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Advanced model order reduction

and data-driven technologies

enabling physics-augmented

digital twins

Abstract

In the 20th century, engineering made remarkable strides in various �elds, while other
disciplines turned to data for diagnostic and prognostic purposes. Recognizing the
potential of data and AI, engineering sciences have embraced these technologies to
make better predictions, enhance performance, and gain a deeper understanding of
complex systems. This has given rise to the digital twin paradigm.

The challenge lies in developing accurate models that can predict output based on in-
put data. Choosing between physics-based and data-driven approaches in engineering
can be di�cult. Physics-based approaches o�er advantages but are computationally
intensive and struggle with large-scale systems and uncertainty. They often require
the use of Model Order Reduction techniques [1�3] to become adequate with the real-
time operation constraints. Meanwhile, data-driven approaches are promising when
accurate models are unavailable, yet they face issues related to data costs [4�7], ex-
trapolation risks [8, 9], and lack of explanations and certi�cations [10,11].

Therefore, combining both approaches seems to be the optimal choice as it strikes
a balance between their advantages and disadvantages. By integrating physics-based
and data-driven perspectives, we can leverage the strengths of each approach to achieve
better engineering outcomes.

One signi�cant advantage of this alliance is the reduction in data requirements for
model building. This reduction is achieved by leveraging known laws or focusing on
simplifying the approximation of the gap between model and reality. Moreover, using
physics-based models allows for explanations of fundamental aspects and resulting
predictions, enabling certi�cation of results and mitigating extrapolation issues.

Furthermore, the reduction in data requirements is not solely attributed to the use
of physics but also to how physics can guide the selection of optimal locations and
times for data collection. This is particularly evident in active learning [12], where
incorporating existing physics-based knowledge can enhance its e�ectiveness.

By combining physics-based understanding with data-driven techniques, engineers
can harness the power of both approaches, leading to more e�cient and insightful
engineering practices.

v



vi
Advanced model order reduction and data-driven technologies enabling

physics-augmented digital twins

In this thesis, divided into three chapters, we delve into the tools, methodologies, and
personal contributions that are crucial components in the construction of hybrid twins.
Chapter 1 provides a review of methods enabling hybrid twins, including intrusive and
non-intrusive Model Order Reduction (MOR) techniques and Physics-Informed Neural
Networks (PINN) [13]. Chapter 2 explores advances in non-intrusive Model Order
Reduction, focusing on regularization of separated representations, the novel ANOVA-
PGD strategy based on ANOVA (Analysis of variance) [14, 15], reduced modeling of
curves, and the use of Optimal Transport [16,17] in reduced order modeling. Finally,
Chapter 3 delves into data assimilation and hybrid modeling, discussing modeling
systems from partial observations and presenting hybrid modeling approaches based
on learning a source term and identifying properties.

By combining these chapters, this thesis contributes to the development, improvement,
and application of methodologies that enable the construction of hybrid twins. These
methodologies bridge the gap between data science and numerical simulation, ad-
dressing current industrial challenges. They o�er high-�delity and high-dimensional
parametric models, accelerate physics-based models through MOR and data-driven
techniques, tackle challenges in model construction under partial observability, and
create hybrid models that combine physics-based principles with data. Through these
contributions, this thesis aims to advance the �eld of engineering by leveraging the
power of data and simulation to address complex real-world problems.



Réduction de modèle avancée et

approches basées sur les données

pour la construction de jumeaux

numériques augmentés par la

physique

Résumé

Au 20e siècle, l'ingénierie a fait des progrès remarquables dans divers domaines, tandis
que d'autres disciplines se sont tournées vers les données à des �ns de diagnostic
et de pronostic. Reconnaissant le potentiel des données et de l'IA, les sciences de
l'ingénieur ont adopté ces technologies pour faire de meilleures prédictions, améliorer
les performances et mieux comprendre les systèmes complexes. C'est ainsi qu'est né
le paradigme du jumeau numérique.

Le dé� consiste à développer des modèles précis capables de prédire des résultats en
fonction de données d'entrée. Dans le domaine de l'ingénierie, il peut être di�cile
de choisir entre les approches basées sur la physique et les approches basées sur les
données. Les approches basées sur la physique o�rent des avantages, mais elles sont
gourmandes en calculs et ont du mal à gérer les systèmes à grande échelle et l'incerti-
tude. Elles nécessitent souvent l'utilisation de techniques de réduction de modèle [1�3]
pour devenir adéquates avec les contraintes de fonctionnement en temps réel. En pa-
rallèle, les approches basées sur les données sont prometteuses lorsque des modèles
précis ne sont pas disponibles, mais elles sont confrontées à des problèmes liés au coût
des données [4�7], aux risques d'extrapolation [8, 9], et au manque d'explicabilité et
de certi�cations [10,11].

Par conséquent, la combinaison des deux approches semble être le choix optimal, car
elle permet de trouver un équilibre entre leurs avantages et leurs inconvénients. En
intégrant les perspectives basées sur la physique et les données, nous pouvons tirer
parti des forces de chaque approche pour obtenir de meilleurs résultats en matière
d'ingénierie.

Un avantage signi�catif de cette alliance est la réduction des besoins en données pour
la construction de modèles. Cette réduction est obtenue en exploitant des lois connues
ou en se concentrant sur l'approximation de l'écart entre le modèle et la réalité. En
outre, l'utilisation de modèles basés sur la physique permet d'expliquer les aspects
fondamentaux et les prédictions qui en résultent, ce qui permet de certi�er les résultats
et d'atténuer les problèmes d'extrapolation.

En outre, la réduction des besoins en données n'est pas seulement une conséquence
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de l'utilisation des lois physiques, mais aussi de la manière dont la physique peut
guider la sélection des lieux et des instants optimaux pour la collecte des données.
Ceci est particulièrement évident dans l'apprentissage actif [12], où l'incorporation de
connaissances existantes basées sur la physique peut améliorer son e�cacité.

En combinant la compréhension basée sur la physique avec des techniques basées sur
les données, les ingénieurs peuvent exploiter la puissance des deux approches, ce qui
conduit à des pratiques d'ingénierie plus e�caces et plus perspicaces.

Dans cette thèse, divisée en trois chapitres, nous nous penchons sur les outils, les
méthodologies et les contributions personnelles qui sont des éléments cruciaux dans
la construction de jumeaux hybrides. Le chapitre 1 passe en revue les méthodes per-
mettant d'obtenir des jumeaux hybrides, notamment les techniques intrusives et non
intrusives de réduction de modèle (MOR) et les réseaux neuronaux informés par la
physique (PINN) [13]. Le chapitre 2 explore des évolutions en réduction de modèle
non intrusive, en se concentrant sur la régularisation des représentations séparées, une
nouvelle stratégie ANOVA-PGD basée sur l'ANOVA (analyse de la variance) [14,15],
la modélisation réduite des courbes, et l'utilisation du transport optimal [16,17] dans
la construction de modèles réduits. En�n, le chapitre 3 traite de l'assimilation de
données et de la modélisation hybride, en discutant de la modélisation de systèmes à
partir d'observations partielles et en présentant des approches de modélisation hybride
basées sur l'apprentissage d'un terme source et l'identi�cation de propriétés.

En combinant ces chapitres, cette thèse contribue au développement, à l'améliora-
tion et à l'application de méthodologies qui permettent la construction de jumeaux
hybrides. Ces méthodologies comblent le fossé entre la science des données et la simu-
lation numérique, en répondant aux dé�s industriels actuels. Elles o�rent des modèles
paramétriques de haute �délité et de haute dimension, accélèrent les modèles basés sur
la physique grâce à la réduction de modèle et l'apprentissage machine, s'attaquent aux
dé�s de la construction de modèles sous observabilité partielle, et créent des modèles
hybrides qui combinent des principes basés sur la physique avec des données. Grâce
à ces contributions, cette thèse vise à faire progresser le domaine de l'ingénierie en ti-
rant parti de la puissance des données et de la simulation pour résoudre des problèmes
complexes du monde réel.
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Résumé étendu

Contexte et motivations

Au 20e siècle, l'ingénierie s'est fortement appuyée sur des modèles pour concevoir des
composants et des systèmes de manière e�cace. Ces modèles utilisaient des équa-
tions algébriques ou des équations aux dérivées partielles pour décrire les relations
entrée/sortie dans l'ingénierie. Alors que les modèles algébriques étaient faciles à ma-
nipuler et à résoudre, les modèles basés sur des équations étaient de plus grands dé�s,
nécessitant des techniques de discrétisation telles que celle des éléments �nis pour
donner au problème une forme résoluble.

La discrétisation consiste à résoudre le problème en un nombre limité de points, aussi
appelés n÷uds, et d'instants, au lieu d'essayer de le résoudre pour un nombre in�ni de
points et d'instants. Le nombre d'inconnues du problème augmente avec la dimension
de l'espace, ce qui entraîne une croissance exponentielle de la complexité. L'utilisation
des ordinateurs et calculateurs a rendu la discrétisation possible, mais les problèmes
à grande échelle exigent toujours un temps de calcul important, nécessitant des jours,
des semaines, voire des mois pour être résolus.

Ces méthodes ont permis l'avènement du paradigme de l'ingénierie basée sur la simu-
lation [18,19]. Ces techniques [20,21] regroupent notamment la méthode des éléments
�nis [22, 23], la méthode des di�érences �nies [24, 25] et la méthode des volumes �-
nis [26,27].

L'ingénierie basée sur la simulation requiert de multiples calculs pour explorer l'espace
paramétrique et identi�er les paramètres de conception optimaux. Toutefois, le coût
des simulations et la dimension élevée de l'espace paramétrique restent des dé�s per-
manents. En outre, la qualité des modèles paramétriques en ingénierie est a�ectée par
des facteurs tels que la taille du système analysé, le grand nombre et la variabilité des
paramètres impliqués et l'incertitude inhérente à l'écart entre le modèle et la réalité.

Pour relever ces dé�s, les ingénieurs utilisent diverses techniques et stratégies pour ré-
duire les sources d'incertitude et garantir des prédictions précises pour des conceptions
�ables.

De l'ingénierie aux jumeaux numériques

Le 20e siècle a été le témoin de réalisations remarquables [28] dans le domaine de l'in-
génierie, notamment de progrès dans l'aéronautique, l'exploration spatiale, les trans-
ports, l'énergie et les infrastructures civiles. Pendant ce temps, des domaines tels que
le marketing, l'économie, les sciences sociales et la médecine se sont orientés vers
l'utilisation des données à des �ns de diagnostic et de pronostic, motivant de fortes
améliorations technologiques liées à la science des données. C'est ainsi que l'ingénierie
a connu trois évolutions majeures :

� L'extension de l'ingénierie à l'utilisation : Avec l'avènement de technologies telles
que l'Internet des objets (Internet of Things - IoT) et l'abondance des données,
les fastidieuses méthodes traditionnelles d'ingénierie en amont ont été en partie
remplacées par des opérations en temps réel. L'intérêt est passé d'une ingénierie
basée sur le produit à une ingénierie basée sur le service, accentuant les prévisions
en continu et le maintien de la performance tout au long de la durée de vie d'un
produit.
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� L'ingénierie à l'ère des systèmes connectés : L'ingénierie a élargi son champ d'ac-
tion des composants individuels aux systèmes interconnectés, ce qui a conduit
à des concepts tels que les industries, les villes et les nations intelligentes. Cette
évolution a marqué la quatrième révolution industrielle, dans laquelle les don-
nées se sont intégrées aux révolutions précédentes, qui étaient alimentées par la
vapeur, l'électricité, l'électronique et l'automatisation.

� La prochaine révolution de l'ingénierie immersive centrée sur l'homme : La cin-
quième révolution, qui est déjà en marche, place l'homme au c÷ur de l'ingénierie,
envisageant un métavers sensible à la physique. Les progrès réalisés dans le do-
maine de la vision par ordinateur, des dispositifs multimodaux et du traitement
du langage naturel pourraient permettre de dépasser le test de Turing. Cepen-
dant, l'intégration de l'homme dans le système pose des dé�s (notamment d'in-
terfaces homme-machine et de calcul temps réel) aux approches de modélisation
traditionnelles.

En réponse à ces développements, les sciences de l'ingénieur se sont intéressées aux pos-
sibilités o�ertes par les données et l'IA, dans le but d'obtenir de meilleures prédictions,
d'améliorer les performances et de mieux comprendre les systèmes complexes [29].
L'apprentissage automatique, en particulier, o�re un processus d'apprentissage géné-
ral dans lequel la relation entre les entrées et les sorties peut être établie à partir des
données collectées, ce qui permet l'application en temps réel des modèles appris. Ces
nouvelles pratiques se placent dans le paradigme du jumeau numérique.

Le principal dé� consiste à obtenir des modèles de régression précis qui prédisent la
sortie en fonction de l'entrée. Il existe di�érentes techniques, qui dépendent de facteurs
tels que la quantité de données, le temps d'entraînement et la qualité des données.
Le choix entre ces techniques permet de répondre à des problématiques telles que
l'obtention de données [4, 5], le coût des données entraînant un besoin de travailler
avec peu de données [6, 7], l'interprétabilité du modèle [10, 11] et l'extrapolation du
modèle [8,9]. Bien que la modélisation basée sur les données présente des avantages, de
nombreux dé�s persistent, notamment la di�culté et le coût de la collecte de données,
l'interprétabilité des modèles et l'extrapolation en dehors des conditions observées.

Pour relever ces dé�s, il faut examiner attentivement les stratégies de collecte de
données, l'interprétabilité et l'utilisation appropriée des modèles dans leurs domaines
de validité.

Entre la physique et les données : les modèles hybrides

Dans le domaine de l'ingénierie, le choix entre les approches fondées sur la physique
et les approches fondées sur les données est di�cile. Les approches fondées sur la
physique o�rent des avantages, mais elles sont gourmandes en calculs et ont du mal
à gérer les systèmes à grande échelle et l'incertitude. Les approches fondées sur les
données sont prometteuses en l'absence de modèles précis, mais elles se heurtent à des
di�cultés telles que le coût élevé des données, les risques d'extrapolation et le manque
d'explications et de certi�cations.

La combinaison des deux approches [30, 31] semble donc être le choix optimal, puis-
qu'il o�re un bon compromis entre les avantages et inconvénients de chacune. En
combinant les approches fondées sur la physique et sur les données, nous pouvons ex-
ploiter les points forts de chaque approche et obtenir de meilleurs résultats en matière
d'ingénierie.
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Cette alliance présente l'avantage de réduire considérablement les besoins en données
pour la construction de modèles. Cette réduction est obtenue en exploitant les lois de la
physique connues, ou en se concentrant sur l'écart entre le modèle et la réalité, qui est
censé être plus simple à approximer que le comportement réel. En outre, l'utilisation
de modèles basés sur la physique permet d'expliquer les aspects fondamentaux du
modèle et les prédictions qui en résultent, ce qui permet de certi�er les résultats, et
parfois même d'atténuer les problèmes d'extrapolation.

La réduction des besoins en données n'est pas seulement permise par l'utilisation
des modèles physiques, mais aussi au fait que la physique peut informer le choix des
emplacements et instants optimaux de collecte des données. Cela est particulièrement
évident dans le cadre de l'apprentissage actif, que l'incorporation des connaissances
existantes fondées sur la physique peut rendre plus e�cace.

Pour illustrer cela, prenons l'exemple de la mesure de la température dans une ville.
Au lieu de placer de nombreux thermomètres dans chaque rue et d'enregistrer la tem-
pérature en permanence, la connaissance de la physique et le bon sens nous indiquent
que quelques thermomètres placés stratégiquement, par exemple un dans chaque quar-
tier, et des mesures à quelques moments précis comme le matin, le midi, l'après-midi
et la nuit su�sent généralement à décrire la distribution spatiale et l'évolution de la
température.

En conclusion, il est béné�que de tirer le meilleur parti des connaissances existantes
en intégrant la compréhension de la physique et les approches basées sur les données
dans les projets d'ingénierie.

Réduction de modèle : physique en temps réel

Les techniques visant à améliorer la résolution des modèles basés sur la physique a�n
d'obtenir des solutions en temps réel appartiennent au domaine de la réduction de
modèle (Model Order Reduction - MOR) [1�3].

Il en existe deux déclinaisons :

� La première consiste à construire un modèle d'ordre réduit, dit intrusif, en appli-
quant des techniques de réduction de la dimensionnalité à la solution du modèle
physique. Ce mécanisme est intégré au processus de résolution, et permet au
solveur de fonctionner rapidement.

� La seconde solution consiste à construire un modèle de substitution, qui établit
une relation directe entre la solution du modèle physique et les paramètres du
modèle. Une fois le modèle de substitution construit, il permet de déduire la
solution quasiment en temps réel lorsque les paramètres du modèle sont fournis.

Les modèles d'ordre réduit et les solutions paramétriques jouent un rôle crucial dans
la réalisation de diverses tâches, notamment la simulation, l'optimisation, l'analyse
inverse, le contrôle basé sur la simulation et la propagation d'incertitudes, tout en
respectant des contraintes strictes en matière de temps réel. Ces solutions paramé-
triques o�rent un moyen exceptionnellement e�cace et sans précédent pour e�ectuer
de l'ingénierie basée sur des modèles en temps réel.
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Données et apprentissage

Les techniques de régression, qui permettent d'extraire des modèles des données,
peuvent être appliquées à di�érents types de données. Parmi les types de données
les plus courants, on peut citer :

� Listes (tableaux) : données organisées en tableaux, constitués de valeurs numé-
riques continues ou discrètes, et parfois des caractéristiques catégorielles ;

� Images : images réelles en 2D ou 3D ou résultats de simulations numériques ;

� Formats tensoriels : images compressées ou données de champs spatiaux décom-
posées en produits tensoriels ;

� Graphes : caractéristiques de n÷uds et d'arêtes représentées par une structure
de graphe ;

� Courbes : courbes géométriques ou fonctions à valeur scalaires ;

� Séries temporelles : données ordonnées chronologiquement impliquant une cau-
salité ;

� Nuages de points : densités ou distributions de probabilité.

Plusieurs techniques d'apprentissage automatique sont couramment utilisées pour la
régression :

� Régressions polynomiales régularisées [32] : Elles sont utiles lorsque les données
sont limitées et que la solution peut être exprimée à l'aide de bases polyno-
miales. Elles peuvent intégrer des connaissances existantes par la construction
de variables adéquates.

� Réseaux neuronaux arti�ciels (NN) : Ils donnent de bons résultats lorsque les
données sont abondantes et que les hyperparamètres sont bien réglés. Ils peuvent
approximer n'importe quelle fonction [33], ce qui les rend extrêmement polyva-
lents.

� Auto-encodeurs (AE) [34] : Ils encodent les données dans un espace latent, en
approximant la dimensionnalité intrinsèque et en supprimant les corrélations.
D'autres techniques de réduction de la dimensionnalité telles que l'ACP [35], la
kPCA [36], le LLE [37] et le tSNE [38] peuvent également être utilisées.

� Réseaux antagonistes génératifs (GAN) [39] : Ils génèrent des échantillons de
données synthétiques permettant d'augmenter l'ensemble de données, ou de gé-
nérer des échantillons réalistes.

� Réseaux neuronaux convolutifs (CNN) [40] : Ils sont bien adaptés à l'analyse
d'images et aux tâches de reconnaissance et extraction de motifs. Les réseaux
neuronaux en graphes (GNN) [41] étendent les CNN pour qu'ils fonctionnent
sur des maillages ou des graphes non structurés.

� Réseaux neuronaux récurrents (RNN) [42] et long short-term memory (LSTM)
[43] : Puissants pour traiter les données de séries temporelles. Ils peuvent cap-
turer les dépendances temporelles grâce à des capacités de mémoire.



Réduction de modèle avancée et approches basées sur les données pour la

construction de jumeaux numériques augmentés par la physique xiii

� Systèmes dynamiques : Diverses techniques sont utilisées pour modéliser les
systèmes dynamiques, notamment les RNN, les LSTM, ResNet [44], NeuralODE
[45], DMD [46], l'opérateur de Koopman [47], le calcul par réservoir [48] et les
DeepONets [49].

� Réseaux neuronaux informés par la physique (PINN) [13], réseaux neuronaux
informés par la thermodynamique (TINN) [50] et modèles hybrides : Ils intègrent
des connaissances fondées sur la physique dans le processus d'apprentissage,
garantissant ainsi la satisfaction des équations fondamentales et combinent des
approches fondées sur la physique et des approches fondées sur les données.

Ces techniques o�rent diverses options pour les tâches de régression, en fonction de la
nature des données et des exigences de modélisation souhaitées.

Modélisation hybride

Dans le contexte de la modélisation hybride [51], il existe deux approches : l'enrichis-
sement de la solution et l'enrichissement du modèle.

Dans le premier cas, la solution du modèle basée sur la physique, obtenue par des
techniques spéci�ques, est combinée avec une correction basée sur les données. Le
modèle est calibré en ligne en identi�ant les paramètres opérationnels qui minimisent
la di�érence entre les prédictions du modèle et les mesures disponibles. La prédiction
hybride est la combinaison de la solution calibrée basée sur la physique et de la cor-
rection basée sur les données. Cette procédure s'applique également aux problèmes
transitoires.

Dans le second cas, l'objectif est d'améliorer la capacité prédictive d'un modèle no-
minal connu. Les mesures sont comparées aux prédictions du modèle nominal et un
écart notable est observé. Pour y remédier, un terme d'enrichissement du modèle est
introduit a�n de mieux représenter les données collectées. Le modèle discret enrichi,
ainsi que la prédiction associée, doivent satisfaire à la condition d'équilibre tout en
représentant précisément les données. Une paramétrisation de la correction du modèle
est choisie, ainsi qu'une technique de régularisation appropriée, pour calculer l'enri-
chissement du modèle et compléter les données de manière e�cace.

Contenu du mémoire

Ce mémoire est divisée en trois chapitres : tout d'abord, quelques outils et métho-
dologies qui sont des éléments clés dans la construction de jumeaux hybrides sont
décrits, puis les contributions personnelles dans le domaine de la réduction non intru-
sive de l'ordre des modèles sont présentées et en�n, les contributions personnelles à la
modélisation hybride sont décrites.

Chapitre 1 : Revisite de méthodes permettant la construc-

tion de jumeaux hybrides

Section 1 : Méthodes de réduction de modèle intrusives et non-

intrusives

Les problèmes d'ingénierie nécessitent souvent des simulations rapides et précises uti-
lisant des modèles complexes et de grandes quantités de données. Bien que les dévelop-
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pements du hardware aient permis d'améliorer la qualité des simulations, la résolution
de problèmes en grande dimension reste di�cile en raison de la complexité algorith-
mique et des contraintes de traitement en temps réel. Les techniques de réduction de
modèle (MOR), qui peuvent être intrusives ou non-intrusives, ont attiré l'attention
pour résoudre ces problèmes.

La décomposition orthogonale aux valeurs propres (POD) [52, 53] extrait les carac-
téristiques essentielles du système et crée une base d'approximation réduite, ce qui
diminue considérablement le temps de calcul. La Proper Generalized Decomposition
(PGD) [54, 55] est une méthode intrusive qui utilise la séparation de variables pour
réduire la complexité des algorithmes de résolution. La décomposition orthogonale aux
valeurs propres avec interpolation (PODI) [56, 57] est une méthode non intrusive qui
construit des solutions paramètriques à partir de la base réduite sans nécessiter de
modi�er le solveur. La sparse PGD (sPGD) [58] construit une solution paramétrique
à l'aide d'un ensemble peu dense de solutions calculées par un solveur d'équations aux
dérivées partielles en utilisant la séparation de variables pour traiter les problèmes
avec beaucoup de paramètres.

Dans l'ensemble, les techniques de réduction de modèle fournissent des solutions e�-
caces pour des problèmes d'ingénierie complexes nécessitant une application en temps
réel.

Section 2 : Réseaux neuronaux informés par la physique

Les réseaux neuronaux informés par la physique (PINN) [13] sont apparus comme un
cadre prometteur qui intègre dans les réseaux neuronaux les principes de la physique
pour résoudre des problèmes scienti�ques et d'ingénierie complexes. Contrairement à
l'apprentissage automatique traditionnel, les PINN intègrent des connaissances préa-
lables sur les lois physiques a�n de permettre des prédictions précises et de saisir la
physique sous-jacente, même avec un nombre limité de données annotées.

Par ailleurs, ces architectures sont un cadre propice aux stratégies hybrides. En e�et, il
est naturel d'ajouter dans la fonction de perte du réseau neuronal toutes les contraintes
que doit respecter la solution. Ces contraintes peuvent provenir de lois physiques, sou-
vent sous la forme d'équations aux dérivées partielles, mais aussi de données mesurées
ou encore de mécanismes de régularisation. Pendant l'entraînement, la solution est
guidée par le gradient de la fonction de perte vers un compromis entre toutes les
contraintes.

Il est important de remarquer que combiner un modèle physique totalement déterminé
avec des données expérimentales ne donne pas réellement un modèle hybride mais une
solution hybride, qui est très utile dans de nombreux cas d'utilisation mais n'apporte
pas de possibilité d'explicabilité ou de généralisation à des problèmes similaires.

Chapitre 2 : Progrès dans la réduction de modèle non in-

trusive

Section 1 : Regularisation de représentations séparées

Le dé� de la régression avec des données limitées consiste à traiter les non-linéarités
dans des contextes multiparamétriques, ce qui entraîne la malédiction de la dimen-
sionnalité [59, 60]. Le principe du rasoir d'Occam [61, 62] suggère de privilégier les
modèles les plus simples aux modèles les plus complexes, ce qui est possible grâce à la
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favorisation de la parcimonie dans la régression [62,63]. Cette section propose des mé-
thodologies de régression robustes et e�caces pour les représentations séparées. Deux
techniques sont présentées : la rs-PGD, qui combine la régularisation des normes L2
et L1, et la s2-PGD, une méthode de régression doublement parcimonieuse utilisant
la régularisation Lasso.

Ces deux techniques reposent initialement sur un mécanisme commun : l'ajout d'un
terme de pénalisation lors de la dé�nition des problèmes de minimisation. Suivant
l'algorithme de la PGD et plus particulièrement de la sPGD, la solution recherchée
est exprimée sous une forme séparée, une somme de produits de fonctions unidimen-
sionnelles, puis chacune de ces fonctions est calculée en résolvant successivement un
certain nombre de problèmes unidimensionnels. Dans la s2-PGD (resp. rs-PGD), un
terme pénalisant la norme L1 (resp. une combinaison des normes L1 et L2) est in-
troduit a�n de réduire le surapprentissage qui intervient lorsque peu de données sont
disponibles.

Par ailleurs, la s2-PGD ajoute à cette régularisation une étape de sélection des fonc-
tions de base qui permettent une bonne représentation de la solution. Une fois les
fonctions adéquates sélectionnées, la solution est recalculée sans pénalisation, mais
dans un espace de dimension réduit mais adapté aux données qui permet donc d'évi-
ter le surapprentissage tout en représentant bien la solution.

Les exemples proposés montrent que ces stratégies permettent une amélioration de la
capacité prédictive de la sPGD.

Section 2 : ANOVA-PGD : Une stratégie originale

Les techniques présentées dans la section précédente soulèvent de nouveaux dé�s et de
nouvelles questions. Dans le contexte de la s2-PGD, le choix des fonctions de base a un
impact signi�catif sur la qualité de la solution, contrairement à la sPGD, qui donne des
résultats dépendants de l'espace engendré par la base mais indépendant du choix de
la base en elle-même. En outre, les méthodes de régression basées sur la PGD utilisent
actuellement des plans d'expériences parcimonieux qui n'exploitent pas de technique
d'échantillonnage intelligent ; cela laisse de côté un potentiel inexploité. Ces obser-
vations motivent le développement d'une nouvelle technique appelée ANOVA-PGD,
qui combine les approches de la section précédente avec la décomposition ANOVA
(Analyse de la variance) [64�66] et sa version "low-cost" dite "ancrée" [67�69].

La décomposition ANOVA permet d'approximer une fonction de manière hiérarchique
grâce à une base orthogonale qui contient des fonctions d'un nombre de variables
croissant. A l'ordre 0, la fonction est approchée par une constante puis enrichie à
l'ordre 1 par une somme de fonctions unidimensionnelles. Grâce à la stratégie ANOVA
"ancrée", le calcul de ces fonctions nécessite un échantillonnage approprié, qui sépare la
contribution de chacune des variables. Cet échantillonnage a la particularité de croître
linéairement avec le nombre de paramètres impliqués, ce qui en fait une technique très
intéressante pour des problèmes en grande dimension.

Par ailleurs, l'étude de ces contributions séparées des di�érents paramètres permet
d'établir des bases construites à partir des données et adaptées à chaque paramètre.
Ainsi, l'approximation à l'ordre 1 est combinée avec une technique basée sur la repré-
sentation séparée munie de ces bases adaptées a�n de construire une solution paramé-
trique la plus �dèle possible, même dans des cas assez fortement non-linéaires et en
très grande dimension.
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Section 3 : Modèles réduits de courbes

La prédiction de courbes entières (notamment des fonctions scalaires du temps ou d'un
paramètre) par des modèles paramétriques de substitution présente des di�cultés. Le
non-alignement des courbes, qui peut résulter de fréquences ou fenêtres d'échantillon-
nages di�érentes, et le décalage de points critiques dans les courbes présentant des
caractéristiques communes (par exemple, la transition élastique-plastique en méca-
nique), font que les méthodes d'interpolation classiques ne fournissent pas des résul-
tats cohérents du point de vue de la physique ; cela nécessite d'appliquer aux courbes
un prétraitement approprié. Par ailleurs, lorsque des bifurcations se produisent dans
l'espace paramétrique, le couplage avec des algorithmes de partitionnement (cluste-
ring) [70,71] et de classi�cation [72] améliore la précision du modèle de substitution.

En combinant des traitements des courbes basés sur l'alignement de caractéristiques
remarquables avec une stratégie basée sur un clustering en amont et une classi�cation
en aval, il est montré que les modèles réduits permettant de prédire des courbes à partir
de paramètres donnés sont largement améliorés. Ces méthodes ne sont pas totalement
automatiques mais simples à mettre en ÷uvre pour améliorer drastiquement la qualité
des résultats, notamment en s'assurant de la bonne représentation des caractéristiques
de courbes qui sont chargées de sens physique.

Ensuite, la propagation d'incertitudes [73] dans ces modèles est étudiée ; supposant
que les paramètres d'entrée du modèle sont connus de manière incertaine et modélisés
par une loi de probabilité, un intervalle de con�ance est calculé pour la courbe de
sortie.

Section 4 : Réduction de modèle basée sur le transport optimal

La réduction de modèle dans des contextes tels que celui décrit dans la section pré-
cédente devient encore plus di�cile lorsque les solutions sont des champs complets
en plusieurs dimensions. Les bases réduites linéaires, couramment utilisées dans les
algorithmes de réduction, peinent à capturer les déplacements continus des caracté-
ristiques de la solution causés par des phénomènes tels que l'advection ou des char-
gements paramétriques localisés. Les limites des bases réduites proviennent de leur
utilisation d'une métrique euclidienne, qui ne prend pas en compte le désalignement
ou la localisation des caractéristiques. Pour y remédier, la théorie du transport opti-
mal fournit des métriques conçues pour détecter les distances entre les caractéristiques
remarquables.

Le transport optimal [16, 17] construit notamment une manière d'interpoler entre
des fonctions en prenant en compte cette problématique de caractéristiques locali-
sées. Cette interpolation est e�cace quand seulement deux fonctions sont concernées,
mais plus di�cile quand un grand échantillonnage est concerné, particulièrement dans
un vaste domaine paramétrique. Pour répondre à cette problématique, une stratégie
reprenant l'échantillonnage de l'ANOVA "ancrée" et permettant de visiter l'espace
paramétrique de proche en proche est proposée.

Cette combinaison entre l'ANOVA et le transport optimal permet d'agrandir le do-
maine d'application de la réduction de modèle. Cependant, les outils liés au trans-
port optimal nécessitent des conditions strictes sur les fonctions étudiées, notamment
qu'elles soient positives. Pour remédier à ce problème, une deuxième stratégie plus
complète est proposée pour étendre encore un peu davantage ce domaine d'applica-
tion.
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Chapitre 3 : Assimilation de données et modélisation hybride

Section 1 : Modélisation à partir d'observations partielles

Cette section aborde la question de l'accessibilité des données dans la modélisation.
Lorsque seule une partie d'un système peut être mesurée ou observée, des questions se
posent concernant l'existence, la formulation et l'apprentissage d'un modèle qui relie
les entrées observables aux sorties correspondantes, en tenant compte de l'in�uence
des dynamiques cachées [74�77].

Dans un premier temps, la question est étudiée dans le cadre de formulations al-
gébriques classiques. En utilisant la condensation statique (ou réduction de Guyan)
[78, 79], les conditions selon lesquelles un modèle peut être reconstitué à partir d'ob-
servations partielles sont analysées. La même étude est conduite en régime dynamique
en appliquant également cette condensation dans l'espace de Fourier.

Les idées développées dans le cadre algébrique simple sont ensuite utilisées pour ré-
soudre un problème similaire mais non-linéaire à l'aide de méthodes d'apprentissage
machine adaptées. En e�et, les RNN et LSTM sont capables de modéliser la contribu-
tion des parties du système qui n'ont pas été observées, dans des conditions similaires
à celles établies plus tôt.

Section 2 : Modélisation hybride par apprentissage de terme

source

Cette section explore la combinaison de données et d'un modèle basé sur la physique
pour créer un modèle hybride. Bien que l'approche PINN o�re une solution simple
en intégrant des équations physiques dans la fonction de perte, elle ne fournit qu'une
solution hybride, et non un modèle hybride. La création d'un modèle hybride o�re
des avantages tels que la généralisation à d'autres conditions et potentiellement une
interprétation physique des corrections du modèle.

Pour enrichir le modèle à partir des données, une inconnue est ajoutée au modèle sous
la forme d'un terme source. Dans le cadre des méthodes classiques de discrétisation
d'équations aux dérivées partielles, ce terme est appris à partir de l'approximation
des opérateurs di�érentiels appliqués aux données. En revanche, cela n'est possible
que lorsque les données sont abondantes puisqu'elles doivent être associées aux n÷uds
d'un maillage su�samment �n pour approximer correctement les opérateurs.

Pour atténuer cette contrainte très forte, le problème est reformulé à l'aide d'un PINN.
Dans cette nouvelle formulation, les dérivées sont calculées de manière exacte sans
contrainte particulière, et la solution peut donc être obtenue à partir de données
parcimonieuses.

Section 3 : Modélisation hybride par identification de propriétés

Dans le but d'enrichir les modèles physiques par le biais de la modélisation hybride, une
approche alternative émerge : une approche qui suppose que le modèle lui-même est
précis mais qui reconnaît l'incertitude entourant les propriétés physiques associées au
système étudié. Cette incertitude peut résulter d'erreurs de modélisation ou d'approxi-
mations, de l'utilisation de représentations grossières ou de la présence de dommages
ou de vieillissement dans le système. Cette section se penche sur ce dernier scénario, en
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se concentrant sur le cas spéci�que de l'endommagement localisé. Cet aspect permet
notamment d'appliquer la méthode au contrôle de santé des structures [80].

En mettant à jour les paramètres physiques du modèle existant, il devient possible
d'a�ner ses capacités prédictives, en l'alignant plus étroitement sur le comportement
observé du système endommagé. L'objectif est d'obtenir un modèle qui non seulement
tient compte de la présence d'un dommage, mais qui prédit également avec précision
son impact sur le comportement global du système.

En outre, cette méthodologie de correction des paramètres o�re les moyens de mener
une analyse approfondie du modèle mis à jour. En comparant les prédictions du modèle
mis à jour avec les données mesurées, il devient possible d'identi�er la nature et
la localisation des dommages. Ces informations sont précieuses pour comprendre les
causes sous-jacentes des écarts observés et fournissent des indications cruciales pour
les stratégies de maintenance et de réparation.

La clé du succès de cette approche est l'utilisation de techniques de régularisation par-
cimonieuses, ce qui rend cette méthodologie originale. La régularisation parcimonieuse
permet de sélectionner le scénario d'endommagement le plus probable à partir d'un
éventail de possibilités pouvant expliquer les données de mesure. La méthodologie peut
ainsi e�ectivement localiser les endroits où les dommages sont situés et caractériser la
gravité et l'étendue des dommages dans le système.

Cette approche est développée pour deux types di�érents de méthodes numériques :
la méthode des éléments �nis dans le contexte des équations linéaires et les réseaux
neuronaux informés par la physique.
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Introduction

0.1 Context and Motivations

Engineering in the 20th century primarily relied on the utilization of models to e�ec-
tively design components and systems. Generally, these models comprised mathemat-
ical operators that facilitated the transmission of input to its corresponding output.
To provide a clearer explanation, let's consider a deformable solid that undergoes
shape modi�cation due to the application of a force on its surface. This deformation
results in an internal mechanical condition within the solid, leading to reversible or
irreversible changes in its geometry. Such changes are often observed in manufactur-
ing processes like stamping or forging, among others. Hence, the mechanical model
mentioned earlier can be perceived as the operator that deduces the �nal mechanical
state in the structural system based on a given load.

There are two main typologies of models, referred later as Type I and Type II:

1. The �rst one (Type I) expresses the input/output relationship in engineering
in an algebraic form, whether linear or nonlinear. For instance, consider the
example of a rod experiencing tension. In this case, the applied stress on the
rod is directly proportional to the resulting deformation, which is de�ned as the
relative change in its length. This relationship remains linear for small defor-
mations but can transition to a nonlinear relationship for larger deformations.
Furthermore, for even larger deformations, it may become irreversible, leading
to inelastic behavior.

These algebraic models are easily manipulated and o�er signi�cant advantages
in larger multi-component systems. Their algebraic nature greatly facilitates
e�cient manipulation and problem-solving.

2. The second type (Type II) involves an input/output relationship that gives rise
to a mathematical problem involving derivatives in space and/or time. This sit-
uation arises when the solution at a particular point and time depends not only
on the present conditions but also on the past history and the solution in all
other points within the relevant domain. In such cases, models are expressed us-
ing more complex mathematical entities known as partial di�erential equations.
These equations capture the interdependence of variables and their derivatives,
enabling a comprehensive representation of the system dynamics.

Models of Type II generally pose greater challenges when it comes to �nding e�cient
solutions. To illustrate this, let's consider a one-dimensional model, such as a rod,
where we aim to determine the internal state at all points within it. Initially, we

1
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encounter a di�culty: there is an in�nite number of unknowns, corresponding to the
numerous points along the rod.

However, if the problem can be solved analytically, this challenge can be overcome. In
such cases, the solution takes the form of a closed mathematical expression, such as the
displacement u(x) in the example mentioned. This displacement at each point x in the
rod can then be determined based on the forces f(x′) applied at each corresponding
point x′ in the rod, considering the given boundary conditions.

It is important to note that most models cannot be solved analytically due to various
reasons. They are often de�ned in complex geometries, involve intricate boundary
conditions, and may exhibit strong nonlinearity and coupling e�ects. As a result, dis-
cretization techniques have emerged as prominent tools in Simulation-Based Engineer-
ing (SBE) [18,19]. Examples of such techniques [20,21] include �nite elements [22,23],
�nite di�erences [24,25], and �nite volumes [26,27].

These discretization techniques aim to �nd solutions at a limited number of points,
referred to as nodes, and speci�c time instances, rather than attempting to solve
the problem for an in�nite number of points and times. They e�ectively transform
the continuous model into a discrete representation. Among these techniques, the
�nite element method has gained widespread popularity and is widely adopted in
industrial practices today. It has proven to be a valuable approach for solving complex
engineering problems.

However, the journey from the conceptual formalization of these discretization tech-
niques to their widespread adoption in the industry has been quite extensive. Taking
the previously mentioned one-dimensional problem as an example, the chosen dis-
cretization technique transforms the initial problem into a task of calculating the
solution at only N points (referred to as nodes) distributed along the rod, forming a
grid or mesh.

To illustrate, let us consider the case where N = 10. Once the solution is obtained at
these 10 points, it can be interpolated to estimate the solution at any other location
within the domain. However, in two dimensions (such as a square domain), the grid
would contain 10x10 points that need to be calculated, and in three dimensions (e.g.,
a cube), it would involve 10x10x10 points. As a result, the algebraic problem associ-
ated with one-dimensional discretization has 10 unknowns, while two-dimensional and
three-dimensional discretization problems have 100 and 1000 unknowns, respectively.
The number of unknowns scales with the number of nodes in the grid or mesh, which
increases exponentially with the dimension of the space where the problem is de�ned.

Even if an algebraic problem of size 10 can be solved relatively quickly by hand, the
one involving the solution of a problem with 1000 unknowns could require a signi�cant
amount of time, potentially exceeding the lifespan of a human being.

Discretization, which is necessary for solving problems involving Type II models, be-
came feasible thanks to the advent and contribution of computers. While computers
can solve algebraic systems of equations quickly, problems with larger dimensions pose
signi�cant challenges. For example, solving an algebraic problem with 1000 unknowns
may only take fractions of a second on a standard laptop. However, engineering prob-
lems are increasingly growing in size and complexity. They often involve hundreds
of millions of unknowns and require many iterations due to nonlinearity or transient
behavior (evolving solutions over time).

Even with the most powerful computational platforms available today, simulations
of such large-scale problems still demand substantial time. They may take days,
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weeks, or even months to complete. This extended computational time is necessary
to accurately capture the intricate details of the system and obtain reliable results.

In summary, while most models can be solved with the aid of powerful computers,
they often require a signi�cant amount of time to perform the necessary computations.
Engineering practices in the 20th century primarily focused on component design, and
industries such as energy, automotive, and aerospace employed programs long enough
to ensure the dialog between designers and simulation tools.

It is important to emphasize that the design process often necessitates multiple simu-
lations to explore the parametric space and identify a quasi-optimal design. However,
the cost associated with these simulations and the dimensionality of the parametric
space, which can consist of hundreds of parameters, present ongoing challenges in
achieving optimal certi�ed designs even in modern times.

Another challenging aspect of Simulation-Based Engineering (SBE) relates to the
quality of the models themselves. While models have evolved over centuries of scienti�c
advancements, there are several factors that make it di�cult to fully grasp and express
the true behavior of a system:

� The size of the analyzed system in terms of space and time poses the �rst
challenge. A model may be considered generally accurate, but it can exhibit
noticeable local deviations. Similarly, a model that accurately represents the
system at present may develop biases over time.

� Another di�culty lies in the large number of parameters involved in some mod-
els, making it challenging to calibrate and identify the appropriate values for
these parameters.

� Additionally, even when using the correct model, the parameters themselves ex-
hibit variability. For example, specimens made of the same material from the
same supplier, produced by the same machine on the same day, and processed
under the same nominal conditions can still exhibit slight di�erences in their me-
chanical properties. This leads to statistical distributions of model parameters,
introducing uncertainty that propagates throughout the system.

� Lastly, there is always an inherent epistemic uncertainty or ignorance between
the model and reality. Di�erences can exist at various scales in space and time,
and these di�erences can potentially grow as time progresses.

In practice, engineers strive to mitigate the impact of these challenges to ensure ac-
curate predictions and maintain the quality of their designs. Various techniques and
strategies are employed to address these issues and minimize the uncertainties intro-
duced by the models used in SBE.

0.1.1 From virtual to digital twins

The 20th century engineering was proli�c, with many impressive successes [28]: aero-
nautics, space conquest, transport, energy, civil infrastructures, ...

In other domains such as marketing, economy, social sciences, and medicine, where
traditional models were less established and had limited prognostic capabilities, re-
searchers began shifting their focus towards the use of data for diagnosis and prog-
nosis. This approach quickly led to signi�cant achievements. However, in the �eld of
engineering, three major new developments disrupted the status quo:
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1. The emergence of online engineering: With the advent of technologies like the
Internet of Things (IoT) and the availability of massive amounts of collected
data, traditional o�ine engineering methods were pushed to operate in real-
time. The focus shifted from product-based engineering to performance-based
engineering. For example, in the aviation industry, companies became more
interested in measuring hours of �ight rather than solely focusing on aircraft
engines. Engineering is now expected to provide continuous predictions and
maintain performance throughout the entire lifespan of a product or system.

2. Engineering in the era of connected systems: Engineering, which previously
concentrated on individual components or machines, had to adapt to address
larger and interconnected systems. This shift led to the rise of concepts such
as smart industries, smart cities, and smart nations. It marked the fourth in-
dustrial revolution, where data joined forces with previous revolutions driven by
steam, electricity, and electronics/automation. Engineering expanded its scope
to encompass complex systems of systems.

3. The upcoming human-centric immersive engineering revolution: The imminent
�fth revolution will place humans at the core of engineering endeavors. It envi-
sions a physics-aware metaverse, where advancements in computer vision, multi-
modal devices, and natural language processing (NLP) have the potential to defy
the Turing test. However, integrating humans into the system poses challenges
for traditional modeling approaches, as humans may escape or resist conven-
tional modeling frameworks.

In response to these developments, engineering science turned its attention to the
promising possibilities o�ered by data and Arti�cial Intelligence (AI). The expecta-
tions for leveraging these technologies in engineering are high, with the aim of achiev-
ing better predictions, improved performance, and enhanced understanding of complex
systems [29].

The learning process in machine learning seems general and agnostic to the speci�c
physics of the problem. Once input and output data (represented as (pi, ui), i =
1, . . . , ns, ns being the number of available data) are collected, one can attempt to
establish the relationship between the inputs (p) and outputs (u), denoted as u = F(p).
By learning and establishing the functional relation F from the available data, the
model can be applied to new input data to obtain the corresponding output. This
allows for real-time application of the learned model to di�erent scenarios.

The main challenge in this process is to obtain the regression model u = F(p) that
accurately predicts the output u given the input p. There are various techniques
available for constructing such regression models, and the choice depends on factors
such as the quantity of available data (ns), the time available for training (online
versus o�ine), and the quality of the data.

In summary, if the quantity of interest (u) and the variables a�ecting it (p) are well
identi�ed, and if there is a su�cient quantity (ns) and quality of data, there are nu-
merous machine learning techniques capable of extracting the functional relationship
(regression) u = F(p).

Imagine for a while the set of data: (u1 = 2, p1 = 1), (u2 = 4, p2 = 2), ... (un =
2n, pn = n), n = 3, . . . , ns. In that case the regression becomes linear and almost
obvious: u = 2p, i.e. F(p) = 2p.
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While data-driven modeling has its advantages, there are still challenges and di�cul-
ties that persist in the process:

� Data collection: Determining which data to collect, at what scale, and when and
where to collect it is crucial. The collected data should be relevant and contribute
to the desired output. It is important not to discard any features that may be
useful. Techniques exist to identify and remove irrelevant features and discover
missing features, but collecting data can be costly and constrained by various
factors such as available resources, technological limitations, regulations, and
environmental considerations [4, 5].

� Cost of data: Data collection and processing can be expensive in engineering.
Unlike in some domains where big data is readily available, engineering often
faces limitations in data collection. The cost includes expenses related to sensing
devices, instrumentation, data communication, data mining, processing, and
addressing environmental concerns. The availability and cost of data can impact
the feasibility and practicality of certain approaches [6, 7].

� Interpretability: While machine learning models can extract regressions and
make predictions, explaining the learned model can be challenging. Understand-
ing the underlying factors and relationships that the model has learned from the
data may not be straightforward. It is easier to explain well-established scienti�c
concepts like gravity, but explaining data-driven models may require additional
e�ort and analysis [10,11].

� Extrapolation and generalization: Models learned from data can be applied
within the domain of validity of the collected data. When applying the learned
model to situations or regions where data was not collected, extrapolation oc-
curs. Extrapolation carries inherent risks as the model may not accurately
predict outcomes in unobserved or extreme conditions. Care must be taken to
understand the limitations and potential risks associated with extrapolating the
model beyond its observed data range [8, 9].

Addressing these challenges requires careful consideration of data collection strategies,
cost-e�ectiveness, interpretability of models, and the appropriate use of models within
their valid domains.

0.1.2 In between models and data

As discussed earlier, the option that relies primarily on physics-based approaches has
its advantages, but it also has drawbacks such as longer computing time and the need
for signi�cant computational resources. Additionally, it becomes challenging to handle
large-scale systems with notable variability and uncertainty. On the contrary, the
almost fully data-driven option appears promising, especially when accurate models
are unavailable or lacking. However, this approach also faces di�culties when applied
in engineering practices, including high data costs, risks associated with extrapolation,
and challenges in providing explanations and certi�cations.

Perhaps the optimal choice lies in combining both approaches instead of choosing one
over the other. Within this context, we will explore two possibilities:

1. Physics-informed learning [30],
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2. Physics-augmented learning [31].

In both cases, we leverage the advantage that learning speci�c parts can be more cost-
e�ective than learning the entire system. In the realm of physics, it is widely accepted
that conservation laws are universal, and therefore, there is no need to relearn them
from data. However, there are other phenomenological relationships that can bene�t
from a data-driven perspective, o�ering an opportunity for improvement.

Physics-informed learning

Let us consider a scenario where we are seeking to determine the output u at each
point x of a domain Ω, i.e. u(x), x ∈ Ω. The regression model used to express u(x)
is expected to be complex and exhibit strong nonlinearity. Instead of employing the
�nite element method discussed earlier, we opt to approximate u using a nonlinear
machine-learning-based regression, such as a neural network (NN).

However, according to established physics principles that we assume to be applicable
here, u(x) adheres to a state-of-the-art model de�ned by a partial di�erential equation
in the form: L(u(x)) = f(x). In this equation, L(·) represents a linear or nonlinear
di�erential operator.

To address this, we turn to a physics-informed neural network (PINN), which seeks
to �nd a neural network representation of u from x that approximates u(x) while
ensuring adherence to its governing equation. This is achieved by minimizing the
residualR = ∥L(u(x))−f(x)∥, which enforces the veri�cation of the partial di�erential
equation during the construction of the regression for u(x).

PINN can be seen as a type of collocation method, where the unknown �eld, u(x),
is approximated by a neural network, and the construction of the regression is based
on minimizing the residual. This approach allows for easy assimilation of data in a
straightforward and transparent manner.

Physics-augmented learning

The main concept here revolves around the assumption that the reference solution
u(x), obtained from a given loading term f(x), can be decomposed into two contribu-
tions. The �rst contribution represents our existing knowledge, which originates from
the physics-based model and is denoted as uP (x).

Subsequently, we calculate the discrepancy between the actual behavior and the pre-
diction of the physics-based model, u(x) − uP (x). This discrepancy is commonly
referred to as "ignorance."

To address this gap, machine learning techniques are employed to model this dis-
crepancy, resulting in the data-driven model denoted as uD(x). Consequently, the
fundamental approximation is expressed as: u(x) = uP (x) + uD(x).

This relationship forms the basis of the hybrid modeling paradigm or the hybrid twin
approach when applied to speci�c systems or assets.

Discussion

Both approaches, the physics-based model and the data-driven model, o�er the ad-
vantage of signi�cantly reducing the amount of data required for constructing the
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models. This reduction is achieved either by leveraging the provided information or
by focusing solely on modeling the discrepancy, which is assumed to be simpler to
approximate than the actual behavior itself.

Furthermore, the use of the physics-based model enables us to explain the foundational
aspects of the model and its resulting predictions, thereby alleviating extrapolation
issues to some extent.

The reduction in data requirements is not solely due to the utilization of physics but
also because physics informs us about the optimal locations and timing for data col-
lection. This is particularly evident when considering active learning, which becomes
highly e�ective when incorporating existing physics-based knowledge.

To illustrate this point, let us consider the example of temperature measurement in
a city. To understand the temperature in a city, it is unnecessary to place thousands
of thermometers on every street and record the temperature every millisecond. With
knowledge of the physics that shapes our experience and common sense, we know that
placing a few thermometers (e.g., one in each district) and measuring the temperature
in the morning, at noon, in the afternoon, and at midnight would generally su�ce.

In general, we should make the most of the existing knowledge available to us, incor-
porating both physics-based understanding and data-driven approaches.

0.1.3 Physics in real-time: Model Order Reduction

In this section we focus on the physics-based model, and tackle the methodologies to
enhance its solution procedure to obtain real-time performance. Such procedures are
known as Model Order Reduction (MOR) [1�3].

For this purpose, we consider two alternatives:

� The construction of an intrusive Reduced Order Model by applying dimension-
ality reduction techniques to the solution of the physics-based model, which
subsequently enables the solver to operate very quickly.

� The construction of a surrogate, which refers to a direct relation between the
solution of the physics-based model and the parameters involved in the model.
Once this surrogate is built, it enables us to infer the solution almost in real-time
by simply providing the model parameters.

Reduced order models and parametric solutions play a crucial role in enabling various
tasks, such as simulation, optimization, inverse analysis, simulation-based control,
and uncertainty propagation, all while operating under strict real-time constraints.
These parametric solutions facilitate real-time engineering based on models in an
exceptionally e�cient and unprecedented manner.

To illustrate the concept, let's consider a simple parametric solution denoted as
u(x; p1, p2), where the unknown u depends on two parameters, p1 and p2, at each
position x. It's important to note that while we are using two parameters for simplic-
ity, the approach can be extended to include more parameters as needed.

The construction of the surrogate follows these steps:

1. A Design of Experiments (DoE) is de�ned, employing a sampling strategy. Sev-
eral possibilities exist, such as Latin Hypercube [81], quadrature methods (e.g.,
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Gauss-Lobatto-Chebyshev [82] or Smolyak [83], or approaches associated with
active learning [12] (such as Gaussian processes [84] or Fisher information matrix
[85]). The DoE provides a sampling of the parametric space: (p11, p

2
1), . . . , (p

1
D, p

2
D).

2. Using the physics-based model and suitable software capable of solving it, the
solution associated with each point in the DoE is calculated:
u1(x) = u(x; p11, p

2
1), . . . , uD(x) = u(x; p1D, p

2
D).

3. Finally, a regression model u(x; p1, p2) is constructed to approximate the re-
lationship between the parameters and the solution. The regression model
is constructed by minimizing the loss L, which represents the approximation
error. The loss, typically de�ned using the L2-norm of the error, i.e. L =
D∑
i=1

∥u(x, p1i , p2i )− ui(x)∥2, quanti�es the discrepancy between the predicted sur-

rogate solution and the true physics-based solution.

0.1.4 Data and learning

Regressions, which extract models from data, can take various forms depending on the
nature of the data being manipulated. Some common types of data that regressions
are applied to include:

� Lists (Tables): Data arranged in tables, which can consist of continuous or
discrete numerical values, as well as categorical features.

� Images: Real 2D or 3D images or numerical simulation results.

� Tensor Formats: This pertains to compressed images or full-�eld data decom-
poseded in tensor product representation.

� Graphs: Nodal and edge features represented with a graph structure.

� Curves: Geometric curves or scalar-valued functions.

� Time-series, similar to curves, but concerning chronologically ordered data and
implying causality.

� Points clouds: Densities or probability distributions.

Among the most usual machine learning techniques, we can mention:

� Regularized Polynomial Regressions [32]: These regressions are useful when data
is scarce, and the solution can be expressed using polynomial bases. They can
incorporate existing knowledge or engineered features.

� Arti�cial Neural Networks (NN): NNs perform well when there is a su�cient
amount of data and well-tuned hyperparameters. The universal approximation
theorem [33] states that NNs with an adequate number of neurons can approxi-
mate any function, making them versatile and powerful.

� Auto-Encoder (AE) [34]: AE is an NN architecture that maps data into a latent
space, approximating the intrinsic dimensionality of the data. Modeling at the
latent level removes linear and nonlinear correlations. Other dimensionality
reduction techniques like PCA [35], kPCA [36], LLE [37], tSNE [38] based on
manifold learning can also be used.
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� Generative Adversarial Networks (GAN) [39]: GANs improve robustness by gen-
erating synthetic data samples that augment the dataset. They are particularly
useful for data augmentation and generating realistic samples.

� Convolutional Neural Networks (CNN) [40]: CNNs are well-suited for image
analysis and pattern recognition tasks. They excel at recognizing and extracting
speci�c patterns from images. Graph Neural Networks (GNN) [41] extend CNNs
to operate on unstructured meshes or graphs and are e�ective in learning physical
behaviors.

� Recurrent Neural Networks (RNN) [42] and Long Short-Term Memory (LSTM)
[43]: These techniques are powerful for handling time series data. RNNs and
LSTMs capture temporal dependencies and have memory capabilities, making
them suitable for sequential data analysis.

� Dynamical Systems: Various techniques are used for modeling dynamical sys-
tems. RNNs and LSTMs can learn state evolutions and associated observables.
ResNet [44] or NeuralODE [45] can learn the forcing terms of dynamical systems.
Techniques like Dynamic Mode Decomposition (DMD) [46] and the Koopman
operator [47] are e�cient for addressing nonlinear behaviors. Reservoir comput-
ing [48] and DeepONets [49] are emerging techniques in this �eld.

� Physics-Informed Neural Networks (PINN) [13], Thermodynamics-Informed Neu-
ral Networks (TINN) [50] and Hybrid Models: These techniques incorporate
physics-based knowledge into the learning process. PINNs, TINNs, and SPNNs
[86] ensure the satisfaction of governing equations. Hybrid models combine
physics-based and data-driven approaches, often used in transfer learning sce-
narios.

Concurrently, learning modalities play a crucial role in machine learning. Here are
some of the commonly used modalities:

� Supervised Learning [87]: In supervised learning, the model learns from labeled
data, where the input samples are associated with corresponding target labels.
The model aims to learn the mapping between inputs and outputs based on the
provided labeled examples.

� Unsupervised Learning [88]: Unsupervised learning involves learning from unla-
beled data. The model explores the inherent structure or patterns in the data
without any speci�c target labels. Clustering, dimensionality reduction, and
generative models are examples of unsupervised learning techniques.

� Self-supervised Learning [89]: Self-supervised learning is a variation of unsuper-
vised learning where the model learns to predict certain aspects of the data from
the data itself. It formulates learning tasks using the available unlabeled data,
creating proxy supervisory signals.

� Semi-supervised Learning [90]: In semi-supervised learning, the model learns
from a combination of labeled and unlabeled data. It leverages the limited
labeled data and the additional unlabeled data to improve the learning process.
This approach is bene�cial when labeled data is expensive or time-consuming to
obtain.
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� Transfer Learning [91]: Transfer learning involves leveraging knowledge or mod-
els learned from one domain and applying it to another related domain. The
pre-trained models on large-scale datasets can be �ne-tuned or used as a feature
extractor for a target task with limited data.

� Reinforcement Learning [92]: Reinforcement learning is used when an agent
interacts with an environment and learns to take actions that maximize a reward
signal. The agent explores the environment and learns through trial and error,
receiving feedback in the form of rewards or penalties.

The choice of learning modality depends on factors such as the availability of labeled
data, the complexity of the data structure, and the need for online or real-time learn-
ing. Each modality has its strengths and limitations, and the selection depends on
the speci�c problem and context.

0.1.5 Hybridization

In the context of hybridization [51], there are two main routes that can be followed:
enriching the solution or enriching the model and thus obtaining the enhanced solution.

Solution enrichment

The enriched or corrected solution is obtained by combining the physics-based model
solution, uP (x,p) (computed by using the techniques discussed in Section 0.1.3), with
the data-driven correction, uD(x,p) (learned by using one of the technologies intro-
duced in Section 0.1.4). Here, p represents the vector of parameters associated with
the model.

To calibrate the model online, as soon as data is collected, the operational parameters
p∗ are identi�ed by minimizing the di�erence between the model predictions and the
available measurements. This calibration process ensures that the model is aligned
with the observed data and can accurately capture the behavior of the system.

Finally, and then the hybrid prediction yields the corrected or enriched solution from
uP (x,p∗) + uD(x,p∗).

The same procedure applies to transient problems, where the model parameters may
vary over time. The online calibration is performed at each time step, and the data-
driven model is particularized accordingly to provide an updated hybrid prediction.

Model enrichment

In the model enrichment route, the objective is to improve the predictive capability of a
nominal model that is assumed to be known. The discrete form of the nominal model,
for simplicity, can be represented as MU = F, where M is the matrix representing
the system properties, U and F are the nodal vectors of displacements and forces,
respectively.

In practice, measurements of displacements, denoted as Ũexp, are collected at certain
locations. When comparing these measured displacements with the predictions of
the nominal model in the same locations, denoted as Ũ, a noticeable discrepancy, or
gap, is observed. The norm of the di�erence between the measured and predicted
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displacements ∥Ũexp − Ũ∥ remains larger than the acceptable error threshold ϵ, i.e.
∥Ũexp − Ũ∥ > ϵ.

To address this discrepancy, an enrichment matrix M∗ is introduced. The goal is to
�nd an enriched discrete model, represented as M + M∗, that can better represent
the collected data. The corrected model, along with the associated displacement
prediction, denoted asU+U∗, should satisfy the equilibrium condition (M+M∗)(U+
U∗) = F while accurately representing the collected data, i.e. ∥Ũexp− (Ũ+Ũ∗)∥ < ϵ.

To compute the model enrichment and perform data completionU+U∗, a parametriza-
tion of the model correction M∗ is chosen, along with an appropriate regularization
technique. This parametrization allows for the representation of the model correction
in a computationally e�cient manner.

0.2 Objectives of the thesis

The objective of the work performed in this thesis is to apply, develop, and inves-
tigate novel tools that enable the use of virtual, digital, and hybrid twins in order
to tackle present-day industrial challenges. Speci�cally, the focus has been placed on
exploring and expanding the Model Order Reduction (MOR) and Machine Learning
(ML) frameworks and the combination of both. The contributions tackle three major
di�culties in the context of Hybrid Twins:

� Performing model reduction and regression at the low-data limit.

� Employing adequate mathematical representations to empower model reduction.

� Collecting relevant measurements for data-driven and hybrid modelling.

� Using data to enrich physics-based models.

In particular, the di�erent topics addressed concern:

� Contributions to the development of machine learning and non-intrusive reduced
modeling techniques [93�95].

� Development of general MOR methods which address the localization of features
[96,97].

� Application of MOR and ML methods to industrial cases [98�100].

� Adaption of MOR techniques to solve di�cult problems [101,102].

� Development of tools to reduce component models in engineering applications
[103,104].

� Employment of adequate representations and metrics to apply machine learning
to materials science [105,106].

� Theoretical study on the feasibility of modeling from partial observations [107].

� Development of hybrid modeling techniques [108,109].

� Application of hybrid modeling to model correction and damage identi�cation
[110,111].

� Construction of Digital and Hybrid Twin methodologies [112,113].
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0.3 Content

This thesis is divided in three chapters: �rst, some tools and methodologies which
are key components in the construction of Hybrid Twins are describes, then personal
contributions in the �eld of non-intrusive Model Order Reduction are presented and
�nally, personal contributions to hybrid modelling are described.

0.3.1 Chapter 1: Review of methods enabling Hybrid Twins

Section 1: Intrusive and non-intrusive Model Order Reduction

Engineering problems often requires fast and accurate simulations using complex
models and large amounts of data. Although the development of hardware has al-
lowed to improve the quality of simulations, there are still challenges in solving high-
dimensional problems due to numerical complexity and real-time processing limita-
tions. Model Order Reduction (MOR) techniques, categorized as intrusive and non-
intrusive methods, have gained attention to address these issues. Proper Orthogonal
Decomposition (POD) [52, 53] extracts essential system characteristics and creates a
reduced order model, signi�cantly reducing computation time. Proper Generalized
Decomposition (PGD) [54,55] is an intrusive method which employs the separation of
variables to reduce the complexity of the resolution algorithm. Proper Orthogonal De-
composition with Interpolation (PODI) [56,57] is a non-intrusive methods that handle
parametric without modifying the solver. The sparse Proper Generalized Decompo-
sition (sPGD) [58] constructs a parametric solution using a sparse set of solutions
computed by a PDE solver. Overall, MOR techniques provide e�cient solutions for
complex engineering problems in real-time applications.

Section 2: Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINN) [13] have emerged as a promising frame-
work that integrates neural networks with physics principles to solve complex scienti�c
and engineering problems. Unlike traditional machine learning, PINNs incorporate
prior knowledge of physical laws to enable accurate predictions and capture underly-
ing physics, even with limited labeled data. This section introduces PINN, explaining
how it combines governing equations and constraints with a neural network architec-
ture.

0.3.2 Chapter 2: Advances in non-intrusive Model Order

Reduction

Section 1: Regularization of separated representations

The challenge in regression with limited data is handling nonlinearities in multi-
parametric settings, leading to the curse of dimensionality [59, 60]. Occam's ra-
zor [61, 62] principle suggests favoring simpler models over complex ones, achieved
through sparsity promotion in regression [62,63]. This section proposes robust and ef-
�cient regression methodologies for separated representation settings. Two techniques
are presented: rs-PGD, combining L2 and L1 norm regularization, and s2-PGD, a
doubly sparse regression method utilizing Lasso regularization.
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Section 2: ANOVA-PGD: A novel strategy

The previous section's work�ow presents new challenges and questions. In the context
of s2-PGD, the choice of basis functions signi�cantly impacts the solution's quality,
unlike in sPGD. Additionally, PGD-based regression methods currently use sparse de-
sign of experiments without exploiting smart sampling techniques, leaving untapped
potential. These observations motivate the development of a new technique called
ANOVA-PGD, which combines the approaches from the previous section with the
ANOVA (Analysis of variance) decomposition [64�66] strategy and its low-cost coun-
terpart the anchored ANOVA [67�69]. ANOVA-PGD utilizes a hierarchical orthogonal
basis and suitable sampling, scaling linearly with the number of parameters involved.

Section 3: Reduced Modelling of curves

Predicting whole curves from given input features in parametric surrogates presents
challenges. Non-alignement in curves, which can result from di�erent sampling or
ending points, and shifted critical points in curves with common patterns (e.g., elastic-
plastic transition in mechanics), make classical interpolation methods fail to provide
physics-consistent results, requiring appropriate pre-processing. When bifurcations
occur in the parametric space, coupling with clustering [70, 71] and classi�cation [72]
algorithms enhances the surrogate's accuracy. This section introduces methodologies
to address these issues and create surrogates used for uncertainty quanti�cation [73],
providing statistical bounds for predicted curves.

Section 4: Reduced Modelling based on Optimal Transport

Reduced Order Modelling in contexts such as the one described in the previous sec-
tion become even more challenging when dealing with full-�eld solutions in multiple
dimensions. Linear reduced bases, commonly used in ROM algorithms, struggle to
capture continuous displacements of solution features caused by phenomena like ad-
vection or localized parametric constraints. The limitations of reduced bases stem
from their use of a Euclidean metric, which fails to consider misalignment or feature
localization. To address this, Optimal Transport theory [16, 17] provides metrics de-
signed for detecting distances between noteworthy features. This section introduces a
methodology that combines the ANOVA framework and Optimal Transport to create
parametric reduced models.

0.3.3 Chapter 3: Data assimilation and Hybrid Modelling

Section 1: Modeling systems from partial observations

This section addresses the issue of data accessibility in modelling. When only a por-
tion of a system can be measured or observed, questions arise regarding the existence,
formulation, and learning of a model that connects the observable inputs to the corre-
sponding outputs, considering the in�uence of hidden dynamics [74�77]. The section
revisits model construction in domains with partial observability, exploring both tra-
ditional algebraic formulations and Machine Learning approaches.



14 0.4 Scienti�c contributions

Section 2: Hybrid modeling by learning a source term

This section explores the combination of data and a physics-based model to create a
hybrid model. While the PINN approach o�ers a simple solution by embedding physics
equations in the loss function, it only provides a hybrid solution, not a hybrid model.
Creating a hybrid model o�ers advantages such as versatility in di�erent settings and
the potential for physical interpretation of the model corrections. The section proposes
a hybridization strategy established in the context of classical discretization methods
and then improved within the PINN framework.

Section 3: Hybrid modeling by identifying properties

In the pursuit of re�ning physics-based models through hybrid modeling, an alter-
native approach arises: correcting uncertain physical parameters associated with the
system. This correction enables the development of a model that accurately cap-
tures the behavior of a damaged system and identi�es the nature and location of the
damage. This section presents a novel methodology focused on parameter correction,
re�ning the model's predictive capabilities and providing insights into the damage.
Sparse regularization techniques are key to this approach, allowing for the selection of
the most probable damage scenario and pinpointing its location and severity within
the system.
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1
Review of methods enabling

Hybrid Twins

1.1 Intrusive and non-intrusive Model Order Re-

duction

Engineering often involves intricate models that demand swift and precise solutions,
requiring processing of vast amounts of data. Meanwhile, from the requirements of
their applications, these models must frequently be computed in real-time on deployed
platforms. Despite the signi�cant advancements made in modelling, numerical anal-
ysis, discretization techniques, and computer science over the past decades, there are
still numerous problems in science and engineering that cannot be solved due to their
numerical complexity or limitations imposed by speci�c needs such as real-time pro-
cessing on current technological platforms. Very often, these limitations come from the
necessity to solve high-dimensional problems on very �ne discretizations of complex
domains. Recently, Model Order Reduction has attracted a lot of interest because of its
ability to address previously intractable problems in numerical simulation. Model Or-
der Reduction techniques are often classi�ed in two groups: intrusive and non-intrusive
methods. In this chapter, a review of a selection of intrusive and non-intrusive Model
Order Reduction techniques is presented. First, Proper Orthogonal Decomposition
(POD) is a general method used to extract the most essential characteristics of a sys-
tem's behavior and express them with a low-dimensional representation through a set
of basis vectors. One of the most common uses of POD is to project the governing
equations of the system onto the reduced-order subspace spanned by the extracted
basis. This produces a reduced order model that can be resolved instead of the initial
system, in a usually much lower amount of time. Section 1.1.2 presents the Proper
Generalized Decomposition (PGD), a method making use of separated representations
to circumvent the curse of dimensionality. A greedy enrichment procedure coupled
with a �xed-point algorithm enable replacing a high-dimensional problem with a set of
lower-dimensional problems solved iteratively. This strategy is especially useful when
dealing with parametric problems or problems that can be separated in a multi-scale
setting. Section 1.1.3 describes the Proper Orthogonal Decomposition with Interpo-
lation (PODI), a non-intrusive technique based on a similar approach as POD, which
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consists in extracting a reduced basis from collected data and performing an interpo-
lation or regression to express the reduced coordinates as a function of the parameters
of the problem. Unlike POD, this method does not require to modify the solver, hence
it can be combined with any commercial software without needing access to the source
code. Finally, section 1.1.4 introduces the sparse Proper Generalized Decomposition
(sPGD), the non-intrusive counterpart of the PGD, which constructs a parametric
solution from a set of solutions computed by a PDE solver based on a design of exper-
iments. The full order solutions are obtained using any commercial software, and the
PGD algorithm combined with one-dimensional approximation bases is then applied
to build a parametric solution in which the separation of variables is applied to the
parametric space.

1.1.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) [52, 53] is a method which consists in re-
ducing the complexity of a problem by using a low-dimensional representation of its
state instead of the initial high-dimensional representation. It is the application of
Principal Component Analysis (PCA) [35] to Model Order Reduction.

Let us consider a general system of N ordinary di�erential equations (ODE) which can
in particular originate from the spatial discretization of a partial di�erential equation
(PDE):

E(p)
du

dt
+A(p)u = f(p)

where u : (t;p) 7→ u(t;p) ∈ RN is the state of the system being studied, p ∈ D ⊂ Rd

is a vector of d parameters, E(p) ∈ RN×N , A(p) ∈ RN×N and f(p) ∈ RN .

Using any method of integration, we can compute a set of ns "snapshots"
{u1,u2, ...,uns} where ui = u(ti;pi) is the solution of the problem at t = ti and for
the parameters p = pi ∈ D. The snapshots can also come from prior knowledge of
the system or measurements.We can construct a matrix containing all the snapshots,
the "snapshot matrix" U ∈ RN×ns which has ui as its i-th column.

The Singular Value Decomposition (SVD) of U can be written U = LΣRT , L ∈
RN×N and R ∈ Rns×ns being respectively the left and right singular vectors and
Σ ∈ RN×ns the matrix containing the singular values on its diagonal. The POD basis
Φ = (ϕ1, ...,ϕM ) is de�ned as the M ∈ N left singular vectors of U which correspond
to the M largest singular values. This is an orthogonal basis which gives a good
approximation of the snapshots provided M is chosen large enough. In practice, M
is chosen by considering the singular values since they give a good idea of how much
"energy" or "information" each basis function represents.

The POD reduced model is then written:

EM (p)
duM
dt

+AM (p)uM = fM (p)

where EM (p) = ΦTE(p)Φ ∈ RM×M , AM (p) = ΦTA(p)Φ ∈ RM×M and fM =
ΦTf ∈ RM . Computing the reduced solution uM is much faster than computing u
because M << N . The approximation of the solution is then given by u ≈ ΦuM .

One of the drawbacks encountered in POD is that it requires solving a large eigenvalue
problem to obtain the reduced basis since the snapshot matrix has the size of the
number of nodes or elements in the considered mesh, which can easily reach millions
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in industrial applications. This cost can be alleviated with the so-called snapshot
POD [114] by considering the fact that the number of snapshots is much smaller than
the size of the discretization in space, hence solving for the eigenvalues of UTU is
much faster than solving for those of UUT .

In a non-linear setting, this approach is not as e�cient as in linear cases, because the
computation of non-linear terms involves recalculating the full solution at each time
step, increment or iteration of the non-linear solver, which almost completely negates
the positive impact of POD on the computational complexity. Di�erent methods
have been proposed in the literature to circumvent this issue, such as the Empirical
Interpolation Method (EIM) [115,116] or hyper reduction [117,118].

1.1.2 Proper Generalized Decomposition

Proper Generalized Decomposition (PGD) [54,55] is a method which consists in com-
puting a solution to a PDE in a reduced basis compared to an ordinary �nite element
basis. However, unlike POD, the reduced basis is not computed beforehand but at the
same time as the solution. The numerical solution to a PDE using a �nite element
scheme can be written:

u(x, t) ≈
N∑

m=1

αm(t)wm(x)

where the wi are the basis functions, each related to one node of the mesh and the αi

are the unknown coe�cients. Independently of the problem at hand, this approxima-
tion involves a separation of variables between time and space.

Inspired by this idea, we can consider a more general space-time separation:

u(x, t) ≈
M∑

m=1

Xm(x)Tm(t)

which is similar to the previous notation but this time both the Xi and Ti are unknown
and will be computed by the solver. The number of terms in the sumM is also chosen
by the solver based on a convergence criterion.

The solution is computed by iteratively solving a succession of one-dimensional prob-
lems. Before the M -th enrichment step, we have:

uM−1(x, t) =

M−1∑
m=1

Xm(x)Tm(t)

The M -th term XM (x)TM (t) is computed such that

uM (x, t) = uM−1(x, t) +XM (x)TM (t)

XM (x) and TM (t) are calculated at the same time: starting from an arbitrary ini-
tial guess T 0

M (t), the alternating algorithm computes Xj
M (x) from T j−1

M (t), and then
T j
M (t) from Xj

M (x) by injecting everything into the PDE and solving the 1D problem
obtained, until the condition ∥Xj

M (x)T j
M (t)−Xj−1

M (x)T j−1
M (t)∥ < ϵ is reached.

The same principle can be translated to separated representations in higher dimension,
for instance separation of the di�erent dimensions of the physical space, the phase
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space or the parametric space:

u(x, y, z, t) ≈
M∑

m=1

Xm(x)Ym(y)Zm(z)Tm(t)

u(r, θ, t) ≈
M∑

m=1

Rm(r)Θm(θ)Tm(t)

u(x, ẋ) ≈
M∑

m=1

Xm(x)X̃m(ẋ)

u(x, t, p1, ..pd) ≈
M∑

m=1

Xm(x)Tm(t)

d∏
k=1

fkm(pk)

1.1.3 Proper Orthogonal Decomposition with interpolation

Proper Orthogonal Decomposition with Interpolation (PODI) [56, 57] is the non-
intrusive counterpart of POD. The reduced basis is extracted through the same proce-
dure as in intrusive POD, however the reduced coe�cients for a new set of parameters
are obtained by using an interpolation or regression technique instead of projecting
the PDE and associated solution in the lower-dimensional space.

From the matrix of snapshots U , the reduced basis Φ = (ϕ1, ...,ϕr) is calculated using
SVD or the so-called snapshot-POD as described in 1.1.1. The reduced coordinates
are similarly collected by extracting the �rst M rows of matrix ΣR, where the m-
th column of this extracted matrix contains the reduced coordinates αi related to
snapshot ui which allow reconstructing the full solution in an approximated manner:
ui ≈ Φαi.

Then, an interpolation or regression method is used to construct the function α(p)
such that for all i, αi ≈ α(pi). This can be performed with interpolation algorithms
such as polynomial approximation, piecewise-polynomial interpolation [119], kriging
[120], Radial Basis Function (RBF) interpolation [121] ... or regression algorithms
such as Moving Least Squares (MLS) [57], Dynamic Mode Decomposition (DMD) [56],
Neural Networks (NN) [122], ...

1.1.4 Sparse Proper Generalized Decomposition

The sparse Proper Generalized Decomposition (sPGD) [58] is a non-intrusive reduc-
tion method making use of the separation of variables to construct the solution of a
parametric problem, which can be e�ciently obtained in real time once the training
phase is complete. The problem consists in constructing the parametric solution

u(p1, . . . , pd) : Ω ⊂ Rd → RN , (1.1.1)

that depends on d parameters pk, k = 1, . . . , d, belonging to the parametric space Ω,
in which a sparse sample of ns points and their corresponding solutions have been
collected from high-�delity simulations.

The sPGD expresses the function u from a low-rank separated representation

u(p1, . . . , pd) ≈ ũM (p1, . . . , pd) =

M∑
m=1

um

d∏
k=1

ψk
m(pk), (1.1.2)



Review of methods enabling Hybrid Twins 23

constructed from greedy rank-one updates. In the previous expression ũM refers to
the approximation, M the number of employed modes, um ∈ RN are vectors which
can be read as spatial modes and ψk

m are the one-dimensional functions concerning
mode m and dimension k.

Functions ψk
m, m = 1, . . . ,M and k = 1, . . . , d are expressed from a standard approx-

imation basis Nk
m, via coe�cients akm:

ψk
m(pk) =

D∑
j=1

Nk
j,m(pk)akj,m = (Nk

m)Takm, (1.1.3)

where D represents the number of degrees of freedom (nodes) of the chosen approxi-
mation and Nk

m is the vector collecting the shape functions.

In the context of usual regression the approximation ũM results from

ũM = argmin
u∗

∥u− u∗∥22 = argmin
u∗

ns∑
i=1

∥u(pi)− u∗(pi)∥2, (1.1.4)

where ũM takes the separated form of Eq.(1.1.2), ns is the number of sampling points
to train the model and pi the vectors that contain the input data points of the training
set. Notice that, to avoid over�tting, the number of basis functions D must be D < ns.

The approximation coe�cients of each one-dimensional function are computed by
employing a greedy algorithm, such that, once the approximation up to order M − 1
is known, the M -th order term reads

ũM =

M−1∑
m=1

um

d∏
k=1

ψk
m(pk) + uM

d∏
k=1

ψk
M (pk). (1.1.5)

The computed function is expected to approximate u not only in the training set
but in any point p ∈ Ω. The main issue is how to ally rich approximations and
scarce available data, while avoiding over�tting. For that purpose a modal adaptivity
strategy (MAS) was associated to the sPGD, however, it has been observed that the
desired accuracy is not achieved before reaching over�tting or the algorithm stops too
early when using MAS in some cases. This last issue implies a parametric solution
composed of low order approximation functions, thus not getting an as rich as desired
function. Some papers describing the just referred techniques are [58,123].

In addition, in problems where just a few terms of the interpolation basis are present
(that is, there are just some sparse non-zero elements in the interpolation basis to
be determined), the strategy fails in recognizing the true model and therefore lacks
accuracy.

This methodology is presented as a Model Order Reduction technique, but it can also
be considered as a regression technique, and it will be used as such in the following
chapters.

1.2 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINN) [13] have emerged as a promising frame-
work that combines the power of neural networks with the fundamental principles of
physics to address complex scienti�c and engineering problems. Traditional machine
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learning techniques heavily rely on vast amounts of labeled data, which may not al-
ways be available in domains governed by physical laws. PINNs bridge this gap by
incorporating prior knowledge of physical laws into the learning process, allowing for
accurate predictions and capturing underlying physics even with limited data. This
section provides a concise introduction to PINN, describing how the governing equa-
tions and constraints are combined with a neural network architecture to leverage
data while ensuring physical consistency.

1.2.1 Neural Networks as PDE solvers

Consider a system described by a state u(x, t) governed by a partial di�erential equa-
tion in the form: 

L(u)(x, t) = f(p(x, t)) ∀(x, t) ∈ Ω× [0, T ]
u(x, t) = fd(x, t) ∀(x, t) ∈ Γd × [0, T ]
∂nu(x, t) = fn(x, t) ∀(x, t) ∈ Γn × [0, T ]
u(x, 0) = u0(x) ∀x ∈ Ω

(1.2.1)

where L is a di�erential operator, f is the loading or source term, p(x, t)Rd is the
vector which contains the properties of the loading or source at point x and time t,
Ω is the physical domain, fd (resp. fn) is the Dirichlet (resp Neumann) boundary
condition taking place on Γd (resp. Γn) and u0 is the initial condition.

When no measurement data is available and all the requirements coming from the
�eld of PDE analysis [124] are met, the problem is usually well-posed in the sense
that it has a unique solution that satis�es completely all the constraints.

In the PINN methodology, the solution is approximated by a neural network û(x, t)
which is trained by minimizing the loss function LΦ:

LΦ = λΩLΩ + λdLd + λnLn + λ0L0 (1.2.2)

where

LΩ =
1

NΩ

NΩ∑
i=1

∣∣L(û)(xiΩ, tiΩ)− f(p(xiΩ, t
i
Ω))

∣∣2 (1.2.3)

Ld =
1

Nd

Nd∑
i=1

∣∣û(xid, tid)− fd(x
i
d, t

i
d)
∣∣2 (1.2.4)

Ln =
1

Nn

Nn∑
i=1

∣∣∂nû(xin, tin)− fd(x
i
n, t

i
n)
∣∣2 (1.2.5)

L0 =
1

N0

N0∑
i=1

∣∣û(xi0, 0)− u0(x
i
0)
∣∣2 (1.2.6)

and λΩ, λd, λn, λ0 ∈ R∗
+ are the weights associated to each term. Finding appropriate

values for these weights is far from an easy task, but several works have addressed
this issue, including [125�127].



Review of methods enabling Hybrid Twins 25

1.2.2 Neural Networks for hybrid solutions

PINNs are a very appealing tool when trying to combine physics and data. Indeed, a
neural network can be built by adding one by one to its loss function all the di�erent
constraints it needs to full�ll, whether they come from physical knowledge in the form
of equations and boundary conditions, or from measurement data.

In section 1.2.1, only the physics-based model is considered, and the solution obtained
with this methodology is the physics-based solution. Now, consider that measure-
ments have been performed on the real system and data has been collected in various
locations and at di�erent times: um(xim, t

i
m), i = 1, . . . , Nm. To obtain the hybrid

solution taking into account this additional information, the loss function becomes:

LH = λΩLΩ + λdLd + λnLn + λ0L0 + λmLm (1.2.7)

where

Lm =
1

Nm

Nm∑
i=1

∣∣û(xim, tim)− um(xim, t
i
m)

∣∣2 (1.2.8)

and λm is its associated weight.

Minimizing this loss yields a solution which is a compromise between the physics-based
solution and the measurements. However, while this solution may be very useful in
many cases, there is no possibility to learn from this what was missing in the modeling
which could explain the discrepancy between the physics-based model and reality.





2
Advances in non-intrusive Model

Order Reduction

Model Order Reduction (MOR) techniques involve expressing the solution of a prob-
lem, typically a partial di�erential equation (PDE), in a reduced basis with a strong
physical or mathematical foundation. This basis is often obtained o�ine from the
results of a high-�delity solver, such as through the proper orthogonal decomposition
(POD) or reduced basis method (RB) [2]. By using a reduced basis, the complexity of
the solution scales with the size of this basis, which is typically much smaller than the
multi-purpose approximation basis associated with the �nite element method (FEM).

While a reduced basis may result in some loss of generality, it can greatly reduce com-
puting time while maintaining accuracy as long as the problem solution falls within the
space spanned by the reduced basis. However, accuracy may su�er if the desired solu-
tion cannot be accurately approximated by the reduced basis. To improve generality
and accuracy, the Proper Generalized Decomposition (PGD) [128, 129] can construct
the reduced basis and solve the problem simultaneously, although this approach can
be more intrusive.

To address intrusiveness, non-intrusive procedures have been developed. These pro-
cedures construct the parametric solution of a parametric problem from a number of
high-�delity solutions performed o�ine. These solutions can be computationally ex-
pensive, as di�erent choices of the model parameters are used to constitute the design
of experiments (DoE).

There are various techniques to approximate solutions to parametric problems, in-
cluding standard polynomial approximations on sparsely sampled domains. However,
caution must be taken when using these methods. Orthogonal polynomial bases with
Gauss-Lobatto points as the Design of Experiments (DoE) can produce very accurate
approximations, but the number of samples required increases exponentially with the
number of dimensions and polynomial degree. Using randomly sampled DoE or an
overly complex approximation can result in over�tting. To avoid this, one option is to
use a basis that avoids these spurious oscillations, such as kriging approximations [130],
or to restrict the polynomial approximation to a low degree.

Another approach is to use Proper Orthogonal Decomposition with Interpolation

27
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(PODI) [56, 57], where usual regressions are used to express the dependence of the
modal coe�cients on the parameters. Sparse Subspace Learning (SSL) [123] inter-
polates pre-computed solutions related to the DoE over the entire parametric space
using a hierarchical approximation basis, which ensures the separated representation
of the interpolated parametric solution. However, the volume of data required for SSL
increases exponentially with the number of parameters involved, and the use of higher
degree approximations with very little data increases the risk of over�tting.

To address this issue, a sparse PGD (sPGD) [58] was proposed, which uses a sparse
sampling and adaptive approximation bases to limit over-oscillating behaviors. The
sPGD is a nonlinear regression that uses the separation of variables, making it useful
for multi-parametric settings. The Modal Adaptive Strategy (MAS) is used by the
authors in [58] to keep the degree of the approximation basis to a minimum for the
�rst PGD modes and increase it progressively for higher level modes. Other choices
of the approximation bases, such as kriging, can also be used to limit over�tting. This
method is described in 1.1.4.

Besides, Model Order Reduction often focuses on the prediction of temporal, spatial
or spatio-temporal responses, which could be a lot more complex than scalar quan-
tities of interest and which are often unsuited to "point by point" interpolation or
interpolation in a Euclidean space. A classical example of such an issue in the context
of MOR is the Kolmogorov barrier [131�133], a phenomenon related to the slow decay
of the Kolmogorov n-width [134,135] in advection-dominated problems, which greatly
reduces the e�ciency of classical MOR techniques.

Valuable strategies to circumvent these di�culties often rely on curve alignment oper-
ations [136,137] or registration methods [138,139] which act as a sort of pre-processing
step on the data to map the solution to a reference domain where the computations
are performed.

This chapter is divided into four sections which explore and attempt to give solu-
tions to the aformentioned challenges. First, the use of separated representations in
MOR is combined with regularization methodologies [140] to enhance the power of
expression of the technique while reducing the potential over�tting. Subsequently, the
ANOVA-PGD is presented, a novel strategy which makes use of the so-called ANOVA
decomposition [15] to enable the representation of complex parametric behaviors in
MOR. Afterwards, the prediction of curves and temporal responses is tackled through
the use of feature alignment and an adapted representation of the data. Lastly, chal-
lenges related to advection and localization of features in two or three dimensions are
dealt with through the use of Optimal Transport [16].

2.1 Regularization of separated representations

Regressions are widely utilized in the �eld of arti�cial intelligence in general, and
speci�cally in supervised scienti�c machine learning [61, 62, 86] and the development
of cognitive or hybrid digital twins [141�143], as well as in neuroscience. Regression
serves as a crucial component in automatically constructing models that represent
the physical reality around us, which is essential for enabling arti�cial intelligence to
operate in the physical world [144,145].

When implementing regression with limited data, the main challenge that arises is
dealing with nonlinearities in multi-parametric settings. This leads to the curse of
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dimensionality, where the number of degrees of freedom or sampling points required in
the parametric space increases exponentially in order to achieve accurate results [146].

When constructing models, it is always preferable to keep them as simple as possible.
In other words, it is better to have parsimonious models rather than complex ones.
This principle, known as Occam's razor [61, 62], suggests that simpler explanations
should be favored when explaining any physical phenomenon among the available
options. In the literature, this is achieved by promoting sparsity in regression [62,
63]. To obtain parsimonious models that address sparsity, it is bene�cial to perform
regression by combining L2 and L1 norm regularization.

The objective of this section is to propose regression methodologies that are robust,
general, e�cient, and accurate, speci�cally designed for separated representation set-
tings. To achieve this goal, two techniques are presented and analyzed. The �rst
technique is called rs-PGD, and is based on an Elastic Net regularized formulation
combining Ridge (L2 norm regularization) and Lasso (L1 norm regularization) regres-
sions. The rs-PGD technique unites these regularizations with a rich approximation
basis, and ensures speci�c solutions with smaller coe�cients to prevent over�tting.

Subsequently, the section introduces the s2-PGD technique, which is a doubly sparse
regression method. This technique utilizes Lasso regularization which enforces the
sparsest possible solution by selecting the most signi�cant contributors in each di-
mension to the solution approximation.

Numerical experiments are then provided to show the performance of these two meth-
ods compared to the regular sPGD algorithm.

2.1.1 rs-PGD

For the sake of simplicity of representation but without loss of generality, let us con-
tinue by assuming that the unknown sought function u is scalar-valued,

u(p1, . . . , pd) : D ⊂ Rd → R,

and that it is to be recovered from scarce data.

The goal is therefore to �nd a function ũM which minimizes the distance to the function
to be recovered:

ũM = argmin
u∗

ns∑
i=1

|u(pi)− u∗(pi)|22,

and that takes the separated form

ũM (p1, . . . , pd) =
M∑

m=1

d∏
k=1

ψk
m(pk) =

M∑
m=1

d∏
k=1

(Nk
m)Takm, (2.1.1)

where ns is the number of sampling points employed to train the model (training set).
Here, the superscriptM is employed to highlight the rank of the sought function. How
to determine the precise value of M will be detailed hereafter.

In the PGD framework, an greedy enrichment algorithm combined with iterative
scheme based on an alternating direction strategy is usually used to solve the re-
sulting non-linear problem. At enrichment step m, this strategy initializes randomly
all the akm, and then proceeds to update them iteratively. At iteration l of the alter-
nating direction strategy, alm is updated by �xing all the akm for k ̸= l and minimizing
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the residual. The iterations proceed until reaching a �xed point according to a user-
speci�ed tolerance.

The following matrix equations de�ne the systems needed to be solved to perform
these updates:

Mla
l
m = r, (2.1.2)

where:

r =

 u(p1)− ũm−1(p1)
...

u(pns)− ũm−1(pns)

,

Ml =



∏
k ̸=l

(
Nk

m(pk1)
)T
akm

(
N l

m(pl1)
)T

...∏
k ̸=l

(
Nk

m(pkns
)
)T
akm

(
N l

m(plns
)
)T


In the context of sPGD, Eq.(2.1.2) is solved in the Ordinary Least Squares (OLS)
setting:

alm = (MT
l Ml)

−1Mlr, (2.1.3)

The rs-PGD is based on putting a penalty term when solving (2.1.2) in order to reduce
over�tting.

It is important to recognize that in the sPGD context, the problem of over�tting
can easily arise when employing high-order approximations, which are exacerbated by
separated representations. This is primarily due to the typical usage of unstructured
low data during the model training process. Over�tting signi�cantly hampers the
model's performance when faced with new and unseen datasets. Hence, the concept
of utilizing a penalty term aims at enhancing the model's capability to perform well
on new samples, even if it results in an increase in bias or error within the training
set for a speci�c set of basis functions.

Di�erent regularizations can be chosen depending on the properties of the problem
such as the Tikhonov regularization [147] or the Elastic Net regularization [148,149].

In this work, the Elastic Net is employed, including in one of its extreme forms, the
Ridge regularization (which is also a special case of Tikhonov regularization) and
which is here presented in the �rst place.

For this purpose, Eq.(2.1.3) is rewritten:

alm = (MT
l Ml − λI)−1Mlr, (2.1.4)

where λ is the penalty factor and I is the identity matrix. In this case, all the
dimensions are equally penalized but di�erent penalty factors could be considered
depending on the considered dimension.

The regularized problems associated to Eq.(2.1.4) is:

alm = argmin
a∗

{
∥r −Mla

∗∥22 + λ∥a∗∥22
}
, (2.1.5)

where the problem is divided in solving a ridge regression problem for each dimension
when computing alm during the alternating direction �xed point strategy.
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While a null intercept term is assumed in the deduction of equations (2.1.4) and (2.1.5)
it could easily be includedand treated as in standard ridge procedures when solving
the corresponding linear regularized regression problem for each dimension during the
alternating direction strategy.

Since one is generally looking for the mode with best predictive abilities in each
enrichment, the proposed criterion to choose λ is to perform a k-fold cross-validation
[150,151] and select the value of λ that minimizes the cross-validated sum of squared
residuals (or some other measure). It is also possible to use the �one-standard error�
rule (heuristic) with cross-validation, in which the chosen model is the most penalized
model which has an error that is no more than one standard error above the error of
the best model. Such a rule acknowledges the fact that the tradeo� curve is estimated
with error, and hence takes a conservative approach [152].

As the terminology used in this section shows, a regularization problem is formulated
at each enrichment step. Thus, the best penalty factor is obtained at each updating
stage, adapting the regularization whenever the approach is enriched. Other options
have been investigated but numerical experiments suggest that this option is the most
promising one.

If enough data is available, the split of the training set in two subgroups is equally a
reasonable option to select λ and in addition, computationally less demanding. In this
case, one subgroup is employed to construct the model and the other one to evaluate
the predictive ability and then to select λ accordingly.

The Elastic Net regularization is obtained by adding an additional L1-norm regular-
ization, from which Eq.2.1.5) becomes:

alm = argmin
a∗

{
∥r −Mla

∗∥22 + αλ2∥a∗∥22 + (1− α)λ1∥a∗∥1
}
, (2.1.6)

where α ∈ [0, 1] and λ2 and λ1 are the penalty coe�cients that a�ect the L2 and
L1 norm penalization terms respectively. Once again, these coe�cients could also be
di�erent for the di�erent dimensions. The limit cases α = 0 and α = 1 result in the
Ridge and Lasso regressions respectively.

2.1.2 s2-PGD

For the sake of simplicity of representation but without loss of generality, let us con-
tinue by assuming the same scalar unknown function discussed in section 2.1.1.

In this case, the sought solution admits a sparse solution for a certain basis using the
PGD separated form. The goal is therefore to identify the correct non-zero coe�-
cients at each enrichment step in order to guide the approach to the correct separated
representation.

Without a roadmap to select these nonzero coe�cients, the traditional sPGD fails to
capture the true relationship between the model's features as well as its �nal response.
Furthermore, if high-order terms appear in the searched function, this issues become
even worse leading to serious over�tting issues.

Let us consider the theory discussed in the previous section but now considering the
L1 regularization with the aim of promoting sparsity in the coe�cients of the solution.

The L1 regularization is convenient because the nonlinear problem can be solved using
the PGD constructor, with an alternating direction �xed point strategy, where just a
LASSO regression problem is considered in each dimension.
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Therefore, the regression problems for the iterative scheme will be:

alm = argmina∗
{
∥r −Mla

∗∥22 + λ∥a∗∥21
}
, (2.1.7)

that consists in solving a LASSO regression problem for each dimension when com-
puting alm within the alternate direction �xed point strategy. Moreover, as previously
discussed, in the present case again, all the dimensions are equally penalized but
di�erent penalty factors could be used.

As the LASSO problem are iteratively solved in each dimension, each one-dimensional
function has a sparse representation with respect to its base choosing the right penalty
factor. Again, a null intercept term is assumed in the formulation, but the penalty
term could be non zero in a more general setting.

In the case of looking for sparsity only in some of the dimensions, Eq.(2.1.7) only
applies in the computation of the considered dimensions, whereas the other dimensions
are treated by invoking the standard sPGD or its ridge regularization counterpart, rs-
PGD, addressed in the previous section.

To determine λ, the discussion of the previous section still applies. However, the
following considerations can also be applied in the case of the s2-PGD:

� Before selecting a model according to the predictive criterion, a �lter is consid-
ered taking only the models with a minimum sparsity criterion ∥a⃗lm∥0 ≤ χlim

for the dimensions in which the sparsity is desired. Note: ∥ • ∥0 is de�ned by
∥x∥0 = #{k : xk ̸= 0} and is refered to as "L0 norm", although it is actually
not a norm.

� Once model selection is performed, the OLS methodology is employed with the
detected non-zero elements to obtain the correct update. The reason of this step
is that LASSO regression terms are in general not accurate, and so it may be
necessary to de-bias the obtained values. This is because the LASSO shrinkage
causes the estimates of the non-zero coe�cients to be biased towards zero and
in general they are not consistent [152,153].

2.1.3 Numerical experiments

This section presents the results obtained from employing the aforementioned tech-
niques in various scenarios. Initially, the reduction in error is demonstrated by com-
paring the rs-PGD approach with the classical procedure (sPGD). Then, the identi�-
cation of sparsity and error reduction is showcased by contrasting the s2-PGD method
with the standard sparse procedure (sPGD).

Results for the rs-PGD approach

The following examples consider the utilization of Elastic Net Regularization. To
accomplish this, the parameter α that cotronls the relative importance between Ridge
and Lasso regression is employed. α is determined by executing the algorithm multiple
times with various α values, and subsequently selecting the value that yields superior
predictive performance.
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In the �rst example, the method is applied to try to approximate the �ve-dimensional
function

f(x1, x2, x3, x4, x5) = (8x31−6x1−0.5x2)
2+(4x33−3x3−0.25x4)

2+0.1(2x25−1). (2.1.8)

The objective is to reconstruct the aforementioned function within the domain D =
[−0.51, 0.51]5. The training set consists of 160 points, and thus, only these points are
utilized to construct the model using either the sPGD or the rs-PGD methodology.
The Latin hypercube sampling (LHS) technique is employed to generate this set of
data.

In contrast, a testing set comprising 54000 untrained points is considered to compare
the results between the techniques when predicting unseen scenarios. This second
set enables the evaluation of the predictive capability of both models once they are
constructed.

Concerning the sPGD, a standard MAS is employed, reaching 4th degree polynomials.
To measure the error of both methodologies in the testing set, the following error
criterion is used:

errpgd =
∥f − fpgd∥2

∥f∥2
; errrpgd =

∥f − frpgd∥2
∥f∥2

where f is the vector containing the values of f(x1, x2, x3, x4, x5) in the testing set,
fpgd and frpgd are the vectors containing the prediction in the testing set of both
methodologies (sPGD and rs-PGD, respectively).

After employing the discussed techniques in the above conditions, in this example the
error is reduced by 52.38 % using the rs-PGD with α = 0.1.

To perceive the improvements and the over�tting reduction, Figure 2.1 shows a plot
of the original function f(x1, x2, x3 = 0, x4 = 0, x5 = 0.7071). It can be noticed that
the rs-PGD corrects the shape of the function in the indicated areas in Fig. 2.1,
improving the performance of the regression.

This improvement occurs over the whole �ve-dimensional domain. Another part
of the domain is shown in Figure 2.2 that depicts f(x1, x2, x3 = −0.17069, x4 =
−0.17069, x5 = −0.015517).

Figure 2.1: Comparing the reference Eq.2.1.8 and its associated sPGD and rs-PGD regres-
sions, at points (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071)
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Figure 2.2: Comparing the reference Eq.2.1.8 and its associated sPGD and rs-PGD regres-
sions, at points (x1, x2, x3 = −0.17069, x4 = −0.17069, x5 = −0.015517)

As a second example, the following function is considered:

f(x1, x2, x3, x4, x5) = cos(x1x2)
[(

sin(2x3)− 3.14
)
log(3x4 + 1.5) cos(x5)

+ exp(x4) cosh(x3) sinh(x5)
]
,

(2.1.9)

by using the rs-PGD with polynomials. The above function is intended to be recon-
structed in the domain D = [−1, 1]5.

In this particular scenario, the training set is comprised of 200 points. Consequently,
only these points are utilized to train the model, employing either the sPGD or the
rs-PGD methodology. The Latin hypercube sampling method is employed to generate
this speci�c dataset.

Additionally, a testing set consisting of 2000 untrained points is available to facilitate
a comparison of the results when predicting unseen scenarios.

Concerning the sPGD, again a standard MAS is used up-to fourth-degree polynomials.
An error reduction of about 47% is accomplished with α = 0.5.

Results for the s2-PGD approach

In the �rst numerical example for s2-PGD, the considered function is:

f(x1, x2, x3) = (sin(2x1)− 3.14)T5(x2) + exp(x3) cosh(x1), (2.1.10)

by using a Chebyshev basis for the one-dimensional functions of the PGD. The above
function is intended to be reconstructed in the domain D = [−1, 1]3.

Furthermore, the training set is sampled using a sparse grid based on the Smolyak
quadrature rule [83, 154] with a level 3, employing the Clenshaw-Curtis univariate
quadrature rule. Consequently, only these points are used for constructing the model,
employing either the sPGD or the s2-PGD methodology. Figure 2.3 illustrates the
mesh utilized for the training set.

On the other hand, a testing set consisting of 27000 untrained points is available
to compare the results between techniques when predicting unseen scenarios. This
second set enables the evaluation of the predictive ability of both models once they
are constructed.

In this example, the conditions for employing the s2-PGD are as follows: a basis
that encompasses eighth-degree polynomials is selected for the sparse dimensions.
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Additionally, a standard MAS-based s-PGD is employed, utilizing fourth-degree poly-
nomials along the non-sparse dimensions. To detect sparsity, three simulations of
the s2-PGD are conducted, penalizing a di�erent dimension at each iteration. Conse-
quently, the model with the best predictive ability (outside the training set) is selected.
As anticipated, the chosen model corresponds to the one obtained when penalizing
the x2 dimension.

Figure 2.4 presents the outcomes obtained from the standard sPGD methodology.
In this case, it is evident that the predictions are poor, as this methodology fails to
identify the desired sparse solutions. This is one of the challenges faced by the sPGD
approach, which s2-PGD aim to address.

Moreover, upon observing the sPGD solution, it is apparent that all possible elements
are non-zero, indicating a failure in identifying sparsity.

Figure 2.5 showcases the results of the s2-PGD methodology. As observed, the pre-
dictions are nearly perfect. Upon examining the solution, it becomes apparent that
the model correctly identi�es four modes, representing four sums of the PGD decom-
position.

Figure 2.3: Plot of the original function and the training set (circles) used to construct the
PGD models.

As a second test case, the approximation of the following function is tackled:

f(x1, x2, x3, x4, x5) =
[
T5(x1) + 2T1(x1)

][
T2(x2) + 2T4(x2)

][(
sin(2x3)− 3.14

)
log(3x4 + 1.5) cos(x5)

+ exp(x4) cosh(x3) sinh(x5)
] (2.1.11)

by using a Chebyshev approximation basis for the one-dimensional functions involved
in the PGD constructor.

The objective is to reconstruct the given function within the domain D = [−1, 1]5. The
sampling for the training set contains 200 points. In addition, the Latin hypercube
sampling is used to generate this random set of data.

The training set comprises 290 points, and the Latin hypercube sampling is utilized
to generate this randomized dataset. Additionally, a testing set consisting of 2000
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Figure 2.4: Problem de�ned in Eq.(2.1.10): Comparison of predicted sPGD values with the
reference ones in the testing set (the black line represents a perfect prediction)

untrained points is available to compare the results between techniques when predict-
ing unseen scenarios. As with previous examples, this second set will be employed to
evaluate the predictive ability of both models once they are constructed.

Regarding the s2-PGD methodology, a basis consisting of sixth-degree polynomials
is chosen for the sparse dimensions. Moreover, a standard MAS (Model-Adapted
Sparse) approach is utilized, employing up to fourth-degree polynomials in the non-
sparse dimensions.

Figure 2.6 illustrates the outcomes obtained from the standard sPGD methodology.
In this case, the predictions are unsatisfactory due to the incorrect identi�cation of
non-zero elements in the separated representation, leading to over�tting issues.

To identify sparsity, �ve separate simulations of the s2-PGD are conducted, penalizing
one dimension at a time. Consequently, the model with the best predictive ability
(outside the training set) is selected. As expected, the chosen model corresponds to
the one obtained when penalizing the x1 dimension. This choice is made because it
correctly identi�es the non-zero terms for x1 and x2 when penalizing x1 alone.

Figure 2.7 presents the results of the s2-PGD methodology, showcasing excellent agree-
ment between the real function and the proposed approach. Upon examining the
s2-PGD solution, it becomes apparent that the model has accurately identi�ed the
non-zero elements. Additionally, this PGD solution requires 104 modes, representing
104 sums of the PGD decomposition, which can be further compressed by invoking
the PGD again [129].

Finally, the errors for the sPGD and s2-PGD solutions are reported as errpgd = 46.39%
and errs2pgd = 2.4% respectively.
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Figure 2.5: Problem de�ned in Eq.(2.1.10): Comparison of predicted s2-PGD values with
the reference ones in the testing set (the black line represents a perfect predic-
tion)

Figure 2.6: Problem de�ned in Eq. (2.1.11): Comparison of predicted sPGD values with the
reference ones in the testing set (the black line represents a perfect prediction)
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Figure 2.7: Problem de�ned in Eq. (2.1.11): Comparison of predicted s2-PGD values with
the reference ones in the testing set (the black line represents a perfect predic-
tion)

2.2 ANOVA-PGD: A novel strategy

In section 2.1, it has been shown that applying regularization techniques to the sPGD
is an appealing route to improve its prediction capabilities when dealing with di�cult
regression problems. However, the work�ow thus created introduces new challenges
and questions which should be investigated. For instance, in the context of s2-PGD,
the algorithm is looking to �nd a solution that has a sparse representation in the
basis used to build the one-dimensional functions, therefore the choice of the basis
becomes an important matter. Unlike in sPGD, where only the mathematical space
spanned by the basis is important, in s2-PGD, choosing the right basis functions has
a substantial impact on the quality of the solution. Furthermore, the PGD-based
regression methodologies are all employing sparse design of experiments and no work
has been performed to try to make use of a smart sampling technique. Although this is
convenient when working with randomly generated datasets or constrained samplings,
the idea of trying to make the most of the sampling method is unexploited potential.
These two remarks motivate the development of a new PGD-based regression or non-
intrusive Model Order Reduction technique : the so-called ANOVA-PGD. This novel
method enhances the techniques presented in sections 1.1.4 and 2.1 by combining
them with a strategy based on the anchored ANOVA decomposition. It employs
a hierarchical orthogonal basis associated to an adequate sampling, which has the
particularity of scaling linearly with the number of parameters involved in the problem.
This section is divided in three parts. To begin with, the ANOVA decomposition
[64�66] and its low-cost approximation, the anchored ANOVA decomposition [67�69],
are introduced. Then, two versions of the ANOVA-PGD strategy are presented, the
�rst one for the prediction of scalar qunatity of interests and the second one for
vector and full-�eld outputs in the context of non-intrusive MOR. Finally, numerical
experiments are performed to examine the performance of this method compared to
other Machine Learning and non-intrusive MOR methods.
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2.2.1 ANOVA decomposition and anchored ANOVA

The ANOVA decomposition of a function u(p1, . . . , pd) : D = D1×· · ·×Dd ⊂ Rd → R,
where the Dk are intervals of R, is an orthogonal decomposition based on the analysis
of variance [14,15], a statistical model designed for data analysis. Thus, the function
u(p) can be written as a sum of orthogonal functions:

u(p) = u0 +
d∑

k=1

uk(p
k) +

d∑
k1=1

d∑
k2=k1+1

uk1,k2(p
k1 , pk2) + · · ·+ u1,2,...d(p

1, p2, . . . , pd),

(2.2.1)
verifying

Ek(uk1,...,kb(p
k1 , . . . , pkb)) = 0, (2.2.2)

where Ek refers to the expectation with respect to any coordinate k in the set
(k1, . . . , kb), 1 ≤ b ≤ d. This property results in the orthogonality of functions involved
in the previous decomposition.

To prove it, consider for example a simple 2D case with, p = (p1, p2), u(p) = u(p1, p2).
Thus, with E1(u1(p

1)) = 0, E1(u1,2(p
1, p2)) = 0 and E2(u1,2(p

1, p2)) = 0, it results
E1,2(u1,2(p

1, p2)u1(p
1)) = E1[E2(u1,2(p

1, p2)) u1(p
1)] = 0.

The number of functions involved in this decomposition (without considering the
constant term) is 2d−1, and they can be parametrized by the integer n, n = 1, . . . , 2d−
1. The di�erent functions involved in the ANOVA decomposition are linked to the
conditional expectations according to:

E(u) = u0
E(u|pk) = uk(p

k) + u0
E(u|pk, pl) = uk,l(p

k, pl) + uk(p
k) + ul(p

l) + u0
...

(2.2.3)

hence the functions involved in the ANOVA decomposition can be expressed from the
expectations in the following manner:

u0 = E(u)
uk(p

k) = E(u|pk)− u0
uk,l(p

k, pl) = E(u|pk, pl)− uk(p
k)− ul(p

l)− u0
...

(2.2.4)

where E(u|pk, pl) refers to the integration with respect to all the variables except pk

and pl.

Variance-based sensitivity analysis

The variance of u, Var(u), taking into account the orthogonality of the functions
involved in the ANOVA decomposition, reads

Var(u) =
2d−1∑
n=1

E
(
u2n

)
=

2d−1∑
n=1

Var(un), (2.2.5)
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that allows de�ning the so-called Sobol sensitivity coe�cients Sn

Sn =
Var(un)

Var(u)
. (2.2.6)

These coe�cients allow to evaluate the relative importance of all the functions in
the decomposition and give a sense of the sensitivity of the function to each of its
parameters and to the interactions between any subset of the parameters.

By construction,
2d−1∑
n=1

Sn = 1. (2.2.7)

Anchored ANOVA

Computing all the terms in the ANOVA decomposition implies evaluating many inte-
grals in a high-dimensional spaces, which becomes extremely expensive whenever the
number of variables is higher than 2 or 3. To alleviate those costly computations, a
common approximation is performed by introducing the so-called anchor point c ∈ D
and evaluating all the expectations with the Dirac measure δc. As a conquence, com-
puting integrals is equivalent to particularizing the function in the anchor point, except
for the coordinates which are not integrated upon. For instance:

E(u) = u(c)
E(u|pk) = u(c1, c2, . . . , pk, . . . , cd)
...

(2.2.8)

The point c can be any point of the domain. It is typically chosen as the center of the
domain, but it is also very convenient to de�ne it as the nominal point of the problem
when it exists.

2.2.2 ANOVA-PGD

The principle of ANOVA-PGD is to combine the ANOVA decomposition with the
PGD-based techniques described in section 2.1. First, the standard anchored ANOVA
is used to evaluate the constant term and the one-dimensional functions depending
on each parameter uk(pk), k = 1, . . . , d, by using an adequate sampling, a sort of
multidimensional cross centered at the anchor point c. Since these problems are
one-dimensional, the sampling covers the space quite well, and interpolation methods
that fail in high-dimensional problems are well-suited here. Hence, for each parameter,
uk(p

k) can be approximated with piecewise polynomials, splines, or gaussian processes
[84, 155] for instance. Then, the residual is evaluated in sampling points which fall
outside of the multidimensional cross, and the sPGD, rs-PGD, or s2-PGD is applied
to that residual, which contains the di�erent interactions between the parameters. In
that case, an enhanced sparse-sampling can be considered, trying to sample as well
as possible the area near the borders of the parametric domain, since the center is
already well handled by the ANOVA terms.
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Design of experiments (DoE)

Since ANOVA-PGD requires calculating the expressions de�ned by the anchored
ANOVA, a speci�c design of experiments is needed. Indeed, the solution needs to
be evaluated in points which belong to a multidimensional cross Dc centered in c.
This cross is constructed from a set of one-dimensional domains Dk

c which are referred
to as branches in the following manner:

Dk
c =

{
p ∈ D,∀l ̸= k, pl = cl

}
(2.2.9)

and

Dc =
d⋃

k=1

Dk
c . (2.2.10)

The multidimensional cross is represented in Fig. 2.8.

Figure 2.8: Multidimensional cross and
its branches for d = 3

Figure 2.9: Example of a design of experiments
for d = 3

The design of experiments is then constructed by combining the anchor point, a sam-
pling of each branch and a Latin Hypercube Sampling. The combination of the an-
chor point and the samplings from all the branches, which is a discretization of Dc,
is referred to as the ANOVA sampling. The nk points which sample the branch re-
lated to parameter pk are written pk,j , j = 1, . . . , nk and are "sorted" such that
∀(j1, j2), j1 < j2 =⇒ pkk,j1 < pkk,j2 .

An example of such a design of experiments is shown in Fig. 2.9.

ANOVA-PGD for scalar quantities of interest

The ANOVA-PGD strategy is �rst detailed in its version aiming at predicting a scalar
quantity of interest u which depends on d variables:

u(p1, . . . , pd) : D ⊂ Rd → R.

It should be noted that the parametric space is required to be a hypercube: D =

×d
k=1Dk.

Data for u is �rst collected according to the design of experiments strategy described
above. The parameter values in the design of experiments are pi, i = 1, . . . , ns, among
which are the adequate pk,j and the anchor point, p0 = c.

The solution is searched in the form:
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ũ(p1, . . . , pd) = uANOVA(p
1, . . . , pd) + uPGD(p

1, . . . , pd)

uANOVA(p
1, . . . , pd) = u0 +

d∑
k=1

uk(p
k)

uPGD(p
1, . . . , pd) =

M∑
m=1

d∏
k=1

ψk
m(pk)

(2.2.11)

The di�erent functions are computed according to:

1. u0 is obtained from u(p0) = u(c).

2. Each function uk is constructed by setting uk(p
k
k,j) = u(pk,j) − u0 for j =

1, . . . , nk and interpolating between the points using a spline or a gaussian pro-
cess regression.

3. The residual is computed by removing the "ANOVA" term from all the available
data: ∀i = 1, . . . , ns, ri = u(pi) − uANOVA(pi). It can be noted that ∀i =
1, . . . , ns,pi ∈ Dc =⇒ ri = 0.

4. The function uPGD is then obtained using a method described in 2.1 to predict
the residual r.

Once these steps are completed, ũ can be evaluated for any p ∈ D to approximate u.

ANOVA-PGD for vector and full-field outputs

The function of interest is again a function de�ned in a hypercube of dimension d, the
only di�erence being that it is now vector-valued.

u(p1, . . . , pd) : D ⊂ Rd → RN .

The same design of experiments is built and data is collected accordingly. The solution
now takes the form:

ũ(p1, . . . , pd) = uANOVA(p
1, . . . , pd) + uPGD(p

1, . . . , pd)

uANOVA(p
1, . . . , pd) = u0 +

d∑
k=1

uk(p
k)

uPGD(p
1, . . . , pd) =

M∑
m=1

ϕm

d∏
k=1

ψk
m(pk)

(2.2.12)

The work�ow to construct the di�erent functions is similar to the one introduced
above, but adapted to the vector form of the solution. Moreover, two additional
changes take into account some considerations which appear when dealing with vector
outputs:

� the problem may be more complex than for a scalar output because of the
presence of features in the vectors, which calls for caution: a selection criterion
is introduced to decide whether or not the di�erent terms de�ned in the ANOVA
decomposition are relevant to predict the output;
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� the increased volume of data available allows to extract information which should
improve the performance of the algorithm: the one-dimensional setting empow-
ered by the design of experiments yields N one-dimensional functions of each
parameter, from which an adequate basis can be extracted and then used for
the PGD method.

The construction of the functions thus follows the following steps:

1. u0 is obtained from u(p0) = u(c).

2. One-dimensional functions ûk are constructed by setting ûk(p
k
k,j) = u(pk,j)−u0

for j = 1, . . . , nk and interpolating between the points using a spline or a gaussian
process regression.

3. uk is constructed by checking whether it has a relevant role in the prediction of
the output:

uk =

 ûk if
ns∑
i=1

∥∥∥u(pi)− ûk(p
k
i )
∥∥∥ ≤

ns∑
i=1

∥u(pi)∥

0 otherwise.

(2.2.13)

4. The residual is computed by removing the "ANOVA" term from all the available
data: ∀i = 1, . . . , ns, ri = u(pi) − uANOVA(pi). It can be noted that ∀i =
1, . . . , ns,pi ∈ Dc =⇒ ri = 0.

5. For each k = 1, . . . , d, the snapshot matrix Uk ∈ RN×nk is built by collecting
the snapshots u(pk,j) for j = 1, . . . , nk. The Singular Value Decomposition
is performed as described in 1.1.1. The Dk right singular vectors (columns of
matrix R) which correspond to the largest singular values are extracted. The
number of vectorsDk is chosen according to an "energy" criterion on the singular
values, as usual in POD. These vectors are interpolated in Dk in a similar fashion
as the one-dimensional functions of the ANOVA decomposition, and form the
basis Nk

m as presented in 1.1.4. Index m in Nk
m refers to the fact that, when

using the Modal Adaptivity Strategy, some of the basis functions are set to 0 in
early iterations.

6. The function uPGD is then obtained using a method described in 2.1 to predict
the residual r using the one-dimensional function bases Nk

m obtained in the
previous step.

Using a basis extracted from the data in the PGD-based regression improves signif-
icantly the performance of the method when the searched functions can not be well
described with a polynomial representation. A very usual example of this is when one
of the parameters is a physical angle in the system; its associated responses are usually
periodic functions that are very poorly decscribed with low-dimensional polynomials,
especially if they are high-frequency functions. This behavior can be successfully ex-
tracted using the strategy detailed above, under the condition that enough points are
used in the discretization of Dk

c . Therefore if a parameter pk is expected to yield rich
responses, its associated branch Dk

c should be sampled with a �ner discretization than
for the other parameters. For instance geometry parameters tend to require richer
functions than material properties such as conductivity, Young's modulus, ...
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2.2.3 Numerical experiments

This section presents a few examples which aim at testing the performance of a few
variants of the ANOVA-PGD algorithm, and comparing them with other regression
methods.

Simple example

For the �rst example, a very simple case aiming at showcasing the power of ANOVA-
based regression, a 2D function is considered:

f(x, y) = −2 cos(3x1.75) + 10 log(y − 0.6)4 + 6 cos(x)(y − 0.3y2), (2.2.14)

that perfectly �ts the ANOVA structure, because it contains complex terms which de-
pend on each coordinate independently, 2 cos(3x1.75) and 10 log(y−0.6)4 respectively,
and then a term which is less complex coupling both coordinates, 6 cos(x)(y− 0.3y2).

When considering the ANOVA-based sampling consisting of the center point of the
parametric domain acting as the anchor c = (xc, yc), 10 additional points on the �rst
branch (of the form (x, yc)) and 10 additional points on the second branch (of the form
(xc, y)), functions fx(x) and fy(y) are constructed using a cubic spline interpolation.
Then, a standard 2D nonlinear regression using basis functions of the form (x −
xc)

m(y − yc)
n, m, n ≥ 1 (due to the low dimensionality of the treated problem the

employ of separated representations is not needed) is employed to calculate the coupled
term fx,y(x, y) using 4 extra sample points.

The constructed solution is depicted in Fig. 2.10 where it is compared with the exact
solution as well as with the solution obtained by using the standard sPGD (with a
Latin Hypercube Sampling containing 25 points), while Figs. 2.12 and 2.11 compare
the predictions and the reference values. These results stress an excellent performance
of the ANOVA-based regression. Among other things, it can be noted that the ANOVA
is very helpful to capture the fast changing behavior near lower values of y due to the
presence of the logarithm.

Figure 2.10: Comparing sPGD and ANOVA-PGD regressions
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Figure 2.11: Problem de�ned in Eq. (2.2.14): Comparison of predicted sPGD values with
the reference ones in the testing set (the black line represents a perfect predic-
tion)

Figure 2.12: Problem de�ned in Eq. (2.2.14): Comparison of predicted ANOVA-PGD values
with the reference ones in the testing set (the black line represents a perfect
prediction)
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Scalar-values function of 100 parameters

In the second example, the ANOVA-PGD is tested on a much more complex problem.
The function of interest is f : D = [0, 1]d → R with d = 100 and it is de�ned by:

f(x) =
d∑

k=1

cos(ωc
kxk + ϕck) + sin(ωs

kxk + ϕsk)

+
d−1∑
k=1

cos(ωc
kxk + ϕck) sin(ω

s
k+1xk+1 + ϕsk+1)

2

(2.2.15)

where ωc
k, ω

s
k ∈ [0, 3π] and ϕck, ϕ

s
k ∈ [0, 2π] are chosen randomly.

The design of experiments is constructed by setting the center point as the anchor
point and by selecting 6 sample points on each branch (not including the anchor point).
A Latin Hypercube Sampling containing 399 points is used for the PGD term, which
is solved with the standard sPGD. The total number of samples is therefore 1000.

Figure 2.13: Problem de�ned in Eq. (2.2.15): Comparison of predicted SVR values with
the reference ones in the training and testing sets
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Figure 2.14: Problem de�ned in Eq. (2.2.15): Comparison of predicted Neural Network
values with the reference ones in the training and testing sets

Figure 2.15: Problem de�ned in Eq. (2.2.15): Comparison of predicted ANOVA-PGD values
with the reference ones in the training and testing sets

For comparison, the regression is also performed using a SVR with RBF kernel
[156�158] and a fully-connected neural network with 4 layers of 50 neurons and ELU
activation function [159].

The results obtained using these three methods are shown in Figs. 2.13, 2.14 and 2.15.
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Diameter [mm] Orientation [◦] Initial velocity [m · s−1] Mass [kg]
[20, 40] [0, 180] [0.5, 3] [10, 120]

Table 2.1: Parametric ranges

This problem can be considered to be extremely challenging because of the extreme
dimension of the parametric space combined with nonlinear functions, which is why
none of these methods produce results which are close to perfect. However, by ex-
ploiting the idea of dealing with each parameter one by one, the ANOVA strategy is
able to extract valuable information from the data and clearly outperforms the other
algorithms.

Cylindrical indentation testing of a lithium-ion cell

This example adresses the construction of a parametric surrogate model for the 3D
displacement �eld of a lithium-ion cell in a cylindrical indentation test. The cell and
impactor are illustrated in Fig. 2.16.

Figure 2.16: Cylindrical indentation test of a lithium-ion cell

The impactor which comes into contact with the cell is parametrized with four char-
acteristics: diameter, orientation, initial velocity and mass. The parameters and their
range of study are shown in table 2.1.

100 simulations are performed according to a design of experiments �tting the re-
quirements of ANOVA-PGD using the commercial software LS-DYNA. The model is
constructed using the version of ANOVA-PGD in the beta version of the software ESI
ADMORE, which was implemented during this thesis.

The results are shown in Fig. 2.17.

The model is able to predict quite well the solutions. However due to the localization
of the impact related to the orientation of the impactor, a bit of noise is present in
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the model. The next sections address this type of issue.

Figure 2.17: Comparison between the solutions (displacement norm in mm) obtained with
�nite elements using LS-DYNA (left) and the surrogate model (right)

2.3 Reduced Modelling of curves

In the context of parametric surrogates, several nontrivial issues arise when a whole
curve needs be predicted from given input features. For instance, di�erent sampling or
ending points lead to non-aligned curves. This also happens when the curves exhibit a
common pattern characterized by critical points at shifted locations (e.g., in mechan-
ics, the elastic-plastic transition or the rupture point for a material). In such cases,
classical interpolation methods fail to give physics-consistent results and appropriate
pre-processing steps are required. Moreover, when bifurcations occur into the para-
metric space, to enhance the accuracy of the surrogate, a coupling with clustering and
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classi�cation algorithms is needed. In this section, several methodologies are proposed
to overcome these issues. The surrogates thus created are then exploited to quantify
and propagate uncertainty, furnishing parametric stastistical bounds for the predicted
curves. The procedures are exempli�ed over problems in Computational Mechanics.

2.3.1 Data alignment and uncertainty propagation

This section presents the curve parameterization based on data alignment to obtain
an accurate physics-informed interpolation. The procedure is applied to an example
to study the mechanical response of parametric materials loaded in tension.

The problem considered is a parametric study over dog bone tensile test samples, as
sketched in Fig. 2.18. It aims at studying the in�uence of the 3 parameters (n,K, ε0)
characterizing the Krupkowski hardening law (also known as Swift hardening law),
widely used in FEM software

σ = K(ε+ ε0)
n,

linking True Strength and True Strain. ε denotes the e�ective plastic strain, ε0 the
o�set strain, n the strain hardening exponent and K the material constant.

Figure 2.18: Parametric dog bone specimen loaded in tension.

Fig. 2.19 shows two patterns of the Force-Displacement curve, obtained for two dif-
ferent choices of the Krupkowski parameters (blue and orange lines). A classical
"euclidian" interpolation of these two patterns would result in the non-physical black
dashed pattern.

Figure 2.19: Main issue encountered when using standard interpolations on non-aligned
curves (the black dashed line represents the interpolation between the two
colored lines).

In what follows, a procedure is proposed in order to overcome such spurious e�ects,
based on a curve alignment prior to interpolate. The method is illustrated over the
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K [MPa] n ε0
[400, 700] [0.1, 0.3] [0.5, 3] · 10−3

Table 2.2: Parametric ranges

Force-Displacement curves. However, for the sake of generality, such curves are re-
ferred to as generic functions g(x), presenting two characteristic behaviors in the
so-called primary and secondary zones. In the speci�c case of Force-Displacement,
the primary zone is the elastic response of the material, up to the yield point xE . The
secondary zone is the post yield behaviour up to the failure point xF , as illustrated
in Fig. 2.20. xE is referred to as the �transition point" and xF as the �end point",
related to the specimen fracture.

Figure 2.20: Behavior zones, transition and end points, for one function g(x).

It is assumed that the behaviors in the primary and secondary zone, g1(x) and g2(x)
respectively, and the transition and end points, xE and xF respectively, depend on a
series of parameters grouped in vector p, i.e. g1(x;p) ≡ g(x ∈ [0, xE ];p), g2(x;p) ≡
g(x ∈ [xE , xF ];p), xE(p) and xF (p). Indeed, when considering di�erent choices of the
model parameter pi = (Ki, ni, ε0,i), i = 1, . . . , ns, one obtains a set of curves, as the
ones shown in Fig. 2.21, for instance. Such curves correspond to a sparse DoE (Latin
Hypercube) of 20 points in the 3-dimensional parametric space D = IK × In × Iε0 ,
considering the parameters bounds speci�ed in Table 2.2. Numerical simulations have
been carried out with VPS simulation software from ESI Group. The variable x
corresponds to the displacement in mm, while the function g(x) to the force in kN.
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Figure 2.21: Curves g(x;pi) related to di�erent choices of the model features pi =
(Ki, ni, ε0,i), i = 1, . . . , ns.

Once the transition and end points of each curve have been determined, the curves can
be rediscretized over the same number of points (through a standard piecewise linear
interpolation, for instance). To align them, a dimensionless coordinate is de�ned in
each zone, y in the primary zone, x ∈ [0, xE ], and z in the secondary zone, x ∈ [xE , xF ],
de�ned through the change of variable

y =
x

xE
, y ∈ [0, 1] and x ∈ [0, xE ], (2.3.1)

and
z =

x− xE
xF − xE

, z ∈ [0, 1] and x ∈ [xE , xF ], (2.3.2)

expressions that hold for each curve g(x;pi), i = 1, . . . , ns, with

y =
x

xiE
, y ∈ [0, 1] and x ∈ [0, xiE ], (2.3.3)

and

z =
x− xiE
xiF − xiE

, z ∈ [0, 1] and x ∈ [xiE , x
i
F ]. (2.3.4)

Fig. 2.22 depicts functions g1i (y) ≡ g1(y;pi) and g2i (z) ≡ g2(z;pi).

Figure 2.22: Functions g1i (y) ≡ g1(y;pi) (left) and g2i (z) ≡ g2(z;pi) (right), for i =
1, . . . , ns.
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Actually, this procedure amounts at performing an alignment based on a dilatation
of the curves in the �rst and secondary zone, as shown in Fig. 2.23. In such case, we
can express the aligned curves as functions of x̃ ∈ [0, 2].

Figure 2.23: Functions g̃i(x̃), for i = 1, . . . , ns, obtained after dilatation.

Once the curves have been aligned, the nonlinear regressor presented in section 1.1.4
can be invoked to build the parametric metamodel of the curve. This can be done
separately in each zone or over the whole newly de�ned coordinate x̃. However, before
proceeding with the regression, an ulterior parametrization via the Proper Orthogonal
Decomposition is addressed to achieve a further Model Reduction.

2.3.2 POD modes extraction

In order to extract the most signi�cant modes able to describe these functions, the
POD can be applied in each group of curves in Fig. 2.22. This amounts to build
the snapshot matrix within each group and perform a truncated SVD. In the case
that serves here to illustrate the procedure, a single mode su�ces to describe the
almost linear functions in the primary zone, that will be noted by ξ1(y), whereas in
the secondary zone two functions are needed, ϕ1(z) and ϕ2(z).

Thus, any function g1i (y) can be expressed ∀i as

g1i (y) = αi
1ξ1(y), (2.3.5)

whereas functions g2i (z), ∀i, read

g2i (z) = βi1ϕ1(z) + βi2ϕ2(z). (2.3.6)

The α and β coe�cients can be easily computed by simple projection, i.e.∫ 1

0
g1i (y)ξ1(y) dy = αi

1, (2.3.7)

where the normality of ξ1(y) was used. In the same way, and taking into account the
orthonormality of functions ϕ1(z) and ϕ2(z),∫ 1

0
g2i (z)ϕ1(z) dz = βi1, (2.3.8)
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and ∫ 1

0
g2i (z)ϕ2(z) dz = βi2. (2.3.9)

Thus, for each curve gi(x) can be extracted its �ve main descriptors: xiE , x
i
F , α

i
1, β

i
1

and βi2, all of them related to the features grouped in vector pi.

Now, each of these descriptors can be expressed parametrically, xE(p), xF (p), α1(p),
β1(p) and β2(p), by using any regression technique. In this work, the regression used
is the sPGD as described in 1.1.4 in the special case of scalar output.

2.3.3 Curves reconstruction

When considering a choice of the parameters p, the curves descriptors are extracted
from the regressions xE(p), xF (p), α1(p), β1(p) and β2(p), the dimensionless coor-
dinates de�ning both zones are calculated from

y =
x

xE(p)
→ x = y xE(p), (2.3.10)

and

z =
x− xE(p)

xF (p)− xE(p)
→ x = xE(p) + z (xF (p)− xE(p)), (2.3.11)

and, �nally, the curve in each zone reconstructed according to

g1(y;p) = α1(p)ξ1(y), (2.3.12)

and

g2(z;p) = β1(p)ϕ1(z) + β2(p)ϕ2(z), (2.3.13)

from which the curve g(x;p) can be straightforward obtained via

g(x;p) =


α1(p)ξ1

(
x

xE(p)

)
, x ∈ [0, xE(p)]

β1(p)ϕ1

(
x− xE(p)

xF (p)− xE(p)

)
+ β2(p)ϕ2

(
x− xE(p)

xF (p)− xE(p)

)
, x ∈ [xE(p), xF (p)].

(2.3.14)

To build the parametric metamodel, 17 curves have been used to train the sPGD
regressor, while the remaining 3 for testing. Fig. 2.24 shows the resulting predictions
over 3 training points and test points.
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Figure 2.24: sPGD predictions (green line for training, red for testing) versus true curve
(blue line).

2.3.4 Real-time calibration

Now, given an experimental curve g(x), its parameters are extracted according to

� xE from the point at which the change of behavior occurs (for instance, com-
puting the function derivatives by means of �nite di�erences);

� xF is the terminal point;

� α1 follows from y = x
xE

and
∫ 1
0 g(y)ξ1(y) dy = α1;

� β1 follows from z = x−xE
xF−xE

and
∫ 1
0 g(z)ϕ1(z) dz = β1;

� β2 follows from z = x−xE
xF−xE

and
∫ 1
0 g(z)ϕ2(z) dz = β2.

Then, from the regression models xE(p), xF (p), x1(p), β1(p) and β2(p), the inverse
problem is solved to extract the associated parameters, p.

2.3.5 Statistical model derived by parametric curves

With the previously built surrogate model, the curve related to any possible value of
p can be computed in real-time, i.e. g(x;p). In this section, this surrogate will be
employed for uncertainty quanti�cation.

Each feature pk in vector p is assumed characterized by a Gaussian distribution de�ned
by its mean value µk and its variance σ2k, that is p

k ∼ N (µk, σ
2
k). Assuming all pk

being independent, we get

p ∼ N (µ,Σ), µ = (µk)
d
k=1, Σ = diag(σ), σ = (σ2k)

d
k=1,
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where diag(•) is the diagonal matrix of diagonal •.
The aim is to link the sensitivity over the input features with the one over the output
curve. This means computing some estimators of the average M and the variance Σ
of the curve descriptors for di�erent choices of µ and σ, and from them, by using the
sparse PGD presented in Subsection 1.1.4, build the set of statistical surrogates:{

Sg(x;p) : (µ,σ) →
(
M̄g(x;p), Σ̄g(x;p)

)
,

SO(p) : (µ,σ) →
(
M̄O(p), Σ̄O(p)

)
.

(2.3.15)

where O(p) denotes any quantity of interest (QoI) involved in the curves parametriza-
tion (i.e., an output depending on the input parameters; e.g., xE , xF , α1, β1 and β2 in
the example presented before) and M̄ and Σ̄ the corresponding estimators for mean
and variance, respectively. This allows calculating the envelopes, for a given con�-
dence, of the curves, as sketched in Fig. 2.25.

To build the surrogate (2.3.15), for instance for the curve descriptor O(p), a training
dataset of Ns points shall be generated:

{(µj ,σj), (M̄O(pj), Σ̄O(pj))}
Ns
j=1.

This can be achieved by means of a Monte Carlo sampling, which gives the estimators
of mean and variance for the curves g(x;pj(µj ,σj)), and of any descriptor O(pj), for
j = 1, . . . , Ns.

The whole procedure is summarized in Algorithm 1.

Figure 2.25: Sketch of curve envelopes.

Fig. 2.26 shows the parametric curve and its statistical sensing, for a given choice of
the input features distribution parameters. Con�dence Intervals have been computed
using Algorithm 1, for the curve and the rupture point.

2.3.6 Data alignment and data clustering

This section focuses on the study of crack propagation in notched specimens loaded in
tension, whose geometry is sketched in Fig. 2.27. The test piece has a V-shaped notch
defect which is always in the same location (bottom-middle). On the other side of the
test piece there is a half-circle groove. The goal is to predict the crack propagation
from the defect in di�erent con�gurations (di�erent location S and radius R of the
groove and test piece thickness h). Depending on the location of the groove, the crack
will propagate di�erently from the defect, sometimes towards the groove and in other
conditions straight towards the other side of the specimen.
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Algorithm 1 Statistical sensing based on parametric curves
Input:
1. fX(p), p = (p1, . . . , pd): curves regression model;
2. Ns: number of training points for the statistical surrogate model SO(p);
3. NMC: number of Monte Carlo sampling points.
Output:
(MO(p),ΣO(p)): regression model for mean and variance of curve descriptor O(p).

1: for j = 1, . . . , Ns do
2: Randomly sample (e.g., LHS) the model features means and variances

(µj ,σj), µj = (µj,k)
d
k=1, σj = (σ2j,k)

d
k=1.

3: Perform a Monte Carlo sampling of the curves statistical descriptor O(p):
4: 1. generate a population of NMC vectors of features pj = (pkj )

d
k=1, by sampling

NMC points from
pkj ∼ N (µj,k, σ

2
j,k), k = 1, . . . , d;

5: 2. generate the population of the corresponding NMC curves (and of any QoI
involved in their parametrization), by using the curves surrogate fX(p), that
is,

g(x;pj,l),O(pj,l) = fX(pj,l), l = 1, . . . , NMC;

6: 3. compute the population mean and variance to obtain the corresponding
Monte Carlo estimators for the curve g(x;pj) and its descriptor O(pj):

(M̄g(x;pj), Σ̄g(x;pj)), (M̄O(pj), Σ̄O(pj)).

7: end for
8: Using the previously built population {(M̄O(pj), Σ̄O(pj))}

Ns
j=1, train a regression

model for the statistical sensing of O(p) involved in the curve parametrization:

SO(p) : (µ,σ) →
(
M̄O(p), Σ̄O(p)

)
.

Same procedure holds for the whole curve g(x;p).
9: Given a new couple (µ∗,σ∗) of model features means and variances, corresponding

to the features p∗, one can obtain a Con�dence Interval �CI� at a given con�dence
level for the output. For instance, at level 0.95, one can build a CI for the curve
g(x;p∗):

g(x;p∗) ∈
[
M̄g(x;p∗) − 2

√
Σ̄g(x;p∗), M̄g(x;p∗) + 2

√
Σ̄g(x;p∗)

]
.
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Figure 2.26: Con�dence Interval of level 0.95 for the parametric Force-Displacement curve
and for the rupture point, for a given choice of µ and σ.

R [mm] S [mm] h [mm]
[3, 8] [0, 25] [0.8, 1.6]

Table 2.3: Parametric ranges.

Figure 2.27: Parametric notched dog bone specimen loaded in tension (top and side views).

The design of experiments used in this study is a Latin Hypercube of 50 points in
the 3-dimensional parametric space D = IR × IS × Ih, with the parameter bounds
speci�ed in Table 2.3. Numerical simulations (carried out in VPS software from ESI
Group) employ an Explicit Analysis and the EWK rupture model [160], using a mesh
of 1096218 solid elements.

The focus is placed on the prediction of the Force-Displacement curves plotted in Fig.
2.28, which are considered as the generic functions g(x), following the same notation
as in section 2.3.1.

It can be observed that all the curves present a similar pattern in the �rst zone,
monotonically increasing, while the response appears much di�erent in the secondary
zone. A �rst pre-processing step consists in splitting the zones as illustrated in Fig.
2.29, where xM denotes the point where the curve reaches its maximum value, while
xF is its endpoint.

Cutting the curves yields the two groups of functions plotted in Fig. 2.30, which are of
course not aligned. However, they can be expressed as functions of normalized coor-
dinates y and z, respectively, and aligned following the dilatation procedure discussed
in section 2.3.1.
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Figure 2.28: Curves gi(x) = g(x;pi) related to di�erent choices of the model features pi =
(Ri, Si, hi), i = 1, . . . , ns.

Figure 2.29: Behavior zones, transition and end points, for one function g(x).

Figure 2.30: Functions g1i (x) ≡ g1(x;pi) (left) and g2i (x) ≡ g2(x;pi) (right), with pi =
(Ri, Si, hi), for i = 1, . . . , ns.

Once the alignment has been performed, using the usual nonlinear regression tech-
niques and same notations as in section 2.3.1, two regression models, one for each



60 2.3 Reduced Modelling of curves

group, can be established:

{
g1(x;p) := g(x ∈ [0, xM (p)]) = fX1 (p)

g2(x;p) := g(x ∈ (xM (p), xF (p)]) = fX2 (p).
(2.3.16)

In Eq. (2.3.16), for the sake of clarity, xM and xF are speci�ed since these points are
involved into the parametrization of the functions g1(x) and g2(x), respectively, and
thus expressed parametrically.

As previously pointed out, the second group of functions g2i (x), for i = 1, . . . , ns,
presents really di�erent shapes depending on the features pi. When bifurcations occur
in the parametric space, the system responses related to two choices of the model
parameters can be completely di�erent. In such cases, a standard nonlinear regression
over the full space can lead to inaccurate and nonphysical solutions. To enhance
the accuracy of the model fX2 (p), a more valuable route consists in exploring the
parametric space prior to interpolation. This can be done via a clustering of the
system responses. Once the clusters have been established, several regression sub-
models can be built, minimizing the risk of mixing spurious e�ects coming from other
clusters.

2.3.7 Clustering

To exemplify the bifurcation problem in the parametric space, two di�erent con�gu-
rations of the model parameters are considered, resulting into the specimens shown in
Fig. 2.31.

Figure 2.31: Two di�erent parameters con�gurations. Top: R = 7.59, S = 18.23, h = 0.84;
bottom: R = 3.75, S = 5.58, h = 1.51 (all dimensions are provided in mm).
The red zone is the part subject to rigid body constraints.

Fig. 2.32 shows four snapshots of the displacement �eld related to the specimens in
Fig. 2.31, under axial tensile loading. The crack propagation follows two completely
di�erent patterns, drastically in�uencing the Force-Displacement curve, as shown in
Fig. 2.33.



Advances in non-intrusive Model Order Reduction 61

Figure 2.32: Bifurcation in the parametric space causing completely di�erent crack propa-
gation dynamics.

Figure 2.33: Force-Displacement curves corresponding to the two parameters con�gurations
in Fig. 2.31.

The clustering step can be performed automatically by using a hierarchical clustering
[70, 71] based on the curves shape or on the location of damaged elements into the
�nite element mesh. Once the clusters C1 and C2 have been established, two regression
submodels can be trained, one for each cluster, and Eq. (2.3.16) becomes


g1(x;p) = fX1 (p)

g2(x;p) =

{
fX2,1(p) for C1
fX2,2(p) for C2.

(2.3.17)

Fig. 2.34 shows the functions in the secondary zone after the clustering.
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Figure 2.34: Functions g2i (x) of Fig. 2.30 (right) after clustering, for i = 1, . . . , ns.

In particular, one can remark that fracture occurs early on for tests belonging to
cluster C1 and the �nal part of the curve is characterized by a steep slope. On the
contrary, tests belonging to cluster C2 have an endpoint displacement around 15 mm
and present a shallow slope. The clustering allows to avoid averaging such di�erent
dynamics, clearly enhancing the quality of the regressor.

2.3.8 Curves reconstruction and classification

For a newly de�ned choice of model features p∗, the curve g(x;p∗) is obtained via

g(x;p∗) =

{
g1(x;p∗), 0 ≤ x ≤ xM (p∗)

g2(x;p∗), xM (p∗) < x ≤ xF (p
∗),

(2.3.18)

where g1 and g2 are obtained through Eq. (2.3.17).

The training of the regression models has been performed using 40 points of the DoE,
while the remaining 10 have been used for testing. Moreover, a Support Vector Ma-
chine classi�er [161] (a Random Forest classi�er [162] could also be used, for instance)
has been trained to select the best regression submodel to predict g2(x;p∗). This
classi�er has shown perfect accuracy, as shown by the Confusion Matrices in Fig.
2.35. Moreover, Fig. 2.36 shows the separating surface and classi�ed points in the
3-dimensional parametric space.

Figure 2.35: Confusion Matrices for the SVM classi�er (left: training data, right: test data).
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Figure 2.36: Parametric space and classi�ed points (marker +++ is used for test points). The
red plane is the separation surface.

Figs. 2.37 and 2.38 represent the plots of predictions for train and test, respectively,
for 4 data points.

Figure 2.37: sPGD predictions (green line) versus true curve (blue line) for training data.
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Figure 2.38: sPGD predictions (red line) versus true curve (blue line) for test data.

2.4 Reduced Modelling based on Optimal Trans-

port

The type of problems faced in section 2.3 can be very challenging when trying to make
reduced models of one-dimensional entities such as curves, but become extremely trou-
blesome when the model concerns full-�eld solutions in two, three or more dimensions.

One of the usual di�culty which hinders the application of Reduced Order Modelling is
the presence of features in the solution which move with time or as a result of a change
in the parameters. The most popular and e�cient ROM algorithms employ linear
reduced bases, which are very powerful in many cases, but are not able to capture a
continuous displacement of solution features resulting of phenomena such as advection
or localized parametric constraints (e.g. loadings, impacts, sources, cracks, localized
damage, . . . ). The adequacy of a reduced basis with a problem is studied within the
theory of Kolmogorov n-width [134, 135], which quanti�es the ability of a basis to
represent faithfully the solutions depending on its dimension. Moving features and
advection result in a slow evolution of the n-width with respect to the dimension of the
reduced basis, a phenomenon known in MOR as the Kolmogorov barrier [131�133].

The ine�eciency of reduced bases in the aforementioned situations is related to their
use of a Euclidean metric. This metric is not adequate for problems regarding mis-
alignement or feature localization, because it only considers point by point di�erence
which never allows to detect information such as the distance between noteworthy
features. However, there exists a collection of metrics which are designed for this
precise objective, the ones derived from the theory of Optimal Transport [16,17].

Optimal Transport is witnessing a renewed interest because of its bene�ts for data sci-
ence and machine learning which can rely on a strong mathematical background [163],
wide array of formulations [164�166], as well as solid foundations for computational
strategies [167�169] and e�cient implementations [170].
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The theory of Optimal Transport introduces the notion of spaces of probability mea-
sures, the Wasserstein spaces [171]. Although these spaces are often too restrictive to
work with solutions of PDEs, which live in much larger spaces, they o�er an interpo-
lation framework [172,173] that is an attractive alternative to standard interpolation
in Euclidean spaces. Besides the interpolation between two objects, the concept of
barycenter in the Wasserstein space enables interpolation from multiple objects si-
multaneously, which could be a valuable route for regression and model reduction.
However, the high computational cost and inadequacy of barycenters in high dimen-
sion limit their applicability in many cases.

To apply Optimal Transport theory to regression, a very appealing strategy consists
in using Linearized Optimal Transport [174,175] to translate objects from the Wasser-
stein space to the tangent space, and perform the usual operations of machine learning
in this Euclidian space, before mapping the results back to the Wassertsein space. This
work�ow introduces two problems, the challenges and cost related to computing the
Exponential and Logarithmic maps [175], and the risks of operating away from the
initial point [176].

This section presents a methodology combining the framework of ANOVA described in
section 2.2 and Optimal Transport to create parametric reduced models. The theory
of Optimal Transport is �rst brie�y introduced, then the ANOVA-empowered OT
regression strategy is described before it is applied to a numerical example.

2.4.1 Short introduction to Optimal Transport

This section introduces the basics of Optimal Transport and a few technical aspects
relevant to describe the methodology which will be described later. For further insight
and extensive information on the theory and applications of Optimal Transport, the
interested reader can refer to [163,167,168].

Measure couplings and transport maps

Considering two measures µ and ν on two metric spaces X and Y, coupling of µ and
ν means to construct a measure π on X ×Y such that π admits µ and ν as marginals
on X and Y respectively.

The most trivial coupling is the measure µ⊗ ν which is the probability law of (X,Y ),
where X and Y are two independent random variables such that µ is the law of X
and ν is the law of Y . The opposite extreme case is when there exists a measurable
function T : X 7→ Y such that Y = T (X). In that case, π is called a deterministic
coupling of µ and ν, and T is called a transport map. Deterministic couplings between
µ and ν do not always exist, especially in discrete problems.

The objective of Optimal Transport is to �nd a coupling between µ and ν that is
optimal in the sense that it minimizes a functional Jµ,ν : Πµ,ν 7→ R+ (where Πµ,ν is
the set of couplings between µ and ν) which is de�ned as the cost of transportation
of a coupling π between µ and ν.

In many cases, the optimal coupling is deterministic, but this not always the case
which is not surprising since deterministic couplings do not always exist. In the
methodology proposed in section 2.4.2, when the optimal coupling is not deterministic,
the transport map will be replaced by an approximation thanks to the notion of



66 2.4 Reduced Modelling based on Optimal Transport

barycentric projection: T = E(π|x). This can also be expressed in the following way:

∀z ∈ X , T (z) =
∫
X×Y

yδz(x)dπ(x, y) (2.4.1)

Kantorovitch problem

Introducing a cost function c : X × Y 7→ R+, the formulation introduced by Kan-
torovitch to de�ne the optimal coupling is the following:

π∗ = argmin
π∈Πµ,ν

∫
X×Y

c(x, y)dπ(x, y) (2.4.2)

In the problems tackled in section 2.4.2, X and Y are both subsets of R2 or R3 and c
is the Euclidean distance such that c(x, y) = ∥x− y∥2.

Furthermore, this formulation de�nes a metric, the p-Wasserstein distance Wp [177],
which in turn allows to construct the p-Wassertein spaces of measures when µ and ν
operate on the same space with the right properties:

Wp(µ, ν) =

(
inf

π∈Πµ,ν

∫
X×Y

d(x, y)pdπ(x, y)

) 1
p

(2.4.3)

In order to solve Eq. 2.4.2, µ and ν and π are discretized and represented in the
following manner:

µ =
m∑
i=1

αiδxi (2.4.4)

ν =
n∑

j=1

βjδyj (2.4.5)

π =

m∑
i=1

n∑
j=1

γijδ(xi,yj) (2.4.6)

Now, by de�ning C = (c(xi, yj))i,j and Π = (γij)i,j , the optimal coupling π∗ can be
obtained by solving the linear program:

min
Π

⟨Π,C⟩

s.t. Π1 = α

ΠT1 = β

Π ≥ 0

(2.4.7)

where ⟨Π,C⟩ =
m∑
i=1

n∑
j=1

γijc(xi, yj).

An approximation of the optimal coupling can be obtained faster with the use of
Entropic Optimal Transport [178] but it was not necessary in this work.
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Linearized Optimal Transport

In order to combine the theory of Optimal Transport with linear methods and in-
terpolation or regression in vector spaces, the Linearized Optimal Transport (LOT)
[179,180] is a very valuable tool.

Thanks to the theory of di�erential geometry, it is possible to locally linearize the
2-Wasserstein space and thus to work on the tangent space at a certain point µ0. Any
measure can be embedded into the tangent space at µ0 using the logarithmic map
Logµ0

. Computing it requires �nding the optimal coupling between µ0 and µ and its
associated transport map T . The logarithmic map is then computed as:

Logµ0
(µ) = T − Id (2.4.8)

The inverse operation, the exponential map Expµ0
computes a measure from an em-

bedding v of the tangent space in the following manner:

Expµ0
(v) = (Id+ v)♯µ0 (2.4.9)

where T♯µ = µ ◦ T−1 is the pushforward measure de�ned such that, considering a
suitable σ-algebra Σ:

∀A ∈ Σ, T♯µ(A) = µ(T−1(A)). (2.4.10)

In practice, it is convenient to represent a discretized measure as a weighted point
cloud, upon which the pushforward operation results in moving each point from x to
T (x). It can be noted that the continuous interpolation between two measures de�ned
by operating in the tangent space consists in moving each point along the trajectory
(1− t)x+ tT (x) for t ∈ [0, 1].

2.4.2 ANOVA-based Optimal Transport methodology

This section presents a strategy which combines the ANOVA-PGD described in section
2.2 with the aforementioned tools to build non-intrusive parametric reduced models.
To this aim, in what follows, the PDE solutions u will be transformed into measures
by applying a few transformations. At �rst, the methodology will be described for
positive solutions with localized support, and then it will be adapted to a more general
setting.

The motivation for this work is that the natural interpolation in the tangent space
allows to move localized features of the solutions in the parametric domain. This is
a very interesting ability in contrast with the interpolations performed in the vec-
tor space in which the solutions originally live, which do not move features around
the space and are only able to increase or decrease their magnitude. The di�erence
between the two approaches is illustrated in Fig. 2.39.
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Figure 2.39: Di�erent con�gurations (shades of purple) of the interpolation between the
blue and red curves in the Euclidean space (left) and using Optimal Transport
(right).

The problem considered in this section is the construction of the parametric solution
u : (x;p) ∈ Ω × D 7→ R of a parametric partial di�erential equation, where Ω is a
compact convex subset of R2 (for the sake of simplicity in this example but it could
also be R3) and D ⊂ Rd. Some of the notations are those de�ned in section 2.2.2.

ANOVA-based Optimal Transport for positive localized solu-

tions

In this �rst instance of the method, only positive solutions with localized support are
considered: ∀(x;p) ∈ Ω × D, u(x;p) > 0 and ∀p ∈ D, supp(u(•;p)) ⊊ Ω such that
|supp(u(•;p))| ≪ |Ω|.

The solutions corresponding to a design of experiments such as the one described in
section 2.2.2 are computed using an existing solver. The discretized counterpart of
u(•;pi), i = 1 . . . ns is denoted by u(pi) ∈ RN , a vector which contains the nodal
values of u and the nodal coordinates are stored in matrix X ∈ RN×2. To transform
them into measures suitable for the theory described in section 2.4.1, only the Mi

points inside the support of u are considered and the solutions are normalized so that
their integral over Ω is 1. Xi ∈ RMi×2 contains the points in the support of u(•;pi)
and vi the corresponding nodal values. Then, the discretized measure is represented
by vector µi ∈ RMi given by:

µi =
vi∫

Ω u(x;pi)dx
(2.4.11)

and corresponding coordinates Xi.

The idea is to compute the transport maps from the center point c and then create
two regressions using the ANOVA-PGD method: one for the transport maps and the
other one for the values

∫
Ω u(x;pi)dx in order to recover the unnormalized �eld.

The main issue with this strategy is related to the risks of operating far away from
the tangent point. The transport map between solutions which are really dissimilar
can produce unwanted behaviors. However, the particular structure of the ANOVA
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sampling o�ers an interesting way to circumvent this issue based on the following
example.

Suppose a problem with one parameter with D = [0, 2] and a 3 sample points and as-
sociated measures (p1 = 0, µ1), (p2 = 1, µ2), (p3 = 2, µ3). For the sake of the example,
the chosen reference point is µ1. Then, to take into account that p2 lies between p1
and p3, the transport map from µ1 to µ3, denoted here as T1→3, is computed as:

T1→3 = T2→3 ◦ T1→2. (2.4.12)

This is done by solving the transport problem between µ1 and µ2 and then the one
between µ2 and µ3, but never the one between µ1 and µ3.

The same principle is applied in multiple dimensions in the ANOVA sampling. The
couplings and transport maps are computed step by step then composed, for each half
branch starting from center point c. An example for two parameters showing with
arrows the coupling steps is shown in Fig. 2.40.

Figure 2.40: Example in two dimensions showing the coupling route followed in the ANOVA
sampling. Each red arrow represents a step of measure coupling, from which
the transport map is extracted and then composed with the previous ones to
obtain a global transport map from point c.

On the half branch associated with the positive values of p1 (as shown in Fig. 2.40
with points p1 and p2), the coupling algorithm is the following:

1. Starting from p0 = c, the matrixΠ0→1 coupling µ0 and µ1 is obtained by solving
the linear program 2.4.7 with α = µ0, β = µ1 and matrix C computed from
X0 and X1.

2. The transport map is computed by barycentric projection: ∀j = 1, . . . ,M0, T1(X
j
0) =

T0→1(X
j
0) = (Π0→1X1)

j/µj
0 where exponent j refers to the extraction of the

j-th line of the matrix. The discretized version of measure µ1 can now both be
represented by (X1,µ1) and (T1(X0),µ0) where T1(X0) = (T1(X

j
0))j=1,...,M0 .

The latter is preferred because it allows to compute easily the composition of
transport maps.
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3. The matrix Π1→2 coupling µ1 and µ2 is obtained by solving the linear program
2.4.7 with α = µ0, β = µ2 and matrix C computed from T1(X0) and X2.

4. The transport map is computed by barycentric projection: ∀j = 1, . . . ,M0, T2(X
j
0) =

T1→2(T0→1(X
j
0)) = (Π1→2X2)

j/µj
0. Measure µ2 is now represented by (T2(X0),µ0).

5. Steps 3 and 4 are repeated until reaching the end of the branch.

Remark: in order to have a more general reference representation, it is interesting to
discretize µ0 with a decomposition similar to the ones performed in Smoothed Particle
Hydrodynamics (SPH) [181]. Instead of computing µ0 from Eq. 2.4.11, this consists
in choosing a value of M0, setting µ

j
0 = 1

M0
for j = 1, . . . ,M0 and then constructing

matrix X0 by solving:

X0 = argmin
X

∫
Ω

∥∥∥∥∥∥ 1

M0

M0∑
j=1

K(∥Xj − x∥)− u(x;p0)∫
Ω u(x;p0)dx

∥∥∥∥∥∥dx (2.4.13)

where K is a suitable kernel function. △

Ti(X0) is stored in matrix Ti ∈ RM0×2 for all the i related to the ANOVA sampling
(note that T0 = Id). Then, the function TANOVA : D 7→ RM0×2 (similar to uANOVA
from Eq. 2.2.12) is constructed.

Note: In section 2.2.2, the methodology is de�ned for vector-valued outputs. For a
matrix, the same methodology can be applied by reshaping it into a vector. △

For any p ∈ D, TANOVA(p) is an approximation of the mapping Tp, which transports
µ0 into µp, evaluated in the values of X0.

Now, for all the pi in the design of experiments which do not belong to the ANOVA
sampling:

1. TANOVA(pi) is evaluated, allowing to de�ne µANOVAi discretized by (TANOVA(pi),µ0)
as a �rst approximation of µi.

2. The matrix Πi→i coupling µANOVAi and µi is obtained by solving the linear
program 2.4.7 with α = µ0, β = µi and matrix C computed from TANOVA(pi)
and Xi.

3. The transport map is computed by barycentric projection: ∀j = 1, . . . ,M0, Ti(X
j
0) =

Ti→i(T0→1(X
j
0)) = (Πi→iXi)

j/µj
0. Measure µi is now represented by (Ti(X0),µ0).

Once the (Ti(X0) have been computed for i = 1, . . . , ns, the function TPGD (similar
to uPGD from Eq. 2.2.12) can be built, and therefore the model T̃ : D 7→ RM0×2 is
complete.

Similarly, a scalar ANOVA-PGD model ũ : D 7→ R relating pi to
∫
Ω u(x;pi)dx is

constructed.

Now, for any choice of the parameters p ∈ D, u(•,p) can be approximated by:

∀x ∈ Ω, u(x,p) =
ũ(p)

M0

M0∑
j=1

K(∥T̃ (p)j − x∥). (2.4.14)
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Figure 2.41: The worklow follows these four steps: (A) The solutions are normalized and the
reference solution is decomposed in SPH fashion (B) Couplings and transport
maps are obtained following the arrows to visit the entire ANOVA sampling
(C) The measures outside of the ANOVA sampling are approximated using
the ANOVA model and corrected using the solutions, thus allowing to enrich
the model (D) The model can be evaluated in real-time to approximate the
solution for any values of the parameters.

To recap, the complete work�ow is the following:

1. For i = 1, . . . , ns, the solutions u(•,p) are discretized and normalized, in or-
der to obtain coordinates Xi and weights µi, which together form a discrete
representation of measure µi.

2. Solution u(•,p0) is normalized, and discretized according to a decomposition
similar as the ones performed for SPH, to obtain (X0,µ0)

3. Now, following the coupling route described in Fig. 2.40, the transport maps
which transform µ0 into µi are obtained for all i such that pi ∈ Dc, using optimal
couplings and barycentric projection.

4. A �rst model of the parametric transport map is created using the so-called
"ANOVA terms" of the ANOVA-PGD.

5. This model is used to evaluate an approximation of the measure for all the i such
that pi /∈ Dc. This estimated measure is coupled to the discrete representation
of µi, thus allowing to compute the transport map Ti thanks to barycentric
projection.

6. These new transport maps allow to complete the construction of the ANOVA-
PGD model.

7. A model of the magnitude of the solution is also constructed with the ANOVA-
PGD.
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8. These two models can be combined via Eq. 2.4.14 to approximate the parametric
solution u.

This work�ow is also illustrated in Fig. 2.41.

ANOVA-based Optimal Transport for more general solutions

In the previous part, it was assumed that the solutions u had a localized support.
This was not explicitly necessary, but it is important for the quality of the solution
for two reasons:

� Approximating a constant in the whole domain with a decomposition in the
spirit of SPH is extremely expensive and ine�cient.

� If the localized features are small with respect to the global part, they will be
erased by the approximations and error of the model, therefore using Optimal
Transport becomes useless.

It was also assumed that the solutions were positive, because the conservation of mass
is at the heart of Optimal Transport, which in the general case does not allow negative-
valued measures. However, some works in the literature study such an extension
[182, 183], and although they are more interested in calculating the distance between
objects, they can inspire ways to obtain transport maps.

The following proposes a revised version of the method to enable applying to more
general solutions, by attempting to remove the two aforementioned constraints.

In order to deal with global solutions, such that supp(u) = Ω, the idea is to separate
the solutions into two contributions, one that is well represented by global modes and
which should be addressed directly using a method such as the ANOVA-PGD, and one
which has a localized support and which can be dealt with using Optimal Transport.
Therefore, the solutions read:

∀(x,p) ∈ Ω×D, u(x;p) = uglob(x;p) + uloc(x;p). (2.4.15)

In the simple case, uglob(x;p) = uglob(x) does not depend on the parameters. In this
case, uglob can be extracted as the median of all the solutions. Indeed, the part of
the solutions corresponding to uloc are outliers in this context, and can be �ltered out
very e�ciently by the median.

This idea can be extended to solve the problem when uglob has parametric dependen-
cies. uglob is searched in the separated form

uglob(x;p) =

m∑
k=1

Ξk(x)Ψk(p) (2.4.16)

using the following methodology, derived from the PGD and based on the �ltering of
sparse outliers:

1. The terms of the sum are constructed successively in a greedy manner until
convergence.

2. Ψk is initialized randomly, and a �rst approximation of Ξk is obtained by solving:

min
Ξ

∥ΞΨk − u∥1. (2.4.17)
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3. From Ξk, Ψk is updated by solving:

min
Ψ

∥ΞkΨ− u∥1. (2.4.18)

4. From Ξk, Ψk is updated by solving problem 2.4.17.

5. Steps 3 and 4 are repeated until convergence.

6. If Ψk or Ξk is too sparse (usually due to unlucky initialization of Ψk), the term
is rejected and another initialization is attempted at step 2.

7. After a few successive rejections, the algorithm stops.

Numerical experiments have shown that this algorithm yields a good results when
the solutions full�ll the requirements of the decomposition, which is nevertheless not
guaranteed.

uloc = u − uglob is therefore a good candidate for the Optimal Transport strategy
previously described because it has a localized support. However, in many cases, and
even if u itself is positive, uloc has negative values. In order to be able to apply the
ANOVA-based Optimal Transport strategy to negative-valued functions, the follow-
ing describes how to perform couplings and compute transport plans between signed
measures.

Once again, a solution u(•,p) is normalized by dividing it by its sum
∫
Ω u(•,p), which

allows to keep the idea of mass conservation, even if negative mass is now introduced.
For this reason, the integral of u needs to have always the same sign, which is a special
requirement for uloc without which divisions by 0 could occur.

Once the normalization is done, and the zero values are removed, the signed measure µ
is divided into two parts, the positive part µ+ > 0 and the negative part µ− > 0 such
that µ = µ+ − µ−. There are in�nitely many ways to obtain such a decomposition.
The one chosen is the trivial one, the so-called Jordan decomposition [184], which is
the only one in which µ+ and µ− have disjoint supports.

When coupling two signed measures, mass can be coupled according to three mecha-
nisms:

� Positive mass of the �rst measure can be coupled to positive mass of the second
measure.

� Negative mass of the �rst measure can be coupled to negative mass of the second
measure.

� Positive mass of the "largest" measure, that is the one such that
∫
|u|∫
u

is the

largest, can be coupled to negative mass of itself.

The coupling is thus divided in three steps which correspond to these three mecha-
nisms:

1. Partial Optimal Transport [185] is used to cancel out the excess of positive and
negative mass of the "largest" measure.

2. Regular Optimal Transport is used to couple the remaining positive mass with
the positive mass of the other distribution.
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3. Regular Optimal Transport is used to couple the remaining negative mass with
the negative mass of the other distribution.

By applying the barycentric projection, two transport maps are obtained, T+ which
transports the positive mass and T− which transports the negative mass.

The remaining negative and positive mass from the largest measure is added to the
other measure in a way that it cancels itself out: for a unit of positive mass in position
x+ coupled with a negative unit of mass in position x−, T+ and T− (or their inverse
depending on if the largest measure is the source or target) are extrapolated to estimate
T+(x+) and T−(x−), and the same unit of mass is added in both the positive and

negative parts of the other signed measure, in position T+(x+)+T−(x−)
2 .

Remark: For the same reason that transport maps do not always exist, the inverse of
the transport maps obtained by barycentric projection may not exist, but they can
be approximated by using barycentric projection in the opposite way. △

This strategy, which allows to couple together signed measures and to compute the
transport maps between them, can be introduced in the complete work�ow discussed
previously, hence making it possible to apply it for more general types of solutions.
However, many special cases remain di�cult to address, and require further investi-
gation.

2.4.3 Numerical experiment

The test case proposed to evaluate the method is the construction of a parametric
solution of a parametric wave equation, formulated as follows:


∆u(x, t) =

∂2u

∂t2
(x, t) ∀(x, t) ∈ Ω× [0, T ]

∂u

∂n
(x, t) = 0 ∀(x, t) ∈ ∂Ω× [0, T ]

u(x, 0) = u0(x;p) ∀x ∈ Ω

(2.4.19)

where Ω = [0, 4]× [0, 4], T = 0.5 and u0(x;p) =
∑3

k=1 e
−(x1−pk)2−(x2−k)2 .

The problem is solved for 15 sets of parameters chosen following the design of experi-
ments prescribed for ANOVA-PGD using Lagrange P1 �nite elements. The solutions
of this equation have a small support therefore no particular preprocessing is required,
however they contain negative values so the coupling procedure described in the pre-
vious section is necessary. This problem is quite unsolvable with linear reduced bases
because the location of the features depend strongly on the value of the parameters.

The parametric solution built is the 2D �eld function of time and of the parameters,
which make a total of 4 parameters.

Results for four di�erent sets of parameters are shown and compared to the equivalent
solution obtained using �nite elements in Figs. 2.42, 2.43, 2.44 and 2.45. The results
that are shown correspond to the test set, they were not used to build the model.
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Figure 2.42: Solution of the problem for t = 0.2 and p = (2.9, 2.3, 1.2 using �nite elements
(left) and the surrogate model based on Optimal Transport (right).

Figure 2.43: Solution of the problem for t = 0.22 and p = (2.7, 1, 1.7) using �nite elements
(left) and the surrogate model based on Optimal Transport (right).

Figure 2.44: Solution of the problem for t = 0.32 and p = (2.4, 2.7, 2.4) using �nite elements
(left) and the surrogate model based on Optimal Transport (right).
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Figure 2.45: Solution of the problem for t = 0.36 and p = (1.3, 1.5, 1.7) using �nite elements
(left) and the surrogate model based on Optimal Transport (right).

The surrogate model is able to predict quite well the solution from a low amount
of data. Indeed, to obtain such localization of the features with linear reduced bases
would require a very large amount of data. This shows the power of Optimal Transport
to deal with such problems.



3
Data assimilation and Hybrid

Modelling

In the realm of scienti�c modeling, the application of physics-based models has long
been a cornerstone of industrial practices. These models, often formulated using
partial di�erential equations, provide a valuable framework for understanding and
predicting the behavior of complex systems. However, despite their widespread use,
these physics-based models are not without their limitations. Discrepancies between
model predictions and real-world measurements are frequently observed, indicating
the presence of inherent imperfections within the models.

The recognition of such disparities between model predictions and experimental data
has given rise to the concept of hybrid modeling, which seeks to re�ne and enhance
physics-based models through the integration of measured data. By incorporating real-
world observations, it becomes possible to correct and enrich these models, bridging
the gap between theoretical formulations and the actual behavior of the system under
investigation.

Yet, this idea of using measurements to modify existing physics-based models presents
several important questions. Firstly, can the collected data alone be used to construct
a model, whether an entirely new model or the enrichment of an existing one, or is
it necessary to acquire additional or improved data ? Secondly, how can an existing,
well-posed physics-based formulation be modi�ed to incorporate the assimilation of
measurement data, without compromising its fundamental properties and integrity?

They questions have been addressed extensively in the literature, both the di�culty
of working with partial data [74,75] and using data to enrich models [186�188]. They
are revisited in this chapter, which delves into the realm of hybrid modeling, exploring
di�erent strategies to build, enrich, and correct physics-based models using measured
data. The chapter is structured into three main sections, each addressing a distinct
aspect of hybrid modeling.

The �rst section addresses the challenge of modeling systems under partial observ-
ability. It investigates how incomplete or limited data can be leveraged to construct
a reliable model that captures the essential dynamics of the system.

77
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The second section of this chapter explores the process of enriching a physics-based
model from data. It explores the learning of source terms or loading terms that can be
incorporated into the existing equations, e�ectively augmenting the model to better
match experimental measurements.

Finally, the third section focuses on the correction of a physics-based model from data
by identifying and re�ning the physical properties of the system. By comparing model
predictions with measured data, it becomes possible to identify areas of discrepancy
and adjust the model parameters to align more closely with reality. This section
examines parameter calibration by promoting sparsity, showcasing its potential to
enhance the accuracy and predictive power of physics-based models.

Through this exploration of hybrid modeling techniques, this chapter aims to shed
light on the challenges, approaches, and opportunities associated with integrating
measured data into physics-based models. By harnessing the power of data, we can
advance our understanding of complex systems, improve the reliability of predictions,
and unlock new possibilities for scienti�c and industrial applications.

3.1 Modeling systems from partial observations

When proceeding with data for modeling purposes, whether in the context of fully
data-driven or bybrid modeling, a recurrent issue concerns data accessibility. Some-
times, the considered system is not globally accessible, only a small part of it being
reachable to perform measurements.

The present section addresses a conceptual issue, that will be discussed on an exam-
ple simple enough to be fully understood, and at the same time complex enough to
encompass all the modeling issues discussed here.

If there is a part of a system inaccessible for observation in which a loading that
is applied cannot be either observed or measured, and that in�uences the measures
performed in the observable part of the system, di�erent questions arise:

� Is there a model connecting the observable input(s) to the corresponding out-
put(s), knowing that they are impacted by the hidden dynamics of the system?
Is it unique?

� Under which conditions such a model could exist? How to �nd it?

� How to formulate it correctly? Is it well-posed and consistent?

� How to learn it?

� Which is the impact of these hidden dynamics on the learning process?

This section aims at revisiting the construction of models in the domains exhibiting
partial observability, in both the steady and transient cases, while following a double
approach: the usual algebraic formulation and the one concerned by Machine Learning
approaches.
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3.1.1 On the existence of models relating observable fea-

tures

Let us �rst assume a large system, whose state is described by a number of state
variables. The variables involved in the state description are supposed well de�ned.
However, the model governing the state or its time evolution is assumed unknown and
the data describing the state is only observable and measurable on part of the system,
remaining unattainable in the rest of the system. Previous analysis on the �eld can
be found in [74�77].

For instance, in the case of the two-masses oscillator depicted in Fig. 3.1, it is assumed
that the state is perfectly de�ned by the position and momentum of each mass, however
only the state of the second mass is accessible (and thus, measurable). A natural
question concerns the possibility to learn the model that governs the observable state
(q2, p2) while ignoring the state of the �rst mass (q1, p1).

Figure 3.1: Oscillator composed of two masses, two linear springs of sti�ness k1 and k2,
reference lengths l1 and l2, and whose state is de�ned by the position and mo-
mentum of each mass (q1, p1, q2, p2).

In what follows, this question is addressed using a quite generic algebraic rationale in
two situations: a model that does not depend on time and a transient problem. First,
generic settings are considered, then the reasoning will be applied to multiple-mass
oscillators.

Time-independent problem

A generic linear time-independent model can be expressed from

KU = F, (3.1.1)

which, considering the observable variablesUo and the internal onesUi, can be rewrit-
ten as (

Koo Koi

Kio Kii

)(
Uo

Ui

)
=

(
Fo

Fi

)
. (3.1.2)

Developing the last equation yields

KioUo +KiiUi = Fi → Ui = K−1
ii Fi −K−1

ii KioUo, (3.1.3)

and introducing the resulting expression of Ui into the development of the �rst, it
results (this is known as static condensation [78] or Guyan reduction [79])

(Koo −KoiK
−1
ii Kio)Uo = Fo −KoiK

−1
ii Fi, (3.1.4)

which can be rewritten as
K̃ooUo = Fo − F̃i, (3.1.5)
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with {
K̃oo = (Koo −KoiK

−1
ii Kio)

F̃i = KoiK
−1
ii Fi

. (3.1.6)

Remark 1:

� If Fi = 0, a direct relation exists between Uo and Fo.

� In the case of a 1D system in which only the borders of the interval are accessible
(observable), Uo and Fo contains two components. By applying Uo

T = (1, 0),
the resulting Fo represents the �rst column of K̃oo, and the solution Fo related
to Uo

T = (0, 1) will represent the second column of K̃oo.

� In the same one-dimensional system, when Fi ̸= 0, there are two e�ective inter-
nal variables, the components of F̃i. Thus, all the richness of Fi boils up to these
two components generating some sort of irreversibility: F̃i can be obtained from
Fi, but the last one cannot be obtained from the former. The condensation of the
internal degrees of freedom into the observable one produces an entropy increase
in the theory of information sense: there are many micro-states Fi associated to
the macro-state F̃i.

� Computing these two e�ective internal variables just described requires an extra-
calculation. For example, if Uo = 0, then Fo = F̃i.

Time-dependent problem

A general linear second-order dynamical system can be expressed from

MÜ+CU̇+KU = F, (3.1.7)

which, applying Fourier transform, becomes

−ω2MU+ jωCU+KU = F, (3.1.8)

with j the imaginary (j2 = −1) and U and F the Fourier transforms of U and F
respectively. The previous equation can be rewritten as

K∗U = F, (3.1.9)

with K∗ = −ω2M + jωC +K, that can be separated in the same way considered in
the time-independent case, but now, for each possible frequency (ω) involved in the
loading and operating in the complex domain, leading to

K̃∗
ooUo = Fo − F̃i, (3.1.10)

which proves that all the discussion previously addressed in the time-independent case
remains valid when the Fourier transform applies.

Thus, one could expect that a model relating observable variables might exist as
well (and could be learned from collected data) in the time domain, under certain
constraints, as the one referred in Remark 2 below, due to the dependence of F̃i on
the internal loading Fi. This would imply the consideration of the history of the
variables, which is naturally implicit in the Fourier transform.
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Remark 2:

The just described rationale applies in the forced regime, i.e. far from the transient
e�ects induced by the initial condition. In order to address transient regimes, the
Laplace transform could be employed instead of the Fourier one. However, it is well
known that the Laplace inverse transform is more challenging from the numerical
point of view than Fourier's. It is also important to note that the Fourier transform of
the internal loading considered in the training stage should remain invariant to ensure
the validity of the learned model.

Neural Network-based modeling

In many cases Arti�cial Intelligence, and more concretely Machine Learning, aims
at extracting the model that relates measured inputs to the corresponding outputs
[153, 189]. In general, the measured output depends on the whole internal state.
For instance, in a structural dynamics problem where the loading (evolving in time)
constitutes the problem's input, the corresponding response is the displacement at each
point and time; whereas the corresponding output-data is the measured displacement
in a certain observable point of the structure.

In physics-based structural mechanics, the internal response (displacement at any
location and time instant) is obtained by discretization of the continuum mechanics
model, consisting of the momentum balance and the constitutive equations and; from
this internal state, the output of interest is directly extracted at each time instant.
Alternatively, Machine Learning looks for the direct relation between observables, the
input action and the measured response that, as just mentioned, can depend on the
present and past values of a series of non observed internal variables [190].

Recurrent Neural Networks (RNN) [42] and their Long-Short Time Memory counter-
parts (LSTM) [43] address such situations by trying to model the time evolution of
the internal state at the same time it constructs the model relating the observable
input and output (action and response).

Addressing time-dependent problems in the time domain

Finally, it is possible to address time-dependent problems modeling but directly oper-
ating in the time domain, instead of operating in the Fourier domain as was considered
before. For the sake of simplicity, this is illustrated with the �rst order dynamical sys-
tem

CU̇+KU = F, (3.1.11)

whose implicit time discretisation reads

CUn +∆tKUn = ∆tFn +CUn−1, (3.1.12)

with ∆t being the considered time step. This equation can be rewritten in the more
compact form

K∗Un = F∗,n +CUn−1, (3.1.13)

with K∗ = C+∆tK and F∗,n = ∆tFn.
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The sequencing of these equations can be written, inspired by the Dynamic Mode
Decomposition [46], in the matrix form

K∗[Un, ...,U1
]
=

[
F∗,n, ...,F∗,1]+C

[
Un−1, ...,U0

]
, (3.1.14)

and by de�ning the extended vectors U and F ,{
UT = [UnT

,Un−1T , ...,U0T ]

FT = [FnT
,Fn−1T , ...,F1T ]

, (3.1.15)

and the extended matrix K

K =

 K∗ −C 0 ... ...
0 K∗ −C 0 ...
... ... ... ... ...

, (3.1.16)

The previous system reads
KU = F , (3.1.17)

where the solution U is, in general, computed from the K matrix pseudo-inverse.

This algebraic system can be addressed by using the same rationale as the one ap-
plied before, but this time, the model explicitly involves the time evolution of the
input(s) and output(s), reinforcing the result already obtained when using the Fourier
transform.

Another alternative formulation, more aligned with the use of machine learning tech-
niques that will be presented afterwards, consists in writing the explicit integration

CUn = ∆tFn −∆tKUn−1 +CUn−1, (3.1.18)

that can be reformulated as

Un = AFn +BUn−1, (3.1.19)

perfectly expressible within the RNN architecture. When the model concerns only
part of the state (the observable part), RNN and/or LSTM seem especially appealing
to carry out the task.

3.1.2 Results for the analytical case in the linear setting

As mentioned, some numerical examples, simple enough to be perfectly understood,
but complex enough to underline all the issues and methodological aspects just dis-
cussed.

The simplicity of the problem is only apparent. There are forces being applied to
the internal masses, unknown and unobserved by the modeler, who, furthermore,
totally ignores how many hidden masses are involved in the system. Three masses are
considered in the present example, but they could come in any number, from one to
the thousands.

When introducing all the system's degrees of freedom - in this case, the state of the
three masses - in a model, the last one becomes larger but �nally simpler to interpret
and to learn, since all the data needed to properly describe the system is there, fully
available. On the contrary, when considering only the data associated to one mass,
while ignoring all the data related to all the other masses, the model seems simpler
from its size, but very intricate nonetheless.

For this reason, and this is the motivation, the simplicity is only apparent, and allows
for a more fruitful discussion on the issues and the conceptual questions previously
addressed.
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Learning in the Fourier space

The N -mass dynamical system considered here is illustrated in Fig. 3.2. The modeling
includes inertia, elastic and damping behaviors.

The state of each mass is represented by zi = (qi, pi), qi and pi being the i-th mass
position and momentum respectively. The system state is described by the extended
vector ZT = (zT1 , ..., z

T
N ).

The usual model, coming from Newton's equation, can be expressed by

Ż = TZ+ J+ F, (3.1.20)

where matrix T includes the system properties, masses, spring sti�ness and viscosity
of the dampers. On the other hand, J is a constant vector (in the linear case addressed
below) and F contains the external forces applied on the di�erent masses, appearing
at the odd positions in vector F (an explicit form of that matrix and those vectors
will be given later).

Figure 3.2: N-mass dynamical system

In the forced regime, the Fourier transform becomes a valuable route. The dynamical
model in the Fourier domain reads

(−T+ jωI)Z = J+ F. (3.1.21)

By de�ning the e�ective loading S = J+ F, and T̃ = −T+ jωI, the matrix form that
separates the degrees of freedom related to the measurable position (noted by q) and
the derived momentum (p) is now written:(

T̃qq(ω) Tqp

Tpq T̃pp(ω)

)(
Zq(ω)
Zp(ω)

)
=

(
Sq(ω)
Sp(ω)

)
=

(
0

Sp(ω)

)
. (3.1.22)

Since Sq(ω) = 0, Zp(ω) can be expressed in terms of Zq(ω):

T̃qq(ω)Zq(ω) +TqpZp(ω) = 0 → Zp(ω) = −T−1
qp T̃qq(ω)Zq(ω), (3.1.23)

that, introduced into the second equation, leads to:(
Tpq − T̃pp(ω)T

−1
qp T̃qq(ω)

)
Zq(ω) = Sp(ω), (3.1.24)

which can be reshaped into the more compact form:

A(ω)Q(ω) = R(ω), (3.1.25)

with A(ω) = Tpq − T̃pp(ω)T
−1
qp T̃qq(ω), Q(ω) ≡ Zq(ω) and R(ω) ≡ Sp(ω).
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This way, the momentum no longer appears in the state variables, since it derives
directly from the measurable position.

Now, the partition between the internal and the observable degrees of freedom can be
enforced: (

Aoo(ω) Aoi(ω)
Aio(ω) Aii(ω)

)(
Qo(ω)
Qi(ω)

)
=

(
Ro(ω)
Ri(ω)

)
(3.1.26)

that, following the aforementioned rationale, leads to

Ãoo(ω)Qo(ω) = Ro(ω)− R̃i(ω), (3.1.27)

with R̃i(ω) = Aoi(ω)A
−1
ii (ω)Ri(ω) and Ãoo(ω) = Aoo(ω) − Aoi(ω)A

−1
ii (ω)Aio(ω),

where the same remarks that were previously discussed apply.

This is illustrated with a system composed of 3 identical masses (m1 = m2 = m3 = m),
springs (k1 = k2 = k3 = k) and dampers (c1 = c2 = c3 = c), with the springs having
a reference length also identical (l1 = l2 = l3 = l). Forces can be applied on both
the internal masses (the �rst two) as well as on the observable one, the third. The
following values are considered: m = 0.5 kg, c = 0.8 Ns/m, k = 1 N/m, l = 1 m.

The dynamical model reads:

q̇1
ṗ1
q̇2
ṗ2
q̇3
ṗ3

 =



0 1/m 0 0 0 0
−2k −2c/m k c/m 0 0
0 0 0 1/m 0 0
k c/m −2k −2c/m k c/m
0 0 0 0 0 1

m
0 0 k c/m −k −c/m





q1
p1
q2
p2
q3
p3

+



0
k1l1 − k2l2

0
k2l2 − k3l3

0
k3l3

+



0
F1(t)
0

F2(t)
0

F3(t)

,
(3.1.28)

which, in the linear case and taking into account that k1 = k2 = k3 = k and
l1 = l2 = l3 = l, after applying Fourier transform leads to:

jω −1/m 0 0 0 0
2k jω + 2c/m −k −c/m 0 0
0 0 jω −1/m 0 0
−k −c/m 2k jω + 2c/m −k −c/m
0 0 0 0 jω −1/m
0 0 −k −c/m k jω + c/m





q̂1
p̂1
q̂2
p̂2
q̂3
p̂3

 =



0
0
0
0
0
kl

δ(ω) +


0

F̂1

0

F̂2

0

F̂3


,

(3.1.29)
where the hat operator, •̂, refers to the Fourier transform of the masses positions,
momentum and applied forces.

It is important to note that, in the nonlinear case described later on, since the spring
sti�nesses depend on the spring elongation and the latter will obviously be di�erent
for each node - unlike here in the linear case - , the �rst vector of the right hand
member will contain three non-vanishing spring contributions: k1l1 − k2l2, k2l2 − k3l3
and k3l3.

By reordering the previous system, the position and momentum degrees of freedom
can be grouped:

(
T̃qq(ω) Tqp

Tpq T̃pp(ω)

)


q̂1
q̂2
q̂3
p̂1
p̂2
p̂3

 =



0
0
0

0
0
kl

δ(ω) +


0
0
0

F̂1

F̂2

F̂3


, (3.1.30)
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and then, the momentum degrees of freedom p̂i condensed into the ones related to the
masses positions q̂i, as previously discussed:(

Tpq − T̃pp(ω)T
−1
qp T̃qq(ω)

)
Zq(ω) = Sp(ω). (3.1.31)

After separating the internal and observable degrees of freedom, it reads: A11(ω) A12(ω) A13(ω)
A21(ω) A22(ω) A23(ω)

A31(ω) A32(ω) A33(ω)

 q̂1
q̂2
q̂3

 =

 0
0

kl

δ(ω) +
 F̂1

F̂2

F̂3

 (3.1.32)

which allows making the model involving the observable degree of freedom, q̂3, explicit:{
A33(ω)−

(
A31(ω) A32(ω)

)( A11(ω) A12(ω)
A21(ω) A22(ω)

)−1(
A13(ω)
A23(ω)

)}
q̂3(ω) =

klδ(ω) + F̂3 +
(
A31(ω) A32(ω)

)( A11(ω) A12(ω)
A21(ω) A22(ω)

)−1(
F̂1(ω)

F̂2(ω)

)
, (3.1.33)

Rearranging this in a more compact manner yields:

Ã33(ω)q̂3(ω) = klδ(ω) + F̂3(ω) + F̂i3(ω), (3.1.34)

which represents the system transfer function.

Now, the �nal point concerns the data-driven model identi�cation, that is, how to
extract from the given data the di�erent model components: Ã33 and F̂i3, for each
involved frequency ω. In the last equation, the index i associated with F̂i3 re�ects
all the e�ects coming from the unresolved degrees of freedom (internal unobserved
masses).

Conceptually, the system identi�cation could proceed as follows:

1. The free response associated to F3 = 0 (only the loads on the internal masses
apply), qf3 (t), is obtained (measured), the superscript •f refers to the fact that
the observable mass remains free of loading.

2. Then, for a non-null (and measurable) applied loading on the observable mass,
F3 ̸= 0, the system response q3(t) is recorded, which is now a consequence of all
the loading terms involved in the right hand member of the previous equation.

3. The di�erence between the forced and free displacement can be obtained from
∆q3(t) = q3(t) − qf3 (t), allowing for the computation of its Fourier transform
∆̂q3(ω).

4. Finally, by means of the just calculated ∆̂q3 and the Fourier transform of the
measurable force F̂3(ω), the model coe�cient Ã33(ω) is learned from

Ã33(ω) =
F̂3(ω)

∆̂q3(ω)
. (3.1.35)

In this example, the loading applied to the system reads:
F1(t) = 2 cos(2πt)

F2(t) = 2 cos
(π
4
t
)

F3(t) = 2 cos
(π
2
t
) , (3.1.36)
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The free and forced responses and their Fourier transforms are depicted respectively
in Figs. 3.3 and 3.4. This loading is used to generate the synthetic data that will
serve to identify the model's output q3(t) later on as a function of the observed load
F3(t). During the training process of that model, F1(t) and F2(t) are fully ignored.

Figure 3.3: Free response (F3(t) = 0): (left) qf3 (t); and (right) q̂f3 (ω).

Figure 3.4: Response: (left) q3(t); and (right) q̂3(ω).

Figure 3.5 shows the response di�erence ∆q3(t) = q3(t)− qf3 (t) and its Fourier trans-
form ∆̂q3(ω) on the domain in which the di�erence ∆q3(t) becomes almost stabilized,
meaning the transient component almost vanishes.

Figure 3.5: Response di�erence: (left) ∆q3(t); and (right) ∆̂q3(ω).

Now, when comparing the reference solution, obtained by the reference analytical
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model Ã33 = −1.4848 + 1.0221j, to the one obtained from the learned model Ã33 =
−1.5242 + 0.9823j (at principal frequency), an excellent accuracy can be noticed.

3.1.3 Results of RNN and LSTM time simulations in both

the linear and the nonlinear settings

The 3-masses dynamical system is again considered for the time response scenario.
The dynamical problem is integrated numerically to obtain the ground truth, that is,
the reference solution. The computed data will be used to train the di�erent neural
networks, the RNN and the LSTM.

In both cases, the input data consists of the force F3 and position q3 in the previous
time steps, that results in the surrogate H:

q̃i3 = H




F i
3

F i−1
3
...

F i−n+1
3

,


qi−1
3

qi−2
3
...

qi−n
3


, (3.1.37)

where q̃i3 is the prediction of q3 at time step i.

As Eq. (3.1.37) re�ects, di�erent memory lengths from the use of positive integer n,
(n ≥ 0), are taken into account. For n ̸= 0, an initialization issue occurs.

In the case considered here, the larger memory is the price paid ignore the inter-
nal forces, whose consequences on the observed variables are learned from the time
evolution of the last.

The initialization can be carried out following two routes:

� If one is interested in the forced regime, the long-time solution does not depend
on the initialization.

� To obtain the transient solution, one could consider a coarser model that updates
the state from the just previous state until completing the �rst n values. Then
the LSTM can take over.

In the present case, as previously indicated, the focus is on proving under which
conditions a model relating observable inputs and outputs exists, despite the existence
of hidden dynamics, resulting in a noticeable larger memory. For that reason, in the
simulations considered here, the �rst n values are assumed known.

Using a simple recurrent neural network

Firstly, a RNN surrogate model is used, with the memory de�ned in Eq. (3.1.37)
n = 2. The considered data for training comes from the integration of the dynamical
system, in both the linear and nonlinear cases.

The data consists of 10000 states of the observable variables (coming as indicated from
the standard integration of the dynamical system). This data are divided into two
sets, the training and the testing ones, the former containing 80% of the points and
the latter the remaining 20%.
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The RNN consists of a single layer with one output q̃i3, in reference to Eq. (3.1.37).
The network parameters and the initialization choices are the ones reported in [191].
The algorithm is trained during 1500 epochs, although the use of fewer epochs also
leads to similar results.

The linear problem considers, once more: m1 = m2 = m3 = 0.5kg, c = 0.8Ns/m,
k1 = k2 = k3 = 1N/m, and l1 = l2 = l3 = 1m, expressing the applied loading the
following way: 

F1(t) = 2 cos(2πt)
F2(t) = 2 cos

(
π
4 t
)

F3(t) =
t

tmax
+ cos

(
π
2 t
) , (3.1.38)

with tmax = 500s. This loading is used to generate the synthetic data that will serve
afterwards to identify the model q3(t) as a function of the observed load F3(t). During
the training process of that model, F2(t) and F3(t) are again completely neglected.

The computed results from the trained network are given in Fig. 3.6, the mean
absolute percentage errors (MAPE) are 1.38% on the training set and 2.18% on the
testing set.

Figure 3.6: Prediction of the observable position q̃3(t) computed from a trained RNN with
n = 2 (colors green and red mark the training and testing sets, respectively).
It can be noted that the blue curve is not visible because it is almost exactly
under the green and red curves.

The same RNN (now with n = 3 in reference to Eq. (3.1.37)) is now employed to
tackle a nonlinear dynamical system, with similar parameters to the ones considered
in the linear case, except in what concerns the springs sti�nesses, now given by:

k1 = k01(1 + α∆l1)
k2 = k02(1 + α∆l2)
k3 = k03(1 + α∆l3)

, (3.1.39)

with k01 = k02 = k03 = 10 N/kg, α = 10−4 m−1 (arbitrary, although carefully tuned
to maintain the stability of the simulation) and where ∆l• is the elongation of the
corresponding spring, i.e. ∆l2 = q2 − q1 − f2, ∆l3 = q3 − q2 − f3 and ∆l1 = q1 − l1.
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The considered loading reads: 
F1(t) = 2 cos(2πt)
F2(t) = 2 cos

(
π
4 t
)

F3(t) = cos
(
π
2 t
) . (3.1.40)

The results concerning the nonlinear dynamical system are reported in Fig. 3.7, and,
for the sake of clarity, the associated absolute error in reported in Fig. 3.8, with a
mean absolute percentage error (MAPE) of 1.34% in the training set and 1.29% in
the testing set. The error is slightly larger in the training set, probably due to the
larger transient phase presenting higher peaks.

Figure 3.7: Prediction of the observable position q̃3(t) in the nonlinear case, computed by
a trained RNN with n = 3 (again, colors refer to the training and testing sets).
It can be noted that the blue curve is not visible because it is almost exactly
under the green and red curves.

Figure 3.8: Error in the prediction of the observable position q̃3(t) in the nonlinear case,
computed by a trained RNN with n = 2 (the same color code applies).
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Using a LSTM recurrent neural network

The same linear and nonlinear dynamical systems are now processed by LSTM cells,
with the same network parameters and initializations used for the RNN.

When addressing the linear case, the computed results are given in Fig. 3.9, with
a MAPE of 0.84% in the training set and 1.33% in the testing set. The results in
the nonlinear case are reported in Fig. 3.10, and again, for the sake of clarity, the
associated absolute error is presented in Fig. 3.11, presenting a MAPE of 0.15% in
the training set and 0.14% in the testing set. The error is again slightly larger in the
training set for the same reasons given before.

As expected, LSTM outperforms RNN for a large number of epochs. It was noticed
that, by reducing the number of epochs, RNN outperforms LSTMs because conver-
gence is more easily achieved using a lower number of parameters. The error in the
linear case is larger, possibly due to the fact that it involves close to zero values which
negatively impact the error calculation.

Figure 3.9: Prediction of the observable position q̃3(t) computed by a trained LSTM with
n = 2 (the same color code is employed). It can be noted that the blue curve is
not visible because it is almost exactly under the green and red curves.

It must be noted that several experiments with various number of elements, di�erent
damping coe�cients, sti�nesses, lengths and masses have been carried out with simi-
larly satisfactory results (MSE error always below 0.07 for both training and testing).

3.2 Hybrid modeling by learning a source term

After addressing the issue of collecting the right data to create models, arises the
question of how to combine the data at hand with a physics-based model to create a
hybrid model.

As mentioned in section 1.2.2, the PINN is a tempting route to answer this question
in a simple manner: the equations coming from the physics can be embedded in the
loss function to de�ne the solution of the well-posed physical problem, and then by
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Figure 3.10: Prediction of the observable position q̃3(t) in the nonlinear case, computed by
a trained LSTM with n = 3 (same color code). It can be noted that the blue
curve is not visible because it is almost exactly under the green and red curves.

adding constraints coming from data, the solution becomes a compromise between all
the constraints, trying to model the data while retaining physical sense.

Although it is su�cient for many applications, the downsides of such an approach
is that it produces a hybrid solution but not a hybrid model. This may seem like a
minor detail, but creating a hybrid model has two advantages compared to computing
a hybrid solution:

� The model can be used to obtain solutions, not only in the setting in which it
was built, but also other settings (being cautious about extrapolation).

� The nature of the correction applied to the model can in certain conditions be
interpreted in a physical sense (this point is emphasized in section 3.3).

The present section proposes a hybridization strategy applied to classical discretization
methods then improved within the PINN rationale, which corrects a physical model
thanks to data measured on a real system. It is �rst described, and then applied to
an industrial case in the context of Hybrid Twins for power transformers.

3.2.1 Proposed methodology

Consider a system described by a state u(x, t) governed by a partial di�erential equa-
tion in the form: 

L(u)(x, t) = f(p(x, t)) ∀(x, t) ∈ Ω× [0, T ]
u(x, t) = fd(x, t) ∀(x, t) ∈ Γd × [0, T ]
∂nu(x, t) = fn(x, t) ∀(x, t) ∈ Γn × [0, T ]
u(x, 0) = u0(x) ∀x ∈ Ω

(3.2.1)

This problem is assumed to have a unique solution u which perfectly �ts within all
the constraints, which could be computed methods such as �nite elements, �nite
di�erences or PINN.
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Figure 3.11: Error in the prediction of the observable position q̃3(t) in the nonlinear case,
computed by a trained LSTM with n = 3 (same color code).

Once measurement data becomes available and a discrepancy between the simulation
and reality is observed, the hybrid model comes into play.

Since the model de�ned by Eq. 3.2.1 is not able to represent reality, it must be
wrong, or at least imprecise, and should therefore be modi�ed to �t the measurements
obtained on the real system.

Therefore a di�erent strategy than the one described in section 1.2.2 is proposed,
where the enrichment is applied directly to the model rather than to the solver. Eq.
3.2.1 is modi�ed in the following fashion:

L(u)(x, t) = f(p(x, t)) + g(u(x, t),p(x, t)) ∀(x, t) ∈ Ω× [0, T ]
u(x, t) = fd(x, t) ∀(x, t) ∈ Γd × [0, T ]
∂nu(x, t) = fn(x, t) ∀(x, t) ∈ Γn × [0, T ]
u(x, 0) = u0(x) ∀x ∈ Ω

(3.2.2)

where g is the enrichment term which will be used to learn the data-based correction.

Hybrid model using a classical solver

If enough data is available and the problem is low-dimensional, g could be learned
from the solution generated by a classical solver. From measured data sampled in
various locations and at di�erent times according to a mesh that is �ne enough:
um(xim, t

i
m), i = 1, . . . , Nm, an estimation of the residual of Eq. 3.2.1 is computed

by approximating L with a discretization method on the mesh related to the sam-
pling:

ri = L(u)(xim, tim)− f(p(xim, t
i
m)) (3.2.3)

Now, a regression model ĝ is created to link u and p to the residual:

∀i = 1, . . . , Nm, ĝ(u(xim, t
i
m),p(xim, t

i
m)) = ri (3.2.4)

Since a lot of data is available, the regression method of choice is usually the neural
network, which can be trained extensively without real risk of over�tting, unless the
dimension of p is very high.
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Once the model ĝ is built, it can be introduced in the solver according to Eq. 3.2.2 to
produce the enriched solution.

Although appealing, this route is rarely applicable in practice, except to tackle ODE
problems, which are one-dimensional and do not require full-�ed measurements in
space.

Hybrid model strategy based on the PINN

In most cases, the data availability is quite reduced. In this case, it is impossible to
approximate L(um). However, the PINN formulation allows to circumvent this issue.

Following the PINN rationale, the solution is approximated by a neural network û(x, t).
An additional neural network ĝ : R × Rd 7→ R is de�ned to approximate function g.
Both neural networks are trained simultaneously by minimizing the loss function LH
de�ned in Eq. 3.3.18. However the �rst term LΩ is adapted from Eq. 1.2.3 to include
the change in the model and allow to train ĝ:

LΩ =
1

NΩ

NΩ∑
i=1

∣∣L(û)(xiΩ, tiΩ)− f(p(xiΩ, t
i
Ω))− ĝ(û(xiΩ, t

i
Ω),p(x

i
Ω, t

i
Ω))

∣∣2 (3.2.5)

When the training is complete, the hybrid solution u is obtained, but also function g
and therefore a hybrid model. In certain cases, g could be analyzed by the modeler to
understand the nature of the enrichment which was necessary for the model to match
the data. It could also be used to compute the solution for a di�erent loading or
source by changing p, or for di�erent initial and boundary conditions.

3.2.2 Application to an industrial problem

Power transformers play a vital role in transmitting electrical energy and demand
special focus. Monitoring and predicting the oil temperature of power transformers
is crucial because it signi�cantly impacts the expected lifespan of the insulation and
therefore of the transformer. In particular, excessively high or low oil temperatures
can cause irreversible harm to the transformer.

Since the usual lifespan of power transformers is between 20 and 60 years, even if a
transformer initially has a well calibrated model, it is not expected to match reality
forever. The hybrid modeling route is therefore very appealing, to enrich and correct
the model whenever the measurements performed on the real system diverge from the
model's predictions. This could have two major advantages:

� Quantifying the correction necessary to match the measured data is a tool for
diagnosis, because the discrepancy between the model and reality is often due
to aging or degradation.

� Having a model which matches reality enables prognosis and testing the impact
of various scenarios of operation on oil temperature and therefore aging of the
system.
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Physics-based model

The IEC and IEEE dynamic thermal models [192,193] pertain to the standardization of
the physical modeling of oil temperature in transformers. Despite being aware of their
limitations, such as the lack of information regarding cooling conditions and changes in
material properties, an IEC/IEEE thermal model will serve as a benchmark physics-
based model for the construction of the hybrid model and to compare the results.
Interested readers can refer to [194] for a comprehensive overview of the physics-based
thermal modeling process in a power transformer. The physics-based model utilized
for this application is derived from the IEC and IEEE standards.

Based on the heat transfer equations, the proposed physics-based thermal model is
composed of the following �rst-order system:

P (K load,ΘW ) = Cth(Θ
TO)

d∆ΘTO

dt
+

∆ΘTO

Rth(ΘTO)
(3.2.6)

ΘTO = T amb +∆ΘTO (3.2.7)

ΘW = ΘTO +∆ΘOW (3.2.8)

where ∆ΘTO represents the predicted temperature rise of the top oil, ΘW corresponds
to the estimated average temperature of the windings, P denotes the total estimated
losses generated by the transformer, T amb represents the ambient temperature, ∆ΘOW

represents the constant oil-to-winding temperature rise (provided by commissioning
data), and Cth and Rth refer to the overall estimated thermal capacitance and resis-
tance, respectively.

In order to enhance the accuracy of the model, it is important to consider that each
parameter is temperature-dependent. The following observations can be made:

� Parameter P depends on the transformer load and winding temperature due to
the variation in material resistivity as a function of temperature.

� The thermal capacitance Cth is in�uenced by the temperature of the top oil, as
the heat capacity of the transformer's mineral oil changes with temperature.

� The thermal resistance Rth is updated because the viscosity of the oil changes
with temperature.

The primary advantage of this physics-based model is its ability to obtain parameters
solely based on commissioning data. The model only requires two inputs: the load
factor K load and the ambient temperature T amb.

Figure 3.12 provides a representation of the given inputs and compares the measured
and estimated top-oil temperature for one of RTE's transformers. For the selected
2000 data points, the mean absolute percentage error (MAPE) is 10.4%. As antici-
pated, given the limited knowledge of the transformer's parameters and the model's
simplicity, there is a signi�cant di�erence between the measured and estimated top-
oil temperature, rendering it an inadequate estimation. Notably, when the top-oil
temperature reaches 45°C (around the 1600th data point), a second group of fans
is automatically activated, which is not accounted for in the proposed model. Al-
though it is possible, as demonstrated in the example presented by [195], to enhance
the model's accuracy by considering variable cooling conditions, it often necessitates
heuristic or regression-based parameter tuning, which cannot be universally applied
to every transformer.
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In conclusion, despite its inaccuracies, the proposed physics-based model serves as
the reference for this application of the hybrid modeling concept, as it captures a
signi�cant portion of the system's behavior and retains its physical signi�cance.

Figure 3.12: Physics-based top-oil temperature prediction

Hybrid model

The strategy proposed in 3.2.1 is applied to the prediction of a power transformer's oil
temperature using the model described in 3.2.2 and data collected on a transformer
in operation.

The quantities measured are ambient temperature, load factor and top-oil tempera-
ture, at an hourly rate. The hourly load factor being a rapidly �uctuating variable,
it is calculated as the average of the values sampled every 5 minutes. In this work,
the presence of a time delay in measurements is not considered, as it is negligible
compared to the one-hour sampling period used.

As suggested by the method, the source term in Eq. 3.2.6 is enriched with an unknown
function g:

PE = P (K load,ΘW ) + g

(
K load, T amb,ΘTO,

d∆ΘTO

dt

)
. (3.2.9)

Eq. 3.2.6 therefore becomes :

PE = Cth(Θ
TO)

d∆ΘTO

dt
+

∆ΘTO

Rth(ΘTO)
. (3.2.10)
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A fully-connected neural network is used to model g and is trained by discretizing the
equations with �nite di�erences and then minimizing the di�erence between g and the
residual of Eq. 3.2.6.

Figure 3.13: Hybrid-based top-oil estimation using the source term correction approach

In the case at hand, this approach allows to partially correct the model. Although the
oil temperature predicted by the corrected model does not perfectly match reality, it
performs better than the physical model. The mean absolute error is 3.2◦C for the
physics-based model and 1.7◦C for the hybrid model. The remaining error suggests
that the discrepancy between the model and reality can not be entirely described by
the extra source term g included in the model. Another approach may have produced
better results, but it is also possible that some of the real behavior is due to unknown
outside factors such as wheather conditions.

3.3 Hybrid modeling by identifying properties

In the pursuit of re�ning physics-based models through hybrid modeling, an alterna-
tive approach emerges: one that assumes the model itself is accurate but acknowledges
the uncertainty surrounding the physical properties associated with the system under
study. This uncertainty may arise from modeling errors or approximations, the use of
coarse representations, or the presence of damage or aging within the system. This
section delves into the latter scenario, focusing on the speci�c case of localized dam-
age. Works aiming at correcting models which su�ered damage have been reviewed
in [196].

When a system exhibits localized damage, accurately predicting its behavior becomes
a complex task. However, by leveraging the framework of hybrid modeling, it becomes
possible to correct the physical parameters associated with the system, enabling the
development of a model capable of accurately capturing the behavior of the damaged
system. Additionally, this approach o�ers the opportunity to not only correct the
model but also to identify the nature and location of the damage itself.

The model correction methodology discussed in this section holds particular relevance
in the context of Structural Health Monitoring (SHM) [80]. Extensive research e�orts
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have been dedicated to SHM, with a focus on investigating and addressing similar
objectives. These studies often involve the analysis of the system in either the time
domain [197�202] or the frequency domain [203�207] to detect and assess the presence
of damage. Furthermore, the incorporation of machine learning techniques in SHM
has gained considerable popularity, and notable applications of such techniques can
be found in the literature [208].

This section introduces a novel methodology centered around the idea of parameter
correction. By updating the physical parameters within the existing model, it becomes
possible to re�ne its predictive capabilities, aligning it more closely with the observed
behavior of the damaged system. The aim is to obtain a model that not only accounts
for the presence of damage but also accurately predicts its impact on the system's
overall behavior.

Moreover, this parameter correction methodology o�ers the means to conduct an in-
depth analysis of the updated model. By comparing the updated model predictions
with measured data, it becomes possible to identify the nature and location of the
damage. This information is invaluable for understanding the underlying causes of
the observed discrepancies and provides crucial insights for maintenance and repair
strategies.

Key to the success of this approach is the utilization of sparse regularization tech-
niques, which makes this methodology original. Sparse regularization allows for the
selection of the most probable damage scenario from a range of possibilities that
could explain the measurement data. By employing regularization techniques that fa-
vor sparse solutions, the methodology can e�ectively pinpoint the most likely damage
locations and characterize the severity and extent of the localized damage within the
system.

This approach is developed for two di�erent types of numerical methods: the Fi-
nite Element Method in the context of linear equations and Physics-Informed Neural
Networks.

3.3.1 Finite elements approach

The methodology is described on a linear elasticity problem. Let K be the original
sti�ness matrix representing the structural behavior. K is anN×N matrix, whereN is
the number of degrees of freedom in the structure. Let U be the nominal displacement
vector obtained from the original model. U is an N × 1 vector. Let F be the applied
loading vector. F is an N × 1 vector. The linear model describing the sytem reads

KU = F. (3.3.1)

Eq. 3.3.1 is assumed to perfectly model the nominal system at the beginning of its
lifecycle. However, after some time, a discrepancy is observed between the model's
predictions and the strain or displacement measured on the system. This discrepancy
is assumed to be due to a localized impact on the structure which deteriorates its
mechanical properties. The objective is to �nd a corrected sti�ness matrix ∆K and a
corrected displacement vector ∆U that minimize the di�erence between the predicted
and measured displacements. This can be achieved by solving the following system of
equations:

(K+∆K)(U+∆U) = F. (3.3.2)
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Expanding the product and introducing Eq. 3.3.1 yields:

K∆U+∆KU+∆K∆U = 0. (3.3.3)

To linearize the problem, the following approximation is considered:

K∆U+∆KU ≈ 0 (3.3.4)

In order to maintain the physical mathematical properties and physical meaning of
the sti�ness matrix, its correction term ∆K is approximated as:

∆K =
E∑

e=1

αeKe (3.3.5)

where E is the number of elements involved in the mesh that covers the domain Ω, αe is
the correction coe�cient for element e, and Ke is the nominal sti�ness matrix related
to element Ωe expressed in the global nodal numbering. This can be interpreted as a
element-wise constant correction of the system's Young Modulus.

Alongside Eq. 3.3.4, the correction should also satisfy that the corrected displacement
matches the measured displacement in the sensor locations:

Ũ+ ∆̃U = Um (3.3.6)

where the tilde •̃ refers to the extraction of the part of the vector that correspond to
the sensor locations and Um contains the displacement measurements in the sensor
locations.

Remark: when strain measurements are performed instead of displacement measure-
ments, Eq. 3.3.6 is adapted using the discrete (linear) strain operator E :

ẼU+ Ẽ∆U = εm (3.3.7)

△

The system of equations thus obtained enforces both the physics and the measurements
while the constraints on the value of the Young's modulus are removed. However, in
most cases, this creates an under-determined system which therefore has an ini�nite
number of solutions. To circumvent this issue, the constraints of the Young's mod-
ulus can be introduced back in a relaxed form. Moreover, the assumption that the
degradation of properties is localized motivates the use of the ℓ1-norm which promotes
sparsity in the solution.

The optimization problem can thus be formulated as follows:

min
α,∆U

∥α∥1

s.t. K∆U+

E∑
e=1

αeKeU = 0

Ũ+ ∆̃U = Um

(3.3.8)
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This problem can be transformed in the following linear program:

min
z,α,∆U

1T z

s.t. α ≤ z

−α ≤ z

K∆U+

E∑
e=1

αeKeU = 0

Ũ+ ∆̃U = Um

(3.3.9)

or its equivalent form:

min
α+,α−,∆U

1T (α+ +α−)

s.t. α+ ≥ 0

α− ≥ 0

K∆U+

E∑
e=1

(α+
e − α−

e )KeU = 0

Ũ+ ∆̃U = Um

(3.3.10)

where α = α+ −α− similarly as in [209].

The solution of this problem is not always completely suitable because there are some-
times still too many non-zero elements in α. When this happens, a relevant solution
is to partition the domain into a certain number of parts, and to remove the degrees
of freedom in α related to the parts in which α is smaller than a certain threshold,
before solving the problem again. This can be iterated a few times until convergence.

Numerical experiment

To test the method, a numerical experiment is carried out by considering a homoge-
neous plate depicted in Fig. 3.14 and its damaged counterpart described in Fig. 3.15,
from which simulations are performed to generate the "measured" data.

Figure 3.14: Structural model considered for illustrating the local model correction method-
ology.

The plate is discretized with a tetrahedral mesh, depicted in Figure 3.15, upon which
the di�erent mechanical �elds (displacement, strain and stress) are computed using
�nite elements. The damaged elements are represented in red in Fig. 3.15; in these
elements, the Young's modulus is reduced to 10% of its healthy state. For the sake
of simplicity, the sensors are placed on nodes of the mesh, representd in blue in Fig.
3.15.
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Figure 3.15: Damaged elements (red) and location of the 30 sensors (blue).

After solving the minimization problem (3.3.9), the elements in which |αe| > 0.7maxe |αe|
are identi�ed and highlighted in red in Figure 3.16. It can be observed that the damage
location is identi�ed although its distribuion is not exactly recovered.

(a) (b)

Figure 3.16: Identi�ed elements most a�ected by the damage (in red). (A) Top view; (B)
bottom view.

The solution of the elasticity problem in then obtained with the corrected model and
compared with the reference solution, as depicted in Figs. 3.17 and 3.18. The proposed
procedure shows excellent accuracy to correct the model.
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Figure 3.17: Top view of x (left), y (center) and z (right) components of the displacement
�eld obtained with the nominal model (top); reference model that takes into
account the real damaged region (middle) and corrected model (bottom).

The errors between the corrected and the reference (the nominal and the reference)
displacement �elds, for x, y and z, components are as follows:

�
∥∥UCorr

x − URef
x

∥∥
2
= 2.2·10−4(3.3·10−2), errx% =

∥UCorr
x −URef

x ∥
2

∥URef
x ∥

2

·100 = 6.4% (98.2%)

�
∥∥UCorr

y − URef
y

∥∥
2
= 3.8·10−4(3.3·10−2), erry% =

∥UCorr
y −URef

y ∥
2

∥URef
y ∥

2

·100 = 2.9% (26.1%)

�
∥∥UCorr

z − URef
z

∥∥
2
= 9.3·10−5 (9.6·10−3), errz% =

∥UCorr
z −URef

z ∥
2

∥URef
z ∥

2

·100 = 3.1% (32.6%)



102 3.3 Hybrid modeling by identifying properties

Figure 3.18: Top view of the di�erence in absolute value between the corrected and the
reference displacement �eld, for x (left), y (middle) and z (right) components.

Since the quality of the technique is strongly correlated with the number and the
positioning of the sensors, a comparative study shows the relative errors between
the reference displacement and the one obtained with the corrected model for dif-
ferent sensor con�gurations, shown in Fig. 3.19. As expected, the relative error∥∥UCorr

x,y,z − URef
x,y,z

∥∥
2
/
∥∥URef

x,y,z

∥∥
2
decreases with an increase of the number of sensors, as

Fig. 3.20 shows.

Figure 3.19: Top view of sensor locations for di�erent con�gurations.
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Figure 3.20: Relative error
∥∥UCorr

x,y,z − URef
x,y,z

∥∥
2
/
∥∥URef

x,y,z

∥∥
2
with respect to number of sensors

in the three directions (x in blue, y in red and z in yellow). The 6 con�gurations
are the ones shown in Fig. 3.19.

3.3.2 PINN-based approach

A similar approach can be formulated in the PINN setting. In this case, the problem
is not discretized and directly uses the continuous equations of solid mechanics. The
following problem is considered:

∇ · σ + b = 0 x ∈ Ω

u(x) = ϕ(x) x ∈ Γd

σ · n = ψ(x) x ∈ Γn

ε = 1
2(∇u+∇uT )

σ = C : ε

(3.3.11)

where x is the spatial coordinates, Ω ⊂ R2 the computational domain and Γ = Γd∪Γn

its boundary. σ is the Cauchy stress tensor, ε the in�nitesimal strain tensor and C
the fourth-order elasticity tensor. b is the force density, and ϕ and ψ are respectively
the Dirichlet and Neumann boudary conditions applied to the system. C is de�ned
from the Young's modulus E and Poisson's ratio ν such that: σ11

σ22
σ12

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

 ε11
ε22
ε12

 (3.3.12)

The solution is approximated using two fully-connected neural networks to represent
u and σ, respectively denoted as û and σ̂.

To solve Eq. 3.3.11 with the PINN, the loss function LΦ is de�ned as:

LΦ = λΩLΩ + λdLd + λnLn + λfLf (3.3.13)
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where:

LΩ =
1

NΩ

NΩ∑
i=1

∥∥∇ · σ̂(xi
Ω)− b(xi

Ω)
∥∥2 (3.3.14)

Ld =
1

Nd

Nd∑
i=1

∥∥û(xi
d)− ϕ(xi

d)
∥∥2 (3.3.15)

Ln =
1

Nn

Nn∑
i=1

∥∥σ̂(xi
n) · n−ψ(xi

n)
∥∥2 (3.3.16)

Lf =
1

NΩ

NΩ∑
i=1

∥∥σ̂(xi
Ω)− C : ε̂(xi

Ω)
∥∥2 (3.3.17)

and λΩ, λd, λn, λf ∈ R∗
+ are the weights associated to each term. ε̂ is obtained by

applying the adequate derivatives with respect to the inputs of neural network û.

Displacement measurements um(xim, t
i
m), i = 1, . . . , Nm (or strain measurements

εm(xim, t
i
m), i = 1, . . . , Nm) are collected on the real structure. To make the model

coincide with this data, the Young's modulus E is once again assumed to have been
degraded in a localized area and the displacement (or strain) is modi�ed to match the
value of the measurements in the sensor locations.

This is performed by adding a third neural network Ê to represent the Young's mod-
ulus and replacing the loss function with the following hybrid one, in which two terms
are added and one is modi�ed:

LH = λΩLΩ + λdLd + λnLn + λfLf + λmLm + λrLr (3.3.18)

where:

Lf =
1

NΩ

NΩ∑
i=1

∥∥∥σ̂(xi
Ω)− Ĉ : ε̂(xi

Ω)
∥∥∥2 (3.3.19)

Lm =
1

Nm

Nm∑
i=1

∥∥û(xi
m)− um(xi

m)
∥∥2 (3.3.20)

Lr =
1

NΩ

NΩ∑
i=1

∣∣∣Ê(xi
Ω)− E(xi

Ω)
∣∣∣ (3.3.21)

and λm, λr ∈ R∗
+ are the weights associated to each term. Ĉ is obtained from Eq.

3.3.12 applied to Ê. The term Lr corresponds to the regularization discussed in the
section 3.3.1. In this case, it aims at applying a L1-norm regularization to Ê − E in
order to reduce its support, and therefore to have the nominal value of the Young's
modulus in most of the domain.

Remark: when the strain is measured and not the displacement, Lm becomes:

Lm =
1

Nm

Nm∑
i=1

∥∥ε̂(xi
m)− εm(xi

m)
∥∥2. (3.3.22)

△
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Numerical experiment

To test the method, a numerical experiment is carried out by considering a homoge-
neous plate with a Young's modulus of 1MPa depicted in Fig. 3.21a and its damaged
counterpart described in Fig. 3.21b, from which direct simulations are performed to
generate the "measured" data.

(a) Domain (b) Damaged Young's modulus E (c) Sensors location

Figure 3.21: Problem con�guration

Figure 3.22: Comparison between the real (left) and computed (right) x-displacement

Figure 3.23: Comparison between the real (left) and computed (right) y-displacement

The e�ect of the number of measurement points in the inversion scheme is now inves-
tigated. Fig.3.25 shows the domain equipped with di�erent measurement points, and
the Young's modulus obtained with the neural network.
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Figure 3.24: Comparison between the real (left) and computed (right) Young's modulus

This approach performs quite well, it reconstructs the full displacement �eld from
the sparse sensor measurements, and it is able to locate the damage even when the
number of sensors is extremely small.
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Figure 3.25: Sensors location (left) for di�erent con�gurations, and computed Young's mod-
ulus (right)





Conclusion

This thesis has made contributions to the �eld of digital twins by introducing, devel-
oping, and improving methodologies that enable the construction of digital and hybrid
twins. The work can be divided into several parts, each addressing speci�c aspects
and challenges related to hybrid twinning.

� Non-intrusive model order reduction: This part of the work focused on improv-
ing the accuracy and e�ciency of non-intrusive model order reduction (MOR)
techniques for hybrid twins. The existing methods based on separated reperesen-
tations were improved by using regularization techniques to increase the power
of representation while limiting over�tting. ANOVA was used to study the e�ect
of the di�erent parameters separately in order to construct more robust approx-
imation bases and thus improve the quality of the surrogate models. Future
research on this topic could explore the construction of even better bases, that
could be speci�cally design to be combined with the regularization technique
proposed in s2-PGD and rs-PGD. Such applications could make use of tools
such as non-negative matrix factorization or techniques using sparsity promot-
ing norms.

� Data representation: This part of the work focused on developing new methods
for representing data in order to build better reduced models. The technologies
based on curve alignment and optimal transport proved to be e�ective in deal-
ing with a priori irreducible data. While the methodologies dealing with curves
are simple and easy to apply to any kind of problem, they are not automatic,
therefore some work could be performed to decrease the number of tasks re-
quired to be performed by the modeler. Meanwhile, Optimal Transport allows
an automatic processing of the data but it is very complex and the techniques
proposed to allow to extend its domain of applicability are even more intricate.
Studies should be performed to understand how to apply Optimal Transport
based methodologies to general data.

� Partial observability: This part of the thesis involved a theoretical study on cre-
ating models from partial observability. This investigation explored the creation
of machine learning models for dynamical systems in scenarios where the system
cannot be completely observed. While a simple case study was presented, future
research could expand upon this work to explore more complex scenarios and
test the limitations of modeling under partial observability.

� Hybrid models: This part of the thesis focused on constructing hybrid models
from physics-based models and measurement data. The developed strategies
aimed at creating hybrid models rather than hybrid solutions, emphasizing ex-
plicability and generalization of the model. Two methodologies were proposed
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to enrich models based on partial di�erential equations. One approach intro-
duced an unknown as a source term in the problem, while the other aimed to
identify properties of the physical system. Both methods successfully improved
the model's �t to the data. Furthermore, the second methodology demonstrated
the utility of model explicability in Structural Health Monitoring and damage
detection. These techniques were formulated using classical discretization meth-
ods as well as Physics-Informed Neural Networks. Leveraging the �exibility of
PINNs could yield original and powerful extensions to the techniques presented
in the thesis.

In conclusion, this thesis has laid the foundation for advancing the �eld of hybrid
twinning by introducing novel methodologies and exploring various aspects of model
construction, representation, data-driven considerations, and hybridization. The con-
tributions made in this work provide a valuable framework for further research and
applications in the development of hybrid twins for addressing industrial challenges.
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