliser I'identification du systéme a partir de ces observations, d’abord pour une forme spécifique de
systemes permettant des garanties théoriques, puis dans un cadre plus général. D’autre part, ces informations peuvent
porter sur I'estimation d’état elle-méme. Nous proposons d’analyser I'observabilité a partir des données de sortie en
utilisant des outils statistiques. Nous tirons ensuite parti des techniques modernes d’apprentissage pour construire des

observateurs numérigues pour les systemes non linéaires.

MOTS CLES

Identification de systémes, Apprentissage automatique, Données expérimentales, Design d’observateurs,
Jumeaux numériques

ABSTRACT

Numerical simulation and modeling of complex processes is a critical part of industrial development. With the recent in-
crease in data generation, collection and processing capabilities, learning-based methods appear as a promising addition
to physics-based modeling. Uniting both views is an appealing prospect, e.g., to create digital twins: exact numerical re-
plicas of physical objects combining a high-fidelity simulation model with experimental data gathered on the real system.
However, the data available from physical platforms may be noisy and not cover all state variables. Our aim is to extract
information from this experimental data about the underlying state-space model that explains it.

On the one hand, if the system needs to be identified from data, this information can take the form of a dynamics model.
Due to the partial nature of the observations, it is necessary to jointly estimate the underlying latent state and its dynamics.
We leverage concepts from state estimation in modern dynamics learning methods to achieve system identification from
these observations, first for a specific form of systems allowing for theoretical guarantees, then in a more general setting.
On the other hand, this information can relate to state estimation itself. We draw on machine learning techniques to
enable system theoretic analysis from the measurements. We then propose to analyze observability from output data and

to leverage modern machine learning techniques to build numerical observers for general nonlinear systems.

KEYWORDS

System identification, Machine learning, Experimental data, Observer design, Digital twins

	Abstract
	Résumé
	Introduction - version française
	Travaux connexes
	Structure de la thèse
	Publications

	Introduction
	Related work
	Outline of the thesis
	Publications

	Mathematical tools
	Learning dynamics with Gaussian processes
	Preliminaries on Gaussian processes
	Sparse approximations

	Gaussian process state-space models
	Physical priors in GPSSMs
	Joint inference and learning for GPSSMs

	Deep learning for dynamical systems
	Introduction to feed-forward neural networks
	Neural networks for physical systems
	Physics-informed neural networks
	Recurrent neural networks
	Neural ordinary differential equations

	Kernel methods
	Reproducing kernel Hilbert spaces
	Statistical testing with kernels

	The Katzantis-Kravaris/Luenberger observer
	Autonomous KKL observers
	Extensions to nonautonomous systems
	Numerical KKL observers

	I Nonlinear observer theory for dynamics model learning
	Joint state and dynamics estimation in the observable canonical form
	Introduction
	Problem formulation and proposed framework
	High-gain observer
	Reminder on Gaussian processes
	Learning method

	Theoretical guarantees
	Smoothness of GP models
	Practical convergence
	Asymptotic convergence

	Numerical simulations
	Duffing oscillator
	Nonlinear mass-spring-mass system

	Comparison to previous work
	Summary of method 2
	Trade-offs
	Numerical illustration

	Performance improvements
	Backward smoothing
	Adaptive observer gain

	Extension: Ansys Fluent use case
	Reduced order modeling
	Correcting the ROM
	Discussion on the EKF extension

	Discussion
	Conclusion and outlook

	Learning NODEs from partial observations with recognition models
	Introduction
	Related work
	System theory
	System identification
	Observer design

	Learning dynamical systems
	Physics-aware models
	Partial observations

	Problem statement
	Recognition models
	General approaches
	Direct method
	Recurrent recognition models

	KKL-based recognition models
	Autonomous systems
	Nonautonomous systems
	Jointly optimizing the gain matrix
	Conclusion on KKL recognition

	Enforcing physical knowledge
	Regularizing priors
	Structural constraints

	Experiments
	Pointers for training NODEs in practice
	Benchmark of recognition models
	Earthquake model
	FitzHugh-Nagumo model
	Van der Pol oscillator
	Ablation studies

	Harmonic oscillator with increasing priors
	No structure
	Hamiltonian state-space model
	Imposing position and velocity
	Parametric system identification
	Extended state-space model

	Experimental dataset from a robotic exoskeleton
	Data collection
	Data processing
	Evaluation
	Conclusion on the experimental dataset

	Discussion
	Kernel view

	Conclusion

	II Machine learning for data-driven observers
	Data-driven observability analysis for nonlinear stochastic systems
	Introduction
	Related work
	Stochastic observability
	Metricizing observability
	Kernel mean embeddings

	Notations

	Observability
	Deterministic distinguishability
	Distributional distinguishability
	Noise and distinguishability
	Measurement noise
	Linear systems

	Measuring distributional observability
	The MMD to measure relative distinguishability
	Background
	A metric of distinguishability

	Finite-sample approximation
	Background – finite-sample MMD
	A two-sample test of distinguishability
	From qualitative properties to sample bounds

	Experimental results
	Case of linear systems: illustration of Theorem 6
	Distributional and deterministic distinguishability
	Recovering the classes of indistinguishability

	Analyzing observability in the state-space
	Analyzing sensor configurations on hardware
	Choosing a sensor configuration
	Consequences for observer behavior

	Influence of hyperparameters

	Conclusion and outlook

	Towards gain tuning for numerical KKL observers
	Introduction
	Reminder on KKL observers

	A gain tuning criterion
	Numerical methods
	Backward-forward sampling
	Trajectory-based sampling
	Parametrization

	Results
	Reverse Duffing oscillator
	Van der Pol oscillator
	Furuta pendulum
	Conclusion on the supervised approach

	Towards joint optimization
	Autoencoders
	Jointly optimizing the gain matrix
	Conclusion on the unsupervised approach

	Conclusion and outlook

	Conclusion - version française
	Conclusion
	Bibliography

