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Résumé

L’objet de cette thèse est l’étude théorique de trois problèmes croisés en physique statis-
tique hors équilibre. Le premier concerne l’étude de la réponse temporelle d’un système
ionique soumis à une variation brusque d’un champ électrique extérieur. En particulier,
nous étudions le comportement des fonctions de corrélation densité-densité et des courants
électriques induits. En nous appuyant sur la théorie de la densité fonctionnelle stochastique
et en intégrant les interactions hydrodynamiques, nous effectuons une étude complète du
courant électrique total en fonction des corrélations ioniques. Nous montrons que les cor-
rélations ne suivent pas la même trajectoire lorsque le champ est activé ou désactivé. Ainsi,
le courant décroît exponentiellement lorsque le champ est désactivé, alors qu’il décroit al-
gébriquement jusqu’à sa valeur stationnaire lorsque le champ est activé. Cette différence
est due à un effet non linéaire. De plus, nous démontrons que le comportement à long
terme des corrélations est dominé par un processus de diffusion anisotrope, ce qui explique
la décroissance algébrique des courants. Le deuxième problème explore la diminution anor-
male de la température de transition vitreuse observée dans les films minces de polymères
autoportés de haut poids moléculaire. En considérant les statistiques exactes de marches
aléatoires de taille finie confinées entre deux plans, nous évaluons de manière critique le
mécanisme original de relaxation proposé par de Gennes. Nos résultats indiquent que ce
mécanisme ne permet pas d’expliquer les principales caractéristiques observées dans les
expériences et qu’une nouvelle approche théorique s’avère donc être nécessaire. Enfin, le
troisième problème se trouve dans l’étude des écoulements granulaires denses le long de
plans inclinés. En analysant les simulations obtenues par la méthode des éléments discrets,
nous retrouvons les caractéristiques essentielles des écoulements granulaires, notamment
l’existence d’une contrainte critique, le profil de vitesse de Bagnold et des lois de frotte-
ment et de dilatation distinctes. Notre analyse microscopique détaillée met en évidence la
formation d’amas de grains. Ces connaissances permettent le développement d’un modèle
théorique de lois d’échelle, offrant une meilleure compréhension des principes régissant les
écoulements granulaires denses.

Mots clés : Physique statistique hors de l’équilibre, électrolytes, polymères, matière
granulaire, matière molle 1



Abstract

In this thesis, we examine three interrelated problems within the domain of non equilib-
rium statistical physics using theoretical tools. These problems share the existence of long
range correlations where stationary flows and disorder prevent reaching an equilibrium
state. Using the distinct properties of these systems we explore different aspects of non
equilibrium states. The first problem centers around the examining temporal responses of
ionic systems, subject to a quench of an external electric field. In particular, we study the
response of the density-density correlation functions and induced electric currents. Lever-
aging Stochastic Density Functional Theory and integrating hydrodynamic interactions,
we analyse the total electric current as a function of ionic density-density correlation func-
tions. The correlations do not follow the same trajectory when the field is switched on
or off. Accordingly, the current decays exponentially when the field is switched off, yet it
relaxes algebraically to its stationary value when the field is switched on, rooted in a non-
linear effect. Moreover we demonstrate that the long range behavior of the correlations is
dominated by an anisotropic diffusion process, which accounts for the algebraic decay of
the currents. The second problem explores the anomalous decrease in the glass-transition
temperature observed in thin freestanding polymer films of high molecular weight. We crit-
ically assess the de Gennes’ sliding mechanism, which proposes a hypothetical relaxation
mode by considering the exact statistics of finite-sized random walks confined between
two planes. Our findings challenge the hypothesis, indicating that the sliding mechanism
cannot capture the main features observed in the experiments, thus necessitating a new
theoretical approach. The third problem revolves around the study of dense granular flows
down inclined planes. Analyzing discrete element method simulations, we recover critical
features of granular flows; including the existence of a critical stress, the Bagnold velocity
profile, and distinct friction and dilatancy laws. Our microscopic analysis uncovers the
formation of grain clusters. These insights permit the development of a theoretical scaling
model, providing a comprehensive understanding of the principles governing dense granular
flows.

Keywords: Non-equilibrium statistical physics, electrolytes, polymers, granular matter,
soft matter
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Introduction

A primary goal of statistical physics is to explain and predict the large-scale behaviors
of interacting systems through the use of mathematical models and physical arguments.
In systems where the degrees of freedom are weakly correlated, a simplified description
using mean-field analysis often suffices [1]. This method seeks to reduce the influence of
individual degrees of freedom to attain a system-wide perspective. Nevertheless, when
fluctuations and correlations are significant, the coarse-grained distributions follow scaling
functions, demanding more advanced field-theoretical techniques [2].

In equilibrium statistical mechanics, all thermodynamics properties are derived from the
partition function. For a given Hamiltonian, the partition function can be computed
approximately or exactly in certain cases. The situation is very different in non equilibrium
statistical mechanics, where probability densities are not known and macroscopic quantities
depend on the dynamics of the systems. One finds a variety of approaches to deal with
these complications, but no universal procedure.

Away from equilibrium and in dynamical situations, strong correlations are common, giv-
ing rise to a variety of scaling behaviors. Such behaviors have been observed in numerous
physical, biological, social, and financial systems [3–8]. This observation has been partic-
ularly relevant in recent times due to the advent of more advanced theoretical tools and
computational methods.

This thesis discusses three physical systems that are fundamentally out of equilibrium,
(I) driven electrolytes, (II) flow of granular matter, and (III) thin films of polymer glass.
Notably, each system provides a unique setting, differing in the manner in which it exhibits
non equilibrium. While all systems have been deeply studied over the last decade, many
open questions are still waiting to be addressed. Here we utilize the distinct properties of
each system to uncover different aspects of non equilibrium scenarios, as detailed bellow.

The study of the first system we address, electrolyte solutions, marks an early application of
techniques provided to deal with non-equilibrium systems. Of the three types, this system
stands out because it is capable of exploring the phase space relatively quickly and then
reach a non-equilibrium steady state (NESS). In such states, the driving and dissipation
balance each other out and the macroscopic quantities are independent of time. The driving
and dissipation can come in many forms, heat or particles source and sink, external driving
field and friction and so on. In Part I of this thesis we study the trajectory towards NESS,
which so far has not been thoroughly analyzed. We present a novel approach to study the
temporal response of ionic systems when driven out of equilibrium.
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The second and third systems we consider, granular materials and polymers respectively,
belong to a class of systems that exhibit jamming, or a glass transition i.e. a transition
from a fluid-like to a disordered solid-like state that occurs out of thermal equilibrium.
During the transition, the dynamics slow down dramatically and the system is unable
to explore it’s phase space. The nature of the glass transition, and whether or not it is
even a phase transition is one of the most important open questions in statistical physics.
Granular matter propose even a larger challenge as it is a system which is indifferent to
temperature at both sides of the transition. In such “athermal” system, the particles do
not perform Brownian motion; they are only driven by external forces such as compression
or shear.

In Part II we address the flow of granular matter over an inclined plane, which is a canon-
ical setup in the study of granular systems. We propose a theoretical scaling model to
rationalize some of the observed non local properties. This model provides a step towards
understanding the underlying flow mechanism at a stationary state. Lastly, in Part III we
consider polymer glasses under confinement. We question the de Gennes’ sliding model,
which is an important hypothesis of an alternative relaxation process in thin polymer
glasses. We show that the suggested sliding mechanism cannot reproduce the basic fea-
tures appearing in the experiments. We further explore the model properties and provide
the fundamental reasons which prevent it from reproducing the discussed features.

Author’s contribution

The work presented in this thesis was done under the supervision of Élie Raphaël and Vin-
cent Démery, and in collaboration with Thomas Salez (Parts II, III) and Pascal Damman
(Part II) as well as with Denis Dummont (Part II), James A. Forrest and Maxence Arutkin
(Part II). Part II of this thesis contains a substantial part of numerical simulation, I did
not contribute to their implementation and execution. Chapter 2 is based on the publica-
tion [9], Chapter 7 is based on [10] and Chapter 10 is based on [11].
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Of currents and correlations in ionic
systems
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Chapter 1

Background on ionic systems

The study of electromagnetic phenomena stands as one of the pillars of modern science,
technology, and engineering. This journey, which began centuries ago, has fundamentally
changed our understanding of the world. Our story begins at this pivotal point, with the
invention of the electric cell, by by Galvani and Volta [12,13] at the end of the 18th century.
The invention of the electric cell provided stable currents for electromagnetic experiments
and established a link between chemical reactions and electricity. Faraday then formulated
electrochemical terminology and defined the relationship between the mass and charge of
ions transferred during electrolysis. However, he maintained that an applied voltage merely
released ions from chemical compounds.

In parallel, the development of thermodynamics and kinetic theory was inspired by the
study of heat engines and various states of matter. Early models by Arrhenius and Van ’t
Hoff treated ionized salts as an ideal gas [14, 15]. This concept was validated by Raoult,
who experimentally confirmed that mixtures of solutions followed the ideal gas law by
measuring their partial pressure [16]. However, deviations from the ideal gas law even at
low salt concentrations were observed. Kohlrausch noted that the molar conductivity of
ions decreases with increasing salt concentration [17], suggesting a dependence on the cube
or square root of the concentration. Initially, the decrease in conductivity was attributed
to an increase in association at higher concentrations. This effect is relevant for weak
electrolytes such as acetic acid and ammonia in water. Yet, studies by Sutherland and
later by Bjerrum demonstrated that strong electrolytes – a different class of electrolytes –
have a negligible degree of association [18,19].

The above led to the introduction of the Debye-Hückel model, a cornerstone of statistical
physics [20]. Debye and Hückel understood that although ions are generally randomly dis-
tributed, there are strong positional correlations between anions and cations, with each ion
being surrounded by an atmosphere of opposite but equal charge. This ionic atmosphere
effectively screens the central charge, causing the effective potential to decay exponentially
at large distances. Although the model is accurate in some respects, it predicted incorrect
prefactors for the square-root dependence of conductivity on density. This discrepancy
was corrected by Onsager, who introduced the “limiting law for the conductivity of strong
electrolytes” [21]. Bjerrum introduced the first correction to the Debye-Hückel theory by
including neutral pairs bound by the Coulomb interaction [22]. Subsequent improvements
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CHAPTER 1. BACKGROUND ON IONIC SYSTEMS

to the theory of conductivity followed, including the theory by Fuoss and Onsager [23],
which extends the Kohlrausch law to higher orders in the concentration of ions at infinitesi-
mal external field, and the theory by Wilson to calculate the dependence of conductivity on
the external electric field but at low ion concentration [24]. For a comprehensive overview
see [25,26].

In general, physical systems in which the interaction between particles is governed by a
potential that satisfies a Poisson equation are called Coulomb gases. In d dimensions it
decays with distance as 1/rd−2 and is prevalent in nature, for example in gravitational
systems and plasmas [27,28]. In addition, the Poisson equation also governs the long-time
limit of a diffusion process with source terms; as such, collections of living or synthetic
particles interacting through diffusive fields can also be considered as Coulomb systems
in certain regimes [29]. Electrolytes are the first and perhaps best known example of a
Coulomb gas.

1.1 Electrolytes

Electrolytes are substances that conduct electricity and are composed of a medium that
contains charged particles, typically a solvent with dissolved salt. Electricity is conducted
through the movement of the charged particles, not free electrons. The degree of ionization
when an electrolyte is dissolved classifies it as either strong or weak. The properties of
an electrolyte are determined by the properties of its constituent ions and the solvent.
Typically, ions have complex properties such as size, shape, density, and charge magnitude
and distribution. Nevertheless, an ion is often accurately represented by its diameter
a and its charge, which is an integer multiple z of the elementary charge q. Similarly,
the solvent, often with non-trivial charge distributions and orientation dynamics, can be
approximated as a continuum with permittivity ε. The hydrodynamic properties of the
solvent are characterized by its dynamic viscosity and density. A small ionic diameter
typically results in a very low Reynolds number, meaning that hydrodynamic effects are
adequately described by an incompressible laminar flow [30].

A fundamental property of electrolytes is electrostatic screening [31,32]. Without screening,
the internal energy would diverge in the thermodynamic limit. However, electroneutrality
ensures that the Coulomb potential is effectively short-range, as we will see later. This
ensures the applicability of statistical mechanics concepts. For a comprehensive review of
screening and convergence conditions for Coulomb gases, see [33].

Strong and weak electrolytes Strong electrolytes are substances that completely ion-
ize in solution, i.e., break down into their constituent ions. Examples of strong electrolytes
include sodium chloride (NaCl), potassium hydroxide (KOH), and hydrochloric acid (HCl).
When these substances dissolve in water, they dissociate into their individual ions, which
can conduct electricity through the solution. Strong electrolytes are usually good conduc-
tors of electricity because most of the ions are free and can therefore participate in the
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CHAPTER 1. BACKGROUND ON IONIC SYSTEMS

transport of charge. Weak electrolytes are substances that are only partially ionized in so-
lution. This means that only a small fraction of the substance dissociates into ions, while
the rest remains in pairs (or small aggregates) that have a neutral charge. This fact results
in a lower conductivity compared to strong electrolytes. Examples of weak electrolytes are
acetic acid (CH3COOH) and ammonia (NH3).

The strength of an electrolyte can also be quantified by its dissociation constant (Kd).
Strong electrolytes have high Kd values, indicating complete dissociation in solution, while
weak electrolytes have low Kd values, indicating partial dissociation.

2nd Wien effect Specific to weak electrolytes is a phenomenon known as the Second
Wien Effect. This effect refers to an increase in the electrical conductivity of weak elec-
trolyte solutions under the influence of a high electric field. Under normal conditions, weak
electrolytes are only partially ionized, resulting in a limited number of ions in the solution.

Microscopically, although the bulk of the salt is dissolved, in weak electrolytes the negative
and positive particles (anions and cations) form pairs (called Bjerrum pairs) that do not
participate in the conduction of electricity at vanishing small external fields. However, a
high electric field can break these bonds (induce an increase in the degree of ionization),
thereby increasing the concentration of ions and, consequently, the conductivity of the
solution. This phenomenon was also discussed by Onsager in [34]. We continue by describ-
ing theories for the thermodynamics of electrolytes, starting with static treatment of the
system and later discussing the dynamics.

1.2 Electrostatics of ionic solutions

1.2.1 Poisson-Boltzmann Theory

The Poisson-Boltzmann (PB) theory is a widely used theoretical framework in the fields of
physics, chemistry, and biology for studying the behavior of charged particles in solution.
The theory is based on the assumption that a dilute gas of point-like ions is dispersed
in a continuous dielectric medium, and that the ions interact solely through Coulombic
interactions. For a modern review and discussion see [35,36].

The central equation of the PB theory is the PB equation, which describes the electrostatic
potential and charge distribution in a solution of charged particles at thermal equilibrium.
This equation is obtained by combining the Poisson equation, which describes the elec-
trostatic potential due to charges, with the Boltzmann distribution, which describes the
distribution of charged particles in a solution. The resulting equation takes into account
the electrostatic interactions between charged particles and the effect of the solvent on
their distribution. It is possible to derive the PB equation starting from a field theory and
to obtain the PB equation as a first-order term in a systematic expansion [37–39]. Here
we use a simpler and more heuristic approach.

12



CHAPTER 1. BACKGROUND ON IONIC SYSTEMS

Starting from the Poisson equation:

∇2ϕ(x) = −1

ε
Qe(x), (1.1)

where ϕ(x) is the electrostatic potential, Qe is the total local electric charge density, and ε

is the permittivity of the medium. The total charge density is the sum of all ionic charge
densities Qe =

∑
α zαqρα, where ρα and zα are the bulk number density and the valency

of the species α. q is the elementary charge. The ion density distribution in the solution
can be described by Boltzmann statistics, namely for each ion species density we find:

ρα(x) = ρ̄α exp

(
−qzαϕ(x)

T

)
, (1.2)

where ρ̄α is the average ion concentration in the bulk and T is the thermal energy (through-
out this manuscript, the Boltzmann constant is absorbed in the definition of T ) . Sub-
stituting the Boltzmann statistics into the Poisson equations gives the Poisson-Boltzmann
equation:

∇2ϕ(x) = −1

ε

∑
α

qzαρ̄α exp

(
− 1

T
zαqϕ(x)

)
. (1.3)

The Poisson-Boltzmann equation is a nonlinear partial differential equation that can be
solved numerically and in certain cases analytically to obtain the electrostatic potential
and charge distribution in a solution of charged particles [40, 41]. The solution provides
information on a wide range of properties, including the binding affinity of molecules, the
stability of colloidal suspensions, and the ionization behavior of proteins. One of the major
strengths of the Poisson-Boltzmann theory is its ability to handle charged systems with
complex geometries, such as proteins and nucleic acids. The theory has been used exten-
sively to study electrostatic interactions in biological systems, including the electrostatic
contribution to protein-protein and protein-DNA interactions.

It should be noted that PB theory is a mean-field theory that considers only thermal
averages and ignores fluctuations around the mean and any inter-ionic correlations. Nev-
ertheless, it remains an invaluable tool for understanding the electrostatic properties of
charged systems in solution.

1.2.2 Debye-Hückel theory and the Debye length

The Debye-Hückel (DH) approximation is a simplification of the PB equation. At low
ion concentrations, the DH approximation assumes that the electrostatic energy is small
compared to the thermal energy, leading to a linearization of the PB equation. More
precisely, when the limit 1

T qϕ ≪ 1 holds. This approximation predicts the behavior of
electrolyte solutions in terms of the Debye length, which characterizes the length scale over
which electrostatic interactions are screened by the ionic atmosphere. The Debye-Hückel
approximation is widely used in electrochemistry to calculate the activity coefficients of
electrolyte solutions, but it is limited to dilute solutions and cannot accurately predict the

13



CHAPTER 1. BACKGROUND ON IONIC SYSTEMS

behavior of concentrated electrolytes or solutions with strong ionic correlations. The zero-
order term vanishes because the solution is electrically neutral on average (so

∑
α ρ̄αzα =

0), leaving only the first-order term. The result has the form of the Helmholtz equation:

∇2ϕ(x) =
1

λ2
D

ϕ(x), (1.4)

where λD is the Debye length, which is given by:

λD =

(
εT∑

α z
2
αq

2ρ̄α

)1/2

. (1.5)

The Debye length represents the distance over which charged particles can interact by elec-
trostatic forces. It is proportional to the square root of the inverse of the ionic strength,
and thus becomes smaller as the concentration of ions increases. This treatment gives a
simple description of the many-body interactions between ions. The solutions to Eq. (1.4)
have a screened Coulomb (or Yukawa) form and are thus exponentially screened beyond
λD. This shows that despite the long-range nature of the electrostatic interactions, at
equilibrium, an electrolyte solution is effectively short-range interacting because the elec-
tric potential mediating the interactions is screened in the presence of opposite charges.
DH theory provides a convenient starting point for theoretical investigations of charged
solutions under a variety of conditions.

1.3 Dynamics of electrolytes

So far we have focused on the equilibrium properties of ionic solutions. However, there
are interesting phenomena that occur out of thermodynamic equilibrium. For example, an
applied electric field can induce electrolyte flow in a capillary (electrosmosis) [42–45], and
a salt concentration gradient in a capillary causes water flow (diffusio-osmosis) [46] and
electric currents (osmotic current) [47]. In colloidal suspensions, the transport of charged
colloids can be achieved by applying an external electric field (electrophoresis) [48–50]. An
important example of a dynamical ionic system is a battery, where two electrodes made of
different materials are placed in an electrolyte solution. When an external circuit connects
the two electrodes, the charge of the electrons flowing in the external circuit is balanced
by the ionic currents inside the battery. As the battery discharges, it converts the initial
chemical energy into electrical energy. In a rechargeable battery, the opposite occurs when
electrical energy is converted to chemical energy during the charging cycle.

1.3.1 Poisson-Nernst-Plank equation

A common theoretical framework for studying the dynamics of ionic systems is the Poisson-
Nernst-Planck equation. This equation, which takes into account dynamics can be derived
from the Poisson-Boltzmann electrochemical potential, (see ref. [40, 51] for the derivation
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of the PB potential):
µα = T ln(ραa

3) + qzαϕ, (1.6)

where µα is the chemical potential of the species α, and a the ion’s length scale. Within
the linear response, the difference between the mean ionic velocities, vα and the solvent
velocity, u, is given by the chemical-potential gradient:

vα − u = −κα∇µα, (1.7)

where κα is the mobility of the ionic species in the solution. The flow field of the solution
u is governed by the the Navier-Stokes equation and in principle is coupled to the ion
density fields. For the purposes of the following discussion, it will go beyond the scope
to elaborate on this. See Sec. 1.4 for further details. Furthermore, the ion concentrations
satisfy a continuity equation:

ρ̇α = −∇ · (ραvα) . (1.8)

Combining Eqs. (1.8) and (1.7) we get:

ρ̇α = −∇ · [ραu− καT∇ρα + καqzαρα∇ϕ] , (1.9)

with the Poisson equation (1.1) which relates the ionic densities to the electric potential.
We can express the gradient of the electric potential ϕ as the sum of an interaction term
and an external field term ∇ϕ = E−∇

∑
β Vαβ ∗ ρβ where Vαβ is the interaction potential

between the ionic species α and β, ∗ symbolizes a spatial convolution and E is the external
field. Finally we get the Poisson-Nernst-Planck equation:

ρ̇α = −∇ · jα (1.10)

jα = ραu− καT∇ρα + καqzαρα

E −∇
∑
β

Vαβ ∗ ρβ

 . (1.11)

The ionic flux jα includes three terms. They are, respectively, advection, diffusion, and
drift due to the (exernal and interactional) electric field. Since the Poisson-Nernst-Planck
equation is derived from the PB electrochemical potential, it inherits its limitations. In
particular, ionic correlations are neglected. This is justified for dilute solutions, but not
for concentrated ones.

1.3.2 Conductivity of electrolytes

Ionic conductivity is a fundamental dynamical property of ionic solutions and is defined as
the total averaged electric current divided by the external field, σ0 =

⟨J⟩
E0

. The interaction
of ions in solution through electrostatic forces affects the behavior of the ions and the ability
of the solution to conduct an electric current. The flow of ions in solution is influenced not
only by electrostatic interactions, but also by hydrodynamic interactions arising from the
motion of ions through the solvent, which in turn affects conductivity [25].
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Figure 1.1: The molar conductivity of different ionic mixtures in aqueous solu-
tion, to compare with Eq. (1.14). One can see that the Nernst formula would
predict a constant as we divided by the concentration to get the molar con-
ductivity. Data points were taken from [52]. measurements were done in the
linear response regime and at constant temperature (298K).

The conductivity of an ionic solution depends on several factors, including the ion concen-
tration, the size and charge of the ions, the temperature of the solution, and the presence
of other solutes or impurities. We can calculate the bulk conductivity of an electrolyte
using the PNP equation. The total electric current reads:

⟨J⟩ = q
∑

jαzα. (1.12)

As we compute the current in the bulk, there are no gradients and the ionic densities are
constants, therefore we find:

⟨J⟩ =
∑
α

qzαραu+
∑
α

q2z2ακαραE. (1.13)

For an electroneutral system (or alternatively setting u = 0 ) we find that the total charge
current reduces to:

σ0 =
∑
α

z2αq
2καρ̄α. (1.14)

This formula, which is known as the Nernst conductivity, is valid in the infinite dilution
limit, where particle interactions are negligible. This result does not agree with experimen-
tal measurements, as can be seen qualitatively in Fig. (1.1), even at very low concentrations
and external fields. This behavior was first seen by Kohlrausch [17] and it well demon-
strates the limitations of the mean-field approach and motivates the integration of the
particle-particle correlation into the theory. One framework that allows for the inclusion
of correlations is the so-called Stochastic density functional theory.
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1.3.3 Stochastic density functional theory

The main focus of our analytical investigations in the following will be on the overdamped
dynamics of electrolyte systems, where inertial effects are negligible. The most common
models of stochastic dynamics make use of the Langevin formalism, which was originally
developed to study the motion of Brownian particles and later extended to the dynamics
of interacting particles and fields. Currently, approaches based on coarse-grained Langevin
dynamics have become a standard tool, widely used in the study of collective phenomena
in active and non-equilibrium systems.

A sophisticated approach to studying the dynamics of ionic solutions, including ionic cor-
relations, is stochastic density functional theory (SDFT), often referred to as the Dean-
Kawasaki equation [53–57]. SDFT provides an exact equation obeyed by the density func-
tion (or concentration field) for a system of Langevin processes interacting via a pairwise
potential.

Dean–Kawasaki equation

This part follows the steps taken in the original derivation [53]. Consider N particles
interacting via the pairwise potential V (r) . The particles are subject to an external
velocity field denoted by U(x, t). Each particle obeys the Langevin dynamics:

dXi(t)

dt
= U(Xi, t)− κ

N∑
j=1

∇V (Xi(t)−Xj(t)) +
√
κTξi(t). (1.15)

We use the assumption ∇V (0) = 0 to include the term i in the sum. ξi(t) is a vectorial
noise that satisfies the statistics:

⟨ξi(t)ξj(t′)⟩ = 2δijδ(t− t′). (1.16)

We define the density field of a single particle and the total density field by:

ρi(x, t) = δ (x−Xi(t)) ; ρ(x, t) =
N∑
i=1

δ (x−Xi(t)) . (1.17)

For any single-particle function f (Xi(t)), we can write:

f(Xi(t)) =

∫
dxρi(x, t)f(x, t). (1.18)

Since Xi(t) is a stochastic function, analysis of its derivatives, as well as of functions of
Xi(t), should be done according to specific calculus rules (which are linked to specific
discretization schemes). In this work we use Itô calculus. Using Itô’s lemma [58], the
differential of a test function g of the stochastic process is g (Xi(t)) is:

d

dt
g(Xi(t)) = [∇g](Xi) ·

dXi(t)

dt
+ κT [∇2g](Xi). (1.19)
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Using Eq. (1.18) with Eq. (1.19) we get:

d

dt
g(Xi(t)) =

∫
dxρi(x, t)

(
[∇g](x) · dx

dt
+ κT [∇2g](x)

)
, (1.20)

where dx
dt = U(x, t)− κ

∑
j ∇V (x−Xj) +

√
κTξi. We can now use integration by parts

to find:
d

dt
g(Xi(t)) =

∫
dxg(x)

[
∇ ·
(
−ρi(x, t)

dx

dt

)
+ κT∇2ρi(x, t)

]
. (1.21)

On the other hand, the time derivative of g(Xi(t)) is simply d
dtg(Xi(t)) =

∫
dxdρi(x,t)

dt g(x, t).
By equating the two expressions for d

dtg(Xi(t)) we find the an equation for the evolution
of ρi:

dρi(x, t)

dt
= −∇ ·

ρi(x, t)
U(x, t)− κ

∑
j

∇V (x−Xj) +
√
κTξi

+ κT∇2ρi(x, t).

(1.22)
Now summing the equations for every i we find:

dρ(x, t)

dt
= −∇·

[
ρ(x, t)

(
U(x, t)− κ

∫
dx′ρ(x′, t)∇V

(
x− x′))]+κT∇2ρ(x, t)−Ξ(x, t),

(1.23)
with a global noise term that respect the following correlation function:

⟨Ξ(x, t)Ξ(x′, t′)⟩ = 2κTδ(t− t′)
∑
i

∇ · ∇′ρi(x, t)ρi(x
′, t′). (1.24)

Note that we have used Eq. (1.18) to rewrite the interaction term. Recalling that the ρj

are Dirac delta functions, the expression simplifies using a property of these functions:
ρi(x, t)ρi(x

′, t) = δ(x − x′)ρi(x, t) = δ(x − x′)ρi(x
′, t). Applying that, we find that the

noise correlation function can be written with in terms of the total density ρ:

⟨Ξ(x, t)Ξ(x′, t′)⟩ = −2κTδ(t− t′)∇ ·
(
ρ(x, t)∇δ

(
x− x′)) . (1.25)

From the structure of this correlation function we see that Ξ is statistically equivalent to
a new noise term Ξ̂:

Ξ̂(x, t) = ∇ ·
(√

κTρ(x, t)ζ(x, t)
)
, (1.26)

where ζ being is an Gaussian noise field with the following correlation function:

⟨ζ(x, t)ζ(x′, t′)⟩ = 2δ(x− x′)δ(t− t′). (1.27)

We replace Ξ by Ξ̂ so that our equation can be written as:

dρ(x, t)

dt
= ∇ ·

[
Tκ∇ρ(x, t)−U(x, t)ρ(x, t) + κρ(x, t)

∫
dx′ρ(x′, t)∇V

(
x− x′)]

+∇ ·
[√

κTρ(x, t)ζ(x, t)
]
. (1.28)
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This equation, known as the Dean-Kawasaki equation, has the same structure as the
PNP equation, but includes a multiplicative noise term. It is important to note that the
continuous fields in the SDFT equation are not averaged quantities as in the PNP equation,
but stochastic fluctuating fields. The PNP equation is recovered from the Dean equation
by taking the thermal average and neglecting correlations. In the following chapter, SDFT
is used to derive the conductivity of ionic solutions at high ionic concentrations, and
the inclusion of ionic correlations turns out to be essential. By including correlations, the
advection term does not go to zero in an electroneutral system, and in the following section
we discuss how to address it.

1.4 Hydrodynamic interaction

Hydrodynamic interactions are an important component of fluid dynamics, describing the
reciprocal influence of particles within a fluid medium. As particles move through the
medium, they displace and drag the surrounding fluid, changing the flow field. This flow,
in turn, advects adjacent particles. Due to the dependence of this interaction on the
distances between the particles and their velocities, it cannot be addressed by an interaction
potential, and consequently the analysis must be done at the level of forces.

A useful simplification in the study of hydrodynamic interaction is the Stokes flow regime,
which is a special case of fluid flow characterized by a low Reynolds number. The Stokes
flow regime is often used to describe the behavior of small particles, such as bacteria
or colloidal particles, which move slowly relative to the fluid around them [59]. In this
regime, viscous forces dominate while inertial forces are negligible. In electrolytes, the
hydrodynamic properties of the solvent can be characterized by its dynamic viscosity and
density, and the small ionic diameter typically results in a very low Reynolds number,
meaning that hydrodynamic effects in electrolyte systems are adequately described by
incompressible laminar flow [30].

In the Stokes flow regime, the inertial terms in the Navier-Stokes equations governing fluid
motion can be ignored. This approximation leads to the Stokes equations:

∇p− η∇2u = f ; ∇ · u = 0, (1.29)

where p is the pressure, η is the dynamic viscosity of the fluid, u is the velocity field, and f

is the external force. The first equation describes force balance, while the second equation
enforces the incompressibility of the fluid.

1.4.1 Stokeslet

The Stokeslet, or the fundamental solution to the Stokes equations, represents the flow
field induced by a point force applied at the origin within a viscous fluid. It can be used to
describe the hydrodynamic interactions between particles in a Stokes flow. This solution
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can be written as:
u(x) = O(x)F , (1.30)

where F is the point force, and O(x) is the Green’s function for the Stokes equations, the
Oseen tensor:

Oij(x) =
1

8πη

(
δij
x

+
xixj
x3

)
. (1.31)

For multi-particle systems, where each particle’s motion is affected by every other particle
via the fluid medium, the total flow field is the superposition of the individual Stokeslets
solutions:

u(x) =

∫
O(x− x′)f(x′)dx′. (1.32)

This known result will later be integrated into the SDFT, allowing us to compute the
hydrodynamic correction to the conductivity of strong electrolytes.

1.5 Recent developments

The study of the conductivity of electrolytes has recently been revived. First, Stochastic
density functional theory (SDFT) was been used to calculate the ionic correlations in the
absence of hydrodynamic interactions, giving access to the electrostatic correction of the
conductivity [53,60]. This study recovers the results derived by Onsager for one of the two
correction terms for the steady state conductivity of electrolytes at finite external field. The
correction term it computes is usually referred to as the relaxation or electrostatic correc-
tion, and is related to the electrostatic interactions between the particles. Then, SDFT has
been coupled with fluctuating hydrodynamics, providing a stochastic field theory for the
ionic densities and the flow, allowing to derive the electrostatic correction together with
the hydrodynamic one [61,62]. As we will see later on, at first order in the species density
fluctuations, the hydrodynamic correction does not affect the particle particle correlation
but still affects the total current in the system.

These more systematic approaches allowed further progress, such as taking into account
the finite size of the ions using a slight modification of the interaction kernel, leading to
quantitative predictions for the conductivity corrections up to larger densities [63,64]. More
specifically, these studies have used particle particle interaction that follows the standard
electrostatic interaction but is truncated for distances smaller than a parameter a, which
represent the particle size. In this region, the potential is set to zero to account qualitatively
for the short range repulsion between any pair of particles. Although the physical picture
arising from this modification of the interaction potential is quite different from the one
we would like to model, it seems to give a better averaged description of the interaction
compared to the standard electrostatic one. It prevents the collapse of opposite charges
towards one another, at the price of allowing same charges to bind with some finite energy
barrier [65]. Other studies have used SDFT to reveal long-range forces between objects
immersed in a driven electrolyte [66]. These forces were shown to be induced by long-
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range fluctuations. The study used linearized SDFT and focused on the macroscopic limit,
namely beyond the Debye length scale and time scale tD = λ2

D/(κT ). In this limit the
dynamics of the mass density simplifies to a noisy non-isotropic diffusion equation. This
equation can be solved in certain confined geometries and its solutions can be related to
the charge distribution and thus to the electric potential. The relationship between the
stresses at the boundaries and the electric potential is established by using the Maxwell
stress tensor.

In parallel, the effect of the correlations on the conductivity has been studied in weak
electrolytes through numerical simulation of a lattice Coulomb gas [67]. This work pro-
vided a detailed characterization of the second Wien effect. Another group studied strong
electrolyte systems using molecular dynamics [68, 69], with an implicit or explicit solvent.
That is, they simulated the ions in the bulk as underdamped Langevin processes, moving
under the influence of an adjusted permittivity and drag force (implicit), or by adding the
water molecules to the simulation, which in turn changes the electric field and drag on the
ions in space (explicit). They find that explicit solvent effects act to suppress nonlinear
responses, resulting in weakly field-dependent conductivity over the range of physically
realizable field strengths.

Similar methods have been employed to study the correlation and effective mobility of a
driven system with short ranged interaction [70], finding the formation of lanes along their
direction of motion. This behavior is explained by the correlation functions which decay
algebraically along the direction of motion. These calculations were carried out using the
SDFT formalism.

The above mentioned work dealt with the non-equilibrium steady state (NESS) of a driven
electrolyte. Under a time-dependent driving, new interesting effects appear, such as a
long-ranged repulsion between oppositely charged surfaces under a periodic driving [71],
or synapse-like memory effects in strongly confined electrolytes [72, 73].

To date, there are few examples where the field theoretic machinery described above has
been used to study transient effects in electrolytes. One is the calculation of the transient
fluctuations induced forces between two objects immersed in a driven electrolyte upon a
sudden field change [74]; however, the hydrodynamic interactions were neglected and the
calculation of transient correlations was limited to distances much larger than the Debye
length. Other related examples are the calculations of the relaxation of the Casimir force
between two polarizable slabs or two conducting plates [75, 76], but in these cases the
transition takes place between two equilibrium states.
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Chapter 2

Temporal response of the conductiv-
ity

This chapter is mostly an extraction from the paper [9]

In this chapter, we use SDFT with hydrodynamic interactions [60,62] to study the evolution
of the electric current in a bulk electrolyte when the external field is suddenly switched on
or off. First, we show that the correlations do not follow the same path when the system
goes from equilibrium to NESS, or from NESS to equilibrium. Second, we turn to the
current, and in particular to the electrostatic and hydrodynamic corrections. From NESS
to equilibrium, the hydrodynamic correction is absent and we find that the electrostatic
correction decays exponentially. On the contrary, from equilibrium to NESS, we unveil
an algebraic decay of both corrections. At linear order in the field, the corrections decay
exponentially, showing that the algebraic decay is a non-linear effect. Finally, we study the
long range behavior of the correlation in real space, finding that a non isotropic diffusion
governs the dynamics.

This chapter is organized as follows. The model is introduced in Sec. 2.1. In Sec. 2.2 we
obtain a closed equation for the density fields of the ions, express the electric current as
a function of the correlations of the density fields, and derive and solve the equation for
the correlations in the transient regime, assuming Gaussian density fields. We compute
and analyse the corrections from NESS to equilibrium in Sec. 2.5, and from equilibrium
to NESS in Sec. 2.6. In the next chapter. (3), we analyse the long range behavoir of the
correlations.

2.1 Model

We consider a system of charged Brownian particles of different species in a three dimen-
sional homogeneous solution, subjected to a uniform external electric field with a time
dependent amplitude E(t) = E(t)êx, where êx is the unit vector along the x-axis. The
particles interact via the electrostatic potential and are advected by the flow in the solution,
which is generated by the forces transmitted by the particles on the solvent. We denote
ρ̄α the average density of the particles of the species α, κα their mobility and qzα their
charge, with q being the elementary charge. We assume that the system is electroneutral:
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∑
α zαρ̄α = 0.

We describe the evolution of the density field ρα(x, t) of the species α using Stochastic
Density Functional Theory [53,60] with hydrodynamic interactions [61,62]:

ρ̇α = −∇ · jα, (2.1)

jα = uρα − Tκα∇ρα + καραfα +
√

καTραζα, (2.2)

where u(x, t) is the velocity field of the solution, T is the temperature (we set the Boltz-
mann constant to kB = 1) and fα(x, t) is the force acting on the particles of the species
α. The noise term ζ(x, t) is a Gaussian white noise with the correlation:

⟨ζα(x, t)ζβ(x′, t′)⟩ = 2δαβδ(x− x′)δ(t− t′). (2.3)

We use the Itô convention for the multiplicative noise in Eq. (2.2) and throughout the
manuscript [53,58].

The force on the particles of the species α is the sum of the force exerted by the external
field and the force due to pair interactions:

fα = zαqE −
∑
β

∇Vαβ ∗ ρβ, (2.4)

where Vαβ(x) = q2zαzβ/(4πεr) is the electrostatic interaction, with r = |x|, ε the dielectric
permittivity of the solvent, and ∗ the convolution operator.

We assume that the fluid velocity field u(x, t) satisfies the fluctuating Stokes equation for
incompressible fluids [77] (Sec. 3.2):

∇ · u = 0 (2.5)

−η∇2u−∇p =
∑
α

ραfα +
√
ηT∇ ·

(
ν + νT

)
, (2.6)

where ν(x, t) is a Gaussian noise tensor field with correlation function:

⟨νij(x, t)νkl(x′, t′)⟩ = δikδjlδ(x− x′)δ(t− t′). (2.7)

We compute the total average electric current J(t):

J = q
∑
α

zα⟨jα⟩ = J êx, (2.8)

and then discuss the correction to the current without interactions, σ0E, where σ0 =

q2
∑

α z
2
ακαρ̄α is the bare conductivity of the solution. In particular, we are interested in the

evolution of the current J(t) when the electric field is suddenly switched on (E(t) = E0H(t),
where H(t) is the Heaviside function), or off (E(t) = E0H(−t)). In the first case, the
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system goes from equilibrium with E = 0 to a non-equilibrium steady state (NESS) with
E = E0; in the second case, the system relaxes from a NESS to equilibrium.

2.2 Correlations and electric current

2.2.1 Closed equations for the density fields

We can integrate the fluid degrees of freedom u to obtain a closed equation for the densities
ρα. The solution to Eqs. (2.5, 2.6) is given by the convolution of the force density (the right
hand side of Eq. (2.6)) with the Oseen tensor, Oij(x) =

1
8πη

(
δij
r +

xixj

r3

)
[78] (Chap. 2).

Inserting this result in the expression for the density current, Eq. (2.2), we get:

jα = −καT∇ρα + καραfα + ρα
∑
β

O ∗
[
ρβfβ

]
+
√
καTραζα +

√
ηTραw, (2.9)

where we have introduced the Gaussian noise vector field w(x, t) with correlation:

〈
wi(x, t)wj(x

′, t′)
〉
= 2Oij(x− x′)δ(t− t′). (2.10)

Equations (2.1, 2.3, 2.9, 2.10) form a closed set of equations for the densities.

Our procedure is however not completely correct: when a force is applied on a particle, it
gives rise to a flow that is given by the Oseen tensor. However, this flow diverges at the
location of the particle, giving the particle an infinite velocity [79]. Moreover, the motion
of the particle resulting from the application of the force is already taken into account by
the mobility of the particle. Hence, when computing the flow advecting a given particle,
one should take care to omit the flow created by the forces acting on this particle. There is
no simple way to do it in our field theory, but this flaw is easily corrected when the electric
current is expressed with the correlations.

2.2.2 Average electric current from correlations

Using the expression (2.9) in the average electric current (Eq. (2.8)) leads to:

J = q
∑
α

zα

〈
καραfα + ρα

∑
β

O ∗
[
ρβfβ

]〉
. (2.11)

Note that the noise terms cancel as they are uncorrelated to the density fields and the
gradient term cancels as we assume spatial invariance.

We now express the average electric current as a function of the correlations of the density
fields. We introduce the density fluctuations nα(x, t):

ρα(x, t) = ρ̄α + nα(x, t), (2.12)
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and the correlation:

Cαβ(x− x′, t) = ⟨nα(x, t)nβ(x
′, t)⟩ = Cαβ(x− x′, t) + ρ̄αδαβδ(x− x′), (2.13)

where C is the pair correlation function, which does not contain the self correlation.

Using electroneutrality, the average electric current (Eq. (2.11)) can be expressed with the
density fluctuations:

J = σ0E −
∑
α,β

qzακα⟨nα∇Vαβ ∗ nβ⟩+
∑
α,β

q2zαzβ⟨nαO ∗ nβ⟩E

−
∑
α,β,γ

qzα⟨nα [O ∗ (nβ[∇Vβγ ∗ nγ ])]⟩. (2.14)

Writing the convolutions explicitly and using the correlation (Eq. (2.13)), we arrive at:

J = σ0E −
∑
α,β

qzακα

∫
∇Vαβ(x)Cαβ(x)dx+

∑
α,β

q2zαzβ

∫
O(x)Cαβ(x)dxE

−
∑
α,β,γ

qzα

∫
O(x)∇Vβγ(x

′)C
(3)
αβγ(x,x

′)dxdx′, (2.15)

where we have introduced the three-point correlation C
(3)
αβγ(x−x′,x′−x′′) = ⟨nα(x)nβ(x

′)nγ(x
′′)⟩.

The correction to the bare current σ0E is the sum of three contributions:

• The first involves the correlation and the electrostatic potential, we call it the elec-
trostatic correction (it was originally called the relaxation correction). It represents
the effect of the electric field of the cloud of counterions around a charged particle,
which is deformed when an external field is applied.

• The second term involves the correlation, the Oseen tensor, and the external field,
we call it the hydrodynamic correction (it was originally called the electrophoretic
correction). It contains the effect of the flow created by the cloud of counterions
under the action of the external field.

• The last term combines electrostatic and hydrodynamic effects: it contains the effect
of the flow created by the counterions under the action of electrostatic interactions
between the particles. As electrostatic and hydrodynamic interactions are involved,
their interaction kernels are coupled to the three-point correlation C(3).

At this stage, we can make the correction mentioned in Sec. 2.2.1: remove the effect
of the flow that is generated by a particle on this same particle. In the hydrodynamic
correction, this is done by replacing the correlation Cαβ(x) by the pair correlation Cαβ(x)
(see Eq. (2.13)), which removes a term proportional to O(0). In the last term of Eq. (2.15),
it is done by subtracting δαβδ(x)Cβγ(x

′) to C
(3)
αβγ(x,x

′). However, as we will compute
the correlations in the Debye-Hückel limit where the odd correlations vanish, it is not

25



CHAPTER 2. TEMPORAL RESPONSE OF THE CONDUCTIVITY

necessary to remove this term. Finally, note that replacing the correlation Cαβ(x) by the
pair correlation Cαβ(x) does not affect the electrostatic correction, allowing us to use the
pair correlation in both corrections:

J = σ0E −
∑
α,β

qzακα

∫
∇Vαβ(x)Cαβ(x)dx+

∑
α,β

q2zαzβ

∫
O(x)Cαβ(x)dxE

−
∑
α,β,γ

qzα

∫
O(x)∇Vβγ(x

′)C
(3)
αβγ(x,x

′)dxdx′. (2.16)

Using the Parseval-Plancherel theorem and writing explicitly the time dependencies, we
get:

J(t) = σ0E(t) +
∑
α,β

qzακα

∫
ikṼαβ(k)C̃αβ(k, t)

dk

(2π)d

+
∑
α,β

q2zαzβ

∫
Õ(k)C̃αβ(k, t)

dk

(2π)d
E(t)

+
∑
α,β,γ

qzα

∫
Õ(k)ik′Ṽβγ(k

′)C̃
(3)
αβγ(k,k

′, t)
dkdk′

(2π)2d
. (2.17)

We have used the fact that the Fourier transforms Ṽαβ(k) =
q2zαzβ
εk2

and Õij(k) =
1

ηk2
(δij −

kikj
k2

) are even: Ṽαβ(k) = Ṽαβ(−k) and Õ(k) = Õ(−k).

Now that we have expressed the correction to the bare current as a function of the corre-
lations, we need to evaluate the correlations.

2.2.3 Correlations in the Debye-Hückel limit

The density correlations cannot be computed exactly. To evaluate them, we assume small
density fluctuations |nα| ≪ ρ̄α and take the Debye-Hückel limit, which amounts to linearize
the deterministic terms in the current Eq. (2.9) and remove the fluctuations in front of the
noise terms [60,61]. Linearizing Eq. (2.9) and plugging it into Eq. (2.1), we get:

ṅα = καT∇2nα − καqzαE · ∇nα + καρ̄α∇2

∑
β

Vαβ ∗ nβ

+
√

καT ρ̄α∇ · ζα. (2.18)

Note that at this order, the terms coming from the hydrodynamic interaction disappear
as the Oseen tensor and noise correlation function are divergence free. The fluctuations
nα(x, t) are now Gaussian fields, so that odd correlations such as C(3) are zero.

We now write the dynamics in Fourier space:

˙̃nα = −καTk
2ñα + iκαqzαE · kñα − καρ̄αk

2
∑
β

Ṽαβñβ +
√
καT ρ̄αik · ζ̃α. (2.19)
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The dynamics of the fluctuations, Eq. (2.19), can be written in a vectorial form:

˙̃n = −RAñ+ χ, (2.20)

where Rαβ(k) = δαβ ρ̄ακαk
2 is the mobility matrix and A is analogous to the gradient of

the potential:

Aαβ(k) = δαβ
T

ρ̄α

(
1 + i

zαqE · k
Tk2

)
+ Ṽαβ, (2.21)

we have introduced the scalar Gaussian noise χα(x, t) with correlation:

⟨χα(k, t)χβ(k
′, t′)⟩ = 2(2π)dTRαβ(k)δ(k + k′)δ(t− t′). (2.22)

In Fourier space, the correlation is given by:

⟨ñα(k, t)ñβ(k
′, t)⟩ = (2π)dδ(k + k′)C̃αβ(k, t). (2.23)

Using the Itô product rule on Eq. (2.20) we find that the correlation C̃ follows (see Ref. [80],
Sec. 4.4):

˙̃C = 2TR−RAC̃ − C̃A∗R, (2.24)

where A∗ is the the complex conjugate of A. This is a differential Lyapunov equation [81]
and can be casted into a system of ODEs.

When the electric field is constant over the time interval [0, t], which is the case for a switch
on or a switch off of the field at t = 0, the solution to Eq. (2.24) is given by:

vec
(
C̃(t)

)
= e−Mt

[
vec
(
C̃(0)

)
− 2TM−1vec(R)

]
+ 2TM−1vec(R), (2.25)

where M = [I⊗ (RA) + (RA∗)⊗ I]. The symbol ⊗ is the tensor product and vec(·) is the
vectorization operator. Another option would have been to integrate the differential linear
equation (2.20) and then take the average, leading to the solution (2.25) [74–76].

2.3 Binary monovalent electrolyte

To further explore the general formulas derived in section 2.2, we focus on the specific case
of binary monovalent electrolyte systems. An ionic solution that is classified as such is
one in which there are only two species of particles with opposite charges and the same
mobility. This simplification is of interest for two main reasons. First, many ionic solutions
in practical use are very close in nature to binary monovalent solutions, as can be seen
in Table 2.1. Secondly, this simplification allows us to manipulate analytically and derive
some simple form expressions that still capture the global behavior of the system.
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Ion Diffusion Coefficient (cm2/s)

Li+ 1.028× 10−5

Na+ 1.334× 10−5

K+ 1.569× 10−5

Cl− 2.032× 10−5

Br− 2.080× 10−5

Table 2.1: Diffusion coefficient D = Tκ of ions in aqueous solutions, data
extracted from [40].

2.4 Dimensionless form

We restrict ourselves to the case of a binary monovalent electrolyte, where both species
have the same mobility: α = {+,−}, z+ = −z− = 1, ρ̄α = ρ̄, and κα = κ.

We nondimensionalize Eq. (2.24) by setting C̃ = ρ̄c̃ and k = s/λD where λD =
√
Tε/(2q2ρ̄)

is the Debye length. Then we rescale time by the Debye time tD = λ2
D/(κT ), t = tDτ .

We rewrite the external field to separate the magnitude from the time dependence E(t) =

E0g(t) and introduce the dimensionless field f = qλDE0/T . The rescaled correlation cαβ(τ)

follows:
˙̃c = 2s2 − ωc̃− c̃ω∗, (2.26)

where we have introduced the matrix ω, which is a dimensionless version of RA:

ωαβ(s) = δαβ
(
s2 + izαfsx

)
+

zαzβ
2

. (2.27)

Explicit expressions of the dimensionless correlations from Eq. (2.25) are given in App. 5.1
for the NESS to equilibrium and equilibrium to NESS cases.

Applying the same scaling to the current J(τ) (Eq. (2.17)) we find:

J(τ)

σ0E0
= g(τ) +

1

ρ̄λ3
D

γel(τ, f) + g(τ)
rs
λD

γhyd(τ, f), (2.28)

where rs = (6πηκ)−1 is the hydrodynamic radius of the charged particles, and the electro-
static and hydrodynamic corrections read, respectively:

γel(τ, f) = − 1

16π2f

∫ ∞

0
ds

∫ 1

−1
du isu

∑
α,β

zα [c̃αβ(s, u, τ, f)− δαβ] , (2.29)

γhyd(τ, f) =
3

4π

∫ ∞

0
ds

∫ 1

−1
du
(
1− u2

)∑
α,β

zαzβ [c̃αβ(s, u, τ, f)− δαβ] . (2.30)

We have introduced the variable u = sx/s. The dimensionless parameters in front of
the correction terms in Eq. (2.28) imply that none can by neglected, and we study them
separately. Note that the electrostatic correction involves the odd part of the correlations,
as the prefactor is odd in the variable u, while the hydrodynamic correction involves the
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Equilibrium NESS 

Figure 2.1: Evolution of the correlation c−+(x) in a binary monovalent elec-
trolyte for f = 1, from equilibrium to NESS (top row), and from NESS to
equilibrium (bottom row). The field is oriented along x.

even part of the correlation. Note also that the hydrodynamic correction is multiplied by
the time dependence of the electric field, g(τ), hence it is absent in the transition from
NESS to equilibrium.

The corrections in the steady state have been computed previously [24,60]:

γ∞el = − 1

32πf3

[
f
√

f2 + 1−
√
2f + tan−1

(√
2f
)
− tan−1

(
f√

f2 + 1

)]
, (2.31)

γ∞hyd = − 1√
2
−

3
(√

2−
√

f2 + 1
)

8f2
− 3

4f
sinh−1(f)

+
3(1 + 2f2)

8f3

[
tan−1

(√
2f
)
− tan−1

(
f√

f2 + 1

)]
. (2.32)

2.4.1 Correlations from equilibrium to NESS and back

We present the evolution of the pair correlations for different species, c+−, for the transi-
tions from equilibrium to NESS, and from NESS to equilibrium, in Fig. 2.1. We see that
the trajectory from NESS to equilibrium is not the inverse of the trajectory from equi-
librium to NESS. In particular, it seems that from NESS to equilibrium, the correlation
quickly becomes symmetric before slowly relaxing to its equilibrium value. In the next
sections, we focus on the behavior of the conductivity, which we finally compare to the
evolution of the correlation.
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Figure 2.2: Electrostatic correction term γel(τ) from NESS to equilibrium
(Eq. (2.33), integrated numerically) as a function of time for different val-
ues of the field f .

2.5 From NESS to equilibrium

We start by studying the dynamics of the conductivity as a response to a sudden switch off
of the electric field (NESS to equilibrium). We solve Eq. (2.26) under f = 0 with the initial
condition being the steady state solution to Eq. (2.26) for a finite value of f . After the
switch off of the field, the bare current is zero, hence the only current comes from the out of
equilibrium correlations through the electrostatic correction, as there is no hydrodynamic
correction in this case.

By plugging the solution of Eq. (2.26) as described to Eq. (2.29), we find that the electro-
static correction is

γel(τ) = − 1

8π2f

∫ ∞

0
ds

∫ 1

−1
du

s2u2e−(2s
2+1)τ

(2s2 + 1) (f2u2 + s2 + 1)
. (2.33)

This integral is integrated numerically with the package Quadpack implemented in SciPy [82,
83]; it is plotted as a function of time in Fig. 2.2. Differentiating Eq. (2.33), one can show
that the correction decays monotonically, as seen in Fig. 2.2.

At short time, the electrostatic correction behaves as:

γel(τ) ∼
τ→0

√
τ

12
√
2π3/2

. (2.34)

At long times, it decays exponentially:

γel(τ) ∼
τ→∞

−
e−τ

[
f − tan−1(f)

]
32
√
2π3/2f3τ3/2

, (2.35)

with a field dependent prefactor that is constant at weak field and decays as f−2 at large
field (Fig. 2.3).

As a conclusion, after a switch off of the external field there is a recoil coming from the
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Figure 2.3: Field dependency of the electrostatic correction γel(τ) at large
time. Analytical result (Eq. (2.35), solid line) and from numerical integration
of Eq. (2.33) at τ = 100 (dots).

electrostatic correction. This recoil decays exponentially on the time scale of the Debye
time. This decay is compatible with the evolution of the correlations (Fig. 2.1): the
antisymmetric part, which enters in the electrostatic correction, indeed seems to decay on
the time scale of the Debye time.

2.6 From equilibrium to NESS

We now turn to the dynamics of the conductivity after a sudden switch on of the elec-
tric field, the system being initially in its equilibrium state. Here both electrostatic and
hydrodynamic corrections are present, and we study them separately.

2.6.1 Electrostatic correction

The integrand of γel in Eq. (2.29), which we denote y(s, u, f, τ) is obtained from the solution
(2.25):

y(s, u, f, τ) =
2fs2u2e−τ(2s2+1)

(s2 + 1) (2s2 + 1) (f2u2 + s2 + 1) (1− 4f2s2u2)

[
−
(
f2u2 + s2 + 1

)
+f2u2

(
2s2 + 1

) ((
2s2 + 1

)
cosh

(
τ
√
1− 4f2s2u2

)
+
√
1− 4f2s2u2 sinh

(
τ
√
1− 4f2s2u2

))]
+

2fs2u2

(2s2 + 1) (f2u2 + s2 + 1)
. (2.36)

The last term in y is independent of time and corresponds, after integration, to the steady
state result γ∞el (Eq. (2.31)). Note that the integrand is regular at the pole corresponding
to 4s2u2f2 = 1 (App. 5.3).

The electrostatic correction is integrated numerically and shown as a function of time
in Fig. 2.4(a) for different values of the field. Contrary to the monotonic behavior from
NESS to equilibrium, here we observe an overshoot of the conductivity, which has a global
minimum, lower than the steady state value γ∞el . The time location of the minimum
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Figure 2.4: (a) Electrostatic correction γel(τ) from equilibrium to NESS from
numerical integration of Eq. (2.29), for different values of the field f . (b)
Times τ∗el(f) and τ∗hyd(f) of the extrema of the electrostatic and hydrodynamic
corrections, as a function of the magnitude of the external field f . Numerical
evaluation of the time location of the extrema for the electrostatic correction
(blue points) and for the hydrodynamic correction (orange points), and weak
field asymptotics (2.46,2.55) (solid line).

as a function of the field, τ∗el(f), is shown in Fig. 2.4(b): we see that the minimum is
always present and that it occurs sooner and sooner as the field increases. We also observe
in Fig. 2.4(a) that the correction converges to a well defined limit at weak field, which
corresponds to the linear response of the system. We now focus on the short and long time
behaviors of the correction.

Short time limit

The behavior of the conductivity can be obtained by the change of variables w =
√
τs

followed by a Taylor expansion of the integrand to lowest order around τ → 0, leading to:

γel(τ) ∼
τ→0

− 1

16π2

√
τ

∫ ∞

0
dw

∫ 1

−1
duu2

1− e−2w2

w2
. (2.37)

Note that to obtain the asymptotic form, the steady state part of the integrand in Eq. (2.29)
cannot be computed separately, but has to be part of the expanded expression. Evaluating
the integral gives:

γel(τ) ∼
τ→0

−
√
τ

12
√
2π

3
2

. (2.38)

The short time asymptotics is compared to the numerical integration in Fig. 2.5. We
recover the square root dependence observed from NESS to equilibrium. Interestingly,
the short time asymptotics does not depend on the field; as this is the correction to the
conductivity, it means that the short time response is linear. However, the higher the field
is, the sooner the conductivity departs from the short time asymptotics.
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Figure 2.5: Short time behavior of the electrostatic correction. Numerical inte-
gration for different values of the field (solid lines) and short time asymptotics
(Eq. (2.38), dashed line).

Long time limit

To estimate the behavior of the conductivity at long times, we first separate the time
independent part in the integrand (2.36), which integrates to γ∞el . The remaining time
dependent part of the integrand gives us access to the large time asymptotic behavior of
the conductivity. We perform the same change of variables w =

√
τs and expand the

integrand to the lowest order around τ → ∞, yielding:

γel(τ)− γ∞el ∼
τ→∞

− 1

16π2

1

τ3/2

∫ ∞

0
dw

∫ 1

−1
du

2w2u4f4e−2w2

(f2u2 + 1)
e−2f2w2u2

. (2.39)

Evaluating the integral gives:

γel(τ)− γ∞el ∼
τ→∞

−
3
(
f2 + 1

)3/2
sinh−1(f)− 4f3 − 3f

96
√
2π3/2f3 (f2 + 1)3/2 τ3/2

. (2.40)

The algebraic decay of the electrostatic correction is visible in the numerical evaluation
in Fig. 2.6(a); the prefactor obtained from the numerical evaluation is compared to the
expression (2.40) in Fig. 2.6(b).

Our main observation is that the relaxation of the electrostatic correction towards its
stationary value is algebraic, γel(τ) − γ∞el ∼ τ−3/2, contrary to the exponential relaxation
when going from NESS to equilibrium. This algebraic behavior is reminiscent of the one
seen for the relaxation of the long range force between two boundaries of an electrolyte in
the same configuration [74]. As the prefactor of the algebraic decay goes to zero as the
field goes to zero, it is a non-linear effect. To better understand the non-linear effects, we
turn to focus on the weak field limit.
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Figure 2.6: Long time behavior of the electrostatic correction. (a) Difference
with the stationary value as a function of time for different values of the field
(solid lines) and τ−3/2 power law (dashed line). Note that the correction is
regular, the apparent jump for f = 0.1 is due to the logarithmic scale. (b)
Prefactor of the algebraic decay as a function of the field f from numerical
integration (blue points), from the long time asymptotics (Eq. (2.40), solid
line), and small and large field asymptotics (dashed lines).

Weak field limit

The weak field limit of the electrostatic correction can be obtained by expanding the
integrand (2.36), leading to:

γel =
∞∑
n=0

f2nγ
(2n)
el . (2.41)

The first two terms are:

γ
(0)
el (τ) = −

√
2 erfc (

√
τ)− 2eτ erfc

(√
2τ
)
+ 2−

√
2

48π
, (2.42)

γ
(2)
el (τ) =

1

20π

[
3− 2

√
2

4
+

4τ − 8eτ + 2e2τ + 3

4
erfc

(√
2τ
)

+

√
π erfc (

√
τ)− e−2τ√τ√
2π

− (1− e−τ )
2

2
√
2πτ

]
. (2.43)

The long time behavior of the lowest order term (Eq. (2.42)) is given by:

γ
(0)
el (τ)− γ

∞(0)
el ∼

τ→∞

e−τ

96
√
2π3/2τ3/2

. (2.44)

It decays exponentially, confirming that the algebraic decay at finite field is rooted in
the non-linear response. Moreover, the asymptotics (2.44) matches exactly the long time
asymptotics when going from NESS to equilibrium (obtained from a weak field expansion
of Eq. (2.35)). Indeed, expanding the equation (2.26) for the correlation at weak field
reveals that the NESS to equilibrium and equilibrium to NESS trajectories are identical
in the linear regime.
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At the next order, the algebraic behavior is recovered:

γ
(2)
el (τ)− γ

∞(2)
el ∼

τ→∞
− 1

160
√
2π3/2τ3/2

, (2.45)

in agreement with the f2 dependence of the prefactor of the algebraic decay (Fig. 2.6(b)).

The lowest order term, γ(0)el (τ), is a decreasing function of τ , while the next order, γ(2)el (τ),
is increasing. The time location of the minimum, τ∗el, can be obtained at low field by
comparing these two terms. As τ∗el seems to diverge as the field goes to zero (Fig. 2.4(b)),
it is sufficient to use the long time asymptotics, Eqs. (2.44, 2.45). Differentiating the long
time asymptotics of γ(0)el (τ) + f2γ

(2)
el (τ) gives the following equation for the time location

of the minimum: 9f2eτ − 10τ − 15 = 0. To leading order in f , the solution is:

τ∗el(f) ∼
f→0

−2 log(f). (2.46)

This asymptotic behavior is compared to the numerical evaluation of the time location of
the minimum in Fig. 2.4(b).

2.6.2 Hydrodynamic correction

The integrand of γhyd in Eq. (2.30), which we denote h(s, u, f, τ) is obtained from the
solution (2.25):

h(s, u, f, τ) = −
f2s2u2

(
u2 − 1

)
e−τ(2s2+1)

(s2 + 1) (2s2 + 1) (f2u2 + s2 + 1) (1− 4f2s2u2)3/2

×
(
− 4

(
f2u2 + s2 + 1

)√
1− 4f2s2u2

+
(
2s2 + 1

) [
2f2u2

(√
1− 4f2s2u2 + 2s2

)
+
√
1− 4f2s2u2 − 1

]
eτ
√

1−4f2s2u2

+
(
2s2 + 1

) [
2f2u2

(√
1− 4f2s2u2 − 2s2

)
+
√

1− 4f2s2u2 + 1
]
e−τ

√
1−4f2s2u2

)
+

2
(
u2 − 1

) (
f2u2 + 2s2 + 1

)
(2s2 + 1) (f2u2 + s2 + 1)

. (2.47)

The last term in h is independent of time and corresponds to the steady state correction
γ∞hyd (Eq. (2.32)).

The hydrodynamic correction is integrated numerically and shown as a function of time in
Fig. 2.7. The main difference with the electrostatic correction is the finite value at τ = 0.
This is due to the fact that the hydrodynamic correction involves the even part of the
correlation, which is finite for the equilibrium initial condition. As for the electrostatic
correction, the relaxation towards the stationary value is non-monotonic; the time location
of the maximum as a function of the field is plotted in Fig. 2.4(b). We now study the short
and long time behaviors of the correction.
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Figure 2.7: Hydrodynamic correction γhyd(τ) from equilibrium to NESS from
numerical integration of Eq. (2.30) for different values of the field f .
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Figure 2.8: Short time behavior of the hydrodynamic correction. Numerical
integration for different values of the field (solid lines) and short time asymp-
totics (Eq. (2.48), dashed line).

Short time limit

Using the same method as for the electrostatic correction, we find the short time behavior
of the hydrodynamic correction. We find γhyd(τ) →

τ→0
−1 and

γhyd(τ) + 1 ∼
τ→0

2

15

√
2

π
f2τ3/2; (2.48)

it is compared to the numerical integration in Fig. 2.8. The short time evolution is slower
than for the electrostatic correction and depends on the field. We also observe that the
departure from the short time asymptotics occurs sooner for a larger field.

Long time limit

To estimate the behavior of the hydrodynamic correction at long times, we first separate
the time independent part in the integrand (2.47), which integrates to γ∞hyd. The remaining
time dependent part of the integrand gives us access to the large time asymptotic behavior
of the conductivity. We perform the same change of variables, w =

√
τs and then expand
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the integrand to the lowest order around τ → ∞, yielding:

γhyd(τ)− γ∞hyd ∼
τ→∞

1

16
√
2πτ3/2

[
15 + 6f2

f3
sinh−1(f)− 15 + 11f2

f2
√
f2 + 1

]
. (2.49)

This asymptotics is compared to the numerical integration in Fig. 2.9(a). We find again
an algebraic relaxation towards the stationary value, with the same exponent 3/2 as for
the electrostatic correction. Similarly, the prefactor goes to zero as the field goes to zero
(Fig. 2.9(b)), indicating that the algebraic decay is a non-linear effect.

Weak field limit

The weak field limit of the hydrodynamic correction can be obtained by expanding the
integrand (2.47), leading to:

γhyd =

∞∑
n=0

f2nγ
(2n)
hyd . (2.50)

The lowest order term is γ
(0)
hyd(τ) = −1. It relaxes instantaneously, so that its difference

with its value in the stationary state is zero, mirroring the absence of the hydrodynamic
correction when going from NESS to equilibrium. This instantaneous relaxation also shows
that the algebraic decay is, as for the electrostatic correction, a non-linear effect.

The following terms are:

γ
(2)
hyd =

3− 2
√
2

10
+

1

10

[
(4τ − 4eτ + 1) erfc

(√
2τ
)
+ 2

√
2 erfc

(√
τ
)
− 2

√
2

π
e−2τ√τ

]
,

(2.51)

γ
(4)
hyd =

3

280

(
16
√
2− 23

)
+

3

280

[
−
(
16τ2 + 48τ − 64eτ + 8e2τ + 33

)
erfc

(√
2τ
)

− 16
√
2 erfc

(√
τ
)
+ 2

√
2

π
e−2τ 4τ

2 + 11τ − 8eτ + 2e2τ + 6√
τ

]
. (2.52)

They behave at long time as:

γ
(2)
hyd(τ)− γ

∞(2)
hyd ∼

τ→∞

e−2τ − 2e−τ

20
√
2πτ3/2

, (2.53)

γ
(4)
hyd(τ)− γ

∞(4)
hyd ∼

τ→∞

3

140
√
2πτ3/2

. (2.54)

Here, the algebraic decays appears at the fourth order in the field, in agreement with the
f4 dependence of the prefactor of the algebraic decay (Fig. 2.9(b)).

Finally, as for the electrostatic correction, comparing the orders 2 and 4 (Eqs. (2.53, 2.54))
allows to find the asymptotic behavior of the time location of the minimum at weak field:

τ∗hyd(f) ∼
f→0

−2 log(f). (2.55)
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Figure 2.9: Long time behavior of the hydrodynamic correction. (a) Difference
with the stationary value as a function of time for different values of the field
(solid lines) and τ−3/2 power law (dashed line). (b) Prefactor of the algebraic
decay as a function of the field from numerical integration (blue points), from
the long time asymptotics (Eq. (2.49)), and small and large field asymptotics
(dashed lines).

This asymptotics is the same as for the electrostatic correction Fig. 2.4(b).

2.7 Conclusions

In this chapter we have computed the transient ionic correlations in an electrolyte under a
sudden switch on or off of an external electric field of arbitrary magnitude using linearized
SDFT. It was shown that the correlations do not follow the same trajectory when the field
is turned on or off. Using SDFT formalism, we derived an exact expression for the total
electric current in terms of the two-point and three-point correlation functions. We used
linearized SDFT to compute the correlation function and derived the electrostatic and
hydrodynamic corrections from the ionic correlations. When the field is turned off, the
hydrodynamic correction is absent and the electrostatic correction decays exponentially.
This fast decay seems to correspond to the fast decay of the odd part of the correlations;
in contrast, the even part of the correlations, which is not involved in the electrostatic
correction, decays more slowly. On the contrary, when the field is switched on, we found
that both corrections algebraically relax to their stationary value with the same exponent.
In the linear response regime, an exponential relaxation is recovered when the field is
switched on, showing that the algebraic relaxation is a nonlinear effect.
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Chapter 3

Correlations in electrolyte systems –
Long range behavior

The results presented in this chapter are based on unpublished work.

In the previous chapter, the electrostatic and hydrodynamic corrections to the conductivity
were given in terms of the ionic correlation functions (Eqs. (2.29,2.30)), and we discussed
the relationship between the temporal behavior of the correlations and the conductivity
corrections. However, the discussion of the evolution of the correlations was limited to
qualitative aspects. In fact, while in equilibrium the correlations are of the Yukawa form,
isotropic and decaying exponentially with distance, in the NESS they are long range [66].
The algebraic decay of the correlations out of equilibrium has been shown to give rise to
long-range forces, but it has not been precisely characterized in the steady state, nor in
the transient regime.

A better understanding of the behavior of the correlations at large distances (compared to
the Deybe length λD) might suggest a certain degree of universality of the correlation func-
tion in driven systems with long-range interacting particles. Such a characterization has
been obtained for a driven binary mixture with short-range interactions [70]. Although the
correlations of both systems are short-range at equilibrium and long-range at the NESS,
as we will see in this chapter, the correlation structure is intrinsically different. Examining
Fig. 3.1, which presents the NESS correlation elements in real space at large distances, we
can see a clear conical structure. This unique conical shape that changes its head angle
with the external field in a non trivial way raises the question of its origin. In general,
the small wavenumber limit of the correlation function in Fourier space contains ther-
modynamic information related to isothermal compressibility [84]. Finally, the dynamics
of the correlation at large distances and long times (compared to the Deybe length and
time λD, tD) after switching on the driving field will allow us to rationalize the algebraic
relaxation of the conductivity found in the previous chapter.

3.1 Stationary case

We begin by considering the simpler case of the non-equilibrium steady state. The corre-
lation elements in Fourier space for binary monovalent electrolytes can be calculated using
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Figure 3.1: The correlation function in the non-equilibrium steady state, for
different values of the normalized external field f . panels (a,b,c) are the anion-
cation correlation c−+ and panels (d,e,f) are the equal charge correlation cαα.
One can observe that far from the origin, a cone develops and that at vanishing
fields the angle of the cone reaches a finite value, as predicted in Eq. (3.12).
Surprisingly, the long-range shape of any ion-ion correlation function is the
same. In dashed black line is the prediction of Eq. (3.12).

Eq. (2.26). In the steady state case, as shown in [60], the equation reduces to a set of
algebraic equations to which the solution is:

c̃(s) =
s2

2 (1 + 2s2)
(
s2 + s4 + f2s2∥

) ( 1 + 4s2 + 4s4 + 4f2s2∥ 1 + 2s2 − 2ifs∥

1 + 2s2 + 2ifs∥ 1 + 4s2 + 4s4 + 4f2s2∥

)
.

(3.1)
We remind the reader that the system of equations is dimensionless and that the length is
measured in Debye length units. We arrange the correlation terms in this way, which is not
necessarily the most reduced version, to make the behavior around the origin more visible.
Note that the diagonal terms (c̃++ and c̃−−) include the self-interaction term, which is a
constant in Fourier space and a delta function centered oat the origin in real space. Since
we are focusing on the large distance behavior, this will not affect the result we derive.

3.1.1 Discontinuity at small wave number

Examining c̃(s), we see that there is a discontinuity at the origin, since approaching the
origin from the direction perpendicular or parallel to the electric field does not have the
same limit:

c̃αβ
(
s∥ = 0, s⊥

)
=

s⊥→0

1

2
c̃αβ

(
s∥, s⊥ = 0

)
=

s∥→0

1

2 (1 + f2)
(3.2)
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The fact that the Fourier transform of the correlation function is not continuous at the
origin usually indicates an algebraic decay in real space. To determine the long-range prop-
erties of the correlation function, we can separate this discontinuity from the full expression.
By doing so, we are left with a term called the singular part c̃s, which encompasses the
discontinuity and accounts for the long range behavior in real space, and the rest, namely
c̃− c̃s, which is (more) regular at the origin and hence its contribution decays faster in real
space.

Note that with this definition, the singular part is defined up to a regular function. We
can extract the discontinuity from Eq. (3.1) by recalling that s2 = s2⊥ + s2∥ and discarding
higher powers of s⊥ and s∥. This way we find the singular part, which is identical for all
correlation elements:

c̃s =
s2

2
(
s2 + f2s2∥

) (3.3)

One can verify that subtracting this term from the correlation elements regularizes the
behavior at the origin, and the regularized term goes to 0 as s goes to 0. Therefore, the
inverse Fourier transform of the singular part is the behavior of the correlation elements
at long distances in real space. We can calculate the its inverse Fourier transform:

cs =
1

(2π)d

∫
ds

s2

2
(
s2 + f2s2∥

)e−isx. (3.4)

One can rewrite the expression as the Laplacian of an integral:

cs = − 1

2 (2π)d
∇2

x

∫
ds

e−isx

s2 + f2s2∥
. (3.5)

Separating the variable s to the parallel and perpendicular parts we get:

cs = − 1

2 (2π)d
∇2

x

∫
ds

e−isx

s2⊥ + (1 + f2) s2∥
. (3.6)

Now we apply the following change the variables ŝ =
{
s∥
√
1 + f2, sj

}
and x̂ =

{
x∥/
√
1 + f2, xj

}
,

where xj and sj represent all the perpendicular axes. One gets in the new variables:

cs = − 1

2
√
1 + f2 (2π)d

∇2
x

∫
dŝ

e−iŝx̂

ŝ2
, (3.7)

which can be written in terms of the Green’s function for the electrostatic interaction:

cs = − 1

2
√
1 + f2 (2π)d

∇2
xGes (x̂) . (3.8)
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This expression can be evaluated in d dimensions to get:

cs = − f2

4πd/2

(
f2 + 1

) d−3
2 Γ

(
d

2

)
gd

(√
1 + f2

x⊥
x∥

)
with gd(y) =

y2 − (d− 1)

(y2 + 1)
d
2
+1

, (3.9)

where Γ is the gamma function. When we set the dimension to d = 3, we gets:

cs = − 1

8π
√
1 + f2

∇2
x

1√
x2⊥ +

x2
∥

1+f2

. (3.10)

One can see that this function can be written as:

cs = − f2

8πx3∥
g3

(√
1 + f2

x⊥
x∥

)
with g3(y) =

y2 − 2

(y2 + 1)5/2
. (3.11)

The expression in Eq. (3.11) has several interesting features. First, as the argument of
the function g3, which contains the ratio between x∥ and x⊥, implies the conical shape
that is clearly visible in Fig. 3.1. This is an intrinsic difference from systems with short-
range interactions. Both types of systems – those with short-range interactions and those
with long-range interactions – exhibit short-range particle-particle correlation functions at
equilibrium. Out of equilibrium, however, the correlations become long-range. Yet the
structure of the correlation function is different. In systems with short-range interactions,
instead of a cone, we find a paraboloid aligned with the driving field [70]. Second, the angle
of the cone does not approach π

2 , as one might expect, while the field is decreased towards
zero. Instead, it settles at an angle, unlike for example, the Mach cone. Finally, the way
Eq. (3.11) is arranged shows that there is a self-similar shape for each cut along the x∥ axis.
In fact, by stretching this scaling function gd by the factor

√
1 + f2, we find a universal

shape for any cut and external field. We can see the shape of the function g3 against a
numerical inversion of the Fourier transform of the correlation element in Fig. (3.2).

From Eq. (3.9) we can see that the angle Θ of the cone where the value of the correlation
is 0 is given by:

Θd = sin−1

(√
d− 1

d+ f2

)
(3.12)

This expression shows that the angle of the cone in any dimensions does not converge
to π/2, as one might expect, and that the spherically symmetric correlation shape is not
recovered by decreasing the magnitude of the external field f . This prediction is clear in
Fig. (3.1) where the limiting angle will be Θ3 = sin−1

(√
2
3

)
≈ 54.74◦.

3.1.2 quadrupole potential

To get insight into the shape of the correlations, we draw the following analogy with a
quadrupole moment potential. Consider the following configuration of 4 point charges : 2
negative charges are placed at the origin and one positive point charge is placed at each
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Figure 3.2: The correlation function times |x∥|3f−2 along slices of constant x∥
values. This allows us to compare it to the scaling function g3. The dotted
lines correspond to f = 1 while the solid lines correspond to f = 5. We can
see in solid black the evaluation of Eq. (3.11).

side of the negative ones, along the x∥ axis, at distance b. See Fig. 3.3 for an illustration
of the charge layout. The electric potential in space would be:

ϕ =
q

4πεℓ

 1√
x2⊥ + (x∥ − b)2

− 2√
x2⊥ + x2∥

+
1√

x2⊥ + (x∥ + b)2

 , (3.13)

where ℓ is the length unit and x∥, x⊥ and b are dimensionless. Expanding this formula
around small values of b, one finds:

ϕ = − b2q

4πεℓx3∥
g3

(
x⊥
x∥

)
(3.14)

where g3 is defind in Eq. (3.11). This shows us that the long range shape of the particle-
particle correlation function has the shape of the electric potential of a quadrupole moment
of a charge distribution, where f2 is analogous to the magnitude of the quadrupole moment
tensor b2. To push the analogy between the systems further, one can assume that the space
permittivity is anisotropic, such that it would scales as ε⊥ = ε0

√
1 + b2 while in the other

direction it constant ε∥ = ε0. This would lead to a complete functional identification
between the correlation function and the electric potential of the 4-charge system:

ϕ = − b2q

4πε0ℓx3∥
g3

(√
1 + b2

x⊥
x∥

)
(3.15)

Even though the origin of this analogy is not completely clear to us, it suggests a relation
to the deformation of the picture of the ionic cloud, as it has been proposed in the work of
Onsager [24, 85]. The identification of the correlation function and effective electrostatic
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Figure 3.3: An illustration of the point charge configuration to which the
long distance electric potential is analogues to the long range particle particle
correlation function.

potential is no coincidence in equilibrium for the DH limit and further investigation might
lead to interesting relations to the equilibrium case.

3.2 Time dependent correlations

As we saw in chapter 2, an algebraic relaxation of the transient was found in the long
time regime of the conductivity. In this section we study the time dependent behavior
of the correlations to further detail. This will shed light on the transient of macroscopic
quantities of the system. In particular we focus on the spatial regime where the Debye
length λD is small and diffusion length

√
κTt is large.

Eq. (2.26) can be solved exactly for an immediate switch on of the electric field, to give:

c̃++ =
f2u2e−Bτ

2ABC∆

[
B2 cosh

(√
∆τ
)
+B

√
∆sinh

(√
∆τ
)
− 4Cs2

]
+

1

2BC
− 1

B
+ 1,

(3.16)

c̃+− =
fue−Bτ

2ABC∆

[
B
√
∆fu sinh

(√
∆τ
)
(B − 2ifsu) +Bfu cosh

(√
∆τ
)
(∆− 2iBfsu) + 2iCs

]
+

1

2C
− ifsu

BC
, (3.17)

where A = 1 + s2 ; B = 1 + 2s2 ; C = f2u2 + s2 + 1 and ∆ = 1 − 4f2s2u2. The other
terms satisfy: c̃−− = c̃++ and c̃−+ = c̃∗+−. At long times, the dominant term is the one
that correspond to the smallest eigenvalue of the system. In this case, it corresponds to
B −

√
∆. We can read it of the expressions in Eq. (3.16):

c̃++ =
f2u2e−τ(B−

√
∆)

4AC∆

[
B +

√
∆
]
+

1

2BC
− 1

B
+ 1, (3.18)

c̃+− =
f2u2e−τ(B−

√
∆)

4AC∆

[√
∆(B − 2ifsu) + (∆− 2iBfsu)

]
+

1

2C
− ifsu

BC
. (3.19)

These correlation terms can be approximated in the long range regime, which translates
to s → 0 in non dimensionalised Fourier space. Again, we find that the behavior of all the
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correlation terms is the same:

c̃αβ =
f2s2∥

2
(
s2 + f2s2∥

)e−2τ
(
s2+f2s2∥

)
+

s2

2
(
s2 + f2s2∥

) , (3.20)

where we replaced u =
s∥
s . One sees that when τ → 0, the correlation is 1/2 which

is the equilibrium correlation at large distances. When τ → ∞ one recovers the NESS
result from the previous section. We can identify the exponential as the solution to the
diffusion equation in Fourier space, which means that the transition between these two
states follows a diffusive dynamics. The term f2s2∥ enhances the diffusion in the direction of
the driving field. To see better the diffusion coefficient we revert to dimensional quantities
τs2 = tκT

λ2
D
k2λ2

D = tk2κT . The correlation spreads like a non isotropic diffusion with
diffusion constants κT in the perpendicular directions and κT (1+f2) in the field direction.

We can invert the time dependent term back to real space. To do so, we start by examining
a change of variables to the Fourier transform. In general, the correlation in real space
satisfy:

c(x, τ) =
1

(2π)d

∫
c̃(s, τ)e−isxds. (3.21)

Motivated by the shape of the correlation in Fourier space, we apply the following change

of variables s̃ =
{
s∥
√
τ
√

1 + f2, sj
√
τ
}

and x̃ =

{
x∥

√
τ
√

1+f2
,
xj√
τ

}
, the index j runs for all

the perpendicular axes to the external field. One gets the new variables:

c(x, τ) =
1

(2π)d τd/2
√
1 + f2

∫
c̃(s̃, t)e−is̃x̃ds̃. (3.22)

In the new s̃ coordinates, Eq. (3.20) have the form:

cs(s̃) =
1

2
+

f2

2 (1 + f2)

(
e−2s̃2 − 1

)
s̃2

s̃2∥. (3.23)

Discarding the constant 1
2 as it will give a delta function at the origin and substituting

back into Eq. (3.22) we get:

c(x) =
f2

2 (2π)d τd/2 (1 + f2)3/2

∫
e−2s̃2 − 1

s̃2
s̃2∥e

−is̃x̃ds̃. (3.24)

We can replace s̃2∥ with a minus second derivative with respect to x̃∥. By doing so, we are
left with as radially symmetric Fourier transform:

c(x) = − f2

2 (2π)d τd/2 (1 + f2)3/2
∂2

∂x̃2∥

[∫
e−2s̃2 − 1

s̃2
e−is̃x̃ds̃

]
. (3.25)
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Using the radial symmetry, the integral is reduced the single integral:

c(x) = − f2

2 (2π)d τd/2 (1 + f2)3/2
∂2

∂x̃2∥

[
(2π)d/2

x̃d/2−1

∫ ∞

0

e−2s̃2 − 1

s̃2
s̃d/2−1Jd/2−1 (s̃x̃) s̃ds̃

]
.

(3.26)
The integral is the Hankel transform of order

(
d
2 − 1

)
of the function e−2s̃2−1

s̃2
s̃d/2−1. It can

be evaluated to get:

c(x) = − f2

8πd/2τd/2 (1 + f2)3/2
∂2

∂x̃2∥

Γd/2−1

(
x̃2

8

)
x̃d−2

 , (3.27)

where Γd/2−1 is the (upper) incomplete gamma function of d/2 − 1. This shape of the
correlation can be written as:

c(x) =
1

8πd/2

1

τd/2
f2

(1 + f2)3/2
Φ

(
x√
τ

)
. (3.28)

The function Φ is anisotropic in space but presents diffusive scaling between the spatial
and temporal coordinates. It’s behavior can summed as:

Φ(x) ∼ 2
(
f2 + 1

)d/2
Γ

(
d

2

) (
du2 + f2

(
u2 − 1

)
− 1
)

(1− f2 (u2 − 1))
d
2
+1

1

xd
∼ 1

xd
when x → 0, (3.29)

Φ(x) ∼ u2

1 + f2 (1− u2)
exp

(
−
1 + f2

(
1− u2

)
8 (f2 + 1)

x2

)
∼ exp

(
−x2

)
when x → ∞, (3.30)

where u = z
x . We can see that in the regime where |x|√

τ
≪ 1, namely, when the diffusion

length scale is large compared to the region of interest, we recover the time independent
NESS solution. In the opposite regime, where the diffusion length scale is small compared
to region of interest, we find that the correlation decays exponentially fast, and the corre-
lation elements are effectively zero as in equilibrium. Note that under the approximation
we took, the Debye length scale was taken to zero. In Fig. 3.4 one can see the different
regimes, at different time stamps, in rescaled and real axes. Eq. (3.27) is reduced, in three
dimensions, to the following expression:

c(x) = − f2

8πτ3/2 (1 + f2)3/2
∂2

∂x̃2∥

erf
(

x̃
2
√
2

)
x̃

 . (3.31)

Together with the stationary result in Eq. (3.11) we get that the behavior of the correlation
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Figure 3.4: A time series of the correlation element rescaled by time c−+τ
3/2,

along rescaled (upper row) and real (lower row) axes. The figure has been
evaluated for f = 1. Near the center one can see the conical shape found in
the NESS. Away from the center we find the exponentially small equilibrium
value. In between we find the term corresponding to the second term in the
r.h.s of Eq. (3.32). Its magnitude decays like τ−1/2 and so it is visible in the
correlation even at large times. In the rightmost panels the angle predicted by
Eq. (3.12) was added, it allows to appreciate visually the different regimes of
behavior.

is of the form:

c(x, τ) = − f2

8πx3∥
g3

(√
1 + f2

x⊥
x∥

)
erfc


√√√√ x2

∥
f2+1

+ x2⊥

8τ



−

f2 exp

− x2∥
f2+1

+x2
⊥

8τ


8
√
2π3/2

√
(f2 + 1) τ

 (
f2 + 1

)
x2⊥ + 2x2∥(

(f2 + 1)x2⊥ + x2∥

)2 −
x2∥

4 (f2 + 1) τ
(
(f2 + 1)x2⊥ + x2∥

)
 .

(3.32)

This expression is reminiscent of the known solution to the diffusion equation under switch-
ing on a constant source term at the origin. What differentiate our case, is the fact that the
diffusion coefficient is not isotropic and that the source located at the origin the Laplacian
of a dirac delta function.
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3.3 Equation for the long range correlations

Another way to derive the long-range behavior of the correlation elements is by approximat-
ing the Langevin equations, which results in a coarse grained equation for the correlation
elements.

3.3.1 Coarse grained equation

Similarly to [74], we start by considering the Eq. (2.20) for the density of the species α in
Fourier space, for the special case of binary monovalent electrolytes we get

˙̃n± = −κTk2ñ± ± iκqE · kñ± − κρ̄k2
∑
β

Ṽ±βñβ + χ±. (3.33)

where χ is a Gaussian white noise with a correlation function that follows:

⟨χα(k, t)χβ(k
′, t′)⟩ = 2(2π)dκT ρ̄k2δαβδ(k + k′)δ(t− t′). (3.34)

Now we will consider the equations for the sum and difference variables, U = ñ++ ñ− and
∆ = ñ+ − ñ−, namely:

U̇ = −κTk2U + iκqE · k∆+
√
2χU . (3.35)

∆̇ = −κTk2∆+ iκqE · kU − 2κρ̄
q2

ε
∆+

√
2χ∆. (3.36)

In order to address the asymptotic long-distance behavior of a system, it is often useful
to simplify the analysis by identifying certain regimes where the dynamics are dominated
by particular physical processes. In the context of charge fluctuations, for example, it is
known that the behavior is strongly influenced by the Debye screening mechanism at short
length and time scales. However, when considering longer length and time scales, it is
often possible to approximate the charge fluctuations with a quasi-stationary solution that
captures the dominant features of the system. Note that when E is set to 0 the equation
for U describes diffusion and the equation for ∆ describes diffusion in the presence of
screening, which flatten even the very slow modes (small wavenumber) after the Debye
time.

Applying a field couples the equations, in particular, this coupling gives rise to a charge
fluctuation that persists beyond the Debye time. Following this logic, we examine the
behavior of Eqs. (3.36) in the regime where λ2

D
κT and λD are small. Eq. (3.36) simplifies

to:

2κρ̄
q2

ε
∆ = iκqE · kU. (3.37)

Note that the noise term is also of higher order in λD. Now we can use Eqs. (3.37,3.35) to
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write a closed equation for U :

U̇ = −κT
(
k2 + f2k2∥

)
U +

√
2χU . (3.38)

where we denote the direction of the field as k∥. We recall the definition f = qλDE0/T .
With Eq. (3.37,3.38) we can write an equivalent version of Eq. (2.24) that is valid only for
large distances compared to the Debye length. As in Eq. (2.23), we have ⟨U(k, t)U(k′, t)⟩ =
(2π)dδ(k+k′)CUU (k, t), where CUU (k, t) is the Fourier transform of the correlation function
in real space:

ĊUU (k, t) = −2κT
(
k2 + f2k2∥

)
CUU (k, t) + 4κT ρ̄k2 (3.39)

We can nondimensionlize the equation in the same way done in subsection 2.4 to get:

ċUU (s, τ) = −2
(
s2 + f2s2∥

)
cUU (s, τ) + 4s2. (3.40)

We recall that cUU =
∑

αβ c̃αβ so we need to solve for cUU = 4Csp, substituting this
definition into Eq. (3.40) gives:

Ċsp(s, τ) = −2
(
s2 + f2s2∥

)
Csp(s, τ) + s2, (3.41)

with the initial condition Csp(s, 0) =
1
2 . It is easy to see that the solution to this equation

is given by Eq. (3.20). At this stage we can gain some insight into the relaxation rates of
the conductivity corrections that we found in Eqs. (2.35,2.40,2.49).

3.3.2 Relaxation rates of the conductivity

Recalling the electrostatic correction in Eq. (2.29) we see that the integral depends on
the term

∑
α,β zα [c̃αβ(s, u, τ, f)− δαβ]. This term is equivalent in a binary monovalent

electrolyte, under the approximation we have taken, to cU∆ = ⟨U(s, t)∆(s′, t)⟩. It is clear
by expanding the expression:

〈
U(s, t)∆(s′, t)

〉
=
〈
n+(s, t)n+(s

′, t)
〉
−
〈
n+(s, t)n−(s

′, t)
〉

+
〈
n−(s, t)n+(s

′, t)
〉
−
〈
n−(s, t)n−(s

′, t)
〉
. (3.42)

Similarly, for the hydrodynamic correction that is given in Eq. (2.30), we see that the in-
tegral depends on the term

∑
α,β zαzβ [c̃αβ(s, u, τ, f)− δαβ]. Under the same assumptions,

this term is equivalent to c∆∆ = ⟨∆(t, s)∆(s′, t)⟩. This tells us that the electrostatic cor-
rection depends on the correlation function between the mass and the charge fields while
the hydrodynamic correction depends on the correlation function of the charge field with
itself.

First, we see that the exponential decay, when going from NESS to equilibrium is mani-
fested in Eq. (3.37) due to the fact that f = 0. This implies that cU∆ is strictly zero and
thus the relaxation of the correction as well.
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Second, for the equilibrium to NESS process, we can rewrite Eq. (3.37) in a nondimenion-
alized form ∆ = ifs∥U . This formula can be used to write an equation for the correlation
function between the mass field U and the charge field ∆, as well as the equation for the
charge-charge correlation function:

ċU∆(s, τ) = −2
(
s2 + f2s2∥

)
cU∆(s, τ) + ifs∥s

2 (3.43)

ċ∆∆(s, τ) = −2
(
s2 + f2s2∥

)
c∆∆(s, τ)− f2s2∥s

2, (3.44)

with the initial condition cU∆(s, 0) = c∆∆(s, 0) = 0.

The time-dependent parts of the solutions of these two diffusion equations are of the form:

cU∆ = H(s
√
τ)s and c∆∆ = H(s

√
τ)s2, (3.45)

where H is some rapidly decreasing function. Note that we have kept only the scaling
form of the expressions. Looking again at the original expressions in Eq. (2.17) we can see
that the integral of the two corrections to the conductivity, each with the corresponding
solution in Eq. (3.45) (cU∆ for first term and c∆∆ for the second) are:

I(τ) ∼
∫

H(s
√
τ)ds, (3.46)

again, we kept only the scaling form of the expressions. In particular, the Oseen tensor and
the electrostatic potential both scale as Õ ∼ Ṽ ∼ 1

s2
. By changing the integration variable

we see the the integral scales like I ∼ 1
τd/2

. In d = 3 we find that this is the relaxation
exponent, −3/2 we have found in Eqs. (2.40,2.49). In other words, the underlying diffusive
nature of the system is responsible for the algebraic decay of the currents to their steady
state values. We have shown that the algebraic decay is related to the large distance
correlations, while the short range behavior is important to capture the details of the
conductivity correction.
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Perspectives

Through chapter 2 and 3 of this manuscript we have addressed several questions about the
dynamics and long range behavior of electrolyte systems from a theoretical point of view.
We start this chapter with a brief summery of the results.

In chapter 2 the transient ionic correlations in an electrolyte were analyzed under the
sudden switch on or off of an external electric field of arbitrary magnitude using linearized
SDFT. It was observed that the correlations do not follow the same trajectory depending on
whether the field IS switched on or off. By employing the SDFT formalism, we obtained an
exact expression for the total electric current, which relies on the two-point and three-point
correlation functions. The electrostatic and hydrodynamic corrections were determined
based on the ionic correlations. When the field is switched off, the hydrodynamic correction
is absent, and the electrostatic correction decays exponentially. This rapid decay appeared
to correspond to the decay of the odd part of the correlations. In contrast, the even
part of the correlations, which did not contribute to the electrostatic correction, decayed
at a slower rate. Conversely, when the field was switched on, both corrections exhibited
algebraic relaxation towards their steady-state values, with the same rate of decay. In
the linear response regime, an exponential relaxation was recovered upon switching on the
field, indicating that the algebraic relaxation is a nonlinear effect.

In chapter 3 we have characterized the behavior of the particle-particle correlation func-
tions in the long range regime, in the non equilibrium steady state and in the transient
regime as the steady state is approached. At NESS, the correlation function has a conical
shape, which differentiate the ionic system from systems with short-range interactions. The
particle-particle correlations of both types of systems (short and long ranged interactions)
are short ranged at equilibrium and long range at NESS. However the structure of the
correlation is conical and not paraboloid [70]. Moreover, the spherical symmetry of the
correlation is not recovered and the cone’s angle reaches a finite value. Lastly we find that
a self-similar universal shape for cuts along the x∥ axis. The universal shape accounts for
any cut and external field.

There are still many questions about electrolyte systems, and we would like to discuss some
of them which seems of particular interest here.

We have analyzed the response to the application of an external electric field, but to better
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understand the dynamics of the system, it would be complementary to study its response
to an oscillating external field. This question has been partially addressed by [74], but only
under the assumption that the driving field changes on a timescale much larger than the
Deybe time. We have seen that macroscopic quantities can depend on small scale features,
for example the long range correlation function is insufficient to capture the details of the
corrections to the conductivity. This suggests that going beyond the slow change limit
of the driving field may give rise to interesting phenomena [71]. Moreover, the effects
of confinement on ionic systems were studied and are of major interest especially in the
context of soft biological matter [86, 87]. It is not clear whether the formalism presented
in this work could provide further insight into these types of problems. In particular, in
confinement to narrow channels, due to the effect of short-range repulsion between the
ions.

Another direction is to better understand the effect of the interaction potential between
the particles. In [70] short range interactions have been studied in the NESS, and in [63,64]
modified electrostatic potential has been studied to account for the short range repulsive
interactions. First, it seems relevant to study the transient regime within these potentials,
especially whether or not it has a profound effect on relaxation times. Second, the common
point between these studies is that the interaction between the particles can always be
factored as an interaction kernel G times a product of the species valences (i.e. Vαβ(x) =

zαzβG(x)). Since real particle-particle interactions do not respect such a factorization, it
would be interesting to further investigate the consequences of such interaction potentials.
Recent studies have started examining the robustness of this modification of the interaction
potential [88].

Lastly, the relationship between diffusive systems with (and without) interacting particles
and certain types of pink noise has received some attention [89, 90]. Since non-Gaussian
noise appears in a wide range of physical systems, further investigation of these preliminary
results seems of great interest. The findings of Ref. [90] relate the fractal noise to finite
observation volumes where the fluctuations of charge and mass relax differently. This fact
can be linked in a general sense to the relationship we have discussed between the relaxation
of the conductivity and the underlying diffusive nature of the ionic fields.
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Appendix – Part I

5.1 Correlations

Here, we give the dimensionless correlations obtained by solving equation (2.26) when
going from NESS to Equilibrium, and Equilibrium to NESS.

5.1.1 NESS to Equilibrium

The correlations are:

c̃++ = − 1

2A
− f2u2e−Bτ

2ABC
[B sinh(τ) + cosh(τ)], (5.1)

c̃+− = −f2s2u2e−2Aτ

2ABC
− f2u2e2τ−2Aτ

2BC
− ifsueτ−2Aτ

BC
+

1

2A
, (5.2)

where A = 1+ s2 ; B = 1+2s2 and C = f2u2 + s2 +1. By symmetry, the other terms are
c̃−− = c̃++ and c̃−+ = c̃∗+−.

5.1.2 Equilibrium to NESS

The correlations are:

c̃++ =
f2u2e−Bτ

2ABC∆

[
B2 cosh

(√
∆τ
)
+B

√
∆sinh

(√
∆τ
)
− 4Cs2

]
+

1

2BC
− 1

B
, (5.3)

c̃+− =
fue−Bτ

2ABC∆

[
B
√
∆fu sinh

(√
∆τ
)
(B − 2ifsu) +Bfu cosh

(√
∆τ
)
(∆− 2iBfsu) + 2iCs

]
+

1

2C
− ifsu

BC
, (5.4)

where A = 1 + s2 ; B = 1 + 2s2 ; C = f2u2 + s2 + 1 and ∆ = 1 − 4f2s2u2. The other
terms are c̃−− = c̃++ and c̃−+ = c̃∗+−.

5.2 Derivation of the equation for the correlations

In this appendix we derive the equation for the evolution of the correlations, Eq. (2.24)
(see Ref. [80], Sec. 4.4). We start from the stochastic equation for the density fluctuations,
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Eq. (2.20), which we write with the Itô integral notation [58]:

dñ(k) = −R(k)A(k)ñ(k)dt+ dχ(k). (5.5)

We then differentiate the definition of the correlations, (2π)dδ(k+k′)C̃(k, t) = ⟨n(k, t)n(k′, t)T⟩
(Eq. (2.23)), using the Itô formula [58]:

(2π)dδ(k + k′)dC̃(k, t)

=
〈
dñ(k, t)ñ(k′, t)T + ñ(k, t)dñ(k′, t)T + dχ(k)dχ(k′)T

〉
= dt

[
−R(k)A(k)

〈
ñ(k, t)ñ(k, t)T

〉
−
〈
ñ(k, t)ñ(k, t)T

〉
A(k′)TR(k′)T

]
− dt 2(2π)dTδ(k + k′)R(k). (5.6)

Using that R(−k)T = R(k) and A(−k)T = A(k)∗, we obtain

dC̃(k) = [−R(k)A(k)C(k)− C(k)A(k)∗R(k) + 2TR(k)] dt, (5.7)

which recovers Eq. (2.24).

5.3 Regularity of the integrands from Equilibrium to NESS

The integrands of the electrostatic and hydrodynamic corrections, Eqs. (2.36, 2.47), seem
to be singular when 1− 4f2s2u2 approaches zero. However, they are continuous and their
limits are:

y =
2f3u4e

−τ
(

1
2f2u2

+1
)

(2f2u2 + 1)3 (4f2u2 + 1)

×
[(
2f2τu2 + τ

)2
+
(
8f2u2 + 2

)
e
τ
(

τ
2f2u2

+1
)
− 8f2u2 + 4τ

(
2f4u4 + f2u2

)
− 2

]
,

(5.8)

h = −
4f2u2

(
u2 − 1

)
(2f2u2 + 1)3 (4f2u2 + 1)

[
f2u2e

τ
(
− 1

2f2u2
−1

) ((
2f2τu2 + τ

)2 − 2τ
(
2f2u2 + 1

)
− 4f2u2

)
− 2

(
8f6u6 + 10f4u4 + 6f2u2 + 1

) ]
. (5.9)
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Dense flow of granular matter
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Chapter 6

Introduction to granular media

Soft matter is a category of materials composed of basic elements that are significantly
larger than atoms or molecules, but still much smaller than the dimension of the global
system. Examples of soft matter include liquid crystals, colloids, foams, gels, pastes, emul-
sions, slurries, cellular aggregates, polymers, and granular media. The elementary building
blocks, such as bubbles, grains, or cells, have a size that introduce a new and intermedi-
ate typical length scale, known as the mesoscale, which is responsible for many specific
properties. These materials are easily deformed, dissipative, out of equilibrium, nonlinear,
affected by gravity, non-ergodic, and can exhibit yield stress, among other properties. Soft
matter is clearly distinct and does not fall into the categories of simple fluids or elastic
materials, and new theoretical frameworks are needed to properly describe this class of
materials. Even today, understanding soft matter remains a challenge for researchers.

Granular materials represent a class of materials consisting of a large number of macro-
scopic solid particles, called grains, that have a range of sizes and shapes and interact
primarily through inelastic collisions and friction. Specifically, grains have dimensions
larger than 0.1 mm. Below this threshold, Van der Waals forces must be considered, lead-
ing to the classification of such materials as powders formed from cohesive particles. In
the case of dry particles, capillary forces can be discarded and only frictional and repulsive
contact forces come into play. For particles with dimensions smaller than 1 µm, called
colloids, thermal fluctuations become important.

Grain-based materials have a wide range of applications in a variety of industries, includ-
ing construction, mining, agri-food, pharmaceutical, and petrochemical. In these areas,
overcoming the challenges of storing, transporting and handling granular materials is of
great importance. In addition, granular materials play a key role in various geophysical
phenomena such as landslides, avalanches, soil liquefaction, and cliff destabilization.

At first glance, dry granular media may appear simple and straightforward, given that these
are systems that have been known for centuries, consisting of a fixed number of macroscopic
particles driven by gravity. Each grain obeys the laws of classical mechanics and interacts
through what might be perceived as “simple” frictional collisions. Furthermore, it might
seem that this type of system could be completely characterized by a small number of
parameters: gravitational acceleration g, grain density ρ, grain diameter d, and friction
between grains µ.
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However, despite this apparent simplicity, accurately predicting the collective motion of
grains within a large assembly proves to be a complex task. Even when considering the
most idealized granular system of spherical beads. This complexity manifests itself in many
counterintuitive phenomena in granular media, such as i) The medium can dramatically
change its behavior based on mechanical constraints, behaving like a solid, liquid, or gas
[91]. ii) Inhomogeneous force propagation along chains, leading to the Jenssen effect [92,93].
iii) The presence of shear banding similar to that seen in foams [94, 95]. iv) Segregation
phenomena such as the Brazil nut effect [96]. v) Jamming [97,98] and Reynolds dilatancy
[99].

Despite several decades of intensive research, some of the mechanisms underlying dense
granular flows remain largely unresolved. A universal framework to describe the numerous
configurations and observations studied in the laboratory is still lacking [100]. Most models
remain semi-empirical and are not supported by strong microscopic justifications [101–
104]. The global flow properties are usually described by the popular µ(I) rheology. This
approach consists of two empirical relations between the macroscopic friction coefficient µ
(defined as the ratio of shear stress to pressure) or volume fraction ϕ on one hand, with
the inertial number:

I = γ̇d

√
ρp

P
, (6.1)

on the other hand. I involves the shear rate γ̇, the grain size d, the mass density ρp ∼ m/d3

of the grains (or their individual mass m) and the pressure P [91, 101]. Essentially, in
this Amontons-Coulomb-like description, a granular layer starts to flow when the ap-
plied shear stress exceeds a critical frictional stress µcP . Nevertheless, this description
fails to properly rationalize some important observable features, such as the presence of a
metastable region [105, 106] and the layer thickness dependence of the angle at which the
flow stops [107–110]. In the last decades, it has been shown that non-local/cooperative
effects are essential to properly describe dense granular flows [111–118].

6.1 Flow regimes

Classical fluids are well described by the Navier-Stokes equations, but no constitutive law
can reproduce the diversity of behavior observed in dry granular materials. This difficulty
arises from fundamental properties of granular materials such as negligible thermal fluctu-
ations and highly dissipative interactions. As a result, granular flows are often classified
into three different regimes [100, 119]: A dense quasi-static regime in which deformations
are very slow and the particles interact by frictional contacts; a gaseous regime in which
the flow is very fast and dilute and the particles interact by collision; and an intermediate
liquid regime in which the material is dense but still flows like a liquid and the particles
interact by both collision and friction. See Fig. 6.1. These regimes can of course co-exist,
as presented in the figure.
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Figure 6.1: An illustration of the quasi-static, liquid, and gaseous flow regimes
obtained by pouring steel beads on a pile. A solid-like region under the pile in
which grains do not move or creep very slowly, a liquid region in which a dense
layer flows, and a gaseous region in which the beads bounce in all directions
creating a dilute chaotic medium. The picture was taken from [120].

6.2 Friction in granular media

In granular media, friction occurs naturally during particle-particle and particle-boundary
contact and is therefore a critical factor in understanding granular media behavior. How-
ever, frictional phenomena can be complex and poorly understood, even beyond the gran-
ular media domain. This is a significant barrier to a comprehensive description of granular
materials.

Studies have demonstrated the need to account for rolling friction in numerical simulations
to accurately reproduce experimental observations of granular systems [121]. In addition,
rolling friction plays a critical role in the packing structure and dynamics of granular
media [122, 123]. Simulations reveal extensive regions of rotating grains, indicating the
need to include rotational motion, and hence rotational friction, in modeling efforts.

Contrary to the behavior of Newtonian fluids, a container filled with granular material
does not maintain a horizontal free surface (perpendicular to gravity) while it is gradually
tilted. No significant change occurs until the slope reaches a critical angle. At this point,
an avalanche is inevitably induced, resulting in a reduced slope. Similarly, when a granular
pile is constructed, the slope of the pile cannot exceed a maximum threshold angle, beyond
which avalanches are invariably triggered. Interestingly, the slope seems to remain con-
stant, at least approximately, regardless of the size of the heap. This curious observation
is widely believed to be directly related to the friction between individual grains. This is
one way to characterize the effective coefficient of friction of the media with the angle of
repose:

µ = tan (θ) , (6.2)
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where θ is the slope angle of the heap. Unfortunately (or maybe fortunately), even
this characterization is insufficient, since approaching this angle from the static direc-
tion, namely the maximum angle that does not initiate flow (commonly called the critical
angle of repose θc), gives a larger angle than approaching it from the dynamic direction,
meaning the minimum angle at which flow stops (usually referred to as the angle of rest
θr). In fact, hysteresis is an important feature of the solid-liquid transition in granular
materials [124,125].

6.3 Athermal system

Grains, due to their macroscopic size, are unaffected by thermal energy. Compared to their
gravitational potential energy, the thermal energy is negligible. To see this, we can make
an order of magnitude estimation for the two energies:

A 1 mm grain with a density of 103 Kg/m3 (≲ density of most rocks) at room temperature,
Ethermal ∼ kbT ∼ 10−21J. On the other hand, the energy needed to elevate a grain on top
of an adjacent grain is Egravity ∼ ρd3gd ∼ 10−8J, which is a difference of 13 orders of
magnitude. The critical size for thermal effects is given by d∗ ∼ (kbT/ρg)

1/4 ∼ 10−6m.
This is, in fact the typical size of a colloidal particle (1 µm).

Therefore, unlike molecules, grains do not undergo Brownian motion due to their significant
inertia, resulting in granular systems that are locked into a singular configuration unless
externally perturbed. These systems are called athermal systems and are inherently out
of equilibrium. This distinguishes granular materials from other soft matter materials.

One might be tempted to assume that since temperature does not play a significant role
in granular materials, there would be no fluctuations. In fact, the opposite is true. Since
temperature cannot relax inhomogeneities, granular materials can exist in states with large
local variations. Granular media exhibit pronounced mechanical fluctuations, suggesting
that statistical approaches could help predict their emergent properties [126,127]. However,
established statistical mechanics, based primarily on the concept of temperature, may
not be applicable here. Edwards proposed replacing the energy function with a volume
function, allowing the probability of a state to be defined solely by particle positions [128].
This introduced the notion of compactivity, a temperature-like variable that measures the
proximity of the system to its densest state. However, this doesn’t account for force and
torque balances in the presence of friction, which later led to the introduction of another
temperature-like variable corresponding to stress [129] (angoricity).

Recent research [130] suggests that angoricity depends on the loading protocol, implying
its inadequacy as a state variable. Therefore, yet another temperature analog has been
introduced that is independent of the loading protocol. Further studies have also found
conditions under which the Edwards conjecture holds, providing new perspectives on gran-
ular systems [131]. In addition, a granular equivalent of the thermodynamic zeroth law
has been proposed [132].
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Extending the scope to granular flows, collisions between grains become crucial. Here,
the collision rate emerges as a key descriptor. The “granular temperature”, derived from
velocity fluctuations, characterizes the collision rate and provides insight into granular
systems that behave like gases [133,134]. This concept of granular temperature is used to
describe dense granular layers flowing down an inclined plane.

6.4 Jamming transition

The jamming transition represents a change in the state of athermal media from a fluid to
an amorphous, solid-like state. Observations of this transition have been documented in
a variety of soft materials, including granular materials, colloidal or granular suspensions,
foams, and cellular aggregates [135–138]. When a threshold density ϕJ, is exceeded, the
material transitions into a metastable and disordered state and refrains from evolving to
a slightly denser crystalline form. Reverting the material to its liquid state requires the
application of significant shear stress or a reduction in density. Thus, jamming suggested
to be an athermal version of the glass transition. Thinking of the jamming transition as a
glass transition of a liquid in the limit case of hard core interaction potential [139, 140] is
a useful analogy that allows us to draw ideas from the the glass domain. This perspective
gained prominence due to the work of Liu and Nagel [141], even though later it was shown
to be overly simplified [142].

The distinction of glass and jamming transitions have been the subject of considerable
attention [142–144]. More specifically, the distance from equilibrium, the origin of rigidity
and timescales. Identifying the specific transition a system undergoes is far from straight-
forward due to: the proximity of their density thresholds (ϕG and ϕJ), the technical com-
plexity of the measurement and the sensitivity to parameters, such as particle morphology,
dispersity, and friction. Nevertheless, it is important to emphasize that despite their ap-
parent similarities in macroscopic flow behavior, these transitions manifest on different
timescales and under different stress conditions [144].

Focusing on the jamming transition, It is widely accepted that for monodisperse spherical
grains, the transition typically occurs at ϕJ ≃ 0.64. From a theoretical point of view,
defining the jammed states is not straightforward, since there are jammed configurations
with varying values of ϕ in the phase space. A common definition that is well posed1 is
the “Maximally random jamming” (MRJ), the least ordered jammed state. Evaluation of
the MRJ state suggests that it is manifested at a density of ϕMRJ ≃ 0.637 [145].

A packing is said to be “jammed” when particles and their nearest neighbors establish
contacts that give mechanical stability to the assembly. In other words, the total force
and torque are zero for each grain [146]. Alternatively to the description in terms of
volume fraction, it is common to evaluate the mean contact number, Z, to characterize

1Apparently the notion of “random close parking” presents ambiguity in its mathematical definition
[145].
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the transition. The MRJ state is isostatic, which means that first, all degrees of freedom
are confined by contacts, and second, the number of contacts is minimal [145]. From these
considerations, the mean contact number Ziso at which jamming occurs can be identified.
Depending on the dimension of the system D, Ziso = 2D for a collection of frictionless
spheres [147].

Up to this point, our discussion of jamming has (mostly) revolved around frictionless
assemblies. Incorporating friction naturally increases the mechanical stability of system.
In the extreme case of infinite friction, the degrees of freedom are reduced to Ziso = D+1

[145, 147]. Another fundamental difference is the well-known Reynolds dilatancy [148],
which is directly related to the shearing of a jammed assembly. In frictionless assemblies,
no dilatancy is observed, thus eliminating shear jamming [125,149].

6.5 µ(I) Rheology

Upon the motion of granular media, a variety of regimes exist due to dramatic changes in
flow characteristics. In the absence of a theoretical framework for granular media, dimen-
sional analysis provides a decent starting point. In this context, the inertial number, I,
allows a simple dimensional analysis to classify these different regimes. This dimensionless
number is derived from the ratio of two different time scales. It compares the macroscopic
time scale, which is related to the plastic deformation of the material and defined by the
mean shear rate, tmacro = 1/γ̇, with the microscopic time scale tmicro = d/

√
P/ρp, which

is defined as the time taken for a grain to pass through a d-sized gap under pressure P .
The ratio between these time scales, gives:

I =
tmicro

tmacro
=

| γ̇ | d√
P/ρp

. (6.3)

The inertial number thus allows us to distinguish between the quasi-static, dense and dilute
regimes, reflecting the solid, liquid and gaseous states, respectively [91].

For quasi-static flows, characterized by extremely small values of I ≲ 10−3, the grain flow
rate is negligible compared to microscopic grain rearrangements. In this regime non-local
effects are observed [103].

In contrast, as I increases, I ≳ 1, the flow regime becomes fast and dilute, with grains
interacting primarily by inelastic collisions. This regime has led to the development of
modified kinetic theories, inspired by molecular gases, to adequately describe these flow
types [150, 151]. Between these extremes, one can observe the dense/inertial flow regime.
Considered “dense” due to a volume fraction slightly less than the jammed packing, ϕ ≃
0.5, the grains in this regime interact through both collisions and sustained contacts,
courtesy of friction. Typical granular flows observed in natural scenarios – landslides,
avalanches on sand dunes, or grains descending in a hopper – all correspond to this dense
regime. Hydrodynamic-like approaches and the µ(I) rheology are often used to describe
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this intermediate state, although it is poorly understood at the grain scale.

A challenge in understanding granular materials is to define the rheology of these systems,
i.e., to predict the behavior of the material under mechanical constraints. The µ(I) rheol-
ogy is an accepted empirical model suitable for describing dense granular flows [101]. The
granular fluid behavior is governed by the macroscopic friction coefficient (the macroscopic
effective friction coefficient of the media, which is different from the microscopic friction
coefficient between particles) µ and the volume fraction ϕ. Both depend exclusively on
the inertial number I. The constitutive relations for the shear stress, τ , and the volume
fraction, ϕ, are expressed as follows:

τ = µ(I)P ; ϕ = ϕ(I). (6.4)

Usually the empirical expression for the effective friction µ(I), which is used to fit experi-
ments is:

µ(I) = µs +
µ2 − µs

I0
I + 1

, (6.5)

where µs, µ2 and I0 are parameters of the model. The µ(I) rheology is of course a local
theory, since shear rate and pressure are local quantities. This means that at small values
of I, as the system approaches a jammed state, we expect a deviation from such a theory
because, as we saw earlier, long-range correlations appear in such assemblies that require
nonlocal behavior. A simple experiment to observe this nonlocal behavior is to tilt an
inclined plane with a layer of thickness h of granular material. It is observed that the
angle at which the flow starts changes with the thickness of the layer h [107]. See Fig. 6.2.

6.6 Bagnold flow profile

When observing the flow of a dense granular layer over an inclined surface, the velocity
profile typically follows v(z) ∼ h3/2, a profile famously known as the Bagnold profile
[100,152,153].

Derived from Bagnold’s postulates on the interactions of flowing grains, one can extract
the structure of the velocity profile. It is generally accepted that granular media start
to flow beyond a minimum critical angle θc. Therefore, it seems logical to propose a law
that correlates the flow rate J with the angle of inclination θ as J ∝ (θ − θc)

m, [154],
where experimentally m = 1/2 has been observed [154]. For comparison, in the case of
a Newtonian fluid with thickness h, density ρ, and viscosity η flowing down an inclined
surface at an angle θ relative to the horizontal, the known rate is J = ρgh3

3η sin(θ).

In simple terms, a regular fluid has a zero critical angle and an exponent m = 1. It is
important to note that in fluids, the velocity of Brownian particles significantly exceeds
the mean velocity of the flow, and the viscosity η captures all the details of dissipation.
Conversely, in granular flows, the instantaneous velocity of the grains is equal to the mean
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Figure 6.2: Flow of granular matter over a rough inclined plane, controlled by
the two parameters, slope angle and layer thickness (θ, h/d). The figure shows
regions in the parameter space where steady uniform flows are established.
The measurements show a clear dependence of the stop angle on the layer
thickness. The figure is taken from [107].

velocity of the flow. In 1954, Bagnold proposed that in an inertial granular flow, the
shear stress is proportional to the square of the strain rate [155]. This proposition can be
justified by visualizing the flow as a series of layers, where collisions between two successive
layers are nearly tangential, which shows that: the collision rate between particles increases
proportionally to ∇v and that the momentum loss after a collision is also proportional to
∇v.

The above considerations suggest that the dissipation resulting from the collisions is pro-
portional to (∇v)2. This form of dissipation should counterbalance the kinetic energy
gained by descending the inclined plane.

α(∇v)2 = ρg(h− z) (sin(θ)− µc cos(θ)) (6.6)

Here, µc = tan(θc) is the friction coefficient of a granular layer sliding over an adjacent
one, and z is the downward direction in line with the gravitational force, with α being the
combined constant of proportionality resulting from the two assumptions about collision
rate and momentum dissipation. Assuming that ρ and µ vary minimally with velocity,
the Bagnold velocity profile can be derived by first order expansion around (θ − θc) and
integration considering the boundary condition v(0) = 0 one gets:

v(z) =
2

3

√
ρg

α cos(θc)
h3/2

(
1−

(
1− z

h

)3/2)
(θ − θc)

1/2. (6.7)

While the exponent governing the depth dependence (3/2) agrees with simulations and
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experiments, the exponent m = 1
2 , which controls the angle, does not align with the

findings from simulations and experiments. In Chapter 7, we will try to understand the
origin on this exponent m, and what is missing in the theory to correct it.
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Chapter 7

Microscopic picture of the µ(I) rhe-
ology for dense granular flows on in-
clined planes

This chapter is for the most part an extraction from [10]. All the numerical results were
obtained by D. Dumont (Mons University).

In this chapter, using a combination of Discrete-Element-Method (DEM) simulations and
a model based on microscopic arguments, we address the rheology of dense granular matter
from the canonical setting of a layer flowing down an inclined plane. Therein, the incli-
nation angle θ and the layer thickness H are the two external control parameters, see an
illustration for a experimentally realizable set up in Fig. 7.1. Previous experimental and
numerical studies have shown that the local average velocity profile of a thick granular layer
flowing over an inclined plane exhibits a so-called Bagnold profile [100,152,153], namely:

⟨v(z, t)− v(0, t)⟩ ∼ H3/2 − (H − z)3/2, (7.1)

where v(z, t) is the local velocity field along the flow direction, at normal coordinate z

and time t. Besides, it has been suggested that nonlocal cooperative effects are essential
to describe the layer-thickness dependence of the stop angle [117, 118], that is to say the
smallest angle for which a stationary flow is observed. We will see here that the mechanical
noise related to grain-grain collisions determines an effective temperature. This concept
coupled to the formation of clusters appears to be a fundamental issue to derive a model for
granular flow based on the hard sphere fluid limit. The proposed model is able to predict the
size of dynamic clusters, the Bagnold velocity profile as well as the two empirical relations,
µ(I) and ϕ(I), commonly used to fit experimental and numerical data [91, 101]. The
numerical simulations were performed with the software LIGGGHTS [156]. The system
consists in a layer of identical grains, with diameter d = 1 mm, mass m = 4

3πρpd
3/8 and

elastic modulus, E = 1MPa, placed on an inclined plane with an inclination angle θ (see
Fig. 7.2a). The interactions between grains are described through a Hertz-Mindlin model
and a restitution coefficient equal to 0.5. We focus here on thick-enough layers, in order
to avoid the thickness dependence of the stop angle observed for thin layers [107–110].
The mechanical properties of the simulated grains are set to be exactly the same as in our
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θ

z

x

H

g

Figure 7.1: An illustration of a realizable set up of the experiment simulated
by the DEM. Flow of granular material on a rough inclined plane with an
angle θ. The upper channel is the reservoir of grains, which allows to observe
the steady state flow. The illustration was adapted from [100].

previous study [118], and correspond to glass beads [107]. In particular, the microscopic
coefficients µs and µr of sliding and rolling frictions are set to 0.5 and 0.01, respectively.
In addition, frictionless grains (i.e., µs=µr=0) are also simulated. The influence of the
microscopic friction has also been studied. The substrate is made of immobile grains
to mimic the glued grains in inclined-plane experiments. We impose periodic boundary
conditions in the x and y directions to get rid of side-wall effects [157]. The size of the
base has been carefully chosen in order to be large enough to avoid autocorrelations due
to periodicity. We stress that similar set-ups have already been reported [105,152,153].

Before the inclination of the plane, the layer has an initial vertical thickness Hi ranging
between 10 d and 60 d, with a base of 20 d × 20 d in the horizontal plane. The plane is
subsequently inclined briefly at 30◦ to initiate the flow. Subsequently, the inclination is
fixed at the desired angle θ, ranging between 20◦ and 40◦. For each value of Hi and θ,
the actual layer thickness H along z, and the mean volume fraction ϕ of the whole layer
(averaged over at least 10 time steps in the steady state) are measured. The average
local velocity profiles ⟨v(z, t)⟩ and the inertial number I are also computed. As a remark,
we have the relation γ̇(z) = d⟨v(z, t)⟩/dz. The averages ⟨⟩ are performed over time and
realizations, at fixed z.

7.1 Simulation of the inclined plane

In agreement with previous works [100,105,152,153], we observe that: i) there is a critical
stress to induce flow for dense granular layers, corresponding to a macroscopic friction
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Figure 7.2: a) Typical snapshot of a DEM simulation, with initial layer thick-
ness Hi = 30 d and inclination angle θ = 24◦. The color code indicates the
velocity v(z, t). b) Macroscopic friction coefficient µ as a function of iner-
tial number I = γ̇d

√
ρp/P for frictionless (diamonds) and frictional (circles)

grains, as well as various inclination angles θ, initial layer thicknesses Hi, and
various setup configurations [100,111,149,152,158,159]. c) Difference µ−µc in
friction coefficient as a function of inertial number I, where µc = µ(I → 0), for
the same data as in the previous panel. The solid and dashed lines correspond
to fit with µ − µc ∼ Iγ , the values of γ are provided in legend. d) Ratio of
volume fraction ϕ/ϕc as a function of inertial number I for frictionless (dia-
monds, ϕc ≃ 0.64) and frictional (circles, ϕc ≃ 0.6) grains. Data from [149,152]
are added for comparison. The solid and dashed lines correspond to fit with
ϕ/ϕc = 1− aIα, the values of α are provided in legend.
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coefficient 0.2 ≤ µc ≤ 0.4 for frictional grains, and 0.1 for frictionless grains (Fig. 7.2b);
ii) the local average velocity profile is well described by a Bagnold profile; iii) the volume
fraction ϕ and the inertial number I remain mostly constant throughout the layer, for all
the studied inclination angles. As proposed in several studies [91, 160, 161], dimensional
analysis shows that only one dimensionless parameter is required to describe granular flows,
the inertial number I (besides the microscopic friction coefficient). The flow properties are
characterized through the frictional, µ = µ(I), and the dilatancy, ϕ = ϕ(I) laws. The
macroscopic friction coefficient µ is determined by the shear to normal stress ratio [91,
101, 160]. For the inclined-plane geometry considered here, both the macroscopic friction
coefficient and the pressure are prescribed through the inclination θ of the plane and the
height H of the flowing layer [160]. In a continuum-limit approximation, the effective
friction coefficient for this setup is thus fixed to a constant value, µ = tan(θ) ≃ θ for the
range of inclination angles of interest. From dimensional analysis and since µ does not
depend on z/d, we can conclude that I and ϕ are constant throughout the layer and fully
determined by the inclination angle θ and the microscopic friction coefficient.

As previously shown, Fig. 7.2c confirms that µ(I) is well described by µ − µc ∼ Iγ ,
with γ = 0.40 ± 0.01 for frictionless grains [111, 149]. For frictional grains, γ = 0.95 ±
0.01 for moderate inclination angles (I ≲ 0.1) in agreement with previous observations
[100, 152, 158, 159]. It should be noted that for large inclination angles, we observe a
change of the exponent that becomes close to the value of frictionless systems γ = 0.4.
The exponent for frictional grains does not depend on the (finite) values of the microscopic
friction coefficients, thus indicating the singularity of the frictionless limit. In contrast, µc

depends on the microscopic friction coefficients, but even for frictionless assemblies a non-
zero value close to 0.1 is observed [110,149]. The exact origin of this residual macroscopic
friction remains unclear, but should be related to the steric contraints associated with
granular topography [162].

The dilatancy laws obtained from the DEM simulations are shown in Fig. 7.2d and com-
pared to data from the literature [120,160,163]. For all these combined data, the evolution
of the packing fraction with I can be empirically described by the relation ϕc − ϕ ∼ Iα,
where ϕc = ϕ(I → 0) is the volume fraction at kinetic arrest, and with α = 0.89 ± 0.1

and 0.73±0.34, for frictional and frictionless grains, respectively. Note that for frictionless
grains, another functional form was proposed [149]: 1/ϕ − 1/ϕc ∼ I0.4 but remains valid
only for very small inertial numbers, namely I ≲ 10−2.
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Figure 7.3: a) Thickness-averaged standard deviation δv of the velocity field
normalized by a typical shear velocity γ̇d, as a function of the inertial num-
ber I, for frictionless (diamonds) and frictional (circles) grains. Results from
previous works [149, 160, 164] are also shown for comparison. The dashed line
correspond to fit with δv/γ̇ ∼ I−β , the value of β is provided in legend (the
fit is limited to small I’s values, I < 0.05). The solid line is a guide for the
eyes and corresponds to a(1 + b/I0.52) with a=0.25 and b=1.5. b) Local vari-
ance δv2(z) = ⟨|v(z, t) − ⟨v(z, t)⟩|2⟩ of the velocity field v(z, t), as a function
of rescaled normal coordinate z/d, for a layer of frictional grains initially char-
acterized by Hi = 60 d and various inclination angles θ as indicated. An affine
solid line is added as a guide for the eye.

7.2 Theoretical analysis

We investigate the microscopic origin of these laws. As proposed by several authors, the
velocity fluctuations and the diffusion coefficient of the grains are strong indicators of their
dynamics [164,165].

A dense granular flow is characterized by rapid collisions involving sudden changes of the
velocity direction and renewal of the contact network. Assuming that all these events
occur at high frequency compared to the evolution of mean-field quantities, they can be
described through a granular temperature [161]. A reasonable assumption is to consider
that this temperature is related to the local velocity fluctuations, through the proportion-
ality relation:

kBT (z) ∼ mδv2(z) with δv2(z) = ⟨|v(z, t)− ⟨v(z, t)⟩|2⟩, (7.2)

the local variance of the velocity field v(z, t) along the flow direction. Figure 7.3a shows
the evolution of the dimensionless standard deviation δv/(dγ̇), where A = 1

H

∫ H
0 dz A(z)

represents the thickness average of A(z), as a function of the inertial number, for frictional
and frictionless grains. We stress that the dimensionless standard deviation is independent
of z due to the Bagnold profile satisfied by ⟨v(z, t)⟩ and the affine spatial behaviour of the
variance observed in Fig. 7.3b. Interestingly, no matter the frictional nature of the grains,
all the data reported here and in the literature collapse onto a single master curve showing
a decrease of the relative velocity fluctuations with increasing inertial number. For small
I values (I < 0.07), the dimensionless standard deviation decreases as I−0.52±0.01, while it
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Figure 7.4: a) Mean square displacement ∆z along the z coordinate averaged
over all the grains. b) Time correlations of the velocity following z for a layer of
frictional grains initially characterized by Hi = 30d and various inclination an-
gles as indicated. Inset: Log-lin plot of the velocity correlations. c) Thickness-
averaged diffusion coefficient Dz along z as a function of the thickness-averaged
standard deviation δv of the velocity field for fictional grains. The solid line
indicates a fitted expression as provided in the legend. d) Correlation time τ of
the thickness-averaged velocity fluctuations as a function the inertial number
I. The black solid line corresponds to 0.26 d/(lcγ̇), with lc/d = a(1 + b/I0.52)
with a=0.25 and b=1.5 found in panel a.
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seems to saturate to a constant value at large I [164]. Interpolating the two asymptotic
behaviours through a simple crossover form, one gets δv/(dγ̇) = a(1 + b/I0.52), that fits
well the data with a = 0.25 and b = 1.5 (see black line in Fig. 7.3a).

Let us now investigate the impact of the effective thermal energy on the grain dynamics.
As shown by the time evolution of their thickness-averaged mean-square displacement
along z (see Fig. 7.4a), the grains globally diffuse perpendicularly to the flow direction,
at long time with an associated thickness-averaged diffusion coefficient Dz increasing with
the inclination angle θ. Furthermore, as shown in Fig. 7.4c, Dz increases linearly with the
thickness-averaged standard deviation δv of the velocity field. This linear relation can be
understood from the thickness-averaged Kubo relation [1]:

Dz =

∫
dt ⟨w(z, t)w(z, 0)⟩ ∼ τ(z)δv2(z) ∼ d δv , (7.3)

with w(z, t) the velocity field along z, at position z and time t, and where we assumed
isotropic local velocity correlations of amplitude δv2(z) decaying in an exponential fash-
ion over a local characteristic time τ(z) ∼ d/δv(z). In addition, given the affine trends
in Fig. 7.3b, one can show that τ ∼ d/δv. The thickness-averaged temporal correlations
functions ⟨w(z, t)w(z, 0)⟩ of the velocity field along z, as calculated from the DEM trajec-
tories (Fig. 7.4b), appear to decay faster with increasing θ. Neglecting long-time power-law
tails, we can show that the exponential-decay time of ⟨w(z, t)w(z, 0)⟩ is well approximated
by ∼ τ . Besides, the velocity correlations suggest the existence of dynamic clusters that
persist over the correlation time. We thus hypothesize the existence of a characteristic,
mesoscopic and a priori z-dependent size lc(z) over which dynamic clusters persist during
the time τ(z). This is reminiscent of the vortices discussed by Kharel and Rognon [164].
As proposed by DeGiuli and Wyart, these clusters produce an amplification of the veloc-
ity fluctuations that is estimated through a “lever” effect [166, 167]. Specifically, one has
lc(z) ∼ d

τ(z)γ̇(z) , and, with the definition τ ∼ d/δv, one gets:

δv(z)

dγ̇(z)
∼ lc(z)/d, (7.4)

where the amplification factor appears clearly. Interestingly, since the left-hand side of
the latter relation is independent of z, as discussed above, one gets that the dynamic-
cluster size lc is in fact independent of z for the inclined-plane configuration. Figure 7.4d
shows τ , as estimated from the thickness-averaged temporal correlations functions shown
in Fig. 7.4b, as a function of I. The data are in agreement with the relation τ ∼ d

lcγ̇

with the lc derived from the crossover expression between the two asymptotic regimes of
Fig. 7.3a. Since the expression for lc is independent of the frictional nature of the grains,
this agreement suggests that the size of the dynamic clusters is mainly determined by the
collisions between grains, but not by the microscopic friction between them. Furthermore,
from Fig. 7.3a this dynamic-cluster size is expected to diverge at kinetic arrest – which is
reminiscent of the hypothetical cooperative length associated with the glass and jamming
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transitions. It should however be noted that some influence of the microscopic friction
coefficient has been observed by DeGiuli and Wyart [166,167], but for very small values of
I < 10−3 that are well below the range considered here.

In the following, we aim deriving the macroscopic rheological laws from the microscopic
fluctuations and correlations. From dimensional analysis, we have recalled that a single
parameter determines the flow properties. In the inclined-plane geometry, all dimensionless
parameters are uniquely determined by the inclination angle θ ≃ µ. Therefore, the dimen-
sionless ratio Pd3/(kBT ) should be constant in the layer for inclined-plane experiments.
In a continuous mean-field approximation, the pressure field is hydrostatic, precisely:

P (z) = ϕρpg(H − z) cos θ ≃ ϕρpg(H − z). (7.5)

It thus follows that the effective temperature must vary with the depth according to T (z) ∝
(H − z). As observed in Fig. 7.3b, apart from slight boundary deviations, the affine
relation δv2(z) ∝ (H − z) is satisfied for all the tested inclination angles θ, which supports
the definition of the effective temperature through kBT (z) ∼ mδv2(z). Interestingly, the
effective temperature and the associated mechanical noise are maximal near the substrate
and vanish at the free interface. This suggests that the collisions between mobile grains and
the glued ones at the substrate is the source of temperature in the system. Furthermore,
using the definition of the inertial number, the pressure can be written as P (z) ∼ mγ̇(z)2

dI2
.

Combining this relation with δv(z) ∼ lcγ̇(z), and the definition of the effective temperature,
one gets:

Pd3/(kBT ) ∼ d2/(l2cI
2). (7.6)

The cluster size can be derived from free volume and cluster fractal shape arguments.
Indeed, the required free volume to allow the motion of a grain implies the collective
motion of Nc grains forming a dynamic cluster. The number of grains involved scale as
Nc ∼ 1/(ϕc − ϕ). Assuming chain-like clusters with random walk-like geometry [168,169],
their size should be given by lc ∝ Nν

c with 1/2 ≤ ν ≤ 3/5 (clusters being described as
random walks or self-avoiding random walks). The size of the cluster then scales with
the packing fraction as lc ∼ d/(ϕc − ϕ)ν . Inserting this relation in the expression for the
pressure yields:

Pd3/(kBT ) ∼ (ϕc − ϕ)2ν/I2. (7.7)

By identifying the latter relation with the equation of state (EOS) for hard-sphere fluids
near the jamming transition [139, 145], that is Pd3/(kBT ) = ϕJ/(ϕJ − ϕ), the dilatancy
law can established in terms of ν:

(ϕc − ϕ) ∼ I2/(2ν+1) . (7.8)

with 0.91 ≤ 2/(2ν + 1) ≤ 1, provided that we assume that ϕJ = ϕc. These dependencies
in inertial numbers are in agreement with the observations. For the dilatancy law, Fig. 1d
shows that the exponent α = 2/(2ν+1) is equal to 0.89±0.10 for frictional and 0.73±0.34
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for frictionless grains. The large uncertainty observed for frictionless data is related to the
lack of values at large I. For the cluster size, the theory predicts a law:

lc ∼ d/Iβ with β = 2ν/(2ν + 1). (7.9)

As shown in Fig. 7.3a, we observe β = 0.52 ± 0.01 in very good agreement with the
prediction for this exponent, namely 0.5 ≤ β ≤ 0.54. The universal agreement for both
frictionless and frictional grains can be related to the evolution of the cluster size with
inertial number, and reflects once again the dominance of collisions over friction in the dy-
namics. The validity of the hard-sphere-fluid EOS is probably limited to moderate inertial
numbers, in other words I ≲ 0.5, where the granular system can be considered as a fluid
and where the mechanical noise ensures that no long-range correlations develop. Indeed, it
is likely that a transition to another dynamics regime appears close to the jamming, where
the mechanical fluctuations become less relevant. For very small values of inertial numbers,
different dilatancy laws where proposed with exponent close to 0.4-0.53 [149,170]. Recent
investigations of frictionless systems with varying restitution coefficients have shown that
close to jamming, the exponent describing the dilatancy law can vary from 0.6 to 1.5, while
it should be close to 1 for large values of I [171].

7.3 Microscopic picture

Let us finally propose a microscopic picture for the µ(I) rheological law. To do so, we
consider the steady-state balance of driving and dissipated powers for a test grain located
in a slab of thickness d at height z. First, to estimate the driving contribution, we consider
that the grain experiences the sum of gravitational and friction forces projected in the flow
direction, and that θ and θc are small, leading to an effective driving force ∼ ρpϕg(H −
z)d2(θ − θc). Since the grain moves over a distance d within a time γ̇(z)−1, the net local
driving power is:

Ẇd(z) ∼ ρpϕg(H − z)d3(θ − θc)γ̇(z). (7.10)

Secondly, we assume that the energy is mainly dissipated through the collisions with other
grains, characterized by the characteristic decay time τ(z) ∼ d/[lcγ̇(z)]. The local power
dissipated by collisions can thus be estimated by:

Ẇc(z) ∼ mδv2(z)/τ(z). (7.11)

Balancing Ẇd(z) with Ẇc(z), and recalling that δv ∼ γ̇lc, leads to γ̇2 ∼ gdϕ(H − z)(θ −
θc)/l

3
c . At small angles, and thus small I, Fig. 7.3a shows that the cluster size is adequately

described by the relation: lc ∼ d I−β . Inserting this expression in the previous one, together
with the definition of I, yields the general relation:

γ̇ ∼
[
gϕ(H − z)

d2

]1/2
(θ − θc)

1/(2−3β) . (7.12)

73



CHAPTER 7. MICROSCOPIC PICTURE OF THE µ(I) RHEOLOGY FOR DENSE
GRANULAR FLOWS ON INCLINED PLANES

First, this expression is compatible with the z-dependency of the Bagnold velocity profile,
⟨v(z, t) − v(0, t)⟩ ∝ H3/2 − (H − z)3/2. Secondly, recalling that µ ≃ θ, together with the
definition of I, Eq. (7.12) yields the friction law:

µ− µc ∼ I2−3β. (7.13)

Considering the theoretical range of β that is derived from ν, 0.50 ≤ β ≤ 0.54, we obtain
a prediction for the exponent, i.e. 0.38 ≤ (2− 3β) ≤ 0.50, in close agreement with the law
µ− µc ∼ I0.40±0.01 observed for frictionless grains shown in Fig. 7.2c.

We emphasize that the proposed model, based on a fractal dimension for the chain-like
clusters related to a simple random walk, is able to properly predict three different laws
based on the measurements of velocity fluctuations (δv/γ̇ ∼ lc ∼ dI−0.52), packing fractions
(ϕc − ϕ ∼ I0.9) and flow velocity (µ− µc ∼ I0.4).

One might expect Eq. (7.12) to also hold for frictional systems, since the velocity fluctu-
ations and cluster size behave similarly with the inertial number for both frictional and
frictionless systems. However, Eq. (7.12) cannot explain the µ − µc ∼ I relation ob-
served for frictional grains in Fig. 7.2c. This disagreement is in fact not surprising. In
the derivation of Eq. (7.12), it is assumed that all the energy dissipation arises from col-
lisions between grains. This is a very reasonable assumption for frictionless systems, but
an additional source of dissipation is expected from the mobilization of frictional contacts.
Unfortunately, including frictional dissipation in a theoretical model for dense granular
flows remains a highly debated issue [158, 166, 167]. Nevertheless, interestingly, Fig. 7.2c
shows that for large-enough inertial numbers, the data obtained for frictional systems col-
lapse onto the law of frictionless systems. This observation suggests that, in the limit of
large I, the energy dissipation is universal and of collisional origin.

We also note that changing the value of the microscopic sliding friction coefficient µs, from
0.3 to 1, only shifts the threshold values µc(µs) and ϕc(µs) but has no impact on the scaling
laws.

7.4 Discussion

We have demonstrated from numerical simulations and examination of existing literature
data that the dilatancy law is consistent for both frictionless and frictional assemblies.
This law can be better understood by comparing two key elements:

First, the equation of state constructed from hydrostatic pressure, an effective granu-
lar temperature related to velocity fluctuations, and the inertial number; and second,
the equation of state of hard-sphere fluids near the jamming transition. In contrast, the
macroscopic laws of friction are observed because frictionless and frictional assemblies are
inherently different. For frictionless assemblies, we can rationalize the observations from a
grain-level energy balance that includes gravity, effective friction, and collisions. This also
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allows us to recover the Bagnold profile for the local mean velocity field. The derivation
of a macroscopic friction law for frictional assemblies remains an open question. Address-
ing this issue will likely require an additional dissipation term, one that accounts for the
formation of frictional contacts.

A new and interesting approach to handle granular material problems by Moshe et al.
has recently been published [172, 173]. This theory proposes a geometric derivation for
a mechanical screening in amorphous solids, which is in some way analogous to theories
of electrostatic screening such as dielectrics and the Debye-Hückel theory. So far, these
ideas have been tried only for static scenarios. An attempt to include dynamics, in the
non-equilibrium steady state, may be a way to overcome some of the difficulties we en-
countered in the present study. A relation to screening phenomena, if exists, might lead
to a connection with the first part of this manuscript.
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Chapter 8

Appendix – Part II

In this appendix, we show some basic flow quantities obtained from DEM simulations.
Specifically, the dependence on friction, the flow profile as a function of depth, and the
velocity correlations.

8.1 Friction

Additional simulations were carried out while changing the value of the microscopic sliding
friction coefficient µs, from 0.3 to 1. As shown in Fig 8.1, we note that it only shifts
the threshold values µc(µs) and ϕc(µs) but has no impact on the scaling laws. By simply
subtracting the threshold value, we obtain a collapse of all our data on a single master
curve.
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Figure 8.1: a) Shifted effective friction coefficient, µ − µc as a function of
the inertial number I = γ̇d

√
ρp/P , obtained for a layer of grains with an

initial layer thicknesses Hi = 20d and various microscopic sliding frictions µs

as indicated. The solid line indicates a linear fit of the small I values as
provided in legend. b) Shifted volume fraction ϕc − ϕ as a function of the
inertial number I. The solid line indicates a linear fit as provided in legend.
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8.2 Bagnold-like flows

In order to check the validity of our DEM simulations of granular flows on inclined planes,
we study in details the properties of the flow. We observe that the local time-averaged
velocity profile is well described by a Bagnold profile ⟨v(z)−v(0)⟩ ∼ H3/2−(H−z)3/2 (see
Fig. 8.2a). Besides, the inertial number I (see Fig. 8.2b) and the volume fraction ϕ (see
Fig. 8.2c) remain mostly constant throughout the layer (except at both boundaries) for all
the studied inclination angles. These observations are in good agreement with previously
reported observations [91,100,105,152,153].
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Figure 8.2: Evolution of the rescaled local velocity (a), volume fraction ϕ (b)
and inertial number I (c) as functions of rescaled normal coordinate z/d for
a layer of frictional grains initially characterized by Hi = 30d and various
inclination angles θ as indicated. The curves in (a) corresponds to the best fit
of the Bagnold profile expression.
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8.3 Velocity correlations and diffusion

As shown in Fig. 8.3a, we calculate the mean square displacement (∆z, MSD) along the z

coordinate averaged over all the grains for various inclination angles. From those MSD, the
thickness-averaged diffusion coefficient, Dz is evaluated by fitting the data in the diffusive
regime, i.e. where ∆z = 2Dzt. In addition, we also evaluate the time correlation of the
z-component of the velocity w, averaged over the layer thickness, for various inclination
angles. The thickness averaged correlation times, τ were obtained by fitting the correlation
curves with decreasing exponentials of the type ∼ e−t/τ .
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Figure 8.3: (a) Mean square displacement ∆z along the z coordinate averaged
over all the grains and (b) time correlations of the velocity following z for
a layer of frictional grains initially characterized by Hi = 30d and various
inclination angles as indicated. Inset: Log-lin plot of the velocity correlations.
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Polymer glasses and confinement
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Chapter 9

Basic concepts in glass and polymer
physics

Some liquids do not undergo a first-order phase transition to the crystalline solid state
when cooled to low temperatures, but rather exhibit a metastable “supercooled” liquid-like
behavior with sharply increasing relaxation times as the temperature is lowered [174–178]
– a phenomenon known as the glass transition [140,179].

While recent theoretical breakthroughs have shown the existence of an ideal glass transition
in infinite spatial dimensions [180], a complete understanding of the formation of real
glassy materials remains a central unsolved problem in condensed matter physics [181]. In
addition to the interest in this fundamental problem, glassy materials are widely used and
their rheology and stability have significant technological importance.

9.1 Glass Transition

The phenomenon of glass transition has long fascinated researchers in condensed matter
physics. It refers to the transformation of a supercooled liquid into a glassy state, charac-
terized by a dramatic increase in viscosity. This transition is conventionally characterized
by the temperature Tg, known as the glass transition temperature. The occurrence of this
transition is not limited to silica glasses. It is also observed in various materials such as
glycerol, polymers, oxides, and metals [182]. In general, physicists use the word glass to
describe materials that exhibit mechanical properties similar to those of solids but lack the
long-range structural order.

Unlike a classical phase transition, this change does not occur at a precise temperature,
but over a range, and its exact nature is determined by several factors, including cooling
rate, pressure, and molecular weight of the material. The mechanical properties of the
glass are also affected by these factors [183].

Glasses are out of equilibrium materials. As the material is cooled, packing frustration
begins, eventually reaching a point where there is not enough available thermal energy
to allow the system to explore all the different possible configurations on accessible time
scales [140]. In other words, the system falls out of equilibrium and becomes trapped
in a (non-equilibrium) local energy minima state associated with the conditions it has
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experienced.

At its core, the glass transition is a dynamical phenomenon. It marks a shift in the internal
degrees of freedom of the material as the supercooled liquid cools and achieves kinetic
stability, but not thermodynamic stability. This characteristics distinguishes the glass
transition from a classical phase transition, where the system reaches a new thermodynamic
equilibrium state [140].

This non-equilibrium transition occurs over a range of temperatures and glass transition
temperature Tg marks the boundary between the supercooled liquid state and the glassy
state. During the transition, the material undergoes dramatic changes in physical proper-
ties, including thermal expansion, heat capacity, and viscosity, while the structural order
remains essentially unchanged. The glass transition temperature is not a constant for a
given material, but depends on the history of the material, especially the rate of cooling.

Since Tg has no unique value for a given system, in contrast to classical phase transitions, it
is usually determined by tracing the change in some macroscopic quantity (such as specific
volume) with temperature and extrapolating the trend of the curves at high and low
temperatures. The intersection of the two extrapolated curves marks the glass transition,
see Fig. 9.1.

Is Tg a meaningful concept? As we already mentioned, the glass transition temper-
ature depends on how long our available experimental time is, and thus on the cooling
rate. This poses issues with the definition of a “transition”: what is the point in fixing a
transition at a temperature whose value depends on the experimental protocol. However,
In many systems the increase of the relaxation time is sharp enough to make it hard to
move significantly the value of Tg. even by a substantial change in the cooling rate. The
reason for this is that, whatever is the true underlying physical mechanism, the increase of
the relaxation time when decreasing the temperature is at least exponential. To fix ideas,
let us assume that we have a simple liquid in equilibrium. The relaxation time τ is gov-
erned by Boltzmann statistics so the dependence on the temperature is τ = τ0 exp

(
∆E0
kbT

)
,

where ∆E0 is some characteristic energy barrier and τ0 is some characteristic microscopic
relaxation time. At the glass transition T = Tg we roughly have:

τ = τ0 exp

(
∆E0

kbTg

)
. (9.1)

We obtain, by differentiating both sides of Eq. (9.1) and rearranging the terms:

dTg = −

(
kbT

2
g

τ0∆E0

)
exp

(
−∆E0

kbTg

)
dτ, (9.2)

which shows that a change we allow in τ , has an exponentially small effect on Tg.

81



CHAPTER 9. BASIC CONCEPTS IN GLASS AND POLYMER PHYSICS

9.1.1 Thermodynamic point of view

From a thermodynamic perspective, the glass transition is difficult to define because it lacks
the long-range order and sharp discontinuity typically associated with phase transitions.
Instead, it manifests as a second-order-like transition with an increase in heat capacity but
no latent heat. As the system cools, it looses the ability to find the free energy minimum –
the crystalline state. This is characteristic of a supercooled liquid in a metastable state.
Therefore, macroscopically the system is out of equilibrium, but locally atoms or molecules
may be in a local energy minimum.

Stated differently, for a probability distribution over phase space of a system that present
a supercooled liquid state, the average value (the crystal state) and the typical value (what
is observed, a liquid) are not the same. This can be remedied and the system can still
be treated as equilibrium by ignoring the the crystalline state and redefining a probability
distribution over a subset of phase space. In this subspace, the average and the typical
states are the same1.

The so-called Kauzmann paradox arises from the comparison of the entropy of the su-
percooled liquid and the corresponding crystalline state. As the temperature decreases,
the difference in entropy between the supercooled liquid and the crystal also decreases,
so the entropy curve of the supercooled liquid is extrapolated to a temperature (TK, the
Kauzmann temperature, see Fig. 9.1) where the supercooled liquid would have the same
entropy as the crystal. Below TK, the liquid would theoretically have a lower entropy than
the crystal. Generally speaking, the fact that some phase of matter would have lower en-
tropy than the crystal does not violate any law of thermodynamics. However, the third law
of thermodynamics would be violated if the entropy of the supercooled liquid continued to
decrease well below TK without any change in slope, since otherwise one would find that
it becomes zero above T = 0.

In reality, for a finite cooling rate, the material undergoes a transition and the slope of the
entropy changes in such a way that no catastrophe is manifested. This paradox serves as
a stimulus for several theoretical approaches to understanding the glass transition.

9.1.2 Dynamics

The unique dynamics of the glass transition can be explained by the relaxation time of the
system. In a high-temperature liquid, the system quickly adapts to temperature changes
and easily establishes a new equilibrium. However, as the temperature decreases, the
viscosity increases and the time required for the system to rearrange and reach equilibrium
increases significantly, especially around Tg. This critical slowing down of the relaxation
dynamics is a key feature of glass-forming materials.

The viscosity of simple liquids exhibits an Arrhenius-like dependence on temperature,
1Surprisingly, this procedure is related to observations in the domain of economics. In particular,

distinguishing between seemingly profitable games [184].
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Figure 9.1: Specific volume or entropy plotted as a function of temperature for
a glass-forming material. At high temperature, the system is in an equilibrium
liquid state where the molecules easily slide past each other. Upon cooling,
if the glass-former avoids crystallization, the system enters into a supercooled
liquid regime. The dynamics begin to slow as cooperative motion sets in.
Upon cooling further, the system falls out of equilibrium at Tg into a glass
whose thermal expansion is comparable to that of the crystal. The value of Tg
depends on the cooling protocol. In other words, if the system is cooled more
slowly, it reaches a lower temperature before finally falling out of equilibrium
into a glass.

where the viscosity grows exponentially with the inverse of the temperature: η ∼ exp
(

∆E
kBT

)
.

This relation can be understood in terms of relaxation processes that respect Boltzmann
statistics, ∆E being some energy barrier for a relaxation process to occur. Supercooled
liquids show a non-Arrhenius temperature dependence characterized by a significant slow-
ing of the dominant relaxation time τα and an apparent divergence of the viscosity within
a relatively small temperature range (Tg to Tg + 50 K). This behavior is often well fitted
by the empirical Vogel-Fulcher-Tammann (VFT) equation:

τα = τ0 exp

(
A

T − T0

)
and η ∼ τα, (9.3)

where τ0, A, and T0 are parameters of the empirical model, and depend on the material.

In 1965, Adam and Gibbs [185] came up with an explanation for the non-Arrhenius behav-
ior. They argued that the conventional transition state theory for liquids, which assumes
that a single molecule crosses energy barriers created by its neighbors, is inadequate. In-
stead, viscous flow occurs through increasingly cooperative rearrangements of groups of
particles.

According to the Adam-Gibbs model, the relaxation time of the liquid is controlled by the
configurational entropy Sc. This quantity is defined by subtracting the vibrational entropy,
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Figure 9.2: Logarithm of viscosity versus rescaled inverse temperature for many
substances. This representation of the data shows pure Arrhenius behavior as
a straight line. This is typical for so-called “strong” glass formers. On the other
hand, a sharper super-Arrhenius increase in viscosity corresponds to “fragile”
glass formers (Figure taken from [178]).

Sv, from the total entropy. In their model ∆E(T ) ∼ 1
Sc(T ) which leads to:

τα = τ0 exp

(
C

TSc(T )

)
, (9.4)

where C is a constant containing a term ∆µ which is the free energy barrier that the
rearranging group must cross. It is clear that as long as the configurational entropy remains
constant, this is just another form of the Arrhenius law. What makes the equation unique
is that due to the increase in heat capacity at the glass transition, configurational entropy
increases with temperature. This adds another temperature dependence to the exponential
law. Finally, if the excess configurational entropy vanishes at some finite temperature due
to Kauzmann’s paradox, then we can write:

Sc =

∫ T

TK

∆Cp(T )

T
dT ≈ ∆Cp log(T/TK), (9.5)

with ∆Cp being the difference of specific heat between the liquid and the glassy state. By
plugging Eq. (9.5) into Eq. (9.4) one gets:

τα = τ0 exp

(
D

T log(T/TK)

)
, (9.6)

which recovers qualitatively the non-Arrhenius behavior of the VFT formula in Eq. (9.3).
This work provided a connection between thermodynamic and dynamic quantities, launched
a wide range of investigations and played a central role in glass transition studies [186–189].
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To relate these ideas to polymer glass formers, we first review some basic concepts from
the field of polymer physics.

9.2 Polymer physics

Polymers are an integral part of our daily lives, from the natural bio-polymers of DNA
and proteins to the synthetic polymers that make up plastics and textiles. A polymer is a
substance or material consisting of large, string-like molecules composed of many repeating
subunits called monomers. Polymer physics is a specialized branch of physics that seeks
to understand the behavior and properties of these important materials.

Understanding the behavior of polymers requires statistical approaches. The behavior of
large polymers, those with many monomers, can be efficiently described in the thermody-
namic limit of infinitely many monomers. The effect of thermal fluctuations on polymers in
liquid solutions is continuous and significant, requiring the use of principles from statistical
mechanics and dynamics to model them.

9.2.1 Molecular weight

Molecular weight is a critical parameter in the characterization of polymers as it sig-
nificantly influences the material properties. Due to the typically broad distribution of
molecular weights in a polymer sample, there are several ways to express the molecular
weight of polymers.

The most straightforward concept is the number averaged molecular weight (Mn) . It is
calculated by summing the product of the number of molecules (Ni) and their respective
molecular weights (Mi), divided by the total number of molecules:

Mn =

∑
NiMi∑
Ni

, (9.7)

However, the number averaged molecular weight does not take into account the weight
fraction of different species in the distribution. Therefore, the weight averaged molecular
weight (Mw) is introduced. It is the sum of the product of the number of molecules (Ni),
their molecular weight (Mi), and the molecular weight divided by the sum of the product
of the number of molecules and their molecular weight:

Mw =

∑
NiM

2
i∑

NiMi
. (9.8)

Since these averages often give different values for the same polymer sample, the polydis-
persity index (PDI) is used to characterize the width of the molecular weight distribution.
It is the ratio of the weight averaged molecular weight to the number average molecular
weight:

DPI =
Mw

Mn
. (9.9)
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If all polymer chains in a sample had exactly the same length, they would all have the same
molecular weight and the polydispersity index would be 1. In reality, due to the nature
of most polymerization processes, the polymer chains have a distribution of lengths and
therefore molecular weights, resulting in a DPI > 1.

A high polydispersity index indicates a broad molecular weight distribution and a low
polydispersity index indicates a narrow molecular weight distribution. The polydispersity
index can affect the physical properties of the polymer, such as its rheological behavior,
mechanical strength, and crystallinity. In this work we will consider polymer systems with
PDI close to 1 experimentally. In the theoretical treatment we assume PDI equals 1.

9.2.2 Gaussian chains

In the statistical approach to polymer physics, an analogy is often drawn between a polymer
and a random walk in certain cases, a self-avoiding random walk. The simplest polymer
model is represented by the ideal chain, which corresponds to a simple random walk on a
lattice. The molecular weight of a polymer chain is determined by the number of monomers
it contains, denoted as N , and the size of an individual monomer is equal to the distance
between adjacent vertices of the lattice, denoted as a. Consequently, the length of the
polymer chain, denoted by L, can be expressed as L = Na.

As N increases, the conformation of the polymer chain can be modeled by a Gaussian
distribution. At high molecular weights, it becomes possible to move to a continuous
description of the polymer chain using Brownian motion. In this continuous limit, we
assume that a tends to zero and N tends to infinity, while the product L = a

√
N remains

finite. Under these conditions, the probability distributions of the lengths in the polymer
chain can be accurately described by the paths of Brownian motion. This allows the
application of statistical mechanics and other tools from probability theory to model the
behavior of large polymer chains.

We define the end-to-end distance of an ideal polymer chain as follows:

R =
N∑
i=1

ai. (9.10)

Since the trajectory corresponds to a random walk where ⟨ai⟩ = 0 and ⟨R⟩ = 0, the mean
value of the end-to-end distance is zero. However, the mean square value reads:

⟨R2⟩ =
N∑

i,j=1

⟨aiaj⟩ = Na2. (9.11)

Therefore, a scale for the size of the polymer is R0 = a
√
N . The quantity is closely related
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to the radius of gyration of a polymer, which is defined as:

R2
g =

1

N

N∑
i=i

〈
(Ri −Rcm)2

〉
, (9.12)

with Rcm = 1
N

∑N
i=1Ri the center of mass. It is the usual way to describe the dimensions

of a polymer chain [190]. Within the Gaussian chain approximation, R2
g = ⟨R2⟩/6. The

probability P (R) that a chain starts at 0 and ends at R is given by:

P (R) =
AN (R)

(2d)N
. (9.13)

Here, AN (R) corresponds to the number of paths starting at 0 and ending at R, and (2d)N

represents the total number of paths in dimension d. Since R is the sum of a large number
of independent random variables, the central limit theorem can be utilized, leading to a
Gaussian probability for the end-to-end distribution:

P (R) =

(
3

2πNa2

)3/2

e−
3R2

2Na2 . (9.14)

This is of course an approximate formula in the large N limit, but for many applications
it will be a useful simplification. This property is well known in the context of random
walks. However, a chain does not perfectly follow a Gaussian distribution because chain
segments cannot overlap one another in space, what is known as the excluded volume
effect. We can model the polymer by a path on a lattice with the constraint that a path
cannot pass through the same node of the lattice twice. These types of random walks are
called self-avoiding random walks, where one finds a different exponent in Eq. (9.11), In 3
dimensions, the exponent is close to 3/5 [191].

The upcoming study in the next chapter deals with polymer melts, where a fascinating
screening phenomenon occurs. The excluded volume effect is screened and the “naive”
random walk calculation surprisingly turns out to be correct [192]. Put simply, in a melt,
on average, any point in space is occupied by a monomer. This means that space is
homogeneous. When space is homogeneous, each polymer segment must displace other
segments to fit in. Displacing other parts of the same chain is equivalent to displacing other
chains. This renders spreading (the common terminology is swelling) useless. Therefore,
the simple random walk distribution is expected to be recovered.

9.2.3 Persistence length

The concept of persistence length is an important parameter that characterizes the stiffness
of a polymer chain. The persistence length can be understood as the length scale over
which a polymer chain remains aligned along a tangent before bending due to thermal
fluctuations. In other words, beyond this length, a polymer chain can be treated as an
unbiased random walk. This notion allows us to reduce a polymer chain that has stiffness
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to a similar chain that is completely flexible but contains a fraction of the real number of
monomers [191].

If we imagine a polymer as a string of beads (where each bead represents a monomer), a
rigid rod would have a large persistence length (since it resists bending), while a floppy
string would have a small persistence length.

In mathematical terms, the persistence length (usually denoted as Lp) is defined by the
tangent-tangent correlation function. If t(s) is a unit vector tangent to the chain at the
point s along the chain, then the average value of the scalar product t(s) · t(0) typically
decays exponentially with s/Lp:

⟨t(s) · t(0)⟩ = e−s/Lp . (9.15)

Here, the brackets ⟨⟩ denote an ensemble average. This equation essentially says that the
direction of the tangent at a point s along the chain becomes uncorrelated with the tangent
at the origin over a distance of the order of the persistence length. Incorporating this into
the Gaussian chain model would only affect the numerical factor of the results, but not
the scaling. In other words, a stiff polymer chain with N monomers, unit size of a and
persistent length Lp could be replaced by an ideal chain of length Na

Lp
and unit size Lp.

9.2.4 Polymer melts

A polymer melt is a state of a polymer that occurs at temperatures above its glass transition
temperature (Tg) and below its decomposition temperature. Above Tg, the polymer chains
have enough thermal energy to move freely and the material behaves more like a liquid
than a solid, although it is not actually a liquid in the same way that water or oil are.
This is due to the long, tangled nature of the polymer chains, which cannot easily flow
past each other as they do in small-molecule liquids. The viscosity of a polymer melt is
typically much higher than that of a small-molecule liquid. In fact, the exact dependence of
viscosity on chain length is one of the open problems in polymer physics. Current models
predict η ∼ N3, while experimental data suggest that the exponent should be in the range
3.3 to 3.4. See [191] for a detailed discussion.

In a polymer melt, the chains become highly entangled, resulting in unique rheological
(flow) properties. For example, when a force is applied to a polymer melt, it initially
resists deformation and behaves like a solid. However, if the force is maintained, the
polymer chains will begin to slide past each other and the material will flow like a liquid.
This behavior, known as viscoelasticity, is a defining characteristic of polymer melts.

9.2.5 Glass transition in polymers

In polymers, the chain segments are so tightly packed that movement is limited by the close
presence of adjacent monomers, which may or may not be on the same chain. This is why
chain connectivity does not play a dominant role in the glass transition and probably why
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the glass transition in polymers exhibits most of the same characteristics as other small
molecule glass formers. However, the absolute value of Tg exhibited by different polymers
is influenced by their structure, chain stiffness and length [193].

A key phenomenology that explains the temperature dependence of the relaxation behav-
ior in polymers is the Adam-Gibbs theory (Eq. (9.6)), which we have already discussed.
This fact is of great importance, as it suggests that the structure of the macromolecules
constituting the melt is, to some extent, unimportant in the glass transition process, and
that the constraints imposed by the structure of the macromolecules do not play a major
role in the kinetic arrest. The glass transition process in thin polymer films introduces
an additional level of complexity compared to bulk polymers and serves as a valuable ex-
perimental model to study the so-called cooperative length scale proposed by Adam and
Gibbs [194].

9.3 Measuring the glass transition temperature

Determining the glass transition temperature of an amorphous polymer typically involves
a calorimetric measurement, the most common method for this purpose. Looking at a
graph of calorific power versus temperature, there are four ways to determine Tg, each
corresponding to different stages in the structural evolution of the system. It is important
to note that the Tg value depends on the convention used for measurement.

Another method used to measure Tg is ellipsometry, an optical technique based on the
change of state of the polarization of light when reflected on a flat surface. This technique
is very sensitive and particularly effective for thin polymer films. It measures the reflection
coefficient and the phase shift ratio of the parallel and perpendicular components of ellip-
tically polarized light reflected from a surface. The glass transition temperature can be
determined from the thickness and refractive index due to the difference in the coefficient
of thermal expansion.
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Chapter 10

On the bridge hypothesis in the glass
transition of freestanding polymer films

10.1 Thin glassy films

Within glass-forming materials in the supercooled liquid state, particles are crowded and
must move in a correlated manner to allow for a reorganization or relaxation event [185].
This phenomenology has been used to propose the emergence of a dynamical coopera-
tive length scale [195]. The general idea is that for a relaxation process to occur, all
particles within a region characterized by the cooperative length scale must reorganize
simultaneously. To probe this hypothetical length scale, several different methods have
been considered. The use of numerical simulations bulk [196] showed the these clusters of
particles change their structure from compact (scales like 3rd power of a length scale) to
stringy (fractral) around the glass transition. Other studies used mimetic jammed colloidal
systems [98,197] to find that the stucture of these cluster can heavily depend on the sign of
the interaction potential between the particles. An alternative strategy consisted in study-
ing finite-size effects on the glass-transition temperature Tg, namely through systems with
a similar nanometric size as the cooperative length at stake [198–201]. In particular, ex-
periments and numerical studies investigating thin glassy polymer films. Starting with the
famous study by Keddie at 1994 [202] and later many more have been performed [203–212].

These studies have revealed a set of rich and exotic phenomena. Most notably, a reduc-
tion of Tg in thin films of many materials was observed and was further attributed to a
combination of the dynamical correlation length with an enhanced liquid-like surface mo-
bility in glasses. These observations have been studied from a theoretical point of view
as well, but there is no definitive consensus yet on the exact underlying mechanisms at
play [169,213–222].

Moreover, beyond the above generic confinement and interfacial behaviours of glassy ma-
terials made of small molecules or oligomers, and apart from possible residual stresses and
artefacts induced by sample-preparation protocols [224], whether or not specific polymeric
effects exist within the glassy physics is an interesting fundamental question with impor-
tant practical implications given the widespread used of thin plastic films. Accordingly,
freestanding polymer films with a thickness h comparable to the macromolecular radius
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Figure 10.1: Glass-transition temperature Tg of freestanding polystyrene films
as a function of film thickness h, for various average molecular weights Mw.
By extrapolating the low-thickness linear regimes towards larger thicknesses,
one empirically finds a universal crossing point, denoted by (h∗, T ∗

g ). Figure
reproduced from Ref. [223].

of gyration Rg were experimentally studied [223, 225–228]. The experiments showed that,
for molecular weights Mw < 378 × 103 – in other words ∼ 3600 monomeric units – Tg

does not exhibit any dependence on Mw, and the curves can be mapped onto the one
for low-Mw supported films. However, for larger Mw, the Tg dependence on h and Mw

becomes non-trivial, as shown in Fig. 10.1: at large thicknesses, Tg is equal to the bulk
value T bulk

g ; at small thicknesses, Tg decreases in an affine way with decreasing h, together
with a slope moderately increasing with Mw. As such, the glass-transition temperature
follows the empirical law:

Tg = T ∗
g + f(Mw)(h− h∗), (10.1)

for h < hc, where hc = h∗+(T bulk
g −T ∗

g )/f(Mw) is a Mw-dependent critical thickness sep-
arating the two regimes, with f a slowly increasing function of Mw, and where h∗ and T ∗

g

are the coordinates of an apparent universal crossing point obtained by extrapolating the
low-thickness linear regime of Eq. (10.1) towards larger thicknesses (see Fig. 7.2). The func-
tion f(Mw) was suggested to be logarithmic-like [225], a form which, perhaps coincidently,
is also present in other interfacial polymeric effects [229]. The existence of such a sharp
transition in thin supercooled polymeric films suggests a change of dominating relaxation
mechanism around hc, from a generic bulk molecular one above hc, to a purely confinement-
induced polymeric one below hc – indicating a probable connexion between hc and some
typical macromolecular polymeric length scale. In addition, the empirical trends suggest
that the polymeric mechanism starts to be present below the universal onset thickness h∗,
but remains less efficient than the bulk one for hc < h < h∗. Moreover, it was proposed
that the polymeric relaxation mechanism in thin supercooled polymer films requires two
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free interfaces to be connected by bridges consisting of individual macromolecules [225] –
which we refer to as the bridge hypothesisbridge hypothesis.

The glass transition in thin polymer films was further shown to have even a finer struc-
ture, with in fact two glass transitions occurring with some finite temperature gap in
between them [230], corroborating the existence of three competing distinct relaxation
mechanisms [231]: a bulk one, a confined molecular/monomeric one, and a confined poly-
meric one. These features are consistent with the observations made in Ref. [223], where a
flow behavior in thin freestanding polymer films was only measured near T bulk

g – indepen-
dently of the actually-measured Tg. Moreover, by removing one of the two free interfaces of
a freestanding polymer film, it was experimentally shown that the polymeric behaviour to-
tally disappears [228,232], which seems to corroborate the seminal bridge hypothesis. As a
side remark, we note that the coupling between different relaxation mechanisms in the bulk
was experimentally investigated in details recently, and revealed the role of intramolecular
cooperative dynamics in the bulk polymeric glass transition [233].

As an early attempt to rationalize the affine trend in Eq. (10.1), de Gennes proposed a
model based on free-volume arguments and an original sliding mechanism involving the
reptation-like propagation of stress kinks along the macromolecular bridges [234,235]. The
focus on bridges is in alignment with the experimental finding that the phenomenon could
be dramatically reduced by eliminating one of the free surfaces.

The basic idea of the models is that segments of chains connecting the two interfaces
can slide relatively easily because both ends of the segments are free to move on the
surface. These segments are called bridges and they provide an alternative relaxation
mode that becomes more effective than the standard α relaxation at a certain thickness.
This model assumed an infinite molecular weight, as well as a Gaussian-tail distribution
of the free volumes along the chain backbone, and involved an ideal-random walk scaling
for the average bridge length. Despite its merits, the sliding model suffered from intrinsic
limitations, and could not reproduce all the experimental observations [228].

Milner and Lipson suggested a delayed-glassification model [236], extending the sliding
model and computing the bridge-length distribution for infinite molecular weights, that
led to a depth-dependent Tg and a decrease in the overall measured Tg [237]. The main
difference between the delayed-glassification model and the sliding model is the way in
which the propagation of kinks is treated. In the sliding model, it is treated as a series of
Bernoulli trails, while in the delayed-glassification model, it is addressed as a first passage
problem. But, once again, while the qualitative picture seemed appealing, the model could
not reproduce the experimental data in a quantitative fashion.

To date, there is actually no model which quantitatively captures the Mw dependence
of Tg in thin polymer films. In his seminal work [234], de Gennes suggested to refine
his approach by performing a complete statistical treatment of the bridge distribution for
finite-sized polymer chains in a thin film. This is thus the topic of the present work, where

92



CHAPTER 10. ON THE BRIDGE HYPOTHESIS IN THE GLASS TRANSITION OF
FREESTANDING POLYMER FILMS

we compute the bridge-length distribution, its mean value, and its proportion within a film,
and use the obtained results in order to critically revisit de Gennes’ sliding mechanism.
We note that loops, namely chain portions connecting two points of a single interface, are
not considered here for two reasons. First, supported films also contain loops but do not
show the Mw behaviour of freestanding films [225,228,232]. Secondly, as will be discussed
later in Sec. 10.4, adding loops to the calculation does not change the fundamentally Mw

dependence.

10.2 Sliding mechanism

Here, we first recall the main ingredients of the sliding model [234]. Therein, the relaxation
time τ is essentially set by the time required for a kink, that is some localised stress, to
travel along a bridge, namely a portion of polymer chain connecting the two free interfaces.
The kink travels along the chain backbone using successive independent jumps indexed by
i and involving volumes ωi, which are assumed to be normally and identically Gaussian-tail
distributed, as:

p(ωi) =

√
2

πω2
0

e
− ω2

i
2ω2

0 , (10.2)

where the standard deviation ω0 is assumed to be small compared to the monomer size
∼ a3, in order to reflect the fact that relaxation along the chain is easier than bulk molecular
relaxation. The average relaxation time of this sequential process thus reads:

τ = τ0

〈
exp

(
1

vf(T )

∑
i

ωi

)〉
P

, (10.3)

where the average is made over the ensemble {ωi} against the distributions P = Πip(ωi),
and where vf(T ) is the free volume at temperature T . As classically done (see chapter 11
in [238]), vf is assumed to vanish at a finite temperature TV and to evolve in an affine way
with temperature, so that:

vf(T ) = αa3(T − TV), (10.4)

where α is the expansion coefficient. Assuming that the sliding mechanism process happens
along a bridge of average number of units ⟨b⟩ and recalling the the individual process i are
independent gives:

τ/τ0 ∼ exp

[
1

4
⟨b⟩ω2

0/v
2
f (T )

]
. (10.5)

Since the logarithm of the normalized time τ/τ0 does not change drastically around the
effective glass transition, the expression in the square brackets in Eq. (10.5) is a constant.
We can use this fact together with Eq. (10.4) to find:

Tg − TV ∝
√

⟨b⟩. (10.6)
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Introducing the film thickness h, and assuming that ⟨b⟩ ∼ h2 – which is only valid for
infinite ideal random walks – then leads to the affine trend with h in Eq. (10.1). We now
aim at calculating the exact bridge-length distribution for finite-sized polymer chains, in
order to investigate wether or not the Mw dependence in Eq. (10.1) can also be captured
by the sliding model.

10.3 Bridge statistics

We consider a film made of a dense (supercooled) polymer melt consisting of identical
chains, containing N monomers of size a (e.g. for polystyrene, one has a rescaled ideal
monomeric size a ≈ 0.75 nm) each. The film is assumed to be infinite in the (x, y)-plane,
and to have two flat free interfaces located at the dimensionless vertical coordinates z = 0

and z = H where H = h/a is the nondimensional thickness of the sample. We define a
bridge as a segment of a polymer chain that connects the two free interfaces, as shown in
Fig. 10.2.

First, we are interested in the probability density of the dimensionless bridge length B =

b/a, at a certain position z inside the film. We start by picking a monomer at a distance
z from the lower interface. This monomer belongs to a polymer chain. From the position
of the picked monomer, there are two branches of the polymer chain. As we deal with a
(supercooled) polymer melt, these two branches can be properly described by Gaussian
statistics [190]. For large N , in other words high molecular weight, one can invoke the
continuous description of Brownian motion. As such, the probability density of the bridge
length can be constructed using a constrained sum of the first-passage “times” of two
Brownian motions. The polymer chain is of total length N , so that the test monomer
considered above is at a distance P from one end of the chain, and at a distance N − P

from the other end (see Fig. 10.2), with P uniformly distributed in [0, N ]. Denoting l1 and
l2 the first-passage “times” of the chain from the test monomer to the z = 0 and z = H

interfaces, respectively, with l1 ≤ P and l2 ≤ N − P , the bridge length reads B = l1 + l2.
Therefore, the probability density ρ(N,H,B, P, z) that a monomer located at a distance z

from the bottom interface, and at position P along a chain of total length N , belongs to
a bridge of length B, reads:

ρ = 2

∫∫
I1×I2

dl1dl2 δ(l1 + l2 −B)f0(z, l1)fH(z, l2), (10.7)

with I1 = [0, P ], I2 = [0, N −P ], where the factor 2 accounts for the possibility of the two
bridge subparts to be exchanged, and where f0(z, l1) and fH(z, l2) are the first-passage-
time probability densities to the bottom and top interfaces, after “times” l1 and l2, re-
spectively, when starting at a distance z from the bottom interface. See the derivation in
appendix 12.1. For a detailed review of the subject see [239]. By performing one of the
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Figure 10.2: Sketch of the problem studied, as obtained from numerical simula-
tion. We consider an ideal random walk with N steps in a box of dimensionless
thickness H = 10 along the z-axis. A randomly chosen monomer (grey), lo-
cated at an altitude z, is P steps away from one of the walk ends, and N − P
steps away from the other end. The chosen monomer is connected to both
the z = 0 and z = H interfaces, with paths of dimensionless lengths l1 and
l2, respectively, forming a bridge (orange) of dimensionless length B = l1 + l2.
Another part (blue) of the random walk does not belong to the bridge.

two integrations, Eq. (10.7) becomes:

ρ = 2

∫
I
dlf0(z, l)fH(z,B − l). (10.8)

with I = [max(0, B −N + P ),min(B,P )]. Then, uniformly averaging Eq. (10.8) with re-
spect to P and z, gives the probability density ρ̄(N,H,B) that a randomly chosen monomer
inside the film belongs to a bridge of length B, between 0 and N , as:

ρ̄ =
4π2D2

H4

(N −B)B

N

∞∑
k=1

k2 (−1)k+1 e−Dλ2
kB, (10.9)

where λk = kπ
H and D = 1

2d , with d = 3 the space dimension. By integrating Eq. (10.9)
over B, from 0 to N , one gets the fraction ϕ(N,H) of monomers belonging to bridges, as:

ϕ =
1

3
− 7H2

90DN

+
4

π2

∞∑
k=1

(−1)k+1

k2
e−Dλ2

kN

(
1 +

2H2

π2DNk2

)
, (10.10)

where we note the expected diffusive-like self-similarity in the variable H/
√
DN . The limit

1/3 at infinite N is intuitive, since any sub-part of the chain containing a given monomer
then touches two interfaces, either twice the top one, or twice the bottom one, or once
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each of the two interfaces, with equal chances.

We now turn to the central quantity of interest in this work, the average dimensionless
bridge length ⟨B⟩, which is a function of N and H. The average bridge length is the first
moment of the distribution:

⟨B⟩ = 1

ϕ(N,H)

∫ N

0
Bρ̄(N,H,B)dB. (10.11)

The integral can be evaluated exactly from Eq. (10.9), leading to:

⟨B⟩ = 1

ϕ(N,H)

[
7H2

90D
− 31H4

1260ND2

+
4N

π2

∞∑
k=1

(−1)k+1

k2
uk(N,H)e−Dλ2

kN

]
, (10.12)

where, for convenience, we invoked the auxiliary function:

uk = 1 +
4H2

π2DNk2
+

6H4

π4D2N2k4
. (10.13)

By expanding Eq. (10.12), one finds in particular the large-N asymptotic behavior:

⟨B⟩ ≃ 7H2

30D
− 61H4

3150D2N
+O

(
1

N2

)
, (10.14)

that exhibits the ⟨B⟩ ∼ H2 scaling invoked in the sliding model [234], as well as the first
finite-size correction to it.

10.4 Finite-size sliding mechanism

We now examine the modification of the sliding mechanism for polymer chains of finite
length. By plugging Eq. (10.12) into Eq. (10.6), one can get an exact expression for
Tg(H,N) from the sliding mechanism. Expanding the latter, one gets the large-N asymp-
totic behavior:

Tg − TV ∝ H√
D

(
1− 61H2

735DN

)1/2

. (10.15)

In Fig. 10.3, we plot
√
⟨B⟩ as a function of H, for different values of N , by numerically

evaluating Eq. (10.12). While we recover the linear behaviour introduced in Ref. [234] in
the strong-confinement regime, the leading term in the large-N asymptotics is independent
of N . In other words – and even without discussing the intercept – the slope of the affine
regime cannot exhibit the logarithmic-like dependence in N seen in the experiments [223,
225] (see Fig. 10.1 and Eq. (10.1)), preventing the current refined sliding mechanism from
explaining them, even qualitatively. We stress that Eq. (10.12) is essentially of the form:

⟨B⟩ = H2

D
F
(

H√
ND

)
, (10.16)
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Figure 10.3: Square root of the average dimensionless bridge length ⟨B⟩ as a
function of dimensionless film thickness H, for three chain lengths N , obtained
from the numerical evaluation of Eq. (10.12) using a cut-off after 100 terms in
the sum. The results have been checked to weakly depend on the cut-off value
in this range.

with F a scaling function, which, combined with Eq. (10.6), cannot lead to the factorized
form of Eq. (10.1). We also stress that including loops in addition, or exclusively, does
not help too, as all these types of paths can be seen under the same category of survival
processes, and therefore exhibit a large-N saturation of their average lengths around the
value of the film thickness.
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Perspective

11.1 Discussion

Examining our results from a broader perspective, the dependence on details such as the
relaxation process along each bridge (Bernoulli trials in PGDG’s [234] work and first exit
time in Milner and Lipson’s [236] delayed glassification model) or the choice of the free
volume distribution in Eq. (10.2) is unsettling. Indeed, many other choices could have
been made.

In an attempt to generalize our findings to some variations of the sliding mechanism, we
assume that the relaxation time is of the general form:

τ = τ0H
[
⟨B⟩, a3

vf(T )

]
, (11.1)

where τ0 is a reference time scale, and H is an increasing function of both its arguments.
Indeed, the relaxation time is expected to increase with increasing bridge length or de-
creasing free volume. Therefore, and because the effective glass-transition temperature Tg

of a film is assumed to be reached when τ reaches the reference relaxation time of a bulk
material at T bulk

g [234], a relation of the following form must be satisfied:

vf(Tg) = a3 G (⟨B⟩) , (11.2)

where G is an increasing function. In the sliding model [234], one has G(x) ∝
√
x for

instance. For comparison, in the delayed-glassification model [236], one has G(x) ∝ log(x).
As a side remark, a linear relation between free volume vf and temperature T was assumed
(see Eq. (10.4)), in view of thermal expansion in a sufficiently narrow temperature range,
but we stress that any behavior of the form vf ∼ (T − TV)

β with a positive exponent β

would lead to the same conclusion.

Let us now exhibit a necessary condition that should be satisfied by a model to ensure
its applicability for describing experimental facts. The trends in Fig. (10.1) are consistent
with Eq. (10.1), and a factor f(Mw) slowly diverging with Mw [225]. Assuming the latter
divergence to be true implies that:

lim
Mw→∞

∂Tg

∂h
= +∞. (11.3)
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Combining the latter equation with Eq. (10.4), and assuming TV and α to be independent
of h, leads to:

lim
N→∞

1

a3
∂vf(Tg)

∂H
= +∞. (11.4)

Finally, by combining Eq. (11.4) with Eq (11.2), one gets the requirement that:

lim
N→∞

G′(⟨B⟩) ∂⟨B⟩
∂H

= +∞. (11.5)

However, from Eq. (10.14), we see that the left-hand side of Eq. (11.5) equals:

lim
N→∞

G′(⟨B⟩) ∂⟨B⟩
∂H

=
7H

15D
G′
(
7H2

30D

)
, (11.6)

which is positive, but finite. Hence, even a generalized formulation of the sliding model
following Eq. (11.1) cannot describe the experimental data. As a result, within the Gaus-
sian framework, we can conclude that a different mechanism is needed to explain the Mw

dependence of the Tg reductions in thin freestanding polymer films.

11.2 Proposed experiment

Here we propose a relativity simple experiment that can test the de Gennes Sliding mech-
anism. In the spirit of the experiments done by Forrest [203, 223]. Preparing pairs of
samples of spin coated polystyrene film for ellipsometric measurements of Tg, as described
in [203, 223]. Their thickness should be ranging between 200-300 nm and that are com-
posed of polymer melt with molecular weight ranging between 0.5-1.2 Mg (106g) . Thinner
sample pairs would be ideal but to our best of knowledge, the samples becomes very fragile
to manipulate.

From this point, before the measurement procedure, these sample pairs should be sand-
wiched and heated above the glass transition temperature for a short time compared with
the reptation time [240], to allow the samples to adhere without having the individual
polymers of each sample to penetrate too deeply into the other sample. This will guaranty
that no path will link the two interfaces. At this stage the sample is ready to pass the
same measurements of Tg as described in [203, 223] for free standing films. In case where
the reduction in glass transition temperature would be statistically indistinguishable from
the measurements in [223] (accounting for the double thickness) that would mean that
the Sliding mechanism is indeed obsolete. Similar experiments have been done, but with
a different measuring method, which does not allow us to compare to the data acquired
previously [193].

11.3 Conclusion

We have computed in chapter 10 the probability density function of the bridge length in
a thin film made of a dense equilibrium assembly of identical finite-sized polymer chains.
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The calculations were performed in the Gaussian-chain framework. We have then used
the obtained expressions in order to refine and critically discuss the sliding model for the
anomalous glass transition in thin freestanding polymer films. Our analysis suggests that
the sliding model, as well as similar models based on free-volume arguments, cannot capture
the intricate chain-length dependence of the experimental data. Another key physical
ingredient, with a dependence on the molecular weight, seems to be missing. Finally,
there are two points to highlight as we think they justify further investigation: firstly,
the remarkable stability of the films above the measured Mw-dependent Tg; secondly, the
proposed existence of a second Tg [193, 230], more closely associated with flow and they
ways in which it is manifested in thin polymer films.
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Chapter 12

Appendix – Part III

12.1 Exit probabilites

The probability that Brownian particle travels a path of length l, starting at z′ and reaching
an interface at z = 0, or at z = h, for the first time is called first passage density [239].
These random processes are well known and have been studied extensively. The first
passage densities are computed directly from the density of paths of length l going from
z′ to z without touching the interfaces. This density is denoted Pc(z, l|z′, 0) and verifies
the diffusion equation in single spatial dimension with absorbing boundary conditions in
z = 0 and z = h:

dPc

dt
=D

d2

dz2
Pc (12.1)

Pc(z = 0) = Pc(h = 0) = 0, (12.2)

with delta function initial condition located at z′, Pc(z, 0|z′, 0) = δ(z − z′). The solution
of this partial differential equation is:

Pc(z, l|z′, 0) =
2

h

∞∑
k=1

sin(λkz
′)sin(λkz) exp(−Dλ2

kl), (12.3)

with λk = πk
h . The density of paths of length l reaching the interface for the first time is

given by the probability flux at the edge given by Fick’s law:

fedge = −D
dPc

dz
|z=edge . (12.4)

Note that the sign should be chosen such that at each edge we look at the flux going out
of the slab. Evaluating that gives:

f0 =
2D

h

∞∑
k=1

λk sin(λkz
′) exp(−Dλ2

kl), (12.5)

101



CHAPTER 12. APPENDIX – PART III

and for the z = h edge we get:

fh =
2D

h

∞∑
k=1

(−1)k+1λk sin(λkz
′) exp(−Dλ2

kl), (12.6)

which are the two probability densities that have been used in chapter 10.3.
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MOTS CLÉS

Physique statistique hors de l’équilibre, électrolytes, polymères, matière granulaire, matière molle

RÉSUMÉ

L’objet de cette thèse est l’étude théorique de trois problèmes croisés en physique statistique hors équilibre. Le premier

concerne l’étude de la réponse temporelle d’un système ionique soumis à une variation brusque d’un champ électrique

extérieur. En particulier, nous étudions le comportement des fonctions de corrélation densité-densité et des courants

électriques induits. En nous appuyant sur la théorie de la densité fonctionnelle stochastique et en intégrant les interactions

hydrodynamiques, nous effectuons une étude complète du courant électrique total en fonction des corrélations ioniques.

Nous montrons que les corrélations ne suivent pas la même trajectoire lorsque le champ est activé ou désactivé. Ainsi,

le courant décroît exponentiellement lorsque le champ est désactivé, alors qu’il décroit algébriquement jusqu’à sa valeur

stationnaire lorsque le champ est activé. Cette différence est due à un effet non linéaire. De plus, nous démontrons

que le comportement à long terme des corrélations est dominé par un processus de diffusion anisotrope, ce qui explique

la décroissance algébrique des courants. Le deuxième problème explore la diminution anormale de la température de

transition vitreuse observée dans les films minces de polymères autoportés de haut poids moléculaire. En considérant les

statistiques exactes de marches aléatoires de taille finie confinées entre deux plans, nous évaluons de manière critique

le mécanisme original de relaxation proposé par de Gennes. Nos résultats indiquent que ce mécanisme ne permet

pas d’expliquer les principales caractéristiques observées dans les expériences et qu’une nouvelle approche théorique

s’avère donc être nécessaire. Enfin, le troisième problème se trouve dans l’étude des écoulements granulaires denses

le long de plans inclinés. En analysant les simulations obtenues par la méthode des éléments discrets, nous retrouvons

les caractéristiques essentielles des écoulements granulaires, notamment l’existence d’une contrainte critique, le profil

de vitesse de Bagnold et des lois de frottement et de dilatation distinctes. Notre analyse microscopique détaillée met en

évidence la formation d’amas de grains. Ces connaissances permettent le développement d’un modèle théorique de lois

d’échelle, offrant une meilleure compréhension des principes régissant les écoulements granulaires denses.

ABSTRACT

In this thesis, we examine three interrelated problems within the domain of non equilibrium statistical physics using

theoretical tools. These problems share the existence of long range correlations where stationary flows and disorder

prevent reaching an equilibrium state. Using the distinct properties of these systems we explore different aspects of non

equilibrium states. The first problem centers around the examining temporal responses of ionic systems, subject to a

quench of an external electric field. In particular, we study the response of the density-density correlation functions and

induced electric currents. Leveraging Stochastic Density Functional Theory and integrating hydrodynamic interactions,

we analyse the total electric current as a function of ionic density-density correlation functions. The correlations do not

follow the same trajectory when the field is switched on or off. Accordingly, the current decays exponentially when the

field is switched off, yet it relaxes algebraically to its stationary value when the field is switched on, rooted in a non-linear

effect. Moreover we demonstrate that the long range behavior of the correlations is dominated by an anisotropic diffusion

process, which accounts for the algebraic decay of the currents. The second problem explores the anomalous decrease in

the glass-transition temperature observed in thin freestanding polymer films of high molecular weight. We critically assess

the de Gennes’ sliding mechanism, which proposes a hypothetical relaxation mode by considering the exact statistics of

finite-sized random walks confined between two planes. Our findings challenge the hypothesis, indicating that the sliding

mechanism cannot capture the main features observed in the experiments, thus necessitating a new theoretical approach.

The third problem revolves around the study of dense granular flows down inclined planes. Analyzing discrete element

method simulations, we recover critical features of granular flows; including the existence of a critical stress, the Bagnold

velocity profile, and distinct friction and dilatancy laws. Our microscopic analysis uncovers the formation of grain clusters.

These insights permit the development of a theoretical scaling model, providing a comprehensive understanding of the

principles governing dense granular flows.

KEYWORDS

Non-equilibrium statistical physics, electrolytes, polymers, granular matter, soft matter
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