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Abstract

Maintenance activities have evolved over the recent years, through the digitaliza-
tion of the field and the application of tools and concepts from Industry 4.0. By
connecting and communicating with the production system, companies are now
able to create knowledge about its current and future health state, allowing more
and more efficient control over the equipment. This approach is called Predictive
Maintenance (PdM), and its goal is to reduce unplanned downtimes and organize
efficiently maintenance actions before failures and stoppages appear. However,
to reach such performance, it is still quite challenging for the industrial actor
to implement an Intelligent Maintenance System (IMS) that will help with the
data management. Many requirements and limitations from the industrial con-
text add complexity to this system. It needs to be able to connect to multiple
sources, collect data of different nature (physical data, process data, and more),
propose different analyses and alerting channels while being user-friendly. This
statement is especially true for the automotive sector, which is facing new chal-
lenges and increased competition nowadays. Customer satisfaction depends on
products and parts quality, as well as possible customizations. To reach these
objectives, productivity is key, meaning machines availability needs to be maxed
and not impacted by unplanned breakdowns. These cost a lot of money and time
and can possibly generate quality issues on parts produced during the deterio-
rating phase of the production system.
In this research work, initiated by Plastic Omnium (Clean Energy Systems di-
vision), in collaboration with Ecole Nationale Supérieure d’Arts et Métiers (EN-
SAM) and Laboratoire Conception Fabrication Commande (LCFC) located in
Metz, we propose a methodology to implement a Predictive Maintenance system
in the industrial context. This methodology is tested and applied on concrete
use cases, and the results are used to improve and propose a final solution. This
solution is an Intelligent Maintenance System built on this methodology, Indus-
try 4.0 tools and open-source software. We employ and put the emphasis on
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the term flexible for this solution, as it is one of the major features required
by this system to work in different contexts and be adaptable to the needs and
limitations previously discussed about.
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Glossary

AFNOR Association Française de NORmalisation: French Standardization As-
sociation. 25

API An Application Programming Interface is a software designed to make com-
munication possible between two different applications. The API provides
various interactions, for instance sending a request to login, sending a query
to fetch data, or even sending data in the system. 23

Artificial Neural Network ANNs are computing systems that take the hu-
man brain as inspiration. The system is usually composed of an input,
hidden and output layer, and each layer is composed of nodes. These nodes
(or artificial neurons) are connected to each other, therefore they can have
multiple inputs and outputs. Each node has weights and thresholds that
trigger the signal transmission to others. The training of ANN consists in
adjusting these weights by minimizing the error between a known output
and assumptions made by the model (McCulloch and Pitts 1943). 41

Autoregressive An Autoregressive model is designed to forecast any time se-
ries variable, based on its previous values: the forecasted value is a linear
combination of past values (Yule 1927). 39

Autoregressive Integrated Moving Average ARIMA is the generalized form
of the ARMA model, introducing the Integrated part. The model consid-
ers the difference between each value of a time series, instead of its raw
data. By doing so, it allows transforming non-stationary time series into
stationary ones, which improves the results given by application of AR and
MA (Box et al. 2015). 39

Autoregressive Moving Average ARMA is the combination of an AR model,
and a Moving Average (MA) model. The MA allows to consider the trends
that can appear in time series, to improve the forecasting. If only AR
is used in the case of time series having repeating events, these could be
seen as errors or noise by the model and therefore produce poor results
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Glossary

(Box et al. 2015). 39

Bayesian Autoregressive A Bayesian Autoregressive model is an AR model,
with a different assumption on the variable used. In the AR context, the
variable is considered as a fixed value with no prior knowledge, whereas
BAR treats variables as random and having prior probabilities. This intro-
duction of "priors" can produce better forecasts than AR in cases where
datasets are smaller, increasing the difficulty to calculate the many pa-
rameters of the model and giving less reliable results (Litterman 1980).
39

Bayesian Network A Bayesian Network is a graphical representation of a prob-
abilistic model. It includes several parameters with their dependencies,
making it able to understand the influence of each factor on a given event.
It is often used to predict such events using the probability that a known
cause will occur and lead to the monitored event (Pearl 1985). 34

CES Clean Energy Systems, a Plastic Omnium division that manufactures fuel
tanks and depolluting systems. 2

CIFRE Convention Industrielle de Formation par la REcherche - PhD done in
partnership with a laboratory, a university and a company. It is therefore
conducted mostly in an industrial context, with support from academics.
5

CPSs A CPS is a system where physical equipment and computer-based soft-
ware are interacting together, to create efficient and autonomous sytems
capable of taking decisions on their own. 3

CPU A Central Processing Unit is a complex circuit board able to execute
actions based on the instructions given by its internal program. 20

DASIP Data Acquisition System for Industrial Processes - Supervision system
developed by Plastic Omnium, that acts as a SCADA system (Supervisory
Control And Data Acquisition). It is used for monitoring the machines
through critical parameters of the manufacturing process. 57

Data Lake Central data storage allowing data analyses on large volumes, to
aggregate data from different sources, create visualizations or train algo-
rithms. Often described as an internal Cloud Computing system. 56

Deep Neural Network DNNs are complex ANNs, composed of multiple hid-
den layers between input and output. They are able to model non-linear
relationships in the dataset, and are widely used due to their automatic
pattern recognition. This feature allows them to outperform many other
models (Bengio et al. 2009). 42
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Discrete Bayes Filter Discrete Bayes Filter, or Recursive Bayesian estima-
tion, is a statistical model used to estimate the value of a parameter, based
on its previous values. It is applied recursively on new incoming data, to
get the most probable current state of the system. 40

ERP An ERP (Enterprise Resource Planning) can be defined as a management
software that stores different type of data coming from various departments
or businesses of a company, for instance purchasing and maintenance. 59

FMEA Failure Modes and Effects Analysis consists in identifying the possible
failure mechanisms that can appear in the system, by decomposing it as
much as possible to get the most detailed analysis. The effect of these
failures is also studied. 28

FMECA Failure Modes, Effects and Criticality Analysis adds the criticality
analysis to the FMEA, it is calculated from the probability that such a
failure will appear, and its severity. 34

Generative Adversarial Network GANs are machine learning techniques used
to generate data with similar characteristics, based on an original training
dataset. Two models are used to achieve this result: the first one is learn-
ing the patterns within the dataset and generates new data, the second
one classifies incoming data as either original or fake (generated by the
first model). The training is complete when the first model can "fool" the
second one about half the time, meaning that the generated data is close
enough to the original one (Goodfellow et al. 2020). 42

HAZOP Hazard and Operability analysis is a review of a process in order to
evaluate the various issues that can happen and create a risk to the users
and/or the machines. 34

Hidden Markov Model A system modelled using HMM is assumed to have
an observable part, and a hidden part. The hidden variable (often called
"state") influences and controls directly the known variable (often called
"observation"), and such system is called a Markov process. The goal
of HMM is to determine the hidden parameters using probabilities and
observations of the known parameters. It is very efficient in determining
the underlying the probability that a state (or set of states) lead to an
observation (Baum and Petrie 1966). 39

ICT Information and Communications Technology relates to all components
making computing and interactions with digital information possible. Such
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components can be hardware, software, telecommunications, internet, and
computing architectures presented in section 2.1.2. 4

Intelligent Maintenance System An IMS is a computing system that ana-
lyzes data coming from any production system, to provide a predictive
maintenance solution to detect incoming failures. 82

IoT The Internet of Things is the interconnection between devices through in-
ternet. 3

Long Short-Term Memory LSTM is part of the Recurrent Neural Network
(RNN) models, meaning that the output of some nodes can affect their own
input. LSTM includes feedback connections, allowing it to handle events
that affect the data in the long-term; which is not possible with other RNN
models (Hochreiter and Schmidhuber 1997). 42

Multi-Layer Perceptron MLP refers to a feedforward (output does not affect
the input) ANN composed of perceptrons. A perceptron is a supervised
machine learning technique that aims at classifying data. Consequently,
MLPs are able to solve complex issues where the relationship between input
and output is non-linear (Rosenblatt 1958). 41

Natural Language Processing NLP is a branch of machine learning algo-
rithm that processes natural languages to understand automatically their
content, as a human would. Many applications derive from NLP, such as
sentiment analysis (to determine the intention behind the words), auto-
matic language detection and translation. 71

OEM An Original Equipment Manufacturer in the automotive industry is a
company producing the original parts of a vehicle that are assembled by
the car manufacturer. Such parts can be exhaust systems, brake cylinders,
or fuel systems for instance. 6

Open Platform Communications OPC refers to an industrial communica-
tion protocol, mostly used to exchange data between PLCs and other de-
vices or applications (source: https://opcfoundation.org/about/what
-is-opc/). 46

PES Plant Execution System - It is the MES (Manufacturing Execution Sys-
tem) used by Plastic Omnium, which ensures traceability of the produced
parts, as well as monitoring the different events related to the production
machines within the plant. 57

PFMEA Process Failure Modes and Effects Analysis is the application of FMEA
to the manufacturing processes. 35
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PHM Prognostics and Health Management - In literature, prognostics and
health management (PHM) systems have been studied by many researchers
from many different engineering fields to increase system reliability, avail-
ability, safety and to reduce the maintenance cost of engineering assets
(source: https://www.phmsociety.org/). 12

PLC A Programmable Logic Controller is an industrial computing device able
to operate in difficult conditions. It is used to control and operate man-
ufacturing systems. Common PLC manufacturers are Siemens, Schneider
Electric, Allen Bradley, Mitsubishi Electric. 23

Principal Component Analysis PCA is a mathematical method that reduces
the dimension of large datasets. The main idea is to only keep variables
responsible for the variations in the dataset, meaning that the algorithm
will try to find uncorrelated parameters with the highest variance. These
parameters are then used as new principal components, allowing to project
the rest of the data on them. Usually only the 2-3 first components are
kept, the choice can be made knowing the percentage of "information"
(variability) held by each component (Hotelling 1933). 39

Prognostics Prognostics focuses on estimating the time at which a component
or machine will no longer perform the function it was designed for (this
time or duration is also called RUL: Remaining Useful Life, or TTF: Time
To Failure). 30

Raspberry Pi A Raspberry Pi is a nano-computer widely used in IoT applica-
tions (https://www.raspberrypi.com/). 46

RUL Remaining Useful Life - Remaining time before failure of the monitored
component or machine. 29

Scopus Scopus is an abstract and citation database created by the academic
publishing company Elsevier. It allows searching for references in a very
large amount of publications, and also creating advanced analyses on the
various data linked to the published books, journals and articles. 3

Support Vector Machine SVM is a supervised machine learning technique
used for classification of data. It requires labelled data, and attempts to
compute a hyperplane that maximizes the distance between the different
classes observed in the dataset, in order to then predict in which class the
new incoming data will belong (Boser et al. (1992), Cortes and Vapnik
(1995)). 40

Support Vector Regression SVR is a method based on SVM, for regression
purposes. In this algorithm, the idea is to determine the regression plane
which contains the maximum number of points from the training set. This
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hyperplane is often seen as a tube, composed of the best fit line and two
lines placed above and below. The distance between the best fit line and
other line is the error (ε) (Drucker et al. 1996). 40

Time series Time series is a flow of data collected with a fixed time rate. Each
value has its corresponding time of collect, it is often called a timestamp:
time is a variable in a time series database. They are mostly used to
monitor events, because the time variable is used to show the evolution of
data over time. 58

Unified Architecture OPC UA is the latest release of the OPC protocol, ex-
tending it to many other platforms, and including improved interoperability
and features linked to cybersecurity (source: https://opcfoundation.or
g/about/opc-technologies/opc-ua/). 46
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Chapter 1

General introduction

Contents
1.1 Scientific context: predictive maintenance . . . . . . . 3

1.2 Industrial context: automotive industry . . . . . . . . 5

1.2.1 Industry 4.0 to solve some key challenges of the auto-
motive industry . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Industrial process: extrusion blow-moulding . . . . . . 7

1.3 Research objectives and methodology . . . . . . . . . 9

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . 12

One of the key activities for a company is the continuous improvement of its
manufacturing system’s performance. This statement is especially true when it
comes to global companies operating in multiple countries, because they need to
remain competitive and propose the most attractive products to its customers
while reducing operational costs. To reach this goal, companies are working
towards global amelioration of quality for the manufactured products, and main-
tainability of the manufacturing systems.

Over the recent years, Industry 4.0 has been one of the most proficient research
domains for the industrial actors, with the promises to bring new technologies and
concepts to achieve the previous goal. Industry 4.0 refers to the interconnection
between the physical world and the virtual world for a manufacturing system
and thus, how information, data and knowledge are dealt with. As data has
become one of the most valuable resources for companies in recent years, it is
therefore critical that the management of all the collected data is done in the
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most efficient way.

For Plastic Omnium Clean Energy Systems (CES), which produces fuel tanks
and depolluting systems for the automotive industry, the topic of industrial per-
formance greatly matters. Because those parts are regulated and tagged as secu-
rity parts (they involve the security of the end-user), the manufacturing quality
is a critical issue. The consequences of non-quality and non-production can be
disastrous for various aspects of the company: economics, legal, societal, environ-
mental. In addition to this, the automotive sector is one of the most competitive
industries, which also reinforces the need for performance. Having explored lean
practices for a long time, the company now believes that the next step for improv-
ing quality and productivity is through Industry 4.0, to have the most efficient
control possible over its manufacturing system.

The topic of interest for this research work is related to industrial maintenance,
and more specifically about developing an efficient methodology to enable the
industrial actors to switch from a "classical" curative-preventive maintenance
system to a more proactive one: Predictive Maintenance (PdM). As industrial
equipment will eventually fail, from ageing or unexpected events, the goal of this
work is to bring more insight regarding the machines’ behavior. This is mostly
done through data-driven approaches, by collecting physical or process data re-
lated to the equipment, studying its evolution, and proposing alerts to the users
on potential incoming failures. Strong with this new knowledge, maintenance can
then be planned more efficiently, and have less impact on the initial production
schedule.

Predictive Maintenance has been extensively studied over the past 25 years,
and is still a topic of great interest. One of the main reasons, which will be
developed throughout this thesis, is that even though methodologies exist to
implement such system, these are continuously evolving. In addition to this,
the tools used in the industrial context to apply them are also changing and
improving rapidly. These tools are linked to data collection and processing, but
also for communication and visualization. Consequently, as of today, it is still
quite complex to have a standard methodology that can be applied as such across
the various industries, which can also have their own specificity.

One of the key concepts emerging from this work is the necessity to propose
a methodology as standard as possible to define the PdM system, with flexible
tools to carry out its implementation in the industrial context. This flexibility
is related to several aspects of the implementation, such as the use of multi-
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1.1. SCIENTIFIC CONTEXT: PREDICTIVE MAINTENANCE

ple communication protocols to collect data, or scalability of the data storage
solution.

1.1 Scientific context: predictive maintenance

The maintenance field has evolved over the recent years, moving from corrective
actions (when failures already happened) to a predictive approach. With the
advances in data processing, information coming from the production system now
allow the assessment of its current and future health state. Because machines
and processes are becoming more and more complex to deliver new features
to products, maintenance is impacted and requires more advanced skills and
knowledge to deal with potential issues (Gouriveau et al. 2016). It is therefore a
necessity today, for any company seeking performance, to strive toward predictive
maintenance.

Predictive maintenance is currently the most active topic in the maintenance
field, as it is highly linked with Industry 4.0 and the availability of data within
companies. We can see in Figure 1.1 the evolution over time of the number
of publications linked to the three main categories of maintenance: corrective,
preventive and predictive, from 1995 to 2021. We will review more in detail these
different maintenance policies in the next section. To obtain this graph, we did
simple queries within Scopus ("corrective AND maintenance" for instance), to
determine how many papers were published over the years on each maintenance
policy. To try and be more accurate, we excluded each time the other two
policies from the title and abstract, as in most cases the three categories will be
discussed in the papers. We can observe that since 2016, predictive maintenance
has received a lot of attention from researchers, making it one of the most studied
topics in the Industry 4.0 paradigm.

This increase of interest for this topic is easily understandable with the con-
text of CPSs1. The opportunities for predictions based on data analysis are
numerous thanks to IoT2 and CPS, and therefore the maintenance activity is a
great candidate to extract value from those analyses and improve its performance
(Yan et al. 2017).

To understand further why maintenance has been in the spotlight recently,
we need to go back in time and see that historically, the maintenance activities

1CPS: Cyber-Physical System
2IoT: Internet of Things
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1.1. SCIENTIFIC CONTEXT: PREDICTIVE MAINTENANCE
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Figure 1.1: Number of publications per maintenance policy (1995-2021)

were tagged as "necessary evil" or that they were a "cost-centre", meaning that
they only generated costs and no profits (Al-Najjar (2007), Chesworth (2018)).
Twenty years ago, Mobley (2002) addressed this issue by explaining that these
statements were already old-fashioned back then, mostly due to the development
of ICT3. Its application in the industrial context for maintenance improvement
purposes helps removing unnecessary costs and reducing occurrences of catas-
trophic breakdowns.

However, as mentioned by Fusko et al. (2018), many industrial companies
are still not ready for that digital transformation of maintenance, as it requires
advanced CPSs and ICTs, with skills that are not yet well developed within the
organizations. This digital transformation not only brings new tools, but also
changes completely the way maintenance topics are being worked on, compared
to how it was handled previously. In addition, as mentioned in Introduction,
methodologies and tools supporting the development and implementation of such
solutions are changing and evolving rapidly, increasing the difficulties inherent
to that transformation.

3ICT: Information and Communications Technology
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1.2. INDUSTRIAL CONTEXT: AUTOMOTIVE INDUSTRY

As this thesis is CIFRE, the works are positioned in the automotive industrial
context. The main objective is to address the topic of the implementation of
predictive maintenance in the complex and global context of Plastic Omnium’s
production. The thesis work was conducted within the Digital Manufacturing
team, in charge of the topics related to Industry 4.0. Consequently, in the next
section, the industrial application is described.

1.2 Industrial context: automotive industry

In this section, we introduce shortly some key aspects of the automotive industry,
as Plastic Omnium is one of its major actors. These aspects help understanding
the motivations behind this research work. In a second part, we present the main
process involved in the production at Plastic Omnium Clean Energy Systems.
This will help understanding some key characteristics of the work presented in
Chapters 3 and 4.

1.2.1 Industry 4.0 to solve some key challenges of the au-
tomotive industry

From the industrial point of view, the automotive industry activities always led
to significant changes in the global industrial scope. Starting at the beginning
of the 20th century, Ford was one of the major actors who led the industry
towards "mass-production". The creation of a moving assembly line, bringing the
product (Model T) to different locations using a conveyor belt made possible the
manufacturing of millions of cars, faster and cheaper than any other competitor
(Hounshell 1985).

Competition is probably the main factor of innovation in the automotive in-
dustry, as many car manufacturers exist all over the world. Since the globaliza-
tion of the business, even though these companies are located in different places,
they found themselves in direct competition to earn market shares everywhere
they can. We can say that Ford’s mass-production system does not exist anymore
today, as companies are directing the competition towards mass-customization
of cars, and proposing the most affordable products at the best quality possible
(Holweg 2008). To do that, many new ways of manufacturing were developed,
such as the Just-in-Time system from Toyota, enabling fast adaptation to market
changes by using reconfigurable production lines, and automation (Shimokawa
1994). In this sense, the automotive industry was one of the first to automatize
their manufacturing lines (Jovane et al. 2003).
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1.2. INDUSTRIAL CONTEXT: AUTOMOTIVE INDUSTRY

To emphasize on the benefits provided by competition, we can see that car
producers invest a lot in research and development. The European car producers
reported 32 billion euro of R&D investment in 2011 (Vošta and Kocourek 2017),
while nearly 60 billion was injected in 2020 (ACEA4 website), making European
Union companies the world’s largest contributors to automotive R&D. The main
idea behind is to bring new features, new technologies in the next generation
of cars, to be ahead of other companies. Many strategies are employed, and a
lot of different aspects are promoted by each manufacturer, whether it is linked
to costs, size of the car, quality of materials used, new energies used for propul-
sion (electrical, hybrid fuel-electrical, hydrogen cars), or service-oriented features
(Nazir and Shavarebi 2019).

As discussed previously, the current trend in automotive manufacturing is
based on mass-customization. Most competitive companies are now using well-
established processes such as the lean principles created by Toyota, to produce
more and reduce wastes. As a result, they need to seek other ways to attract
new customers, by proposing specific customizations to answer their demands
(Alford et al. 2000). The complexity of this approach is that it requires new
configurations of the manufacturing system, to be able to propose personalization
on some aspects of the cars. As a result, the stakes are high for any company
able to develop such system, and more and more we see that Industry 4.0 is the
answer to address this complexity, as it brings new tools and methods facilitating
this industry-wide transition (Kabasakal et al. 2017).

In the automotive industry, car manufacturers are not the only contributors,
there are also OEMs5 that put a lot of efforts into all these changes (Kalogerakis
et al. 2017). It is the case for Plastic Omnium, which is one of the major OEM
for the automotive sector, and the industrial support for this research work.
Complex processes are involved in the company’s production, and as discussed
in Introduction, norms and regulations are drastic regarding these security parts,
leading the company to aim for a zero-defect policy. To understand further the
motivations behind this work, we will review in the next part the industrial
process linked to the production of the fuel tank systems.

4ACEA: Association des Constructeurs Européens d’Automobiles / European Car Manu-
facturers Association

5OEM: Original Equipment Manufacturer
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1.2. INDUSTRIAL CONTEXT: AUTOMOTIVE INDUSTRY

1.2.2 Industrial process: extrusion blow-moulding

The main industrial process involved in this thesis work is called extrusion blow-
moulding. It is mostly used to produce hollow parts made of plastic and poly-
mers, and these parts are used as containers for various applications (Dutta and
Ryan 1982). For instance, plastic bottles of water are produced with extrusion
blow-moulding of Polyethylene Terephthalate (PET or PETE), waste containers
and plastic fuel tanks are made of High-Density Polyethylene (HDPE). The ba-
sic steps of this process are the following: first, a cylinder of melted material is
coming out of the extrusion process, we call it a parison. Then this parison is
trapped inside a mold to give the material its final shape. During this phase,
the material is pushed against the mold inner shapes by blowing air inside the
parison. Figure 1.2 shows these steps. We propose more details about Plastic
Omnium, its products and the process in Appendices A, B and C.

Figure 1.2: Extrusion Blow-Moulding process (Shrivastava 2018)

To understand the process and the equipment used we will describe in detail
the extrusion and blow-moulding processes below.

Extrusion Extrusion is the process of forming the parison. As seen in Figure
1.3, the mechanical system is composed of a motor, a gearbox and a screw. The
start of the process is to inject plastic pellets inside the feed hopper, the material
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is then moved inside the screw. Here it will be heated, to melt down and to be
carried easily throughout the screw. This heating is done by band heaters located
all around the screw. The action of the screw on the material will bring some
shear stress, which will produce some auto-heating. To reduce it, fans are located
around the screw, to cool it down at some point after the start of the process, and
respect the temperature required for the process. Finally, the melted material
will arrive in the head, at the other end of the screw.

Figure 1.3: Extruder example (Lee 2006)

The final step of the extrusion process is to bring the material in the head
and form the parison. We can see in figure 1.4 the inner shape. The moving die
and programmed mandrel are used to give the shape of the parison, whether it
needs to be round or oval. It will also influence the thickness of the parison and
therefore the final shape of the product.

Blow-moulding Next, the parison is trapped inside the mold as seen in Figure
1.5. At this stage, the blow pin will inject air within the mold at high pressure,
to push the material against the inner-mold shapes. Usually, the top part of the
obtained product will be cut, in order to evacuate it afterwards. We can also
observe that some material will be located around the blown part, and not useful
for the end design. It is called the "flash" and is most of the time removed by
an operator in a "deflashing" operation (the excess material is cut, then often
reground for later use).

After this first process, extra operations are done on the tank, as shown in
Appendix C. The applications cases proposed in this work and presented in
Chapters 3 and 4, are linked with the full production process. The complexity
of the process, the requirements regarding the quality of the products delivered
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1.3. RESEARCH OBJECTIVES AND METHODOLOGY

Figure 1.4: The head (Lee
2006)

Figure 1.5: Blow-moulding process
(Belcher 2017)

and the automotive industry context impose the production systems to be robust.
Therefore, their availability greatly matters, and understanding their behavior
to plan efficiently corrective actions in case of deviations is a major challenge,
which can bring a lot of value to the company.

In the next section, the research objectives and the methodology employed
throughout this research work are addressed.

1.3 Research objectives and methodology

To understand better the production systems, and more particularly their failure
modes, there is a requirement to make the machines "smarter". As discussed
previously, it is made possible with the Industry 4.0 paradigm and data which is
more and more available in the industrial context (Sambrekar et al. 2018). The
nature of this data can differ, and contributes to better understanding of the
behavior of the production systems.

Predictive maintenance is one of these topics of interest for Plastic Omnium.
Therefore, this thesis aims at looking for the best way to use the collected pro-
duction data on the machines in order to propose a dynamic maintenance system.
This system will help detecting machine failures before they happen, to plan the
corrective actions accordingly. The main expected benefits are listed below.
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1.3. RESEARCH OBJECTIVES AND METHODOLOGY

• Reduce corrective maintenance costs
• Reduce catastrophic breakdown events
• Improve availability of machines
• Create and improve knowledge about the production systems
• Decrease quality issues linked to machines degradation and failures

The Digital Manufacturing team has a standard way of working on the topics
linked with Industry 4.0, as shown in Figure 1.6. As most of these works are
transforming the way the company works, resistance to change can be a limitation
for the success of the developments and implementations. As a result, the topics
are always managed in two complementary ways:

• The Top-Down process, which ensures that the developments and deploy-
ments are standardized and proposed globally within the division

• The Bottom-Up process that enables new initiatives, and takes advantage
of the experience from the local sight to develop new solutions

TOP

DOWN

UP

BOTTOM

Structure the

data and ideas

Share within

the community

Deploy Standard 
Business Rules, & 
Digital Platform Data

Lake

Innovate in each 
plant & function

Improve

Efficiency

Figure 1.6: Work methodology for the Industry 4.0 topics

This circular process brings many opportunities, and reduces the chances that
a topic will fail. The two key factors are the possibility of innovation from local
resources, and the active feedback from local to global management makes certain
that the requirements are fulfilled.

To anticipate failures on the production systems, a methodology will be pro-
posed to implement a predictive maintenance architecture. This methodology
will include both the requirements to solve the industrial and scientific issues
linked to each topic. Finally, we want to develop a toolbox as the major contri-
bution from the thesis work, to be used for dealing with predictive maintenance
topics. It must be as general as possible in order to be flexible and adaptable to
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1.3. RESEARCH OBJECTIVES AND METHODOLOGY

the different use cases that can be treated in industries.

The main objective of the thesis is to answer the following research question:

How can industries implement predictive maintenance with the help
of Industry 4.0?

To try and organize the work, we defined four industrial issues from the needs
of Plastic Omnium. Each axis is linked to a scientific issue that needs to be
overcome to answer the global research question.

1st industrial issue: Understand the failure modes of the production
systems

• How to identify failure modes and assess their relevance for predictive main-
tenance?

• How to select relevant data to be used to monitor the system?

Scientific issue n°1: Formalization of the criticality of failure modes
based on the understanding of their causes and effects.

2nd industrial issue: Develop a strategy for data collection

• What type of data needs to be collected?
• How to handle the data for predictive maintenance?

Scientific issue n°2: Structuring of the data management system to
integrate multiple sources of data.

3rd industrial issue: Integrate data analyses to detect and predict the
failures

• What are the available approaches to detect a failure?
• How to create indicators to anticipate the failure mechanisms?

Scientific issue n°3: Creation of health check on the production system
based on processed data, to anticipate failures.
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4th industrial issue: Define a decision-making system to share results
from the analyses

• How to visualize the current and future state of the system?
• How to communicate the results from the detection/prediction system in

an efficient manner?

Scientific issue n°4: Elaboration of relevant indicators to support oper-
ational and business-oriented decisions on predictive maintenance.

1.4 Structure of the thesis

Based on the scientific and industrial issues, the document is organized as fol-
lows.

A state of the art on predictive maintenance is conducted (Chapter 2). The
PHM6 topic will be introduced and detailed. PHM and predictive maintenance
are highly linked, and most of the time the PHM methodology is used as the
base for the predictive maintenance system. A review of the current approaches
for the implementation of this system will help understanding the challenges and
limitations, and position this work by exploring the existing opportunities. This
Chapter aims at giving a first answer to the four different scientific issues.

In the third chapter (Chapter 3), the methodology developed to implement
predictive maintenance is detailed, and a framework is proposed to work on pre-
dictive maintenance. In this Chapter, we aim at providing a first set of solutions
to the industrial issues, by developing a framework and applying it in our con-
text. As this thesis was conducted in the industrial context, the development
was done throughout a practical use case at Plastic Omnium. This first use case
helps understanding better the constraints and requirements linked to the im-
plementation of such system. Then, the application of this framework to other
use cases is discussed, and the results are analyzed to highlight the limitations
and opportunities to improve it.

Finally, the last chapter (Chapter 4) is dedicated to the development of an
Intelligent Maintenance System based on the opportunities observed in the pre-

6PHM: Prognostics and Health Management

12
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vious chapter. The goal of this last Chapter is to propose an answer to both
our industrial and scientific issues. The developed solution was mainly designed
for three purposes, to standardize the data management for predictive mainte-
nance topics, to ease the deployment of solutions in a global context (for multiple
plants), and to have a flexible system that can be used by various users with dif-
ferent profiles and skills. The methodology behind the application, as well as its
practical implementation will be discussed, and a review is proposed based on
industrial results from several use cases.

In the conclusion, the contributions from this work are summarized, and some
future research perspectives are presented based on the results obtained and some
limitations that were observed while conducting this research work.
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In this chapter, we review the literature to highlight the link between Indus-
try 4.0 and maintenance activities. In a first part, we review the key topics of
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Industry 4.0, to understand the influence it has on industrial maintenance. In
a second part, we describe the different policies existing for industrial mainte-
nance, and propose a classification of these architectures, as we observed that
their definitions or the way they are organized vary in the literature. Then,
we will focus on predictive maintenance, and the methods that currently exist
to develop such system, as the ones proposed by PHM1. Then, we study how
these maintenance policies are applied in the automotive industry, to validate
the interest of the development and deployment of predictive maintenance in
this context. A synthesis of all the findings will help underlining the limitations
from the literature, as well as pointing out the opportunities behind them to
position this thesis work.

2.1 Industry 4.0 paradigm

In today’s competitive market, manufacturers must use new strategies to propose
products having the best quality, while reducing production costs. This approach
imposes companies to implement more flexible manufacturing systems. For this
objective, the traditional mass production system is moving toward customized
mass production (Muhuri et al. 2019). Moreover, to organize this system prop-
erly, it is necessary to have up-to-date information from the machines and thus,
connect all components of the manufacturing process together.

Figure 2.1 shows four revolutions that happened for industries over the past
centuries. From the eighteenth century, with the introduction of the mechanical
loom and the use of steam energy, to the twentieth century, with mass produc-
tion and the automated production lines. In the 1970s, automation, computers,
electronics, ICT2 spread throughout industries worldwide. Finally, the fourth
revolution is characterized by intelligent machines that communicate data with
each other and its users.

This fourth revolution, also named Industry 4.0 (Kagermann et al. 2011),
started in 2011 and brought a new vision for production systems, to solve the
previously discussed challenges. More than automated production systems, au-
tonomous and smart ones are required, able to learn and share information and
knowledge by themselves. An interconnection between machines and company
departments is also needed, to monitor, change, and predict the behavior of the
manufacturing system. In the context of Industry 4.0, we call Cyber Physical

1PHM: Prognostics and Health Management
2ICT: Information and Communications Technology
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Figure 2.1: The four industrial revolutions (Gehrke et al. 2015)

System (CPS) or Cyber Physical Production System (CPPS) this structure of
machine and human interactions and interconnections to create enhanced man-
ufacturing processes (Bahrin et al. (2016), Bagheri et al. (2015)). From all this
emerging data, value needs to be created so that the performance of the system
and the quality of the final product are improved, in a way that allows both mass
production and mass customization.

In the next part, we will discuss the various components of Industry 4.0, which
contribute to the transformation of manufacturing in its entirety. These elements
participate in the overall improvement of the performance of the production
systems.

2.1.1 Key concepts for industrial performance

Industry 4.0 does not only deal with connection, it also has to overcome some
global challenges (Wang et al. 2016). The way of producing goods is changing, as
well as all the activities that touch directly or indirectly this production. As a re-
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sult, processes, services, society, environment, and economy are impacted.

All these changes can lead to wastes, overproduction, pollution, accidents;
Industry 4.0 is bringing new tools and methodologies to deal with that (Lee et al.
2014). These various components can be found in Figure 2.2, and a definition is
proposed below for each point.

Industry 
4.0

Autonomous 
Robots

Big Data

Simulations

Augmented 
Reality

Internet of 
Things

Cloud 
Computing

Additive 
Manufacturing

Artificial 
Intelligence

Cybersecurity

Figure 2.2: Key components of Industry 4.0

• Robots are essential for improving manufacturing processes. Connected
and collaborative robots (cobots) make interactions possible between each
other and users, to build more efficient production systems

• Big Data refers to advanced analytic techniques used to find value in the
increasing volume and complexity of data

• With the amount of available data and computing power, more efficient
simulations can be created. These allow to better optimize products and
production systems, reduce costs and wastes from prototyping as it can be
done virtually with different setups and an infinite amount of times

• Augmented reality gives the possibility to add virtual objects to the real
world. Users can then interact with them through head-mounted displays,
haptic sensors or by using their smartphones’ cameras. It gives the oppor-
tunity to physically touch the virtual world
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• The interconnection between devices through internet is called Internet of
Things (IoT) or also Industrial Internet of Things (IIoT) in the industrial
context, and it is one of the major components of Industry 4.0. Among
other features, it gives the possibility for these devices to send and re-
ceive huge amounts of data, which allows creating value from it, as well as
developing and using other features from Industry 4.0

• Cloud computing uses remote servers to store and process data. Instead
of having the data locally, users can interact with it through internet. It
enables several features such as long-time storage and backup or using
specific software to analyze the data

• Additive manufacturing, also called 3D printing, refers to a process in which
objects are created by adding materials layer by layer. This technology can
be used to produce finished products as well as individual components that
can then be incorporated into the design of other products

• Artificial Intelligence (AI) is a field of computer science dedicated to creat-
ing algorithms capable of performing tasks normally requiring human in-
telligence, such as visual perception, speech recognition, decision-making,
or translation between languages

• Cybersecurity is the collection of technologies, practices, and procedures
designed to protect networks, devices, programs, and data from attack,
damage, or unauthorized access

This list of features is not comprehensive, but it brings a general overview
of the various possibilities offered by Industry 4.0 (Vaidya et al. 2018). We can
see that data is at the center of all these applications, either to use or create it.
From this observation, we will discuss next the topics of data management in the
Industry 4.0 context, as well as the major contribution brought by the Internet
of Things.

2.1.2 Internet of Things and data management

Data in the Industry 4.0 context refers to a digital piece of information that
can be stored, processed, shared in many ways. The process to convert physical
or analog information to digital is called Digitization, whereas Digitalization is
linked with the digital transformation of "traditional" processes or businesses by
using digital tools or techniques (Brennen and Kreiss 2016). It is important to
understand the difference between these two terms, as they are often used in the
wrong context when discussing about the digital aspect of Industry 4.0.

19



2.1. INDUSTRY 4.0 PARADIGM

In this context of digitalization, the amount of data generated is increasing
rapidly every year, and it is predicted in Figure 2.3 that the global size of the
digital world will reach 175 Zettabytes by 2025 (Reinsel et al. 2018). To try
and understand this number, one Zettabyte corresponds to one billion (109)
Terabytes, or one trillion (1012) Gigabytes. According to Reinsel (2021), half of
this data will be coming from IoT devices in 2025.

Figure 2.3: Evolution of the size of the Digital Universe (Reinsel et al. 2018)

IoT devices are often defined as physical objects capable of sensing features
from the real world. As they are also connected to the Internet, they can send to
and receive data from other devices (Abu-Elkheir et al. 2013). They also integrate
a CPU3 that can be programmed to act depending on the data it processes. In
this way, most of the IoT devices used in the private and industrial context are
tagged as "smart", because they can sense the state of the physical asset and
take actions accordingly (Diène et al. 2020).

The number of these devices is increasing rapidly, as shown in Figure 2.4.
Three fourths of the total connections are expected to be from IoT devices in
2025, as they are being used more and more in various fields, whether it is for
healthcare, industry, financial activities, or private use (Lueth 2020). The num-
ber of non-IoT devices (phones, PCs, laptops, tablets ...) will remain quite steady
in the next few years. It can easily be explained because owners of these devices
mostly possess one of each type, and their usage is punctual. In comparison,
the use of IoT devices in the previously presented cases can require several of
them, and they are most of the time sending data continuously, increasing at the
same time the volume of data generated and stored globally (Vongsingthong and
Smanchat 2015).

3CPU: Central Processing Unit
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Figure 2.4: Number of connected devices 2010-2025 (Lueth 2020)

After understanding the importance of the Internet of Things, the place it
is taking today and the contributions it will bring tomorrow to the global data
space, comes the question of how to organize these devices and the data they
generate. To manage efficiently the connection and interconnection of the IoT
devices, several architectures have been developed. Each can be independent
or complementary, depending on which context they are used. These solutions
are often compared by considering the distance between the management system,
and the source of the data. Below will be presented the three main architectures,
called respectively edge computing, fog computing and cloud computing.

Edge computing Edge computing is the data management system closest to the
data source. It is named as such because it is located at the edge of the network
used to address the data. The main benefit is having low latency regarding the
connection and the data collect, as well as sending back instructions or actions
into the source (Varghese et al. 2016). In this context we are talking about close
to real-time interactions, allowing the system to be very reactive in case of sudden
changes (Khan et al. 2019). We use the term online processing in this case. The
main drawback of this architecture is the difficulty regarding the scalability of
the system. It is most of the time designed for one or several assets and it can be
challenging to upgrade it to handle more than its original purpose. For instance,
computational power can be limited, as well as the number of connections it can
manage. Edge devices are most of the time industrial PCs, optimized to resist in
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difficult conditions. As an example, they are designed to be fanless to prevent any
issues coming from dusty environments. These devices can also be directly the
sensors themselves, the smart sensors or IoT devices discussed previously.

Fog computing Fog computing can be seen as being on top of the edge com-
puting architecture. The major difference between fog and edge computing is
that fog computing is using some of the features from the cloud computing ar-
chitecture presented below. It uses server called fog nodes, which are still close
to the data sources, and will most of the time address multiple edge devices. It
is often described as a geographical distributed architecture (Atlam et al. 2018).
This system is scalable depending on the requirements of each use case; how-
ever, the latency will be higher than for edge computing. A common use for fog
computing is to provide a more global analysis of the data collected through the
edge devices, by aggregating them and combining multiple types of data. One
key feature from fog computing is to serve as an intermediate node for cloud
computing, to reduce latency and storage issues (Bonomi et al. 2012).

Cloud computing Cloud computing is the architecture which is the farthest
from the data source. It is often proposed as a service (IBM, Amazon, Google,
Microsoft, OVH for example) for all sorts of companies, from startups and SMEs4,
to large and global enterprises. The data is therefore stored inside massive data
centers and made available remotely through a web browser for example (Kim
2009), for any user that has the necessary credentials. The main benefits from
cloud computing are the long storage times, the high scalability of the architec-
ture, making available advanced analyses and processing on the data. In the
industrial context, we could say that edge computing will address one or sev-
eral production machines for instance, fog computing can handle one or several
plants at regional level, and edge computing is designed to deal with data com-
ing from all plants, at a global level. However, latency is the highest due to
the distance, making it impossible to consider real time processing of the data.
The data processing is qualified as offline in the case of cloud computing, as it
can process huge amounts of data, taking longer time. There is also often the
question of privacy and security with cloud computing, as sensitive data can be
hosted externally (Qian et al. 2009).

Table 2.1 summarizes the features, the benefits and the limitations of each
solution, to understand better where to use them.

4SME: small and medium-sized enterprises
5API: Application Programming Interface
6PLC: Programmable Logic Controller
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Table 2.1: Main features from each data management architecture

Cloud computing Fog computing Edge computing
Architecture • The physical assets are

located in a remote data
center

• Each part of the data
center is dedicated to a
specific task: data
collect, storage, analysis

• The data is accessed
through the Internet, or
using an API5

• The system is composed
of fog nodes, which can
be servers, computers,
storage units. It is
decentralized because at
the edge of the network,
but not necessarily
physically close to the
data source

• Fog computing can
make the link between
cloud computing and
edge computing, by
acting as a gateway to
send data in both ways

• Edge devices are
physically close to the
data sources. They can
sometimes be the data
source themselves, in
the case of IoT devices
which are equipped of
sensors

• The information
collected and processed
can be pushed rapidly
back to the data source,
to act on the physical
asset based on the
different events observed

Main features
Benefits

• High computing power
• Highly scalable
• Long-time storage
• High interoperability
• Advanced data

processing

• Close to the edge
• Sensitive data stored

within the internal
network

• High interoperability
• Scalability possible to

address more devices
• Close to real-time

interactions

• Cheap solution per edge
device

• Low latency, real-time
interactions

• Take quick actions
• Possibility to interact

directly with PLC6

Limitations
Drawbacks

• High latency and
response time

• Power consumption,
cooling system

• Privacy issues for
sensitive data

• Potential bandwidth
issues while sending
data over Internet

• Possible latency issues
depending on the
distance between the
data source and fog
node

• Using multiple node to
send data to the cloud
can create weak points
in the architecture, or
more opportunity for
failure

• Difficulties regarding
scalability, each edge
device has limited
resources and they need
to operate storage,
collect, processing and
communication of the
data

• Interoperability is
limited due to the design
of the edge devices

• Sending data directly to
the cloud can be
challenging

Extra
features
Comments

• No maintenance
required by customer

• Possibility to install fog
nodes internally,
externally, or in a
hybrid manner

• The interactions with
PLCs allow the
development of powerful
applications able to
perform actions and
make changes on the
production system

As previously discussed, data is at the center of Industry 4.0 and all the ac-
tivities shown in Figure 2.2. The Internet of Things is the top contributor for
data collection in this context and is helping this digital transformation of the
industry (Sniderman et al. 2016). We have seen that more and more data is
being generated, especially in the different industries, and that consequently, an
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efficient management system is required to extract value from this raw material.
Different architectures exist, and they can be used independently or in a com-
plementary way, based on the requirements and business model of the use case
or the company itself. In the next part, we explore the different industrial main-
tenance policies existing today, to understand the influence Industry 4.0 had on
them.

2.2 Definition of maintenance activities

Maintenance activities are often placed under the reliability engineering field.
Reliability refers to the capability of a system to work under specified conditions
during a certain period (Dhillon 2002). Consequently, the lower the reliability
gets for an equipment, the more it will require maintenance actions to operate
back in the correct state. Figure 2.5 shows a widely used representation of the
failure rate for a given equipment over time. The function plotted is named
"hazard function" and is of great interest in the reliability analysis context. The
example shown in the figure is called "bathtub curve", due to its shape. The
left part represents the early life of the equipment, and we can observe that the
failure rate will decrease over time, until it reaches the center part. This decrease
is explained by early changes in design to correct "infant mortality" failures. The
center part follows the "normal" life of the equipment, where random failures can
appear, but the rate is constant as it is assumed that all random failure events
have the same probability of occurrence. Finally, we observe on the right side an
increase of the failure rate, due to aging of the equipment and natural degradation
from wear of its components.

Even though the use of this curve is debated among researchers, as stated
by Klutke et al. (2003), the assumption of the three parts regarding the failure
rate of a given equipment during its lifetime is relevant for production systems.
From this curve, we can begin to picture that maintenance activities are required
throughout the whole life cycle of any industrial equipment. Consequently, in
this section we review and detail the existing maintenance policies from litera-
ture.
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Figure 2.5: Bathtub curve used in reliability engineering

According to European standards and AFNOR7, maintenance can be defined
as such:

Combination of all technical, administrative and managerial actions during
the life cycle of an item intended to retain it in, or restore it to, a state in
which it can perform the required function. (NF EN 13306 2001)

The efficiency of those different actions will strongly depend on the main-
tenance strategy adopted by the industrial entity. Figure 2.6 shows the differ-
ent types of maintenance policies that exist, and implemented across all indus-
tries.

Three principal categories of maintenance policies are defined: corrective, pre-
ventive and predictive. Some sub-categories exist, and are described below.

7AFNOR: French Standardization Association
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Figure 2.6: Maintenance policies (Wang et al. 2015)

• Corrective maintenance: this strategy deals with machine failures after
they appear

– Deferred: corrective actions are postponed, for different reasons (not
a priority action, no replacement parts, expert required) (Lind and
Muyingo 2012)

– Immediate: corrective actions are carried out directly after the failure
happens (Lind and Muyingo 2012)

• Preventive maintenance: this second strategy is based on finding the opti-
mal time to take corrective actions, four types of preventive maintenance
exist, using different inputs to make decisions on maintenance actions:

– Reliability-based: prioritizes maintenance actions according to the im-
pact of failures on productivity (Vishnu and Regikumar 2016)

– Time-based: maintenance actions are performed at a fixed frequency,
it is not taking into account the current state of the machine (Horner
et al. 1997)

– Opportunity-based: uses planned or unplanned downtimes of ma-
chines to take corrective actions, to reduce production losses and im-
prove machine reliability (Shafiee and Sørensen 2019)

– Design-out: modification of the design of an equipment in order to
remove any root cause of a failure (Mostafa et al. 2015)
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• Predictive maintenance: its goal is to predict failures before they happen.
It is done by monitoring continuously the assets to detect issues. Those
detections are made possible by creating Health Indicators (HI) that will
show the asset’s degradation over time (Bashiri et al. (2011), Legát et al.
(2017), Wang et al. (2007)). Two main categories are currently studied:

– Statistical-based: uses mathematical techniques on data coming from
the machines and its sensors, to estimate the time of appearance of
the next failure. It allows an efficient planning of corrective actions
during the time between the detection and the estimated time of the
issue

– Condition-based: thresholds are set on specific parameters to detect
when a failure event is starting. It is often based on expert’s knowl-
edge, and experience from previous failures

Although the main maintenance policies are identified above, researchers still
struggle to come up with a single hierarchy for these different activities. Three
other representations are highlighted by Gackowiec (2019). To try and classify
these policies, some groupings are introduced, and from one definition to another,
some maintenance policies are observed in different categories. As a summary
of these definitions, we observe that maintenance policies are either reactive or
proactive, corrective or preventive, planned or unplanned. Reactive, corrective or
unplanned maintenance happens after a failure has appeared on the equipment,
while proactive, preventive or planned maintenance relates to all activities that
take place before the appearance of any failure.

Consequently, we propose a hierarchy in Figure 2.7, based on the works from
Sambrekar et al. (2018), Mostafa et al. (2015), Gackowiec (2019), and the ob-
servations done during this thesis work in various industrial contexts. The main
goal is to have a clear understanding of each existing maintenance policy, and
their position regarding equipment’s failure management.

The main feature of this architecture is the grouping of maintenance policies
under three categories. Reactive and corrective maintenance are put together,
as they are most of the time defined as the same activity. They are dealing with
maintenance actions after the failure has happened on the equipment. All policies
taking actions before the occurrence of a failure are put behind the proactive
maintenance category. Finally, the design-out maintenance is separated as this
policy deals with changes in the design of the system to reduce maintenance
actions. Therefore, a certain amount of time of usage is required to understand
the root causes of the most impacting breakdown, and to identify the changes
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Figure 2.7: Hierarchical overview of maintenance policies (adapted from Sam-
brekar et al. (2018), Mostafa et al. (2015) and Gackowiec (2019))

needed to be done (Muganyi et al. 2018).

Secondly, preventive maintenance is declined into two sub-categories. Pre-
ventive maintenance is designed based on FMEA8 results, and a large number
of companies use the time-based method, meaning that the maintenance actions
are performed periodically and based on a calculated amount of time between
each action (Cicek et al. 2010). Another method exists, based on the usage of the
equipment. Here the scheduling of the maintenance actions will rely on periodic
fixed number of cycles performed by the asset. Usage-based preventive mainte-
nance is supposed to be more efficient, as it is taking into account the use and
therefore the degradation coming from it. In the case of equipment running spo-
radically, the time-based method is less efficient and will generate unnecessary
costs. We qualified the preventive maintenance category as risk-based, because
as discussed above, the rules created are using the estimation of the risk linked
to the appearance of any failure mode (Khan and Haddara 2003).

8FMEA: Failure Modes and Effects Analysis
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The third noticeable addition to the architecture is the introduction of pre-
scriptive maintenance. Prescriptive maintenance is defined as the next step of
predictive maintenance. It integrates history of failures, understanding of root
causes, and corrective maintenance actions associated to a specific detection of
anomaly from the system (Khoshafian and Rostetter 2015). As a result, in addi-
tion to proposing an estimation of the remaining time before a failure happens
(RUL9), it also generates an action plan to the maintenance teams in order to
do some verification, and specific tasks to try and increase this amount of time
left (Sahli et al. 2021).

Finally, we grouped predictive and prescriptive maintenance together under
a category that can be qualified as data-oriented. All the rules and decisions
defined in these policies are linked to the analysis of data coming from the moni-
tored system, whether it is process or sensors data. Three main architectures are
identified here (Wang 2016), which change the way rules are created. The first
category is using physical models to characterize the system, making it possible
to have a precise monitoring of its behavior, and detecting early changes. The
second category is purely based on data analysis, and it uses statistical meth-
ods or machine learning algorithms to predict the future behavior of the system.
Some approaches use both in a hybrid manner, to get the advantages from the
two solutions and to reduce their respective drawbacks and limitations. These
features will be discussed in Section 2.3.3.

From this analysis of the literature on Industry 4.0 and industrial maintenance
policies, we have seen that the digital transformation of industry also greatly im-
pacted maintenance activities. Many works have been conducted and are still
being carried out on the digitalization of maintenance, leading to the implemen-
tation of the predictive maintenance policy in all industries. As this topic is the
core of the thesis work, we will next review the existing methodologies that help
switching from a classical maintenance system to predictive maintenance. One
of the goals will be to understand the role of data in this activity, and how it is
used in industry, to perform this change.

9RUL: Remaining Useful Life
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2.3 Methodologies for the implementation of pre-
dictive maintenance

We have seen that many research works focused on this topic over the past few
years, to bring a new dimension to maintaining production equipment. The
main features of predictive maintenance are the use of real-time data, and the
remote monitoring of assets to propose high-end analyses, to detect equipment
failures before they impact the production system (Rødseth et al. 2017). The
most active research community is the PHM Society, which proposes a frame-
work for implementing health monitoring in order to estimate the RUL of a
given system. Standard methodologies are issued, from data collection and sen-
sors selection, to the prognostics and decision systems regarding maintenance
interventions (Lebold et al. 2003). Consequently, PHM is not only used to de-
sign predictive maintenance, it is a general methodology to maintain efficiently
any type of engineering system. However, most predictive maintenance systems
are built on the PHM methodology. Therefore in the next section, we intro-
duce PHM and its framework, to try and understand how it can be applied for
predictive maintenance.

2.3.1 PHM framework overview

We will first investigate the PHM methodology in order to understand the differ-
ent activities that are part of the framework, and used to design such a monitoring
system. Figure 2.8 explains the different features of this approach.

As shown in the figure, the framework is composed of three categories: "Ob-
serve", "Analyze" and "Act". The first steps within the "Observe" activity deal
with the input data from the system. Mainly how to select, collect, store, and
process the data, to create a standard structure. The second part "Analyze"
is related to the different analyses made on the collected data. First, data is
studied to understand the current status of the system. This allows to monitor
the evolution of the system’s behavior, and detect changes that can announce an
incoming issue. Once this analysis is performed, it is possible to create indicators
to detect these previous changes early, the main goal being to avoid these future
issues when they happen again. Finally, the system must communicate these
results efficiently to the end-users visually, and propose some actions to reduce
the risks that a failure will impact the monitored system.
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Figure 2.8: PHM cycle (Gouriveau et al. 2016)

The standard PHM process is represented in Figure 2.9, and below is proposed
a summary of its different activities:

• The first step is to understand the potential use cases that would benefit
from such a system, meaning that avoiding this kind of failure could save
money and time

• Once the choice is made, an analysis on the required data is carried out to
study the failure, as well as the data management system to put in place
(collect, processing, storage, visualization)

• Measurement techniques must be studied to collect the necessary data in
the most efficient way

• The diagnostics and prognostics phases are related to the analysis on failure
data to better understand it, to detect it and predict it in the future

• Finally, the system is tested according to the initial goals, and end-users
must be trained to use such a tool

Regarding the data management system, the organization "Machinery Infor-
mation Management Open Standards Alliance" (MIMOSA) proposed a commu-
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Figure 2.9: PHM system design (Vogl et al. 2014a)

nication framework for dealing with data in a PHM system. It has been first
developed by Lebold et al. (2003), and the architecture is shown in Figure 2.10.
The Open System Architecture for Condition Based Maintenance (OSA-CBM)
deals with all the data aspects of a PHM system, and its goal is to propose
an interoperability between the communication devices. This architecture is
composed of several blocks that help deploying the PHM framework previously
discussed, as well as technical recommendations on hardware systems and com-
munication protocols. Löhr and Buderath (2014) focused on implementing such
system and improving its efficiency.

For the measurement techniques, some standards are issued to have a first hint
of which data would be interesting and how it could be collected. The National
Institute of Standards and Technology (NIST) issued some standards related to
PHM and details every step of the methodology and the standards already in
place on some specific aspects of the process. Some measurements techniques
are shown in Figure 2.11. This list is not exhaustive compared to the possible
use cases, but it gives some leads on which sensors and data to use in order to
study the potential failures.
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Figure 2.10: OSA-CBM architecture for PHM (Lebold et al. 2003)

Other standards are issued by IEEE (2017) on electronic systems, but the
global methodology can also be reused on other topics. Figure 2.12 and 2.13
show both functional and operational aspects of this system. These architectures
help defining and implementing practically the final PHM system. In the next
sections, we will review in detail the different activities of the methodology,
starting with the data selection process.

2.3.2 Data selection process for efficient monitoring of the
system

The first and most important step of the PHM approach is the data selection, to
study the system’s failures. It is the basis on which all the system will stand. If
the selected data cannot measure or explain the deviations and failure modes of
the industrial process or equipment, a lot of time will be wasted. Many papers
studied below propose to use FMEA10, to get a first idea of which parameters
will be useful to detect failures. FMEA is a dysfunctional analysis that provides
information on failures such as root causes, observed degradation and how to
detect them (McDermott et al. 2009). Consequently, it is an important input
for finding the correct parameters to monitor in order to understand and detect
failures.

10FMEA: Failure Modes and Effects Analysis
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Figure 2.11: Monitoring techniques (Vogl et al. 2014b)

Laloix et al. (2018) proposed a structured methodology to define health in-
dicators of a machining center, based on joint FMEA and HAZOP11 methods.
HAZOP is more flow-oriented and defines the deviations that can happen within
a system. The complementary aspects of FMEA and HAZOP allow to identify
efficiently the relevant parameters to be used, to create these health indica-
tors.

Other research works proposed frameworks using FMEA in a different manner.
Srivastava and Mondal (2015) used a modified FMECA12 (Mod-FMECA) to
quantify the outputs of failure modes, to detect and target deviations from the
current process status: then maintenance teams can plan actions to correct the
issue. The quantification of the output is based on machine performance. Brahim
et al. (2019) transformed FMECA by including a Bayesian Network (BN), to
incorporate the diagnostics and prognostics of failures using probabilistic models
between each failure modes. The BN can be used with back chaining, to perform
the diagnosis and identify the causes when a failure occurs, but also with front
chaining, to estimate the probability that a failure will happen according to the

11HAZOP: Hazard and Operability analysis
12FMECA: Failure Modes, Effects and Criticality Analysis
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Figure 2.12: PHM functional model (IEEE 2017)

actual status of the machine.

Li et al. (2017) worked on machine centers in the context of Industry 4.0, with
the objective to propose a framework for predictive maintenance, with vibration,
ultrasonic and acoustic sensors. The importance of selecting the correct param-
eters and related sensors is underlined, however the choice methodology is not
detailed. In the proposed industrial use case, sensors were already implemented.
Stanula et al. (2018) presented an approach for selecting data sources when using
machine learning algorithms in industry. The concept of Cross Industry Standard
Process for Data Mining (CRISP-DM) is introduced, which is a methodology to
work on data mining projects for industrial applications. Figure 2.14 shows an
improved version of CRISP-DM with technical considerations from the point of
view of the engineer. The first input of the system is the PFMEA13, which gives
information on the relevance of data to be used when working on specific failure
modes.

Analysis of failure modes on a given equipment is important, to assess the
risks linked with known possible issues on the system. It also gives relevant
information on the causes and effects of these failures, which allow to identify
parameters and data to be used for the predictive maintenance activity.

13PFMEA: Process Failure Modes and Effects Analysis
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Figure 2.13: PHM operational process (IEEE 2017)

Functional and dysfunctional analyses are not the only ways to deal with data
selection, other methods work directly on data to find relevant parameters that
will help with the detection and prediction of failure modes. Dai and Gao (2013)
reviewed the different approaches for Fault Detection and Diagnosis (FDD). They
are classified into three groups: model-based that relies on physical models to un-
derstand and detect the failures, signal-based that consists in analyzing outputs
from sensors measurements to work on failures, and knowledge-based, which
involves machine learning techniques on historical database to extract knowl-
edge of failures. As mentioned in this research work, all these approaches are
data-driven, and most of the times, an efficient system will combine the three
categories.

Fernandes et al. (2019a) worked on different data sources in the metallurgic
industry to collect features, correlations and knowledge in order to implement a
predictive maintenance system. Data mining and machine learning techniques
were applied on this dataset, to discover new links between data, which allowed
the creation of rules for predictive maintenance. The authors mentioned that
some rules were already known from experts’ knowledge, but some were newly
discovered from the analyses, showing the interest of the approach.

One of the challenges of this topic is to evaluate the correct way to select
the data, by applying the two approaches on concrete use cases. The difficulty
might be to find an indicator to evaluate the relevance of the chosen parameters.
One possible approach could be a joint step using both methods and selecting the
parameters based on a correlation value on the results of the two processes.
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Figure 2.14: CRISP-DM for engineers (Huber et al. 2019)

The data selection phase is important, but the data management system to
collect and analyze this data also matters. In most reviewed papers, the data
management system is not detailed, or is only valid for working on a specific
use case during the experimentation phase. One of the observations from the
literature is that there is a need to consider the data management system for the
deployment in production and not only for testing and validating a model or an
approach. It is a complete system that needs to operate in the given industrial
context, in several plants, considering different data sources, and that interacts
with plant’s management, maintenance teams and operators. A validated ap-
proach on a specific machine or use case in a laboratory context might not be
easily deployed in the industrial context, which has a lot of constraints, mostly
regarding cybersecurity and costs.

After reviewing the existing approaches for an efficient data selection for the
predictive maintenance framework, we will next study the available techniques
to assess the current and future health state of the monitored system.

2.3.3 Health assessment

The next step of the framework is the health assessment of the system. Health
assessment is often separated into two phases, diagnostics, and prognostics. The
difference is shown in Figure 2.15: diagnostics will study the causes of a recorded
failure, while prognostics will estimate the remaining time before the failure
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happens, when detecting a previously observed pattern in the system’s behav-
ior.

Figure 2.15: Diagnosis and prognostic (Jouin et al. 2013)

The first studies were oriented on physics-based models, meaning that the
research focused on understanding the physics phenomena at stake in the degra-
dation process. In the recent years, with Industry 4.0 and the ease to perform
advanced calculations on data, a new approach arose: the data-driven analysis.
This method works directly on the collected data to detect changes and thus, a
potential degradation of the system. This trend is reported by Lei et al. (2018)
and shown in Figure 2.16. These approaches represented 80% of the produced
literature over the past few years, separated into two parts: statistical-based ap-
proaches and AI (Artificial Intelligence) methods. The rest is physics-based and
hybrid studies, which are much more complex to implement, but quite efficient
in describing failure processes.

We will not address all the available techniques used in prognostics, only some
approaches that could be of interest for our applications. Review papers such
as the ones proposed by Dragomir et al. (2009), Si et al. (2011) and Lei et al.
(2018) help understanding the main contributions of the different topics, with
industrial applications involved, as well as challenges that remain in the field.
Such challenges concern all the steps of the PHM framework: for instance data
collection, the choice of model or technique to be used on data, and uncertainties
of the designed systems. These review papers tend to agree on the efficiency of
implementing data-driven approaches in the Industry 4.0 paradigm, with data
being easily available, and because data analyses do not necessarily require "a
priori" knowledge about the failures. We will discuss next the two main methods,
which are statistical-based and AI-based. Most of the techniques discussed below
will be presented in the Glossary, with key references given.
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Figure 2.16: Health assessment approaches (Lei et al. 2018)

2.3.3.1 Statistical approaches

Statistical models are employed on monitored data to estimate their future state.
Therefore, they are based on observations from the data, and RUL is often
estimated as a probability that the monitored parameters will end up in a faulty
state. These methods deal with uncertainties and allow modelling RUL without
necessarily having historical failure data. One important term to define first
is the Autoregressive (AR) model, as some variants are proposed in the next
paragraphs.

Zhao et al. (2010) used Principal Component Analysis (PCA) on process data
to get indexes that feed a Bayesian Autoregressive (BAR) model to estimate fail-
ure times. A comparison between prognostics based on Autoregressive Moving
Average (ARMA) modeling and Hidden Markov Model (HMM) is proposed by
Marjanović et al. (2011), to detect changes in a steam separator system. Results
show slightly better performance for HMM, to estimate the time of the degrada-
tion of the system efficiency. However, the method employed does not work on
RUL, it is a fault detection system. Fernandes et al. (2019b) proposed the use of
Autoregressive Integrated Moving Average (ARIMA) on vibration data, to predict
the interval of future values. Then incoming data is compared to the predicted
interval, to detect anomalies and alert when a high number is observed.

One hybrid approach has been developed by Baptista et al. (2018). Prediction
results from ARMA model are used in PCA, to get features about raw data that
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are not correlated. This makes it able to be used as input of machine learning
models to predict future time of failure of the system. A comparison is made
between several models, and shows better results when using Support Vector
Machine (SVM) as a regression model (Support Vector Regression (SVR)) to es-
timate failure time. Ruiz-Sarmiento et al. (2020) worked on a complete system
to estimate the degradation state in the metallurgic industry, in order to propose
a maintenance scheduling. Expert knowledge and sensor data are fused into a
Discrete Bayes Filter (DBF) to determine the next state of the system from pre-
vious data. The prediction is made by estimating the future state of the system
after several cycles, providing some inputs to the users about possible degrada-
tion. A comparison with classical regression models from Machine Learning is
proposed, to validate the proposed method.

Some examples of RUL estimation from statistical models are proposed below.
Figure 2.17 estimates RUL from probability that the system will have a failure
after a number of cycles.

Figure 2.17: Survival modelling for RUL (Baru 2018)

Figure 2.18 works on failure data to estimate the current values according to
previous observations. It allows estimating RUL based on previous failure events.
This method is not necessarily easy to implement, because in the industrial
context, failure events are scarce.

Figure 2.19 shows an approach based on a prediction of future value for a
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Figure 2.18: Similarity modelling for RUL (Baru 2018)

parameter or a calculated indicator, that allows estimating RUL with probability
that the predicted value will cross a failure threshold. This method implies that
the failure threshold needs to be known.

Many methods and models exist with statistical approaches, one challenge
for predictive maintenance is to understand which are the most efficient to use
depending on the use case involved. To do so, a classification must be done
to know the output of each method, to match the industrial objective and the
expected result of the statistical approach. Requirements on the type of data to
be used also need to be known.

2.3.3.2 Machine learning approaches

Machine learning approaches for predictive maintenance aim at discovering pat-
terns within the collected data to understand how the system behaves, and how
it will evolve. Most of the time, these models can be described as "black boxes"
because the system will learn by itself, and the learning mechanism that leads to
a result is not necessarily easily understandable by human. Below is presented
some of the works that could be of interest for our industrial application.

Einabadi et al. (2019) used a Multi-Layer Perceptron (MLP) which is a type
of Artificial Neural Network (ANN) for predicting RUL of machined parts in au-
tomotive industry. The prediction allows the scheduling of maintenance for the
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Figure 2.19: Degradation modelling for RUL (Baru 2018)

faulty parts, and the schedule is updated when new sensor data enters the sys-
tem. Li et al. (2017) proposed a predictive maintenance framework for machine
center, to illustrate the different steps of PHM and how they interact between
one another. The framework goes from data collection to the decision system
from RUL prediction. An industrial use case is studied with the use of ANN to
predict RUL of a machine center. Liu and Zio (2016) discussed a prediction al-
gorithm based on SVM to predict peak values of a pump in the nuclear industry
context. Predicting the peak values can be useful in the case where failures are
due to the increase of the maximum value of a monitored parameter.

A dynamic predictive maintenance framework is proposed by Nguyen and
Medjaher (2019), using Long Short-Term Memory (LSTM) network to estimate
the probability that the system will fail within the different time frames of the
maintenance planning. As a result, the designed system is optimized for appli-
cations with a strict maintenance schedule, such as aircrafts for instance, where
maintenance interventions can only happen outside of flight time intervals. Lee
et al. (2017) have been working on Generative Adversarial Network (GAN) to
reduce the imbalance between faulty and good condition data within the datasets
in order to train a Deep Neural Network (DNN) for failure classification. The
idea behind the GAN is to generate extra data so that the trained model has
enough "good" and "bad" data to efficiently detect machine failures.

The main difference between statistical and AI approaches can be seen in
Figure 2.20. The data analysis part of the statistical methodology is separated
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into different phases, when there is only one step regrouping everything for the
AI methodology. Another noticeable difference is that the health indexes for the
statistical approach are often created manually, whereas it is done automatically
in the AI approach. This can lead to making the design of the system easier, but
the interpretation of the results more difficult. However, the automatic aspect
has the advantage of potentially finding more efficient data correlation that would
not have been possible when doing the data preparation manually.

Figure 2.20: Machine health monitoring approaches (Zhao et al. 2019)

After reviewing the available techniques that can be applied on data to detect
and predict failure modes, we will next review how the results from the analyses
can be shared to users. A relevant communication is important, as the users
need to have a clear understanding of the output from the analyses, to act and
plan corrective actions accordingly.

2.3.4 Decision-making system

To design an effective decision system, the interconnection of all the information
systems within a company greatly matters and makes it able to gather and
aggregate a lot of information to feed the decision rules. As discussed in the
introduction, the tools linked to data handling are changing rapidly, consequently
there exist many ways of communicating and sharing results. Similarly, a lot
of methods have been developed to support decision-making for users of these
solutions.

Faiz and Edirisinghe (2009) defined a Decision Support System (DSS) as a
computer-based tool helping decision-making by using incoming data and infor-
mation. These tools can go from simple visualization or reporting of data, to
complex systems using statistical or machine learning algorithms.
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Bousdekis et al. (2019) organized the surveyed literature on decision-making
systems for predictive maintenance under five topics.

• Maintenance scheduling, which refers to algorithms used to plan and rec-
ommend efficient maintenance actions

• Degradation-based algorithms, proposing decisions regarding maintenance
actions to be performed according to the current and future health state
of the equipment

• Joint optimization, which aims at finding the correct balance between
equipment availability and maintenance interventions, according to busi-
ness requirements

• Multi-component approaches, considering dependencies among components
to optimize their maintainability, as well as multi-state methods that define
several stages of health level for a given equipment and tailored decisions
for each of them

• Costs and risks optimization algorithms supporting decision-making by
evaluating the financial impact of various repair scenarios, or from the
occurrence of a specific failure

Li et al. (2017) proposed a framework for predictive maintenance, composed
of different modules. The decision support module is defined as a system that
shares results from data analyses, and proposes corrective actions accordingly.
The key features of this module are visualizations of the predictions and KPIs14

linked to the state of the monitored equipment, and recommendations regarding
maintenance interventions.

Mourtzis and Vlachou (2018) presented a cloud-based environment capable
of dynamically adapt maintenance scheduling, based on all the data collected
in the plant through a sensor network. One of the main observations is the
necessity of having interoperability within the system, meaning the possibility
to communicate data and information among different layers of the information
system of any company.

The decision-making aspect of the predictive maintenance system is a chal-
lenging part of the architecture. It needs to consider many parameters and can
be greatly influenced by the choices made regarding the design of the ICT15. In
this sense, Bousdekis et al. (2019) pointed out that the designed decision systems
are often valid for the specific architecture mentioned in the reviewed papers, or

14KPI: Key Performance Indicator
15ICT: Information and Communications Technology
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to solve issues linked to the studied industrial cases. Interoperability is key as
this system will have to communicate with various entities and share data and
information of different nature, using various communication protocols. With
this topic also comes the question regarding the interpretability of the results
proposed by the algorithms. Bousdekis et al. (2019) discussed the possibility of
using more automated solutions to build these decision rules, however there is
always a risk that the reasons behind a rule might not be understandable by
humans. The main reason is the way correlations are found, using mathematical
models that can be difficult to interpret. There is often a trade-off regarding the
"prescription level" between experts’ knowledge-based rules and rules created by
data-driven techniques.

After understanding the key concepts of the predictive maintenance archi-
tecture, we review in the next section its main challenges and the difficulties
observed in industry regarding its development and deployment. After this, it
will be interesting for our research work to understand how predictive mainte-
nance is used within the automotive industry, to highlight some key topics to
consider and develop in the presented approach of the next chapters.

2.4 Applications of predictive maintenance

One of the recurrent themes of this research work is the challenging aspect of
the development and deployment of the predictive maintenance solutions among
the industrial practitioners. In this section, we investigate these difficulties men-
tioned in the literature, as well as how these research works are being carried out
in the automotive industry context.

2.4.1 Challenges and adoption level

Many papers reviewed below have been presenting approaches to develop intelli-
gent maintenance systems across different industrial fields with success, but the
main statement from these papers is the same: it is still quite challenging for
the industrial actors to implement an efficient predictive maintenance system.
These challenges are of different natures, but all coming from the complexity of
such systems, because they deal with a lot of engineering fields. As an example,
the deployment of a predictive maintenance solution on a specific machine will
involve knowledge on the process, mechanical understanding of the system and
related to the failure modes, knowledge on data collect, storage, analysis, and the
place of the user must be taken into consideration: interactions, visualizations,
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alerting.

To illustrate this statement, the existing standards and methodologies for
PHM implementation help understanding the full scope of such a system because
the different functional blocks are clearly identified; however, its deployment in
a real context can be demanding. As mentioned by Sheppard and DeBruycker
(2018), the PHM topic is a rather new engineering discipline, and the various
fields touched by PHM, such as data management, are constantly technically
evolving, making it difficult to come up with a general standard. Moreover, even
if the end solution must comply with different industrial contexts, specific local
needs and requirements will impact the design of the final system deployed. These
local features might impact the end solution and require some extra developments
relevant only in this context.

To tackle these challenges, Garcia et al. (2019) proposed a methodology to de-
sign a predictive maintenance system, by describing the needs and requirements
from the industrial actors. The goal is to have guidelines for implementation
of predictive maintenance systems without being focused on a specific industry.
Similarly, a framework is proposed by Schmidt et al. (2017), to manage the data
through the different information systems available in the industrial context.
The methodology and solution presented in this research work use bricks coming
from these requirements, as well as parts of the PHM methodology.

A full system is described by Mourtzis and Vlachou (2018). A cost-efficient
solution for the shop floor is proposed, using Raspberry Pi devices and micro
controllers, and also proposing state of the art communication between a cloud
platform where the analyses are made, and the previous devices through Open
Platform Communications Unified Architecture (OPC UA) protocol. Ayvaz and
Alpay (2021) and Bourezza and Mousrij (2020) proposed a system based on
machine learning analysis applied on data coming from IoT systems. A solution
is proposed by Cachada et al. (2018), based on the PHM principles, with various
modules to manage the data such as the integration of augmented reality, to
improve the decision-making system.

Three challenges of the current developments are shown and answered through
a technical solution by Christou et al. (2020), mainly the scattered data across
different information systems, the difficulties to have multivariate analyses and
the lack of possibilities to act directly on the production system according to
predictions made. From these observed challenges, it is necessary to propose a
solution that integrates several blocks to answer the common needs regarding
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predictive maintenance, while giving the opportunity to customize it according
to specificities that can be encountered in the different industries.

An increasing number of papers are also studying the financial impact of
the development and deployment of predictive maintenance solutions. As we
have seen previously, it requires multiple investments, related to the ICT, but
also regarding sensors and software solutions to process the data. Consequently,
companies must be aware of these costs, and compare them with the expected
benefits (Tiddens et al. (2020), Arora et al. (2021)). This is even more true for
SMEs16, where any new project needs to have identifiable return on investment,
which can be difficult to justify when starting the predictive maintenance journey
(Krupitzer et al. 2020). Moreover, in addition to the investments in software and
hardware, skilled people also need to work on these topics, creating major changes
in any company’s organizational structure (Khan et al. 2022).

Finally, one of the key elements that appear in the previous papers and in
Isaksson et al. (2018) is the benefit to use open standards, and open-source soft-
ware, because it allows a high flexibility for the development of all these applica-
tions. It also answers partially the issues regarding costs mentioned previously.
This flexibility is required in the industrial context because there are specific
needs and requirements. Therefore, and it is illustrated by the papers, specific
developments are made to implement the most efficient systems (Achouch et al.
2022), making it difficult to implement such solutions in different contexts. This
also constitutes a major challenge because it is quite difficult to develop non-
domain-centric applications. Consequently, as discussed in introduction and in
this paragraph, the flexible aspect of the predictive maintenance system must
originate from the tools used to apply the methodology behind it.

2.4.2 Predictive maintenance in automotive industry

The PHM Society website proposes articles tagged as automotive industry topics,
but most of them are dealing with embedded components within a vehicle, and
not the production systems used in automotive industry, which is the topic of
this thesis work.

Brown et al. (2009) proposed a diagnostics-prognostics solution to estimate in
real-time the RUL of an Electro-Mechanical Actuator (EMA). When the RUL is
estimated, and depending on the remaining time the vehicle needs to operate, a
reconfigurable system is designed so that the EMA remains in suitable condition

16SME: small and medium-sized enterprises
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for the rest of the vehicle mission. In the presented use case, it is done by reducing
the input current of the motor, and by doing such, the RUL is increased, while
the efficiency of the system is decreased.

A prognostics system based on the Cox Proportional-Hazards Model is pro-
posed by Sankavaram et al. (2016). This model is mainly used in medical research
but is applied here using failure data and real-time data coming from the moni-
tored systems. It is applied on two automotive systems, to validate the approach
and estimation of RUL. Kleyner et al. (2017) used RUL prediction to estimate
when a component will fail, thus reducing the need for cycle testing the robust-
ness of a component. It is tested on Power Electronic Controller and Engine
Controller Unit, both systems are used inside cars. The goal is to reduce the
number of tests done on these parts, and therefore the costs of testing. However,
as mentioned by Kleyner et al. (2017), this method needs to be developed and
accepted by the community, because the prognostics need to be accurate enough
to be trusted by the industrial actors. This last statement is often true for topics
related to replacing part or totally some manual checking by automatic systems.
These actions are most of the time required by customers, and therefore any
modification needs to be thoroughly reviewed and validated.

Other works exist but tagged as predictive maintenance, as such, most of the
time the papers focus on specific parts of the PHM methodology, for instance the
data collection and the analyses, or the study of prognostics models on datasets
that are available online.

Einabadi et al. (2019) proposed a methodology for maintenance scheduling
according to RUL prediction on machined parts in automotive industry. The use
of machine learning models, more particularly Neural Networks, allow an efficient
estimation of RUL from machine data input (vibrations, temperature, energy
consumption). A Bayesian Network (BN) designed from FMECA is proposed by
Brahim et al. (2019). The resulting is a BN that can be used for the diagnostics-
prognostics steps of the PHM framework, because the system can link back to
the cause when a failure happens, and an estimation of a failure event can be
made knowing all the probabilities of the tree of failures.

Voisin et al. (2010) proposed one of the first platforms for predictive main-
tenance in the automotive context (Fiat, Volvo), based on MIMOSA and OSA-
CBM standards (improved with several modules). Predictive maintenance was
applied by Sanz et al. (2021) in the automotive sector context, in a painting shop
of the Volkswagen Group (SEAT plant - Spain). A framework is described, built
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on Industry 4.0 tools and Industrial Cloud using Amazon Web Services. Within
this framework, several activities are described, from data collect and storage, to
providing prognostics results on four industrial cases.

Fernandes et al. (2021) proposed to use Business Process Model and Notation
(BPMN) as a way to model the processes linked to predictive maintenance, in
the industrial context (Renault Cacia plant - Portugal). It allowed to precisely
describe the action plan, as well as the different systems responsible for each
activity. In addition, it can be used as training material to involve more actors
in such project. Dremel et al. (2017) discussed the journey of Audi AG towards
digital transformation. One of the key topics is related to data collect when
vehicles are being used, to propose advanced descriptive and predictive analytic.
As such, predictive maintenance is considered as a service to be provided to car
users, to improve maintenance actions required on cars.

2.5 Synthesis of the literature review

Through this state-of-the-art review, we observed that the PHM methodology is
validated to design the various predictive maintenance frameworks proposed in
the reviewed papers. The different steps of PHM presented in section 2.3.1 are
standardized and are most of the time the basis of most of studied articles, even
if it is not always mentioned.

Regarding the data and features selection, two approaches are investigated in
section 2.3.2, based on experts’ knowledge and functional analyses, or directly
on data by using data-driven techniques to extract knowledge. One area of
investigation will be to find the most effective approach, which will most likely
depend on the type of failure use case studied. Concerning the diagnostics and
prognostics aspect of the PHM methodology (section 2.3.3, two main approaches
were described, one based on statistical models, and the other one on Artificial
Intelligence. Both approaches are efficient in predicting RUL in the reviewed
papers, however it strongly depends on the available data and the final objective
of the designed system. A benchmark of the different techniques seems necessary
when designing a complete predictive maintenance system, as one model might
be more efficient in a certain context compared to another one. Finally, we
briefly discussed the decision-making aspect of the predictive maintenance system
in section 2.3.4. This topic is probably the most challenging one within the
architecture, as it deals with several issues. Many possibilities exist to propose
recommendations as an output of the system, and these can be influenced by the
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initial design of the ICT solutions.

From all these observations, we reviewed the known challenges linked to the
practical implementation of predictive maintenance in section 2.4.1, as well as the
initiatives within the automotive sector in section 2.4.2. These two topics high-
lighted some key themes to be considered when developing such solution. The
difficulties found in the literature are of different nature, as this topic is multi-
disciplinary. Mainly, we observed that the process of developing and deploying
predictive maintenance requires new skills not commonly found yet in companies,
investments can also play a role in these issues as the first-time costs can be high.
The financial issue is especially true for SMEs, and more and more papers are
looking to develop cost-efficient solutions. To do so, we discussed the possibility
to use open-source software that are more and more used in industry.

For the application of predictive maintenance in the automotive industry, we
observed that major automotive companies are working closely on this topic.
We discussed in section 1.2.1 the challenges of the automotive sector, but also of
its innovative aspect that often impacted the whole industrial world. Predictive
maintenance is one of the topics of high interests for car manufacturers and
automotive suppliers, and the literature also shown many papers dealing with
predictive maintenance of vehicles themselves (Arena et al. 2021). A summary
table is proposed in Figure 2.21, to highlight the expected contributions of this
research work.

Finally, one of the observations made on the studied papers shows that many
deal operationally with a partial aspect of the PHM framework (in the indus-
trial context) or propose a conceptual framework for predictive maintenance.
However, considering the requirements and limitations of the industrial world
when implementing a full diagnostics-prognostics system that will collect, ana-
lyze, and alert users is the core of the challenges discussed previously, and maybe
less studied. Such considerations greatly matter, as the economic aspect might
infer with results found when experimenting with software and hardware that
are not suited for the industrial context. However, in the past years, more re-
search works presented approaches for the development and implementation of
a full predictive maintenance system in various industrial contexts. This also
shows that the predictive maintenance topic is getting more and more mature,
reinforced by the global digitalization of industry and the availability of tools
able to shape operationally the theoretical features of this system.
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Figure 2.21: Summary table
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This chapter is dedicated to describing our predictive maintenance frame-
work, and how it was applied for our industrial application. First, we detail the
framework that was developed from the results of the literature review and with
the first industrial application chosen for predictive maintenance. In a second
part, the data management architecture is discussed, as it is a major part of
the predictive maintenance system. Then, we describe the application of this
framework on a specific industrial use case. The different stages are explained,
from the choice process for predictive maintenance to the results obtained from
the application of the framework. Some specific use cases are then discussed, as
they have low occurrences in our industrial application. However, their study
in the predictive maintenance framework is relevant and pointed out some extra
points to be considered for this work. Finally, we analyze the results and the
limitations observed during the development of the system, which lead to high-
lighting some key opportunities to improve the framework and the operational
methodology.

3.1 Framework for predictive maintenance

The literature review and the functional analysis proposed in Figure D.1 helped
determining the key activities to consider when developing a predictive mainte-
nance system. As a result, to deal with the challenges and opportunities dis-
cussed previously, a framework is proposed in Figure 3.1. It is based on the
works from Lebold et al. (2003) and the method proposed in IEEE (2017). It
takes into account experts’ knowledge for machines parameters to be identified
and monitored, as well as data-driven methods to be implemented in the condi-
tion monitoring and prognostics phases.

This framework was developed and tested jointly with the first industrial use
case presented in Section 3.3, where it will be discussed more in details. For
each feature of the system, major activities to develop were identified, as well
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Figure 3.1: Framework for predictive maintenance

as the engineering or computing tools that are key contributors to achieve this
development.

Below is proposed a summary of the concepts represented in the figure:

• The objectives that are the categories coming from the PHM framework
• The criteria, which are the inputs of each category, and help understanding

the requirements and the possibilities
• The tools are the technical assets used to develop each category, they can

be of different types: data, software, concepts

After detailing the key concepts of the framework proposed for the implemen-
tation of predictive maintenance, we will next discuss how it was applied for our
industrial application. This will help detailing the different steps of the method-
ology and explain how it can be implemented in the industrial context.

3.2 Operational aspect of the framework

The operational methodology helps understanding the process behind the imple-
mentation of the system. It makes the link between the tools mentioned in the
framework and the different activities related to the development and deployment
of the predictive maintenance system.
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3.2.1 Data management architecture

To understand how the framework will be used in the industrial context, it is
first necessary to introduce the data management architecture that was set. The
global architecture is shown in Figure 3.2.

Figure 3.2: Architecture of the information system

The architecture has two levels: the plant’s level that is dealing with data
locally, by collecting, storing, and analyzing data from the plant’s machines. The
second level is global, at the company level. Here the data is collected from each
plant, to create global applications such as dashboards or data analyses.

• The plant level is composed of the local SCADA (Supervisory Control And
Data Acquisition) and MES (Manufacturing Execution System) systems.
In addition, extra systems are deployed, such as the Edge Computing,
which incorporates three open-source software: Node-RED, InfluxDB and
Grafana. The main benefits of these tools are the high flexibility and the
important number of features that are proposed and maintained by the
community. This package allows collecting, storing, and making analyses
on data, as well as creating visualization dashboards and alerting systems
via various communication channels

• The company level, which is composed of a Data Lake that gathers data
from all the plants. The goal is to work on aggregated data to train mod-
els of prediction, for both quality and maintenance services. Then, these
trained models are reinjected at the plant’s level, to monitor the production
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systems locally

The main benefit from this architecture is to be able to analyze the collected
data locally (i.e., within the plant) from the different data sources. Once this local
analysis is carried out, interesting data can be moved at the global level, where
more advanced data analyses are performed. The main benefit is the reduction
of the use of the bandwidth, by not sending all raw data into the data lake, and
thus it is possible to decrease its size. Indeed, the costs of implementation and
maintenance get higher with the size of the data management system.

As stated by Cara et al. (2019), the SCADA system in place (DASIP1) ensures
the stability of the quality of the manufactured parts, by using a knowledge-based
corrective approach. However, it was not designed for proposing a solution for
real-time monitoring of health statuses of the production system. Nevertheless,
the methodology employed to develop the tool is based on FMEA, and critical
parameters are monitored to ensure a good process control, which is a strong
basis for starting the implementation of a predictive maintenance approach. The
MES (PES2) also provides some important context data that can be attached
to data from the process and the machines. For instance, knowing the status of
the machine, the name of the part produced, or the number of parts scrapped in
a given period of time can help defining extra indicators. This new information
can help classifying other data for example.

Consequently, our Edge Computing system was tested and implemented within
plants, to make the link between different applications and collect data from
various sources. This system is the basis on which was built the predictive main-
tenance system in our industrial application. The detailed architecture is shown
in Figure 3.3. The standard install of this system is done on a Virtual Ma-
chine within the plant’s server (similar to Fog Computing) but was named Edge
Computing because the same system can be installed locally on an industrial
computer. The server is physically located in the plant, on both the machines’
network and the global network of the company. As such, it is accessible through
the network, and from any location worldwide. This system allows making the
convergence between IT and OT (Operational Technology), as it incorporates
IT tools that interact with OT devices. As seen previously, IoT devices are also
part of the enablers linked to such convergence.

1DASIP: Data Acquisition System for Industrial Processes
2PES: Plant Execution System
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Figure 3.3: Architecture of the Edge Computing system

Node-RED (O’Leary and Conway-Jones 2013) is the center part of the sys-
tem. It is a visual programming tool, where nodes that have different functions
interconnect to create an application that is most of the time linked to IoT.
Node-RED is using JavaScript (Crockford 2008) as its programming language,
and because it is open-source, many nodes are created and then shared by com-
panies or users. In most of our use cases, the application is connecting directly
to the PLC of the machine through the network to collect its data. It has many
benefits, because there is no need to modify the programs inside the PLC or stop
the machine to install such monitoring system. The software collects the data
and makes the connection to the database to store it. We also use it to make
the analyses on data and the real-time detection of failures.

InfluxDB (Naqvi et al. 2017) is an open-source database. It is optimized for
time series data collect. It allows creating very efficient monitoring of what is
happening in real-time. It is possible to set data retention policies, meaning that
data will be erased cyclically based on the chosen time window.

Finally, Grafana (Chakraborty and Kundan 2021) is the software that we
use in order to create dashboards. It can connect to many databases, including
InfluxDB. As it is also an open-source software, many new visualizations are
proposed by the community, as well as the developers of the solution.
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3.2.2 Presentation of the proposed approach

To investigate machines failures with a predictive approach, our first step con-
sists in editing a Pareto of the most impacting breakdowns on the production
system. Criteria used are the total breakdown time, occurrence and costs of
both repairs and non-production time. It is done by analyzing the ERP3 that
contains all the data from breakdown events: time to repair, costs, parts used
to repair. Therefore, the methodology can be defined as cost-oriented because
the final goal is to reduce the financial impacts of unplanned downtimes. It is
important to involve the experts (maintenance, process, automation) during this
first step, to validate the list of use cases and to collect the feedback from their
experience.

Next, we need to get a first hint about the degradation processes involved in
the selected failure(s), which can be determined from the FMEA. In our case, we
are using PFMEA that is process oriented. Failures risks are listed, giving also a
first idea of which parameters should be monitored to detect each issue. Experts’
knowledge is a very important input, as mentioned by Baglee and Jantunen
(2014), it is the first entry point for understanding failure mechanisms. Ideally,
these inputs should help capitalizing on their experience, and lead to providing
extra knowledge such as shown in Figure 2.11.

After that, the availability of the chosen data needs to be studied on the se-
lected case(s). In this context, availability means that the information is made
available digitally, and that the data management system is capable of connecting
to the source of this data, and collect it using a specific communication proto-
col. We will see that in industry, PLCs are often the main source of data, as
they contain all the instructions for the process, as well as sensors’ data. If the
data that must be collected by the monitoring system is not available, several
possibilities exist as shown in Table 3.1.

A first strategy for data collection and analysis also comes with this study,
in terms of frequency of collect, and data manipulations to extract interesting
features. In addition, a classification of the data can be made upon various
criteria. The idea is to add extra information to the collected data, this process
is called tagging, and it brings many benefits. The main objective is to define
specific contextual information attached to the data, for instance it can be linked
to the name of the machine, the manufacturing process, the status of the system.
Efficient tags can provide many insights around the data, and enable advanced

3Enterprise Resource Planning
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Table 3.1: Solutions for data availability

Cause of unavailability Solution

Data does not exist Study the implementation of extra sensors to
collect the necessary data

Create the required data from raw data
(feature engineering)

Machine not connected Add network card to PLC to access data

Use OPC server to access data

Use an edge device connected to both the
machine and company’s network

Interoperability issue Use a different communication protocol to
address the data

Export and read data through a flat-file
structure

features linked to data visualization and analysis. For example, data classification
makes possible the use of supervised machine learning techniques.

After this phase of data collection come different steps of data monitoring.
Many methods exist to construct knowledge related to changes in data, in order
to estimate the state of the monitored system (section 2.3.3). Some approaches
are proposed in Table 3.2. The main goal is to develop a first system that will help
detecting signals or patterns announcing a possible occurrence of the monitored
failure.

The health assessment step from the framework is designed to investigate
more in detail the anomalies found in data, and if possible, to create Health
Indicators (HIs) that represent the evolution of the behavior of the system. As
seen in the previous table, some approaches do not necessarily require failure
data to implement a monitoring system. However, as the solution will eventually
face the failure that it was designed to detect, this assessment step can help
validating and improving the methods in place. As a result, depending on the
choices made in the previous stage of the methodology, condition monitoring and
health assessment can be done jointly.

In the prognostics phase, methods are applied to HIs to automatically detect
changes in the data, and therefore a modification in the behavior of the system.
The objective is to use these patterns previously discovered to estimate when
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Table 3.2: Data-driven approaches to investigate failures

Approach Detail Main features

Thresholds Use experts’ knowledge to put
limits on the data (example:
ISO 10816-3 for vibration)

• Easy to implement from start
• Not necessarily suited for

complex failures

Run-to-
failure

Record failure event and
analyze its data

• Efficient to identify failure
patterns

• Not suited for failures with
low occurrence

Anomaly
detection

Using healthy data • Easy to implement from start
• Requires knowledge about

healthy state
• Difficulties linked to

anomalies identification

Using failure data • Train model to detect
anomalies automatically

• Can require many events for
efficient training

• Not suited for failures with
low occurrence

the system will reach a critical point. We have seen previously many methods
able to provide such information, but the key aspect here is to consider the clear
identification of the state of the system, to give valuable insight to the users.
The result of prognostics can be a detection of a signal that previously led to a
failure, or an estimation of the time left before the failure happens (RUL).

The last part of the process is focusing on the development of recommen-
dations, based on the results from prognostics. The goal is to automatically
propose information or actions to the end-users of the solution. Many outputs
can be considered from this step, such as alerts, maintenance recommendations,
automatic modifications of process parameters, maintenance planning. The use
of one or several outputs depends on many factors that are evolving throughout
the development of the solution, but their availability as features of the predictive
maintenance system is a necessity to propose efficient solutions.

Finally, as observed in the framework, data visualization is placed on top of
many activities. Visual observation of the data is one of the most important
aspects of any data-driven system, especially for predictive maintenance where
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mainly time series data is used. As discussed previously, failure mechanisms are
evolving with time, therefore it is important to have records of data following
these trends. Data visualization often includes several "layers" that are designed
for different users and linked with various type of data. As an example, data
visualization for exploration by a data scientist will be very different compared
to a visual dashboard designed to share results from prediction to maintenance
operators.

We propose to put the figure of the framework a second time below, to ease
the understanding of the text above.

In the next section, we discuss the application of this framework on a first
industrial use case, after understanding the different steps of the implementation
of predictive maintenance.

3.3 Application of the framework

The first application of the framework took place in the plant located in Com-
piègne (France). The proximity between the plant and the research & devel-
opment center makes it attractive to test locally the solutions proposed by the
Digital Manufacturing team. It is important to mention that the CES division
is composed of nearly 40 plants (Figure A.1), and that consequently the devel-
opments made and tested in one plant will necessarily generate interest for other
plants. The main reason behind this statement is that the machines and pro-
cesses used within plants are the same, even if some machines designs may differ
from one region to another. In the context of the company, we call regions the
three major areas of operation: Asia, Europe, and Americas.
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3.3.1 Use case identification

As discussed in Chapter 1, the competitive nature of the industrial context re-
quires the choice approach for dealing with failures to be pragmatic. Conse-
quently, the proposed procedure is above all cost-oriented, meaning that each
use case that will be worked on needs to generate a payback when implementing
a predictive system. As discussed in the previous section, the first step of the
process is to understand what the most impacting failures on the production
systems are. The main goal is to answer the questions below:

• Does the failure have high occurrence?
– If so, then failures that have a high ratio of breakdown time and

repairs costs must prioritized
– Else, failures that have the most financial impact when they occur

must be prioritized
• Is the failure impacting a majority of plants?
• Is the failure known by experts? Has it been studied before?
• Is data about the failure available?

In this local context, we are not considering the second question, as the study
was first conducted within one plant. However, the analysis of the impact of this
first use case globally is discussed later.

Figure 3.4 below describes this choice process.

Figure 3.4: Operational choice process
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The first step of our experimentation was to study the breakdowns data from
the plant, during the whole year of 2018. It has been done by extracting data
from SAP4, which is the ERP system used by the company. ERP systems con-
tain many data, in our case it also incorporates data from the maintenance
department, such as the number and costs of maintenance interventions, but
also various details about failures.

Some visualizations were created in order to understand better the extracted
data, Figure 3.5 shows the Pareto created for the plant. As it may not be very
visible here, this graph shows for each type of breakdown, its total time and cost
of spare-parts for 2018. The analysis is made on all the machines of the plant,
including utilities. A complete detail of the production process can be found in
Appendix C. The failure that is ranked first here is related to the welding units
located on the finishing centers of the plant, which represents approximately 15%
of the total breakdowns in terms of costs and time for the plant.

Figure 3.5: Breakdown Pareto of Compiègne plant 2018

The use case was validated with the local plant’s team, through a list of
impacting breakdowns, and the choice to work on failures with high occurrence.
It was also validated with other plants of the division, to be chosen as the first
use case for predictive maintenance. The process is detailed in Figure 3.6.

3.3.2 Failure understanding

We combined experts’ knowledge about both process and failure, as well as data
from the PFMEA5 done on the welding unit. An extract is shown in Figure 3.7.
Two main components are at stake during the chosen process, the band heater
that will heat the part to be welded on the tank, and the thermocouple that is
used for the regulation of the temperature. A regular manual verification of the
temperature is done by the maintenance team, to ensure that the thermocouple
is providing accurate information to the system. A failure of the thermocouple

4SAP: Systems, Applications and Products in Data Processing
5PFMEA: Process Failure Modes and Effects Analysis
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Figure 3.6: Choice process for the first use case

means that the regulation system will overheat, and damage both the band heater
and the part heated (called mirror). A failure of the band heater will lead to a
machine stop due to incapability to perform welding.

Figure 3.7: Extract of PFMEA for the welding unit

In Table 3.3, we detailed the possible failures that can be observed on the
two components, by taking into account the issues that can be caused by the
process.

The internal rule within the PLC6 that is monitoring the temperature has
several effects. It is verifying the temperature sent by the thermocouple during
the welding operation, as it should be within a certain range around the tem-
perature setpoint. If the observed temperature is outside of range for more than
one second, then the weld is considered as poor, and the part is scrapped. If
the temperature continues to evolve outside of the range, then the maintenance
team will plan a corrective intervention to check the thermocouple.

6PLC: Programmable Logic Controller
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Table 3.3: Potential failures list on welding units

Component Failure mode Failure cause Failure effect Current control

Thermocouple Damaged wire Repetitive
bending

Wrong
temperature data

PLC internal rule*

Cable cut during
process

No temperature
data

Zero threshold

Sheath breach Overheating from
band heater

Wrong
temperature

PLC internal rule

Physical damage
during process

Wrong/no
temperature

PLC internal rule
Zero threshold

Band heater Mechanical issue Damage during
movement
Loose
implementation

Overheating
Material lost

Visual control

Damaged wire Cable wear
Process
movements

Wrong/no heating Regulation loop

Electrical issue Ageing
Repeated heating
cycles
Short circuit

No heating Regulation loop

*Temperature data is checked with a threshold, during the welding operation

Several automated rules are programmed within the PLC, to ensure that the
process runs smoothly, according to rules edited by experts. However, they are
not necessarily efficient for maintenance activities, as they will alert after the
issue is observed, or when the rule is triggered.

After this first step that allowed a better understanding of the failure, we will
next discuss the data collection phase.

3.3.3 Data collection

The study of the failure modes, with the help of several experts, helped deter-
mining a first list of parameters to be monitored, as shown in Table 3.4.

Below, we provide more details regarding the collected data, as well as the
data management strategy:

• The temperature data is provided by the thermocouple and used in the PLC
program for various purposes. We collect it at the fastest rate allowed by
the communication protocol

• The temperature setpoint is a parameter linked to the process, and rep-
resents the target temperature for the band heater, and the value that
must be measured by the thermocouple. We collect this data only when it
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Table 3.4: Collected data

Parameter Unit Type Detail Collect
frequency

Temperature ◦C Integer Data used to regulate the
heat

50ms

Temperature
setpoint

◦C Integer Necessary temperature for
the welding operation

On event

PID load % Float Percentage linked to
chopped powering of band
heater

50ms

Regulation
switch

- Boolean Welding operation
ON/OFF

50ms

Scrap
information

- Boolean Information on scrap On event

changes (change of production) or before it is erased due to the retention
policy of the database

• The PID load corresponds to a percentage of time where the band heater
will be powered by the regulation loop. A detail of how it works is proposed
in Figure 3.8

• The regulation switch is providing the information that the welding opera-
tion is used or not during the process. As the machine can process multiple
products, some operations may be offline, and therefore the data collect is
not necessary

• The scrap information is given when the temperature crosses to internal
PLC rule during the welding operation. Collecting this information can
provide insight on repeated failures of the welding unit

Most finishing centers are different from one another, depending on the type
of product they deal with. Indeed, the design of the product will also impact
the design of the machine. They generally have around 10 welding operations,
meaning that we collect about 50 parameters per machine to monitor this issue.
All the data that we collect for this application comes directly from the PLC of
the machine.

After defining the dataset that needs to be collected from the machines, we
started to make some analyses on the data.
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Figure 3.8: Regulation process for the temperature

3.3.4 Data exploration

Figure 3.9 illustrates how we access, collect, analyze and visualize the data from
the machine, using the Edge Computing solution described previously.

Figure 3.9: Data management architecture for the welding unit’s monitoring

One of the early observations on this use case is that despite the high occur-
rence nature of the failure, it can still be challenging to catch such event. Failure
events can be spaced in time by several months, or a few hours. To deal with
such uncertainty and be efficient we packaged this first application and deployed
it on 15 machines in different plants around the world. The goal was to collect
as much production data as possible, to get run-to-failure events.

In a time window of 3 months, we were able to observe and collect failure
events. Cooperation with the local teams was essential, to get their observations
and feedback, to help understanding the changes in data and link them with the
physical world.
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Figure 3.10 shows the early detection made before failure of the thermocouple.
Very high or low temperature peaks appeared, which last less than 300ms at
the beginning of the deterioration process. These events are stored inside the
database, and appear directly on the visualization graph, which enables a visual
control (vertical red lines). As explained before, in the current process control
of the machine, parts are scrapped when temperature values are too far from
the target, during the welding phase. However, this rule is not considering the
temperature data outside of the welding phase. Hence, early identification of the
temperature peaks is the basis of the monitoring control that was developed to
detect these issues.

Figure 3.10: Temperature peaks detection

By looping back to the physical aspect of these events on the thermocouples
that broke, we observed that temperature peaks appearances were linked to
cable wear. As shown in Table 3.3, repeated movements are a cause for wire
damages. In the early phase of the failure, the thermocouple will provide wrong
temperature data on short periods (peaks observed) that correspond to micro-
cuts in the temperature signal.

Thanks to this first detection, experiments were done by observing the evolu-
tion of the damages until the cable fully breaks. In this sense, the temperature
peaks observed will last longer with time, and eventually generate scraps through
the internal PLC rule. For this use case, the failure of the component has a huge
impact on the quality of the produced parts. Therefore, solving the issue on the
maintenance side also had benefits for the quality department.

In the next section, we detail the solution that was designed, in order to
propose an efficient monitoring of this issue to the plant’s team.
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3.3.5 Proposed solution

The detection rule was designed to detect and count the temperature peaks. A
threshold was defined for the number of peaks detected that can be accepted
before alerting the maintenance team on the potential failure. That allows the
maintenance team to organize corrective interventions prior to machine down-
time. An example of failure detection is shown in Appendix E.

An alerting dashboard is made to monitor efficiently each machine, and de-
termine the number of peaks that appeared on each welding operation during a
fixed period of time, proposed in Figure 3.11. The system is able to send alerts
via e-mails as in Figure 3.12 and SMS (through Node-RED) in order to warn the
maintenance teams.

Figure 3.11: Alerting dashboard

Figure 3.12: Example of email alerts sent

The main outcomes of the solution are the following:

• Monitoring and detection in real-time of the anomalies related to wiring
issues

• Visual monitoring for the plant’s team
• Early alerting for the maintenance team to plan corrective actions
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• Reduction of the investigation time on the failures, as the alerting sys-
tem provides information on which machine and which thermocouple is
impacted

This first use case served as the basis of experimentation on the different
parts of the framework for predictive maintenance, and to validate and improve
the data management system. However, investigations made on the band heaters
brought fewer results, but provided some valuable insights regarding maintenance
data from the ERP system, as well as defining a process to deal with failures
having low occurrences on the Blow Molding Machines. We will discuss these
two topics in the next section.

3.4 Case of failures with low occurrences

A thorough analysis of maintenance data has been done at the global level of the
40 plants. The main objective was to apply the methodology previously tested
locally, to determine globally the most impacting use cases and potential can-
didates for predictive maintenance. In parallel, failures linked to band heaters
proved to be difficult to catch during production phases. To validate the interest
of keeping the investigation, a test bench has been created to reproduce the fail-
ures. Finally, motivations behind the investigations done on the most impacting
failure, to implement vibration and hydraulics analyses, are discussed.

3.4.1 Global maintenance data analysis

Investigation of maintenance data was conducted through several activities:

• Manual extraction of work orders7 data from all plants
• Collect local feedback from plants regarding pain points on maintenance

activities
• Automatic analysis of work orders using Natural Language Processing (NLP)

The first point relates to the analysis of work orders from the plants. Work
orders are the documents edited by the maintenance teams when any mainte-
nance activity has been carried out. They include the date and duration of
interventions, the equipment, the type of failure, use of spare parts, and an op-
tional comment section where the problem encountered can be detailed. This

7Work order: request document that describes the corrective maintenance intervention that
needs to be carried out
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work allowed to determine a first list of topics to be addressed, where they were
split into two categories: low occurrence with high costs and high occurrences
with low/moderate costs. Figure 3.13 illustrates the last statement, as discussed
previously the methodology is cost-oriented. The topics having low occurrence
and low costs are not suited for implementation of predictive maintenance, as the
costs and time to deploy a solution will be greater than the outcome. Similarly,
the topics having high occurrences and high costs should be very limited, as they
are most of the time due to errors in the design of the equipment. As such, these
last topics are most of the time dealt with very early when the production system
is installed.

Costs

O
cc

u
rr

en
ce

s

Topics of interest for predictive 
maintenance

Figure 3.13: Topics considered for predictive maintenance

The second activity is part of the experts’ knowledge collect, in this case
plants’ maintenance and production teams were interviewed to understand and
aggregate their feedback on important topics to address.

Finally, in addition to the first two steps, an analysis on the previously men-
tioned comment section of the work orders was done. One of the major challenges
of the analysis was to deal with many languages within the dataset. To obtain
the results shown in Figures 3.14, 3.15 and 3.16, we first cleaned the dataset. We
then translated automatically to English this data from the 16000 work orders
using an API from the Google translate application. As the data is entered man-
ually, many typos can be found, and in addition the translation being imperfect,
it brought many false words that were filtered as much as possible. Three anal-
yses were made using an NLP model, to plot the occurrences of single words,
pairs of words and trigrams. The main goal was to bring new insight and confirm
the data obtained from the first two activities. It is also possible to represent
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the data obtained as shown in Figure 3.17, to have a quick understanding of the
most used words.

Figure 3.14: Single word analysis Figure 3.15: Pair words analysis

Figure 3.16: Trigram words analysis Figure 3.17: Word Cloud

These analyses provided many insights on the maintenance data itself, as well
as giving a list of topics to address using the predictive maintenance framework.
We will discuss more in detail the results of this work in the conclusion of the
chapter, and in Chapter 4.

In the next part, we briefly analyze two similar approaches on two use cases
that were tagged as having low occurrence, but still interesting for predictive
maintenance because located in the bottom right part of Figure 3.13.

3.4.2 Finishing centers: band heaters

As discussed in the previous section, the first study that was conducted on the
welding units provided a solution for failures linked with the thermocouples.
However, the analysis of the failures of the band heaters proved to be more
challenging. A decision was made to investigate further these failure modes,
as the previous global maintenance data analysis validated the relevance of the
study.
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To proceed on a more detailed analysis of this topic, two main activities were
defined:

• Investigation on production data, by adding current sensors
• Reproduce failure modes using a welding unit test bench

The parameters collected on the welding units (Table 3.4) were expected to
be sufficient to detect failures on the band heaters, based on the analysis made
with experts. However, as the PID load is a value used to control the powering
of the band heater, the result of this action is missing in the dataset. That is
why it was decided to add current sensors to monitor closely the behavior of the
powering of the band heater. Using the maintenance data, the focus was made
on the machines that had similar issues in the past.

To have more chances of collecting data related to failure events, tests were
made in parallel on a welding unit test bench located in the research center (α-
Alphatech) in Compiègne. The test bench is shown in Figure 3.18. It is composed
of two welding operations, called "complex" because they have two band heaters.
One is used to heat the part of the tank that receives the welded component,
and the other is dedicated to heating the component. We performed the tests on
one operation i.e. on two band heaters. For the sake of reproducing what can
happen in production, both band heaters were new.

Figure 3.18: Welding unit test bench
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Table 3.5 summarizes the tests done to replicate failures, as well as the as-
sumptions made on the causes and effects of failures on data behavior.

Table 3.5: Tests to replicate failures

Failure mode Experiment Expected results

Electrical issue Repeated heating/cooling
cycles

Change in resistance before
failure
Change of the shape of the
temperature curve

Mechanical issue Wrong installation of band
heater
Repeated stretching tests

Increase of regulation load

Damaged wire Not possible with test
bench

Peaks on current data

The tests related to damaged wires were not performed, due to the danger-
ous nature of these components. Indeed, we are dealing with temperatures up
to 300◦C, and extreme testing could end up generating risky situations or even
create fires. Similarly, we did not push the temperature higher, as it does not
reflect the use in production, and could also potentially create hazardous situa-
tions.

Some explanations and results are proposed in Appendix F.

Figure F.1 shows the solution used to create cooling on the band heaters. A
simple circuit was created, using the available compressed air of the machine and
two tubes operated by their respective valve. As both band heaters had different
thermal characteristics, it was necessary to have one valve per component. The
Edge Computing software were used to create the repeated cycles shown in Figure
F.2, as Node-RED is not only able to read data from PLCs, but also to write
them. This makes it possible to create scenarios to operate any machine equipped
with a PLC. In our case, the process was the following:

• Start the heating phase up to 300◦C
• Stop the heating (regulation switch off)
• Start blowing air by opening the valve
• Stop blowing air when temperature reaches 50◦C
• Restart first step

This allowed to create many cycles to try to deteriorate the band heaters and
generate a failure. The main objective was to accelerate ageing of the component.
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In production, some failures were observed during the restart of the machine, as
the mirror needs to be heated from 50◦C to the temperature setpoint, usually
between 250 and 290◦C. However, we were unable to observe changes in the
behavior of the band heaters after hundreds of cycles, even less to generate a
failure.

Figure F.3 shows the mechanical tests done on the band heaters. The idea
behind these was to reproduce wrong conditions that can happen in production,
for instance when maintenance is performed to change the band heater, and a
failure is produced by this replacement. The first test involved not tightening
the band heaters to their respective mirror and starting the regulation phase, to
observe the impact on data. The second test was strength-based, as we stretched
the band heater repeatedly before installing it again and running the regulation.
Both tests provided no results, as no change in the behavior of the band heaters
was observed.

Finally, as no failures were observed in production, and in addition to the
results given by the tests, the study was put aside. The main difficulty being
the assessment of the maintenance data coming from the 40 plants, it has been
assumed that the failures reported were either due to wiring issues, or a combina-
tion of several factors that we were not able to replicate. However, by using the
monitoring developed for the welding units, primarily with the load of the PID,
we can detect issues that can impact the band heaters. In the case that the load
is high during the regulation phase (after reaching the temperature setpoint),
the plant’s team can either check that the parameters of the PID are correct, or
else if any issues appeared on the band heater itself.

3.4.3 Blow Molding Machines: rotating equipment and hy-
draulics

An important work has been conducted regarding vibration analysis on the Blow-
Molding Machines (BMMs) and linked to the top failure mode impacting the
division. These failures have a low occurrence, but the costs of repair and non-
production are important.

The main reason why vibration is used for monitoring of rotating elements is
because of the early changes in the behavior of the data before a failure happens.
To visualize this statement about vibration, it is interesting to use a potential
failure curve (P-F curve). This curve has first been introduced by Moubray
(2001) and plots the evolution of the condition of any equipment regarding time,
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starting when it is first installed. On this curve also appear the points P (po-
tential failure apparition) and F (functional failure apparition). The distance
between these two points regarding time is called P-F interval, it is therefore the
estimated time between the actual failure and the first signs that indicate its
occurrence. Finally, we can also find on the curve an indication of each physical
data related to the failure, that can help detecting it between the points P and
F. The closer it is to P regarding time, the better the data can help detect early
stages of the issue.

An example of P-F for a ball bearing is given in Figure 3.19.

Figure 3.19: P-F curve of ball bearing (Moubray 2001)

This example of curve is true for all rotating equipment, with ultrasound
analysis being even closer to P than vibration signals, but also more expensive
and difficult to interpret compared to vibration. Vibration has been studied
extensively over the past decades, that is why it is widely used in industry to
monitor mechanical issues on production systems. This statement is even more
true in the Industry 4.0 context, as the systems can compute and communicate
vibration features more easily.

Figure 3.20 shows the test bench created to experiment on vibration analysis.
It is composed of a servo motor, a PLC, a shaft, two bearings and a wheel. The
bearing farthest from the motor can be easily changed as in the right picture,
to evaluate the vibration signals on bearings having different health state. The
wheel can be loaded with weight to create unbalance on the shaft. The two
bearing housings were machined to easily place the vibration and temperature
sensors, as close as possible to the bearings. The motor was operated using the
Edge Computing architecture, as for the welding test bench (in this case, to turn
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the motor on and change its speed).

Figure 3.20: Vibration test bench

Two main objectives were set regarding the use of the vibration test bench:

• Validate the technical aspect of the solution regarding vibration analysis
• Validate the software environment linked with vibration data

To reach these goals, several tests were made on the bench, with solutions
provided by various suppliers. The final objective was to select a solution to be
deployed within the 40 plants.

Table 3.6: Validation of the vibration solution

Technical requirement Related experiment

Collect vibration and temperature data Implementation and wiring of vibration
and temperature sensors

Vibration sensor frequency range higher
than 4kHz (to detect issues on bearings
that operate at high frequency)

Verify technical characteristics of the
sensors
Reproduce failures on the vibration
bench

Possibility to study the data in the
frequency domain
Possibility to monitor common vibration
indicators: unbalance, misalignment,
bearings

Study available features from supplier’s
solution

Possibility to implement limits of
standard ISO 10816-3

Test software’s feature to add thresholds

Availability of the data outside of
supplier’s software

Collect vibration bench’s data using
Edge Computing
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An extra requirement to choose the final solution was the possibility to inte-
grate oil monitoring sensors in parallel. As shown in Figure 3.19, oil analysis is
also interesting to detect issues coming from mechanical equipment. This set of
sensors includes particle counting, pressure, flow level, temperature, water con-
tent in oil. These sensors make possible the analysis of the full hydraulic group
used to operate the BMMs. The main reason for choosing to make experiments
solely on vibration is because of the complexity of such analyses, compared to
the ones required for the hydraulic parts.

The different tests made it possible to select a solution that is being imple-
mented in both IES (Intelligent Exterior Systems) and CES divisions. The use
of the solution is continuously being improved, and provided some successes for
the company, by avoiding critical failures, as shown in Appendix G.

3.5 Overview of the results and discussion

In this section we will discuss the results from the first use case, as well as some
investigations that were conducted on failures having low occurrences. In a sec-
ond part, we will address the limitations and opportunities observed throughout
the implementation of the predictive maintenance framework in the industrial
context.

3.5.1 Results

The application of the methodology proposed in section 3.2 within our industrial
context provided many results. The first noticeable one is the capability of the
system to provide an efficient solution to address a specific issue, for both the
developing team and the end-users. This allowed to validate and standardize the
proposed approach within the company, for dealing with machine failures with
a predictive maintenance strategy. As discussed, a major goal of the approach is
to be adaptable to most of the machines and processes, and the flexibility of the
architecture makes it possible. This flexibility results from its availability to be
deployed in local computers, as for the tests done on the band heaters, but also
at the plant level in its local server, to address multiple machines at once.

A second aspect of the solution is the possibility to package a predictive main-
tenance monitoring application. In the case of the thermocouples monitoring for
the welding units, we were able to propose a simple way to deploy a standard
solution within the 40 plants. This topic is rarely discussed in the literature, but
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the implementation of a standard solution for multiple users in different countries
is challenging. The solution is continuously being improved, by modifying and
adding ways to monitor the issues, as well as new alerting channels and local
translations.

As the monitoring application should not be and end in itself, the results
found from the different use cases allowed the experts to focus on specific points
to reduce the occurrence of failures. For instance for the wiring issues, an im-
provement on the systematic verification of cabling and routing was issued, as
well as specific rules regarding bending angles during the movements. However,
the application is still necessary, as the process still generates natural wear on
the cables.

Finally, an observation made during the different experiments shown that
extracting knowledge and value from data is not always done through complex
processing, but it often starts with an efficient way of sharing it through visual
dashboards. That is why selecting the correct data at the beginning of the
study is important, to provide first insights to experts and daily users of the
equipment. The main reason behind this statement is that most of the time,
data is used within the PLC, and can be collected punctually by other systems,
but the possibility to visualize its evolution closely to real-time often gives new
perspectives and useful information.

3.5.2 Limitations and opportunities

In parallel of the satisfying results discussed above, we faced many challenges
that opened new areas of investigation and provided room for improvements on
some aspects of the predictive maintenance framework.

The first topic is related to the maintenance data coming from the ERP sys-
tem, which was used to determine the topics to be addressed with the predictive
maintenance approach. As mentioned in section 3.4.1, work orders coming from
the plants were analyzed. However, to perform this job, it was necessary to make
manual extractions of the databases and aggregate all the data together. As this
process was not optimized, one project was started to create a global application
to automatically collect and visualize the data from the plants. This allows to
refresh periodically the Pareto of costs and occurrences of the failures.

Similarly, as presented in section 3.4.2, the work on band heaters was unsuc-
cessful. A thorough analysis of the maintenance data highlighted some issues
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regarding the data quality on the work orders. As the work orders were entered
manually in the system, some data was incorrect, due to lack of time or errors
from the users when typing back the work orders. This led to reconsider and
update the list of candidates for predictive maintenance. Consequently, a sec-
ond project was started to automatize the entry of maintenance data within the
system. The main goal was to standardize and quickly identify the categories of
failures to put the work orders in, to have clean data. This work was performed
in parallel of the first one mentioned just above, to propose a precise global
visualization of maintenance data.

The work conducted on the welding units provided a good insight linked to
the challenge to observe failures on any given equipment. This reinforces the
necessity of the predictive maintenance system to be flexible and easy to deploy
on new use cases or machines. In addition, having physical data available on the
monitored equipment is a strong requirement, to have a chance to observe its
degradation over time. Hence, the study of implementation of vibration and oil
analysis sensors on the BMMs was necessary, to get the early signs of failures
on rotating equipment. Similarly, collecting the current of the band heaters
was relevant, even though we could not find a way to detect issues on these
components.

As part of the improvement of the application developed for the thermocouples
of the welding units, it is necessary to assess the performance of the model. This
assessment can be demanding, as the model is installed globally in the plants of
the division, addressing dozens of machines. Because the application alerts the
maintenance teams to go check the data, and if necessary to assess physically
the state of the thermocouple, there is a limitation on the automatic assessment
of the performance of the model. Currently, manual feedback from the plant’s
team regarding work orders linked to thermocouples interventions is provided,
to check whether an alert from the application has led to this intervention or
not. Two ways to improve this process are shown in Table 3.7, both having their
limitations. These investigations are valid for the topics using the framework,
not only for the assessment of the thermocouples monitoring.

A general observation on the different projects linked with predictive mainte-
nance is that even though the framework proposes remote tools to address the
use cases, local insights and collaboration from plants are essential. The pre-
conceived idea that a maintenance issue can be solved only remotely using data
analyzed by experts is far from reality. Paradoxically, close work between experts
and local users of the equipment is required, but time spent on these topics can
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Table 3.7: Improvements linked to the performance assessment

Possibility of
improvement

Benefit Drawback

Include semi-automatic
feedback from user in the
performance assessment
data

Ensures the quality of the
feedback

Rely on users with
possibility to forget, or
make mistakes

Automatic work order
triggered by the predictive
maintenance framework

Possibility to assess the
performance through the
work orders
Process tested and
validated within the
framework

Possibility to generate
work orders on false alarms

be an issue locally, as well as necessary skills that are not yet well developed. And
as mentioned, many of the ideas and feedback to work on predictive maintenance
topics arise from the local needs. All these statements add extra complexity to
such a study.

Finally, from the proposed framework and operational methodology to im-
plement it, there is a necessity to anchor such process within the company. To
achieve this goal, a modelling of these steps was done as shown in Appendix D
as well as training and presentation materials.

3.6 Conclusion

In this third chapter, we detailed the methodology behind the predictive mainte-
nance framework. It was applied on a first local use case, before being extended
to several plants of the company. It provided satisfying results, to validate and
evaluate each step of the process of implementation of a predictive maintenance
solution. An investigation on cases with low occurrence was conducted, generat-
ing some mixed results that were used to highlight weak points and possibilities
for improvements. From all the listed points of the previous section came the
necessity to develop a specific environment for predictive maintenance within the
Edge Computing architecture presented previously. Multiple goals are addressed
with the use of this new solution, enabling an efficient way to test, develop, pack-
age, and deploy monitoring applications. This Intelligent Maintenance System
(IMS) will be described in Chapter 4.
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3.6.1 Scientific contributions

The goal of these first steps to develop and deploy the predictive maintenance
framework was to confront the existing standards proposed by PHM to a global
industrial context. The technical aspect of the methodology is validated, however
the choice of tools used to embody the framework differs and arises from this
global context, as well as the features of Industry 4.0 linked to communication
protocols and IoT. We showed that many aspects related to industry need to be
considered for the development of the methodology, that is why in this work the
development of the framework was supported by results from its implementation.
Some key aspects are proposed below:

• There is often a trade-off between money investments put in a standard
solution that will not meet all requirements from the framework, time in-
vestments to develop specific solutions linked with contextual needs, time
objectives linked with the expected availability of the solution, and avail-
able resources with proper skills to work on the previous points

• The predictive maintenance system has two levels, related to the develop-
ment of the end-solution by experts, and how it will be implemented and
used locally

• The management and development of internal skills to support the lifecycle
of the system greatly impacts the global study, from the development to
the implementation of the solution

• The financial feedback of the solution is not often easy to apprehend, as it
requires an efficient way to track and collect feedback linked to its usage.
This complexity is increased in a global context

3.6.2 Industrial contributions

In this chapter, we presented several works that contributed to improve different
aspects of our industrial context:

• A monitoring solution deployed globally for thermocouples issues
• A new way to perform tests by collecting and analyzing data locally, using

the Edge Computing architecture
• A sensor solution for rotating and hydraulic equipment that was assessed

and tested to match technical and financial requirements
• Data quality issues for maintenance work orders allowed to improve the

ways to collect and organize the data, and provided a global visualization
to select potential candidates for predictive maintenance
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Development of an Intelligent
Maintenance System for predictive
maintenance
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In this chapter, the motivations previously discussed behind the development
of such system are detailed. We will then describe the methodology that was
followed to create the IMS, as well as its architecture. Its practical deployment
will be explained, and some examples of its application will be given, by empha-
sizing on the flexible and reconfigurable aspect of the solution, facilitating the
implementation of predictive maintenance topics.

85



4.1. MOTIVATIONS

4.1 Motivations

Many observations from the implementation of the predictive maintenance frame-
work highlighted the necessity to develop a specific application to deal with it, in
addition to the implementation of the Edge Computing architecture. Some im-
portant features specific to predictive maintenance activities should be included
within the solution. Such features are summarized below.

• Propose a standard way of collecting data from numerous sources, using
different communication protocols

• Apply different processing on the data, with the flexibility to add extra
types of processing

• Monitor each data with a specific approach (threshold for instance), with
the flexibility to add extra approaches

• Assess the state of each data, to propose indicators to follow the evolution
of its behavior

• Alert the maintenance teams and create action plans regarding the prog-
nostics that was done

• Propose efficient visualizations for all the different steps linked to data
manipulation

Figure 4.1 helps understanding where this IMS intervenes on the different
steps of the framework.

Activities included within the IMS

Figure 4.1: Perimeter for the IMS activities
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The only steps not included are linked with failure and data selections, as
they require maintenance data from the ERP system, as well as knowledge from
experts on failure modes. The rest of the activities are incorporated inside the
system, to provide a standard way of developing and deploying predictive main-
tenance solutions. The methodology used to develop the IMS is detailed in the
next section.

4.2 Methodology behind the application

The model that was developed around the first framework can be found in Figure
4.2. It presents an overview of the different steps taken to implement predictive
maintenance. The application that integrates a large part of the methodology
was named Machine Health Management (MHM), and proposes a set of tools
that tackle the different challenges of predictive maintenance. The various parts
of the methodology will be described below.

The first part of the process starts with the studied machine or production
system. Because machines can be quite complex with different parts dealing with
different functions or steps in the production process, it is quite important to
understand the failures modes. As proposed in the first use case, the studied
failures are first and foremost chosen regarding their impact on availability time
and productivity of the machine. The interesting failures to study are most of
the time the ones with high impact on costs and low occurrence, or the ones with
high occurrences and low impact on costs.

The failures that have low occurrence and low impact on costs will not benefit
from the deployment of a predictive maintenance solution. The failures with
high costs and occurrences should normally be dealt with very early when the
production system is started, because mostly coming from design issues.

To study the relevance of failure modes to be studied, we propose three main
solutions that are studied in parallel. These steps are the most important ones
because they will define the final solution that will be implemented.
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Figure 4.2: Machine Health Management application model
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1. The Computerized Maintenance Management System (CMMS) is a tool
used to manage the maintenance within a company. Its main goal is to
organize maintenance activities, follow-up on the different interventions
and keep an historic of all this data. The interest here is to be able to
analyze past data on the production system, to rank the different failures
observed according to their costs and occurrences. The CMMS system
is often linked to an ERP system, which allows to understand the costs
involved on spare parts. In the case of a new production system with no
historical data, this system will help updating the list of chosen failure
modes from the two other steps at a later time.

2. FMEA is widely used in industry to understand the potential failures that
can occur and know them better by analyzing their causes and effects on the
impacted equipment. This tool can have different variations, by analyzing
the process (PFMEA) for instance, or adding a criticality score to the
failure modes (FMECA). However, its use in this methodology remains the
same, and provides information on several steps.
First, it provides a list of failure modes that can be studied for predictive
maintenance, probably not exhaustive, but enough to start the analysis.
The main benefit is that it does not require the production system to be
already in use, and therefore this study can be performed even in the early
stages of conception.
Second, the a priori knowledge of causes and effects can help choosing a
first set of data to be collected by the predictive maintenance system, and
even help implementing extra sensors on the production system.

3. Finally, experts’ knowledge also matters, similarly to FMEA, to choose the
correct failure modes and the data to be collected. Some of this knowl-
edge can be found within the FMEA, but experts here relate to several
groups of people within the company that have knowledge about the way
the production system operates. It includes for instance process engineers,
automation engineers, machinery design department, maintenance techni-
cians, operators and more. The importance of involving a wide range of
"users" is to have theoretical and practical knowledge about failures that
can, did or will appear on the equipment.

There is a practical reason behind the selection of only several impacting
failure modes to be studied, compared to, for instance, a full assessment of the
production system. The latter study can be successful but involving several
failure modes and a large amount of data in the predictive maintenance system
can prove to be very challenging to tackle. The risk is to propose a final
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solution that will be too fuzzy for the end user regarding prediction
of health state, or not precise enough to take the correct actions. That
is why, even if the solution is identified as data-driven, meaning that the model
uses data analysis to propose solutions, there is still a necessary part of physics
understanding involved, to correctly apprehend the failure mechanisms. When
implementing a predictive maintenance system, it is often more meaningful to
have a smaller dataset, but with data that has high correlation with the failure
mechanism that is being studied. Knowing key characteristics related to the
process can also help finding the relevant parameters to be monitored.

The previous steps give a first interpretation of the dataset that will be needed
to study the selected failure modes. The next step is to identify if this data is
available in the production system, i.e., the application will be able to connect
to the source of the data to collect it. Many ways exist to connect and collect
data through different protocols, and some will be presented in Section 4.3. To
be successful in this step, knowledge about the automation system used, as well
as Information Systems and Services (IS&S) is required. If extra sensors need
to be implemented in the system, it is necessary to verify that the addition of
such means of measurement will not create extra failure modes or weaknesses
in the system. It means that the sensors should be as less intrusive as possible
regarding the way they are implementation on the studied equipment.

There is also a requirement during this step to study and estimate the amount
of data that will be collected and stored. The choice of data retention (mean-
ing how long the data will be stored before being backed up or deleted) is of
importance, as the system will grow more and more with new studies being im-
plemented. As shown in Figure 4.2, this data (or variables as named in the figure)
is the input of the system that composes the predictive maintenance application.
Most of the data collected from the production system is time series data, but
other types of data can be integrated, such as images (from 2D cameras or ther-
mal cameras for instance). As per the figure, one variable can be used to analyze
multiple failure modes, although it is only collected once.

As mentioned before, the first knowledge coming from data is most of the time
with an efficient way of visualizing it. The main reason is that until implementing
such system on the industrial equipment, it can often be seen as a "black box",
meaning that the users cannot fully understand what is physically happening
during the process. Time series data show evolution of the system over time, and
close to a real-time visualization (data can be collected every few milliseconds).
It is a first strong step for the users to understand the machines and processes
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better and can also generate ideas about how the data should be monitored. An
explanation is proposed in Section 4.3 regarding the users’ interactions with the
application.

Thresholds or limits are often the first type of monitoring that will be done
on new studies of failure modes. These values can be known a priori from how
the process works, or the acceptable limits of the mechanical parts that compose
the production system. This first monitoring will also help implementing a first
set of alerts for the users, in case of deviation.

After these first interactions with the collected data, the next step is linked
with Artificial Intelligence (AI), in its broad definition. The main goal at this
stage of the methodology is to be able to create correlations between selected
data to predict appearance of the failure mode. It can be reached using various
methods involving several manipulations and transformations on the data, which
are available in the application. The data management system must integrate
modules to perform these actions, such as implementation of machine learning
models. Most of these analyses are multivariate because interactions and correla-
tions between state of several data must be studied and taken into consideration.
The idea here is to create a specific monitoring for the failure mode, to be able to
alert afterwards and point as precisely as possible where the issue is located on
the impacted production system. This precision allows the maintenance teams
to be more prepared and plan specific actions related to the result proposed by
the system.

Finally, the decision system is composed of numerous tools to share the cor-
rect information at the correct time and to the correct information system or
user. There is a necessity to connect this predictive maintenance application
to the most important information systems of the company, such as the ERP
described at step 1, or the MES to plan maintenance actions without disturb-
ing the production. The system should also have the possibility to send action
plans or work orders through the CMMS. It is also important that alerts can be
sent from different channels to reach the users, the most commons being emails,
SMS, internal communications applications such as Microsoft Teams. Standard
alerting dashboards exist for visualizing data in different ways, and users also
have the possibility to create new ones, so that the production and maintenance
teams can easily check the evolution of the equipment’s state.
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4.3 Architecture of the application

In this section, the actual architecture is described, as well as the different pos-
sible ways to use this application. To understand how the application works, a
simplified overview is proposed in Figure 4.3.

Plant level

Remote central server

Stores

MHM core

Models

Data visualization
Data analysis

Alerts

Local plant team

Local plant server or computer

Standardized data collect

Communication protocols

Edge Computing

Retrieves and 
generates 

models locally

Global level

Figure 4.3: Overview of the structure of MHM

The application can be seen as being on top of the Edge Computing architec-
ture. It interacts directly with it through a web interface, which will generate
code without having to type it. The benefit is that it helps users visualize and
understand how the machines behave, by using standardized applications. The
different modules of the application are described below.

MHM is a central tool developed during the thesis in Java, which stores each
models used to collect, store, and analyze the data at a global level. It is ac-
cessible through a web page for any user having the necessary credentials. It
implements all the previous models locally in the plant, where the user wants
to create a monitoring. Once this code is pasted, it runs on the local server or
computer of the plant. One of the main advantages is that MHM opens this kind
of monitoring to workers that do not necessarily have a coding background.

As a result, they can use the visual interface to configure what machine they
want to address, what data they want to collect, how long they want to store
it and what data manipulations and monitoring they want to add. Once this
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configuration is done and validated, the application will automatically gener-
ate all the necessary code with the correct configuration inside the local plant
device.

Because the local device is connected to the same network as the machines, it
can connect to them using various communication protocols, for instance OPC
UA (Leitner and Mahnke 2006), Modbus (Swales et al. 1999), MQTT (Hun-
keler et al. 2008), and directly to the Programmable Logic Controller (PLC) of
the machine through its proprietary protocol: Siemens S7 protocol for example
(Beresford 2011). Once this connection is done, data is stored locally, in a stan-
dard way, with possibility to add some extra information on the data, such as
tags. This allows filtering the data for visualizations and analyses.

Some pre-configured dashboards were developed during this work, so that the
users can visualize directly the newly collected data. Dedicated dashboards can
also be created in Grafana, which can then be shared amongst plants. There is
also the possibility to put in place some alerting regarding the monitoring rules,
through the communication channels described before.

The different rules are part of the "AI" block shown in Figure 4.2. They are
based in the current version on static thresholds, duration of known anomaly
states, catching and counting events in the incoming data or dynamic thresholds
using SPC (Statistical Process Control (Oakland 2007)). SPC allows calculating
thresholds dynamically, by selecting a time window reference for the data. It
makes it possible to create efficient control charts, to understand if the data is
stable or deviating. Each rule can trigger a specific alarm to alert the main-
tenance teams, and the most advanced rules can also generate work orders to
plan corrective actions directly with the ERP-CMMS system. There is also a
possibility to combine several rules and generate targeted alerts if the root cause
of the failure detected is known.

Finally, the importance of this step is that the user is still able to reach the
"back-end" of the application (directly in Node-RED), to make some manual
modifications, or even adding specific local monitoring. Plants tend to have
more and more local skilled people on these topics, able to help with the coding
process. In this case, the code can be written in JavaScript in Node-RED and
there is also a possibility to create analyses in R or Python.

This final step is important to underline, because as mentioned before, it is
quite challenging to address all the existing machines within a company. For
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the Clean Energy Systems division as an end user, the machines may differ, not
in terms of process but of components used to build the machine. Therefore,
the behavior of one machine to another may drastically change, and can also be
impacted by the environment in which they operate. That is why this notion
of flexible tool matters, because it is not only a top-down application, but also
bottom-up, similarly as mentioned in Figure 1.6 in Chapter 1.

The top-down aspect is linked to the developments made by the central team
working on Industry 4.0 topics, which proposes specific monitoring on top failure
modes directly to the end users, i.e., the plants. Using the application, they can
replicate a model developed by experts, and operate it directly with the correct
configuration.

The bottom-up aspect is linked to the local developments made on specific
issues, which can be also of interest for other plants. One of the main interests
is that these developments can be done easily and quickly, on faulty equipment,
which can increase the efficiency of the model created. These local developments
can then be reinjected locally to other plants that may find themselves in the
same situation as the original plant. Storing the models centrally, like in MHM,
allows this way of working: the application can be seen as an "application center"
similarly to what can be found in smartphones. A summary of these activities
is shown in Figure 4.4.

Bottom-up Top-down

Local plant team

Develops or requests 
a specific monitoring

Core team

Use standardized 
model

Standardizes 
specific model

Plants users

1

2 3 Core team I4.0 team

Develop 
model or 

application

Local plant team

Deploys and 
uses locally

1

2

Figure 4.4: Top-down and bottom-up aspects of MHM
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4.4 Deployment and validation on industrial cases

After understanding the methodology behind MHM and its architecture, we will
analyze its use in the industrial context on two different topics. Although it
has been used on several cases, the two cases presented below are the most
advanced applications that provided good results and perspectives for future
improvements.

4.4.1 Helium Leak Testers

4.4.1.1 Principle of the process

The first topic deals with helium testing machines, also called Helium Leak
Testers (HLTs). These machines intervene at the end of the production pro-
cess, as mentioned in Appendix C. Their goal is to ensure that each produced
fuel system is within acceptable range regarding leakage. Indeed, as mentioned
previously some cutting and welding operations are done on the tank, which
can create internal leaks if the operation is not performed under good condi-
tions.

To verify this, tanks are tested inside the HLTs. A basic principle is proposed
in Figure 4.5.

Vacuum pump

Vacuum pumpHelium supply

Mass spectrometer
Fuel tank

He

He

HLT chamber

Figure 4.5: Helium leak test principle

The machine is composed of a chamber where the tank is installed. It is
sealed, and vacuum pumps evacuate the air in both the chamber and the tank.
Once it is complete, a fixed quantity of helium is injected inside the tank, and a
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mass spectrometer coupled with a pump observes the number of particles located
inside the chamber, i.e. the estimation of the leak rate of the tested tank. The
acceptable limit is given per product, and if it is crossed, the tank can be re-tested
or defined as a scrap. Helium is used during this test as it is the smallest known
atom, therefore giving a good idea of possible leakage issues on the product.

4.4.1.2 Topic definition

Issues on the HLTs are part of the list established in section 3.4.1, the main reason
being the lack of internal knowledge regarding their failure modes. Indeed, these
machines are historically less common to perform the leak tests, Water Leak
Testers being more used globally (cf. Appendix C). However, HLTs are much
more complex, and more efficient in the detection of leaks, therefore they are
becoming standard machines to be used in production lines nowadays.

HLTs are a good example of what usually happens in the industrial context:
these machines are quite complex and have many unexploited internal data that
could help understanding better their behavior. Consequently, HLT machines
were selected as a first topic to be worked on using the MHM application. This
use case started as a Top-Down project, as the main goal was to propose a global
solution to be deployed and used within each plant.

As a first step to define the study, four activities have been performed in
parallel, to understand better the issues related to this family of machines:

• Analyze maintenance history data to understand common failures
• Interview experts from the research center, and plants
• Work in collaboration with the supplier of machines
• Use the test machine located in Alphatech1 to have a better understanding

of the process

The result of these steps is proposed in Table 4.1. It gives an overview of the
issues related and the current processes in place to correct and detect them. To
understand the data inside the table, as presented before the machine has several
pumps, for various purposes such as removing air from the chamber and tested
part, or to remove the helium still inside the chamber after the test is done.
Filters are used to restrain particles that could damage the equipment, such
particles can be dust, or plastic parts that could still be on the product. Seals
are important on the machine, as they ensure that the process is performed

1Alphatech: research center of Plastic Omnium CES, located in Compiègne - France
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properly. Finally, many valves can be found on the machine, to redirect the
different gases in the correct places.

Table 4.1: Known failures on HLT machines

Issue Effect Verification in place

Faulty pump Increase cycle times
Impossibility to reach
vacuum level required

Oil check
Biannual pump’s
performance assessment

Filter clogged Contaminate oil
Increase cycle times
Pump deterioration

Cyclic cleaning
Replacement of part with
spare

Deteriorated seal Impossibility to run full
cycle
Increase cycle times

Cyclic check
Replacement of part with
spare

Broken valve Impossibility to run full
cycle

Replacement of part with
spare

4.4.1.3 Proposed solution

The machine has internal alarms, and a Human-Machine Interface (HMI) to
display them to the users. However, it is possible that some alarms can be
missed, due to the fact that they are not critical to the process itself, but can
still indicate the start of an issue on the machine. Consequently, one of the first
objectives of this topic was to collect the correct data, to start creating a history
and propose valuable visualizations. With the help from experts (on the supplier
and company side), a first list of data was edited, most of them being in the
following list:

• Cycle times: the duration of each phase of the process is calculated within
the machine

• Pressures: many pressures are measured by internal sensors, at different
locations on the machine

• Leak rate: calculation the observed leak rate by the mass spectrometer
• Other data: identification of the tested part, results of the tests, number

of parts tested, number of hours run for the pumps

The data is split and tagged under two categories:

• Chamber: machines can have multiple testing chambers, so each data spe-
cific to a chamber is identified here

• General: the rest of the data, common for all chambers, is identified here
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Splitting the data as such also allowed to create an interactive dashboard
where the general data and data specific to chambers are visualized indepen-
dently. An example of the visualization is proposed in Figure 4.6. Selecting
one or both chambers will modify the dashboard, to display the correct data.
This allows the users to quickly check the interesting data. Appendix H shows
an example of data visualization, in the case of a machine having two testing
chambers.

Figure 4.6: Split visualization for HLT machines (Grafana)

In addition, first thresholds and alerts were implemented, based on experience
and knowledge on the process. The package standardized and deployed from
MHM was composed of the data collection of the previous list, which represents
around 65 variables, and the dashboard discussed previously. This first solution
was the basis on which more knowledge about the machine’s behavior has been
built.

4.4.1.4 Improvements and perspectives

After implementing the first package, the second step of the work was dedicated
to improving the solution. The final goal being the proposition of meaningful
messages for the maintenance teams, based on the results of the analyses done
on the data, the current work is oriented towards this objective. Table 4.2
summarizes the various actions related to the improvement of the package.
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Table 4.2: Leads to improve the monitoring of HLT machines

Idea Expected result Related action

Observe trends on specific
pressures and cycle times
data

Increase or decrease of the
value over time should
indicate an ongoing
deterioration

Implement linear
regression analyses

Analysis of gases
consumption

Comparison of data over
time can indicate seal or
filter issues

Calculate consumption
periodically, or per gas
bottle, and verify number
of tested parts

Verify opening times of
valves

An increase of duration
during opening and closing
phases of the valve can
alarm on a failure of the
valve

Calculate and monitor the
evolution of the opening
and closing duration

Add extra sensors on
pumps

New physical data related
to the pumps can help
detecting oil or mechanical
issues

Implement sensors defined
in section 3.4.3

An example of the User Interface is proposed in Figure 4.7. Here, we can
find the list of machines monitored within the plant, the status of the machine
according to the monitoring rules in place, and a summary of issues per machine.
The user can click on the specific issues, to give more details and provide a direct
link to the data visualization.

Figure 4.7: User Interface for the HLT machines (Node-RED)

All these developments gave the opportunity to improve the core of the ap-
plication, as they can be proposed as new ways of monitoring the data collected
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by MHM. Figure 4.8 below shows the two main contributions of the use of MHM
for the HLT machines topic:

• As mentioned previously, the complexity of the machine, the lack of internal
knowledge and the availability of unused data provided a strong basis to
build efficient data collection, data visualization and first monitoring rules
to alert on potential problems

• A second step, still under improvement, gave the opportunity to list and
develop specific analyses, to propose a first diagnostic related to issues on
the HLT machines. The objective is to identify clearly the observations
made on data, and propose maintenance actions to try and improve the
health state of the machine

HLT machine

Dashboard

Expert

Help experts better understand 

the process

1st Diagnostic:

Alert & instructions

User

1

2

Diagnostic

Figure 4.8: Current contributions on HLTs

4.4.2 Blow Molding Machines: band heaters

4.4.2.1 Principle of the process

As partially presented in section 1.2.2, heating systems are found on the BMMs,
on the extruders and on the head. Their goal is to keep the material melted and
at the correct temperature. Similarly to the welding units presented in sections
3.3 and 3.4.2, the system is composed of one or multiple band heaters, and one
thermocouple per "zone". The zones are shown in Figure 1.3, and correspond to
the physical location of each heating system, from the feed hopper to the start
of the head. Such zones are defined in the same way for the head tooling, from
the top of the head, to the start of the parison creation.

The size of each zone defines the number of band heaters that can be installed,
and a regulation system powers the band heaters to reach a temperature setpoint,
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similarly as shown in Figure 3.8. An internal monitoring within the machine
ensures that the temperature is correctly regulated in each zone, and a detection
of wrong temperature based on a plausibility test is performed, which can stop
the machine if necessary. The heating systems are critical components of the
machine, as any failure can lead to quality issues and severe damages on the
extruders and the head tooling.

4.4.2.2 Topic definition

Differently from the band heater topic on the welding units that originated from
maintenance data analysis, this topic was a request from three plants. The need
came from several issues observed on band heaters located on the head tooling
of different machines, in different plants. Therefore, contrary to the HLT study,
this one can be categorized as a Bottom-Up topic, as per the definition of Figure
4.4. The plant located in Pfastatt, France, was selected as a first pilot for this
project as several failures were reported on a specific zone of the co-extrusion
machine (c.f Appendix B).

Following the same steps as for the HLT machines study, we propose a sum-
mary of known failures on these components, in Table 4.3. The main difference
with the welding units is that band heaters located on the BMMs are not moving,
therefore the cabling issues on both the thermocouples and band heaters are not
present in this case. The install on the extruder side is very robust, and few issues
are reported. However, the setup on the head tooling can be changed depending
on the production, and therefore the maintenance actions can deteriorate the
components, if a wrong action is applied during this change.

The verification currently in place on the system is linked with the evolution
of the temperature, and any detection of an issue based on this analysis can stop
the machine. The monitoring of the current gives alarms to the users through
the HMI of the machine, but does not currently stop the process in case an issue
is detected. Therefore, after understanding the potential failures on the heating
system, the next step presented below is dedicated to describing the available
data to be collected to monitor such issues.
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Table 4.3: Known failures on the BMMs’ heating systems

Issue Effect Verification in place

Band heater electrical
failure

No heating possible
Brutal failure of the
component

Monitoring with current
transducers
Evolution of the
temperature over time

Band heater not positioned
properly

Deterioration of the band
heater
Regulation disturbed by
zones above or below

Monitoring with current
transducers

Band heater tightened too
much on its support

Breakage of the support
Band heater loosening

Visual inspection

Wrong regulation
parameters

Slow deterioration of the
band heater
Electrical failure

None

Thermocouple breakdown Loss of temperature data
Incapability to perform
temperature regulation

Evolution of the
temperature over time
Stoppage of the machine

4.4.2.3 Data collect

The dataset has been defined after reviewing the system with process and au-
tomation experts, to understand the available and accessible parameters.

• The temperature coming from the thermocouple
• The temperature setpoint, which is a parameter that can be modified on

the HMI of the machine
• The temperature high tolerance value, which should not be crossed during

the production phase
• The temperature low tolerance value
• The PID load, named "ED" (similar to the value of the welding units)
• The current, that is measured for one zone, meaning that the read value

can be for one or several band heaters
• The current target, which corresponds to the value that should be read
• The current tolerance, below which plants’ teams should be alerted
• The machine’s production status

The first 8 variables are collected for each zone of the machine, and the status
just once. For a typical co-extrusion machine, having 6 extruders, each of them
having between 4 and 6 zones, and a head tooling having between 6 and 8 zones,
the dataset is composed of around 300 variables. Using MHM, the application
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connects directly to the PLC of the machine, to collect each parameter every
second. An example of the data collection code generated through MHM to
Node-RED is shown below.

Figure 4.9: Node-RED flow generated by MHM to collect data from a PLC

Similarly as proposed for the HLT machines, Figure 4.10 shows the split visu-
alization done in Grafana. The variables shown on top allow the selection of the
necessary extruders and related zones to be displayed, and the same thing exists
for the head zones. Selecting multiple extruders and/or zones will populate the
dashboards with extra graphs dedicated to each of the selected items.

Figure 4.10: Split visualization for Blow-Molding Machines (Grafana)

The machine’s status allows understanding quickly in what state was the
machine when visualizing the data related to the heating systems. It is especially
useful when checking a failure event from the history data, to get the evolution
of the machine’s state according to the rest of the monitored data.

4.4.2.4 Observed failures and proposed solutions

Based on the list of failures shown in Table 4.3, we were able to observe the first
four types of failures while collecting the list of data previously mentioned. Below
will be presented the different cases, and how solutions were designed within the
MHM application.
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The first failure is linked with a sudden loss of the component due to an
electrical failure, as shown in Figure 4.11.

Band heater broken at 9am
(zone 35)

Machine automatically stops near 2pm, due to 
temperature decrease (green curve)

Figure 4.11: Electrical failure of the band heater (Grafana)

As observed on the graphs, the value of the current that powers the band
heater brutally drops to 0 on the left graph ("Head_Current_35" - green curve).
After this event, we can see on the right graph that the temperature is slowly
decreasing ("Head_Temp_35" - green curve) and the load of the regulation is
increasing to reach its maximum value of 100% ("Head_ED_35" - blue curve
with vertical axis on the right side).

Due to the inertia of the system, and the zones located close to this one trying
to compensate the loss of the band heater, the heating system can continue to
work within temperature ranges (green colored zone on the right graph) for
several hours. However at some point the temperature crosses the bottom thresh-
old, and the machine automatically stops, after nearly 5 hours working in a
degraded mode.

The causes of the failure are numerous, and difficult to observe or replicate.
The data prior to the event shows no abnormal levels of temperature, regulation,
or current. Consequently, the first solution proposed to the plant’s team was a
monitoring based on thresholds and duration. As discussed previously, standard
monitoring techniques are proposed within MHM, to be used on any collected
data. In this case, the "Threshold timer" monitoring uses a threshold value and
a duration of the crossing of the proposed value. An additional parameter can
be used, as a verification of the first rule.

Consequently, to detect and alarm the plant on the loss of the band heater,
the proposed rule are detailed below.
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1. The value of the current reaches 0
2. The status of the machine is "Production" (additional verification param-

eter)
3. The duration of both previous rules is higher than 10 minutes

Again, the main goal is to have a pragmatic approach, and setting up this
monitoring to 10 minutes allows to verify that the signal is really lost and that
the machine is still producing parts. Similarly to the thermocouple case on the
finishing centers, the alerting allows the maintenance team to quickly react and
organize an emergency intervention on the identified zone. As observed on the
figure, the intervention took more than an hour, as it can be difficult to clearly
identify where the issue is located. The current alert allows both to reduce the
time of production with the broken part, and to know here the replacement will
be done, saving a lot of time.

The second failure observed is associated with lines 2 and 3 of the failure
table. It can happen after a change of the head tooling, or replacement of a
defective band heater. Such event can be observed in Figure 4.12, and follows
the previous event where the band heater was lost.

Abnormal regulation after band heater change

~30 %
~10 % ~10 %

Figure 4.12: Wrong positioning of the band heater (Grafana)

We can see from the data that after the initial replacement of the band heater,
the regulation (blue curve) is following a different trend compared to the normal
levels before the first failure, and after the second replacement. After investigat-
ing this event, the plant’s team observed that the band heater was tightened too
much on its support, creating a perturbation on the regulation loop. Eventually,
the support started to break and lead to a second stoppage of the machine.
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Similar events were observed, in the case where the band heater is not placed
properly, and the zones above/below on the head tooling will generate a per-
turbation on the regulation loop. Current work is to propose a monitoring for
such issue, and the first lead is to study a linear regression of the load of the
regulation. Implementing such new rule will in the end also benefits other users,
as a standard monitoring "Linear regression" will be developed and implemented
within the application.

Finally, a failure linked with the fourth issue was identified using MHM. Even
though it is not a common problem, it still benefited the plant and reduced
failures due to such event. Investigation on the cause of the problem was quite
difficult without the monitoring system in place with the application.

Figure 4.13 shows the effect of a regulation having wrong parameters. High
instabilities are generated for several hours, and the source of the perturbation
is unknown so far. However, the response of the regulation was too much com-
pared to the effect of the initial perturbation, therefore creating an even greater
issue.

Figure 4.13: Wrong regulation parameters (Grafana)

These sudden changes within the regulation loop create a deterioration of the
electrical system of the band heater, and eventually lead to a failure, as observed
on the right graph. This failure event took place after several occurrences of
the perturbation event shown on the left graph. Consequently, a specific moni-
toring was created, to alert the plants in case a similar issue is observed on the
data, and can be linked with a wrong regulation of the system. It allows the
automation engineer on site to verify and modify the parameters of the PID, if
necessary.
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4.4.2.5 Results and perspectives

This second example provided the opportunity to explore a concrete use case
coming from plants’ requests. It has been beneficial to first understand better
the verification in place within the machine, to detect issues on the heating
systems. From this, we could edit a list of data to be collected, which provided
an interesting source of information regarding the different failures observed on
the system.

For this specific topic, the monitoring will be extended to mono-extrusion
machines (cf. Appendix B), and extra means of verification are being requested
by the plants, to monitor even closer the heating systems.

The standard monitoring techniques available inside the application allowed
to create ways of detecting these issues early, and point out precisely which part
of the system generated a problem. This information is crucial for maintenance
teams because they enable them to act quickly on the correct location of the
source of the failure, as discussed previously.

We have also observed that extra monitoring are necessary, to be able to treat
the various cases that can be encountered in the industrial context. This leads
to improving the end-solution, and providing a wide range of possibilities for the
users to analyze their collected data.

4.5 Conclusion

In this chapter, we discussed the solution developed throughout this thesis work,
to tackle the current challenges regarding implementation of intelligent mainte-
nance systems in the industrial context. The methodology that was developed
behind the maintenance application is described, with all the different steps nec-
essary to work efficiently on the failure modes of any production system. This
methodology is not limited to the automotive industry but can be used in other
fields, and can be implemented for machines having history as well as for new
equipment. The architecture that was implemented in the industrial context was
presented, with a description of each module composing the system. The term
flexible is employed because the application allows working in a top-down and a
bottom-up way.

The main benefit of the solution is that it is built on open-source software,
and can be operated by users having different profiles and knowledge. It allows
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data exploration and creating efficient monitoring that can be used for predic-
tive maintenance, and proposes an easy way to implement solutions developed
by the central team, or other users. There is a strong belief that most of the
knowledge regarding machines’ health state is coming from the daily users within
the plants, and this tool gives them the opportunity to experiment and create
broader solutions for the rest of the users.

Several improvements on the "AI" block proposed in Figure 4.2 will be con-
ducted. One of them being the possibility to use statistical models such as
ARIMA (AutoRegressive Integrated Moving Average (Box et al. 2015)) to pre-
dict timeseries, and train machine learning models directly on the data collected
by the application. One of the key approaches that will be investigated is to
train models on "healthy" data, to find anomalies when new data is checked by
the model. The main reason being that in most cases, the machine or system will
run in its correct state for long periods of time, and sometimes catching faulty
data can be difficult. For instance, Novelty Detection models can help detecting
anomalies on new data by comparing calculated scores, or Autoencoders, which
learn a representation of the data and compares the expected outcome to the
new data. The Edge Computing solution used in combination with MHM, of-
fer the possibility to do so and propose new features for the users. These new
developments are made available because of the flexibility discussed through-
out this work, and they can be implemented easily to improve progressively the
end-solution.

4.5.1 Scientific contributions

After having confronted the methodology developed in Chapter 3 with the in-
dustrial context, several improvements were deemed necessary to propose an
efficient predictive maintenance system. In this chapter, we propose to move
from a "low-code" solution (i.e. the Edge Computing solution) to a "no-code"
solution using the Machine Health Management application. This "no-code"
aspect means that users do not need a coding background to use the solution,
as everything can be configured through a web page, and the correct code is
generated automatically.

This flexibility discussed throughout the chapter is necessary to palliate two
critical and limiting aspects of the predictive maintenance topic:

• Observations and analyses on data to create a predictive maintenance solu-
tion is demanding in terms of required time and available resources: skilled
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users, information system to develop and implement the solution
• Most of the knowledge regarding equipment’s failures is located in the

plants, where users have a daily experience on the systems

Consequently, proposing a system that can be used as both a platform to
develop and deploy the solutions for predictive maintenance is important. It
allows reducing the time of development, as experienced users on the machines
can experiment with data and propose beginning of solutions that can be shared
in their turn to other users. It also allows to implement these data analyses
directly on faulty equipment, and local users are involved to verify the equip-
ment’s condition and make the link between events observed on the data and on
the machine itself. Finally, it contributes to having more and more local skilled
people to work on such topics, to balance the top-down and bottom-up aspects
of the predictive maintenance solution.

4.5.2 Industrial contributions

First and foremost, the MHM application provides a simple way for users to con-
nect to machines using various industrial protocols, collect specific data, visualize
them, implement different techniques to monitor them and receive alerts through
their preferred channel of communication, all this in a standardized way.

Two use cases were presented, showing different ways of working with the
application. The Helium Leak Testers topic was linked to a development coming
from the central team to the plants, to provide a better way of understanding
the machines and first monitoring rules linked to maintenance actions.

The heating systems topic for the Blow Molding Machines arose from plants’
needs, and was developed jointly with local users. It allowed working on a faulty
machine, and provided some good results to feed the application with new re-
quirements in terms of data analysis. The solution developed locally can then
be proposed back to other users, its implementation being carried out directly
through the application, in a standardized way.

Developing successful and useful topics for plants is a way to promote the
application, facilitate its adoption and generates local interest for such studies.
By doing so, more local needs are created, and it enables the users to develop
new skills linked with Industry 4.0.
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Conclusion

The works presented in this document were conducted during a CIFRE thesis
between the automotive company Plastic Omnium, the LCFC laboratory of the
engineering school Arts et Métiers. The main objective was the development,
design, and deployment of a predictive maintenance framework in a global indus-
trial context. Many researchers contributed to the predictive maintenance topic
over the past two decades, and it seems to have gained even more attention over
the recent years. The main explanation behind this observation is that indus-
trial actors are investing more and more in the Industry 4.0 topics, which also
cover predictive maintenance. Indeed, data has become an invaluable source of
knowledge and enables new ways of enhancing the performance of manufacturing
systems, which is critical in today’s global competitive market. Understanding
better the behavior of a production system is one of the goals of predictive main-
tenance, and allows eventually to make early detections to prevent catastrophic
failures. Therefore, our initial objective to propose a methodology and a set of
tools to implement predictive maintenance led to the development of an Intel-
ligent Maintenance System, capable of handling a large part of the activities of
this methodology.

To reach this state, as an answer to both the scientific and industrial issues
presented in Chapter 1, we organized the document as follows.

In Chapter 1, we defined our scientific and industrial contexts. The scien-
tific topic of this thesis work revolves around predictive maintenance, and the
necessary methodology to implement it thanks to Industry 4.0. In a second
time, we presented the industrial context, as the automotive industry histori-
cally contributed to many advances for the whole industry, mainly due to its
competitive nature. Although the main objective was to propose a non-domain
centric solution, the industrial context gave the opportunity to experiment on
concrete examples, with high requirements behind the goals of the thesis work.
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Finally, the main objective of the thesis was summarized into a research ques-
tion that needed to be answered, with the help from four industrial and scientific
issues.

A literature review is proposed in Chapter 2, to give a global vision of how
maintenance is handled in the context of Industry 4.0. Indeed, we observed a real
shift of mindset regarding the role of maintenance in the industrial context, going
from "necessary evil" to one of the activities most invested on by manufacturing
companies. These investments are mostly linked with the information systems
required to handle the data in an efficient way. In addition, a methodology is
necessary to deal with predictive maintenance, and we showed that most of the
systems proposed in the literature are based on PHM. The process goes from
data selection and collect, to the design of decision-making systems to support
the communication of analyses made on data. We then reviewed the current
challenges coming from the implementation of this methodology in the indus-
trial context. The main difficulties are linked with the costs of such solutions,
and often the lack of visibility regarding the return on investment. This can be
explained by the complex nature of the predictive maintenance topic, and the
necessary skills that are still scarce in the industrial context. From these obser-
vations was proposed a framework for predictive maintenance, to understand its
numerous activities and how they can be implemented in industry.

The application of this framework was detailed in Chapter 3. We presented the
extended methodology behind the framework, as well as the first use case selected
for predictive maintenance. The study provided satisfactory results regarding the
different activities of the framework, and the proposed tools to implement them.
The solution enabled detecting early issues on a critical component of the welding
units, and was packaged and deployed in many plants of the company. This work,
in addition to parallel studies on cases having low occurrences but generating high
costs, highlighted some limitations and possible improvement points. The main
outcomes were the necessity to propose a tool not only for experts, but also for
the daily users of the production systems who have experience on their behavior.
Integrating this experience and knowledge within the predictive maintenance is
the real challenge of this work, to propose efficient and relevant ways to detect
and predict failures. In regard to the scientific and industrial issues defined in
Chapter 1, we can say that the first application provided partial answers to the
four topics, by:

• Providing a way to select meaningful cases for predictive maintenance, and
identifying key parameters to be collected and monitored
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• Describing the data management system used and developed throughout
this thesis work, based on open-source software and tools

• Proposing analyses on data, to detect early patterns of an incoming failure
mode

• Defining a decision-making system based on data visualization and results
from the data analyses, communicated to the end users through alerts by
emails

Consequently, we proposed a global solution to provide satisfactory answers
to our research question in Chapter 4. The application developed was baptized
"Machine Health Management" (MHM), and was designed to serve as a devel-
opment tool for experts and non-experts, and a channel to deploy the predictive
maintenance solutions globally. We emphasized on the term "flexible" to qual-
ify this solution, as it is built on open-source standards, and can be improved
based on new findings from the literature, or specific needs from the industrial
actors. We presented two use cases where the use of the application provided
good results, as well as new opportunities to improve it. The main contributions
coming from the application are the standardization of the data collection, the
use of numerous industrial communication protocols to address this data, stan-
dard visualizations proposed to users, as well as means to create specific ones,
standard monitoring techniques on the collected data and various channels to
alert based on the previous analyses. These contributions are the answers to
the four scientific and industrial issues. The proposed framework, as well as the
MHM application are the two main contributions of this thesis work, to provide
an answer to our research question:

How can industries implement predictive maintenance with the help
of Industry 4.0?

A summary of the contributions is proposed in Table 4.4.

During this thesis work, we worked jointly and took advantage of three princi-
pal features that were made possible thanks to the dual scientific and industrial
contexts of the CIFRE agreement:

• The academic study, to understand and develop methodologies, based on
works proposed by researchers from various fields

• Work on concrete use cases to confront the scientific findings to the real
world and industrial requirements, which can greatly impact the proposed
solutions. Including the users in the process also greatly matters
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Table 4.4: Summary of the contributions

Scientific issues Contributions

N°1: Formalization of the
criticality of failure modes based
on the understanding of their
causes and effects

Selection of candidate topics for predictive
maintenance through the analysis of costs
and occurrences of failure modes from the
CMMS data

Understanding of the criticality of a
candidate failure mode through the FMEA

Integration of experts’ knowledge, to add
factual experience in the selection process

N°2: Structuring of the data
management system to integrate
multiple sources of data

Use of open-source software to develop the
data management system

Integration of multiple data sources using
different communication protocols, and
standardization of the data collection and
storage

N°3: Creation of health check on
the production system based on
processed data, to anticipate
failures

Development and standardization of
monitoring techniques, to detect early signs
of changes in the data and prevent issues

Integration of state-of-the-art techniques, and
new means to create knowledge from the
data on the health state of a given equipment

N°4: Elaboration of relevant
indicators to support operational
and business-oriented decisions on
predictive maintenance

Use of standard visualizations and offer the
possibility to create specific ones

Integration of various means of
communication to alert the end-users on
potential incoming failures

• Define a global technical solution, to experiment on data coming from
various production systems, devices and sensors. This system must be
compliant with the requirements coming from the scientific and industrial
studies
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Perspectives

Many opportunities and perspectives drew our attention while conducting this
research work. We want to highlight three main topics that in our opinion will
be necessary to propose an improved solution, based on this work. The first
one discusses the architecture of the solution. The second topic is linked with
the data selection activity that is outside of the scope of the MHM application.
Finally, the last point deals with data analyses for predictive maintenance.

We would like to emphasize first on the design of the information system
responsible for handling the predictive maintenance activities. We presented
in this document an architecture capable on sending data to a data lake for
global analyses, using machine learning algorithms to analyze the data or even
generate automatic work orders for maintenance teams based on the alerts of the
monitoring applications. The main point of attention on these features is that
even though they were not directly used in the presented work, it is important
to consider them when designing such system, as it needs to be flexible and
reconfigurable. Based on the evolution of the predictive maintenance topics in
the industrial context, the new findings and the results of the studies, the end-
system needs to be able to adapt to the requirements of the users. Consequently,
these features were tested and validated in the system, to be ready for future
use.

The MHM application proposes a standard way of dealing with the predictive
maintenance activities linked with data handling. One of the improvements for
the framework is related to data selection for failure analysis. It is a crucial
step that is not always easy to perform correctly the first time. Most of the
time, the choice is based on expert knowledge when it is a known issue on the
equipment, however it can happen that the failure is not known or documented.
As a result, there is an interest in proposing a systematic approach to select the
proper data to detect and predict a given failure. To do so, a first proposition was
to work on an existing approach proposed by Echeverri et al. (2021), from the
LCFC laboratory. This approach aims at defining the best solution during the
conception phase of a production system, using the Energetic Technical Functions
(ETF). It is a representation of the energies involved in the process, in order to
identify risks coming from them.

In the case of maintenance, the interest of this approach is to make the ETF
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representation of the equipment or component to be monitored, in order to un-
derstand its function and the energies involved. By doing so, it is possible to
then identify the data to be monitored, by linking the physical phenomena in-
volved in the production of the ETF, and the risks of failures identified on the
equipment. The first approach is proposed in Appendix E. Figure I.1 shows the
ETF model as proposed by (Echeverri et al. 2021). In the case of maintenance
activities, the component or equipment studied is part of a larger entity, that
is why there is an interest to also involve energies exterior to the system that
can also have an impact on equipment. The energies losses are also represented,
as they can help quickly identifying the proper data to be monitored. Figure
I.2 describes the currently proposed approach to select data for maintenance,
and Figure I.3 details the different steps to be performed. This process is still
under investigation, but can help proposing a systematic approach to select the
relevant data for failure analyses.

Finally, from the observations coming from the different use cases studied
during this work, we highlighted that catching faulty events can sometimes be
a difficult task. Having failure data is not always a possibility while working on
predictive maintenance topics, as for instance the case presented in Chapter 3 for
the rotating elements that are costly. In the recent years, many researchers pro-
posed to work on data collected during a known healthy state of the equipment,
to learn its representation using mathematical models. There is a high interest
for predictive maintenance of some critical systems where it is not possible to
generate or simulate failures. One of the possibilities is called Novelty Detec-
tion as proposed by Finch (2020). It enables to create an anomaly detection
system when the incoming data is outside of the known healthy state from the
model. A second possibility is linked with the transformation of timeseries data
into images, to use machine learning models for image classification, as proposed
by Hatami et al. (2018) and Yang et al. (2019). Similarly, the main idea is to
label images for the healthy state of the equipment, and detect faulty states as
anomalies by the model.
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Résumé en français

Ce document présente les résultats d’un projet collaboratif entre Plastic Omnium
et le laboratoire LCFC d’Arts et Métiers. L’objectif du projet était de créer
un cadre de maintenance prédictive à utiliser dans les milieux industriels. La
maintenance prédictive (ou prévisionnelle), qui consiste à utiliser des données
pour prévoir et prévenir les défaillances de l’équipement, a suscité de plus en
plus d’attention ces dernières années dans le cadre des activités liées à l’Industrie
4.0. Le développement d’un système de maintenance intelligent capable de gérer
une grande partie des travaux nécessaires à la mise en œuvre d’une approche de
maintenance prédictive a été un résultat clé du projet. L’objectif du système est
d’améliorer les performances des systèmes de production en ayant une meilleure
compréhension leur comportement et en détectant les défaillances de manière
précoce, afin de les prévenir.

Au Chapitre 1, nous avons présenté le sujet de cette thèse, qui porte sur la
maintenance prédictive et son application grâce à des techniques de l’Industrie
4.0. Nous avons également décrit le contexte industriel dans lequel le travail
a été mené, en particulier l’industrie automobile, qui a une longue tradition de
conduite de l’innovation dans ce domaine. L’objectif du sujet était de développer
une solution qui pourrait être appliquée à différents domaines, mais le contexte
industriel a fourni un cadre pratique pour tester et affiner les méthodes proposées.
L’objectif principal de la thèse a alors été résumé sous la forme d’une question de
recherche, ainsi que de quatre verrous scientifiques et besoins industriels connexes
qui devaient être traités.

Le Chapitre 2 présente une revue de la littérature sur l’état actuel de la
maintenance dans le contexte de l’Industrie 4.0. Dans ce chapitre, nous avons
constaté un changement dans la façon dont la maintenance est perçue par les
entreprises de fabrication, passant d’une image de "mal nécessaire" à un élément
clé pour l’industriel. Nous avons également discuté de la méthodologie util-
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isée pour mettre en œuvre la maintenance prédictive, qui implique généralement
l’utilisation du PHM (Prognostics & Health Management). Le processus de mise
en œuvre de la maintenance prédictive comprend des étapes telles que la sélection
et la collecte de données, et la conception de systèmes de prise de décision pour
soutenir la communication des analyses réalisées. Nous avons examiné les défis
associés à la mise en œuvre de cette méthodologie dans un contexte industriel,
y compris les coûts et la difficulté de démontrer un retour sur investissement.
Pour aider à surmonter ces défis, nous avons proposé un cadre de maintenance
prédictive qui décrit les différentes activités impliquées et comment elles peuvent
être mises en œuvre dans l’industrie.

Le Chapitre 3 décrit l’application du cadre de maintenance prédictive in-
troduit au Chapitre 2. Nous avons décrit la méthodologie étendue derrière
le cadre et présenté une étude de cas dans laquelle le cadre a été utilisé pour
détecter des problèmes avec un composant critique dans les unités de soudure.
L’étude de cas a montré des résultats satisfaisants concernant les différentes ac-
tivités du cadre et des outils utilisés pour les mettre en œuvre. La solution a été
en mesure de détecter de premiers problèmes avec le composant et a été déployée
dans plusieurs usines. Cependant, l’étude a également identifié certaines lim-
ites et domaines d’amélioration, notamment la nécessité de développer un outil
accessible à la fois aux experts et aux utilisateurs non-experts des systèmes de
production. L’intégration des connaissances et de l’expérience de ces utilisateurs
dans le processus de maintenance prédictive est un défi clé afin de détecter et
de prédire efficacement les défaillances. En ce qui concerne les problèmes scien-
tifiques et industriels décrits au Chapitre 1, l’étude de cas a fourni des réponses
partielles en:

• Développant une méthode pour sélectionner des cas significatifs pour la
maintenance prédictive, et en identifiant les principaux paramètres à col-
lecter et à surveiller

• Décrivant le système de gestion de données utilisé et développé dans le
projet, qui est basé sur des logiciels et des outils open source

• Effectuant des analyses de données pour détecter de premiers modèles d’un
mode de défaillance imminent

• Concevant un système de prise de décision basé sur la visualisation des
données et sur les résultats de leurs analyses, et qui alerte les utilisateurs
finaux par e-mail

Par conséquent, au Chapitre 4, nous avons proposé une solution globale
pour répondre à la question de recherche énoncée au Chapitre 1. La solution,
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appelée "Machine Health Management" (MHM), a été conçue pour servir à la
fois d’outil de développement pour les experts et les non-experts, et d’une plate-
forme pour déployer des solutions de maintenance prédictive à l’échelle mondiale.
Nous avons souligné la flexibilité de la solution, qui est construite sur des normes
open source, et qui peut être adaptée aux nouvelles découvertes de la littérature
ou aux besoins spécifiques des acteurs industriels. Nous avons présenté deux
études de cas dans lesquelles l’utilisation de l’application MHM a fourni de bons
résultats et a identifié des opportunités d’amélioration. Les principales contri-
butions de l’application MHM sont la normalisation de la collecte de données,
l’utilisation de divers protocoles de communication industrielle pour transmettre
les données, des visualisations standard pour les utilisateurs ainsi que la pos-
sibilité de créer des visualisations personnalisées, des techniques standard pour
surveiller les données collectées et différents canaux pour alerter en fonction des
analyses de données. Ces contributions répondent aux quatre problèmes scien-
tifiques et industriels énoncés au Chapitre 1. Le cadre proposé et l’application
MHM sont les principales contributions de cette thèse pour répondre à la ques-
tion de recherche : "Comment les industries peuvent-elles mettre en œuvre la
maintenance prédictive avec l’aide de l’Industrie 4.0?"

Ce projet de thèse a profité de trois aspects clés rendus possibles par le con-
texte scientifique et industriel double de la convention CIFRE :

• La possibilité de mener des recherches scientifiques et de développer des
méthodologies sur la base du travail de chercheurs de différents domaines

• La possibilité de confronter les solutions proposées sur des cas réels, et
aux exigences industrielles, et d’impliquer les utilisateurs finaux dans le
processus

• Le développement d’une solution technique capable de gérer les données
de divers systèmes de production, appareils et capteurs et de répondre aux
exigences des études scientifiques et industrielles
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Appendices

A Plastic Omnium Clean Energy Systems presen-
tation

The Clean Energy Systems division of Plastic Omnium is specialized in plastic
fuel tanks systems, and depolluting systems, mostly for private and commercial
vehicles. Some numbers about the division can be found in Figure A.1. In
2018, more than 22M fuel systems have been delivered, representing 1 out of
4 commercialized vehicles equipped with a CES fuel system. Since 2021, the
company is also evolving towards electrification of vehicles, by producing battery
packs, and proposing high-pressure tanks for hydrogen-powered vehicles.

Figure A.1: CES division numbers

The material used for producing the fuel tanks is High-Density Polyethylene
(HDPE). There are several reasons why they are made of plastic and not in metal
as they used to be (for cars):

• Plastic is lighter than metal (about 30%); which allows a reduction of fuel
consumption

• The raw material is less expensive
• A plastic tank cannot explode: it will melt, and the fuel will be spilled on

the floor

However, one issue is the permeability: as plastic is a porous material, fuel
will eventually end up going through it and that leads to two major issues: the
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A. PLASTIC OMNIUM CLEAN ENERGY SYSTEMS PRESENTATION

Figure A.2: Plastic fuel tank Figure A.3: Filler pipe

consumer will lose some of his gas, and this one will go into the air and pollute
the atmosphere. That is why a fuel tank is not a simple container of fuel: it is
a real part composed of complex technologies, from the production processes to
the material used, and also the parts attached to the fuel system; filling system,
pump gauge module, ventilation. These are used to make the fuel system less
permeable to cope with the different regulations. Figure A.2 shows an example
on a plastic fuel tank, and the different parts welded on it.

A fuel system A.4 is composed of a fuel tank and a filler pipe A.3, the latter
is the only part visible of the system by the end user, to refill the tank at the
station.

The system called SCR (Selective Catalytic Reduction) stores a fluid named
Adblue, which reduces the polluting emissions for diesel vehicles, as shown in
Figure A.5.

Figure A.4: Fuel system
Figure A.5: SCR product
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B. FUEL TANKS PRODUCTION: THE DIFFERENT PROCESSES

B Fuel tanks production: the different processes

Several processes exist to produce a fuel tank. Each of them are quite different,
and the resulting tanks have their specific properties.

Mono-layer tank It is the basic process used to produce a plastic fuel tank.
The material used is HDPE as mentioned in the previous appendix, it is melted
and transported through and extruder until the “head” of the machine that will
deliver the right quantity of material to produce the part. A “parison” is created
by the head, such as in Figure B.1; it is then captured by the mold that is
composed of two parts, and then the parison is blown so that the material will
take the shapes of the mold. Then, the tank is going through a fluorination
phase, so that its permeability is improved.

Figure B.1: Plastic parison
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B. FUEL TANKS PRODUCTION: THE DIFFERENT PROCESSES

The different steps are depicted in Figure B.2:

Figure B.2: Blow molding process (training material Plastic Omnium)

For all the processes presented, the next step after the extrusion and the
blowing of the tank are the same: it goes through a post-cooling phase where
the temperature of the tank is reduced, then a finishing phase where the different
components are welded on the tank, and finally, the filler pipe is assembled on
the fuel tank.

Co-extrusion To get rid of the fluorination phase of the mono-layer tanks (be-
cause of its toxicity and dangers) and to solve the problem of permeability to
respect the norms, a co-extrusion process has been designed by the division. The
steps are like the mono-extrusion, though in that case, up to seven extruders can
be used instead of one. The goal is to create a multi-layer tank with the use of
different material, as shown in Figure B.3:

Figure B.3: Co-extrusion process (training material Plastic Omnium)

A new material appears, to replace the fluorination phase: the EVOH (Ethy-
lene Vinyl alcohol). It allows a high degree of permeability, so that the fuel leaks
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B. FUEL TANKS PRODUCTION: THE DIFFERENT PROCESSES

can sustain the norms. Though, as it is a highly volatile substance, it requires
layers of adhesives to stay in place.

TSBM: Twin Sheet Blow Molding This is the most recent process designed
by the company. To reduce even more the gas leaks within the tank, the compo-
nents that were previously welded on the tank are now trapped inside the tank.
Two parallel sheets are extruded, and then individually blown on the two sides of
the central core that contains the components. Finally, the two sides are welded
together to form the tank. The process is shown in Figure B.4:

Figure B.4: TSBM process (training material Plastic Omnium)
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C. FULL PRODUCTION PROCESS

C Full production process

Blow-molding is the first process to produce the fuel system (1). Once it has been
blown, the flash around the tank is removed and regrinded (2), then it enters a
phase of post-mold cooling, where its temperature is lowered with a water flow
in a second mold (3/4). It is then stabilized in ambient air (5/6), before entering
the finishing center, where parts of the tank will be cut, and extra components
welded on it (7). Then some parts will be assembled on the tank, such as the filler
pipe presented above (8/9/10). Finally, every tank is tested to detect possible
leaks (11). WLT refers to Water Leak Test, which is a machine used to check
the leaks of the produced tanks by immersing it into water. A trained quality
operator then checks visually for bubbles, if the machine did not detect first
major leakage. Other leak-testing technologies exist, such as HLT (Helium Leak
Test), where helium gas is injected inside a sealed tank, then particles observed
outside of the tank should not exceed a certain amount to validate the quality
of the product. Finally, parts are shipped to customers (12).

In some cases, tanks are shipped in advanced locations for assembly, before
steps 8/9/10.

The full process is detailed in Figure C.1:

Figure C.1: Full production process
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D. MODELLING LINKED TO PREDICTIVE MAINTENANCE
ACTIVITIES

D Modelling linked to predictive maintenance ac-
tivities

3

A
3

D
a

ta
 M

an
a

ge
m

e
n

t

4

A
4

E
va

lu
at

io
n

 a
n

d
 

P
re

d
ic

ti
o

n

5

A
5

D
e

ci
si

o
n

 S
ys

te
m

M
ac

hi
ne

 
In

fo
rm

a
ti

on

2

A
2

B
re

ak
d

o
w

n
 

Id
e

n
ti

fi
ca

ti
o

n1

A
1

P
ro

d
u

ct
io

n
 S

ys
te

m

M
ac

hi
ne

 
St

a
tu

s
B

O
M

R
aw

 M
at

er
ia

l

SC
A

D
A

Ex
pe

rt
 k

n
o

w
le

d
ge

H
is

to
ri

ca
l b

re
ak

do
w

n 
da

ta

Fu
el

 T
an

k

M
ac

hi
ne

 
In

fo
rm

a
ti

on

B
re

ak
do

w
n 

K
no

w
le

d
ge

A
M

D
EC

H
A

ZO
P Fa

u
lt

 T
re

e
 

A
n

al
ys

is

?

P
H

M
 S

tr
at

eg
y

D
at

a 
lin

ke
d

 t
o

 
sy

m
pt

om
s

D
at

ab
as

e
En

gi
n

e M
ac

hi
ne

Le
ar

ni
ng

D
at

a 
Tr

ea
tm

en
t 

St
ra

te
gy

C
om

pa
ny

 
St

ra
te

gy

M
ac

hi
ne

Le
ar

ni
ng

D
at

a 
to

 m
o

ni
to

r

P
H

M
 

St
ra

te
gy

D
at

ab
as

e

P
re

di
ct

io
ns

V
is

ua
liz

a
ti

on
s

C
om

pa
ny

St
ra

te
gy

H
ea

lt
h

In
d

ic
at

or
s

A
le

rt
in

g 
Sy

st
e

m

G
en

er
at

e
d

D
at

ab
as

e

M
ai

nt
en

an
ce

 A
ct

io
n

s

A
le

rt
s

A
le

rt
s

M
ai

nt
en

an
ce

A
ct

io
n

s

SC
A

D
A

V
is

ua
liz

a
ti

on
to

o
ls

M
ES P
ro

gr
am

M
ES

TI
TL

E:
N

O
D

E:
 

N
O

.:
A

0

M
ac

hi
ne

Le
ar

ni
ng

Figure D.1: SADT
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D. MODELLING LINKED TO PREDICTIVE MAINTENANCE
ACTIVITIES

Failure use cases selection Failure use cases selection
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E. WELDING UNIT - THERMOCOUPLES’ ISSUES DETECTION

E Welding unit - thermocouples’ issues detection

Setpoint 260°C

T° peak ~215°C for a few milliseconds

Figure E.1: Detection of failure on thermocouple (Grafana)

As observed on the two graphs of Figure E.1, the application is counting the
peaks observed, and triggers an alert to the plant’s maintenance team. From
the event in the figure, maintenance team observed a cable wear issue, the wire
being exposed and making contact with other parts of the machine during the
movement of the unit. These contacts create the observed peaks, or micro-cuts.
An example of cable issue can be seen in Figure E.2.

Figure E.2: Thermocouple cable issue
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F. WELDING UNIT - BAND HEATERS EXPERIMENTS

F Welding unit - band heaters experiments

Figure F.1: Fast cooling modification

Without blowing air: 15min to heat to 300°C / 1h30 to 
cool down to 50°C

With air blowing: 15min to heat to 300°C / 30min to 
cool down to 50°C

Figure F.2: Repeated cycles (Grafana)
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F. WELDING UNIT - BAND HEATERS EXPERIMENTS

Loosening tests:

Stretching tests: Stretched to ~80mm

Completely loose

Figure F.3: Mechanical tests (Grafana)
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G. BMM - VIBRATION AND HYDRAULICS

G BMM - vibration and hydraulics

Motor replaced

Figure G.1: Mechanical failure detection

The value displayed in Figure G.1 is the velocity of the vibration, also named
Velocity Root Mean Square (V-RMS). It is linked with the energy of the vibra-
tion, and studying its trend gives a relevant indicator of the state of the rotating
element.

In the case presented above, the slow increasing trend of the data until it
reached the first warning level allowed the early replacement of the motor. After
analysis of the non-drive end of the equipment, mechanical wear was observed
on bearing flange. This damage was produced by an unbalance located on the
rotating axis, which could have ultimately created an issue on the outer race of
the bearing.

Despite the early stage of the deterioration, an efficient planning to verify
the part allowed the plant to avoid a failure on this critical component. A
low estimation of the non-production costs are around 500$ per hour lost, in
addition to the cost of the components to be replaced. Cases like this one show
the relevance of the monitoring system, and also facilitates the adoption by
users.

Figure G.2 shows two cases where the monitoring of the particles within the
oil provided an indication on its contamination. This contamination can come
from external systems, even though it is filtered, some particles can still transfer
to the oil and create issues within the mechanical systems.
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G. BMM - VIBRATION AND HYDRAULICS

Figure G.2: Oil contamination detection

A contaminated oil is less effective in lubricating the systems, and can then
generate wear on the mechanical contact points. The produced mechanical wear
will in its turn contaminate the oil with metallic particles and generate further
issues in the whole system. Consequently, monitoring the quality of the oil is a
critical maintenance task.

To generate the alarm levels observed in the figure, the standard ISO 4406 was
used. Its goal is to help determining the threshold above which the quality of the
oil is deemed deteriorated. To do so, a maximum number of observed particles
of different sizes (higher than 4µm, 6µm and 14µm) is taken into account, in
1mL of oil. Then, depending on the type of equipment used, thresholds can be
implemented on these parameters, using the norm. In the case presented here,
the particles larger than 21µm are also considered.
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H. HLT - DATA VISUALIZATION

H HLT - data visualization

Figure H.1: Data visualization for HLT monitoring (Grafana)
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I. ENERGETIC TECHNICAL FUNCTIONS FOR SYSTEMATIC DATA
SELECTION

I Energetic Technical Functions for systematic data
selection

Figure I.1: Modelling of an Energetic Technical Function

Figure I.2: Data identification process
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I. ENERGETIC TECHNICAL FUNCTIONS FOR SYSTEMATIC DATA
SELECTION

M
o

d
e

li
n

g
 o

f 
th

e
 

s
ys

te
m

: 
e

n
e

rg
e

ti
c
 

te
c
h

n
ic

a
l 
fu

n
c
ti

o
n

s
, 

d
a

ta
 t

h
a

t 
c
a

n
 b

e
 

m
o

n
it

o
re

d

Id
e

n
ti

fy
 a

n
d

 a
n

a
ly

ze
 

th
e

 p
h

ys
ic

a
l 

p
h

e
n

o
m

e
n

a
 t

h
a

t 
p

ro
d

u
c
e

 t
h

e
 e

n
e

rg
e

ti
c
 

fu
n

c
ti

o
n

s

C
re

a
te

/
u

s
e

 
a

v
a

il
a

b
le

 F
M

E
A

L
in

k
 d

a
ta

 t
h

a
t 

c
a

n
 

b
e

 m
o

n
it

o
re

d
 t

o
 

fa
il
u

re
 m

o
d

e
s

U
p

d
a

te
 F

M
E

A
 b

a
s
e

d
 o

n
 

re
s
u

lt
 o

f 
m

o
n

it
o

ri
n

g

M
o

n
it

o
r 

th
e

 
s
e

le
c
te

d
 d

a
ta

V
e

ri
fy

 t
h

a
t 

th
e

 d
a

ta
 i
s
 

a
v
a

il
a

b
le

 o
r 

c
a

n
 b

e
 

c
o

ll
e

c
te

d
 w

it
h

o
u

t 
d

is
tu

rb
in

g
 t

h
e

 s
ys

te
m

1
2

3
4

5
6

7

1
U

s
e

 t
h

e
 t

re
e

 l
is

t 
to

 d
e

te
rm

in
e

 t
h

e
 i
n

p
u

t 
a

n
d

 o
u

tp
u

t 
e

n
e

rg
ie

s
. 
L
is

t 
th

e
 

e
xt

e
ri

o
r 

in
fl

u
e

n
c
e

 a
n

d
 l
o

s
s
 e

n
e

rg
ie

s
. 
L
is

t 
th

e
 d

a
ta

 r
e

la
te

d
 t

o
 e

n
e

rg
ie

s
.

2
Id

e
n

ti
fi

c
a

ti
o

n
 o

f 
th

e
 p

h
ys

ic
a

l 
p

h
e

n
o

m
e

n
a

 a
t 

s
ta

k
e

 t
o

 p
ro

d
u

c
e

 t
h

e
 

e
n

e
rg

e
ti

c
 f

u
n

c
ti

o
n

.

3

T
h

e
 n

a
tu

re
 o

f 
th

e
 p

h
e

n
o

m
e

n
a

 g
e

n
e

ra
te

s
 r

is
k

s
 o

f 
fa

il
u

re
s
. 

P
e

rf
o

rm
 o

r 
u

s
e

 a
n

 e
xi

s
ti

n
g
 F

M
E

A
, 
in

 o
rd

e
r 

to
 l
is

t 
th

e
 p

o
te

n
ti

a
l 
fa

il
u

re
 

m
o

d
e

s
, 
th

e
ir

 c
a

u
s
e

s
 a

n
d

 e
ff

e
c
ts

.

If
 p

o
s
s
ib

le
, 
in

tr
o

d
u

c
e

 a
 c

ri
ti

c
it

y 
le

ve
l 
fo

r 
e

a
c
h

 f
a

il
u

re
 m

o
d

e
.

4
U

n
d

e
rs

ta
n

d
 w

h
ic

h
 d

a
ta

 r
e

la
te

d
 t

o
 e

n
e

rg
ie

s
 c

a
n

 b
e

 u
s
e

fu
l 
to

 d
e

te
c
t 

th
e

 

li
s
te

d
 f

a
il
u

re
 m

o
d

e
s
.

5
V

e
ri

fy
 t

h
a

t 
th

e
 r

e
le

va
n

t 
d

a
ta

 c
a

n
 b

e
 c

o
ll
e

c
te

d
 w

it
h

in
 t

h
e

 s
ys

te
m

.

If
 n

o
t,

 i
t 

is
 i
m

p
o

rt
a

n
t 

to
 c

h
e

c
k

 t
h

a
t 

a
 n

e
w

 m
e

a
s
u

ri
n

g
 s

ys
te

m
 d

o
e

s
 n

o
t 

in
tr

o
d

u
c
e

 n
e

w
 f

a
il
u

re
 m

o
d

e
s
 o

r 
a

n
y 

o
th

e
r 

d
is

tu
rb

a
n

c
e

s
.

6
C

o
ll
e

c
t 

a
n

d
 m

o
n

it
o

r 
th

e
 s

e
le

c
te

d
 d

a
ta

, 
to

 v
e

ri
fy

 t
h

a
t 

it
 c

a
n

 h
e

lp
 d

e
te

c
ti

n
g
 

a
n

d
 p

re
d

ic
ti

n
g
 t

h
e

 f
a

il
u

re
 m

o
d

e
s
.

7
B

a
s
e

d
 o

n
 t

h
e

 r
e

s
u

lt
 f

ro
m

 t
h

e
 m

o
n

it
o

ri
n

g
, 
u

p
d

a
te

 t
h

e
 c

ri
ti

c
it

y 
s
c
o

re
 o

f 
th

e
 

F
M

E
A

 i
f 

n
e

c
e

s
s
a

ry
, 
o

r 
a

d
d

 n
e

w
 o

b
s
e

rv
e

d
 f

a
il
u

re
 m

o
d

e
s
.

Figure I.3: Overview of the data selection process
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Vincent CIANCIO 

Elaboration d'un système de maintenance 

prédictive basé sur l'analyse des données de 

production et l'expertise humaine : application à 

un procédé d'extrusion soufflage 

 

 

Résumé 

Au cours des dernières années, la façon dont la maintenance est effectuée a évolué grâce à 

l'incorporation d'outils numériques et de concepts de l'Industrie 4.0 au sein des entreprises. En se 

connectant aux systèmes de production et en communiquant avec eux, des informations peuvent être 

collectées sur l'état actuel et futur de l'équipement, permettant un contrôle plus efficace grâce à un 

processus appelé maintenance prédictive (PdM). L'objectif de la PdM est de réduire les temps d'arrêt 

imprévus et de répondre de manière proactive aux besoins de maintenance avant que des pannes ne se 

produisent. Cependant, nous avons constaté qu'il peut encore être difficile pour les praticiens 

industriels de mettre en place un tel système, qui gère efficacement les données pour détecter les 

défaillances précoces. Par conséquent, ce travail de recherche vise à proposer une méthodologie 

générale pour développer et déployer un système de maintenance intelligent. La méthodologie et le 

système développé (appelé MHM – Machine Health Management) ont été validés sur des cas 

industriels concrets, dans le contexte de l'industrie automobile. La principale contribution est liée à la 

flexibilité de l'outil, offerte par l'utilisation de normes open-source. Cela permet d'avoir un système 

standard utilisable dans différents contextes, et qui peut s'adapter aux spécificités lorsque cela est 

nécessaire. 

Mots clés : Maintenance prédictive, Analyse de données, Modélisation de connaissances experts, 

PHM. 

 

 

Abstract 

In recent years, the way that maintenance is carried out has evolved due to the incorporation of digital 

tools and Industry 4.0 concepts within companies. By connecting to, and communicating with the 

production systems, information can be gathered about the current and future health of the equipment, 

enabling more efficient control through a process called Predictive Maintenance (PdM). The goal of 

PdM is to reduce unplanned downtimes and proactively address maintenance needs before failures 

occur. However, we have seen that it can still be challenging for industrial practitioners to implement 

such system, which effectively manages data to try and detect failures early. Consequently, this 

research work aims at proposing a general methodology to develop and deploy an Intelligent 

Maintenance System. The methodology and the developed system (called MHM – Machine Health 

Management) were validated on concrete industrial cases, in the context of automotive industry. The 

main contribution is related to the flexibility of the tool, offered using open-source standards. It allows 

to have a standard system useable in various contexts, and it can adapt to specificities when required. 

Keywords: Predictive maintenance, Data analysis, Expert knowledge modelling, PHM. 
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