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Abstract 
 

Wastewater treatment models are recognized as important decision support tools for process design, 

scenario analysis, impact assessment, optimization of treatment operation, and for educational 

purposes. Several biofiltration models have been developed so far based on modified Activated Sludge 

Models. They allow simulating the removal of organic matter and nutrients, as well as greenhouse gas 

emissions. Generally, these models have been calibrated with short-term experimental data in pilot 

set-ups and have reached reasonable performance. The greater complexity of mechanistic models of 

biofiltration makes their parameterization, calibration and validation much more laborious, requiring 

more dedicated measurement data. This can become a bottleneck to model application in an 

operational context. 

Alternatively, hybridization of mechanistic models with data-driven models allows taking advantage of 

the strong points of each model type: calculations of water quality variables are based on the 

fundamental understanding of the physical-chemical-biological processes, which are supported by a 

fast computing data-driven model to correct for missed dynamics. The data-driven model learns 

unknown relationships from the data and helps improving simulation quality, especially for 

interpolation purposes. In recent literature, hybrid models describing activated sludge processes have 

improved model performance and supported process monitoring and control. As far as known to the 

authors, in this study, the approach is applied for the first time to biofilm systems. Hybrid models have 

a higher benefit/cost ratio for solving complex problems, which is a key factor for process systems 

engineering.  

In this study, a hybrid biofiltration model was developed that improves model prediction power 

compared to the pure mechanistic one. A previously developed biofiltration model was recalibrated 

with recent data from the biofiltration lane of the 6 million PE, 1.5 million m3/day wastewater 

treatment plant that uses submerged upflow biofilters for denitrification with controlled methanol 

dosing. The mechanistic model is a 1-dimensional dynamic biofilm reactor model describing a ‘fixed-

culture’ in an upward flow biological filter. The model simulates in total 22 biological and physical-

chemical conversions of carbon, nitrogen and phosphorus by describing the evolution of all 

components with mass balances. The recalibrated model effluent nitrate concentrations are however 

overestimated by a relative mean error of up to 25% (calibration for 1 month). 

Data-driven models were selected among linear regression models, regression decision tree models; 

support vector machines and artificial neural networks with up to three hidden layers. The hybrid 

model architecture adopted is a cooperative parallel hybrid structure with a 3-layer feedforward 

neural network with 12, 25 and 1 neurons for the input, middle and output layer and a ReLU activation 

function. It was trained to calculate the error between the simulations of the mechanistic model and 

the observations to allow correcting the simulated effluent quality variables. The results obtained 

show that the output of the hybrid model is much closer to the observations for the effluent nitrate 

concentrations with a mean error of 2% (training) and 8% (testing). Low Janus coefficients in the range 

of 1 to 2 confirm the validity of the hybrid model.  

The hybrid model was subsequently applied in a process control system for methanol dosing in a 

predenitrification biofilter to reach a certain set point of the effluent nitrate concentration. The 
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proposed hybrid model predictive controller first searches for an optimal dosing rate by running 

multiple scenarios through the mechanistic biofilter model and the data-driven model described 

earlier for a two-hour prediction horizon. The HMPC then selects the scenario with the closest 

agreement with the nitrate set point. The proposed action corresponding to the first 15 minutes time 

step is then applied to a second biofilter model that represents the real physical system. This allows 

studying the effect of the proposed optimal dosing rate. Feedback to the HMPC optimizer is provided 

for so that the optimizer can correct of any divergence between the model included in the HMPC and 

the model playing the role of reality. The results show that the HMPC control strategy leads to an 

improvement in effluent quality compared to the current feedforward controller implemented at the 

plant, albeit with an increased operational cost of methanol dosing. Further research is needed to 

study the effect of a multi-objective optimization strategy that searches for optimal dosing rates, while 

at the same time considering the economic costs and associated greenhouse gas emissions. 
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Résumé 
 

En contexte industriel, les modèles mécanistes de traitement des eaux usées décrivant les 

procédés de boues activées sont reconnus comme des outils importants d’aide à la décision. 

Ils intègrent un grand nombre de paramètres et nécessitent une phase complexe de calage 

préalable. Dans le cas du traitement par biofiltration, un procédé compact et largement 

appliqué en région urbanisée parisienne, la nécessité de modéliser les processus bio-physico-

chimiques au sein du biofilm complexifie ces modèles mécanistes. Ces modèles pour la 

biofiltration nécessitent une puissance de calcul relativement élevée et ne sont pas encore 

bien établis. 

Des modèles de Machine Learning (ML) basés sur les données décrivent quant à eux le 

système uniquement sur les informations extraites des données. Ils présentent une force 

d'interpolation et sont beaucoup plus rapides en calcul, ce qui les rend très intéressants pour 

les applications en temps réel. 

L’hybridation combine un modèle mécaniste qui intègre des connaissances pertinentes sur les 

processus, avec un modèle basé sur les données qui augmente la précision des estimations 

en incluant des informations sur des sous-processus mal décrits. 

Dans cette étude, un modèle mécaniste existant est recalibré avec des données de mesure 

haute fréquence provenant de l’étage de dénitrification amont de la filière de biofiltration d’une 

usine à grande échelle. Un modèle hybride, qui intègre un modèle de Machine Learning 

d’estimation des résidus, est décrit. Il permet une réduction significative des erreurs 

d’estimation. 

1 Introduction 

Le programme de recherche Mocopée phase I (2014 – 2017) a permis de développer des 

modèles mathématiques de prédiction des variables de qualité d’eau pour les procédés de 

traitement appliqués aux stations d'épuration de la région parisienne (SIAAP, 2018). Cet effort 

a abouti à la conception de modèles mécanistes de décantation primaire physico-chimique 

(Bernier et al., 2016), de traitement secondaire par biofiltration (Zhu, 2020) et par bioréacteur 

à membrane (Nadeem, 2021). L’étape suivante a consisté à développer un modèle filière qui 

intègre les trois phases de biofiltration : la dénitrification amont (DAM), la nitrification (NIT) et 

la dénitrification aval (DAV). 

Au contraire des modèles mécanistes ASM (Activated Sludge Models, Henze et al., 2000) qui 

décrivent les processus de croissance de la biomasse en suspension (présents dans les 

procédés de boues activées) et qui ont une base solide au sein de la communauté scientifique, 

les modèles mécanistes de biofiltration, qui est un procédé à base de culture fixée de 

microorganismes, sont encore en plein développement. Les équations biologiques prises en 

compte par l’ASM ne peuvent pas être directement appliquées dans un modèle de biofiltration 

en raison de l'importance des processus de transport par diffusion, des cinétiques biologiques 

qui se déroulent dans le biofilm et du rétrolavage. De plus, il n'existe pas encore de protocoles 

largement acceptés pour développer des modèles de biofilm (Rittman et al., 2018). Les travaux 

de thèse de Jialu Zhu (2020) ont permis de développer un premier modèle filière, qui intègre 

les trois phases de biofiltration, à partir de données collectées au mois de mai 2018. Les 
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résultats montrent que le modèle est généralement capable de prédire les valeurs moyennes 

quotidiennes des variables en sortie. 

Cependant, la complexité des modèles mécanistes rend leur paramétrage et leur calage 

laborieux, consommateurs en temps et en données ; cela peut devenir une contrainte limitant 

leur application (Vanrolleghem et al., 2005). Ils nécessitent une puissance de calcul élevée, 

ce qui les rend moins adaptés pour les applications de contrôle en temps réel avec un court 

horizon temporel d’action (Schneider et al., 2022).  

A l’opposé, les modèles de ML basés sur les données utilisent des méthodes d’apprentissage 

automatique pour trouver des relations inconnues entre les données, et sont très rapides en 

temps de calcul. Ces modèles décrivent le système uniquement sur la base d'informations 

extraites des données et ont de fortes capacités d'interpolation (Newhart et al., 2019). A cause 

des caractéristiques non-stationnaires et de la variabilité temporelle potentiellement 

importante des liens existants entre les données, un réentraînement fréquent de ce type de 

modèle reste nécessaire (Torfs et al., 2022).  

La modélisation hybride, combinant l'utilisation de modèles mécanistes, basés sur la 

connaissance du système, avec des modèles de ML, basés sur les données, est capable de 

cumuler les avantages de chaque approche (Von Stosch et al., 2014). Le principal avantage 

est un rapport bénéfice/coût plus élevé pour résoudre des problèmes complexes, ce qui est 

un facteur clé pour l'ingénierie des systèmes de procédés (Schneider et al., 2021). Ce travail 

s’intègre dans une démarche de développement de jumeaux numériques dans le domaine de 

l’assainissement. 

L'objectif du travail présenté est donc quadruple ; premièrement, mettre à jour le modèle de 

biofiltration développé précédemment (Zhu, 2020) en calant ses paramètres grâce à des 

données acquises sur site industriel en période 2019 – 2020 et préalablement qualifiées et 

identifiées grâce à une analyse de sensibilité; deuxièmement, développer un modèle de ML 

permettant l’identification des erreurs du modèle mécaniste; et troisièmement, intégrer ces 

deux composantes dans un modèle hybride afin d’augmenter la précision des estimations ; et 

quatrièmement, l'application d'un modèle hybride comme étude de cas de contrôle de 

processus dans un cadre opérationnel avec des données à haute résolution. 

Le modèle hybride développé (Figure 1) est une structure hybride parallèle 

coopérative (Schneider et al., 2022) où le modèle de ML prédit la différence entre les valeurs 

des simulations du modèle mécaniste et les observations (l'erreur résiduelle, Δ). Ceci 

nécessite que le modèle mécaniste fasse d'abord des estimations des valeurs de variables en 

sortie du procédé (ligne bleue dans la figure), qui sont ensuite analysées par le modèle de ML 

(boîte bleue), qui reçoit également les informations sur la qualité d’eau à l’entrée du procédé 

(ligne noire). Enfin, les résultats du modèle mécaniste et du modèle de ML sont combinés pour 

en déduire une valeur plus précise. Dans le cas de simulations prédictives, en l’absence de 

mesure en sortie du procédé, le modèle hybride nous permet de prédire les valeurs de l’eau 

traitée. 
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Figure 1 : Structure de modèle hybride (boîte grise) combinant un modèle de Machine Learning basé sur les données (boîte 
noire) et un modèle mécaniste basé sur la connaissance du système bio-physico-chimique (boîte blanche). 

1. Matériels et méthodes 

1.1 Description de la station d’épuration Seine aval et de la biofiltration 
Le projet de recherche a été mené au sein de la station d’épuration de Seine aval (SAV) à 

Achères (Yvelines) gérée par le SIAAP. Cette usine épure un volume de 1 250 000 m3/j en 

temps sec (14,5 m3/s ; 6 000 000 eh). 

La filière de traitement des eaux est constituée d’un traitement primaire physico-chimique 

(dégrillage, dessablage-déshuilage et décantation primaire favorisée par l’ajout de réactifs 

coagulant-floculant), suivi d'un traitement biologique secondaire soit par biofiltration, soit par 

bioréacteurs à membrane. Pendant la période étudiée, le débit moyen par temps sec vers la 

filière de biofiltration était de 1 090 000 m3/j. 

Sur la filière de biofiltration, l'élimination de l'azote est un processus biologique en deux 

étapes : l’oxydation de l'ammonium en nitrites puis nitrates par les bactéries autotrophes 

(nitrification - NIT), puis la conversion des nitrates en diazote gazeux par les bactéries 

hétérotrophes oxydant la matière organique dans des conditions anoxiques 

(dénitrification - D). Dans le cas de la filière de biofiltration du site industriel de Seine aval 

présentant une configuration dénitrification amont (DAM) – nitrification (NIT) – dénitrification 

aval (DAV), ceci nécessite une recirculation de l'eau nitrifiée issue de l'étage NIT vers la DAM, 

qui a pour atout de consommer la matière organique naturellement présente en sortie de la 

décantation primaire. Les concentrations en nitrates et en demande chimique en oxygène 

(DCO) en sortie de DAM sont des indicateurs importants de l’activité biologique dans la DAM, 

procédé sur lequel porte cette étude. 

1.2 Jeux de données utilisées 
Les jeux de données utilisés lors de cette étude couvrent la période de décembre 2019 à 

octobre 2020. Ils sont constitués de mesures provenant des capteurs, sondes et analyseurs 

en ligne de débit et de variables de qualité de l'eau pour la matière organique, l'azote et les 

orthophosphates toutes les 15 minutes. S’y ajoutent les données issues d’analyses réalisées 
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au laboratoire accrédité du SIAAP sur des échantillons quotidiens récoltés aux points clés des 

filières de traitement. 

La période de calibration s’étale de décembre 2019 au 15 mars 2020. La période de la 

validation va de juin à septembre 2020, période estivale caractérisée par de très faibles débits 

pendant le mois d'août, des conditions très différentes de la période de calibration. 

Les données collectées en format brut ont d'abord été prétraitées en utilisant la méthode 

décrite par Alferes et Vanrolleghem (2016). Cette méthode inclut trois étapes de traitement : 

un lissage exponentiel des séries temporelles ; un lissage utilisant la méthode des noyaux ; et 

une détection et une suppression des données aberrantes. Ces données de capteurs ont 

ensuite été corrigées en utilisant les données issues des analyses en laboratoire qui sont 

considérées comme plus fiables.  

La méthode de caractérisation des variables d'entrée du modèle de biofiltration est basée sur 

le fractionnement des entrées du modèle ASM1 (Henze et al., 2000). Le modèle de 

fractionnement de la matière organique de l’affluent a été construit à partir des mesures de 

DCO totale et DCO soluble. Les valeurs des paramètres utilisés pour quantifier ce 

fractionnement sont basées sur les valeurs par default d’ASM1 et du modèle calibré par Zhu 

(2020). Le fractionnement de l’azote a été basé sur des variables mesurées directement. 

1.3 Description du modèle mécaniste 
Le modèle mécaniste utilisé est un modèle dynamique en une dimension d’un filtre biologique 

immergé à flux ascendant à culture fixée, sur lequel les micro-organismes se développent au 

sein d'un biofilm, précédemment développé par Zhu (2020) dans le cadre de sa thèse 

(2020, UTC). Il se compose de sous-modèles de représentation hydraulique du média filtrant, 

de transfert et de transport de substrats solubles et particulaires entre eau et biofilm et au sein 

du biofilm, de la cinétique de croissance et de mortalité des bactéries et du rétrolavage pour 

éviter le colmatage du filtre. Le modèle simule la conversion biologique et physicochimique du 

carbone, de l’azote et du phosphore en décrivant l’évolution des substrats par des bilans de 

masse basés sur le modèle ASM1. Les principales modifications se concentrent sur le transfert 

de masse dans les biofilms, la cinétique des micro-organismes et l’influence des cycles 

réguliers de lavage. 

Le modèle simule la filière de biofiltration en trois étapes (DAM, NIT, DAV) et est capable de 

calculer la qualité des eaux dans les différents réacteurs modélisés. Dans la suite de ce travail, 

nous nous focaliserons sur le modèle de qualité des eaux en sortie de DAM. 

1.4 Méthodes de calage et de validation du modèle mécaniste 
Des scores statistiques sont calculés pour évaluer la performance et la précision du modèle 

de manière qualitative et quantitative. Chaque simulation dynamique a été précédée d’une 

simulation de régime stationnaire de 30 jours afin d’initialiser le modèle. 

Dans le cas de la calibration du modèle, les erreurs statistiques sont déduites de la 

comparaison entre les variables de l'effluent modélisées et les données mesurées. La pratique 

standard dans la modélisation des boues activées examine (Rieger et al., 2012) : l’erreur 

moyenne (EM, équation 1) qui permet de mesurer le biais du modèle (une valeur optimale 

proche de 0 indique un biais faible) ; l’erreur moyenne absolue (EMA, équation 2) et la racine 

de l’erreur quadratique moyenne (REQM, équation 3) divisées par la moyenne des 

observations (ŷ) qui permettent d’estimer la précision du modèle. Plus les valeurs EMA/ŷ et 
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REQM/ŷ sont proches de 0, meilleure est la précision du modèle. Enfin, le coefficient de Janus 

(équation 4), avec une valeur optimale de 1 et une valeur acceptable de 2, permet de comparer 

les résultats de la validation avec ceux de la calibration (Hauduc et al., 2015).  

𝐸𝑀 =
1

𝑛
∑(𝑂𝑖 −  𝐸𝑖)                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1

𝑛

𝑖=1

 

𝐸𝑀𝐴 =
1

𝑛
∑|𝑂𝑖 −  𝐸𝑖|                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2

𝑛

𝑖=1

 

𝑅𝐸𝑄𝑀 = √
1

𝑛
∑(𝑂𝑖 − 𝐸𝑖)2

𝑛

𝑖=1

                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑑𝑒 𝐽𝑎𝑛𝑢𝑠 =
𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑅𝑀𝑆𝐸𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

sachant O Observation, E Estimation. 

La calibration du modèle dynamique de biofiltration suit la méthode décrite par Mannina et 

al. (2011), qui approfondit les lignes directrices de modélisation pour les modèles de boues 

activées de l'IWA (Rieger et al., 2012). La méthode consiste en : 1) la sélection des variables 

de sortie ; 2) l’identification des paramètres qui ont un effet important sur chacune des 

variables sélectionnées en effectuant une analyse de sensibilité ; 3) l’évaluation des scores 

statistiques qui indiquent la performance du modèle selon le jeu de paramètres testés. 

L’analyse de sensibilité a permis de quantifier l’influence des paramètres sur des variables de 

qualité de l'eau en aval de la dénitrification, considérées comme indépendantes, dans l’ordre 

suivant : 1) matières en suspension (MES) ; 2) DCO soluble et N-NO3 ; 3) N-NH4 ; 4) N-NO2 ; 

5) P-PO4. 

Compte tenu du grand nombre de paramètres (142) et de variables (20) impliqués dans ce 

modèle, ainsi que de l'incertitude liée à la plupart d'entre eux, une analyse de sensibilité 

globale a été effectuée en appliquant des coefficients de régression standardisés 

(Cosenza et al., 2013), avec une présélection des paramètres par une approche experte et 

issue de la littérature. Au total, 89 paramètres ont été retenus. 

L'analyse de sensibilité a consisté en 10 sessions parallèles de 90 simulations en régime 

permanent pour une période de 30,5 jours en utilisant la méthode probabiliste de Monte-Carlo 

avec l'échantillonnage hypercube latin (Latin Hypercube Sampling), qui permet un 

échantillonnage aléatoire stratifié (Saltelli et al., 2008). Au-delà de 30,5 jours, la variation des 

valeurs des variables est supposée être entièrement causée par les valeurs de paramètres 

choisies. 

De façon plus détaillée, une analyse par régression linéaire multiple a permis de définir les 

relations entre paramètres et variables. Les données ont d’abord été normalisées grâce au 

calcul de z-scores (pour chaque point, soustraction de la moyenne puis division par l'écart type 

de chaque paramètre), étape nécessaire pour apporter uniformité et exactitude. Une gamme 
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d'erreur de 10 à 15 % selon la variable est considérée comme une valeur acceptable 

(Rieger et al., 2012). 

1.5 Description du modèle hybride 
Un modèle hybride implique une interaction entre un modèle mécaniste, qui sert de base 

fondamentale pour les estimations, et un modèle de ML qui applique des corrections sur ce 

dernier. Le modèle mécaniste assure la préservation de la connaissance du procédé 

épuratoire et offre de bonnes capacités d'extrapolation. Le modèle de ML offre des capacités 

d’estimation améliorées grâce à l’apprentissage implicite de relations inconnues entre les 

variables d’entrée et de sortie du modèle mécaniste. Ces capacités peuvent compenser les 

dynamiques manquées par le modèle mécaniste (Schneider et al., 2022). 

1.6 Méthodes d’entrainement et de test du modèle hybride 
Dans une structure de modèle hybride, plusieurs modèles de ML peuvent être appliqués, tels 

que des réseaux de neurones ou des structures d'arbres de décision. Pour l’entrainement de 

ces modèles de ML, les sorties modélisées par le modèle mécaniste sont comparées aux 

variables d'effluent mesurées de la DAM afin de calculer les résidus du modèle (les écarts 

entre valeurs observées et valeurs prédites). L’entrainement d'un modèle de ML suit un 

schéma général d'importation des données, d'organisation et de prétraitement des données, 

d'exploration des caractéristiques des données, de création du modèle et d'évaluation des 

performances. Les mêmes indicateurs statistiques que ceux appliqués au modèle mécaniste 

ont été calculés pour évaluer la performance du modèle hybride. 

Plusieurs configurations de modèles ont été créées sur un ensemble de données couvrant la 

période allant du 1er décembre 2019 au 28 février 2020 (8 000 points de données par variable). 

Les variables normalisées qui ont été fournies au modèle incluent le type de jour (semaine ou 

weekend), le type de temps (sec ou pluvieux), la température, les débits, les concentrations 

observées de N-NO3, MES, DCO totale et DCO soluble dans l’affluent, ainsi que des 

paramètres opérationnels comme la consigne de N-NO3 et le dosage de méthanol. Les valeurs 

estimées par le modèle mécaniste à la sortie de la DAM sont ajoutées. En phase 

d'entrainement, l'erreur résiduelle du modèle mécaniste est également transmise afin de 

permettre un apprentissage supervisé. Trois modèles de réseaux neurones ont été entrainés 

pour chaque variable en sortie univariée afin de calculer les résidus des concentrations en 

NOx (N-NO3 + N-NO2), en DCO totale et en MES. En phase de test, le modèle sélectionné a 

été testé avec un nouveau jeu de données (1 300 points) couvrant la période du 1er mars 

2020 au 15 mars 2020. La structure algorithmique optimale a été sélectionnée en comparant 

les performances de chaque modèle. 

La modélisation mécaniste a été faite à l’aide du logiciel WEST (DHI) ; le traitement des 

données brutes, le développement et l’entrainement des algorithmes de ML ont été réalisés 

dans l’environnement MATLAB R2022a (MathWorks) à l'aide des boîtes à outils Machine 

Learning et Deep Network Designer. 

1.7 Développement du contrôle prédictif du modèle hybride (HMPC) 
Le concept du contrôle prédictif du modèle hybride (HMPC) développé dans cette étude pour 

le dosage du méthanol dans un biofiltre de dénitrification est illustré à la Figure 2. Le HMPC 

fonctionne en recherchant d'abord un taux de dosage optimal du méthanol en exécutant 

plusieurs scénarios à travers le modèle de biofiltre hybride, qui contient le modèle mécaniste 

calibré (le modèle nommé ‘MPC’, boîte bleue sur la figure) simulant le comportement d'un filtre 
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comme décrit précédemment, et le modèle de ML (ANN Model) développé (boîte jaune). Il 

compare ensuite l'effluent de nitrate simulé avec la concentration de NO3-N de l'effluent 

souhaitée (la consigne). 

 

Figure 2: Schéma conceptuel du contrôleur prédictif de modèle hybride développé (boîte grise) qui implique un modèle 
mécaniste (boîte bleue) interagissant avec un DDM de correction (boîte jaune) pour trouver la valeur d'action de contrôle 
optimale qui est implémentée dans le modèle de processus "Reality" (boîte rouge boîte). Ce modèle fait ensuite une prédiction 
à une étape de la qualité de l'effluent, qui est utilisée comme effluent « observé » pour la prochaine itération du HMPC. 

Le modèle HMPC reçoit les données d'influent mesurées et des informations pertinentes sur 

les paramètres opérationnels (par exemple, le nombre de biofiltres actifs). Ces informations 

pourraient facilement être étendues pour inclure le coût du dosage du méthanol et les coûts 

environnementaux (par exemple, les émissions de GES) associés au dosage du méthanol. 

L'optimiseur recherche la plus petite erreur entre les concentrations de nitrate simulées et la 

consigne souhaitée. Le débit de dosage optimal correspondant est alors identifié et transmis 

à un second modèle de biofiltre mécaniste (le « Reality » Process Model dans la boîte rouge), 

qui représente la réalité à laquelle ce contrôleur HMPC serait éventuellement connecté. Il est 

important de réaliser que ce modèle de processus de « réalité » est différent du modèle MPC 

d'une manière qui se rapproche de la différence qui se produirait entre le modèle MPC et la 

réalité à laquelle le HMPC doit être appliqué. Ce modèle représente le processus physique se 

déroulant dans le monde physique et permet de quantifier l'impact de l'action proposée. 
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Les fichiers influents et les paramètres opérationnels (par exemple, les informations sur le 

nombre de filtres actifs dans une étape de traitement) sont identiques pour le modèle MPC et 

le modèle de processus de réalité. L'initialisation des deux modèles est donc identique. 

Cependant, en raison de certaines différences de paramètres de modèle (voir section 6.3.3), 

la condition initiale de chaque modèle dans la simulation dynamique sera différente, de même 

que leur comportement pendant la simulation dynamique. 

La fonction objective de l'optimiseur vise à minimiser l'erreur entre la concentration en nitrate 

souhaitée, qui est la consigne, et l'effluent en nitrate modélisé. Il cherchera à manipuler le 

dosage du carbone externe dans le biofiltre simulé dans le modèle MPC pour atteindre 

l'objectif défini, malgré les perturbations survenant dans le débit et les concentrations de 

l'influent. Dans l'ouvrage de contrôle développé, la variable procédé (PV) est la concentration 

de l'effluent nitrate et la variable manipulée (MV) est le débit de dosage du méthanol (Q_Dose) 

exprimé en m3/j ; la sortie souhaitée est la concentration de nitrate de consigne (mgNO3-N/L) 

dans l'effluent (SP_NO3). 

Comme indiqué sur la Figure 3, l'horizon de prédiction du MPC est fixé à 120 minutes, ce qui 

laisse suffisamment de temps pour que l'effet d'une action de dosage de méthanol sur le 

biofiltre passe complètement à travers le biofiltre. La taille du pas de temps (k) a été choisie à 

15 minutes car le temps de rétention hydraulique de l'eau dans un biofiltre est de l'ordre de 20 

à 30 minutes. Toute dose de réactif injectée à l'instant k traversera le biofiltre en 20 à 30 

minutes, et son effet sur l'activité biologique est supposé être du même ordre. L'horizon de 

contrôle est défini comme les quatre premiers pas de temps (donc de k à k+4), dont en réalité 

seule la première action proposée est effectivement transmise au système réel (ici le modèle 

de processus "Réalité"). Après la première itération, le HMPC remonte d'un pas de temps 

(k+1) dans un horizon de prédiction fuyant, et recommence l'optimisation. Dans cette étude de 

cas, cette fenêtre de simulation mobile est répétée pendant une durée totale de 3 heures. 

 

Figure 3: Stratégie de contrôle (H)MPC appliquée montrant l'horizon de contrôle de 60 minutes et l'horizon de prédiction de 
120 minutes sur l'axe horizontal ; ainsi que la valeur de consigne souhaitée et le débit de dosage (Q_Dose) sur l'axe vertical. 

Outre le débit de dosage variable (Q_Dose) et le point de consigne souhaité, toutes les autres 

entrées du contrôleur sont considérées comme des perturbations dans des conditions 
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« idéales » sans tenir compte du bruit de mesure, des retards ou d'autres écarts de 

surveillance. Dans une extension future de ce projet de démonstration, le Reality Process 

Model peut facilement être remplacé par des mesures en temps réel des concentrations 

d'effluents de nitrate. 

Le contrôleur HMPC était codé en langage python (3.9) afin de permettre l'exécution et le 

couplage automatique du modèle de ML (développé en python) et des modèles de biofiltre, 

qui ont été développés dans le logiciel WEST (DHI). 

 

2. Résultats et discussion 

2.1. Résultats du traitement des données 
Les résultats du traitement des données brutes collectées sont présentés dans le tableau 1 

pour la période de calibration (colonne de gauche) et pour la période de validation (colonne 

de droite). En moyenne, les données mesurées pendant la période de calibration contiennent 

environ 10 500 mesures par variable, dont 4 % ont été classées comme étant aberrantes. Les 

capteurs mesurant les MES (16 %) et l'oxygène dissous (OD) (28 %) en particulier présentent 

un pourcentage élevé de données aberrantes. La colonne « Données supprimées (%) » 

combine les valeurs considérées comme aberrantes par l’étape de lissage exponentiel, ainsi 

que les données supprimées car considérées comme invalides (Alferes et 

Vanrolleghem, 2016). Sur l'ensemble des variables traitées, en moyenne 16% des données 

brutes ne sont pas retenues, avec des pourcentages de perte élevés pour l’OD (52%) et les 

orthophosphates (48%) mesurés respectivement à l'entrée et à la sortie du DAM. 

Alferes et Vanrolleghem (2016) confirment des pertes typiques de 5 à 50% des données 

provenant des sondes immergées dans des eaux usées. 

Durant la période de validation, en moyenne 1 % de valeurs aberrantes ont été détectées et 

12 % de données ont été supprimées par le lissage (tableau 1). La qualité des mesures de 

MES en sortie de DAM et en sortie de traitement des boues est particulièrement faible (13 % 

et 33 % de suppression, respectivement). Cependant, la période de validation présente des 

pourcentages de perte plus faibles que lors de la calibration. 

Tableau 1 : Résultats de la méthode de nettoyage des données appliquée aux données haute résolution pour la période 
d'étalonnage et de validation. 

 
Calibration 

 
Validation 

Variable N Valeurs 

aberrantes 

%) 

Données 

supprimées 

(%) 

 
N Valeurs 

aberrantes 

(%) 

Données 

supprimées 

(%) 

Débit d'eau recirculée 10657 0,5 8,1 
 

8832 0,1 8,4 

Débit d'eau décantée 10657 0,2 9 
 

8832 0,1 5,3 

DCO entrée DAM 10036 1,9 11,1 
 

8832 0,32 11,6 

NOx entrée DAM 10231 1,3 3,5 
 

8832 0,02 6,7 

NOx recirculation 10654 0,2 7,6 
 

8832 0,1 7,1 

NH4 sortie DAM 10573 0,3 6,9 
 

8832 0,2 9,2 

MeS sortie DAM 10654 16,1 18,6 
 

8832 4,9 12,9 

PO4 sortie DAM 10626 1,4 48,3 
 

8796 2,2 9,1 

Débit traitement des 

boues 

10652 0,06 13 
 

8832 0,4 15,3 
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Débit refroidissement 10652 2,4 18,6 
 

8832 0,7 9,3 

NH4 recirculation 10627 0,22 10,9 
 

8831 1,2 19 

MeS sortie traitement 

des boues 

10656 0,04 33,4 
 

8832 6,7 33,2 

DCO sortie DAM BAT C - - - 
 

8825 0,2 14,4 

NOx sortie DAM BAT C  -  -  - 
 

8832 0,1 4,4 

Moyenne 10544 3,8 16,1 
 

8829 1,2 11,9 

 

2.2. Résultats de l’analyse de sensibilité des paramètres du modèle mécaniste 
L’analyse par régression linéaire multiple a identifié des paramètres comme étant influents 

avec des coefficients de régression standardisée absolus supérieurs à 0,1. Les paramètres 

retenus et recalibrés (voir tableau 2) caractérisent la filtration et le rétrolavage, le transfert de 

matière au sein du biofilm par diffusion, la nature du biofilm et les cinétiques biologiques. 

Par rapport aux valeurs du modèle d'origine, les paramètres ont été modifiés de plus de 20 % 

en moyenne. Cet ajustement peut s’expliquer par des modifications des conditions 

d’exploitation des biofiltres et des infrastructures amont ou par une évolution des populations 

bactériennes et de leur métabolisme entre la calibration actuelle et celle précédemment 

réalisée. 

Des modifications importantes des paramètres qui décrivent l'activité de la biomasse 

hétérotrophe en anoxie sont proposées. Parmi ceux-ci, le facteur de réduction de la vitesse de 

croissance en réduisant le nitrite (n_h3 : -34%), et le monoxyde d'azote (n_h2 ; +36%) et la 

constante de demi-saturation en DCO soluble biodégradable (K_S_NO3 : +45%). Au total, 9 

paramètres caractérisant les cinétiques biologiques et 2 paramètres caractérisant la 

filtration ont été modifiés. 

Tableau 2: Résultats de l'analyse de sensibilité des paramètres du modèle mécaniste modifiés 

Description des paramètres Symbole Unité Valeur 

modèle JZ 

(Zhu, 2020) 

Espace 

attribuée 

Valeur 

recalibrée  

Différence 

Composition             

Quantité d'azote dans la 

biomasse 

i_X_B gN/gCOD 0,098 20% 0,109 +11 % 

Quantité de phosphore dans la 

biomasse 

i_X_BP gP/gCOD 0,0055 50% 0,0046 -16 % 

Quantité de phosphore dans les 

produits de la mort bactérienne 

i_X_UP gP/gCOD 0,006 50% 0,008 +33 % 

Filtration             

Coefficient de filtration sur le 

filtre propre 

lami 1/m 0,4 50% 0,43 +8 % 

Constante empirique y dans 

l'équation de coefficient de 

filtration 

yy - 0,83 50% 1,06 +28 % 

Cinétique             



xxi 
 

Constante de demi-saturation en 

DCO soluble biodégradable pour 

la biomasse hétérotrophe 

consommant le nitrate en anoxie 

K_S_NO2 gCOD/m3 13,8 20% 16,06 +16 % 

Constante de demi-saturation en 

DCO soluble biodégradable pour 

la biomasse hétérotrophe 

consommant le nitrite en anoxie 

K_S_NO3 gCOD/m3 28,6 20% 41,37 +45 % 

Taux de mortalité de la biomasse 

hétérotrophe 

b_H 1/j 0,7 20% 0,73 +4 % 

Taux d'ammonification k_a m3/(gCOD*j) 0,075 20% 0,065 -13 % 

Taux d'hydrolyse k_h gCOD/(gCOD*j) 2,5 50% 2,6 +4 % 

Taux spécifique maximal de 

croissance de la biomasse 

hétérotrophe 

mu_H 1/j 5,18 20% 4,74 -8 %  

Facteur de réduction de la 

vitesse de croissance en anoxie 

de la biomasse hétérotrophe en 

réduisant le nitrite 

n_h2 - 0,14 50% 0,19 +36 % 

Facteur de réduction de la 

vitesse de croissance en anoxie 

de la biomasse hétérotrophe en 

réduisant le nitrate 

n_h3 - 0,47 50% 0,31 -34 % 

Facteur de correction du 

rendement hétérotrophe en 

anoxie 

n_hy - 0,78 50% 0,72 -8 % 

 

2.3. Résultats de calibration du modèle mécaniste 
Le tableau 3 présente les valeurs des critères statistiques calculés à partir des simulations de 

l’effluent de DAM en période de calibration et validation. Les valeurs de EM indiquent que le 

biais du modèle est relativement faible par rapport aux valeurs moyennes observées en 

particulier pour les variables DCO totale, DCO soluble et MES. Dans le cas de N-NO3 et du N-

NO2, les valeurs négatives d’EM indiquent que le modèle surestime la cinétique de 

dénitrification. En fait, les mesures de dioxygène dissous utilisées pour alimenter l'entrée du 

modèle montrent un pourcentage élevé de valeurs aberrantes et de données supprimées 

(28%). Ces lacunes dans les données sont ensuite comblées par interpolation, ce qui peut 

entraîner des valeurs non précises prises en compte par le modèle. 

Tableau 3: Résultats en termes d'évaluation des simulations de l'effluent du DAM pour la période de calibration et de 
validation 

    Calibration Validation     

Variable Unité N 

Moyenne 

observée ME 

MAE/

ӯ 

RMSE/

ӯ N 

Moyenne 

observée ME MAE/ӯ 

RMSE

/ӯ 

Coëff.  

Janus 

NO3 gN/m3 10656 2,89 -1,35 0,67 0,86 8015 2,62 -3,22 1,29 1,46 1,53 

NO2 gN/m3 10656 0,31 0,10 0,45 0,71 8015 0,38 0,13 0,50 1,27 1,36 

DCO gO2/m3 10656 89,07 -1,05 0,14 0,20 7218 64,84 -34,38 0,55 0,60 2,20 

DCOs gO2/m3 10656 43,30 1,73 0,14 0,21 7218 43,92 -15,49 0,39 0,45 2,13 

MES g/m3 10656 21,20 -2,27 0,23 0,39 7399 20,12 -7,18 0,46 0,63 1,54 
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Le coefficient de Janus indique que les estimations du modèle sont fiables et que le modèle 

peut être considéré comme valide pour les composants azotés, avec des valeurs 

considérablement en dessous de la valeur critique de 2. En revanche, les coefficients de Janus 

calculés pour la DCO totale et la DCO soluble (2,20 et 2,13 respectivement) sont légèrement 

supérieurs à 2, ce qui est expliqué par un REQM faible sur la période de calibration (20% et 

21% respectivement) et significativement plus élevé sur la période de validation (60% et 45% 

respectivement). 

La Figure 4 présente les résultats de calibration des nitrates en sortie de DAM durant le mois 

de décembre 2019. Les valeurs journalières moyennes modélisées s'élèvent à 4,67 mg N-

NO3/L, tandis que la concentration moyenne en nitrate observée est de 5,34 mgN-NO3/l. Les 

scores statistiques calculés sont : EM à 0,67 mgN-NO3/L, EMA à 1,08 mgN-NO3/L et REQM à 

1,36 mgN-NO3/L. Le diagramme de parité (figure b), qui permet une comparaison visuelle des 

valeurs prédites en fonction des observations avec les valeurs optimales se trouvant sur la 

ligne diagonale, montre que le modèle est capable de simuler la conversion de N-NO3 en N2 

par les bactéries. 

La concentration en nitrites (N-NO2) en sortie du système est quant à elle mal estimée par le 

modèle sur cette période, puisque la valeur modélisée moyenne est deux fois plus basse 

(0,12 mgN/L) que la moyenne des observations (0,26 mgN/L). Cet écart se reflète dans les 

scores statistiques : EM à 0,14 mgN/L, EMA à 0,14 mgN/L et REQM à 0,18 mgN/L. 

L’estimation des concentrations en nitrites est difficile car le nitrite est un composé instable qui 

s’oxyde rapidement en nitrates. De plus, les faibles niveaux normalement observés se 

rapprochent souvent des limites de détection des sondes. Cette difficulté métrologique se 

reflète donc dans la qualité d’estimation du modèle. Les dynamiques des variations de DCO 

totale sur la figure 4c et DCO soluble (Figure 4d) sont correctement évaluées par le modèle, 

même si l’amplitude de celles-ci est sous-estimée. 

 

Figure 4: Résultats du calage du modèle de qualité des eaux en sortie de DAM. a) Résultats de calibration de la concentration 
en N-NO3 en sortie de DAM sur une période de 30 jours en décembre 2019 (triangles bruns : observations laboratoires, ligne 
bleue : résultats de simulation, ligne noire : concentration en entrée du procédé de DAM). b) Concentration moyenne 
journalière prédite par le modèle en fonction de la concentration observée. La ligne noire pointillée représente l’estimation 
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optimale. c) Résultats de calibration de la concentration en DCO totale. d) Résultats de calibration de la concentration en DCO 
soluble. 

 

2.4. Résultats de validation du modèle mécaniste 
La figure 5 récapitule les estimations des concentrations en N-NO3 (a), DCO totale (c) et DCO 

soluble (e) en sortie de la DAM sur la période de validation. La concentration en N-NO3 prédite 

présente des écarts significatifs aux observations, en particulier à partir de début août, ce qui 

se traduit par un diagramme de parité assez faible (figure 5b). Le débit arrivant à l'usine et la 

charge en matière organique diminue drastiquement en août en raison d’une réduction de 

population en période estivale. 

Les estimations de DCO totale et soluble sont globalement assez satisfaisantes, mais sont 

systématiquement surévaluées (figure 5c à f). De même, l’effluent réel est moins concentré en 

nitrates que ne le prévoit le modèle, en particulier durant la période de fin juillet à mi-août 2020. 

Cette surestimation de DCO et de nitrates en sortie de DAM peut s’expliquer par une activité 

métabolique insuffisante du biofilm dans le modèle sur la période de validation. Ceci pourrait 

traduire une prise en compte partielle des effets de la température sur les cinétiques 

biologiques. 

De nombreux autres facteurs peuvent introduire les erreurs d’estimation, comme la précision 

des valeurs mesurées (en particulier pour les capteurs en ligne qui montrent de grandes 

variabilités), le fractionnement des données mesurées de DCO totale et DCO soluble en 

variables d’état utilisées par le modèle. 
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Figure 5: a) Résultats de validation de la concentration en N-NO3 en sortie de la DAM ; b) diagramme de parité présentant les 
concentrations prédites en N-NO3 en fonction des concentrations observées ; c et d) Résultats de validation de la concentration 
en DCO totale ; e et f) Résultats de validation de la concentration en DCO soluble. a, c et e), triangles bruns : observations 
laboratoires, ligne bleue : résultats de simulation. 

2.5. Résultats d’entrainement et test du modèle hybride 
L’algorithme de ML le plus performant a été sélectionné sur le critère de la REQM la plus faible, 

et se compose d'un réseau de neurones à trois couches comportant 12 neurones dans la 

couche d’entrée, 25 neurones dans la couche intermédiaire et un neurone dans la couche de 

sortie en appliquant une fonction d'activation Rectified Linear Unit (ReLU). Un réglage optimal 

des hyper-paramètres du modèle a été recherché afin d’éviter des conditions de sous-

ajustement ou de sur-ajustement sur les deux périodes d’entraînement et de test. 

Le tableau 4 présente les valeurs des indicateurs statistiques pour les simulations de N-NO3 

en sortie de DAM en période de calibration et validation pour le modèle hybride. Pendant la 

phase d'entrainement, les performances du modèle sont très bonnes et les EM, EMA et REQM 

sont très faibles. Lors de la phase de validation (1 – 15 mars 2020), la qualité d’estimation 
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diminue : l’EM passe de 2 % à 8 %, l’EMA de 20% à 24% et la REQM de 27% à 32%. 

Néanmoins, les scores restent globalement acceptables, ce qui montre que le modèle est 

capable de prédire l’évolution du système sur un jeu de données avec lequel il n’a pas été 

entrainé. 

Tableau 4: Modèle hybride résultats des scores statistiques pour les périodes de calibration (01.12 – 31.12.2019) et 
validation (01.03 – 15.03.2020) pour les variables simulées en sortie de DAM. 

Période Variable Unité N 

Moyenne 

observée EM EM/ŷ EMA EMA/ŷ RMSE RMSE/ŷ 

Training NO3 gN/m3 2881 3,17 0,07 2% 0,64 20% 0,85 27% 

Testing NO3 gN/m3 1440 3,23 0,27 8% 0,76 24% 1,03 32% 

 

 

Figure 6: Résultats de l’entraînement (a) et de test (c) du modèle hybride de la concentration en N-NO3 en sortie de DAM. 
Ligne bleue : simulation du modèle mécaniste ; ligne grise : résultats du modèle hybride ; points orange : observations haute 
fréquence. Figures b et d) concentrations prédites par le modèle mécaniste (bleu) et hybride (grise) en fonction de la 
concentration observée. La ligne noire pointillée représente l’estimation optimale. 

La figure 6 récapitule les estimations de concentration en nitrates obtenues pour les périodes 

de calibration, (a) et (b), et validation, (c) et (d), par les modèles hybride et mécaniste. Les 

estimations du modèle hybride sont beaucoup plus proches des valeurs observées que celles 

du modèle mécaniste sur les deux périodes. Cependant, la performance du modèle hybride 

diminue sur la période de validation par rapport à celle de calibration, comme relevé lors de 

l’analyse des indicateurs statistiques. Les modèles de ML émettent des estimations correctes 

dans les conditions de leur apprentissage ; les modifications de débits et de température entre 

décembre et mars ont dû limiter les capacités de généralisation du modèle hybride. Une 

période plus longue d’entrainement ou un ré-entraînement régulier du réseau de neurones 

permettrait d’augmenter la robustesse du modèle. 
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On observe malgré tout que le modèle hybride prédit l’ensemble des dynamiques de la 

concentration en nitrates sur les deux périodes et prédit des variations de même amplitude 

que celles des observations dès le début de la simulation, d’une manière plus précise que le 

modèle mécaniste.  

1.8 Résultats de HMPC 
Les simulations ont été effectuées avec l’HMPC contrôleur pour des scénarios qui testent 

différentes structures d'un contrôleur prédictif de modèle dans différentes conditions. Toutes 

les simulations ont utilisé les mêmes données d'entrée pour la période du 1er au 8 juin, une 

période caractérisée par des concentrations élevées de N-NO3 dans l'affluent et un dosage 

réel de méthanol dans le système physique. 

La figure 7 montre les performances de chaque scénario en comparant la concentration de N-

NO3 simulée dans le Reality Process Model avec le point de consigne de nitrate.  

 

Figure 7 : Concentrations d'effluents N-NO3 simulées dans le modèle de processus réel des divers scénarios de haut niveau 
utilisant des variantes MPC et HMPC, ainsi que l'effet des paramètres de contrôle de dosage actuels. Sont indiqués le résultat 
actuel du contrôleur (couleur rouge), MPC_A (orange), MPC_B (gris), MPC_C (bleu foncé), HMPC_B (jaune) et HMPC_C (bleu 
clair). 

Comme on peut le voir sur la figure, la performance des paramètres actuels de contrôle du 

dosage est la référence à laquelle ce travail doit être comparé. L'amélioration significative des 

contrôleurs MPC et HMPC est clairement visible par rapport au contrôle actuellement appliqué. 

L'impact des stratégies MPC et HMPC est une réduction de la concentration en nitrate pendant 

la période étudiée, ce qui se traduit par une amélioration de la qualité des effluents. Nous 

pouvons constater que les variantes MPC ont une erreur inférieure à celle des variantes 

HMPC. Un problème probable est que le modèle ML a été formé sur la « mauvaise » erreur 

résiduelle. Au lieu de définir l'erreur résiduelle comme la différence entre les mesures des 

nitrates en sortie de DAM et les concentrations modélisées de nitrates, le modèle ML dans 

cette démonstration de HMPC devrait être entrainé sur la différence entre le modèle 

représentant le processus réel et le modèle utilisé dans le MPC, qui est un modèle simplifié. 
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En raison des caractéristiques différentes des deux modèles, l’effluent modélisé des deux 

modèles n’est pas la même. En entraînant un modèle ML sur cette différence, on s'attend à 

ce que le HMPC soit capable de corriger les résidus et ainsi de donner l’erreur le plus bas. Ce 

travail sera finalisé et soumis pour publication ultérieurement. 

2 Conclusion 

Dans un premier temps, un modèle mécaniste précédemment développé (Zhu, 2020) a été 

recalibré avec des données de l’étage de DAM de la filière de biofiltration de l’usine Seine 

aval. L’analyse de sensibilité globale a identifié les paramètres les plus influents sur la réponse 

du modèle : ceux qui caractérisent la composition, la filtration et les réactions biologiques. Les 

résultats de simulation avec les paramètres calibrés montrent que le modèle arrive pendant la 

calibration à prédire les variations de N-NO3, DCO et MES avec des performances 

raisonnables. Sa robustesse d’estimation avec le jeu de données de validation de N-NO3 est 

cependant insuffisante sans l’apport de l’hybridation. 

Ensuite, un modèle hydride parallèle coopératif a été développé dans lequel le modèle 

mécaniste recalibré est soutenu par un modèle de ML dans le but d'améliorer la précision 

d’estimation de qualité de l’effluent en sortie des biofiltres. Différentes techniques de ML ont 

été appliquées pour obtenir une estimation précise de l'erreur du modèle mécaniste sur les 

estimations de concentrations en N-NO3, MES et DCO totale en sortie de DAM. Ces modèles 

sont alimentés par les qualités d'effluent simulées par le modèle mécaniste, ainsi que par les 

informations de la qualité d’eau en entrée et les paramètres de traitement (tels les consignes). 

En phase d’entrainement, l’erreur résiduelle est fournie au modèle. Les meilleurs résultats ont 

été obtenus avec un réseau de neurones. Les estimations obtenues sur la période de 

calibration et celle de validation montrent que la précision du modèle hybride est largement 

supérieure à celle du modèle mécaniste seul. L’hybridation est donc une approche 

extrêmement pertinente dans le cas de la modélisation d’un procédé complexe de traitement 

des eaux. 

L’utilisation de données couvrant des périodes plus longues permettrait probablement 

d’atteindre une plus grande précision. Dans un contexte opérationnel, un tel modèle hybride 

doit être ré-entraîné dès que de nouvelles données sont disponibles (Schneider et al., 2022). 

La fréquence d’entraînement du modèle et la taille du jeu de données à utiliser reste à 

déterminer. 

Cette étude montre qu'un modèle hybride permet de mieux décrire le comportement de 

dénitrification d'une usine d’épuration de très grande échelle qu’un modèle mécaniste seul, 

améliorant ainsi sensiblement la qualité des estimations. C’est une première étape vers la 

conception de jumeaux numériques intégrés aux filières d’assainissement. 

Les résultats de simulations avec le contrôleur prédictif du modèle hybride (HMPC) réduit 

considérablement les concentrations de N-NO3 dans les effluents et améliore ainsi la qualité 

des effluents. La demande de calcul de l'approche de modèle hybride utilisant un script Python 

appelant WEST est beaucoup plus faible par rapport à l'exécution des simulations de modèles 

mécanistes dans l'interface utilisateur graphique de WEST. Ceci a été réalisé en développant 

des scripts Python qui exécutent le modèle mécaniste et les modèles d'apprentissage 

automatique automatiquement et sans la surcharge d'une interface utilisateur graphique. 

D'autres études des stratégies de contrôle à l'aide du modèle hybride sont nécessaires pour 

comprendre les faibles valeurs de nitrate simulées. L'optimiseur HMPC peut certainement 
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bénéficier d'un réentraînement régulier du réseau de neurones. Cela augmenterait encore la 

confiance dans les performances du modèle qui permet de l'appliquer dans un cadre de 

contrôle de processus actif. 

Ce résumé a été soumis pour publication dans l’ouvrage de programme de recherche 

Mocopée Phase II, qui sera publié en novembre 2023 par le SIAAP-Direction Innovation. 
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1 Introduction 
Digitalization of the wastewater sector is gaining importance globally with the advancement of data-

based monitoring, model-based predictive process control and other tools for data-driven decision-

making. Literature points out significant potential benefits thanks to increased collection and 

utilization of data (Eggimann et al., 2017). The digitalization drivers are many: process efficiency, 

energy transition, greenhouse gas emission reduction, water quality improvement, recovery of 

resources and the continuous urbanization, as well as climate change and evolving regulations (e.g. 

Blumensaat et al., 2019; Garrido-Baserba et al., 2020). Improving the performance and efficiency of 

wastewater treatment plants (WWTPs) involves strengthening process control (Olsson, 2008). The 

expected benefits are many: optimization of energy consumption, reduction of reagents usage, 

lowering of greenhouse gas emissions and overall ecological impact of operations, an increase of the 

reuse of resources and a stable effluent water quality. Actually, all these aspects are nowadays 

considered important objectives for the wastewater treatment industry (i.e.: Flores-Alsina et al., 2010; 

Novak et al., 2015).  

1.1 The Power of Models 
The use of mathematical modelling in the wastewater sector has been established since the 1990’s 

and is widely recognized as an important tool for research, system design, simulation of processes and 

operator training (Gernaey et al., 2004). Mechanistic models, whose parameters have a real physical 

meaning, describe the biological, physical and chemical processes that take place in a treatment 

reactor based on the domain knowledge of these processes. They are often represented by mass 

balance equations that change over time and in space. These mechanistic models are also named First-

Principles-based or knowledge-based models; they have a strong predictive power and have become 

accepted tools in the wastewater sector (Rieger et al., 2012). 

More recently, the development of digital twins that ‘mirror’ the behaviour of a physical system or 

entire plant, and that receive measurement data in (near) real time allow predicting future states of 

process behaviour (IWA & Xylem, 2019). In addition, an important field of modern research aims to 

study the potential of data-driven models, including Machine Learning models, to achieve higher 

performance of wastewater treatment plants (Schneider et al., 2022). 

In this study, it will be shown how the hybridization of a data-based model using artificial intelligence 

techniques with a mechanistic model increases the model’s performance. This allows for the 

application of hybrid models as a decision-making tool for managers and operators in the wastewater 

industry. A case study then demonstrates the use of Hybrid models in a Model Predictive Controller 

(HMPC) for optimization of process control in a predenitrification biofilter with near real-time 

operational data from a super-large WWTP. The HMPC is able to improve process stability and to 

significantly improve the effluent quality in terms of nitrate. As far as known, the HMPC developed 

here is one of the first implementations of a hybrid MPC on an operational wastewater treatment 

facility. The only other known example is described by Sparks et al. (2022) using a similar approach as 

developed here, but for the application of the control of chlorine dosing and aeration in an activated 

sludge system. 

1.2 Relevance of a Hybrid Approach in Modelling of Biofiltration  
In order to design and optimize the operation of wastewater treatment processes, mathematical 

models are useful tools for engineers and researchers. For the activated sludge process, a simple and 
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robust model (ASM1; Henze et al., 1987) was proposed more than three decades ago. It describes the 

removal of organic carbon compounds and nitrogen, with simultaneous consumption of oxygen and 

nitrate as electron donors, and allows estimating the sludge production (van Loosdrecht et al., 2008). 

The relative simplicity of this model led to a widespread use by researchers and practitioners; it has 

become a reference for many scientific and practical modelling projects for biological nitrogen 

removal. Since then, it has been modified and extended to simulate the dynamic behaviour of 

phosphorus removal (ASM2, ASM2d, ASM3; Henze et al., 2000).  

In contrast to activated sludge system, where the active microorganisms are suspended in the 

wastewater, in the case of biological treatment by biofiltration, the wastewater flows through a 

completely submerged porous filter filled with small diameter size (4 – 5 mm) media on which the 

microorganisms develop as a thin biofilm layer (typical average thickness of 100 µm) attached to these 

support media. As a consequence of the large bacterial surface over volume ratio in a biofilter, the 

hydraulic residence time is drastically decreased compared to conventional treatment systems. 

Biofiltration is considered a compact and reactive treatment process that is typically applied in densely 

urbanized regions (Metcalf & Eddy, 2014).  

Due to the important role of the biofilm, inside which active biomass in large concentrations perform 

the treatment processes that remove nutrients and pollutants from the wastewater, biofilm models 

require more complex and additional equations that take into account transport in and transfer 

between different compartments. The processes occurring inside a biofilter remain difficult to be 

accurately described mathematically by a mechanistic model due to the many hypotheses and 

assumptions that underlie the equations (e.g. kinetic equations of biomass growth) and typically large 

number of model parameters required. The biokinetic equations considered in the ASM cannot be 

directly applied in a biofiltration model due to the importance of the transfer processes by diffusion 

into the biofilm and the necessity of regular backwashing of the filter. Washing forms an essential 

aspect of biofiltration and is typically required once or twice per day for periods of 15 to 30 minutes 

per session in order to avoid an accumulation of biomass in the biofilm and suspended solids captured 

between the open spaces in the filter bed (physical separation). Consequently, biofilter models are 

considered more difficult to apply than the ASM family models and have thus found little application 

in engineering practice so far (Plattes et al., 2006). Additionally, there are no widely accepted protocols 

to aid the community in the development of biofilm models (Rittman et al., 2018). 

Few biofilm modelling studies applying submerged biofilter systems using operational data are 

reported in the literature. Most models were developed, calibrated and validated by means of 

experiments carried out for case studies at different scales: lab-scale (Mann and Stephenson, 1997; 

Hidaka and Tsuno, 2004), semi-industrial scale (Sanz et al., 1996; Farabegoli et al., 2004), and industrial 

scale (Viotti et al., 2002). The main differences consist in the mechanisms that are simulated. Most 

models include a transport model for the particulates along the filter and a conversion model of the 

soluble compounds (the biological reactions) from the wastewater (‘bulk liquid’) to the biofilm. Few of 

them include a filtration or a head loss prediction model (Vigne et al., 2010). Although biofilms develop 

heterogeneously and have a complex constitution of various types of bacteria embedded in a matrix 

of extracellular polymeric substances and water, almost all biofilm models found in the literature 

describe a one-dimensional biofilm space, where the concentration gradients of the nutrients, 

pollutants and biomass are perpendicular to the inert filter bed media (Wanner et al., 2006). Multi-

dimensional biofilm models require long computational times and are typically only used to answer 
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specific questions related to the development of the various heterogeneous structures inside a biofilm 

(Morgenroth, 2008b).  

On the other hand, data-driven models describe a process by finding patterns only based on the 

information extracted from the provided data. Machine Learning models can rapidly discover and learn 

‘hidden’ patterns in the data and the metadata without assuming any domain knowledge. These data-

driven models have strong interpolation strengths and are much faster in computation, which makes 

them very attractive for real-time data applications (Newhart et al., 2019). DDMs have found 

application in wastewater treatment as influent generators, where they create dynamic influent data 

that serve mechanistic models (e.g. Ahnert et al., 2016; Li & Vanrolleghem, 2022); for process 

monitoring and control, where they predict time series (e.g. Zhu et al., 2018), for fault/anomaly 

detection in observed data (e.g. Wade et al., 2005) and for estimation of model parameters (e.g. Mesta 

et al., 2023). These applications support mechanistic modelling and result in improved accuracy of the 

model’s predictions. Another applied example is the deployment of software sensors that output a 

signal based on an internal model and several other measured input signals. These software sensors 

form a support for and an alternative to the installation of hardware sensors that is gaining more 

application in the wastewater industry (e.g. Dürrenmatt & Gujer, 2012).  

Finally, model-hybridization is a process that combines a mechanistic model, which integrates relevant 

knowledge about processes, with a data-driven model that increases the accuracy of estimates by 

including information about poorly described sub-processes extracted from data. In literature, hybrid 

models have been successfully applied to mechanistic models in experimental and/or small-scale set-

ups (e.g. Anderson et al., 2000; Lee et al., 2005b; Lee et al., 2008; Dalmau et al., 2015; Cheng et al., 

2021). The main configurations of hybrid models that have been studied in literature are a serial and 

parallel structure. In a serial HM, the output of a data-driven model is used as input of the mechanistic 

model (or the inverse, although less applied), while in a parallel HM both model types cooperate to 

produce an improved final output. A novel approach is to integrate neural differential equations into 

the mechanistic ordinary differential equations of the mechanistic model (Quaghebeur et al., 2021 & 

2022). 

Literature points out significant potential benefits thanks to increased data collection and (real-time) 

utilization of data (Eggimann et al., 2017). In due course, hybrid models can function as an intelligent 

digital twin of a process (or entire system) to assess the current state of the system and make 

trustworthy predictions about future states (Schneider et al., 2022). This then allows having more 

confidence in the model predictions and applying it directly in process control, which requires a high 

level of accuracy.  

It is expected that the ongoing trends in digitalization of the wastewater treatment industry will lead 

to a greater acceptance of data-driven approaches (Corominas et al., 2018) and will replace some 

knowledge-based models in the near future (Hadjimichael et al., 2016). The number of hybrid models 

being applied in real-world systems will only increase in the near future (Sin & Al, 2021). 

1.3 Context 
SIAAP, the wastewater utility in the Greater Paris region (France) responsible for the principal transport 

and treatment of municipal wastewater of approximately nine million inhabitants, manages six 

wastewater treatment plants with a total daily dry weather flow rate of 2.5 million m3/d. For the 

biological removal of organic matter and nitrogen, it largely employs biofiltration in its facilities. In 
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order to gain a better understanding of the processes taking place and achieve efficient process 

control, SIAAP has engaged in research to advance the modelling of biofiltration.  

In the Mocopée research program phase I (2014 – 2017) actions were taken to develop mathematical 

models for predicting water quality variables for the treatment processes applied in wastewater 

treatment plants in the Paris region (SIAAP, 2018). These efforts have resulted in the development of 

a physical-chemical primary settling model (Bernier et al., 2016) and models of the secondary 

treatment phase by biofiltration (Bernier, 2014; Zhu, 2020) and by membrane bioreactor (Nadeem, 

2021). The next step consisted in developing an integrated model that combines the three phases of 

biofiltration, namely upstream denitrification, nitrification and downstream denitrification. The results 

show that the biofilter model developed by Zhu (2020) is generally able to predict the daily mean 

values of the output variables. 

However, these biofilm models require high computing power, which makes them less suitable for 

real-time process control applications with a short time action horizon (Schneider et al., 2022). 

1.4 Problem Statement and Objectives 
Based on the description of the challenges and objectives of the wastewater sector, as well as a review 

of the state-of-the-art of process modelling this study aims to overcome the obstacles faced by 

mechanistic biofilter models to be applied as support tools in real-time process control. The study aims 

to achieve this by combining the advantages of the two modelling approaches through linking a 

mechanistic model, which makes calculated predictions of effluent water quality, greenhouse gas 

emissions and operating costs based on the knowledge of the processes, with a data-driven model that 

can rapidly discover unknown patterns in the data and indicate the mechanistic model’s error. The 

development of this hybrid model is expected to improve understanding and control of the processes 

involved. The main advantage is an anticipated higher benefit/cost ratio for solving complex problems, 

which is a key factor for process systems engineering (Von Stosch et al., 2014). The developed hybrid 

model can form an integrated element of future digital twins (Schneider et al., 2021). 

Research Objectives 

The overall objective of this study is to demonstrate that hybrid modelling can have an advantage in 

model accuracy when in use of complex process control of wastewater treatment applying high-

resolution operational data. This is achieved by the following principal objectives: 

Objective 1: A mechanistic model of a biofilm reactor for predicting nitrogen removal, power 

consumption, filtration and greenhouse gas (GHG) emission.  

Objective 2: A machine learning (ML) model to predict the residual error for the main effluent quality 

variables providing a better accuracy of the hybrid model. 

Objective 3: A hybrid model predictive controller (HMPC) that demonstrates the added value of hybrid 

models. 

1.5 Originality 
As will be demonstrated in the literature review (chapter 2), most of the biofilm reactor models 

simulating wastewater treatment by biofiltration have been calibrated with experimental data from a 

pilot or laboratory setup. In this study however, it was decided to use high-resolution operational data 
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from a very large size municipal wastewater treatment plant (in order to approach the behaviour of 

the real physical system as much as possible). 

A key novel aspect of this study is the development of a hybrid model that combines a mechanistic 

biofilm reactor model and machine learning models and is trained on longer periods (3.5 months) of 

operational data from a very large wastewater treatment plant. The combined model results in 

improved model accuracy and allows strong validation. 

This study culminates in a demonstration study in which the conventional feed-forward controller in 

use today at the plant under study is compared to a Model Predictive Controller of the methanol dosing 

to a biofilm reactor that takes advantage of the developed hybrid model. This, in the context of the 

hybrid model used here, has not been reported in literature before. 

1.6 Structure of Thesis 
This thesis is structured in accordance with the objectives described earlier: the three main chapters 

discuss the results of the calibration of the biofilm model (chapter 4), the outcome of the machine 

learning model training and testing in a hybrid modelling configuration (chapter 5) and the results of 

the case study with a hybrid model predictive controller (chapter 6).  

The general structure of this manuscript is as follows: 

1. A general introduction in chapter 1 to further discuss the context of this study, the problem 

statement and its objectives;  

2. Chapter 2 presents a literature review on the challenges the wastewater treatment sector is facing 

today, and advancements accomplished that have resulted in modern tools for process control, 

with a state-of-the-art review of wastewater models applied to biofiltration; 

3. Chapter 3 discusses the applied methods for data collection and reconciliation, for model 

development, including calibration and validation, for training and testing of DDM’s and all the 

materials used;  

4. The results of the successful calibration and validation of the mechanistic biofilter model are 

presented in chapter 4, and how it was applied to new operational data from a large size 

wastewater treatment plant; 

5. The training and testing of machine learning models that can predict the mechanistic model’s 

residual error is discussed in chapter 5; 

6. Chapter 6 relates to the application of the developed hybrid model as part of a model predictive 

process controller of methanol dosing in a submerged biofilter denitrification process; 

7. An overview of the general conclusions and perspectives for future studies is then presented in 

the last chapter 7. 

8. An inclusive bibliography is listed at the end of the thesis. A more general description of 

wastewater treatment, as well as the results of the data cleaning method and sensitivity analysis 

that have been applied are provided in the annexes. 

As chapters 4, 5 and 6 were written as independent research papers, some sections in these chapters 

might include recurring elements and show some similarities (e.g. methods and materials), although 

efforts were made to reduce textual duplication.  
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1.7 Publications and Presentations resulting from this Work 
The specific chapters presenting the results of this research have been submitted to peer-reviewed 

scientific journals and are awaiting approval for publication. Chapter 4 has been submitted to 

Techniques Sciences Méthodes TSM (ASTEE) and is awaiting approval for publication. Chapter 5 is under 

review by the editors of ‘Water Research’ (IWA) whereas chapter 6 has been submitted to the journal 

of ‘Environmental Science: Water Research & Technology’ (Royal Society of Chemistry). 

The development of the hybrid model in this study has so far been presented at several scientific 

conferences, in particular the 13th IWA Conference on Instrumentation, Control and Automation ICA 

(17-21 October 2022) (Serrao et al., 2022a), the 8th IWA Water Resource Recovery Modelling Seminar 

(WRRmod) (18-22 January 2023) (Serrao et al., 2023a), and the Water Environment Federation 

Innovations in Process Engineering Conference (June 6-9, 2023) (Serrao et al., 2023b), all co-hosted by 

the International Water Association (IWA). The study project was presented at the 25ièmes Journées 

Information Eaux (11-13 October 2022) (Serrao et al., 2022b) organized by APTEN (Association de 

Professionnels du Traitement des Eaux et des Nuisances), an association of the French wastewater 

treatment sector. An accepted proposal for a presentation to the 11th IWA Symposium on Modelling 

and Integrated Assessment (WaterMatex) in September 2023 will provide a great forum to exchange 

gained knowledge on the application of hybrid models for control of complex systems. 

The contribution of this research to successful international collaboration between academic and 

industrial partners in Europe and North America was presented to the Megacities Alliance for Water 

and Climate (MAWAC) - Euro-North American Region (ENAR) workshop, hosted by NYU under the 

auspices of UNESCO, March 20 and 21, 2023 (Serrao & White, 2023c). 

 

More information about this research project, including video presentations by the author, 

can be found on the website of the InnEAUvation research program hosted by SIAAP 

(www.inneauvation.fr/MarcelloSerrao). 

 

 



 

2 Literature Review 
 
Municipal wastewater treatment is an essential process for the management and control of liquid 

waste, nutrients and pollutants with the objective to avoid environmental pollution and protect public 

health. Without it, the quality of natural environments, such as rivers, lakes and soils, would 

deteriorate rapidly and severely affect biological life and the health of the human population, 

especially in dense urbanized regions. The understanding of the threats of wastewater and the process 

technologies to treat the various components of wastewater have evolved over time. Nowadays, the 

importance of efficient and effective treatment has become a challenge in the face of the effects of 

climate change, water and energy scarcity, urbanization, the rise of a circular economy where waste is 

not more than a resource in need of reutilization and the presence of pollutants of emerging concern. 

The wastewater industry is transforming into energy-efficient resource recovery facilities where 

automation and digitalization form key elements of process control to achieve required levels of 

efficiency and compliance with stringent regulations.  

This chapter synthesizes the main findings of the review of papers, articles and textbooks on the 

challenges urban wastewater treatment is facing today and how it has affected process design. The 

changing role of the wastewater sector in the face of recovery of resources and the ongoing 

digitalization is highlighted in the second part. The third and main part of this chapter provides 

introspection about the available knowledge on modern tools for process management and real-time 

process control, with a focus on process models as decision-support tools for the treatment by 

biofiltration.  

Annex I presents a more elaborative overview of the historical development of urban wastewater 

management, an explanation of the different treatment phases and provides background information 

of biological treatment and the importance of biofilms. 

2.1 Challenges the WWT sector is facing today 
The wastewater sector faces various pressures and drivers that are changing the conventional role of 

WWTPs where the priorities were the collection and treatment of wastewater into a role, called a 

Water Resources Recovery Facility (WRRF), in which it will ‘produce’ resources to be reutilized in the 

context of a circular economy. The quest for energy-efficiency underlines processes that remove 

pollutants and nutrients with less energy. Evolving regulations push innovation even further, with new 

technologies capable to remove contaminants of emerging concern (e.g.: micro plastics, pathogens, 

pharmaceuticals). Global pressures sustained by climate change, urbanisation and rising living 

standards are giving rise to floods, water scarcity and freshwater pollution, and these are rapidly 

becoming major challenges for the wastewater industry. 

Role of Regulator 

The role of the regulator in environmental protection is an important channel for process efficiency 

and innovation. When considering the European context in particular, the evolving stricter norms for 

treated wastewater and discharge into the natural environment as described by the European Urban 

Waste Water Treatment Directive of 1991 (UWWTD 91/271/EEC) and the European Water Framework 

Directive (EU Directive 2000/60/EC) had an enormous impact on water treatment across Europe. 
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According to a recent study (Pistocchi et al., 2019) the objectives of the UWWTD are mostly achieved 

when looking at the EU scale for reducing raw municipal wastewater discharge and implementing at 

least primary wastewater treatment. Across the EU member states, there is a high level of compliance 

with 98% of wastewater collected and 92% satisfactorily treated (EU, 2022). The UWWTD proposes a 

timetable for all member states to meet minimum standards of effluent quality depending upon the 

population equivalent and the type of water into which the treated water is discharged. Organic 

matter, nitrogen and phosphorus removal is required for populated areas with more than 10,000 

people equivalents (p.e.). In October 2022, the European Commission announced a stricter revision of 

the UWWTD to expand wastewater treatment to (small) conglomerations that currently fall outside 

the scope of the directive, as well as to include the treatment of micropollutants and the monitoring 

of health parameters (such as the presences of pathogens). The revised UWWTD includes storm water 

and rainwater management and requires the development of integrated urban wastewater 

management plans for all large cities. The new plan will set specific energy neutrality targets and the 

use of renewable forms of energy by 2050 for wastewater utilities (EU, 2022).  

The 2030 Agenda for Sustainable Development of the United Nations established a specific Sustainable 

Development Goal (SDG) to ensure availability and sustainable management of water and sanitation 

for all. SDG 6 (‘Ensure availability and sustainable management of water and sanitation for all’) aims 

at clean water and sanitation and has targets for providing access to adequate and equitable sanitation 

(6.2), for improving water quality (6.3) and increasing water-use efficiency (6.4), ensuring sustainable 

withdrawal and supply of freshwater to address water scarcity (6.6). SDG 11 (‘Make cities and human 

settlements inclusive, safe, resilient, and sustainable’) and SDG 12 (‘Ensure sustainable consumption 

and production patterns’) have specific targets on water quality and availability (Ortigara et al., 2018).  

The regulation of energy consumption and the promotion of the use of energy from renewable sources 

on a European scale are set forth in the EU Climate and Energy Directive (2009/28/E), that provides 

general guidelines for preservation and recovery of energy in the framework of a circular economy. In 

December 2015, the European Commission further adopted a Circular Economy Plan (EU Commission, 

2015), that is an action plan for establishing a circular economy that aims at the development of a 

sustainable, low carbon, resource efficient and competitive economy (Niero and Hauschild, 2017). 

Although this roadmap does not in particular focus on wastewater management, the concepts of 

reducing, recycling, and recovering of waste have been instrumental to promote initiatives in the 

wastewater sector (Guerra-Rodríguez et al., 2020) 

Water Quality 

Traditionally, the objective of collective wastewater treatment was the protection of public health in 

urbanized regions. The treatment focused on the removal of suspended and floatable materials and 

the treatment of biodegradable organic matter from the wastewater before discharging it into surface 

water, such as a river. Then, as the protection of the natural environment became important, water 

quality standards and regulations in Europe and the US were expanded to prevent nutrients reaching 

the surface waters (Metcalf & Eddy, 2014). Treatment processes were expanded and upgraded to allow 

for the removal of nitrogen (N) and phosphorous (P) components. Effluent quality norms for more-

sensitive ecological regions, such as US ecoregion-based ambient water quality standards for nutrients 

(USEPA 2015), give a good indication of future effluent requirements for wastewater treatment 
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operators nationwide. The USEPA (2015) norms for ecoregions are often between 0.01 and 0.1 mg/L 

for total phosphorus (TP), and 1 and 3 mg/L for total nitrogen (TN) (Daigger, 2017).  

Recent studies also note the importance of micropollutants, antibiotics and other excreted 

pharmaceuticals that are increasingly being found in wastewater. These chemicals are among those 

forming a mix of chemicals, which cannot be easily removed by conventional treatment plants, as they 

require costly, more stringent and energy-intensive treatment techniques. Unregulated 

micropollutants at concentrations in the range of ng/L to μg/L can cause harm to the public health and 

aquatic ecosystems. Long-term exposure to micropollutants can result in high-risk health problems 

such as endocrine disruption and cancer (Ngo et al., 2020). Ajala et al. (2022) studied micropollutants 

of emerging concern in hospital wastewater and its remediation options and conclude that no single 

treatment technology can effectively detoxify the wastewater. Instead, a combination of methods such 

as photocatalytic adsorption or photofenton adsorption was found more effective (Ajala et al., 2022). 

The removal of pathogenic organisms that may cause long-term health issues and environmental 

impact, are also receiving more attention nowadays, in particular related to the rise of reuse of treated 

wastewater. Disinfection by chlorination is one of the most common used methods to inactivate 

pathogenic microorganisms found in wastewater (Gonzalez‐Rivas et al., 2019). However, recent 

studies reflect on the concern over undesirable chlorinated by-products, as well as the inability of 

chlorination in eliminating some epidemic microorganisms at low chlorine doses (Xu et al., 2002). 

Therefore, in recent years, electrochemical processes that allow disinfection have become more 

applied due to their very high efficiency and their easy applicability (e.g., Gonzalez‐Rivas et al., 2019; 

Shirkoohi et al., 2022)). 

Notwithstanding that in the early 1970s the presence of millimetre-sized plastic debris in the marine 

environment was already documented (e.g., Carpenter et al., 1972), microplastics, which are defined 

as plastic particles smaller than 5 mm (e.g., Talvitie et al., 2015), and microfibers in wastewater and 

runoff stormwater (e.g., Treilles et al., 2022) have only recently received more attention. Dris et al. 

(2015) analysed samples from the influent and effluent of wastewater treatment plants and found 

microplastics in high concentrations in the raw wastewater. However, the treated water had much 

lower amounts (83 to 95%) of microplastic contamination, while the removed sludge contained higher 

amounts of particles and fibers, in particular those of larger and longer sizes. This indicates that 

wastewater treatment is capable of removing large amounts of microplastics from the water by 

particle separation as it then accumulates into the sludge (Dris et al., 2015). 

Resource Recovery 

More recently, the emphasis has moved towards the recovery of resources and energy neutrality as 

part of a circular economy with wastewater treatment plants (WWTP) transitioning to water resources 

recovery facilities (WRRF) (Regmi et al., 2019). By establishing more circular resource flows, the water 

sector can contribute to sustainable development goals. As large-scale centralised WWTPs also 

represent centralised collection points for a variety of resources – namely water, energy, nutrients and 

other products – their redesign from treatment facilities into water resource facilities creates 

possibilities to contribute to a more circular economy. The recovery and reuse of resources can lead 

to a decrease in the consumption of raw materials, waste reduction, and improvement of energy 

efficiency. Potential opportunities are the reclamation and reuse of wastewater to increase water 
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resources, the recovery of nutrients or highly added-value products (e.g., metals and biomolecules), 

the valorisation of sewage sludge and the recovery of energy (Guerra-Rodríguez et al., 2020). 

Reclamation and reuse of wastewater are considered tasks with high potential to implement resource 

recovery, although not yet exhaustively exploited on a global level (Fito and Van Hulle, 2021). Studies 

show that in the European Union the reuse of treated wastewater is one of the most commonly applied 

methods as 18 out of 27 countries reuse reclaimed wastewater at some level for agricultural, industrial, 

urban, environmental or recreational purposes (Levine & Asano, 2004).  

Although the reuse of reclaimed water in agriculture for crop irrigation is a well-established practice, 

it lacks quality standards and uniformity of good practices across the globe. Furthermore, if not 

properly treated and monitored, the reuse of reclaimed water might have a negative impact on the 

quality of the soil (Fito and Van Hulle, 2021). 

Energy Efficiency 

Studies indicate that municipal wastewater treatment is very energy intensive and that it accounts for 

1 – 5% of the national electricity consumption in European countries and in North America (Longo et 

al., 2016, Mamais et al., 2015). In more detail, Longo et al. (2016) report that data from Germany 

(Reinders et al., 2012) and Italy (Foladori et al., 2015) indicate that electricity demand for wastewater 

treatment accounts for about 1% of total consumption. For Spain, studies indicate that 2 – 3% of total 

electric energy consumption is used by wastewater management, while that percentage roughly 

doubles to 4–5% when drinking water and agricultural demand is included (Mateos and Rodríguez, 

2012). In the United States, about 4% of the electricity demand is dedicated to the treatment and 

distribution of drinking water and the collection and treatment of wastewater (Goldstein and Smith, 

2002). 

In a conventional WWTP, between 25 to 40% of operating costs relates to energy consumption (e.g. 

Metcalf and Eddy, 2014; Elías-Maxil, 2014; Venkatesh & Brattebø, 2011). This value varies in the range 

of approximately 0.3–2.1 kW h/m3 treated wastewater (Liu et al., 2004). Panepinto et al. (2016) studied 

the total electric energy demand of a large WWTP in Italy and found that total yearly consumption was 

about 66.78 GW h/y, 50% of which is due to the aeration during the biological oxidation processes. In 

Greece, a recent study determined similar results for aeration accounting for 40–75% of total energy 

requirements of WWTPs operations (Mamais et al., 2015).  

The wastewater sector has a growing interest in the use of tools and methodologies to obtain adequate 

knowledge of the energy consumption profile, such as benchmarking and energy audits (Belloir et al., 

2015). However, regarding energy audits of treatment plants, literature indicates that a uniform 

approach and a suitable methodology to perform audits that allows identifying the principal energy 

consumption indicators is still lacking (Foladori et al., 2015). Longo et al. (2016) also found that no 

single key performance indicator used to characterize energy performance would be applicable 

universally. This makes comparison among different plants and benchmarking difficult.  

Longo et al. (2016) identified three main benchmarking approaches: (i) normalization, where the 

performance of a key performance indicator is normalized with respect to the reference indicator, (ii) 

statistical techniques that calculate the performance of a plant by analysing a subset, and (iii) 

programming techniques that use an optimization to define an optimal contour. The normalization 
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method provides easily understandable results, but it relies on a large sample of plants to provide a 

sound benchmark. Several partial indicators may also be needed to compare plants that have different 

treatment processes (Longo et al., 2016).  

Azimi and Rocher (2017) describe the main findings of a longstanding energy mapping exercise and an 

energy audit performed for six wastewater treatment plants operated by SIAAP in the Paris region 

(with a combined 9 million P.E.). The annual energy consumption varied between 1 000 GWh and 1 

150 GWh for all WTTPS combined. Since 2017, a slight decrease has been observed in the energy used 

per treated m3 wastewater, from 1.36 KWh/m3 (2017) to 1.16 KWh/m3 (2019). Approximately half of 

the energy that is consumed was self-generated mainly in the form of methane biogas (46%), which is 

recovered during anaerobic sludge treatment, as well as green electricity produced as solar power 

(4%), the remainder is covered by purchased energy (Azimi and Rocher, 2017). 

The energy audit revealed that the operation of reactive and compact technologies for water and 

sludge treatment (such as Biofiltration and Membrane Bioreactors) consumes significantly more 

energy when compared to the more conventional systems such as CAS. Wastewater treatment 

processes using physico-chemical lamellar settling, biofiltration, membrane bioreactors (MBRs), as 

well as thermal dryers for sludge treatment, all require frequent pumping for recirculation, the 

injection of oxygen, heated air or chemical reagents. Up-flow biofiltration systems and membrane 

bioreactors need a continuous high-water pressure supplied by pumps to force the flow of water 

through the supported media/bed and membranes (Azimi and Rocher, 2017). 

Global Pressures 

Urban wastewater treatment now also needs to address global challenges imposed by the effects of 

climate change, rapid population growth, freshwater pollution and depletion of water resources. 

Extreme weather events linked to climate change are among the factors that aggravate the situation 

by bringing heavier and more frequent rainfall in some areas, but water scarcity in others, affecting 

how well storm sewers and treatment plants operate. Excessive rainstorms can overwhelm and 

overload sewer systems and lead to combined sewer overflow (CSO) events, while a lack of rainfall can 

lead to problems in collection and treatment of wastewater. The rising sea level is threatening the low-

lying zones of urban coastal centres and the operations of wastewater plants located near the coast 

(EEA, 2019).  

Additionally, the challenges facing collective sanitation and centralized wastewater treatment in many 

parts of the globe, in particular in Asia and South America, are those related to a continuing rapidly 

increasing population, the ongoing industrialization and accelerating urbanization. It is not only the 

increasing number of persons that reside in an urban conglomeration, but also the increase of living 

standards that comes with the rise of a larger middle-class society in many lesser-developed regions 

of the world. This is leading to a change in consumption patterns that generates a higher wastewater 

per capita generation and brings with it an associated added stress on water resources (EEA, 2019).  

From a climate change perspective, studies indicate that wastewater treatment worldwide is a 

significant contributor with approximately 2 – 3% of total global greenhouse gas (GHG) emissions 

(Maktabifard et al. 2019). In their study in Greece, Mamais et al. (2015) established that the annual 

GHG emissions varied significantly according to the treatment schemes employed and that the GHG 

emissions through wastewater treatment ranged between 61 and 161 kgCO2e/PE. The highest values 
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of CO2 emissions were obtained in extended aeration systems and the lowest in conventional activated 

sludge systems. The authors show that a lowering of the dissolved oxygen (DO) set points and sludge 

retention time can provide significant decrease GHG emissions (Mamais et al., 2015). 

These challenges add to those routinely addressed by local authorities and water utilities, including 

financing construction, maintenance, operation and upgrades, as well as sourcing and retaining 

suitably skilled staff to deliver the necessary improvements in wastewater treatment. Moreover, on a 

more structural level, the wastewater industry is faced with an aging infrastructure dating from a first 

large development period in Europe and North America from 1960’s – 1970’s when many large 

centralized WWTPs were constructed. An earlier study in the US projected that the annual cost over 

the period for operations and maintenance (O&M), will average between $20.3 billion and $25.2 billion 

US dollars for wastewater systems (CBO 2002). Infrastructure asset management, with renewal in 

particular that aims to repair, rehabilitate or replace infrastructure to reinstate functionality, is 

currently an important subject of debate for wastewater utilities. This is not only because assets are 

aging, but also due to the need for reduction of combined sewer overflows, unsatisfactory hydraulic 

performance and expansion of the sewage network (Selvakumar and Tafuri, 2012). 

2.2 Advancements in WRRF Design & Scope 
The wastewater sector has always been evolving under the pressure of guidelines and regulations that 

have become more inclusive applying stricter norms. The industry has been redesigning treatment 

technologies and processes to allow the removal of more and different pollutants and nutrients to 

lower acceptable quality levels. Sustainability has become an important motto, with a focus on the 

overall energy balance of a facility, its greenhouse gas emissions, the total chemical usage and the 

carbon footprint of the ‘production’ of clean and safe water. All these elements have become of 

importance in the design and operation of modern sustainable wastewater treatment facilities. 

2.2.1 Innovative Technologies 
Wastewater treatment can be achieved by combining a variety of physical (e.g. screening, settling, 

filtration), chemical (e.g. coagulation, oxidation), thermal (e.g. drying, incineration) and biological (e.g. 

by suspended or attached biomass) processes. Globally, the most widely applied wastewater 

treatment technology is the conventional activated sludge (CAS) process, in which aerobic 

microorganisms metabolise the organic pollution present in the wastewater under constant oxygen 

supply. The microorganisms with their adsorbed organic material (‘sludge’), are settling out at the 

bottom of a clarifier (‘settling tank’), where they are collected and recirculated back into the aeration 

tank. This is an important process requirement to maintain the correct balance between the 

microorganisms and the wastewater (Recycle Activated Sludge - RAS). The Surplus Activated Sludge 

(SAS) has to be regularly removed (Henze et al., 2008). This process is well understood and can be fairly 

well controlled under designed conditions. However, it is considered unsustainable due to its low 

resource recovery potential and low-cost effectiveness, as well as its high-energy demand and large 

environmental footprint, such as by greenhouse gasses emissions (Kehrein et al., 2020). 

The ability of a system to adapt to stress and changes by being transformed into another more 

desirable state is called the system’s adaptive capacity (Folke, 2006) and is considered an important 

characteristic of a sustainable system (Holling and Gunderson, 2002). Within the domain of urban 

wastewater, a sustainable urban water system is one that can manage and adapt to changing 

circumstances (Daigger, 2012; Hering et al., 2013; Vairavamoorthy, 2009; Wilderer and Schreff, 2000). 
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This requires adaptive management (Pahl-Wostl et al., 2007) and technological systems that are 

adaptive and flexible (Daigger, 2017; Jeffrey et al., 1997; Spiller et al., 2015). In particular for 

wastewater treatment, systems need to achieve a high level of energy-efficiency to reduce the 

dependence on purchased energy and its associated ecological footprint. Also, systems should be 

flexible so that they can be adapted easily to changing objectives without incurring high capital costs. 

Another important aspect is the impact of the digital revolution and the compatibility of data and 

communication systems. 

The development of new technologies has come with a shift in urban water management that needs 

to meet the challenges the wastewater sector is facing and allows to rethink the approach that was 

designed in the 19th and 20th centuries (Daigger et al., 2019). Since the innovation of anaerobic 

ammonium oxidation (anammox), its associated technologies are rapidly being implemented 

(O’Shaughnessy 2015). Membrane technology (Judd 2011), along with other advanced water 

treatment technologies – e.g., ultraviolet (UV) treatment, advanced oxidation, and biological activated 

carbon (BAC) – is facilitating increased water reclamation (Zodrow et al. 2017). Phosphorus recovery 

from used water is now a demonstrated technology, and work is on-going on bio- and electro- chemical 

technologies for further resource recovery. These trends are expected to continue, supplemented by 

further advances in biotechnology and materials science (nanotechnology) (Daigger, 2019). 

Increased interest in the recovery of phosphorus also affects process choices. Chemically enhanced 

primary settlers represent one approach to increase the fraction of influent biodegradable organic 

matter diverted to anaerobic treatment. Here, substantial phosphorus removal also occurs, but 

methods for subsequent phosphorus recovery are limited because the removed phosphorus is 

chemically bound. High-rate biological treatment systems (either suspended growth or biofilm-based) 

and non-nitrifying biological phosphorus removal processes are other options for capturing carbon and 

diverting it to anaerobic treatment. Biological phosphorus removal processes require lower biological 

loadings with longer solids residence time (SRT) to allow the relatively slow-growing phosphorus 

accumulating organisms to be active in the system (Grady et al. 2011). 

2.2.2 Biological Activated Filtration 
Biological Activated Filtration (BAF), or biofiltration, is a technology that has recaptured a significant 

amount of attention recently. Although based upon a concept dating from the 1970’s, it has been 

redesigned and improved and has from the beginning of the 21st century become a more applied 

treatment technology for process intensification for large cities and metropoles situated in Western-

Europe and North America (Von Sperling, 2007). 

Biofiltration is an intensive treatment technology using microorganisms in compact reactors. This 

technology combines both physical and biological purification processes in a reactor using immersed 

filter media onto which the bacteria sustain themselves and break down organic materials and 

consume nutrients. It employs a dual function of biological oxidation of BOD and/or ammonia soluble 

components after diffusion in the biofilm, and physical removal of particulate and colloidal solids by 

adsorption and filtration (Metcalf & Eddy, 2014). 

Biological treatment of municipal wastewater is a method to remove pollutants and nutrients by 

creating conditions inside reactors that stimulate the growth of certain types of bacteria naturally 

present in the wastewater. It aims at degrading or adsorbing dissolved, colloidal, particulate and 

settleable matter into biological flocs or biofilms. Biological treatment is based on the natural role of 
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bacteria to close the elemental cycles of carbon, nitrogen and phosphorus (Henze et al., 2008). It 

follows a complex process that involves microbiological reactions to remove pollutants and nutrients 

from the water. For their growth, each type of bacteria feeds on a specific component, such as organic 

matter or nitrogen (‘the substrate’). 

As mentioned, the technology most commonly applied globally for biological treatment is the 

conventional activated sludge process. Here, the bacteria are in suspension and feed themselves upon 

the substrates they encounter inside the water. When they become more numerous and develop into 

flocs, the biomass density increases and they can settle at the bottom of a sedimentation tank, where 

the biosolids are removed as sludge. In order to prevent the biological activity from decaying and keep 

the biomass ‘activated’, collected sludge is recirculated to the input of the treatment process. The 

addition of oxygen through aeration stimulates the growth. This process is well understood and can be 

fairly well controlled. However, conventional activated sludge processes require large bioreactors and 

settling tanks and are overall considered a slow process with Hydraulic Retention Times (HRT) of 10 to 

24 hours (Henze et al., 2008).   

Another approach is treatment by microbial growth that is occurring onto support media (such as 

polystyrene beads). Here, the activity occurs primarily inside a biofilm layer that develops around the 

support media. The biofilm is a thin layer composed of water, bacteria and Extracellular Polymeric 

Substances (EPS) that allow for the development of a large active biomass that is diverse (e.g. 

heterotrophic bacteria near the surface and autotrophic bacteria at the bottom of the biofilm) due to 

the ecological niches developed inside the biofilm. The main transport of nutrients from the 

wastewater (‘bulk liquid’) into the biofilm is through diffusion of soluble components. Due to the small 

diameter of the support media (3 – 5 mm), when filled-up in a tank or reactor, a large total surface 

area is created for the bacteria to develop upon; thereby making it an intensive process with an 

average HRT of 15 minutes in relatively small compact reactors (e.g. 10m x 17m x 4m).  

Biological activated filtration is a wastewater treatment method applying fixed growth of biomass in 

compact reactors that contain a filter bed, upon which the bacteria are active inside the biofilm. 

Different configurations can be applied to promote environmental conditions for the microorganisms 

to convert nitrogen compounds, e.g. nitrification under aerobic conditions by autotrophic bacteria and 

denitrification under anoxic conditions by heterotrophs. Important process parameters are the 

recirculation rate of nitrified water to feed the upstream denitrification unit, the carbon content of the 

wastewater and the dissolved oxygen concentration in the case of nitrification. 

Biofiltration is a complex and intensive municipal wastewater treatment process that requires a high 

degree of process control in near real-time to guarantee effluent water that meets the surface water 

quality objectives and to be able to recover resources with energy efficient technologies that limit the 

environmental impact. 

The main advantages of BAF’s when compared to the more commonly applied suspended growth 

processes (for example CAS) are the relatively small footprint of the installation that allows for it to be 

totally covered inside a structure (less malodours and visual pollution), the ability to treat diluted 

wastewaters and the absence of a requirement to settle the biomass. However, the process is more 

complex from an operational and maintenance point of view, has a high capital cost for installation 

and operation, and it is vulnerable to clogging with solids and accumulated biomass, requiring frequent 

backwashing to maintain high performance (Metcalf & Eddy, 2014). For these reasons, it is often 
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applied in a secondary treatment phase. Moreover, the energy requirements of BAF systems for 

aeration, water distribution and recirculation flows are of major concern and can be reduced by 

optimising internal recycling and adapted control strategies (for example: Rother & Cornel, 2004). 

2.2.3 Energy Efficiency 
The wastewater industry is continuously seeking new technologies to achieve a more efficient usage 

of energy in wastewater treatment and even energy self-sufficiency so that it can reduce the 

dependency on purchased energy and operate in a sustainable manner. Of major concern are the cost 

issues on a microeconomic level, the increasing risk of an energy-shortage due to restrictions on the 

production and import of energy, but also the associated carbon footprint of electricity consumption 

(Wett et al., 2007).  

The largest energy consumer in a WRRF is the process of aerobic biological degradation. Methods to 

lower the required aeration energy are to decrease the amount of organic pollutants to be aerobically 

degraded by redirecting them to the anaerobic digester and/or to use shortcut nitrogen removal 

pathways instead of the full nitrification-denitrification process, with the latter using a significantly 

larger amount of oxygen and carbon source for nitrogen removal (Daigger 2014). Energy self-

sufficiency can be achieved through production of biogas while simultaneously minimizing the energy 

consumption of treatment processes. 

Biogas is produced in the anaerobic digestion process and can be transformed into thermal and 

electrical energy using a combined heat and power plant (CHP). Optimization of biogas production is 

an important measure for overall energy efficiency. As an example, Müller et al. (2006) showed that in 

Switzerland two thirds of all WWTPs that had undergone an energy analysis were able to reduce energy 

consumption by on average 38%, of which 67% was due to increased electricity production from 

biogas. The remainder was due to real energy savings accomplished in the biological stage and with 

improved energy management (Wett et al., 2007). 

Nowak et al. (2011) reported that in Austria, two municipal wastewater treatment plants for nutrient 

removal and aerobic sludge digestion have become energy self-sufficient after a long optimisation 

process. The optimisation was mainly concerned with optimal aeration control and control of the 

aerobic section of the aeration tank to optimise denitrification and prevent degradation of particulate 

organic matter that should be degraded in the digester. Both plants were equipped with energy-

efficient combined heat and power (CHP) units. The authors suggest however, that it is more 

sustainable to use the biogas as bio-methane/bio-fuel (Nowak et al., 2011). 

As pointed out by Daigger (2019), energy neutral operations were more standard in the past when 

treatment was focused only on the removal of organic matter monitored by the BOD5 and total 

suspended solids (TSS). Primary treatment was then often followed by either high-rate activated sludge 

or trickling filter biological treatment systems to minimize liquid stream energy requirements. 

Treatment was coupled with anaerobic digestion of the primary and secondary sludges, and the reuse 

of the biogas produced in combined heat and power (CHP) systems. This ensured that plants were able 

to produce sufficient power to meet their own plant-wide electricity needs (Daigger, 2019).  

However, the demand to provide consistently higher quality effluent with lower BOD5 and TSS 

concentrations, and the evolving regulations that impose removal of nitrogen and phosphorus from 

wastewater, forced many WWTPs to implement a lower rate activated sludge system and the resultant 
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increased aerobic stabilization of sludge. The net result was a reduced secondary sludge production, 

with less biogas for use in CHP systems, and an increase in energy demands for biological treatment, 

especially for nitrification. This made the overall process net energy negative (Daigger, 2019). 

Consequently, the wastewater industry is searching for energy-efficient technologies. Anaerobic 

treatment technologies have a great potential to lower energy consumption (Tarallo et al. 2015). 

Several other studies propose a chemically enhanced primary treatment to maximize energy recovery 

and achieve energy-neutrality (e.g.: Jenicek et al., 2013; Dolejš et al., 2019), which can increase overall 

organic matter removal from 40% to up to 60% (Wan et al., 2016). Jenicek et al., (2013) describe how 

biogas production was optimized at a large wastewater plant by enhanced primary sludge separation, 

a thickened waste activated sludge, an implemented lysate centrifuge, increased operational 

temperature, and an improved digester mixing. With these optimizations, biogas production increased 

significantly. The authors conclude that, with the correct optimization of anaerobic digestion 

technology, wastewater treatment can either attain or come close to attaining energy self-sufficiency 

(Jenicek et al., 2013). 

Descoins et al. (2012) search for energy efficiency by optimizing an activated sludge process coupled 

with anaerobic digestion in a large wastewater treatment plant and show the influence of primary 

settling efficiency on electrical autonomy. A limiting factor for the overall energy efficiency is the 

ammonium recycling from digestion to the activated sludge reactors, as well as the lack of carbon 

substrate availability for denitrification in the activated sludge reactors (Descoins et al., 2012).  

Other measures that can improve the efficiency of operations significantly are control strategies for 

aeration systems and the mixers in activated sludge processes, and the installation of more efficient 

pumps (Sarpong and Gude, 2020).  

Serralta et al (2002) use an ammonium-based supervisory control system that - through simulations –

optimizes efficiency and reaches energy savings of up to 10% in blowers and 50% in recirculation 

pumps. Rieger et al. (2012) achieved up to 20% decrease in total energy requirements (30% in 

simulations) besides an improved effluent quality upon implementing full-scale dissolved oxygen (DO)-

based and ammonia (NH3)-based aeration control strategies. An overview of aeration control systems 

applied to municipal WRRFs revealed as high as 27% aeration energy requirement reduction for a full-

scale activated sludge process (Åmand et al. 2013), while optimization of aeration control strategies 

combined with electricity production and on-site utilization from AD biogas can reach a 30–50% 

reduction in energy costs (Wett et al. 2007). However, these values suggest that, with aeration control 

strategies and conventional CAS-based layout alone, a fully energy self-sufficient WRRF will not be 

achieved unless external resources are added, such as organic wastes for co-digestion (Shen et al. 

2015), or by modifying plant layouts and incorporating other unit processes (Khiewwijit et al. 2015; 

Fernández-Arévalo et al. 2017). 

Another way to reduce the high energy demand of the activated sludge process is to propose organics 

removal techniques that do not require aeration. As an improvement over chemically enhanced 

primary settling, Gikas (2017) proposes a process that is based on advanced microsieving and filtration 

processes with a rotating fabric screen (pore size: 100–300 μm) followed by a continuous backwash 

upflow media Filter. About 80–90% reduction in TSS and 60–70% reduction in BOD5 has been achieved. 

Then the partially treated wastewater is fed to a combination of low height trickling filters, combined 

with encapsulated denitrification, for the removal of the remaining BOD5 and nitrogen. The biosolids 
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produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are 

dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) 

and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) 

and electrical energy, through syngas combustion in a co-generation engine. In this study, the energy 

requirements for complete wastewater treatment, per volume of inlet raw wastewater, are reported 

to be 85% below the electric energy needs of a conventional activated sludge process (Gikas, 2017). 

Andrews et al. (2016) show that the emerging energy-efficient technologies that are most likely to be 

adopted in the near future are those focusing on mainstream shortcut nitrogen and 

pyrolysis/gasification, since these technologies are closest to being ready and the deployment timeline 

is estimated to be relatively short. There is a strong potential for net electric energy production 

through gasification/co-generation (Gikas, 2017). Mainstream shortcut N removal and mainstream 

anaerobic treatment are expected to have the biggest impact on energy use in the wastewater sector 

in the near term (Andrews et al., 2016).  

Solon et al. (2019) demonstrate that there is potential for achieving future energy-positive water 

resource recovery facilities through novel integration of mature technologies. They have evaluated 

different simplified model layouts that include a high-rate activated sludge system, chemically 

enhanced primary treatment, partial nitritation-anammox, partial nitrification-denitrification over 

nitrite and anaerobic digestion, and then have compared the energy consumption and operational 

costs to a conventional activated sludge (CAS)-based process scheme. This study showed that the 

combination of novel and mature technologies has less aeration energy requirements, lower 

operational cost and higher biogas production than a CAS (Solon et al. (2019). 

In another study, Khiewwijit et al. (2015) proposed a treatment layout that combines bioflocculation, 

deammonification, phosphorus recovery, AD and combined heat and power unit processes to 

maximize nutrient and energy recovery. This resulted in a simulated net energy yield, due to reduced 

aeration energy consumption and by an increased energy. Fernández-Arévalo et al. (2017) included 

thermal hydrolysis to improve sludge biodegradability and increase biogas production. They also 

modified the conventional plant layout by decoupling COD, nitrogen and phosphorus treatment to 

optimize resource recovery. 

Overall, there is significant evidence of the importance in the overall design of treatment systems to 

make them energy neutral or even energy positive. However, currently, only a small percentage of 

WWTPs globally produce energy in large volumes for valuable (re-)use and few are energy self-

sufficient (Sarpong and Gude, 2020). 

2.2.4 Barriers to implementation of innovation 
The implementation of innovative technologies is often a slow process. Literature research indicates 

several common barriers of structural and non-structural types.  

The useful life of the physical structures, especially hydraulic transport infrastructures such as pipes 

and channels, and water storage tanks, is significantly longer than that of the specific technologies 

used. Geels (2006) and Neumann et al. (2015) argue that wastewater systems follow technological 

trajectories that are a result of decisions and choices made in the past for investment in technology.  
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Spiller et al. (2015) indicate in a similar manner this dependency on technology and the systemic effects 

of change in water and wastewater engineering. Engineered systems are determined in function of 

interconnectedness and coupling of system components. Structural changes in one part of the 

treatment system rarely occur in isolation, but rather affect other parts of the system (Ulrich, 1995). 

The importance of interconnectivity in engineered systems results in an interdependency that makes 

it a barrier for a transition towards sustainable urban water management and a change becomes 

difficult to implement (Marlow et al., 2013).  

Alternative approaches to design have been exploited in order to reduce the dependency of the 

existing infrastructure, such as phasing of systems over time and installation of modules or blocks of 

system units (Spiller et al., 2015). 

The role of the legislator in prescribing water regulations might also create a hindrance for innovation 

to flourish (e.g. Maere et al., 2016). There are generally two types of regulations that can be discerned; 

regulations that are technology based and lead to technology-based effluent limits (TBEL), and 

regulations that apply an environmental risk management perspective having set water quality-based 

effluent limits (WQBEL). There is an increasing tendency for developed countries to employ a mix of 

TBEL and WQBEL (e.g. the UWWTD and WFD in Europe). The UWWTD sets a minimum baseline of 

treatment and is rather easily understood and implemented. However, it is often inadequately 

equipped to meet many of today’s challenges (Novak et al., 2015).  

The shift to performance-based legislation that sets water quality effluent limits (i.e. WFD) allows for 

further improvements of the ecological quality. Moreover, prescriptive legislation that specifies the 

application of a certain technology could actually limit innovation. Since they prescribe specific 

technologies, instead of performances, and carry penalties when these regulations are not met, they 

leave out other potential design and operational flexibilities (Novak et al., 2015). 

Certain legislative conditions can also promote the development of innovative solutions. Maere et la. 

(2015) discuss the importance of setting ambitious environmental objectives that challenge the 

current technological and organizational boundaries; of creating a flexible legal framework that allows 

for some freedom in achieving the environmental goals (i.e. performance-based rather than 

prescriptive); and of setting an appropriate financial framework that incentivizes innovation (Maere et 

al., 2016). 

2.3 Important Aspects of Wastewater Treatment Plants of the Future 
The role of WWTP is changing from solely environmental protection by producing effluent water that 

is conform the standards, into a facility that produces (raw) materials and energy in the context of a 

circular economy. The historical centralized approach will probably give way to a more decentralized 

form where optimized systems allow the local reuse of water (for agricultural purposes) and the 

recovery of resources. The ongoing digitalization, the use of big-data and development of digital twins 

will allow for further process optimization. Important aspects of these anticipated changes are now 

discussed. 

2.3.1 Resource Recovery 
The wastewater industry is currently facing dramatic changes, shifting away from energy-intensive 

wastewater treatment towards low-energy, sustainable technologies capable of achieving energy- 

positive operation and resource recovery. The latter will shift the focus of the wastewater industry to 
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the extraction of resources from the wastewater, as opposed to the conventional paradigm of 

treatment. The new and wider vision for a water resource recovery facility (WRRF) includes water 

sanitation, protection of water sources and the natural environment, energy reduction and 

production, and resource recovery (Regmi et al., 2019). 

WRRFs of the future must be able to meet a variety of functional conditions. An important requirement 

remains the treatment of wastewater and the production of high-quality effluent water (water 

recovery) that meets quality standards for receiving water bodies (e.g. a river into which the treated 

water is discharged) and that meets the norms for reuse standards (e.g. as irrigation water in 

agriculture). Additionally, a WRRF is focused on the recovery of energy, nutrients and organic material, 

and may become an integral component of a bio-based economy. WRRFs are increasingly designed to 

maximize organic matter capture, rather than oxidizing it. This reduces the oxygen requirements for 

treatment and allows the organic material to be digested anaerobically for biogas production. The 

requirements are likely to vary over time, in nature as well as magnitude, and the facility must adapt 

to them (Daigger 2009, 2010, 2012a, 2012b). 

2.3.2 Flexibility in Design 
Another highly important aspect of the principal design considerations that is mentioned in literature 

is the flexibility to adjust to changing conditions and the ability to adapt to and incorporate evolving 

technologies. A modern wastewater treatment plant or recovery facility should not be conceived or 

designed with a fixed set of functional requirements in mind that are based on a fixed set of 

technologies. Rather, during the design phase of the layout and configuration of a treatment and 

recovery facility, future growth and the integration of uncertain requirements using evolving 

technologies should be accounted for.  A ‘building block’ approach will allow adding additional 

treatment capacity and process upgrades as it becomes necessary over time (Daigger, 2019).  

A treatment may be adequate early in the life of a WWTP – as designed-, but more stringent 

requirements, added over time, will often require the addition of technology systems to achieve 

evolving treatment objectives. A strategy enabling significant upgrades in effluent quality over time 

should be incorporated into the planning and layout of a WRRF. Technology changes can also be made 

to improve treatment capacity and/or as a result of changing economics. Functional adaptations 

include hydraulic expansion – e.g., adding associated treatment units – treatment process upgrades 

(e.g., to meet more stringent water quality requirements), new organic matter (‘sludge’ or ‘biosolids’) 

processing and resource recovery technologies/opportunities, and plant aesthetics – e.g., mitigation 

of external impacts like pollution caused by noise, odour, truck traffic and external lighting that can 

have deleterious effects on human health, wildlife, and environmental quality of the immediate 

surroundings (Daigger, 2019). In addition, social benefits derived from odour abatement link to 

nuisance reductions in the nearby population and improvements in occupational work environment 

for the operators within the WWTP (Estrada et al., 2011). 

The external appearance of a WWTP and the mitigation of impacts of operations have become 

increasingly important to the design of new plants due to expansion of city developments in proximity 

of industrial zones. Also, the public becomes less tolerant of facilities which adversely impact adjacent 

properties and their market value. A number of practical architectural and moderate cost measures 

are mentioned, such as external screening using either engineered or natural materials. Alternative, 

new plants can be constructed (partially) covered in response to the increased attention to aesthetics.  
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Concerning the plant layout, Daigger (2019) points out the good practice to consider the full range of 

potential product water requirements over the full lifespan of the plant, and the ultimate hydraulic 

and organic loading capacity requirements. Space allocations based on existing technologies are often 

sufficient, as more efficient technologies, which will generally require less space, are likely to be 

available in the future should more stringent product water quality requirements be imposed. Future 

capacity requirements can be allowed for by allocating space for additional treatment units, while 

increasing the capacity of the plant’s existing hydraulic structure by installing parallel pipes and/or 

channels (Daigger, 2019). 

In contrast to the historical approach of centralized wastewater treatment, where the economy of 

scale was a major factor, decentralization is now recognized as an emerging solution and it has become 

a significant area of focus for many researchers (Li et al., 2023; Zhang et al., 2023). Decentralized 

WWTPs allow for a more sustainable and integrated urban wastewater system and are considered a 

complement to conventional centralized wastewater treatment processes. Decentralized treatment 

has the potential to improve the technical, environmental, and economic performance of existing 

centralized systems (Garrido-Baserba et al., 2022). Most of the studies focus on separate treatment of 

different wastewater fractions and promote the application of source separation where different 

effluents are collected separately (urine, faeces, and/or greywater) in order to increase resource 

recovery. Joveniaux et al. (2022) analysed source separation as an alternative to conventional 

wastewater treatment in several large cities in France and demonstrate that it is feasible, but still in 

an emerging phase. Extreme decentralization to building scale, where decentralized water systems are 

located in a building or a building block to allow treating wastewater and recovering resources for 

direct reuse, is a further topic of research. However, the application here is even slower mainly due to 

regulatory constraints and the risks associated with these systems (Garrido-Baserba et al., 2022). 

2.3.3 Big data & Digitalization 
Notwithstanding that the water industry is transforming and digitalization forms a key part of this 

transition (IWA & Xylem, 2019), most digitalization initiatives have focused on drinking water 

production and distribution applications. This delayed uptake in the wastewater sector can be 

explained by the complex biological reactions that are part of wastewater treatment processes that 

lead to specific requirements with data collection and model development (Torfs et al., 2022).  

However, recently, interest in data-based technologies is growing in the wastewater sector, as 

indicated by surveys among wastewater utilities world-wide. Yang et al. (2021) performed an industry 

sector wide literature survey on relevant keywords (“digital twin”) and concluded that there has been 

an incremental increase in the amount of literature published on digital twins after 2015. As big data 

techniques, Internet of Things, cloud computing, and artificial intelligence algorithms advance, the 

digital twin technology has entered a phase of rapid development (Yang et al., 2021). 

In the wastewater sector, developments in monitoring technologies have allowed for inline sensors 

that monitor quality variables to be more precise, reliable and affordable. These sensors generate large 

quantities of data in high-frequent signals (e.g. every minute). Other remote sensing and 

communication technologies are also contributing to the proliferation of big data (Garrido-Baserba et 

al., 2020).  

Therrien et al. (2020) explain (see Figure 2-1) that the development and application of smart process 

control tools have a strong need for process data, which has historically been difficult to collect. With 
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sensors more ubiquitous than ever, there is now an unprecedented amount of data being produced 

on a daily basis. However, due to the tough measurement conditions typically present in the 

wastewater environments, measurements are still subject to many faults that can reduce the 

trustworthiness of the data. Sensors are disturbed by bias, drift, precision degradation or total failure 

effects that cause the reliability of measurements to decrease (Yoo et al., 2008).  

For sensors and novel data-driven tools to be considered in operation for process control, the data 

they generate must be available, accurate and verifiable in real or near-real time. This will result in 

interpretable data of high quality (Alferes and Vanrolleghem, 2014). 

As indicated in Figure 2-1, the data processing steps required to create understanding and intelligence 

from raw measurements can collectively be pictured as a flow of data through a pipeline. When 

knowledge-based tools are transparent and robust enough to be trusted and are supported by data-

based modelling approaches, intelligent decisions can be made with confidence (Therrien et al., 2020). 

Operational monitoring data is often collected and stored in raw format in a database. Prior to its 

utilization, it requires being preprocessed in order to remove outliers and erroneous data. This creates 

gaps in continuous time series data that need to be filled for certain applications. An automatic data 

quality assessment method recently described by Alferes and Vanrolleghem (2016) extracts 

information from individual water quality time series from on-line sensors and then, based on 

prediction models, detects outliers and smoothens the signal by removing faulty and unreliable data.  

Aguado and Rosen (2008) apply multivariate statistical projection methods, like principal component 

analysis (PCA) and partial least squares (PLS) to make data more comprehensible by extracting relevant 

information. These methods make use of data directly collected from the process to build an empirical 

model which serves as reference of the desired process behaviour and against which new data can be 

compared. In addition, they provide graphical tools that are easy to apply and interpret by process 

operators. Applications of these approaches and modifications of them to wastewater treatment 

operation include continuous and batch processes (Teppola et al., 1999; Lennox and Rosen, 2002; Lee 

and Vanrolleghem, 2003; Yoo et al., 2004). 
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Figure 2-1: From data to intelligence. Schematics indicate for each step in the pipeline the most essential actions (Therrien et 
al., 2020). 

Big Data 

Modern WWTPs that are well equipped with inline sensors and other surveillance tools nowadays 

continuously monitor and collect data from unit processes, but the data are often underutilized. The 

large amount of data, the complexity of the datasets and the lack of data science background for 

operators and managers, makes it challenging to efficiently collect, manage, and analyse the data 

(Diebold, 2003; Kadiyala, 2018; Manyika et al., 2011; Regmi et al., 2018).  

Most raw data are stored in their original format for potential future performance analyses with little 

consideration to their structure or the organization of the data repository (Plana et al., 2019; Newhart 

et al., 2019). As Therrien et al. (2020) point out, this creates a large pool of data or a “data lake” that 

allows for the storage of both structured and unstructured data, without concern for indexing or 

making sure that the metadata fits a specific schema (Nargesian et al. 2018). Also, data lakes provide 

no guarantee regarding the integrity of the data they hold, which might result in data swamps rather 

than lakes. Since there is no need to structure the data along with descriptive metadata upon writing, 

much of the context in which the data was collected may be lost once it is stored in a data lake. This 

increases the risks for the data to become ignored, misused or corrupted (Therrien et al. (2020). 

As more data is being collected the storage and retrieval of data becomes more complicated, and 

specific large-scale data storage systems are required for the management of big data. Big data is 

characterized by the properties summarized by the four V's (Farley et al. 2018): (i) Volume of data 

being generated by all the sensors, actuators, alarms and type of laboratory measurements; (ii) 

Velocity of data creation and collection by in-line sensors and instruments; (iii) Veracity of the data 

being collected: the harsh environment WRRF sensors find themselves in mean that faults are 

omnipresent. Pre-processing is therefore critical for the data to be trustworthy; (iv) Variety of collected 

data: most of the sensor data collected in WRRFs are time-series data. However, a lot of information 

at WRRFs is nowadays being stored in other unstructured data formats such as photos, videos, spectral 

measurements, instrument data sheets and standard operating procedures (Therrien et al., 2020). 
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Actually, large amounts of data are being collected and stored in databases but remain unused since 

operators have difficulty in processing and analysing the data in a timely enough fashion to allow for 

better understanding or proper decision-making (Corominas et al., 2018). 

Data usage can have multiple purposes, such as to calibrate and train mechanistic and data-driven 

models, to supply models with input data for simulation, to evaluate the state of the dynamic 

subsystems, to feed soft sensors, and/or to provide the necessary inputs for automated closed-loop 

control strategies (Torfs et al, 2022). The quantity and reliability of data that is being collected at 

WWTPs is on the rise (Olsson et al. 2014). New, more reliable sensor technologies combined with faster 

computations are making the storage of frequent and high-resolution water quantity and quality data 

more affordable. However, due to technological and monetary constraints, data collection and data 

management will remain somewhat limited, which means data access will ultimately dictate how to 

optimally exploit the available data (Torfs et al, 2022). 

Other organisational activities that support operations (e.g. equipment and infrastructure 

maintenance, finance, resource planning, compliance, research, and development, etc.) are also 

generating significant amounts of digitised data. The information gathered from digital workflows 

provides the context for interpretation of observations made in the process systems. These metadata 

relate to process equipment, infrastructure, location, maintenance history, quality, purpose, 

measuring range, and typically do not need to be updated frequently (IWA 2021b). However, metadata 

still need to be checked and kept up-to-date on an active basis. 

Data checks also needs to take into account the compatibility of data that is stored in a wide variety of 

formats (e.g. PDF files of P&IDs, screenshots of CAD models), which needs to be replaced with data in 

file formats native to the design software and that can integrate into a database (Brendelberger et al. 

2019; Wiedau et al. 2019). 

Fundamental to the mathematical modelling and data management is the IT software architecture and 

hardware infrastructure needed. Sophisticated data architectures and computational workflows, 

composed of structured and unstructured data import, storage, and processing, will be required (Torfs 

et al., 2022). Fuller et al. (2020) suggest that the cost of installing and running such infrastructure is 

likely to be the biggest challenge for any digitalization project. Furthermore, questions need to be 

addressed around data sharing, cybersecurity, and ethics (GWRC 2021). 

Furthermore, the on-going digitalization is raising interest in the application of other data-based 

solutions. Integrating the power of big data analytics (including AI) with the management and control 

of urban wastewater systems represents a significant unexploited opportunity to achieve economic 

and ecological objectives of sustainable operations. The emergence of big data science and the 

application of machine learning will develop new ways to analyse, organize, and extract information 

from large data volumes and create opportunities for data-driven discovery (Garrido-Baserba et al., 

2020). 

2.3.4 Concluding Remarks 
Wastewater treatment facilities of the future must not only adapt to evolving functional requirements 

but also to changing technologies, requiring a high level of flexibility and adaptability in the processes. 

This applies to hydraulic and treatment capacity, plant layout and design, and operation. A proven 
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engineering approach is that of the ‘building block approach’ to plant layout and design, and the choice 

of process tank configurations which can accommodate numerous technologies (Daigger, 2019). 

The changing role of the wastewater industry that is leading it away from energy-intensive wastewater 

treatment processes towards low-energy, sustainable technologies capable of achieving energy 

positive operation and resource recovery, will also impact the process control tools and systems in 

place. Moving away from the conventional paradigm of treatment, the tools of the future need to be 

capable of monitoring, modelling and controlling processes that recover resources (e.g.: water, 

nutrients, organics, energy). The practice of design, operation and control of resource recovery 

technology will need modern tools that are able to perform with high precision in real-time to allow 

meeting stringent objectives related to water-product quality, process performance stability, and 

operating costs. As such tools lead to a better understanding of processes; this may also lead to new 

and innovative resource recovery solutions (Regmi et al., 2019).  

2.4 Modern Tools for Process Control 
For optimal plant control, advanced control strategies must be implemented (Dürrenmatt and Gujer, 

2012). There is a need for numerical support tools to simulate and understand the effects of desired 

outcomes or proposed modifications in the processes. In fact, a small change in a local process setting 

can have impacts upon the performance of the other stages of the treatment process. The problem 

becomes even more complex when we add the economic effects and environmental impact of 

proposed changes to the performance criteria. Process modelling provides valuable insights into the 

behaviour of processes; in fact, it is a requirement for process optimization (Wentzel & Ekama, 1997). 

Modelling is widely used for water resource recovery facility (WRRF) design, upgrade and controller 

evaluation (Sweeney & Kabouris 2013). Such smart tools will contribute to decision-making and 

process control management. 

In the last few decades, there have been experiences gained and lessons learned with the application 

of smart infrastructures in the sanitation sector (Ingildsen and Olsson, 2016). This is observed in 

particular in the fields of in-line monitoring of water flow and of qualitative process performance 

indicators used by automatic controllers (e.g. Sharma et al, 2011), as well as the development of 

computer aided mathematical models for simulation and scenario analysis (e.g. Benedetti et al., 2013). 

This has resulted in more stable and reliable process control, increased regulatory compliance and 

overall increase in our understanding of the hydraulic, chemical and biological processes taking place 

during the transport and treatment of municipal wastewater. 

The development and application of smart process control tools allows optimization and efficiency, 

facilitates recovery of resources of high quality, and promotes the shift towards energy neutrality as 

part of a circular economy. Automation may also contribute to counter a shortage of a skilled 

workforce. 

2.4.1 Process Control 
Process control has the objective to optimize the efficiency of process performance in terms of removal 

rates of pollutants and nutrients, energy efficiency, the amount of reagent consumption. Process 

control allows operating a plant at optimum conditions in order to enhance the lifetime of a system 

and reduce unit product cost (Agarwal et al., 2016). Like many other industries, the wastewater 

treatment sector has been experiencing a sharp increase in the application of instrumentation, control 

and automation (ICA) since the 2000s (e.g. Ingildsen and Olsson, 2016; Garrido-Baserba et al., 2020). 
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The ICA technologies were already introduced in the 1960 - 70’s in order to control operations and 

assure good quality of the discharged water in their natural environment.  

Prior to the 1960s, control relied on manual adjustments and observations made by operators. Digital 

control was not yet an option due to the fact that the general knowledge was not yet well developed 

on the dynamics of treatment or the theory of process control for non-linear systems, like WWTP’s 

(Olsson, 2012). Also, high investments were required for the use of computers and instrumentation, 

while the existing WWTPs at that time were not designed with sufficient flexibility to facilitate digital 

control (Newhart et al., 2019). Starting from the 1980s, more affordable computing power became 

available that led to the development of first principle models, although their complexity and lack of 

reliability made them poor advisory systems (Olsson et al., 1998). Moreover, the increase in plant 

complexity demanded a higher level of process control. Various control strategies for wastewater 

treatment plants were then proposed to better control dissolved oxygen (DO) levels and denitrification 

(e.g. Briggs, 1967; Busby and Andrews, 1975; Londong, 1992). 

By the early 2000s, the digital revolution had reached the wastewater sector, and most WWTPs had 

integrated their own version of direct digital control into process monitoring in the form of 

programmable logic controllers (PLC) and supervisory control and data acquisition (SCADA) systems 

(Newhart et al., 2019). 

Commonly, in literature two types of control strategies are differentiated: conventional (or classical) 

control and advanced control. In conventional strategies, such as PID, ratio cascade and feedback 

control, the control actions are directly determined by the measured signals of disturbances (e.g. 

temperature, pressure, flow rate, pH and quality concentrations). The signals are transmitted to the 

controller which then takes corrective action (e.g. either opens or closes a valve). It is the expectation 

that this action will return the variable to the desired set point within a short time span. In advanced 

control however, the controller allows for compensation of time delays and dead time in sensors and 

sampling apparatus and has override ability. Selection criteria for the type of controller are the 

stability, response time and the disturbances caused to the system (Olsson, 2008). 

Nowadays, the most common process control practice is to maintain a set-point (i.e., target value) 

using inline sensor readings and feedback control. For example, dissolved oxygen DO concentrations 

can be controlled by adjusting air blower speed (i.e., aeration intensity) where online measurements 

in the system send a signal to the SCADA system that determines whether blower speed should change 

or stay constant relative to a measured value, like a DO concentration. Sufficient nitrification can be 

maintained by applying a constant aeration flow rate, by control of the DO level at a pre-selected set-

point or by using a variable DO set-point controller based on ammonia concentration in the last aerated 

reactor of the plant (Ingildsen, 2002; Vrečko et al., 2003).  

The denitrification process can be controlled by manipulating the external carbon flow rate or internal 

recirculation flow rate based on the nitrate concentration in the last anoxic reactor (Lindberg, 1997; 

Yuan et al., 2002). Chemical dosing to enhance contaminant precipitation and additional carbon for 

biological processes are other examples of feedback control based on inline measured nutrient 

concentrations. This method of process control is commonly achieved by a controller with a variable 

frequency drive to change operating conditions in a continuous, smooth, and automated manner 

(Newhart et al., 2019). 
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Different control algorithms have been proposed from simple ON/OFF and PI feedback control (Ayesa 

et al., 2006) over feedforward control to complex model predictive control (MPC) (Steffens and Lant, 

1999). A simple feedback controller scheme shown in Figure 2-2, is where the output signal from the 

process model is transmitted to a comparator to be subtracted from the desired value of the signal 

(set point). The resultant signal from the comparator is the error signal and goes to the controller. 

Here, control algorithms or control modes perform mathematical operations on the error signal to 

calculate the required value of the signal to be transmitted to the final control element. The final 

control element then modifies one of the input variables to the process in order to bring the process 

output signal closer to the set point (Andrews, 1976). 

 

Figure 2-2: Block diagram of a simplified feedback control (Andrews, 1976). 

A very commonly used control algorithm is that provided by the three-mode controller equation 

known as PID control, where the controller calculates the amount of control action as a function of 

four terms (equation 2.1). Term (1) is the bias and is provided to allow the amount of control action to 

be set at approximately half of the full value whenever the measured variable equals the set point. 

Term (2) provides proportional control in which the amount of control action is proportional to the 

error signal. The third term (3) gives control action proportional to the integral of the error signal and 

therefore reflects the length of time that the error has persisted. The fourth term (4) is proportional 

to the derivative of the error signal and thus reflects the rate of change of the error (Andrews, 1976). 

𝐶A = 𝐾B + 𝐾p𝑒 + 𝐾IN ∫ 𝑒 𝑑𝑡
𝑡

0
+ 𝐾DI

𝑑𝑒

𝑑𝑡
                Equation 2.1 

where: CA = amount of control action 
 KB = bias control coefficient 
 KP = proportional control coefficient 
 KIN = integral control coefficient 
 KDI = derivative control coefficient 
 
The number of terms and the values selected for their coefficients is dependent upon the dynamic 

behaviour of the process. Determination of the values for the coefficients is known as controller tuning 

and is primarily a trial-and-error process although there are optimization programs available (Andrews, 

1976). 
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Although optimal control performance cannot be expected from conventional PID or on-off controllers 

for the time-varying, nonlinear processes considered, their widespread use in industry and the 

resulting familiarity with their properties and concepts for design, have made that these regulators are 

the most widely applied in wastewater treatment processes (Vanrolleghem, 1995). 

2.4.2 Model Predictive Control 
Process control implies the use of models that represent or describe often in a simplified manner a 

wastewater treatment processes (Wentzel & Ekana, 1997). Models provide insight into system and 

plant performance (quantification of information, mass balances and data reconciliation), allow 

evaluating possible scenarios for upgrading or new designs in a quantitative manner, support 

management decisions, develop new control schemes and provide knowledge transfer (e.g. operator 

training) (Henze et al., 2008).  

To optimize process performances, a tight control of manipulated variables is required. In complex 

wastewater treatment systems, conventional PID controllers cannot adequately perform due to non-

linear and time-varying conditions. Here model predictive controllers (MPCs) appear to be better 

suited. In MPC, the process model takes into account the physical constraints of the actual system 

(Richalet et al., 1978). 

As shown in Figure 2-3, in MPC, a process model is used to predict how the system would behave under 

a proposed sequence of control actions u(t). Using a numerical search algorithm an optimal sequence 

uOpt(t) is computed. To reduce the effects of model mismatch, only the first action of the sequence is 

implemented on the process after which the optimization exercise is reiterated (Vanrolleghem, 1995). 

This concept of a moving horizon computes a set of control moves over a larger prediction horizon, 

while only the initial control move is actually implemented and the remaining calculated moves are 

discarded. The process is then repeated at subsequent sampling times (O’Brien et al., 2011). 

 

Figure 2-3: a) Principle of Model-based Predictive Control; b) Typical calculation performed by a Model-based Predictive 
Control algorithm (Vanrolleghem, 1995) 

Stare et al. (2007) compared several commonly applied control strategies that include constant 

manipulated variables, various PI and feedforward control strategies, with model predictive control 

using an ideal process model. Results of the study show that with PI and feedforward controllers 

almost the same optimal operating costs can be achieved as with more advanced MPC algorithms 
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under various plant operating conditions. However, they conclude that MPC algorithms are 

advantageous in cases where the plant is highly loaded and if stringent effluent fines are imposed by 

legislation (Stare et al., 2007). Nevertheless, MPC has so far not been widely applied in WWT process 

control. Arguments are the complexity of the biological treatment processes and the mechanistic 

models that are required for simulation; as well as a lack of documentation of how to handle the 

nonlinearities encountered in the processes (Newhart et al., 2019).  

Wastewater treatment has some specific characteristics when compared to other process industries, 

such as highly variable flow rates and pollutants loads that need to be removed to very low values 

under all circumstances. Unlike many industrial processes where an approximating linear model can 

be used to implement in a model predictive controller (MPC) (Borrelli et al. 2017; Rawlings et al. 2017), 

wastewater processing consists of several interacting physical, biological and chemical processes for 

both water and the settled sludge that exhibit highly non-linear and non-stationary (time-varying) 

behaviour, so that non-linear versions of MPC must be applied (Bernardelli et al., 2020).  

Due to the large number of unmeasured states and the inherent non-stationarity related to 

wastewater treatment processes, model predictive controllers (MPCs) have been proposed as a better 

alternative for process optimization (te Braake et al., 1994). Model predictive control (MPC) has been 

developed considerably in the last decades both in industry and in the academic world. It is considered 

an appropriate way of dealing with a control problem in the time domain. Model predictive control 

integrates optimal control, control of processes with constraints, with dead-time, multivariable 

processes and uses future references when available. The finite control horizon allows the explicit 

handling of process and operational constraints (Camacho et al., 2010). 

The control of linear processes with a linear MPC that applies linear constraints is a relatively well-

established research field and the use of linear models are good approximations if the process is kept 

close to an operating point and the nonlinearities are not too severe (Camacho et al., 2010). However, 

in cases where systems are non-linear, such as wastewater treatment processes, a non-linear model is 

better suited. 

More recently, several studies apply MPC control based on Artificial Intelligence (AI) models. A MPC 

with a nonlinear prediction model using either neural networks (Han et al., 2014; 2012) or fuzzy models 

(Yang et al., 2014) has shown to improve performance when compared to a MPC using a mechanistic 

model. Bernardelli et al. (2020) describe the design and testing of a MPC based on a neuro-fuzzy 

technique that is capable of estimating the main process variables and providing the right amount of 

aeration to achieve an efficient and economical operation. Their algorithm has been field tested on a 

large-scale municipal wastewater treatment plant of about 500,000 PE with encouraging results in 

terms of better effluent quality and energy savings (Bernardelli et al., 2020). 

Another novel approach to MPC is to integrate Stochastic Differential Equations (SDEs) to predict plant 

performance, which provide a natural method to represent how mean and variance of a phenomenon 

evolves in continuous time (e.g. Stentoft et al., 2019). The proposed principle is used to reduce the 

operating costs of a wastewater treatment plant by enabling the flexibility to distribute the aeration 

load to periods with less expensive electricity prices. The performance of the proposed method is 

demonstrated for the operation of a single wastewater treatment plant and shows modest savings of 

1.15% if only the day ahead market electricity price is considered. However, if the regulating and 
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special regulating electricity prices are included in the optimization the realized savings are in the 

magnitude of 7.23% and 27.32%, respectively (Brok et al., 2020). 

2.4.3 Continuous Monitoring of Process Quality Indicators 
Notwithstanding the progress made towards the implementation of smart tools, the importance of 

data quality checks, such as through autocalibration and built-in sensor checks, cleaning systems and 

reliable sample preparation units for data quality, has not diminished. Data preparation methods are 

still necessary as practical solutions to the frequently encountered problems with in-situ sensors in 

wastewater streams (e.g. Vanrolleghem and Lee, 2003). 

Changes in the quality of influent and effluent flows into and out of a treatment system are important 

to detect early on as they serve as a strong indication of process performance. In-line monitoring allows 

early detecting and identifying any fault or abnormality that might negatively affect the process 

(Aguado and Rosen, 2008). The increasingly strict regulations have created a need for rapid and reliable 

monitoring techniques in real-time (Bourgeois et al., 2003).  

Traditionally, in wastewater treatment plants there was often infrequent monitoring and/or 

automated systems are not as well developed as in other process industries. This is mainly because of 

the harsh environment – when compared to (drinking) water treatment - in which sensors have to be 

located (Lynggaard-Jensen, 1999) and the associated problems with instruments that foul, lose their 

measuring sensitivity and reproducibility, as well as have a need for frequent cleaning and recalibration 

(Bourgeois and Stuetz, 2000). Also, the high costs for investment and maintenance of a monitoring 

network with in- and off-line sensors often formed a bottleneck (Dürrenmatt and Gujer, 2012). 

Continuous monitoring of quality variables is based on high-frequent values reported within short time 

intervals of a few minutes to a few hours by on-line sensors and instruments. These can actually collect 

data at frequencies up to a few seconds. Often the information content of this data is, however, 

relatively low since the dynamics of the process being measured are much slower than the sensor's 

sampling frequency (Olsson 2012). The reported values are therefore often the average or minimum 

values of a group of measurements taken over a longer period (e.g. every 15 minutes the minimum 

value measured from every minute gets reported back to a controller).  

Continuous monitoring by inline sensors can support or even replace sampling either manually (grab) 

or by a composite sample that combines small volumes sampled over a day. The advantage of 

continuous monitoring is that process control can now be enforced more strictly to minimize cost (e.g. 

dosing of disinfectant). However, with the higher frequency and the harsh environment sensors find 

themselves in, faults are omnipresent. Pre-processing is therefore critical for the data to be 

trustworthy since the risk of failure is high (Therrien et al., 2019). It is noteworthy that laboratory 

analyses are considered to be of higher quality and are (still) the regulatory norm applied for 

monitoring quality variables. 

There has been a technological development of sensors capable to be placed in-line in wastewater 

streams to monitor dissolved oxygen, suspended solids and organic matter, as well as several nutrients 

(such as nitrogen and phosphorus) over the last few decades. Today, these sensors can provide reliable 

data and have become more affordable (Ingildsen and Olsson, 2016). See for example the research by 

the LEESU laboratory in the framework of the Mocopée program that has resulted in the development 

of a 3D-fluorescence spectroscopy for rapid measurement of dissolved organic matter in wastewaters 
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entering the treatment plants (Goffin et al., 2018). Here, it is expected that fast and accurate 

characterization of the qualities and amounts of organic matter should achieve significant savings in 

terms of external carbon dosing and energy consumption for recirculation flows and aeration. 

As mentioned, high-frequent measurement signals require precautions to be taken in order to produce 

good data quality, especially in areas with high effluent quality requirements (e.g. Papias et al., 2018). 

Methodologies for sensor management, installation and maintenance need to include data pre-

processing techniques. Sensor calibration often involves an evaluation of performance in the 

laboratory and an adapted field protocol for calibration, data treatment and validation. It is crucial to 

consider the technical limitations of the measuring equipment and set appropriate maintenance and 

calibration methodologies in order to ensure an accurate interpretation of data (Papias et al., 2018). 

The huge amount of data recorded by inline sensors requires proper techniques to extract useful on-

line information from the data (Rosen et al., 2003); it can then serve as input data for simulation 

models.  

2.5 Process Modelling 
Key to make improvements in the efficiency of WWTPs is our understanding of the physical, biological 

and chemical processes taking place inside a reactor. Modelling is a powerful tool for studying the 

behaviour of microorganisms and is advancing at a fast pace. Models based on mechanistic knowledge 

(such as empirical and phenomenological descriptions) are providing deeper insight in the biochemical 

and hydraulic processes and have found their way to support performance evaluation and decision-

making for planning, design, control and optimization of systems (Rieger et al., 2012). Andrews (1976) 

already established that the dynamic behaviour of wastewater treatment should be considered during 

both plant design and operation so that performance of wastewater treatment plants would 

substantially improve. He argued that modern control systems for modification of dynamic behaviour 

should be incorporated into operations. Several powerful tools are mentioned for the study of dynamic 

behaviour and included among these are dynamic mathematical models and computer simulation 

(Andrews, 1976). 

A conceptual model is an abstract representation of a physical system or process that requires 

assumptions or hypotheses to be made to simplify that reality. A mathematical model formulates these 

concepts so that the model can be applied to provide quantitative answers (Dochain & Vanrolleghem, 

2001). Dynamical models describe the time evolution of processes. A further distinction is made 

between mechanistic models that use mathematical formulas based on the knowledge of physical laws 

(‘First Principles’), and analytical or empirical models that use empirical relationships based on the 

observed data to describe the behaviour of a process (‘Data-based models’). 

In the wastewater sector, dynamic mechanistic wastewater treatment process models that describe 

the activated sludge process have since then become widely accepted and recognized as an important 

decision-making tool for design and process engineers, operators and managers. On the contrary, 

dynamic models that simulate the fixed growth processes inside a biofilm are still under development 

and do not yet have well established guidelines within the modelling community (Rittmann et al., 

2018).  

Consequently, there is a need for tools that aid in a better understanding of the (emerging) processes 

and support in decision making that guide utilities to strategically plan the implementation of 
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innovative technologies. Mathematical modelling of processes and process control tools can provide 

this support and permit WWTPs to transition from wastewater treatment towards resource recovery.  

2.5.1 Mechanistic Process Modelling of Biofilm Systems 
A mechanistic mathematical model is a systematic attempt to translate the conceptual understanding 

of a real-world system into mathematical terms. The main goals for biofilm modelling have been 

identified as increasing our understanding of the fundamental mechanisms of biofilm behaviour, as a 

tool to study the integration of different types of mechanisms occurring at different spatial and 

temporal scales; for experimental design and the evaluation of novel process designs; for the testing 

of operational strategies in order to improve process performance (Eberl & Morgenroth, 2006). 

Eberl & Morgenroth (2006) describe the following steps in the development of such model: 1. 

identification of the important variables and processes acting in the system; 2. representation of the 

processes by mathematical expressions; 3. combination of all mathematical expressions into equations 

of mass or energy balances; 4. assignment of correct values to the model parameters; 5. solving the 

mass and energy balances by a technique that fits the complexity of the equations; 6. analysis of the 

model’s output. 

Dynamic models can be developed by applying material and energy balances to a reactor using 

fundamental transport, stoichiometric, thermochemical and kinetic relationships. Components in 

biofilm modelling are divided into particulate and dissolved components. This distinction is necessary 

since the processes related to particulates are much slower than the processes affecting the solutes. 

Furthermore, only dissolved components can undergo diffusion. Since that is the simplest approach to 

program and solve, most models apply a homogeneous mix of all components in the same proportions 

in all parts of the biofilm. A more complex approach involves the prediction of the spatial distribution 

of the components by solving the mass balances of all the particulates at different locations 

simultaneously throughout the biofilm.     

The foundation of any mathematical biofilm model is the mass balance that states that for any time 

and location in a reactor, the net rate of accumulation (or total mass) for any component is the sum of 

all rates of transfer and transport added to the sum of all rates of transformation. A mathematical 

model translates these terms into expressions that need to be solved. 

Mathematical models can be designed in a large variety; from ‘simple’ empirical correlations to 

complex and computationally intensive algorithms that describe three-dimensional biofilm 

morphology (Eberl & Morgenroth, 2006). 

In contrast to a mechanistic model, an empirical model estimates the performance of a system based 

on finding patterns from a large quantity of data obtained under relevant operating conditions. 

However, most empirical models have a low performance with predictions made outside the range of 

the evaluated data.  

Mechanistic models are developed based on the first principles of physics resulting in equations of 

mass, momentum and energy balances written for the system under consideration. Since these models 

are based on process knowledge, the mathematics are ‘transparent’ so that a change of model input 

can be traced by the codified relationships to an expected output. In the 1970’s, the first-generation 

mechanistic models connected substrate fluxes into a biofilm layer to the utilization of substrate and 
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the transport of mass using one substrate that was considered as rate-limiting. These models were 

capable to simulate concentration profiles within the biofilm, although they contained the simplest 

possible biofilm geometry in the form of a homogeneous “slab” and a uniform biomass distribution. 

Examples are Harris and Hansford (1976), Harremoës (1976), LaMotta (1976), Rittmann and McCarty 

(1980, 1981).  

From the 1980’s, second-generation models were able to describe a non-uniform biomass distribution 

inside the biofilm, that consisted of several substrates and included multiple types of bacteria. These 

models still maintained a simplified one-dimensional geometry, but spatial patterns for substrates and 

biomass type were included. Examples are Kissel et al. (1984), Wanner and Gujer (1984, 1986), 

Rittmann and Manem (1992).   

Starting in the 1990’s, the next generation models provided highly detailed and complex 2D and 3D 

biofilm morphologies, which are often based on discoveries made by powerful analytical tools, such as 

laser scanning microscopy. These models provide mechanistic representations for the controlling 

factors of complex biofilm formation. A distinction of these models can be made based on the 

numerical solutions applied to the treatment of solutes and particulates. Concerning the soluble 

components, this could by the finite-difference method (Picioreanu et al., 1998a, 1998b, 2001, 2004; 

Noguera et al., 1999b; Pizarro et al., 2001; Laspidou and Rittmann, 2004) or by discrete methods 

(Pizarro et al., 2001; Noguera et al., 2004). For the computation of the distribution of the particulates, 

models could apply the cellular automata method (Picioreanu et al., 1998a, 1998b; Noguera et al., 

1999, 2004; Pizarro et al., 2001; Laspidou and Rittmann, 2004); an individual based particles method 

(Kreft et al., 2001; Picioreanu et al., 2004) or the continuum method (Eberl et al., 2001). The continuum 

approach provides an average concentration of each component, while the two other methods 

describe the behaviour of individual cells. Overall, these third-generation models are computationally 

demanding and require a high level of expertise to operate (Eberl & Morgenroth, 2006).  

Mechanistic models provide a representative description of a system or process derived from a 

fundamental understanding of its underlying mechanisms based on physical, biological or chemical 

laws or causal relations. This type of domain knowledge is then encapsulated in a set of mathematical 

functions, whose behaviour can be described by one or more mathematical equations (Schneider et 

al., 2022).  

Mechanistic models can be classified according to the source of their knowledge; first-principles 

models are structured completely based on natural laws (the foundational understanding of a process 

or system); while phenomenological models describe empirical relationships and are structured 

according to domain knowledge, but where the observational data determine their parameters. 

Examples of the latter are Monod kinetics in ASM (Henze et al. 2000) or settling velocity functions in 

settler models (Takács et al. 1991). 

The underlying dynamics are described using ordinary differential equations (ODEs), differential-

algebraic equations (DAEs) or partial differential equations (PDEs) for the more complex water 

treatment systems, although algebraic equations can sometimes adequately be applied to simpler 

systems. In addition, there is a wide range of alternatives for equation-based models, including agent-

based models, population balance models, and equation-free modelling (DeAngelis & Yurek 2015). 

However, these alternative types of modelling techniques have not found a wide acceptance within 

the wastewater sector (Schneider et al., 2022). 
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2.5.2 Mechanistic Modelling of Biofiltration 
The modelling of biofiltration requires the combination of submodules that integrate the biological 

kinetics happening in the biofilm, the transport of solubles and particulates, the filtration of 

particulates and a backwashing model; each keeping track of the mass balances per component within 

each compartment. The development of mathematical models allows to perform dynamic (that is time 

dependent) simulations of the phenomena happening inside the biofilm. Unidimensional models 

describe the biofilm structure and the distribution of components in one direction, perpendicular to 

the surface of the biofilm. This keeps computational requirements relatively low (as compared to 2D 

or 3D models) and allows using the more commonly available commercial software products, such as 

WEST (DHI), GPS-X (Hydromantis), Simba (ifak), Sumo (Dynamita) and Biowin (EnviroSim).   

For submerged biofilter systems, relatively few modelling studies have been reported in the literature. 

Most of the models include a transport model along the filter, a conversion model for the biological 

reactions in the bulk liquid and the biofilm, while some include a filtration or a head loss prediction 

model. 

The foundation of the current process models was laid by the development of the Activated Sludge 

Model Number 1 (ASM1) first published in 1987 by the Task Group on Mathematical Modelling for 

Design and Operation of Activated Sludge Processes of the International Association on Water 

Pollution Research and Control (IAWPRC). It was the product of five years of research and resulted in 

the presentation of not only the ASM1 model, but also a guideline for wastewater characterization and 

development of programming codes, as well as a set of default values that have up till today not 

changed much (Henze et al., 2000). The ASM1 was designed with the specific characteristics of 

wastewater and the biological treatments in mind, so that the system of differential equations in the 

model is limited to the components being considered, and the process rates are selected as a function 

of the biological treatment conditions (Costa, 2022). 

The ASM1 model was well received in the scientific community and served as the basis for further 

wastewater model development. In particular the so-called Guijer matrix notation that was introduced 

in the ASM1, which combines the soluble and particulate components affected by each of the 

simulated biological processes with their reaction rate terms, proved to be very practical to 

communicate about these complex models (Henze et al., 2000). The introduction of the ASM model 

was of great importance, providing researchers and practitioners with a standardised set of basis 

models (Gernaey et al., 2004). 

The models became more complex over the years and included biological phosphorus removal (ASM2 

in 1995), as well as denitrifying phosphorus-accumulating-organisms (PAOs) (ASM2d in 1999). To 

follow technological innovations in activate sludge processes, the ASM3 model (1999) was developed 

as a new platform to include the monitoring of internal storage components (Henze et al., 2000). In 

order to provide a complete description of the steps in the nitrogen cycle, a more detailed description 

of nitrification and denitrification with respect to ammonia oxidation inhibition, nitrite accumulation, 

and emissions of nitric oxide and nitrous oxide, was included in the ASMN model (Hiatt and Grady, 

2008). The ASMN incorporates two nitrifying populations of ammonia-oxidizing bacteria and nitrite-

oxidizing bacteria-using free ammonia and free nitrous acid, respectively, as their true substrates. The 

ASMN incorporates four-step denitrification (sequential reduction of nitrate to nitrogen gas via nitrite, 

nitric oxide, and nitrous oxide) using individual, reaction-specific parameters (Hiatt and Grady, 2008). 
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More recently, the scope of the ASM1 has been further enlarged by including new components or 

processes to the original model, such as the integration of the cellulose fraction (Reijken et al., 2018) 

and the formation of microorganism-derived dissolved organic nitrogen (Hu et al., 2020). 

Thanks to the flexible configuration of the ASM1 that allows the matrix to be easily modified or 

expanded, the application of this model for biological reactions is not only possible for activated sludge 

processes with suspended bacterial growth, but also for other biological treatments with fixed growth. 

The ASM1 represents the basis for the formulation of new mathematical models for nutrient removal 

in WWTPs (Santos et al., 2020), in granular activated carbon filters (Acevedo et al., 2021), and for the 

application of activated sludge models to membrane bioreactors (Spérandio & Espinosa, 2008; Fenu 

et al., 2010; Orhon et al., 2021). An ASM1 model has been adapted to include kinetic reactions for the 

growth and decay of microalgae (Wagner et al., 2016). 

The ASM model equations are founded on a simplification of complex processes. Moreover, there are 

still some relevant processes such as the formation of nitrous oxide (a potent green-house gas) and 

the conversions within the biological phosphorus removal process (due to the variability of phosphate 

accumulating organism metabolics (Gebremariam et al. 2011), which are not understood clearly 

enough to be put into a model for use in simulations. These knowledge gaps explain a part of the 

limitations of ASMs. Regmi et al. (2019) list several limitations, in particular the lack of ability to 

properly account for solids retention times (SRT), an inability to predict sludge settleability, the 

consideration of only one microbial group for a single process (e.g. nitrification) (Regmi et al., 2019).  

Additionally, the half-saturation values used in ASMs do not truly represent intrinsic affinity constants 

but rather lump the effect of diffusion and spatial gradients of local environments (Arnaldos et al. 2015; 

Baeten et al. 2018). Substrate diffusion is largely dependent on floc properties which are a function of 

the local shear conditions, cohesion forces related to the exopolymeric substances characteristics, and 

turbulence intensity (Chu et al. 2003). This aspect of ASMs limits the model's ability to predict the 

outcomes of processes like simultaneous nitrification-denitrification as well as the conversion of 

micropollutants in biological wastewater treatment systems (Regmi et al., 2019). 

In order to answer the many questions in the academic research world about the applicability of ASM 

models to simulation models of biofilm reactors (e.g.: Boltz and Daigger, 2010; Morgenroth and 

Wilderer, 2000), a Scientific and Technical Report (STR) was compiled with a focus on the 

“Mathematical Modelling of Biofilms” (Wanner et al., 2006). A key conclusion in the STR is that for 

many (not all) engineering applications 1-D biofilm models (as opposed to 2-D or 3-D) are sufficiently 

complex in representing local substrate and biomass gradients. Key differences in biofilm reactor 

modelling are related to describing mass transport limitations and a heterogeneous distribution of 

biomass components over the thickness of the biofilm. These differences are in particular (i) Diffusion 

of soluble and colloidal components, (ii) Attachment, detachment, and movement of particulate 

components within the biofilm, (iii) External mass transfer resistance (e.g., described as an external 

mass transfer boundary layer thickness). These biofilm-specific processes are in turn dependent on the 

specific type of biofilm reactor and on reactor operation (Boltz et al., 2012). 

2.5.3 Development of Biofilter Models 
Behrendt (1999) developed a model of a two-step nitrification biofilter that consists of three 

compartments; a gaseous phase, a bulk liquid and a biofilm surface layer, where all the mass balance 

equations are computed for. Ammonia conversion is described by nitritation and nitratation. However, 
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the model does not account for the evolution of biomass growth and decay or the transport of 

particulates (Samie, 2009).  

Falkentoft et al. (2000) developed a model based on the ASM2d describing denitrification and 

phosphorus removal in a biofilter. It introduced the concept of the initial thickness of the biofilm that 

after each backwashing session is the starting point for calculations. 

Viotti et al. (2002) built a model for a carbon and nitrogen removal in a BioStyr© biofilter that allows 

to simulate concentration profiles of COD and NH4-N inside the biofilm and along the column height of 

the filterbed. It integrates an accumulation of biomass that can interfere with the filtration efficiency 

and the evolution of the head loss due to clogging of the filter. 

Hidaka and Tsuno (2004) designed a model for carbon and nitrogen removal that simulates the 

concentration profiles of COD, NH4-N and NO3-N inside the biofilm and along the filterbed. The column 

height of one filter is represented by 5 completely mixed reactors placed in series. Each reactor 

contains three compartments (filterbed, biofilm and liquid) where transport, accumulation and release 

of particulates are simulated. However, the model does not account for diffusion of solubles and 

assumes complete substrate transfer into a uniformly distributed biofilm consisting of one layer. 

During each backwashing session, a constant part of the biomass is removed. The biological reactions 

are based on the ASM1 model (Henze et al., 2000b), while the authors have included heterotrophic 

endogenic denitrification, assuming that the heterotrophic biomass is capable of using nitrates as 

substrate. The model was tested with experimental data from a laboratory set-up. However, the model 

conditions (one layer for the biofilm; no soluble diffusion) restrict the simulation of different types of 

niches inside the biofilm and the transfer of solubles. 

Vigne et al. (2010) applied a commercially available model (GPS-X) to a nitrification biofilter with 

operational data from a large WWTP. In the dynamic model, the biofilter was divided into six 

completely mixed reactors with an upwards flow direction, where each reactor contains a 5-layer 

biofilm, a liquid phase and a MTBL boundary layer with a fixed thickness. Here, solubles transfer by 

diffusion is included for the interface from the bulk liquid into the biofilm, as well as between the 

biofilm layers. This approach allows simulating a partial diffusion and the development of niches within 

the biofilm. The processes of filtration and backwashing are described, and a partial mixing of the 

support media occurs during washing of the filter bed reducing the vertical gradient of biofilm 

properties along the length of the biofilter. The authors apply an index to follow the head loss due to 

clogging of the filter. The biological reactions are based on the ASM1 model (Henze et al., 2000b). The 

simulation results show that the model is overall capable to predict the ammonia concentrations in 

the effluent under dynamic conditions. However, the model assumes a fixed dissolved oxygen content 

in the bulk liquid phase of each reactor, which is not realistic; and does not accurately simulate the 

headloss evolution. 

Bernier et al. (2014b) have continued the development of the biofiltration model as designed by Vigne 

et al. (2010), but in a Matlab/Simulink (MathWorks) environment and named it SimBio. It uses a similar 

approach by simulating one biofilter that is divided into seven completely mixed reactors placed in 

series, thus adding one reactor as compared to the previously described Vigne et al. (2010) model. The 

number of biofilm layers was however reduced from five to two layers per reactor in order to speed-

up calculations. The SimBio model accounts for variable dissolved oxygen concentrations in the bulk 

liquid as well as the effects of aeration flow rates and temperature on the oxygen transfer rate. It 
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computes headloss in function of the thickness of the biofilm layers. The ASM1 model applied for the 

biological reactions was modified to include nitrification and denitrification as two separate reactions 

by adding AOB and NOB type bacteria. For heterotrophic denitrification under anoxic conditions, the 

ASMN (Hiatt and Grady, 2008) was applied. In addition, the assimilation of orthophosphates by 

bacteria was added to the SimBio model. The model calculations however do not allow estimating 

operational costs and the emission of greenhouse gasses.   

The Bernier et al. (2014) model was calibrated and validated with operational data from biofilters from 

various large WWTPs in the Paris region that include carbon removal, nitrification and post-

denitrification. The results show that the model is largely capable of predicting effluent quality 

concentrations and filter headloss for the different biofilter configurations applying averaged 

conditions as the model input. Since then, the Seine aval WWTP has undergone several upgrades to 

the secondary treatment stage by adding pre- and post-denitrification phases. The model is therefore 

no longer in agreement with reality and would require updates and recalibration of the parameters. 

Fiat et al. (2019) provide a model extension to the SimBio model to include the main nitrous oxide 

(N2O) biological pathways during nitrification and denitrification. Modifications of the model structure 

were made to include the gas phase as a model compartment containing four common gasses in the 

nitrogen cycle (O2, N2O, NO, N2). The mass balance on the gaseous compounds was expanded to 

correctly describe the N2O gas-liquid partition and allow for calculations of N2O emissions, based on 

the equations of N2O in the ASMN (Hiatt & Grady, 2008) and Pocquet et al. (2016). The model was 

calibrated with full-scale data from a large WWTP with nitrifying biofilters. The results indicate that 

the model is capable of predicting nitrous oxide emissions without diminishing the performance of the 

predictions of other nitrogen variables, such as NH4 and NO2. The model increased the understanding 

of microbial behaviour and was able to demonstrate that the heterotrophic denitrifiers are capable of 

consuming a part of the N2O produced during nitrification; thereby lowering this greenhouse gas 

emission.    

Finally, Zhu (2020) developed an enhanced biofiltration model based on the model of Bernier et al. 

(2014) that is applicable for denitrification and nitrification biofilters. Compared with the original 

model, a variable thickness of the MTBL boundary layer (instead of a constant thickness) and five 

biofilm layers were again used (instead of 2 biofilm layers) to describe the mass transport process and 

the biofilm heterogeneity more precisely. Concerning the particulate components, the new model 

does not take into account detachment by shear forces, as the effect of such events was determined 

to be negligible in the original SimBio model. However, the model does take into consideration a mixing 

of the support media during washing, and extended this phenomenon also during normal operation, 

albeit at a lower rate. To maintain the spatial distribution of the components, the exchange of 

particulates is only possible in the model between the reactors directly underneath and directly above 

it and always within the same biofilm layer. Estimations of energy consumption (aeration and 

pumping) and biological production of N2O as well as a simplified gas-liquid transfer process were 

integrated in the model in order to evaluate treatment costs and GHG emissions respectively. The 

aeration control scheme used in the plant was included in the model to better predict the necessary 

air flow injected during treatment. The model was calibrated and validated with intensive (15-minute 

interval) operational data from a large WWTP collected over several months. 
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Notwithstanding that mechanistic biofilter models provide insight of the behaviour of biological, 

physical and chemical processes, such wastewater treatment systems are highly nonlinear and time-

depending resulting in complex relationships between model inputs, parameters and outputs 

variables. Other sources of error for model predictions include inaccurate or incorrect calibration, non-

ideal process behaviour and lump-sum parameter assumptions (Olsson and Newell, 1999). 

In addition, the cost of model development is high, in particular when the process system is large and 

has a complex non-linear behaviour. A good understanding is required to calibrate the model 

parameters needed to fine-tune the model and make accurate predictions. Overall, it thus remains 

difficult to apply mechanistic biofilter models to simulate complex treatment systems with a high 

precision, which is a requirement for process control and optimization. 

2.5.4 Mechanistic Model Calibration 
Without calibration and only default parameter values, an ASM model may produce results that are 

only accurate within an order of magnitude related to the variability of the measured data (Gujer, 

2011). Calibration of the model parameters is therefore crucial. Even though calibration protocols have 

been developed, model calibration is still regarded a hindrance to modelling (Mannina et al., 2011). 

What follows is an overview of the literature on model calibration, in particular for knowledge-based 

biofilter models. 

Model calibration aims to adjust the values of certain parameters so that the simulation results are as 

close as possible to the observations. This is followed by model validation, where different data sets 

are used to verify model performance (Rieger et al., 2012). 

Rieger et al. (2012) proposed unifying guidelines for the calibration and validation of mechanistic ASM 

models by describing the key points that should be adhered to. It contains the internationally available 

knowledge and experiences of the members of the Good Modelling Practice (GMP) Task group of the 

International Water Association, and thereby sets the standards for a widely acceptable protocol. 

Inconsistent approaches and insufficient documentation had made quality assessment and 

comparison of modelling results difficult.  

Prior to that, other guidelines for ASM model calibration had been published that served the modelling 

community. The most widely circulated protocols in the beginning of the 2000’s were: (i) STOWA 

(Hulsbeek et al., 2002; Roeleveld & van Loosdrecht, 2002), (ii) BIOMATH (Petersen et al., 2002; 

Vanrolleghem et al., 2003), (iii) WERF (Melcer et al., 2003) and (iv) HSG (Langergraber et al., 2004). A 

SWOT analysis of these can be found in Sin et al. (2005), while an overview is also given in Rieger et al. 

(2012). 

Nevertheless, most of the model applications that had been developed were mostly based on ad hoc 

approaches and expert knowledge. Moreover, each modelling study was using a different calibration 

approach: e.g. different influent wastewater characterization methods, different kinetic parameter 

estimation methods, different selection of parameters to be calibrated, different priorities within the 

calibration steps, etc. The lack of a standard approach made it difficult to compare different 

calibrations of ASMs with each other and to perform internal quality checks for each calibration study 

(Sin et al., 2005). These authors performed a critical analysis of the existing protocols and provided a 

list of the strengths, weaknesses, opportunities and threats. The study strongly suggested to test these 

different protocols on a case study and to develop a unified protocol combining all the strengths and 
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opportunities of each protocol. An interesting recommendation made was to further research the 

potential of automating some steps of the calibration procedure by use of mathematical algorithms 

(Sin et al., 2005). 

The unified good modelling practice (GMP) protocol was built around five main steps. It starts with 

project definition, where its definition, objectives and requirements are defined. The next step is data 

collection and reconciliation. This is followed by the model set-up, selection of submodels and model 

checks. The fourth step is the model calibration and validation, and the last step is the simulation and 

results interpretation (Rieger et al., 2012). 

A more detailed and systematic procedure for the calibration of activated sludge models was 

presented by Mannina et al. (2011) that was based on a comprehensive global sensitivity analysis and 

a novel step-wise Monte Carlo-based calibration of subsets of influential parameters. The calibration 

procedure starts in phase 1 with a prior screening of the most influential model parameters and by 

simplifying the problem of finding the optimal parameter set by splitting the estimation task into steps. 

In the second phase, the calibration is undertaken for sub-groups of output variables instead of solving 

a complex multi-objective function. However, even with this step-wise approach parameter 

identifiability issues may occur, but this is dealt with by using the general likelihood uncertainty 

estimation (GLUE) method, that so far has rarely been used in the field of wastewater modelling 

(Mannina et al., 2011). A real case-study demonstrated the effectiveness of the proposed calibration 

procedure. 

Different calibration protocols that have been described over the past decades were mainly focused 

on activated sludge models where the biomass is present in suspension. As mentioned earlier, these 

protocols cannot be directly applied to models that simulate a fixed biomass growth (Boltz and Daigger, 

2010; Rittmann et al., 2018). Moreover, the GMP protocol developed by the IWA task group (Rieger et 

al., 2012) does not go into detailed description of calibration procedures and remains applicable only 

as general guidelines. 

Few biofiltration model researchers describe in detail how they have calibrated their models (Bernier, 

2013). Conversely, Vigne (2007) does propose a protocol for the modelling and calibration of a 

nitrifying biofilter that starts with a local sensitivity analysis of the model parameters and their impact 

on selected effluent variables. The analysis is performed by changing one parameter at a time.  A 

difference is made between parameters that are structural and measurable and therefore can be fixed 

at a value and those that are non-measurable or only indirect measurable. The calibration is then 

described step by step, starting with the parameters that are influential on the ammonia (NH4-N), 

followed by nitrate (NO3-N), TSS and head loss. Although well described, this method is applicable only 

for this specific biofilter configuration using a dataset and was not easily applicable elsewhere (Bernier, 

2014). 

For the modelling of a biofilter (Bernier et al., 2014a & 2014b) described their calibration procedure in 

more detail (Bernier, 2014). The effluent variables to which the model parameters were calibrated 

were selected on the basis of the filter configuration (e.g. denitrifying and nitrifying filters). The 

calibration started with a global sensitivity analysis to identify the influential parameters on the 

selected effluent variables, which was performed by Monte-Carlo simulations and a multiple linear 

regression based on the method described by Saltelli et al. (2007). The Monte-Carlo simulations were 

based on model parameters randomly selected within a range between minimum and maximum 
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values using Latin Hypercube Sampling (LHS). This sampling method divides the space in equal sizes 

and selects a value within each subspace. The LHS allows covering effectively and statistically the entire 

sampling space with just a small number of samples. The parameter range was based on expert opinion 

and default values found in literature. The sampled parameter values were then used for simulation. 

As mentioned, a multiple linear regression was applied to the results of the modelled variable (Y) and 

the parameter values (X) and the standard regression coefficients obtained allowed identifying the 

influential parameters. The performance indicators used for evaluation were the mean error (ME) and 

the mean absolute error (MAE) (Bernier, 2014). 

For his modelling work, Zhu (2020) provides a detailed description of his calibration method based on 

the two-step approach developed by Mannina et al. (2011).  It started with the selection of practically 

identifiable parameters using a global sensitivity analysis. Out of a total of 142 parameters of the 

biofiltration model, 49 parameters such as biofilter dimension and physical constant parameters were 

set at fixed values and did not participate in the analysis. The remaining 93 parameters were sampled 

using a LHS of 473 experiments. The sampling range for each parameter was 20% of the default 

parameter value for relatively well-known parameters, such as biological kinetic parameters used in 

the ASM1 model, while for parameters with less available information, the sampling range was 

extended to 50% (cfr. Brun et al., 2002). The sampled parameter values were then screened by a 

Monte-Carlo simulation in steady state, based on the method further described by Sin et al. (2011). 

According to the standardized regression coefficients (SRC) obtained from the global sensitivity 

analysis (see Mannina et al., 2011), the most influential parameters for different effluent variables 

were identified and divided into the following independent calibration groups: (1) filtration and carbon 

removal (effluent TSS and COD), (2) ammonium removal and oxygen consumption (effluent NH4, NO3 

and DO), (3) nitrite production and removal (effluent NO2), (4) orthophosphate consumption (effluent 

PO4) and (5) N2O production (N2O emission factor). The first two groups hold about ten influential 

parameters and the other groups five parameters (Zhu, 2020). 

For the second step in the calibration method, Zhu (2020) performed Monte-Carlo simulations for the 

first four calibration groups that contain effluent quality variables. Each sampled parameter set was 

used for a 30-day steady-state simulation to initialize the model followed by a dynamic simulation over 

another 30-day period during which nutrient loading decreased due to summer holidays. To identify 

the best parameter values, differences between simulations and measurements were quantified by 

calculating the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE). 

When one group of parameters was calibrated, the parameter values of this group were fixed and the 

next group was tackled (see Mannina et al., 2011). After the Monte-Carlo simulation, the identified 

parameter values of the four groups were validated with longer term data and parameters adjusted 

manually if necessary (Zhu, 2020).  

Since N2O emission was not measured, the model parameters for the fifth group were calibrated 

approximately and adjusted according to the observed overall emission factor values reported in 

literature where measurement campaigns were realized (Bollon et al., 2016). 

2.6 Evaluation of Model Performance 
To allow for an objective evaluation of wastewater simulation model performance, efficiency criteria 

have been compiled and compared by Hauduc et al. (2015). A total of 30 efficiency criteria used in 

environmental modelling were classified into the following six groups according to different modelling 
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objectives: (1) single event statistics, (2) absolute criteria from residuals, (3) derivative error criteria, 

(4) relative error criteria, (5) total relative error criteria, and (6) comparison of residuals with reference 

values and with other models. In a first step, criteria with equivalent functional form were identified, 

leading to 18 groups. From each group a representative criterion was sub-selected for quantitative 

evaluation in an illustrative wastewater treatment plant modelling case study considering four target 

variables and two operating conditions (Hauduc et al., 2015).  

The standard practice in activated sludge modelling (Rieger et al., 2012) is to compare the modelled 

effluent variables to the measured data and define statistical error indicators. The most commonly 

applied are the mean error (ME, equation 2.2), which measures the bias of the model (an optimal value 

close to 0 indicates a low bias); the mean absolute error (MAE, equation 2.3), which indicates the 

accuracy of the model without taking into account the direction (e.g. positive and negative) largest 

absolute error, and the root mean square error (RMSE) (equation 2.4), which measures the average 

difference between values predicted (P) by a model and the observed (O) values. The RMSE is another 

measure for model accuracy, where a value of zero would indicate a perfect fit to the data (Hauduc et 

al., 2015). 

Alternative criteria calculate the relative criteria by dividing the indicators by the mean of the 

observations (ŷ). The relative error (or percentage error) is defined as the ratio of each of the absolute 

errors calculated earlier to the mean of the observations. This allows determining the magnitude of 

the absolute error in terms of the observed average value of the measurement. Relative criteria are 

dimensionless and allow for comparison across different state variables; it makes a clear distinction 

possible of the overall accuracy of the model. The closer the relative criteria values are to 0, the better 

the accuracy of the model (Hauduc et al., 2015). Finally, the Janus coefficient (equation 4), with an 

optimal value of 1, makes it possible to compare a model’s performance across different datasets, such 

as one used for the validation with those data used for the calibration (Rieger et al., 2012).  
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2.6.1 Evaluation of Controller Performance 
Monitoring and control strategies can be efficiently evaluated and compared by realistic model 

simulation as long as a standardised procedure is followed (Aguada and Rosen, 2008). The COST/IWA 

simulation benchmark (Copp, 2002) for control strategy development and evaluation has been widely 

used by the wastewater research community as a standardised simulation protocol. The Benchmark 
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Simulation Model no. 1 (BSM1) includes the model, control system, benchmarking procedure and 

evaluation criteria. The model parameters and influent files characterising the influent wastewater are 

based on default values and are all provided for.  

The user can test any control strategy by setting the specified control handles and sensors. The 

evaluation is done according to some pre-defined criteria, based on a one-week period. Despite the 

usefulness of the BSM1, its limited evaluation period does not allow for long-term evaluation (Aguada 

and Rosen, 2008). Rosen et al. (2004) considered an extension to the BSM1 for long-term evaluation 

and comparison of control and monitoring strategies; named the long-term BSM1 (BSM1_LT). It also 

includes temperature variation and kinetic parameter dependencies, realistic models for sensors and 

actuators, as well as equipment and process faults. Jeppsson et al. (2006) developed an extension to 

allow control strategy development and performance evaluation at a plant-wide level, that is including 

the sludge treatment line (Aguada and Rosen, 2008).  

2.7 The future of Mechanistic Modelling 
As described above, process models have been developed and validated in the wastewater industry 

for designing, upgrading, and optimizing wastewater treatment plants, in particular for conventional 

activated sludge processes. However, due to the changing role and functionalities of WWTPs that 

include water quality, protection of water sources and the environment, energy reduction and 

production, and resource recovery, the scope and structure of the process models of the next 

generation could include new approaches such as thermodynamic, hydraulic, or economic models 

(Regmi et al., 2019). Some of the new approaches in the wastewater modelling field that have been 

proposed, describe physicochemical models (Batstone et al. 2012), energy and economic cost models 

(Rahman et al. 2016), greenhouse gas models (Mannina et al. 2016) and methods about how to 

integrate all these aspects in a plant-wide context (Solon et al. 2017). 

Moreover, as Regmi et al. (2019) stated, hydrodynamics and mass transport are important for the 

optimum design and operation of WRRFs, or novel technologies dedicated to resource recovery. 

Computational fluid dynamics (CFD) models can not only simulate hydraulic phenomena, but they have 

a great potential for modelling physicochemical processes where gaseous, solid, and aqueous phases 

interact and can be a very valuable tool for the optimization of the aeration process or resource 

recovery (Samstag et al. 2016). 

However, the increased complexity of new modelling approaches can become an obstacle for 

understanding and implementation of the model’s output. Future model development will likely put 

emphasis on resource recovery (water, nutrients, organics, and energy) rather than wastewater 

treatment. The practice of design, operation and control of resource recovery technology will need 

models that consider stringent objectives related to water-product quality, process performance 

stability, and operating costs. Unit process models for resource recovery will likely be integrated within 

broader frameworks (e.g. automated dynamic process control, sustainability, etc.) and at various 

scales (e.g. sewershed, watershed) to target combined social, economic, and environmental goals. 

Effective cost and price models will need to be developed for the different parts of the WRRF value 

chain in order to provide input to economic assessments (Regmi et al., 2019). 

2.7.1 Digital Twins 
A Digital twin is best described as a simulation model of a physical counterpart (e.g., a process or 

system) that has an automated data connection, preferably bi-directional, that allows for dynamical 



42 
 

updates to the model so that it remains an accurate description of that reality and retains its relevance 

(Torfs et al., 2022). The use of a digital twin has the potential to reduce costs, improve resource 

recovery, increase water quality and increase customer engagement (IWA and Xylem Inc. 2019). 

Interest in Digital Twins has greatly increased in the recent years across both academia and industry, 

accompanied by a growth in the number of related publications, processes, concepts, and envisaged 

benefits (Jones et al., 2020). 

The origin of using the DT terminology goes back to the early 2000s. However, it was first used in 

publications during the early 2010s as a new tool for the management of a product’s lifecycle in the 

manufacturing industry (Glaessgen & Stargel 2012; Grieves 2014). Since then, the concept of DTs has 

spread throughout many different sectors including the water industry (Torfs et al., 2022). Industry-

wide, this growth is largely driven by advances in related technologies and initiatives such as Internet-

of-Things, big data, Industry 4.0, real-time sensors and sensor networks, data management, data 

processing, and a drive towards a data-driven and digital manufacturing future (Jones et al, 2020).  For 

the urban water industry in particular, there’s a rising interest in the development of DTs thanks to the 

advances in instrumentation and the increasing availability of online data and computing capacity for 

utilities (e.g. via cloud computing) as well as the business drivers around both improved capital and 

operational efficiency targets (Valverde-Pérez et al., 2021). 

A recent White paper by the IWA on DTs (Valverde-Pérez et al., 2021) show a large potential for 

economic savings in the water sector with the application of DTs (e.g. online energy optimisation), 

more effective protection of the environment (e.g. model predictive control for effective nutrient 

removal) and increased benefits for society (e.g. improved storm water management to minimise risk 

of flooding in urban areas). Two direct added values of DTs are the visualisation of data (such as 

performance indicators) by digital twins (Garrido-Baserba et al., 2020) and the ability of a digital twin 

to use model-based control and data-driven optimisation that can achieve more reliable control with 

higher efficiencies than conventional process control (Valverde-Pérez et al., 2021). This can result in 

reductions of energy and reagent consumptions, and thus lower capital expenditure (Stentoft, 2020). 

2.7.2 Definition of Digital Twins 
A variety of definitions employed across industry and academia remain (Jones et al., 2020) and a 

uniform definition for a DT cannot consistently be found in publications. Moreover, the distinction 

between a conventional First-Principles process model and a DT is not always clear (Torfs et al., 2022). 

Grieves (2014) describes the Digital Twin as consisting of three components, a physical product, a 

virtual representation of that product, and the bi-directional data connections that feed data from the 

physical to the virtual representation, and information and processes from the virtual representation 

to the physical. Kolditz et al. (2019) define digital twins as virtual systems that ‘contain all important 

characteristics and features of the real system, depending on the specific purpose for an application’. 

Digital twins can be regarded as combinations of models and real-time data that provide a digital 

representation of a specific part of the water system’s behaviour (Valverde-Pérez et al., 2021). Torfs 

et al. (2022) give an overview of the components of a DT and its connections to the real entity and 

relevant stakeholders (Figure 2-4). Visible in the Figure is the real physical system (‘Real WRRF Entity’), 

the virtual representation of it (‘WRRF Digital Twin’) as well as the various data connections that feed 

both components. The data connection from the system being monitored to the DT should be 

automated, while the inverse connection from the DT to the physical system (to the SCADA system) 
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could involve a human decision maker. External information sources, such as weather forecasts and 

water level predictions in the watershed or sewage network, can also provide data into the DT. 

Torfs et al. (2022) list the following features of a digital twin: (i) a DT should be connected to a real 

entity (e.g. equipment, process or product); (ii) a DT should have an automated, live data connection 

to the real entity that is preferably in two directions. Whereas the data connection from the real entity 

to the DT should be automated, the virtual-to-real entity connection may be either automated (direct 

input from the DT into SCADA) or manually performed; (iii) DTs should evolve and follow changes that 

happen to the real physical system (Torfs et al., 2022). 

A crucial aspect it seems of a DT is thus the data connection between the physical system and its virtual 

representation, which is something that sets it apart from conventional process models (Jones et al, 

2020) and gives a DT a much higher level of usefulness as compared to a conventional simulation model 

executed independently (Torfs et al., 2022). 

 

Figure 2-4: Schematic representation of a Digital Twin and its interaction with the physical system, control systems and 
stakeholders (Torfs et al., 2022). 

Therefore, a digital twin is reliant on every part of the data pipeline mentioned before (see Figure 2-1). 

It receives extensive, fault-free and continuous data from the physical system; it represents process 

knowledge through a constantly updated model; it provides insight into the plant via interfaces, 

visualization and analytics, and it supports decision-making by operators and taking of actions via 

automatic control (Therrien et al., 2020). 

Regarding the nature of real-time data, Torfs et al (2022) argue that the time horizon for model updates 

and simulation should be defined by the objectives of the digital twin (e.g. instrument failure detection, 

real-time control) and the relevant system dynamics (aeration vs. sludge age). The automated data-
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feed and dynamic model updating defines a DT, while the time horizon over which this is performed, 

can remain flexible (Torfs et al., 2022). 

2.7.3 Digital Twin applications in WRRFs 
DT applications include (but are not limited to): (i) data-driven decision support for the selection of 

different operational strategies and operator training (Johnson et al. 2021); (ii) online (multi-objective) 

system optimisation (e.g. model-predictive control) for energy or resource savings or compliance 

management (e.g. to minimise carbon footprint) (Stentoft et al. 2020, 2021); (iii) failure analysis (Jain 

et al. 2020); (iv) asset management and predictive maintenance (Bartos & Kerkez 2021); (v) investment 

planning (Ruohomäki et al. 2018); and (vi) decision support for policy making (Poch et al. 2020). 

Although the potential for application of DTs is far-reaching, only a limited number of successful 

implementations are documented in the literature for WRRF systems, and they mainly focus on 

operational decision support and online system optimisation through advanced control. In the list 

above, for example, only Johnson et al. (2021) and Stentoft et al. (2020, 2021) describe applications in 

the WRRF sector, whereas other examples are taken from related domains such as water network 

management, smart cities, and the manufacturing industry.  

Torfs et al. (2022) provide examples of application of digital twins for operational decision making and 

online optimisation, such as the DT developed for the Singapore PUB Changi Water Reclamation Plant 

(Johnson et al. 2021). It has been implemented as a hybrid model that uses both mechanistic and data-

driven models and includes some level of automatic calibration through the use of both the SCADA 

and laboratory data connections. Also presented is a digital twin for model predictive control that 

allows for online optimisation. This DT consists of a catchment model (including both the sewer line 

and dry weather inlet flow forecast) as well as an effluent quality model, both being empirical models 

calibrated on an hourly basis. It is further described by Stentoft et al. (2020), who present practical 

examples of a digital twin developed for design of future WRRFs. Alex et al. (2020) illustrate how a 

detailed process model of a plant including its control system and actuators can be used for virtual 

commissioning of the automation system. This process model developed during the planning and 

design phase of the automation concept can continue its lifecycle as an operational DT once the 

automation system is connected to the real entity (Torfs et al., 2022). A very recent development is 

the design of a Digital Twin by Sparks et al. (2022) that serves to predict nitrifier populations and 

kinetics, where the authors deploy Machine Learning algorithms and model-based controllers for 

process optimization.  

With the introduction of digital twins in the wastewater sector that include process simulators with 

real-time data feed, the demand for efficient data treatment and hybrid process models will only rise 

in the predictable future (Therrien et al., 2020). 

2.7.4 Concluding Remarks 
Increased data availability in combination with improved computational capacity will continue to 

shape the structure of future modelling frameworks. The newly developing synergy between first 

principles and data-driven models has the potential to create very powerful tools for further 

innovation, development and decision support. However, balancing the efforts for model development 

and complexity, data collection, data quality assurance, and integration of different frameworks will 

be challenging and will require diverse technical skills (Regmi et al., 2019). 
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2.8 Data-Driven Process Models 
With the increasing number of big-data collected and stored, data-driven methods are gaining 

importance to extract useful information from the observations (e.g. Lee et al., 2006). Machine 

learning or data-driven models (DDM) calculate output variables exclusively from the input data by 

exploiting the ability of finding complex patterns within the data. They model the system behaviour 

solely by mapping the input to the output data rather than from process knowledge (Shirkoohi et al., 

2022). The number and nature of the model parameters are flexible and not fixed in advance based on 

any knowledge of the system. To contrast these with mechanistic models, DDMs are also called non-

parametric models, since the model parameters hold no physical representation of the system (von 

Stosch et al., 2014). This paragraph describes in a brief overview the usage of DDMs. For more 

background information on the use of DDM’s and smart water technologies by SIAAP in the Greater 

Paris Region, see Annex II. 

Over the past decade, DDM models have attracted a lot of attention in the academic world and found 

applications in the domains of image processing and natural language processing. Another recent 

example are the artificial intelligence chatbots that are powered by large generative language models 

that have been trained and fine-tuned with big-data using both supervised and reinforcement learning 

techniques. The advancements made with data-driven models have also found a highlighted interest 

in the process industry (e.g. Qin and Chiang, 2019; Shang and You, 2019, Bikmukhametov and Jäschke, 

2020) and in the water sector (e.g. Al Aani et al., 2019) .In the wastewater sector there is also a growing 

interest in the application of data science in modelling of the operation and control of WWTPs (eg: Fan 

et al., 2018; Antwi et al., 2019; Bahramian et al., 2022). Data-driven models use statistical and data-

based methods with machine learning models to find unknown relationships in the data and are very 

fast in terms of computation time (seconds to minutes). These models describe the system solely based 

on information extracted from the data and have strong interpolation capabilities (Newhart et al., 

2019). This makes a DDM easier and faster to develop in comparison to a mechanistic model, although 

it requires larger volumes of data for training, testing and validation and is considered less–transparent 

than a first-principle model (von Stosch et al., 2014). 

In the wastewater sector, data-driven analysis is being used for fault detection, variable prediction and 

advanced process control (Newhart et al., 2019). Examples of data-driven methods and models that 

are frequently applied in process engineering are Gaussian processes, polynomials, multivariate 

adaptive regression splines, partial least squares, principal component analysis, partial least squares 

regression, support vector machines, decision tree-based methods and artificial neural networks 

(Schneider et al., 2022). Multivariate statistical methods have been used for fault detection in process 

monitoring (Lee et al., 2005a, Lee et al., 2006, Rosen et al., 2003, Yoo et al., 2004) and software-sensor 

design (Jansson et al., 2002, Masson et al., 1999), while artificial neural networks have been applied 

for prediction (Belanche et al., 1999, Dellana and West, 2009, Kim et al., 2009, Raduly et al., 2007) and 

monitoring and control (Baeza et al., 2002, Luccarini et al., 2010).  

Machine Learning models include a wide range of techniques that include artificial neural networks 

(ANNs), genetic algorithms (GA), support vector machines (SVM), random forests (RF), boosted 

regression trees (BRT), simulated annealing (SA), Monte Carlo simulation (MCS), particle swarm 

optimization (PSO), immune algorithm (IA), ant colony algorithm (ACA), imperialist competitive 

algorithm (ICA) and decision trees (DT). ANNs are frequently adopted to predict the pollutant removal 

processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) 
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and particle swarm optimization (PSO) efficiently search for the global optima (Fan et al., 2018). 

Shirkoohi et al. (2021) indicate that artificial neural networks (ANN) are an effective method for data-

pattern matching. ANNs are popular tools in machine learning thanks to their ability to learn rather 

complicated functions, which are non-linear statistical data modelling and data mining tools (Hu et al., 

2010). 

A recent bibliometric review on the use of AI technology in wastewater treatment research (Zhao et 

al., 2020) found that the number of published articles applying AI to wastewater treatment research 

was 19 times greater in 2019 than in 1995, and papers had 36 more citations on average. Zhao et al. 

(2019) showed that several articles received more than 150 citations discussing the applications of 

ANNs and neural fuzzy models for simulating and predicting the performance of biological treatment 

(e.g.: Côté et al., 1995; Gernaey et al., 2004; Hamed et al., 2004).  

Still according to the bibliometric analysis of Zhao et al., (2019), the main topics research has focused 

on are the application of Machine Learning models for the prediction of pollutant removal, the 

economic and energy efficiency of AI technology in its application to wastewater treatment, the 

contribution of AI technology to the management of wastewater treatment, and AI research on 

resource extraction and reuse. The study shows that ANN and fuzzy-logic models are the most widely 

applied methods and that, in most of the studies reviewed, were trained and tested with experimental 

data (Zhao et al., 2020).  

Several other examples of DDM applications in water research are well documented by Newhart et al. 

(2019). Ebrahimi et al. (2017) used multiple regression models to predict concentrations of water 

quality variables (phosphorus, nitrogen, TSS) in a full-scale wastewater treatment plant. The model 

was capable to explain between 71 and 87% of the total variation in the dependent variable. However, 

the authors did not demonstrate that the model had sufficient accuracy for stand-alone fault detection 

(Newhart et al., 2019). Another example of variable prediction is the study by Vasanth Kumar et al. 

(2008). The authors trained a neural network model with experimental data under various conditions 

to predict equilibrium concentrations after the uptake of dye by powdered activated carbon (PAC). The 

results were nearly perfect (R2 = 0.96). However, hundreds of data points were needed to calibrate the 

model prior to the predictions; there was not significant variation among the input variables; only a 

single contaminant was used; and separate testing data were not used to verify results (Newhart et 

al., 2019). 

Tinelli and Juran (2019) presented an automated statistical model and artificial intelligence supported 

algorithms that allow early detection of anomalies in data measured at the physical-chemical 

enhanced primary clarifier of a WWTP plant. The developed algorithms exploit the concept of expert 

pattern recognition of deviations from normal conditions and assess the probability of an event or an 

anomaly, filtering false alarms. The study evaluated the removal rates of organic matter and suspended 

solids and the coagulant reagents used in a chemically enhanced primary settler and provided a risk-

based classification of potential anomalies applying Supported Vector Machines (SVM) and Artificial 

Neural Networks (ANN). The SVM showed a classification error of 2% and of 4% using the ANN. The 

authors presented a method for anomaly detection and risk-based classification, as well as the ability 

to isolate anomalies according to a risk severity scale (Tinelli and Juran, 2019). 
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2.8.1 Training and Testing of Data-Driven Models 
Similar to mechanistic models, Machine Learning models within the context of Data-Driven Models 

(DDMs) require training and validation of the model as well as testing the model’s performance on a 

new dataset.  

The general procedure of training a Machine Learning model starts with data collection and data 

preprocessing to remove faults and outliers, as well as fill data gaps. Normalization and standardization 

are commonly applied data management techniques that avoid numerical overflows. The second main 

step is constructing and training the model, which includes a selection of the model’s architecture, 

training algorithm, activation function and model hyperparameters. During the third step, the model 

is tested and optimized based on performance criteria. The final step is the selection of the parameters 

that provide the best-fit for the trained and tested model (Shirkoohi, 2022).       

DDMs can be categorized based on their training (or learning) algorithms; unsupervised, supervised or 

reinforcement learning. For methods based on supervised learning, including classification and 

regression algorithms, the mapping function is learnt from input and output data and their associations 

(Razavi 2021). With unsupervised learning, such as clustering and association, a machine learning 

model learns from unlabelled input data and discovers common features to identify data groups with 

similar input patterns (Abrahart et al. 2008; Borzooei et al. 2020). With this learning approach, there 

is no labelled response data or any predetermined (in-)correct answer. With reinforcement learning, 

the model learns from the data using trial and error or through a reward-punishment process (Sutton 

& Barto 2018). It requires less data, since the model is only trained with correct or incorrect responses 

(Shirkoohi, 2022). 

The performance of the data-driven models depends heavily on the quality and quantity of the input 

data (since no domain knowledge is included), and relies on the learning methods applied. Therefore, 

the interpretability of data-driven models is a critical bottleneck (Schneider et al., 2022). Also, due to 

the non-stationary characteristics and significant temporal variability of municipal wastewater, 

frequent retraining of data-driven models is recommended (Torfs et al., 2022). 

2.9 Hybrid Process Models 
Hybridization is the process that combines a mechanistic model, which incorporates relevant process 

knowledge, usually chemical and physical phenomena, such as mass and energy balances, with a data-

based model that allows increasing the predictive power by including information about lesser-known 

sub-processes. Hybrid modelling is able to combine the advantages of the two approaches by linking 

mechanistic models, which are based on our knowledge of the processes, with data-based models (Von 

Stosch et al., 2014). 

The first research to combine these two approaches started in the early 1990’s, where the hybrid 

models consisted of a combination of either ANN’s or radial basis functions with mathematical 

expressions describing mass and energy balances by respectively data-driven and mechanistic 

components. The original intention of hybrid models was to attribute information absent from 

mechanistic models using available (measurable) data. 

Recent bibliometric analyses (e.g. Zhao et al., 2020) and reviews (e.g. Corominas et al., 2018) indicate 

the progress of academic studies applying an artificial intelligence-based data-driven approach to 

improve the reliability of wastewater systems, increase water quality and lower energy consumption. 
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Recently, a comprehensive text mining analysis by Schneider et al. (2022) revealed that 534 

publications studied the use of hybrid models in wastewater treatment during the period 1990 - 2022, 

of which more than 50 papers in 2021 (Schneider et al., 2022). 

As well explained by Schneider et al. (2022), hybrid modelling is emerging as a useful research tool that 

allows combining the benefits of knowledge-based models with data-driven models. As indicated in 

Figure 2-5, in a hybrid model, the requirements to understand all the physical processes happening 

within a system are lower, such that the data-based part will be able to compensate for unknown or 

missed dynamics. Since both modelling techniques interact to some degree in a hybrid model, the 

transparency of the model calculations and the interpretability of the model predictions remain of a 

higher level than with data-driven models only, which are important criteria of the acceptance and 

credibility of the model’s performance. The main advantage is a higher benefit/cost ratio for solving 

complex problems, which is a key factor for process systems engineering (Schneider et al., 2022). 

 

Figure 2-5: Venn diagram of hybrid modelling, schematically showing the requirements of expert knowledge and data, the 
interpretability, and the model structure. (Schneider et al., 2022) 

Research on hybrid models for wastewater applications in particular have focused on generation of 

influent data, on process modelling, and on process monitoring and control (Schneider et al., 2022). 

An influent generator (IG) is a model, aiming to provide the flowrate and pollutant concentration 

dynamics at the inlet of a WRRF for a range of modelling applications. Hybrid models have been 

developed that use machine learning methods trained on historical data (e.g.: Ahnert et al., 2016; Zhu 

et al., 2018a). Li and Vanrolleghem (2022) propose a data-driven IG model only using routine data and 

weather information, and without need for any additional data collection. The model was constructed 

by an artificial neural network (ANN) and completed with a multivariate regression to generate time 

series for certain pollutants. The model is able to generate flowrate and quality data (TSS, COD, and 

nutrients) at different time scales and resolutions (daily or hourly), depending on various user 

objectives. The model performance was analysed by a series of statistical criteria. It was shown that 

the model can generate a very reliable dataset for different model applications (Li and Vanrolleghem, 

2022). 

Hybrid models have been developed for enhancing the performance of a mechanistic model (e.g.: 

Anderson et al., 2000; Lee et al., 2005b) and for model parameter identification (Villez et al., 2019).  
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Hybrid models for process monitoring and process control have been described for time-series 

prediction (Fernández et al. 2009; Zhu et al. 2018a) and fault/anomaly detection (Wade et al. 2005; 

Haimi et al. 2016; Cheng et al. 2019). In these roles, the hybrid models provide support to other 

automated systems as soft-sensors making predictions of water quality variables based on other 

measured variables for influent quality (eg: Wang et al., 2019; Zhu & Anderson, 2019) and effluent 

quality (Shi & Xu, 2018; Niu et al., 2020). 

2.9.1 Hybrid Model Architectures 
Different architectures are applicable for combining mechanistic and data-driven components within 

a hybrid model (Figure 2-6). Serial and parallel structures are the two most commonly developed 

architectures where the two components collaborate to increase performance (Lee et al., 2005b). 

In the serial structure (top of Figure), the output of one model is used as input to the second model 

with the objective to improve the second model’s performance. The serial hybrid model is specifically 

adaptable to those cases where a specific sub process is not defined well. Commonly, the output of 

the data-driven model is used as input of the mechanistic model. The data-driven component 

represents the dynamics that are not explicitly modelled by the mechanistic component, such as ill-

defined or poorly understood reaction kinetics. An early example is a work done by Psichogios & Ungar 

(1992), where a serial hybrid model showed higher accuracy than either a mechanistic or data-driven 

model alone. With the inverse approach, the output of a mechanistic model is used by a data-driven 

model, with the objective to support the features of a data-driven model with domain knowledge, 

directly feeding the data-driven model with relevant data transformations. A relevant example of this 

is the representation of inter-connected processes at different spatial or temporal scales, where a 

multiscale approach utilises both mechanistic representation for dynamic simulation and data-driven 

methods for higher-scale inference of process behaviour (Li et al. 2019; Hannaford et al. 2021). Tsen 

et al. (1996) show that this architecture outperforms other architectures and the mechanistic model 

itself. Nevertheless, this approach has not yet found much application in the wastewater sector in 

particular due to its lower degree of interpretability (Schneider et al., 2022). 

The parallel architecture (shown in the middle part of Figure 2-6) is in particular useful when a 

mechanistic model is limited in describing the dynamics due to incomplete domain knowledge or 

oversimplification of the processes. In this approach, the outputs of both models are combined to 

produce a modified and improved output. In a first variant, a cooperative parallel hybrid model, the 

data-driven model is trained to learn the mismatch between the mechanistic model and historical data, 

defined as the residual error. Then both results are merged, usually by addition. A recently described 

alternative in this approach is to learn the dynamics’ residuals instead of the state’s residuals 

(Quaghebeur et al. 2022). In a second variant, a competitive parallel hybrid model, the mechanistic 

and data-driven models are trained to make the same prediction. Each component solves the same 

problem independently to improve the hybrid model performance (Hu et al. 2011; Abba et al. 2020). 

These predictions are then weighted and combined in a final output (Dors et al. 1995; Peres et al. 2001; 

Galvanauskas et al. 2004; Ghosh et al. 2019). 

The cooperative parallel hybrid model structure is in particular relevant in the context of improving 

mechanistic process models of complex treatment systems, such as biofiltration. These process models 

are based on process knowledge, but due to the high degree of complexity of the model, their 

development and parameter estimation as part of the calibration process is much more arduous, time- 
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and data-consuming; such that it can become a constraint limiting the application (Vanrolleghem et 

al., 2005). In addition, these first-principles biofilm models require high computing power, which 

makes them less suitable for real-time control applications with a short time action horizon (Schneider 

et al., 2022). The data-driven component in a hybrid model uses statistical and databased methods 

with machine learning models to find unknown relationships in the data. The DDMs are very fast in 

computational time and have strong interpolation capabilities (Newhart et al., 2019). 

A different type of hybrid model shown in the lower part of Figure 2-6, is surrogate modelling (Razavi 

et al. 2012), also known as metamodels (Jin et al. 2001), substitute models (Romijn et al. 2008), 

emulators (Conti & Hagan 2010; Mahmoodian et al. 2018), or response surface models (Wang & 

Georgakis 2019). These models are trained on the output of a large (and heavy) model to create a 

computationally less demanding (reduced) model for rapid or large-scale simulations. Once developed 

and calibrated or trained, the surrogate can then autonomously be applied for real-time model 

predictive control, uncertainty analysis, or optimisation problems. Although surrogate models could 

be of any model type (mechanistic, statistical, deterministic, empirical, etc.) that computes faster than 

the original model, often data-driven models are applied for their speed. 

  

 

Figure 2-6: Schematics of the three model architectures used in Hybrid Modelling, based on Schneider et al. (2022). The 
Surrogate model architecture was slightly modified to include a data input flow during ‘normal’ (non-training) operation. 

 

2.9.2 Hybrid Model Predictive Control 
The research field of hybrid model predictive control (HMPC) is a non-fully developed domain with 

many open challenges. The concept of a Hybrid Model Predictive Controller (HMPC) in the context of 

this research focuses on the ‘model’ component of a MPC, that is to say that the model is a hybrid 

system consisting of a mechanistic model (MM) supported by a data-driven model (DDM). The MM 

here simulates process behaviour and makes predictions of variables based on ‘First-Principles’, the 

process knowledge acquired. The DDM is there to support the MM and correct the mechanistically 

modelled output variables in order to reduce the prediction error and thus increase the overall model 
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performance inside the MPC structure. The control actions will therefore be based on modelled 

variables that have a higher level of precision. This is expected to result in a more efficient process 

control. As stated by Newhart et al. (2019), a MPC that uses a mechanistic model has a tendency to 

have a poor accuracy in fault detection, but combined with statistical process control may be a superior 

problem-solving approach. A review of the literature found that there are not many academic studies 

on the topic of HMPC as defined here and that the term ‘hybrid’ can refer to many different concepts. 

In most cases, references to hybrid systems in the context of HMPC, discuss dynamic systems with 

both continuous-state and discrete-state and event variables. The physical system has time-driven and 

event-driven dynamics, the controller affects both time-driven and event-driven components, and it 

may deal with continuous and/or discrete signals (Camacho et al.,2010). It principally refers to the 

implementation of MPC in hybrid processes. 

Giorgetti et al. (2007) attempt to find the optimal control law of a constrained system by utilizing model 

predictive control (MPC) built around hybrid dynamical systems, an application they named ‘hybrid 

model predictive control’, that aims to control multiple systems by simulations using mixed-integer 

quadratic programming. Oberdieck and Pistikopoulos (2015) present an approach for an explicit hybrid 

model predictive controller, in particular using multiparametric programming. The authors define a 

hybrid system as a system that features continuous as well as discrete dynamics, and the online 

optimization step corresponds to a mixed-integer quadratic programming. 

Bemporad et al. (2000) describe the development of optimal controllers for hybrid systems. They 

elaborate on a procedure for synthesizing piecewise linear optimal controllers for hybrid systems and 

investigate conditions for closed-loop stability. The authors define mixed logical dynamical (MLD) 

systems as hybrid systems since these processes evolve according to continuous dynamics, discrete 

dynamics, and logic rules (Bemporad et al., 2000). 

HMPC concepts have been applied as well in the domain of water management. Van Ekeren et al. 

(2011) propose a model predictive control (MPC) approach that is aimed at automatically coordinating 

the different actions related to the opening and closing of water gates for flood protection over a large 

watershed. In order to reduce the computational effort required to solve the hybrid MPC problem, 

they authors use time-instant optimization (TIO-MPC).  

In the context of wastewater management, Ocampo-Martinez et al. (2007) and Ocampo‐Martinez and 

Puig (2009) describe a Hybrid Model Predictive Control of Sewer Networks, where the hybrid systems 

considered are mixed logical dynamical (MLD) systems as mentioned above. Their motivation is that 

by considering hybrid dynamical systems in discrete time, a number of mathematical problems are 

avoided that allow for tractable analysis and optimal/predictive control. In Ocampo‐Martinez and Puig 

(2009) a HMPC with fault-tolerant capabilities is formulated within the hybrid systems framework that 

allows to adapt the system model on-line by taking into account the fault information provided by a 

fault diagnosis and isolation module. In this way, the controller can cope with the considered faults 

(Ocampo‐Martinez and Puig, 2009). 

Bartman et al. (2009) describe a MPC control system, where a dynamic nonlinear lumped-parameter 

model is derived using first-principles, and its parameters are computed from experimental data to 

minimize the error between model predictions and observations. This model then is used as the basis 

for the design of a nonlinear control system. The control system is implemented on an experimental 

reverse-osmosis membrane water desalination system, and its set-point tracking and disturbance 
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rejection capabilities are evaluated. In general, the system’s performance was more satisfactory with 

the dynamic model than with a conventional controller. 

Since in wastewater treatment, the process has a nonlinear behaviour, the model in the MPC must be 

able to account for this. However, the use of nonlinear models is computationally intensive to solve, 

and accounting for too many nonlinearities can substantially slow a controller's response. 

Alternative methods of MPC discussed in Newhart et al. (2019) are the application of a piecewise linear 

MPC where multiple linear models provide an approximation of the nonlinearity (e.g. Ocampo-

Martinez, 2010), and to use adaptive MPCs, where linear model parameters are adapted to fit changing 

conditions in the operations (e.g. Zhang and Zhang, 2006). Such adaptive MPC controllers have shown 

a better performance when compared to conventional PID controllers when faced with non-linear 

processes. However, Hermansson and Syafiie (2015) found that strong dynamic and nonlinearities are 

still better controlled using a neural network (Newhart et al., 2019). 

In conclusion, it can be stated that hybrid models enable more comprehensive WWTP automation with 

real-time control as they apply fast-computing data-driven models. As the robustness of techniques 

used at each step grow, it will become possible to integrate them into larger systems such as digital 

twins that will enable the production of actionable information for process control and optimization in 

(near) real-time (Therrien et al., 2019). Research into the application of hybrid models is only expected 

to increase as the complexity of mechanistic models will continue to rise to reflect the more complex 

and innovative treatment processes being developed. In addition, the trends in digitalisation of the 

water sector will lead to a wider acceptance of data-driven approaches (Corominas et al, 2018). The 

number of hybrid models being applied in real-world cases is expected to increase in the future (Sin 

and Al., 2021). 

2.10 Concluding Remarks 
Mathematical modelling is an important scientific tool used for a better understanding of biological 

wastewater treatment processes. Models allow performing system analysis and predicting 

performances under a wide range of scenarios. The use of process models has become a widely 

accepted practice in the wastewater sector for the design, the analysis and monitoring of a system’s 

performance. Unlike the ASM mechanistic models (Henze et al., 2000) that describe suspended 

biomass growth processes found in activated sludge processes and that have a solid base within the 

scientific community, mechanistic models simulating the biofiltration process, which is based on a fixed 

biomass growth inside a biofilm, are still in full development. The biokinetics equations considered in 

the ASM cannot be directly applied in a biofiltration model due to the importance of the transfer 

processes by diffusion, the biological kinetics that take place in the biofilm and the effect of regular 

backwashing. Additionally, there are no widely accepted protocols to aid the community in the 

development of biofilm models (Rittman et al., 2018). 

Despite the successful applications of mechanistic wastewater process models that are based on 

process knowledge, there are important limitations; these models are built on assumptions and 

simplifications of the complex microbial processes taking place, such that several underlying processes 

remain incomplete in the model; they require laborious model parameter calibration and model 

validation, that need a lot of data and time; and do not incorporate novel treatment techniques 

(Schneider et al., 2022). Furthermore, the greater complexity of mechanistic models makes their 

development and calibration much more time- and data-consuming; such that it can become a 
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constraint limiting the application (Vanrolleghem et al., 2005). These biofilm models require high 

computing power, which makes them less suitable for real-time control applications with a short time 

action horizon (Schneider et al., 2022). 

Quite differently, data-driven models use statistical and data-based methods with machine learning 

models to find unknown relationships in the data and are very fast in terms of computation. These 

models describe the system solely based on information extracted from the data and have strong 

interpolation capabilities (Newhart et al., 2019). Nevertheless, due to the non-stationary 

characteristics and significant temporal variability of municipal wastewater, frequent retraining of this 

type of models is recommended (Torfs et al., 2022). 

Hybrid modelling is able to combine the advantages of the two approaches by linking mechanistic 

models, which are based on the knowledge of the processes, with statistical data-based models (Von 

Stosch et al., 2014). The main advantage is a higher benefit/cost ratio for solving complex problems, 

which is a key factor for process systems engineering (Schneider et al., 2021). 

Recent advancements in data-driven process control and performance analysis could provide the 

wastewater treatment sector with an opportunity to reduce costs and improve operations; and to 

reconcile two partially conflicting objectives of pollutants removal and energy conservation. Big-data 

integration at the operational level of WWTPs will have the most substantial impact on process control. 

However, the utilisation of big-data in operations is not yet commonly applied, in part due to the lack 

of data science knowledge as well as the voluminous size and complexity of datasets (Newhart et al., 

2019). 

All types of models are sensitive to the quality of the data provided. This highlights the importance of 

the quality of data represented by the "data-pipeline", a process that describes the necessary steps to 

turn raw data into useful information in order to make intelligent decisions. The data must be of high 

quality in order to derive useful information from it (Therrien et al., 2020). High frequency data (e.g. 

15-minute intervals) from in-line sensors in harsh wastewater treatment conditions in particular, are 

exposed to larger variations and show signs of drift, bias and errors. A data preprocessing procedure 

based on the detection of outliers, smoothing and faulty data will reduce the impact of measurement 

errors (Alferes & Vanrolleghem, 2016).  

Increased data availability in combination with improved computational capacity will continue to 

shape the structure of future modelling frameworks. The newly-developing synergy between first 

principles and data-driven models has the potential to create very powerful tools for further 

innovation, development and decision support. However, balancing the efforts for model development 

and complexity, data collection, data quality assurance, and integration of different frameworks will 

be challenging and will require diverse technical skills (Regmi et al., 2019). 

The research field of hybrid model predictive control (HMPC) is a non-fully developed domain with 

many open challenges. A literature review in the context of applying a hybrid model for the ‘M’ in 

‘MPC‘, did not reveal actual references for application in water management. 

 





 

 



 

3 Methodology & Materials 
 

This chapter discusses the methodologies and materials used for this research. It follows the main 

project development phases as described by the International Water Association (see Figure 3-10) that 

have been applied in this study. The chapter starts with a description of the data collected at the study-

site and the methodology used for data cleaning. This is followed by an in-depth description of the 

mechanistic model that this study started from, the calibration and validation procedures as well as 

the evaluation criteria that were applied for its future development. The methods used for the 

selection, training and testing of the data-driven model are then discussed, to conclude with a 

presentation of the developed structure of the hybrid model and the hybrid model predictive 

controller. 

3.1 Operational Data 

3.1.1 Study Site 
The data for this project was collected from the biofiltration wastewater treatment lane of the 6 million 

PE, 1.25 million m3/day (dry weather) wastewater treatment plant Seine-aval (SIAAP Paris, France) 

located in Yvelines near the city of Achères, along the Seine River downstream of Paris (Figure 3-1). 

The Seine-aval (SAV) wastewater treatment plant (WWTP) was selected as the case study for this 

research since it is has a great potential for optimization, being one of the largest plants in Europe with 

a rated flow design of 1.7 million m3/day. The dry weather treatment capacity corresponds to an 

average daily flow of 14.5 m3/s, while the maximum flow allowable is 2 300 000 m3/d (26.6 m3/s) (Zhu 

et al., 2018b). 

 

Figure 3-1: Map with locations of SIAAP’s WWTPs (left) and indication of the Seine-aval. Picture of the Seine-aval WWTP. 

The wastewater treatment chain consists of a pre-treatment stage (screening, grit and oil removal), 

followed by a primary settling phase enhanced by dosing of coagulants and flocculants. The secondary 

biological treatment is performed either by biological filtration in a configuration of pre-denitrification 

(preDN), nitrification (NIT) and post-denitrification (postDN), or by membrane bioreactors (MBR). 

Figure 3-2 illustrates the Seine-aval WWTP under typical normal dry weather conditions in the current 

configuration. 

Primary treatment is currently performed by 20 conventional settling tanks and 9 enhanced clarifiers 

(‘Actiflo’), where the wastewater is flocculated with micro-sand and a polymer, facilitating the 

formation of flocs that improve the settling process. This provides better control over the primary 

effluent quality in order to assure a low concentration of suspended solids in the effluent of the 
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primary stage. Moreover, the faster settling process allows reducing the tank volumes required 

significantly, and thus reduces the footprint of the plant. 

 

Figure 3-2 : (a) Current configuration of Seine-aval WWTP; (b) configuration after the renovation works have finished. 

For secondary treatment, the plant is equipped with two parallel and independent biological 

processes; the main track is the biofiltration track that treats about 80% of the primary effluent under 

dry weather conditions. The objective of the biofilters is the removal of nitrogen and organic matter, 

as well as some phosphorus. This is performed over three stages; a predenitrification (preDN) stage 

where the bacteria remove nitrates and nitrites using organic matter; a nitrification (NIT) stage where 

the biomass removes ammonia and creates nitrites and nitrates; and a postdenitrification (postDN) 

stage to remove the remaining nitrate and nitrite. The treated water is then finally discharged in the 

Seine river. During intense rainfall events, the flow path is adapted allowing some wastewater to by-

pass certain treatment processes if the maximum capacity is surpassed.  

Plant Performance  

The average daily flow rates and treatment performance at the Seine-aval plant for the period 2019 – 

2021 are shown in Table 3-1; with on the top side the concentrations of quality variables in the overall 

effluent and on the bottom side the regulatory norms. The plant performance is evaluated on daily 

average concentrations for TSS, BOD5, COD, TKN, NH4 and TP, as well as removal rates that need to fall 

between 70% (for phosphates) and 90% (for TSS). In addition, there are yearly concentration averages 

for TN (10 mgN/L) and TP (1mgP/L) and removal rates to be adhered to. As prescribed by the 

authorities, the treatment norms are to be respected under all conditions for flow rates up to the daily 

reference flow rate (2 300 000 m3/day) and 45 m3/sec for a short duration of intense flow rates such 

as during storms.  

Table 3-1: Seine-aval WWTP treatment performance on average for the last three years for the quality variables monitored 
and their compliance norms. 

  
Seine-aval WWTP Effluent concentration 

Year Flowrate TSS BOD5 COD TKN NH4 TN TP 
 

m3/d * 1000 mg/L mgO2/L mgO2/L mg/L mgN/L mg/L mg/L 

2019 1388 15.3 13.8 54.3 7.1 - 17.5 1.58 

2020 1297 18.6 13.9 59.7 6.3 - 18.9 1.15 



58 
 

2021 1438 21.8 12.6 62.7 7.79 - 19.8 1.07 
         
  

Seine-aval WWTP Effluent compliance norms 

max conc. (day) 30 20 90 8 5 - 2 

min Removal Rate (day) 90% 80% 75% 80% 81% - 70% 

max conc. (year) - - - - - 10 1 

min Removal Rate (year) - - - - - 70% 80% 

 

The Seine-aval WRRF is also a plant where water and energy are recovered and reused for industrial 

processes. About 50 000 m3/day of treated effluent from the membrane bioreactor lane is used as an 

industrial water source for the cleaning and cooling of processes. In addition, the plant generates large 

volumes of methane gas thanks to the treatment of the produced sludge. This biogas is directly 

reapplied in the wastewater and sludge treatment. 

Biological Activated Filtration 

Under normal conditions during dry weather, the biofiltration units treat approx. 80 % of influent. They 

are equipped with completely submerged upward flow biofilters that contain media that supports 

fixed-growth conditions for the microorganisms growing on the pollution present in the wastewater. 

Two types of biofilters are being applied in the WWTP, namely biofilters that are equipped with low-

density media (polystyrene beads), type Biostyr©, and biofilters that have argile media in the filter 

bed, type Biofor© (see Figure 3-3). 

 

Figure 3-3: Configurations of biofilter type (a) Biofor© and (b) Biostyr© (Morgenroth, 2008). 
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Regulating the environmental conditions within a biofilter allows promoting the growth of the desired 

types of bacteria. 

Predenitrification (preDN) is concerned with the removal of carbon and transformation of nitrites and 

nitrates into nitrogen gas under anoxic conditions (low concentrations of dissolved oxygen, high 

concentrations of dissolved NOx). The preDN stage consists of 58 Biostyr® (Veolia, France) biological 

filters (173 m2 * 3.5 m height/biofilter) that contain polystyrene beads, 4.5 mm in diameter, and are 

divided over three batteries (preDN A, B, C). Denitrification of nitrates (NO3-N) and nitrites (NO2-N) 

happens by heterotrophic (HET) bacteria using the organic matter (OM) present in the settled water. 

Dosing of external carbon sources (methanol or ethanol) and phosphoric acid is required when the 

influent organics and phosphorus are insufficient for the biomass to perform. Denitrification treats the 

effluent from the primary clarifiers containing the necessary organic matter, and the nitrates present 

in the part of the effluent from the nitrification stage that is recycled (30 – 80%). This recirculation of 

nitrified water from the NIT outlet to the preDN inlet guarantees the inflow of nitrates and nitrites, 

which are present in the primary effluent only at very low concentrations. The backwashing water from 

its biofilters as well as treated water from sludge treatment and dewatering processes is also injected 

in this preDN stage. 

Nitrification (NIT) transforms ammonium (NH4-N) into nitrates and nitrites under aerobic conditions 

(sufficient concentration of dissolved oxygen) that necessitates the forced continuous injection of air. 

This stage consists of 84 Biostyr® (Veolia, France) biological filters (173 m2 * 3.5 m height/biofilter; with 

polystyrene beads, 4.0 mm in diameter, and organized in six batteries: NIT A1, A2, B1, B2, C1, C2). It 

treats the effluent from the preDN stage, as well as the return backwashing water from its own filters. 

In case of high flow rates, the NIT filters will treat the part of the outflow from the primary clarifiers 

that has bypassed the pre-denitrification stage. In this way more biological treatment capacity is 

available under such hydraulic overloads. 

In the nitrification stage of the biofiltration, the rate of aeration for each treatment cell is controlled 

by feedforward and feedback control rules. The feedforward control estimates the air requirements 

for the treatment cell according to the outlet ammonium set point and the ammonium concentrations 

measured at the entrance for the cell. The feedback control enhances or reduces the air flow rate as 

proposed by the feedforward control rules. It does this based on the difference between the measured 

effluent ammonium concentrations and the ammonium set point. 

Postdenitrification (postDN) is the final biofiltration stage and is concerned with the transformation of 

nitrites and nitrates into nitrogen gas under anoxic conditions. It consists of 12 Biofor® (Degremont, 

France) biological filters (147 m2 * 3m height/biofilter; clay granular material of 4.5 mm in diameter; 1 

battery) that denitrify the NIT effluent. Here, the addition of an exogenous carbon source in the form 

of methanol (CH3OH) and the dosing of phosphoric acid (H3PO4) is (almost) always necessary to 

stimulate biological activity due to the low levels of organic matter and phosphorus still remaining in 

the water. After treatment, the effluent of the postDN stage is mixed with the effluent from the 

membrane bioreactors. This causes a further dilution of any remaining pollutants and nutrients, before 

the treated water is discharged. 

The flow path between the different biofiltration stages can be varied according to the influent’s flow 

rate and pollutant concentrations. This makes a total maximum of 150 active filters, given that there 
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is always one filter in each treatment phase that is momentarily off-line for cleaning or maintenance 

purposes. 

The biological filters are backwashed daily on a fixed schedule by reversing the flow using treated water 

stored on site (‘backwashing’) and accompanied by the injection of large air bubbles. During the 

washing (see Figure 3-4) that lasts for 30 minutes per day per filter, the trapped particles and part of 

the biomass growth are removed in order to restore the filtration capacity. Additional short 

backwashing sessions of 10 to 15 minutes can be applied to a filter when the pressure loss over the 

filter reaches a determined value. The collected backwash water contains high concentrations of 

biosolids (a mix of particles and released microorganisms) that requires on-site treatment to remove 

the sludge before it is sent back to the entrance of the biofiltration lane. 

 

Figure 3-4: Principle of submerged biofiltration during (a) normal operation in upward flow direction, and (b) during filter 
cleaning where the flow is downward using stored treated water. The backwash water is subsequently treated on site.  

Modernization Works 

The wastewater and sludge treatment processes at the Seine-aval WWTP have been the subject of an 

intensive overhaul to achieve a performance that continues to meet the stringent regulations and 

lowers the environmental impact. The renovation works for the wastewater treatment plant started 

in 2009 and are planned to be finished by 2024. It includes the construction of new biofiltration units 

and membrane bioreactors. These processes are more reactive and require a smaller footprint when 

compared to conventional biological treatment, thus clearing large parts of the terrain previously 

occupied by the plant operations. 

A principal component of the modernization, the upgrade of the biological treatment processes – a 

project named BioSAV – had as objective the improvement of the performance of biological treatment 

by integrating pre-denitrifying biofilters and membrane bioreactors. The new pre-denitrifying biofilters 

take advantage of the organic matter present in the wastewater and thereby reduce the need of 

external carbon dosing. These filter units were installed in 2017 and became fully operational by mid-

2018. Furthermore, the membrane bioreactors require lower dosing of chemical reagents, if supplied 

with properly treated primary effluent. Overall, these new systems are expected to limit the 

consumption of reagents, lower the environmental impact and have an economic advantage. 

Currently, the renovation of primary treatment is underway. The works include the commissioning of 

20 new physical-chemical lamellar clarifiers (Densadeg®, Degremont Technologies) that will replace 

the activated sludge treatment systems (Figure 3-2b). These physico-chemical lamellar settling tanks 

can remove larger amounts of suspended solids (TSS) and phosphorus thanks to the increased surface 

area provided by the lamellar inclined tubes, as well as by dosing iron chloride and anionic polymer as 
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coagulant and flocculent reagents. The construction works on these chemically enhanced settlers are 

planned to be finished by 2024 and become operational soon afterwards. The 9 existing enhanced 

clarifiers will be changing role as part of a tertiary treatment phase, becoming responsible for final 

treatment of the effluent of the secondary biological treatment, removing any remaining suspended 

solids and nutrients. 

3.1.2 Data Collection 
For this research, data was collected from December 1st, 2019, till September 31st, 2020. The start of 

this data range coincides with the installation of in-line probes for COD and nitrate measurements at 

the entry and exit of the predenitrification stage in the Seine-aval WWTP. These sensors became fully 

operational on November 26th, 2019. The mechanistic biofilter model is calibrated on the first three 

and a half months available (01.12.2019 – 15.03.2020) which covers 106 days, while for the validation 

the data from 01.06.2020 – 30.09.2020 (122 days) is used. The period in between, from March 16th 

till end of April does not contain coherent and consistent data due to the Covid-19 lockdown. 

Figure 3-5 indicates the locations at the Seine-aval WWTP biofiltration lane of the sampling points for 

the laboratory analyses as well as the location of the inline analysers and sensors for water quality and 

flow rates. As can be seen, most sampling points are located at the main entrance channels to the 

preDN, NIT and postDN stages, thus before the flows are distributed over the various batteries. Only 

for the preDN stage, there is actually one battery (preDN battery C) that is monitored both at its entry 

and exit for nitrogen and COD. 

 

Figure 3-5: Schematic diagram of the biofiltration wastewater treatment lane at the Seine-aval WWTP with indication of 
processes (blue boxes) and main dosing actions (yellow diamond shapes). Outlined in the red dotted frame are the secondary 
treatment predenitrification biofilter units (preDN), the nitrification battery units (NIT) and postdenitrification units (postDN). 
The focus of this study is on the preDN stage. Also indicated are the sludge treatment units for preDN (brown hexagons) and 
the location of in-line sensors (black dots) and sample locations for laboratory analyses (grey triangles). 

Considering nitrogen, the inline analysers are located at the entry of the preDN lane before the 

recirculation of nitrified water is mixed with it. These sensors actually monitor the combined 

compounds of nitrate and nitrate (NO2-N + NO3-N = mg NOx-N/l) in the water.  
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Also, not all streams are actively monitored, but information can be obtained from analyses performed 

at other locations. An example is the recirculation flow of the effluent of the NIT stage that is not 

actively monitored. To retrieve the concentration of NOx (mg NOx-N/l) in the nitrified recirculation 

lane, which is an important water quality variable for the process control of the preDN, it can be 

assumed that the quality of the influent water at the entry to the postDN is identical to the effluent 

quality of the NIT stage. 

Database 

Water quality and quantity measurement data from inline sensors, analysers as well as daily laboratory 

analyses and other observational data (e.g., maintenance reports) from the Seine-aval WWTP were 

accessed in the ‘BaSta Virtuel’ database that allows visualizing and exporting data in tables and 

spreadsheets (Figure 3-6). This secure database that is managed by SIAAP also contains for each 

sampling point essential meta-data, such as information concerning the sampling frequency, 

measurement units, responsible laboratory staff and dates of installation.  

Besides water quality and quantity measurements, process control data is registered in the database. 

These are data related to the number of filters in operation at each 15 minutes time step, the different 

set points for nutrient removal (e.g. for nitrate concentration in the effluent of the preDN and postDN, 

the ammonia set point in the effluent of the NIT stage), as well as information about the compressors 

used for aeration and the distribution of the water flow (number of hours; energy usage; etc.), the 

duration of backwashing cycles and the quantity of reagents dosed. 

 

Figure 3-6: Print-screen of the BaSta Virtuel database that collects the observations made at the wastewater and sludge 
treatment lanes at the Seine-aval WWTP.  

3.1.3 Data Pre-processing 
Data pre-processing of the raw measurement data is necessary to remove bias, together with faulty 

data and outliers, as well as to perform gap filling. This allows obtaining a complete set of reliable and 

consistent data. Clean data is an important factor in modelling, to make sure it is accurate, complete, 

consistent and trustworthy. It avoids errors from affecting the model’s performance. Due to the tough 

measurements conditions typically present in wastewater treatment processes, sensors in WWTPs are 

prone to malfunctions. Sensors are known to be affected by bias, drift, precision degradation or total 

failure effects that cause the reliability of measurements to decrease. The reconstruction of sensor 

data can yield a better monitoring efficiency (Yoo et al., 2008). 
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A preliminary step therein is the visualization of data and performing plausibility checks based on 

(mass) balances of components, i.e. the mass at the entrance of the treatment equals the combined 

total of components leaving the treatment by effluent water and sludge. 

Alferes and Vanrolleghem (2016) proposed a method for automatic data quality assessment extracting 

information from individual water quality time series from on-line sensors. Data mining techniques 

based on forecasting models are used to detect and remove unreliable data from the raw data sets. A 

posteriori analysis is applied to remove noise and detect abnormal situations and potential sensor 

faults. The authors have successfully tested their method on water quality time series collected from 

different water and wastewater systems (Alferes and Vanrolleghem, 2016). 

 

Figure 3-7: Univariate time-series analysis as proposed by Alferes & Vanrolleghem (2016) that comprises a data 
pretreatment step to identify outliers and a fault detection step that cleans data (Alferes & Vanrolleghem, 2016). 

The methodology applied for data cleaning in this study is the method described by Alferes and 

Vanrolleghem (2016) illustrated in Figure 3-7, which is based on statistical and forecasting methods. It 

includes two main steps: (1) identification of unreliable data points, and (2) fault detection. In the first 

step, forecasting techniques are applied to predict future expected time series data by using the 

historical information contained in on-line water quality time series. Unreliable data are identified as 

outliers by comparing a new measured value with its forecasted value and the associated dynamic 

prediction acceptability interval. These outliers are subsequently removed from the time series. In the 

second step that aims at fault detection, several statistical data features and their acceptability limits 

are calculated. 

3.2 Mechanistic Biofiltration Modelling Strategy 

3.2.1 Biofilter Model 
The mechanistic model applied here is a 1-dimensional dynamic biofilm reactor model describing a 

‘fixed-culture’ submerged upward flow biological filter. The model was previously developed (Zhu et 

al., 2019; Zhu, 2020) based on an earlier model (Bernier et al., 2014) that uses ASM1 biokinetics (Henze 

et al., 2000). It consists of the combination of sub-models for the hydraulic representation of the filter 
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media, the transfer and transport of soluble and particulate substrates to/from and within the biofilm, 

the kinetics of bacterial growth and decay, and backwashing to avoid clogging of the filter. The model 

simulates the biological and physicochemical conversion of carbon, nitrogen and phosphorus. In total, 

22 biological conversions are accounted for by describing the evolution of substrates by a mass 

balance. 

The performance of biofilters is directly related to the filtration of suspended particles and the 

biological activity of purifying biomasses (Henze et al., 2008). Figure 3-8 shows the approximation of 

the vertical mixing of a filter into seven successive completely mixed reactors. The volume of each 

mixed reactor is divided between the biofilm compartment (in orange), a bulk liquid phase (blue), a 

gaseous phase (grey) and the inert media (white). The Mass Transfer Boundary Layer (yellow) simulates 

the transfer resistance of soluble components from the liquid phase to the biofilm by diffusion, which 

is a representation of the stagnant liquid film between the biofilm and the liquid phase (Boltz et al., 

2011). To better simulate the impact of this boundary layer, the model considers a variable thickness 

of the boundary layer as a function of the media diameter and the bulk liquid’s Sherwood number 

based on the equation of Ohasi et al. (1981). This allows simulating with more precision the impact of 

different hydraulic conditions near the surface of the biofilm that directly affect the diffusion resistance 

(Zhu, 2020). 

 

Figure 3-8: General concept of the biofiltration model developed by Zhu (2020) that simulates the behaviour of 1 biofilter, 
divided over seven vertical reactors describing the vertical spatial variations in the biofilter. Each reactor has compartments 
for gas, bulk liquid, the Mass Transfer Boundary Layer and the biofilm; the latter divided into 5 layers to describe the spatial 
variation of components in the biofilm. The horizontal arrows indicate the main physical phenomena modelled. 

As illustrated in Figure 3-8, the biofilm compartment (symbolized by orange-coloured vertical 

rectangles in the figure) is split into five homogeneous layers, a number applied previously by Vigne et 

al. (2010) that was found to not take too much computational time and still accurately simulate the 

concentration gradients of soluble substrate inside the biofilm (Zhu, 2020). The model assumes a 

dynamic biofilm volume with a variable thickness of each biofilm layer, based on the mass of 

particulates present in each layer, the surface area of liquid to media and a constant biofilm density.  

The physical processes considered in the model (the arrows in Figure 3-8) in each reactor are the 

transfer to and transport within the biofilm of soluble components by diffusion, the transfer and 



Methodology & Materials 

65 
 

transport of particulate components by filtration, attachment and detachment and exchange between 

the layers of the biofilm; as well as a flux of four gaseous components (O2, N2, NO, N2O). These gazes 

are considered as soluble components in the biofilm layers and transported by diffusion (Zhu, 2020). 

In addition, the model redistributes the particulate components between the successive mixed 

reactors during treatment and especially during backwashing by representing continuous media 

mixing at different intensities for normal operation and backwashing. The model allows estimating 

energy consumption related to aeration and pumping, as well as greenhouse gas emissions (Zhu et al., 

2018). For a more detailed description of the mechanistic model, see Zhu (2020). 

 

Figure 3-9: WEST layout of the biofilter model consisting of a biofilter divided into 7 reactors (BAF_1…BAF_7) with continuous 
back-mixing (blue recirculation lines) of part of the filter bed between the reactors. Flow direction is from left to right. On top 
left are shown the different types of influent water quality taken into account by the model (Zhu, 2020). 

Figure 3-9 illustrates the configuration of the biofilter model with one filter divided over seven 

bioreactors (indicated by the boxes containing the polystyrene beads), each one represents 1/7 of the 

total column height (3.5 m / 7 = 0.5 m). On the left-hand side of the figure are shown the four different 

influent flows that are considered by the model. These are the effluent of the primary settlers (settled 

water), the recirculation of the effluent of the NIT phase (nitrified water), the treated backwash water 

delivered during filter cleaning (treated backwash) and the water used for cleaning the filters (water 

for cleaning). The flow direction in the model is thus from left (BAF_1) to the right side (BAF_7), with 

the final effluent monitored by the out_1 icon.  

As mentioned, the model allows for the possibility of a continuous back-mixing of part of the biofilm-

support beads. However, the mixing occurs only with the filter bed of the reactor directly above and 

below it. This is visible in the layout of the figure by the blue arrows to the side and underneath the 

bioreactors. The red lines above indicate control rules and variables that affect process performance 

(e.g. temperature profiles), which are defined in an input text file accessible through the smaller size 

blue coloured box.   

Although the biofilter model simulates the behaviour of one biofilter only, it can be applied to simulate 

the behaviour of a group of filters (battery) and a group of batteries (a treatment stage). In order to 

do so, Zhu (2020) equipped the model with an integrated converter at the entrance of the first reactor 

that distributes the incoming flow over the (time-varying) number of active biofilters. This number has 

to be supplied by the user through an input file. In addition, the model calculates a ‘best’ number of 

active filters based on the flow rate and the pollutant load.  

In the biofilter model the controller that activates the necessary number of filters by comparing two 

calculated numbers and selecting the largest of these. The controller first calculates the minimum 

number of biofilters to be activated based on the influent flow rate at the preDN stage and the 
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maximum filtration rate per biofilter predefined by the model user. Then, the second minimum 

number of biofilters to be activated is calculated according to the maximum NOx-N load per biofilter 

predefined by the user and the NOx-N load observed at the influent of the stage. Finally, the number 

of active biofilters is set to the greater of these two minimum numbers. These comparisons take place 

at each time step in the model (Zhu, 2020). 

Finally, the biofilter model developed by Zhu (2020) was used to create a virtual representation of the 

whole biofiltration lane at the Seine-aval WWTP by placing three filters in series and adding the process 

controllers for treatment in the predenitrification, nitrification and postdenitrification stages. This 

integrated model contains submodules to control the dosing of methanol and phosphoric acid in 

preDN and postDN, the aeration in the NIT, as well as all possible by-passes. 

3.2.2 Influent Files for Biofilter Model 
The model requires several influent files to be prepared in advance to characterise the quality of the 

influent to the treatment stage. However, the model requires concentrations of nutrients and 

pollutants to be in the format of the model’s ‘state variables’, which are the variables on which the 

ASM family models are based (see chapter 2 for more information). The data to be supplied can either 

be the directly measured concentrations of organic matter, nitrogen and phosphorus compounds, 

which, once they are submitted to the model, can be fractionated by the model based on the scheme 

and parameter values provided by the user. Alternatively, the user can calculate the state variable 

values him-/herself and supply these as model input. Either way, the user has to decide on a 

fractionation scheme and the values of the fractionation parameters used. 

The selected fractionation scheme and the parameters are those that were developed and applied 

previously by Zhu (2020). The scheme remains valid as long as none of the state variables are modified. 

The parameters have been checked with literature and found to be in the range of generally accepted 

values.  

For this study, high-frequent measurements taken by inline sensors and analysers are used when 

available. However, as indicated in Figure 3-5, sensors are not situated in all streams. Laboratory 

analyses are much wider available and function as valuable back-up since these are considered of 

higher quality. The composite samples for laboratory analysis are based on automated 24-hour 

composite samples, starting from 07:00 AM each day. Whenever measured water quality data 

availability is limited to daily average composite samples from the laboratory, these daily values can 

be linearly interpolated, where the laboratory data is ‘positioned’ on the mid-day point, that is at 7:00 

PM. Whenever possible, cleaned sensor data are preferable. 

Due to the complexity of the operations and the availability of the measurements, the different flows 

of wastewater that are mixed at the entrance of the preDN are to be inputted individually. This way, 

in a future extension of this research project with the development of a digital twin, the high-frequency 

sensor measurements can as much as possible be used to feed the model.  

The required influent files for the biofilter model thus include the following:  

(1) the settled water. Only laboratory analyses are available for daily average concentrations of BOD5, 

total COD, soluble COD, TSS, TKN, NH4-N, NO3-N, NO2-N and PO4-P. The flowrate is measured per 

15-minutes. The most important variables controlling denitrification rates measured at this point 

are the soluble content of organic matter dissolved in the water (solCOD) and available for the 
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microorganisms, as well as the TSS concentration, from which the amount of biomass present in 

the influent stream is calculated. A sensor measurement of the soluble COD concentration in the 

influent is available at the entrance of preDN Battery C. However, at this point, the water quality 

is already affected by the mixing with treated backwash water that contains high concentrations 

of organic matter, and forms no longer a good representation of the soluble COD content of the 

settled water.  

(2) the recirculation of nitrified water. High-frequent sensor data is available for concentrations of 

NOx-N (NO3-N + NO2-N) and NH4-N. Daily average laboratory concentrations are available of BOD5, 

total COD, soluble COD, TSS, TKN, NH4-N, NO3-N, NO2-N and PO4-P. The 15 minutes NOx data is 

multiplied with the daily laboratory ratio NO3-N to NO2-N in order to retrieve high frequent nitrate 

and nitrite influent data. 

(3) the retour of treated backwash water. No measurements are available for this flow, except for a 

sensor monitoring the TSS concentration at the outlet of the settler treating the backwash water, 

as well as a flow rate of the backwash. The TSS can be used to estimate particulate COD and the 

biomass present. For the other components, the water quality is assumed to be similar to that of 

the effluent of the preDN stage, since that water quality is used for the filter cleaning. 

(4) the washing water. The water quality of the water used for washing is assumed to be that of the 

effluent of the preDN stage. However, since the model calculations during the washing period are 

not considered to be part of the final effluent water quality (since in the physical system the 

backwashed effluent is treated separately), an average water quality for the influent of the 

washing water is sufficient.   

For more information on the applied influent characterization, see paragraphs 4.3 (Preparation of the 

Model Input’) and 4.4 (‘Parameter estimation’).  

3.2.3 Methodology for Calibration & Validation of Mechanistic Model 
A model needs to be calibrated and validated for correct and reliable application (Mannina et al., 

2011). The method applied for the calibration and validation of the mechanistic biofilter model was 

based on the Good Modelling Practice guidelines by the IWA (Rieger et al., 2012) as extended by 

Mannina et al. (2011). This method has been applied in the research and development of the biofilter 

model by Bernier (2014) and Zhu (2020). 

The Good Modelling Practice combines the key aspects of several modelling guidelines that were 

prevalent at the time with the aim to develop a unified protocol for the modelling community. The 

proposed protocol is illustrated in Figure 3-10 and comprises the following steps: (1) Project Definition, 

(2) Data Collection and Reconciliation, (3) Plant Model Set-up, (4) Calibration and Validation, and (5) 

Simulation and Result Interpretation (Rieger et al., 2012).  

 In the project definition step, the objectives of the modelling project are defined, stakeholders and 

their responsibilities are identified, and budget and schedule constraints are agreed upon. In this study, 

the project definition (step 1) was made preliminary to the start of the research and the project 

objectives are discussed in chapter 1.  

The second step concerns data collection and reconciliation of data sets for simulation projects. A 

stepwise procedure to analyse collected data is provided including dedicated methods based on 

statistical analysis, expert opinion and calculating mass balances.  



68 
 

In this study, the mechanistic biofilter model was calibrated with high-frequent (15 minutes) 

operational data originating from the Seine-aval WWTP collected from December 2019 to March 2020. 

The method described by Alferes & Vanrolleghem (2016) was applied for data cleaning. 

 

Figure 3-10: Good Modelling Practice of the IWA indicating the five steps of model development (Rieger et al., 2012). 
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In the third step, the plant model set-up, the model layout, including sub-models and the simulation 

outputs (e.g. graphs) are to be decided upon. In this research, the mechanistic modelled output will be 

sent to text files that can be used as input by the data-driven model and hybrid model.  

Step four involves the actual model calibration and evaluation of the simulated results to be within an 

acceptable error to the measured data. Validation tests are performed in order to ensure the use of 

the model with the level of confidence required to meet the modelling objectives. 

The evaluation criteria used to evaluate the model performance in this study are the mean error (ME) 

(equation 2.2) between observed and simulated data, the mean absolute error (MAE) (equation 2.3) 

and the root mean square error (RMSE) (equation 2.4), as well as their relative values. The relative 

errors are defined as the quotient of the error by the mean of the observations (ŷ) and make a clear 

distinction possible of the accuracy of the model. The closer the MAE/ŷ and RMSE/ŷ values are to 0, 

the better the accuracy of the model, but values of up to 15% - 20% are considered acceptable. The 

Janus coefficient (equation 2.5), which has an optimal value of 1 and is statistically considered 

acceptable up to a value of 2, makes it possible to state whether the model is valid based on the ratio 

between the RMSE for validation compared to the RMSE of the calibration (Hauduc et al., 2015). 

In the final phase (step five), the calibrated and validated model is used to run the simulations that 

have been asked for in the project definition as the objectives of the modelling work. This step includes 

defining scenarios; setting up the plant model and input files for these scenarios; running simulations; 

presenting and interpreting results (Rieger et al., 2012).  

Although comprehensive in its approach, the GMP Unified Protocol is considered as a general guideline 

more than as a detailed roadmap for model calibration. Mannina et al (2011) presents a detailed 

procedure for the calibration of an activated sludge model based on a comprehensive sensitivity 

analysis and a step-wise Monte Carlo-based calibration of the subset of influential parameters. The 

main advantage of this method and its key point is that the calibration is undertaken for sub-groups of 

variables in a step-wise procedure instead of solving a complex multi-objective function.  

The methodology of Mannina et al. (2011) consists of multiple steps divided over two major phases 

(shown in Figure 3-11). In the first phase, the various parameter subsets are selected by a procedure 

that is based on the methodology proposed by Weijers & Vanrolleghem (1997). The first phase starts 

by selecting the output variables of interest (e.g. NO3-N) and setting the parameters at their default or 

best-known values found in relevant literature with an uncertainty range and distribution. Monte Carlo 

simulations are then performed where each time a single parameter is varied at a time (OAT - One At 

a Time) within the specified uncertainty boundaries in order to evaluate the influence of the parameter 

on the model output. This allows calculating sensitivity coefficients, which are then scaled and sorted. 

A model parameter is considered influential if its average scaled sensitivity coefficient is larger than 

0.1. This procedure is basically established to ensure that at least one parameter will be selected for 

each output available (Weijers & Vanrolleghem 1997). The last step in the first phase is the evaluation 

of the sensitivity coefficients which will permit to select the set of most influential parameters for each 

representative output. 
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Figure 3-11: Two-step calibration procedure proposed by Mannina et al. (2011) with parameter subset selection based on a 
sensitivity analysis in phase 1, followed by a group-wise model calibration based on selected effluent variables in phase 2 
(Mannina et al., 2011). 

In the second step, the actual model calibration is performed by means of a group-wise Monte Carlo 

technique using only the subsets of model parameters selected in phase 1. The procedure begins with 

the selection of the first group of output variables of interest and the corresponding model parameter 

subset. The model parameter subset is calibrated according to the model outputs and an objective 

function by carrying out a number of Monte Carlo simulations to evaluate the quality of model fit for 

different parameter values. For each Monte Carlo run, the model fit with respect to each 

representative model output is calculated. After the Monte Carlo simulation has been performed, the 

overall model fit is determined, and the best parameter values are selected. 

Parameters that are influential to more than one group of output variables are included in the 

calibration step of that other group. The parameters that are influential only for the first group are 

fixed at their calibrated values for the next calibration step with a new set of parameters influencing 

the second group of output variables. This second phase is then repeated for each of the groups of 

output variables with corresponding parameter subset. 

3.3 Data-driven Model Development 
Data-driven models (DDM) using machine learning can be built via a supervised training, where the 

model is trained on known input data and known responses to that data to generate reasonable 

predictions for the response to new data. Supervised learning uses classification and regression 

techniques to develop predictive models. 

Another approach is unsupervised training that uses only the input data to find hidden patterns or 

intrinsic structures in the data. Unsupervised learning is mostly used for exploratory data analysis to 

find hidden patterns or groupings in data (such as clustering). 
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Since the objective of this research is to build a model that makes predictions of continuous responses 

based on input data that comes in a continuous format, the supervised machine learning approach 

using regression techniques to develop predictive models was selected for the training of the DDM. 

3.3.1 Methodology for Training & Testing of Data-Driven Model 
A commonly applied methodology for machine learning model development consists of the following 

main steps: data preparation/cleaning, feature extraction, feature selection, algorithm selection, 

model training, and model evaluation (Cohen-Shapira and Rokach, 2022).  

In the data preparation step, the collected operational datasets cover the period 01.12.2019 to 

15.03.2020, corresponding with those used for the calibration/validation set of the mechanistic model. 

The data were split 80% – 20% for training and testing purposes in chronological order to respect the 

time-dependent character of the observations. The training dataset contains 8 000 data points for each 

of the response variables NO3-N, TSS, total COD, with a 15-minute interval covering the period 

1.12.2019 to 28.02.2020. The testing of the ML models was performed with the remainder of the data 

(1 300 points) covering the period 1.3.2020 to 15.3.2020, which are the last two weeks of the dataset 

used for calibration of the mechanistic model. 

The datasets used for model input required gap filling of missing data points, for which the moving 

median method was applied. Data input for the ML models is normalized using the z-score, with a 

mean ŷ and a standard deviation σ, and scaled in the range of 0 to 1 to provide uniform data across all 

features that still have the original shape properties. 

Selection of the right machine learning model is partly based on trial and error and requires trading off 

some strong points (e.g. computational speed, accuracy, and model complexity) against another. 

Highly flexible models tend to overfit data by modelling minor variations that could be noise in the 

data. Simpler models are easier to interpret, but might have lower prediction accuracy. The best 

approach is to try out a variety of machine learning models and choose the best according to an 

evaluation criterion.  

The evaluation of the performance indicators for the DDM model calibration took specifically into 

account the root mean square error (RMSE) (see equation 3), since this indicator provides a 

quantitative measure of how well the model fits to the data average. The mean error (ME) (equation 

1) and mean absolute error (MAE) (equation 2) were supplementary indicators used to get a sense for 

the model’s bias and of the error’s size on average. Cross-validation was applied to divide the training 

data into multiple (k) folds (subsets) and the holdout method is repeated k number of times. In the 

holdout, each subset was used once for validation. The average error across all partitions is then 

reported as the average validation error. This method increases training performance such that the 

score of the model has a lower dependency on the selection of the training data.  

Optimization of the selected ML model was done by changing hyperparameters, such as the number 

of neurons, the weights and the biases. Feature importance analysis was applied using the F-Test 

method that enables the selection based on which features are influential on the response. The F-test 

examines the importance of each feature individually and allows defining the likelihood that an 

observed improvement of a fit to data is worth the use of the extra feature. It tests the hypothesis that 

the response values are drawn from datasets with the same mean against the alternative hypothesis 

that the population dataset means are not identical. Larger scores (including infinites) indicate greater 
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importance. Effectively, it measures to which degree features add any new explanatory power. The 

‘cost’ is indicated by the loss in the degrees of freedom due to the added number of features (Helsel 

& Hirsch, 1992). 

The selection, training and testing of the best machine learning model was performed in the toolkits 

environment for Regression Learning provided in the MATLAB R2022a (MathWorks) software. 

3.4 Hybrid Model Development 
The hybrid model developed in this study involves an interaction between a mechanistic model, which 

serves as the fundamental basis for the predictions, and a data-driven model that has learned to apply 

a correction to the predictions made by the former. The mechanistic model ensures the preservation 

of knowledge of the treatment process and offers good extrapolation capabilities. The data-driven 

model provides enhanced predictive capabilities through implicit learning of unknown relationships 

between the modelled mechanistic model input and measurements of the output variables. These 

capabilities can overcome the dynamics missed by the mechanistic model (Schneider et al., 2022). 

The hybrid model developed here (see Figure 3-12) is defined as a cooperative parallel hybrid structure 

(Schneider et al., 2022) where the DDM predicts the difference between the output of the mechanistic 

model and the observations (the residual error ∆). Thus, the mechanistic model serves as the 

fundamental basis for the effluent quality predictions, and the data-driven model using machine 

learning techniques is asked to add a correction. This requires that the mechanistic model first predicts 

the values of process output variables (blue line in the figure), such as the effluent water quality 

variables and biomass concentrations. These are then communicated to the DDM model (black box) 

that as well receives the same influent data and important information about process control 

parameters (black line). The DDM uses this information to estimate the residual errors of the 

mechanistic model simulations ∆ (green arrow), which are defined as the most probable expected 

model errors based on the training differences between previously observed (measured data) and 

simulated data. Finally, for the output of the hybrid model the two results are added together to obtain 

corrected values of the effluent variable (light blue highlighted arrow).  

 

Figure 3-12: Structure of hybrid model (larger grey box) combining a data-driven model (black box) and a dynamic mechanistic 
biofilm reactor model (white box) that is based on the knowledge of the bio-physico-chemical processes. 

The training objective is that the DDM learns to generate the proper model errors. During the training 

phase of the DDM, illustrated in Figure 3-13, observations of influent and effluent quality are 

transmitted to the DDM, as well as the simulated effluent variable by the mechanistic model. The 
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model error that is defined as the difference between observed and simulated effluent variables is 

calculated and applied as the response variable for the DDM model training with a Bayesian 

optimization algorithm. Here, the model error serves as labelled response in a supervised machine 

learning training environment. 

 

Figure 3-13: Training configuration of the hybrid model, which receives observations of influent and effluent data from the 
physical WWTP process, calculates the mechanistic model’s error with respect to the observations and uses this information 
to train a DDM to predict the residual model error.  

In this approach, a machine-learning model is trained for each of the output variables, where for each 

variable, a corresponding subset of process input variables or features is used. 

3.5 Hybrid Model Predictive Control 
The trained hybrid model is used in the hybrid model predictive control (HMPC) of methanol dosing in 

a predenitrification biofilter.  

3.5.1 Structure of HMPC 
As illustrated in Figure 3-14, the HMPC first searches for an optimal methanol dosing rate sequence by 

running multiple scenarios with the hybrid biofilter model over a certain prediction horizon. The 

sequence of dosing rates is varied over a so-called control horizon at a fixed number of times, e.g. 4 

times). The MPC model (blue box in the figure) receives the measured influent data and relevant 

information about the process operations (e.g. nitrate set point) together with the methanol dosing 

rate sequence. In the future this information may easily be extended to include cost prices of methanol 

and environmental costs (e.g. GHG emissions) associated with the methanol dosing to make the 

optimization objective more comprehensive and practical.  

The dosing of methanol has a direct negative effect on the nitrate concentration in the effluent. Higher 

doses of methanol will increase the metabolic activity of the heterotrophic organisms, which will 

consume more nitrates and thus lower the nitrate concentration in the effluent. The optimizer 

searches for the smallest error between observed nitrate and nitrate concentration set point.  

The first of the sequence of optimal dosing rates is then identified and transmitted to “Reality”, here 

represented by a second mechanistic biofilter model (“Reality” Process Model in red box). That model 
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represents the physical process. Feedback about the evolving effluent water quality in the physical 

system is assured by linking the modelled effluent from the “Reality” Process Model back to the HMPC, 

where it is used as a representation of the ‘observed’ effluent values.  When a model-mismatch is 

detected, this will be corrected for by adjusting the NO3-N set point of the MPC model. This model 

mismatch correction through set point adjustment is implemented as follows: when the output of the 

Reality Process Model is compared to the predicted output by the MPC Model, the averaged difference 

between the two models of the last 15 minutes period (symbolized by Ԑ in Figure 6-5) is communicated 

back to MPC model, where it is used to modify the set point applied during the next iteration. In this 

regard, the MPC model will strive to reach the new set point and thereby forcing the output of the 

Reality Process Model to move closer to the desired effluent concentration. 

 

Figure 3-14: Flowchart of the developed Hybrid Model Predictive Controller (grey box) that consists of a First-Principles 
process model (blue box) and a DDM (orange) in an optimization loop. Only the optimal dose of the first-time step 

(u_opt_t.1) is applied to the process, represented by the “Reality” Process Model (red box). The HMPC receives feedback of 
the modelled effluent quality from the Process Model. 

After the first iteration, the HMPC moves forward one-time step in a receding prediction horizon 

approach. The time step size has been chosen as 15 minutes intervals since the hydraulic retention 

time of the water in a biofilter is about 20 to 30 minutes. Any reagent dose injected at t = 0 will pass 

through the biofilter within 20 minutes, and its effects on the biological activity is assumed to be of 

the same order. For the optimization of the control actions, the HMPC model simulates over a 

prediction horizon of 120 minutes and allows variation of the methanol dosing over the first hour at 

15-minute intervals. The last value of the methanol dosing is kept constant till 120 minutes. So, the 

optimization has five degrees of freedom, i.e. five dosing rates imposed over the 120 minutes. 
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The Process Model predicts only one-time step into the future (that is 15 minutes ahead) before a new 

optimization run is initiated, so that every 15 minutes information is sent back to the MPC model about 

the effluent water quality.  

The HMPC is written in the Python language using Spyder in order to allow automatic execution of the 

DDM and the biofilter models in WEST (DHI). The development of the DDM was performed in MATLAB 

R2022a (MathWorks). 

3.5.2 Scenarios Workflow in Python 
For an automated execution of the different scenarios, the (hybrid) model predictive controller has 

been written in python using modular scripts. This allows executing the data-driven model and the 

mechanistic models in an automated mode and facilitates data exchange between the models.  

The Python scripts that have been developed are responsible for data preparation, analyses and 

execution of xml files that run the WEST mechanistic model and the trained ANN model. The 

performance of each optimizer scenario is then evaluated in terms of the RMSE, and the scenario with 

the lowest error is selected as the best. The proposed action of the first-time step that belongs to that 

best-fitting scenario is then finally implemented in the Reality Process Model. In the case of the HMPC, 

the mechanistic model’s effluent is first corrected by the DDM that estimates the model’s error for 

each scenario. The evaluation that follows is then identical to the path just described. The details for 

the different scenarios and the workflow for the MPC and HMPC controller are described in more detail 

in chapter 6. 

3.6 Concluding Remarks 
The development of the Hybrid Model and its application in the Hybrid Model Predictive Controller 

will be further discussed in chapter 6. One of the aspects that deserves more research for future 

applications is the link with the real physical system. A connection to the real system, collecting data 

and providing methanol dosing rates can replace the knowledge-based “Reality” Process Model used 

now in the demonstration study. 





 

4 Mechanistic Modelling of Wastewater Treatment for 

Nitrogen Removal through Biofiltration 
 

This chapter discusses the performance of the biofiltration model developed by Zhu (2020) for the 

prediction of the concentrations for the effluent quality variables of the predenitrification (preDN), 

nitrification (NIT) and postdenitrification (postDN) stages in the biofiltration lane. As a reminder, the 

mechanistic model simulates the physical and biological phenomena taking place in a submerged 

biological activated filter with a ‘fixed’ culture of micro-organisms that grow attached to inert 

polystyrene beads (4.5 mm diameter). The bacteria are metabolically active within a biofilm, a thin 

layer surrounding the beads.  

The development of the biofilter model (Zhu, 2020) had as objective to improve existing models for 

the biofiltration treatment lane at the Seine-aval WWTP or similar WWTPs by providing detailed 

phenomenological descriptions of the process behaviour of each biofiltration treatment process and 

simulating long term trends of effluent quality and estimate economic costs and environmental 

impact. The model would serve as a support tool for the design and upgrades of treatment systems. In 

a basic sense, the biofilter model aimed at describing the time evolution of the mass balances for 

different components, composed of a mass transport term and a conversion term (i.e. the biological 

reactions). The variables that are of interest to the user (i.e. the model outputs) include those that 

describe the organic matter content (total COD, soluble COD), the suspended solids (TSS) and the 

nutrient compounds including nitrogen (TKN, NH4-N, NO3-N, and NO2-N) and phosphorus (PO4-P and 

TP). The model could be adapted for inline forecast of water quality to better optimize operations. 

The biofiltration stage provides secondary wastewater treatment of the effluent of the primary 

treatment stage. At the time relevant for this study, the latter consisted of a 3-step treatment using 

primary settling tanks, followed by aeration basins and finalized by a second step of chemically 

enhanced primary treatment (CEPT) in which iron salts (FeCl3) are dosed to enhance the coagulation 

of organic matter in order to increase its removal.  

For secondary treatment, the biofiltration lane shown in Figure 4-1 consists of a 3-stage pre-

denitrification (preDN), nitrification (NIT) and post-denitrification (postDN) system. The preDN stage 

puts to good use the ‘natural’ organic carbon content of the settled water to reduce nitrates to di-

nitrogen, but necessitates an input of nitrates by nitrified water through recirculation of the NIT 

effluent. As indicated in the figure, in case the readily biodegradable carbon concentration is 

insufficient, an external dosing of methanol (CH3OH) is possible. The NIT treatment stage functions 

with active aeration (O2) of the filters. During the postDN stage, a constant external carbon dosing in 

the form of methanol is required for denitrification due to the low organic matter content in the 

effluent of the NIT stage. 
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Figure 4-1: Schematic layout of wastewater biofiltration treatment lane at Seine-aval WWTP with indication of chemical 
dosing and aeration. 

This chapter will discuss the outcomes of the calibration and validation of the parameters of the 

biofiltration model. A particular focus will be on the predenitrification stage, since Zhu (2020) hadn’t 

had the time to calibrate this biofilter model for that treatment stage using long term high-frequent 

operational data from the Seine-aval WWTP. Moreover, the development of a hybrid model (see 

Chapter 5) and its application in a continuous model predictive process control system for this 

predenitrification stage (see Chapter 6) will take place with operational data from the 

predenitrification stage.  

The chapter starts with a description of the datasets and the results of the data-cleaning exercise, 

followed by the influent characterization and the definition of the parameters for process control. This 

is followed by the identification of influential parameters through a global sensitivity analysis. For 

calibration and validation, the performance of the model simulations of effluent quality variables is 

evaluated by comparing it to observations for the preDN in stage in detail. Finally, the output of the 

integrated biofiltration model covering the NIT and postDN treatment stages is discussed. 

4.1   Description of datasets 
Measurement data from inline sensors, analysers as well as daily laboratory analyses and other 

observational data (e.g. maintenance reports) from the Seine-aval station were accessed in the ‘BaSta 

Virtuel’ databank that allows visualizing and exporting data in tables and spreadsheets. This secured 

databank is managed by the utility SIAAP and contains for each sampling point the meta-data, such as 

information concerning the sampling frequency, unit of measurement, responsible laboratory staff and 

dates of installation. 

The period chosen for this research runs from December 1st, 2019, until September 31st, 2020. The 

start of this data range coincides with the installation of in-line probes for COD (Hach Lange, UVAS Sc 

UV probe) and nitrates (Hach Lange, Nitratax Sc 1mm, UV probe) measurements at the entry and exit 

of the predenitrification stage in the Seine-aval plant. These sensors became fully operational on 

November 26th, 2019. The model was calibrated on the first three and a half months available 

(01.12.2019 – 15.03.2020) which covers 106 days, while for the validation the data from June 1st, 2020 

until September 30th, 2020 (122 days) was used. The period in between, from March 16th until end of 

May does not contain reliable and consistent data because of the Covid-19 restrictions. 

The nitrate and nitrite concentrations, which are soluble compounds containing nitrogen and oxygen, 

are important performance indicators of the preDN treatment. The inline analysers actually monitor 

the combined compounds of NO2-N + NO3-N = NOx-N (mg NOx-N/L) and are located in the outflow 

channel of the primary settler (see Figure 4-2), where all effluents of the primary settlers come 
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together. This location is before the inlet of the recirculation of nitrified water that provide nitrates 

and nitrites to the preDN. In the settled water, NOx-N are present only in very low concentrations. In 

order to identify the concentration of NOx-N at the entry of the preDN stage, the flow weighted 

contributions of settled water and nitrified waters were calculated. In the case of settled water, the 

NOx-N concentration is measured by a sensor. However, as can be seen in Figure 4-2, in the case of 

the recirculation of nitrified water, the concentration of NOx-N (mg NOx-N/L) is monitored by inline 

sensors at the entrance to the postDN. 

 

Figure 4-2: Schematic diagram of the principal wastewater treatment lane at the Seine-aval WWTP (SIAAP) with indication of 
processes (blue boxes) and main dosing actions (yellow diamond shapes). Outlined in red frame are the secondary treatment 
predenitrification biofilter units (PreDN), the nitrification battery units (NIT) and postdenitrification unit (PostDN). The focus 
of this study is on the PreDN stage. Also indicated are the sludge treatment units for PreDN (brown hexagons) and location of 
measurements by in-line sensors (black dots) and laboratory samples (grey triangles). 

In addition, as of November 2019, a NOx-N sensor is available at the entrance and exit of preDN battery 

C. As explained before in chapter 3, the preDN battery C contains 18 BioStyr® filters that receive 

treated backwash water from the sludge that is removed from the filters through daily retro washing. 

The composition of the influent water is therefore different than the ‘average’ water mix treated by 

batteries A and B. This backwash flow, albeit with a less significant flowrate, has to be added to the 

overall flow into Battery C. The concentration of TSS (mg/l) is measured at the outflow of the backwash 

treatment. The backwash water and sludge originating from the filters in battery A and B (20 + 20 

Biostyr® filters) is treated in a separate sludge clarifier and this effluent is reinjected into the main 

incoming stream flowing into the preDN lane, but before it is monitored by the inline sensors for NOx 

and TSS. 

Besides water quality and quantity measurements, data related to process control data is registered 

in the database, such as the number of filters in operation at each 15 minutes time step, the set points 

for nitrate concentration in the effluent of the preDN and postDN, the ammonia set point in the 

effluent of the NIT stage, as well as information about the pumps used for aeration and distribution of 

water flow (number of hours; energy usage; etc.), the duration of backwashing cycles and the quantity 

of reagents dosed. These data allow an analysis of the current state of the system. The data could be 

applied in (automated or by operator action) control strategies on selected process parameters for 
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which a target value (‘set point’) is predetermined and for which a modifiable variable is corrected in 

order to reach this desired set point (e.g. a NOx-N concentration of 1.3 mgN/L in the effluent of preDN). 

4.1.1 Operating Conditions during Calibration 
Table 4-1 describes the operating conditions of the biofiltration lane during the calibration period 

based on the information collected from daily flow proportional composite laboratory samples and 

sensors where available. The daily values at the entrance of the preDN had to be calculated since there 

is no direct sampling point at this location. This was based on the flow weighted averages and the 

measurement data available from the exit of the primary treatment phase and the entrance of the 

postDN, which is assumed to be representative of the nitrified recirculation water quality. 

Table 4-1: Working conditions of the predenitrification stage at the Seine-aval WWTP biofiltration lane during the 
calibration period. 

Seine-aval Operating 
Conditions Entry preDN 

Laboratory data  
(flow weighted calculated from 

Settled Water and Nitrified Water) 

Sensor data 

01.12.2019–15.03.2020 
  Nr. of 

observations 
Mean Standard 

deviation 
Nr. of 

observations 
Mean Standard 

deviation 

Flow rate (m3/d) - - - 10 177 2 075 378 462 489 
Number of active filters (nb) - - - 10 177 50 10 
Flow rate per filter (m3/d) - - - 10 147 41965 5993 
Recirculation rate (%) - - - 10 052 0.8 0.2 
BOD5 (mgO2/L) 95 50 12 - - - 
Total COD (mgO2/L) 95 147 35 9 560 157 72 
TSS (mg/L) 95 65 16 - - - 
TKN (mgN/L) 93 28 6 - - - 
NH4-N (mgN/L) 100 20 5 - - - 
NO3-N (mgN/L) 100 9 2 9 754 9 3 
NO2-N (mgN/L) 100 0.5 0.2 - - - 
PO4-P (mgP/L) 101 0.9 0.35 - - - 
Ratio COD/NOx (mgO2/mgN) 100 16 5 9 725 20 17 
Ratio BOD5/NOx(mgO2/mgN) 100 5 2 - - - 

 

During this period, the preDN stage treated on average 2 million m3/day wastewater of which 1.1 

million m3/d was primary effluent and 0.9 million m3/d was recirculated nitrified water. The daily 

average flow rate per filter was about 42 000 m3/d, which corresponds to a hydraulic load of about 10 

m/h (filter surface area of 173 m2) and a Hydraulic Retention Time of 20 minutes; all considered to be 

standard operating conditions. As reported in the literature review (chapter 2), the filtration rate 

should at least be 1.5 m/h to avoid clogging the filter with suspended particulates, but should not be 

too high as that will reduce the hydraulic residence time. The Carbon to Nitrogen (C:N) ratio, which is 

an important process factor of the filter’s performance, is about 16 for COD/NO3-N in preDN; this is in 

accordance with Rother and Cornel (2007), who report a COD/NO3-N ratio of 15 in an upstream 

denitrification biofilter responsible for a denitrification efficiency of 80%. 

The calculated volumetric loading and removal rates of organic matter and the main pollutants 

[kg/(m3*d)] is shown in Table 4-2 for the three treatment stages. The volumetric loading rate for 

nitrates in the preDN stage is about 0.6 kgN/(m3*d) and for postDN this is about 2.6 kgN/(m3*d) during 

the calibration period. This falls in the range reported by Metcalf & Eddy (2008) of 0.3 to 5.0 kg NO3-

N/(m3*d) for denitrification filters. The significantly higher volumetric loading rate for postDN is 
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characteristic for treatment with external carbon dosing as it allows for higher filtration rates of about 

17 m/h during the calibration period and 22 m/h for the validation period. Thanks to the continuous 

addition of methanol in the postDN stage, it achieves a high NO3-N removal efficiency of 80% and 90% 

respectively. This is in contrast to the preDN stage, where the nitrified water is mixed with settled 

water and methanol is only added when necessary.  

Figure 4-3 indicates the average values of the water quality variables sampled for the biofiltration lane, 

both by flow proportional composite samples analysed in the laboratory as by in-line sensors, as well 

as the process control parameters, such as the set points for nitrates concentrations in the effluent of 

the preDN and postDN stages. Noteworthy, the average organic matter concentration during 

calibration that leaves the primary settling phase contains around 90 mg BOD5/L, a value that is almost 

five times the admissible discharge concentration, indicated in the blue frame box on the right side of 

Figure 4-3.  

Table 4-2: Performance indicators of Seine-aval WWTP biofiltration lane for the three stages showing average daily values 
during the calibration (Cal) and validation (Val) periods. 

Seine-aval - Biofiltration lane preDN NIT postDN 

 Cal Val Cal Val Cal Val 

Filtration Rate (flow rate per filter) [m/h] 10.1 9.5 7.2 7.2 16.8 22 

BOD5 Volumetric Loading Rate [kg/(m3*d)] 3.4      

TSS Volumetric Loading Rate [kg/(m3*d)] 4.4      

NO3-N Volumetric Loading Rate [kg/m3*d] 0.6    2.6 3.1 

NO3-N Removal Rate [%] 65 74   80 90 

NH4-N Removal Rate [%] - - 88 93 - - 

COD total Removal Rate [%] 44 54     

TSS Removal Rate [%] 77 65  - - 

 

About 76% of the BOD5 will be removed in the preDN stage by the heterotrophic bacterial activity as 

substrate for the conversion of nitrates (average influent concentration of 8.9 mgN/L) to N2 gas. The 

remaining NO3-N concentration in the preDN effluent is on average 3.1 mgN/L, which gives a 65% 

removal rate. The downstream denitrification stage (postDN) further treats the NIT effluent. It receives 

nitrified water with an average concentration of 20 mgNO3-N/L and brings that down to 4.1 mgNO3-

N/L. The flow is then further mixed with the bypassed nitrified water and the MBR effluent, so that its 

final concentration is about 12 mgNO3-N/L on average.  
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Figure 4-3 : Average values of measured variables at in the biofiltration treatment lane, the Process Control parameters (in 
green box) and the regulatory admissible discharge concentrations during the calibration period. Also indicated are the 
average flow distribution percentages (light-blue coloured numbers). All units expressed in [mg/L], except where otherwise 
indicated. 

Concerning the nitrogen concentration, the effluent of the two-step primary settling phase has a daily 

average of 48 mgN/L, which is roughly 10 times the allowable concentration in the discharge into the 

river. The recirculation of nitrified water, which carries low values of ammonia (NH4-N: 2.3 mgN/L) will 

cause a dilution and thus a lowering of the ammonia concentration at the inlet of the preDN. A small 

fraction of ammonia is taken up by the microorganisms for their growth in the preDN stage. At the 

influent NIT stage, the ammonia concentration amounts to 19 mgN/L (sensor) to 20 mgN/L (lab). 

During NIT, the autotrophic bacteria convert 89% of ammonia to nitrates and nitrites under aerated 

conditions.  

The Total Nitrogen TN, which is sum of TKN and NOx-N, is an important indicator for the nitrogen 

concentration in the water discharged into the river. For a yearly running average, the TN 

concentration should be lower than 10 mgN/L. It can be seen in Figure 4-3 that the primary effluent 

contains a TKN concentration of 48 mgN/L, most of which is ammonia. During the subsequent 

biofiltration stages, the ammonia concentrations drop after passing through each treatment stage, and 

with it the TKN concentration. In the effluent of the postDN, there remains a fraction of organically 

bound nitrogen of about 2.8 mgN/L that is assumed to be unbiodegradable soluble (S_NI) that stays in 

the water or inert particulate (X_NI) that is captured and exits the system via the sludge line.  

4.1.2  Operating Conditions during Validation 
Table 4-3 describes the operating conditions of the biofiltration lane during the validation period based 

on the information collected from daily laboratory samples and sensors where available. The average 

flow rate per filter during this period (39 000 m3/d) is slightly lower (7%) compared to that during the 

calibration period (42 000 m3/d), but the average recirculation ratio of nitrified water from the exit of 

NIT to the entry of preDN has increased significantly from 0.8 during calibration to 0.94 during the 

validation period. Since the recirculation is interrupted during days with high rainfall, this higher 

percentage is a clear indicator of prevailing dry weather conditions during the validation period from 

June till end of September. It is also closer to the desired ratio of 1. The higher NO3-N removal rate 
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(74% during validation vs 65% during calibration – see Table 4-2 demonstrates that the denitrification 

process was better performing. 

The observed quality variables shown in Table 4-3 have very similar values when compared to the 

calibration period. The particularity of the summer vacation month of August, when a large portion of 

citizens leave the city, are discernible with lower overall flow rates.  

Table 4-3: Working conditions of the preDN stage at the Seine-aval WWTP biofiltration lane during the validation period. 

Seine-aval Operating 
Conditions entry preDN 

Laboratory data  
(flow weighted calculated from 

Settled Water and Nitrified Water) 

Sensor data 

01.06.2020–30.09.2020 Number of 
observations 

Mean Standard 
deviation 

Number of 
observations 

Mean Standard 
deviation 

Flow rate (m3/d) - - - 11 713 2 011 387 284 056 
Number of active filters (nb) - - - 11 713 51 4 
Flow rate per filter (m3/d) - - - 11 713 39 208 5 848 
Recirculation rate (%) - - - 122 0,94 0,2 
BOD5 (mgO2/L) 102 42 19 - - - 
Total COD (mgO2/L) 121 147 48 11 703 157 57 
TSS (mg/L) 121 68 31 - - - 
TKN (mgN/L) 101 27 5 - - - 
NH4-N (mgN/L) 122 19 5 - - - 
NO3-N (mgN/L) 122 9 2 11 703 8 4 
NO2-N (mgN/L) 122 0,5 0,2 - - - 
Ratio COD/NOx (mgO2/mgN) 118 16 8 11 616 26 24 
Ratio BOD5/NOx (mgO2/mgN) 102 4 2 - - - 

 

4.2 Data Preprocessing 
Data reconciliation involves the preprocessing of the raw measurement data in order to remove biases 

of in-line sensors, probes and analysers, together with faulty data and outliers, as well as gap filling in 

order to obtain a complete set of reliable and consistent data. This treatment minimizes errors that 

affect the model’s performance. Data cleaning is a necessary step in data analysis and an important 

factor to make sure it is accurate, complete, consistent and trustworthy. A first step therein is 

visualization of data and plausible checks (Rieger et al., 2012). 

4.2.1 Visualization 
Data visualization, structuring and descriptive statistics allow for sanity checks, together with mass 

balances to spot inconsistencies and or incoherent data. 

Figure 4-4 shows the distribution of water volumes (expressed in flow rates) that arrive at the preDN 

battery C treatment stage, of which the primary effluent and the recirculation volumes make up the 

biggest part. The total flow rate to the preDN stage Battery C during the period surveyed averages 

about 600 000 m3/d. At the start of December 2019, the proportion of settled water is almost identical 

to that of the recirculation of nitrified water, both fluxes contribute equally with about 250 000 m3/d. 

The return flow from the sludge treatment is the third largest contributor with 70 000 m3/d, while the 

by-pass is not used in significant volumes.  

However, between January 14th and March 17th, the volume of settled water is significantly higher and 

averages about 350 000 m3/d, with high peaks of 500 000 to 600 000 m3/d late January and beginning 
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February, caused by heavy rainfall. It is in this period that the bypasses start to function, indicating that 

the maximum capacity of the battery is exceeded. The volume of recirculation of nitrified water 

remains relatively stable.  

 

Figure 4-4: Daily influent flow rates per source into the preDN battery C at Seine-aval WWTP (left vertical axis), as well as 
number of active filters per day (right vertical axis) for the period from end of November 2019 till beginning of June 2020. 

The frequency distribution of flow rates in the influent in Figure 4-5 clearly indicates a two-peak 

distribution; a first one for dry weather around 575 000 m3/d and a second peak at 675 000 m3/d under 

the rainy weather conditions. Also, it can be seen that this period between 1 December and 15 March 

(112 days) can be considered a wet period with approximate 50 days with flow rates of at least 651 

000 m3/d, which account for 85% of all flow rates registered during this period. 

 

Figure 4-5: Distribution of flow rates in the Influent of preDN battery C. 
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Another interesting visualization method is to look at the correlation between laboratory and sensor 

data. Figure 4-6 shows the laboratory flow proportional composite sample concentration of nitrates in 

the influent of the preDN stage and compares it to the daily averaged values measured by the in-line 

sensor at the same location. For purposes of statistical reference, the coloured band indicates the 

range of mean +/- 1 standard deviation (SD), corresponding to 68% of the data range in a normally 

distributed data set. For NO3-N, the laboratory data is indicating higher values overall with an average 

of 10.1 mgN/L; while the sensor has an average value of 9.0 mgN/L. Actually, the sensor data, which 

measures a combination of NO3-N + NO2-N; the outputted signal has been recalculated to NO3-N and 

NO2-N using the laboratory daily ratios. 

In the month of December, an overall difference between laboratory results and sensor measurements 

is noticed with laboratory observations about 2 mgN/L higher than the sensor readings. Then, from 

January to February, both types of observations have similar daily average values. However, starting 

from the beginning of February, the sensor signal starts to show larger variability and overall lower 

average values that fall far outside the 1*SD range. This seems to coincide with the peaks of high 

settled water fluxes (Figure 4-4) indicating that these sensors might be better at registering short and 

intense compositional changes of the water than the laboratory composite samples. The laboratory 

value of 3.5 mgN/L measured on February 1st deviates considerably from the daily average sensor data 

(11.5 mgN/L); an issue that requires further analysis during data cleaning. 

 

Figure 4-6: Observed concentrations of NO3-N in the influent of preDN battery C by inline sensors using a decomposed signal 
(red line), daily average of sensor (red squares) and laboratory composites (blue). The orange zone and blue zone indicate 

the range of [mean-1SD : mean+1SD].  

 

4.2.2 Data Cleaning 
The methodology applied for data cleaning is the method by Alferes and Vanrolleghem (2016), which 

works in successive steps to: (1) detect outliers, (2) smooth the values and (3) remove faults (see 

chapter 3 for more info). The main parameters of this method along with their default value and the 

applied modifications to the data are shown in Table 4-4.  
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Table 4-4: Parameters of the pre-processing method of Alferes & Vanrolleghem (2016) as applied in this study. 

 Parameter Description  
Default Value (Alferes 
& Vanrolleghem, 2016) 

Value 
applied 

1 Outlier Detection    

 param.nb_s 
Multiplicative factor that drives calculation of 
the prediction interval. 3 10 

 param.nb_reject 
Number of consecutive rejected data needed 
to reinitialization. 100 100 

 param.nb_backward reinitialization 15 50 

 param.MAD_ini Initial value Mean Absolute Deviation 10 10 

 param.min_MAD Minimum Mean Absolute Deviation 0 0 
     
2 Smoother    

 h_smoother Smoother coefficient 5 1 
     
3 Fault Detection    

 paramX.range_min Acceptable value (min) NaN case specific 

 paramX.range_max Acceptable value (max) NaN case specific 

 paramX.moving_window Range of Window 1000 5 

 paramX.reading_interval Size of Reading Interval 5 10 

 paramX.corr_min  Correlation (min) NaN -1 

 paramX.corr_max Correlation (max) NaN 1 

 paramX.slope_min Slope (min) NaN -1 

 paramX.slope_max Slope (max) NaN 1 

 paramX.std_min Variation (min) NaN -1 

 paramX.std_max Variation (max) NaN 1 

 

This method was applied to the high frequent measurement signals available from the flow rates of 

Settled Water, Recirculation water, Returns of cleaned backwash water, the flow rates of the sludge  

treatment units, as well as the measured concentrations of COD, NOx-N and DO at the entrance of 

preDN; the measured concentrations of NOx-N and COD at the exit of preDN Battery C; the 

concentrations of NH4-N, PO4-P and TSS at the exit of the mixed channel preDN; and finally, the NOx-

N and NH4-N concentrations in the recirculation water streams. As an example, the intermediate 

results for the preprocessing of COD data are discussed below. 

Figure 4-7 shows the raw data for the total COD concentration measured by an in-line sensor at the 

entrance of the preDN stage. This data contains outliers, faulty data and sensor drifts. Clearly 

discernible is the upper maximum detectable value of 400 mgO2/l of this sensor. 
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Figure 4-7 a) Raw COD measurement data from in-line sensor at the entrance of the preDN stage. b) Representation of the 
first step of the data cleaning procedure with indication of detected outlier values (marked by a red X) in a detailed view over 
a 4-days period. 

Step 1: Data Cleaning 

During the cleaning of the data, the first step concerns the detection of outliers, marked by the red 

coloured ‘X’ in Figure 4-7b, which shows a detailed view over a four day period of the same total COD 

data. Outliers are the points of data that lie beyond the upper limit (the green coloured line in figure 

b) and lower limits. The following parameters for the outlier detection method were modified:  

1) the multiplication factor for the forecast interval ‘nb_s’ was set to a value of 15, which makes 

it a less stringent parameter, necessary due to the large width of sensed values (range from 0 

to 400 mgO2/l);  

2) the number of consecutive rejected data points that lead to reinitialize the outlier detection 

method ‘nb_reject’ was set to 200 in order to avoid frequent reinitialization; 

3) the number of data points used for calculation of forward application ‘nb_backward’ was set 

to 100, covering 24 hours.  

Step 2: Smoothing 

Data smoothing concerns the replacement of the identified outliers from the previous step with new 

estimated values and prevents the occurrence of data gaps, a prerequisite for the application of the 

fault detection. The data smoothing was achieved with parameter h_smoother value set to 2, which 

dictates the number of data points used in the calculation to smoothen a specific point. Low numeric 

values apply a strict (local) smoothing factor. The outcome of this step is indicated in Figure 4-8 afor 

the same detailed view as in the previous figure. Data points that fall ‘outside’ the upper and lower 

limits as determined by the smoothening algorithm, are replaced by their new smoothed value and 

are considered to be ‘removed’. This will add to the score of the percentage of removed data.  
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Figure 4-8a) Representation of the second step of the data cleaning procedure with indication of smoothed data (marked by 
a green line) in a detailed view over a 4-days period. b) Visual representation of the third step with Range, Standard Deviation, 
Slope and Runs Test upper (red line) and lower (purple line) limits for the COD total Influent data. 

Step 3: Fault Detection 

In order for the fault detection to function properly, the following parameters have been modified: the 

size of the ‘window’ for the moving test ‘moving_window’ was set to 5 datapoints; the range of 

acceptable values [1:400]; the minimum and maximum expected slope [-2:2]; reading_interval (10); 

the minimum and maximum expected correlation [-1:1] and the minimum and maximum variation 

between accepted and smoothed data ’std’ [-1:1]. As can be seen in Figure 4-8b, the result in this third 

data cleaning step of the COD data indicate several extreme data points that fall outside the defined 

minimum (pink coloured line) and maximum (red coloured line) values for these parameters, indicating 

possible faulty data. 

A final comparison with the daily laboratory data for each variable, which are assumed to be of a high 

data quality with a confidence interval of 10%, allows evaluating the performance of the data cleaning 

method as applied to the high-frequent measurements. 

Final Results Data Cleaning 

The final accepted outcome of the data cleaning procedure is a dataset that is assumed to consist of 

corrected, smoothed and fault removed data series, at least for the purpose of process modelling and 

control. An example is shown in Figure 4-9 for total COD.  

This work was performed for each of the variables listed in Table 4-5 that shows the results for both 

the calibration period (column on the left side) and the validation period (column on the right). During 

the calibration period, the measurements contain 10 500 data points per variable, of which 4% classify 

as outliers. A high percentage of outliers was detected in the signals originating from the TSS sensor at 

the outflow of the preDN for both the calibration period (16%) and the validation period (5%). This 

might be caused by the monitoring techniques applied, which require regular maintenance of sensors, 

in particular under the harsh and highly variable conditions of wastewater treatment. The column 

entitled ‘Percent Total Data Removed’ shows the total percentage that includes the outliers detected, 

the data "lost" and replaced due to smoothing and the faulty data-points detected. Again, the TSS 
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sensor at the outflow of the preDN reports high percentages of removed data with 19% for the 

calibration period and 13% for the data from the validation period. 

 

Figure 4-9: Results of the preprocessing of the raw measurement data (black line) of total COD at the entry of the preDN 
during the calibration period. The green line indicates the final corrected, accepted and smoothed data. 

Concerning the data covering the calibration period, on average 16% of the raw data of the variables 

processed, are not retained, with high percentage losses for orthophosphates (48%) and total 

suspended solids TSS (33%) measured respectively at the inlet of the preDN and at the outlet of the 

sludge treatment, recovered during backwashing of the biofilters. In their study, Alferes and 

Vanrolleghem (2016) confirm typical losses in a wide range of 5 to 50% of data from probes submerged 

in municipal wastewater treatment streams.  

Table 4-5: Overview of raw data processing for the calibration and validation period. 

 
Calibration Validation 

Variable N Outliers 
(%) 

Removed 
(%) 

N Outliers 
(%) 

Removed 
(%) 

Recirculated water flow 10657 0.5 8.1 8832 0.1 8.4 
Settled water flow 10657 0.2 9 8832 0.1 5.3 
COD inflow preDN 10036 1.9 11.1 8832 0.32 11.6 
NOx inflow preDN 10231 1.3 3.5 8832 0.02 6.7 
NOx recirculation 10654 0.2 7.6 8832 0.1 7.1 
NH4 outflow preDN 10573 0.3 6.9 8832 0.2 9.2 
TSS outflow preDN 10654 16.1 18.6 8832 4.9 12.9 
PO4 outflow preDN 10626 1.4 48.3 8796 2.2 9.1 
Sludge treatment flow 10652 0.06 13 8832 0.4 15.3 
Cooling flow 10652 2.4 18.6 8832 0.7 9.3 
NH4 recirculation 10627 0.22 10.9 8831 1.2 19 
TSS sludge treatment outflow 10656 0.04 33.4 8832 6.7 33.2     

   

Mean 10544 3.8 16.1 8829 1.4 12.3 
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Regarding the validation period, on average 1% outliers were detected and 12% of data removed. The 

highest losses were experienced by the sensors measuring TSS at the preDN outlet (13%) and at the 

sludge treatment outlet. However, the data treatment for the validation period shows lower 

percentages than during the calibration for outlier detection (67% less) and for faulty data points 

removed (24% less). A good example is the PO4-P sensor data that for the calibration data had 48% of 

the data removed, while for the validation data only 9% were removed. This is probably thanks to the 

more consistent and stable operating conditions with lower flow rates during the summer period 

(validation) than in the winter period (calibration). 

This final accepted data series has data gaps, due to the third step of removing faulty data point during 

the data-preprocessing. This requires an additional data gap-filling technique by interpolation, such as 

a moving mean window, where missing values are replaced with average interpolated or smoothed 

values that are different from the observed values. In this study, a linear interpolation has been applied 

to replace missing data points. The cleaning of raw data by machine learning techniques could further 

be integrated with an influential generator model (not shown here) that allows gap filling in order to 

guarantee the quality of the data that feeds the model (Li & Vanrolleghem, 2022). 

4.3 Preparation of Model Input 
The model requires different input files that describe water quality variables and process control 

parameters. The input files contain the flow rates and the concentrations of the variables measured in 

function of the time; and that for each type of water flux: the settled water, the recirculated water and 

the treated backwash water. Furthermore, influent files are required that characterize the washing 

water used during the backwashing cycles. Process control variables are those that indicate the 

recirculation rate, set points and other constraints that can change over time.  

4.3.1 Influent Characterization 
The measured concentrations of nutrients and pollutants in the influent need first to be converted into 

state variables to be applicable in the biofiltration model equations. As much as possible, the measured 

variables serve as the base of this conversion into state variables following a fractionation scheme and 

by applying fractionation parameters.  

The method for characterizing the influent variables is based on the fractionation for an ASM1 model 

(Henze et al., 2000). The fractionation parameters are shown in table 6 along with the default values 

from the ASM1 model. The organic matter fractionation model (see Figure 4-10a) was constructed 

from total COD and soluble COD measurements and/or TSS and converts these into six state variables 

for particulate matter (X_S: slowly biodegradable substrate; X_BH: active heterotrophic biomass; 

X_AOB: active ammonia oxidizing autotrophic biomass; X_NOB: active nitrogen oxidizing autotrophic 

biomass; X_I: particulate inert organic matter; X_P: particulate products from biomass decay) and two 

state variables for soluble compounds (S_S: readily biodegradable substrate and S_I: soluble inert 

organic matter). The state variables allow quantifying the evolution of the different organic and 

nitrogen compounds over time. 
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Figure 4-10: Fractionation scheme for a) Organic Matter and b) Nitrogen compounds based on measured variables (red 
outlined boxes) used to calculate the State Variables (orange boxes). Blue outlined boxes are derived variables. 

The nitrogen fractionation (Figure 4-10b) was based on directly measured variables of Total Kjeldahl 

Nitrogen (TKN), NH4-N and NOx. The TKN variable, which combines total organic nitrogen and 

ammonia, was used to characterize the biodegradable and non-biodegradable nitrogen compounds; 

S_ND (soluble biodegradable organic nitrogen), X_ND (particulate biodegradable organic nitrogen), 

S_NI (soluble, non-biodegradable nitrogen), X_NI (particulate, non-biodegradable nitrogen) and S_NH 

(free and ionized ammonia). Concerning NOx-N, the measured sensor data was converted into nitrate 

nitrogen (S_NO3) and nitrite nitrogen (S_NO2) using the daily ratio provided by laboratory analyses. 

The fractionation parameter values used to estimate the ratio of the components are shown in the 

lower section of Table 4-6. Values that have been significantly modified compared to the default value 

(Henze et al., 2000) for settled water, include the presence of biomass (factors 0.1; 0.3; 0.2) for settled, 

denitrified and nitrified water respectively in order to account for the biomass contribution in the 

water flowing out from each treatment stage. Both heterotrophic (X_BH) and autotrophic bacteria 

(X_BA) account for 90% and 10% respectively in the preDN influent. 

Table 4-6: Parameters used for fractionation of organic matter and nitrogen in the different fluxes of Settled Water, 
Denitrified Water and Nitrified Water. Default values are from Henze et al (2000). 

Fractionation 
parameter 

Fraction Description Default value 
Settled Water 

Denitrified 
Water 

Nitrified 
Water 

Settled 
Water 

Organic Matter      
f(S_S_CODs) Readily biodegradable COD  0.68 0.25 0.15 0.68 
f(X_S_CODx) Slowly biodegradable COD 0.65 0.65 0.05 0.72 

f(Biomass_CODx) Biomass in particulate COD 0.0625 0.3 0.2 0.1 

f(X_BH_Biomass) Heterotrophic biomass 0.9 0.9 0.8 0.9 

f(X_AOB_X_BA) Autotrophic biomass 0.5 0.05 0.5 0.5 

f(X_P_CODx_inert) Inert particulate COD from 
decay 

0.55 0.55 0.7 0.1 

Nitrogen      

f(S_ND) Soluble biodegradable 
organic nitrogen 

0.8 0.8 0.7 0.7 

i_X_Biomass  Mass of nitrogen per mass of 
COD in biomass [gN/gCOD] 

0.086 0.086 0.086 0.086 

i_X_P  Mass of nitrogen per mass of 
COD in products formed 
[gN/gCOD] 

0.06 0.06 0.06 0.06 

 



92 
 

When reconstructing a state variable combining daily measurements with 15 minutes time steps, one 

must be cautious to avoid negative values, such as can happen in the case of the fractionation of TKN 

into S_ND and X_ND, which is defined as the subtraction of 1 – (S_ND). In order to prevent such 

negative values, the values of the state variables have been adjusted with the laboratory observations. 

This was done by multiplying the 15-minutes measurements with the daily ratio of the laboratory 

observation and the average of the daily sensor measurement values. 

4.3.2 Definition of Process Control Parameters 
In the multistage treatment configuration, the model connects the simulated output of the 

denitrification (preDN) stage with the input to the nitrification (NIT) stage; and the output of the NIT 

to the input of the postDN. Not only does a ‘physical’ connection has to be established between the 

biofilters in the model, also process control settings related to the flow distribution, desired set points 

of quality variables and chemical dosing are required as input. For more information about the system 

architecture for this ‘three-filters-in-series-model’, refer to chapter 3. 

The control parameters required for modelling shown in Table 4-7 are calculated based on 

measurement data for the relevant period and the corresponding treatment phase.  

Concerning the preDN stage, the input parameters related to flow distribution are the number of filters 

available (NpreDN) [number], the rate of recirculation (Ratio_rec) [%], defined as the flow rate of 

recirculation divided by the sum of the flow rate of primary settling and the return flow, and the 

maximum allowable filtration flow rate (Vmax_preDN) [m/h] taken from measurement data. In 

addition, the model determines the minimum number of biofilters that are needed based on the 

maximum volumetric load (Charge_max_preDN) [kgN/(m3*d)] of nitrates and nitrites at the entry of 

the preDN stage, which has been taken from the meta-data stored in the databank. For the methanol 

dosing, the input parameters are the NO3 [g/m3] set point at the outflow (info received from the 

operator) and the ratio of methanol [g] added per NO3 [g] removed (ratio_methanol_preDN) [-], taken 

from the constructor’s manual.  

Table 4-7: Process control parameters for the preDN stage. 

Control Parameter 
and unit 

Description Value 

NpreDN [-] Number of filters available 57 
Ratio-rec [%] Recirculation rate 0.6 
Vmax_preDN [m/h] Maximum allowable filtration flow rate 6.5 
Load_max_preDN 
[kgN/m3/d] 

Maximum NOX volumetric load 580 

Set point_NO3 [g/m3] NO3 setpoint 1.3 
Ratio_methanol_preDN [-] Ratio of methanol [g] added per NO3-N [g] removed 0.75 

 

4.4 Parameter Estimation 
Model calibration involves the identification of parameters that have a strong impact upon the output 

variables and the estimation of their best fitting values. Parameter estimation is defined as the 

determination of the optimum values of the model parameters in relation to an objective function (i.e. 

the RMSE of the difference between observed and predicted values). These optimal values arise in a 

mathematical description with the aid of experimental data, assuming that the structure of the process 
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model, in other words the relationships between the variables and the parameters, is known (Dochain 

& Vanrolleghem, 2001).  

The calibration of the dynamic biofiltration model followed the method described by Mannina et al. 

(2011), which is based on the IWA Modelling Guidelines for Activated Sludge Models for the Use of 

Activated Sludge Models (Rieger et al., 2012). Models that contain a large number of parameters make 

it impossible to find manually, by trial-and-error, the best fit between a parameter value and the 

output variables due to the large variety of possibilities and number of trials required as well as due to 

the interdependencies among parameters. It is therefore important to identify beforehand which 

parameters have the most impact and to what degree they influence the values of selected output 

variables. In order to reduce the number of parameters to be calibrated and to better understand their 

impact, a global sensitivity analysis is performed (Sin et al., 2011).  

Considering the large number of parameters (142) and variables (20) in the model used in this study, 

as well as the uncertainty of a precise value associated with them, a global sensitivity analysis (GSA) 

was completed by applying the standardized regression coefficients (SRC) method (Cosenza et al., 

2013) instead of a local sensitivity analysis where only local differences in parameter values are 

investigated.  

The sensitivity analysis consisted of the following main steps:  

Step 1: Selection of the model parameters relevant for the output variables that relate to the 

denitrification process evaluated, which are nitrogen and phosphates removal, the consumption of 

organic matter and the filtering of suspended solids. A pre-selection of parameters based on expert 

opinion and literature review reduced the number to 89 parameters. Those related to the physical 

structure (such as, for example, the dimensions of the filter) were fixed at the measured values and 

thus excluded from the analysis. 

Step 2: Execution of Monte Carlo simulations under steady state conditions with a Latin Hypercube 

Sample (LHS) design of the selected parameters. The results of the simulations are analysed by a 

multilinear regression. Data normalization, necessary to provide uniformity and accuracy, has been 

applied by applying the z-score, with a mean ŷ and a standard deviation σ for each x value, while 

maintaining the dataset shape properties. 

Step 3: Identification of the parameters that have a significant effect on each of the selected variables 

by means of an evaluation of the standardized regression coefficient (SRC) of each parameter and 

grouping them into independent output variables that share the same parameters.  

The calibration then continues per independent variable group (conform Mannina et al., 2011), as will 

be described in paragraph 4.4.3.   

4.4.1 Initial Parameter Values 
The initial values are based on the previously performed calibration work of Zhu (2020) for the three 

treatment stages individually. As a reminder, the calibration of the preDN was performed with data 

from Seine Grésillons (Biostyr, year 2015); the NIT stage with data from Seine aval (Biostyr, 2009) and 

the postDN stage with data from Seine Centre (Biofor, 2008). Although these plants differ from the 

Seine-aval WWTP, especially in the volume of water received, the treatment methods applied are 

similar so that these model parameters can be considered as good initial values. 



94 
 

4.4.2 Identification of Influential Parameters 
In order to reduce computation time, the global sensitivity analysis consisted of 10 parallel sessions of 

90 simulations, each regenerated with a different seed number in the random generator. A total of 

900 steady-state simulations for a period of 30.5 days were run using Monte Carlo simulations and the 

Latin Hypercube Sampling (LHS) method, which allows for stratified random sampling of the parameter 

values covering the entire range set requiring a smaller sample size. At the time of 30.5 days, the 

variation in modelled variable values at the outlet of preDN is assumed to be entirely caused by the 

chosen parameter values. In this section, the identification and selection of parameters is discussed. A 

comprehensive evaluation of the performance of the quality of model fits, including the plotting of 

graphs, will follow in section 4.5.   

According to Brun et al. (2002), the sampling range for parameters that are considered well known in 

literature and describe biofiltration processes that are well understood was set to the range of - 20% 

to + 20% of their default value, while for lesser-known parameters the range was set to +/- 50% in a 

uniform distribution. The default values refer to the values of the parameters defined in the previously 

calibrated model (Zhu, 2020). 

Considering the variables at time t = 30.5 days, a multilinear regression analysis allows identifying the 

existence of a strong relationship between the parameter and the variable, indicated by the 

standardized regression coefficient (SRC) which varies between the values 1 (strong positive 

correlation), 0 (no correlation) and -1 (strong negative correlation). The SRC method is applied here in 

terms of factors prioritization (Cosenza et al., 2013). The absolute SRC scores are divided into three 

classes (see Table 4-8) to indicate their importance (Bernier, 2014).  

Table 4-8: Importance levels of the Standardized Regression Coefficients (Bernier, 2014) 

Absolute SRC score Level of importance of the SRC 

< 0.1 low 
0.1 < SRC < 0.25 significant 

> 0.25 strong 

 

The coefficient of determination (R2) indicates the fraction of total variance explained in the 

operational data by the regression model, and is as such a quality indicator. R2 values larger than 0.7 

point to a good validity of the SRC coefficients (Cosenza et al., 2013). As listed in Table 4-9, the variables 

have a calculated determination coefficient between 0.86 and 0.92, except for the NO2-N effluent 

variable, which has a R2 value of 0.64, slightly below the limit of 0.7, but still higher than the R2 value 

obtained during the global sensitivity analysis of the original model (Zhu, 2020). The lower value for 

nitrite can be explained by the fact that it is difficult to measure correctly.  

Table 4-9:  Determination coefficients in descending order for the effluent variables as calculated during the global 
sensitivity analysis of the selected model parameters. 

Effluent 
variable 

Description of effluent 
variable 

Determination 
Coefficient (R2) 

R2 value original model 
(Zhu, 2020, p. 438) 

SNH Ammonia NH4-N 0.93 0.94 
TKN Total Kjeldahl Nitrogen 0.92 0.90 
TSS Total Suspended Solids 0.92 0.87 
COD Chemical Oxygen Demand 0.91 0.80 
NO3 Nitrates NO3-N 0.91 0.82 
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CODs Soluble compounds of COD 0.87 0.66 
PO4 Orthophosphates PO4-P 0.86 0.91 
NO2 Nitrites NO2-N 0.64 0.61 

 

Overall, the validity of the SRC as a parameters (‘factors’) prioritization tool that provides information 

about the important factors (parameter prioritization) and non-influential factors (parameters fixing) 

is considered to be accepted.  

The SRCs for two important variables groups that relate to the denitrification process by heterotrophic 

bacteria under anoxic conditions are now discussed in more detail. The results of the global sensitivity 

analysis for all effluent variables are listed in Annex 3. 

NO3-N Effluent 

The outcome for the NO3–N variable, which is the most relevant variable in assessing the performance 

of the denitrification process, is shown in Table 4-10. Positive SRC values indicate that an increase of 

the parameter value will result in an increase of the value of the variable (here: NO3-N), while a 

negative SRC indicates that the variable value decreases. In fact, extreme SRC values on either side 

indicate a large influence.  

The influential positive and negative parameters with SRC larger than 0.1 are related to the growth 

and decay of the heterotrophic biomass, the hydrolysis of substrate and the thickness of the biofilm. 

Particularly high and positive values are found for the parameter WashRate (SRC +0.36), which controls 

the fraction of biofilm removed during the backwashing cycle. When the WashRate increases, a larger 

percentage of the active biofilm is removed so that there is less bacteria at the start of the next 

treatment cycle remaining to convert the nitrates in the bulk liquid. Therefore, higher NO3-N values in 

the effluent are to be found. 

Another important positive parameter influencing the NO3-N variable is the yield correction factor for 

the bacteria under anoxic conditions (n_hy) with a SRC of +0.31. In ASM1 models (Henze et al., 2000), 

a single yield (Y_H) value is used in the aerobic and anoxic growth equations of heterotrophic bacteria, 

but in the absence of dissolved oxygen a lower bacterial yield needs to be applied. Choubert et al. 

(2009) offer two different values for anoxic and aerobic conditions respectively: Y_H_anoxic = 0.54 

gCODproduced/gCODremoved (anoxic growth equation) and Y_H_aerobic = 0.67 

gCODproduced/gCODremoved (aerobic growth equation). In the current model, when the n_hy 

parameter value increases to 1, this will lower its impact and reduce the denitrifying behaviour of the 

heterotrophs, thereby resulting in higher NO3-N effluent concentrations. A third parameter, K_S_NO3 

has a SRC of +0.21, which is the half-saturation constant of soluble COD for the bacteria using nitrate, 

has a similar strong effect; higher parameter values slow down the consumption of nitrates and 

thereby leave higher concentrations in the effluent.  

Table 4-10: Parameters that have been identified by the global sensibility analysis as significant and strong influential upon 
the effluent NO3-N variable at the preDN denitrification stage. 

Ranking Parameter Description Standardized 
Regression Coefficient 

1 WashRate Fraction of biofilm removed during washing 0.37 

2 n_hy Anoxic correction factor of heterotrophic yield 0.31 
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3 n_h1 Anoxic heterotrophic growth rate reduction factor 
using nitrates 

-0.30 

4 k_h Hydrolysis rate -0.28 
5 theta_k_h Temperature correction factor for hydrolysis rate 0.22 
6 theta_b_H Temperature correction factor for heterotrophic 

mortality rate 
-0.21 

7 K_S_NO3 Anoxic half-saturation constant of soluble COD for 
heterotrophs using nitrates  

0.21 

8 theta_mu_H Temperature correction factor for maximum specific 
heterotrophic growth rate 

0.20 

9 n_h Anoxic hydrolysis rate reduction factor  -0.18 
10 lami Filtration coefficient of a clean filter -0.15 
11 b_H Heterotrophic mortality rate 0.12 

 

On the negative side of the influential parameters, biological growth reduction parameters are found, 

such as n_h1; when the value of this parameter goes up, the growth of the bacteria slows down, thus 

converting less nitrates, resulting in higher NO3-N effluent concentrations. In addition, parameters that 

control the hydrolysis process – such as k_h (SRC -0.28) and n_h (SRC -0.18) are highly influential. 

Carbon uptake and the availability of organic carbon are restricted by the rate of hydrolysis of slowly 

biodegradable (particulate) organic matter (Morgenroth et al., 2002). Higher values for the hydrolysis 

rate (k_h) will mean more uptake of organic matter by bacteria, which can then convert more nitrates 

from the water resulting in lower nitrate effluent concentrations. The same influence applies to the 

reduction factor of the hydrolysis rate to compensate for anoxic conditions (n_h); higher n_h values 

result in less compensation, and thus higher bacterial yields, thereby lowering the nitrate effluent 

concentrations. Another important factor can be found in the temperature relationships; parameters 

theta_b_H (SRC -0.21), theta_k_h (SRC +0.22) and theta_mu_H (SRC 0.20) are temperature coefficients 

that affect the biological reactions when temperatures in the water rise or drop.  

COD soluble Effluent 

The Chemical Oxygen Demand (COD) soluble effluent variable, which is the total of readily 

biodegradable substrate (rbCOD) together with the inert fraction (S_I), can be used as a representation 

of the biological activity. When the biomass in the filter is highly active, it uses large portions of rbCOD, 

which lowers the soluble COD concentration in the effluent. Parameters that control the heterotrophic 

growth rate via a temperature correction (theta_mu_H) and anoxic reduction correction (n_h1) have 

indeed high SRC scores of +0.27 and -0.23 respectively indicating a strong influence. The parameter 

K_S_NO3, that controls the anoxic half-saturation constant of soluble COD for heterotrophic biomass 

using nitrates, has a SRC of +0.14, indicating a significant influence over the COD soluble effluent 

variable. Table 4-11 lists the parameters with SRCs higher than 0.1. 

Table 4-11: Parameters that have been identified by the global sensibility analysis as significant and strong influential upon 
the effluent soluble COD variable at the preDN stage. 

Ranking Parameter Description Standardized 
Regression Coefficient 

1 theta_mu_H Temperature correction factor for specific maximum 
heterotrophic growth rate 

0.27 

2 n_h1 Anoxic heterotrophic growth rate reduction factor 
using nitrates 

-0.23 
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3 K_S_NO3 Anoxic half-saturation constant of soluble COD for 
heterotrophs using nitrates  

0.14 

4 theta_b_H Temperature correction factor for heterotrophic 
mortality rate 

-0.13 

5 k_h Hydrolysis rate 0.13 
6 mu_H Maximum specific heterotrophic growth rate -0.12 
7 theta_k_h Temperature correction factor for hydrolysis rate -0.11 
8 n_h Anoxic hydrolysis rate reduction factor  0.11 
9 n_hy Anoxic correction factor of heterotrophic yield 0.11 

 

TSS Effluent 

When taking the modelled Total Suspended Solids (TSS) concentration in the effluent of the preDN 

stage into consideration, the physical filtration of a filter is the principal process involved. This is 

represented by those parameters that describe filter characteristics. The global sensitivity analysis did 

indeed identify the following parameters as the most influential with a SRC larger than 0.1 (see Table 

4-12): the filtration coefficient (‘lami’), which is the filtration coefficient of the filter bed of a cleaned 

filter after each washing cycle, the fractionation parameter (‘F_TSS_COD’) that determines the 

concentration of suspended solids (TSS) in the water based on the concentration of particulate COD, 

the y-coefficient in the Ives equation (‘yy’), the WashRate, the z-coefficient in the Ives equation (‘zz’) 

and the biofilm density (‘rho’). The parameters ‘lami’, ‘yy’ and ‘zz’ belong to the filtration ‘Ives-

equation’ and each describe a phenomenon influencing filtration efficiency, which is directly negatively 

affected by an accumulation of particulates on the filter bed. 

Table 4-12 : Parameters that have been identified by the global sensibility analysis as significant and strong influential upon 
the effluent TSS variable at the preDN stage 

Ranking Parameter Description Standardized 
Regression Coefficient 

1 lami Filtration coefficient of a clean filter -0.44 
2 F_TSS_COD Fraction of TSS from particulate COD 0.22 
3 yy Second term in Ives equation  -0.20 
4 WashRate Fraction of biofilm removed during washing -0.14 
5 zz Third term in Ives equation 0.14 
6 rho Biofilm dry density -0.13 
7 xx First term in Ives equation 0.07 

 

4.4.3 Grouping of Parameters to be calibrated per Process 
Following the procedure described by Mannina et al. (2011), in order to improve parameter 

estimation, the global sensitivity analysis (GSA) results were structured in a sequential order of priority 

relating to the process evaluated. Here, the processes considered are nitrogen and phosphates 

removal, the consumption of organic matter and the filtering of suspended solids.  

The first category of variables focuses on the particulate components (represented by TSS) in order to 

cover the physical properties of filtration; thereafter the focus was on the soluble substrate variables 

for the biological reactions of the denitrifying microorganisms using organic matter (soluble COD) and 

nitrates (NO3-N). Group 2 thus contains both soluble COD and nitrates combined, because they both 

share many of the same and interlinked parameters given the metabolic kinetics of the biomass that 

describe the use of soluble COD (the substrate for the biomass) to convert nitrates into nitrogen gas. 
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Group 3 (NH4-N), group 4 (NO2-N) and group 5 (PO4-P) contain individual variables that are of a lesser 

concern to denitrification, but could still provide valuable information about the parameter settings.  

4.4.4 Calibration of selected Parameters 
The calibration per variable group consisted of Monte Carlo Simulations with 30-day dynamic 

simulations that were each time preceded by steady-state simulation for a 30-day period to initialize 

the model. The parameter ranges used in the Monte Carlo-based optimization (Sin et al., 2011) were 

sampled by the LHS method with five times the number of parameters as the total number of Monte 

Carlo runs.  

Evaluation of statistical scores for mean error (ME), mean absolute error (MAE) and the root mean 

square error (RMSE) leads to find the optimal parameter value. In this study, optimal values are 

determined by minimizing the RMSE. The modelling guidelines maintain that an error range of 10 to 

15% is acceptable for ASM models (Rieger et al., 2012), which coincides with the confidence interval 

of measurements. Furthermore, Rittmann et al (2018) present a framework for good practice in 

modelling biofilm reactors, in which they indicate reasonable ranges of values for several variables. 

However, in the absence of a widely accepted and consistent protocol with specific criteria for biofilm 

models, statistical error values of 15% are considered acceptable (Rittman et al. al., 2018). Once the 

best model parameter values are found for one group of parameters, they are fixed and the calibration 

continues with the parameters belonging to the following group. Finally, a validation of the model 

parameters is performed over the full period to allow for a visual inspection and a statistical analysis 

of model performance and for the manual fine-tuning of parameters.  

An overview of the model parameters that were recalibrated is given in Table 4-12 together with the 

default values taken from the original model (Zhu, 2020) and their relative differences. The modified 

parameters cover the full range of processes and characterize filtration, backwashing, the transfer of 

material within the biofilm by diffusion, the nature of the biofilm and the biological kinetics. 

Table 4-12: Overview of the estimates of the influential parameters of the mechanistic model recalibrated during this study. 

Description of parameters Symbol Unit Original 
value (Zhu, 
2020) 

Range 
assigned 

New 
value  

Difference 

Composition 
      

Mass of nitrogen per mass of COD in 
biomass 

i_X_B gN/gCOD 0.098 20% 0.109 +11% 

Mass of phosphorus per mass of COD in 
biomass 

i_X_BP gP/gCOD 0.0055 50% 0.0046 -16% 

Mass of phosphorus per mass of COD in 
products formed by bacterial decay 

i_X_UP gP/gCOD 0.006 50% 0.008 +33% 

       

Filtration 
      

Filtration coefficient of clean filter lami m-1 0.4 50% 0.43 +8% 

Empirical constant y in the filtration 
coefficient equation 

yy - 0.83 50% 1.06 +28% 

       

Kinetics 
      

Anoxic half-saturation constant of 
soluble COD for heterotrophs consuming 
nitrites 

K_S_NO2 gCOD/m3 13.8 20% 16.06 +16% 

Anoxic half-saturation constant of 
soluble COD for heterotrophs consuming 
nitrates  

K_S_NO3 gCOD/m3 28.6 20% 41.37 +45% 
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Mortality rate of heterotrophic biomass b_H d-1 0,7 20% 0.73 +4% 

Ammonification rate k_a m3/ 
(gCOD*d) 

0.075 20% 0.065 -13% 

Hydrolysis rate k_h gCOD/ 
(gCOD*d) 

2.5 50% 2.6 +4% 

Maximum specific growth rate of 
heterotrophic biomass 

mu_H d-1 5.18 20% 4.74 -8% 

Anoxic growth rate reduction factor of 
heterotrophic biomass consuming nitrite 

n_h2 - 0.14 50% 0.19 +36% 

Factor for reducing the rate of growth in 
anoxia of heterotrophic biomass by 
consuming nitrate 

n_h3 - 0.47 50% 0.31 -34% 

Anoxic Heterotrophic Yield Correction 
Factor 

n_hy - 0.78 50% 0.72 -8% 

 

Compared to the values of the original model, the parameters change on average by +21%. This could 

indicate a difference in conditions for the bacteria and their metabolisms between the current 

calibration period and the one carried out previously in the study by Zhu (2020), which used data from 

another but similar WWTP. Important modifications are proposed to the parameters describing the 

activity of the heterotrophic biomass under anoxic conditions, among these the reduction factors of 

the growth rate of heterotrophic biomass reducing nitrites (n_h3: -34%), that of reducing nitrogen 

monoxide (n_h2; +36%) and the half-saturation constant of soluble biodegradable COD for 

heterotrophic biomass consuming nitrate (K_S_NO3: +45%). Overall, 9 modified parameters belong to 

the category of biological kinetics and 2 parameters to filtration; what is expected in a model of biofilm 

in a filter. See Appendix 3 for a complete list of all model parameters. 

Realism of simulated Thickness of Biofilm and Boundary Layer 

Two other indicators of the performance of a biofilm model are the level of realism of the simulated 

thickness of the biofilm and the Mass Transfer Boundary Layer (MTBL), which separates the biofilm 

from the bulk liquid. The MTBL thickness is a representation of the resistance of transport and transfer 

of particulate and soluble matter from the bulk liquid towards the biofilm (Rittmann et al., 2018).  

Earlier biofilm models set the thickness of the biofilm and the boundary layer to a constant value and 

used a variable biomass density to account for the varying biomass amounts in the biofilm; considering 

these to be a structural model parameter. However, the biofiltration model used in this study (Zhu, 

2020) contains a variable thickness of each of the five biofilm layers that is recalculated per time step 

in function of the mass of particulates that are ‘entrapped’ in it, and in function of microbial growth. 

In addition, the thickness of the MTBL is also time-variable to be able to describe the changing 

resistance on the diffusion gradient from the bulk liquid into the film. The thickness of the boundary 

layer is calculated according to the Ohashi equation (1981) as the quotient of the geometrical 

characteristics of the filtering media and the Sherwood Number that represents the mass transfer 

ratio, which itself is a function of the flow rate (Reynolds Number) and the fluid characteristics and 

diffusion coefficients (Schmidt Number) (Morgenroth, 2008).  

Comparison of the average biofilm thickness in this model with the typical values mentioned in 

literature is a good practice. Thickness should remain within acceptable limits and should decrease in 

function of the height of the reactor column in an upward flow directional biofilter. The highest organic 

loads are to be found at the entrance of the filter; where a thicker biomass will develop (Vigne, 2010).  
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According to literature review (chapter 2), the acceptable values reported are 80 – 120 µm for the 

biofilm thickness (Rittman et al., 2018) and around 100 µm for the MTBL thickness (Morgenroth, 2008). 

In the previous calibration work by Zhu (2020), the average simulated thickness was 95 µm and 97 µm 

for the biofilm and boundary layer thickness respectively in the predenitrification stage. 

In this study, the averaged simulated biofilm thickness was 83 µm with a minimum average of 38 µm 

(the moment just after backwashing) and a maximum average thickness of 139 µm for the first section 

of the filter column; values that fall in or are close to the acceptable range. The average MTBL boundary 

layer thickness was 84 µm; which is in the same order of values reported in literature (100 µm) and 

about 13% less than the average MBTL thickness in the original model by Zhu (2020). This could 

indicate an overall lower resistance to the transport and transfer of compounds into the biofilm. 

4.5 Simulation of Denitrification by Biofiltration 
This paragraph discusses the results of the simulations of effluent water quality by the mechanistic 

dynamic biofilter model for the predenitrification stage using data of primary effluent and recirculation 

of nitrified water from the calibration period from 01.12.2029 until 15.03.2020.  

4.5.1 Calibration Results Denitrification Stage 
Table 4-13 presents the values of statistical criteria for the simulations of the preDN effluent 

components during the calibration period. The relative mean error ME/ӯ values indicate that the bias 

of the model is low compared to the average values observed, in particular for the total COD, soluble 

COD and TSS variables, in particular when keeping in mind the laboratory measurement error that 

typically have a 10% error range. 

In the case of NO3-N, the ME/ӯ indicator has larger values (-0.47 and 0.32 respectively), indicating that 

the model overestimates the biological conversion rates, so that too much nitrates get converted in 

the model and the effluent contains too low NO3-N concentrations. This could be related to 

inaccuracies with the estimation of dissolved oxygen (DO) concentrations in the influent water. In fact, 

high DO has an inhibitory effect on denitrification by favouring aerobic metabolism of heterotrophic 

bacteria (Henze et al., 2008). However, the data of the DO probes have a high percentage of outliers 

and suppressed data (28%), which during the data-preprocessing are replaced with average 

interpolated or smoothed values that may be lower than observed. 

Table 4-13: Statistical scores for calibration and validation of the mechanistic model for the modelled variables at outlet 
preDN. 

 
 Calibration  Validation  

Variable Unit N 
Mean 
obs. 

ME/ 
ӯ 

MAE
/ӯ 

RMSE/
ӯ 

  N 
Mean 
obs. 

ME/ӯ 
MAE

/ӯ 
RMSE/

ӯ 
Janus 
coef 

NO3-N gN/m3 10656 2.89 -0.47 0.67 0.86  8015 2.62 -1.23 1.29 1.46 1.53 

NO2-N gN/m3 10656 0.31 0.32 0.45 0.71  8015 0.38 0.34 0.5 1.27 1.36 

totCOD gO2/m3 10656 89.07 -0.01 0.14 0.20  7218 64.84 -0.53 0.55 0.6 2.20 

solCOD gO2/m3 10656 43.3 0.04 0.14 0.21  7218 43.92 -0.35 0.39 0.45 2.13 

TSS g/m3 10656 21.2 -0.11 0.23 0.39  7399 20.12 -0.36 0.46 0.63 1.54 
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Figure 4-11 shows the calibration results for the effluent nitrate concentration for the month of 

December 2019 in more detail. In Figure 4-11a, the effluent nitrate concentration modelled at high 

frequency (blue line plot) follows the values measured in the laboratory (the brown triangles) and 

corresponds to the observations. The modelled average daily values amount to 4.7 mg NO3-N/L on 

average for this period, while the average nitrate concentration observed in the effluent was 5.3 

mgNO3-N/L for the month of December. The evaluation in terms of statistical scores for this period 

shows an ME of 0.67 mgNO3-N/L, an MAE of 1.08 mgNO3-N/L and an RMSE of 1.36 mgNO3-N/L, all 

values less than 25% of the observed average. The parity plot (figure b) of daily observations against 

simulations indicates the correlation between the two. One can conclude that the model is capable of 

simulating the conversion of NO3-N to N2; especially for effluent values in the range 4 – 6 mgN/L. Higher 

values [6 – 10 mgN/L] tend to be underestimated by the model. The R2 value of 0.41 for the model 

predictions indicates a correlation with a high uncertainty. 

 

Figure 4-11: a) Calibration results of the NO3-N concentration in the effluent of the preDN (brown triangles: daily composite 
laboratory observations, blue line: simulation results, black line: NO3-N influent). b) Parity plot showing observed relative to 
daily average simulated nitrate concentrations. 

Concerning the results of the modelled nitrite (NO2-N) concentration in the preDN effluent, the 

modelled values are on average (0.12 mgN/L) approximately twice lower than the average of the 

observations (0.26 mgN/L). This difference is reflected in the statistical scores: ME (0.14 mg N/L), MAE 

(0.14 mgN/L) and RMSE (0.18 mgN/L). Simulating nitrite concentrations is difficult because nitrite is an 

unstable compound that quickly oxidizes to nitrate. In addition, the low levels here observed often 

approach the detection limits of the probes. This metrological difficulty is therefore reflected in the 

quality of the model's results.  

Figure 4-12 shows the results of total COD (a), soluble COD (c), TSS (e) and NH4-N (g). The simulations, 

in particular for total COD and soluble COD, vary around and with the same amplitude as the 

observations most of the time. This is confirmed by the parity plots for COD total (b) and COD soluble 

(d), which show points of daily average modelled versus daily composite sample observations in close 

proximity to the optimum with R2 values of 0.67 and 0.65 respectively.  
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Figure 4-12: Calibration results at the outlet of the preDN for concentrations of a) total COD, c) soluble COD, e) TSS and g) 
NH4-N. Parity plots shown on the right side are for b) total COD, d) soluble COD, f) TSS, h) NH4-N. (Brown triangles: composite 
sample laboratory observations, brown line: sensor observations, brown squares: daily average of sensor observations; blue 
line: simulation results, black line: influent. 

Comparison for TSS (c) with the high-frequent measurements shows less precise results, sometimes 

with significant deviations (on days December 8, 19, 26). This could be due to the TSS in-line analyser, 

which requires intensive maintenance to keep it clean and calibrated, or to specific conditions during 

these periods of time that did not correspond to the rest of the calibration period. The ME and MAE 

for TSS are 2.3 mg/L and 4.9 mg/L respectively to the sensor data with an observed mean of 21.2 mg/L. 

The laboratory results however give a much better fit when compared to the average daily simulated 

TSS effluent with R2 value of 0.60 (f).  
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Finally, for ammonia (NH4-N), the simulations follow the trend and amplitude of the observed values, 

but are consistently overestimated with a ME of 2 mgN/L. Although ammonia is not transformed 

during the denitrification stage, it is assimilated by the biomass for its growth and can be ‘produced’ 

by hydrolysis/ammonification of organic nitrogen, such as protein, urea, and certain components of 

cells (like nucleic acids). When bacteria die, the nitrogen they contain is liberated as NH4-N into the 

bulk liquid. The model is able to simulate this ammonia uptake and subsequent release well, resulting 

in a high R2 value of 0.79 (figure h). 

 

4.5.2 Validation Results Denitrification Stage 
This paragraph discusses the results of the simulations for the validation period using as influent data 

those from the period 01.06.2020 until 30.09.2020. A good validation is defined by a good 

generalization of the model parameters. In other words, when a model can satisfactorily simulate 

effluent concentrations measured in a period not used for calibration. The Janus coefficient allows 

evaluating the model performance outside the calibration data range. With an expected optimal value 

of 1, the model is nevertheless considered valid with a Janus coefficient of 2 (Hauduc et al., 2015), 

meaning that the RMSE during the validation period should not be more than twice the one during the 

calibration period.     

The results for the validation period (Figure 4-13) show the concentrations of the variables NO3-N (a), 

total COD (c) and soluble COD (e) at the preDN effluent for the modelled values (blue coloured line) 

and observations (brown triangles). The predicted NO3-N concentrations are generally overestimated 

and show significant deviations from the observations, in particular from the beginning of August, 

which results in a weak parity diagram (Figure 4-13b). Explaining this may be the lower flow arriving at 

the plant and the drastic drop in or a change in the composition of organic matter load during the 

month of August due to a reduction in (human) population in the city during the summer period. This 

could provoke a reduction in the denitrification rate.   
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Figure 4-13: Validation results at the preDN effluent for a) the NO3-N concentration; c) total COD and e) soluble COD. Parity 
plots show the modelled values in function of the observations for b) NO3-N, d) total COD and f) soluble COD. Brown triangles: 
laboratory observations, blue line: simulation results. 

The estimates of total and soluble COD are generally quite satisfactory, but are systematically 

overestimated (figures c to f). Similarly, the actual effluent contains fewer nitrates than simulated by 

the model, in particular during the period from the end of July to mid-August 2020. This overestimation 

of COD and nitrates at the preDN effluent can be explained by an insufficient metabolic activity of the 

biomass in the model during the validation period. 

Many other factors can introduce simulation errors, such as the precision of the measured values 

(especially for in-line sensors which show large uncertainties) and the fractionation of the measured 

data of total COD and soluble COD into the state variables used by the model. Experiments to 

characterize wastewater fluxes, such as by respirometry methods, will allow capturing changing 

conditions and (regular) updating of the fractionation parameters (e.g. Mesta et al., 2023). 

Evaluation of the Janus coefficient (see Table 4-13), which serves as an indicator of the performance 

of the model during validation in comparison to calibration, shows values in the range [1.36: 2.20] with 
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an average of 1.75 indicating good model performance. The nitrogen components (NO3-N and NO2-N) 

have a coefficient of around 1.5, which in the case of denitrification, is very relevant and an indicator 

of well-modelled biological behaviour. The Janus coefficient for total COD (2.20) and soluble COD (2.13) 

indicate a validation error that is however not far from the acceptable coefficient range between 1 and 

2. TSS has a Janus coefficient similar to nitrates and nitrites reflecting the good description of the 

filtration by the model. 

4.5.3 Integrated Biofiltration Model 
The integrated model of the biofiltration wastewater treatment lane allows not only to simulate preDN 

effluent quality, but also to simulate the effluent of the nitrification (NIT) and postdenitrification 

(postDN) stages. Since the results for the preDN stage have already been discussed above, this 

paragraph continues the comparison of the modelled effluent variables for organic matter and 

nitrogen for the sub sequential NIT and postDN stages.  

Results for NIT stage 

The modelled output of the Nitrification stage is shown in Table 4-14 and Figure 4-15 for the nitrates, 

nitrites, ammonia, TSS, COD total and COD soluble concentrations for the month of December 2019. 

The simulations of ammonia (Figure 4-15e) fit the observations with a relative mean error ME/ӯ of -

0.02 and a mean absolute error MAE/ӯ of 0.3, which is affected by short-term, but large peaks 

occurring on December 19, 21 and 26. Also indicated in the figure is the ammonia set point in the 

effluent, which fluctuates almost daily between 0.5 – 1.5 mgNH4-N/L due to the operator testing the 

impact of different NH4-N set points.  

The modelled nitrate concentrations (Figure 4-15a) also correspond well with the observations. The 

modelled daily values amount to 22.1 mgNO3-N/L on average, while the average nitrate concentration 

observed was 19.3 mgNO3-N/L (laboratory) and 16.3 mgNO3-N/L (inline analyser). The statistical scores 

calculated are a ME of -3.4 mgNO3-N/L, an MAE of 3.4 mgNO3-N/L and a RMSE of 4.4 mgNO3-N/L, 

values that fall between 17 – 23% of the observed mean. 

Table 4-14: Overview of statistical scores for different effluent variables during a 30-day period (December 2019) 
 at the NIT stage. 

  Calibration 

Variable Unit N 
Mean 
obs. 

ME ME/ӯ MAE MAE/ӯ RMSE RMSE/ӯ 

NO3-N gN/m3 30 19.31 -3.37 -0.17 3.45 0.18 4.39 0.23 

NO2-N gN/m3 30 0.84 -4.67 -5.54 4.67 5.54 4.89 5.8 

totCOD gO2/m3 30 42.59 -10.89 -0.26 11.24 0.26 11.83 0.28 

solCOD gO2/m3 30 32.03 -3.2 -0.1 3.2 0.1 3.37 0.11 

TSS g/m3 30 9.93 -3.73 -0.38 3.82 0.38 4.88 0.49 

NH4-N gN/m3 30 2.34 -0.06 -0.02 0.69 0.3 0.79 0.34 

 

There is, however, a complete overestimation of the concentration of nitrites by the model (Figure 

4-14b) which results in a large relative mean error ME/ӯ (-5.5) and mean absolute error MAE/ӯ (5.5) 

due to the low average observed nitrites concentrations in the effluent (Table 4-13). Part of this 
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difference could be explained by the instability of NO2-N after sampling and the difficulty to measure 

it in the lower range. There might also be an accumulation of nitrites in the modelled bioreactors that 

gets released into the bulk liquid and results in higher NO2-N concentrations in the modelled effluent. 

Furthermore, Table 4-14 presents an overview of the values of the statistical criteria calculated from 

simulations of the NIT effluent during the calibration period. The relative ME/ӯ values indicate that the 

bias of the model is relatively low compared to the average values observed, in particular for the 

variables NH4-N (ME/ӯ = -0.02), soluble COD (ME/ӯ = -0.1) and NO3-N (ME/ӯ = -0.17), albeit all negative 

values indicating an overestimation of the effluent concentrations. In the case of total COD, this bias 

becomes stronger with a ME of -10.9 mgO2/L. This is partly explained by the contribution in total COD 

of particulates organic matter during the same period, which is overestimated in larger proportions as 

indicated by the TSS ME of -3.73mg/L.  

The parity plot (Figure 4-15l) exhibits a high correlation with a R2 value of 0.93 and indicates the 

model’s overestimation as a systematic error (or a bias). A possible explanation is that the non-

biodegradable soluble COD (S_I) that forms part of the soluble COD is actually not correctly 

fractionated during influent characterization. Indeed, the variable S_I is not directly measured, but is 

often taken as a portion of the value of soluble COD in the effluent (Henze et al., 2000). However, it is 

known that S_I is in fact produced by organisms when they metabolize COD (about 5-10% of degraded 

COD is converted to S_I), and this means that the effluent COD is in fact composed of the S_I present 

in the effluent of the nitrification stage plus the S_I produced in the postDN stage on the basis of the 

degraded external COD. Moreover, due to the constant dosing of externa carbon in the postDN stage, 

the total soluble COD in the effluent is higher than it would be without the dosing. Thus, the soluble 

COD in the nitrification biofilter effluent could be lower than the effluent COD of the postdenitrification 

reactor. 
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Figure 4-14: Calibration results at the outlet of the NIT stage for a) effluent NO3-N; b) Parity plot for NO3-N;  c) NO2-N 
effluent; d) Parity plot for NO2-N. Brown points: composite sample laboratory observations, brown line: sensor observations, 

blue line: simulation results. 
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Figure 4-15: Calibration results at the outlet of the NIT for e) NH4
+-N; g) TSS; i) total COD and k) soluble COD. Parity plots on 

the right side. Brown points: composite sample laboratory observations, brown line: sensor observations, blue line: 
simulation results. 

Results for postDN stage 

The final treatment stage of the biofiltration lane, the downstream denitrification postDN stage, treats 

the effluent of the nitrification NIT stage by means of a battery consisting of 12 submerged Biofor© 

filters. An external source of carbon is added to the water in the form of methanol (CH3OH), which 

serves as the main source of readily biodegradable substrate for the biomass. 

The modelled effluent quality of the postDN is shown for December 2019 in Figure 4-16 for the 

variables nitrates and nitrites, and in Figure 4-17 for ammonia, TSS, total COD and soluble COD. 

Concerning nitrate effluent simulations, when compared to the effluent sensor signal, the simulated 

amplitude is higher than that measured and shows peaks of up to 11 to 12 mgN/L that remain 

unexplained. A very low R2 value is witness to the lack of correlation. The simulation of nitrites in the 

effluent is also overestimated and shows a systematic bias. 
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Figure 4-16: Calibration results of the effluent of the postDN for a) NO3-N; b) Parity plot; c) NO2-N; d) Parity plot. Brown points: 
composite sample laboratory observations, brown line: sensor observations, blue line: simulation results. 

The model simulations for ammonia shown in Figure 4-17e fit the measurements quite well with a R2 

value of 0.92 for the averaged values. Estimations for COD total (mean modelled: 85.4 mgO2/L; mean 

observed 54.5 mgO2/L) and COD soluble (mean modelled: 65.8 mgO2/L; mean observed 46.1 mgO2/L) 

are about a factor 1.5 too high, in the case of COD total with a scale factor of 1.6 and 1.4 for COD 

soluble. The TSS concentration modelled follows the trends observed, although it starts too high. 
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Figure 4-17: Calibration results of the effluent of the postDN for a) NO3-N; c) NO2-N; e) NH4
+-N; g) TSS; i) total COD and k) 

soluble COD. Parity plots for each of the variables on the right side. Brown points: composite sample laboratory observations, 
brown line: sensor observations, blue line: simulation results. 

Table 4-15 provides an overview of the errors for the postDN effluent variables for December 2019. 

The negative ME scores for all variables but the NO3-N confirm that the model in general overestimates 

the effluent concentrations at the postDN. This indicates a lack of metabolic activity of the biomass in 

the model. This could be due to the applied procedure of methanol dosing, of which the process 

control was integrated in the model is in accordance with the constructor’s guidelines. It might be that 

since then, some instructions or procedures have been modified (e.g. different set points or ratio of 

methanol dosing), causing a bias in the model results.  

Table 4-15: Overview of statistical scores for calibration of postDN. 

  Calibration 
Variable Unit N Mean 

observed 
ME ME/ӯ MAE MAE/ӯ RMSE RMSE/ӯ 

NH4-N gN/m3 31 1.0 -0.3 -0.34 0.4 0.36 0.4 0.45 
NO3-N gN/m3 30 3.6 0.3 0.08 1.5 0.42 1.8 0.49 
NO2-N gN/m3 30 1.7 -1.6 -0.94 1.6 0.94 1.6 0.98 
totCOD gO2/m3 30 55 -24 -0.43 24 0.43 25 0.47 
solCOD gO2/m3 31 46 -15 -0.32 16 0.35 19 0.40 

TSS g/m3 30 8 -2.5 -0.32 2.9 0.36 3.4 0.43 

 
Moreover, the dosing of methanol creates conditions in the filters that favour the growth of methanol-

oxidizing microorganisms (methylotrophic denitrification), that are characterized by slow kinetics and 

lower yields compared to that of heterotrophic denitrification with more traditional carbon sources 

(Lu et al., 2014). This results in less thick and slow growing biomass, thereby moderating the 

transformation of nitrates into N2. This slower growth rate also means that at the start of the significant 

methanol dosing sessions, a longer adaptation time is required before a critical biomass starts to be 

present. A recalibration of the relevant model parameters might be necessary. 
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4.6 Conclusions and Recommendations 
The treatment of wastewater by activated biological submerged filters (biofiltration) is a complex 

process with short hydraulic retention times and remains more difficult to model than conventional 

systems, such as activated sludge. ASM mechanistic models (Henze et al., 2000) are well developed 

and calibration protocols widely accepted. However, these ASM models cannot be applied directly to 

biofilm models due to the importance of transport and transfer processes and biological conversions 

taking place from water to biofilm and within biofilm, as well as the influence of regular backwashing 

on biomass presence (Rittmann et al., 2018). 

Therefore, biofilm models contain a large number of additional parameters that require a more 

elaborate calibration process and need longer computation times. 

In general, models are sensitive to the quality of the data provided. This highlights the importance of 

the quality of data represented by the "data-pipeline", a process that describes the necessary steps to 

turn raw data into useful information in order to make intelligent decisions. The data must be of high 

quality in order to derive useful information from them (Therrien et al., 2020). High frequency data 

(e.g. 15-minute intervals) from in-line sensors are exposed to large variations and amplitudes, in 

particular in harsh wastewater treatment conditions, and may show signs of drift, bias and other 

measurement errors.  

A data preprocessing procedure based on the detection of outliers, smoothing and fault detection 

(Alferes & Vanrolleghem, 2016) was used to reduce the impact of measurement errors. The analysis 

led to an average of 4% of all measured variables detected as outliers in the calibration data, whereas 

16% of all data points had to be removed due to data faults and gaps created by outliers. The highest 

percentage of outliers was detected in the TSS sensor measurements (16.1%), while the highest 

percentage of removed data was identified in the PO4-P sensor (48%). The data cleaning method for 

the validation data identified on average 1.4% data as outliers, which is 2 to 3 times lower than during 

calibration. The percentage of removed data points for the validation data was about 12%, 25% less 

than during calibration. This could be explained by calmer conditions during the validation period 

resulting in less fouling and other sensor errors, as well as increased sensor maintenance by the 

operators.    

In this study, a previously developed mechanistic model (Zhu, 2020) was adapted using high –frequent 

(15 minutes intervals) measurement data (2019 – 2020) from the secondary treatment by biofiltration 

on a full-size municipal wastewater treatment plant (Seine-aval, SIAAP). The calibration method 

involved a sensitivity analysis in order to identify the most influential parameters on the response of 

the model describing the denitrification procedure in successive stages. Parameters characterizing 

filtration and washing, material transfer to biofilm by diffusion, the nature of the biofilm and biological 

reactions were identified as having the most influence.  

The simulation of the calibrated model for the calibration period showed that the model managed to 

simulate the effluent NO3-N, NO2-N, NH4-N, COD, COD and TSS with reasonable performance for the 

upstream denitrification preDN stage, having average errors between 10 – 30% of the observed mean. 

A similar performance is modelled for the effluent of the nitrification NIT stage, with a good estimation 

of effluent soluble COD, ammonia and nitrates (ME/ӯ < 17%). The model predictions for the effluent 
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of the downstream denitrification postDN stage however are less satisfactory. This could be due to the 

presence of methylotrophic bacteria that require an adaptation of kinetic model parameters, which 

fell outside the scope of the study. The model’s performance could also benefit from an additional 

calibration period that includes the summer months to cover different operating conditions. 

Concerning the model performance for the preDN stage with validation data unknown during 

calibration, the Janus coefficient for nitrate, nitrite and TSS effluent was found to be between 1 and 2, 

indicating a valid model. The Janus coefficients for total COD and soluble COD effluent in the preDN 

stage are slightly higher than 2, but are still very acceptable.   

Overall, this work demonstrates the potential of mechanistic biofilm models to describe the behaviour 

of denitrifying and nitrifying biofilters. However, the accuracy of the simulations of a mechanistic 

biofilm model could be further improved by adding an intelligent data-based layer to it in a hybrid 

concept, which will be the topic of the next chapter. 



 

5 Hybrid Modelling of Nitrogen Removal by Biofiltration: A Full-

scale Study 
Keywords: Hybrid models, data-driven models, mechanistic models, biofiltration, wastewater 

treatment. 

Abstract 

The digitalization of the wastewater sector is proceeding fast with the application of data-based 

monitoring, model-based predictive process control and other tools for data-driven decision-making.  

In this chapter, a parallel hybrid model is presented for the simulation of nitrogen removal by 

submerged biofiltration of a very large-size WWTP. This digital twin consists of a Machine Learning 

model and a mechanistic model that are combined to produce accurate predictions of water quality 

variables as the processes’ output. The models are calibrated/validated using detailed and quality-

controlled operational data collected over a period of 3.5 months in 2020. The mechanistic model 

applied is a modified Activated Sludge Model 1 that describes the biological, physical and chemical 

processes taking place in a biofilm reactor. The mass balance equations are based on the domain 

knowledge of these processes. A three–layer feedforward Artificial Neural Network with a ReLu 

activation function that aims to reduce the mechanistic model’s residual error then corrects its output.  

The results show how the hybrid model outperforms and significantly reduces the size of the 

mechanistic model’s prediction errors of the effluent nitrate concentration from a relative mean error 

of 12% for the mechanistic model to 2% for the hybrid model during training. While the error on nitrate 

simulations increases to 8% during hybrid model testing, this is significantly lower than the error of 

110% for the mechanistic model. The overall good performance of the hybrid model allows for future 

applications of hybrid biofilm models in an operational context, such as for process control with a 

Hybrid Model Predictive Controller (the subject of chapter 6). 

5.1 Introduction 
Improving the performance and efficiency of wastewater treatment plants (WWTPs) involves 

strengthening the control of the processes that take place there. Optimization of energy performance, 

reduction of the use of reagents, of greenhouse gas emissions and of overall environmental impact of 

operations, the improvement of the recovery of resources and a stable effluent quality are nowadays 

the objectives for the wastewater treatment sector. An important field of research aims to study the 

potential of the application of artificial intelligence (AI) techniques to achieve this aspired 

improvement in the performance of WWTPs (Schneider et al., 2022). 

Wastewater treatment includes several successive physical, biological and chemical processes, that 

are non-linear and non-stationary, which complicates the optimization of their management (Henze 

et al., 2008). To facilitate and improve treatment and ensure the achievement of performance in 

accordance with regulatory obligations, in recent decades, the instrumentation, control and 

automation (ICA) of WWTPs has developed significantly, such as elsewhere in many other industries 

(Ingildsen and Olsson, 2016; Corominas et al., 2018). This trend can be seen particularly in the areas of 

flow monitoring and water quality indicators, and the development of mathematical models for 

simulation and scenario analysis (Garrido-Baserba et al., 2020). 
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Since the 1990s, mechanistic dynamic models describing the suspended growth process of biomass in 

activated sludge systems, such as the ASM1 and ASM2 models (Activated Sludge Models, Henze et al., 

2000) have acquired a solid and valid basis within the scientific community. These models contain a 

large number of parameters and require a significant calibration phase (Rieger et al., 2012). Yet, in the 

case of treatment by biofiltration, which is an active and compact ‘fixed-culture’ biomass process that 

is widely applied in urbanized regions of, for instance, Paris, model adaptation is necessary in order to 

describe the processes that take place within a biofilm (e.g. mass transport by diffusion, kinetics of 

several types of biomass and the effect of backwashing). Mechanistic dynamic biofilter models are 

therefore considered more complex and are still under full development. Additionally, there are not 

yet widely accepted protocols or guidelines available to the modelling community to guide the 

development or use of biofilm reactor models (Rittmann et al., 2018).  

Moreover, the greater complexity of the mechanistic models used makes their set-up, calibration and 

validation much more laborious, time consuming and data dependent. This can become a constraint 

limiting the application of the model (Vanrolleghem et al., 2005). These models also require relatively 

high computing power, which makes them less suitable for high frequency applications where model 

updates are needed in real time with a short time horizon of action (Schneider et al., 2022). 

Quite otherwise, data-driven models that use AI techniques to find patterns in data are 

computationally very fast, making them very interesting for real-time applications. These models 

describe the system only based on information extracted from the provided data and have strong 

interpolation features, but they are less reliable for making predictions outside of training conditions 

(Newhart et al., 2019). Data-driven models typically require larger data-sets than mechanistic models. 

Related to the inherent characteristics of wastewater treatment processes, which are non-linear and 

show a large time dependency, frequent retraining of a data-driven model remains necessary (Torfs et 

al., 2022). 

Hybrid modelling combines the use of knowledge-based models with data-based models and is able 

to cumulate the advantages of each approach (Von Stosch et al., 2014). The hybrid model concept 

combines the strengths of these two modelling techniques: a mechanistic model that incorporates 

relevant knowledge about the processes, as well as a data-driven model that increases the predictive 

power of the model by including information on lesser-known sub processes at reduced computing 

power. The training and testing of machine learning models is much faster than the calibration and 

validation of mechanistic models. In recent literature, hybrid models describing activated sludge 

WWTPs are reported to improve model performance and support process monitoring and control 

(Torfs et al., 2022). The main advantage of a hybrid model is a higher benefit/cost ratio for solving 

complex problems, which is a key factor for process systems engineering (Schneider et al., 2021). 

The hybrid concept has been the subject of research for a decade in other industrial sectors, where AI 

techniques have already been introduced and adopted. The wastewater sector is experiencing a lag 

firstly due to the complexity of the processes to be modelled, the high level of investments and the 

long life expectancy of the infrastructures, and additionally requires a specific adaptation of the 

methods to take into account the uniqueness of the wastewater treatment process, such as the 

interdependent, nonlinear, and nonstationary nature of WWTP data (Corominas et al., 2018). On the 

other hand, there lies great potential in applying AI and its machine learning (ML) methodologies 

associated with the analysis of “big data” (Garrido-Baserba et al., 2020). 
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A critical element in their successful use remains the quality of the data and the way it is processed 

and applied (“the data pipeline”); in order to be able to make intelligent decisions, raw data must be 

collected, cleaned, structured and made accessible to mathematical models in order to derive 

knowledge and understanding, so that it leads to actionable insights (Therrien et al., 2020). The 

application of AI models to clean and generate long, high-frequency input datasets (i.e. influent 

generator for the WWTP models) is a promising complementary research (Li & Vanrolleghem, 2022). 

In this chapter, a hybrid ‘digital twin’ is developed to improve wastewater treatment modelling by 

combining a mechanistic dynamic simulation model with an AI data-based model using high-frequent 

operational data. The hybrid model reduces the size of prediction errors. This increases the confidence 

in the model’s performance and allows the application of hybrid biofiltration models as a decision-

making tool for managers and operators in the wastewater industry. 

5.2 Model Development  
A hybrid model (HM) in the context of wastewater processing involves an interaction between a 

mechanistic model (MM), which serves as the fundamental basis for the prediction of effluent water 

quality variables, and a data-driven model (DDM) that supports the former. The mechanistic model 

specifies the basic dynamics of the relevant process variables and preserves process knowledge (‘the 

First-Principles’). It has good extrapolation capabilities. The data-driven model learns unknown 

relationships from the data and helps improving simulation quality, especially for interpolation 

purposes. The DDM accounts for lesser known and non-linear characteristics of wastewater treatment 

that are not explained by the mechanistic model. These capacities can compensate for dynamics 

missed by the mechanistic model (Schneider et al., 2022). 

The hybrid model developed here has a parallel configuration, where the DDM and the MM model 

both produce an output that is subsequently combined, by addition of the two outputs, into a 

modified, more accurate result that improves the fit of data. The objective of the data-driven 

component is to calculate the residual error of the knowledge-based model. It extracts relationships 

from the data inputs with which it can estimate the error of the MM-based simulation of the system. 

However, it does not learn explicitly the underlying process dynamics, which could form a problem 

when trying to make simulations in situations that fall outside the conditions with which the model 

was trained (Anderson et al., 2000). To overcome this limit in extrapolation power, the data-driven 

component needs to have sufficiently large and representative data that capture the diversity of 

operational conditions (Quaghebeur et al., 2022). The parallel structure provides a significant 

advantage for conditions where the MM contains a large number of parameters necessary to describe 

complex processes, such as in biological wastewater treatment applications (Lee et al., 2002).  

5.2.1 Hybrid Model Architecture 
The hybrid model architecture adopted here is identifiable as a cooperative parallel hybrid structure 

(Schneider et al., 2022) where the data-driven model has been trained to calculate the error in the 

simulations of the mechanistic model (DDM-estimated error). The output from the mechanistic model 

is then corrected by adding or subtracting the DDM-predicted error. During the DDM training phase, 

which corresponds to a supervised learning, the residual error, which is defined as the difference 

between the values of the mechanistic model simulations and historical data or observations (residual 

error), is known to the DDM.  
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The key element for a hybrid model lies in the information content of these residuals: a well-trained 

machine learning model can pick-up ‘hidden’ dynamic information and use this to correct the 

simulation of the mechanistic model (Lee et al., 2002). 

 

 

Figure 5-1: Schematic representation of the developed hybrid model (grey box) where the simulations (blue arrow) of the 
knowledge-based mechanistic model (white box) and the estimated residual error (green arrow) by the Data-Driven Model 
(black box) are combined to produce corrected values of effluent quality variables (for more details, see text). 

The architecture of the developed hybrid model applied in this study (Figure 5-1) is a parallel structure 

where the data-based model is trained to predict the difference between the mechanistic model 

simulations and the measurements (the residual error ∆). In this configuration, the mechanistic model 

first simulates the effluent water quality variables, sludge concentrations, greenhouse gas emission 

and flow rates, as well as the intermediate state variables of the model. Selection of features is based 

on data availability followed by an analysis of importance using an F-test method that allows reducing 

the dimensionality of the data. The selected simulated variables are then passed to the data-based 

model (blue coloured arrow in the figure). In addition, the data-driven component receives 

measurement data of the influent quality and flow rates, as well as information on the principal 

treatment parameters, such as the effluent set points for nitrates, as specified in the MM (black arrow). 

The DDM uses this information to estimate the residual errors of the mechanistic model simulations ∆ 

(green arrow), which are defined as the most probable expected model errors based on the training 

differences between previously observed (measured data) and simulated data. Finally, the two results 

are added together to obtain corrected values of the effluent variable (light blue highlighted arrow). 

In this approach, a machine learning model is trained for each of the output variables, where for each 

variable, a corresponding subset of process input variables or features is used. 

During the training phase of the data-driven model, observations of the water quality variables to be 

modelled are used to calculate the difference between observed and simulated variables. This residual 

error of the variables as simulated by the mechanistic model is then used by a Bayesian optimization 

algorithm to train the machine learning model so that it learns to generate the proper errors. It serves 

as labelled responses in a supervised machine learning training environment. 

5.2.2 Mechanistic Model Structure 
The mechanistic model applied here is designed as a (’pseudo’) 1-dimensional dynamic biofilm reactor 

model describing a ‘fixed-culture’ submerged upward flow biological filter. The model was previously 

developed (Zhu et al., 2019; Zhu, 2020) based on an earlier model (Bernier et al., 2014) that uses the 
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ASM1 biokinetics (Henze et al., 2000). It consists of the combination of sub-models for the hydraulic 

representation of the filter media, the transfer and transport of soluble and particulate substrates 

to/from and within the biofilm, the kinetics of bacterial growth and decay, and backwashing to avoid 

clogging of the filter. The model simulates the biological and physicochemical conversion of carbon, 

nitrogen and phosphorus. In total, 22 biological conversions are accounted for by describing the 

evolution of substrates by a mass balance. 

 

Figure 5-2: General concept of the biofiltration model developed by Zhu (2020) that simulates the behaviour of 1 biofilter, 
divided over seven reactors. For each reactor there are compartments for gas, bulk liquid, the Mass Transfer Boundary Layer 
and the biofilm, divided into 5 layers. The horizontal arrows indicate the main physical phenomena modelled. 

The performance of biofilters is related to the filtration of suspended particles and the biological 

activity of purifying biomasses (Henze et al., 2008). Figure 5-2 shows the approximation of the vertical 

hydraulics of a filter into seven successive completely mixed reactors. A number that was selected to 

provide enough level of modelling detail that does not incur a too high computational cost (Zhu, 2020). 

The volume of each mixed reactor is divided between the biofilm compartment (in orange), a bulk 

liquid phase (blue), a gaseous phase (grey) and the inert media (white). The Mass Transfer Boundary 

Layer (yellow) simulates the transfer resistance of soluble components from the liquid phase to the 

biofilm by diffusion, which is a representation of the stagnant liquid film between the biofilm and the 

liquid phase (Boltz et al., 2011). To better simulate the impact of this boundary layer, the model 

considers a variable thickness of the boundary layer for each soluble component as a function of the 

media diameter and the soluble component’s Sherwood number based on the equation of Ohasi et al. 

(1981). This allows simulating with more precision the impact of different hydraulic conditions near 

the surface of the biofilm that directly affect the diffusion resistance (Zhu, 2020). The biofilm 

compartment is split into five homogeneous layers, a number applied previously by Vigne et al. (2010) 

that was found to not take too much computational time and still accurately simulate the 

concentration gradients of soluble substrate (Zhu, 2020). The model assumes a dynamic biofilm 

volume with a variable thickness of each biofilm layer up to a predefined maximum allowable 

thickness, based on the mass of particulates present in each layer, the surface area of liquid to media 

and a constant biofilm density.  

The physical processes considered in the model (the arrows in Figure 5-2) in each reactor are the 

transfer to and transport within the biofilm of soluble components by diffusion, the transfer and 
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transport of particulate components by filtration, attachment and detachment and exchange between 

the layers of the biofilm; as well as a flux of four gaseous components (O2, N2, NO, N2O). These gazes 

are considered as soluble components in the biofilm layers and transported by diffusion (Zhu, 2020). 

In addition, the model redistributes the particulate components between the successive mixed 

reactors during treatment and especially during backwashing by representing continuous media 

mixing at different intensities for normal operation and backwashing. Mixing occurs between the same 

layers of the bioreactor directly above and below it. The model allows estimating energy consumption 

related to aeration and pumping, as well as greenhouse gas emissions (Zhu et al., 2018). 

5.2.3 Data-Driven Model Structure 
In a hybrid model structure, different data-driven models selected among the machine learning (ML) 

methods can be applied, such as artificial neural networks (ANN), support vector machines (SVM), 

ANFIS, non-linear regression and decision tree-based methods. These models can be categorized based 

on the learning processes applied, i.e. supervised, unsupervised and reinforcement learning (Schneider 

et al., 2022). In this study, supervised learning is applied. 

A lot of attention is given in recent research to the application of a variety of neural network structures 

and training algorithms to wastewater systems (i.e. Lee et al., 2002; Shirkoohi, 2022; Li & 

Vanrolleghem, 2022) since neural networks typically have good predictive accuracy. In this study, the 

selection of the optimal regression model includes the exploration of data features, validation schemes 

and model performance. The performance of ML models depends heavily on the data quality and 

quantity. Since no domain knowledge is included (the ML-model parameters are not related to 

knowledge of physical processes), these models have been criticized for a lack of interpretability 

(Quaghebeur et al., 2022). In a hybrid concept nevertheless, where the mechanistic model is based on 

domain knowledge, the data-driven component is only allowed to correct the former within certain 

boundaries, such that the impact of interpretability remains controlled. The data-driven part is here 

inherently coupled to a model structure with physical meaning, which allows evaluating the specific 

dynamics of the data-driven part as a measure of model structure error of the mechanistic model 

(Schneider et al., 2022).   

ML models are sensitive to overfitting when the model learns too well and ‘memorizes’ the associated 

data patterns to the output in such a way that the error on the training set becomes very low, but the 

error on a testing set with unseen data becomes very high. This can be prevented by applying 

generalization learning methods, such as cross-validation, regularization and pruning during training 

(Shirkoohi, 2022).    

In this study, a cross-validation method was selected before the start of model training so that the 

models can be compared with the same validation scheme. Cross-validation is a resampling procedure 

used to evaluate machine learning models that uses smaller subsets of the original dataset in order to 

avoid an overfit or underfit of the model during training. The k-fold cross-validation technique 

partitions the data into k-subsets (‘folds’) and trains a model for each subset using the corresponding 

data. Finally, it calculates the average validation error over all subsets. This method makes efficient 

use of all the data and still gives a good estimate of the predictive accuracy of the trained model, 

although it can take a longer time to execute because the model is trained repeatedly on the subsets. 
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5.3 Materials and Methods  

5.3.1 Case Study Site 
The research project was carried out within the Seine-aval (SAV) WWTP located in Achères (Yvelines), 

France, managed by SIAAP. This large size plant receives wastewater generated by nearly 6 000 000 

population equivalents every day, i.e. a volume of approximately 1 250 000 m3/d in dry weather, which 

corresponds to an average daily flow of 14.5 m3/s. The reference flow (maximum flow considered) is 2 

300 000 m3/d (26.6 m3/s) (Zhu et al., 2018). 

The wastewater treatment chain consists of a physico-chemical treatment step (screening, grit-oil 

removal and primary settling enhanced by the addition of coagulant-flocculant reagents) followed by 

biological filtration carried out over three stages for the removal of organic matter and nitrogen in a 

configuration of predenitrification (preDN), nitrification (NIT) and postdenitrification (postDN), as 

shown in Figure 5-3. The typical flow rate to the biofiltration train during the period studied (December 

2019 – October 2020) is 1 100 000 m3/d. 

 

Figure 5-3: Schematic diagram of the principal wastewater treatment lane at the Seine-aval WWTP (SIAAP) with indication of 
processes (blue boxes) and main dosing actions (yellow diamond shapes). Outlined in red frame are the secondary treatment 
predenitrification biofilter units (preDN), the nitrification battery units (NIT) and postdenitrification unit (postDN). The focus 
of this study is on the preDN stage. Also indicated are the sludge treatment units for preDN (brown hexagons) and location of 
measurements by in-line sensors (black dots) and laboratory samples (grey triangles).  

The first stage of biofiltration (preDN) consists of 58 Biostyr® type biological filters (173 m2 * 3.5 m 

height/biofilter; granular material: polystyrene 4.5 mm in diameter; three batteries: A, B, C) for the 

denitrification of nitrates (NO3-N) and nitrites (NO2-N) by heterotrophic bacteria using the organic 

matter (OM) present in the settled water. Nitrified water from the NIT outlet is recirculated to the 

preDN inlet. The second stage includes 84 Biostyr® type biological filters (173 m2 * 3.5 m 

height/biofilter; granular material: polystyrene 4.0 mm in diameter; six batteries: NIT A1, A2, B1, B2, 

C1, C2). The final section (postDN) consists of 12 Biofor®-type biological filters (147 m2 * 3m 

height/biofilter; granular material: clay 4.5 mm in diameter; 1 battery) that denitrify nitrified effluent 

by the addition of an exogenous carbon source (here in the form of methanol CH3OH). 
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The average upflow velocity through the Biostyr filters is 10 m/h for an average NO3-N removal of 70% 

(preDN) and 7.2 m/h to remove 90% of the NH4-N (NIT). The average upflow velocity of the Biofor 

filters (postDN) is 19 m/h with an NO3-N reduction of 85% over the period studied for dry and rain 

weather events combined. 

The biological filters are backwashed daily on a fixed schedule by reversing the flow using treated water 

stored on site and accompanied by the injection of large air bubbles. During washing, which lasts 30 

minutes per day per filter, the trapped particles and part of the biomass are removed in order to 

restore the filtration capacity. Additional short backwashing sessions of 10 to 15 minutes can be 

applied to a filter when the pressure loss reaches a determined value. 

5.3.2 Data Input 
The datasets used in this study cover the period from December 2019 to October 2020 and consist of 

measured data from sensors and online analysers of flow rates (Krohne, MIK electro-magnetic flow 

rate meter and Vegabar 80 for electronic differential pressure measurements) and water quality 

variables for organic matter (Hach Lange, UVAS Sc UV probe), TSS (Hach Lange, Solitax Sc, infrared) 

and nitrogen (NH4-N and NOx-N) (Hach Lange, Nitratax Sc 1mm, UV probe) with a 15 minutes time 

itervals, supported by daily composite laboratory samples collected at key points in the system (see 

Figure 5-3). 

The calibration period covers December 2019 until March 15, 2020, which coincides with the start of 

the first lockdown (Covid-19). The validation period runs from June to September 2020, a summer 

period characterized by low flows during the holiday month of August, conditions very different from 

the calibration period, making for an ambitious validation challenge.  

Operational data collected in raw format were first cleaned and smoothed to remove outliers and 

erroneous data using the method described by Alferes and Vanrolleghem (2016). Datasets for model 

input require gap filling of missing data points, for which the moving median method was applied. 

Furthermore, data input for the ML models is normalized using the z-score, with a mean ŷ and a 

standard deviation σ, and scaled in the range of 0 to 1 to provide uniform data across all features that 

still have the original shape properties.  

5.3.3 Model Performance Criteria 
The evaluation criteria used to evaluate the model performance are the mean error (ME) between 

observed and simulated data, the mean absolute error (MAE) and the root mean square error (RMSE), 

as well as their relative values. In an ideal case, the errors should be close to 0, but values of up to 15% 

- 20% are considered acceptable. The Janus coefficient, which has an optimal value of 1 and is 

statistically considered acceptable up to a value of 2, makes it possible to compare the validation 

results with those of the calibration (Hauduc et al., 2015). Janus coefficients above 2 indicate a weak 

generalization of the model and an issue of over-fitting. 

Model calibration for the mechanistic and hybrid models took specifically into account the RMSE, 

which provides a quantitative measure of how well the model fits into the data average, although hit 

is more sensitive to outliers or large errors. The ME and MAE were supplementary indicators used for 

indication of a model’s bias and of the error’s size on average.  
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5.3.4 Mechanistic Model Calibration 
The mechanistic biofilter model was calibrated with high-frequent (15 minutes intervals) operational 

data from December 2019 to March 2020 in accordance with the method described by Mannina et al. 

(2011), which extends and follows the modelling guidelines for IWA Activated Sludge Models (Rieger 

et al., 2012). The applied method consisted of the following: First, the selection of the output variables 

of interest: TSS; Soluble COD and NO3-N; NH4-N; NO2-N. Second, the identification of the parameters 

that have a significant effect on each of the selected variables by performing a global sensitivity 

analysis using the well-established method of standardized regression coefficients (Cosenza et al., 

2013). Overall, 89 parameters were retained. Third, the evaluation of statistical scores that indicate 

model performance, based on the RMSE value. 

The model calibration, which was performed in the WEST (DHI) environment, is described in more 

detail in chapter 4. 

5.3.5 Data-Driven Model Training 
Under a supervised learning approach, the response variable is provided to the model as a label during 

the training phase so that the settings of the hyper-parameters can be adjusted in order to have the 

model output match the desired outcome. For a neural network for example, these steps include 

setting the number of layers and neurons, setting the weights and defining the activation function. 

Training and testing of a ML model follows a general pattern of importing the data, organizing and pre-

processing it, exploring data characteristics, building the model, and evaluating performance.  

The selection of the optimal DDM type included training with linear regression models, regression 

decision tree models with a fine, medium and coarse structure; support vector machines and neural 

networks with one, two and three hidden layers. A five-fold cross validation was applied that splits the 

data into five subsets (folds). One randomly chosen subset was first used for model validation, while 

the other four were used for training. This process was repeated five times, so that each subset was 

used once for validation. The average error across all five partitions is then reported as the average 

validation error. The standardized variables (features) included the type of day (weekday or weekend), 

type of weather (dry or rainy), temperature, flow rates for settled water and nitrified water, observed 

concentrations of TSS in the settled water, nitrates and total COD in the influent of preDN, as well as 

operational parameters such as the NO3-N set point in the effluent and the methanol dosing rate. In 

addition, the mechanistically modelled concentrations of NO3-N, total COD or TSS at the preDN outlet 

were included, depending on the desired prediction error. During the training phase of the ML models, 

the residual error of the mechanistic model with respect to the measured data was transmitted to 

allow supervised training. This was done for each univariate output to cover the residuals of the NOx 

concentrations (NO3-N + NO2-N), total COD and total suspended solids TSS.  

The optimal structure of the DDM was selected by comparing the performance of each model 

expressed as the RMSE, averaged among the five validation folds, looking for the smallest (least 

number of connections or weights) and most interpretable model that still provided sufficient 

accuracy. Due to the time-dependent character of the data, the data are not randomly divided into a 

training and testing set, but split chronologically where roughly the first 80% of the records in the time 

series are marked for training and the remainder 20% are set aside for testing.  

Optimization of the selected model was done by changing the hyper-parameters, such as the activation 

function, the number of neurons, the weights and biases. Parameter optimization is an iterative 
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process, although the interpretability in human terms of a certain change of a hyper-parameter might 

not be very high. Additional techniques, such as feature importance analysis, are then helpful to better 

understand the model. In addition, due to the random initialization of weights in a neural network, 

gradient-descent based methods might be unable to move away from local minima and the process 

remains difficult to reproduce identically each time with the exact same model performance. 

The F-test was applied for feature selection in order to identify the variables that allow to best fit the 

data. The F-test uses a filter type feature selection algorithm that measures feature importance based 

on the characteristics of the features, such as feature variance and feature relevance to the response. 

It examines the importance of each feature individually and allows defining the likelihood that an 

observed improvement of a fit to data is worth the use of the extra feature. It tests the hypothesis that 

the estimated response values are determined from datasets with the same mean against the 

alternative hypothesis that the dataset means are not identical. Larger scores (including infinites) 

indicate greater importance. Effectively, it measures to which degree features add any new 

explanatory power. The ‘cost’ is indicated by the loss in the degrees of freedom due to the added 

number of features. In other words, the optimum model has less features and a higher degree of 

freedom and still maintains a high performance (Helsel & Hirsch, 1992). 

The ML models were trained and tested on the operational datasets available covering the period 

01.12.2019 to 15.03.2020, corresponding with the calibration/validation set of the mechanistic model. 

The data were split 80% – 20% for training and testing purposes in chronological order to respect the 

time-dependent character of the observations. A 5-fold cross-validation protocol was used for 

validation as explained above. The training dataset contained 8 000 data points for each of the 

response variables NO3-N, TSS, COD total, with a 15-minute interval covering the period 1.12.2019 to 

28.02.2020. The testing of the ML model was performed with the remainder of the data (1 300 points) 

covering the period 1.3.2020 to 15.3.2020, which are the last two weeks of the dataset used for 

calibration of the mechanistic model. In this way, a fair comparison can be made about the impact of 

the ML model on the predictions of the mechanistic model.   

The raw data processing, the development and the training of the DDM were all performed in the 

MATLAB R2022a (MathWorks) environment using the Machine Learning and Deep Network Designer 

toolboxes. 

5.4 Results & Discussion 
The configuration of the hybrid model implies an interaction between a mechanistic model (MM) and 

a Data-driven model (DDM), as the mechanistic simulated output is used by the DDM to calculate the 

residual error during training. It is to his end that the simulation output of the mechanistic model 

creates the reference situation for the DDM and directly affects the final outcome of the hybrid model 

(HM). For that reason, this paragraph commences with a quick overview of the mechanistic model’s 

performance.  

5.4.1 Mechanistic Model Performance 
The mechanistic biofilter model (Zhu, 2020) was first calibrated with recent operational measurement 

data of a predenitrification (preDN) stage measured in a large-size municipal wastewater treatment 

plant (Seine-aval, SIAAP) for nitrate, nitrite, ammonia, total COD, soluble COD and TSS concentrations 

with a high–frequent interval of 15 minutes, supported by daily composite laboratory results.  
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Simulation results from the calibrated MM for effluent nitrate concentrations are presented in Figure 

5-4a, which show that the observed trend is well simulated, in particular for the period starting from 

the end of January until mid-March. However, the model predictions are overestimated by 2 to 3 

mgN/L during the period end of December until end of January.  

 

Figure 5-4: Simulation results of the mechanistic model MM simulations for the NO3-N concentration at the outlet of the preDN 
stage for a) calibration, b) validation (black points: sensor observations, blue line: simulation results). 

The MM is able to reproduce the daily average performances of the denitrifying filter for the 

calculation of the NO3-N, NO2-N, NH4-N, total COD, soluble COD and TSS concentrations, with relative 

mean errors (ME) between 10 – 30% of the observed mean. The model results for the validation period 

(Figure 5-4b) are showing a significant overestimation of the sensor observations with a ME of -3,22 

mgN/L, except for the short periods related to observed peak values, such as on the 25th of July, 16th 

of August and 12th of September. Similar trends of overestimation are observed for the total COD and 

TSS simulations. In general, the MM is able to simulate daily average concentrations and to follow 

trends observed for the nitrate, as well as for ammonia, total COD, soluble COD and TSS concentrations 

in the effluent of a denitrifying filter, albeit with a significant bias towards overestimation, in particular 

during the validation period. For more details on the mechanistic model performance, see chapter 4. 
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5.4.2 Selection of Data-Driven Model 
Using the training data set that consisted of the feature variables and the response variable, which 

serve as the label for supervised learning, multiple DDMs were trained. This included fine, medium and 

dense decision trees, neural networks, supervised vector machines and linear regression models. The 

performance of each model was evaluated on the training set, in particular in terms of the RMSE 

criterion using a five-fold cross validation scheme. After training, the selected model was tested with 

the testing dataset. 

Table 5-1 provides an overview of the 10 best scoring DDMs for the estimation of the residual errors 

between the mechanistic model simulation results and the observations of nitrate concentrations in 

the effluent of the preDN system. The results are ranked according to the testing RMSE values, and the 

selected model is highlighted. As can be seen, neural networks provide a good performance with the 

lowest RMSE score for both testing and training data of NO3-N. The model with the lowest RMSE value 

during testing is a 3-layer neural network with 12, 25 and 1 neurons respectively for the input, middle 

and output layer. The 2nd to 5th positions are taken by decision tree models, indicating that models 

with a simpler structure would have a similar performance. However, considering the training RMSE 

values, where ANN models are listed at first, second and third places, it becomes clear that ANN models 

have a stronger performance. Overall, the neural network models consistently outperform the other 

model types, such as Decision Trees and Supported Vector Machines.  

Table 5-1: Overview of the 10 best scoring DDM models on the training and testing data set for the estimation of the NO3-N 
residual error. 

Model type  Hyperparameters Selected 
features 

RMSE 
training 

RMSE 
testing 

Neural network Neurons: 12:25:1 12 0.058 0.170 

Decision tree Minimum leaf size: 12  
Surrogate splits: off 

9 0.063 0.191 

Decision tree Minimum leaf size: 4  
Surrogate splits: off 

9 0.059 0.193 

Decision tree Minimum leaf size: 4  
Surrogate splits: off 

12 0.059 0.194 

Decision tree Minimum leaf size: 4  
Surrogate splits: off 

10 0.059 0.194 

SVM kernel Regularization strength: auto 12 0.062 0.246 

SVM kernel Regularization strength: auto 10 0.062 0.274 

SVM kernel Regularization strength: auto 9 0.059 0.295 

Neural network Neurons: 9:25:1 9 0.059 0.297 

Neural network  Neurons: 10:25:1 10 0.058 0.365 

An overview of the 10 best scoring data-driven models for the estimation of the total COD residual 

error is presented in Table 5-2, ranked by RMSE values on testing data. The best performing model is 

an ANN with a 3-layer structure identical to the ANN selected for the prediction of the NO3-N residual 

error. The RMSE values are of the same order of magnitude as with the NO3-N model error predictions. 

As was the case for nitrate, during training ANN models take up first and second places when ranked 

according to RMSE values. The third best fit is accounted for by a Support Vector Machine model; 

however, it has a poor performance with testing data.     
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Table 5-2: Overview of the 10 best scoring DDM models on the training and testing data set for the estimation of the total 
Chemical Oxygen Demand (COD) residual error. 

Model type Hyperparameters Selected 
features 

RMSE 
training 

RMSE 
testing 

Neural Network 12:25:1 12 0.043 0.158 

Decision Tree Minimum leaf size: 12 12 0.046 0.163 

Decision Tree Minimum leaf size: 12 12 0.046 0.163 

Decision Tree Minimum leaf size: 4 12 0.044 0.165 

Decision Tree Minimum leaf size: 4 10 0.044 0.165 

Neural Network 12:10:1 12 0.049 0.172 

Neural Network 10:10:1 10 0.049 0.180 

SVM Kernel Regularization strength: auto 12 0.044 0.195 

Neural Network 10:25:1 10 0.043 0.248 

SVM Kernel Regularization strength: auto 10 0.043 0.266 

 

Table 5-3 lists the models simulating the TSS residual error. As can be seen, here too an ANN 

outperforms the other model types; even though the RMSE testing values are on average two orders 

of magnitude larger than those of the NO3-N and total COD models, indicating a lower overall 

performance of the TSS residual error prediction. Both for the training and testing data sets, decision 

tree models take up prominent places in the RMSE ranking. These model types are easier to interpret 

and more transparent, but also prone to overfitting as indicated by the RMSE values for the test data 

that are higher than that of the selected ANN. 

Table 5-3: Overview of the 10 best scoring DDM models on the training and testing data set for the estimation of the Total 
Suspended Solids (TSS) residual error. 

Model type Hyperparameters 
Selected 
features 

RMSE 
training 

RMSE 
testing 

Neural Network 12:10:1 12 0.054 0.297 

Linear Regression Robust option: Off 12 0.074 0.330 

Decision tree Minimum leaf size: 36 12 0.052 0.335 

Decision tree Minimum leaf size: 36 10 0.052 0.335 

Decision tree Minimum leaf size: 12 12 0.045 0.342 

Decision tree Minimum leaf size: 12 10 0.045 0.342 

Decision tree Minimum leaf size: 4 12 0.041 0.350 

Decision tree Minimum leaf size: 4 10 0.041 0.350 

SVM Kernel 
Regularization strength 
(Lambda): Auto 

12 0.047 0.388 

Neural Network 12:25:1 12 0.045 0.391 

5.4.3 Optimization of the selected Data-Driven Model 
Optimal tuning of the number of features and the model's hyper-parameters was done to avoid under-

fitting or over-fitting conditions over both training and testing periods. This was achieved by selecting 

the simplest model that still has a low RMSE score by removing features that are not contributing to 

the precision of the DDM (see ‘Feature Selection’ below) and by changing the values of hyper-

parameters of the model, such as the number of neurons in the hidden layer in the case of a neural 

network (see ‘Hyper-parameter & Model Selection’ below). 
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NO3-N DDM Feature Selection  

Not all features contribute equally to the response variable; some can actually disturb the model 

output and decrease performance. Model improvement is achieved by removing features that have a 

low predictive power. For an optimal configuration, it is necessary to retain only those features that 

contribute significantly. The selection of which features to retain is based on a feature-ranking 

algorithm.  

Here, the F-test was applied for feature selection in order to identify the variables that best fit the data 

and to be able to remove any features that are redundant. For each validation fold, the features that 

had a zero or near zero F-test score were removed, such that only the highest ranked features with a 

significant contribution (F-test above a value of 200), were retained. Figure 5-5 shows that 10 out of 

12 features were identified to be influential to some degree, of which five have an infinite importance 

on the model outcome. The most influential variables are considered to have a F-test score of at least 

200, and those are water temperature, COD influent concentration (COD_IN), NO3-N recirculation 

concentration (NOx_REC), TSS concentration in settled water (TSS_SW), NO3-N concentration in 

effluent modelled by the mechanistic model (NOx_OUT_MOD), the flowrate of settled water (Q_SW) 

and the weather type (Weather). Of these features, all but one are measured variables that serve to 

characterize the influent water quality; the exception being NOx_OUT_MOD which is a simulated 

output of the mechanistic model.  

 

Figure 5-5: Features used by the ML model and their ranking by F-test scores for the NO3-N residual error.  

The variables NOx_IN, which is the measured NOx-N concentration in the preDN influent, and Q_REC 

(the measured flow rate of the recirculation of nitrified water [m3/d]), are both identified as less 

influential. Their intrinsic information content is actually included in variables that have been classified 

as influential, namely the NOX_REC, which accounts for the significant source of nitrates and nitrites 

in the influent; and the Q_SW (the settled water flow rate). The latter is proportional to the flow rate 

of recirculated nitrified water; if Q_REC increases, then the Q_SW decreases. 

NO3-N DDM Hyperparameters & Model Selection  
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Another important step in DDM model development is the identification of the hyperparameters that 

allow optimizing the model to best fit the data. A hyperparameter is a parameter that describes a 

configuration that is external to the model itself, like the learning rate, the number of estimators and 

the type of regularization. Hyperparameter tuning was performed using Bayesian optimization with a 

loss function calculating the mean squared error (MSE). An acquisition function determines the next 

set of hyperparameter values to try.  

The hyperparameters that have been optimized for the neural network are 1) the number of fully 

connected layers with a range of 1, 2, and 3 fully connected layers; 2) the first layer size with range 

[1:300]; 3) the second layer size with range [1:300]; 4) the third layer size with range [1:300]; 5) the 

activation function, a search among ReLU, Tanh, None, and Sigmoid; 6) the regularization strength 

(Lambda). The optimization algorithm searches among real values log-scaled in the range [1e-

5/n,1e5/n], where n is the number of observations. 

The optimal network configuration was determined by simulations with a smallest configuration of an 

input, hidden and output layer and by varying the number of nodes in the hidden layer.  

The best performing ML model was selected from the lowest RMSE value on calculating the NO3-N 

error between the MM and the measurements for both the training and the testing data. As indicated 

in Table 5-1, during training the ANN model that applies 12 features has a score similar to the ANN 

model using 10 features; however, during testing the 12 features model has a lower RMSE of 0.17 

compared to the 10 features model (RMSE: 0.37). It was therefore decided to select the three-layer 

feedforward neural network with 12 neurons in the input layer, 25 neurons in the middle layer and 

one neuron in the output layer with a Rectified Linear Unit (ReLU) activation function. 

Total COD DDM Feature Selection 

The results of the feature selection by applying the F-test for the data-driven model estimating the 

residual error for total COD are shown in Figure 5-6. Two features were identified as highly influential 

for improving prediction performance; these are the observed COD influent concentration (COD_IN) 

and the observed TSS concentration in the settled effluent. Of very high to high importance are the 

measured settled water flowrate (Q_SW) and water temperature, the simulated total COD effluent 

concentration by the MM (COD_OUT_MOD), the measured recirculation flow rate containing nitrified 

water (Q_REC) and the measured NO3-N concentration in the recirculated water (NOx_REC). The 

observed nitrate influent concentration (NOx_IN) receives a low F-test scores that falls under the 

minimum value of 200 and thus is considered to be of lesser significance. As was the case with NO3-N, 

the feature describing the type of day (WEEK), that of the methanol dosing (MeOH_Dose) and the 

nitrate set point (NO3_SP) received a low score.  

For total COD model prediction performance, the weather type that indicates dry weather conditions 

or rainfall receives a very low impact score. The main significance in daily operations of ‘weather’ type 

is that it controls the recirculation flow rate of nitrified water from the effluent of the NIT stage to the 

entrance of the preDN stage, which during rainfall is practically halted. This allows increasing capacity 

for the denitrification filters to treat more effluent of the primary settling phase. Features that 

characterize the recirculation flow rate (Q_REC) and the contribution of settled water (e.g. Q_SW and 

TSS_SW) have high to very high and infinite scores, so that the weather feature is effectively 

compensated for.    
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Figure 5-6: Features used by the ML model and their ranking by F-test scores for the total COD residual error. 

 

Total COD DDM Hyperparameters & Model Selection  

The procedure applied to optimize hyperparameters is identical to the one applied for the NO3-N 

model. The best performing ML model was selected from the lowest RMSE value on calculating the 

total COD error between the MM and the measurements for both the training and the testing data. 

The selected model is a three-layer feedforward artificial neural network with 12 neurons in the input 

layer, 25 neurons in the middle layer and one neuron in the output layer with a Rectified Linear Unit 

(ReLU) activation function; identical to the ANN selected for the nitrate model. 

 

TSS DDM Feature Selection 

Figure 5-7 shows the results of the ranking of features by the F-test method for the TSS data-driven 

model. Those features that received scores of infinite and very high importance are the mechanistically 

modelled TSS effluent concentrations (TSS_OUT_MOD), the measured settled water flowrate (Q_SW) 

and the measured water temperature. The first two features directly affect the input of TSS into the 

filters; the temperature is a controlling feature of the biological activity and metabolism rate of the 

biomass and its ability to capture and absorb particulate organic matter. 

Of significant importance in the prediction performance of the ‘TSS- model’ are those features that 

describe the measured total COD and TSS concentrations in the influent (COD_IN) and settled effluent 

(TSS_SW) respectively. The recirculation flow of nitrified water has considerate influence as well as it 

effectively indicates the contributively proportion of settled water in the total inflow to the preDN 

stage. Finally, the indicators for type of day (week), weather, the amount of methanol dosing 

(MeOH_Dose) and the nitrate effluent set point (NO3_SP) are considered to have an insignificant 

contribution. 



Hybrid Modelling of Nitrogen Removal by Biofiltration: A Full-scale Study 

129 
 

 

Figure 5-7: Features used by the ML model and their ranking by F-test scores for the TSS residual error. 

TSS DDM Hyperparameters & Model Selection 

Here too, the steps described earlier have been applied to optimize hyperparameters. The best 

performing ML model was selected from the lowest RMSE value on calculating the TSS error between 

the MM and the measurements for both the training and the testing data. The selected model is a 

three-layer feedforward artificial neural network with 12 neurons in the input layer, 10 neurons in the 

middle layer and one neuron in the output layer with a Rectified Linear Unit (ReLU) activation function. 

This ANN model contains 10 neurons in the hidden middle layer; which makes it different from the 

neural networks selected for the nitrate and total COD model. 

5.4.4 Training and Testing of Hybrid Model 
For the calculation of the hybrid model’s output, the DDM calculations of the model error for the 

effluent variables of NO3-N, COD and TSS are added to the MM simulations of the corresponding 

effluent variables. The results with the training and testing data are now presented for each of the 

variables. 

5.4.4.1 Effluent NO3-N  

Figure 5-8 compares the high-frequency observations with the nitrate concentration simulations for 

the training (figure a) and testing (figure b) periods by the hybrid and mechanistic models respectively. 

The outputs of the hybrid model are much closer to the observed values than to those of the 

mechanistic model over the two periods.  

Interesting to notice are the model simulated values lower than 1.0 mgNO3-N/L (e.g. between January 

20th and 30th) that are lower than the measured data that never seem to drop below 1 mg NO3-N/L, 

the appropriate detection range. Conversely, the simulations seem to correspond with the laboratory 

analysis results for composite samples that are indicating daily averages below 1 mg NO3-N/L on 

occasion. It seems that the detection limit of the sensors, that falls around 1.0 mgNO3-N/L, is causing 

the measurement values to stay above 1.0 mgNO3-N/L makes the comparison with the simulation void.  
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Figure 5-8: Results of the training (a) and testing (b) of the hybrid model (orange line) for the NO3-N concentration at the 
outlet of the preDN. Blue line: mechanistic model simulation; orange line: hybrid model results; black points: high-resolution 
observations; black-outlined triangles: laboratory composite observations. 

Figure 5-8b shows that the hybrid model simulates well the trends and variability of the nitrate 

concentration over the testing period. Towards the end of the testing period however, the relative 

improvement of the HM seems to be lower. Starting from March 8th a period occurs in which the HM 

has difficulties to compensate for the residual error of the MM simulations, and this especially in those 

cases when the MM predicts low NO3-N concentrations of 1 mgN/L or less. The daily composite 

laboratory samples however show average values between 1.0 and 2.0 mgNO3-N/L, which conceal the 

high variability in the 15-minutes values that can temporarily reach extreme high and low values.  

This could be due to different reasons, such as a lack of good quality measurements (due to the 

measurement detection limit of the nitrate sensor) or less reliable simulations by the MM model in the 

lower range of nitrate and nitrite concentrations. A lower performance with the test data could 

indicate that the data from the training period does not contain a sufficiently wide range of information 

to train the DDM. Still, the Janus coefficient of 1.0 has the optimal value and does not indicate an error 

of over- or underfitting. 
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The statistical performance indicators are listed in Table 5-4 for the simulations of the effluent 

variables at the preDN outlet with the hybrid model (HM) and are compared to those with the 

mechanistic model (MM). In this table, the performance of the models is relative to the observed data 

from the calibration/training and validation/testing periods; MM-calibration (01.12.2019 – 

15.03.2020); MM-validation (01.07 – 30.09.2020); HM-training (01.12.2019 – 29.02.2020) and HM-

testing (01.03 – 15.03.2020). 

As can be seen for the nitrate effluent, the HM outperforms the MM with relative mean errors that 

are much smaller during training and testing for the HM compared to the calibration and validation of 

the MM. The evaluation criteria in the Table 5-4 show also in more detail that for nitrate the 

performance of the HM is good, even though the RMSE is significantly higher, since that is affected by 

the weights given to larger errors in its calculation (e.g., in the RMSE, the errors are squared before 

they are averaged). During the testing phase, the quality criteria show similar values, which is to be 

expected. The Janus coefficient, with an optimal value of 1.0, indicates that the RMSE values are near 

identical, such that the model can be considered well-validated for nitrate simulations. Overall, even 

though the relative MAE and relative RMSE are ranging from 24% to 32%, the scores remain globally 

acceptable given the highly dynamic conditions of the process and considering the measurement 

errors of the sensors. 

Table 5-4: Statistical performance indicators for the mechanistic (MM) and hybrid (HM) models during calibration/training 
and validation/testing with high-frequent data for the NO3-N, total COD and TSS effluent variables simulated at the outlet of 
the preDN process. Shown are the relative errors compared to the observed mean. N = Number of observations; ME = Mean 
Error; MAE = Mean Absolute Error; RMSE = Root Mean Square Error; ӯ= observed mean. 

  
 Calibration (MM) or Training (HM)  Validation (MM) or Testing (HM)  

Variable Model Unit N 
Mean 
obs (ӯ) 

ME/ 
ӯ 

MAE
/ӯ 

RMSE/
ӯ 

  N 
Mean 
obs (ӯ) 

ME/ӯ 
MAE

/ӯ 
RMSE/

ӯ 
Janus 
coef. 

NO3-N MM 
gN/
m3 

10656 2.89 -47% 67% 86%  8015 2.62 -123% 129% 146% 1.5 

NO3-N HM 
gN/
m3 

8736 2.94 -11% 25% 34%  1440 3.23 8% 24% 32% 1.0 

COD MM 
gO2/
m3 

10656 89.07 -1% 14% 20%  7218 64.84 -53% 55% 60% 2.2 

COD HM 
gO2/
m3 

8541 89.14 <1% 6% 9%  1440 87.03 2% 15% 19% 2.1 

TSS MM g/m3 10656 21.20 -11% 23% 39%  7399 20.12 -36% 46% 63% 1.5 

TSS HM g/m3 9212 28.58 -5% 12% 18%  1440 23.54 -33% 32% 39% 2.3 

 

5.4.4.2 NO3-N Daily Values 

In contrast to high-resolution data with a time interval of 15 minutes, which can capture short-term 

fluctuations in wastewater conditions and are therefore more appropriate for real-time control 

operations, daily average values may be more appropriate for analysis purposes because they provide 

a noise-reduction and provide a better indication of overall performance. Wastewater characteristics 

can fluctuate rapidly over short time intervals due to various factors, such as changes in weather 

conditions or sudden changes in upstream activity. These fluctuations can introduce fast dynamics into 

the data, making it difficult to identify overall trends and patterns. By using daily average values, the 

noise is reduced, and trends can be better observed. In addition, daily average values can provide a 

better representation of the overall performance of the wastewater treatment process over an 
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extended period of time, rather than the short-term fluctuations when evaluating the model 

performance scores on high–frequency sensor data. 

Figure 5-9 plots the daily averages of nitrate effluent concentrations for the simulations by the 

mechanistic and the hybrid model as compared to the daily averaged inline measurements for the 

training period. Plotted as well are the daily composite laboratory samples. It is noticed that the HM 

simulations are much closer to the daily averaged inline observations, with a R2 value of 0.95, as 

compared to the daily averages of the MM with a R2 of 0.21. The MM tends to overestimate the nitrate 

effluent concentrations, especially in the period between 24.12.2019 to 25.01.2020. The hybrid model 

is capable to correct for this and reduce the overall relative mean error to 2% under training conditions 

(see Table 5-4).  

The daily laboratory analysis results follow in general the daily average values of the inline sensor 

measurements, with a few notable exceptions (e.g. a short period from 19 to 22 of January, 1, 12 and 

28 February). The HM is here not able to compensate, since the data-driven model was trained on the 

high-resolution measurements and is thus unaware of the discrepancy between laboratory and sensor 

observations.  

 

 

Figure 5-9: (a) Performance of hybrid model (orange) and mechanistic model (blue) evaluated for NO3-N effluent daily average 
data for the training of the HM at 15 minute interval; orange line: connected points of the daily average of the HM simulations; 
black diamonds: daily average of the inline observations; black-outlined triangles: daily laboratory samples. (b) Parity plot of 
the simulated data of the MM and HM compared to the observed data using daily averaged inline values. 

Concerning the results of the testing period with the daily averaged values (Figure 5-10), the 

maintained overall high performance of the HM compared to the daily averages of the sensor 

measurements with a R2 of 0.97 is noticed in figure b. This could be explained by the fact that the daily 

averages are to a much lower degree affected by the high-frequency dynamics around the 1 mgNO3-

N/L that falls around or under the detection limit of the monitoring equipment, as is the case with the 

high-resolution data with a time interval of 15 minutes, shown in Figure 5-9.  

The daily averages of the simulations with the knowledge-based model are following the trend of the 

operational data, but beginning on March 8th they start to show an overestimation. This is confirmed 

in the parity plot in Figure 5-10b, where the mechanistic model only has a R2 value of 0.21 for the same 

data period. 
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Figure 5-10: (a) Results of the test of the MM (blue) and HM (orange) models for the NO3-N concentration at the outlet of the 
preDN using daily averaged values of the 15 minutes simulation results. Blue line: connected points of daily average of the 
mechanistic model simulations; orange line: connected points of daily average of the hybrid model simulation results; black 
diamonds: daily average of the online observations; black-outlined triangles: daily laboratory samples. (b) Parity plot of the 
simulated data of the HM and MM models compared to the observed data using daily averaged values. 

5.4.4.3 Effluent COD  

Concerning the effluent COD variable shown in Figure 5-11, the developed hybrid model is able to 

simulate the effluent variable much better than the mechanistic model. This is particularly true for the 

training period (Figure 5-11a), where the neural network was capable to correct for the dynamics 

missed by the mechanistic model, for instance on January 19th.  The relative error (see Table 5-4) ME/ŷ 

is less than 1%, showing no bias, and the MAE and RMSE are all below 10% of the observed mean for 

this dataset.  
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Figure 5-11: Results of a) the training and b) testing of the hybrid model for the total concentration of COD in the effluent with 
high-frequent data at the outlet of the preDN stage. Blue line: simulation of the mechanistic model; orange line: hybrid model 
simulation results; black points: high frequency observations.  

However, the scores are not as good when the hybrid model is confronted with unknown high-

resolution data during the testing phase (Figure 5-11b). The ML model does not seem to be able to 

describe the amplitudes of the variation very well and at some moments simulates dynamics in the 

opposite direction (e.g. on the 14th of March). The performance of the hybrid model with this dataset 

is not much better than the one of the mechanistic model. The HM tends to apply a too large 

correction, thereby simulating values that are too low compared to the measurement data. 

Nonetheless, the error of the hybrid model is still lower than that of the mechanistic model for the 

total COD in the effluent during the same period, indicating that the ML model component can 

compensate for missed dynamics. 

Regarding the daily averaged values of the simulations (Figure 5-12), the hybrid model is capable to 

very closely simulate the effluent total COD concentrations at the preDN stage during the training 

phase with a R2 value of 0.98 (not shown). This is also true for those short periods of time where the 

mechanistic model has a difficulty in simulating the correct COD concentration, such as between 17 – 



Hybrid Modelling of Nitrogen Removal by Biofiltration: A Full-scale Study 

135 
 

22 February. The MM doesn’t follow the trend, while the HM is fully capable to compensate for that 

residual error for these days. 

 

Figure 5-12: Performance of hybrid model (orange) and mechanistic model (blue) during (a) training and (b) testing periods 
evaluated for daily average data for the effluent total COD simulations at the preDN stage; orange line: connected points of 
the daily average of the HM simulations; blue line: connected points of the daily average of the MM simulations; black 
points: daily average of the inline observations; black-outlined triangles: daily laboratory samples. 

The performance of the HM during the testing period (Figure 5-12b) is not only lower compared with 

that of the training data, which is of course expected, but also compared with the MM performance 

for the same time period with regards to the RMSE of 16.6 gO2/m3 (HM) versus a RMSE of 13.3 gO2/m3 

(MM). However, the ME of the HM (1.5 gO2/m3) is still significantly lower than the ME of the MM (3.9 

gO2/m3) indicating that the HM is less affected by bias. Notwithstanding the fact that the contribution 

of the HM remains an added value, there are some instances during the testing period where its 

simulation performance is quite modest. Such is the case between March 8th and 12th, where the HM 

does not correct the MM sufficiently. Effectively, both model’s predictions remain about 10% below 

the daily averaged observed values. 
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5.4.4.4 Effluent TSS  

For the effluent TSS variable shown in Figure 5-13, the hybrid model is again able to simulate the 

training and testing data with a higher precision than the mechanistic model. The errors listed in Table 

5-4 indicate relative errors for the training of -5%, 12% and 18% for ME/ŷ, MAE/ŷ and RMSE/ŷ 

respectively for the HM; values that are half of those indicators for the MM (-11%, 23%, 39%). In fact, 

the mechanistic model has difficulties to simulate the high TSS observations while at other times the 

model output is much higher than the observations (i.e. period 9 – 20 February). This might be related 

to a high variability in the suspended solids content of the influent that is a mix of settled influent and 

recirculated nitrified water. At some moments, plant operators can decide to lower or stop the 

recirculation to the entrance of the preDN stage; thereby increasing its capacity; but this can have 

short-term effects with a sudden flow that is high concentrated with suspended solids reaching the 

preDN stage. On the other hand, it might be that the MM cannot well simulate the filtering aspect of 

the biofilter at such short-term intervals.  

 

Figure 5-13: Performance of hybrid model (orange) and mechanistic model (blue) with high-frequent data during (a) training 
and (b) testing periods of the TSS concentration at the outlet of the preDN stage. Blue line: simulation of the mechanistic 
model; orange line: simulation of the hybrid model results; black points: high frequency observations.  
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For the testing dataset (Figure 5-13b), the DDM component is unable to adequately calculate the 

residual of the mechanistic model error and overcorrects the TSS concentration for most of the time. 

This is reflected in the ME for the testing period (-7.76 g/m3), significantly larger compared to the ME 

for the training period (-0.34 g/m3), indicating the model’s tendency to overestimate the effluent TSS 

concentrations and to underestimate the system’s filtration capability. More research is needed to 

better understand the dynamics that are at play here. It could be that different conditions (variations 

on daily and monthly basis) during testing period that were not observed during the training period 

caused a lack in the performance of the DDM. A larger training period, spanning at least a year to 

account for seasonal dynamics, might increase the DDM’s reliability. 

5.4.4.5 Daily values of effluent TSS predictions 

The daily averaged results for the effluent TSS simulations (Figure 5-14) show that during the training 

period, the HM is able to well compensate for the residual error of the MM. This is also visible during 

the period of February 10th to 20th, where the MM experiences a large deviation from the observations. 

The DDM component of the HM is well trained to compensate and predict the residual errors observed 

during this period. 

 

Figure 5-14: Performance of hybrid model (orange) and mechanistic model (blue) during (a) training and (b) testing periods 
evaluated for daily average data for the TSS effluent simulations at the preDN stage; orange line: connected points of the 
daily average of the HM simulations; blue line: connected points of the daily average of the MM simulations; black points: 
daily average of the inline observations; black-outlined triangles: daily laboratory samples. 
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However, for the testing period (Figure 5-14b) the HM has poor performance as indicated in Table 5-4 

by the relative MAE (32%) and relative RMSE (39%) that corresponds to a RMSE of 9.2 mg/L. The 

model’s bias is significantly negative (-32% mg/L), reflecting the HM’s tendency to overestimate the 

effluent TSS concentrations, as clearly visible in the graph of figure b. 

 

5.5 Conclusions 
A parallel hybrid model was developed in a cooperative structure, in which a calibrated/validated 

mechanistic model is corrected by a data-driven model to improve the accuracy of water quality 

simulations at the outlet of a predenitrification biofilter of a large WWTP. Different ML techniques 

were tested to obtain an accurate estimate of the residual error of the mechanistic model; and this for 

NO3-N, total COD and TSS concentrations in the preDN effluent. These data-driven models were given 

the simulated data of the effluent water qualities by the mechanistic model, as well as information on 

the influent flow and water quality and simulated treatment parameters (such as the controller set 

points).  

The best results were obtained with a feedforward neural network using a ReLU activation function 

containing one hidden layer with 25 neurons. The simulations obtained over the training period and 

the testing period show that the precision of the hybrid model is much higher than that of the 

mechanistic model alone. This is in particular the case for NO3-N, which is, in this case, the most 

important effluent quality variable that serves as an indicator of the process’s denitrification 

performance. The hybrid model has a relative mean error of -11% during training compared to 47% for 

the mechanistic model, showing a 4 times lower error of the effluent nitrate concentrations. During 

testing, the DDM is still able to compensate for the mechanistic model’s residual error, albeit to a lower 

degree, which is expected.  

The Janus coefficient, which evaluates the capability of the model to perform on unseen conditions, 

has values of 1.0, 2.1 and 2.3 for NO3-N, total COD and TSS model simulations respectively. Such 

coefficients are considered to be good and express the validity of the models. When taking into 

account the highly dynamic conditions observed in the secondary treatment biofiltration lane of the 

super-large wastewater treatment plant under study; the considerable measurement errors observed 

in the high-resolution monitoring of quality effluent variables; and the sensitivity of the model 

calculations to outliers and faults in the input data; it is fair to conclude that the modelling results could 

further benefit from more intense (and automated) data preparation and reconciliation processes, as 

well as more data from longer training and testing periods. 

Overall, the results of this study with the developed hybrid model indicate that the data-driven 

component captured sufficient residual information to compensate for the inaccuracy of the 

mechanistic model. This has improved the confidence in the model’s output. 

 



 

6 Non-linear Hybrid Model Predictive Control of Methanol 

Dosing for Enhanced Nitrogen Removal in a Denitrification 

Biofilter – a case study as proof-of-concept 
Keywords: non-linear Model Predictive Control, Hybrid models, data-driven models, mechanistic 

models, methanol dosing, denitrification, biofiltration, wastewater treatment. 

Abstract 

The wastewater sector is undergoing rapid changes thanks to the rising importance of sustainability 

and the principles of water conservation and circular economy, in which wastewater is considered a 

resource of water, energy, heat and chemicals. These changes are occurring as well because of the 

ongoing digitalization of the water industry with the application of inline monitoring equipment, 

advanced process models and data management systems. In order to meet these demands, and the 

evolving stricter regulations on effluent water quality, more reactive and complex treatment systems 

have been put in place, that often operate close to their design capacity, thereby reducing operational 

and economic margins. Process control has become an important tool to operate a system towards a 

defined goal (i.e. removal of nitrates) despite the many disturbances experienced in wastewater 

treatment. Advanced process control like model predictive controllers use a model to make predictions 

of future states and an optimizer to select the optimal sequence of actions to best reach a desired 

outcome.  

As previously described in chapter 5, the hybridization of a data-based model using AI techniques with 

a mechanistic model reduces the model’s prediction errors significantly. Here, an operational 

application of the hybrid model is tested in the context of a methanol dosing model predictive 

controller applied to a denitrification biofilter model. The thus created Hybrid Model Predictive 

Controller uses a moving simulation window (with 15-minute intervals) to predict future NO3-N states 

based on multiple optimizer scenarios consisting of sequences of proposed control actions, in this case 

methanol dosing. It selects the best among the scenarios simulated on the basis of the overall error 

(RMSE) to the desired set point. The impact of this optimal dosing action on the real physical system is 

studied here by using a second mechanistic biofilter model that represents reality. Different trial 

configurations of (Hybrid) Model Predictive Controllers were tested, involving different levels of quality 

in updating the hybrid model to reflect reality. The results of this study indicate that a Hybrid Model 

Predictive Control is able to significantly improve the effluent water quality when compared to the 

current dosing control that was used as reference. However, not unexpected, this results in higher 

operational costs of methanol usage. Further analysis of these results is required. 

6.1 Introduction 
Improving the performance and efficiency of wastewater treatment plants involves strengthening the 

control of the processes that take place there. Optimization of energy performance, reduction of the 

use of reagents, of greenhouse gas emissions and of overall environmental impact of operations, the 

improvement of the recovery of resources and a stable effluent quality are nowadays the objectives 

for the wastewater treatment sector. The use of mathematical modelling in the wastewater sector has 

been established since the 1990’s for research, system design, simulation of processes and operator 

training. More recently, the development of digital twins that ‘mirror’ the behaviour of a physical 

system or plant, and that receives data in (near) real time, allow for predictions of future states. An 
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important field of research aims to study the potential of data-driven models to achieve an even higher 

aspired performance of wastewater treatment plants (Schneider et al., 2022). 

Model-based Predictive Control (MPC) can be used to optimize complex systems that have many 

multivariable constrained control issues. MPC is implemented to reduce the variation in process 

variables in industrial applications, which in turn leads to more efficiency and an increased throughput. 

The development of tools for online performance optimization using models is crucial for exploiting 

the full potential of digitalization (Stentoft et al., 2019). A predictive process model that has access to 

operational data (a digital twin) when combined with an optimizer and applied to process control, can 

be defined as a model-based predictive controller. MPC’s have characteristics that enable them to 

control unstable and non-linear processes, to be flexible enough to be applicable under different 

conditions, to be easy to extend to multivariate control (i.e. Multi-input Multi-output, MIMO) and to 

be designed in a logical and transparent manner (Alex, 2022).   

In this chapter, a hybrid model predictive controller (HMPC) that uses the hybrid model developed in 

chapter 5 is used to optimize the dosing of external carbon in the form of methanol in a denitrification 

biofilter. The hybrid model combines a mechanistic dynamic simulation model with a data-based 

model using high-frequent operational data. The hybrid model reduces the range of prediction errors 

and makes predictions of future states more reliable. The optimizer searches for the optimal action 

that brings the predicted process behaviour as close as possible to the desired behaviour using a 

minimal of control effort. To test the HMPC, it is applied to a virtual reality, represented by a second 

mechanistic model that is different to the model included in the HMPC.  

Model-based Predictive Control (MPC) is a method to optimize process control. It applies the 

interaction between a model and an optimizer to calculate the optimal proposed sequence of control 

actions based on model predictions of future states and variables of the system subject to disturbances 

within a (short) prediction horizon, generally hours or minutes (Figure 6-1). Only the first proposed 

action is actually implemented on the process at time step t. The optimization iteration then moves to 

the next time step (t+1) to repeat the cycle (Vanrolleghem, 1995). For it to work in real-time, the 

models used in MPC should be fast and adaptable. 

MPC requires a prediction of future process behaviour over a time interval as a function of potential 

control actions and then chooses the best control scenario based on some objective function that may 

combine a multitude of elements (desired performance, constraints, control efforts, …) (Stentoft et al., 

2019). A model-based predictive controller thus consists of two essential components, namely a 

process model that predicts one or more state variables (e.g. NO3-N effluent), and a controller with an 

optimizer, that allows to identify the best course of a manipulated variable (e.g. the dosing of 

methanol) over a prediction horizon using an objective function. 

MPC is thus a multivariable strategy that encompasses multiple variables, such as constraints, handling 

of actuators, states and process outputs. It brings a structured approach to solutions where the main 

aim is to minimize a performance criterion in the future. The future behaviour is computed according 

to a model of the process being managed. It utilizes an internal dynamic model of the process, a history 

of past control moves, and an optimization cost function over the receding prediction horizon to 

calculate the optimum control needed. The first input in the optimal sequence is then transmitted to 

the physical WWTP for implementation, and the entire calculation is reiterated, and this for 

subsequent control intervals.  
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Figure 6-1: a) principle of model predictive control, b) Illustrative calculations performed by a MPC algorithm (Vanrolleghem, 
1995). 

As a process control technique, MPC is not (yet) widely applied in wastewater treatment due to 

complexity of biological processes that limit the predictive performance of mechanistic models. For 

MPC to function, it must address the non-linear system characteristics by applying non-linear models, 

which are computationally intensive to solve. Literature shows that the inclusion of data-driven models 

into the controller could be a good alterative (Newhart et al., 2019). In this approach, the mechanistic 

component is replaced by a machine learning model. However, HMPC’s have not been widely applied 

in the wastewater industry so far (see also chapter 2). There are not many academic studies on the 

topic of HMPC, and most of them apply a different definition of hybrid models as defined in this study: 

using a mechanistic model supported by a data-driven model. The HMPC developed here is one of the 

first implementations of a hybrid MPC on an operational wastewater treatment facility. The only other 

known example is described by Sparks et al. (2022) using a similar approach as being developed here, 

but for the application of (i) chlorine for disinfection and (ii) aeration in an activated sludge system. 

6.2 Materials and Methods  

6.2.1 Case Study Site 
The research project was carried out with operational data collected at the Seine aval (SAV) 

wastewater treatment plant situated in Achères (Yvelines), in the outskirts of Paris, which is managed 

by SIAAP, the public greater Paris sanitation authority. This plant treats an average volume of 1 500 

000 m3/d in dry weather (17.4 m3/s; 6 000 000 P.E.). 

As illustrated in Figure 6-2, the wastewater treatment consists of a primary physical-chemical 

treatment (screening, de-sanding, oil removal and enhanced primary settling with coagulant-

flocculants addition), followed by a secondary biological treatment using biofiltration in a configuration 

of pre-denitrification (preDN), nitrification (NIT) and post-denitrification (postDN). External carbon is 

dosed in the predenitrification – if necessary due to low ‘natural’ carbon concentrations – and the 

postdenitrification stages, while the biofilters are aerated for nitrification. During the period studied, 

the average flow rate in dry weather conditions to the biofiltration lane was 1 090 000 m3/d. More 

details can be found in chapter 2. 
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Figure 6-2: Schematic diagram of the wastewater treatment at the Seine aval wastewater treatment plant (SIAAP) with 
indication of chemical dosing and aeration. 

The first stage of biofiltration (preDN) consists of 58 Biostyr® type biological filters (173 m2 * 3.5 m 

height/biofilter - granular material: polystyrene 4.5 mm in diameter) in an anoxic environment for the 

elimination of nitrates (NO3-N) and nitrites (NO2-N) by heterotrophic bacteria using the organic matter 

(OM) present in the settled water. This configuration makes it necessary to recirculate nitrified water 

from the NIT outlet back to the preDN inlet. The second stage includes 84 Biostyr® type biological filters 

(173 m2 * 3.5 m height/biofilter - granular material: polystyrene 4.0 mm in diameter). This stage is 

aerated by devices placed at the base of the filtering material that allow for the nitrification process 

(NIT) by autotrophic bacteria that transform ammonia (NH4-N) into nitrates and nitrites. The final 

biofiltration stage (postDN) consists of 12 Biofor®-type biological filters (147 m2 * 3 m height/biofilter 

– granular material: clay 4.5 mm in diameter) that treat nitrified effluent in a non-aerated 

environment. In this configuration, due to the low carbon content of the treated water, denitrification 

in the postDN stage requires the addition of an exogenous carbon source; here in the form of methanol 

CH3OH (or MeOH). When the PO4 concentration becomes too low and starts to limit bacterial growth, 

orthophosphoric acid (H3PO4) can be dosed at this point. 

The average upwards flowrate through the Biostyr filters in the preDN is 10 m/h for an average NO3-N 

reduction of 70%, while in NIT the average flow rate is 7.2 m/h that removes 90% of the NH4-N. The 

average hydraulic flow rate of the Biofor filters in postDN is 19 m/h with an NO3-N reduction of 85% 

over the period studied. 

The biological filters are regularly backwashed according to a fixed time schedule and when the water 

pressure reaches a determined value by reversing the flow using treated water stored on site 

accompanied by the injection of large air bubbles. During washing, which lasts 30 minutes per day per 

filter, the trapped particles and part of the biomass growth are removed in order to restore the 

filtrating capacity. 

6.2.2 Hybrid Model Architecture 
The hybrid model concept presented here is identifiable as a cooperative parallel hybrid structure 

(Schneider et al., 2022) where the data-driven model is trained to predict the difference between the 

values of the mechanistic model simulations and observations (residual error); after which the two 

results are merged. This architecture is particularly suitable when working with a mechanistic model 

that is limited in the description of the process dynamics, for example due to incomplete knowledge 

or oversimplification of the processes (Schneider et al., 2022).  
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The key element for a well-developed hybrid model lies in the information content of these residuals; 

a well-trained machine learning model can pick-up ‘hidden’ dynamic information and use this to 

correct the prediction error of the mechanistic model (Lee et al., 2002). 

 

Figure 6-3: Schematic diagram of the parallel hybrid model structure (grey box) combining the predictions of a data-based 
model (black box) and a mechanistic model (white box) based on the process knowledge of the bio-physical-chemical system, 
in order to have corrected simulated effluent data. 

The architecture of the developed hybrid model used in this study (Figure 6-3) is a parallel structure 

where the data-driven model is trained to predict the difference between the mechanistic model 

simulations and the observations (the residual error). The mechanistic model (MM) first makes 

predictions of the effluent quality variables, which are then passed to the data-driven model (DDM) 

together with data of the influent quality (black line), as well as information on the important 

treatment parameters. The DDM uses this information to estimate the residuals of the mechanistic 

model predictions. Finally, the two results are combined in order to obtain corrected values of the 

effluent variable. This is done for three effluent variables (NO3-N, TSS, total COD) separately. For each 

effluent variable, a subset of process input variables is used. During the training phase of the data-

driven model, measured effluent variables are used to calculate the difference between observed and 

simulated variables, which are used as labelled responses for the training algorithms of the DDM. 

Mechanistic Model 

The mechanistic model component of the hybrid model is designed as a 1-dimensional dynamic model 

of a submerged upwards flow biological filter where the biological activity of microorganisms inside a 

biofilm is calculated. The model was originally developed by Zhu (2020) and updated in this PhD study 

(Chapter 4). The model simulates the biological and physicochemical conversion of carbon, nitrogen 

and phosphorus by describing the evolution of substrates by a mass balance based on the ASM1 model 

(Henze et al., 2000). In total, 22 biological conversions are accounted for. The main modifications and 

additions focus on the mass transfer in biofilms, the kinetics of microorganism processes and the 

influence of backwashing cycles. 

The dynamic model applied in the MPC controller is a simplified model in the sense that it simulates 

the behaviour of only one biofilter representing the typical behaviour assumed to occur. In the real 

system, the predenitrification stage consists of 58 biofilters divided over three batteries that are 

controlled independently from each other. Within each battery, the effluent of six or seven filters is 

combined, so that the effluent of a battery contains the mixed effluent of multiple groups of filters. 



144 
 

The simplified model used in the MPC controller thus simulates without the process control 

implemented in the system-wide biofiltration model of the three stages: predenitrification (preDN) – 

nitrification (NIT) – postdenitrification (postDN). Note, however, that the MPC model contains all same 

parameters, variables and equations as the system-wide model, however, it computes much faster, 

which is a crucial aspect required for MPC. Find a complete description of the mechanistic model in 

chapter 4. 

The mechanistic biofilter model was calibrated on the first three and a half months of the dataset 

available from December 1, 2019. The model was then validated on the rest of the dataset from June 

to September 2020. The statistical scores describing the magnitude of the model prediction errors 

(residuals) are calculated to assess model performance and accuracy qualitatively and quantitatively. 

Each dynamic simulation was preceded by a 28-day steady-state simulation to initialize the model. The 

mechanistic modelling was performed in the WEST+ (2016) software (DHI) environment. 

The methodology used for the calibration, including the global sensitivity analyses used for the 

estimation of influential model parameters, is well described in chapter 4. 

Data-driven Model 

The trained and tested data-driven model (DDM) developed in Chapter 5, consists of a three-layer 

feedforward ANN that uses a ReLU activation function. A five-fold cross validation was applied on the 

training set. The normalized variables that have been applied include the type of day (weekday or 

weekend), type of weather (dry or rainy), temperature, flow rates, observed influent concentrations 

of nitrates, TSS, total COD and soluble COD, as well as operational parameters such as the NO3-N set 

point in the effluent and the methanol dosing rate. In addition, the mechanistic model effluent 

variables at the preDN outlet are included as features. During the training phase of the DDM, the error 

between the mechanistic model and the observations is also transmitted to allow for supervised 

learning. This was done for each output to cover the residuals of the NOx concentrations (NO3-N + 

NO2-N), total COD and total suspended solids. After training, the selected model was tested with a new 

dataset (1 300 points) covering the period from 1.3.2020 – 15.3.2020. The optimal structure was 

selected by comparing the performance of each model. The raw data processing, the development and 

training of the DDM were performed in the MATLAB R2022a (MathWorks) environment using the 

Machine Learning and Deep Network Designer toolkits. 

Hybrid Model 

The hybrid model, around which the HMPC is built, consists of a mechanistic model (MM) enhanced 

by a data-driven model (DDM). The MM simulates process behaviour and makes predictions of 

variables based on the process knowledge incorporated in the model’s equations. The DDM is used in 

this hybrid modelling concept to correct the mechanistically simulated output variables in order to 

reduce the prediction error and thus increase the overall model performance inside the MPC structure. 

This then permits the optimizer component in the MPC to search for the optimal series of control 

actions based on modelled variables that have a higher level of precision. This is expected to result in 

a more efficient process control. 

The methodology applied for the training and testing of the DDM and the configuration of the hybrid 

model are discussed in more detail in chapter 5. 
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6.2.3 Current Process Control of Methanol Dosing at Study Site 
At the Seine aval WWTP, methanol is stored in pure form, but applied in diluted form (5%) – necessary 

for safety reasons.  

According to the constructor’s manual, the dosing of pure methanol was designed with an average 

daily value of 2660 L/d and a maximum of 18 460 L/d (18.5 m3/d) for all filters active at the same time 

and is proportionally recalculated according to the number of active filters in each battery. Assuming 

that in each battery there is always one filter in backwashing session, and that an additional filter is 

offline due to maintenance, the maximum number of filters that can be considered active at a time is 

55 filters for preDN stage.  

The dosing takes place at the entry channel of the pumps that recirculate the nitrified water from the 

outlet of the NIT stage back to the entrance of the preDN stage. The maximum dosing ratio of methanol 

(g) to the nitrates (g) removed is 0.8 gMeOH/g NO3-N denitrified, which corresponds to 1.25 gMeOH 

dosed per 1g NO3-N removed. Operators can lower the dosing ratio if the nitrate concentration in the 

effluent is less than the set point, which is currently set at 1.3 mgNO3-N/L. 

The mechanistic biofilter model developed previously (Zhu, 2020) integrated methanol dosing control 

based on the current process control in the predenitrification stage at the Seine aval WWTP.  The 

methanol dosing control in the model  is a function of the following elements (see equation 6-1); (1) a 

measurement of the NO3-N concentration at the inlet of the preDN stage that serves as a feedforward 

signal; (2) the desired set point of the NO3-N at the outlet, (3) the ratio of methanol (g) dosed per gram 

of NO3-N + NO2-N removed, (4) the weather type indication, that can either be a heavy rain event (0) 

or a dry weather event (1).  

IF Weather > 0: 

𝑀𝑎𝑠𝑠_𝑀𝑒𝑂𝐻 = (𝑁𝑂3𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑁𝑂3𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡) ∗ 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ∗ (𝑟𝑎𝑡𝑖𝑜_𝑀𝑒𝑂𝐻/𝑁𝑂𝑥_𝑟𝑒𝑚𝑜𝑣𝑒𝑑)  

ELSE: Mass_MeOH = 0 

(Equation 6-1) 

In equation 6-1, the Mass_MeOH is the flux of methanol dosed (g/d); the (NO3_Influent) is the 

measured nitrate concentration (gN/m3) in the inflow of the preDN, the flow rate of the wastewater 

(m3/d) and the ratio of methanol per gram of nitrate to be removed (g/gN). The current settings for 

the NO3-N set point and the ratio of methanol dosed per gram of nitrates removed are shown in Table 

6-1. 

The weather functions as an ‘on’ and ‘off’ function of methanol dosing control and simulates the 

operator’s rules that during heavy rain events, the recirculation of nitrified water from the NIT stage 

to the inlet of the preDN is stopped, thus, removing the need for methanol dosing. A heavy rain event 

is classified by flow rates higher than 22 m3/s (as an average value observed during a 15-minute 

interval) in combination with an observed conductivity measurement below 90 mS/m. The set point 

and the desired ratio are defined by the operator.  
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Table 6-1: Operational settings for the NOx set point and the applied ratio of methanol dosed per gram of NOx to be 
removed at the Seine aval WWTP. 

 
NOx SetPoint 

[mgN/L] 
Ratio MeOH : NOx-N 

[g MeOH / g NOx-N] 

MeOH_PreDN 1,3 0,75 

MeOH_PostDN 2,0 3,0 

 

The mass of methanol (MeOH) dosed is modelled in the biofilter model (see Figure 6-4) as soluble COD 

and added in the influent flow as the state variable S_S (readily biodegradable substrate) by applying 

a multiplication factor of 1.5 gCOD/gMeOH (Zhu, 2020). This factor is the quotient of the COD 

equivalent of methanol (48 g/mol) and the molecular weight of methanol (32 g/mol).  

 

Figure 6-4: Control settings of methanol dosing in the original mechanistic biofilter model that are based on the current 
operational setting in the predenitrification stage of the Seine-aval WWTP. 

6.3 Hybrid Model Predictive Controller 
The concept of the hybrid model predictive control (HMPC) developed in this study for the dosing of 

methanol in a denitrification biofilter is illustrated in Figure 6-5. The HMPC functions by first searching 

for an optimal methanol dosing rate by running multiple scenarios through the hybrid biofilter model, 

which contains the calibrated mechanistic model (the MPC Model, blue box in the figure) simulating 

the behaviour of one filter as described earlier, and a correcting ANN-model (yellow box). It then 

compares the simulated nitrate effluent with the desired effluent NO3-N concentration (set point). The 

MPC model receives the measured influent data and relevant information about the operational 

settings (e.g. number of active biofilters). This information could easily be extended to include cost for 

methanol dosing and environmental costs (e.g. GHG emissions) associated with the methanol dosing. 

The dosing of methanol has a direct lowering effect on the nitrate concentration in the effluent. Higher 

doses of methanol will increase the metabolic activity of methanol-oxidizing microorganisms 

(methylotrophic denitrification), which will consume more nitrates and thus lower the nitrate 

concentration in the effluent. This assumes that sufficient methanol is added to enable fast grow-in of 

methylotrophs to establish a sufficiently high population. The optimizer searches for the smallest error 

between the simulated nitrate concentrations and the desired set point. The corresponding optimal 

dosing rate is then identified and transmitted to a second mechanistic biofilter model (the “Reality“ 

Process Model in the red box), which represents the reality to which this HMPC controller would 

eventually be connected. It is important to realize that this “Reality” process model is different from 

the MPC model in a way that approximates the difference that would occur between the MPC model 
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and the reality to which the HMPC is to be applied. That model represents the physical process taking 

place in the physical world and allows quantifying the impact of the proposed action.  

 

Figure 6-5: Conceptual scheme of the developed Hybrid Model Predictive Controller (grey box) that involves a mechanistic 
model (blue box) interacting with a correcting DDM (yellow box) to find the optimal control action value that is implemented 
in the “Reality” Process Model (red box). This model then makes a one-time-step ahead prediction of the effluent quality, 
which is used as the ‘observed’ effluent for the next iteration of the HMPC. 

The influent files and the operational settings (e.g. information about the number of active filters in a 

treatment stage) are identical for both the MPC Model and the Reality Process Model. The initialization 

of both models is thus identical. However, due to certain model parameter differences (see section 

6.3.3) the initial condition of each model in the dynamic simulation will be different, and so will their 

behaviour during the dynamic simulation. 

When the predicted behaviour and that observed in reality (here represented by the ‘Reality’ Process 

Model) diverge from each other, it would be recommended to recalibrate the parameters of the 

mechanistic model used in the MPC configuration. However, in the case of wastewater treatment 

models, and especially for biofilm models, this would require an intensive and tedious procedure. A 

much faster method is to compensate for this model-mismatch by adjusting the set point of the MPC 

model. In fact, when the nitrate concentrations predicted by the MPC model differ from the real values 

(as simulated here by the “Reality” process model), the objective to reach a certain nitrate set point in 

the real world can be reached by aiming with the MPC for a set point that has been adjusted by this 

model mismatch. For instance, if the nitrate concentrations in the real world are 1.1 mgN/L and the 
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model in the MPC simulates a concentration of 1.5 mgN/L, the set point of 1.3 mgN/L would be 

increased to 1.7 mgN/L so that attaining that concentration in the MPC, would be expected to lead to 

attaining 1.3 mgN/L in reality.  

This model mismatch correction through set point adjustment is implemented as follows: when the 

output of the Reality Process Model is compared to the predicted output by the MPC Model, the 

averaged difference between the two models of the last 15 minutes period (symbolized by Ԑ in Figure 

6-5) is communicated back to MPC model, where it is used to modify the set point applied during the 

next iteration.  

The objective function of the optimizer aims to minimize the error between the desired nitrate 

concentration, which is the set point, and the modelled nitrate effluent. It will seek to manipulate the 

dosing of external carbon into the biofilter simulated in the MPC model to meet the defined goal, 

despite disturbances occurring in the flow rate and influent concentrations. In the developed control 

structure, the process variable (PV) is the nitrate effluent concentration, and the manipulated variable 

(MV) is the flow rate of the methanol dosing (Q_Dose) expressed in m3/d; the desired output is the set 

point nitrate concentration (mgNO3-N/L) in the effluent (SP_NO3). 

As can be seen in Figure 6-6, the prediction horizon of the MPC is set to 120 minutes, which gives ample 

time for the effect of a methanol dosing action on the biofilter to pass completely through the biofilter. 

The time step size (k) has been chosen as 15 minutes since the hydraulic retention time of the water 

in a biofilter is about 20 to 30 minutes. Any reagent dose injected at instant k will pass through the 

biofilter within 30 minutes, and its effect on the biological activity is assumed to be of the same order. 

The control horizon is set as the first four timesteps (thus from k to k+4), of which actually only the 

first proposed action is actually passed on to the real system (here the “Reality” process model). After 

the first iteration, the HMPC moves up one time step (k+1) in a receding prediction horizon, in order 

to start the optimization again. In this case study, this moving simulation window is repeated for a total 

period of 3 hours.  

 

Figure 6-6: Applied (H)MPC control strategy showing the control horizon of 60 minutes and the prediction horizon of 120 
minutes on the horizontal axis; as well as the desired NO3-N set point value and the dosing flow rate (Q_Dose) on the vertical 
axis. 
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Besides the variable dosing flow rate (Q_Dose) and the desired set point, all other controller inputs are 

considered disturbances under ‘ideal’ conditions without taking in consideration measurement noise, 

time delays or other monitoring discrepancies. In a future expansion of this demonstration project, the 

Reality Process Model can easily be replaced by real-time measurements of nitrate effluent 

concentrations. 

The HMPC controller is coded in the python (3.9) language in order to allow automatic execution and 

coupling of the DDM (developed in python) and the biofilter models, which were developed in WEST 

(DHI). 

6.3.1 Reality Process Model Divergence from MPC model 
In order to enforce a discrepancy between the process knowledge incorporated in the MPC model and 

the real physical system represented in Figure 6-5 by the red coloured Reality Process Model, it was 

decided to change some model parameters in the process model.  

The selection of parameters to modify was based on the global sensitivity analyses performed earlier 

(see chapter 4) and the correlation of the parameter with the mass transfer of methanol into the 

biofilm, as well as the uptake of methanol by the active biomass. The global sensitivity analysis for the 

nitrate effluent variable identified the anoxic growth rate reduction factor of heterotrophic biomass 

consuming nitrates (n_h1) and the anoxic half-saturation constant of soluble COD of heterotrophic 

biomass consuming nitrates (K_S_NO3) as the third and seventh most influential parameters 

respectively (see Table 4-10). Next to two parameters affecting biokinetics, a parameter influencing 

the transport of the components in the biofilm was selected. The fraction of the biofilm that is removed 

during washing sessions (Washrate) was the most influential parameter on NO3-N in the effluent of 

the mechanistic biofilter model. 

When considering the sensitivity analysis of the parameters on the effluent soluble COD 

concentrations (see Table 4.11), the parameters n_h1 and K_S_NO3 have been identified as second 

and third most influential. The soluble COD is an important indicator that is directly correlated to the 

uptake of methanol by the microorganisms, since the dosed methanol in the model is completely 

‘assigned’ to the state variable S_S, which is the readily biodegradable substrate that forms a large part 

of the soluble COD. 

Regarding the influence of model parameters on the effluent TSS concentrations (see Table 4.12), the 

WashRate was pointed out as having the fourth strongest influence; recognizing the impact of the daily 

backwashing sessions on the filtration efficiency of a filter capturing suspended particulates.  

The parameters finally selected to be different in the Reality Process Model are indicated in Table 6-2. 

The direction of the changes in parameter values was chosen such that effluent predictions of nitrate 

were 10% lower, in the sense of root mean square error, which measures the average difference 

between the values of the original MPC model (‘the reference’) and those predicted by the model with 

the modified parameters. The order of the modification of the parameters was: (1) change parameter 

n_h1 until a -10% difference in NO3-N effluent is noticed; (2) change K_S_NO3 for a +5% difference in 

NO3-N effluent, (3) change WashRate for a -5% difference in NO3-N effluent. This made that the total 

change in NO3-N effluent were -10% compared to the Reality Process Model predictions before the 

parameter modifications. This order of change will allow an effect of the different scenario to be more 
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easily visible, but not to change the rate of kinetics and transport of compounds in the model in 

extreme manners.  

The evaluation pertained to time series of 12 hours, since this is the total duration studied here.   

Table 6-2: Parameters of the Reality Process Model that were modified and their impact on the simulated effluent nitrate 
concentrations. 

Order Parameter Description Calibrated 
value 

Modified 
value 

Paramet
er 
change 

% Impact 
on ∆ NO3-
N effluent 

1 n_h1 Anoxic growth rate reduction 
factor of heterotrophic 
biomass consuming nitrates 

0.28 [-] 0.26 [-] -7% -10 % 

2 K_S_NO3 Anoxic half-saturation 
constant of soluble COD of 
heterotrophic biomass 
consuming nitrates 

41.37 
[gCOD/m3] 

39.30 
[gCOD/m3] 

-5 % +5 % 

3 Washrate Biofilm fraction that is 
removed during washing 

0.55 [-] 0.56 [-] +2 % -5 % 

 

The effect on the modelled nitrate concentration of the final selected parameter values is shown in 

Figure 6-7.  

 

Figure 6-7: Evaluation of changes in selected model parameters (n_h1, K_S_NO3, WashRate) upon the modelled NO3-N 
effluent under two scenarios: a positive 10% change (red line) and a negative 2% change (blue line) compared to the reference 
situation (black line).  

6.3.2 HMPC Model Divergence 
Another situation that will be studied in this chapter occurs when the mechanistic model that is part 

of the hybrid model is recalibrated so that it better corresponds to reality. In order to simulate such 

recalibration situation, it was decided to modify the same model parameters identified for the 

modifications in the Process Model. However, this time the amplitude and direction of the change was 

maximum +2%.   

The order of the modification of the parameters indicated in Table 6-3 was the following: (1) modify 

n_h1 until a +2% difference in NO3-N effluent is established; (2) change K_S_NO3 for a -1% difference 
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in NO3-N effluent, (3) change WashRate for a +1% difference in NO3-N effluent. This made that the 

total change in NO3-N effluent was +2% compared to the MPC Model predictions before the parameter 

modifications. 

Table 6-3: Parameters of the MPC Model that were modified and their impact on the simulated effluent nitrate concentrations. 

Order Parameter Description Calibrated 
value 

Modified 
value 

Paramet
er 
Change 

% Impact 
on ∆NO3-
N effluent 

1 n_h1 Anoxic growth rate reduction 
factor of heterotrophic 
biomass consuming nitrates 

0.28 [-] 0.285 [-] +2 % +2 % 

2 K_S_NO3 Anoxic half-saturation 
constant of soluble COD of 
heterotrophic biomass 
consuming nitrates 

41.37 
[gCOD/m3] 

42.41 
[gCOD/m3] 

+2.5 % -1 % 

3 Washrate Biofilm fraction that is 
removed during washing 

0.55 [-] 0.5445 [-] -1 % +1 % 

 

The result of the final selected parameter values is shown in Figure 6-7, where a slight shift of the time 

series is observed due to rounding of time stamps (all expressed in unit of days) by the model’s 

integrator.  

6.3.3 Description of Data Sets 
The datasets used for the development of the HMPC controller were taken from the operational 

SCADA system for the June 1-8, 2020. It was the first week during which the methanol dosing came 

back online with certain regularity (see Figure 6-8). The dosing had been halted before that due to 

technical problems.  

 

Figure 6-8: a) methanol dosing rate [m3/d] and b) temperature profile of the settled wastewater for June 1-9, 2020. 

Within these 8 days, a window of 12 hours was selected to simulate the MPC controller. The 7-day 

average of the influent conditions was extrapolated to cover 28 days to be used for the Steady-State 

simulations.  

6.3.4 Hybrid Model Predictive Controller Performance Criteria 
The performance of the hybrid model predictive controller was assessed by applying the Root Mean 

Square Error (equation 6.2). The objective function of the optimizer expresses that one tries to 

minimize the RMSE between the NO3-N set point and the predicted NO3-N values over the prediction 

horizon. 
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6.3.5 MPC performance evaluation procedure 
In order to be able to evaluate the performance of the HMPC and compare it to the other types of 

process control, a scenario analysis has been performed consisting of the following high-level scenarios 

(see Figure 6-9): 

Scenario 1: Reference of current control. The biofilter Process Model runs with the current dosing 

control that is based on feedforward rules of nitrate measurements at the entrance of the preDN stage 

(equation 6.1), thus without a model predictive controller involved. The simulated nitrate effluent and 

the dosed methanol (g) will serve as the reference situation. 

Scenario 2: Reference situation for the MPC controller. The MPC controller applies a biofilter model 

(blue model) to find the optimal dosing rate. However, in this scenario, the MPC model has been 

modified to have exactly the same parameter values as compared the Process Model, so that the MPC 

model is completely aligned with ‘reality’. This simulates an ideal situation.   

Scenario 3: MPC control with calibrated MPC model. The MPC model is here the calibrated biofilter 

model without the data-based model that corrects for its deficiencies, which thus differs to the Reality 

Process Model. The model parameters are not in harmony. 

Scenario 4: HMPC control with hybrid model. The predictive controller in this scenario uses the trained 

DDM to correct for the mechanistic model’s error. The MPC’s optimizer algorithm that aims to find the 

optimal dosing rate then uses these corrected simulated effluent data. 

Scenario 5: HMPC control with modified biofilter model. In this scenario, the mechanistic biofilter 

model is modified in the sense that the model parameters are recalibrated to recover from a large 

divergence between the current calibrated model and the physical reality. The maximum allowable 

effect of the modifications on the NO3-N effluent concentrations are + 2%.  

These five high-level scenarios are illustrated in Figure 6-9, where the MPC model with the calibrated 

parameters is indicated by the blue coloured boxes, while the Reality model simulating the physical 

system is coloured red. The light-blue coloured box of the fifth scenario is to indicate that the model 

parameters have been modified compared to the dark blue coloured models. Also shown are the 

expected outputs on the nitrate effluent concentrations for each scenario and an assessment of the 

impact on the costs of methanol dosing. 
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Figure 6-9: Definition of the high-level scenarios performed to compare the effect of using the MPC and HMPC under varying 
conditions. 

6.3.6 Optimization Scenarios Workflow in Python 
MPC optimization searches for the lowest error between the simulated effluent of the mechanistic 

model and the desired effluent concentration, which is the nitrate set point in the effluent of the preDN 

treatment stage. The MPC optimizer and the interactions with the MPC Model and the Reality Process 

Model have been written in python code. This permits an automated execution of the various 

optimization scenarios and executing the data-driven model and the two mechanistic models, as well 

as facilitating data exchange between the models. Flow paths were designed to run the controller in a 

MPC mode and an HMPC mode. Table 6-4 describes the sequence of steps of the two workflows that 

were written in modular python scripts. This approach allowed isolating each step of the workflow 

making it easier to debug and progressively put in additional features during development. 

Table 6-4: Sequence of steps implemented for the MPC and HMPW workflows. The steps refer to the python scripts shown in 
the figures 6.10 and 6.11. 

Step Description MPC HMPC 

1.py Create executable xml files for mechanistic MPC model based on 
optimizer values and start & stop time of next iteration 

Ѵ Ѵ 

2.py Run mechanistic MPC model for 120 minutes and save simulation output 
in txt files for each optimization scenario 

Ѵ Ѵ 

2b.py Run data-driven model to correct the mechanistic MPC model’s residual 
error of each optimization scenario; save simulation output in txt files  

- Ѵ 

3.py Evaluate the performance of each optimization scenario by comparing to 
the set point value; select best scenario with lowest RMSE 

Ѵ Ѵ 

3b.py Re-execute the identified best scenario in the (H)MPC model and 
reinitialize the mechanistic model  

Ѵ Ѵ 

4.py Create executable xml file for the Reality Process Model based on best 
optimization scenario and start & stop time of next iteration 

Ѵ Ѵ 

5.py Run the Reality Process Model for 15 minutes, save simulation output in 
txt file and reinitialize the model 

Ѵ Ѵ 
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6.py Evaluate performance by comparing NO3-N effluent to set point in terms 
of RMSE and update set point for MPC model in case of model mismatch 

Ѵ Ѵ 

7.py Count the number of performed iterations 
 

Ѵ Ѵ 

 

MPC Workflow 

The workflow created by the different python scripts for high-level scenarios 2 and 3 is shown in Figure 

6-10. It consists of seven scripts that are executed in order. The optimization scenarios are a selection 

of predefined scenarios containing methanol dosing flow rate values (Q_Dose) in the range between 

0 and 18 m3/d, corresponding to options between no dosing, low, intermediate and high methanol 

dosing flow rates. The array contains the following values: 0, 4, 8, 12, 16. The MPC optimizer will run 

each of these scenarios and chooses the scenario that results in NO3-N effluent values that are as close 

as possible to the desired set point, based on the lowest SSE error calculated over the prediction 

horizon. 

The first script (‘1.py’) loads the different optimizing runs or low-level scenarios stored in a csv file and 

creates for each scenario, an executable file (.xml) for data exchange between systems. It reads the 

influent data for eight time steps with 15 minutes intervals (corresponding to 2 h). Before every 

iteration, it moves up one time step of 15 minutes in order to keep synchronized with the receding 

prediction horizon of the Reality Process Model.  

Script ‘2.py’ executes the xml files in the WEST mechanistic model that forms part of the MPC and 

creates output text files with the simulated NO3-N concentrations.  

The third script (‘3.py’) then makes a comparison between the simulated NO3-N concentrations and its 

set points. It reads the set point values from an array stored in a txt file. This script allows calculating 

the Root Mean Squared Errors (RMSE) in order to select the best dosing flow rate (Q_dose) time series 

from the optimization scenarios that corresponds to the lowest SSE score. The identified best-fit 

scenario is then rerun for a second time through the mechanistic model (‘3b.py’). In this way, the MPC 

model is properly reinitialized with the correct scenario values for the next iteration.  

Script 4.py prepares the input xml file for executing the mechanistic Reality Process Model in WEST for 

the next 15 minutes. It takes the identified optimal Q_Dose of the first time step, as well as the new 

start-time and stop-time corresponding to the iteration number updated with 15 minutes time 

intervals.  

The execution of the Reality Process Model takes place by script 5.py, which runs the model in dynamic 

mode for 15 minutes and creates an output file that contains the effluent NO3-N values at the end of 

that simulation (t + 15 minutes). At the end of the script, it reinitializes the model by saving the end 

values of the state variables as initial values for the next iteration.  
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Figure 6-10: Workflow of python scripts as written for the execution of Scenario 2 and 3 with the Model Predictive Controller. 

Feedback about the evolution of the nitrate effluent concentrations in the effluent of the Reality 

Process Model is now provided for in script 6.py by calculating the difference between the MPC Model 

prediction of NO3-N effluent and what is happening in the physical system (the “Reality” Process 

Model) for the entire 15 minutes. This difference Ɛ (‘epsilon’) is added to the set point array, which is 

then stored in the updated txt file. During the next iteration, this txt file is read by script 3.py to collect 

the modified set point values. In addition, script 6.py also calculates the error between the NO3-N set 

point and the predicted nitrate concentrations in the preDN effluent.   

Finally, script ‘7.py’ serves to indicate the current number of iterations using an external or global 

variable that allows keeping count of the iterations that have been completed. This global variable is 

used in the different scripts to account for the receding prediction horizon that moves forward with 

one time step interval of 15 minutes after each iteration. 

Also indicated in the green boxes in the figure are the possible manual modifications to the optimizer 

scenario and the model parameters of the mechanistic models. For the moment, the optimizer 

scenarios are predefined based on process knowledge, but this could be automated in a future 

extension of the project. The same applies to the values of the parameters for both models used here 

that are currently manually modified, but this could be performed based on optimization results. 

HMPC Workflow 

The workflow describing the different python scripts for the utilization of the Hybrid Model in the 

context of the MPC, scenarios 4 and 5, is shown in Figure 6-11. On many accounts, it is similar to the 

flow of the scripts described for the MPC development in scenarios 2 and 3, except for the insertion of 
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the Data-Driven Model after script 2.py and before script 3.py. Here, script 2b.py executes the trained 

neural network to predict the MPC model’s error and allow correcting for it. For this, the ML model 

uses the prediction variables, which are read from the influent and input files of the MPC model and 

includes operational parameters known to the MPC model. The updated corrected simulated variables 

are then used by script 3 to analyse performance of each scenario by calculating the SSE. From this 

point on, the scripts are identical and follow the path described earlier. 

 

 

Figure 6-11: Workflow of python scripts as written for the execution of Scenario 4 and 5 with the Hybrid Model Predictive 
Controller. 

For easy reference, the Python codes for the scripts are made available in Annex IV.  

6.4 Results & Discussion 
The simulations performed with the High-Level scenarios as presented in Figure 6-9 test different 

structures of a model predictive controller (i.e.: with and without support of a correcting machine 

learning model) under different conditions (i.e.: the modifications of the selected parameters n_h1, 

K_S_NO3 and WashRate). All simulations used the same input data for the period of 1 to 8 June, a 

period characterized by high NO3-N influent concentrations and actual methanol dosing in the physical 

system.  

Figure 6-12 shows the performance of each scenario by comparing the simulated NO3-N concentration 

in the Reality Process Model with the nitrate set point. The performance of the current dosing control 

settings is the reference with which this work is to be compared with. Clearly visible is the significant 
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improvement of the MPC and HMPC controllers when compared to the current applied control (Table 

6-5). The impact of the MPC and HMPC strategies is a reduction of the nitrate concentration, resulting 

in an improved effluent quality. 

Table 6-5: Overview of the RMSE errors in the Reality Process Model for the total of 11 iterations performed in each 
scenario. The RMSE is defined as the difference between the NO3-N set point and the simulated values for a period of nearly 
3 hours 

No. Scenario RMSE mgNO3-N/L  

1 Reality_Current_Control 1,77 

2 Reality_MPC_A 0,89 

3 Reality_MPC_B 0,94 

4 Reality_MPC_C 1,01 

5 Reality_HMPC_B 1,20 

6 Reality_HMPC_C 1,24 

 

In more detail, it is noticeable that the MPC_A scenario has the lowest error to the desired effluent 

concentration. This is expected since in this scenario the model parameters of both the MPC model 

and the Reality Process Model are identical. Here, the MPC model is able to closely predict the 

behaviour occurring in the ‘real world’. When there is a mismatch between the assumed behaviour 

and the ‘real’ behaviour, however, here simulated by the other scenarios ending with B and C where 

selected model parameters in the MPC model are diverging from the “Reality” ones, the error gets 

larger. The overall direction of the parameter modifications seems to make a difference on the error 

as well. Scenario MPC_B, where modifications led to a 10% increase in nitrate effluent concentrations 

(see section 6.3.1), performed better than scenario MPC_C with a -2% change (section 6.3.2). This 

could be related to the efficiency of methanol, which is higher at higher NO3-N values in the 

wastewater.  

Between scenarios B and C, it is observed that the hybrid variants HMPC_B and HMPC_C, which apply 

the data-driven model to correct for the mechanistic MPC model’s error, results in the highest RMSE 

values. This could indicate that the lack of the ML model’s training with operational data that include 

methanol dosing is detrimental to their performance in a control context. In fact, as described in 

chapter 5, the DDM was trained on observed data from a period without external carbon dosing. It 

could benefit from a retraining on prolonged period of extensive carbon addition in the denitrification 

treatment stage. 

Figure 6-12 indicates the overall performance of the “Reality” Process Model under the different 

scenarios in terms of RMSE between the desired NO3-N set point and the simulated effluent NO3-N 

concentrations. The figure concatenates the 15-minute simulations of a total of 11 iterations, each 

simulating a receding 15-minute prediction horizon in the “Reality” Process Model.  
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Figure 6-12: Simulated NO3-N effluent concentrations in the Reality Process Model of the various High-Level scenarios using 
MPC and HMPC variants, as well as the effect of the current dosing control settings. Indicated are the current controller result 
(red colour), MPC_A (orange), MPC_B (grey), MPC_C (dark blue), HMPC_B (yellow) and HMPC_C (light blue). 

Clearly noticeable in the figure is that the current feedforward control strategy (red line) results in a 

too high NO3-N concentration with an average of around 3.1 mgN/L for the period studied, 

corresponding to an RMSE of near 1.8 mgN/L when compared to the desired set point of 1.3 mgN/L. 

The MPC control strategies result in much lower effluent concentrations that are converging to the 

desired set point during the first hour from 07:45 to 08:45. The average values of the MPC and HMPC 

variants are three times smaller than those of the current controller. 

Figure 6-12 also shows that the MPC and HMPC control strategies result in nitrate values that are 

actually too far below the desired set point; thereby raising the RMSE. To cause such low nitrate values 

in the effluent, the MPC and in particular, the HMPC strategies dose large volumes of methanol. This 

results in higher operational costs of methanol usage.  

As mentioned earlier in this paragraph, a retraining of the DDM with more data stemming from a 

period with active methanol dosing could certainly benefit to reduce the difference in outcome of 

scenarios B (MPC) and C (HMPC). However, further review of the results shown in Figure 6-12 suggests 

that the DDM may have been trained on the ‘wrong’ residual error. Instead of defining the residual 

error as the difference between measured and simulated nitrate effluent measurements in the preDN 

treatment system, for this demonstration the DDM should in fact have been trained on the difference 

between the Reality Process Model simulation results, which represent the physical system, and the 

simulation results of the MPC Model, which is the simplified process model included in the MPC. Due 

to the different characteristics of both models, the modelled effluent nitrate concentrations of both 

models are not identical. By training a DDM on this difference, it is expected that the resulting HMPC 

will be able to correct for the residuals, thus giving the lowest RMSE and thus the best performance 

with the HMPC that takes advantage of this best model. This demonstration project will be finalized 

by properly training the hybrid model and results will be presented at the IWA Watermatex2023 
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conference (Québec, QC, Canada, September 2023) and afterwards submitted for publication in the 

form of a scientific paper.       

Note that, in the current optimizer structure, the optimizer only seeks to minimize the RMSE error 

between the set point and the modelled effluent nitrate concentrations and there is thus no additional 

incentive to limit methanol dosing. In a continuation of this study, reducing unnecessary dosing would 

be an aspect that definitely requires more attention by designing a multi-objective optimization 

problem.   

6.5 Conclusions & Perspectives 
A previously developed cooperative parallel Hybrid Model was applied in a Model Predictive Control 

strategy that searches for the optimal proposed control action based on predictions made by the 

hybrid model. The process control manipulates methanol dosing as an external carbon source to 

enhance the performance of denitrification in a submerged upward flow biofilter. The HMPC 

developed here is one of the first implementations of a hybrid MPC to a real, large water resource 

recovery facility treating 1.5 million m3/day. The only other known example is described by Sparks et 

al. (2022) using a similar approach as being developed here, but for the application of (i) chlorine for 

disinfection and (ii) aeration in an activated sludge system. 

This study shows that the realistically simulated Hybrid Model Predictive Controller significantly 

reduces the effluent NO3-N concentrations and thereby improves the effluent quality. The 

computational demand of the hybrid model approach using a python script calling WEST is much 

smaller when compared to running the mechanistic model simulations within WEST’s graphical user 

interface. This has been achieved by developing Python scripts that execute the mechanistic model 

and the machine learning models automatically and without the overhead of a graphical user interface. 

Further studies of the control strategies using the Hybrid Model are required to understand the low 

simulated nitrate values. The HMPC optimizer can certainly benefit from regular retraining of the 

neural network. This would further increase the confidence in the model’s performance that allows 

applying it in an active process control setting. 

 





 



 

7 Conclusions and Perspectives  
 

The research work of this thesis centres on wastewater treatment process modelling; on ways how to 

improve the model performance and make them applicable for advanced (near) real-time control of 

treatment systems. This chapter discusses the main conclusions of the work on mechanistic modelling 

of nitrogen removal by biofiltration, of the development of a hybrid model to compensate for the 

mechanistic model’s residual error, and of the use of this hybrid model in a hybrid model predictive 

control application developed for the dosing of methanol in a denitrification filter. All this was 

developed at the super-scale case study of Seine aval in Paris, France. 

The overall aim of the PhD study was to contribute to the integration of hybrid models that combine 

mechanistic and data-driven models as a tool for operators and managers in the wastewater industry 

to aid in decision-making, design and planning, as well as a process control. Wastewater treatment 

nowadays has become a complex chain of systems and processes that require effective control and 

pro-active decision-making based on data and information derived from the current state of a process, 

and from data-based analyses and models predicting future states. The mining of data will lead to more 

information and the mechanistic modelling of processes gains a deeper understanding of the various 

biological, physical and chemical processes at hand in a bioreactor. It is expected that this increased 

knowledge will result in more intelligent actions taken (e.g. Corominas et al., 2018; Therrien et al., 

2020) that allow the wastewater industry to meet the wide range of demands and regulations, such as 

compliance with stringent effluent qualities, the recovery of resources, the reduction of energy 

demand and greenhouse gas emissions. 

In this regard, the comprehensive objective of this study is to demonstrate that hybrid modelling brings 

added value to model performance of effluent quality simulations when used for complex process 

control of wastewater treatment applying high-resolution operational data. This is achieved by 

reaching the following principal objectives: 

• Objective 1: A mechanistic model of a biofilm reactor for predicting nitrogen removal, power 

consumption, filtration and greenhouse gas (GHG) emission.  

• Objective 2: A machine learning (ML) model to predict the residual error for the main effluent 

quality variables providing a better accuracy of the hybrid model. 

• Objective 3: A hybrid model predictive controller (HMPC) that demonstrates the potential 

application of hybrid models in an operational setting.   

The first objective was pursued in chapter 4, the second objective in chapter 5 and the third objective 

in chapter 6. The general conclusions related to these works will now be discussed in more depth, 

starting with those of the literature review. 

7.1   Conclusions 

7.1.1 Literature Review 
The study of articles and textbooks on biofilter modelling and the application of data-driven models in 

the wastewater sector showed that the mechanistic models of conventional activated sludge systems 

are widely accepted in academia and industry; more than 35 years since the development of the ASM1 

model has led to a large number of scientific papers written and modelling studies performed; as well 

as protocols that aid the modelling community. Such well-developed mechanistic models can be 
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defined as digital twins in certain contexts as they allow analysis of data and monitoring of systems to 

avoid problems from occurring, plan for future upgrades and (re-)designs, and optimization of 

processes. However, this is not the case (yet) for biofiltration, which is a biological wastewater 

treatment technique that contains large surfaces for bacteria to grow on so they treat pollutants and 

nutrients in the ecological conditions that are created for them inside a reactor. These microorganisms 

are prominently active inside a thin layer with a typical thickness of approximately 100 µm and obtain 

their substrate from the water through diffusion. Compared to the ASMs, the mechanistic models 

describing biofiltration require adaptation in order to model the behaviour of biomass inside the 

biofilm and the transport of compounds by diffusion. Biofilm models are therefore considered to be 

more complex and tedious to calibrate and validate; and moreover, lack widely accepted protocols for 

model development. Additionally, these biofilm models require more computing power, which makes 

them less suitable for real-time process control applications with a short time action horizon 

(Morgenroth, 2008b). 

The rapidly increasing interest of the wastewater sector for data-based and data-driven methods that 

can smartly use increasing volumes of big-data being collected in modern wastewater treatment 

plants, has resulted in a proliferation of scientific papers on the topics of artificial intelligence, data 

mining and machine learning within the water and wastewater sector since the year 2000 (e.g. 

Hadjimichael et al., 2016). Data-driven models that apply machine learning models, such as ANN’s and 

SVM’s, have emerged as alternative approaches for process modelling. More recently, hybrid models 

that combine data-driven models with the mechanistic models are reported to have the potential of 

achieving more accurate model performance (e.g., Schneider et al., 2022). 

Nevertheless, so far, the development of hybrid models for biofiltration systems has only found limited 

application in the industry. The main reasons are the reluctance to accept data-driven models since 

these lack a knowledge-based understanding of the underlying processes; the lack of data-

management experience and training of operators and managers alike; as well as the long lifetime and 

high investment costs of infrastructure that needs to withstand harsh and very dynamic conditions.  

The research work performed here has shown that it is indeed possible to develop a hybrid model that 

simulates a complex biofiltration treatment process with more accuracy than a mechanistic model 

alone can achieve using high-resolution (15-minute time steps) operational data from a very large 

wastewater treatment plant (dry weather average flow rate 1.5 million m3/d; 6 million P.E). This study 

then demonstrated the application of a hybrid model in a comparative case study in which a 

conventional feed-forward controller in use today at the plant under study is compared to a Hybrid 

Model Predictive Controller of the methanol dosing to a biofilm reactor that takes advantage of the 

developed hybrid model. This, with the definition of hybrid model used here, has not been reported in 

literature before.  

7.1.2 Calibration-Validation of a Mechanistic Biofiltration Model  
The first objective of the PhD thesis focused on the calibration and validation of a mechanistic model 

describing an entire secondary biological treatment facility for nitrogen and organic matter removal 

by biofiltration consisting of predenitrification, nitrification and postdentrification stages. For the 

calibration, high-frequent data at 15 minutes intervals collected over 3.5 months were used, while for 

validation a different data set was used covering another 3 months of data.   
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It was found that the quality of the observations is of profound importance and highly affects the 

modelling results. Monitoring data gathered by inline sensors can greatly suffer from inconsistencies, 

faults and drifts that require an intensive data cleaning operation before it can be applied in a 

modelling study. Based on the data cleaning results acquired in this study, it is fair to state that the 

preprocessing of high-resolution operational data from municipal wastewater treatment plants can 

result in significant (12 to 16% on average) losses of data, in particular with data originating from fault-

prone monitoring techniques (such as is the case for DO and TSS sensors), due to the high percentage 

of outliers and faulty data detected. Daily laboratory analyses data typically show better reliability and 

can be used to reconcile the high-frequent data by removing drifts and biases.  

Another important aspect of data quality is related to the information being collected in relationship 

to the location of sampling points. With voluminous and complex treatment systems, it is often the 

case that sampling points are located at both the entry and exit of treatment stages (e.g. NIT), thereby 

monitoring the ‘average’ performance of a group of batteries or of a battery that groups multiple units 

that produce a ‘mixed’ effluent. However, the biofilter models developed so far describe the behaviour 

of an individual filter, which is impacted by the accumulation of biomass and suspended solids in the 

filter bed, necessitating regular backwashing cycles that temporarily halt treatment. Since negative 

flow directions can cause numerical problems for the model integrator, the washing sessions are 

modelled in the same (continuous) flow direction as that during treatment. This can result in an 

overestimation of biomass and suspended solids in the effluent of a modelled biofilter when compared 

to the averaged mixed quality monitored in the real system. Caution has been paid to avoid such errors 

from occurring. 

A previously developed biofilter model (Zhu, 2020) has been successfully recalibrated using 

operational data from a large wastewater treatment plant. The model simulates a 3-stage nitrogen 

removal in a sequence of predenitrification, nitrification and postdenitrification processes.  

The recalibrated mechanistic model is capable of predicting the effluent quality variables at the 

predenitrification stage with acceptable errors compared to the observations. This is particularly the 

case for the NO3-N, NH4-N, total and soluble COD, and TSS. Measured values that fall in the higher 

range tend to be more underestimated by the model, while lower values are generally overestimated. 

This could indicate that one or more kinetic rate parameter(s) are too high or that one or more 

diffusion constant(s) are too low. However, this could also be related to uncertainty in measurements, 

when probes and sensors have difficulty with extreme high or low concentrations. 

The Janus-coefficient, which evaluates the capability of the model to perform outside trained 

conditions, i.e. validation, obtained good values for important effluent variables and the model is thus 

generally quite satisfactory in simulating effluent variables in terms of trends and amplitudes, except 

for the summer period, when it was shown to suffer from overestimation of COD. The validation of the 

nitrogen components (NO3-N and NO2-N) simulations resulted in a Janus coefficient of around 1.5, 

which is an excellent result and an indicator of well-modelled biological behaviour. TSS simulations 

under validation yield a similar coefficient reflecting the good description of filtration by the model. 

This builds confidence in the model’s validity outside trained conditions. 

The modelled output of the Nitrification stage fit the observations very well for NO3-N, soluble COD, 

TSS and NH4-N with an absolute mean error range between 0.1 to 3.7 mg/L. There is, however, a 

consistent overestimation of the nitrite concentrations by the model that could be explained by the 
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instability of NO2-N in samples and the difficulty to measure it in the lower range. In the case of total 

COD, the model error is stronger than average with a mean error of -10.9 mgO2/L. This is partly 

explained by the contribution to total COD of particulate organic matter, which is overestimated by 

the model as indicated by the TSS mean average of -3.73mg/L during the same period. 

Concerning the postdenitrification stage, the daily averaged simulations of the modelled nitrates and 

ammonia concentrations in the effluent fit the observations over the whole range quite well. The 

effluent values for total COD and soluble COD are however overestimated, as well as the effluent nitrite 

concentrations. Overall, the modelled TSS concentrations follow the trends observed, although it starts 

too high. The negative mean average scores for all variables but NO3-N confirm that the model in 

general overestimates the effluent concentrations in the postdenitrification stage. 

7.1.3 Hybrid Model Development 
The second part of this thesis involved the development of a hybrid model that can rapidly correct for 

the mechanistic model’s error. It was developed as a parallel cooperative structure, where both models 

receive the same input information of the influent water quality and flow rate and operational 

parameters, such as the dosing of methanol and the number of active biofilters. However, the data-

driven component received in addition the mechanistically modelled effluent quality. It was trained on 

the basis of these variables to estimate the mechanistic model’s error. The data-driven model 

component used data for the training (01.12 – 31.12.2019) and testing (01.03 – 15.03.2020) period 

from the predenitrification stage at the wastewater plant being studied. 

The developed Hybrid Model was capable of significantly increasing the performance of the 

mechanistic biofilter model during training, which is to be expected, but, importantly, also during 

testing. A cross-validation technique was applied that partitions the data into 5 folds and trains a model 

for each subset using the corresponding data; and then calculates the average validation error over all 

subsets. This method makes efficient use of all the data and still gives a good estimate of the predictive 

accuracy of the trained model, although it can take a longer time to execute because the model is 

trained repeatedly on the subsets. 

The results show how the hybrid model outperforms and significantly reduces the size of the 

mechanistic model’s prediction errors of the effluent nitrate concentration from a relative mean error 

of 12% for the mechanistic model to 2% for the hybrid model during training. While the error on nitrate 

simulations increased to 8% during hybrid model testing, this is significantly lower than the error of 

110% for the mechanistic model under the same testing conditions. The overall good performance of 

the hybrid model allows for future applications of hybrid biofilm models in an operational context, 

such as for process control with a Hybrid Model Predictive Controller. 

The Janus coefficient for NO3-N, total COD and TSS can be considered to be good, confirming the 

validity of the model. When taking into account the highly dynamic conditions observed in the 

secondary treatment biofiltration lane of the super-large wastewater treatment plant under study, the 

considerable measurement errors observed in the high-resolution monitoring of quality effluent 

variables, and the sensitivity of the model calculations to outliers and faults in the input data; it is fair 

to conclude that the modelling results could further benefit from more intense (and automated) data 

preparation and reconciliation processes, as well as more data from longer training and testing periods. 
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7.1.4 Case-study: development of a Hybrid Model Predictive Controller 
The hybrid model developed in this thesis was then tested in an operational application in the context 

of a methanol dosing controller applied to a full-scale predenitrification biofilter model. A Hybrid 

Model Predictive Controller was developed that uses a moving simulation window (15 minutes 

intervals) to predict future effluent nitrate concentrations based on multiple optimization scenarios 

consisting of a sequence of proposed control actions (flow of methanol dosing). The impact of the 

optimal dosing action on the real physical system was studied by sending the action to a second 

mechanistic biofilter model.  

High-level scenarios were defined to evaluate different trial configurations of (Hybrid) Model 

Predictive Controllers over 3 hours using operational data from a period that experienced external 

carbon dosing. The results of this case study indicate that a Hybrid Model Predictive Control is able to 

significantly improve the effluent water quality when compared to the current dosing control. 

However, this results in higher methanol usage and thus operating costs. More extensive simulations 

over longer prediction horizons will permit evaluating the stability of the (H)MPC controllers.  

As far as known, the HMPC developed here is one of the first implementations of a hybrid MPC on an 

operational municipal wastewater treatment facility. The only other known example is described by 

Sparks et al. (2022) using a similar approach as developed here, but for the application of the control 

of chlorine dosing for disinfection and for aeration control in an activated sludge system. 

7.2 Perspectives 

7.2.1 Data Quality 
The sensitivity of models, mechanistic and data-driven, to the quality of data is an important aspect of 

the modelling exercise. As mentioned, the quality of measured data can be improved by applying 

(automated) data cleaning methods, such as those based on faults and outliers detection. The final 

accepted cleaned data series will contain data gaps, imposing an additional data gap filling technique. 

The cleaning of raw data by machine learning techniques could be integrated with an influent 

generator model that allows gap filling in order to guarantee the quality of the data that feeds the 

model (e.g. Li & Vanrolleghem, 2022). 

However, model parameters and parameters for fractionation also have an important effect. Influent 

characterization is often based on fractionation models developed for ASM models and uses 

parameter values that come as default in ASM models, but do not necessarily apply for biofiltration 

treatment and for the conditions prevalent in the Paris region. Since no direct measurements of the 

fractionation parameters have been made in the framework of this research, values found in other 

studies focusing on similar treatment processes have been used as a best second approach. 

Nonetheless, these data are wastewater-specific and differences in wastewater composition can occur 

due to climatic differentiation, topography and consumer habits (e.g. Van Nieuwenhuijzen et al., 2004). 

Several studies indicate that a more detailed characterisation of municipal wastewater will yield a 

better determination of the fractionation parameters; in particular for the particulate matter (e.g. 

Levine et al., 1991; Roeleveld & Van Loosdrecht, 2002). In order to be able to interpret the wastewater 

composition of the treatment plant being studied, it is recommended to perform laboratory analyses 

that allow determination of the values of these fractions. Additionally, data-driven models could be 

applied that allow estimating model parameters (e.g. Mesta et al., 2023). 
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7.2.2 Mechanistic Model Calibration and Validation 
The results of the recalibrated model for the predenitrification (preDN) stage show a generally good 

performance for the effluent variables. However, for the nitrification (NIT) and postdenitrification 

(postDN) stages this is not always the case. The errors for all variables but the NO3-N confirm that the 

model in general overestimates the effluent concentrations at the NIT and postDN stages. The 

parameters for these modelled stages have not been recalibrated and its values were taken from 

previous modelling studies that were based on data collected at other wastewater treatment plants 

using similar biofiltration systems. However, since the wastewater plant under study here consists of 

exceptionally large and complex treatment systems that have important dynamics, it is strongly 

recommended to recalibrate the NIT and postDN stage models with data collected at the same 

wastewater plant under study for the preDN stage.  

7.2.3 Hybrid Model Training 
As shown in this study, the Hybrid Model outperforms the mechanistic model both during 

calibration/training and during validation/testing. However, the performance of the hybrid model 

reduces fast when it is exposed to ‘new’ untrained conditions. More research is needed to evaluate 

the stability of the model and to quantify the recommended time period for recalibration. A training 

period that contains data from longer periods, including different seasons, and/or regular re-training 

of the neural network would definitely increase the robustness of the model. A connection with a 

database storing pre-treated and cleaned inline measurement and laboratory observational data 

and/or the Supervisory Control and Data Acquisition (SCADA) system will allow a data-driven model 

(DDM) to update its training dataset on a regular base, such as being described by Sparks et al. (2022). 

The frequency of training the model and the size of the dataset to be used remain to be determined. 

In addition to the parallel structure of the hybrid model developed in this study, where the data-driven 

model component consists of a trained neural network, there is increased interest in the academic 

world for the application of multiple data-driven models that support each other, commonly referred 

to as ‘ensemble modelling’, as testified by the large number of scientific papers appearing on this topic 

(e.g.: Wai et al., 2022). Ensemble models are developed by combining multiple algorithms, different 

Machine Learning and/or statistical models, such as simple and weighted linear averaging, and neural 

networks. Each model possesses unique individual characteristics that allow certain inherent features 

to be extracted. A common application is where ensemble models combine complementary 

advantages to achieve better forecasting performance (Wai et al., 2022). In recently published works, 

the ensemble models studied outperform their standalone counterparts and add versatility and 

interpretability (e.g.: Nourani et al., 2018; Sharafati et al., 2020).  

It might be interesting to apply an ensemble modelling approach to the data-driven component of the 

hybrid model developed here. In a first step, different machine learning models could be combined to 

evaluate the performance of estimating the mechanistic model’s error. The performance of the stand-

alone ANN model developed in this study (chapter 5) is dependent on the model structure and 

configuration of hyper-parameters. It is possible that its performance could benefit from a second 

regression model that has (as much as possible) unique mechanisms in approaching the same 

regression problem, such that the resulting errors of the two models should not be highly correlated. 

Another approach worth investigating, is training a DDM to actually estimate the effluent variable 

itself. In this regard, both the DDM and the mechanistic model make the same prediction of the 
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effluent concentration of the variable of interest, which can then be combined using a coefficient or 

factor (e.g.: Ghosh et al., 2019). It is a hybrid modelling technique that is considered by some as an 

ensemble approach, in which different components seek to solve the same problem independently to 

improve the ensemble model performance (Schneider et al., 2022). This way, the performance quality 

of each model type can be assessed and expressed in quantification terms. This approach is especially 

interesting in the case where certain (independent) process behaviours can be uncoupled so that each 

effect can be represented in a separate model (von Stosch et al., 2014). The main difficulty here 

remains however the definition of the weighting factors that allow combining the output of the two 

models, which are affected by the large variabilities observed in the availability and quality of 

measured data and the dynamic conditions prevailing in wastewater treatment systems.   

7.2.4 HMPC Application for Methanol Dosing 
The development of a Hybrid Model Predictive Controller for the addition of external carbon in the 

form of methanol in a denitrification biofilter aimed to showcase the advantages of a hybrid model in 

process control and optimization. The goal was to have a proof-of-concept; and not a plug-and-play 

kind of software. This means that many improvements can be made to the programming code and the 

modular Python scripts; this will allow removing redundancies and speed up the computational time. 

In this study, it has been shown that implementing a (H)MPC automatic controller can significantly 

improve the effluent quality in terms of nitrate concentrations. However, this comes at an increased 

cost for the consumption of external carbon and associated greenhouse gas emissions. Other studies 

highlight the existence of trade-offs and the need for a balancing act of several objectives (e.g. Flores-

Alsina et al., 2011). Sweetapple and Butler (2014) demonstrate that significant improvements can be 

realised with the application of a multi-objective optimisation of wastewater treatment plant control. 

The authors apply a multi-objective evolutionary algorithm (NSGA-II) to derive sets of Pareto optimal 

solutions for operational and control parameter values of a conventional activated sludge (CAS) 

system, with objectives including minimisation of greenhouse gas (GHG) emissions, operational costs 

and effluent pollutant concentrations. The set of Pareto-optimal solutions are non-dominated based 

upon a given objective set so that it is not possible to further improve in terms of any one objective 

without worsening another. It is very interesting to enhance the current optimization problem applied 

here for biofiltration by a multi-objective optimization that investigates the relationships and trade-

offs between the operational costs of methanol dosing, the resultant effluent water quality and GHG 

emissions. The mechanistic model developed in Chapter 4 allows performing such optimization 

studies. 

Furthermore, in this study the COD content of the influent of the predenitrification (preDN) stage is 

considered to be the limiting constraint of the biokinetics; hence the need for external carbon dosing 

to enable fast growth of bacteria that transform nitrates and nitrites. However, typically, denitrification 

is both carbon and NOx (sum of nitrate and nitrite) limited; since without carbon there are insufficient 

active bacteria, but without a substantial amount of NOx there is nothing to grow on. It is therefore 

interesting to study a control strategy that engages the recirculation flow rate of nitrified water from 

the effluent of the Nitrification (NIT) stage back to the anoxic zone at the entry of the predenitrification 

(preDN) stage. In this proposed strategy, the optimizer also includes control over the internal recycle 

pumps that allows for variable speeds between the lower limit (pump is turned off) and the higher 

limit (pump is at maximum speed).  
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Additionally, it could be interesting to look at the downstream effect of process optimization of 

methanol dosing. It is known that conventional methanol dosing controllers do not pay attention to 

the conversions by methylotrophs and add methanol even when insufficient active biomass is present 

in the reactor. The over-dosing of carbon raises the chemical costs and results in addition of unused 

methanol to the treatment stages that are next (Rieger et al., 2015). In the case of the Seine aval 

WWTP, this could lead to a loading of the Nitrification stage with readily biodegradable COD, which 

can reduce the performance of the autotrophs and increases the need for additional aeration. The 

objective of the proposed control solution would be to include the trade-off of methanol dosing to 

minimize soluble COD loading of the NIT aerated zone while ensuring that sufficient methanol is added 

to allow a sufficiently high population of methylotrophs to exist, and that takes into consideration 

additional aeration costs in the NIT stage. 

7.3 Take Home Message 
Overall, this study demonstrates the potential of a hybrid modelling approach that combines a 

mechanistic biofilm model describing the behaviour of denitrifying and nitrifying bacteria under anoxic 

and aerobic conditions, with a data-driven model that compensates for the mechanistic model’s 

simulation error of the effluent quality. The hybrid model developed here can better describe the 

denitrification behaviour in a secondary biofiltration system of a very large-scale wastewater 

treatment plant (6 million P.E.) than a mechanistic model alone, thus significantly improving the 

simulation performance of nitrogen removal in a biofilter model. The hybrid model is then tested in an 

operational dosing control, where it outperforms the current feed-forward control in significantly 

improving the effluent nitrate concentration. This study increases the confidence in hybrid process 

modelling using (near) real-time operational data and contributes to the application of smart water 

technologies in a dynamic and evolving wastewater sector. 
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Annex I: Municipal Wastewater Treatment 
 

1. Development of Wastewater Treatment 
Human activities, especially in concentrated urbanized areas in well-developed regions, create large 

quantities of wastewater that have to be treated prior to their discharge in the natural environment. 

If not treated properly, the pollutant and nutrients load of urban wastewater, such as organic, nitrogen 

and phosphorus compounds, will cause serious environmental deterioration within the recipient 

environment, with a direct impact on aquatic biotopes, fisheries and human health.  

The decomposition of organic matter will lead to nuisance conditions, including gas production, and 

the pathogenic microorganisms found in wastewater can be harmful to other life forms. The nutrients 

in the wastewater will stimulate the growth of aquatic plants that will swiftly reduce the dissolved 

oxygen content of the natural water, thereby limiting the conditions for fish and other aquatic life to 

exist. Wastewater treatment thus constitutes a major component of pollution control in preventing 

contamination of surface water and groundwater and is necessary to protect public health and the 

environment (Metcalf & Eddy, 2014). 

The nature of the nutrients and pollutants, as well as the large volumes of sewage in which they are 

carried make treatment of municipal wastewater a challenging technical problem. Modern wastewater 

treatment started in the early 1900s when it became evident that disposal of sewage in a natural river 

was no longer sustainable. In earlier periods, the ‘solution to pollution was often found in dilution’, 

meaning that disposal of small quantities of waste into a river would not negatively impact that river’s 

capacity to treat it, mainly due to the fact of dilution. In addition, the water from rivers was often used 

as a resource for consumption and industrial manufacturing processes. Due to the increased 

urbanization in the 19th and 20th century, extended sections of the rivers flowing through many urban 

centres became highly polluted.  

The first treatment techniques constituted of collecting the sewage and transporting it to an area 

outside the city where it was applied directly onto the soil by intermittent irrigation and filtration. This 

method produces strong odours and required large sections of land that became less available with 

increasing city development. Other methods of treatment had to be developed that were accelerating 

the natural processes of decay and decomposition under controlled conditions in engineered facilities 

(Metcalf & Eddy, 2014).  

The evolution of regulations in Europe and the US plays a key role in the innovation of wastewater 

treatment processes by defining water quality objectives. The first objectives were concerned with the 

removal of suspended and floatable materials and the treatment of biodegradable organic matter. 

Then, since the 1970s and 80s, the removal of constituents that may cause long-term health issues and 

environmental impact, such as pathogenic organisms, were included. More recently, the emphasis has 

shifted towards a recovery of resources and a neutrality in energy consumption as part of a circular 

economy with wastewater treatment plants (WWTP) transitioning to a water resources recovery 

facility (WRRF). Sustainability has become an important business motto, with a focus on the overall 

energy balance of a facility, its greenhouse gas emissions, the total chemical usage and the carbon 

footprint of ‘production’ of clean and safe water. All these elements have become of high importance 

in the design and operation of WWRFs.   

These developments have resulted in complex and reactive municipal wastewater treatment 

processes that require a high degree of control in near real-time to guarantee effluent that meets the 
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water objectives and allows for recovery of resources, with energy efficient technologies that limit the 

environmental impact. 

1.1 Wastewater Treatment Processes 
Organized sewage transfer and collective treatment of wastewater started in the beginning of the 20th 

century. Since then, a wide range of technologies, processes and techniques have been developed and 

implemented for the treatment of domestic and industrial wastewaters.  

The typical processes involved in wastewater treatment are preliminary treatment, primary treatment, 

secondary treatment and tertiary treatment. At the start, large floatable items, sand and greases are 

removed during preliminary treatment to prevent damages to the equipment of the following stages. 

Primary treatment focuses on the removal of the suspended solids and organic matter from the 

wastewater. This process can be further enhanced by chemical addition, innovative design, such as the 

insertion of inclined flaps in the upper section of a primary settling tank (‘lamallated settler’) or by 

filtration techniques. Secondary treatment is concerned with the removal of biodegradable organic 

matter and the remaining suspended solids. Often nutrient removal of nitrogen and phosphorus takes 

places at this stage. Finally, during tertiary treatment any residuals of suspended solids and nutrients 

are to be removed in order to achieve even lower levels of oxygen demand when discharged into a 

river. Disinfection often takes place at this final stage. During each of these processes settled biosolids, 

or sludge, is removed and further treated, such as by a digester, incineration, composting or directly 

applied to agricultural lands. When wastewater is to be reused, additional levels of treatment are 

required to remove any remaining dissolved and suspended materials, such as heavy metals and 

inorganic solids.   

The basic layout of a wastewater treatment plant (WWTP) using an activated sludge system, which is 

one of the most commonly applied methods for the treatment of urban wastewater, is shown in 

Erreur ! Source du renvoi introuvable.. The treatment starts with a preliminary screening to stop f

loating objects and a grit removal to take out gravel and sands, followed by primary treatment, which 

separates the suspended solids from the water through a physical gravitational settling process. The 

relatively long detention times within these low velocity tanks allow the heavier solids to settle to the 

bottom, while the lighter solids float to the surface. Mechanically rotating arms collect the sludge and 

solids on the bottom, as well as the grease and oils floating at the top, allowing for distribution to the 

sludge digester for further treatment. 

Secondary treatment consists of treatment by microorganisms (mainly bacteria) that eliminate the 

organic and mineral compounds dissolved in the wastewater by using it for their growth. These 

processes are based on the natural functioning of bacteria to consume substrate in order to close the 

Figure 1: Layout of a conventional WWTP (from: Nelson et al., 2017) 
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elemental cycles of carbon (C), nitrogen (N) and phosphates (P). In a wastewater treatment plant, 

naturally occurring bacteria are used. By engineering the system, natural limitations for bioconversion 

such as limited aeration and limited amount of biomass can be overcome (Henze et al., 2008).  

The different conditions or environments for bacteria to be active and consume nutrients are: a) 

aerobic (an aerated environment, with the presence of oxygen, most often added by forced aeration), 

b) anaerobic (an environment that has low concentrations of dissolved oxygen and no forced aeration), 

or c) anoxic, where there is a near total depletion of dissolved oxygen. Since molecular oxygen is a 

highly oxidizing agent, the aerobic processes are more efficient for bacterial growth than anaerobic 

processes where microorganisms are forced to use other less-oxidizing substances, such as available 

nitrates in the water.  

Biological treatment of carbon is achieved by heterotrophic bacteria that are omnipresent in the water 

and are dependent on external energy sources (substrate), mainly the organic matter content of the 

water. They can be active under aerobic, anaerobic and anoxic conditions. The organic matter is 

transformed into carbon dioxide CO2, water H2O and more biomass that end up as biosolids. 

Autotrophic bacteria that use carbon dioxide and the oxidation of inorganic compounds (such as 

ammonia) as their energy source achieve biological treatment of nitrogen in subsequent oxidation and 

reduction phases. The autotrophs create nitrates (nitrification) under aerobic conditions, followed by 

heterotroph bacteria under anoxic conditions that use the nitrates as their oxygen source to create 

nitrogen gas (denitrification).  

Biological removal of phosphorus is achieved by promoting the growth of organisms collectively known 

as the polyphosphate accumulating organisms (PAOs) that take up and store excessive amounts of 

phosphorus. Since the bacterial removal rate for phosphates is not efficient within short time frames, 

additional treatment by chemical precipitation is often applied. 

Effluent water quality standards are generally measured by the level of biodegradable organics, 

expressed in terms of five-day biochemical oxygen demand (BOD5), total suspended solids (TSS), and 

the nitrogen (TKN, NH4, NO3, NO2) and phosphorus (TP, PO4) compounds. Since the biochemical oxygen 

demand (BOD5) indicator requires a five-day measurement, it is often supplemented by the rapid 

chemical oxygen demand (COD) that is measurable in the matter of a few hours. Other indicators 

include the hydrogen ion concentration expressed as pH, the temperature and turbidity. 

1.1.1 Biological Treatment 
Biodegradabale components of wastewater can be treated biologically – that is by microorganisms; in 

order to oxidize dissolved and particulate carbonaceous BOD; to capture suspended and non-

settleable colloidal solids into a biological floc or biofilm; and to transform nutrients, such as nitrogen 

and phosphorus (P), into end products that are less harmful to a large degree. A variety of 

microorganisms are used, principally bacteria, that not only convert organic matter by oxidation and 

nitrogen (by oxidation and reduction), but also create new cells that become additional biomass. For 

phosphorus removal, a specific group of bacteria are stimulated to take up and store large amount of 

inorganic P into the cells. The resulting bioflocs are heavier than water and can be removed by gravity 

settling (Metcalf & Eddy, 2014). 

There are two main categories of biological wastewater treatment distinguished on the nature of the 

bacteria; either floating in suspension (‘suspended growth’) or attached to a support media (‘attached 

growth’). In suspended growth, the bacteria are held in liquid suspension requiring constant mixing of 

the bulk liquid. The activated sludge process for biodegradation of organic substances is the most 

commonly applied method for municipal wastewater treatment. It has been developed since the early 
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20th century, and requires large installations (footprint) and relative long hydraulic retention times. In 

attached growth processes however, the bacteria responsible for the conversion of organic matter and 

nutrients are attached to an inert packing material, and grow inside a thin layer called the biofilm. This 

process is therefore also known as a ‘fixed film’ process. The packing materials that constitute the filter 

bed can be made from rocks, gravel, sand, plastics and other synthetic materials. The filter bed can 

either be completely or partially submerged into the wastewater, with air or gas space above the 

biofilm liquid layer. Commonly applied examples of attached growth process is the trickling filter, 

where the wastewater is distributed on the top layer of the filter bed and allowed to infiltrate the 

packing material, and biological activated filtration (‘biofiltration’) (Metcalf & Eddy, 2014). 

1.1.2 Biofilms 
 A biofilm is the thin layer within a typical range of 10 to 1000 µm (average thickness of 500 µm) 

attached to the surface of a support media within which the bacteria are active and transform different 

organic and inorganic substrates (see Figure 2a). It can be defined as a layer of prokaryotic and 

eukaryotic cells anchored to a substratum surface and embedded in an organic matrix of biological 

origin (Wilderer & Characklis, 1989). A biofilms is a gel-like substance composed of bacteria embedded 

in a matrix of extracellular polymeric substances (EPS) containing polysaccharide, proteins, free nucleic 

acids, and water (Sutherland, 2001). The solids give the biofilm its reactive and structural properties 

(Eberl & Morgenroth, 2006), while the EPS is basically the glue that holds the biofilm in place (Henze 

et al., 2008). 

 

Figure 2: a) schematic representation of the different components of a biofilm system: bulk liquid, boundary layer, biofilm 
and substratum (from Henze et al.,2008 adapted from Wanner et al.,2006); b) The modelling approach with flat surfaces, a 

homogenous biofilm with thickness L_F and a boundary layer of homogenous thickness L_L. ( Henze et al., 2008).  

Bacteria growing in biofilms have an important advantage over bacteria in suspended growth, since 

the biofilm provides a higher level of protection against washing. Also, the geometry of a biofilm allows 

for distinct biological niches to occur – as long as there is food available in the form of substrate - that 

protect and stimulate the growth of ‘weaker’ bacteria that normally wouldn’t survive in a homogenous 

system. Active biomass concentrations inside the biofilm are much larger compared to activated sludge 

systems (Henze et al., 2008). 

The microbial activity inside the biofilm can furthermore modify the internal environmental conditions 

making it a more hospitable place for different bacteria to grow that affect microbial composition. For 

example, in a biofilm the slow-growing bacteria can procreate in the deeper layers where they are 

protected from detachment, while faster-growing microorganisms can establish themselves at the 

layer bordering with the bulk-liquid. Biofilm growth happens as a result of the production of microbial 

mass in the biofilm. Generally, at the start of a treatment, the fast growing heterotrophic organisms 

dominate. As the biofilm gets thicker, the slow-growing autotrophic bacteria become more abundant 

in the biofilm depth, while the heterotrophs still dominate at the top section near the surface. In 

addition, the inert mass of products formed by microbial decay starts to accumulate in the biofilm. 
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Whenever a detachment event occurs (such as a sloughing event or a through washing session applying 

large air bubbles and high pressured flow); a large part of the biofilm is removed. In the remainder 

biofilm, the autotrophs now dominate (Eberl & Morgenroth, 2006). 

Essential features of a biofilm include the compartments, which define the sections of a biofilm (e.g. 

bulk liquid, biofilm and support media), and the particulate and dissolved components (e.g. biomass, 

substrates, products formed) contained within each compartment. Transformation, transport and 

transfer are the possible processes acting upon the components. Transformation processes are the 

biochemical reactions that produce or consume one or more components (e.g. utilization of substrate, 

production of biomass) and the abiotic chemical reactions that result in the adsorption or precipitation 

onto the biomass. Transport processes can happen inside the biofilm mainly by molecular diffusion of 

soluble components, as well as outside of the biofilm by advection and turbulent dispersion. The 

transport of particulate components can also happen through the expansion or contraction of the 

biofilm’s solid matrix as a function of bacterial growth or decay and of the extracellular polymeric 

substances (EPS). Transfer processes exchange mass of dissolved or particulate components between 

two compartments (e.g. exchange of dissolved and particulates from the bulk liquid into the biofilm).  

The principal compartments are the biofilm, which contains the biofilm itself; the bulk liquid that 

contains the wastewater rich in nutrients and pollutants, and the mass-transfer boundary layer (MTBL) 

that symbolizes a very thin zone of stagnant water on the external side of the biofilm that represent 

the mass transfer resistance of dissolved components into the biofilm. 

The transfer of mass from the bulk liquid into the biofilm is an important process that allows for the 

substrate to move from the wastewater (‘bulk liquid’) to the biofilm so that it can be used by the 

microorganisms. The transfer is driven by a concentration gradient across the hypothetical mass-

transfer boundary layer. For biofilms that have relative flat surfaces, the MTBL is assumed to be of 

uniform thickness (Eberl & Morgenroth, 2006).  

1.2 Treatment by Biofiltration 
Biofiltration, also called biological activated filtration (BAF), is an intensive treatment using 

microorganisms in compact bioreactors. This technology combines both physical and biological 

purification processes in a reactor using immersed filter media onto which the bacteria sustain 

themselves and break down organic materials and nutrients. It employs a dual function of biological 

oxidation of BOD and/or ammonia soluble components by diffusion and biodegradation kinetics in the 

biofilm, and physical removal of particulate and colloidal solids by adsorption and filtration (Metcalf & 

Eddy, 2014).  

The term biological activated filtration includes both the aerated attached growth process (‘Biological 

Aerated Filter’) for removal of organic matter and ammonia, and the filtration under anoxic conditions 

for denitrification. The earliest development of a BAF started in the late 1970’s with experiments of 

upward and downward flows of the wastewater through a tank filled with granular material. The 

design by Leglise et al. (1980) incorporated a down flow reactor with granular media that used 

activated carbon. The first commercial installation of this type (‘Biocarbone©’) took place in 1980 at a 

WWTP near Paris. Since then, several hundred BAF’s have been installed worldwide, although 

principally in Western Europe (Metcalf & Eddy, 2014).   

The main advantages of BAF’s when compared to the more commonly applied suspended growth 

processes are the relative small footprint of the installation that allows for it to be totally covered 

inside a structure (less odours and visual pollution), the ability to treat diluted wastewaters and the 

absence of a requirement to settle the biomass. However, the process is more complex from an 
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operational and maintenance point of view, has a high capital cost for installation and operation, and 

it is vulnerable for blocking with solids and accumulated biomass, requiring frequent backwashing to 

maintain high performance (Metcalf & Eddy, 2014).    

Biofiltration is a practical solution to regions with strong land pressures (such as in urbanized areas) 

due to the development of a concentrated biomass of heterotrophic and autotrophic bacteria on the 

filtering media. Biofilter reactors are generally constructed of columns of 2 to 4 meters height filled 

with granulated materials through which the wastewater flows, as shown in Figure 3. Commonly used 

materials for the filter bed or biolite are beads of clay, polystyrene, sand, pozzolan rocks or active 

carbon. The beads have a diameter size of between 3,5 and 4,5 mm. The small diameter results in a 

large total surface area for the bacteria to colonize, while still keeping a small footprint of the reactor 

(Metcalf & Eddy, 2014).  

The inert filter material used in the BAF can be mineral, plastic or synthetic. Water flow can be 

ascending or descending; the first case is commonly preferred in municipal plants due to the ease of 

controlling the regular backwashing needed to remove excess biomass, as well as to prevent foul 

odours from escaping (Rocher, 2012a).  

The removal of pollution is achieved by physical filtration, due to the small open spaces between the 

beads, larger particles are filtered; and by biological activity. The microorganisms form a thin layer at 

the surface of the beads, the biofilm, in which the biological reactions are taking place. The rate of 

biodegradation is affected by the specific kinetics of the type of active bacteria. In addition, soluble 

substrate removal is a diffusion-limited process with removal rates affected by the biofilm area, bulk 

liquid substrate and dissolved oxygen concentrations, fluid velocity in upwards or downwards direction 

and the water temperature. The particulate removal in a filter is affected by the media size, fluid 

velocity, operating headloss and backwash frequency. Under aerobic conditions, the bacteria remove 

carbon and produce nitrates (nitrification), while in an anaerobic environment the microorganisms 

transform nitrates to produce nitrogen gas (denitrification).  

 

Figure 3: a) Schematic description of a submerged biofilter with a upwards flow direction; b) schematic representation of the 
accumulation of biomass at the entrance of the filter (left) and the effect of the backwashing with a redistribution of the beads 
in the biolite (right). 

Some limitations are the risks of blockage of the filters due to the accumulation of suspended matter 

and swollen biofilms, requiring frequent reversing of the water flow to wash of the filters. Biofiltration 

is reported to endure higher costs for investment, maintenance and operation when compared to 

more conventional technologies, particularly due to significant energy needs for aeration and water 

pumping, as well as the utilization of reagents (Rocher et al., 2012a). 

An important feature of treatment by biofiltration is the requirement for regular backwashing, which 

not only prevents suspended solids from clogging the filter, but also directly affects the thickness of 

the accumulated biomass and the microbial composition of the biofilm. In addition to scheduled 
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washing events, at certain moments a sloughing event can occur that detaches a larger part of the 

biofilm from the surface (Eberl & Morgenroth, 2006). 

1.3 BAF Process Design and Operational Performance 
Important factors that affect design and performance of BAF processes are the media characteristics 

(e.g. diameter of the beads), process loadings, aeration design and sludge production. The 

configuration of biofilters placed in serial that each have different conditions for typical bacterial 

growth can promote performance further.  

1.3.1 Media size 
The inert support media upon which the bacteria will accumulate affects both the biological and 

physical functions of a biofilter. For most common applications, spherical beads are used. The smaller 

the diameter of the beads, the larger will be the surface area available per unit of reactor volume for 

biofilm growth and substrate removal rates. Besides, the diameter also directly affects the pore size 

and filtration capacity of the filter. 

The selection of best media size in the design of BAF is based on the loading of suspended solids and 

organic matter that are entering the filter, as well as the desired filtration and organic removal 

efficiencies. Requirements for regular backwashing is also a consideration, since during backwashing 

the treatment is basically halted resulting in operational ‘down-time’.  

In general, a smaller media size allows to treat ‘heavier’ wastewaters that contain high organic matter 

concentrations due to the higher specific surface area available. At the same time, a filter bed with 

small diameter beads will experience a reduction of the filtration capacity sooner than large diameter 

materials. If not timely removed by backwashing; a small diameter size filterbed can be more easily 

blocked; it thus significantly reduces the time between two sequential washing sessions. 

In literature, media sizes of 4 to 5 mm are recommended for secondary treatment and a size of 6 mm 

for partial organic matter removal. For tertiary treatment, a smaller diameter size of 3 mm is more 

effective (Mendoza-Espinosa & Stephenson, 1999).  

1.3.2 Process Loadings 
The design of BAF’s are concentrated on the volumetric process loading rates, which is expressed as 

the mass of BOD or nitrogen removed per day in function of the media bed volume applied, expressed 

as (kg BOD or N/(m3*d); and the hydraulic application rate (m/h), defined as the wastewater flow rate 

(m3/h) applied to the surface area of the filterbed (m2). Table 1Erreur ! Source du renvoi introuvable. i

ndicates a typical range of loading units for biological aerated filters with different applications 

together with their expected removal efficiencies, as presented by Metcalf and Eddy (2014). 

Table 01: Process volumetric loadings for biological aerated filters (Metcalf & Eddy, 2014) 

Process application Loading units Range Removal 

efficiency (%) 

BOD removal kg BOD / (m3 * d) 3.5 – 5.5 ≥ 85 

BOD removal and 

nitrification 

kg BOD / (m3 * d) 1.8 – 2.5 ≥ 85 

Tertiary nitrification kg NH4-N / (m3 * d) 1.0 – 1.5 ≥ 90 

 

A nitrate-N loading of 1.0 to 1.5 kg/(m3*d) and a hydraulic application rate of 20 to 30 m/h has been 

reported for a preanoxic upflow BAF (Ninassi et al., 1998).  
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Higher volumetric loads applied to a filterbed will result in more biological activity and thus an 

improved effluent water quality. However, it also entails a faster growth and accumulation of biomass 

that can lead to lowering of the filtration efficiency and eventually a blocking of the filter. For BAFs in 

secondary treatment, the BOD and TSS loading rates are important process parameters that affect 

performances. In particular, the applied TSS load should be strictly monitored to remain low in order 

to avoid filter blockage (Rocher et al., 2008). 

With tertiary treatment, where the organic matter and TSS loads are already very low, the volumetric 

nitrogen load is the key process control parameter. However, if this becomes too low for a prolonged 

period, the bacteria in the biofilm experience a lack of substrate and start to decay faster. Values of 4 

to 5 kgNO3-N/(m3*d) are reported to result in a 90% removal efficiency in denitrification filters, but 

this becomes impossible to attain when the loading rates drop to 3 kgNO3-N/(m3*d) (Rocher et al., 

2011).   

1.3.3 Aeration 
The oxygen demand in an aerated BAF is a function of the wastewater characteristics, the BOD loading 

and backwashing frequency. Aerated biofilters have a volumetric oxygen uptake rate (OUR) that is 

much larger compared to the activated sludge systems due to the short hydraulic retention time of the 

wastewater in the filter. Values of up to 250 mg/(L*h) have been reported (Metcalf and Eddy, 2014).  

Due to the smaller media size applied in BAFs, air bubbles are hold up in the filterbed this increasing 

the oxygen transfer efficiency. In BAF’s the aeration application can be effective with larger bubble 

sizes (Metcalf and Eddy, 2014).   

1.3.4 Biofilter Configuration 
The installation of aeration nozzles inside a biofilter tank permit to create the different types of growth 

conditions for heterotrophs and autotrophs that allow to transform NH4 into NO3 (a process called 

nitrification) and then the transformation of NO3 into N2 (denitrification). As such, biofilters can be 

applied for carbon and nitrogen removal and their configuration has a significant impact upon the 

operational costs.    

As thoroughly explained by Rocher et al (2012a), nitrogen removal with submerged upwards-flow 

biofilters can be achieved using one of three different layouts named after the location of the 

denitrifying reactor: 1) upstream denitrification (UD), 2) downstream denitrification (DD) and 3) 

combined upstream-downstream denitrification (U-DD) as shown in Figure 4 (Rocher et al., 2012b). 

In the DD layout the effluent flows through the successive treatment stages without a need for 

recirculation since the denitrification is placed following the nitrification stage. In the first stage, carbon 

is consumed. At the second stage, the limitation of organic carbon allows the growth of a nitrifying 

biomass that converts ammonia into nitrates. At the third stage, both anoxic conditions and the 

addition of organic carbon (not indicated in the figure) promote the growth of denitrifying bacteria 

(Henze et al. 2000). In the UD layout, the biological treatment of the effluent is carried out over two 

stages; first denitrification and carbon removal combined, followed by the nitrification process. In this 

configuration, recirculation by pumping of (a part of) the nitrified water towards the inlet of the first 

stage is required. The advantage here is however that the organic content of the settled effluent is a 

sufficient source of energy and no external carbon source is required. In the U-DD configuration, both 

upstream and downstream denitrifications are combined. The first two stages are similar to the UD 

mode, but a third stage is for a post-denitrification with methanol addition. This allows stabilizing the 

recirculation ratio and create a more robust system, even during high load demands. 
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Research showed that economic savings of 10% can be achieved combining upstream and downstream 

denitrification when compared with downstream denitrification. Despite the extra energy 

consumption due to the pumping of recirculated water, savings induced by the restricted injections of 

methanol and air remained substantial (Rocher et al, 2012b). 

In each of the configurations used, the comparison studies of Rocher (2012a and b) showed that the 

carbon pollution was almost fully removed and that the concentrations of organic matter in the 

effluent were residual. Likewise, ammonia was oxidized to over 97% upon biofiltration, the ammonium 

concentrations in the effluent not exceeding 1 mgN/L. The oxidized nitrogen, resulting from 

nitrification, was reduced to atmospheric nitrogen (N2) during denitrification. This reduction was 

efficient enough in the UD and the U-DD layouts to comply with the regulatory thresholds. 

 

Figure 4: Three possible configurations to achieve nitrogen and carbon removal by the biofiltration with downstream 
denitrification (DD), upstream denitrification (UD) and combined upstream-downstream denitrification (U-DD) (Rocher et al., 
2012a). 

Rother and Cornel (2007) report that the combination of a pre-DN, N and post-DN filters is much more 

advisable for most municipal wastewaters, because the recycle rate can be reduced and external 

carbon can be saved. For minimum use of external carbon, 100–150% recycle rate should not be 

exceeded. Then, approximately 50–60% of the total NO3-N can be depleted in the pre-DN stage. On 

average, 10 g total (t) COD/g NO3-N were required in the pre-DN stage for denitrification in the pilot 

and full-scale plant and 0.4–0.5 kg NO3-N/(m3*d) can be reached without external carbon. As only 40–

70% of the COD load is eliminated in the pre-DN, the remaining COD load is removed in the nitrification 

stage. 1 kg COD/(m3*d) suppresses nitrification rates by approximately 0.1 kg NH4-N/(m3*d). For 

nitrification rates, >0.5 kg NH4-N/(m3* d) at 12°C not more than 2 kg COD/(m3 d) may be eliminated in 

the nitrification (Rother and Cornel, 2007). 
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2.1 Introduction 
SIAAP is the public utility responsible for the management of wastewater as well as storm water in the Greater 
Paris region with 9 million inhabitants covering an area of 1 800 km2, as illustrated in figure 1. With the transport 
and treatment of nearly 2,5 million m3 of water per day of municipal and industrial wastewater (respectively 
94% and 6% of dry weather flow), SIAAP plays an important role in the protection of public health and ecological 
status of the Seine and Marne rivers. It has been implementing a strategy that promotes the integration of smart 
systems for the control and management of operational processes. One of the principal objectives of this 
organizational-wide mobilization towards becoming a ‘smart wastewater utility’ is to improve the stability and 
reliability of the physical, biological and chemical processes required for treatment of water and sludge as well 
as the recovery of resources. The application of such advanced process control tools permits to advance 
optimization and efficiency, to increase the reuse of materials and to move towards energy neutrality as part of 
a circular economy. As a support tool, smart systems allow visualizing the effects of recommended control 
strategies and provide indications of the expected economic and ecological benefits. This allows building 
confidence in decision making by operators and managers alike with the determination to reconcile the evolving 
stricter regulatory effluent quality requirements with energy conservation, the recovery of resources and the 
reduction of environmental impact.  

Figure 13: SIAAP’s service area map with indication of the wastewater treatment plants and an overview of the design of 
the Seine-Center WWTP integrated into the urban landscape. (© SIAAP) 

 

This Smart Water vision forms part of the operator’s sustainability program ‘SIAAP 2030’. The plan formulates 
concrete actions and timeframes to mitigate the effects of population growth and urbanization (which increase 
soil impermeability), the emergence of new types of pollution linked to altering consumption styles and the 
effects of climate change (such as increased water scarcity and changing rainfall patterns). However, overall, it 
formulates the desired transition towards environmental and economic sustainability (e.g. lowering GHG 
emissions, increasing nutrient recovery and energy revalorization) while increasing operational efficiency by 
‘going smart’. Furthermore, the plan calls for communication among stakeholders and hopes to contribute to a 
smart city concept by inspiring other organizations active in the urban and natural water cycles (SIAAP, 2017b). 
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In the last few decades, there have been experiences gained and lessons learned with the application of smart 
infrastructure in the sanitation sector (e.g. Ingildsen and Olsson, 2016). This is observed in particular in the fields 
of in-line monitoring of water flow and of qualitative process performance indicators used by automatic 
controllers (e.g. Sharma et al, 2011), as well as the development of computer aided mathematical models for 
simulation and scenario analysis (e.g. Benedetti et al., 2013;. This has resulted in more stable and reliable process 
control, increased regulatory compliance and overall increase in our understanding of the hydraulic, chemical 
and biological processes taking place during the transport and treatment of municipal wastewater. 

Like many other industries, the municipal wastewater treatment sector has been experiencing a sharp increase 
in the application of instrumentation, control and automation (ICA) in the last decades (e.g. Ingildsen and Olsson, 
2016; Garrido-Baserba et al., 2020). The ICA technologies were introduced in the 1970’s in order to control 
operations and assure good quality of the treated water in order not to harm the quality of the natural surface 
water bodies into which the effluent is discharged. Wastewater treatment has some specific characteristics when 
compared to other process industries, such as highly variable flow rates and pollutants loads that need to be 
removed to very low values under all circumstances. Wastewater processing consists of several successive 
physical, biological and chemical processes for both water and the settled sludge that exhibit non-linear and non-
stationary behavior. This requires accurate process control to assure overall performance and compliance with 
regulatory norms and quality standards.  

The operator’s strategy supporting the digital transition is based on a multidisciplinary approach of smart 
monitoring and data-based information management systems, on science-based modelling of processes, and the 
integration of Artificial Intelligence techniques. It involves the participation of various organizational layers, on 
operational, administrative and management levels (SIAAP, 2017b. Implementation of smart water quality 
measurement systems allows capturing the process dynamics and has increased knowledge and understanding 
of treatment processes. The integration of theory-based and data-based modelling has the potential for 
improved process control, for prevention of down-time and preemptive risk mitigation, for detection of 
anomalies in process variables (e.g. pollutants loads and flow rates) and the building of urban resilience in a city-
wide cooperative approach. The digital revolution in the water sector, part of the so-called fourth industrial 
revolution, utilizes the strengths of digital data management together with process control and optimization 
tools designed for use in the physical plant. It promises to carry the sanitation sector to the level of sustainable 
management of an Integrated Urban Water System (IUWS) (Garrido-Baserba et al., 2020). Nevertheless, the 
acceptance and incorporation of Smart Water Systems in the daily operations and management of large size 
centralized municipal sewage plants still faces many challenges. 

The implementation of a digital transformation is leading to increasing amounts of generated data that has to be 
managed for it to become useful information. This has required SIAAP to further invest in ICT and regularly 
updated management systems, such as Laboratory Information Management Systems (LIMS), Maintenance 
Management Systems (MMS) and next generation Supervisory Control and Data Acquisition (SCADA) systems 
(see figure 2). In a recent international survey by Blumensaat et al. (2019) among wastewater utilities, many 
organizations report that they discover opportunities in the digitalization of treatment processes, as well as 
challenges in understanding exactly in what manner digitalization allows solving technological issues. 
Additionally, the rapid increase in digital data collection in the wastewater sector is reported to cause complex 
technological issues, for example with interconnectivity of various information systems and cybersecurity. It also 
imposes organizational and cultural changes to allow for cross-disciplinary training, and interdisciplinary research 
in areas of integrated urban water management and beyond (Blumensaat et al., 2019.) 

This chapter describes the experiences and lessons learned with the development and the integration of smart 
wastewater monitoring, process control and modelling systems by SIAAP, the public wastewater utility in the 
French city of Paris and its surrounding municipalities.  
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Figure 2: the central control room managing flow via the 440 km sewer network towards the wastewater treatment plants 
and storm water retention basins. (© SIAAP) 

 

2.2 Drivers for Innovation  
The evolution of regulatory requirements in France has played a key role in the development and deployment of 
innovative measuring methods and technological treatment solutions, in particular due to the European Urban 
Waste Water Directive in 1991 (91/271/EEC) and the European Water Framework Directive (2000/60/EC) in 
2000, which have been enacted through appropriate national legislation. These efforts have changed the design 
and operations of wastewater treatment with new or upgraded systems resulting in improved plant-
performance, service reliability and public and environmental health. A great testimony is given by the water 
quality of the rivers Seine and Marne flowing through the metropolitan area of the French capital. Since the 
2000’s, a drastic decrease of organic carbon, phosphorus and ammonium concentrations and the return of an 
enriched biodiversity have been observed, which has resulted in a good ecological status (Rocher et al. 2017). 

The wastewater sector has been searching for ways to optimize the treatment process of water and sludge in 
order to reduce its energy consumption and usage of chemical reagents, while meeting the regulatory 
requirements. The principal arguments are to lower the environmental impact of operations (e.g. energy usage 
for pumps), to meet the evolving stricter environmental discharge limits of treated effluent, including emerging 
micropollutants, and to lower the dependence on fossil fuels as an energy source. This has resulted in the 
development of innovative technologies and adapted treatment system designs to guarantee compliance to 
management standards and regulatory norms. These innovative treatment technologies, such as chemically 
enhanced settlers, membrane reactors and biological active filtration systems, contain wide range adaptive 
capacities with shorter treatment times. Accordingly, they require a smaller spatial footprint, which is an 
important feature for municipal facilities in densely urbanized settings. At the same time, the degrees of control 
have increased due to operational complexity, such as through the introduction of varying flow regulation and 
recirculation, the injection of air and the addition of chemical reagents as coagulants and flocculants.  

Another important driver for implementing smart water management is the reduction of environmental impact 
of operations by reducing the emissions of greenhouse gasses, such as CO2 and N2O, lowering the energy 
consumption and limiting the usage of chemical reagents for treatment.  

The current approach of compliance management however does not consider the dynamic conditions of the 
receiving natural environment. Presently, French environmental policy is defined on national, regional and local 
administrative levels by governmental regulatory bodies that dictate effluent discharge limits for main pollutants 
and nutrients as maximum concentrations in the (processed) water leaving a treatment facility. In general, these 
discharge limits are rigid/fixed values for one or more variables, such as total suspended solids (TSS), organic 
matter (COD, BOD5), nitrogen (N) and phosphorus (P) concentrations and daily, monthly and yearly averages for 
treatment performances under predefined conditions (e.g. 90% of daily measured effluent N-concentrations not 
exceeding the maximum allowable concentration on a yearly basis for those days during which the influent flow 
rates do not exceed the maximum capacity of a treatment plant).  

The requirements of European environmental policy and in particular the assessment of the municipal 
wastewater sector is facilitating a shift towards a holistic approach placing emphasis upon the overall ecological 
quality of the receiving surface waterbody (e.g. a river or lake) into which the treated effluent is discharged 
(‘integrated river basin management’). The water quality of the natural receiving river will become the principal 
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indicator for the performance of urban water management, including wastewater treatment. These 
developments require an in-depth understanding of the interactions between urban water management and 
natural water systems and call for an adaptive, smart and holistic approach of the urban water system 
(Corominas et al., 2013). 

2.3    Research and Implementation of Smart Water Systems 
The prominent role of research and innovation in the Paris Wastewater Utility SIAAP goes back to the beginning 
of the 20th century with early field experiments on biological filtration and activated sludge systems. The creation 
of a Research Centre in 1980 has spurred a broader approach to innovation through dedicated programs in 
collaboration with the water industry and academic world, such as through the PIREN-Seine for research on the 
level of the river basin and the OPUR program, which is centered on pollution control in an urban context. Further 
examples of applied research programs are the Mocopée program for modeling and optimization of treatment 
processes at plant-level, and the MeSeine focusing on surface water monitoring. Partnerships and collaboration 
with public organizations in charge of water and waste management, as well as with the private sector, allow 
developing synergies and anticipating the technological evolution in the sanitation industry (SIAAP, 2020). 

The ‘SIAAP 2030’ strategic plan provides the framework for the development of an environmental and 
economically sustainable and smart wastewater management plan. Launched in 2016, it calls for increased 
efficiency and optimization of treatment processes, for an augmented recovery of nutrients and energy-
generation, for a transition to water management in the context of a smart, resilient and sustainable city, and 
for synergies with the domains of waste disposal and energy production. Importantly, it promotes research and 
innovation to develop new technologies and alternative treatment concepts (SIAAP, 2017b). 

Figure 3: The 2018 Mocopée conference in ‘La Cité de l’Eau et de l'Assainissement’ in Paris. (© SIAAP Franck BELONCLE) 

 

The Mocopée (MOdelling, Control and Optimization of wastewater treatment ProcEssEs; in French: Modélisation, 
Contrôle et Optimisation des Procédés d’Épuration des Eaux],) program offers operational and financial support 
for scientific research focused on the modelling, control and optimization of municipal wastewater treatment 
processes. This applied research program is managed by SIAAP and includes many partnerships with scientific 
institutions, industries, regulatory bodies and other stakeholders in wastewater management in the region. It 
actively seeks collaboration in order to increase knowledge-sharing (see figure 3). In its current phase (2018 – 
2022), the focus lies on smart solutions for process control and optimization within the context of a circular 
economy and sustainable management of resources and asset management. It is organized around four key 
areas, as indicated in figure 4. 
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Figure 4: Focus areas of the Mocopée research program 2018 – 2022. (© SIAAP) 

 

 

The program serves as a platform for scientists and operational staff to perform studies on practical questions 
encountered, in particular related to monitoring, process control and modelling. It functions as an exploratory 
ground for the development of new concepts and innovative solutions with multidisciplinary teams. It enables 
to experiment with new ideas outside the strict time constraints of traditional funding programs and permits 
testing solutions in large scale settings where technicians and operators provide feedback in an early phase 
(SIAAP, 2018). 

 

2.4 Smart Flow Control and Monitoring in the Sewer System 
Thanks to a supportive strategy of modernization and innovation, SIAAP operators rely on advanced monitoring 
and data processing systems for their day-to-day operations. The introduction of information and 
communication technologies in the 1970’s has given way to advanced supervisory communication and data 
management systems. The daily transport of 2,5 million m3 of collected wastewater through a network of 
interconnected main sewer lines with a total length of 440 km and its allocation to each of the six treatment 
stations is supported by a data-based management decision system named MAGES (Modèle d’aide à la gestion 
des effluents du SIAAP). It provides the operators with detailed flow predictions and suggestions for control 
strategies. 

The MAGES system relies on monitoring and data processing tools which include 2 000 in-line flow rate sensors. 
As illustrated in figure 5, it combines these measurements with other field data such as valve positions and 
pumping station readings, observations made by operators (such as incidents or planned maintenance) and rain 
forecasts. The hydraulic status of flow rates and levels is displayed for 400 key points along the network, with a 
horizon of 24 hours in dry conditions and 6 hours in wet weather. The calculations are based on deterministic 
modelling of the transport and storage infrastructures consisting of 23 000 calculation points in a model 
combined with an optimization process to control wastewater and storm water flows supported by predictive 
models that detect potential critical situations. It then determines the optimized management scenario based 
on a multi-objective function to reflect the costs of flooding, storage and treatment. This enables indicating 
mitigation actions to avoid flooding of streets or to reduce the risks of excessively high flow rates at the entrance 
of the treatment stations. The MAGES system coordinates this information among the multiple stakeholders 
active at various management levels in the region. The final decision to intervene, for example by redirecting 
flows towards a storm water retention basin or to create additional storage volume in the vast sewer networks, 
is currently made by the operator at a local or departmental level. The MAGES system updates every five minutes 
to identify the current system state to permit to fully optimize the available capacities and temporary storage 
volumes located upstream of the wastewater treatment plants (Blanchet et al., 2008). 
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Figure 5: interactive structure of MAGES control system. (Tabuchi et al., 2020) 

 

The development and implementation of the real-time control system MAGES has demonstrated that the 
operators are able to make early decisions in response to predicted changes in flow rates and therefore are able 
to optimize the available capacity in the network with preemptive transfer of volumes. This enables to stabilize 
the flow of water into the treatment plants, thereby reducing the probability of a critical situation impacting the 
treatment performance. It allows for a reduction in untreated discharges from the sewage network during 
periods with prolonged and heavy rains, which currently amounts up to 3 to 4% of the annual treated volume. In 
addition, the MAGES control system enables a strong coordination between the many actors and stakeholders 
in charge of urban sanitation in the Greater Paris region. It has also become a useful tool for planning and design 
for maintenance works and investments in the infrastructure and asset management (Tabuchi et al., 2020). 

2.5 Smart Monitoring Surface Water Quality 
An advanced measurement system of the Seine river water quality has been developed within the framework of 
the MeSeine monitoring program. Frequently expanded since its first deployment in 1990, the monitoring system 
allows observing the quality in terms of physico-chemistry, bacteriology, micro-contamination and biological 
diversity. Three decades of collaboration with academic research institutes has resulted in the development of 
innovative monitoring strategies for surface water quality. 

Sensors located at eight measuring stations along a 120 km long stretch of the Seine river measure the 
concentrations of dissolved oxygen and ambient water temperature. Furthermore, three stations are equipped 
with additional sensors for organic carbon, nitrogen, phosphorus, conductivity and chlorophyll in the water (see 
figure 6 left and center). These additional sensors are currently in a semi-development phase. The objective is to 
create an integrated network, of which the measurement data are transmitted and in real-time generating more 
than 1 million readings per year. In addition, at 14 sampling sites along the river, weekly water samples are taken 
for analysis in the laboratory to support the general state of river quality with up to 100 different parameters. 
These efforts allow nearly 15,000 analyzes per year on the presence of microorganisms and pathogens. 
Furthermore, fish surveys and inventories of aquatic life (fish, macro-invertebrates and diatoms) are regularly 
performed along a 110 km section of the river (SIAAP, 2020).  

The analysis results are accessible to the public through an online platform (https://www.siaap.fr/metiers/qualite-

de-leau-et-milieu-naturel) and are updated on a daily basis. This includes readings of oxygen level, a monthly 
status account of its quality in relation to regulatory thresholds and an annual report with a complete 
environmental quality assessment.  
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Figure 6: deployment of in-situ sensors and mobile sensors for real-time collection quality indicators. (© SIAAP 
Observatoire MeSeine [left and center], Fluidion DRONE [right] fluidion.com/en) 

 

More recently, the water and wastewater utilities in the Paris region have decided to cooperate in the 
development of a real-time water quality monitoring tool and a machine-learning based forecasting tool to 
predict water quality at designated bathing sites. The development is actively supported by the regional and local 
water authorities, as well as the Organizing Committee for the Olympic and Paralympic Games (OCOG) in charge 
of the 2024 Olympic Games in Paris. The cooperation takes place in the framework of the digital-water.city (DWC) 
research project funded by the European Union’s H2020 Research and Innovation Program and relies on the 
technical expertise of Fluidion (France) and Kompetenzzentrum Wasser Berlin (KWB) (Germany). As part of 
selected European cities, the DWC project in the greater Paris aims in particular to develop an early warning 
system based on a forecast of bathing water quality in the Seine and Marne river, to test an innovative technology 
for real-time in-situ bacterial monitoring as well as develop a mobile application to inform key stakeholders and 
citizens.  

The prototype early warning system will be built to indicate contamination in specific bathing sites based on 
machine learning and statistical modelling using a set of local data, including indicators of water quality, 
measurements of flow rates, temperature and predictions of rainfall intensity. The statistical model approach 
uses an advanced machine learning model for robust early forecast of water quality developed by the German 
DWC project partner KWB (Kompetenzzentrum Wasser Berlin). It will be calibrated with data output from an 
existing numerical river model named ProSe as applied to selected sites of the rivers Seine and Marne along 
urbanized areas in the Paris region. This will take into consideration the structure and future changes of the 
municipal sanitation system, such as the points of discharge from wastewater treatment plants and the locations 
of combined sewer overflows upstream the bathing areas (digital-water.city, 2020). 

The real-time monitoring of the bacterial concentrations in the surface water will be managed by the deployment 
of in-situ sensors, manufactured by the company Fluidion. The sensors can perform seven rapid bacterial 
quantifications on a single battery charge, are remotely controlled, and wirelessly send data in real time to a data 
analytics server. In addition to the in-situ sensors, a remotely-controllable battery-operated floating drone, also 
manufactured by Fluidion, can be deployed to perform sampling and subsequent analyses at multiple locations 
in the river, both mid-stream and near shore (figure 6 right). In the initial phase, the focus will be on a rapid 
quantification of E.coli and enterococci bacteria. Collection and quality control of data will be managed by a 
secure data analysis system, which will also link the communication of the real-time bathing water quality 
assessment to an online platform. Currently in a testing-phase at several pilot sites, it is expected to be 
operational for the Olympic & Paralympic Games organized in 2024 in the French capital.  

On the longer term, there is the possibility to link this surface water quality assessment tool with the MAGES 
real-time control system of the regional sewage transport network and the plant-wide process models developed 
for the treatment plants. This should permit the overall optimization of urban wastewater management based 
on river water quality objectives. 

2.6 Modelling Surface Water Quality 
In order to assess treatment performance and provide forecasts on the quality of the river Seine, the river model 
ProSe (Programme Seine) has been developed by the École des Mines de Fontainebleau in collaboration with 
SIAAP within the framework of the Piren-Seine (Programme interdisciplinaire de recherche sur l’environnement 
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de la Seine) research program. This multidisciplinary research program started in 1989 with the aim to improve 
the understanding of the river system. It has since then been gradually developed into a basin-wide approach 
that supports the modelling of complex interactions between the surface water and aquifers (hydrosystem), the 
ecosystem (phytoplankton, bacteria, fish communities), the agronomic system (crops and soils), the river users 
(drinking water, navigation), and urban and industrial development (e.g., waste water treatment plants) (Flipo 
et al., 2020).  

This allows studying the impact of anthropogenic pollutant discharges from wastewater treatment plants and 
the sewer network on the quality of the rivers Seine and the Marne crossing Paris. The model takes into account 
combined sewer overflow events during wet weather, as well as effluent outlets of municipal wastewater 
treatment plants and considers meteorological conditions in the river basin and catchment area. With the 
numerical model ProSe, it has become possible to study future scenarios of river basin management for the next 
50 years based on the perspectives and claims of a diverse group of water users and stakeholders (Flipo et al., 
2020). 

The ProSe model simulations provide for projections of comprehensive surface water quality indicators taking 
into account the principal biogeochemical processes taking place in the river water and the sediments. It predicts 
key water quality variables, sediment deposit levels and benthic exchanges (Laborie et al., 2016). As an early 
assessment tool, ProSe is being used to assist in decision-making directing investments towards improving water 
quality. The model is applied in design and operational studies, such as for the pre-dimensioning of additional 
storage capacity for storm water and treatment processes, and for scenario analysis in impact studies 

A simplified river water quality model (‘SimSeine’) is currently being developed by the modelEAU (Université 
Laval) research team for the Seine River basin. Using a hydrological conceptual approach, the SimSeine model is 
meant to function as a fast alternative in real-time applications for operational support in municipal wastewater 
management. It will provide predictions of principal water quality indicators at critical locations along the river 
that are linked to the municipal wastewater network, such as in the case of combined sewer overflow events 
(CSO) and treatment plant effluents (SIAAP, 2021). 

2.7 Smart Monitoring of Wastewater Concentrations at Plant-level 
Monitoring of the main quality variables of wastewater and sludge is crucial for process control and optimization 
(Ingildsen and Olsson, 2016). Typically, important qualitative indicators that are measured are the Organic Matter 
concentration as Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), the suspended matter 
as Total Suspended Matter (TSS) and concentration levels of nitrogenous (N) and phosphoric (P) compounds. The 
fractionation between soluble and suspended matter in the wastewater has influence on the treatment options 
(Henze et al., 2008).  

There has been a strong development of sensors capable to be placed in-line in wastewater streams to monitor 
dissolved oxygen, suspended solids and organic matter, as well as several nutrients (such as nitrogen and 
phosphorus) over the last few decades. Today, these sensors can provide reliable data and have become more 
affordable (Ingildsen and Olsson, 2016). Nevertheless, the importance of data quality checks, such as through   
autocalibration and built-in sensor checks, cleaning systems and reliable sample preparation units for data 
quality, has not diminished and these methods are still necessary as practical solutions to the frequently 
encountered problems with in-situ sensors in wastewater streams (e.g. Vanrolleghem and Lee (2003)). 

Within the Mocopée program, innovative methods to measure organic and bacterial pollution of wastewater 
and to estimate the energy content of sludge have been developed to be deployed in treatment plant operations.  

Figure 7: collection of real-time process data (left) supported by on-site laboratory analyses (right). (© SIAAP) 
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As mentioned, the organic matter content is an important indicator of water quality is, which negatively affects 
ecological quality of the receiving waters; it is therefore subject to strict emission standards. Measurements of 
organic matter are also necessary to improve the efficiency of the denitrification process, where the 
biodegradability of organic matter directly affects the nitrate and nitrite removal rates. Fast and accurate 
characterization of the qualities and amounts of organic matter should enable achieving significant savings in 
terms of addition of external carbon and energy consumption for recirculation flows and aeration. 

Research by the LEESU laboratory in the framework of the Mocopée program has developed 3D-fluorescence 
spectroscopy for rapid measurement of dissolved organic matter in wastewaters entering the treatment plants 
(Goffin et al., 2018). The study coupled optical 3D fluorescence spectrometry with the use of parallel factor 
analysis (PARAFAC) as a fast alternative to conventional indicators such as the biological oxygen demand (BOD5) 
and the chemical oxygen demand (COD). The study showed that soluble COD concentrations in wastewater can 
be predicted via a simple linear model and that soluble BOD5 can be predicted by a multiple linear model. The 
applied method is non-destructive, low cost, possible to automate and applicable to wastewater treatment 
allowing for online monitoring at high frequency (duration of the measurement of the order of a minute) of 
organic matter. These data can be used to reduce the energy costs (chemical reagents, pumping and aeration) 
and provide a better control of treatment processes (Goffin et al., 2018). 

Advanced sensors are being applied in the treatment trains for the monitoring of the principal qualitative 
indicators. For example; the concentrations of nitrates and nitrites in the water are monitored in real-time by in-
line sensors using the amount of absorption of ultraviolet light as a measure of the NOx concentration. The levels 
of suspended solids (TSS) are measured using an infrared light source (880 nm) by an optical beam scattering 
method, which consists of an infrared emitting source and two photoelectric cells that function as receptors 
inclined at 90 ° in relation to the incoming light beams.  

2.8 Process Modelling of Wastewater Treatment  
The use of computer-aided mathematical modelling to simulate physical, chemical and microbial processes in 
municipal wastewater treatment is advancing at a fast pace. Numerical models based on empirical and 
phenomenological descriptions are providing deeper insight in the biochemical and hydraulic processes and have 
found their way to support performance evaluation and decision-making for planning, design, control and 
optimization (Rieger et al., 2012).  

For the Parisian region, SIAAP has put in place several research and development projects focusing on process 
modelling and process control. The first objectives are to obtain well calibrated and validated simulation models 
of each of the principal treatment procedures, including the chemically enhanced settling tanks and the biological 
activated filtration, as well as for the anaerobic sludge digestion. In a second phase, these individual models 
should be connected in order to allow plant-wide simulation. These will serve as support tools for operators and 
allow for process optimization. As part of the Mocopée program, one collaborative research project with 
modelEAU (Université Laval) aims to further improve the use of models and to validate their application on more 
large-scale processes. This will permit automated integration with (near) real-time measurement data and 
statistical analysis for data management and data reconciliation, as well as to enable forecasting based on 
observations and an inclusive assessment of treatment costs, energy consumption and environmental impact. 

Modelling of Treatment by Chemically Enhanced Settling 

A phenomenological model using mathematical functions has been developed to simulate the processes taking 
place in chemically enhanced settling tanks (Zhu, 2020). This model is implemented in the WEST® modelling 
environment (DHI) and includes estimations of the average settling velocity and non-settleable fraction 
suspended matter as a function of chemical dosage and calculations of the environmental costs and greenhouse 
gas emissions of operations. It is based on an adaptation of the SimDec model (Bernier et al., 2016) made suitable 
for a chemically enhanced settling tank as well as to allow the use of different coagulants to be added to the 
treatment process, such as ferric chloride (FeCl3) in the primary and/or tertiary treatment phase. Another 
promising application that is being studied, is the usage of Alufer (a mix of iron chloride and aluminum iron) to 
improve sludge incineration. 

Consequently, a sub-model for the reagent injection has been added to better control the quantities of chemicals 
injected. For the settling unit – which is equipped with tubed lamellas – modifications had to be made to the 
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original model regarding the fraction of non-settleable particles at the inlet of the lamellar settling tank and to 
the average particle settling velocity (Zhu, 2020). 

Modelling of Biologically Active Filtration Systems (BAF) 

The development of a well calibrated and validated model for the biological removal of ammonia and other 
nitrogen compounds by multi-stage biofiltration in the Paris wastewater treatment plants has been a pursued 
vision for over 10 years. Commercially available modelling software does often not offer biofiltration as a 
standard (sub-) model. Consequently, in collaboration with Université Laval, a mechanistic model (‘SimBio’) was 
developed that simulates the secondary biological treatment stage at the Seine-Aval plant. It was built in 
Matlab/Simulink (MathWorks) and considers the most relevant mass transport and microbial processes, 
including a two-step nitrification and denitrification processes for the removal of nitrogen and phosphorus 
assimilation (Bernier et al., 2014).  

Furthermore, researchers are studying ways to reduce the emissions of greenhouse gases from nitrifying 
biologically active filters (BAFs), which have been found to be important emitters of nitrous oxide (N2O), a 
powerful greenhouse gas. To that end, the SimBio model was extended with a gas-phase that allowed describing 
full-scale N2O emissions. Research performed in collaboration with INRAE showed that the improved gas-liquid 
transfer model improved the predictions of nitrifying performance. The model successfully described nitrification 
and the mass transfer of O2 and N2O (Fiat et al., 2019).  

More recently, in the framework of PhD research co-supervised by Université de Technologie de Compiègne and 
modelEAU (Université Laval), an enhanced biofiltration model for the 5,7 million PE Seine-Aval plant was 
implemented in the WEST® (DHI) modelling software. It allowed integrating the earlier developments into a 
complete biofiltration model of a full-scale secondary treatment that includes the three-stage treatment (pre-
denitrification – nitrification – post-denitrification). This model now also considers the production of nitrites and 
nitrous oxide during nitrification and denitrification. It includes process control systems such as for aeration and 
allows for an assessment of environmental and economic costs, as shown in figure 8 (Zhu, 2020).  

Figure 8: Simulation results of the energy consumption of the nitrification stage in the WEST Biofiltration model (blue 
dots: aeration observations, gray line: aeration simulation, orange circles: pumping observations, black dotted line: 

pumping simulation). (Zhu, 2018) 

 

Simulation of the biofilm processes has been improved by using a higher amount of biofilm layers and a dynamic 
boundary layer with variable thickness. An improved media exchange between media layers is added which helps 
to maintain proper description of the growth and decay of biomass. The production of nitrites, nitrogen 
monoxide and nitrous oxide during treatment is now also considered and the nitritation reaction model was 
expanded to two-pathway N2O production by nitrifying organisms. The aeration control strategy, which is 
controlled by Feed-Forward (FF) and Feed-Back (FB) control rules based on the observed ammonium 
concentrations, was added to predict the injected air flow. The model has been calibrated and successfully 
validated with high frequency data collected over long periods by in-line sensors supported by laboratory 
composite samples at the Seine-Aval plant (Zhu, 2020). 

This phenomenological model allows calculating the production of greenhouse gasses during treatment as well 
as estimating the energy consumption and economic costs related to aeration and hydraulic pumping. The 
integration of the particular aeration control system allows realizing scenario analyses, such as aeration increase 
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or reduction by applying different ammonium set points and the estimation of the required energy. It also allows 
testing different aeration control strategies during the nitrification process by replacing the current FF and FB 
control with alternative control strategies. Similar controls have been added for the injection of organic matter 
(such as methanol) during pre- and post-denitrification. These allow providing support for process optimization 
and the development of control strategies. The model will provide the possibility to evaluate the economic and 
environmental impact of different operating scenarios of the biofilters at the Seine-Aval plant (Zhu, 2018). 

Plant-wide Modelling and AI-driven plant models 

Models of individual treatment phases cannot indicate the best possible overall treatment. For that, it is 
necessary to look at plant-wide operations using a well calibrated model covering the entirety of processes taking 
place. When it is to be used as an aid for sustainable management, it needs to also include the economic and 
ecological costs of treatment. Plant-wide simulation models (PWM) are being developed for process control able 
to mirror the real-time operational status of the wastewater plants, make predictions and assist in decision 
support for (preemptive) maintenance. These digital twin models will mimic the physical plant conditions and 
provide a performance evaluation to predict best possible treatment with an indication of the costs of treatment 
and environmental impact, such as energy consumption and GHG emissions. It can become a meaningful tool for 
operator training and communication among the many levels of operation and management. These dynamic 
process models will enhance overall system understanding and support decision making of ongoing operations 
and improve planning for future scenarios. It’s expected that it will significantly reduce downtime and support 
the decisions for stable and secure investments in equipment and infrastructure. 

Once the ‘upgraded’ models describing the individual processes have been fully calibrated and validated with 
recent measurement data, the objective is to interconnect the primary treatment, the three-stage biofiltration 
and tertiary treatment models. During the Mocopée 2018 colloquium, a demonstration was given by SIAAP 
researchers to illustrate a possible graphical user interface of a plant-wide process simulation model – shown in 
figure 9. In a clear and concise manner, the demo-screen indicates the real-time status of the principal treatment 
installations, such as of the primary settler tanks and the secondary biological filtration units. It will indicate by 
color codes if the real-time capacity of these installations is sufficient to meet the requirements on the effluent 
quality as calculated by the model. It will indicate the routing and quality guidelines within the processing lanes 
(in the center part of the screen) and evaluate the economic and environmental impacts of the proposed 
operating settings (Zhu, 2018b).  

Figure 9: illustration of a possible GUI of a plant-wide model showing inflow & outflow concentrations (upper section), 
indications for operational limits for the different treatment stages (middle section) and a window for calculated financial 
and environmental costs (lower section). Red colored boxes indicate alerts. Figure forms part of a presentation given at 
the Mocopée colloquium in Colombes, France on the 4/12/2018 (© SIAAP)  

 

A first digital twin model is under development for the Seine-Aval treatment plant connecting individual models 
of each treatment stage, including the above mentioned models of the chemically enhanced settler and 
biofiltration, all implemented in the WEST modelling environment. The final form is still being discussed, but the 
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expected capabilities of this digital twin should include the hydraulic and qualitative aspects of the wastewater, 
and be able to base optimization rules on the economic and ecological costs of operation. It should be capable 
of simulating the impact of distribution scenarios for the influent over the different treatment stages, as well as 
simulate the internal recirculation rules that are based on the type of influent (dry weather profile vs. storm 
weather for example), the effluent quality standards to achieve, the available and required equipment and the 
optimization objectives. For each treatment stage, the model should propose the most efficient control settings 
for the process variables, such as aeration, recirculation, addition of coagulants and reagents. Accordingly, it 
could become a decision-making support system for operators; as well as provide better understanding of the 
inter-relationships and thus become a training tool. In ‘training-mode’, it will allow performing detailed analyses 
of extreme operational conditions, including equipment failures, without placing the real plant’s performance at 
risk. 

In cooperation with the modelEAU research team at Université Laval, studies are underway on the various data 
processing and management components of digital twins, such as aspects related to automated data quality 
control, data structure and accessibility, parameter sensitivity and model calibration, all part of the data-pipeline 
(Therrien et al., 2020). Data management aims to evaluate and augment data quality in order to transform raw 
data into actionable insights and use that to make intelligent decisions with confidence. As indicated in figure 10, 
many data processing steps are required to create an understanding and intelligence from raw measurements. 

This begins with automated data collection, which is quite often hampered by the harsh operational conditions 
prevailing in wastewater treatment. It necessitates data cleaning to remove faulty and erroneous readings (‘data 
preprocessing’). Going further along the data ‘pipeline’, this process includes proper data storage and easy 
accessibility in order for data to become useful and timely information (Therrien et al., 2020). The cleaned, stored 
and accessible datasets form the variables used by numerical models for simulations translating data into 
knowledge. Models can provide forecasts and be used for scenario analyses to deepen our understanding of the 
real processes. Statistical modeling approaches could provide additional support, such as for the extrapolation 
of processes that aren’t fundamentally understood or captured by (mechanistic) models. Such hybrid semi-
parametric models allow model predictions beyond experimentally tested process conditions (Glassey and Von 
Stosch, 2018). Finally, this knowledge or intelligence acquired may lead to redefine operational settings or 
procedures in order to mitigate identified problems ahead of time. 

Figure 10:  From data to intelligence. For each step in the pipeline, the most essential elements are listed. (Therrien et al., 
2020) 

 

The hybridization of data analysis methods and intelligent forecasting modelling systems with process control is 
expected to provide many benefits. A digital twin model of a treatment plant can evaluate the status of a process, 
predict changes and prescribe mitigation actions to keep performance within norms and in compliance. Recent 
bibliometric analyses (e.g. Zhao et al., 2020) and reviews (e.g. Corominas et al., 2018) indicate the progression 
of academic studies applying an artificial intelligence-based data-driven approach to improve the reliability of 
wastewater systems, increase water quality and lower energy consumption.  

An ongoing Ph.D. research project (2020 – 2023) within the Mocopée framework in collaboration with the W-
SMART Association, LEESU and modelEAU aims to develop a hybrid process control system that is based on 
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knowledge of processes, but driven by data collection and interpretation. It aims to integrate the strengths of 
plant-wide simulation models to evaluate scenarios with the strength of data-driven AI models to recognize 
patterns and update the model parameters to maintain the alignment of the model with reality. It will integrate 
automatic data collection and quality control from high-frequency measurements from in-situ sensors and 
laboratory analyses (originating from LIMS and SCADA systems) to remove faulty readings and outliers and allow 
interpolation to replace missing data. These time series will then be uploaded to the dynamic process model to 
perform multiple simulation runs. Examples could be with scenarios of chemical dose rate injections or flow 
distribution patterns over the different treatment trains. The prediction horizon will vary from a few hours to 
several days depending on the time range of input data available (e.g. meteorological forecasts). 

This adaptive hybrid digital twin will make use of machine learning techniques to continuously check and update 
the model parameters characterizing physical, biological and chemical reactions happening during treatment 
processes. As illustrated in figure 11, this requires an interactive exchange of data in the form of measurements 
and instructions between the real plant and the virtual reality. The digital twin will make use of data processing, 
modelling and data mining techniques to decide if adjustments of manipulated variables are recommended in 
the ongoing processes to maintain performance within thresholds. This digital twin model will be able to 
recognize type changes or anomalies in the operating conditions or parameter values of the plant model. The 
concept is an intermediate approach to combine a more conventional theory-based (‘white-box’) process model 
used for design and scenario analyses with a data-based (‘black-box‘) application to provide early detection and 
prediction. The idea is that such a hybrid digital twin model (‘grey box’) will follow in real-time the variable 
wastewater conditions in the different treatment stages, detect important changes early on, make predictions 
and suggest actions for mitigation to assure optimal treatment from the perspectives of water quality, economics 
and environmental protection, at minimal downtime. It could also be used for process design or upgrade and 
optimization by running different scenarios and evaluating the modeled outputs. 

The data-driven component of this smart system will function in support of the process model to monitor and 
correct the deterministic model. In comparison with fully data-driven models, such hybrid systems generally have 
lower data requirements, because it can function with a shorter history of time series data and higher prediction 
accuracy (Glassey and Von Stosch, 2018). The ongoing research will contribute to the integration of a hybrid AI 
model as part of the functional decision support system. In that study, the objective is to demonstrate the 
feasibility of a merger of the strengths of empirical knowledge with those strengths of data analytics and 
introduce a framework for large scale industrial application. 

Figure 11: interaction between physical and digital world. (From: Therrien et al., 2020). 

 

A pilot study by W-SMART (Tinelli and Juran, 2019) presented an automated statistical model and artificial 
intelligence supported algorithms that allow early detection of anomalies in data collected at the physical-
chemical clarifier of the Seine-Aval plant. The developed algorithms exploit the concept of expert pattern 
recognition of deviations from normal conditions and assess the probability of an event or an anomaly, filtering 
false alarms. 



Annex II: Smart Monitoring and Process Modelling of Wastewater Treatment in Paris 

215 
 

The study evaluated the removal rates of organic matter and suspended solids and the coagulant reagents used 
in a chemically enhanced settler and provided a risk-based classification of potential anomalies. The study applied 
both Supported Vector Machines (SVM) and Artificial Neural Networks (ANN). The SVM technique showed a 
classification error of approximately 2%, increasing to approximately 4% using the ANN. Overall; this study 
presented an efficient method for anomaly detection and risk-based classification, as well the ability to isolate 
anomalies according to a risk severity scale (Tinelli and Juran, 2019). 

Modelling of Integrated Urban Wastewater Systems 

The many interactions and dependencies within and between wastewater and sludge treatment processes, as 
well as the sequential relationship between the sewer network, the treatment plant and the receiving natural 
environment compel an integrated system-wide approach. This should cover the entire chain of processes taking 
place within the catchment area, including sewage collection and transport, the conditions in the receiving 
natural environment, rainfall and other meteorological conditions, both in real-time and forecasts within the 
next 6 to 12 hours. The latter is in particular of importance during extreme weather events, such as for the 
predictions of storm water run-off volumes.  

As is demonstrated in figure 12, an integrated approach would compel the monitoring and collection of principal 
indicators in each sub-system that would feed a numerical model in order to provide for predictions at the scale 
of the sub-system. That would take place both at the level of the river system and the sewer network respectively 
by means of the ProSe model and the MAGES model. The river model would take measurement data coming 
from in-situ sensors located upstream and downstream of the wastewater plant outlet, as well as meteorological 
forecasts and then produce predictions of water quality and water levels in the river section downstream from 
the wastewater treatment plant outlet. Based upon these predictions, different scenarios could be run to 
simulate and define the optimum scenario or most efficient treatment performance, which could include 
recommendations to adjust the treatment processes (temporarily) to better meet the river quality conditions.  

On the upstream side of the urban water cycle, the sewer model would provide predictions of sewage volumes 
and storm water run-off in a time horizon of 6 to 12 hours ideally. The further development is foreseen to include 
the adaptation of the MAGES monitoring and forecasting system to be able to include data monitoring on key 
pollutants as well as flow rates at selected locations in the transport network. 

Both predictions of the river model and the sewer model will serve as inputs to the plant-wide process model. It 
will use these to run scenario’s and define actions to ensure best possible treatment given the river water quality 
and predicted sewage volumes. . Scenario definition includes the search for optimum treatment during highly 
dynamic conditions which might disrupt treatment performance. This could be the case with high flow rates 
and/or high nutrients and pollutant loads of the influent, specifically when this occurs in a situation of a low 
dilution capacity of the river. It can also be applied to situations where the constraints for treatment are less 
strong, such as under low influent flow rates with stable pollutant loads and a high dilution capacity of the river. 
For each scenario, the model predictions will include the performance levels for wastewater and sludge 
treatment, cost estimations of energy and reagents used during treatment, as well as an estimation of the by-
products formed (e.g., biogas) and the resources or materials that are recoverable. As presented during the 
Mocopée colloquium in 2018, it is foreseen that the plant operator holds the final decision regarding the 
proposed modifications (Zhu, 2018b). 

Figure 12: conceptual representation of an IUWS that integrates the data stemming from the sewer system (left) and the 
river (right) with a model of a wastewater treatment plant (center). The black lines represent the flow of monitoring data, 
the grey lines model predictions and the red lines the exchange of the acquired model-based knowledge between different 
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models and the operator. Figure is based on a presentation given during the Mocopée colloquium in Colombes, France on 
the 4/12/2018 (© SIAAP). 

 

On the longer term, the development  of an integrated monitoring and modelling system of the complete urban 
water cycle for the Paris region incorporating the sewer network, the river as well as all of the six wastewater 
treatment plants and storm water retention basins operated by SIAAP is being discussed. Such an integrated 
approach will be necessary to place the river at the center of the performance assessment of wastewater 
processing. The expected outcome of such a holistic approach will permit to create a powerful monitoring, data 
processing and process control tool of the municipal wastewater system. This will allow to better control plant 
performance while placing the focus on river water quality standards (Tabuchi et al., 2020). 

2.9 Conclusion and Perspective 
Decades of investments by the wastewater treatment industry in research and development have led to 
impressive progress in the fields of collection and treatment, with the introduction of stable and more reliably 
performing technologies, such as biofiltration, membrane bioreactors and chemically enhanced lamellar settling 
tanks. Furthermore, major advances have been made in the field of instrumentation for monitoring and process 
control with an expanded network of smart sensors connected in real-time to advanced supervisory 
communication and data systems. Management is up-scaled to the level of the urban water system, providing 
better coordination among stakeholder for operations and integrated planning for investments. The observed 
large improvements in the quality of natural waters and the repopulation of biotopes by a large variety of aquatic 
life forms in the rivers flowing through the Paris region are a great testimony to these efforts (Rocher et al., 
2017). 

The task is now to maximize the potential of existing infrastructures while minimizing the environmental impact 
of operations and continue to assure precise compliance to the norms for effluent quality. Achieving this, while 
being pressured by continuing urbanization, rising effects of climate change, the implementation of a circular 
economy with a transition to energy neutrality and a reuse of resources as well as growing public demands for 
clean and safe natural rivers for recreational usage. The modern and compact technologies installed in smaller 
decentralized treatment plants come with a higher operational complexity and are activated by biological and 
chemical processes that are not (yet) entirely understood. Consequently, the energy consumption of compact 
and highly reactive treatment systems is higher per unit treated water. The transition to a more sustainable 
economic and ecological management will necessitate a better understanding and control of these treatment 
processes. 
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Thanks to improved measuring and sensing technologies combined with advanced data management systems 
and computer based dynamic modeling tools, the level of understanding in the sanitation sector of the physical, 
biological and chemical processes taking place during sewage and sludge treatment has been increased (e.g. 
Henze et al, 2008 and Ingildsen and Olsson, 2016). This improved understanding helps identifying important 
process parameters and improve overall system control. It helps to build confidence in design and planning with 
dynamic process models that allow testing different control approaches and safely train operators without 
placing the real plant’s performance at risk. 

In the current dynamic wastewater world, the effects of climate change, population growth, the emergence of 
new types of pollutants (e.g., micropollutants and new forms of pathogens) and the desire to revalorize energy 
and other resources necessitate the application of increasingly sophisticated and comprehensive process control 
and data management systems. Such systems also allow dealing with the requirements to reduce the 
environmental impact (e.g., lower the carbon footprint) and the operational expenses (e.g., by reducing the 
electricity demand). These aspects are driving today’s investments in the next generation model-based and 
Artificial Intelligence-based control systems.  

The adaptation of AI-based control for process optimization could be the next paradigm shift in the sanitation 
industry and lead to a fundamental change in the approach to wastewater management. The next level 
hybridization of deterministic knowledge-based white-box models and black-box big data analytics systems has 
the potential to radically transform the operation of municipal wastewater management and bring in the fourth 
industrial revolution with smart water systems and a sustainable management of water resources (Garrido-
Baserba et al., 2020). Smart systems build confidence in defining new control strategies and can assist in 
planning, design and operations. Potential critical conditions could be detected ahead of time and the 
maintenance management planning can be modified to avoid a decrease in performance or down-time of 
equipment. This will lead to stable and reliable removal of pollutants and helps to reach the full potential of 
resource recovery.  

Nevertheless, a full-scale implementation of operational digital twins in daily wastewater plant management still 
faces many challenges to overcome. A major challenge that has been identified is the large amount of data being 
generated by intelligent monitoring equipment for flow and nutrients loads in wastewater. The integration of 
automatic controllers using real-time measurements necessitates comprehensive quality control of the data to 
avoid decisions being based on erroneous data. Enhanced systems for automated data collection, fault detection 
and the pre-processing of data have the potential to deliver regular, high frequent and trustworthy data, which 
is a concrete requirement to transform it into meaningful and actionable information in real-time (Therrien et 
al., 2020). With the advancements of highly accurate and self-calibrating in-situ sensing techniques, the amount 
of data rejected or lost, for example due to faulty readings or sensor drifts, are expected to lower significantly in 
the near future. 

The classification of general standards and protocols for data management and data reconciliation, as well as a 
systematic methodology for process modelling could benefit the implementation of data-based control in the 
wastewater sector. Furthermore, the development of sufficient know-how for AI applications through expertise 
and skills training will require close collaboration with data-science experts and experts of other related fields. 
Research and innovation programs serving the sanitation sector, such as SIAAP’s InnEAUvation program 
coordinating a holistic and inter-disciplinary approach incorporating engineers, scientists and policymakers, will 
support the on-going digitalization of the wastewater treatment sector.  

The first results of these synergies as well as the lessons learned presented in this chapter, should be seen as an 
example for wastewater utilities worldwide and encourage each one to develop similar integrated and 
coordinative research partnership programs in preparation of becoming a smart water utility. 
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3 Annex III Results of Global Sensitivity Analysis 
3.1 Model Parameters 

Parameters_PreDn_Model_MS_SAV_2019_2020_CAL 
 

Parameters_DAM_Model_Filier

e_JZ_SAV_2018 

 
Differ

ence  

Name Value Unit Default 

Value 

Lower 

bound 

Upper 

bound 

  Name Value   % 

Category: 

Manipulated 

Variables  

          
 

Category: 

Manipulated 

Variables  

      

Group: Operational            
 

Group: Operational        

pH 7 - 7 0 14 
 

PH 7   100% 

Kla 1800 1/d 750 0 5000 
 

Kla 1800   100% 

Airflow 10000 m3/d 750 0 +INF 
 

Airflow 10000   100% 

Temp 16,341

887 

degC 15 -273,15 +INF 
 

Temp 16,341

887 

  100% 

Airflow_Real1 0 m3/d 750 0 +INF 
 

Airflow_Real1 0     

Filter_Nb 58   84 -INF +INF 
 

Filter_Nb 58   100% 

Pump_Nb 24   24 -INF +INF 
 

Pump_Nb 24   100% 

Category: 

Parameters  

          
 

Category: 

Parameters  

      

Group: Aeration            
 

Group: Aeration        

OTR_Energy 1800 g/kWh 1800 -INF +INF 
 

OTR_Energy 1800   100% 

m 0,85   0,85 -INF +INF 
 

m 0,85   100% 

Period 1 d 1 0 +INF 
 

Period 1   100% 

Nretg 7   1 -INF +INF 
 

Nretg 7   100% 

Flowfactor_A 0,753   0,753 -INF +INF 
 

Flowfactor_A 0,753   100% 

Flowfactor_B 40   40 -INF +INF 
 

Flowfactor_B 40   100% 

Differential_Pressure 101000 Pa 101000 0 +INF 
 

Differential_Pressure 101000   100% 

Temp_Environment 12 degC 12 -273,15 +INF 
 

Temp_Environment 12   100% 

Temp_Heat 10 degC 10 -273,15 +INF 
 

Temp_Heat 10   100% 

Temp_normal 0 degC 0 -273,15 +INF 
 

Temp_normal 0     

Efficiency_Compress

or 

0,873   0,873 -INF +INF 
 

Efficiency_Compress

or 

0,873   100% 

Efficiency_Pump 0,793   0,793 -INF +INF 
 

Efficiency_Pump 0,793   100% 

Group: boundary            
 

Group: boundary        

ShA 2   2 -INF +INF 
 

ShA 2   100% 

ShK 0,51   0,51 -INF +INF 
 

ShK 0,51   100% 

ShB 4,23   4,23 -INF +INF 
 

ShB 4,23   100% 

ShM 0,833   0,833 -INF +INF 
 

ShM 0,833   100% 

ShN 0,59   0,6 -INF +INF 
 

ShN 0,59   100% 

ShBeta 0,339   0,333 -INF +INF 
 

ShBeta 0,339   100% 

Viscocity 0,1129 m2/d 0,1129 -INF +INF 
 

Viscocity 0,1129   100% 

Diameter 0,0045 m 0,004 0 +INF 
 

Diameter 0,0045   100% 

Porosity 0,35 dUnit/dU

nit 

0,365 -INF +INF 
 

Porosity 0,35   100% 

Diffusion_Reduction 0,7 dUnit/dU

nit 

0,2 -INF +INF 
 

Diffusion_Reduction 0,7   100% 

Group: Composition 

parameters  

          
 

Group: Composition 

parameters  

      

i_X_B 0,109 gN/gCOD 0,086 0 0,2   i_X_B 0,098   111% 

i_X_BP 0,0046 gP/gCOD 0,01 0 1   i_X_BP 0,0055   84% 
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i_X_P 0,06 gN/gCOD 0,06 0 0,2 
 

i_X_P 0,06   100% 

i_X_UP 0,008 gP/gCOD 0,01 0 1   i_X_UP 0,006   133% 

Group: Conversion 

factors  

          
 

Group: Conversion 

factors  

      

F_BOD_COD 0,65 - 0,65 0 1 
 

F_BOD_COD 0,65   100% 

F_TSS_COD 0,75 - 0,75 0 1 
 

F_TSS_COD 0,75   100% 

Group: Dimension            
 

Group: Dimension        

d_max 0,0002 m 0,0005 0 +INF 
 

d_max 0,0002   100% 

d_min 0,0000

0001 

m 5E-07 0 +INF 
 

d_min 0,0000

0001 

  100% 

d_maxth 0,0003 m 0,0003 0 +INF 
 

d_maxth 0,0003   100% 

A 74914,

35 

m2 173 0 +INF 
 

A 74914,

35 

  100% 

d_ctrlmax 0,0000

4 

  4E-05 -INF +INF 
 

d_ctrlmax 0,0000

4 

  100% 

d_ctrlwashmax 0,0000

2 

  2E-05 -INF +INF 
 

d_ctrlwashmax 0,0000

2 

  100% 

V_R 1 m3 1 0 +INF 
 

V_R 1   100% 

L 13,15 m 1 0 +INF 
 

L 13,15   100% 

H 0,5 m 1 0 +INF 
 

H 0,5   100% 

W 13,15 m 1 0 +INF 
 

W 13,15   100% 

A_Sp_R 1333 1/m 400 0 +INF 
 

A_Sp_R 1333   100% 

f_void 0,35 dUnit/dU

nit 

0,5 -INF +INF 
 

f_void 0,35   100% 

Group: filtering            
 

Group: filtering        

geo 1   10 -INF +INF 
 

geo 1 
 

100% 

lami 0,43 1/m 0,0006 0 +INF   lami 0,4   108% 

vmax 1 m3 1 0 +INF 
 

vmax 1   100% 

xx 1   1 -INF +INF 
 

xx 1   100% 

yy 1,06   1 -INF +INF   yy 0,83   128% 

zz 1   1 -INF +INF 
 

zz 1   100% 

Group: Gas-Liquid            
 

Group: Gas-Liquid        

D_N2 2E-09 m2/s 2E-09 0 +INF 
 

D_N2 2E-09   100% 

D_N2O 1,77E-

09 

m2/s 1,77E-

09 

0 +INF 
 

D_N2O 1,77E-

09 

  100% 

D_NO 2,21E-

09 

m2/s 2,21E-

09 

0 +INF 
 

D_NO 2,21E-

09 

  100% 

D_O2 2,08E-

09 

m2/s 2,12E-

09 

0 +INF 
 

D_O2 2,08E-

09 

  100% 

H_N2 0,77 atm.m3.

Mol-1 

0,77 0 +INF 
 

H_N2 0,77   100% 

H_N2O 0,02 atm.m3.

Mol-1 

0,02 0 +INF 
 

H_N2O 0,02   100% 

H_NO 0,53 atm.m3.

Mol-1 

0,53 0 +INF 
 

H_NO 0,53   100% 

H_O2 0,77 atm.m3.

Mol-1 

0,77 0 +INF 
 

H_O2 0,77   100% 

P_Airflow 1   1 -INF +INF 
 

P_Airflow 1   100% 

f_CO2 0,0004 - 0,0004 0 1 
 

f_CO2 0,0004   100% 

f_NO 0,0000

005 

- 5E-07 0 1 
 

f_NO 0,0000

005 

  100% 

f_N2 0,78 - 0,78 0 1 
 

f_N2 0,78   100% 

f_N2O 3,28E-

07 

- 3,28E-

07 

0 1 
 

f_N2O 3,28E-

07 

  100% 

f_O2 0,21 - 0,21 0 1 
 

f_O2 0,21   100% 
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K_O2_CO2 1 dUnit/dU

nit 

1 -INF +INF 
 

K_O2_CO2 1   100% 

MM_CO2 44 g/mol 44 0 +INF 
 

MM_CO2 44   100% 

MM_O2 32 g/mol 32 0 +INF 
 

MM_O2 32   100% 

MM_NO 30 g/mol 30 0 +INF 
 

MM_NO 30   100% 

MM_N2O 44 g/mol 44 0 +INF 
 

MM_N2O 44   100% 

MM_N2 28 g/mol 28 0 +INF 
 

MM_N2 28   100% 

V_N_GAS 0,0224 m3 0,0224 0 +INF 
 

V_N_GAS 0,0224   100% 

Atm 101325 Pa 101325 0 +INF 
 

Atm 101325   100% 

V_Tunnel 260 m3 312 0 +INF 
 

V_Tunnel 260   100% 

H_Tunnel 1,5 m 1,5 0 +INF 
 

H_Tunnel 1,5   100% 

KlaR 0,032 dUnit/dU

nit 

0,032 -INF +INF 
 

KlaR 0,032   100% 

Kla_ref 1800 1/d 1968 0 5000 
 

Kla_ref 1800   100% 

Air_ref 10000 m3/d 44980 0 +INF 
 

Air_ref 10000   100% 

Group: Kinetic            
 

Group: Kinetic        

K_HNO2_AOB 0,004 gN/m3 0,004 0 100 
 

K_HNO2_AOB 0,004   100% 

K_I_N2O 0,075 gN/m3 0,075 0 100 
 

K_I_N2O 0,075   100% 

K_I_NO 0,31 gN/m3 0,3 0 100 
 

K_I_NO 0,31   100% 

K_I_NO2 0,5 gN/m3 0,5 0 100 
 

K_I_NO2 0,5   100% 

K_I_O_AOB 0,8 gO2/m3 0,8 0 100 
 

K_I_O_AOB 0,8   100% 

K_I_Red_NO3 0,0000

0005 

gN/m3 0,05 0 100 
 

K_I_Red_NO3 0,0000

0005 

  100% 

K_I_SNH 1E-12 gN/m3 1E-12 0 1 
 

K_I_SNH 1E-12   100% 

K_N2O_H 0,05 gN/m3 0,05 0 100 
 

K_N2O_H 0,05   100% 

K_NH 1 gNH3-

N/m3 

1 0 10 
 

K_NH 1   100% 

K_NH2OH 0,018 m3/d 0,0148 0 100 
 

K_NH2OH 0,018   100% 

K_NH3_AOB 0,004 gN/m3 1,47 0 100 
 

K_NH3_AOB 0,004   100% 

K_NH_A 0,05 g/m3 0,05 0 100 
 

K_NH_A 0,05   100% 

K_NH_H 0,05 g/m3 0,05 0 100 
 

K_NH_H 0,05   100% 

K_NO 0,5 gNO3-

N/m3 

0,5 0 2 
 

K_NO 0,5   100% 

K_NO2_H 0,2 gN/m3 0,2 0 100 
 

K_NO2_H 0,2   100% 

K_NO2_NOB 0,2 gN/m3 0,2 0 100 
 

K_NO2_NOB 0,2   100% 

K_NO3_H 0,2 gN/m3 0,2 0 100 
 

K_NO3_H 0,2   100% 

K_NO_AOB_HAO 0,0003 gN/m3 0,0003 0 100 
 

K_NO_AOB_HAO 0,0003   100% 

K_NO_AOB_NN 0,008 gN/m3 0,008 0 100 
 

K_NO_AOB_NN 0,008   100% 

K_NO_H 0,053 gN/m3 0,05 0 100 
 

K_NO_H 0,053   100% 

K_OA 0,4 gO2/m3 0,4 0 10 
 

K_OA 0,4   100% 

K_OH 0,1 gO2/m3 0,2 0 10 
 

K_OH 0,1   100% 

K_OH_N2O 0,1 gO2/m3 0,2 0 10 
 

K_OH_N2O 0,1   100% 

K_OH_NO 0,1 gO2/m3 0,2 0 10 
 

K_OH_NO 0,1   100% 

K_OH_NO2 0,1 gO2/m3 0,2 0 10 
 

K_OH_NO2 0,1   100% 

K_OH_NO3 0,1 gO2/m3 0,2 0 10 
 

K_OH_NO3 0,1   100% 

K_O_AOB1 1,5 gO2/m3 1,5 0 100 
 

K_O_AOB1 1,5   100% 

K_O_AOB2 0,3 gO2/m3 0,3 0 100 
 

K_O_AOB2 0,3   100% 

K_O_AOB_ND 0,5 gO2/m3 0,5 0 100 
 

K_O_AOB_ND 0,5   100% 

K_O_NOB 0,6 gO2/m3 0,6 0 100 
 

K_O_NOB 0,6   100% 

K_POA 0,01 g/m3 0,01 0 10 
 

K_POA 0,01   100% 

K_POH 0,01 g/m3 0,01 0 10 
 

K_POH 0,01   100% 

K_S 20 gCOD/m3 20 0 100 
 

K_S 20   100% 

K_S_N2O 40 gCOD/m3 40 0 100 
 

K_S_N2O 40   100% 
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K_S_NO 17,7 gCOD/m3 20 0 100 
 

K_S_NO 17,7   100% 

K_S_NO2 16,06 gCOD/m3 20 0 100   K_S_NO2 13,8   116% 

K_S_NO3 41,37 gCOD/m3 20 0 100   K_S_NO3 28,6   145% 

K_X 0,03 gCOD/gC

OD 

0,03 0 100 
 

K_X 0,03   100% 

K_red_NO3 0,1 gN/m3 0,1 0 100 
 

K_red_NO3 0,1   100% 

Temp_Ref 20 degC 20 -273,15 +INF 
 

Temp_Ref 20   100% 

b_AOB 0,17 1/d 0,17 0 25 
 

b_AOB 0,17   100% 

b_H 0,73 1/d 0,62 0 25   b_H 0,7   104% 

b_NOB 0,17 1/d 0,17 0 25 
 

b_NOB 0,17   100% 

k_a 0,065 m3/(gCO

D*d) 

0,08 0 0,25   k_a 0,075   87% 

k_h 2,6 gCOD/(gC

OD*d) 

3 0 25   k_h 2,5   104% 

kr 0 m3/(gCO

D*d) 

0,1 -INF +INF 
 

kr 0     

mu_AOB 0,8 1/d 0,8 0 5 
 

mu_AOB 0,8   100% 

mu_H 4,74 1/d 6 0 20   mu_H 5,18   92% 

mu_NOB 1 1/d 1 0 5 
 

mu_NOB 1   100% 

n_h 0,47 - 0,4 0 1 
 

n_h 0,47   100% 

n_h1 0,28 - 0,28 0 1 
 

n_h1 0,28   100% 

n_h2 0,19 - 0,16 0 1   n_h2 0,14   136% 

n_h3 0,31 - 0,35 0 1   n_h3 0,47   66% 

n_h4 0,35 - 0,35 0 1 
 

n_h4 0,35   100% 

n_hy 0,72 - 0,75 0 1   n_hy 0,78   92% 

n_nND 0,25 - 0,25 0 1 
 

n_nND 0,25   100% 

n_nNN 0,0015 - 0,0015 0 1 
 

n_nNN 0,0015   100% 

Group: media            
 

Group: media        

u_ExMediaF 2 d-1 0,001 0 +INF 
 

u_ExMediaF 2   100% 

u_ExMediaW 20 d-1 0,01 0 +INF 
 

u_ExMediaW 20   100% 

Group: Pump            
 

Group: Pump        

Coef_Loss 0,0612

32 

  0,06123

2 

-INF +INF 
 

Coef_Loss 0,0612

32 

  100% 

Pump_Height 10,84 m 10,84 0 +INF 
 

Pump_Height 10,84   100% 

Group: 

Stoichiometry  

          
 

Group: 

Stoichiometry  

      

Y_AOB 0,21 gCOD/gN 0,21 0 4,57 
 

Y_AOB 0,21   100% 

Y_H 0,72 gCOD/gC

OD 

0,67 0 1 
 

Y_H 0,72   100% 

Y_NOB 0,06 gCOD/gN 0,06 0 4,57 
 

Y_NOB 0,06   100% 

f_P 0,08 - 0,08 0 1 
 

f_P 0,08   100% 

Group: system            
 

Group: system        

gra 9,8 m/s2 9,8 0 +INF 
 

gra 9,8   100% 

Group: System            
 

Group: System        

BetaA 0,95 - 0,95 0 1 
 

BetaA 0,95   100% 

FA 1 - 1 0 1 
 

FA 1   100% 

alfaA 1 - 0,95 0 1 
 

alfaA 1   100% 

d_ini 0,0000

1 

m 0,0002 0 +INF 
 

d_ini 0,0000

1 

  100% 

rho 133600 g/m3 40000 0 +INF 
 

rho 133600   100% 

k_detach 0,4 1/d 0,0001 0 +INF 
 

k_detach 0,4   100% 

k_detachwater 1 1/d 0,0001 0 +INF 
 

k_detachwater 1   100% 

p_filter 0,05 dUnit/dU

nit 

0,05 -INF +INF 
 

p_filter 0,05   100% 
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p_wash 0,05 dUnit/dU

nit 

0,6 -INF +INF 
 

p_wash 0,05   100% 

Group: Temperature 

correction  

          
 

Group: Temperature 

correction  

      

theta_K_X 1,116   1,116 -INF +INF 
 

theta_K_X 1,116   100% 

theta_b_AOB 1,116   1,116 -INF +INF 
 

theta_b_AOB 1,116   100% 

theta_b_H 1,12   1,12 -INF +INF 
 

theta_b_H 1,12   100% 

theta_b_NOB 1,116   1,116 -INF +INF 
 

theta_b_NOB 1,116   100% 

theta_k_a 1,072   1,072 -INF +INF 
 

theta_k_a 1,072   100% 

theta_k_h 1,116   1,116 -INF +INF 
 

theta_k_h 1,116   100% 

theta_kla 1,024   1,024 -INF +INF 
 

theta_kla 1,024   100% 

theta_mu_AOB 1,103   1,103 -INF +INF 
 

theta_mu_AOB 1,103   100% 

theta_mu_H 1,072   1,072 -INF +INF 
 

theta_mu_H 1,072   100% 

theta_mu_NOB 1,103   1,103 -INF +INF 
 

theta_mu_NOB 1,103   100% 

Group: Transport            
 

Group: Transport        

D_x 1 1/d 1E-10 -INF +INF 
 

D_x 1   100% 

DH2O 1E-10 m2/d 1E-10 -INF +INF 
 

DH2O 1E-10   100% 

DS_I 0,0001 m2/d 0,0001 -INF +INF 
 

DS_I 0,0001   100% 

DS_S 0,0000

58 

m2/d 5,8E-05 -INF +INF 
 

DS_S 0,0000

58 

  100% 

DS_O 0,0002

16 

m2/d 0,00021

6 

-INF +INF 
 

DS_O 0,0002

16 

  100% 

DS_NO3 0,0001

7 

m2/d 0,00017 -INF +INF 
 

DS_NO3 0,0001

7 

  100% 

DS_NO2 0,0001

7 

m2/d 0,00017 -INF +INF 
 

DS_NO2 0,0001

7 

  100% 

DS_NO 0,0002

44 

m2/d 0,00024

4 

-INF +INF 
 

DS_NO 0,0002

44 

  100% 

DS_N2O 0,0001

55 

m2/d 0,00015

5 

-INF +INF 
 

DS_N2O 0,0001

55 

  100% 

DS_N2 0,0001

6416 

m2/d 0,00016

416 

-INF +INF 
 

DS_N2 0,0001

6416 

  100% 

DS_NH 0,0001

7 

m2/d 0,00017 -INF +INF 
 

DS_NH 0,0001

7 

  100% 

DS_NH2OH 0,0000

238 

m2/d 2,38E-

05 

-INF +INF 
 

DS_NH2OH 0,0000

238 

  100% 

DS_ND 0,0001

4 

m2/d 0,00014 -INF +INF 
 

DS_ND 0,0001

4 

  100% 

DS_ALK 0,0002

2 

m2/d 0,00022 -INF +INF 
 

DS_ALK 0,0002

2 

  100% 

DS_PO 0,0002

2 

m2/d 0,00022 -INF +INF 
 

DS_PO 0,0002

2 

  100% 

DX_I 0 m2/d 0 -INF +INF 
 

DX_I 0     

DX_S 0 m2/d 0 -INF +INF 
 

DX_S 0     

DX_BH 0 m2/d 0 -INF +INF 
 

DX_BH 0     

DX_AOB 0 m2/d 0 -INF +INF 
 

DX_AOB 0     

DX_NOB 0 m2/d 0 -INF +INF 
 

DX_NOB 0     

DX_P 0 m2/d 0 -INF +INF 
 

DX_P 0     

DX_ND 0 m2/d 0 -INF +INF 
 

DX_ND 0     

Dg_NO 0 m2/d 0 -INF +INF 
 

Dg_NO 0     

Dg_N2 0 m2/d 0 -INF +INF 
 

Dg_N2 0     

Dg_N2O 0 m2/d 0 -INF +INF 
 

Dg_N2O 0     

Dg_O2 0 m2/d 0 -INF +INF 
 

Dg_O2 0     

Dg_CO2 0 m2/d 0 -INF +INF 
 

Dg_CO2 0     

eta 1 dUnit/dU

nit 

1 -INF +INF 
 

eta 1   100% 
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k_At 0   0,1 -INF +INF 
 

k_At 0     

Group: wash            
 

Group: wash        

Washback_frequency 1 1/d 1 0 +INF 
 

Washback_frequency 1   100% 

Washback_Time 15 min 2,016 0 +INF 
 

Washback_Time 15   100% 

Filter_Time 1 d 1 0 +INF 
 

Filter_Time 1   100% 

Ensemencement_Tim

e 

0 d 2 0 +INF 
 

Ensemencement_Tim

e 

0     

WashRate 0,55 dUnit/dU

nit 

0,5 -INF +INF 
 

WashRate 0,55 
 

100% 

 

3.2 Plots of Regression Coefficients 
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3.3 Tables of Regression Coefficients 
 

Regression Coefficients for totalCOD effluent 

regression 
coef COD 

pm name Unit Description 

-0,482897979 lami 1/m Clean media filter coefficient 

-0,221000419 yy -- coefficient y of Ives equation 1 

0,162396426 zz -- coefficient z of Ives equation 1 

-0,14412455 rho g/m3 Biofilm density 

-0,143201824 WashRate dUnit/dUnit Percentage washed during wash  

0,130619686 theta_mu_H -- Temperature correction factor for mu_H 

-0,117408671 n_h1 -- Correction Factor for Anoxic Growth Of 
Heterotrophs NO3- 

0,073604785 xx -- coefficient x of Ives equation 1 

0,071167829 n_hy -- Anoxic yield factor 

-0,061936728 mu_H 1/d Maximum Specific Growth Rate for Heterotrophic 
Biomass 

-0,061197319 theta_b_H -- Temperature correction factor for b_H 

0,053617688 K_S_NO3 gCOD/m3 Half-Saturation Coefficient for Heterotrophic 
Biomass NO3- 

0,047809741 b_H 1/d Decay Coefficient for Heterotrophic Biomass 

-0,043884142 theta_k_h -- Temperature correction factor for k_h 

0,040576537 k_h gCOD/(gCOD*
d) 

Maximum Specific Hydrolysis Rate 

0,033821793 n_h -- Correction Factor for Anoxic Hydrolysis 

0,031162683 F_TSS_COD -- Fraction TSS/COD 

0,029900267 K_NO3_H gN/m3 Saturation coeff of heterotrophs for NO3- 

0,025896538 K_I_N2O gN/m3 NO inhibition coefficient N2O 

0,02560056 m -- constant for diffuser and system configuration 

0,023096449 K_NH_A g/m3 Saturation coeff of autotrophs for ammonium 

-0,021139555 K_I_SNH gN/m3 growth limitation by ammonium 

-0,019784374 n_h4 -- Correction Factor for Anoxic Growth Of 
Heterotrophs N2O 

0,019471224 K_S_N2O gCOD/m3 Half-Saturation Coefficient for Heterotrophic 
Biomass N2O 

-0,019330503 ShK -- coefficient K for number of Sherwood 

-0,019084458 n_nNN -- Reduction Factor for the NN pathway 

0,018971247 F_BOD_COD -- Conversion factor BOD/COD 

-0,01754216 K_HNO2_AOB gN/m3 Half Saturation coeff of heterotrophs for N2O 

0,017317596 D_x 1/d Diffusivity coefficient for particules components 

0,016860395 K_I_O_AOB gO2/m3 Inhibition constant by O2 on N2O production 

0,01622703 theta_b_AOB -- Temperature correction factor for b_AOB 

-0,015712949 BetaA -- reduction factor of solubility in wastewater 

-0,015485678 BAF_7d_max m Maximum biofilm thickness 

0,015162537 u_ExMediaF 1/d Velocity of biofilm exchange of media when filtering 

0,014864426 K_X gCOD/gCOD Half Saturation Coefficient for Hydrolysis Of Slowly 
Biodegradable Substrate 

-0,014545796 Diffusion_Reducti
on 

dUnit/dUnit Reduction of diffusion coefficient in biofilm 

-0,014512235 ShBeta -- coefficient Beta for number of Sherwood 

0,013579541 FA -- Fouling factor for aeration 
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-0,01341231 ShA -- coefficient A for number of Sherwood 

0,01331272 mu_NOB 1/d Maximum Specific Growth Rate for Autotrophic 
Biomass NOB 

-0,012848353 ShB -- coefficient B for number of Sherwood 

0,012268497 K_POA g/m3 Half Saturation coefficient for phosphate for 
Autotrophic Biomass 

0,012237043 K_O_AOB1 gO2/m3 AOB affinity constant for O2 AMO reactions 

0,011802037 b_AOB 1/d Decay Coefficient for Autotrophic Biomass (AOB) 

0,009350672 i_X_UP gP/gCOD Mass of Phosphore per Mass of COD in Products 
Formed added by JZ 06032017 

-0,009202425 K_OH_NO3 gO2/m3 NO3- Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

0,009169825 theta_k_a -- Temperature correction factor for k_a 

0,009096058 n_nND -- Reduction Factor for the ND pathway 

0,008897067 k_a m3/(gCOD*d) Maximum Specific Ammonification Rate 

0,008730669 K_I_NO2 gN/m3 NO inhibition coefficient NO2- 

-0,008302232 mu_AOB 1/d Maximum Specific Growth Rate for Autotrophic 
Biomass AOB 

-0,007932599 K_NO2_H gN/m3 Saturation coeff of heterotrophs for NO2- 

0,007868631 K_S_NO gCOD/m3 Half-Saturation Coefficient for Heterotrophic 
Biomass NO 

-0,007712566 n_h2 -- Correction Factor for Anoxic Growth Of 
Heterotrophs NO2- 

0,007665218 theta_K_X -- Temperature correction factor for K_X 

0,007558317 K_I_NO gN/m3 NO inhibition coefficient NO 

0,006697361 theta_kla -- Arrhenius parameter for kLa 

0,006655822 K_OH_N2O gO2/m3 N2O Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

0,006311914 K_S gCOD/m3 Half-Saturation Coefficient for Heterotrophic 
Biomass 

-0,005929731 i_X_B gN/gCOD Mass of Nitrogen per Mass of COD in Biomass 

-0,005596348 b_NOB 1/d Decay Coefficient for Autotrophic Biomass (AOB) 

0,005306356 K_NO_AOB_HAO gN/m3 AOB affinity constant for NO (HAO) 

0,005294766 theta_mu_AOB -- Temperature correction factor for mu_AOB 

-0,004797682 n_h3 -- Correction Factor for Anoxic Growth Of 
Heterotrophs NO 

0,004707904 K_N2O_H gN/m3 AOB Affinity constant for HNO2  

0,004650053 K_NO_AOB_NN gN/m3 AOB affinity constant for NO (NirK) 

0,00433962 K_NH3_AOB gN/m3 AOB affinity constant for NH3 

-0,003313713 ShN -- coefficient N for number of Sherwood 

-0,003199289 i_X_P gN/gCOD Mass of Nitrogen per Mass of COD in Products 
Formed 

0,003170287 ShM -- coefficient M for number of Sherwood 

-0,003053427 K_NH_H g/m3 Saturation coeff of heterotrophs for ammonium 

-0,003034377 Y_NOB gCOD/gN Yield for Autotrophic Biomass 

-0,003002815 K_OH gO2/m3 Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

-0,002735976 Y_AOB gCOD/gN Yield for Autotrophic Biomass AOB 

0,002671656 K_OH_NO gO2/m3 NO Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

-0,002484045 theta_mu_NOB -- Temperature correction factor for mu_NOB 

-0,002395046 theta_b_NOB -- Temperature correction factor for b_NOB 

-0,002382841 f_P -- Fraction of Biomass Converted to Inert Matter 
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0,002380552 K_POH g/m3 Half Saturation coefficient for phosphate for 
Heterotrophic Biomass 

0,002159606 K_S_NO2 gCOD/m3 Half-Saturation Coefficient for Heterotrophic 
Biomass NO2- 

0,00215018 K_O_NOB gO2/m3 NOB affinity constant for O2  

0,001801762 K_NO_H gN/m3 Saturation coeff of heterotrophs for NO 

0,001671316 u_ExMediaW 1/d Velocity of biofilm exchange of media when washing 

-0,001627268 K_NO2_NOB gN/m3 Half-saturation coefficient for NO2-,NOB 

-0,001536692 K_O_AOB2 gO2/m3 AOB affinity constant for O2 HAO reactions 

-0,001513935 K_OH_NO2 gO2/m3 NO2- Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

-0,000998312 i_X_BP gP/gCOD Mass of Phosphorus per Mass in COD Biomass 
added by JZ 06032017 

0,000635673 K_NH2OH gN/m3 AOB affinity constant for NH2OH 

-0,000561301 K_O_AOB_ND gO2/m3 AOB affinity constant for O2 ND pathway 

 

Regression Coefficients for NO3-N effluent 

regression coef 
NO3 

pm name Unit Description 

0,369524727 WashRate dUnit/dU
nit 

Percentage washed during wash  

0,312250828 n_hy -- Anoxic yield factor 

-0,295035492 n_h1 -- Correction Factor for Anoxic Growth Of Heterotrophs 
NO3- 

-0,276197288 k_h gCOD/(gC
OD*d) 

Maximum Specific Hydrolysis Rate 

0,216182796 theta_k_h -- Temperature correction factor for k_h 

-0,214236786 theta_b_H -- Temperature correction factor for b_H 

0,208348433 K_S_NO3 gCOD/m3 Half-Saturation Coefficient for Heterotrophic Biomass 
NO3- 

0,20108089 theta_mu_H -- Temperature correction factor for mu_H 

-0,177943409 n_h -- Correction Factor for Anoxic Hydrolysis 

-0,149785745 lami 1/m Clean media filter coefficient 

0,114813208 b_H 1/d Decay Coefficient for Heterotrophic Biomass 

-0,075529605 mu_H 1/d Maximum Specific Growth Rate for Heterotrophic 
Biomass 

-0,059370567 yy -- coefficient y of Ives equation 1 

0,056405363 zz -- coefficient z of Ives equation 1 

-0,04597675 rho g/m3 Biofilm density 

0,044823808 K_NO3_H gN/m3 Saturation coeff of heterotrophs for NO3- 

0,043167096 K_I_N2O gN/m3 NO inhibition coefficient N2O 

-0,038743058 K_S_NO2 gCOD/m3 Half-Saturation Coefficient for Heterotrophic Biomass 
NO2- 

-0,03435073 ShK -- coefficient K for number of Sherwood 

-0,030895796 K_OH_NO3 gO2/m3 NO3- Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

-0,030648872 Diffusion_Reduc
tion 

dUnit/dU
nit 

Reduction of diffusion coefficient in biofilm 

-0,029517968 ShA -- coefficient A for number of Sherwood 

0,028477231 n_h2 -- Correction Factor for Anoxic Growth of Heterotrophs 
NO2- 

0,025183397 K_O_AOB2 gO2/m3 AOB affinity constant for O2 HAO reactions 
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-0,025019854 BetaA -- reduction factor of solubility in wastewater 

-0,024997992 D_x 1/d Diffusivity coefficient for particules components 

-0,023568343 BAF_7d_max m Maximum biofilm thickness 

-0,023389752 b_AOB 1/d Decay Coefficient for Autotrophic Biomass (AOB) 

-0,022108519 ShB -- coefficient B for number of Sherwood 

0,021688249 u_ExMediaW 1/d Velocity of biofilm exchange of media when washing 

0,02086102 Y_AOB gCOD/gN Yield for Autotrophic Biomass AOB 

0,020764443 K_NO_AOB_HA
O 

gN/m3 AOB affinity constant for NO (HAO) 

0,020469297 K_N2O_H gN/m3 AOB Affinity constant for HNO2  

0,020375379 K_O_AOB1 gO2/m3 AOB affinity constant for O2 AMO reactions 

0,019796326 m -- constant for diffuser and system configuration 

-0,019736583 K_I_SNH gN/m3 growth limitation by ammonium 

0,019682293 K_I_O_AOB gO2/m3 Inhibition constant by O2 on N2O production 

0,019579447 n_nND -- Reduction Factor for the ND pathway 

0,018917744 theta_kla -- Arrhenius parameter for kLa 

-0,018512055 K_NO2_H gN/m3 Saturation coeff of heterotrophs for NO2- 

0,018055975 K_OH_N2O gO2/m3 N2O Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

-0,016764489 theta_mu_AOB -- Temperature correction factor for mu_AOB 

0,01613031 theta_mu_NOB -- Temperature correction factor for mu_NOB 

0,016022507 ShM -- coefficient M for number of Sherwood 

0,01593609 K_I_NO gN/m3 NO inhibition coefficient NO 

0,014442934 K_OH_NO gO2/m3 NO Oxygen Half-Saturation Coefficient for Heterotrophic 
Biomass 

-0,013039032 F_BOD_COD -- Conversion factor BOD/COD 

0,012935886 K_S_NO gCOD/m3 Half-Saturation Coefficient for Heterotrophic Biomass 
NO 

0,012669127 xx -- coefficient x of Ives equation 1 

-0,012613972 ShN -- coefficient N for number of Sherwood 

0,012606964 K_I_NO2 gN/m3 NO inhibition coefficient NO2- 

0,01249979 f_P -- Fraction of Biomass Converted to Inert Matter 

0,012001678 K_OH gO2/m3 Oxygen Half-Saturation Coefficient for Heterotrophic 
Biomass 

-0,01188092 n_nNN -- Reduction Factor for the NN pathway 

-0,011715191 theta_b_NOB -- Temperature correction factor for b_NOB 

0,010894233 K_NO2_NOB gN/m3 Half-saturation coefficient for NO2-,NOB 

0,010839022 K_OH_NO2 gO2/m3 NO2- Oxygen Half-Saturation Coefficient for 
Heterotrophic Biomass 

0,010068483 theta_k_a -- Temperature correction factor for k_a 

-0,009648722 K_NO_H gN/m3 Saturation coeff of heterotrophs for NO 

-0,009292596 FA -- Fouling factor for aeration 

0,008939662 i_X_BP gP/gCOD Mass of Phosphorus per Mass in COD Biomass added by 
JZ 06032017 

-0,007919039 mu_NOB 1/d Maximum Specific Growth Rate for Autotrophic Biomass 
NOB 

0,007746423 K_NH_A g/m3 Saturation coeff of autotrophs for ammonium 

-0,006708084 k_a m3/(gCO
D*d) 

Maximum Specific Ammonification Rate 

0,006542163 K_NH2OH gN/m3 AOB affinity constant for NH2OH 

-0,006281263 theta_K_X -- Temperature correction factor for K_X 

-0,006066445 F_TSS_COD -- Fraction TSS/COD 

0,005712251 n_h4 -- Correction Factor For Anoxic Growth Of Heterotrophs 
N2O 
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0,005491002 i_X_B gN/gCOD Mass of Nitrogen per Mass of COD in Biomass 

0,004854825 n_h3 -- Correction Factor for Anoxic Growth of Heterotrophs NO 

-0,004086111 b_NOB 1/d Decay Coefficient for Autotrophic Biomass (AOB) 

-0,003542483 K_POH g/m3 Half Saturation coefficient for phosphate for 
Heterotrophic Biomass 

0,003320783 theta_b_AOB -- Temperature correction factor for b_AOB 

-0,003030133 K_O_AOB_ND gO2/m3 AOB affinity constant for O2 ND pathway 

-0,003014595 K_O_NOB gO2/m3 NOB affinity constant for O2  

0,002984203 Y_NOB gCOD/gN Yield for Autotrophic Biomass 

-0,002980638 K_S gCOD/m3 Half-Saturation Coefficient for Heterotrophic Biomass 

-0,002916748 K_NH3_AOB gN/m3 AOB affinity constant for NH3 

-0,002807386 K_HNO2_AOB gN/m3 Half Saturation coeff of heterotrophs for N2O 

0,001781783 ShBeta -- coefficient Beta for number of Sherwood 

0,001771305 i_X_P gN/gCOD Mass of Nitrogen per Mass of COD in Products Formed 

-0,001747412 K_NH_H g/m3 Saturation coeff of heterotrophs for ammonium 

0,001609758 K_NO_AOB_NN gN/m3 AOB affinity constant for NO (NirK) 

-0,001517532 K_S_N2O gCOD/m3 Half-Saturation Coefficient for Heterotrophic Biomass 
N2O 

-0,001503611 mu_AOB 1/d Maximum Specific Growth Rate for Autotrophic Biomass 
AOB 

0,001453616 u_ExMediaF 1/d Velocity of biofilm exchange of media when filtering 

0,001128718 K_X gCOD/gC
OD 

Half Saturation Coefficient for Hydrolysis Of Slowly 
Biodegradable Substrate 

-0,001035279 K_POA g/m3 Half Saturation coefficient for phosphate for Autotrophic 
Biomass 

-0,000659668 i_X_UP gP/gCOD Mass of Phosphorus per Mass of COD in Products 
Formed added by JZ 06032017 
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Annex IV 

4 Programming Codes (Python) for the Hybrid Model 

Predictive Controller 
 

# Python Script Application 

1 run_workflow_v2 MPC & HMPC 
2 'Coupling_python_west.py' MPC & HMPC 
2b 'run_NN_model_forloop_v2.py' HMPC 
3 'analyze_error_SP.py' MPC & HMPC 
4 'reinitialize_West_Reduced.py' MPC & HMPC 
5 'Prepare_BIG_Model.py' MPC & HMPC 
6 'Coupling_python_west_BIG_model_SD.py' MPC & HMPC 
7 'Calculate_new_setpoint_SSE.py' MPC & HMPC 
8 'Counter.py' MPC & HMPC 

 

Script 1 : run_workflow_v2 

# this is the Beginning; this file will run all python scripts in consecutive order, according to the workflow type 

selected 

# Choose between MPC (runs all scripts, but excludes run_NN_model.py) or HMPC (runs all scripts including 

run_NN_model.py) 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Apr 25 17:02:40 2023 

 

@author: SERRAO-M & DANESHGAR-S 

""" 

 

import subprocess 

import os 

import time 

 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

os.chdir(path) 

 

program_list_mpc = ['create_scenarios_Mov_Time_v2.py', 'Coupling_python_west.py', 'analyze_error_SP.py', 

'reinitialize_West_Reduced.py', 'Prepare_BIG_Model.py', 'Coupling_python_west_BIG_model_SD.py', 

'Calculate_new_setpoint_SSE.py', 'Counter.py'] 

program_list_hmpc = ['create_scenarios_Mov_Time_v2.py', 'Coupling_python_west.py', 

'run_NN_model_forloop_v2.py', 'analyze_error_SP.py', 'reinitialize_West_Reduced.py', 

'Prepare_BIG_Model.py', 'Coupling_python_west_BIG_model_SD.py', 'Calculate_new_setpoint_SSE.py', 

'Counter.py'] 

 

# Choose here: 'mpc' or 'hmpc' 

mpc_type = 'mpc'  

 



Programming Codes (Python) for the Hybrid Model Predictive Controller 

235 
 

for i in range(0,100): # select here how many iterations, it includes the last nr. Each iteration simulates 15 

minutes; 96 iterations = 24 hrs 

    start_time = time.time() 

    if mpc_type == 'mpc': 

        for program in program_list_mpc: 

            if os.path.isfile(program): 

                subprocess.call(['python', program]) 

                print("Finished:" + program) 

            #if program == 'reinitialize_West_Reduced.py': 

                            #  print(time.time()-start_time, ' seconds to reach script for reinitialize_West_Reduced.py')   

            else: 

                alternative_directory = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M\\" 

                alternative_path = os.path.join(alternative_directory, program) 

                if os.path.isfile(alternative_path): 

                    subprocess.call(['python', alternative_path]) 

                    print("Finished: " + alternative_path) 

                else: 

                    print("Program not found: " + program)                 

    elif mpc_type == 'hmpc': 

        for program in program_list_hmpc: 

            if os.path.isfile(program): 

                subprocess.call(['python', program]) 

                print("Finished :" + program) 

            else: 

                alternative_directory = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M\\" 

                alternative_path = os.path.join(alternative_directory, program) 

                if os.path.isfile(alternative_path): 

                    subprocess.call(['python', alternative_path]) 

                    print("Finished: " + alternative_path) 

                else: 

                    print("Program not found: " + program) 

     

    print() 

    print("Done! Executed all scripts in the workflow: " + mpc_type) 

     

    with open('counter.txt', "r") as f2:  # reading the counter 

        j = int(f2.read()) 

        print("This was iteration number: " + str(j-1)) # subtract 1, because at this stage, the counter has already 

been updated with +1 

     

    with open("opt_value_1.txt", "r") as f3: 

        p = int(f3.read()) 

        print("The optimal Q_Dose =  " + str(p))       

        #print() 

    with open("Q_Dose_Reality.txt", "r") as f3: 

        q = float(f3.read()) 

        print("The optimal Q_Dose in Reality Model =  " + str(q))       

        print()     
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        print('Time it took: ', time.time()-start_time, ' seconds, which is equal to ', (time.time()-start_time)/60, ' 

minutes to complete this iteration') 

    print('-------------------------------------------------------') 

 

 

Script 2 : 'create_scenarios_Mov_Time_v2.py' 

 

# This script creates WEST simulation .xml files, based on the values noted in parameter.csv  

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  9 15:52:10 2023 

 

@author: SERRAO-M 

""" 

 

# This script creates WEST simulation .xml files, based on the values noted in parameter.csv  

 

import os 

import pandas as pd  

from lxml import etree 

# the lxml is not installed on your system by default, you can install it by running "pip install lxml" in a 

command line terminal 

 

 

# path to the project folder where you have ObjEval.Exp.xml files 

# make sure to end you path with \\ like "C:\\Program Files\\project\\" 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 

 

file_name = 'BAFNIT16.Dynamic.ObjEval.Exp.xml'  # in the next iteration, this file will be replaced by 

the xml file identified at the end of script reinitialize_West_Reduced.py 

 

 

original_xml = os.path.join(path, file_name) 

tree = etree.parse(original_xml) 

root = tree.getroot() 

Quantities = root[0][1][0][0][1][0][0] 

 

 

org_start_time = 0 

org_stop_time = 120/60/24 # 120/60/24 = 2 hrs 

 

with open(path + 'counter.txt', "r") as f2: 
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    j = int(f2.read()) 

    j = j*15/60/24 

 

time_settings = root[0][1][0][0][1][3] 

 

T1_name = ".Timer_2.T1" 

T5_name = ".Timer_2.T5" 

 

# read the parameter file that is stored in the same folder as the project and create scenario files 

parameters = pd.read_csv(path + 'parameters.csv', index_col='scenario') 

for scenario in parameters.index: 

    for q in time_settings.iter('Prop'): 

        if q.get('Name') == 'StartTime': 

            q.set('Value', str(org_start_time + j))  

            #print('Start Time is:', new_start_time,'(days)') 

            # Convert to float and format with 2 decimal places 

            formatted_start_time = '{:.6f}'.format(float(org_start_time+j)) 

            print(f'Start Time is: {formatted_start_time} (days)') 

             

        elif q.get('Name') == 'StopTime': 

            q.set('Value', str(org_stop_time + j)) 

            # print('Stop Time is:', new_stop_time,'(days)') 

            # Convert to float and format with 2 decimal places 

            formatted_stop_time = '{:.6f}'.format(float(org_stop_time+j)) 

            print(f'Stop Time is: {formatted_stop_time} (days)') 

    for name in parameters.columns: 

        param_in_file = 0 

        for q in Quantities.iter('Quantity'): 

            param_name_in_file = q.get('Name') 

            if ((not param_in_file) & (param_name_in_file == name)): 

                q.set('Value', str(parameters[name][scenario])) 

                param_value = q.get('Value') 

                param_in_file = 1 

        if (not param_in_file): 

            new_param = etree.SubElement(Quantities, 'Quantity', dict(Name=name)) 

            new_param.set('Value', str(parameters[name][scenario])) 

        for q in Quantities.iter('Quantity'): 

            if q.get('Name') == T1_name: 

                q.set('Value', str(org_start_time + j + 15/60/24)) 

            if q.get('Name') == T5_name: 

                q.set('Value', str(org_stop_time + (j*2))) 

 

    for output in root.iter('Output'): 

        if output.get('Name') == "File_10": 

            for var in output.iter('File'): 
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                var.set('Name', 'scen_'+str(scenario+1)+'_'+'.out.txt') 

     

    tree.write(path+'scen_'+str(scenario+1)+'_'+file_name, encoding='UTF-8', xml_declaration=True) 

 

print() 

print('Done! '+str(scenario+1) +' scenario xml files created in '+ path) 

 

 

Script 2 : 'Coupling_python_west.py' 

# This script executes each scenario xml files defined in script create_scenarios.py,  

# by running it through the WEST MPC model and stores output files per scenario as: scen_k_.out.txt 

""" 

@author: SERRAO-M & DANESHGAR-S 

""" 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[ ]: 

 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import pandas as pd 

import subprocess 

 

# In[23]: 

 

# note: don't change any double backslashes (\\) to slashes (\) when you copy your local paths 

instead of the ones here 

# so if your local path is C:\model\project in this file you should put it as C:\\model\\project 

 

# this is the path to the west installation files, you should change this to your the installation 

directory on your machine if it's not the same 

path_to_west = "C:\\Program Files (x86)\\DHI\\2016" 

 

# this is the path to the west project, the batch file should be created in the same directory as model 

files 

#path_to_project = "C:\\Users\\sdaneshg\\OneDrive - UGent\\Desktop\\WEST_model_latest 

update\\WEST_model\\WEST\\data\\projects\\Influent_model\\Influent" 

path_to_project = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 
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# the name of the log file to save and the name of the ObjEval file to run the model 

# these two will be used only in texec command  

 

# this will read all .Dynamic.ObjEval.Exp.xml files in your directory and make a list out of their names 

# useful if you have multiple of them for more scenarios 

# the assumptption is that you have already gone through the procedure for making 

.Dynamic.ObjEval.Exp.xml files 

# for scenarios based on the parameters that need to be changed 

exp_filenames = [] 

for files in os.listdir(path_to_project): 

    if files.startswith("scen") and files.endswith(".Dynamic.ObjEval.Exp.xml"): 

            exp_filenames.append(files) 

 

# print to see if it works: it's OK 

print() 

print("The following scenario xml files are used: ", exp_filenames)  

 

# here the batch file will be created 

windows_batch_file = os.path.join(path_to_project, "run_model.bat")         

 

# open the batch file and write the lines inside it 

fbat = open(windows_batch_file, "w") 

fbat.write("SET INCLUDE=%INCLUDE%;"+path_to_west+"\\WEST\\include\n") 

fbat.write("SET LIB=%LIB%;"+path_to_west+"\\WEST\\lib\\win32-msvc\n") 

fbat.write("SET 

PATH="+path_to_west+"\\bin;"+path_to_west+"\\WEST\\third_party\\bcc5.5\\Bin;%PATH%\n") 

fbat.write("SET TORNADO_CC_PLATFORM=win32-bcc5.5\n") 

fbat.write("SET TORNADO_CC_PATH="+path_to_west+"\\WEST\\third_party\\bcc5.5\n") 

fbat.write("SET TORNADO_DATA_PATH=C:\\Users\\Public\\Documents\\DHI\\WEST\n") 

fbat.write("SET TORNADO_ROOT_PATH="+path_to_west+"\\WEST\n") 

fbat.write("SET OPENMODELICAHOME="+path_to_west+"\\bin\n") 

 

# up to here, the previous lines are for your machine to know where tornado files are stored 

 

# here you can then add a command for tbuild or texec 

 

# In[3]: 

 

########################################################################## 

# read this part only if you need to use tbuild command  

# for creating model files to run on linux (like for running on a cluster) 

########################################################################## 

 

# example for tbuild command, xxx is the path to the model block library,  

# you should keep External\External at the end of this path, just change the previous part  
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# for example it should be something like this: C:\example\blocks\MSL\External\External 

# _ProjectName_ is only the name of the project and not the complete path, the complete 

# path is not required since you are already in the directory of the project 

 

# fbat.write("tbuild -S C:\\Users\\sdaneshg\\OneDrive - UGent\\Desktop\\WEST_model_latest 

update\\WEST_model\\WEST\\data\\blocks\\WESTforKALLISTO - InfluentModel\\External\\External 

-B ”” _Influent_ > tbuild.log\n") 

 

# In[24]: 

 

########################################################################## 

# this part is related to using texec for running simulations 

########################################################################## 

 

# example for texec command 

 

# EXPLANATION if you need to run tbuild first  

# when you first run this batch script, keep this line as a comment 

# you need to run the tbuild first 

# after you run this with tbuild command successfully then open this file again 

# and comment the fbat.write("tbuild...") line and uncomment the line below 

# then run the script again to create batch file fo simulations 

 

# log_filename is the name of the log file (with .log extension) that you choose to save 

# exp_filename is the .Dynamic.ObjEval.Exp.xml file you have in your project directory 

# these two should be only names and not full path, you don't need the full path here 

# output_name_orig is the name of the output file you choose to save in WEST environment 

# this should work even if you have multiple ObjEval files for example: 

scen_1.Dynamic.ObjEval.Exp.xml, scen_2.Dynamic.ObjEval.Exp.xml , ... 

# this will create a texec command for each scenario to run and then rename the output file 

accordingly  

# so they will not be overwritten 

# this is not probably the most efficient way to do this on windwos but it should work 

 

output_name_orig = "Methanol_Dosing_Control.txt" 

 

for f in exp_filenames: 

    log_filename = f.split('.')[0] + ".log" 

    new_output_name = f.split('.')[0] + ".out.txt" 

    fbat.write("texec -l \"" + log_filename  + "\" \"" + f+"\"\n") 

  #  fbat.write("ren \"" + output_name_orig + "\" \"" + new_output_name +"\"\n") 

 

# write exit and close the file 

fbat.write("EXIT") 

fbat.close() 
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# # Outputfile importeren 

 

# In[156]: 

 

#output_name=path_to_project + "\\" + new_output_name 

 

#output_data=pd.read_csv(output_name, sep="\t",header=[0]) 

#output_data=output_data.drop(0) 

#output_data=output_data.set_index('#.t') 

#display(output_data) 

 

# In[157]: 

 

#output_data.plot() 

#print(output_data.dtypes) 

 

# In[164]: 

 

#output_data['.ASU_2.X_TSS']=output_data['.ASU_2.X_TSS'].astype(float) 

#output_data['.ASU_4.C(S_O)']=output_data['.ASU_4.C(S_O)'].astype(float) 

#output_data['.Qair_Basin_4']=output_data['.Qair_Basin_4'].astype(float) 

#output_data['.SST_1.X_Out']=output_data['.SST_1.X_Out'].astype(float) 

#output_data['.SST_1.X_Under']=output_data['.SST_1.X_Under'].astype(float) 

#print(output_data.dtypes) 

#output_data.iplot() 

 

# In[168]: 

 

#from statsmodels.tsa.seasonal import seasonal_decompose 

#results=seasonal_decompose(output_data['.ASU_2.X_TSS']) 

#results.plot() 

 

os.chdir(path_to_project) 

p = subprocess.Popen("run_model.bat") 

#,shell=True, stdout=subprocess.PIPE, strerr=subprocess.PIPE 

p.communicate() 

 

print('Done! Scenarios executed and output files stored.') 

 

 

Script 2b: 'run_NN_model_forloop_v2.py 

 

# -*- coding: utf-8 -*- 

""" 
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Created on Tue May 16 19:00:43 2023 

 

@author: SERRAO-M 

""" 

import os 

import pandas as pd 

import pickle 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

# from tensorflow.keras.models import Sequential 

# from tensorflow.keras.layers import Dense 

# from tensorflow.keras import regularizers 

# import matplotlib.pyplot as plt 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 

from tqdm import tqdm 

 

# path to the project folder where you have ObjEval.Exp.xml files 

# make sure to end you path with \\ like "C:\\Program Files\\project\\" 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 

 

# change directory 

os.chdir(path) 

 

  

with open('counter.txt', "r") as f2:  # reading the counter 

    j = int(f2.read()) 

    k = j*15   

     

# Count the number of files that match the pattern 

count = sum(1 for file in os.listdir(path) if file.startswith('scen_') and file.endswith('_.out.txt')) 

 

  

# start the for loop 

# for file in os.listdir('.'): 

for i, file in enumerate(tqdm(os.listdir(path))): 

    if file.startswith('scen_') and file.endswith('_.out.txt'): # example: scen_1_.out.txt 

        file_num = file.split('_')[1]  # extract the file number from the file name 

        dfnew = pd.read_csv('new_data1min.txt', sep='\t')  # , skiprows=[0]) # read the file with features 

data, but we don't need the row 1 with headers 

        dfnew = dfnew[k:k+120] # read rows 0 to 120 (= 2hrs) (+ k each iteration; and k = j *15) # dfnew 

= dfnew[j:j+120] # read rows 0 to 120 (= 2hrs) (+ j each iteration) 

        dfnew.reset_index(inplace=True) 
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        print() 

        print(f"Reading file {file} with file number {file_num}") 

 

        # Load the trained NN model 

        with open('model.pickle', 'rb') as f: 

            model = pickle.load(f) 

 

        # Define the predictor and response variable names 

        predictor_names = ['WEEK', 'Temperature', 'Q_SW_BATC', 'Q_REC_BATC', 'NOx_IN_BATC', 

'COD_IN_BATC', 'NOx_REC', 'TSS_SW', 'MeOH_INJ', 'NO3_SP', 'Weather', 'NO3_OUT_MOD'] 

        response_variable = 'ERROR_NO3' 

 

        # In dfnew, replace the column 'NO3_OUT_MOD' with the NO3 predicted data from the West 

reduced model 

        # Load the predicted data from the file scenario file: 

        filename_pred = file 

        dfwest_pred = pd.read_csv(filename_pred, sep='\t', skiprows=[1])  # because we don't need the 

row 2 with units 

         

        # Get the column '.BAF_7.NO3_OUT' and in the dfnew overwrite the NO3_OUT_MOD column 

with the values from '.BAF_7.NO3_OUT' 

        dfnew['NO3_OUT_MOD'] = dfwest_pred['.BAF_7.NO3_OUT'] 

        # add a new row with index 0 and a value of g/m3 in the 'NO3_OUT_MOD' column 

        #dfnew.loc[0, 'NO3_OUT_MOD'] = 'g/m3' 

        # reset the index to ensure it starts at 0 

        #dfnew = dfnew.reset_index(drop=True) 

        # create instances of the StandardScaler and MinMaxScaler classes 

        scaler_zscore = StandardScaler() 

        minmax_scaler = MinMaxScaler(feature_range=(0, 1)) 

         

        # apply z-score to the DataFrame 

        dfnew_z = pd.DataFrame(scaler_zscore.fit_transform(dfnew), columns=dfnew.columns, 

index=dfnew.index) 

         

        # apply min-max scaling to the DataFrame 

        dfnew_scaled = pd.DataFrame(minmax_scaler.fit_transform(dfnew_z), columns=dfnew.columns, 

index=dfnew.index) 

         

        #print(dfnew_scaled) 

         

        # make prdictions using the pretrained ANN model 

        y_new = model.predict(dfnew_scaled[predictor_names]).flatten() 

        print(y_new) 

                 

        df_pred = pd.DataFrame.copy(dfnew_scaled) # make a copy of the response 
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        df_pred['ERROR_NO3'] = y_new  # here, we're adding the response variable as a 13th column to 

a copy (df_pred) of the existing dataframe dfnew_scaled 

         

        # Apply this to the y_new prediction: 

        # Reverse the scaling to obtain the denormalized data 

        dfpred_denorm_minmax = np.copy(df_pred) 

        dfpred_denorm_minmax = minmax_scaler.inverse_transform(dfpred_denorm_minmax) 

        #dfpred_denorm_minmax = 

minmax_scaler.inverse_transform(dfpred_denorm_minmax.reshape(-1, 1)) 

        # Reverse the normalization to obtain the original values 

        dfpred_denorm_zscore = np.copy(dfpred_denorm_minmax) 

        # a = dfpred_denorm_zscore 

        # a_reshaped = a.reshape(624,) 

        dfpred_denorm_zscore = scaler_zscore.inverse_transform(dfpred_denorm_zscore) 

         

        df_pred_final = pd.DataFrame(dfpred_denorm_zscore, columns=dfnew.columns, 

index=dfnew.index) 

         

        # Print the original, normalized, and denormalized data 

        # print("Original data:") 

        # print(dfnew) 

        # print("\nNormalized data (z-score):") 

        # print(dfnew_z) 

        # print("\nNormalized data (z-score and min-max scaling):") 

        # print(dfnew_scaled) 

        # print("\nDenormalized data (min-max scaling only):") 

        # print(dfpred_denorm_minmax) 

        # print("\nDeNormalized data (min-max scaling and z-score):") 

        # print(dfpred_denorm_zscore) 

         

         

        # NO3_pred_HM = dfnew['NO3_OUT_MOD'] + dfnew['PREDICTED_ERROR_NO3'] 

        # dfnew['NO3_pred_HM'] = NO3_pred_HM 

         

        NO3_pred_HM = dfwest_pred['.BAF_7.NO3_OUT'][:-1] + df_pred_final['ERROR_NO3'] 

        # NO3_pred_HMb = NO3_pred_HM[k:k+120]    

         

        #====================================================== 

        # To save the NO3_pred_HM in the scenario output file: 

        #=====================================================     

         

        # Read the data from the scenario output file 

        data = pd.read_csv(file, delimiter='\t') 

         

        # Replace the values in the column 
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        #data['.BAF_7.NO3_OUT'].iloc[2:] = NO3_pred_HM 

        data['.BAF_7.NO3_OUT'].iloc[0] ='g/m3' 

        length = len(NO3_pred_HM) 

        data['.BAF_7.NO3_OUT'].iloc[len(data['.BAF_7.NO3_OUT'])-length:] = NO3_pred_HM  # copy 

from row 2, so that t = 0 is not predicted  data['column'].iloc[1:] = NO3_pred_HM[:len(data)-1] 

         

        # Write the updated data back to the file 

        data.to_csv(file, sep='\t', index=False) 

         

        # Update the progress bar 

        tqdm.write(f"Processed {i + 1}/{count} files.") 

         

        print() 

        print('Done! Scenario output file', filename_pred,' updated with NO3_pred_HM') 

print() 

 

 

print('We are done with the for loop and have updated', count, 'scen_k_out.txt files. Have a nice 

day!') 

 

Script 3: 'analyze_error_SP.py 

 

# This script calculates the error SSE and relative ME between SETPOINT - Predicted for each scenario 

output file stored in the previous script Couping_python_west.py and  

# then indicates which scenario has the lowest SSE and the corresponding U_optimal_1 value of 

methanol dosing for first time step (S_F in mg/L) 

 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Mar 10 15:13:22 2023 

 

@author: SERRAO-M 

""" 

 

import os 

import math 

import numpy as np 

import pandas as pd 

import shutil 

 

# Read observed variable: 

filepath = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

# filepath = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 
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# filepath = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# filepath = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 

 

filename = "NO3_setpoint.txt" 

 

with open('counter.txt', "r") as f2:  # reading the counter 

    j = int(f2.read()) 

 

# Read the values from the "NO3_setpoint.txt file into a DataFrame 

df_setpoint = pd.read_csv('NO3_setpoint.txt', header=None, names=['NO3_setpoint']) 

 

# Display the DataFrame 

# print(df_setpoint) 

 

# Convert the values to a list of floats 

NO3_sp = df_setpoint['NO3_setpoint'].values.tolist() 

 

# Display the list of floats 

# print(NO3_sp) 

 

# with open(os.path.join(filepath, filename), "r") as f: 

#     # Find the column number for the header we're looking for 

#     headers = f.readline().strip().split("\t") 

#     header_index = headers.index(header_to_find) 

     

#     # Read in the data from the file 

#     data = [] 

#     for line in f: 

#         data.append(line.strip().split("\t")) 

         

#     # Extract the data from the specified column 

#     NO3_obs = [float(row[header_index].replace(",", ".")) for row in data[1:]] 

     

     

# create a dictionary to store the results for each scenario that was run in previous script 

stats_scores = {} 

 

# loop through all the files in the working directory and select scenario output files 

for filename in os.listdir('.'): 

    if filename.startswith('scen_') and filename.endswith('.out.txt'): 

        # open the file 

            with open(filename, 'r') as f: 

                # read the lines of the file 

                lines = f.readlines() 

                # find the index of the '.BAF_7.NO3_OUT' column header in the first row 
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                header_index = lines[0].split().index('.BAF_7.NO3_OUT') 

                 

                # extract the NO3_OUT data and the observed NO3_OUT data starting from row  

                NO3_pred = [] 

                for line in lines[2:]: 

                    row = line.split() 

                    NO3_pred.append(float(row[header_index])) 

                                     

                    # Calculate statistical scores between the two variables: 

                       

                    # find the minimum length of the two input lists 

                    min_len = min(len(NO3_sp), len(NO3_pred)) 

                       

                    # truncate the lists to the minimum length 

                    NO3_sp_trunc = NO3_sp[1:min_len] 

                    NO3_Pred_trunc = NO3_pred[1:min_len] 

                       

                    # calculate the mean of NO3_sp and NO3_Pred 

                    mean_NO3_sp = np.mean(NO3_sp_trunc) 

                    mean_NO3_Pred = np.mean(NO3_Pred_trunc) 

                       

                    # calculate the mean error between NO3_sp and NO3_Pred 

                    mean_error = mean_NO3_sp - mean_NO3_Pred 

                       

                    # calculate the mean error / mean of NO3_sp 

                    relative_error = mean_error / mean_NO3_sp 

                       

                    # calculate the sum of squared error between NO3_sp and NO3_Pred 

                    squared_error = np.sum((np.array(NO3_sp_trunc) - np.array(NO3_Pred_trunc)) ** 2) 

                     

                    # Calculate RMSE 

                    root_mean_square_error = math.sqrt(squared_error) 

                    # print("RMSE: " + str(root_mean_square_error)) 

                     

                    # store the results in the dictionary 

                    stats_scores[filename] = { 

                    'mean_NO3_pred': mean_NO3_Pred, 

                    'mean_NO3_sp': mean_NO3_sp, 

                    'ME': mean_error, 

                    'RE': relative_error, 

                    'SSE': squared_error, 

                    'RMSE': root_mean_square_error, 

                    } 

                     # print some statistics for the extracted data 
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                    # print(f"{filename}: mean_NO3_pred={mean_NO3_pred:.2f}, 

mean_NO3_obs={mean_NO3_obs:.2f}, ME={ME:.2f}, RE={RE:.2f}, SSE={SSE:.2f}") 

 

# print the results dictionary 

#print(stats_scores) 

#print(stats_scores, round(stats_scores, 5))  # to round the numbers to 5 decimals ; but this doesn't 

work with dictionary 

#my_dict = {'a': 1.2345, 'b': 2.3456, 'c': 3.4567} 

#rounded_dict = {k: round(v, 2) for k, v in stats_scores.items()} 

#print(rounded_dict) 

 

# print("Mean of NO3_Obs:", round(mean_NO3_Obs, 5)) 

# print("Mean of NO3_Pred:", round(mean_NO3_Pred, 5)) 

# print("Mean error between NO3_Obs and NO3_Pred:", round(mean_error, 5)) 

 # print("Relative error between NO3_Obs and NO3_Pred:", round(relative_error, 5)) 

 # print("Sum of squared error between NO3_Obs and NO3_Pred:", round(squared_error, 5)) 

 

# find the key with the lowest SSE score 

lowest_key = None 

lowest_score = float('inf') 

 

for key, value in stats_scores.items(): 

    if value['SSE'] < lowest_score: 

        lowest_key = key 

        lowest_score = value['SSE'] 

 

# extract k from the lowest_key 

k = int(lowest_key.split('_')[1]) 

# Save the value of k to a text file 

with open("k.txt", 'w') as f: 

    f.write(str(k)) 

 

print() 

print(f"Scenario with the lowest SSE score: {lowest_key}, SSE: {lowest_score:.2f}") 

print(f"k value (= scenario number) for lowest_key: {k}") 

 

# Define the filename based on the value of lowest_key 

filename_opt = f"{lowest_key}" 

 

# Load the file into a pandas DataFrame 

data = pd.read_csv(filename_opt, delimiter="\t") 

 

# To know the Optimal Value, extract the value in row 2 of the column named '.MeOH_1.Q_Dose'  

# opt_value_1 = data.loc[1, ".MeOH_1.Outflow(S_S)"] 
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opt_value_1 = data.loc[1, ".MeOH_1.Q_Dose"] # retrieves the value at row 1 and column 

".MeOH_1.Q_Dose".  

 

with open("opt_value_1.txt", 'w') as my_file: 

    my_file.write(opt_value_1) # add the "k" variable that corresponds to the opt_value_1 ; I didn't do 

this here; I have k stored as a variable instead 

 

# Print the extracted value 

# print("Optimal value U_opt_1 =" , opt_value_1, "(S_F in [mg/L])\n") 

print("Optimal value U_opt_1 =" , opt_value_1, "Q_Dose [m3/day])\n") 

print('Done! Statistical errors calculated and optimal dosing value U_opt_1 identified.') 

 

# Saving the output file of the optimal scenario under new filename that includes ITER + {j} 

new_filename = f"Best_{k}_ITER_{j}_.out.txt" 

 

# Saving the file under the new name 

shutil.copyfile(filename_opt, new_filename) 

 

print(f"File '{filename_opt}' saved as '{new_filename}'.") 

print() 

 

# now prepare the Q_Dose_Reality_Model 

 

def read_jth_row(file_path, j): 

    with open(file_path, 'r') as file: 

        lines = file.readlines() 

        if j >= 0 and j < len(lines): 

            row = lines[j].strip() 

            return row 

        else: 

            return None 

 

# Read the value of j from counter.txt 

with open('counter.txt', 'r') as counter_file: 

    j = int(counter_file.read()) 

 

# Read the j-th row from the file containing numbers 

numbers_file_path = 'Active_Filters_PreDN_0106_09062020.txt' 

Act_Filters = read_jth_row(numbers_file_path, j) 

 

# Output the result 

print(f"The {j}-th row of Active Filters is: {Act_Filters}") 

 

# now, multiply opt_value_1 with Act_Filters and save it under , 
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# Read the value of opt_value_1 

 

# Multiply jth_row with opt_value_1 

if Act_Filters is not None: 

    result = float(Act_Filters) * float(opt_value_1) 

else: 

    result = None 

 

# Save the result in Q_Dose_Reality.txt 

if result is not None: 

    with open('Q_Dose_Reality.txt', 'w') as output_file: 

        output_file.write(str(result)) 

        print("Result saved in Q_Dose_Reality.txt") 

else: 

    print(f"Invalid row number: {j}") 

 

Script 4: reinitialize_West_Reduced.py 

 

# This script finds the scen_k.xml input file that corresponds to the best fit among all the scenario xml 

files defined in script create_scenarios.py,  

# then runs the WEST reduced model with it and stores output files per scenario as: scen_k_.out.txt 

 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Apr  4 18:28:40 2023 

 

@author: SERRAO-M 

""" 

 

# placeholder for script 2B.py 

 

# take variable filename from script analyze_error_3.py 

# run it through WEST_Reduced model so that it has the correct scenario output as end_values for 

the next loop 

 

import glob 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import pandas as pd 

import subprocess 

 

# path to the project folder where you have ObjEval.Exp.xml files 

# make sure to end you path with \\ like "C:\\Program Files\\project\\" 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 
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# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 

 

# change directory 

os.chdir(path) 

 

# In[23]: 

 

# note: don't change any double backslashes (\\) to slashes (\) when you copy your local paths 

instead of the ones here 

# so if your local path is C:\model\project in this file you should put it as C:\\model\\project 

 

# this is the path to the west installation files, you should change this to your the installation 

directory on your machine if it's not the same 

path_to_west = "C:\\Program Files (x86)\\DHI\\2016" 

 

# this is the path to the west project, the batch file should be created in the same directory as model 

files 

#path_to_project = "C:\\Users\\sdaneshg\\OneDrive - UGent\\Desktop\\WEST_model_latest 

update\\WEST_model\\WEST\\data\\projects\\Influent_model\\Influent" 

path_to_project = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_A\\" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_B\\" 

# path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\MPC_C\\" 

 

# the name of the log file to save and the name of the ObjEval file to run the model 

# these two will be used only in texec command  

 

# this will read all .Dynamic.ObjEval.Exp.xml files in your directory and make a list out of their names 

# useful if you have multiple of them for more scenarios 

# the assumptption is that you have already gone through the procedure for making 

.Dynamic.ObjEval.Exp.xml files 

# for scenarios based on the parameters that need to be changed 

 

# from analyze_error_3 import filename_opt  # watch out! this import function will rerun the script! 

 

# read txt file opt_value_1.txt 

# take k and store in variable k 

 

# Load the value of k from the k.txt file 

with open("k.txt", 'r') as f: 

    k = int(f.read()) 
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# Find the file in the current directory that matches the pattern 

"scen_{}_BAFNIT16.Dynamic.ObjEval.Exp.xml" 

xml_files = glob.glob("scen_{}_BAFNIT16.Dynamic.ObjEval.Exp.xml".format(k)) 

 

# If no files were found, print an error message and exit 

if len(xml_files) == 0: 

    print("Error: No XML files found for k={}".format(k)) 

    exit() 

 

# Use the first file in the list 

xml_filename = xml_files[0] 

filename_opt = xml_filename 

 

#filename_opt = name of xml ;  eg: scen_1_BAFNIT16.Dynamic.ObjEval.Exp.xml 

# filename_opt = "scen_1_BAFNIT16.Dynamic.ObjEval.Exp.xml" 

# read the xml file from directory 

 

# Use the filename variable in script analyze_error_3.py 

# with open(filename_opt, 'r') as a: 

#     Opt_Scenario_Filename = a.read() 

 

# Process the data as needed 

# print(Opt_Scenario_Filename) # attenion: prints complete file! , head(5) does not work! 

 

# print to see if it works: it's OK 

print() 

print("The following scenario xml file is used: ", filename_opt)  

print("The following scenario xml file is used: ", xml_filename)  

 

# here the batch file will be created 

windows_batch_file = os.path.join(path_to_project, "run_model_opt.bat")         

 

# open the batch file and write the lines inside it 

fbat = open(windows_batch_file, "w") 

fbat.write("SET INCLUDE=%INCLUDE%;"+path_to_west+"\\WEST\\include\n") 

fbat.write("SET LIB=%LIB%;"+path_to_west+"\\WEST\\lib\\win32-msvc\n") 

fbat.write("SET 

PATH="+path_to_west+"\\bin;"+path_to_west+"\\WEST\\third_party\\bcc5.5\\Bin;%PATH%\n") 

fbat.write("SET TORNADO_CC_PLATFORM=win32-bcc5.5\n") 

fbat.write("SET TORNADO_CC_PATH="+path_to_west+"\\WEST\\third_party\\bcc5.5\n") 

fbat.write("SET TORNADO_DATA_PATH=C:\\Users\\Public\\Documents\\DHI\\WEST\n") 

fbat.write("SET TORNADO_ROOT_PATH="+path_to_west+"\\WEST\n") 

fbat.write("SET OPENMODELICAHOME="+path_to_west+"\\bin\n") 

 

# up to here, the previous lines are for your machine to know where tornado files are stored 
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# here you can then add a command for tbuild or texec 

 

# do we need a texec file? YES we do, because without it, the bat file at the end of the script wil not 

know that you want to execute a model run 

# for f in Opt_Scenario_Filename: # for loop that iterates through each item in the 

Opt_Scenario_Filename list, and assigns it to the variable f on each iteration. 

#     log_filename = f.split('.')[0] + ".log" # splits the filename f on the '.' character, and takes the first 

element of the resulting list (which is the part of the filename before the '.'), and adds the string 

".log" to the end. This creates a new string that represents the name of a log file based on the 

original filename. 

#     new_output_name = f.split('.')[0] + ".out.txt" # creates a new string that represents the name of 

an output file. 

#     fbat.write("texec -l \"" + log_filename  +  " -cp \" \"" + 'BAFNIT16.Dynamic.ObjEval.Exp.xml' + 

f+"\"\n") # writes a string to a file called fbat. The -l option specifies that texec should write its output 

to the log file, and the -cp option specifies that the output should be copied to the output file. It 

basically saves the end values of the current run in a new file named 'End_Values.' + overwrites the 

xml file with the end_values as initial values 

##  fbat.write("texec -l \"" + log_filename  +  "-cp \" \"" + 'LINEBiofriltration.Dynamic.ObjEval.Exp.xml' 

+ f+"\"\n") # saves the end values of the current run in a new file named 'End_Values.' + overwrites 

the xml file with the end_values as initial values 

 

with 

open('C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\cou

nter.txt', "r") as f2:  # reading the counter 

    j = int(f2.read()) 

 

log_filename = filename_opt.split('.')[0] + ".log" # splits the filename f on the '.' character, and takes 

the first element of the resulting list (which is the part of the filename before the '.'), and adds the 

string ".log" to the end. This creates a new string that represents the name of a log file based on the 

original filename. 

new_output_name = filename_opt.split('.')[0] + ".out.txt" # creates a new string that represents the 

name of an output file. 

#new_output_name = filename_opt.split('.')[0] + 'Iter_' + str(j) + ".out.txt" # creates a new string that 

represents the name of an output file. 

fbat.write("texec -l \"" + log_filename  +  " -cp \" \"" + 'BAFNIT16.Dynamic.ObjEval.Exp.xml' + 

filename_opt+"\"\n") # writes a string to a file called fbat. The -l option specifies that texec should 

write its output to the log file, and the -cp option specifies that the output should be copied to the 

output file. It basically saves the end values of the current run in a new file named 'End_Values.' + 

overwrites the xml file with the end_values as initial values 

# writes a string to a file called fbat. The -l option specifies that texec should write its output to the 

log file, and the -cp option specifies that the output should be copied to the output file. It basically 

saves the end values of the current run in a new file named 'End_Values.' + overwrites the xml file 

with the end_values as initial values 
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# write exit and close the file 

fbat.write("EXIT") 

fbat.close() 

 

##===== explaination by Saba:============================================= 

# the following commands at the end are for running the bat file.  

# It first checks if there is a texec command in the bat file that states to run the model.  

# If there's no texec command, the bat file will be run but there is no command inside it to tell the 

tornado to run the model; so the model does NOT run. 

##======================================================================== 

os.chdir(path_to_project) 

p = subprocess.Popen("run_model_opt.bat") 

#,shell=True, stdout=subprocess.PIPE, strerr=subprocess.PIPE 

p.communicate() 

 

print('Done!' , filename_opt, ' executed and output file stored.') 

 

 

Script 5: 'Prepare_BIG_Model.py 

 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Apr 18 18:51:40 2023 

 

@author: SERRAO-M 

""" 

 

# This script prepares the input files for the large WEST model with Start Time and Stop Time and the 

Opt_value_1 (Q_Dose [m3/d]) as indicated below 

# and reads the opt_value_1 as the Q_Dose into the methanol dosing submodel MeOH_1 in the Big 

model 

 

import os 

import pandas as pd  

from lxml import etree # the lxml is not installed on your system by default, you can install it by 

running "pip install lxml" in a command line terminal 

import xml.etree.ElementTree as ET 

 

# path to the project folder where you have ObjEval.Exp.xml files 

# make sure to end you path with \\ like "C:\\Program Files\\project\\" 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M\\" 

path_to_reducedModel = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

# change directory 

os.chdir(path) 
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# Set the name of the file 

file_name = 'LINEBiofriltration.Dynamic.ObjEval.Exp.xml' #spelling error in "filtration" is correct 

 

# Get optimal value 

# with 

open("C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\op

t_value_1.txt", 'r') as my_file: 

  # opt_value_1 = my_file.read() 

with 

open("C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\Q_

Dose_Reality.txt", 'r') as my_file: 

        opt_value_Reality = my_file.read() 

    

original_xml = os.path.join(path, file_name) 

tree = etree.parse(original_xml) 

root = tree.getroot() 

Quantities = root[0][1][0][0][1][0][0] 

 

# opt_value_Reality = str(240) = to test 

opt_value_Reality = str(opt_value_Reality) # set variable into integer to allow for absolute value to 

be taken 

# opt_value_1 = abs(opt_value_1) * 10 # to convert from S_S in [mg/L] to S_S in [g/d] we multiply 

with 10 m3/day of H2O flow rate  

# not needed if opt_value = Q (m3/d) 

 

print() 

 

org_start_time = 0 

org_stop_time = 15/60/24 

 

with open(path_to_reducedModel + 'counter.txt', "r") as f2: 

    j = int(f2.read()) 

    j = j*15/60/24 

 

time_settings = root[0][1][0][0][1][3] 

 

for q in time_settings.iter('Prop'): 

    if q.get('Name') == 'StartTime': 

        q.set('Value', str(org_start_time + j))  

        #print('Start Time is:', new_start_time,'(days)') 

        # Convert to float and format with 2 decimal places 

        formatted_start_time = '{:.6f}'.format(float(org_start_time+j)) 

        print(f'Start Time is: {formatted_start_time} (days)') 

         

    elif q.get('Name') == 'StopTime': 
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        q.set('Value', str(org_stop_time + j)) 

        # print('Stop Time is:', new_stop_time,'(days)') 

        # Convert to float and format with 2 decimal places 

        formatted_stop_time = '{:.6f}'.format(float(org_stop_time+j)) 

        print(f'Stop Time is: {formatted_stop_time} (days)') 

 

# add the Opt_value_1 (= Q_Dose [m3/d]) into the line of the LINE.xml file  

# that corresponds to the new MeOH_1 dosing submodel that is inserted in the BIG WEST model 

for q in Quantities.iter('Quantity'): 

    if q.get('Name') == '.MeOH_1.Q_Dose': 

        q.set('Value', opt_value_Reality) 

 

# every time you change something in the xml file you should use the tree.write to save the changes 

into the file otherwise it remains only within the python env. 

tree.write(path + file_name) 

print("Path:", path) 

print("The following xml file has been updated:", file_name) 

 

 

Script 6: 'Coupling_python_west_BIG_model_SD.py 

 

# This script executes the BIG_WEST model according to the Input variables (Q_Dose, StartTime, 

StopTime) defined in the LINE...xml file updated in previous script Input_BIG_Model.py 

# It runs the LINE...xml file through the BIG WEST model and saves all the end-values in a new file 

named "End_Values.Dynamic.ObjEval.Exp.xml" 

# # saves the end values of the current run in a new file named 'End_Values.' + overwrites the xml file 

with the end_values as initial values 

 

# -*- coding: utf-8 -*- 

""" 

Created on Thu Mar  9 15:33:47 2023 

 

@author: SERRAO-M 

""" 

 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[ ]: 

 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import pandas as pd 

import subprocess 
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from lxml import etree 

import shutil 

 

# In[23]: 

# note: don't change any double backslashes (\\) to slashes (\) when you copy your local paths 

instead of the ones here 

# so if your local path is C:\model\project in this file you should put it as C:\\model\\project 

 

# this is the path to the west installation files, you should change this to your the installation 

directory on your machine if it's not the same 

path_to_west = "C:\\Program Files (x86)\\DHI\\2016" 

 

# this is the path to the west project, the batch file should be created in the same directory as model 

files 

#path_to_project = "C:\\Users\\sdaneshg\\OneDrive - UGent\\Desktop\\WEST_model_latest 

update\\WEST_model\\WEST\\data\\projects\\Influent_model\\Influent" 

path_to_project = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M" # 

changed this to directory of Big model 

# change directory 

os.chdir(path_to_project) 

# the name of the log file to save and the name of the ObjEval file to run the model 

# these two will be used only in texec command  

 

# this will read all .Dynamic.ObjEval.Exp.xml files in your directory and make a list out of their names 

# useful if you have multiple of them for more scenarios 

# the assumptption is that you have already gone through the procedure for making 

.Dynamic.ObjEval.Exp.xml files 

# for scenarios based on the parameters that need to be changed 

exp_filenames = [] 

for files in os.listdir(path_to_project): 

    if files.endswith(".Dynamic.ObjEval.Exp.xml"): 

            exp_filenames.append(files) 

 

# print to see if it works: it's OK 

print(exp_filenames)  

 

original_xml = os.path.join(path_to_project, exp_filenames[0]) 

tree = etree.parse(original_xml) 

root = tree.getroot() 

time_settings = root[0][1][0][0][1][3] 

 

for q in time_settings.iter('Prop'): 

    if q.get('Name') == 'StartTime': 

        print('start_time: ' + q.get('Value')) 

        start_time = float(q.get('Value'))*24 
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    elif q.get('Name') == 'StopTime': 

        print('stop_time: ' + q.get('Value')) 

        stop_time = float(q.get('Value'))*24 

 

# here the batch file will be created 

windows_batch_file = os.path.join(path_to_project, "run_model.bat")         

 

# open the batch file and write the lines inside it 

fbat = open(windows_batch_file, "w") 

fbat.write("SET INCLUDE=%INCLUDE%;"+path_to_west+"\\WEST\\include\n") 

fbat.write("SET LIB=%LIB%;"+path_to_west+"\\WEST\\lib\\win32-msvc\n") 

fbat.write("SET 

PATH="+path_to_west+"\\bin;"+path_to_west+"\\WEST\\third_party\\bcc5.5\\Bin;%PATH%\n") 

fbat.write("SET TORNADO_CC_PLATFORM=win32-bcc5.5\n") 

fbat.write("SET TORNADO_CC_PATH="+path_to_west+"\\WEST\\third_party\\bcc5.5\n") 

fbat.write("SET TORNADO_DATA_PATH=C:\\Users\\Public\\Documents\\DHI\\WEST\n") 

fbat.write("SET TORNADO_ROOT_PATH="+path_to_west+"\\WEST\n") 

fbat.write("SET OPENMODELICAHOME="+path_to_west+"\\bin\n") 

 

# up to here, the previous lines are for your machine to know where tornado files are stored 

 

# here you can then add a command for tbuild or texec 

 

# In[3]: 

 

########################################################################## 

# read this part only if you need to use tbuild command  

# for creating model files to run on linux (like for running on a cluster) 

########################################################################## 

 

# example for tbuild command, xxx is the path to the model block library,  

# you should keep External\External at the end of this path, just change the previous part  

# for example it should be something like this: C:\example\blocks\MSL\External\External 

# _ProjectName_ is only the name of the project and not the complete path, the complete 

# path is not required since you are already in the directory of the project 

 

# fbat.write("tbuild -S C:\\Users\\sdaneshg\\OneDrive - UGent\\Desktop\\WEST_model_latest 

update\\WEST_model\\WEST\\data\\blocks\\WESTforKALLISTO - InfluentModel\\External\\External 

-B ”” _Influent_ > tbuild.log\n") 

 

# In[24]: 

 

########################################################################## 

# this part is related to using texec for running simulations 

########################################################################## 
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# example for texec command 

 

# EXPLANATION if you need to run tbuild first  

# when you first run this batch script, keep this line as a comment 

# you need to run the tbuild first 

# after you run this with tbuild command successfully then open this file again 

# and comment the fbat.write("tbuild...") line and uncomment the line below 

# then run the script again to create batch file fo simulations 

 

# log_filename is the name of the log file (with .log extension) that you choose to save 

# exp_filename is the .Dynamic.ObjEval.Exp.xml file you have in your project directory 

# these two should be only names and not full path, you don't need the full path here 

# output_name_orig is the name of the output file you choose to save in WEST environment 

# this should work even if you have multiple ObjEval files for example: 

scen_1.Dynamic.ObjEval.Exp.xml, scen_2.Dynamic.ObjEval.Exp.xml , ... 

# this will create a texec command for each scenario to run and then rename the output file 

accordingly  

# so they will not be overwritten 

# this is not probably the most efficient way to do this on windwos but it should work 

 

#output_name_orig = "PreDenit_Out.txt" # this is a test file, it really exists, but once we know from 

Enrico (DHI) how to read the end values and use them as initail values, we will have to change the 

filename accordingly 

# eventhough we don't use this output any longer for setting the initial values in the reduced model; 

keep this as it will store the State variables in concentrations, which we can use for plotting purposes  

 

with 

open('C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\cou

nter.txt', "r") as f2:  # reading the counter 

    j = int(f2.read()) 

 

output_name_orig = "PRE_7_Mass_State_Var_out.txt" # this output file stores all Mass State 

Variables from the Bulk Liquid in PRE_7 

for f in exp_filenames: 

    log_filename = f.split('.')[0] + ".log" 

    new_output_name = str(start_time) + '_' + str(stop_time) + output_name_orig  

    fbat.write("texec -l \"" + log_filename  + "\"" + " -cp " + 

"\"LINEBiofriltration.Dynamic.ObjEval.Exp.xml\"" + " \"" + f + "\"\n") # saves the end values of the 

current run in a new file named 'End_Values.' + overwrites the xml file with the end_values as initial 

values 

    fbat.write("ren \"" + output_name_orig + "\" \"" + new_output_name +"\"\n") 

# write exit and close the file 

fbat.write("EXIT") 

fbat.close() 



260 
 

 

os.chdir(path_to_project) 

p = subprocess.Popen("run_model.bat") 

#,shell=True, stdout=subprocess.PIPE, strerr=subprocess.PIPE 

p.communicate() 

 

print('Done!') 

print('Done! The WEST model has run a Dynamic Simulation from', start_time/24 , '(days) to ' , 

stop_time/24 ,'(days) and the output files have been stored in the directory.') 

print('The LINE...xml file has been reinitialized (the end_values of M(S_S) etc. have been stored as 

initial values for next iteration).') 

print() 

with 

open("C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\Q_

Dose_Reality.txt", "r") as f3: 

    q = float(f3.read()) 

    print("The optimal Q_Dose in Reality Model =  " + str(q), " (m3/d)")     

 

# # Outputfile importeren 

 

# In[156]: 

 

#search for the output file named 'PreDenit_Out.txt' 

filename = 'PreDenit_Out.txt' 

 

# and create a modified filename 

new_filename = f"PreDenit_Out_ITER_{j}_.txt" 

 

# Saving the file under the new name 

shutil.copyfile(filename, new_filename) 

 

print(f"File '{filename}' saved as '{new_filename}'.") 

 

#output_name=path_to_project + "\\" + new_output_name 

 

#output_data=pd.read_csv(output_name, sep="\t",header=[0]) 

#output_data=output_data.drop(0) 

#output_data=output_data.set_index('#.t') 

#display(output_data) 

 

# In[157]: 

 

#output_data.plot() 

#print(output_data.dtypes) 
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# In[164]: 

 

#output_data['.ASU_2.X_TSS']=output_data['.ASU_2.X_TSS'].astype(float) 

#output_data['.ASU_4.C(S_O)']=output_data['.ASU_4.C(S_O)'].astype(float) 

#output_data['.Qair_Basin_4']=output_data['.Qair_Basin_4'].astype(float) 

#output_data['.SST_1.X_Out']=output_data['.SST_1.X_Out'].astype(float) 

#output_data['.SST_1.X_Under']=output_data['.SST_1.X_Under'].astype(float) 

#print(output_data.dtypes) 

#output_data.iplot() 

 

# In[168]: 

 

#from statsmodels.tsa.seasonal import seasonal_decompose 

#results=seasonal_decompose(output_data['.ASU_2.X_TSS']) 

#results.plot() 

 

# os.chdir(path_to_project) 

# p = subprocess.Popen("run_model.bat") 

# #,shell=True, stdout=subprocess.PIPE, strerr=subprocess.PIPE 

# p.communicate() 

 

# print() 

# print('Done! The WEST model has run a Dynamic Simulation from {formatted_start_time} to 

{formatted_stop_time} and the output files have been stored in the directory.') 

 

Script 7: 'Calculate_new_setpoint_SSE.py 

 

 

# This script reads the end_values of the simulation of the Process Model; stores the last value of 

NO3_modelled. 

# Then we calculate the difference: Setpoint - NO3_modelled = delta 

# then we add delta to the setpoint: setpoint + delta and store it in the setpoint_array first position 

# we do this so that in the next iteration, the optimizer in the MPC loop will compare the MPC model 

effluent to the modified setpoint 

# Idea is that this way the MPC knows what is happening in the real world and corrects for any 

divergence 

 

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  9 11:12:44 2023 

 

@author: SERRAO-M 

""" 

import os 

import pandas as pd 
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import numpy as np 

 

# Read observed variable: 

filepath = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M\\" 

filename = "PreDenit_Out.txt" 

header_to_find = ".PRE_7.NO3_OUT" 

 

# change directory 

os.chdir(filepath) 

 

# Open the PreDenit_Out.txt that contains the end_values of the Process Model 

 

with open(filename, 'r') as file: 

    # Read all lines from the file 

    lines = file.readlines() 

 

# Get the column names from the header 

header = lines[0].split() 

 

# Get the index of the ".PRE_7.NO3_OUT" column 

pre_column_index = header.index(".PRE_7.NO3_OUT") 

 

# Initialize an empty list to store the values in the ".PRE_7.NO3_OUT" column 

pre_values = [] 

 

# Iterate through the lines (excluding the header and units row) and extract the values in the 

".PRE_7.NO3_OUT" column 

for line in lines[2:]: 

    values = line.split() 

    pre_values.append(float(values[pre_column_index])) 

 

# Get the last value in the ".PRE_7.NO3_OUT" column 

pre_value = pre_values[-1] 

 

# Create a DataFrame with the extracted value 

df = pd.DataFrame({'.PRE_7.NO3_OUT': [pre_value]}) 

 

# Calculate the difference with the set point 

setpoint = 1.3 

delta = setpoint - df['.PRE_7.NO3_OUT'] 

 

# Create an array of 121 values for 2 hours of datapoints per minute (120 points) ; 1500 points = 24 

hrs (1440) + 1 hr (60) 

setpoint_array = np.empty(1500) 
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# select either option 1 or 2: 

 

# option 1:  

# setpoint_array[0] = (setpoint + delta) # set first value in array to (setpoint + delta) 

# if setpoint_array[0] < 0:  # to avoid negative values 

#    setpoint_array[0] = 0 

# setpoint_array[1:] = setpoint # value of line 1 onwards is set to setpoint value 

 

# option 2:    

for i in range(len(setpoint_array)): # entire array is changed 

   setpoint_array[i] = (setpoint + delta) 

 

# Display the array 

print(setpoint_array) 

 

# now, to write the setpoint_array into the NO3_setpoint.txt file in the directorty of the MPC Model: 

filepath = 

"C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2\\" 

# change directory 

os.chdir(filepath) 

 

# Save the array to the "NO3_setpoint.txt" file 

np.savetxt('NO3_setpoint.txt', setpoint_array, fmt='%.6f') 

 

# Confirmation message 

print("NO3_setpoint.txt file has been updated with new values.") 

 

# now also calculate PERFORMANCE of REALITY Model compared to the SETPOINT  

# create a second array of setpoints for the Performance evaluation of the Reality Model (using first 

16 points) 

Reality_setpoint_array = np.empty(16) 

 

# calculate the sum of squared error between NO3_Obs and NO3_Pred 

squared_error_Reality = np.sum((np.array(Reality_setpoint_array)[1:] - np.array(pre_values)[1:]) ** 

2) 

print("The SSE of the Reality Model with the desired set point over the next 15 minutes: ", 

squared_error_Reality) 

 

# save the SSE of the Reality Model in a txt file: 

filepath = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\REALITY_P_M\\" 

# change directory 

os.chdir(filepath) 

# Open the file in append mode and write the squared_error_Reality value 

with open('Reality_SSE.txt', 'a') as file: 

    file.write(str(squared_error_Reality) + '\n') 
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Script 8:  Counter.py 

 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Apr 25 16:36:17 2023 

 

@author: SERRAO-M 

""" 

import os 

 

path = "C:\\Users\\Public\\Documents\\DHI\\WEST\\data\\projects\\June2020_MeOH_Control2" 

# change directory 

os.chdir(path) 

 

with open('counter.txt', "r") as f2:  # reading the counter 

    j = int(f2.read()) 

    print("This was iteration number: " + str(j)) 

    print("The new value of the counter is: " + str(j+1)) 

 

with open('counter.txt', "w") as f2:  # write counter j + 1 

    f2.write(str(j+1)) 

 

     


