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To the Reader’s attention

This manuscript relates the evolution of my work on Progressive Quenching over the three
years of my PhD. It therefore recontextualizes the model initially introduced by Bruno
Ventéjou and Ken Sekimoto in 2018 [1], and extensively develops the ideas of our papers
[2, 3, 4], taking much of the text from their bodies without modification. Reading
this manuscript will offer the reader a smoothed compilation of the three articles. It is
therefore not to be considered an original research work as such.

We have the following outline and article correspondence:

• Chapter 1 introduces the main concepts and tools used throughout this thesis,
namely the Progressive Quenching, martingales and Markov chains. The latter
section is extracted from lecture notes I took during the “(Post)-Modern Ther-
modynamics” conference held in December 2022 at he University of Luxembourg,
following Ken Sekimoto’s lecture, followed by Pedro Harunari’s [5].

• Chapter 2 presents the original model of Progressive Quenching for globally coupled
Ising Spins, first introduced by Ventéjou and Sekimoto in [1].

• Chapter 3 studies individual realizations of Progressive Quenching thanks to a mar-
tingale evolution law first derived in [1]. We include the exact derivation of the
martingale from our 2022 article [3] and we re-write our prediction analysis with
and without a perturbation from our 2020 article [2] without the O(N−2

0 ) error
bound.

• Chapter 4 links the magnetization probability distributions after a Progressive
Quenching process to the canonical distribution of the initial system. We then
show that they are equal under certain assumptions, namely the Markov property
and detailed balance. Its content is taken from [3] (Sections 4.1 to 4.4) and our 2023
preprint article [4] (Section 4.4 onwards).

• Chapter 5 extends those results to all Markov processes, by redefining the Progres-
sive Quenching as an operation on transition networks. It is extracted from [4],
except Section 5.4 which is original.

• Chapter 7 explores the consequences of non-Markovianity. It is extracted from [4].

The overall structure of this thesis is quite linear. Each chapter follows and extends
the results of the previous one. They all include a small appendix that extends the main
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text. All codes, written in Python3 with Spyder syntax (and Mathematica for large-
matrix eigenvalue analysis), used to generate the figures are publicly available on this
GitHub repository 1.

1Available on https://github.com/Chamiche/Progressive_Quenching/

https://github.com/Chamiche/Progressive_Quenching/
https://github.com/Chamiche/Progressive_Quenching/


Résumé de cette thèse

Ce manuscrit relate l’évolution du Progressive Quenching (que l’on pourrait traduire par
“trempe progressive”) au cours de mes 3 années de thèses, dans ses linéarités et ses
embranchements. Ce qui était au départ une adaptation aux spins d’Ising d’un concept
développé pour l’étude des quasi-cristaux s’est vue généralisée et étendue aux chaînes de
Markov et d’autre part devenir un terrain de jeu d’application de la théorie des martingales
en physique.

Notre focalisation sur le modèle de Curie-Weiss (spins globalement couplés) lors des
trois premiers chapitres est par nature restrictive mais nous a néanmoins permis de com-
prendre comment s’articulent les interactions entre les parties fixées (dites “quenchées”)
et libres du système soumis au Progressive Quenching.

Le chapitre 2 nous a permis de poser de manière systématique les bases du processus
introduit lors de l’introduction, et de comprendre l’influence des différents paramètres du
système. En fixant la température β, nous avons pu mettre en évidence deux cas limites,
à savoir les limites du couplage entre les spins nul, aboutissant à des marches aléatoires
non-biaisées, ainsi que du couplage infini aboutissant à un système nécessairement polar-
isé. Les cas d’intérêt sont donc situés à la frontière de ces deux limites, que nous avons
identifiée comme le couplage critique, c’est-à-dire le couplage maximisant la susceptibilité
magnétique du système. Nous avons également pu comprendre comment écrire la contri-
bution de la partie fixée dans l’Hamiltonien du système, à savoir au travers d’un champ
magnétique effectif agissant sur tout le système libre. Le modèle de Curie-Weiss permet
la formulation simple de cette contribution.

Le chapitre 3 est centré autour de la notion de martingale qui gouverne la dynamique
de la magnétisation du système. Cette loi, qui met en exergue la relation cyclique en-
tre système figé et système libre au travers de quantités caractéristiques, nous permet de
comprendre l’évolution temporelle du système. Ce dernier cherche à conserver sa magnéti-
sation moyenne, et abouti ainsi à des trajectoires suivant les contours de magnétisation
constante. Cette loi de martingale a d’abord été dérivée de manière approchée, mais il
s’est ensuite avéré qu’elle était exacte. Nous avons pu en conclure qu’il était possible
d’estimer l’état final d’un processus, par exemple prédire la valeur de la magnétisation
des spins fixés MT , car la valeur moyenne des spins non-fixés, m(eq), se conserve au cours
d’une réalisation du Progressive Quenching. Nous pouvons donc projeter sur les contours
iso-m(eq) ces trajectoires, afin d’estimer leurs valeurs finales. Un point crucial est que
plus cette estimation est faite tardivement, plus elle est précise. Nous interprétons cette
propriété comme étant une mémoire effective du système. Ce sont les premières positions
de la trajectoire qui vont globalement déterminer sa direction et donc sa position finale.
Nous avons quantifié cette dépendance grâce aux calculs de sensibilités du système. Ce
dernier est d’autant plus sensible aux perturbations qu’il compte de spins non-fixés.
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Nous pouvons offrir à ces conclusions un parallèle en termes de dynamique sociale.
Lors d’un choix commun (typiquement, un référendum dans une population donnée),
le débat public est surtout orienté par les premières personnes à donner leurs opinions.
Ainsi, dans un groupe social ayant tendance à être homogène en termes d’opinion (c’est-
à-dire avec des interactions typiquement ferromagnétiques), les questions et débats portés
à l’actualité sont généralement dictés par les personnes donnant leur avis en premier, qui
sont également les personnes ayant le plus d’exposition médiatique. Ce parallèle certes
peu scientifique, nous permet néanmoins de justifier que lorsque l’opinion publique est
peu stable, les interactions sociales sont, en moyenne, proches d’une valeur critique au
sens de l’équation 3.

Une fois la dynamique d’une trajectoire ou d’une réalisation du Progressive Quench-
ing étudiée, nous avons étudié leur répartition d’ensemble, à savoir la distribution de
probabilité de la magnétisation finale MN0 . C’est l’objet du chapitre 4. Tout d’abord,
nous avons observé la dépendance avec la valeur du couplage spin-spin j0 au chapitre 3.
Nous nous sommes rendus compte que cette distribution coïncidait avec la distribution
canonique du système à l’équilibre thermodynamique. D’abord au travers du Recycled
Quenching, un processus sans fin dérivé du PQ, nous avons pu comprendre l’origine de
cette conservation de distribution, alors que la fixation d’un spin est a priori un proces-
sus hors-équilibre. La propriété fondamentale ici en jeu est la formule des probabilités
totales, qui nous permet d’établir que choisir la valeur des N0 spins un à un ou bien tous
ensemble ne change pas la probabilité de leur distribution. Une fois cette égalité établie,
nous nous sommes concentré sur la dynamique d’ équilibrage des spins et sur l’influence
d’un quench sur celle-ci. À l’aide des algorithmes dynamiques de Glauber, nous avons pu
mettre en évidence le fait que le temps entre les quenches n’avaient pas d’influence sur la
distribution finale, quand bien même les systèmes étaient par nature du quench frustrés.
Nous avons ensuite expliqué ce phénomène d’un point de vue thermodynamique, avec un
parallèle avec la théorie de Landauer.

Nous avons ensuite entrepris une généralisation de nos résultats, portés par les résul-
tats obtenus avec la dynamique de Glauber. Pour cette dernière, peu importe le temps
de relaxation du système, la distribution canonique était la distribution stationnaire vers
laquelle tendait le système sous les règles de l’algorithme. Nous nous sommes donc de-
mandé si cela était généralisable aux chaines de Markov stationnaires (dont l’algorithme
de Glauber fait partie). Nous avons donc formulé le Progressive Quenching pour n’importe
quelle chaine de Markov, au travers de notre idée initiale, c’est-à-dire la représentation
d’un système par ses degrés de liberté que nous pouvons ensuite fixer. Nous avons montré
que la condition pour que la distribution finale de l’état d’un système après le Progressive
Quenching corresponde à sa distribution stationnaire, était que les états vérifiaient entre
eux le bilan détaillé. Autrement dit, lorsque deux états échangent entre eux des flux
de probabilités équilibrés, nous pouvons supprimer les transitions entre ces deux états
sans changer la distribution statique du système. Par exemple, l’algorithme de Glauber
vérifie par construction le bilan détaillé, aspect fondamental de l’équilibre thermody-
namique à l’échelle microscopique. Le Progressive Quenching nous donnera donc, dans ce
cas, la distribution canonique. Nous avons ensuite ébauché ce résultat comme étant une
représentation d’un invariant topologique du graphe dirigé représentatif des chaînes de
Markov. Le dernier chapitre explore donc les conséquences du Progressive Quenching sur
des systèmes non-Markoviens. Nous abandonnons donc notre cadre général des chaînes
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de Markov pour retourner aux systèmes de spins d’Ising. Nous avons tout d’abord étudié
les systèmes comprenant des degrés de liberté cachés couplant les spins visibles entre eux.
Nous avons donc pu montrer que ce système est renormalisable via une intégration des
degrés de liberté invisibles. Ces derniers modifient donc la dynamique d’équilibrage du
système, mais pour autant l’état d’équilibre du système entier n’est pas modifié par le
Progressive Quenching. Ainsi, nous observons des “ overshoot ” de la magnétisation lors
de quench, mais la valeur d’équilibre de cette dernière reste inchangée. Nous avons donc
entreprit d’introduire du délai dans les interactions des spins, en suivant la modélisation
faite par Choi et Huberman. L’introduction de délai change complètement la donne, car
cela rend l’état d’équilibre du système dépendant aux valeurs des coefficients cinétiques.
Or, nous nous sommes rendu compte que l’action de quench un spin revient à faire tendre
son temps de réponse typique vers +∞. Le Progressive Quenching modifie donc la ciné-
tique du système et donc sa distribution statique lorsque ses interactions comprennent du
retard. À l’aide de simulations numériques, nous avons ainsi pu “ cartographier ” l’état
stationnaire du modèle de Choi-Huberman, en fonction du temps de décalage entre les
spins et du temps d’attente entre deux quenches. Cette cartographie nous a permis de
montrer numériquement que le système atteint des états plus polarisés que le cas sans
délai, correspondant à la distribution canonique. Il semble que cet effet est d’autant plus
important que la taille du système est grande, mais cette conclusion reste à confirmer par
des études numériques plus poussées.

Si finalement les résultats principaux exposés, à savoir la conservation de la distribu-
tion stationnaire dans le cas Markovien, peuvent apparaître décevants dans leur apparente
simplicité, ils ouvrent néanmoins la voie pour l’étude des systèmes non-Markoviens, no-
tamment le couplage entre retard entre interactions (paramètre a) et durée d’attente entre
deux quenches (paramètre ∆T ). Notre étude préliminaire semble indiquer qu’il existe une
zone de domaine (a,∆T ) ou cet effet est optimal.

De plus, le Progressive Quenching appliqué au modèle de Curie-Weiss permet l’application
de la théorie des martingales à des processus différents des standards de la thermody-
namique stochastique. Étant donné la généralité des systèmes où certains paramètres
se fixent avec le temps, en premier lieu les systèmes se refroidissant de manière non-
homogène, nous sommes persuadés que ces processus dépassent le cadre de la pure
physique statistique.
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Chapter 1

Introduction

This Chapter will introduce the main ideas and models used throughout this thesis. We
encourage the reader to browse through the first section about the general idea of Progres-
sive Quenching, as this principle is common to all the results in the following chapters.
We also briefly introduce martingale processes, Doob’s optional stopping theorem in a
dedicated section, and Markov chains. Both concepts will be helpful in the rest of the
manuscript.

1.1 Progressive Quenching

1.1.1 Motivations
Since the end of the last century, much development has been made in the physics of
stochastic processes out of equilibrium of a finite system interacting with heat baths and
under the influences of an external system - or systems [6, 7, 8, 9, 10, 11]. world, however,
we sometimes encounter situations where the system’s degrees of freedom become pro-
gressively fixed. ity than the equivalent pure systems. Nevertheless, in our description, we
model the progressive cooling-down process via its degrees of freedom without introducing
fluctuations in interactions. Moreover, this paradigm could also be relevant for studying
the evolution of mechanical properties of certain materials because of the long-ranged
elasticity. For example, ripples propagate in graphene sheets [17] with quenched defects.
A model of spins interacting indirectly through an elastic string has been studied in [18].

From a more socially oriented point of view, we might also consider the decision-
making process of a community in which each member progressively makes up their mind
before a referendum.

In those examples, the already fixed part can influence the behavior of the part whose
degrees of freedom are not yet fixed. What types of generic aspects are in this type of
problem is largely unknown, and our object is to find them out.

1.1.2 Setting up the process
Let us consider a dynamical system of n degrees of freedom, denoted by
{x1(t), x2(t), . . . , xn(t)}. These parameters can evolve with time, obeying a set of evolu-
tion equations. It is in this very general description that the idea of progressive quenching

15
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is defined. Imagine that at a certain time set by the operator, say t1, we fix indefinitely
the degree x1 at the value it took at that exact time, that is :

∀t ≥ t1 x1(t) = x1(t1). (1.1)

x1 is now said to be quenched. We now let the rest of the system evolve under the
same set of equations as before, except that now x1 is fixed. This constraint may modify
the overall dynamics completely, as it sets new boundary conditions. This constrained
evolution continues for a certain time ∆t = t2 − t1, until t = t2. Then we fix similarly x2
such that:

∀t ≥ t2 x2(t) = x2(t2). (1.2)
This quenching procedure can then continue, for given fixation times {t1, t2, . . . , tn}, until
all parameters are fixed. This idea is summed up schematically in Figure 1.1. The whole
process is what we call Progressive Quenching - which we will abbreviate in “PQ”.
The action of quenching might be seen as an instantaneous cooling of a very specific part
of the system or as an infinite increase of the kinetic response parameters of the part.
This particular aspect is the object of Section 4.5.

x1(t1), x2(t2), x3(t3)…xn(tn) Final frozen 
system

Quenching/Cooling

x1(t1), x2(t2), x3(t3)… …xn−2, xn−1, xn

Frozen part Unfrozen part

x1(t), x2(t), …, xn(t)
Initial dynamical system

Figure 1.1: Schematic procedure of Progressive Quenching over a general dynamical sys-
tem. The clear demarcation between the quenched (colored) and free (clear) parts is
shown in the center. Only the free part is allowed to evolve under the constraints of the
frozen part.

This quenching front propagation has been studied in the case of phasons in quasi-
crystals [19, 20], to study the propagation front of the apparent phase freezing of 2D
Lennard-Jones atomic systems. The idea proposed by Sekimoto in [21] was an extending
boundary condition at which the phase fields were frozen through a temperature decrease.
In a nutshell, phasons are the quasiparticules associated to atomic rearrangement in qua-
sicristals. Their evolution can be modeled by diffusive dynamics with a non-conservative
thermal noise. In a 1D framework, a scalar phason field ψ(x, t) obeys the evolution equa-
tion:

∂ψ/∂t = D∂2ψ/∂x2 + ξ(x, t), (1.3)
where ξ(x, t) is a Gaussian white noise uncorrelated in both space (x) and time (t). At
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equilibrium, the spatial correlation scales like 〈|ψ(x+r, t)−ψ(x, t)|2〉 ∼ |r|. The progressive
quenching fixes the value of ψ(x, t) at the front position, x = V t, which moves in the +x
direction at a constant speed V (>0). Then, the spatial correlation in the quenched part
exhibits different statistics 〈|ψ(x+ r)−ψ(x)|2〉 ∼ |r|3/2/`1/2

D , over the length-scale inferior
to the diffusion length, `D ≡ D/V. Nearly three decades later, this idea was re-written in
the terms described above for Ising spins networks [22, 1].

1.1.3 Choice of quenching time intervals and derived stochastic
processes

The choice of the parameters {t1, t2, . . . , tn} will dictate how long we leave the system
to relax to the new constrained equilibrium until the next quench and may change the
outcome of the process altogether. For example, if the suppose that the system has a
typical relaxation time τ , setting ti � τ for any i ∈ {1, . . . , n} will not allow a proper
relaxation and will, in effect lower the quenching influence. On the other hand, setting
ti → ∞ will allow the new equilibrium to be reached. With that consideration in mind,
we chose at first to study the latter (in Chapters 2 to 4), and we extended the study to
finite ti later on in Chapters 4 to 6.

Another important aspect is that the quenching process effectively divides the initial
system into two parts: quenched and free (as pictured in Fig.1.1) with different evolutions.
When the systems behave apparently randomly, for example, systems in contact with
a heat bath inducing thermal fluctuations, we can derive multiple stochastic processes
characterizing those evolutions. First and foremost, the set of values of the quenched
degrees of freedom {x1(t1), x2(t2), . . . , xi(ti)}i∈{1,...n} is a stochastic process indexed by
the number of frozen degrees of freedom. It is usually the object of interest since it
completely characterizes the evolution of the frozen part, and its final value is the system’s
final state. However, even though it is less well-defined and system-dependent, we can also
consider the evolution of the free part as a stochastic process. For example, we can follow
the evolution of a representative quantity F(xi+1(t), xi+2(t), . . . , xn(t)) (magnetization,
species count, density, etc.) during the quenching process. An exciting feature of this
dichotomy is that both processes influence each other. The outcome of a quenching will
set new constraints - through new boundary conditions or fixed interactions, see Fig. 1.2
- to which the rest of the system will react, thus modifying the probability distributions
of the free degrees of freedom and therefore, the value of F . Furthermore, since the
distributions of the free xi’s are modified, it will influence the subsequent outcome of the
quenching process. This retroactive phenomenon, coupled with the out-of-equilibrium
nature of the quenching process, is at the center of our study, with interesting stochastic
dynamics. In the case of Ising spins of a complete network, this retro-action gives rise to
martingale properties. We will develop this aspect and its consequences in Chapter 3.

1.2 Martingale theory
In this section, we aim to introduce a key element of the stochastic process theory: mar-
tingales. Martingales play a crucial role in many critical applications of probability such
as statistics and mathematical finance and are fundamental properties of essential unbi-
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…xN−2, xN−1, xN

Boundary conditions

Fixed interactions 

x1(t1), x2(t2), x3(t3)…

Figure 1.2: Mutual influences between the quenched and the unquenched part.

ased random walks, Brownian motion being a prime example [23]. Nevertheless, their
applications in physics are relatively limited. However, they are now at the center of re-
cent studies that explore their applications, extending the scope of fundamental relations
such as the second law of thermodynamics, Jarzynski’s equality, and many fluctuation
relations [10, 24, 25, 26, 27, 28]. We will only focus on discrete-time martingales since
it is the type that appears in our study. All results are adaptable to a continuous-time
framework.

1.2.1 Discrete-time martingales in a nutshell

Martingales are, concisely, driftless integrable stochastic processes. Joseph Leo Doob
introduced them to generalize random walks so that each new increment is “conditionally
orthogonal” with respect to the past realizations [29]. Let us consider a stochastic process
denoted by Xn, where n ∈ N is a discrete-time index. Formally, we will define martingales
relative to the base process Xn. We say that Mn is a discrete time martingale relative to
Xn if :

• Mn is a real-valued function defined on the set of trajectoriesX[0,n] = (X0, X1, . . . , Xn);

• Mn is integrable, i.e., E[|Mn|] <∞ for all n;

• Mn has no drift, i.e., for all 0 ≤ m ≤ n:

E[Mn|X[0,m]] = Mm, (1.4)

.

Thus, the conditional expected value of any future observation, given all the past obser-
vations, is equal to the most recent observation. Formally, the set of all possible past
observations up to time m constitutes a filtration Fm.

When drift is introduced, that is E[Mn|X[0,m]] ≤ Mm or E[Mn|X[0,m]] ≥ Mm, with
the other properties still verified, we call those processes super-martingales and sub-
martingales, respectively.
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1.2.2 Example of discrete-time martingales
Let (Xn)n∈N∗ be a sequence of iid1 random variables, with mean m < ∞, and let Sn be
the sum-process, such that S0 = 0 and

Sn =
n∑
i=1

Xi. (1.5)

Then, the process Mn = Sn − nm is a martingale. If m = 0, the sum process Sn is itself
a martingale. Moreover, if m > 0, Sn is a sub-martingale, and inversely, if m < 0, Sn in
a super-martingale.

Similarly, let (Xn)n∈N∗ > 0 be a sequence of positive iid random variables with mean
m <∞. Let Pn be the product-process, such that P0 = 1 and

Pn =
n∏
i=1

Xi. (1.6)

Then, Mn = Pn/m
n is a martingale.

Finally, for (Xn)n∈N∗ iid with zero mean and variance E[X2
n] = σ2, and Sn the sum

process defined by Eq.(1.5),
Mn = S2

n − nσ2 (1.7)
is a martingale.

1.2.3 Stopping times
There are many properties associated with martingales that are crucial to their applica-
tions. For the sake of concision, we will only focus on stopping times and Doob’s optional
stopping theorem since they will be of use in the perturbative analysis of our system (see
Sec. 3.4).

A stopping time with respect to a sequence of random variablesX1, X2, . . . is a random
variable τ such that for every time t, the occurrence or non-occurrence of the event τ = t
only depends on the values of the sequence up to time t: X1, X2, X3, . . . , Xt. The underly-
ing idea behind this definition is that at any specific time t, one can examine the sequence
up to that point and determine whether it is appropriate to halt. This determination
of whether the event has occurred or whether the decision should be executed is solely
contingent upon the information derived from the process until that precise moment.
Mathematically speaking, τ is statistically independent of the future of the trajectory
(Xt)t>τ .

An analogy in real-life could be the instance when a gambler departs from a gambling
table; this decision might be contingent on their prior winnings (e.g., they might leave
only when they have gone bankrupt), yet they cannot make their choice based on the
outcomes of games that have not yet been played.

For example, a stochastic process’s first-passage time (and more generally k-th passage
times for any finite integer k) at a particular value or subset of its domain are stopping
times. But, τ = {n|Xn = max(Xk)k>1}, the time to reach the global maximum of a

1Independent and Identically Distributed, that is, they all follow the same probability law.
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trajectory is not a stopping time since it requires a future knowledge, in this case, the
certitude that the trajectory will not exceed a certain value.

A simple property is that, if (Mn)n>1 is a martingale and τ is a stopping time, then
the “stopped process” (M τ

n)n>1 such that

M τ
n = Mmin(n,τ) (1.8)

is also a martingale, that is, for all 0 ≤ m ≤ n:

E[M τ
n |X[0,m]] = M τ

m. (1.9)

1.2.4 Optional Stopping

Now that we have set up the different tools we will use throughout the manuscript, we
may write one of the key properties of martingales: Doob’s optional stopping theorem.

Let Mn be a martingale and τ an almost-surely bounded stopping time (i.e. there
exists a constant c ∈ N such that P(τ ≤ c) = 1). Then:

E[Mτ ] = E[M0] (1.10)

This particular theorem can prove the impossibility of successful betting strategies for
a gambler with a finite lifetime (or, in an equivalent way, a finite limit on bets), at least
if the gambler cannot foresee the future. In other words, the gambler leaves with the
same amount of money on average as when he started. As one can imagine, the optional
stopping theorem is an essential tool of mathematical finance, for example, to price assets
correctly and remove any possibility of making a profit without any risks. For a physicist,
however, it may be used to derive new viewpoints of the second law of thermodynamics
and fluctuation relations [30].

1.3 An introduction to Markov Chains

1.3.1 Introduction

In this section, we will introduce the main concepts and methods used in the study of
Markov Chains that will be useful throughout this thesis, especially in Chapter 5. The
content of this section is extracted from lecture notes I took during the “(Post)-Modern
Thermodynamics” conference held in December 2022 in Luxembourg city, following Ken
Sekimoto’s lecture, followed by Pedro Harunari’s. These lecture notes are available in ref
[5].

It will be centered around Markov chains in continuous time. Our primary goal is to
set up different tools, such as the transition network (TN), master equations, and modified
networks (with applications to first-passage time problems). We will also connect the tools
developed for continuous-time Markov chains to the discrete-time framework.
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1.3.2 Continuous-time Markov Chains: basic notions
Notations and definitions

For basic notations, we will denote by {a, b, c, . . . } or {a1, a2, . . . } the discrete set of states,
and X̂t is the random variable representing the state Xt of the system at time t, where
t ∈ [0; +∞). The time evolution of X is a stochastic process, and its history {Xt, t ∈ R+}
is also a random variable. The sample space Ω is the set of all possible histories. We will
usually denote X0 by a0.

We recall the Markov property for such a stochastic process:

Definition 1 Xt is said to be a continuous-time Markovian process with respect to t if
the conditional probability p(X̂t+dt = b|X̂[0,t] = a) is independent of Xs for all s < t.

The statistics of X̂t+dt only depends on the realization of X̂t. It is usually said that the
system forgets the past after each time step of length dt.

Transition rates

For two different states a 6= b, the conditional probability p(X̂t+dt = b|X̂t = a) is of
the order O(dt) for a Markovian process. We denote by Rba > 0 the proportionality
coefficient, such that:

p(X̂t+dt = b|X̂t = a) = Rbadt+O(dt2) (1.11)

For several destinations {a1, a2, a3} we have in a similar way:

p(X̂t+dt = ai|X̂t = a) = Raiadt+O(dt2) (1.12)

A Markovian process is characterized by the set of states and the transition rates among

(a) A single transi-
tion (b) Multiple tran-

sitions over several
destinations

Figure 1.3: Possible transition configurations illustrating Eqs.(1.11) and (1.12)

them. Note that, to the linear order O(dt), the transition rates do not interfere with each
other.

On the time resolution of physical processes In physics, one may consider discrete
problems derived from an underlying continuous process thanks to coarse-graining pro-
cedures. For example, consider a random walker traveling in Europe, as in Fig.1.4. We
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only measure the country code with respect to time. Right after crossing a border, the
walker has - for a short period - a significant probability of re-crossing the same border.
Thus, if the temporal coarse-graining was not introduced, one might see multiple erratic
transitions between two country codes before the walker finally moves far enough from
the border.

Figure 1.4: Continuous trajectory of a random traveler in Europe, with the different
countries shown in red.

This discretization is typically non-Markovian. To obtain a Markovian trajectory in
the new discrete-state continuous-time model, we need to weaken the time resolution of the
trajectory, that is, introducing a time step ∆t such that faster phenomena are integrated
over. More precisely, transitions a → b such that Rba & (∆t)−1 should not appear in
the discrete-state model. Thermodynamically, this state coarse-graining is equivalent to
adding a heat bath to mask details. Descriptions with different resolutions can thus have
different thermodynamics.

Transition networks

We use a network -or graph- representation for each Markov chain, in which the nodes are
the system states, and the directed edges represent the non-zero transition rates. For the
following part, we consider ergodic transition networks i.e from any node, all the other
nodes are reachable through directed edges. See Fig.1.6.

1.3.3 Simulating a trajectory: Gillespie’s algorithm
Now that the basic notions of continuous-time Markov chains have been introduced, we
may ask ourselves how to generate sample histories to verify the statistical properties.
The main idea of such an algorithm is to generate a list of jumps at specific times, e.g.,
Xt = a → ai with i ∈ {1, . . . , n}. A first but naive idea is to try a jump at every small
time segment δt. This method may work but could be more practical, as it is inefficient
and could be approximate if δt is too big.

A better -and exact - approach is the Gillespie algorithm. The idea is to generate a
waiting time T̂ between consecutive jumps. The probability of having T̂ > τ where τ > 0
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Figure 1.5: An example of ergodic transition network with four different states

Figure 1.6: Three examples of non-ergodic transition networks. The nodes colored in red
represent potentially unreachable states.

is:
p(T̂ > τ) = exp

(
−

n∑
i=1

Raiaτ

)
(1.13)

Proof The event T̂ > τ is equivalent of having no transitions during time intervals(
τ
M

)
k ≤ t <

(
τ
M

)
(k + 1) for every k ∈ {0, 1, . . .M − 1}.

Thus, we have:

p(T̂ > τ) =
(

1−
n∑
i=1

Raia
τ

M

)M
M→∞−−−−→ exp

(
−

n∑
i=1

Raiaτ

)

We then generate such a waiting time T̂ through a uniform random variable Ŷ . We
have:

p(T̂ > τ) = p(e−
∑n

i=1RaiaT̂ < e−
∑n

i=1 Raiaτ ) (1.14)
= e−

∑n

i=1 Raiaτ . (1.15)

Introducing Ŷ := e−
∑n

i=1RaiaT̂ and y := e−
∑n

i=1Raiaτ , we have:

p(Ŷ < y) = y ⇒ Ŷ is a uniform random variable on [0, 1] (1.16)

After generating Ŷ with a built-in function, we can find T̂ such that Ŷ = e−
∑n

i=1 RaiaT̂ .
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Figure 1.7: Choice protocol for the arrival state: the transition rates are “shrunk” to map
the interval [0, 1].

To determine the arrival state, we notice that, in Markovian processes, the destination
is determined at the last infinitesimal interval dt. We thus have:

p(destination is ak) = Raka∑n
i=1Raia

(1.17)

and the state can be decided with another uniform random variable on [0, 1], see Fig.1.7.
Remark: We can generalize this idea: given a 1D probability density ρ(x), we can
construct a random variable X̂ that obeys ρ(x). The cumulative probability up to x ∈ R
is:

p(X̂ < x) =
∫ x

−∞
ρ(x′)dx′.

Since this is equivalent to p(
∫ X̂
−∞ ρ(x′)dx′ <

∫ x
−∞ ρ(x′)dx′) =

∫ x
−∞ ρ(x′)dx′, we can define

Ŷ :=
∫ X̂
−∞ ρ(x′)dx′, which is a uniform random variable on [0, 1], and find X̂ by this

relation.

1.3.4 First-passage time problems
Consider a Markovian transition network like the one depicted in Fig.1.5. Given an initial
condition X̂t=0 = a0 and the ergodic hypothesis, the probability of the process X̂t never
visiting a state ai is zero. We can, therefore, define a time T̂FP at which X̂t visits ai for
the first time. The random variable T̂FP is called the first-passage time (usually abridged
FPT [31]) and is a special case of stopping time. We have in particular p(T̂FP < +∞) = 1.
Numerically, the sampling of TFP can be done with a Gillespie algorithm. Moreover, we
can obtain analytical results for its statistics, such as p(T̂FP > τ).

1.3.4.1 Master equation

Let us consider N (� 1) copies of the transition network, starting at X̂t=0 = a0. For t > 0,
each copy evolves independently. At a time t we find ' Npt(ai) copies in the state X̂t = ai,
with 0 ≤ pt(ai) ≤ 1 and ∑n

i=0 pt(ai) = 1. Between t and t + dt, the population, i.e., the
probability of finding the system in a certain state, changes by Npt+dt(ai) −Npt(ai). In
parallel, counting all the possible transitions coming to the state ai from other states allow
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us to write the population influx as +∑
k(6=i)(Raiakdt) (Npt(ak)). Likewise, the probability

out-flux coming from the state ai to all of the other states is: −∑k( 6=i)(Rakaidt) (Npt(ai)).
Therefore, we have the following equality between time variation and flux:

Npt+dt(ai)−Npt(ai) =
∑
k(6=i)

(Raiakdt) (Npt(ak))−
∑
k(6=i)

(Rakaidt) (Npt(ai)). (1.18)

Dividing by Ndt and taking the N →∞ limit, we obtain the so-called master equation:

dpt(ai)
dt

=
∑
k(6=i)

Raiak pt(ak)−
∑
k(6=i)

Rakai pt(ai). (1.19)

We can define the net probability flow from ai to ak: Jakai := −Raiak pt(ak) +Rakai pt(ai)
so that:

dpt(ai)
dt

= −
∑
k(6=i)

Jakai . (1.20)

The probability flow Jakai can be seen as the difference of two semi -flows: the outgoing
flow

Jakai := Rakai pt(ai) (1.21)
and the in-coming flow

Jaiak := Raiak pt(ak). (1.22)
Thus

Jakai = Jakai − Jaiak . (1.23)
The semi-flows characterize the effect of each possible transition and are of particular
importance when considering transition network modifications. For a pair of states ai
and ak, we say that the ai ↔ ak transition is reciprocal if Jakai = Jaiak . In this case,
there is no net flow between them.

We have now switched from an individual history framework to a flow of population
framework. We can now obtain a solution to the set of master equations. We regroup the
state probabilities in a column vector: ~pt := (pt(a0), . . . , pt(an))†. We also introduce the
diagonal elements, such that: Raiai := −∑k( 6=i) Rakai . We can now write all of the master
equations as a vector-matrix equation:

d~pt
dt

= R ~pt (1.24)

The matrix R is called the rate matrix, and its off-diagonal elements are the transition
rates: (R)ki = Rakai . A formal solution for every t is thus:

~pt = eRt ~p0. (1.25)

Remark: We recall the definition of the exponential of a matrix M:

eM :=
∞∑
n=0

Mn

n! (1.26)

We can write the propagator - that is the path integral from an initial state to a
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Figure 1.8: (a) Trajectories generated by the master equation d~pt
dt

= R ~pt representing a
state variable a with respect to time t. (b) Illustration of the first-passage time of each
trajectory at the state a∗. (c) The same trajectories on the modified network, with an
absorbing state at a∗.

particular later state (in this case p(X̂t = ak|X0 = ai)) - as:

p(X̂t = ak|X0 = ai) =
(
eRt

)
akai

(1.27)

1.3.4.2 First-Passage time from master equation

We can use the vector master equation to study the statistics of T̂FP through the usage
of absorbing boundary conditions (for more details, the reader may refer to Chapter XII
of [6]). Figure 1.8 represents the procedure qualitatively. The master equation allows the
generation of individual trajectories up to a time t. In a way, we know the intersection
(and the subsequent statistics) of the trajectories {a(t)} with a vertical line of coordinate
t (Fig.1.8(a)). In this framework, the first-passage time problem is a reverse problem.
We want to know the (first) intersection time of the trajectories with a horizontal line
representing a particular state (a∗ in Fig.1.8(b)). The main idea is to modify the transition
network by introducing particular absorbing states, meaning that all outgoing transitions
from them are removed. In the trajectory-space of Figure 1.8, that means that once a
trajectory has reached the state of interest a∗, it becomes stationary (Fig.1.8(c)). We
then solve the master equation (Eq.1.24) for the now-modified rate matrix. From this, we
can deduce the statistics of interest, such as p(T̂FP < t) or the mean first-passage time.
Below, we detail this procedure applied to the network depicted in Fig.1.5.

Step-by-step example procedure of network modification of first-passage times
We consider the 4-states transition network depicted in Figs. 1.5 and 1.9 (a), with a (4×4)
rate matrix R. Our goal is to compute the statistics of the FPT reaching the state a2
starting from a0.

• We first remove the destination node (or nodes if we consider more than one state
of arrival) of the FPT problem, in this case a2, and replace it with an absorbing
state, that is, a state from which no transitions are possible. This transformation
of the transition network is depicted in Fig.(1.9)(b). We denote the modified rate
matrix by R∗, Eq.(1.29).
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Figure 1.9: (a): Example of a first-passage time problem at the state a2 (in red) where
a0 (in blue) is the starting state. (b): Modified transition network, where a2 is now an
absorbing state (cross), with outgoing transitions having been removed (light-gray lines).

• We now consider the reduced state space, where all the absorbing states have been
removed. In our example, the reduced state space is (a0, a1, a3), and the correspond-
ing probability vector is ~p∗t = (p∗t (a0), p∗t (a1), p∗t (a3))†. The reduced master equation
reads:

d~p∗t
dt

= R∗ ~p∗t (1.28)

with

R∗ =

 −Ra1a0 −Ra2a0 −Ra3a0 0 Ra0a3

Ra1a0 −Ra2a1 0
Ra3a0 0 −Ra0a3 −Ra2a3

 . (1.29)

• From Eq.(1.28), we obtain the solution, given the initial condition ~p∗0: ~p∗t = exp(R∗t) ~p∗0

• We can now compute the cumulative probability of the first passage as an integral
of the probability semi-flow towards the absorbing state over time:

p(T̂FP < t) =
∫ t

0
[J ∗a2a0 + J ∗a2a1 + J ∗a2a3 ]ds (1.30)

=
∫ t

0
[Ra2a0p

∗
s(a0) +Ra2a1p

∗
s(a1) +Ra2a3p

∗
s(a3)]ds (1.31)

. (1.32)

Moreover, we have for the complementary event:

p(T̂FP < t) = 1− p(T̂FP ≥ t) (1.33)
= 1− (p∗t (a0) + p∗t (a1) + p∗t (a3)) = 1− 〈1∗|p∗t 〉 (1.34)

with 〈1∗| = (1, 1, . . . 1) the unit row vector over the reduced state space and 〈.|.〉
denotes the Euclidean scalar product. We may note that those equations have a
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“Gauss divergence theorem” -like structure, relating a probability flux to probability
values.

• The FPT probability density ρFP (t) is then obtained from Eqs.(1.28) and (1.33):

ρFP (t) = d

dt
p(T̂FP < t) = −〈1∗|R∗|p∗t 〉. (1.35)

From Eq.(1.35), we can compute the quantities of interest - for example, the mean first-
passage time, starting from a0. With |p∗0〉 = (1, 0, 0)†, we get:

〈T̂FP |X̂0 = a0〉 =
∫ ∞

0
tρFP (t)dt

=
∫ ∞

0
t
d

dt
p(T̂FP < t)dt =

∫ ∞
0

t
d

dt

[
p(T̂FP < t)− 1

]
dt

=
[
t(p(T̂FP < t)− 1)

]+∞
0
−
∫ ∞

0
(p(T̂FP < t)− 1)dt

= 0 +
∫ ∞

0
〈1∗|p∗t 〉dt

=
∫ ∞

0
〈1∗| exp(R∗t)|p∗0〉dt = −〈1∗|R∗−1|p∗0〉 (1.36)

where R∗−1 denotes the inverse of the modified rate matrix, knowing that limt→+∞ exp(R∗t)|p∗0〉 =
|0∗〉. Note that the original matrix R is not invertible since 0 is an eigenvalue. Note also
that 〈1∗|R∗ 6= 0.

Remark 1 We can derive this last result with a different approach attributed to Kramers
[32]. We consider the reduced master equation, Eq.(1.28), complemented by a source term
J on the initial state ~p∗0. The equation reads:

d~p∗t
dt

= R∗ ~p∗t + J ~p∗0. (1.37)

The steady-state, denoted ~p∗∞, is:

~p∗∞ = −JR∗−1 ~p∗0 (1.38)

By multiplying 1
J
〈1∗| from the left,

1
J
〈1∗|p∗∞〉 = −〈1∗|R∗−1|p∗0〉 = 〈T̂FP |X̂0 = a0〉 (1.39)

Reminder : Linear algebra of master equation We recall the spectral decomposition
of a diagonalizable matrix R: R = QΛQ−1 where Λ = diag(λ1, λ2, . . . , λn) is the diagonal
matrix of eigenvalues, and Q is the eigenbasis representation matrix.

We have RQ = QΛ, and the columns of Q denoted by |vµ〉 are the right-eigenvectors
of R. Similarly, we have Q−1R = ΛQ−1, so the rows of Q−1, denoted by 〈uν | are the
left-eigenvectors of R. We have: Q−1Q = I ⇔ 〈uν |vµ〉 = δνµ (orthonormality of the dual
bases) and QQ−1 = ∑

µ |vµ〉〈uµ| = I (completeness). The latter follows from the former.
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Figure 1.10: Columns and rows of the matrices Q and Q−1.

Since

exp(Rt) = exp(QΛQ−1t)

=
+∞∑
n=0

(QΛQ−1)ntn
n!

= Q
(+∞∑
n=0

Λntn

n!

)
Q−1 = Q exp(Λt)Q−1, (1.40)

we have
exp(Rt) =

∑
µ

|vµ〉eλµt〈uµ|. (1.41)

Remark 2 Numerically the exponential eR∗t is computed using spectral decomposition,
R∗ = ∑

µ |v∗µ〉λµ〈u∗µ|, that is, eR∗t = ∑
µ |v∗µ〉eλµt〈u∗µ|. Once eR∗t is obtained, ~p∗t is given by

the matrix-vector product, ~p∗t = eR∗t ~p∗0

• The matrix R or R∗ can have complex eigenvalues. Nevertheless, when R or eRt

are applied to a “physically meaningful” ~p∗ are real matrices.

• All eigenvalues of R∗ must have strictly negative real part. While this can be shown
using the Perron-Frobenius theorem, it is intuitively understandable by the fact
p∗t = eR

∗tp∗0 vanishes fort → ∞ because all the probability eventually goes to the
absorbing states.

• The (non-reduced) rate matrix R must have at least one null eigenvalue: the steady-
state distribution, |ν0〉 satisfies R|ν0〉 = 0. The corresponding left null eigenvector
〈ν0| has all components 1, a consequence of the conservation of the total probability:
for all |pt〉, we have d/dt〈ν0|pt〉 = ν0|R|pt〉 = 0. For further spectral properties
of the rate matrix, the reader may refer to Perron-Frobenius theorems and their
consequences [33].

1.3.5 Discrete-time Markov Chains
Consider the previously studied transition network; see Fig.1.11. The large dots represent
the different states of the systems, and the arrows represent possible transitions between
them. In discrete time, the network has a similar shape. However, the steps iteration
creates the possibility of periods when the system remains in the same state2. Those

2Some transitions may happen at a finer resolution, but are not visible at the present level of description
(see Section 1.3.2).



30 CHAPTER 1. INTRODUCTION

Figure 1.11: Discretization of time on the transition network. Stationary transitions are
shown in red.

transitions are added to the graph, symbolized by the circular arrows. We now consider
time as a discrete variable: t = n∆t with n ∈ N and ∆t is the unitary step duration. We
define the stochastic 3 matrix P by

P := I + ∆tR , (1.42)

where R is the rate matrix for the continuous-time master equation. P defines how the
population probability is dynamically flowing in the network. The off-diagonal elements
are given by:

(P ) ab
a6=b

= ∆t(R)ab = p(X̂n+1 = a|X̂n = b) (1.43)

for a and b two states of the system. Since (R)ab is the probability per unit of time that
the system jumps from b to a, (P )ab is the probability of jumping to state a at time
(n+ 1)∆t given that state are in b at time n∆t. Here, X̂n represents the random variable
associated with the state occupied at time n, and p is the probability measure.

The diagonal elements are:

(P )aa = 1 + ∆t(R)aa = 1−∆t
∑
b( 6=a)

(R)ba (1.44)

The diagonal element (R)aa is, according to the continuous-time framework, the negative
sum of all transition rates from state a (this result comes from the conservation of the
probability norm during processes). Paa is thus the probability of not jumping at all:

(P )aa = p(X̂n+1 = a|X̂n = a) (1.45)

Note that those transitions do not appear explicitly in the continuous-time framework.
The evolution equation of the probability vector ~p over the state space is:

~pn+1 = P~pn (1.46)

3also referred as the transfer matrix



1.3. AN INTRODUCTION TO MARKOV CHAINS 31

which gives element-wise:

pn+1(b) =
∑
a

(P )bapn(a) (1.47)

=
∑
a

p(X̂n+1 = b|X̂n = a)pn(a) (1.48)

=
∑
a( 6=b)

(P )bapn(a) + (P )bbpn(b). (1.49)

From Eqs.(1.43) and (1.44), we obtain:

pn+1(b) =
∑
a(6=b)

∆t(R)bapn(a) + [1 + ∆t(R)bb] pn(b) (1.50)

or, equivalently:

pn+1(b)− pn(b)
∆t =

∑
a(6=b)

(R)bapn(a)−
∑
a(6=b)

(R)abpn(b). (1.51)

Taking the limit ∆t → 0+ in Eq.(1.51) with n = t allow us to verify the continuous-
time master equation d~p/dt = R~p. For this reason, everything said in the discrete-time
framework holds in the continuous-time limit, given that we take a small enough time step
∆t. This equivalence is sometimes used in the other direction, switching from continuous
to discrete time to prevent dealing with exponentially distributed time intervals. This
description shift can make proofs easier, with the results holding in both cases as there is
a time limit away.

Now, we discuss the solution to the evolution equation. In order to write a propagator
for the evolution equation, we apply Eq.(1.46) n times:

~pn = Pn~p0
= (I + ∆tR)n~p0. (1.52)

Pn is, therefore, the propagator. If we let ∆t→ 0+ with n∆t fixed, we again recover the
exponential propagator of the continuous-time formulation:

~pn = (I + ∆tR)t/∆t~p0 −−−−→
∆t→0+

eRt~p0. (1.53)

In the following table, we sum up the differences between the continuous and discrete
formulations.

Element Continuous framework Discrete framework
Stochastic Matrix Rate Matrix R Transition probability matrix P

Dynamics Master Equation d~p
dt = R~p Evolution Equation ~pn+1 = P~pn

p(X̂t+∆t = b|X̂t = a) (R)ba∆t (P )ba
Diagonal elements (R)aa = −∑b(6=a)(R)ba ≤ 0 0 ≤ (P )aa ≤ 1

Propagator (eRt)ba (Pn)ba
Conservation of probability ∑

b(R)ba = 0 ∑
b(P )ba = 1
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Note that the elements of R have the dimension of the inverse of time, whereas the
elements of P are dimensionless. It is also worth mentioning that discrete-time processes
are simpler to simulate in a computer program as we do not have to draw random time
steps with a Gillespie algorithm (as described in Section 1.3.3). In the discrete case,
∆t is fixed, and the operator only has to draw the probabilities (P )ba from a uniform
distribution between 0 and 1.



Chapter 2

Globally coupled models

2.1 Introduction
Following the main ideas of Progressive Quenching (this will be denoted by PQ along
the whole manuscript) introduced in Section 1.1 of the Introduction, we can highlight the
feedback mechanisms between the fixed and free parts of a system using a simple toy-
model: the Curie-Weiss model. This relatively simple process has been at the very heart of
our work for the past three years, resulting in multiple publications [1, 22, 2, 3, 4]. In the
present chapter, we will explain how the PQ protocol is defined for globally-coupled spins
and the relevant parameters to keep track of the evolution of both parts of the system.
We will also highlight the computation techniques of thermodynamic quantities and the
subsequent simulations, which are the starting point of our analysis. Those concepts were
originally introduced in [1].

2.2 System setup

2.2.1 Globally coupled Ising Spins

After introducing progressive quenching and its different parameters, we choose a simple
system to apply its principles. Ising spins are perfect toy models in this context, as they
constitute simple interacting degrees of freedom with a rich phenomenology of physical
properties that arise in large systems. We chose to study the simplest topology of Ising
spin systems: the globally coupled one. Below, we introduce this model and develop the
main results used throughout this manuscript.

The Ising model, developed by Lenz and his student Ising during the 1920s, is a
typical statistical mechanics model of ferromagnets and has since been the subject of many
development and studies - to the point of being a fundamental aspect of the study of phase
transitions and more generally in statistical mechanics. While Ising quit academia after
his conclusions on the 1D model that showed no global magnetization at finite temperature
- and his thinking that the model was useless - others pursued higher-dimensional analysis
yielding fundamental results about phase transitions and their universality. An Ising spin
s in an discrete variable that can only take two values: +1 or −1. It is a very simple
approximation of the atomic magnetic dipoles that, when aligned in a material, create a

33
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macroscopic magnetic field. This alignment is mainly caused by a purely quantum effect:
the exchange interaction.

Named after Pierre Curie and Pierre-Ernest Weiss, the Curie-Weiss Model (or infinite-
range model) is used to describe the behavior of magnetic materials. While it is a relatively
simple model that can be solved exactly, its power lies in the insights it provides about
phase transitions and its coincidence with the mean-field approximation of the Ising model.

Let us consider a ferromagnetic model consisting ofN0 Ising spins, denoted by {si}i∈{1,...,N0},
on a complete network. All spins thus interact with every over spin, with a fixed coupling
constant. While we could set a specific coupling jij = jji for every pair of spins (si, sj),
with i 6= j, we first chose to set it equal along the network:

∀(i, j) such that i 6= j jij = j0. (2.1)

Under an external magnetic field h, the ferromagnetic Hamiltonian H of the system is:

H = − j0

N0

∑
1≤i<j≤N0

sisj − h
N0∑
i=1

si (2.2)

= − j0

2N0

N0∑
i=1

si

N0∑
j 6=i

sj

− h N0∑
i=1

si

= − j0

2N0

N0∑
i=1

si

2

− h
N0∑
i=1

si + C (2.3)

where we choose the normalization convention by N0, and C = j0/2 is a constant term
that can be ignored1. This system is in contact with a thermal bath that sets the inverse
temperature β = 1

kBT
. The statistical properties are thus given by the canonical partition

function Z [34, 35] :
Z =

∑
{s1,...,sN0}

e−βH (2.4)

Since the values of β, j0, and h are fixed, we can set β = 1 without loss of generality.
Hereafter, we will write βj0 and βh as j0 and h, respectively. An important quantity for
later is the mean magnetization of the system, denoted by m(eq):

m(eq) = 〈si〉(eq) ≡ 1
N0

∂ lnZ
∂h

, (2.5)

where 〈. . . 〉(eq) denotes the average over the canonical ensemble.

2.2.2 Quenching protocol and notations
Let us set the external magnetic field h to 0 and consider the system at equilibrium.
Under those assumptions, the symmetry of the problem imposes that every spin - taken
individually - has a 1/2 probability of being either in a +1 or −1 state:

∀i,P[si = +1] = P[si = −1] = 1/2. (2.6)
1Since the energy is always defined to within a constant, this term will not change the statistics
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Now, let us define a PQ protocol. We will fix the spins in the order in which they are
numbered since they are all statistically equivalent - and let the system re-equilibrate itself
after each quench. This procedure is equivalent to setting the “inter-quenching time” to
+∞ and allows us not to consider relaxation dynamics for now. This aspect will be
studied later in Chapter 4. Under this assumption, the “time” parameter that describes
the advancement of the process is the number of quenched spins, denoted by T .

The first spin s1, following Eq.(2.6), has a 1/2 probability to be fixed at ±1. This
breaks the system’s symmetry, as s1 now acts as a small external magnet that polarizes
the system to a +1 or −1 state, depending on the result of the first quench. For a
ferromagnetic system (i.e j0 > 0), the next spin s2 has a higher probability to be in
the same state as s1. Remarking that the remaining N0 − 1 spins are still statistically
equivalent because of the connected graph, we want the s2 quench probability to reflect
how polarized the free part is. We can thus write :

E[s2|s1] = 〈si〉(eq)
T=1 ∀i ∈ {2, . . . , N0}. (2.7)

Note that the left-hand-side (l.h.s) expectation in Equation (2.7) corresponds to the
quenching probability measure, which is entirely different from the canonical one of the
right-hand-side (r.h.s). More explicitly, the object s2 of the l.h.s is among the quenched
part of the system, whereas on the r.h.s, it is among the free part.

Now that we understand how the quenching process works initially let us consider that
T spins have already been quenched. The number of remaining free spins is denoted by
N = N0 − T , and the quenched magnetization is MT = ∑T

i=1 si. The Hamiltonian given
by Eq.(2.3) now reads:

HT,MT
= − j0

2N0

MT +
N0∑

i=T+1
si

2

(2.8)

= − j0

N0

∑
T+1≤i<j≤N0

sisj − hT
N0∑

i=T+1
si + CT , (2.9)

where hT ≡ (j0/N0)MT is the quenched molecular field, and CT is an additive constant
which depends of MT . From Eq.(2.8), we can notice that the influence of the quenched
part on the free part depends only on MT and not individual spin values. Moreover, with
the parallel between Eqs. (2.2) and (2.9), this influence is equivalent to the effect of an
external magnetic field of intensity hT that may polarize the system.

The mean magnetization of the unquenched part, denoted by m(eq)
T,MT

, is given by :

m(eq)
T,MT

= 〈si〉(eq)
i∈{T+1,...,N0} = 1

N

∂ lnZT,MT

∂h
(2.10)

with the partition function ZT,MT
being:

ZT,MT
=

∑
{sT+1,...,sN0}

e−βHT,MT . (2.11)

Note that m(eq)
T,MT

is function of both T and MT . Moreover, during the PQ process, the
effective size of the system N is decreasing, whereas T is increasing. Following the rea-
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Initial system 
N0 = 9

First Quench 
 and T = 1 N = 8

s1

Second Quench 
 and T = 2 N = 7

s1

s2

Final quenched system

Equilibration Equilibration

Intermediate state

Figure 2.1: Schematic summary of the PQ process defined on the Curie-Weiss model,
drawn for N0 = 9 spins. The red dots and connections correspond to the free spins and
their interactions, whereas the blue ones correspond to their quenched equivalents.

soning of Eq.(2.7), the next quenched spin, sT+1, will take the ±1 value with expectation:

E[sT+1|s1, s2, . . . , sT ] = 〈si〉(eq)
T ∀i ∈ {T + 1, . . . , N0} (2.12)

= m(eq)
T,MT

(2.13)

and from the normalization condition we get:

P[sT+1 = ±1|s1, s2, . . . , sT ] = 1±m(eq)
T,MT

2 . (2.14)

We can now repeat this process until all the N0 spins are quenched and the whole system
is fixed. Figure 2.1 summarizes the process graphically.

2.2.3 An integral formulation of the magnetization
For numerical computations and simulations, we may want to have a different formulation
of m(eq)

T,MT
from Eq.(2.10), which is demanding in CPU time. Let us first re-write the

Hamiltonian, starting from Eq.2.8. We will denote the unquenched magnetization by
µ = ∑N0

i=T+1 si

HT,MT
= − j0

2N0

MT +
N0∑

i=T+1
si

2

= − j0
2N0

(
M2

T + µ2 + 2µMT

)
(2.15)

= −aµ− bµ2 − bMT (2.16)
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with a ≡ j0MT

N0
and b ≡ j0

2N0
. From the Gaussian integral
∫ +∞

−∞
exp

(
−by2 + 2bµy

)
dy =

√
π

b
ebµ

2
, (2.17)

we get the integral formulation for the exponential of the Hamiltonian :

exp(−HT,MT
) = exp

(
aµ+ bµ2 + bMT

)
(2.18)

= ebM
2
T

√
b

π

∫ +∞

−∞
e−by

2
e(a+2by)µdy. (2.19)

We can now compute the partition function from Eq.(2.11):

ZT,MT
=

∑
{sT+1,...,sN0}

e−βHT,MT

= ebM
2
T

√
b

π

∫ +∞

−∞
e−by

2 ∑
{sT+1,...,sN0}

e(a+2by)µdy, (2.20)

where the sum of exponentials yields:∑
{sT+1,...,sN0}

e(a+2by)µ = 2N coshN(a+ 2by). (2.21)

We finally get the Hubbard-Stratonovitch transformation [36, 37] of the partition function:

ZT,MT
=
√
b

π

∫ +∞

−∞
exp

[
bM2

T − by2 +N log[2 cosh(a+ 2by)]
]

dy. (2.22)

Moreover, we get from Eqs. (2.11) and (2.16):

ZT,MT
=

∑
{sT+1,...,sN0}

ebM
2
T+aµ+bµ2

, (2.23)

that allows for an alternative derivative definition of m(eq)
T,MT

:

E[µ] = ∂

∂a
logZT,MT

= Nm(eq)
T,MT

(2.24)

⇔ m(eq)
T,MT

= 1
N

∂

∂a
logZT,MT

(2.25)

The numerical values ofm(eq) used to simulate PQ processes for the following analyses were
computed with both symbolic and numerical libraries (SymPy and Numpy in Python3 or
using built-in Mathematica functions) from Eqs. (2.23) and (2.25). We avoided the usage
of the saddle-point evaluation since such approximation brought non-negligible differences
in the system-size dependence.
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2.3 Trajectories and biased random walks
At the end of a PQ process, we obtain a series of quenched spin values {s1, . . . , sN0}
that can be seen as a random walk. We can indeed follow the evolution of the quenched
magnetization MT with respect to T , respectively, as a “position” and a “time”. This
discrete random walk is Markovian, as the next position probability distribution only
depends on the present one. Thus, we may view its evolution it in a triangular network,
parametrized by T and MT , with each node corresponding to a value of m(eq)

T,MT
. (see

Fig.2.2 for an illustration).

(eq)

T,M(       )
T

M

m1−

m1+
T, M

T, M

2

2

(eq)

Figure 2.2: Markovian biased random walk corresponding to the present model of progres-
sive quenching. From each node (blue (thick) dot) in the transition network, (T,M), the
possible branched transitions, M →M±1, occur with the probabilities, (1±m(eq)

T,M)/2,
which corresponds, respectively, to fixing sT+1 at ±1.

The stochastic evolution is given by:

MT+1 = MT + sT+1. (2.26)

trajectories (i.e realizations of {MT}T∈{1,2,...,N0} with respect to T ) are plotted for different
values of j0 in figures 2.3a and 2.3b. Those two pictures showcase how j0 controls how
polarized the trajectories are. We may understand the typical behaviors with two-limit
cases.

Simulations techniques We can simulate PQ individual trajectories, either by sam-
pling spin configurations with a local Metropolis-Hastings algorithm [38], or for larger
systems, a cluster Metropolis procedure [39, 40], or either with an exact enumeration,
by computing all possible values of m(eq) at each node of the triangular network (see
Fig.2.2) using Eq.2.25. The implementation of the PQ process in the first case is rela-
tively straightforward. Once we reach an equilibrium configuration, the quench spin is
removed from the “spin-flip” routine implemented in the Metropolis algorithm to freeze
it effectively. However, the CPU time needed to reach a statistically relevant probability
distribution for large systems was very high, so the second option was preferred.
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(a) Sample PQ trajectories in the normal-
ized triangular network (T/N0,MT /N0),
with a “small” (j0 = 0.05) coupling.
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(b) Sample PQ trajectories in the normal-
ized triangular network (T/N0,MT /N0),
with a “high” (j0 = 1.5) coupling.

Figure 2.3: Trajectories (evolution ofMT ) in the two limit cases plotted for N0 = 28 = 256

2.3.1 No-coupling limit
If we set the coupling constant j0 to 0, all spins are decoupled and independent. Then, at
equilibrium, all spin configurations are equiprobable regardless of the quenched part and
∀T ∈ {1, . . .N0},∀MT with −T ≤ MT ≤ +T , we have m(eq)

T,MT
= 0. This corresponds

to an unbiased random walk with a binomial distribution. More precisely, the probability
of having a final quenched magnetization MN0 = M is:

P[MN0 = M ] = 1
2N0

(
N0

M+N0
2

)
, (2.27)

since they are exactly
(

N0
M+N0

2

)
spin configurations with a magnetization M , all having

a probability 1/2N0 . The maximum probability corresponds to the paramagnetic (i.e.,
unmagnetized) stateM = 0. The shapes (i.e., the re-scaled probabilities so that all
maximum values are 1) of the distribution given by Eq.2.27 with respect to the sys-
tem size N0 are plotted in Figure 2.4. The central-limit theorem [41] allows us to write
P[MN0 = M ] ≈

√
2

πN0
exp(−2M2/N0) for large N0

2.3.2 Strong-coupling limit
On the contrary, if we set j0 to +∞, the only possible configurations are the two completely
polarized ones: {+1,+1, . . . ,+1} and {−1,−1, . . . ,−1}, which both have, by symmetry,
a 1/2 probability. The result of the first quench, inducing a complete polarization of the
other spins, will then decide in which direction the trajectory will go. The maximum
probability thus corresponds to a non-zero magnetization and a ferromagnetic state. For
high but not infinite j0, the trajectories still have a polarized -or ferromagnetic - profile, as
pictured in Fig.2.3b. From this short analysis, we can distinguish two cases depending on
the value of j0: whether the maximum probability is reached for M = 0 - in this case, the
probability distribution is said “unimodal” - or for a non-zero magnetization (“bimodal”
distributions). The frontier between those two cases is closely related to the Curie point
and the ferromagnetic/paramagnetic transition in infinite models. Below, we explore this
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Figure 2.4: Scaled PQ distribution for j0 = 0, with respect to M/N0, plotted for different
N0. Each curve was rescaled so that P[MN0 = 0] = 1, to compare the relative shapes.
Note that each curve has N0 +1 points (the number of possible magnetization values with
N0 spins).

“critical” case for finite systems.

2.3.3 Critical coupling and general formulation
Our interest is to set our problem between those two limit cases, where the results are not
as predictable. From here, and for the rest of the analysis of the simulations, we will focus
on the system that starts from the “critical” point under zero external field (h = 0). For
finite systems, the “critical” point, j0,crit, is defined as the value of coupling j0 at which
the magnetic susceptibility χ = ∂m(eq)/∂h|h=0 is at its maximum - as an analogy to the
infinite case where jcrit = 1 and χ→ +∞. We recall that for N0 →∞ the Curie point is
j0 = 1 because m(eq) verifies the self-consistent equation m(eq) = tanh(β[j0m

(eq) + h]) in
this limit. Its numerical value is determined through extrapolation of the Curie law from
the paramagnetic side, represented by the form:

χ−1 ∝ j0,crit − j0, j0,crit > j0. (2.28)

Empirically, the value of j0,crit fits well with the power-law

j0,crit ' 1 + 5.06N0
−0.933 (2.29)

over the size-range N0 = 25-213. We do have j0,crit → 1 as N0 → +∞, recovering the
mean-field results of the infinite-range Ising model. The numerical computations of m(eq)

for different j0j were performed following Eq.(2.25).
Some trajectories at the critical coupling j0,crit are plotted in Fig.2.5b. We immediately

notice that the curves are not like the unbiased random walk of Fig.2.3a. Rather, MT

in the late stages varies mostly linearly with T . This feature is also common to the
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from Eq.2.29
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(b) Sample PQ trajectories at critical coupling
j0 = j0,crit, plotted for N0 = 28 spins.

Figure 2.5

“ferromagnetic” case (j0 = 1.5) in Fig.2.3b. In Fig. 2.6 we superposed trajectories over a
contour map of the equilibrium spin m(eq). We observe qualitatively that the individual
evolutions tend to follow a trajectory where the value ofm(eq)

T,MT
is kept mostly constant.

The system thus exhibits a long-term memory of this value. This particular point is the
starting point of the martingale analysis that will follow in the next chapter.

In general, the path probability P[{s1, . . . , sT}] of the history of quenched spins up to
the step T , {s1, . . . , sT}, can be constructed and is written as

P[{s1, . . . , sT}] = 1
2T

T∏
T ′=1

(
1 + sT ′m

(eq)
T ′−1,MT ′−1

)
. (2.30)

Since 2−T is the path probability of an unbiased (j0 = 0) quenching of T spins, the
product RT ≡

∏T
T ′=1

(
1 + sT ′m

(eq)
T ′−1,MT ′−1

)
can be identified as the so-called Radon-

Nikodym derivative (or functional), that relates both current biased and unbiased path
probabilities [42]. Moreover, RT is a martingale with respect to this unbiased process,
meaning E0[RT + 1|s1, . . . , sT ] = RT , where E0 represents the conditional expectation
over the unbiased process. This perspective aligns with the work of [24, 43] and their
interpretation of the martingale in the context of the Jarzynski and Crooks equalities
[7, 44]. However, in the case of Progressive Quenching, we will demonstrate that the
mean equilibrium spin, m(eq)

T , eventually exhibits martingale-like behavior through a
distinct physical mechanism compared to path probability ratios. This, along with the
study of the magnetization probability distribution, will be the study of the next chapter.

2.4 Conclusion
This chapter presents how Progressive Quenching may be applied to the Curie-Weiss
model when we set the quenching time intervals to several equilibration times (strictly
speaking, it is set to ∞). In this case, the coupling between the quenched and free
parts appears explicitly in the update rule (Eqs. (2.14) and (2.26)) - through the free
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Figure 2.6: Trajectories plotted for j0,crit overlayed with iso-m(eq) contour areas in the
network. The darker the contour is, the lower the corresponding m(eq) value is. (Figure
extracted from [1])

mean magnetization m(eq). By following the evolution of the quenched magnetization
MT = ∑T

i=1 si, we can distinguish two limit cases according to the value of the coupling
constant j0 and deduce a limit case corresponding to the finite equivalent of the critical
coupling. Nevertheless, in general, we noticed graphically that trajectories tend to follow
straight lines, which corresponds to iso-m(eq) lines. This aspect, as well as the structure
of equation (2.30), puts us on the track of a martingale governing the process evolution.
We will follow this track in the next chapter and use some specific martingale theorems
to study the effect of perturbations during the PQ.

A possible real-life example of such systems is found in the context of decision-making
where the results of preliminary surveys are updated frequently (e.g.. online opinion
surveys) before a referendum will represent those who already made up their mind. They
can influence all those people who do not yet make up their minds. The choice of being
at the critical coupling may be justified since important referendums are often done when
the public opinion is little stable. In this context, the memory effects showcased by
simulations show that the opinion of the first few determined persons may have a decisive
impact. The PQ procedure is also reminiscent of greedy algorithms. Those algorithms
make a sequence of choices that are in some way the best available at each step, and never
go back on earlier decisions. See [45] and the references cited therein.
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Appendix: Martingale property of path probability
ratios.
In the context of stochastic processes within physics, martingale properties can manifest,
particularly in the study of path probability ratios, which are integral to understanding
entropic contributions and play a significant role in stochastic thermodynamics [26].

The path probability of a Progressive Quenching (PQ) process, up to T quenched
spins, can be expressed as follows:

P(s1, . . . , sT ) = 1
2T

T∏
T ′=1

(
1 + sT ′m

(eq)
T ′−1,MT ′−1

)
(2.31)

=
(
dP
dP0

)
T

× P0(s1, . . . , sT ), (2.32)

where P0(s1, . . . , sT ) ≡ 2−T represents the probability of an unbiased, uncorrelated
spin configuration. Additionally, the expression:

(
dP
dP0

)
T

=
T∏

T ′=1

(
1 + sT ′m

(eq)
T ′−1,MT ′−1

)
(2.33)

denotes the “Radon-Nikodym derivative”, acting as the conversion factor from the
unbiased random walk to the biased random walk defined by Eqs.(2.14) and (2.26). In
this case, (dP/dP0)T is denoted as RT in the main text. The marginal normalization
condition for 1 ≤ T ≤ N0 − 1, which can be rephrased as:

E0

[(
dP
dP0

)
T+1

∣∣∣∣∣ s1, . . . , sT

]
=
(
dP
dP0

)
T

, (2.34)

where E0 represents the conditional expectation of (dP/dP0)T+1 with respect to the unbi-
ased spin (in this case, sT+1 only) given the values {s1, . . . , sT}. Consequently, the stochas-
tic process (dP/dP0)T exhibits a martingale property concerning the unbiased stochastic
process s1, . . . , sT . The path-probability normalization condition, ∑s1,...,sT P(s1, . . . , sT ) =
1, can be expressed in terms of the unconditional expectation over all the unbiased stochas-
tic processes as follows:

E0

[(
dP
dP0

)
T

]
= 1. (2.35)

The last relation can be obtained through iterative application of (2.34) down to T = 0,
when

(
dP
dP0

)
T=0

equals unity. This is a general consequence of the martingale property
under specific conditions and is referred to as the optional stopping theorem (for more
details, refer to [46]).

The martingale property of the Radon-Nikodym derivative has recently been intro-
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duced into the field of physics by [24, 43], where P and P0 represented the path probabil-
ities for the forward and time-reversed processes, respectively. Equation (2.35) essentially
corresponds to the equalities of Jarzynski [7] and Crooks [44]. Their work advanced our
comprehension of entropy production as an action functional and introduced the con-
cept of stopping time [47, 48, 49, 27], such as the random cycle duration of autonomous
mesoscopic heat engines [50].



Chapter 3

Distributions, Perturbations and
Martingales

3.1 Introduction

Following the paradigm established in the last chapter, we study the probability distri-
butions of magnetizations during and after a PQ process. First, we will establish the
martingale property that governs the system’s evolution. This property corresponds to
the case where an observable undergoing a stochastic process - say, for example, m̂T ,
where T is time - evolves such that the conditional expectation of m̂T+1 at time T + 1
remains equal to m̂T under the given history of the system up to T , that is:

E[m̂T+1|FT ] = m̂T . (3.1)

The notation E[X̂|FT ] corresponds to the conditional expectation of the random variable
X̂ given the history up to T , with FT being the corresponding filtration. Physically, FT
corresponds to the sum of available information about the system up to time T - so we
cannot see the future. Indeed, as our notation may suggest, the equilibrium average of the
unfixed spins after the fixation of the T -th spin m(eq)

T verifies Eq.(3.1). For the sake of
simplicity, we will drop the hat symbol of random variables in probability and expectation
equations. Therefore E[m̂(eq)

T,MT
] will read E[m(eq)

T,MT
]. Similarly, when the value of MT is

not specified, we simplify m(eq)
T,MT

to m(eq)
T .

While physics has used martingale properties as a technical tool, their physical mean-
ings and consequences have rarely been exploited. Besides, detailed fluctuation theorems
have recently been recognized as martingales of path probability ratios [24, 43, 51]. The
reader may refer to Section 1.2 for a short introduction to martingales in stochastic pro-
cesses. The present analysis aims at uncovering a different physical mechanism of the
martingale property, whose necessary consequence is that the initial stochastic history
has strong and long-lasting effects on the subsequent process.

Once this claim is proven, we need to study the final magnetizations’ statistical distri-
bution resulting from the previous chapter’s trajectories. We will, therefore, study their
probability distributions and the effect of system size on them. In particular, we will show
that the distributions at critical coupling are all bimodal.

Finally, we will explore the mechanics of magnetization and apparent memory of the

45
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system during PQ with a perturbative approach. Indeed, if we recall the observations
of Sec. 2.3.3, the evolution of the fixed magnetization showed signs of long-term mem-
ory. A priori, the action of quenching breaks the local detailed balance associated with
the micro-reversibility at thermal equilibrium, thus linear response theory [52, 53] and
its fluctuation dissipation theorems [54] are not applicable [55, 56]. Much less is known
about the dynamic response of systems far from equilibrium, primarily when the elemen-
tary processes do not satisfy local detailed balance. Nevertheless, we want to quantify
this memory effect through a perturbative approach. Recently, the Malliavin weight sam-
pling technique, derived from Malliavin derivatives in the context of stochastic calculus
[57, 58, 59], has been introduced to study the dynamic response of stochastic systems
undergoing a general Markovian process without assuming local DB [60, 61, 62]. Thus,
we will revisit the PQ problem and directly analyze its response to the external field
perturbations using Malliavin weighting. We will also focus on the response of the to-
tal magnetization in the final state when all spins have been fixed. The power of the
martingale property of m̂(eq)

T will be demonstrated by estimating both perturbed and
unperturbed magnetization distributions from only early knowledge of the system. By
this framework, we will assert that when a physical observable of a system possesses the
martingale property, this property acts as a kind of stochastic conservation law, causing a
long-term memory in the system’s response, just like the proper conservation laws played
essential roles in the response theory of the equilibrium systems through the emergence
of hydrodynamic modes, either diffusive or propagative [63].

Most of this chapter is extracted from our 2020 paper [2], and the exact martingale
derivation is extracted from [3].

3.2 Martingale property

3.2.1 The original approximate approach

Ventéjou and Sekimoto [1] were the first to derive the martingale property, by an ap-
proximate approach, and is the starting point of our interest in Progressive Quenching.
They originally showed that, for a large enough unquenched system (i.e. N0 � 1 and
N = N0−T ∼ N0), the stochastic process corresponding to the equilibrium value of m(eq)

T

at stage T (defined by Eq.(2.10)) followed:

E[m(eq)
T+1|{s1, . . . , sT}] = m

(eq)
T +O( 1

N0
2 ). (3.2)

This equation, denoted “hidden-martingale” because it does not involve the quenched
processMT directly, has then sparked a lot of interested, even though it had error bounds.
In the original paper [1], the authors were able to deduce from it the “quasi-straightness”
of the contour plots observed in Fig. 2.6, and the fact that trajectories tend to follow
those contours. More precisely, the mean tangent of each trajectory approximately gives
the equilibrium mean spin value in the free part:

dM

dT
= m

(eq)
T,MT

+O(N0
−1). (3.3)
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along the contour m(eq)
T = cst. This particular equation showcases how a PQ realization

retains a sort of memory of the value of m(eq)
T , which mostly depends on the early stages of

the process. We then extended this particular observation to predict the future states of
a trajectory, see Section 3.5, and derived an exact formulation of the martingale property,
shown below.

3.2.2 An exact derivation for any homogeneous Ising spins
This derivation was performed later [3] when we understood the importance of the com-
plete coupling between each spin in the memory effects, as it is an essential parameter for
this exact derivation.

Let us consider an Ising system {sk}N0
k=1 that evolves under the rule such that each

unquenched spins are statistically equivalent (the system is then said “homogeneous”).
For example, when the spins up to T -th, {sT , . . . , s1}, with 0 ≤ T < N0 have been
quenched, the expectation mT,MT

should verify :

mT,MT
≡ E[sT+1|MT , . . . ,M0] = E[sN0|MT , . . . ,M0] (3.4)

Here the conditional expectation E[sN0|MT , . . . ,M0](= mT,MT
) should be defined in the

path-space such that the condition “MT , . . . ,M0” represents the history of quenching
under a given time protocol, and that the value of sN0 , or equivalently that of sT+1,
should be observed at the right moment when the latter spin is quenched.

The standard martingale theory tells : If Z and {Yi}’s are random variables with finite
expectations, the process {XT} defined by XT = E[Z|YT , . . . , Y0] is martingale with respect
to {YT , . . . , Y0}. In order to prove this, it suffices to use the following tower rule property
(also called the law of total expectations):

E[E[Z|YT+1, YT . . . , Y0]|YT , . . . , Y0]] = E[Z|YT , . . . , Y0]. (3.5)

In our context, we apply the mapping, {YT , . . . , Y0} 7→ {MT , . . . ,M0} (or, equivalently
{sT , . . . , s1}), XT 7→ mT,MT

and Z 7→ sN0 . We latter mapping as to be carefully justified
since the value of Z is effectively taken further in time. In our case, the mapping holds
thanks to the homogeneity mentioned above. We therefore have:

mT,MT
= E[sN0|MT , . . . ,M0], (3.6)

thus yielding

E[mT+1,MT+1 |MT , . . . ,M0] = E[E[sN0|MT+1, . . . ,M0]|MT , . . . ,M0]
= E[sN0|MT , . . . ,M0]
= mT,MT

. (3.7)

Therefore, mT,MT
is martingale process with respect to {MT , . . . ,M0}. This result holds

even for non-Markovian dynamics since the conditional expectation considers the whole
history, not just the last magnetization. However, our model of equilibrium quenching is
Markovian. Then (3.6) simply reads

m(eq)
T,MT

= E[sN0|MT ] = E[si|MT ], (3.8)
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that results in the martingale expression:

E[m(eq)
T+1|MT ] = m(eq)

T,MT
. (3.9)

Moreover, since any T ∈ {1, . . . , N0} is a stopping time (see Sec. 1.2), we get from Doob’s
optional stopping theorem:

E[m(eq)
T ′|MT ] = m(eq)

T , with T ′ > T. (3.10)

For the approximate martingale given by Eq.(3.2), we also have a similar equation, with
the propagation of error:

E[m(eq)
T ′|MT ] = m(eq)

T +O
(
T ′ − T
N2

0

)
, T ′ > T. (3.11)

3.2.3 A stochastically conserved quantity
Between two Progressive Quenching steps, the magnetization value of the free spins re-
mains, on average, constant. While in the early stages of the process, variations in its
value are substantial, they gradually diminish with each step. This effect is intuitively
understandable, as the individual contribution of each new spin to the external field hT
is of the order of 1/T . We may extrapolate this effect for large systems and write∥∥∥∥∥m(eq)

T+1,MT±1

m(eq)
T,MT

∥∥∥∥∥ T/N0=cte−−−−−→
T→∞

1. (3.12)

Therefore, adding one spin to an already large quenched part does not modify the free
part’s equilibrium much. Hence, we may understand the martingale equation (3.9) as a
stochastic conservation law, that is, conservation in expectation. Furthermore, since the
establishment of Lagrangian mechanics and Emmy Noether’s work, it is known that be-
hind every conserved quantity, there is usually an invariance or symmetry in the problem.
The exact derivation of the martingale law above showcases that the coupling between
spins on a complete lattice - and, therefore, the statistical equivalence of free spins is un-
doubtedly the underlying symmetry. Please note that this discussion is an interpretation
and does not rely on any Lagrangian formulation of the problem.

3.3 Distributions of magnetization
Now that the mechanisms governing the evolution of single trajectories are developed, it
is now time to delve deeper into the analysis of the statistical distribution of the final
magnetization MN0 and move beyond the basic analysis we conducted in the previous
chapter (Section 2.3).

3.3.1 A transfer matrix formulation of the master equation
Instead of simulating the path ensemble, which would cost O(2N0) trials, we can solve the
master equation for the distribution of M̂T , the random variable associated to the value
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ofM at stage T , which costs no more than an algebraic power of N0. By definition of PQ,
the partition between the system and the external system (i.e., fixed spins) is not static.
We can, nevertheless, reformulate the evolution as that of a super-system which is adapted
to the transfer matrix method: The stochastic process of M̂T vs T with 0 ≤ T ≤ N0 is
represented as the transfer of (2N0 + 1)-dimensional vector, ~P (T ) = {P (T )

M }N0
M=−N0 . The

initial state ~P (0) is P (0)
0 = 1 forM = 0 and P (0)

M = 0, otherwise. The transition from stage
T to the next one can be represented by a transfer matrix, W(T+1←T ), such that

P
(T+1)
M =

T∑
M ′=−T

(W(T+1←T ))M,M ′P
(T )
M ′ (3.13)

or, in vector-matrix notation,

~P (T+1) = W(T+1←T ) ~P (T ) (3.14)

for 0 ≤ T ≤ N0−1. The component of the matrix, (W(T+1←T ))M ′,M , is the conditional
probability that the fixation of the (T + 1)-th spin makes the total fixed magnetization
change from M to M ′. By definition of PQ the only non-zero components of W(T+1←T )

are (W(T+1←T ))M±1,M with |M | ≤ T and M ≡ T (mod 2). The transitions in the absence
of perturbation (i.e., with T 6= T0) gives

(W(T+1←T ))M±1,M = (1±m(eq)
T,M)/2 (3.15)

corresponding to the fixation of the spin, ŝT+1 = ±1, respectively. Using this notation,
the final probability distribution of the total magnetization MN0 in the absence of the
perturbation reads,

~P (N0) = W(N0←N0−1) · · ·W(1←0) ~P (0). (3.16)
This method was used to compute numerically all of the distributions shown below.

3.3.2 Fixed magnetization distribution description

The martingale property of individual histories holds memory of early stages of the trajec-
tory that, we anticipate, will significantly affect the subsequent process’s outcome. Figure
3.1 illustrates the evolution of the probability distribution’s of the mean fixed spin value,
MT/T, from stage T = 24 up to the final stage T = N0 = 28. Calculations were performed
by solving the discrete “time" master equation for the biased random walk described in
Fig. 2.2. At the critical coupling j0,crit, the Progressive Quenching results in a split of peak
of theMT/T distribution: the distribution switches from a “unimodal” shape (that is, the
distribution reaches its maximum for M = 0) to a “bimodal” one (where the maximum
is reached for any M 6= 0 values). Nonetheless, no bifurcation appears in the transition
network, as can be seen from the example histories in Fig. 2.5b. In order to understand
this transition, we may plot the probability densities of MT/T for those histories starting
from the polarized stateM1 =+1 (Fig. 3.2). The distribution in Fig. 3.1 can be recovered
by taking the average of the result in Fig. 3.2 and its mirror image about the vertical axis,
which corresponds to the M1 = −1 initial condition. In Fig. 3.2, the peak is well off the
vertical axis from the beginning, and it only sharpens with the progression of quenching.
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These results highlight the significance of the stochastic events during the initial phases
of the process, and will be extended by the perturbation analysis in the next section.
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Figure 3.1: Probability distributions (rescaled) of the mean spin value, MT/T , in the
quenched part at different stages, T = 2k for k = 4− 8 with fixed system size, N0 = 28 =
256. The initial condition is M0 = 0, and j0 = j0,crit.

3.4 Perturbation analysis

3.4.1 Unperturbed evolution
Let us briefly recapitulate the case where no external perturbations were applied. We only
show the evolution of the probability distribution ofMT , which is relevant to the following
analysis. Fig.3.3(a) shows individual snapshots of the distribution of MT for the system
of N0 = 28 spins (same system as Figure 3.1). These have been obtained essentially by in-
terrupting the calculation of Eq.(3.16) at the midpoint; ~P (T ) = W(T←T−1) · · ·W(1←0) ~P (0).

The coupling parameter j0 is on the single phase side, i.e., j0 ≤ j0,crit. But if j0 is not
far below the critical one, the distribution develops a bimodal shape, as seen in Figs.3.1
and 3.3(a). On the other hand, if 0 ≤ j0 < j∗0(< j0,crit) with some threshold coupling j∗0 ,
then the peak remains unimodal until the final stage. For example, with j0 = 0 the ~P (T )

is a symmetric binomial distribution. Whether or not ~P (T ) develops a bimodal profile
depends on the relative importance of the memory of the early stages, such as the value
of ŝ1 = ±1. The memory of these stages is kept tenaciously in any case. However, it can
be blurred by the noises if the system’s (paramagnetic) susceptibility in the early stages
is not large enough. This qualitative explanation will become clearer later regarding the
hidden martingale (Sec.3.5.3).
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Figure 3.2: Rescaled probability distributions of the mean spin value, MT/T , in the
quenched part at different stages, T = 2k for k = 4 − 8 with the fixed system size,
N0 = 28 = 256. The initial condition is M1 = 1 and j0 = j0,crit.

We recall that the appearance of the bimodal profile of P (N0) is not the result of the
first order transition. The system is finite, therefore the magnetic susceptibility χ cannot
diverge. Moreover, the system of unfrozen spins is in the single para-magnetic phase
because the effective coupling among them, jeff = (1 − T

N0
)j0,crit, is below critical for all

W(T+1←T ) (1 ≤ T ≤ N0).

3.4.2 Application of the perturbation:
In the next section we will study the influences of the external field perturbation hext which
is applied uniquely at the stage-(T0 − 1). That is, in the presence of hext + hT0−1, where
hT0−1 is the quenched molecular field by the fixed spins, we re-equilibrate N0 − (T0 − 1)
spins before fixing the T0-th spin. If the external field is applied at the stage-(T0− 1), the
matrix W(T0←T0−1) should be modified; we denote the corresponding transfer matrix by
W(T0←T0−1)

hext . The perturbed process and the resulting final distribution, ~P (N0)
hext reads,

~P
(N0)
hext = W(N0←N0−1) · · ·W(T0+1←T0)

W(T0←T0−1)
hext W(T0−1←T0−2) · · ·W(1←0) ~P (0). (3.17)

The martingale property of m̂(eq)
T [1] is, therefore, interrupted upon the transition from

the stage-(T0−1) to the stage-T0. From the stage-T0 the martingale property of m̂(eq)
T with

T ≥ T0 holds de nouveau with the total fixed spin M̂T0 being the new initial condition.
The question is how the perturbation given to M̂T0 propagates up to the final value M̂N0
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and how the martingale property of m̂(eq)
T manifests itself in this propagation.

3.4.3 Sensitivity of final-state distribution to perturbations
The response to the perturbation given at the stage-(T0 − 1) can be studied in two com-
plementary ways, like the Fokker-Planck versus Langevin dynamics. In the present sub-
section we follow how the perturbation given to ~P (T0) is transferred to that in the final
distribution ~P (N0) through (3.17). This Fokker-Planck type approach is in line with the
Malliavin weighting [60, 61] when the perturbation is infinitesimal (see below). In the
following subsection (3.5.1), we instead focus on the evolution of M̂T from T = T0 up
to T = N0, similar to the Langevin equation but through the filter of the conditional
expectation, E[M̂T |MT0 ].

The direct consequence of the perturbation at the stage-(T0 − 1) is the shift of the
transfer matrix, ∆W(T0←T0−1) ≡W(T0←T0−1)

hext −W(T0←T0−1). As the result of the propaga-
tion of the shift, the final shift of the probability density reads,

~P
(N0)
hext − ~P (N0) = W(N0←N0−1) · · ·W(T0+1←T0)

∆W(T0←T0−1)W(T0−1←T0−2) · · ·W(1←0) ~P (0). (3.18)

In the case of the infinitesimal perturbing field, we deal with the linear response to
hext and calculate, instead of (3.18), the sensitivity

∂ ~P
(N0)
hext

∂hext
= W(N0←N0−1) · · ·W(T0+1←T0)

∂W(T0←T0−1)
hext

∂hext
W(T0−1←T0−2) · · ·W(1←0) ~P (0), (3.19)

where the partial derivative with respect to hext should be evaluated at hext = 0 and
the only non-zero components of ∂W(T0←T0−1)

hext /∂hext are ∂(W(T0←T0−1)
hext )M±1,M/∂hext =

±χ(eq)
T0−1,M/2 for |M | ≤ T0 − 1 with χ

(eq)
T,M ≡ ∂m

(eq)
T,M/∂hext being the susceptibility at the

stage-T under a molecular field, hT = j0
N0
M. The approach of Malliavin weighting [60, 61]

is essentially the path-wise expression of (3.19), see Appendix 3.6 for a more detailed
account. In Fig.3.3 (b) we plotted the result in (3.19) vs MN0/N0 of the system with
the size N0 = 28 = 256. Depending on the stage of perturbation (T0 = 24 = 16 or
T0 = 27 = 128) the sensitivity qualitatively changes; see below.

In the case of the infinite perturbing field hext = +∞, we calculate directly (3.18),
where the transition rates upon the perturbed stage read (W(T0←T0−1)

hext )M+1,M = 1 with
|M | ≤ T0 − 1 and all the remaining components of W(T0←T0−1)

hext are zero. Therefore the
only non-zero components of ∆W(T0←T0−1) are ∆(W(T0←T0−1))M±1,M = ±(1−m(eq)

T0−1,M)/2
for |M | ≤ T0 − 1. In Fig.3.3(c) we monitored ~P

(N0)
hext − ~P (N0) vs MN0 as the response to

the infinite perturbation, hext = +∞. This response is qualitatively similar to the linear
response of the distribution (Fig.3.3(b)), except for a positive bias around MN0 = 0
in the former case. We notice the two common trends for both types of perturbation:
(i) The response is stronger when the perturbation is given at the early stage, which
is contrasting to the equilibrium system for which the impact of perturbation should
be strongest if given most recently, i.e., with the largest T0. (ii) The profiles of the
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Figure 3.3: (a) The unperturbed evolution of the probability of the total fixed magneti-
zation, M , at three different numbers of fixed spins, T = 24, 27 and T = 28 = N0. (b) The
linear response of the final distribution P (N0) to the infinitesimal perturbations given at
the different stages, T0 = 24 (top) and 27 (bottom). The system size scales the horizontal
axis. (c) The response of the final distribution P (N0)

hext to the infinite perturbation given at
the different stages, T0 = 24 (top) and 27 (bottom). The insets show the final perturbed
distributions.

response reflect the distribution at the stage when the perturbations have been applied:
If a perturbation is given when the unperturbed distribution of M is still unimodal (i.g.
T0 = 24), the density response in the final magnetization resembles theM -derivative of the
unimodal distribution at the stage-T0. (Notice, however, that the width of the distribution
is “magnified” from |M | ≤ T0(= 16) to the final one ranging over |M | . 0.7×N0(' 180).)
Similarly, if the perturbation is given in the late stage (e.g., T0 = 27), the final response
resembles the M -derivative of the bimodal distribution at T0. This trend (ii) suggests an
underlying mechanism by which the individual realization of PQ keeps the memory of the
stage when the perturbation is given. As noted in Sec.3.4.1, the possibility of first-order
transition is excluded. We will see later in Sec.3.5.1 (especially Eq.(3.21)) that the origin
of the memory is the (hidden) martingale property of m(eq)

T,M̂T
.

3.5 Martingale analysis

3.5.1 Mean response of the final magnetization, E[M̂N0]

We study the mean response of the total spin at the final stage, E[M̂N0 ], when an infinite
perturbing field (hext = +∞) is applied at the stage-(T0 − 1), just before fixing the T0-th
spin. While this mean value E[M̂N0 ] can be calculated through (3.17), here we will take
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T0

Figure 3.4: (Left) Unperturbed (T,MT ) network. (Right) Network where the infinite-field
perturbation is applied towards the +1 direction at stage T0.

a different approach;

E[M̂N0 ] =
T0∑

M=−T0

E[M̂N0|MT0 = M ]P (T0)
hext (M), (3.20)

where E[M̂N0|MT0 = M ] is the conditional expectation. By (W(T0←T0−1)
hext )M+1,M , which is

described in the last paragraph of Sec.3.4.3, P (T0)
hext (M) is the shifted copy of the previous

stage, that is, P (T0)(M+1) = P (T0−1)(M) for |M | ≤ T0−1 and P (T0)(−T0) = 0. Therefore,
for T0 not very large (� N0) the calculation of P (T0)

hext (M) is a relatively light calculation.
As for the conditional expectation E[M̂N0|MT0 = M ], if we use the martingale property
of m(eq)

T,M̂T
for the unperturbed process T0 ≤ T ≤ N0 (Eq.(3.9)), we can show the compact

result:
E[M̂N0|MT0 = M ] = M + (N0 − T0)m(eq)

T0,M . (3.21)
Therefore, (3.20) reads finally

E[M̂N0 ] = E[M̂T0 ] + (N0 − T0)E[m(eq)
T0,M̂T0

]. (3.22)

Note that (3.22) does not require the calculation of transfer matrices beyond the stage-T0.

The relation (3.21) comes out from a more general statement about the mean increment
rate of M̂T :

E[M̂T −MT0

T − T0
|MT0 = M ] = m

(eq)
T0,M (3.23)

for T0 < T ≤ N0. The derivation is given in a dedicated section below (3.5.2), where we
use the martingale property of m(eq)

T,M̂T
. The relation (3.21) tells us that the impact of

perturbation is directly transmitted by the martingale observable, m(eq)
T,M̂T

. This opens the



3.5. MARTINGALE ANALYSIS 55

Perturbation time T0/N0

M
ea

n 
m

ag
ne

tiz
at

io
n 

𝔼[M̂
N 0

]/N
0

Figure 3.5: Mean response of the magnetization, E[M̂N0 ], to the perturbation hext = +∞
applied at the stage-T0.

possibility to predict approximately the final distribution P (N0)(MN0) from the data at the
stage-T0 when the perturbation is given (see Sec.3.5.3 below) and then to understand bet-
ter the result of Sec.3.4.3. Because it is only in the expectation the mean increment rate,
M̂T−MT0
T−T0

|MT0=M , is kept constant over T0 < T ≤ N0, we call it the stochastic conservation.

In Fig. 3.5 we plot the mean values of the final magnetization, E[M̂N0 ], The different
curves in Fig. 3.5 correspond to the different system sizes, N0 = 26, 27, and 28. Both axes
are rescaled by the system sizes. The formula Eq.(3.22) reproduces E[M̂N0 ] so well that
the deviation from the full numerical results using P (N0)

hext (M) is within the thickness of the
curves. That the mean response of the frozen spin, E[M̂N0 ]/N0 decreases with the system
size N0 is consistent with our previous observation in Sec.3.4.3, especially Fig.3.3(c).

3.5.2 Derivation of Eq.(3.21)

The total fixed spins M̂T at the stage-T with T0 < T ≤ N0 reads M̂T = M̂T0 +∑T
j=T0+1 ŝj,

where ŝj is the value of the spin, which is fixed in the j-th quenching. Taking the
expectation of the above formula, i.e.,

E[M̂T |M̂T0 = MT0 ] = MT0 +
T∑

j=T0+1
E[ŝj|M̂T0 = MT0 ], (3.24)
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we will focus on E[ŝj|M̂T0 = MT0 ]. For T0 < T ≤ N0 the last quantity can be transformed
as

E[ŝT |M̂T0 = MT0 ] = E
[
E[ŝT |M̂T−1] |M̂T0 = MT0 ]

]
= E

[
m

(eq)
M̂T−1
|M̂T0 = MT0

]
= m

(eq)
M̂T0

, (3.25)

where, in order to go to the last line, we have used (3.10) with (T ′, T ) there being replaced
by (T, T0) here, respectively. By choosing T = N0 we arrive at Eq.(3.21). Equation (3.25)
can also be derived with approximation, using the approached stopping time theorem
given by Eq.(3.11).

3.5.3 Hidden martingale property predicts final distribution

The fluctuation property of m(eq)
T,M̂T

adds something on top of (3.21) when the system is
large enough in the sense of N0 � T0. Starting from the condition M̂T0 = M, the final
magnetization M̂T0 should scatter around E[M̂N0|MT0 = M ], but its standard deviation
should to be O((N0) 1

2 ), therefore, less dominant than the mean part, (N0 − T0)m(eq)
T0,M =

O(N0). This estimation of the standard deviation, O((N0) 1
2 ), is related to the so-called

martingale central-limit theorem (see, for example, Sec.3.3 of [64]) together with the
fact that m(eq)

T,M̂T
is non-extensive quantity of O(1). With the tolerance of O(N0

1
2 ) errors,

Eq.(3.21) leads, therefore, to a sort of geometrical optics approximation ([65]):

M̂N0

∣∣∣
MT0=M

= M + (N0 − T0)m(eq)
T0,M +O(N0

1
2 ). (3.26)

This estimation, in turn, allows us to reconstruct the final probability distribution P (N0)
hext (M)

versus M, see Appendix 3.5.4 for the detailed protocol. In Fig.3.6, we compare the final
distributions of M̂N0 , one by the geometrical optics approximation and the other by the
total numerical calculation of transfer matrix products. Naturally, the former method
gives a narrower distribution because this approximation ignores the broadening by the
standard deviation, ∼ (256) 1

2 ' 16. Amazingly, the geometrical optics approximation
can nevertheless predict the positions of bimodal peaks very well from the data of uni-
modal distribution at the stage-T0. When N0 and T0 constitute the double hierarchy
1� T0 � N0, our methodology will serve as a fine tool for numerical asymptotic analy-
sis. We have chosen the coupling j0 at the critical one, j0,crit because the predictability of
bimodal distribution from the unimodal stage looks impressive. Nevertheless, given the
tenacious memory, Eq.(3.26) and the predictability as its consequence also hold for the
weaker coupling with which the final distribution is unimodal.
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Figure 3.6: Comparison between the final distributions of MN0 predicted by the hidden
martingale property (joined T0 +1 dots) with those by full numerical solution (dense dots)
for hext = 0 (left) and for hext = ∞ (left) with T0 = 24 and N0 = 28. The probability
densities are rescaled in the figures so that their integral over M is normalized to unity.
The figures in inset show the probabilities P (T0) (left) and P (T0)

hext (right), respectively. Both
are singly peaked, but the latter is almost translocated by ∆M = +1.

3.5.4 Construction of final distribution from early stage one us-
ing martingale conditional expectation

For the simplicity of notations, we introduce (see (3.26))

µi = −T0 + 2i
mi = m

(eq)
T0,µi

xi = µi + (N0 − T0)mi, with i = 0, 1, . . . , T0

(3.27)

We will make up the final probability density p(x) so that its normalization is
∫ xT0
x0

p(x)dx =
1. We suppose that p(x) is piecewise linear whose joint-points are {xi, p(xi)}. The nor-
malization condition then reads

1 =
T0−1∑
i=0

p(xi) + p(xi+1)
2 (xi+1 − xi)

= p(x0)x1 − x0

2 +
T0−1∑
i=1

p(xi)
xi+1 − xi−1

2 + p(xT0)xT0 − xT0−1

2 . (3.28)

Then we define p(xi) through

p(x0)x1 − x0

2 = P
(T0)
hext (m0),

p(xi)
xi+1 − xi−1

2 = P
(T0)
hext (mi) i = 1, . . . , T0 − 1
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p(xT0)xT0 − xT0−1

2 = P
(T0)
hext (mT0) (3.29)

so that the “ray” of geometrical optics carries the probability from T = T0 to T = N0.
The martingale prediction of the probability densities in Fig.3.6 are thus made.

3.6 Conclusion
Using general terminology, let us first summarize the mechanism by which the martingale
property gives rise to a tenacious memory of the process. We will use the notation which
corresponds to the previous sections, such as M̂T or m̂T , but we don’t rely on the PQ
model.

Suppose that {M̂T} (0 ≤ T ≤ N0) is a stochastic process with the discrete time T and
has the increment, ŝT+1 ≡ M̂T+1 − M̂T . We assume that the probabilistic characteristics
of ŝT+1 is determined by the history of {M̂t} up to t = T, and that its conditional
expectation m̂T ≡ E[ŝT+1|FT ] is completely determined by the history up to T, denoted
by FT . With only these settings we can verify that R̂T ≡

∑T−1
t=0 (ŝt+1 − m̂t) is martingale,

i.e., E[R̂T+1|FT ] = RT , the fact which is known as Doob-Lévy decomposition theorem
[66, 46]. The martingale of our concern, however, is not this one, but we add another
layer; we suppose that {m̂T} is again martingale, that is, E[m̂T+1|FT ] = m̂T . This is why
the latter is denoted by “hidden martingale”. The outcome is that we have

E[M̂T |FT0 ] = M̂T0 + (T − T0)m̂T0 , T > T0, (3.30)

which we can verify by following the same argument as in Sec. 3.5.2.
Eq.(3.30) tells how the hidden martingale property of {m̂T} transmits the memory

of the past data without exponential or power-low decay. This relation is the general
outcome of the hidden martingale and has nothing to do with the origin of the hidden
martingale. Especially in our PQ model, the relation Eq.(3.21) represents the tenacious
memory whether the distribution P (N0)(M) is unimodal or bimodal.

For completeness, we also write down the continuous-time counterpart: Suppose that
{M̂t} (0 ≤ t ≤ t0) is a stochastic process with the continuous time t and we denote the
increment by dM̂t ≡ M̂t+dt − M̂t. We assume that the probabilistic features of dM̂t is
determined by the history of {M̂τ} up to τ = t and its conditional expectation m̂t dt ≡
E[dM̂t|Ft] is completely determined by the history up to t, denoted by Ft. Then by Doob-
Lévy decomposition theorem [66, 46], and the martingale central-limit theorem (see, for
example, Sec.3.3 of [64]) allow us to represent the stochastic evolution of M̂t in the form
of stochastic differential equation

dM̂t = m̂t dt+ b̂t · dŴt, (3.31)

where the second term on the r.h.s. is an Itô integral with a Wiener process, Ŵt. Now if
we further suppose that {m̂t} is martingale, then we have

E[M̂t|Ft0 ] = Mt0 + (t− t0)m̂t0 , t > t0 (3.32)

because E[dM̂t|Ft0 ] = E[m̂t|Ft0 ]dt = m̂t0dt holds for t > t0.
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Moreover, we may compare the PQ with some of the “linear voter models” that may
exhibit martingale properties; see [67] for an introduction. In a typical example, the binary
([1, 0]) site (say xi) and its neighbor (say xi + ni) are chosen at random at each discrete
time step and the state of x copies the state of x+n. In that model, Mt := ∑N0

i=1 xi(t)/N,
where N is the system size, is deemed to be either 1 or 0, according to the so-called
martingale convergence theorem (see, for example, [68] Sec. 11.2). At the same time, the
mean ofM∞ isM0/N by the martingale property ofMt. If we compare such a model with
our PQ of spins, a difference is that Mt of the voter model eventually goes only to 1 or 0,
unlike our PQ, while the similarity is that (i) both models have a martingale observable,
and (ii) the individual realization tends to be polarized due to the interaction with the
environment with a long memory.
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Appendix: Simple summary of Malliavin weighting
In this Appendix, we explain the Malliavin weighting introduced by Warren and Allen
[61] following the work of Berthier [60]. The evolution of the probability distribution from
the initial one to the final one is given as the matrix-vector product like (3.16) or (3.17)
in the main text. These products can be regarded as discrete path integrals because the
different paths to reach the final state M̂N0 form the initial one M̂0(= 0) are mutually
exclusive and each path [M ] contributes to the path integral by the transfer weight,

W [M ] :=
N0−1∏
T=0

W(T+1←T )
MjT+1 ,MjT

. (3.33)

The so-called Malliavin weighting is the path functional which gives the relative, or
log, sensitivity of this path weight to the infinitesimal external field:

q[M ] ≡ ∂ logW [M ]
∂hext

∣∣∣∣∣
hext=0

. (3.34)

Below we will show that the average linear sensitivity of any path-functional A[M ] reads

∂

∂hext
E[A[M ]]

∣∣∣∣∣
hext=0

= E[q[M ]A[M ]]|hext=0. (3.35)

Using the formal linear expansion;

W [M ] =W [M ]hext=0(1 + q[M ]hext +O(hext
2)), (3.36)

we find

∂E[A[M ]]
∂hext

= lim
hext→0

[M ]∑
A[M ]W [M ]−W [M ]hext=0

hext
P

(0)
0 (M0)

=
[M ]∑
A[M ]q[M ]W [M ]hext=0P

(0)
0 (M0), (3.37)

where the last line on the r.h.s. is the expectation of A[M ]q[M ].
To calculate q[M ] we recall the formW [M ] := ∏N0−1

T=0 W(T+1←T )
MjT+1 ,MjT

. Using the additivity
of the log of product, we have

q[M ] =
[M ]∑

0≤T≤N0−1

∂ logW (T+1←T )
MT+1,MT

∂hext

∣∣∣∣∣∣
hext=0

, (3.38)

where the sum is taken along the history [M ]. Therefore, the weight q[M ] can be calculated
cumulatively along the process M . Especially when the perturbation is given uniquely
at the stage-(T0 − 1), as in the main text, the relative sensitivity is reduced to q[M ] =
∂ log[W (T0←T0−1)

MT0 ,MT0−1
]/∂hext|hext=0. If we regard the r.h.s. of Eq.(3.19) as a path integral, the

contribution of the path [M ] reads W [M ]q[M ].



Chapter 4

Local invariance and Canonicity:
Static and Dynamic approaches

4.1 Introduction

In the present chapter, we further explore the consequences of the martingale property in
the framework of PQ. The mean equilibrium spin for Ising spins ultimately determines
the next quenched spin’s probability. When the mean equilibrium spin is a martingale,
the Markovian evolution of the total quenched magnetization is found to have a local
invariance in its probabilistic path weight. There are two significant consequences, both
of which were - at least for us - unexpected and were first recognized through numer-
ical simulations. Our first finding is that, given the number of quenched spins T , the
probability distribution for the quenched magnetization M can be expressed as a Boltz-
mann factor containing a “path-weight potential” and a “path-counting entropy” defined
on the (T,M)-space. This result will be described in Section 4.2.3 and used to describe
the bimodality of the distribution of M in Sec. 4.2.4. Then, in Sec. 4.2.6, the canon-
ical structures compatible with the long-term memory of the present PQ model are de-
scribed. Section 4.3 focuses on PQ starting from complete thermal equilibrium without
constraints. We show that the probability distribution under a given number of quenched
spins can also be obtained as the stable limit distribution of a different process that we
call Recycled Quenching (RQ). The latter process consists of the alternative application
of single-step unquenching and single-step quenching of randomly chosen quenched spin
and unquenched spin, respectively. The detail of RQ is described in Section 4.3.1 followed
by the analysis of the limit-cycle distribution in Sec. 4.3.3. Finally, in Sec. 4.3.4, the
connection to PQ through the martingale is given. We then extend our analysis to un-
derstand the conditions under which the canonical characteristics of the whole ensemble
(both quenched and unquenched) are conserved along the PQ process and how important
is the Markovian assumption on the stochastic evolution for the martingale and underly-
ing canonical structure. In Section 4.4 we introduce the “two-story ensemble” and argue
that the detailed balance and the Markovian dynamics are required for this ensemble to
be canonical (4.4). Although based on a particular model, our results show what the
martingale can bring beyond its original definition in terms of conditional expectation. It
is currently unknown to what extent our results can be generalized. More discussion is
given in Section 4.7.
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The first half of this chapter is extracted from our 2022 article [3] (up until Section
4.4). The rest is extracted from our 2023 preprint [4].

4.2 Martingale property as a local invariance and its
consequence in PQ

4.2.1 Fock-like space of probability distributions
We recall that the statistical quantity of main interest is the probability distribution of
quenched magnetization, {P (T,M)} ≡ {P (T,−T ), P (T,−T + 2), . . . , P (T, T )} at each
stage T . Such distribution can be treated as a vector ~P (T ) in the (T +1)-dimensional Eu-
clidean space. Because of the normalization condition, this vector spans a T -dimensional
simplex. When we consider the evolution of the probability distribution from T = 0 where
P (0, 0) = 1, up to T = N0, we effectively use a kind of Fock space in which ~P (T ) is found
in the T -th sector. The process of PQ is a linear mapping between adjacent sectors from,
for example, ~P (T ) to ~P (T + 1) through a transfer matrix. We have shown in the previous
chapters that under the critical coupling j = jcrit(N0) the distribution ~P (T ) undergoes a
unimodal to bimodal transition for some T , whose value depends on N0.

4.2.2 Local invariance of the path weight
The martingale property of m(eq)

T,M induced by the Markovian process {MT} reads :

E[m(eq)
T+1,MT+1 |MT ] = m(eq)

T,MT
(4.1)

As MT − MT−1 takes the Ising spin variable, the conditional probabilities in (4.1) are
given in terms of m(eq)

T,MT
, and we have

m(eq)
T−1,MT−1 = m(eq)

T,MT−1+1
1 +m(eq)

T−1,MT−1

2 (4.2)

+m(eq)
T,MT−1−1

1−m(eq)
T−1,MT−1

2 , (4.3)

where, for later convenience, we have shifted the time T by one. Using the identity

2c− a(1 + c)− b(1− c) = (1 + c)(1− a)− (1− c)(1 + b), (4.4)

Eq.(4.2) can be rewritten in the form of a local invariance of path-weight for the stochastic
process M .(

1 +m(eq)
T−1,M

2

)(
1−m(eq)

T,M+1

2

)
=
(

1−m(eq)
T−1,M

2

)(
1 +m(eq)

T,M−1

2

)
(4.5)

where MT−1 has been simply denoted by M. Schematically (4.5) implies that the path
weight is invariant under a local change between (T − 1,M)→ (T,M + 1)→ (T + 1,M)
and (T − 1,M)→ (T,M − 1)→ (T + 1,M), see Fig.4.1(a).
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(a)

(b)

Figure 4.1: (a): Local invariance of the path weight as a consequence that the mean
equilibrium spin m(eq)

T,M is martingale. The upper (blue) and lower (red) paths are
weighted, respectively, by the l.h.s. and r.h.s. of Eq.(4.5).
(b): Three representative paths connecting (T,M) = (0, 0) and (5,−1). All the three
paths have the same probability weight due to the local invariance relation Eq.(4.5).

The local invariance shown in Fig.4.1(a) significantly reduces the number of indepen-
dent transition probabilities to an extensive one that only depends on the start and end
points of the path considered. In fact, the T (T−1)

2 plaquettes [69] like Fig.4.1(a) between
T = 0 ant T = T impose as many constraints on m(eq)

T ′,M with 0 ≤ T ′ ≤ T − 1. As
the latter counts T (T+1)

2 values, the difference makes T . Moreover, the symmetry with
respect to ±M reduces the freedom among {m(eq)

M,T} down to bT2 c, where bxc is the
floor function. The reduction of independent weight may reflect the persistent memory
we have found before [2].

4.2.3 Probability distributions of PQ
The new property of the martingalem(eq)

T,M in (4.5) reveals a “thermodynamic” structure
in the evolution of ~P (T ). In general, the probability P (T,M) is the sum of the path weight
over all paths arriving at (T,M) from (0, 0). However, the relation (4.5) in the present
system implies the degeneracy of all such path weights. For illustration Fig.4.1(b) shows
the three paths among those reaching (T,M) = (5,−1) from (0, 0). The green (top) path
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can be represented as a binary sequence, 01001, where 1 [0] means, respectively, to quench
+1 [−1] spin. The relation (4.5) means that the path weight is unchanged if we exchange
any pair of neighboring bits. Therefore, the orange (middle) path, 00101, and then the
blue (bottom) path, 00011, have the same path weight as the green (top) one.

The immediate consequence is that all the paths connecting the origin (0, 0) to a
certain destination (T,M) through PQ have the same weight, which only depends on
the number of 1 [0] bits, or equivalently, on (T,M), see Fig. 4.1(b). We shall denote
such weight by e−β̃E(T,M), where β̃ ≡ 1 and the function E(T,M) gives a “path-weight
potential” landscape on the (T,M) plane. Having known the individual path weight, the
sum of the path weight is obtained by counting the number of distinct paths connecting
(0, 0) and (T,M), which is the binomial coefficient

(
T

M+T
2

)
. We shall denote this number

by eS , where S represents a “path-counting entropy”. The latter is analogous to the
conformational entropy of a one-dimensional random walk or free polymer chain. If we
regard (T,M) as the mesoscopic "state variable" of PQ, the associated microstates (i.e.,
the paths reaching (T,M)) satisfy equipartition.

In summary the probability P (PQ)(T,M) is given by the Boltzmann factor of a “path
free energy", E − 1

β̃
S, so that

P (PQ)(T,M) = eS(T,M)−β̃E(T,M), (4.6)

where

eS(T,M) =
(

T
M+T

2

)
(4.7)

e−β̃E(T,M) =
∏

0≤i<(T−M)/2

1−m(eq)
i,−i

2


×

∏
1≤i≤(T+M)/2

1 +m
(eq)
T−i,M−i

2

 (4.8)

This is the first of our main results. Remarkably, the structure of Eq.(4.7) corresponds
to a constrained canonical equilibrium with identical entropic factors. The latter is calcu-
lated in Section 4.2.5.1. By this matching, we also have the equality between β̃E(T,M)
and the canonical energy, which justifies our designation.

In Fig.4.2, the solid (red) curve shows β̃E −S for T = N0 = 256, while the red-dotted
one represents logP (T,M) which is directly calculated by solving the master equation for
the distribution. In Section 4.3.4 we will find Eq. (4.6) by a completely different approach:
the “recycled quenching”.

As a natural extension of the above argument of the path-weight potential and path-
counting entropy, we can also have the compact expression of the propagator
P (PQ)(T,M ;T0,M0) with 0 ≤ T0 ≤ T ≤ N0, which gives the conditional probability for
MT = M to occur at the stage-T given the initial condition P (PQ)(T0,M ;T0,M0) = δM,M0 .
Following the same argument as (4.6) and (4.7) the value of P (PQ)(T,M ;T0,M0) can be
given in terms of E(T,M ;T0,M0) and S(T,M ;T0,M0), whose detailed account may not
be necessary to repeat.
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Figure 4.2: Dashed and dotted curves, left ordinate: (−β̃E) (dashed black) and (−S)
(dotted blue) versus M. The value of each curve at M = 0 is adjusted vertically so
that they share a unique origin. These two curves crosses (β̃E = S) at some finite
|M | > 0. Solid red curve, right ordinate: The “path free energy", β̃E−S = (− logP (T,M))
(β̃ ≡ 1), versus M (abscissa) for T = N0 = 256. The large-dotted curve also represents
(− logP (T,M)) but is directly calculated by the master equation (ME), that is, by the
repeated multiplication of the transfer matrix of PQ.

4.2.4 Origin of the bimodality as “potential-entropy” trade-off

We have encountered bimodal distributions for M during PQ even if the coupling j/N0
is not in the ferromagnetic regime. The symmetry breaking does not occur for a finite
size N0, and the propensity of non-zero M should not be taken as the equilibrium phase
transition. The above “thermodynamic” decomposition allows us to understand how the
bimodality of the probability distribution can arise. We may constitute the following
qualitative argument: When the total magnetization M is non-zero, the molecular field,
(j/N0)M, on the unquenched spins makes non-zero mean equilibrium spin, m(eq)

T,M . This
causes the biased probability of subsequently quenched spin, reinforcing the non-zero
magnetization M as positive feedback. This is the scenario for the instability of β̃E − S
around M = 0. By contrast, the path-counting entropy factor becomes highly diminished
for |M | ∼ T, reflecting the limited availability of paths. This explains the high rise of
β̃E − S for |M | ∼ T. The competition between these two factors can give rise to the
bimodal distribution. At the early stages, T � N0, however, the entropy factor prevails,
and the distribution is unimodal [2].

While the above “thermodynamic” picture explains the qualitative origin of bimodal-
ity, a more subtle question would be whether such an aspect persists in the limit of large
systems, N0 →∞, especially when j is chosen to be at the extrapolated Curie point (see
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Sec. 2.3.3). The short answer is yes, and we expect that P (T = N0;M) has maxima at
M = ±M◦(N0), where M◦(N0) ∼ (N0)1− ν2 with ν ' 0.933 being the finite-size scaling
exponent such that jcrit(N0) = 1+c(N0)−ν . The detailed calculations are developed below
in the next section.

4.2.5 Bimodality in the asymptotic limit

We argue that the distribution P (T = N0,M) remains bimodal in the asymptotic limit
N0 → ∞. Even though the split is of order close to (

√
N0) the limit distribution is not

Gaussian.

4.2.5.1 Canonical sub-distribution

First of all let us write the canonical distribution of globally-coupled Ising spins under
the constrain that T of these spins add up to a certain magnetization M .

Let us denote by σ0,0 all the configurations of the Ising spins, {s1, . . . , sN0}, and
by σT,M the sub-ensemble of spin configurations under the constraints, s1 = . . . =
sT+M

2
= +1 and sT+M

2 +1 = . . . = sT = −1. Then we define the sub-partition func-
tion Z(σT,M) ≡ ∑

{s1,...,sN0}∈σT,M
e−H (we have taken the unit of energy such that β =

(kBT )−1 = 1). By definition, Z(σ0,0) is the full partition function. Now the canonical
probability P (can)(T,M) of observing that ∑T

i=1 si = M is σT,M among σT,M reads

P (can)(T,M) =
(

T
T+M

2

)
Z(σT,M)
Z(σ0,0)

= cst.
(

T
T+M

2

)∫ +∞

−∞
e
− j

2N0
(y2−M2)

(
2 cosh

[
j

N0
(y +M)

])N0−T
dy

= cst.
(

T
T+M

2

)
N0−T∑
k=0

(
N0 − T

k

)
e

j
2N0

(2k−N0+T+M)2
(4.9)

where the Hubbard-Stratonovich transformation [37] has been used to do the sum over the
allowed spin configurations, and “cst.” is a constant independent of T and M. Especially
the result is simple and well-known for T = N0, where

P (can)(N0,M) = cst.
(

N0
N0+M

2

)
e

j
2N0

M2
. (4.10)

We will use this last result below.

4.2.5.2 Bimodality of Distribution under Critical Coupling

Preparation of m(eq)
T,M : The basic quantity is the mean equilibrium spin m(eq)

T,M

which is defined by m(eq)
T,M = ∂

∂h

(
logZ
N

)
, where Z is the partition function for the N =

N0 − T Ising spins with the pair coupling j
N0

and under the “molecular field” h ≡ j
N0
M.
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Using the Hubbard-Stratonovich transformation, it reads Z ∝
∫
eNψ(m)dm, where

ψ(m) := −jeff

2 m2 + log[cosh(h+ jeffm)] (4.11)

jeff := N

N0
j =

(
1− T

N0

)
j. (4.12)

We will use the saddle-point approximation for the integral in Z, which is valid for T such
that O( N

N0
) = 1 and also O( T

N0
) = 1.

∫
eNψ(m)dm ' eNψ(m∗)

√
2π

N |ψ′′(m∗)| (4.13)

m∗ = tanh(h+ jeffm
∗) (4.14)

where the second equation defining m∗ originates from ψ′(m∗) = 0. Using the standard
identities of the tanh function, we can show several formulas such as : ∂ψ(m∗)

∂h
= m∗,

ψ′′(m∗) = −jeff + (jeff)2[1− (m∗)2], ∂m∗
∂h

= 1−(m∗)2

1−jeff(1−(m∗)2) . Combining these, we arrive at a
closed set of equations yielding m(eq)

T,M :

m(eq)
T,M = m∗ − 1

2N

jN
N0
m∗[1− (m∗)2](

1− jN
N0

[1− (m∗)2]
)2 ,

m∗ = tanh
(
jM

N0
+ jN

N0
m∗
)

(4.15)

The condition O( T
N0

) = 1 is also necessary when j is close to the critical value, which
is 1 for N0 → ∞. Since j appears through jeff = jN/N0, the denominator of the second
term on the r.h.s. of the first equation in (4.15) can become very small for small values
of T, invalidating (4.15). In assuming both O( N

N0
) = 1 and O( T

N0
) = 1, we will ignore this

term as O(N−1
0 ). In short, in (4.15) the O(N−1) term serves only for detecting its validity

limit.

Split of the maxima of probability, M◦(T ). The extremaM = M◦(T ) of the proba-
bility distribution P (T,M) is found from Eq. (14) such that P (T,M◦−1) = P (T,M◦+1).
The result reads

m(eq)
T,M◦(T ) = M◦(T )

T + 2 . (4.16)

(We generalize this condition for non-integerM◦ becauseM◦ � 1 for large N0.)M◦(T ) =
0 is always the solution for symmetry reasons. Besides, if M◦ > 0 exists, (−M◦) does
also. Using (4.15) with ignoring the second term on the r.h.s. of the first equation, (4.16)
becomes we have

M◦(T )
T + 2 = tanh

[
j(1 + 2

N0
)M

◦(T )
T + 2

]
. (4.17)

It tells that M◦(T )/(T + 2) is independent of T. This linearity, M◦(T ) ∝ (T + 2) for
O( N

N0
) = 1 and O( T

N0
) = 1, is verified by direct calculation of the distributions. Antic-

ipating that M◦(T )/(T + 2) � 1 for N0 � 1 we can use tanh z ' z − 1
3z

3. Especially,
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Figure 4.3: Position of the bimodal peak of P [∞](T,M) versus T
N0

for N0 = 256 (bottom
curve) and N0 = 1024 (top) obtained numerically (solid curves). The dashed red curves
show the respective asymptotic formula Eq.(4.18).

when 0 < j − 1� 1 we have

M◦(T )
T + 2 '

√
3
( 2
N0

+ j − 1
)

(4.18)

and the result is consistent, i.e., M◦(T )/(T + 2)� 1.
If we use j at the “critical value,” jcrit(N0) ' 1 + c

(N0)ν with c = 5.06 and ν = 0.933
according to [1], the above approximation expects M◦(T ) ' α(N0)T+2

N0
with α(N0) =√

3(2 + cN1−ν
0 )N

1
2

0 . In Fig.4.3 we show the numerical result for M◦(T ) vs T
N0

for different
sizes, N0, without the saddle-point approximation. What we observed so far is that, once
the bimodality appears at some stage of progressive quenching, T = T0(< N0), it remains
for any T with T0 ≤ T ≤ N0. Admitting this as a fact, we conclude that the bimodality of
P (T = N0,M) remains and we expect M◦(N0) '

√
3cN

2−ν
2

0 . This claim is consistent with
the claim that ~P (PQ)(T ) that started from the condition ~P (PQ)(0) = {1} is the canonical
weight for the sub-distribution ~P (can)(T ). In fact for T = N0 such canonical weight (4.9)
is analytically tractable and read for N0 � 1 as follows:

P (can)(N0,M) = cst.
(

N0
N0+M

2

)
e

j
2N0

M2
'
√

2
π(1− µ2)e

−N0φ(µ;j) (4.19)

with µ = M
N0

and φ(µ; j) being the rate function of the large deviation principle given by

φ(µ; j) = j

2µ
2 − 1 + µ

2 log(1 + µ)− 1− µ
2 log(1− µ) ' 1− j

2 µ2 + µ4

12 . (4.20)
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This also gives M◦

N0
'
√

3(j − 1) in the limit N0 → ∞, being consistent with (4.18).
Because 1 − jcrit(N0) → 0 under N0 → ∞, the PQ makes the distribution approach to
the critical one P (can)(∞,M) as limit of bimodal distribution.

As for small values of T, the full numerical results show the unimodal-bimodal tran-
sition with T , see Fig.4.3 (thick curves).

4.2.6 Constrained canonical statistics by PQ

One might wonder if the equilibrium canonical distribution lies behind the “thermody-
namic” structure of (4.6). The answer is yes, but under constraints: If, and only if, the
PQ starts from the unbiased initial condition, MT=0 = 0 with probability one, does the
probability P (PQ)(T,M) have the canonical equilibrium weight for the event that the
group of spins {s1, . . . , sT} has the magnetization ∑T

i=1 si = M. By contrast, if T0 spins
have already been quenched with their magnetization being M0, the later probability for
T ≥ T0, or the propagator P (PQ)(T,M ;T0,M0) of Section 4.2.3 retains a persistent mem-
ory and the distribution coincides with a constrained canonical weight for the event that
the group of spins {s1, . . . , sT} has the magnetization, ∑T

i=1 si = M, under the constraint
that its subset, {si1 , . . . , siT0

} ⊂ {s1, . . . , sT}, has the magnetization M0. The fact that
this function has a strict support (of causality) |M −M0| > T − T0 along the M axis is
consistent with the above constraint.

Altogether, the two facets of PQ, the neutrality of quenching hitherto equilibrated
spins on the one hand and the persistence of memory in quenched spins on the other
hand, are compatible in the form of the constrained canonical distribution.

Below, we argue that the mechanism behind this compatibility is the close relationship
between the conditional probability and the act of quenching a spin. Let us denote by
P (eq)(si|si−1, . . . s1) the conditional probability that the i-th spin si takes the specified
value (±1) in a canonical equilibrium ensemble of N0 spins, {s1, . . . , sN0}, given that
the spins {s1, . . . , si−1} are found to take the specified values. Also let us denote by
P (PQ)(si|si−1, . . . s1) the conditional probability that the i-th spin si takes the specified
value (±1) upon quenching in a constrained canonical equilibrium ensemble of N0−(i−1)
spins, {si, . . . , sN0}, given that the other spins {s1, . . . , si−1} have already been frozen to
take the specified values. We may then expect the following equality,

P (PQ)(si|si−1, . . . s1) = P (eq)(si|si−1, . . . s1). (4.21)

On the other hand, if the first spin s1 has been quenched when the whole system
{s1, . . . , sN0} was in equilibrium, the probability of the quenched spin P (PQ)(s1) should
be equal to the equilibrium one:

P (PQ)(s1) = P (eq)(s1). (4.22)

We then have the equality of the joint probabilities,

P (PQ)(sn, . . . s1) = P (eq)(sn, . . . s1), (4.23)

for 2 ≤ n ≤ N0 because of the general chain rule, which is valid for both P (PQ) and P (eq)
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:
P (sn, . . . s1) =

n∏
i=2

(
P (si, . . . , s1)
P (si−1, . . . , s1)

)
P (s1)

=
(

n∏
i=2

P (si|si−1, . . . , s1)
)
P (s1).

(4.24)

Said differently, freezing spins one by one quasi-statically gives the same result as freezing
them all together as a snapshot.

While (4.21) seems to hold for the quasi-equilibrium quenching with any choice of
{si−1, . . . , s1}, the last result (4.23) holds only with the equilibrium starting point (4.22).
If the PQ starts from P (PQ)(s1) other than P (eq)(s1) or from some prefixed spins
{sn0 , . . . , s1}, the progression of PQ carries non-volatile memory, preventing the relax-
ation to the canonical weight.

4.3 Recycled Quenching (RQ)

4.3.1 Single-step unquenching S and single-step quenching K

Let us leave momentarily from the analysis of the progressive operation of quenching (PQ)
and instead consider the cyclic operation of a single-step quenching and un-quenching
(recycled quench, or RQ for short). See Fig.4.4. We propose the following process:
Take again a system of N0 Ising spins on a complete network, like our globally-coupled
model. Suppose T spins are quenched with a total quenched magnetization M while the
N0−T remaining spins are thermalized with a bath. We then randomly select a quenched
spin and allow it to be unquenched (operation S). Subsequently, after reaching thermal
equilibrium once again, we apply a single step of quenching step (similar to Sec. 2.2)
(operation K). While the number of quenched spin returns from T − 1 to T, the updated
state of the system may have its quenched magnetization either set to M or M ± 2.

By applying alternatively the unquenching (S) and quenching (K), we generate a
series of probability distributions, which may be written as follows:

· · · S→ ~Q[`](T − 1) K→ ~P [`](T ) S→ ~Q[`+1](T − 1) K→ ~P [`+1](T ) S→ . . . (4.25)

where ~P and ~Q denote the probability vectors of having a specific magnetization after a
step K or S, respectively, and the superfix [`], etc. merely counts the number of iterated
operations, and the number of fixed spins, T, is no more the ‘time’.

If we focus on ~P (T )’s, a single application of this recycling process can be seen as
transformation over the probability vector ~P (T ) by two operators : S then K, leading to

~P [`+1](T ) = (KS)~P [`](T ). (4.26)

Alternatively, if we focus on ~Q(T − 1)’s, we can think of an adjoint process, where the
two steps are reversed in order, i.e., K then S, leading to

~Q[`+1](T − 1) = (SK) ~Q[`](T − 1). (4.27)

In either point of view, the recycling process retains the number of quenched spins. Al-
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Figure 4.4: Top row: Schematic representation of the recycled quenching process. (a):
Step S: A quenched spin - blue circle (darker gray) and squared in red (lighter gray) -
is picked at random and is unquenched. (b): Step K: A unquenched spin (red square
circled in blue) is quenched as in the Progressive Quenching. (c): Updated state of the
system after operating S. then K. Bottom row: Probability tree of the operation of S
(left) and K (right) over distributions for the stages T = 1 and T = 2.
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⃗Q(T − 1) ⃗P (T)
K

S

SK KS

Figure 4.5: Symbolic representation of the action of the recycling operators over the
distributions ~P (T ) and ~Q(T − 1).

together, we can schematize the operation of unquenching and quenching in the form
of Fig.4.5. The detailed action of K and S over a probability distribution are detailed
below:

4.3.2 Calculation of transfer matrices under K, S, KS and SK

In this section, we derive the transfer matrix elements for the probability vector under
the operation of progressive quench K, unquenching of randomly selected spin S, as well
as their combinations KS and SK.

We will use the symbol δ( ) for the Kronecker’s delta, i.e., δ(n) with n ∈ Z takes the
value 1 for n = 0 and 0 otherwise. We also write the conditional expectation using the
symbol E, such as E[X|Y ] for the expectation of X given the knowledge of Y. When Y is
a random variable, E[X|Y ] does also. The component P (T,M) of the probability vector
~P (T ) reads

P (T,M) = E[δ(M − M̂T )]. (4.28)

We will abuse the operators K and S to act both on the quenched magnetization
M̂T when T spins are fixed and also on the probability vector ~P (T ), i.e., on the ensemble
of systems having different MT according to the given weights. When L stands for the
operators, K, (KS), etc.,

E[δ(M −LM̂T )|M̂T ] =
∑
k

δ(M − (M̂T + k))aT,k(M̂T )

=
∑
k

δ((M − k)− M̂T )aT,k(M − k), (4.29)

where aT,k( ) are the weights, can be translated into the usual representation in terms of
the transfer matrix elements as

LP (T,M) =
∑
k

P (T,M − k)aT,k(M − k), (4.30)

Operation of K: As described above, KM̂T means the quenched magnetization after
an unquenched spin out of N0 − T ones has been quenched. The system then has T + 1
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quenched spin. The conditional distribution of the resulting magnetization reads,

E[δ(M −KM̂T )|M̂T ] = δ(M − (M̂T + 1))
1 +m(eq)

T,M̂T

2

+ δ(M − (M̂T − 1))
1−m(eq)

T,M̂T

2

= δ(M − 1− M̂T )1 +m(eq)
T,M−1

2

+ δ(M + 1− M̂T )1−m(eq)
T,M+1

2

(4.31)

We rewrite (4.31) with T → T − 1 for later convenience.

E[δ(M −KM̂T−1)|M̂T−1] =

δ(M − 1−M̂T−1)1 +m(eq)
T−1,M−1

2

+δ(M + 1−M̂T−1)1−m(eq)
T−1,M+1

2

(4.32)

or, using the general relationship (4.29) we find K ~P (T − 1) as the probability vector in
the T -sector with the component,

(K ~P (T − 1))M = P (T − 1,M − 1)1 +m(eq)
T−1,M−1

2

+ P (T − 1,M + 1)1−m(eq)
T−1,M+1

2

(4.33)

Operation of S: We denote by SM̂T the quenched magnetization after a quenched
spin out of T ones has been unquenched. The system has T − 1 quenched spins and
N0− T+1 unquenched spins. The conditional distribution of the resulting magnetization
reads:

E[δ(M − SM̂T )|M̂T ] = δ(M − (M̂T − 1))
1 + M̂T

T

2 + δ(M − (M̂T + 1))
1− M̂T

T

2

= δ(M + 1− M̂T )
1 + M+1

T

2 + δ(M − 1− M̂T )
1− M−1

T

2 .

(4.34)

Operation of KS: K(SM̂T ) means to unquench randomly a spin among T quenched
ones then quench randomly a spin among N0 − (T − 1) thermalized spins. Replacing in
(4.32) M̂T−1 by SM̂T , where SM̂T is given in (4.34), the result reads :
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E[δ(M −K(SM̂T ) )|M̂T ] = δ(M − M̂T )
1 + M̂T

T

2
1 +m(eq)

T−1,M̂T−1

2

+ δ(M − 2− M̂T )
1− M̂T

T

2
1 +m(eq)

T−1,M̂T+1

2

+ δ(M + 2− M̂T )
1 + M̂T

T

2
1−m(eq)

T−1,M̂T−1

2

+ δ(M − M̂T )
1− M̂T

T

2
1−m(eq)

T−1,M̂T+1

2

(4.35)

By taking the expectation over M̂T , i.e. the weighted summation ∑T
MT=−T P (MT , T ),

we have the evolution of ~P after a single cycle of operation, KS. The fixed point equation
(4.41) is obtained by requiring (KS)~P (T ) = ~P (T ). Rewriting this into the form of (4.41)
is very close to the transformation from (4.2) to (4.5). The close relationship between the
martingale and the harmonic function has long been known [70].

Operation of SK: S(KM̂T ) means to quench randomly a spin among the N0 − T
thermalized ones then unquenching randomly a spin among T + 1 quenched ones. Like
the case of operating KS, the result reads

E[δ(M − S(KM̂T ) )|M̂T ] =
(

1 +m(eq)
T,MT

2

)

×

δ(M −MT − 2)
1− MT+1

T+1
2

+ δ(M −MT )
1 + MT+1

T+1
2


+
(

1−m(eq)
T,MT

2

)

×

δ(M −MT )
1− MT−1

T+1
2

+ δ(M −MT + 2)
1 + MT−1

T+1
2


(4.36)

By taking the expectation over M̂T , i.e., the weighted summation ∑T
MT=−T P (MT , T ),

we have the evolution of ~Q upon after a single cycle of operation, SK. The fixed point
equation (13) in the main text is obtained by requiring (SK) ~Q(T ) = ~Q(T ).

4.3.3 Stationary distributions
Case studies: Because the number of quenched spins remains the same after the action
of KS and SK, these combined operations are the transfer matrix on the vectors ~P and
~Q, respectively. Applying the Perron-Frobenius theorem to those matrices ensures the
existence of the non-degenerate maximum eigenvalue which is unity. Thus, we expect the
presence of unique stable stationary distributions, ~P [∞](T ) and ~Q[∞](T − 1), respectively.
We consider the cases T = 2 and 3 below to understand the stability or convergence
intuitively.
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T = 2 case: Fig.4.4 (bottom left) indicates the transfer probabilities assigned to S acting
on ~P2, where ~P2 = (P (2,−2), P (2, 0), P (2,+2))t, and Fig.4.4 (bottom right) indicates the
transfer probabilities assigned to K acting on S ~P2, where a ≡

1+m(eq)
1,+1

2 = 1−m(eq)
1,−1

2 . The
transfer matrix KS is, in this case :

KS =

 a a
2 0

1− a 1− a 1− a
0 a

2 a

 (4.37)

A simple induction gives an explicit formula for (KS)N and its convergence:

(KS)N =


a
2 + aN

2
a
2

a
2 −

aN

2
1− a 1− a 1− a
a
2 −

aN

2
a
2

a
2 + aN

2


N→∞−→


a
2

a
2

a
2

1− a 1− a 1− a
a
2

a
2

a
2


(4.38)

Therefore, from whatsoever distribution ~P2 the result of RQ cycle, (KS)N ~P (2), con-
verges to the stationary distribution: ~P [∞](2) = (a2 , 1 − a, a2)t. We notice that this sta-
tionary distribution coincides with the one obtained by the progressive quenching from
P (PQ)(0, 0) = 1, that is ~P (PQ)(2) = ~P [∞](2) (see below).

T = 3 case: We can make the scheme similar to Fig.4.4 (bottom) to find the transfer
matrix KS. We then obtain :

KS =


b b

3 0 0
1− b 2−b

3
1
3 0

0 1
3

2−b
3 1− b

0 0 b
3 b

 , (4.39)

where b ≡ 1+m(eq)
2,+2

2 = 1−m(eq)
2,−2

2 . Expression for (KS)N is rather cumbersome but we know
the convergence of (KS) by its eigenspectrum, {1, 2b+1

3 , 2b
3 , 0}, where we have 1 > (2b +

1)/3 > 2b/3 > 0 because 0 < b < 1. The normalized eigenvector corresponding to the
steady state is : ~P [∞](3) = ( b

2(3−2b) ,
3(1−b)
2(3−2b) ,

3(1−b)
2(3−2b) ,

b
2(3−2b))

t. To compare, the distribution
obtained by the progressive quenching reads ~P PQ(3) = (ab2 ,

1−ab
2 , 1−ab

2 , ab2 )t with b just

defined and a ≡ 1+m(eq)
1,1

2 already defined above. This apparently different distribution
is, in fact, identical to the former, ~P [∞](3), because the martingale (4.2) - or the local
invariance (4.5) - imposes the relation, a = 1

3−2b .

General case: Altogether, from the previous case studies we admit that the iterative
operation of (KS) or (SK) on a probability vector of the T -sector brings about the
convergence to ~P [∞](T ) and ~Q[∞](T ), respectively, as stable fixed points:

(KS)~P [∞](T ) = ~P [∞](T )
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(SK) ~Q[∞](T ) = ~Q[∞](T ) (4.40)

These fixed points are also the eigenvectors of these operators with the maximum eigen-
value (= 1). Using the concrete expressions for the action of (KS) and (SK) the equa-
tions in (4.40) can be rewritten as follows, where we use the notations, pM = P [∞](T,M)
and qM = Q[∞](T,M):

0 = pM−2

(
1− M − 2

T

)(
1 +m(eq)

T−1,M−1
)

− pM
(

1 + M

T

)(
1−m(eq)

T−1,M−1
)

−
[
pM

(
1− M

T

)(
1 +m(eq)

T−1,M+1
)

−pM+2

(
1 + M + 2

T

)(
1−m(eq)

T−1,M+1
)]

(4.41)

and similarly :
0 = qM−2

(
1− M − 1

T + 1

)(
1 +m(eq)

T,M−2
)

− qM
(

1 + M − 1
T + 1

)(
1−m(eq)

T,M

)
−
[
qM

(
1− M + 1

T + 1

)(
1 +m(eq)

T,M

)
−qM+2

(
1 + M + 1

T + 1

)(
1−m(eq)

T,M+2
)]

(4.42)

Since [· · · ] in the second lines are simply shifted by +2 for the variable M with respect
to the first lines, the “first integrals" are

pM

(
1− M

T

)(
1 +m(eq)

T−1,M+1
)

−pM+2

(
1 + M + 2

T

)(
1−m(eq)

T−1,M+1
)

= c+

(4.43)

and
qM

(
1− M + 1

T + 1

)(
1 +m(eq)

T,M

)
−qM+2

(
1 + M + 1

T + 1

)(
1−m(eq)

T,M+2
)

= c−,

(4.44)

where c± are independent of T. Moreover, it is only for c+ = 0 [c− = 0] that pT+2 [qT+2]
or p−T−2 [q−T−2] are not generated. Therefore, c± = 0. We then have

pM+2

pM
=

(
1− M

T

)(
1 +m(eq)

T−1,M+1
)

(
1 + M+2

T

)
(1−m(eq)

T−1,M+1)
(4.45)

and
qM+2

qM
=

(
1− M+1

T+1

)(
1 +m(eq)

T,M

)
(
1 + M+1

T+1

)
(1−m(eq)

T,M+2)
. (4.46)



4.3. RECYCLED QUENCHING (RQ) 77

200 100 0 100 200
Magnetisation M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|P
(R

Q
)

P(P
Q

) |

1e 7

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

PQ
 d

ist
rib

ut
io

n 
P(P

Q
)

250 0 250

P(PQ)

P(RQ)

Difference
P(PQ)

Figure 4.6: For N0 = T = 256 the distribution of PQ, ~P (PQ)
T (lower inset) and the

stationary distribution of RQ, ~P [∞](T ) (upper inset) are compared (solid curve and the
left ordinate in unit of 10−7). The dashed curve and the right ordinate shows ~P (PQ)

T .

With the aid of the normalization conditions, the iterative conditions (4.45) and (4.46)
should give the stationary distributions ~P [∞](T ) and ~Q[∞](T ), respectively.

4.3.4 Martingale connects stationary distributions of RQ to PQ
Numerical comparisons : Having characterized ~P [∞](T ) and ~Q[∞](T ) with any value
of T as the stable fixed distributions of (KS) and (SK), respectively, we evaluated
numerically these distributions for different T and for N0. It is done by seeking the eigen-
vectors corresponding to the largest eigenvalue (= 1). To our surprise, our analysis shows
that the two stationary distributions, ~P [∞](T ) and ~Q[∞](T ), are extremely similar, and
the similitude increases with the number of spins in the entire system N0. Moreover, they
are also almost identical to the distribution of the Progressive Quenching, ~P (PQ)

T , when
N0 � 1. Fig.4.6 shows the comparison between ~P (RQ)(T ) ≡ ~P [∞](T ) (upper inset) and
~P (PQ)(T ) (lower inset). The difference of order 10−7 (solid curve in red) is much smaller
than the probability distribution, which is of order 10−2 (dashed curve in blue) in the case
of N0 = T = 256.

Implication of martingale : The key to understanding the above-mentioned “coin-
cidence” is the martingale. The local invariance (4.5), which is equivalent to the mar-
tingale property of m(eq)

T,M̂T
, Eq.(4.1), assures that the r.h.s. of (4.45) and that of

(4.46) are the same. To show this we have also used the identity,
(
1− M

T

)
/
(
1 + M+2

T

)
=
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Figure 4.7: While the progressive quenching (the symbol K and blue arrows) generates
~P (PQ)(T ) from ~P (PQ)(T − 1), the random unquenching of quenched spins (the symbol S

and red arrows) generates ~P (PQ)(T−1) from ~P (PQ)(T ) as the “on-shell” reverse operation.
At the same time, the family of these distributions {~P (PQ)(T )}N0

T=0 are the attractor of
the Recycling Quenching, KS and SK (the upward and downward thick arrows).

(
1− M+1

T+1

)
/
(
1 + M+1

T+1

)
. Under the normalization condition, these two equations, there-

fore, define the unique distribution: ~P [∞](T ) = ~Q[∞](T ). The consequence of this equality
is profound if we recall (4.25) with ` =∞, because the latter implies

K ~P [∞](T − 1) = ~P [∞](T ) (4.47)
S ~P [∞](T ) = ~P [∞](T − 1) (4.48)

Eq.(4.47) tells that the whole family of stationary distributions of Recycled Quenching,
{~P [∞]}N0

T=0, is generated by the Progressive Quenching one after another starting from the
initial one, ~P (PQ)(0) = 1.

~P [∞](T ) = ~Q[∞](T ) = ~P (PQ)(T ). (4.49)

This is the second of our main results. This fact, a kind of envelope relation, can also be
verified by directly “integrating” (4.45) and comparing with (4.6) and (4.7) (the details
not shown). Eq.(4.48) tells that the random unquenching of a spin by S allows to step
back the distribution of the Progressive Quenching. Schematically, we may represent
these by Fig.4.7.

We note that this is an “on-shell” property, which concerns only the stationary dis-
tributions of RQ. In a sense “off-shell,” the family {~P (PQ)

T }N0
T=0 constitutes a set of stable

attractors of the RQ operations, KS and SK.

4.4 Canonicity upon PQ in two-story ensemble
In the Note added in proof of our paper [3], we predicted a further description about the
origin of canonical distribution of the final quenched magnetization, MT=N0 , in fact with
the implicit assumption of Markovian dynamics. The main questions are:
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(i) A problem of combinatorics (Sec. 4.4.1): How the quenched ensemble is compatible
with the canonical statistics upon the consecutive quenching operations where the un-
quenched spins are in constrained equilibrium ?
(ii) A problem of dynamics (Sec. 4.5): At the level of discrete spins - and even more
microscopic - how is the operation of quenching compatible with the reversible evolution,
given the apparent Deborah number, that is the dimensionless ratio of the relaxation time
of the system and the observation period, exceeding unity? Indeed, the quenching process
physically implies rendering towards zero the transition rate for the flipping of the spin
in question.

4.4.1 Combinatorial approach
First, we introduce the notion of two-story ensemble, the way of characterizing the statis-
tics of N0 spins, which is convenient for the PQ. We separate those N0 spins into two
groups, {s1, . . . , sT}, and the remainder, {sT+1, . . . , sN0} (keeping the quenched/free spins
distinction in mind) and we introduce the sub-totals of spins through MT = ∑T

i=1 si and
µT = ∑N0

j=T+1 sj. The joint probability PQF (MT , µT ) satisfies

PQF (MT , µT ) = PF |Q(µT |MT )PQ(MT ), (4.50)

where PQ(MT ) is the marginal and PF |Q(µT |MT ) is the conditional probability.1 We inter-
pret this identity in the way that PQ(MT ) characterizes the families of spin configurations
in the quenched part, {s1, . . . , sT}, while PF |Q(µT |MT ) reflects the sub-ensemble of the
spin configuration, {sT+1, . . . , sN0}, in each family member. The configurations in the
same family are realized ergodically, while those belonging to a distinct quenched family
are non-ergodic in the two-story ensemble. (In our model on the complete lattice, we
further replaced {s1, . . . , sT} by MT as a collective tag of the family.)

The above is for a particular two-story ensemble. The different values of T define the
distinct construction of two-story ensembles. In the context of PQ, however, we introduce
a particular form of connection between a two-story ensemble {PQ(MT ), PF |Q(µT |MT )}
and its “neighbor” ensemble, {PQ(MT+1), PF |Q(µT+1|MT+1)}. This connection is schemat-
ically explained in Fig.4.8, where N± and n± denote the numbers of ±1 spins in the
quenched and free parts. All the spins are initially unquenched (T = 0 and M = 0) and
thought to be in equilibrium without an external field. The probability for µ0, denoted
by P (can)

F (µ0) reads:

P
(can)
F (µ0) = N0,0

(
N0

N0+µ0
2

)
e

j
N0

µ2
0 , (4.51)

where the normalization constant N0,0 is such that ∑N0 (mod 2)
µ=−N0 P

(can)
F (µ0) = 1. We further

assume that, upon the quenching of the (T+1)-th spin, the (N0−T ) free spins have already
been re-equilibrated under the given fixed magnetization, MT . In Appendix 4.4.2 we
show by induction that the joint probabilities, PQF (MT , µT ) for all T, obey the canonical
statistics if the initial weight PF (µ0) obeys the canonical statistics and that the PQ fixes
the value of any one of the free spins under constrained canonical equilibrium. Regarding
the statistics of quenched spins, the above result implies that at any stage, for example,

1For the simplicity of notations we suppressed the index T as the number of quenched spins. For
example, it is understood that PQF (MT , µT ) is for the T quenched spins.
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N−

N+ n+

n− = +
T + 1 N0 − (T + 1)

M
μ

T N0 − T T N0 − T

sT+1 = + 1 sT+1 = − 1
Figure 4.8: Schematic representation of the process of updating the two-story ensemble.
The blocks represent the partition of the spins into the quenched part (the left column
in blue) and the free part (the right column in red). According to the sign of spins,
each column is subdivided: N+ + N− = T + 1 and n+ + n− = N0 − (T + 1) while
N+ −N− = M(= MT+1) and n+ − n− = µ(= µT+1).

the T -th stage, their magnetization MT is distributed as if the T spins were randomly
sampled from an equilibrium ensemble of N0 spins.

Relation to martingale : In light of the canonicity underlying the two-story ensemble of
quenched and free spins, the mechanism that allowed the “martingality” of m(eq)

T,MT
≡

E[sT+1|MT ] is easily understood: While E[sT+1|MT ] originally meant the expectation
of the spin sT+1 upon quenching in the presence of the magnetization MT due to the
T already fixed spins, the underlying canonicity allows to map it to the equilibrium
expectation of sT+1 when the spins {s1, . . . , sT} have the magnetization MT . Together
with the homogeneity among the free spins, {sT+1, . . . , sN0}, we finally regard m(eq)

T as
the canonical expectation E(can)[sN0|MT ]. The “MT -martingality” for the latter follows
directly from the tower rule applied to mT ≡ E[z|s1, . . . , sT ], see Section 3.2.2, where
z stands for any random variable belonging to the above canonical ensemble. In this
viewpoint, we can better understand the effect of Recycled Quenching (RQ) mentioned
above. After applying the RQ infinitely many times, the probability PQ(MT ) of having the
quenched magnetization MT over T quenched spins in fact obeys the canonical marginal
distribution, ∑µT P

(can)(µT ,MT ), where P (can)(µT ,MT ) is the joint canonical distribution
of the spins when T randomly chosen spins have the magnetization MT .

The picture of the two-story ensemble and the underlying canonical statistics should
apply to systems other than the Ising spins on a complete lattice. See, as an example,
Appendix 4.7 for the q = 3 Potts model. Note that the equivalence between the martingale
and the local invariance is, however, specific to the Ising spin model.
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4.4.2 Details of the two-story ensemble calculations

We show the canonicity of PF,Q(µT ,MT ) through proof by induction. The key combina-
torial identity is the following:(

T + 1
N+

)(
N0 − (T + 1)

n+

)
= n+ + 1
N0 − T

(
T

N+ − 1

)(
N0 − T
n+ + 1

)

+ N0 − T − n+

N0 − T

(
T

N+

)(
N0 − T
n+

)
, (4.52)

where, as noted in the main text, N+ = 1
2(T +MT+1 + 1) and n+ = 1

2(N0 − (T + 1) + µT+1)
are the number of (+1) spins in the quenched part and unquenched part, respectively.
When T spins have been quenched, we put the hypothesis:

PF,Q(µT ,MT ) = P
(can)
F,Q (µT ,MT )

≡ NT
(

T
T+MT

2

)(
N0 − T

(N0−T )+µT
2

)
e

j
2N0

(µT+MT )2
,

(4.53)

where NT is the normalization constant such that ∑N0−T (mod 2)
µ=−(N0−T )

∑T (mod 2)
M=−T PF,Q(µT ,MT ) =

1. According to Fig. 4.8, we combine the case of sT+1 = 1 and sT+1 = −1 as the newly
quenched spin with appropriate weight. With the above identity (4.52) we can show that
the joint probability after the (T + 1)-th quench, PF,Q(µT+1,MT+1) is again canonical :

P
(can)
F,Q (µT+1, T + 1) = N0 − T + µT+1 + 1

2(N0 − T ) P
(can)
F,Q (µT+1 + 1, T ),

P
(can)
F,Q (µT+1,MT+1) = N0 − T + µT+1 + 1

2(N0 − T ) P
(can)
F,Q (µT+1 + 1,MT+1 − 1)

+ N0 − T − µT+1 + 1
2(N0 − T ) P

(can)
F,Q (µT+1 − 1,MT+1 + 1)

P
(can)
F,Q (µT+1,−(T+1)) = N0 − T− µT+1+1

2(N0 − T ) P
(can)
F,Q (µT+1 − 1,−T ), (4.54)

where the first and the last lines apply, respectively, for µT+1 ≥ −(N0 − T ) + 1 and
µT+1 ≤ (N0 − T ) − 1, while the middle line applies for −T ≤ MT+1 ≤ T. Because
PF,Q(µ0,M0 = 0) = P

(can)
F,Q (µ0,M0 = 0) by definition,the proof by induction is completed.

Once we establish PF,Q(µT ,MT ) = P
(can)
F,Q (µT ,MT ) for all T, the marginal PQ(MT ) is given

through PQ(MT ) = ∑
µT P

(can)
F,Q (µT ,MT ).

4.5 Dynamical approach - Finite time reversible op-
eration

At the level of discrete spins, Glauber’s algorithm [71, 72] is a representative model of
continuous-time Markovian evolution. In this model the flipping of the Ising spin si in



82 CHAPTER 4. LOCAL INVARIANCE AND CANONICITY

15 10 5 0 5 10 15
Magnetisation Values

0.02

0.03

0.04

0.05

0.06

0.07

St
ea

dy
 st

at
e 

pr
ob

ab
ilit

y 
di

st
rib

ut
io

n
ε= 1.5

ε= 2

ε= 3

ε= 5

Variating case:
 ε(t) = 2 + cos(t)

Random case:
 ε= 1 + 2U [0, 1]

Canonical
Distribution

Figure 4.9: Invariance of the steady state distribution of Glauber algorithm with different
values of ε, either fixed with time, variating, or chosen randomly at each time step. U [0, 1]
stands for a uniform random variable over the interval [0, 1].

the presence of the interacting energy,

Ei(t) = j
∑
k(6=i)

sk(t), (4.55)

is characterized by the transition rate of the single-spin flip:

P [si(t+ dt) = −si(t)] = dt

2εi(t)
(1− si(t) tanh(βEi(t))), (4.56)

where the characteristic time εi(t) may depend on the time t. In this context the operation
of quenching the spin sT+1 is to render εT+1(t) to +∞. On the other hand, we know that
if the time constants {εi} are static, the above algorithm can establish the canonical
distribution as a steady state. While the latter does not immediately imply that the
quenching, or general time-dependent modulation of εi’s, allows the canonicity to be kept
intact against the dynamic perturbation. It is assured by the fact that the Kullback-
Leibler divergence,

DKL(P‖P can) = −
∑
{si}

P ({si}, t) ln P ({si}, t)
P can({si})

, (4.57)

is a Lyapunov functional of the Markovian evolution of P ({s}, t) whether or not {εi} are
time-dependent2. Figure 4.9 demonstrates that the Glauber model keeps the canonicity
whatsoever the choice of characteristic times {εi}, either static or dynamic.

Below the Ising-spin scale, the individual spin may be visualized as a state point in
2Into the generic inequality, D(KP‖KQ) ≤ D(P‖Q) for the probability vectors P and Q with a transfer

matrix K, we substitute P = Pt, Q = P can and K = 1 + dtR, where R is the rate matrix. Then we have
D(Pt+dt‖P can) ≤ D(Pt‖P can).
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Figure 4.10: A double-well potential as a microscopic model of single-spin quenching.
The dashed parts of the curves are those inaccessible by thermal activation with the
experimental time.

a double-well potential. A well-known example is the bit-memory analyzed by Landauer
[73]. The potential is generally asymmetric and fluctuating in the presence of an external
field or interactions with other spins. It is, therefore, generally impossible to raise the
barrier of a double-well potential strictly reversibly in a finite time. It is, nevertheless,
instructive to quantify the irreversibility. The (partial) excess entropy production [74, 75,
76, 77] may be fitted for this purpose. If we approximately discretize the coordinate x of
the double-well potential (Figure 4.10), the mean excess entropy production associated
with the (nearby) transitions x′ → x denoted by Ṡexx,x′ reads

Ṡexx,x′ = Rxx′px′ ln
Rxx′px′

Rx′xpx
+Rx′xpx −Rxx′px′ , (4.58)

where px is the probability and Rx′,x is the transition rate from x to x′ and we assumed
that the time-reversed state of x is x itself. When the potential is modified sufficiently
slowly relative to the microscopic timescale, the probability flows, Rxx′px′−Rx′xpx, with x
and x′ within the same valley, remain effectively zero through the detailed balance, with
the only exception around the barrier top. In the next section, we demonstrate that, by
focusing on the barrier top, this framework gives the famous Landauer’s entropic loss by
ln 2 upon the erasure process of a bit memory. By contrast, in the present context, the
quenching of a spin is made so that the DB is observed including at the vicinity of the
barrier top. Then the local entropy production Ṡx,x′ in (4.58) vanishes everywhere. With
more than one spin, the above argument should be lifted to a high-dimensional phase
space and the associated continuous transition networks.

4.6 Excess entropy production applied to Landauer’s
bit memory

Let us use once again the excess entropy production [78] and apply it to Landauer’s
entropic loss by ln 2 upon the erasure of bit memory. After that, we modify this result to
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show the absence of entropy production when a spin is quenched slowly.

Using the stochastic entropy introduced by Seifert [8] and following the classification
in [51] the excess entropy production rate of a memory bit and the attached heat bath

Ṡex =
∑
x

ṗx ln qx
px
, (4.59)

where px is the probability density at time t while qx is the steady state probability
satisfying the detailed balance (DB),

Rxyqy = R̃ỹx̃qx, (4.60)

with x̃ being the time reversed state of x (when the velocity is included in x) and Rxy =
Wx←y for y 6= x, and Rxx = −∑y( 6=x) Wy←x being the minus of the escape rate. By
definition, ∑xRxy = 0. By substituting into (4.59) the master equation,

∂tpx =
∑
y

Rxypy (4.61)

and using the DB condition (4.60) the mean excess entropy production Ṡexx,y specifically
associated with the state transition between x and y is given by [78]:

Ṡexx,y := Rxypy ln Rxypy

R̃ỹx̃px
+ R̃ỹx̃px −Rxypy. (4.62)

Here Ṡx,y is non-negative because of the generic inequality, a ln a
b

+ b− a ≥ 0.

When the above framework is applied to the double-minimum potential as a model
of memory bit, the spatial coordinate x is finely discretized, and the probability density
px is supposed to be quasi-equilibrium within each valley: px = θtqx for x < 0 and
px = (2 − θt)qx for x > 0. When a memory stocked by this potential is erased through
the symmetric lowering of the barrier separating the two valleys, we take θt=0 = 2 and
θt=∞ = 1.

If we substitute these hypotheses into (4.59) and integrate over time from 0 to∞,, we
already have the expected result, ln 2. The advantage of the partial entropy production is
that (4.62) allows us to pinpoint where this increment occurs along the potential surface.
Except for the vicinity of the barrier top of the potential (x = 0), the detailed balance
(4.60) is effectively established, and Ṡexx,y vanishes, where we supposed the time-reversal
symmetry, x̃ = x and R̃ỹx̃ = Ryx. The only transition that can be irreversible is between
x = 0− and x = 0+. More concretely,

Ṡex0−,0+

kB
= R0−,0+θtq0 ln θt

2− θt
+R0+,0− p(0−)−R0−,0+ p(0+) (4.63)

Ṡex0+,0−

kB
= R0+,0−(2− θt)q0 ln 2− θt

θt
+R0−,0+ p(0+)−R0+,0− p(0−), (4.64)
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and the sum of these two gives

Ṡex0−,0+

kB
+
Ṡex0+,0−

kB
= [R0−,0+θtq0 −R0+,0−(2− θt)q0] ln θt

2− θt
. (4.65)

Here the quantity in the square bracket on the r.h.s. is the net probability flow from the
left to the right valley. We, therefore, can write [R0−,0+θtq0 − R0+,0−(2 − θt)q0] = 1

2 |θ̇t|.
With this estimation, the time integral of Ṡex0−,0+ + Ṡex0+,0− from θ0 = 2 to θ∞ = 1, where
|θ̇t| = −θ̇t, yields finally

∫ ∞
t=0

dt[
Ṡex0−,0+

kB
+
Ṡex0+,0−

kB
] =

∫ ∞
0

(−1
2 θ̇t) ln θt

2− θt
dt = ln 2. (4.66)

Therefore, only the excess entropy production at the top of the potential barrier is re-
sponsible for all the entropy loss.

When we retrace the above reasoning in our Progressive Quenching (PQ) case, the
total entropy production should also be concentrated at the barrier top, x = 0±, where the
barrier height is raised to well above kBT . If the DB is maintained during the operation
of PQ, the current [R0−,0+θtq0 − R0+,0−(2 − θt)q0] vanishes, unlike the case of Landauer,
and the production, Ṡ0−,0+ + Ṡ0+,0− , also does. In conclusion, when the potential barrier
is raised slowly enough on the microscopic scale, the operation of PQ is reversible, and,
as a result, the two-story canonical distribution is maintained.

4.7 Conclusion and Discussion
In this chapter, we showed that the PQ process has a local invariance induced by the
hidden martingale. This new symmetry allowed us to derive an exact probability formula
corresponding to the canonical one under unbiased conditions. By introducing a new
operation: the single-spin unquenching, we described a new stochastic process - Recycled
Quenching - whose stable stationary distribution is associated with the PQ through the
local invariance.

Progressive Quenching, though the operator K, is an operation by which the parti-
tion between the system and its environment is updated. In contrast, the unquenching,
through S, is a kind of its inverse. In our model, this dichotomy between the system
(here, the unquenched spins) and the environment (the quenched ones) subsystems is
explicitly made. The quenching operation drives a spin in an out-of-equilibrium state
while the unquenched part remains at equilibrium under the updated constraint. Such
flexibility of partition opens a niche where we may find new concepts. The evolution of
Progressive Quenching from an unbiased initial condition generates the family of stable,
steady states for the Recycled Quenching process, the alternation of single-step quenching
(K) and single-step unquenching of a randomly chosen spin (S). That family of steady
distributions plays the role of a stable manifold in the space of distributions with multi-
sectors. There are several questions that we still need to exploit and left for future study.
We have yet to address the kinetic aspects of RQ, which might bring more information
about this new realm of flexible System-Environment partition.

The two-story ensemble allowed us to understand how the Boltzmann-like structure
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of Eq.(4.6) arose, and how important the Markov property and detailed balance are
for the PQ to keep the canonical distribution. Under these conditions, the canonicity is
conserved even without allowing the unquenched spins to reach a quasi-equilibrium before
the subsequent fixation of spins as far as the system starts with a canonical thermal
ensemble. (cf. When we go down to a more microscopic scale, the detailed balance
may become incompatible with the quenching operation.) When the two-story canonical
structure is assured, the hidden martingale holds through the tower-rule applied to the
conditional canonical expectations. Applying the Glauber algorithm made us realize that
kinetics actually do not play any role, as surprising as it may have sound to us only a
couple of years ago. Moreover, we may now see the act of quenching a degree of freedom
as a particular potential barrier transformation with 0 entropy production.

Following those results, we will extend the and generalize our framework to general
Markov Chains, and see if the detailed-balance bears an important role as much as it does
for our spin systems. This will be the subject of the next chapter.
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Appendix: PQ for the 3-Potts model
The picture of the two-story ensemble and the underlying canonical statistics should apply
to systems other than the Ising spins on a complete lattice. The q = 3 Potts model on
the complete lattice is an example. Below, we describe the model in some detail.

Energy and entropy of the q = 3 Potts model on a complete lattice
The energy of the q = 3 Potts model on a complete lattice reads

H = − J0

N0

∑
1≤i<j≤N0

ei · ej = − J0

2N0

∥∥∥∥∥∥
∑

1≤i≤N0

ei

∥∥∥∥∥∥
2

+ J0

2 , (4.67)

where ei is the state of the i-th Potts element, etc. To be concrete, we represent the
three states of the Potts’ element on the plane: e(1) = (0, 1)t, e(2) = (

√
3

2 ,−
1
2)t, and

e(3) = (−
√

3
2 ,−

1
2)t. The quenching process is performed by keeping the same update rule.

At stage T , the mean value of the next quenched Potts spin eT+1 holds:

E[eT+1|e1, . . . , eT ] = 〈ei〉(eq)
i∈{T+1,...,N0} (4.68)

When T of N0 spins have been quenched, their repartition of orientation is denoted by
n(i) for the state e(i). We note n(1) + n(2) + n(3) = T and n(1)e(1) + n(2)e(2) + n(3)e(3) =
MT , together with e(1) + e(2) + e(3) = 0. The distribution of the T spins can then be
characterized by the two parameters: ν(1) = n(1)− n(3) and ν(2) = n(2)− n(3). By noticing
ν(1) + ν(2) = T − 3n(3), all n(i) are specified by ν(1) and ν(2);

n(1) = 1
3(T + 2ν(1) − ν(2))

n(2) = 1
3(T − ν(1) + 2ν(2))

n(3) = 1
3(T − ν(1) − ν(2)) (4.69)

With these in mind, the energy of the whole system reads;

H = − J0

2N0
‖MT +

∑
T+1≤i≤N0

ei‖2 + J0

2 , (4.70)

where MT = ν(1)e(1) + ν(2)e(2), and the entropy of quenched part S(n(1), n(2), n(3)) (with
kB ≡ 1) reads

eS(n(1),n(2),n(3)) = T !
n(1)!n(2)!n(3)! , (4.71)

Consequences of martingality of mean equilibrium spin
When each node of the complete network has a q-state Potts spin with q > 2, the ho-
mogeneity of the unquenched Potts spins allows, as in the Ising (q = 2) case, the tower-
rule-based martingale of the mean equilibrium unquenched spin, which in turn justifies
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the underlying two-story canonical statistics. Unlike the q = 2 case [3], the martingale
does not imply the Boltzmann-type weight for the path probability per se. Nevertheless,
certain constraints are imposed by this martingale property, as will be shown below.

By m(eq)
T ≡

∑
sT+1 sT+1PT (sT |MT ), the martingale relationship, E[m(eq)

T+1|MT ] =
m(eq)

T reads ∑
sT+2

∑
sT+1

(sT+2 − sT+1)PT+1(sT+2|MT + sT+1)PT (sT+1|MT ) = 0, (4.72)

where we have made use of the identity, ∑sT+2 PT+1(sT+2|MT +sT+1) = 1, with any T and
MT . This is valid for any q ≥ 2 and any symmetric spin-spin interactions such as clock,
Potts, etc. If q = 2, this equality immediately goes back to the local invariance because the
summation contains only those terms with (sT+2, sT+1) = (−1, 1) and (1,−1). For q = 3,
those processes which quench the two Potts elements of the same state consecutively drop
out from the summation, and the above relationship (4.72) is reduced to an 2D equality,
that is, starting from a common frozen spin, MT = ∑T

i=1 si, there are the two constraints
on the local path probabilities of Mt:

PT+1,T (e(2), e(1)|MT )− PT+1,T (e(1), e(2)|MT ) = PT+1,T (e(3), e(2)|MT )− PT+1,T (e(2), e(3)|MT )
= PT+1,T (e(1), e(3)|MT )− PT+1,T (e(3), e(1)|MT ).

(4.73)
Each line in the above should represent a common function of MT .



Chapter 5

Generalization to Markovian
Transition Networks

5.1 Introduction
Markov chains have been studied in depth for more than a century now, whose fields of
application are broad and diverse [79, 80, 81, 82]. It is especially the case of stochastic
physics [83, 6, 10]. Some studies concern the effect of change of the parameters of the
Markov chain, that is, the topology of the transition network and the rates associated with
the jump on it [84, 85, 86, 87]. It turns out that Progressive Quenching (PQ) belongs to
this category of studies.

In this Chapter, we aim to understand the importance of the Markovian assumption on
the stochastic evolution of the martingale and its underlying canonical structure. We will
discuss separately the Markovian (in this Chapter) and non-Markovian cases (Chapter
6), as well as distinguish the dynamics with or without the detailed balance.

The contents are extracted from our 2023 preprint [4], with Section 5.4 being original
to this manuscript.

5.2 PQ viewed in the transition network
Returning to the discrete description of spins, we aim to extend the PQ to the Markovian
transition networks (TN) context. This subsection is a preparation for that purpose,
where we translate the PQ of a spin system in the language of TN. The extension will be
discussed in Section 5.2.1.

We consider a system with N degrees of freedom denoted by {x1, x2, . . . , xN}. The set
of possible values of xi is denoted by Ai. For example, Ai = {−1, 1} for an Ising spin si.
The state space A then reads A ≡ ⊗N

i=1Ai. Any state α ∈ A can then be described by a
set of degrees of freedom, {x1, x2, . . . , xN}. Inversely, any variable xi is the function of the
state, xi(α). The transition network in A is such that (i) if we exclude the simultaneous
change of more than one variable, the topology of transition edges is hyper-rectangle, and
(ii) if any one variable, e.g. xi, is quenched, the network is divided into two groups, losing
the ergodicity. Fig 5.1(b) illustrates (i) and (ii), where an initial TN graph is divided
into non-connected subgraphs.In this section we will consider continuous-time processes,

89
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(b)

(a)

x1 = + 1

x1 = − 1

PQ on x1

Figure 5.1: Progressive Quenching on Transition Networks. (a) Schematic illustration of
the network transformation (Eqs. (5.3) and (5.4)). Some edges with no net probability
flow are removed (dashed line). (b)Schematic illustration of a cubic Markov transition
network modulated by PQ (in the case of three Ising spins, for example). After quenching
the first degree of freedom denoted by x1, the cubic network is separated into two square
disconnected subnetworks.

therefore we denote by t the continuous time, not to be confused with the “quenching”
index T which denotes the number of quenched degrees of freedom.

Let R be the rate matrix of the master equation for the network on A:

d~P

dt
=R~P , (5.1)

and let ~P st be the steady state distribution; R~P st = ~0. We also introduce the net proba-
bility current from α to α′ through

Jα′←α ≡ Rα′←αPα −Rα←α′Pα′ . (5.2)

When the detailed balance (DB) is established for the steady state, ~P st, we have
Jα′←α = 0 for all the pair of states, (α, α′).

Having the progressing quenching in mind, we introduce the class-Kronecker delta,
δ

(T )
α,α′(= δ

(T )
α′,α) through

δ
(T )
α,α′ =

{
1 : ∧Ti=1{xi(α) = xi(α′)}
0 : otherwise , (5.3)

that is, it picks up those pair of states that belongs to the same quenched degrees of
freedom, {x1, . . . , xT}. The notation ∧Ti=1 denotes the conditions that need to be fulfilled
simultaneously. When the progressive quenching has fixed {x1, . . . , xT} but leaves the
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other variables free to fluctuate, the modified rate matrix, which we denote by R̃T,α′←α is
given as

R̃T,α′←α = δ
(T )
α,α′Rα′←α (5.4)

for α 6= α′, and R̃T,α←α = −∑β(6=α) R̃T,β←α for the diagonal element to satisfy the
normalization conditions, ∑α′ R̃T,α′←α = 0 for ∀α. Eq. (5.4) simply means the state
transition is possible only when δ(T )

α,α′ = 1.
A simple but important observation is that if the steady state of the unquenched

system, ~P st, satisfies the detailed balance, then we have a trivial rewriting for every pair
(α, α′),

0 = Jα′←α
= Rα′←αP

st
α −Rα←α′P

st
α′

= δ
(T )
α,α′

(
Rα′←αP

st
α −Rα←α′P

st
α′

)
= R̃α′←αP

st
α − R̃α←α′P

st
α′ . (5.5)

This means that ~P st satisfies also the DB condition for the quenched system. The steady
states of R̃ are in general not unique because of the broken ergodicity (see Fig 5.1(b).
Nevertheless, the canonical distribution, ~P st, is among the possible steady states.

5.2.1 PQ of Markovian transition network without detailed bal-
ance

When the states space A is not a product space corresponding to multiple degrees of free-
dom of the system, we may still consider quenching as eliminating a part of bidirectional
edges from the transition network (TN). If the detailed balance (DB) condition is not
globally satisfied, removing bidirectional edges in a TN generally causes the modification
of its steady-state distribution. The inset of Fig 5.2 shows just a simple example where the
stationary state has a circulation of probability. Before “quenching” the stationary prob-
ability on the three states is {p1, p2, p3} =

{
1
3 ,

1
3 ,

1
3

}
. When we remove the edges between

the states 1 and 2, the stationary probability becomes (r2 + rr′ + r2)−1 {r′2, r2, rr′} . The
detailed balance holds globally only when r = r′, and the stationary distribution remains
unchanged by this operation.

When we consider the general TN and ask when the removal of bidirectional edges
leaves the steady state probability intact, a rule of thumb is as follows:
When a pair of states, (α, α′) realize the vanishing net probability flow, Jα′←α = 0,
we can eliminate simultaneously Rα′←α and Rα←α′ without perturbing the stationary
distribution. The demonstration follows the idea of (5.5) above. We suppose that the
initial TN has a steady state ~P (st). We denote by χQ all those pairs of states for which
the net probability flow vanishes, i.e.,

χQ ≡
{

(α, α′) |Rα′←αP
(st)
α −Rα←α′P

(st)
α′ = 0

}
. (5.6)

Here χQ’s suffix Q stands for “quenchable”. We introduce the “optional”-Kronecker delta,
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Figure 5.2: An example of a two-layered transition network whose steady state does not
verify the detailed balance for any pair of states but has the possibility of a “quench” that
leaves the stationary probabilities intact. See the main text (5.2.1) for the details. (inset)
A simple example of a stationary Markov chain without detailed balance. If r 6= r′, there
is a non-zero probability flux, and cutting a link will change the stationary distribution.

δ
(Q)
α,α′ through

δ
(Q)
α,α′ = δ

(Q)
α′,α =

{
1 or 0 (optional) : (α, α′) ∈ χQ
1 : otherwise , (5.7)

that is, δ(Q) can vanish only for the pairs whose net steady probability flow is zero. We
then “quench” the original TN according to the “optional”-Kronecker delta:

R̃α′←α ≡ δ
(Q)
α,α′Rα′←α. (5.8)

We can check that the “quenched” TN still has ~P (st) as the stationary state. In fact, for
every α′ ∑

α

(R̃α′←αP
(st)
α − R̃α←α′P

(st)
α′ )

=
∑
α

δ
(Q)
α,α′(Rα′←αP

(st)
α −Rα←α′P

(st)
α′ )

=
∑
α

(Rα′←αP
(st)
α −Rα←α′P

(st)
α′ )

=0. (5.9)

Here, to go to the third line, we have used the fact that, whenever the pair (α, α′) is
6∈ χQ, we have δ(Q)

α,α′ = 1 by definition. The last equality is the stationary condition
for the original TN. The main part of Fig. 5.2 gives an example in which the TN does
not have a global detailed balance, but the “quenching” of TN is possible. The system
has two layers, R and E . The former layer has the Glauber dynamics allowing detailed
balance among {α1, α2, α3, α4, α5}. The latter layer E undergoes the stochastic circulation
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among {ε1, ε2, ε3, ε4}. We assume that the four values εk (k = 1, . . . , 4) are the global
time constant of the Glauber dynamics for the first layer R. Then, we can quench the
bidirectional edges for any pairs of nodes on this layer.

Remark : The modification of the transition rates, Rα′←α 7→ R̃α′←α and Rα←α′ 7→
R̃α←α′ should be realized pairwise simultaneously, either instantaneously or gradually, but
in keeping the ratio R̃α′←α(t)/R̃α←α′(t) constant so as to maintain the flow-free condition,
(R̃α′←α(t)P (st)

α − R̃α←α′(t)P (st)
α′ ) = 0.

5.3 A discrete-time version

We consider a discrete-time and discrete-state Markov process characterized by the transi-
tion probabilities K(αi→αj).We suppose that this process is stationary, and we denote by
P st(α) the stationary probability. We will show that, if the Detailed-Balance (DB) holds
in the stationary ensemble, the Progressive Quenching (PQ) allows P st(αi) to remain the
stationary distribution.

When a group of degrees of freedom, say {ai}Q, are quenched, certain transitions
that involve the change of this variable are prohibited. We introduce δQ(α, α′) so that
δQ(α, α′) = 1 [0] if the transitions α→α′ and α′→α are allowed [prohibited], respectively.
Then under the condition of quenched variables, {ai}Q, the off-diagonal transition prob-
abilities, that we denote by KQ(αi→αj) (i 6= j), should read

KQ(αi→αj) = δQ(α, α′)K(αi→αj) (5.10)

To maintain the normalization condition of the probability, the diagonal element of
the transition probability should also be compensated:

KQ(αi→αi) = 1−
(j 6=i)∑
j

KQ(αi→αj)

= K(αi→αi) +
(j 6=i)∑
j

(1− δQ(αi, αj))K(αi→αj) (5.11)

We now ask whether the stationary distribution of the original transition network (TN),
P st(αi), remains so for the quenched TN if the former TN satisfies the DB. We rewrite
the stationarity condition of P st(αi) :

P st(αi) =
∑
j

P st(αj)K(αj→αi).

=
∑
j(6=i)

P st(αj)
(
δQ(αi, αj) + [1− δQ(αi, αj)]

)
K(αj→αi)

+P st(αi)K(αi→αi)
=
∑
j(6=i)

P st(αj)KQ(αj→αi)

+
∑
j(6=i)

[1− δQ(αi, αj)]P st(αj)K(αj→αi) + P st(αi)K(αi→αi)
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=
∑
j( 6=i)

P st(αj)KQ(αj→αi)

+P st(αi)
∑
j(6=i)

[1− δQ(αi, αj)]K(αi→αj) + P st(αi)K(αi→αi)

=
∑
j( 6=i)

P st(αj)KQ(αj→αi) + P st(αi)KQ(αi→αi)

=
∑
j

P st(αj)KQ(αj→αi), (5.12)

where the fourth equality is due to the DB condition of the original TN,

P st(αj)K(αj→αi) = P st(αi)K(αi→αj). (5.13)

Eq.(5.12) means that P st(αi) is a stationary distribution of the quenched system,
though it may not be the unique one.

5.4 A graph theory formulation

From the schematic view of Fig. 5.1(a) and Eq.(5.9), we may note that two graphs
with similar transition probabilities but different topologies can have the same stationary
distribution. This difference in topology is essential, as it changes the number of possible
paths for the system’s evolution. This particular aspect is well represented by the so-
called “Markov Chain Tree Theorem”, which links the static distribution of a Markov
Chain with the spanning-tree-decomposition of its representing graph [85]. This theorem,
first derived by Hill in 1968 [88] (with anterior similar methods, such as Bott and Mayberry
in 1954 [89] - but not available online) and referred by Schnakenberg in his 1976 review
as “Kirchhoff’s theorem” [85], was then rigorously proved in 1983 by Leighton and Rivest
(first in an internal MIT paper, then published in 1986 in the appendix of [90]). Below,
we present this theorem and sketch an analysis of its consequences on our PQ process.

5.4.1 Markov Chain Tree Theorem

Let us consider a physical system whose evolution is described by a stationary Markov
Chain, with states α and a transition matrixR, both represented by a graph G as pictured
in Fig.5.2. A spanning tree (or maximal tree) of G, denoted by T (G), is a tree subgraph
of G that reaches all vertices α of G. More precisely, T (G) is a connected subgraph of
G containing no cycles spanning over the entire set of states of G. For an arbitrarily
connected graph, the total number of spanning trees t(G) is given by Kirchhoff’s matrix-
tree theorem [91], known as Cayley’s formula in the case of complete graphs. We will
denote those trees by T (µ)(G), with µ = 1, 2, . . . , t(G). An example is shown in Figure 5.3
where t(G) = 8. Each spanning tree can be directed towards a certain vertex (or state)
α by orienting each edge towards this certain state. The now directed spanning tree is
denoted T µα (G). See Fig.5.4 for illustration. Now for each T µα (G), we define the quantity
A(T µα (G)) such that:

A(T µα (G)) =
∏

(γ,γ′)∈Tµα (G)
Rγ′←γ ≥ 0. (5.14)
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1

2 3

4

Figure 5.3: A simple undirected graph and all eight possible corresponding spanning trees.
Adapted from [85].

Figure 5.4: All possible T µ4 , i.e spanning trees of Figure 5.3 directed towards α = 4



96CHAPTER 5. GENERALIZATION TO MARKOVIAN TRANSITION NETWORKS

A(T µα (G)) is, therefore, the product of all (directed) transition probabilities Rγ′←γ that
occur in T µα (G). Now for each state α, we define the factors:

Sα =
t(G)∑
µ=1

A(T µα (G)) (5.15)

and
S =

∑
α

Sα (5.16)

Note that there is the same number of product terms t(G) in all Sα, only the order and
orientation of the vertices change. The Markov-Chain tree theorem states that for all α:

P st(α) = Sα
S

(5.17)

where P st denotes the stationary distribution. Eq.(5.16) ensures that 0 ≤ P st(α) ≤ 1.
Therefore, we have a direct link between the graph’s topology, through the structure
and number of spanning trees, and the system’s steady state. Furthermore, since the
Progressive Quenching applied to transition networks is equivalent to removing certain
edges (or setting their transition rates to 0) of the graph without changing the stationary
distribution, we may identify Sα/S as a topological invariant of the graph.

5.4.2 Quenching and spanning trees

Let us consider a pair of states (α, α′) ∈ χQ(R), i.e., so that there is no net probability
flux at the steady state between them. We showed earlier that the modified transition
network R̃, where the (α, α′) edge has been removed, has the same stationary distribution.
If we denote it by P̃ st, we may write for any state γ:

P st(γ) = Sγ
S

= S̃γ

S̃
= P̃ st(γ) (5.18)

where S̃ and S̃γ correspond to Eqs.(5.15, 5.16) for the graph G̃ of R̃. This allows for
faster enumeration of “relevant” spanning trees, as t(G̃) ≤ t(G). For example, in Fig.5.3,
removing the (2, 3) edge actually removes the top row of spanning trees. Equivalently,
setting R̃2↔3 = 0 cancels all corresponding A(T µγ (G̃)), which decreases the number of
terms in Eq.(5.15). Furthermore, if we denote by q(G) the indexes’ set of spanning trees
containing the edge (α, α′), we may write:

Sγ =
∑

µ/∈q(G)
A(T µγ (G))

︸ ︷︷ ︸
=S̃γ

+
∑

µ∈q(G)
A(T µγ (G))

︸ ︷︷ ︸
:=Uγ

(5.19)

S =
∑

µ/∈q(G)

∑
γ

A(T µγ (G))
︸ ︷︷ ︸

=S̃

+
∑

µ∈q(G)

∑
γ

A(T µγ (G))
︸ ︷︷ ︸

:=U

, (5.20)
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with Uγ the sum of vanishing contributions and U = ∑
γ Uγ. Then, Eq.(5.18) leads to the

following ratio equality for any state γ:

S̃γ
Uγ

= S̃

U
. (5.21)

Therefore, all states γ have the same “remaining-to-vanishing” ratio.
We think it might be possible to prove Eq.(5.18) without referring to Eq.(5.9) via

combinatorics of spanning trees and the 0-net probability flow hypothesis, but we have
not yet succeeded. Nevertheless, reducing the number of spanning trees to count is of
great importance in accelerating pathfinding algorithms [92] or optimizing communication
networks [93]. Therefore, if there are reasons to think that the net flow of probability will
vanish between two vertices, removing the connecting edge will simplify the topology of
the graph without changing the stationary state. This shows how extensive the notion
of Progressive Quenching can be, from modeling physical processes to graph topology.
However, those results heavily rely on the Markov property. In the next Chapter, we will
explore how the non-Markovianity of physical systems changes the stationary distributions
of quenched systems.
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Chapter 6

Non-Markovian spin systems

The previous results are valid only for Markovian systems. Our study of Progressive
Quenching is now extended to non-Markovian systems, whether the detailed balance
(DB) is verified (Section 6.1) or not (Section 6.2). The examples are the Ising spin
systems studied above but with memory effects.

The contents are extracted from our 2023 preprint [4].

6.1 System with hidden spins satisfying detailed bal-
ance

6.1.1 Model, effective coupling and DB

In this part, we recall two known aspects of non-Markovian processes through the case
studies under a simple setup. As a model, we consider a chain of N “visible” spins {si}
with ferromagnetic nearest-neighbor coupling J. We suppose also that the neighboring
spin pairs, say si and si+1 share a "hidden" spin σi+ 1

2
, through the coupling K. Fig.6.1

shows the case of a closed chain with three visible spins and three hidden ones. The

S1( = S4)

S2S3

σ1+ 1
2σ3+ 1

2

σ2+ 1
2

J
K

Figure 6.1: Model of non-Markovian spin system consisting of the visible (Si) and hidden
(σi+ 1

2
) spins, see Eq.(6.1).

99
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energy of the entire system reads

E = −
N∑
i=1

Jsisi+1 −K
N∑
i=1

(si + si+1)σi+ 1
2
, (6.1)

where sN+1 ≡ s1. After taking the sub-trace over σ’s, the effective energy Ẽs and the
effective partition function Z̃ read:

Z̃ =
∑
{si}

e−βẼs , Ẽs = −
N∑
i=1

J̃sisi+1, (6.2)

where the effective, temperature-dependent, coupling constant J̃ is

J̃ ≡ J + (2β)−1 ln cosh(2βK). (6.3)

The visible spins, therefore, follow the canonical statistics with the apparent coupling
J̃ as long as the single-time statistics are concerned. If the whole system evolves by a
Markovian dynamics such as the Glauber model, the observer who has only access to
the visible spins {si} finds its non-Markovian evolution. The non-Markovian nature in
a simple case is demonstrated below. There is no more instantaneous detailed balance
(DB) about the visible spins. Nevertheless, if the whole system {s, σ} obeys a Markovian
evolution with DB, the visible spins still satisfy a trajectory-wise detailed balance:

P([{si(t)}Ni=1]Tt=0) = P([{si(t)}Ni=0]∗Tt=0), (6.4)

where [{si(t)}Ni=0]∗Tt=0 denotes the time reversal of the forward trajectory, [{si(t)}Ni=1]Tt=0.
The derivation of (6.4) is given in Sec. 6.1.3.

6.1.2 Non-Markovianity of the Hidden-Spin model

Let the system has the energy function,

H = −K(s1 + s2)σ,

whereK > 0 and the variables, s1, s2 and σ, are Ising spins. The “hidden” spin σ mediates
the interaction between the “observable” spins, s1 and s2. We shall use the unit such that
the inverse temperature is β = 1. We assume a Markovian evolution of this system
but observe only s1 and s2. We introduce a short time step, dt, and focus on the three
consecutive instants, {tk−1, tk, tk+1} = {(k − 1) dt, k dt, (k + 1) dt}. We also introduce the
notations, αk = (s1(tk), s2(tk)) and σk = σ(tk). Supposing dt� ε, we will ignore the errors
of O((dt)2). Our main concern is the history-conditioned probability, P (αk+1|αk, αk−1),
and we claim the general inequality, P (αk+1|αk, αk−1) 6= P (αk+1|αk, α′k−1) for αk−1 6=

α′k−1. The Markovian transition probability in terms of the micro-state (αk
σk

) is written as

P

(
αk+1
σk+1

∣∣∣∣∣αkσk
)
. Using this, the conditional probability P (αk+1|αk, αk−1) can be expressed
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as

P (αk+1|αk, αk−1) = P (αk+1, αk, αk−1)
P (αk, αk−1)

=

∑
σk+1,σk,σk−1 P

(
αk+1
σk+1

∣∣∣∣∣αkσk
)
P

(
αk
σk

∣∣∣∣∣αk−1
σk−1

)
P

(
αk−1
σk−1

)
∑
σ′
k
,σ′
k−1

P

(
αk
σ′k

∣∣∣∣∣αk−1
σ′k−1

)
P

(
αk−1
σ′k−1

) . (6.5)

As for the probability P
(
αk−1
σk−1

)
we assume the canonical weight, exp(−H(αk−1

σk−1
))/Z with

the partition function, Z = 4+2e2K +2e−2K . In the conditional probability P
(
αk+1
σk+1

∣∣∣∣∣αkσk
)

we ignore the flipping of more than one spin because such an event weights O((dt)2). As
for the single spin flip, we use the formalism of Bergmann-Lebowitz [94]: The transition
rate Wb←a from the micro-state a to b for P (b|a) = Wb←adt takes the form, Wb←a =
ν0e
−(∆[a,b]−Fa), which assures the (microscopic) Markovian DB. For those transition flipping

σ we assign ∆[a,b] = δ while for those keeping σ fixed we assign ∆[a,b] = ∆. The energy value
Fa takes among {−2K, 0, 2K}. Some symbolic calculus tells that, while the transitions
from the anti-parallel pair do not reflect the past further than O(dt)1;

P ((++)|(+−), (++)) = P ((−−)|(+−), (++))
= (ν0dt)e−∆

P ((++)|(+−), (+−)) = P ((−−)|(+−), (+−))
= (ν0dt)e−∆, (6.6)

the transition from the parallel pair depends on the further past;

P ((−+)|(++), (−+)) = P ((+−)|(++), (−+))
= (ν0dt)e−∆ cosh(2K)

P ((−+)|(++), (++)) = P ((+−)|(++), (++))
= (ν0dt)e−∆sech(2K). (6.7)

2 Thus we claim the general inequality; P (αk+1|αk, αk−1) 6= P (αk+1|αk, α′k−1) for αk−1 6=
α′k−1. Intuitively, Eq.(6.7) means that if the state (++) is realized only during [(k −
1)dt, kdt], the transition to (−+) or to (+−) is enhanced by the factor coth(2K) (> 1) as
compared with the case in which the state (++) has been maintained before (k − 1)dt.

6.1.3 Trajectory-wise detailed balance
Suppose a system undergoes a Markovian stochastic process, satisfying the detailed bal-
ance (DB). We denote by ωk = (αk

σk
) the state of the system at time tk, where α and σ

1The notation (+-) means (s1, s2) = (1,−1),, etc.
2Recall that at most only one spin can flip during dt. Therefore, αk+1 6= αk implies σk+1 = σk.
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stand for the visible and hidden variables, respectively. For simplicity the time-reversed
state of ω is assumed to be ω. As in Sec. 6.1.2 we use the discretization of time with small
interval dt. Then the “instantaneous” DB condition for ω, reads,

P(ωk−1|ωk)P eq
ωk

= P(ωk|ωk−1)P eq
ωk−1

. (6.8)

In repeatedly using this relation, we have the trajectory-wise DB for the variable ω starting
from the canonical state, P eq :

P({ωk}Kk=0) = P(ωK|ωK−∞) · · ·P(ω2|ω1)P(ω1|ω0)P eq
ω0

= P eq
ωK
P(ωK−1|ωK) · · ·P(ω1|ω2)P(ω0|ω1)

= P(ω0|ω1)P(ω1|ω2) · · ·P(ωK−1|ωK)P eq
ωK

≡ P({ωk}∗Kk=0). (6.9)

We then focus only on the history of the visible observables, {αk}Kk=0. For that purpose
we integrate out the hidden part, {σk}Kk=0 :

P({αk}Kk=0) =
∑

{σm}Km=0

P({ωk}Kk=0 ),

where the sum is taken under the fixed {αk}Kk=0. Applying (6.9) to each term on the r.h.s.
above, we have

l.h.s. =
∑

{σm}∗Km=0

P({ωk}∗Kk=0 ) (6.10)

= P({αk}∗Kk=0). (6.11)

Thus, we have the trajectory-wise DB relation.

P({αk}Kk=0) = P({αk}∗Kk=0). (6.12)

The relation like (6.8) does not hold any more because P(αk+1, αk) = P(αk+1|αk)P eq
αk

contains behind many trajectories of ω.

6.1.4 Effects of the PQ
Quenching generally breaks canonicity: In principle, the quenching of a visible
spin can accompany any actions on the hidden part even though the system starts by
the canonical ensemble. For example, we can imagine the case in which the quenching of
the visible spin si in Fig.6.1 imposes a specific value for the hidden spin σi+ 1

2
at the i-th

step of quenching. The general principle mentioned above may have exceptions through
deliberately designed actions of the PQ. Two such cases are demonstrated below.

Case of unbroken canonicity upon PQ: We take up again the non-Markovian model
shown in Fig. 6.1, with the energy given by Eq.(6.1) wherein the steady state the Detailed-
Balance (DB) holds. A Glauber algorithm is used to simulate the dynamics of the whole
system, and we progressively quench the visible spins exclusively while the hidden vari-
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and changing J and K, constant J̃

Figure 6.2: Probability distribution of the visible spins M = S1 + S2 + S3 after all the
visible spins have been fixed. For the solid curves J andK are kept at (1/3)(kBT ) with the
interval between consecutive quench being ∆T/ε = 0, 1 and 15 respectively. The dashed
curve corresponds to variating values of J and K - see the main text for the detailed
protocol.

ables remain intact. According to Sec. 5.2, the PQ of that system, particularly the
selective quenching of visible spins, should not modify the distribution as the two-story
ensemble. Fig. 6.2 (thick curves) verifies this idea, where the probability distribution of
the (visible) magnetization, M ≡ S1 + S2 + S3, after all these spins have been quenched.
Here the quenching of visible spins is progressively done with a regular (dimensionless)
interval, ∆T/ε = 0, 1 and 15 (solid curves), where ∆T/ε = 0 is equivalent to the snap-
shot of the equilibrium ensemble before quench. The distributions are independent of the
interval ∆T/ε.

We also examined another ad hoc protocol in which the fixation of visible spin accom-
panies the modification of the coupling parameters, J and K. At every quenching, the
value of J is reduced by 50% whole that of K is incremented so that the effective coupling
J̃ of Eq.(6.3) remains unchanged. When we monitor the magnetization of visible spins,
M ≡ S1 + S2 + S3, its distribution after sufficient interval ∆T/ε recovers the canonical
one, by construction (Fig.6.2, dotted curve). Nevertheless, there is a visible transient
before the equilibration in M, which we monitor through its variance 〈M2〉, see Fig.6.3
(cf. 〈M〉 = 0). The fluctuations of M are transiently attenuated as a fast response to the
reduction of J, then it recovers the canonical level (horizontal dotted line) gradually due
to the compensatory increment of K.



104 CHAPTER 6. NON-MARKOVIAN SPIN SYSTEMS

0 5 10 15 20 25 30
Time (in ε units)

6.00

6.05

6.10

6.15

6.20

6.25
Se

co
nd

 m
om

en
t 

[M
2
]

Visible (S) magnetisation distributions
First quench (S1)
Second quench (S2)
[M 2] value before PQ

Figure 6.3: Transient processes corresponding to the protocol for the dashed curve in
Figure 6.2. The second moment E[M2] (cf. E[M ] = 0) of the whole visible magnetization,
M = S1 + S2 + S3, is plotted against the scaled time, t/ε after each quenching. The
statistical average is taken over multiple realizations of the process.

6.2 Delayed interactions in spin systems: The Choi-
Huberman model

We have seen in the previous subsection (Sec.6.1) that the conservation of the canonicity
upon the PQ requires a Markovian evolution rule in addition to the detailed balance in
the starting steady state. In the last part of this chapter, we study the effect of PQ on
the non-Markovian system whose steady state has been broken from the beginning, i.e.,
before quenching the system’s degrees of freedom, to understand the PQ better.

6.2.1 Original Choi-Huberman model and its steady state
The starting model was introduced by Choi and Huberman in 1985 [95]. In their model,
the interactions between spins have a delay τ with respect to the instantaneous ones, i.e.,
each spin at t "sees" the other spins at (t − τ). The probability of flipping of the spin si
reads:

P [si(t+ dt) = −si(t)] = dt

2ε [1− si(t) tanh(βEi(t− τ))] (6.13)

with Ei being defined by Eq.(4.55). Except for the limit of the Glauber model [71] with
τ = 0, the steady state distribution should break the detailed balance because τ > 0
invalidates the time-reversal symmetry. We characterize the irreversibility by the non-
dimensionalized parameter, a ≡ τ/ε. Throughout this section (6.2), the numerical simu-
lation based on (6.13) is done with the time mesh dt/ε = 0.1 for a ≥ 1 and dt = 0.05
for a < 1. In the appendix 6.3 of this chapter, we show analytically that the steady state



6.2. THE CHOI-HUBERMAN MODEL 105

8 6 4 2 0 2 4 6 8
Magnetization

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Pr

ob
ab

ilit
y 

di
st

rib
ut

io
n

a= 0.53

a= 0.27

a= 0.13

a= 0.07

Canonical distribution
(a= 0)

Figure 6.4: Plot of the steady state distribution of the total magnetization, M = ∑N
i=1 si

with N = 8 in the Choi-Huberman (C-H), for different values of non-dimensionalized
delay, a = τ/ε. The canonical distribution (τ = 0) corresponds to the a = 0 case.

depends on the kinetic parameter, ε (via a), for the system with two spins. We recall
that the canonical equilibrium, i.e. a = 0, is independent of ε. Numerically, we show in
Fig.6.4 how the steady state distribution of the system with eight spins depends on the
irreversibility parameter a. We see that the larger the value of a, the more paramagnetic
(unimodal) the system behaves as compared with the bimodal distribution with Marko-
vian limit, a = 0. Intuitively, when the delay τ is augmented, the cooperative fluctuations
among the spins are lessened.

6.2.2 Effects of the PQ of the Choi-Huberman model

If we introduce the PQ in the above model of Choi-Huberman, what effect should we ex-
pect? First, we studied how the two-story distribution of the total magnetization evolves
as a function of the number of quenched spins. The irreversibility parameter a is kept at
1.07 where the intact distribution is unimodal (see Fig.6.4). We have given a large enough
time interval ∆T between the consecutive quenching so that ∆T/ε = 15 � a. Leaving
the details in section 6.3, we found that the evolution is qualitatively similar to Fig.6.4,
where the increment in the number of quenched spins corresponds to the reduction of the
irreversibility parameter a. This result may be qualitatively understandable because the
quenching of the spin si amounts to the replacement of εi by ∞, or the reduction of ai
to 0 for that spin. When the time interval between the consecutive quenching, ∆T, is
not exceedingly larger than either ε or τ, the second dimension-free parameter, ∆T/ε,
comes into play in addition to a. Fig.6.5 shows how the final distribution of the total
magnetization, M, depends on the values of ∆T/ε, where the non-dimensionalized delay
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Figure 6.5: The magnetization distribution after the Progressive Quenching has been
completed with different values of ∆T/ε. The steady-state distribution, as well as the
canonical distributions, are also plotted for comparison.

a is again fixed at 1.07. Note that with ∆T/ε = 0, the steady state ensemble of the
original Choi-Huberman model is entirely copied by PQ as the quenched ensemble. With
increasing the value of ∆T/ε, the free spins have more time to adapt to the quenched part,
and the distribution of M undergoes the change which is a qualitatively similar manner
to the case of decreasing the value of a. The above results in Figs.6.4 and 6.5 motivate
to study the possible synthetic effect of a and ∆T/ε, or the possible characterization by
(∆T/ε)/a(= ∆T/τ). Nevertheless, the comparison on the level of the probability dis-
tribution of M is too complicated. We, therefore, characterize each distribution by the
second moment E[M2] standardized by its canonical value (i.e., for a = 0 and arbitrary
∆T/ε), which we denote by Ecan[M2], all knowing that some subtle aspects of the dis-
tribution will be lost. For example, the equality, E[M2] = Ecan[M2], does not mean that
the distribution is identical to the canonical one. Fig.6.6 shows this type of “projection”
from the Fig.6.5, being complemented by more data points. Somewhat surprisingly the
ratio E[M2]/Ecan[M2] exceeds unity for ∆T/ε>∼8. The unimodal-bimodal transition of the
distribution takes place where E[M2]/Ecan[M2] = 0.9 approximately (see below).

Fig. 6.7 summarizes the contours of E[M2]/Ecan[M2] on the plane of a and ∆T/ε
for N0 = 8 as the landscape of correlation among quenched spins. E[M2]/Ecan[M2]
represents rather well the characteristics of the probability distribution of M. Espe-
cially the unimodal-bimodal transition of the distribution of M is found to occur where
E[M2]/Ecan[M2] ' 0.9 (data not shown). Along the vertical axis with a = 0, the model
is the reversible canonical one, therefore, E[M2]/Ecan[M2] = 1 by definition. However,
there is another contour of “canonical” level. The zone above this contour is “super-
canonical” realizing E[M2]/Ecan[M2] > 1 although the excess part is quite small. This



6.3. CONCLUSION 107

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
∆T/ε value

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Se

co
nd

 m
om

en
t E

[M
2
]/

E
ca
n
[M

2
]

PQ distribution
Steady Distribution
Canonical distribution (a= 0)

Figure 6.6: Plot of the standardized second moment of the magnetization after PQ,
E[M2]/Ecan[M2], versus the time interval parameter, ∆T/ε, where a = 1.07 is kept the
same as in Figure 6.5 and N = 8. The steady-state levels (∆T/ε = 0) and the canonical
case (a = 0) are also shown by dashed horizontal lines.

overreach reveals some synergistic effect of the three characteristic time constants, ε, τ
and ∆T. Moreover, the “super-canonical” feature is more enhanced, rather than contrary,
for the larger system size N . We can see Fig. 6.6 as a vertical projection of Fig. 6.7
for a = 1.07. In the parameter region below the second non-vertical “canonical" contour,
E[M2]/Ecan[M2] = 1, the landscape of E[M2]/Ecan[M2] is monotone with respect to both
a and ∆T/ε. This suggests that there is a compensating nature of ∆T for the delay τ .
However, near the origin, the perturbation by a dominates over the influence of ∆T/ε.

6.3 Conclusion
In the non-Markovian process, even when the system realizes a trajectory-wise detailed
balance, the quenching may involve uncontrollable/unobservable modifications in the un-
derlying freedoms that constitute the memory of the observable parts, and such changes
can cause the breaking of canonicity of the observable part. We also applied the PQ to
the system for which the detailed balance is absent even in the unquenched steady en-
semble. In the case of PQ on the Choi-Huberman (C-H) model, the operation of PQ can
be unambiguously formulated. Monitoring through the variance of the total magnetiza-
tion, we examined the interplay between the intrinsic non-Markovian parameter τ of the
dimension of time and the time interval between the subsequent quenching, ∆T. While
the canonical correlation that favored the cooperative fluctuations of spins is attenuated
by the non-Markovian delay τ , the operation of quenching reinforces the cooperative
fluctuations through ∆T.
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Figure 6.7: Contour plot of the standardized mean square (in a similar way as pictured
in Figure 6.6) of the final quenched magnetization, E[M2]/Ecan[M2], on the plane of
(a,∆T/ε) with N = 8. Each tic symbol indicates points where E[M2] has been calcu-
lated over 6× 105 samples and the contours are thereby calculated using the ContourPy
library. The red dashed lines correspond to the contours of the ±2σ confidence interval
for E[M2] = Ecan[M2]. The values at which the contours are plotted are indicated next
to the corresponding line.
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Appendix

Evolution of spin correlations along PQ in the two-story ensemble
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Figure 6.8: The distribution of magnetization at different stages of PQ. The non-
dimensionalized delay a and the non-dimensionalized time interval between consecutive
quenches, ∆T/ε, are fixed at (a,∆T/ε) = (1.07, 15).

Fig.6.8 shows how the distribution of the total magnetization evolves with the stages
of PQ. Here, it is understood that, when a part of all of the spins are quenched, the total
magnetization M is calculated using the two-story ensemble including both quenched
spins and thermally fluctuating ones (see Sec.4.4). The kinetic parameters are fixed at
(a,∆T/ε) = (1.07, 15). As compared with the CH model without quenching (the unimodal
blue points and links), we observe that the progress of quenching enhances the correlation
among the spins, as is the case with a decreased delay parameter a observed in Figs.6.4.

Absence of Detailed Balance in the Choi-Huberman model
This Appendix focuses on verifying the non-canonical nature of the steady state of the
Choi-Huberman model, the Ising spin system with delayed interaction. The approach
is to take up a simplified and discrete-time version of the Choi- Huberman (CH) model
applied to the two Ising spins and to show that its steady state depends on the kinetic
parameters, which is not the case for the canonical ensemble.

The time is discretized with the unit being unity, and we set the delay of the interaction

τ to be equal to this unit, i.e., τ = 1. We denote by ~s(t) :=
(
s0(t)
s1(t)

)
the polarization of

the two spins at time t. Following the CH model, the probability that s0(t) [s1(t)] at t are
flipped at the time (t + 1) depends on the spin state of their (exclusive) neighbors, but
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Figure 6.9: Plot of the steady-state probabilities (solid curves):

P st
[(

+1
+1

)]
= P st

[(
−1
−1

)]
in blue, and P st

[(
+1
−1

)]
= P st

[(
−1
+1

)]
in red, as functions

of ε(≥ 1). The coupling parameter η = tanh(βj) has been set such that βj = 1/4. Data
were drawn using the formula (6.17).

at the time (t − 1), that is, on s1(t − 1) [s0(t − 1)]. In the spirit of the (discrete-time)
Glauber model, we adopt the probabilities,

P [s0(t+ 1) = −s0(t)|~s(t), ~s(t− 1)] = 1
2ε(1− s0(t)s1(t− 1)η) (6.14)

P [s1(t+ 1) = −s1(t)|~s(t), ~s(t− 1)] = 1
2ε(1− s1(t)s0(t− 1)η), (6.15)

with η = tanh(βj/2), where j/2 is the coupling constant for this two spin system, similarly
to the Glauber mode. (The factor 1/2 is merely from the convention on the complete
lattice applied to N = 2 spins.) For the sake of simplicity, we assume that the flip of
the two spins takes place independently for one from the other. Then the probability of
~s(t+ 1) reads,

P [~s(t+ 1)|~s(t), ~s(t− 1)] = 1
4

[
1 + s0(t+ 1)s0(t)

(
1− 1− s0(t)s1(t− 1)η

ε

)]

×
[
1 + s1(t+ 1)s1(t)

(
1− 1− s1(t)s0(t− 1)η

ε

)]
, (6.16)

where, for the discrete-time version, Glauber’s elementary time scale, ε, should be no less
than unity. To handle the above non-Markovian transition probabilities, we follow the
usual technique of Markovianizing the original description by extending the state so that
the state involves more than one moment of time. Here we choose as the extended state the
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2×2 matrix, (~s(t+1), ~s(t)) :=
(
s0(t+ 1) s0(t)
s1(t+ 1) s0(t)

)
. Through such redefinition of the state,

the transition from (~s(t), ~s(t− 1)) to (~s(t+ 1), ~s(t)) is Markovian. (cf. The redundancy of
the description due to the reappearance of ~s(t) does not harm the procedure.) Formally,
this Markov chain should be written as a 16 matrix, and the question of the steady state
probability is reduced to the search of the eigenvector of this matrix with the unitary
eigenvalue. After some symbolic calculus, the steady-state probability P st(~s) is found to
be

P st
(

+1
+1

)
= (1 + η)(ε− η)2(2ε+ η − 1)

8ε3 − 4ε2 (3η2 + 1) + 8εη2 + 4η2 (η2 − 1)

= P st
(
−1
−1

)
(6.17)

P st
(

+1
−1

)
= (1− η)(ε+ η)2(2ε− η − 1)

8ε3 − 4ε2 (3η2 + 1) + 8εη2 + 4η2 (η2 − 1)

= P st
(
−1
+1

)
. (6.18)

Evidently, the steady state depends on the kinetic parameter ε, as a sign of non-canonical
ensemble. Figure 6.9 shows the above probabilities as function of ε(≥ 1). In the limit,
ε→ +∞, the system behaves canonically (the top and bottom dashed lines), whereas in
the limit, ε→ 1+, all the probabilities become 1/4. The theoretical formula (6.17) is also
in excellent agreement with numerical simulations.

“Markovianization” of non-Markov problems
Network modification and state replication techniques can be used to perform exact
“Markovianization” of non-Markov problems [96]. For example, we consider a 1D chain

Figure 6.10: Scheme of a 1D chain network on which a non-Markov jump process occurs.

of states with jump probabilities depending on the current state and the previous jump
realization. We define the stochastic jump X̂k that takes the value +1 when the walker
goes from a state n to the state n+ 1, or the value −1 if the walker goes from n to n− 1
at stage k. We suppose that the probability of having

(
X̂k = ±1

)
depends on the value

of the previous jump. The jump probabilities P(X̂k = ±1|Xk−1 = ±1) are defined as
follows:

Jump probability
Condition k-th jump = +1 k-th jump = −1

(k − 1)-th jump = +1 (1− θ)w θw
(k − 1)-th jump = −1 θw (1− θ)w
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We can map this problem to a Markovian transition network, via a replica of the whole
chain, to allow the conditions on X̂k+1 to be taken into account.

Figure 6.11: Modified transition network derived from Fig.6.10. The non-Markovian
process is rendered Markovian thanks to the double chains.

In the example depicted in Fig.6.11, the states {n′} are only reached from the left to
ensure that the previous transition was +1. Similarly, the states {n′′} are reached from
the right, ensuring that the previous transition was −1. We then link the states with
transition rates in accordance with the table to fully describe the Markovian network. We
can then apply the previous techniques to obtain, for example, FPT statistics. Note that
n′ and n′′ both describe the same original state n, and their statistics must be added to
obtain the original one.

The random walk exhibits a directional persistence when the parameter θ differs from
1/2. The 0 < θ < 1/2 case typically represents the “run and tumble” processes, whereas
1/2 < θ < 1 represents turn alterations (typical trajectories are depicted in Fig.6.12).
Otherwise, if θ = 1/2, the process is a Markovian random walk. This “fine-graining”
method of Markovianization preserves the time resolution of the underlying process in-
stead of coarse-graining methods (discussed above in Sec.1.3.2).

The topology of the TN in Fig.6.11 is isomorphic with that of the run-and-tumble
model of an active swimmer [96]. In the latter model, the nodes n′ and n− 1′′ in Fig.6.11
is associated to the position n.

Figure 6.12: Typical trajectories for the three different cases. Note that the smaller θ is,
the more spread trajectories are. This effect is explained qualitatively by the diffusion
coefficient D dependency with θ (Eq.6.23).
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Calculation of the diffusion coefficient We take the period between consecutive
tumbling as a time unit. (The step displacement of the tumbling will be taken into
account later as the first displacement of this period.) Since the tumbling transition
rate is θw, the probability density of this period is P (t)dt = (θw)e−θwtdt. During this
period, a number of forward jump, n, occurs with a Poissonian distribution P (n|t) =
e−(1−θ)wt

n! [(1− θ)wt]n. The joint probability is then,

P (t, n)dt = e−(1−θ)wt

n! [(1− θ)wt]n(θw)e−θwtdt. (6.19)

Note that, using the gamma function identity on natural integers: Γ(n) =
∫∞

0 e−xxn−1dx =
(n− 1)! with n ∈ N∗, we have :

P (n) =
∫ ∞

0
P (t, n)dt

=
∫ ∞

0

e−(1−θ)wt

n! [(1− θ)wt]n(θw)e−θwtdt

= (1− θ)nθ
∫ ∞

0

e−wt

n! (wt)nwdt

= (1− θ)nθ 1
n!

∫ ∞
0

exxndx = (1− θ)nθ with x = wt. (6.20)

The run length `n is given by `n = n+1, to account for the initial unit step associated with
the tumbling. For the N pairs of periods of forward and backward runs, the total time is
T = (∑N

k=1 t
+
k ) + (∑N

k=1 t
−
k ) and the total displacement is X = (∑N

k=1 `
+
k )− (∑N

k=1 `
−
k ). For

each period we apply P (t±k , n±k ), where `±k = n±k + 1. The quantity of interest is the ratio
E[X2]/(2E[T ]). Since different `±k ’s are mutually independent,

E[T ] = 2NE[t] (6.21)
E[X2] = 2N(E[`2]− E[`]2) = 2N(E[n2]− E[n]2). (6.22)

From P (n) we find E[n2]− E[n]2 = (1−θ)
θ2 , while from P (t) we find E[t] = 1

θω
. Altogether,

the diffusion constant is

D = E[X2]
2E[T ] = E[n2]− E[n]2

2E[t] = w

2
1− θ
θ

. (6.23)

Here, w is the total frequency of jumps, either rightward or leftward.
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This manuscript relates the evolution of Progressive Quenching over the course of
my three-year thesis in its linearities and branchings. What began as an adaptation to
Ising spins of a concept developed for the study of quasicrystals has been generalized and
extended to Markov chains and has become a playground for the application of martingale
theory in physics. Our focus on the Curie-Weiss model (globally coupled spins) in the
first three chapters is restrictive by nature but has nevertheless enabled us to understand
how the interactions between the quenched and free parts of the system subjected to
Progressive Quenching are articulated.

Chapter 3 enabled us to systematically lay the foundations of the process introduced
in the introduction and to understand the influence of the various system parameters.
By fixing the temperature β, we have highlighted two limiting cases, namely the limits
of zero coupling between spins, leading to unbiased random walks, and infinite coupling,
leading to a necessarily polarized system. Therefore, the cases of interest are located at
the boundary between these two limits, which we have identified as the critical coupling,
i.e., the coupling that maximizes the system’s magnetic susceptibility. We were also able
to understand how to write the contribution of the fixed part in the Hamiltonian of the
system, namely through an effective magnetic field acting on the whole free system. The
Curie-Weiss model provides a simple formulation of this contribution.

Chapter 4 focuses on the notion of martingale, which governs the dynamics of system
magnetization. This law, which highlights the cyclic relationship between fixed and free
systems through characteristic quantities, enables us to understand the temporal evolution
of the system. The latter seeks to maintain its average magnetization and thus results in
trajectories following the contours of constant magnetization. This martingale law was
first derived in an approximate way, but it turned out to be exact. We were keen to retain
the approximate derivation, as it also tells us about the compensating mechanisms that
enable m(eq) conservation. From this, we were able to conclude that it was possible to
estimate the final position of a process, e.g. MT , because it retains the value of m(eq)

on average. We can then project these trajectories onto iso-m(eq) contours in order to
estimate their final values. A crucial point is that the later this estimate is made, the
more accurate it is. We interpret this property as the system’s effective memory. It is the
first positions of the trajectory that will globally determine its direction and therefore its
final position. We have quantified this dependency by calculating the system’s sensitivity.
The greater the number of unfixed spins, the more sensitive the system is to perturbations.

We can offer a parallel to these conclusions in terms of social dynamics. When a
common choice is made (typically, a referendum in a given population), public debate is
primarily driven by the first people to give their opinions. So, in a social group that tends
to be homogeneous in terms of opinion (i.e., with typically ferromagnetic interactions), the
issues and debates brought to the news are generally dictated by the people giving their
opinion first, who are also the people with the most media exposure. This admittedly
unscientific parallel nevertheless allows us to justify that when public opinion is not very
stable, social interactions are, on average, close to a critical value in the sense of equation
3.

Once the trajectory dynamics or Progressive Quenching realization had been studied,
we turned to their overall distribution, i.e. the probability distribution of the final mag-
netization MN0 . This is the subject of Chapter 5. First, we observed the dependence
on the value of the spin-spin coupling j0 in Chapter 3 and realized that this distribution
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coincides with the canonical distribution of the system at thermodynamic equilibrium.
First, through Recycled Quenching, an endless process derived from PQ, we were able to
understand the origin of this distribution conservation, whereas spin binding is a priori a
non-equilibrium process. The fundamental property at play here is the total probability
formula, which allows us to establish that choosing the value of N0 spins one by one or
all together does not change the probability of their distribution. Once this equality had
been established, we turned our attention to the dynamics of spin balancing and the in-
fluence of a quench on this. Using Glauber’s dynamic algorithms, we demonstrated that
the time between quenches had no influence on the final distribution, even though the
systems were by nature frustrated quenches. We then explained this phenomenon from a
thermodynamic point of view, with a parallel to Landauer’s theory.

We then undertook a generalization of our results, supported by the results obtained
with Glauber dynamics. For the latter, whatever the relaxation time of the system, the
canonical distribution was the stationary distribution towards which the system tends
under the rules of the algorithm. We wondered whether this could be generalized to
stationary Markov chains (of which Glauber’s algorithm is one). We then formulated
Progressive Quenching for any Markov chain through our initial idea of representing a
system by its degrees of freedom, which we can then fix. We showed that the condition
for the final distribution due to the state of a system after Progressive Quenching was
that the states verified between the detailed balance. In other words, when two states
exchange balanced probability flows, we can remove the transitions between them without
changing the static distribution of the system. For example, Glauber’s algorithm verifies
the detailed balance by construction, as this is a fundamental aspect of thermodynamic
equilibrium on the microscopic scale. In this case, Progressive Quenching will give us the
canonical distribution. We then sketched this result as a representation of a topological
invariant of the directed graph representative of Markov chains.

The final chapter explores the consequences of Progressive Quenching on non-Markovian
systems. We abandon our general Markov chain framework and return to Ising spin sys-
tems. We first studied systems with hidden degrees of freedom coupling visible spins
together. We were then able to show that this system can be renormalized by integrating
the invisible degrees of freedom. The latter modifies the system’s equilibrium dynamics,
but the equilibrium state of the entire system is not modified by Progressive Quench-
ing. We observe magnetization “overshoots” during quenching, but the equilibrium value
of the magnetization remains unchanged. We therefore set out to introduce delay into
the spin interactions, following Choi and Huberman’s model. The introduction of delay
changes the picture entirely, as it makes the equilibrium state of the system dependent on
the values of the kinetic coefficients. However, we realized that the action of quenching
a spin is equivalent to making its typical response time tend towards +∞. Progressive
Quenching thus modifies the system’s kinetics and hence its static distribution when its
interactions include delay. Using numerical simulations, we were able to "map" the sta-
tionary state of the Choi-Huberman model as a function of the time lag between spins and
the waiting time between two quenchings. This mapping enabled us to show numerically
that the system reaches more polarized states than the no-delay case, corresponding to
the canonical distribution. The larger the system size, the greater this effect appears to
be, but this conclusion remains to be confirmed by further numerical studies.

Although the main results presented, namely the conservation of the stationary dis-
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tribution in the Markovian case, may appear disappointing in their apparent simplicity,
they nevertheless pave the way for the study of non-Markovian systems, in particular
the coupling between delay between interactions and waiting time between two quenches.
Our preliminary study seems to indicate that there is an area of domain (a,∆T ) where
this effect is optimal.

In addition, Progressive Quenching applied to the Curie-Weiss model allows the ap-
plication of martingale theory to processes that differ from the standards of stochastic
thermodynamics. Given the generality of systems in which specific parameters become
fixed with time, primarily systems cooling non-homogeneously, we are convinced that
these processes go beyond pure statistical physics. Also, we have yet to study the con-
sequences when T is a stopping time [47, 49, 27]. Often, the many advantages of the
martingale theory come with this concept. With a broader scope, hidden martingales
under non-Markovian processes mentioned at the end of should be exploited in concrete
evolution models beyond the quasi-static protocol. We believe that beyond analytical
tools, martingales represent a class of mathematical and physical objects that has yet to
be democratized.
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MOTS CLÉS

Processus Stochastiques, Martingales, Théorie de l’information, Thermodynamique stochastique

RÉSUMÉ

Dans un système dynamique, les différents degrés de libertés paramétrisant l’état du système peuvent fluctuer au cours
du temps. L’objet principal de cette thèse est d’étudier l’effet d’une fixation (un "quench") progressive de tout ou d’une
partie de ces degrés de libertés, à un instant donné, sur l’évolution du reste du système via une étude statistique. Le
processus stochastique en découlant est appelé "Progressive Quenching". En nous basant sur un modèle simple de
spins en interaction (modèle de Curie-Weiss), nous étudions l’évolution des trajectoires individuelles de son état dans
l’espace des phases, et leur répartition statistique. Le rôle des martingales, vues comme des quantités stochastiquement
conservées pendant ces processus, est crucial. Elles permettent à la fois d’estimer efficacement l’état final à partir de peu
d’observations, mais aussi de comprendre leur répartition. L’invariance sous-jacente à cette loi de conservation permet de
dresser un lien explicite entre la distribution finale du système et la distribution canonique initiale. Ce lien est explicitement
prouvé par une étude combinatoire, et justifié thermodynamiquement. Nous étendons notre étude à l’ensemble des
systèmes Markoviens et généralisons les précédents résultats. Pour un système Markovien admettant une distribution
stationnaire, cette dernière est invariante par Progressive Quenching si le bilan détaillé est respecté. Nous abordons
brièvement ce résultat du point de vue des graphes, et des flux de probabilité qui les parcourent. Enfin, une étude du cas
non-Markovien est réalisée en considérant une information incomplète sur le système ainsi qu’en introduisant des délais
dans les interactions entre les spins. Dans ce dernier cas, nous étudions numériquement l’influence des paramètres
cinétiques du système sur les distributions finales.

ABSTRACT

In a dynamical system, the various degrees of freedom parameterizing the state of the system can fluctuate over time.
The main aim of this thesis is to study the effect of a progressive fixing of all or part of these degrees of freedom, at a
given instant, on the evolution of the rest of the system via a statistical study. The resulting stochastic process is called
"Progressive Quenching". Based on a simple model of interacting spins (Curie-Weiss model), we study the evolution
of individual trajectories of its state in phase space, and their statistical distribution. The role of martingales, seen as
stochastically conserved quantities during these processes, is crucial. They enable us to efficiently estimate the final
state from a small number of observations, and also to understand their distribution. The invariance underlying this
conservation law enables an explicit link to be established between the final distribution of the system and the initial
canonical distribution. This link is explicitly proven by a combinatorial study, and thermodynamically justified. We extend
our study to all Markovian systems and generalize the previous results. For a Markovian system admitting a stationary
distribution, the latter is invariant by Progressive Quenching if the detailed balance is verified. We briefly discuss this result
from the point of view of graphs, and the probability flows that run through them. Finally, a study of the non-Markovian
case is carried out by considering incomplete information about the system and introducing delays in the interactions
between spins. In the latter case, we numerically study the influence of the system’s kinetic parameters on the final
distributions.

KEYWORDS

Stochastic processes, Martingales, Information theory, Stochastic thermodynamics
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