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Abstract

This PhD thesis aims to enhance the current RANS turbulence models using Machine

Learning (ML), and is organized in three main parts. First, we employ the Sparse Bayesian

Learning (SBL) algorithm to derive sparse and stochastic closures of EARSM-type for the

baseline k − ω SST model to address turbulent separated flows. The resulting models, denoted

SBL-SpaRTA models, are interpretable, frame-invariant, and enable improved velocity and

friction coefficient predictions compared to the baseline, while providing confidence intervals

around the predictions. While effective on their training flow category, these models show

weak generalizability. This motivates the second part of the thesis where we use the precedent

framework to derive customized SBL-SpaRTA for a set of typical flow cases comprising flat

plates, separated flows and jets. Then, we train a ML regressor to automatically attribute

local weights to the predictions of every model, reflecting its likelihood and knowing the local

underlying physics. While this ”non-intrusive” approach exhibits good generalizability and

substantial enhancements over the baseline model for both training and unseen test cases,

its final prediction does not necessarily adhere to the conservation equations. Finally, in the

third part, we address this issue by applying an intrusive methodology for model aggregating,

where the customized SBL-SpaRTA are automatically blended in the CFD code using ML.

This framework is compared to the non-intrusive paradigm using a systematic methodology,

thus enabling to evaluate their merits and drawbacks.

Keywords: Turbulence modeling, Machine Learning, Sparse Bayesian Learning, Explicit Alge-

braic Reynolds Stress Models, separated flows, jet flows, boundary layers, sensitivity analysis,

Mixture-of-Experts, Model Aggregation.





Résumé

L’objectif de cette thèse est d’améliorer les modèles de turbulence RANS existants au moyen

de l’apprentissage automatique (ML) et se structure en trois volets principaux. D’abord, nous

avons recours à l’algorithme de l’apprentissage bayésien parcimonieux (SBL) pour trouver des

fermetures parcimonieuses et stochastiques de type EARSM pour le modèle k −ω SST de base,

dans le but de traiter ses déficiences à bien prédire les écoulements turbulents séparés. Ces mod-

èles, appelés SBL-SpaRTA, se caractérisent par leur interprétabilité, invariance galiléenne, et

capacité à améliorer les prédictions par rapport au modèle de base, tout en fournissant des inter-

valles de confiance autour des prédictions. Toutefois, leur capacité de généralisation à d’autres

écoulements s’avère limitée. Cette limitation motive la seconde partie de la thèse, où nous ex-

ploitons le cadre précédemment élaboré pour trouver des modèles SBL-SpaRTA personnalisés

pour un ensemble de cas d’écoulement typiques, englobant des plaques planes, des écoulements

séparés et des jets. Ensuite, nous procédons à l’entrâınement d’un régresseur ML permettant

d’attribuer automatiquement des poids locaux aux prédictions de chaque modèle, reflétant leur

vraisemblance et s’appuyant sur la physique locale de l’écoulement. Alors que cette approche

’non intrusive’ se distingue par sa bonne capacité de généralisation et améliore significativement

le modèle de base, ses prédictions n’adhèrent pas nécessairement aux équations de conservation.

Enfin, dans la troisième partie, nous remédions à cette lacune en appliquant une méthodologie

intrusive pour l’agrégation des modèles, au sein de laquelle les modèles SBL-SpaRTA personnal-

isés sont intégrés et mélangés automatiquement dans le code CFD. Les résultats sont comparés

au paradigme non intrusif, permettant ainsi d’en évaluer les points forts et limites.

Mots clés : Modélisation de turbulence, Apprentissage automatique, Apprentissage bayésien



parcimonieux, Modèles EARSM, Écoulements séparés, Écoulements de jet, Couches limites,

Analyse de sensibilité, Mélange de modèles d’experts, Agrégation de modèles.
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Chapter 1

Introduction

1.1 Bibliography

Despite the significant growth in computing power, high-fidelity turbulent flow simulations

such as Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) remain pro-

hibitively expensive for daily use in industrial applications. As a result, engineering design and

optimization tasks often rely on Reynolds-Averaged Navier Stokes (RANS) equations supple-

mented by suitable ”turbulence closure models”. The averaging process in RANS equations

leads to concentrate the fluctuating turbulent information into a tensorial term called Reynolds

stress tensor, which will be subject to modeling by the mean of turbulence models. The latter

thus play a crucial role in Computational Fluid Dynamics (CFD) solvers as they represent

the influence of turbulent scales on the mean flow, and the fidelity of the CFD simulation de-

pends on how accurate the turbulent phenomena are modeled. Many different models have

been developed over the years, with varying degrees of success in predicting extended ranges of

flows. The reader is referred, e.g., to [1], [2], [3] and to the books of [4, 5] for an overview of

RANS turbulence models. Among the widely used turbulence models, Linear Eddy Viscosity

Model (LEVM) are prominent. They are based on the Boussinesq assumption, which assumes

an alignment between the Reynolds stress and the mean strain rate tensors. Amid the major

contributions to RANS turbulence modeling using LEVM, the k − ϵ model stands out as one

of the first and most basic two-equations models. Introduced by Lumley[6] in 1967, it derives
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two transport equations for the Turbulent Kinetic Energy (TKE) k and its dissipation rate ϵ.

Building on the k − ϵ model, the k −ω model emerged as an extension and upgrade. The initial

two-equation k − ω turbulence model introduced was Kolmogorov’s k − ω model, as outlined in

Kolmogorov’s work in 1942 [7], with ω being the turbulence frequency. Over the years, several

enhanced versions of Kolmogorov’s model have emerged, proposed by various researchers, in-

cluding Saiy[8](1974), Spalding[9] in 1979, Wilcox [10] in 1988, Speziale[11] in 1990, and Menter

[12] in 1992. In these models, the turbulent timescale information is accounted for by means of

the transport equation of the specific rate of dissipation ω instead of the dissipation rate ϵ. The

k−ω Shear Stress Transport (SST) model represents another significant advancement in RANS

turbulence modeling, specifically designed to provide improved predictions of turbulent shear

flows. Introduced by Menter[12] in 1992, this model uses a blending of the k − ϵ and k − ω and

has since become widely used in various industrial and aerospace applications. For improved

predictions of Turbulent Boundary Layer (TBL), particularly near walls, the Spalart-Allmaras

model proved to be highly useful. Developed by Spalart and Allmaras [13] in 1992, this one-

equation turbulence model has gained popularity and finds wide application in industrial and

aerospace scenarios. However, as it has been highlighted before, these models are based on the

Boussinesq assumption that remains genuinely not verified even for relatively simple flows (see

[5, 14]).

A large part of the turbulence modeling literature during the last three decades reports

attempts to upgrade the baseline LEVM by adding nonlinear terms suited to sensitize the

model to curvature effects or to improve its anisotropy. Examples are given by the SARC

(Spalart–Allmaras with Rotation and Curvature, [15]), non-linear models [16], elliptic relax-

ation models [17], algebraic Reynolds Stress models [18] or explicit algebraic Reynolds Stress

models ([19, 20, 21]), and full Reynolds Stress Models [22]. The latter require the solution

of additional transport equations for the Reynolds stress components plus an equation for a

quantity allowing to determine a turbulent scale. Of particular interest for the present work

are so-called Explicit Algebraic Reynolds Stress Model (EARSM), originally derived by Pope

[19] from the transport equations of Reynolds Stress Models (RSM) under local equilibrium
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assumptions. Padé approximations were used to obtain explicit expressions, in contrast with

the so-called Algebraic Stress Models (ASM) [18] that lead to implicit algebraic expressions for

the Reynolds stress components. The above-mentioned EARSM models rely on purely physi-

cal arguments, along with simplifying assumptions that may limit their performance for flows

significantly different from those for which they were calibrated. Since Pope’s contribution, var-

ious improvements have been proposed in the literature (e.g., [20, 21, 23]). Unfortunately, the

balance accuracy / robustness / computational cost of such more complex models has prevented

a widespread use in CFD applications. In addition, more complex models typically involve a

larger number of adjustable closure coefficients. In addition, despite continuous research efforts

through several decades, ”no class of models has emerged as clearly superior, or clearly hope-

less” [1] until now. In fact, whatever the closure assumptions, all RANS models suffer from

uncertainties associated with i) the applicability of a RANS-type description of turbulence for

a given flow; ii) the choice of a suitable mathematical structure for constitutive relations and

auxiliary equations used to link turbulent quantities to the mean field, referred-to as struc-

tural or model-form uncertainty; Clearly, RANS models suffer from several shortcomings for

complex flow configurations involving turbulence nonequilibrium, strong gradients, separations,

shocks, 3D effects, etc that is related to the structure of Reynolds stress representation. iii)

the calibration of the model closure parameters, known as parametric uncertainty. In fact, the

turbulent quantities are computed via auxiliary relations (often transport equations) introduc-

ing a number of supplementary modeling hypotheses and closure coefficients, and the latter are

calibrated against experimental or numerical data for so-called ”canonical flows”, i.e. simple

turbulent flows representative of some elementary turbulent dynamics. However, 1) it is not

always possible to determine closure coefficients that are simultaneously optimal for all canon-

ical flows; 2) the calibration data are affected by observational uncertainties; and 3) the final

values retained in some models are not the best fit to the data, but a compromise with respect

to other requirements, e.g. numerical robustness. A discussion of uncertainties associated with

turbulence models can be found in [24].

An alternative line of research has consisted in the development of so-called scale-resolving
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approaches (Large Eddy Simulation, LES, wall-modeled LES, and hybrid RANS/LES), which

directly resolve a more or less extended range of turbulent structures while modeling scales

smaller than a certain filter length. Such approaches have been successful for increasingly

realistic flow configurations. However, their computational cost remains significant and still

prohibitive for applications involving swarm simulations, such as massive parametric studies,

optimization or uncertainty quantification.

In recent years, there has been a growing interest in applying Machine Learning (ML) tech-

niques for turbulence modeling. Machine Learning can be used to analyze large amounts of data

and discover non-trivial patterns. Since all RANS models involve some degree of empiricism

[1, 2], including those that were initially derived from exact manipulations of the Navier–Stokes

equations, the use of Machine Learning can then be seen as a natural way to systematise the

development of RANS models and discover formulations suitable for improving their perfor-

mance for more complex flows (see the reviews of [25, 24, 26, 27]). Early studies mostly dealt

with the quantification of uncertainties associated with turbulence models by using interval

analysis or statistical inference tools. The analysis was conducted either by perturbing di-

rectly the Reynolds stress anisotropy tensor computed with a baseline LEVM [28, 29, 30] or

by treating model closure coefficients as random variables with associated probability distri-

butions [31],[32],[33],[34]. The first approach takes into account structural uncertainties in the

constitutive relation of the Reynolds stresses, while the second one only accounts for parametric

uncertainties. On the other hand, the tensor perturbation approach is intrusive, as it implies

modifications of the Reynolds stress representation in the RANS solver, while the parametric

approach only requires a modification of the turbulence closure coefficients introduced in the

CFD solver.

Early attempts to quantify model-form uncertainty in a probabilistic framework can be

found in [35], where the Demster-Shafer evidence theory is adopted, and multiple models are

used for predicting a given flow configuration. More recently, [36] explored a Bayesian frame-

work named Bayesian Model-Scenario Averaging (BMSA) to calibrate and combine in an op-

timal way the predictions obtained from a set of competing baseline LEVM models calibrated
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on various data sets (scenarios). BMSA has been successfully applied to provide stochastic

predictions for a variety of flows, including 3D wings [37] and compressor cascades [38, 39].

Since Bayesian model averaging builds a convex linear combination of the underlying models,

its prediction accuracy cannot be better than the best model in the considered set, even if it

outperforms the worst one.

With the aim of reducing modeling inadequacies, data-driven methods for turbulence mod-

eling have been introduced in recent years, mostly relying on supervised Machine Learning.

Examples of early contributions can be found in [40, 41], who proposed field inversion to learn

corrective terms for the turbulent transport equations, along with ML to express the correction

as a black-box function of selected flow features and to extrapolate it to new flows. Other con-

tributions to the field-inversion and ML approach can be found, e.g., in [42, 43, 44]. One of the

advantages of field inversion is that the ”goal-oriented” correction can be inferred from sparse

data or even global performance parameters. On the other hand, the ML step uses flow features

estimated with a baseline RANS model to infer the corresponding correction. This may cause

a feature mismatch for severe flow cases, since the baseline RANS flow field may completely

miss flow features expected in the high-fidelity solution. In order to improve the consistency of

the data-driven correction, an iterative procedure has been proposed in [45]. Additionally, in

most of the above mentioned works, the features are hand-picked for a class of flows at stake,

making the data-driven correction unsuitable to radically different configurations. In fact, the

efficacy of the learned correction is strongly dependent on the features used to map it to unseen

flow cases [46]. Even when an appropriate set of feaures is available, the learned corrections

tend to lack generality, and cannot be applied to flows significantly different from those used

to learn the correction [47]. Using a similar framework, Xiao et al. [48, 49] (see also [50])

performed a truncated Karhunen-Loeve expansion to get a lower-dimensional representation

of Reynolds-stress anisotropy across the computational domain, and then applied Bayesian in-

ference to infer posterior distributions of the augmented model coefficients. Both approaches

provided improved solutions with uncertainty interval estimates for the training cases, but their

applicability outside the training set remained limited. On the other hand, Edeling et al. [51]
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proposed a “return-to-eddy-viscosity”model, which relies on transport equations with a source

term describing the Reynolds-stress anisotropy discrepancy. The model coefficients in the PDEs

can be calibrated by using data and Bayesian inference, and the calibrated equations can be fur-

ther used for predictions. As the preceding ones, this approach involves an expensive Bayesian

inference step, although the cost can be relieved using surrogate models.

The seminal work of [52] introduced a novel neural network architecture (Tensor Basis Neural

Network, TBNN) that allows frame invariance constraints to be incorporated into the learned

explicit Reynolds stress anisotropy correction. The idea is to project the correction term onto

a minimal integrity basis, as in the extended eddy viscosity model of [19], leading to a form of

generalized Explicit Algebraic Reynolds Stress model, whose function coefficients are regressed

from high-fidelity data using ML. [48, 49, 53, 54, 50] combined ML techniques for identifying

regions of high RANS modeling uncertainty along with other ML algorithms for inferring model

corrections from data, and for predicting new configurations. The procedure, initially relying on

the assimilation of full high-fidelity fields, has been subsequently extended to the assimilation

of sparse data by using end-to-end differentiation [55]. In [56], the use of vector cloud Machine

Learning upholds the desired invariance properties of constitutive models, accurately reflects

the physical region of influence, and can be applied to various spatial resolutions; however,

it still needs to integrate the information about the turbulent length and velocity scales via

transport equations to provide a better description of the Reynolds stresses. Other recent

contributions are given by [57] who used tensor-basis Random Forests to learn data-driven

corrections of the Reynolds stress tensor, and [58] who proposed a general principled framework

for deriving deep learning turbulence model corrections using deep neural network (DNN) while

embedding physical constraints and symmetries. The aforementioned approaches to modeling

turbulence from data use so-called black-box ML, such as neural networks or Random Forests.

They allow a flexible approximation of complex functional relationships, but do not provide an

explicit, physically interpretable mathematical expression for the learned correction. Recent

attempts to interpret ML-augmented turbulence models rely on nonlinear sensitivity analysis

tools, e.g. Shapley factor analyses [59]. Another downside of black-box methods is their difficult
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implementation in a CFD solver to make robust predictions of new flows.

An interesting alternative is represented by so-called open-box ML approaches, which consist

in selecting explicit mathematical expressions and/or operators from a pre-defined dictionary to

build a suitable regressor for the data. Examples of open-box ML include Genetic Programming

(GEP) [60] and symbolic identification [61, 62, 63]. In the latter, the Reynolds-stress anisotropy

is projected onto Pope’s [19] minimal integrity basis and ML is used to regress the function

coefficients of the decomposition. Sparsity-promoting formulations of the cost function are used

in [61, 62] to minimize the number of active terms and limit the occurrence of overfitting. The

resulting models correspond to data-driven EARSM with fully explicit analytic expressions,

but again without estimates of their predictive uncertainty. Open-box ML approaches have

been applied successfully to the development of data-driven models for a variety of applications

[64, 65, 66, 67, 68, 69]. Although less expressive than black-box ML, due to the quickly escalating

complexity of the search procedure in large mathematical operator dictionaries, the open-box

models have the merit of delivering tangible mathematical expressions, which can be easily

integrated into existing CFD solvers and interpreted in light of physical considerations. Both

a priori and ”CFD-in-the-loop” training procedures have been proposed [70, 71], the latter

allowing the use of incomplete data, at the cost of solving a large optimization problem.

Regardless of their formulation and training procedure, both black-box and open-box suffer

from some common drawbacks. First, the learned corrections are generally non-local, meaning

that they may alter the predictions of RANS models also where the baseline LEVM already

gives good results. Second, such models tend to behave well only on narrow classes of flows

and operating conditions, which implies that they must be often retrained as soon as a new

flow configuration must be addressed. This has recently fostered attempts to merge or combine

models trained for different settings to make accurate predictions of wider ranges of flows.

Additionally, the necessity of simultaneously improving turbulent flow predictions and efficiently

estimating uncertainty intervals for the predictions, especially when the model is applied to

configurations significantly different from the training ones, remains of the utmost importance

for providing reliable flow predictions and is far from being achieved. The identification of flow
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regions of greater sensitivity to turbulence modeling errors also represents valuable information

for designers.

In this optic, we find several attempts in the literature for building composite physics-based

turbulence models, with different corrective terms intended to capture specific phenomena (e.g.,

transition, rotation), being added to a baseline RANS model. An example of such a procedure

is given by the various corrections of the SA model, both physics-based (several variants of

the Spalart–Allmaras model are reported on the NASA Turbulence modeling Resource†) and,

more recently, data-driven [72]. Another example is given by the so-called GEKO (GEner-

alized k-ω) model, introduced by [73]. The idea behind GEKO is to add several localized,

tunable corrections that the model users can adapt to their own problem. This means that

although the model structure is intended to be very flexible, the associated coefficients are

case-dependent and data-driven. Another drawback is that GEKO is implemented in a com-

mercial code: the model details are not publicly accessible. More recently, [74] combined field

inversion and Random Forests classifiers to train a correction field for the k-ω SST model on

bump flow cases involving various kinds of turbulent dynamics (boundary layer, separation),

then to classify subregions in a space of features, used to extract optimal local corrections for

new cases. This approach showed promising results, indicating the interest of zonal models for

improving the generalizability of ML-augmented turbulence models. [75] used field inversion

along with Gaussian process emulators (GPE) to build stochastic regional models. The latter

are trained on various flow data sets, then the individual GPE are blended together as convex

linear combination, with weights given by the model inverse variances, which depend in turn

on the local flow features. The approach is successfully applied to separated flow cases. The

stochastic nature of the model helps in assimilating various data sources, but it is not exploited

for quantifying the uncertainty associated with model predictions. [76] have recently proposed a

so-called building-block approach for data-driven LES wall modeling. The model is formulated

to account for various flow configurations, such as wall-attached turbulence, wall turbulence

under favorable / adverse pressure gradients, separated turbulence, statistically unsteady tur-

†https://turbmodels.larc.nasa.gov
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bulence, and laminar flow. The model relies on a classifier that recognizes local similarities of

the predicted flow with a collection of known building-block flows; subsequently, a predictor

based on neural networks leverages the information of the classifier together with the input to

generate the wall shear stress prediction via combination of the building-block flows from the

database, and a confidence score is assigned to the prediction. The preceding approaches make

use of ”internal” combinations of competing models for the Reynolds stresses or for the wall

laws. This means that the composite model is trained with high-fidelity full-field data, then

implemented within a CFD solver and used to predict a new case. The internal combination

can lead to numerical difficulties if the transition between component models is not smooth

enough. Additionally, except in the case of [76], no confidence estimate is associated with the

predictions, which can be problematic when predicting flow cases that differ significantly from

the training ones. An alternative approach consists in using multi-model ensemble predictions

in an uncertainty quantification (UQ) setting. One of the first attempts can be found in [36],

where the BMSA methodology was used to combine the solutions of a set of competing LEVM

models calibrated on various data sets (scenarios). In BMSA, each component model is used

to make a prediction of a new flow, and an aggregated estimate of the solution is obtained

as a linear combination of the competing model predictions weighted by the posterior model

probabilities. The solution variance can also be evaluated as the result of the uncertain model

parameters, model structure, and choice of the calibration data, thus delivering an estimate of

the predictive confidence intervals. BMSA has been successfully applied to provide stochastic

predictions for a variety of flows, including 3D wings [37] and compressor cascades [77, 78].

BMSA, and Bayesian Model Averaging (BMA) [79, 80] from which it originates, may be inter-

preted as stochastic variants of a multi-model framework called Model Aggregation [81, 82, 83].

Such methods combine multiple predictions stemming from various models –also termed ex-

perts or forecasters– to provide a global, enhanced solution. The above-mentioned methods,

however, assign to each model the same weight throughout the domain. Since, in practice,

models perform better or worse depending on the local flow physics, a better strategy consists

in assigning higher weights to the best performing models in each region. Other classes of en-
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semble methods allow space-varying weights. Specifically, so-called Mixture-of-Experts models

[84] or Mixture Models, softly split the input feature space (covariate space) into partitions

where the locally best-performing models are assigned higher weights. The soft partitioning

is accomplished through parametric gate functions, or a network of hierarchical gate functions

[85], that rank the model outputs with probabilities. In this spirit, [86] (to which we refer for

a more complete literature review on ensemble models) recently proposed a method for spa-

tially combining the predictions of a set of well-known LEVM taken from the literature, called

space-dependent Model Aggregation (X-MA). For that purpose, a cost function is introduced to

evaluate the local model performance with respect to some training data, which is used to build

the model weights. To make predictions, the weights are regressed in a space of flow features

(representative of various flow phenomena) by using Random Forests. Similarly to BMSA, an

estimate of the predictive uncertainty can be inferred by measuring the level of agreement of

the component model predictions. In [86] the X-MA methodology was successfully applied to

predict flows through a compressor cascade. Although the X-MA results do improve over the

baseline component models overall, the local X-MA predictions cannot be more accurate than

the best LEVM component model by construction.

1.2 Objective and Plan of the thesis

In this thesis, our primary objective is to address and rectify the structural deficiencies

present in the baseline k − ω SST model. Specifically, after introducing the numerical tools

employed in this thesis in Chapter 2, along with an overview of the selected flow cases used

for both training and results evaluation in Chapter 3, our focus will center in Chapter 4 on

deriving data-driven, sparse and stochastic corrections of the baseline k − ω SST using the

general Explicit Algebraic Reynolds Stress Models (EARSM) formulation. These corrections

are designed to possess specific attributes: they must be realizable, physically interpretable,

Galilean frame-invariant, and resilient to overfitting. To achieve this objective, we employ a

Bayesian formulation of the learning problem utilizing the Sparse Bayesian Learning (SBL) al-

gorithm. This approach transforms the corrective coefficients of our models from deterministic

10



1.2. OBJECTIVE AND PLAN OF THE THESIS

values into probability distributions. This probabilistic nature offers the distinct advantage of

being able to quantify structural uncertainties surrounding various quantities of interest. Addi-

tionally, it allows us to assess the sensitivity of these quantities with respect to each corrective

coefficient’s distribution. Our framework is initially applied to derive specific corrections to

turbulent separated flow cases — a common scenario where the baseline k −ω SST model tends

to overpredict the recirculation region. This preliminary study will serve as a proof of concept.

Subsequently in Chapter 5, we apply the same framework to derive customized corrections for

a range of typical flow cases, encompassing canonical flat plates, free shear layers, jet flows,

near-equilibrium wall-bounded turbulence and separated flow cases. Our ultimate goal is then

to develop a method for automatically aggregating the predictions of these derived corrections

following the local underlying physics in the flow by the mean of local model weights. This

aggregation occurs post individual convergence of every candidate model, utilizing weights that

have been trained to identify regions where each model is most likely to outperform the others.

These weights are also linked to local physics through the utilization of local flow features.

However, this aggregation method that we termed ”non-intrusive X-MA”, can be viewed as a

post-processing technique, results in a final aggregated solution that does not inherently satisfy

the conservation equations. In order to tackle this challenge, we introduce in Chapter 6 an

intrusive method for aggregating a set of previously derived customized models. This method

involves the creation of a composite EARSM-type model that is applied locally during the sim-

ulation, utilizing in every cell of the computational domain the correction(s) with the highest

likelihood. We refer to this approach as ”intrusive X-MA” and its performance is compared to

that of the non-intrusive method.

11



1.2. OBJECTIVE AND PLAN OF THE THESIS

12



Chapter 2

Governing equations and numerical tools

Contents
2.1 Reynolds-Averaged Navier Stokes (RANS) equations . . . . . . . . . . . . . . 13

2.1.1 RANS formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Menter’s k − ω SST model . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Baseline (BSL) EARSM model of Menter . . . . . . . . . . . . . . . . 16

2.2 OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

This section presents RANS equations and the numerical tools used in the present work.

We recall in Section 2.1 mainly the governing equations for turbulent compressible flows and

the RANS models used in the study. Then, in Section 2.2 we give a brief introduction to

OpenFOAM software employed to implement the different models and methodologies.

2.1 Reynolds-Averaged Navier Stokes (RANS) equations

In the field of fluid dynamics, the application of Reynolds-Averaged Navier-Stokes (RANS)

equations stands as a widely accepted methodology for analyzing turbulent flows. The core

principle of RANS involves the temporal averaging of the fundamental Navier-Stokes equations.

This process entails decomposing the flow field into its mean and fluctuating component, leading

to the derivation of equations governing the behavior of mean flow quantities. While this

temporal averaging results in the loss of instantaneous fluctuating information, it simplifies the
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computational resolution of turbulent flows. The averaging process in the RANS framework

leads to concentrate the complex turbulent dynamics within a tensorial entity referred to as the

Reynolds stress tensor, which necessitates modeling for accurate representation. This modeling

undertaking involves both identifying appropriate closure models, deriving transport equations

for the underlying physical quantities and calibrating the associated closure coefficients to

enhance predictive accuracy.

2.1.1 RANS formulation

We focus on turbulent closures for the steady incompressible RANS equations:
∂Ui

∂xi

= 0

Uj
∂Ui

∂xj

= −1
ρ

∂P

∂xi

+ ∂

∂xj

(
ν

∂Uj

∂xJ

− τij

) (2.1)

with Ui the i-th mean velocity component, P the mean pressure, ρ the fluid density and ν the

kinematic viscosity. Equations (2.1) are supplemented with a LEVM model for the Reynolds

stress tensor τij = ⟨u′
iu

′
j⟩, with u′

i the i-th fluctuating velocity component and < . > the

statistical mean value.

Splitting the Reynolds stress tensor into an isotropic and an anisotropic part

τij = 2k

3 δij︸ ︷︷ ︸
isotropic

+ aij︸︷︷︸
anisotropic

,where k = τii

2 and δij =

1 if i = j

0 if i ̸= j
, (2.2)

k being the turbulent kinetic energy and δij the Kronecker symbol. A LEVM is obtained by

assuming that the Reynolds stress anisotropy aij is a linear function of the mean strain rate

tensor S (Boussinesq hypothesis):

aij = −2νtSij = 2kb0
ij, where Sij = 1

2

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
, (2.3)

b0
ij being is the normalized anisotropy tensor of the Boussinesq model. Most often, the eddy

viscosity coefficient νt is computed via well-chosen turbulent properties obtained by solving

14



2.1. REYNOLDS-AVERAGED NAVIER STOKES (RANS) EQUATIONS

auxiliary transport equations, such as in the k − ω SST model [12] used in the following of this

study.

The models considered in the present study are further described in the following subsec-

tions.

2.1.2 Menter’s k − ω SST model

Menter’s Shear Stress Transport turbulence model [12], or SST, is a widespread and robust

two-equation turbulence model used in CFD. The model combines the k − ω of Wilcox [10] and

k − ϵ [87] turbulence models such that the k − ω is used in the inner region of the boundary

layer and switches to the k − ϵ in the free shear flow. The SST two equation turbulence

model was introduced by Menter in 1992 to deal with the strong freestream sensitivity of

the k − ω turbulence model and improve the predictions under adverse pressure gradients.

The formulation of the SST model is based on physical considerations and attempts to predict

solutions to typical engineering problems. Over the last two decades the model has been altered

to more accurately reflect certain flow conditions. The two variables calculated are interpreted

so k is the turbulence kinetic energy and ω is the specific rate of dissipation of the eddies.


∂k

∂t
+ Uj

∂k

∂xj

= Pk − β∗kω + ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
∂ω

∂t
+ Uj

∂ω

∂xj

= γ

νt

Pk − βω2 + ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1 − F1)

σω2

ω

∂k

∂xj

∂ω

∂xj

(2.4)
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The production of turbulent kinetic energy is computed as follow:

Pk = min
(

−2νtSij
∂Ui

∂xj

, 10β∗ωk

)
νt = a1k

max (a1ω, SF2)
F1 = tanh

(
arg4

1

)
arg1 = min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]

CDkω = max
(

2σω2
1
ω

∂k

∂xj

∂ω

∂xj

, 10−20
)

F2 = tanh
(
arg2

2

)
arg2 = max

(
2

√
k

β∗ωy
,
500ν

y2ω

)

(2.5)

The constants β, σk, σω are computed by a blend from the corresponding constants via the

following formula: 

Φ = F1Φ1 + (1 − F1)Φ2,

β =
( 3

40 , 0.0828
)

,

σk = (0.85, 1.0) ,

σω = (0.5, 0.856)

(2.6)

where Φ1 and Φ2 are respectively the values of the constant Φ (here β, σk and σω) in k − ϵ

and k − ω. The remaining terms are β∗ = 0.09, a1 = 0.31 and S =
√

2SijSij. The k − ω SST

model will serve as the ”baseline” turbulence model for this thesis. Multiple corrections will be

derived specifically for this turbulence model.

2.1.3 Baseline (BSL) EARSM model of Menter

We here recall the formulation of the BSL-EARSM of Menter et al. [23]. This model is

based on the EARSM formulation of Wallin and Johansson [21] (WJ model) for the stress-strain

relationship. In the WJ model, the stress-strain relationship is combined with the k-ω transport

equations of Wilcox [5]. In the BSL-EARSM, in order to avoid the freestream sensitivity of

the Wilcox model, the WJ stress-strain relationship is combined with the BSL k-ω model of

Menter [88].
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Following [19], the Reynolds stress anisotropy tensor aij is projected onto a tensor basis:

aij = β1T1,ij + β2T2,ij + β3T3,ij + β4T4,ij + β6T6,ij + β9T9,ij (2.7)

where 

T1,ij = S∗
ij; T2,ij = S∗

ikS∗
kj − 1

3I1δij; T3,ij = Ω∗
ikΩ∗

kj − 1
3I2δij;

T4,ij = S∗
ikΩ∗

kj − Ω∗
ikSkj; T6,ij = S∗

ikΩ∗
klΩ∗

lj + Ω∗
ikΩ∗

klSlj − 2
3I4δij − I2S

∗
ij;

T9,ij = Ω∗
ikS∗

klΩ∗
lmΩ∗

mj − Ω∗
ikΩ∗

klS
∗
lmΩ∗

mj + 1
2I2(S∗

ikΩ∗
kj − Ω∗

ikS∗
kj),

(2.8)

with S∗
ij and Ω∗

ij, the non-dimensional mean strain rate and rotation rate defined as follows :

S∗
ij = τ

2

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
, Ω∗

ij = τ

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
(2.9)

where τ is a turbulent time scale with a Kolmogorov limiter [17]:

τ = max

(
1

Cµω
, 6
√

ν

Cµkω

)
, Cµ = 0.09. (2.10)

The tensor invariants I1, I2 and I4 read:

I1 = S∗
ijS

∗
ji, I2 = Ω∗

ijΩ∗
ji, I4 = S∗

ikΩ∗
kjΩ∗

ji. (2.11)

The coefficients of the tensor basis βi in 2.7 are defined as :

β1 = −N

Q
, β2 = 0, β3 = − 2I4

NQ1
, β4 = − 1

Q
, β6 = − N

Q1
, β9 = 1

Q1
, (2.12)

with

Q = (N2 − 2I2)
A1

, Q1 = Q

6 (2N2 − I2) (2.13)

where

N = C ′
1 + 9

4
P̃k

ϵ
(2.14)
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and

A1 = 1.2, C ′
1 = 9

4(C1 − 1) and C1 = 1.8. (2.15)

N is a solution of the cubic equation :

N3 − C ′
1N

2 − (2.7I1 + 2I2)N + 2C ′
1I2 = 0 (2.16)

which is given by :


N = C ′

1
3 +

(
P1 +

√
P2

)1/3
+ sign(P1 −

√
P2) | P1 −

√
P2 |1/3 at P2 ≥ 0

N = C ′
1

3 + 2(P 2
1 − P2)1/6cos

1
3arccos

 P1√
P 2

1 − P2

 at P2 < 0
(2.17)

with

P1 = C ′
1

(
C ′2

1
27 + 9

20I1 − 2
3I2

)
, P2 = P 2

1 −
(

C ′2
1
9 + 9

10I1 + 2
3I2

)3

. (2.18)

The BSL-EARSM constitutive equation is then supplemented by transport equations for k

and ω. These are the same as in 2.1.2. The reader is referred to [23] for further details. In

this chapter, we have introduced in particular the BSL-EARSM model solely for the purpose

of comparison. This choice stems from the fact that all the data-driven models developed in

this thesis fall under the EARSM formulation. Thus, it is pertinent to assess their performance

against a model of the same type, but rather derived using physical considerations.

2.2 OpenFOAM

OpenFOAM (Open source Field Operation And Manipulation) is an object-oriented C++

framework that can be used to build a variety of computational solvers for problems in contin-

uum mechanics and fluid dynamics with a focus on finite volume discretization. OpenFOAM
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also includes several ready solvers, utilities, and applications that can be directly used. At

the core of these libraries are a set of object classes that allow the programmer to manipulate

meshes, geometries, and discretization techniques at a high level of coding. OpenFOAM uses

numerous solvers, each one adapted to a typical flow category. In our study, we will be inter-

ested in SimpleFoam solver. SimpleFoam is a steady-state solver for incompressible, turbulent

flow, using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The

convective terms in the transport equation are discretized using linear upwinding and viscous

terms with 2nd order central difference scheme. The solution is advanced to the steady state

using a Gauss-Seidel smoother.

The implementation and calculations of the EARSM-type models as will be presented in

the future chapters are performed using a modified version of OpenFOAM [89]. The latter has

been extended by implementing the general EARSM form. The corresponding code can be

downloaded from the public github repository†.

†https://github.com/shmlzr/general_earsm.git
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Flow cases: reference data and
computational setup
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In this chapter, we present the multiple flow cases used in the study and that can be

categorized into three distinct groups: firstly, flat plate cases featuring different pressure gradi-

ents, featuring both equilibrium and near-equilibrium boundary layers; secondly, jet flow cases,

including both subsonic and near-sonic conditions with a consistent geometry; and lastly, tur-

bulent separated flow cases characterized by varying geometries and Reynolds numbers. Some

flow cases are canonical flows, on which the baseline Linear Eddy Viscosity Models have already
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been calibrated on (like the zero pressure gradient turbulent boundary layer and the very far

shear layer in the jet flows) and therefore will serve as validation cases, while others are more

challenging. The main objective is to present a diverse range of flow scenarios, encompassing

diverse geometries, physical phenomena and operational conditions, suitable for both training

and testing purposes. For every case, we present the computational setup, comprising meshes

and operating conditions, along with the high-fidelity data for each case.

3.1 Flat plates flow cases

3.1.1 Turbulent channel flows (CHAN)

This flow case serves as a comparative study between the predictions of various RANS

models and Direct Numerical Simulation (DNS) data. The mesh configuration employed for

the corresponding RANS calculations (80 × 120) is presented in Figure 3.1. For DNS, several

distinct simulations of fully developed flow in a plane channel were used for comparison, each

at different friction Reynolds numbers Reτ (180, 395, and 590 from [90], and 1000, 2000 and

5000 from [91]), using the spectral numerical method developed by [92].

Figure 3.1: Mesh used for CHAN computations.
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3.1.2 Zero pressure gradient turbulent boundary layers (ZPG)

The 2D Zero Pressure Gradient (ZPG) Flat Plate flow case serves as a dedicated validation

setup for turbulence models, specifically designed to assess their accuracy under well-defined

incompressible operating conditions. In this flow case, we employ a Mach number of 0.2,

ensuring incompressible conditions.

The setup utilizes a series of nested grids to enable comprehensive analysis and comparisons

with reference data. To achieve the desired Reθ levels, the Reynolds number per unit length

(ReL) for this flow case is set to 5 million. The flat plate geometry layout is straightforward,

and typical boundary conditions are applied (see Figure 3.2). An essential consideration is the

maximum boundary layer thickness, which is approximately 0.03 times the plate length (L). To

minimize any potential influence on the simulation results, the grid height (y = L) is strategi-

cally positioned at a significant distance from the boundary layer. Sensitivity tests have verified

the robustness of the chosen grid setup, showing that adjustments to the upper extent (e.g.,

y = 0.48L) have negligible impact on the integrated drag or skin friction at x = 0.97, with varia-

tions remaining below 0.2%. This 2D ZPG Flat Plate flow case provides a well-defined geometric

setup and operating conditions for validating turbulence models. Its focus on practical flow char-

acteristics enhances the credibility of CFD simulations, making it a valuable tool for assessing

turbulence modeling performance in real-world engineering applications. The grid used is a 3-D

grid, with two identical x−z planes, separated by a distance y = 1, giving one spanwise cell for

all grid levels. The high-fidelity data available is DNS data (velocity and other turbulent quan-

tities like Reynolds stresses) of [93] at Reθ = 670, 1000, 1410, 2000, 2540, 3030, 3270, 3630, 3970

and 4060.
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(a) Boundary conditions for ZPG computations.

(b) Mesh used for ZPG computations.

Figure 3.2: ZPG computational setup.

3.1.3 Adverse pressure gradient turbulent boundary layers (APG)

These flow cases are used to assess the predictions of RANS models in predicting near-

equilibrium boundary layers. The latter are characterized through the Clauser pressure-gradient

parameter β = δ∗/τw
dPe

dx
, where δ∗ is the displacement thickness, τw the Reynolds wall shear

stress and dPe

dx
is the streamwise pressure gradient. In order to fulfill the near–equilibrium

conditions, the freestream velocity was prescribed such that it followed a power-law distribution
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U∞ = C(x − x0)m, where x is the streamwise velocity, x0 is the power-law virtual origin, and

m has to be larger than −1
3 in order to obtain near equilibrium conditions. 5 adverse pressure

gradient turbulent boundary layers are assessed and compared to wall-resolved LESs of [94].

Details about the flow cases are provided in Table 3.1. Simulations are conducted on a Cartesian

grid of size 58 × 298, with y+ ≃ 1 near the wall.

Case Range of Reθ under study Range of β m x0
b1 910 ≤ Reθ ≤ 3360 ≃ 1 −0.14 110
b2 940 ≤ Reθ ≤ 4000 ≃ 2 −0.18 110
m13 990 ≤ Reθ ≤ 3515 0.96 ≤ β ≤ 1.51 −0.13 60
m16 1010 ≤ Reθ ≤ 4000 1.95 ≤ β ≤ 2.78 −0.16 60
m18 990 ≤ Reθ ≤ 4320 3.15 ≤ β ≤ 4.47 −0.18 60

Table 3.1: Description of APG flow cases.

3.2 Jet flow cases

3.2.1 Axisymmetric subsonic jet (ASJ)

The subsonic jet validation case serves the purpose of validating turbulence models by com-

paring Computational Fluid Dynamics (CFD) results against experimental data, establishing

the model’s ability to accurately reproduce the underlying physics. To facilitate rigorous anal-

ysis, a comprehensive set of nested grids belonging to the same family is provided (see Figure

3.3). The experiment involves a jet known as Acoustic Research Nozzle 2 (ARN2), character-

ized by a radius of 1 inch (25.4mm). In this specific case, the jet exit Mach number (Mjet)

is approximately 0.51, while the ”acoustic Mach number” ( ujet

aref
) is approximately 0.5. The jet

discharges into a quiescent (non-moving) air environment during the experiment. However,

to accommodate certain CFD codes where achieving flow into quiescent air is challenging, the

CFD computations are conducted with a very low background ambient condition (Mref = 0.01),

moving from left to right, aligned with the jet direction. Although this boundary condition dif-

ference does have some effect, extensive testing has revealed that its influence is relatively small,

and Mref = 0.01 represents a reasonable compromise. The appropriate jet conditions are estab-
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lished by setting total pressure and temperature at the inflow face within the jet, as depicted

in Figure 3.3.

It is important to emphasize that this axisymmetric case makes use of a periodic (rotated)

grid system with appropriate boundary conditions on the periodic sides of the grid. Notably,

a grid with a significantly larger domain (1.5 times larger radial extent and twice the distance

upstream) has also been run, yielding CFD results almost identical to those obtained from

the current grid provided. For our study, we use a 3D axisymmetric grids (two planes rotated

through 1◦ from each other; one plane rotated +0.5◦ from the x − z plane, and the other plane

rotated −0.5◦ from the x − z plane). The available experimental data are measured velocities

as well as turbulence quantities downstream of the jet exit using PIV [95].
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(a) Boundary conditions for ASJ computations.

(b) Mesh used for ASJ computations.

Figure 3.3: ASJ computational setup.
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3.2.2 Axisymmetric near-sonic jet (ANSJ)

The axisymmetric near sonic jet validation case uses the same Acoustic Research Nozzle 2

(ARN2) as in section 3.3, featuring a radius of 1inch (25.4mm). In this specific case, the jet exit

Mach number (Mjet) is approximately 0.985, while the ”acoustic Mach number” ujet

aref
) is approx-

imately 0.9. In the experiment, the axisymmetric jet exits also into a quiescent (non-moving)

air environment, making it an ideal setup for validation purposes. However, the practical imple-

mentation of this scenario in certain CFD codes poses challenges due to difficulties in achieving

flow into quiescent air. As a result, the CFD computations are conducted with a very low

background ambient condition (Mref = 0.01), featuring a slow flow moving from left to right,

aligned with the jet direction. Despite this boundary condition difference, thorough testing has

shown that its influence on the results is relatively small. To achieve the desired jet conditions,

total pressure and temperature at the inflow face within the jet are meticulously set (see Figure

3.4). The accompanying figure illustrates the specific setup used to achieve the appropriate

flow conditions. The available high-fidelity data is PIV data of [95, 96].
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Figure 3.4: Mesh used for ANSJ computations.

3.3 Separated flow cases

3.3.1 Converging diverging channel (CD)

This configuration corresponds to a 2D channel of half-height H with an asymmetric bump

of height h ≃ 2
3H

located on the bottom wall. The Reynolds number (based on the channel

half-height and inlet conditions) is ReH = 12600. A small separation occurs near the throat

of the bump. For this test case, high-fidelity DNS data from [97] are available. The RANS

simulations are based on a mesh of 140 × 100 cells (see Figure 3.5). A velocity profile obtained

from a companion channel-flow simulation is imposed at the inlet of the computational domain.
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Figure 3.5: Mesh used for CD computations.

3.3.2 Curved backward facing step (CBFS)

The case consists in a 2D flow over a gently-curved backward-facing step of height H,

producing a separation bubble. The upstream channel height is 8.52H and the Reynolds number

ReH , based on the inlet velocity and step height, is 13700. High-fidelity LES data from [98] are

used for training. For the RANS simulations, the mesh consists of 140 × 150 cells (see Figure

3.6). Slip conditions are used at the upper boundary, and a velocity profile obtained from a

fully-developed boundary layer simulation is set at the domain inlet.

Figure 3.6: Mesh used for CBFS computations.

3.3.3 Periodic hills (PH)

This case consists of a flow through a channel constrained by periodic restrictions (hills)

of height H. For a channel segment comprised between two adjacent hills, the flow separates

on the lee-side of the first hill and reattaches between the hills. The test case has been widely

investigated in the literature, both experimentally and numerically. The high-fidelity LES data
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used in the present work are from [99] for ReH = 10595, where ReH is a Reynolds number based

on the bulk velocity in the restricted section and the hill height. Our RANS simulations use a

computational grid consisting of 120 × 130 cells (see Figure 3.7). Cyclic boundary conditions

are used at the inlet and outlet and a forcing term is applied to maintain a constant flow rate

through the channel.

Figure 3.7: Mesh used for PH computations.

3.3.4 NASA 2D wall-mounted hump (2DWMH)

The main objective of this flow case is to evaluate the performance of various turbulence

models in predicting 2D separation from a smooth body due to an adverse pressure gradient, as

well as the subsequent reattachment and recovery of the boundary layer. Since its inception, this

specific case, along with similar cases involving flow control, has posed a considerable challenge

for all existing RANS models. Notably, these models tend to underestimate the turbulent shear

stress in the separated shear layer, leading to an overestimation of the length of the separation

bubble.

In this investigation, the reference freestream velocity is maintained at approximately 34.6m/s

(corresponding to a Mach number of 0.1). The incoming fully turbulent boundary layer thick-

ness at position x/c = −2.14 is approximately 35mm, or approximately 8% of the bump’s

”chord” c (which measures 420mm). The back pressure is adjusted to achieve the desired flow

conditions. To facilitate the natural development of a fully turbulent boundary layer upstream

of the hump, the upstream ”run” length is carefully chosen. Additionally, the upper boundary

31



3.3. SEPARATED FLOW CASES

in the CFD simulations is modeled as an inviscid (slip) wall and is adjusted with a contour to

approximately account for the blockage effects caused by the end plates in the corresponding

experimental setup. The provided figure depict the configuration and boundary conditions em-

ployed in this particular case. The notations used include Pt for total pressure, P for static

pressure, and Tt for total temperature. The Reynolds number Rec chosen for this study aligns

with the one utilized in the NASA CFDVAL2004 workshop†, specifically 936,000 (see Figure

3.8). The CFD simulation is run on a 409 × 109 mesh. It is worth mentioning that a minor

disparity exists when compared to the Reynolds number reported in the reference by [100] in

2006, which stands at Rec = 929, 000. Nevertheless, this discrepancy, amounting to less than

1%, is considered to be of negligible significance.

†https://turbmodels.larc.nasa.gov/Other_exp_Data/cfdval2004_exp.html
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(a) Boundary conditions for WMH computations.

(b) Mesh used for WMH computations.

Figure 3.8: WMH computational setup.
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In this chapter, we introduce the SBL-SpaRTA framework for deriving sparse stochastic

EARM-type corrections for turbulence models in the specific case of turbulent separated flows.

To do so, we start in Section 4.1 by detailing our methodology to prepare high-fidelity data
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for addressing the turbulence model learning problem. Specifically, we review the k-corrective-

frozen procedure[61] and Pope’s decomposition[19] for expressing the required corrections. Mov-

ing on, Section 4.2 provides an extensive examination of the Sparse Bayesian Learning (SBL)

algorithm. Finally, in Section 4.3 we apply the SBL algorithm to the specific case of separated

flow in a dedicated manner. The main findings of this chapter have also been documented and

published in [101].

4.1 Frame-invariant model corrections

4.1.1 Problem formulation

Following [61], we seek to correct the Boussinesq constitutive model for bij by introducing

a second-order symmetric and traceless tensor b∆ =
(
b∆

ij

)
, referred-to as the extra-anisotropy,

such that:

τij = 2k
(1

3δij + b0
ij + b∆

ij

)
, b0

ij = −νt

k
Sij, bij = b0

ij + b∆
ij (4.1)

Based on [102, 60, 61], the extra-anisotropy is assumed to be a function of the mean velocity

gradient only. By virtue of the Cayley–Hamilton theorem, b∆ can then be projected onto

a minimal integrity basis of ten tensors polynomials with coefficients depending on the five

invariants of the velocity tensor gradient for the general case of 3D flow [19]:

b∆
ij =

10∑
n=1

T
(n)
ij α∆

n (I1, ..., I5) (4.2)

For the 2D flows considered in this work, only the first three tensors are linearly independent,

and only two invariants are nonzero:

b∆
ij =

3∑
n=1

T
(n)
ij α∆

n (I1, I2) (4.3)

where : 

T
(1)
ij = S∗

ij

T
(2)
ij = S∗

ikΩ∗
kj − Ω∗

ikS∗
kj

T
(3)
ij = S∗

ikS∗
kj − 1

3δijS
∗
mnS∗

mn

I1 = S∗
mnS∗

mn

I2 = Ω∗
mnΩ∗

mn

(4.4)
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S∗ = {S∗
ij} is the non-dimensional strain rate tensor, Ω∗ = {Ω∗

ij} the non-dimensional rotation

rate tensor, and α∆
n are function coefficients depending on the first two invariants of the velocity

gradient tensor (I1 and I2). As in [19, 20], the tensors T
(n)
ij are made non-dimensional with the

timescale ω−1.

At this point, the general representation adopted for the Reynolds stress anisotropy in 2D

consists of the baseline Boussinesq term b0 and of the three additional tensor terms of equation

(4.3). The first of such terms is a linear function of the normalized strain rate S∗ and, as

a consequence, it has the same formal structure as b0. It can be interpreted as an additive

correction of the linear eddy viscosity νt. The other two terms are quadratic in S∗ and Ω∗, and

their structure is similar to the nonlinear terms introduced, e.g. in the EARSM models of [20]

and [21]. In such models, the scalar coefficients α∆
n are obtained by repeated application of the

Cayley-Hamilton theorem, along with regularization assumptions, and the closure coefficients

are determined by identification with existing RSM models. The latter are in turn calibrated for

a narrow set of so-called ”canonical” flows (such as decaying isotropic homogeneous turbulence,

homogeneous free shear flows, etc.). We refer to the above-mentioned references for further

details.

In the following, we search expressions of the function coefficients α∆
n (I1, I2) through Sparse

Bayesian learning (see section 4.2). Our goal is to develop customized model terms that best

fit the data available for the class of flows at hand by automatically selecting terms from a

redundant functions dictionary. This differs from the traditional turbulence modeling approach

in that a completely data-driven (or ”openly empirical” [2]) model structure is adopted, while

model coefficients are still calibrated for a reduced set of flows. However, incompressible sep-

arated flows are here considered instead of canonical flows. Of course, there is in principle no

guarantee that the resulting models generalize well to radically different flow configurations.

This is acceptable as long as the scope is not to develop a ”universal” model but rather a spe-

cialized model for a particular class of flows. Furthermore, since the present models rely on

the assumption that the Reynolds stress is a function of the local velocity gradient and of a
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single timescale, they are subject to similar restrictions. Specifically, they are expected to work

for nearly-homogeneous, high Reynolds flows. More general formulations are currently under

investigation, and will make the object of forthcoming studies.

In the following, the functions α∆
n are sought by a supervised ML procedure whose first step

is to extract the LEVM model error with respect to the high-fidelity data, i.e. :

b∆,hf
ij = bHF

ij − b0,hf
ij (4.5)

Several studies have shown that when Reynolds-stress corrections learned from DNS data are

propagated through the RANS equations, output quantities such as the velocity fields are

not error-free. The reason for that is the ill-conditioning of the Navier-Stokes operator. A

strategy for circumventing ill-conditioning problems consists in separating the correction into

an ”implicit” part, where b0 is corrected by using an ”exact” linear eddy viscosity learned from

data instead of the baseline one, and an ”explicit” part corresponding to a purely nonlinear

extra anisotropy term (see [103]).

In this work we adopt instead the approach of [104], which consists in correcting the linear

eddy viscosity and the turbulent time scale ω−1 indirectly, by accounting for model-form errors

in the auxiliary turbulent transport equations. This favors the discovery of a model formulation

that is consistent with the RANS solver, thus reducing propagation errors. More precisely, we

use the k-corrective-frozen methodology of [61]. The latter consists in solving the turbulent

transport equations with frozen high-fidelity values for all quantities but ω:
∂k

∂t
+ Uj

∂k

∂xj

= Pk + RHF − β∗kω + ∂

∂xj

(
(ν + σkνt)

∂k

∂xj

)
∂ω

∂t
+ Uj

∂ω

∂xj

= γ

νt

(Pk + RHF ) − βω2 + ∂

∂xj

(
(ν + σωνt)

∂ω

∂xj

) (4.6)

In the preceding equations, k and U are evaluated using high-fidelity data; the production of

turbulent kinetic energy is computed by adding to the Boussinesq Reynolds tensor the high-

fidelity extra anisotropy:

Pk = min
(

2k
(

−νt

k
Sij + b∆,hf

ij

)
∂Ui

∂xj

, 10β∗ωk

)
(4.7)
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The additional corrective term R (referred to as RHF in Equation 4.6) has been introduced in

the equations for k and ω. This decision followed the resolution of the ω transport equation

using the frozen flow fields (U and tauij), and subsequently using the resulting field in the k

equation. It was observed that the residual remained non-null throughout this process. This

outcome was anticipated, as the RANS equations do not correspond to the exact formulation

of the Navier-Stokes equations and are known for their ill-conditioning. Consequently, the

introduction of this term into the closure problem was deemed necessary. Finally, β∗, σk and

σω are the k − ω SST constants and can be found in [12].

A modeling ansatz for the residual RHF is obtained by rewriting it in a form similar to the

turbulent kinetic energy production:

RHF ≈ R = 2kbR
ij

∂Ui

∂xj

(4.8)

with the fundamental difference that it can take both positive (extra production) and negative

(under-production) values. The tensor bR is projected onto the same integrity basis as b∆ :

bR
ij =

3∑
n=1

T
(n)
ij αR

n (I1, I2) (4.9)

thus introducing a new set of unknown functions αR
n that are sought by Machine Learning as

the α∆
n , using now RHF as the learning target.

4.1.2 Final regression task

To identify an expression for α∆
n and αR

n , we select a library B of monomials of the invariants

I1 and I2:

B = {I l
1, Im

2 , Ip
1 Iq

2 ∥ 0 ≤ l, m ≤ 9, 2 ≤ p + q ≤ 4} (4.10)

leading to 25 candidate terms for each function ({α∆
n }3

n=1 and {αR
n }3

n=1), i.e. a total of

25 functions × 2 corrections × 3 tensors = 150 candidate functions. With such a large num-

ber of functional terms used to represent the learning targets, an efficient learning procedure

is needed to fastly select a parsimonious model (i.e. a sparse model involving a small subset
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of functions selected from the initial redundant dictionary) and limit the risk of overfitting the

data.

Of note, hereafter we prefer to learn a∆
ij = τij − (2

3kδij − 2νtSij) = 2kb∆
ij rather than b∆

ij as

in [104] because the value of b∆
ij at the wall is mathematically undetermined:

lim
y+→0

b∆
ij = lim

y+→0

a∆
ij

2k
= 0

0

making use of data and physical interpretation of the results difficult close to the wall. By

multiplying b∆
ij by 2k, we ensure that our learning target, as well as the basis functions, have a

determined physical value at the wall, and we prevent numerical errors. With this choice, the

learning problem thus becomes: t∆ = Cb∆θb∆

tR = CRθR

(4.11)

where: 

t∆ = 2k(b∆
11|k=0, ..., b∆

11|k=K , ......, b∆
33|k=0, ..., b∆

33|k=K)T

tR = (R|k=0, ..., R|k=K)T

Cb∆ = 2k


T

(1)
11|k=0 I1T

(1)
11|k=0 ... I2

1 I2
2 T

(3)
11|k=0

T
(1)
11|k=1 I1T

(1)
11|k=1 ... I2

1 I2
2 T

(3)
11|k=1

... ... ... ...

T
(1)
33|k=K I1T

(1)
33|k=K ... I2

1 I2
2 T

(3)
33|k=K



CR = 2k


T

(1)
ij ∂jUi|k=0 I1T

(1)
ij ∂jUi|k=0 ... I2

1 I2
2 T

(3)
ij ∂jUi|k=0

... ... ... ...

T
(1)
ij ∂jUi|k=K I1T

(1)
ij ∂jUi|k=K ... I2

1 I2
2 T

(3)
ij ∂jUi|k=K
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4.2 The Sparse Bayesian Learning (SBL) algorithm

This section provides details of the SBL algorithm for regression, introduced by Tipping

[105] in the case of Support Vector Machine (SVM) models. The approach is then adapted to

our turbulence model learning problem.

4.2.1 Problem formulation

First, let us consider a data set of input-output pairs {xn, tn}N
n=1, xn ∈ RNx , tn ∈ R.

We follow the standard probabilistic formulation where we consider that the targets t =

(t1, ..., tN)T are sampled from a linear model {c; θ} with additive noise ϵ:

t(x; θ) =
(
c(x)

)T
θ + ϵ =

M∑
j=1

cj(x)θj + ϵ (4.12)

such that:

t = Cθ + ϵ =
M∑

j=1
θjCj + ϵ (4.13)

where C ∈ RN×M , {C}ij = cj(xi), is the design matrix, Cj ∈ RM is the jth column of the

design matrix C, θ = (θ1, ..., θM)T is the vector of the model’s parameters, and ϵ = (ϵ1, ..., ϵN)T

is a vector of independent noise processes assumed to be Gaussian of zero-mean and variance

σ2.

Following these assumptions, one can derive the likelihood of observing the data given the

model parameters θ and σ2:

p(t|θ, σ2) = (2πσ2)− N
2 exp

(
− 1

2σ2 ||t − Cθ||2
)

(4.14)

The parameters are traditionally determined by maximizing the logarithmic likelihood of

observing the data knowing the model parameters, also known as the ”type–I log likelihood”,

i.e.

LI = log p(t|θ, σ2) = −1
2

(
N log(2πσ2) + 1

σ2 ||t − Cθ||2
)

(4.15)
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However, the maximum-likelihood estimate can easily lead to severe overfitting as the number

of model parameters grow, ending up with a model capturing the data noise rather than their

proper dynamics.

4.2.2 Hierarchical priors specification

The SBL algorithm proposes an alternative to the maximization of the likelihood LI . The

idea motivated by the work of [106], and suggests to constrain model’s parameters by defining

an explicit prior distribution over them and their underlying hyperparameters, and genuinely

use this structure under Bayes’ theorem to infer the ”relevance” of the model’s parameters. The

principle is similar to the Automatic Relevance Determination (ARD) initially introduced by

[107, 108]. We follow the choice made in [105] of zero-mean Gaussian prior distribution over θ:

p(θ|α) =
M∏

i=1
N (θi|0, α−1

i ) (4.16)

with α a vector of M unknown hyperparameters, controlling the width of the marginal prior

for the parameters θi, i.e. the relevance of such parameters. When a hyperparameter αi is high,

the prior distribution of θi becomes narrowly centered around 0, thus making the coefficient

irrelevant. The inference problem now consists in estimating the unknown joint distribution of

the hyperparameters α and σ2. For that purpose, we use a hierarchical prior approach, where

we assign α a Laplace prior probability distribution:

p(α) =
M∏

i=1

λi

2 exp(− λi

2αi

) (4.17)

where λ = (λ1, ..., λM)T are additional hyperparameters that must be specified by the modeler.

The choice of such priors, referred to as demi-Bayesian LASSO and introduced by [109], is

motivated by the improved sparsity conferred to the algorithm with respect to the original

formulation [105] where Gamma prior distributions were adopted. By increasing λi, we impose

sharper prior distributions for the 1
αi
, i.e. higher values of the hyperparameter αi become

more likely, and consequently the corresponding model coefficient probability distribution p(θi)

become sharply centered around 0. When reaching a certain user-defined limit, the very sharp
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probability distribution is considered as an indicator of an irrelevant model coefficient and

therefore the latter is removed. For convenience, we fix λ1 = ... = λM = λ. The formula is

completed by specifying a uniform hyper-prior on 1
σ2 (over a logarithmic scale).

Now, using Bayes’ rule, we seek for the posterior joint distribution of θ, α and σ2:

p(θ, α, σ2|t) = p(t|θ, α, σ2)p(θ, α, σ2)
p(t) (4.18)

where p(t|θ, α, σ2) is the model likelihood (4.14) where we made explicit the dependency on

hyperparameter vector α. p(θ, α, σ2) is the joint prior probability and p(t) is the model evi-

dence. Then, given a new test point x∗, predictions are made for the corresponding target t∗,

in terms of the predictive distribution:

p(t∗|t) =
∫

p(t∗|θ, α, σ2)p(θ, α, σ2|t)dθ (4.19)

Unfortunately, p(t) is a multi-dimensional integral

p(t) =
∫

p(t|θ, α, σ2)p(θ, α, σ2)dθdαdσ2 (4.20)

and is generally not straightforward to compute. Sampling strategies like Markov Chain Monte-

Carlo could be used to approximate the integral, but they generally require a very large number

of samples. Instead, the joint prior distribution is rewritten:

p(θ, α, σ2|t) = p(θ|t, α, σ2)p(α, σ2|t) (4.21)

In the preceding equation, p(θ|t, α, σ2) ∼ N (µ, Σ) as a result of (4.14), (4.16) and (4.17),

where the posterior covariance and mean are respectively:
Σ =

(
A + 1

σ2 CT C
)−1

µ = 1
σ2 ΣCT t

, A = diag(α1, ..., αM). (4.22)

On the other hand, regarding p(α, σ2|t), we follow [105] and adopt a point estimate method

by considering that the hyperparameter posterior p(α, σ2|t) can be represented as a multi-

dimensional Dirac function centered at the most probable set of values αMP and σ2
MP . We do so

on the basis that this point-estimate is representative of the posterior in the sense that functions
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generated utilizing the posterior mode values are near-identical to those obtained by sampling

from the full posterior distribution. It is important to realize that this does not necessitate that

the entire mass of the posterior be accurately approximated by the delta-function:

p(α, σ2|t) ≃ δ(αMP , σ2
MP ) (4.23)

The SBL algorithm becomes the search for these most probable values of this posterior, i.e.

the maximization of p(α, σ2|t) with respect to α and σ2.

4.2.3 Optimization of hyperparameters

Using Bayes’ rule, the hyperparameter posterior is of the form:

p(α, σ2|t) ∝ p(t|α, σ2)p(α)p(σ2) (4.24)

and hence p(t|α, σ2)p(α)p(σ2) must be maximised. Since we made the choice of a uniform

prior for σ2, the loss function to maximize becomes:

LII = log
(
p(t|α, σ2)p(α)

)
= log

(∫
p(t|θ, σ2)p(θ|α)p(α)dθ

)

= −1
2
[
log |σ2I + CA−1CT | + tT (σ2I + CA−1CT )t

]
− λ

M∑
i=0

1
αi

(4.25)

LII is referred to as the marginal likelihood or the evidence of hyperparameters, and its max-

imisation as the type-II maximum likelihood method [110] or the evidence procedure [106].

In contrast with traditional regression methods where the optimal values of hyperparameters

are determined by a cross-validation, the SBL algorithm determines their optimal values by

iteratively maximizing the evidence of hyperparameters LII with respect to αi and
1

σ2 , leading

to: 

αnew
i =

1 +
√

1 + 8λ(µ2
i + Σii)

2(µ2
i + Σii)

(σ2)new = ||t − Cµ||2

N −
M∑

i=1
(1 − αiΣii)

(4.26)
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For more details see [105, 109]. Finally, equation (4.26) still depends on the sparsity-promoting

hyperparameter λ and its optimal value for the learning problem can be determined via a grid

search.

4.2.4 Making Predictions

At convergence of the hyperparameters estimation procedure, we make predictions based

on the posterior distribution over the weights, conditioned on the maximizing values αMP and

σ2
MP . We can then compute the predictive distribution for a new datum x∗ using:

p(t∗|t, αMP , σ2
MP ) =

∫
p(t∗|θ, σ2

MP )p(θ|t, αMP , σ2
MP )dθ (4.27)

Since both terms in the integrand are Gaussian, this is readily computed, giving:

p(t∗|t, αMP , σ2
MP ) = N (t∗|y∗, σ2

∗) (4.28)

with: y∗ = µT C(x∗)
σ2

∗ = σ2
MP + C(x∗)T ΣC(x∗)

(4.29)

4.2.5 Application: The Relevance Vector Machine (RVM)

In this example, we are given a set N + 1 , (N = 50) of uniformly distributed input points

between 0 and 1,
{
xn = n

N

}N

n=0
, along with corresponding targets {tn}N

n=0, generated using a

radial basis function (RBF) kernel C, a sparse vector of parameters θ and a Gaussian noise ϵ:

tn(xn, θ) =
N∑

i=0
C(xn, xi)θi + ϵn (4.30)

with 
C(xn, xi) = r2 exp

(
−−(xn − xi)2

2l2

)
ϵn ∼ N (0, σ2)

(4.31)

The learning problem using this kernel and the Sparse Bayesian Learning is known as the

”Relevance Vector Machine” [105]. The vector θ is deliberately designed with all coefficients
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being zero, except at four arbitrary locations:

θ0 = 1, θ12 = 2, , θ24 = −1, , θ37 = −2 (4.32)

As for the other parameters:

σ = 0.05, r = 1, l = 0.05 (4.33)

(a) SBL model’s output vs. exact training data
output.

(b) θexact vs. θSBL.

Figure 4.1: Training results of the SBL model over the example’s synthetic data.

Upon reaching convergence, the model parameters, estimated noise as well as the prediction

of the output targets are provided in Figure 4.1 and described below:



θ0 = 0.95247783 ± 3 × 0.00141239
θ12 = 1.98586961 ± 3 × 0.00088691
θ24 = −0.99715879 ± 3 × 0.00087792
θ37 = −1.99187662 ± 3 × 0.00088693
θi ̸=0,12,24,37 = 0
σMP = 0.06300819224654165

(4.34)

The application of the Sparse Bayesian Learning (SBL) algorithm to the dataset yields notable

outcomes with potential implications for data analysis and modeling. Firstly, the consistency
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between the sparsity of the SBL-derived coefficient vector and the exact model coefficients vector

is a positive indicator of the algorithm’s ability to effectively identify relevant features while

reducing the model complexity, as one can see in both Figures 4.1a and 4.1b. This characteristic

is particularly beneficial in high-dimensional data sets, where the risk of overfitting becomes

higher.

Secondly, the proximity of the SBL-estimated coefficients to the exact values, with relatively

narrow standard deviations, as witnessed in Figure 4.1b suggests that the algorithm is capable

of producing precise parameter estimates. The narrow standard deviations imply that the

model coefficients are well-informed and less influenced by random variations, enhancing the

reliability of the results.

Moreover, the accurate estimation of the observation noise, as evidenced by the closeness

of the estimated σ value to the known value used in data generation, indicates the algorithm’s

capability of handling noisy data. This ability is essential for robust modeling in real-world

scenarios where data imperfections are common.

The SBL algorithm’s success in capturing the dynamics among noisy data as displayed in

Figure 4.1a. A noteworthy observation is its ability to reproduce complex relationships and

patterns, enhancing the algorithm’s versatility for various data analysis tasks.

Additionally, the SBL algorithm’s provision of probability distributions for the model coef-

ficients enables an intrinsic uncertainty quantification. By characterizing both parametric and

observational uncertainties, it provides valuable insights into the confidence and reliability of

the model’s predictions. Such uncertainty estimation is critical for making informed decisions

and improving the interpretability of the results.
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4.3 SBL algorithm for data-driven turbulence modeling

In the following, we consider three learning configurations or scenarios, summarized in Table

4.1. Models are trained using full-field high-fidelity data for two flow cases out of three, and

tested on the third one (as discussed later). For a given data set scenario, various models are

obtained according to the value of the regularization parameter λ. All models obtained from

the same scenario s are noted as M(s).

Scenario Training set Model idle

1 CBFS and PH M(1)

2 CD and PH M(2)

3 CBFS and CD M(3)

Table 4.1: Learning scenarios and nomenclature for the resulting models.

4.3.1 Cross-validation methodology

Data-driven SBL models are trained using data available for each scenario in Table 4.1 using

different values of the regularization parameter λ within the set {102, 103, 104, 105, 2 × 105}. The

resulting models M = (Mb∆ , MbR) (given in Appendix B) take the form:


Mb∆ =

∑
n

∑
l,m

(µ∆(n)

l,m ± σ∆(n)

l,m )I l
1I

m
2

T(n) ± 1ϵ∆

MbR =
∑

n

∑
l,m

(µR(n)

l,m ± σR(n)

l,m )I l
1I

m
2

T(n) ± 1ϵR

(4.35)

where µ∆(n)
l,m and σ∆(n)

l,m (resp. µR(n)
l,m and σR(n)

l,m ) are respectively the mean and the standard devi-

ation of the probability density function of the coefficient associated to I l
1I

m
2 in T(n) expansion

in Mb∆ (resp. MbR), 1 is a second order tensor with all elements equal to one, and ϵ∆ (resp.

ϵR) is the standard deviation of the noise associated with model Mb∆ (resp. MbR).

In Appendix B we report M(1), M(2) and M(3) derived for each value of λ. One observe

that when λ is increased, models Mb∆ become sparser. On the other hand, MbR reduces to

only one term regardless of λ, the regularization affecting only the magnitude of the corrective
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term, which decreases as λ increases. For values of λ greater than 2 × 105, both Mb∆ and MbR

vanish, thus leaving the k − ω SST model unchanged.

The models are cross-validated by feeding the Maximum–A–Posteriori (MAP) values of the

posterior distributions of the model coefficients θi to the CFD solver, and computing the Mean

Square Error (MSE) over the whole domain with respect to high-fidelity values available for

various quantities of interest (QoI):

MSE = 1
ND

∑
x∈D

(
QoI(x) − QoIHF (x)

)2
(4.36)

where x is a point of the discrete computational domain D for a given flow case and ND is

the number of grid points in D. The errors obtained for various QoI are reported in Figures

4.2,4.3, 4.4 and 4.5 under the form of histograms, where column patterns refer to dataset used

to train the model, while the abscissas indicate the value of the regularization parameter λ. In

the figures, grey-shaded bars are used to highlight for each model the test scenario whose data

are not used for training. White bars are used for post-diction scenarios, i.e. scenarios used to

extract the training data. Note that, even for such scenarios, not all of the predicted quantities

have been used for training, i.e. they also constitute testing data.

The results are compared to those obtained using the baseline model and the three models

of [104], obtained by deterministic SpaRTA algorithm. The latter are noted M(k)
Spa, with k the

number used in the above-mentioned reference. All errors are normalized with respect to the

error of the baseline model for the same QoI. The latter is then always assigned an MSE equal

to 1.

Figure 4.2 shows the MSE for the streamwise velocity. All learned models have much lower

MSE than the baseline, with more complex models (including the b∆ correction) performing

somewhat better than the sparser ones, according to the flow configurations and training sets.

However, sparser models generalize better through the data sets. More precisely, M(1) at

λ = 2×105 gives the most accurate results for both CD and PH cases, whereas M(3) at λ = 104

gives the most accurate prediction of horizontal velocity for CBFS case. The selected SBL

models exhibit a better or comparable accuracy than the SpaRTA models for this QoI.
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Figures 4.3, 4.4 and 4.5 display MSE for the friction coefficient, the turbulent kinetic energy

and the Reynolds shear stress, respectively. The figures show that sparser models, such as

those obtained for λ = 2 × 105, tend to be more accurate than complex ones. Of note, best-

performing models have b∆ = 0 and only the bR correction of the production term is applied,

with a coefficient that contributes to increasing the amount of eddy viscosity generated in the

separated region to reattach the boundary layer. The amount of such a correction differs from

a model to another depending on the training cases. The bR correction also results in increased

turbulent kinetic energy and turbulent shear stress levels throughout the flow, and namely at

the wall. The best-performing SBL models tend to be more accurate than the baseline for most

QoI and flow cases, but none of the learned models is able to improve results for all QoI and

all flow cases simultaneously.

In order to guide the selection of a ”best-performing model” as the model providing the best

compromise over all cases and QoI, we define a global error metric as follows:

m(λ) =
∑

i

(
1 − MSESBL(QoIi, λ)

MSEBSL(QoIi))

)
γi =

∑
i

mi(λ)γi (4.37)

where mi(λ) measures the relative improvement with respect to the baseline in terms of MSE,

γi is a weighting coefficient assigned to QoIi and m(λ) is the general model score. If mi(λ) is

positive (resp. negative), the model improves (deteriorates) the MSE for QoIi with respect to

the baseline model. The choice of the weighting coefficients determines the variables to be used

in cross-validation as well as their relative importance. Since each model is applied to three

flow cases, we define for each candidate model an average improvement metric as follows:

mG = mP D1 + mP D2 + 2mT EST

4 , (4.38)

where PD1 and PD2 refer to the post-dictions of the training flows and TEST to the test

scenario. The latter is assigned a double weight, so that flows in the training and test sets

contribute equally to model selection. Finally, the best model M∗ is chosen as the one that

maximizes mG(λ):

M∗ = M(argλ max(mG(λ))) = M(λ∗) (4.39)
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In Table 4.2, we summarize cross-validation results for different choices of the cross-validation

(CV) variables for M(1), M(2) and M(3). For this purpose, we denote λ∗(1) (resp. λ∗(2) and λ∗(3))

the value of λ that maximizes the average improvement metric for M(1) (resp. M(2) and M(3)).

The most accurate models over the training and test sets (the ones with the highest mG) are

characterized by a null b∆. M(2) and M(3) insure an improved MSE over all the QoI (≃ 30%)

than M(1) (6%). The latter fails also at giving better results than the baseline model when

cross-validated over k, Cf , (k, Cf ), (τxy, Cf ) and (k, τxy, Cf ) (marked with ”–” in Table 4.2),

which suggests that M(1) needs probably to be further regularized. On the contrary, M(2) and

M(3) for λ∗(2) = 2 × 105 and λ∗(3) = 2 × 105 resp. combine both a good accuracy and generaliz-

ability over all the QoI and flow cases. However, if only the streamwise velocity is selected as

the cross-validation target, models with a non null b∆ (λ∗(2) = 104 and λ∗(3) = 104) outperform

models correcting the turbulent production only. This is a limitation intrinsic to the chosen

representation of the Reynolds stress tensor as a function of the mean velocity gradient only,

and must be addressed in the future, for instance by enlarging the feature set as in [54] or [58].

CV variables λ∗(1) mG(λ∗(1)) λ∗(2) mG(λ∗(2)) λ∗(3) mG(λ∗(3))
U, k, τxy, Cf 2 × 105 6.0 % 2 × 105 28.% 2 × 105 31. %

U 2 × 105 74.0 % 104 68.0% 104 77.0 %
k – – % 2 × 105 26.0 % 2 × 105 36.0 %

τxy 2 × 105 15.0 % 2 × 105 14.0 % 2 × 105 23.0 %
Cf – – % 2 × 105 7.0 % 2 × 105 12.0 %
U, k 2 × 105 36.0 % 2 × 105 46.0 % 105 46.0 %

U, τxy 2 × 105 45.0 % 2 × 105 41.0 % 2 × 105 39.0 %
U, Cf 2 × 105 5.0 % 2 × 105 37.0 % 2 × 105 33.0 %
k, τxy 2 × 105 6.0 % 2 × 105 20.0 % 2 × 105 30.0 %
k, Cf – – % 2 × 105 16.0 % 2 × 105 24.0 %

τxy, Cf – – % 2 × 105 10.0 % 2 × 105 17.0 %
U, k, τxy 2 × 105 29.0 % 2 × 105 36.0 % 2 × 105 38.0 %

U, τxy, Cf 2 × 105 8.0 % 2 × 105 29.0 % 2 × 105 30.0 %
U, k, Cf 2 × 105 2.0 % 2 × 105 33.0 % 2 × 105 34.0 %

k, τxy, Cf – – % 2 × 105 16.0 % 2 × 105 24.0 %

Table 4.2: Cross-validation statistics: best models and general improvement metrics.
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(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.2: MSE of the streamwise velocity
(relative to MSE of the baseline model k − ω
SST ( )) as a function of λ. Left panel:
M(1) ( , ), M(2) ( , ), M(3) ( , );
right panel: comparison with models from
[61]: M(1)

Spa ( ), M(2)
Spa ( ), M(3)

Spa ( ).

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.3: MSE of wall friction coefficient
(relative to MSE of the baseline model k − ω
SST ( )) as a function of λ. Left panel:
M(1) ( , ), M(2) ( , ), M(3) ( , );
right panel: comparison with models from
[61]: M(1)

Spa ( ), M(2)
Spa ( ), M(3)

Spa ( ).
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(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.4: MSE of the turbulent kinetic en-
ergy (relative to MSE of the baseline model
k − ω SST ( )) as a function of λ. Left
panel: M(1) ( , ), M(2) ( , ), M(3)

( , ); right panel: comparison with models

from [61]: M(1)
Spa ( ), M(2)

Spa ( ), M(3)
Spa ( ).

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.5: MSE of Reynolds shear stress (rel-
ative to MSE of the baseline model k −ω SST
( )) as a function of λ. Left panel: M(1) ( ,

), M(2) ( , ), M(3) ( , ); right panel:

comparison with models from [61]: M(1)
Spa ( ),

M(2)
Spa ( ), M(3)

Spa ( ).
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4.3.2 Results

As a result of the preceding cross-comparison process, we select models representing the

best compromise in terms of predicting the four precedent QoI, one for each of the three

training scenarios. More precisely, models M(1)(λ∗(1) = 2 × 105), M(2)(λ∗(2) = 2 × 105) and

M(3)(λ∗(3) = 2 × 105) are retained (see Appendix B for their mathematical expressions). In the

following, we drop the dependency on λ to simplify model notations.

In the following, we focus on the selected ”best” models and we look more closely to the

posterior predictive distributions of selected output QoI. For that purpose, the posterior prob-

ability distributions of the stochastic parameters are propagated through the CFD solver by

means of a non-intrusive sparse polynomial chaos method (see Appendix A). Since the posterior

distributions of the coefficients are Gaussian by construction, Hermite polynomials are selected,

and the expansion is truncated to second order. The selected models are very sparse, and gov-

erned by a single stochastic coefficient. With these settings, only three CFD simulations for

each model are required to compute the statistical moments of the stochastic CFD predictions

with satisfactory accuracy. Specifically, in the following discussion we focus on the statistical

average and standard deviation of the predicted CFD solution.

In Figures 4.6, 4.7, and 4.8 respectively, we display selected profiles of the streamwise veloc-

ity profiles, friction coefficient distribution along the bottom wall and turbulent kinetic energy

profiles, and for the three flow configurations at stake. The latter correspond to averages of the

posterior predictive distributions for M(1), M(2) and M(3). For model M(3) (the best model in

term of accuracy and generalization across the QoI and flow configurations - see Table 4.2–)

as well as for M(1) and M(2), we report three-standard deviation confidence intervals. Baseline

k − ω SST results and high-fidelity data are also included for reference. The three SBL models

provide rather similar predictions of the velocity profiles (Figure 4.6) and clearly outperform

the baseline model in matching the high-fidelity data. The improvement is more evident in the

recirculation regions of the CBFS and PH flows, where the present models accurately predict

the back flow. Uncertainty intervals for M(3) velocity profiles are too narrow to capture every-

where the LES data, which are rather encompassed by those of M(1), whose predictions for the
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streamline velocity are closer to the LES data (see orange dotted curves in Figure 4.6 and MSE

in Table 4.2). Interestingly, the solution confidence intervals are represented symmetrically

with respect to the average solution (±3σ). It is however likely that, despite the parameter

posterior is symmetric, the solution posterior distribution is not, due to the non-linearity of the

Navier–Stokes operator. Recovering the full posterior solution pdf would however require an

increased computational effort. Of note, the uncertainty intervals correctly become larger in

regions of higher discrepancy between the SBL model and the LES, thus warning the user about

model reliability in such regions, which is the main goal of the proposed stochastic approach.

The predicted friction coefficient, shown in Figure 4.7, is also in nice agreement with high-

fidelity data, providing more accurate estimates of the separation and reattachment points than

the baseline. The confidence intervals encompass the separation and reattachment locations of

the LES.

Figures 4.6 and 4.7 show that, despite general improvement over the baseline is observed for

both velocity profiles and skin friction, none of the learned models is able to predict the exact

location of the small separation bubble observed in LES results for the CD case, and confidence

intervals are not large enough to capture the LES. The bubble is much smaller than in the

k − ω SST solution, but it is shifted to the right and its size is still bigger than the LES. The

velocity profiles are affected accordingly, although the solution is generally more accurate than

the baseline. Our interpretation is the following. For all separated flows under investigation,

the discovered models tend to reduce the large recirculation bubble produced by the baseline

model by increasing eddy viscosity. This is beneficial in terms of representation of the separated

region but, as a side effect, increases skin friction in attached flow regions significantly. The

models then find a compromise solution between the opposite requirements of reducing the

recirculation bubble without generating extra friction in attached regions. The CBFS and PH

cases being massively separated, the error is effectively reduced by increasing turbulent viscosity

and reducing the recirculation bubble. For CD, only marginal separation is present. Increasing

eddy viscosity tends to increase skin friction upstream of the bubble, delaying separation.
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While this kind of correction improves overall the solution over the baseline, it does not lead

to a satisfactory solution everywhere in the flow field.

We also observe that, for the CBFS case, the predicted friction coefficient is slightly less

accurate than the baseline in attached flow regions. This is most visible for M(1), characterized

by the highest mean value of the bR correction among the selected models. This is again a

consequence of the extra turbulent kinetic energy introduced to correct the separated region,

which is transported in regions where the baseline performs well and does not need such cor-

rection. Interestingly, the high-fidelity values are still contained in the confidence intervals of

our stochastic models.

The turbulent kinetic energy, presented in Figure 4.8, is a difficult quantity to be captured by

RANS models. The three data-driven models perform overall slightly better than the baseline

(as shown by the preceding analysis of MSE). However, they all overpredict k in the separated

region, where an increased amount of k is generated to reduce the reattachment length. For

this QoI, large confidence intervals are predicted for all cases.

The reason for the above-mentioned defects of learned models is most likely Pope’s repre-

sentation of the Reynolds stresses. As mentioned in Section 2, the latter relies only on two

invariants I1 and I2 and a time scale ω−1. Including more features, as in [54, 58], or developing

localized corrections that are selectively activated only where the baseline model exhibit high

discrepancies [67] are promising options for further model improvement, which will be consid-

ered in future research. Despite such limitations, the present extremely simple models (with

a single corrective term in the transport equations) are, for the class of flows at hand, almost

as robust and cheap as the baseline k − ω SST but perform significanly better than, e.g. the

physics-based RSM k − ω model of Ref. [23] available in the OpenFoam code, which involves

nonlinear corrections to the Reynolds stresses with complex function coefficients. Comparisons

between the physics-based EARSM and SBL models are reported in Appendix B.1.
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(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.6: Streamwise velocity profiles: baseline k − ω SST ( ), LES ( ), and SBL models
with ± 3 standard deviation confidence intervals: M(1) ( , ), M(2) ( , ) and M(3) ( , ).
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(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.7: Friction coefficient distributions along the bottom wall: baseline k − ω SST ( ),
LES ( ), and SBL models with ± 3 standard deviation confidence intervals: M(1) ( , ),
M(2) ( , ) and M(3) ( , ).
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(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure 4.8: Turbulent kinetic energy profiles: baseline k − ω SST ( ), LES ( ), and SBL
models with ± 3 standard deviation confidence intervals: M(1) ( , ), M(2) ( , ) and M(3)

( , ).
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4.3.3 Sensitivity analysis

In the preceding section, a reduced-cost Uncertainty Quantification (UQ) method has been

used for propagating the stochastic turbulence models through the CFD solver and use the

converged solutions to compute the mean predictions and confidence intervals. Using the same

UQ procedure (see Appendix A.0.1), a Sobol sensitivity analysis of the models to the stochastic

parameters is conducted. To investigate the role of the various corrective tensor terms, results

are reported hereafter for a more complex model than those selected in Section 4.2. Specifically,

we consider the model providing the highest accuracy (77%) on the streamwise velocity, i.e.

M(3)(λ∗(3)) for U (see Table 4.2), which involves a non-null b∆ correction.

We denote S1 (resp. S2 and S3) the Sobol index of a QoI with respect to the first (resp.

second and third) stochastic parameter contained in b∆, and S4 the Sobol index associated with

the only stochastic parameter of bR. Similarly, we denote Sij the second-order Sobol indexes,

representing interactions between parameters taken two by two. Parameters of even higher

order were computed, but we found their contributions negligible. Areas of high sensitivity are

identified as areas where the corresponding Sobol index is higher than 0.5; since Sobol indexes

sum up to one, the remaining indices are then less than 0.5 in these regions.

In Figure 4.9a we display as an example the map of dominance of Sobol sensitivity indices

corresponding to principal effects (S1, S2, S3 and S4) and to interactions (
∑

i<j Sij) for the

shear component of the anisotropy tensor correction a∆
12. The figure shows that Reynolds

anisotropy is mostly affected by the parameter governing the bR correction close to walls,

and more particularly near the separation - reattachment points. Sensitivity to b∆ is mostly

observed outside of the boundary layer, and specifically in the recirculation bubble, the most

relevant term in b∆ being again the linear term, i.e. the term involving tensor T(1). This shows

that LEVM are overall sufficient for such 2D separated flows, provided that the eddy viscosity

coefficient is properly tuned.

Figures 4.9b, 4.9c and 4.9d show the map of dominance of Sobol sensitivity indices cor-

responding to principal effects and interactions for the streamwise velocity, turbulent kinetic
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energy and Reynolds shear stress, respectively. All of the considered QoI are mostly sensitive to

the bR correction, especially in the near-wall region, whereas b∆ is activated in highly distorted

regions, such as shear layers and recirculation bubbles. Within the latter, interaction terms also

play an important role. The high accuracy of M(3)(λ∗(3)) in predicting streamwise velocity with

respect to the sparsest models is then likely due to its ability to capture some of the anisotropy

effects in the most highly distorted flow regions.

(a) a∆
12.

(b) Streamwise velocity U .

(c) Turbulent kinetic energy k.

(d) Reynolds shear stress τxy.

Figure 4.9: Maps of Sobol sensitivity indices dominance for various QoI: CD (left), CBFS
(center) and PH (right) cases; S1 ( ), S2 ( ), S3 ( ), S4 ( ),

∑
i,j Sij ( ).
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4.4 Conclusions

In this chapter, a novel Sparse Bayesian Learning (SBL) framework was introduced for

generating stochastic Explicit Algebraic Reynolds Stress Models (EARSM) for the Reynolds-

Averaged Navier–Stokes equations, and demonstrated for a class of incompressible separated

flows. The resulting models, called SBL-SpaRTA, exhibit a higher sparsity, physical inter-

pretability, and a consistent form of the correction when tested on different geometries where

turbulent separation occurs. The stochastic nature of the correction allows to quantify the

uncertainty around different QoI by the mean of precious high-density intervals reflecting the

trustworthiness of the solution. The SBL-SpaRTA models exhibit superior accuracy than the

baseline LEVM in terms of velocity fields and skin friction, and the solutions generally in good

agreement with the reference high-fidelity data. For some other quantities (such as the turbu-

lent kinetic energy or the turbulent shear stress) the solution is not perfect, but overall more

accurate than the LEVM. Interestingly, comparisons with a physics-based EARSM show that

the present simple machine-learned models provide more accurate solutions for the considered

class of flows, in the face of lower complexity. Model cross-validation and sensitivity analyses

show that, for the present 2D separated flows, nonlinear corrections of the Reynolds stress

tensor have little influence on the results in most of the flow, and that correcting the turbu-

lent kinetic energy production term is generally sufficient for improving the match between the

RANS model and the LES. This is consistent with the results of [61, 71], where similar mod-

els were discovered for the same class of flows using two different data-driven symbolic model

identification strategies.

As a downside of the data-driven approach, we noticed that the present SBL-SpaRTA models

result in a correction that is applied throughout the flow, affecting also regions where the

baseline k −ω SST already yields good results. In addition, the SBL-SpaRTA correction for the

turbulent separated flows is a priori not necessarily the optimal one for a general flow field where

different physical phenomena take place. In the aim of moving towards more generalizable data-

driven models, in the next chapter we investigate a machine-learning technique for aggregating
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various data-driven models, each one specialized for a specific task (i.e. a class of flows).
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Non-intrusive space-dependent aggregation
of SBL-SpaRTA models
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In the preceding chapter, we developed customized stochastic SBL-SpaRTA corrections

tailored for turbulent separated flows. The learned models were shown to improve the solution

of the baseline k − ω SST model, particularly in its prediction of separation regions. Building

upon this achievement, the focus of this chapter is to find a data-driven modeling framework

that is able to encompass a broader range of flow cases. For that purpose, we first learn

customized models for a diverse set of flows. Subsequently, we show that such models are not
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generalizable outside the narrow class of flows for which they are trained. Finally, we propose

a model aggregation technique to blend together the solutions of different customized models

according to a set of local flow features. The local blending coefficients can be interpreted

as model probabilities, and are used to estimate the average (expected) solution, as well as

uncertainty intervals.

5.1 Customized SBL-SpaRTA models for building-block flows

5.1.1 Model training

The SBL framework is used to learn stochastic EARSM (SBL-SpaRTA) for a set of well-

chosen flow cases, listed in Table 5.1. The training cases are representative of diverse physical

situations, including turbulent plane channel flows, flat plates subjected to various pressure

gradients, separated flows, and a jet flow. A similar strategY was independently proposed

in [76]. For each of these flow cases, high-fidelity data corresponding to velocity U , turbu-

lent kinetic energy k, turbulent dissipation rate ω, and Reynolds stress tensor τ are used

to construct the target learning vectors and function dictionaries for the SBL-SpaRTA pro-

cedure. The training data are taken from evenly-distributed profiles across the computing

domain. The training is performed using different values of the hyper-parameter λ within the

set {1, 10, 102, 5 × 102, 103}. The resulting models M = (Mb∆ , MbR) (given in Table 5.2) take

the general form: 
Mb∆ =

3∑
n=1

∑
l,m

(
µ∆(n)

(l,m) ± σ∆(n)

l,m

)
I l

1I
m
2

T(n) ± 1ϵ∆

MbR =
3∑

n=1

∑
l,m

(
µR(n)

(l,m) ± σR(n)

l,m

)
I l

1I
m
2

T(n) ± 1ϵR

(5.1)

where µ∆(n)

(l,m) and σ∆(n)
l,m (resp. µR(n)

(l,m) and σR(n)
l,m ) are the mean and the standard deviation, respec-

tively, of the probability density function of the coefficient associated to the term I l
1I

m
2 in the

tensor expansion of Mb∆ (resp. MbR), 1 is a second-order tensor with all elements equal to

one, and ϵ∆ (resp. ϵR) is the standard deviation of the noise associated with model Mb∆ (resp.

MbR).

66



5.1. CUSTOMIZED SBL-SPARTA MODELS FOR BUILDING-BLOCK FLOWS

Training cases Description Source
ZPG DNS of a zero pressure gradient turbulent boundary layer [111]

670 ≤ Reθ ≤ 4060
CHAN DNS of turbulent channel flows [90]

180 ≤ Reτ ≤ 5000 [112]
APG LES of adverse pressure-gradient TBL [94]

Reθ ≤ 4000, β ≤ 4, 5 different pressure gradients
ANSJ PIV of near sonic axisymmetric jet [95]
SEP LES of Periodic Hills (PH) at Re = 10595 [99]

DNS of converging-diverging channel (CD) at Re = 13600 [97]
LES of curved backward facing step (CBFS) at Re = 13700 [98]

Table 5.1: List of flow cases used to train customized SBL-SpaRTA corrections.

Training case Model

ZPG

M(ZP G)
b∆ = [(0.152 ± 0.0430)(I1 − I2)]T(1) + ±0.167

M(ZP G)
bR = [0] ± 3.01 × 10−3

CHAN

M(CHAN)
b∆ = [0] + ±0.0914

M(CHAN)
bR = [0] ± 4.61 × 10−3

APG

M(AP G)
b∆ = [(2.99 ± 0.00726)]T(2) + ±0.000277

M(AP G)
bR = [0] ± 6.55 × 10−5

ANSJ

M(ANSJ)
b∆ = [(0.33 ± 0.0189)]T(1) + ±0.00622

M(ANSJ)
bR = [0] ± 3.45 × 10−3

SEP

M(SEP )
b∆ = [(5.21 ± 0.0173)]T(2) + ±0.0348

M(SEP )
bR = [(0.681 ± 0.02)]T(1) ± 0.0318

Table 5.2: Customized SBL-SpaRTA corrections obtained for various training flow cases.
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Figure 5.1: SBL-SpaRTA framework.

For each training case, a cross-validation strategy is used to select the sparsity-promoting

hyperparameter λ. To avoid overcharging the training data, all discovered models are propa-

gated through the CFD solver, and the models providing the smallest predictive error on the

horizontal velocity U are retained as the best ones (see [101] for further discussion of the cross-

validation step). The model corrections discovered for the various cases after the training and

cross-validation steps are presented in Table 5.2.

5.1.2 Stochastic flow predictions

The posterior probability distributions of the selected model parameters, along with the

associated tensor terms, constitute a stochastic turbulence model correction. The latter can

be propagated through the flow solver by using a suitable Uncertainty Quantification (UQ)

algorithm, to obtain a stochastic prediction of a new flow. In the following numerical studies,

we use again the equadratures library of [113] already used in the preceding chapter and de-

scribed in Appendix A. The main steps of the SBL-SpaRTA framework with the Uncertainty

Quantification (UQ) procedure are presented in Figure 5.1.
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5.1.3 Customized model performance

A clear advantage of symbolic identification Machine Learning algorithms, such as SBL-

SpaRTA, is that they provide tangible analytical expressions that allow the effects of the dis-

covered model corrections to be interpreted. For the sake of simplicity, we discuss below the

effects of the models of Table 5.2 by assuming that the stochastic model parameters are fixed

to their mean values. Since model posteriors are generally well informed, i.e. sharply peaked

around their mean, this is sufficient to understand the model main trend (the solution computed

at the mean value being a first-order approximation of the mean of the stochastic solution).

To better illustrate the behavior of the discovered models, we also report in Figures 5.2, 5.3

and 5.4 the solutions of the various learned models for selected cases among those of Table 5.1.

This allows also to test the generalizability of a model learned for a given data set to a different

class of flows. The following considerations are in order:

• The optimal correction for the channel flow is zero to within observation noise, confirming

that the baseline model is well fit for this canonical flow, at least as long as the main goal

is to provide a good prediction of the velocity field. As a consequence, in the following

discussions, the CHAN model coincides with the baseline k − ω SST model.

• For the zero pressure gradient boundary layer (ZPG case), a small anisotropy correction

dependent on the linear term T(1) = S/ω is introduced. By taking the mean values of

the coefficients, we see that the correction adds to the Boussinesq term and leads to the

corrected anisotropy relation:

2kb =
[
−2νt + 0.152(I1 − I2)

k

ω

]
S = −2k

ω
αZP GS, αZP G ≈ 1 − 0.076(I1 − I2) (5.2)

The coefficient αZP G corresponds to a very small correction (decrease) of eddy viscosity

νt in the external region, as shown in Figure 5.2b for the CHAN flow case. The slope

of the velocity profiles in log layer remain essentially unchanged with respect to the

baseline (Figure 5.2a). Note that, for incompressible boundary layer flows, I1 ≈ −I2 ≈
1

2ω2

(
∂U

∂y

)2

, meaning that the correction is active when the shear timescale becomes
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smaller than the turbulent timescale. On the other hand, no additional corrective term is

added to the turbulent kinetic energy equation on average, except for the small negative

contribution of b∆ to the production term. This indicates that the discovered optimal

model is very close to the baseline also for the ZPG boundary layer case.

• For adverse pressure gradient boundary layers (APG cases), a nonlinear anisotropy cor-

rection is discovered, resulting in a constitutive relation of the form:

2kb = −2νtS + 2.992k

ω2 [SΩ − ΩS] (5.3)

Here again no additional corrective term is selected for the turbulent kinetic energy equa-

tion, and the contribution of b∆ to the TKE production is zero because the tensor product

of T(2) with the velocity gradient tensor is null. This can be seen in Figure 5.2b, where

the profile of eddy viscosity across the CHAN flow predicted by the APG model is super-

imposed with those of the baseline (or CHAN) models. The correction also has essentially

no effect on the velocity profile for both the CHAN case shown in Figure 5.2a and the

ANSJ case (Figure 5.3a), and it provides skin friction profiles of separated cases such as

the CD and PH flows in close agreement with the CHAN model (see Figure 5.4), showing

that the learned correction for APG plays a very minor role for a large variety of cases.

• The turbulent near-sonic jet (ANSJ) model consists of a linear anisotropy correction,

resulting in a decreased eddy viscosity compared to the baseline:

2kb =
[
−2νt + 0.332k

ω

]
S = −2k

ω
αANSJS, αANSJ ≈ 0.67 (5.4)

Such a modification contributes to improving the spreading rate for the training flow,

as shown in Figure 5.3a, where the horizontal velocity along x-axis is reported for all

discovered models, along with the high-fidelity data. The computed eddy viscosity for

the ANSJ case is shown in Figure 5.3b for all models. As a counterpart, the ANSJ

model leads to a severe underestimation of the eddy viscosity in the CHAN case, and in

particular in the logarithmic zone, resulting in an erroneous slope of the log-law, as shown
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in Figures 5.2a and 5.2b. This also results in an underestimated skin friction and in a too

large separation bubble for both CD and PH flows, reported in Figures 5.4a and 5.4b.

• Finally, the separated flow (SEP) model involves both a nonlinear correction to the extra

anisotropy and a linear bR correction.

2kb = −2νtS + 5.21 2k
ω2 [SΩ − ΩS]

2kbR = − k
ω

αSEP S, αSEP ≈ 1.362
(5.5)

While the non-linear correction of b∆ does not affect the TKE production, the bR cor-

rection tends to increase the eddy viscosity. Inspection of the skin friction distribution

for the CD and PH flows (Figures 5.4a and 5.4b) shows that the SEP model significantly

improves the agreement with the high-fidelity data in terms of size and position of the

recirculation bubble in the PH case (Figure 5.4b) compared to all other models, and it

also results in a more satisfactory overall agreement for the CD case, but it misses the

small separation bubble in divergent (Figure 5.4a). The reason is that the model over-

corrects the baseline, resulting for instance in an overdissipation for the CHAN case (see

Figure 5.2b) and in an underestimation of the log-law slope (Figure 5.2a). Furthermore,

the SEP model provides inaccurate predictions of the velocity distribution for the ANSJ

case (Figure 5.3a).

The preceding discussion shows that the SBL-SpaRTA models trained on a class of flows are

generally not well-suited for predicting different flow configurations, i.e., they are not general-

izable outside the class of flows for which they have been developed. This is why the discovered

models are qualified of ”customized”models and do not constitute an universal general-purpose

model. In an attempt of constructing a more generalizable model that combines the properties

of the various discovered corrections, in the next section we discuss a model mixture procedure

that combines the results of various customized models to make predictions of unseen flow

configurations.
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(a) Horizontal velocity profiles in wall units. (b) Eddy viscosity profiles.

Figure 5.2: Incompressible turbulent channel flow at Reτ = 1000 - various SBL-SpaRTA models.
M(ZP G) ( ), M(CHAN) ( ), M(AP G) ( ), M(ANSJ) ( ), M(SEP ) ( ), High-fidelity data
( ).

(a) Distribution of the horizontal velocity along
the jet axis.

(b) Distribution of the eddy viscosity.

Figure 5.3: Axisymmetric near-sonic jet flow - various SBL-SpaRTA models. M(ZP G) ( ),
M(CHAN) ( ), M(AP G) ( ), M(ANSJ) ( ), M(SEP ) ( ), High-fidelity data ( ).
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(a) Converging diverging channel flow. (b) Periodic hills flow.

Figure 5.4: Skin-friction distributions along the bottom wall - various SBL-SpaRTA models.
M(ZP G) ( ), M(CHAN) ( ), M(AP G) ( ), M(ANSJ) ( ), M(SEP ) ( ), High-fidelity data
( ).
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5.2 Space-dependent Model Aggregation

The customized SBL-SpaRTA models improve the solution of the baseline model for the class

of flows for which they were trained, but generally have poor performance for other classes of

flows. In addition, it may be difficult to know a priori which model will perform better for an

unseen flow that shares common characteristics with different flow classes.

With the goal of providing improved and more generalizable flow predictions while estimat-

ing turbulence modeling uncertainties, we introduce a model-aggregation procedure, referred to

as X-MA, in which the predictions of multiple models are combined using weighting functions

that can vary across the computational domain. Such functions are trained to automatically

assign high weights to models that are likely to perform better in a given flow regime or flow

region, and low weights to models that are likely to perform poorly. More specifically, in the

following we build on the space-dependent model aggregation approach originally proposed by

[86] for combining the predictions of a set of LEVMs from the literature, and we develop a

methodology that locally combines the solutions of a set of competing SBL-SpaRTA models,

learned for different flow environments, to predict unseen flows.

5.2.1 X-MA methodology

Let us consider K SBL-SpaRTA models, learned in different environments, and let d(x)

be any QoI predictable as an output of a RANS flow solver at some spatial location x (e.g.

the predicted velocity or pressure fields, the skin friction distribution, etc.). In order to make

predictions of d that are robust to the choice of the data-driven turbulence model for an un-

seen flow scenario, we borrow the ”Mixture-of-Experts” concept [84] and we build an ensemble

solution by aggregating the individual solutions dk of the K SBL-SpaRTA models:

dX-MA(x) =
K∑

k=1
wk(x)dk(x) (5.6)
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In the above, wk(x) is the weighting function assigned to the kth component model, and

dX-MA(x) is the model ensemble or aggregated prediction. Following the approach of [86],

we look for weighting functions satisfying the conditions:
0 ≤ wk(x) ≤ 1 ∀k = 1, ..., K
K∑

k=1
wk(x) = 1 ∀x

(5.7)

Given the preceding properties, they can be interpreted as the probability of model k to con-

tribute to the aggregated prediction dX-MA(x) at location x.

The weighting functions are computed as the Exponentially Weighted Average (EWA) of

the component model prediction errors:

wk

(
δ(k)(x); δ̄(x); σw

)
=

gk

(
δ(k)(x); δ̄(x); σw

)
K∑

l=1
gl

(
δ(l)(x); δ̄(x); σw

) (5.8)

where gk is a gating function of the form

gk

(
δ(k)(x); δ̄(x); σw

)
= exp

−

(
δ(k)(x) − δ̄(x)

)T

.
(

δ(k)(x) − δ̄(x)
)

√
V ar(δ̄) × 2σ2

w

 (5.9)

with

• δ̄ is a vector of high-fidelity data (δ may, or may not, be equal to d),

• δ(k) is the kth model’s output for δ̄,

• σw is a hyperparameter.

This gating function corresponds to an exponential transformation of the mean square error of

the kth model prediction dk with respect to the high-fidelity data or, put in other terms, to the

”score” assigned to the kth model. The term
√

V ar(δ̄) is introduced as a normalizing constant

to ensure that the ratio inside the exponential is made non-dimensional and, consequently,
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independent of the choice of the Quantity of Interest (QoI) used for weights’ construction. This

term is equal to the standard deviation among the training data points. For the rest of the

study, we choose δ to be the horizontal velocity U .

The gating function depends on an hyperparameter σw, whose role is to discriminate more

or less sharply the component model scores: when σw is large, all models tend to be assigned

approximately equal weights, i.e. uncertainty on model choice is high, whereas when σw tends

to zero, a single model is selected, which leads to better results if the right model is selected,

but may lead to large errors if the wrong model is applied. The choice of σw is determined by

means of a grid search whose details are given in Section 5.2.2.

From Equation (5.9), it appears that the gating functions are a way of comparing each

SBL-SpaRTA based model with a set of high-fidelity values. Consequently, they can only be

calculated at the locations xi in the dataset. For making the gating functions, and subsequently

the weights of each SBL-SpaRTA model, to give a value for each point x in the domain, a surface

response must be constructed such that:

x → wk(x)

by means of a regression algorithm. Nonetheless, in such circumstances, the regression proce-

dure would be restricted to the training domain and so would be the blending approach.

To expand the blending approach predictions to any new domain, the regression is based

on a set of features η(x) that represent the local flow instead:

η(x) → wk(x)

More precisely, we choose some of the features introduced by [52] and summarised in Table 5.3.
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Feature Description Formula Feature Description Formula

η1 Normalized Q criterion
||Ω||2 − ||S||2

||Ω||2 + ||S||2
η6 Viscosity ratio

νT

100ν + νT

η2 Turbulence intensity
k

0.5UiUi + k
η7

Ratio of pressure
normal stresses to
normal shear stresses

√
∂P

∂xi

∂P

∂xi√√√√ ∂P

∂xj

∂P

∂xj

+ 0.5ρ
∂U2

k

∂xk

η3
Turbulent Reynolds
number

min
(√

kλ

50ν
, 2
)

η8

Non-orthogonality
marker between velocity
and its gradient [29]

∣∣∣∣∣UkUl
∂Uk

∂xl

∣∣∣∣∣√√√√UnUnUi
∂Ui

∂xj

Um
∂Um

∂xj

+
∣∣∣∣∣UiUj

∂Ui

∂xj

∣∣∣∣∣
η4

Pressure gradient
along streamline

Uk
∂P

∂xk√√√√ ∂P

∂xj

∂P

∂xj

UiUi +
∣∣∣∣∣Ul

∂P

∂xl

∣∣∣∣∣
η9

Ratio of convection to
production of k

Ui
∂k

∂xi

|u′
ju

′
lSjl| + Ul

∂k

∂xl

η5

Ratio of turbulent
timescale to mean
strain time scale

||S||k
||S||k + ε

η10

Ratio of total Reynolds
stresses to normal
Reynolds stresses

||u′
iu

′
j||

k + ||u′
iu

′
j||

Table 5.3: List of input features used to construct the X-MA weighting functions.

The selected features are based on domain knowledge, and they include variables such as the

Q criterion for vortical flow detection, the turbulent kinetic energy, and the turbulent dissipa-

tion rate among others. Additionally, we consider an extra feature η11 = Pk

Pk + ϵ
, suggested by

[114]. The latter allows to integrate the information turbulent regimes for which the baseline

model (identical to the CHAN model) provides reliable solutions. This is the case of freely

decaying turbulence, corresponding to Pk → 0, i.e. η11 → 0 or of equilibrium turbulence, where

Pk → ϵ, which implies η11 → 1
2 .

The regression is computed by using the Random Forests (RF) algorithm available through

the python package scikitlearn†:

η(x) =
(
η1(x), ..., η11(x)

)
︸ ︷︷ ︸

local flow features

RF−−→
W

(
w1
(
δ(1)(x); δ̄(x); σw

)
, ..., wK

(
δ(K)(x); δ̄(x); σw

))
︸ ︷︷ ︸

local models weights

(5.10)

The data used to train the RF are the horizontal velocity fields of the flow cases CHAN, APG,

ANSJ, and SEP. The local flow features are calculated by using the baseline k-ω SST model.

Of note, neither the velocity fields nor the flow features are used for learning the SBL-SpaRTA

†https://scikit-learn.org
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corrections.

Ultimately, the model aggregation now reads

dX-MA(x) =
K∑

k=1
wk(η(x))dk(x). (5.11)

from which we compute the mean and variance of dX-MA(x)


E
(
dX-MA(x)

)
=

K∑
k=1

wk(η(x))E
(
dk(x)

)

V ar
(
dX-MA(x)

)
=

K∑
k=1

w2
k(η(x))V ar

(
dk(x)

) (5.12)

where the models are assumed to be independent.

The workflow of the regression training is depicted in Figure 5.5 and an overview of the

X-MA approach is plotted in Figure 5.6. The complete learning process is detailed in Section

5.2.2
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Figure 5.5: Workflow of X-MA training. The baseline k-ω SST model is used to evaluate
flow features for a set of training flows including flat plates with various pressure gradients,
separated flows and a jet flow (left part); K SBL-SpaRTA model solutions for the training
cases are compared with high-fidelity data (right part) to evaluate the gating function (5.9)
and the model weights (5.8). The features and the corresponding weights are used to train
Random Forests Regressors that map the local flow features into model weights.
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Figure 5.6: Workflow for X-MA predictions. The baseline k − ω SST model is used to evaluate
flow features for a new flow, and K SBL-SpaRTA candidate models are used to generate pre-
dictions of the same flow. The features are used to interrogate the Random Forests Regressors
for the weighting functions, and the weights are finally used to aggregate the candidate models
solutions into the X-MA prediction.

5.2.2 Complete X-MA learning process

In the following is described the complete X-MA learning process:

1. A set K of K SBL-SpaRTA corrective models are considered.

K =
{
M(ZP G), M(CHAN), M(AP G), M(SEP ), M(ANSJ)

}

2. A set C of C flows of various configurations are considered for which high-fidelity data are

available at some points in the physical space: C = {CHAN, APG, ANSJ, SEP}. Each

dataset corresponding to a flow configuration c ∈ C is denoted by Dc (DCHAN , DANSJ ...).

Dc = {x(c)
i , QoI

(
x(c)

i

)
}Nc

i=1 where QoI
(
x(c)

i

)
is a raw vector of QoI evaluated at x(c)

i , and

Nc the number of data points in Dc. In this study, horizontal velocity will be the only QoI
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used for model weights construction so that QoI = (U). Let D be the dataset bringing

together the C datasets of flow cases: D = {Dc}c∈C. Each Dc is splitted into two subsets

D(1)
c and D(2)

c . We denote D(1) =
{
D(1)

c

}
c∈C

and D(2) =
{
D(2)

c

}
c∈C

.

3. For each c ∈ C:

(a) K RANS computations, corresponding to the K corrective models, are performed

using a grid mesh comprising, among others, the x(c)
i s of D(1)

c .

(b) A set of vectors η
(c)
i of features are computed from the baseline k − ω SST and for

each x(c)
i of D(1)

c .

4. For every 2σ2
w ∈ E = {1, 10−1, 10−2, 10−3, 10−4} and QoI ∈ QoI:

(a) Exact weights are computed for each point in D(1)
c and for ever c ∈ C by using

Equations (5.8) and (5.9) (the QoI is denoted δ in these equations). The set of exact

weights is denoted W(QoI)
2σ2

w,c.

(b) Accounting for the C weights sets
{
W(QoI)

(2σ2
w),c

}
c∈C

, and the C features sets
{
η

(c)
i

}
c∈C

,

the parameters of a global regression R(QoI)
(2σ2

w) are estimated.

(c) Based on the regression R(QoI)
(2σ2

w)2 , an aggregated X-MA solution is computed on a grid

including the
{
x(c)

i

}
c∈C

⊂ D(2).

(d) The discrepancy between the aggregated X-MA solution and the high-fidelity data is

estimated over D(2), by using the improvement metric ImpQoI(%) over the baseline

k-ω SST model relative to several QoI on a set of data points D:

ImpQoI(%) =

1 −

∑
x∈D

(
QoI(x) − QoIHF (x)

)2

∑
x∈D

(
QoIbaseline(x) − QoIHF (x)

)2

× 100 (5.13)

5. Based on the improvement measures of 4d, a ”best” set of models’ weights W(QoI)
(2σ2

w)∗ is

selected for every QoI ∈ QoI:

σ∗
w

(
QoI

)
= arg max

2σ2
w∈E

(
ImpQoI(%)

)
(5.14)
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6. A new flow is predicted from the CFD solver, in conjunction with the X-MA method and

the regressor R(QoI)
(2σ2

w)∗ .

Preliminary tests showed that this configuration yielded a very good training. The validation

score R2, defined by

R2 = 1 −

∑
i

(w(xi) − w(xi))2

∑
i

(w(xi) − E(w(xi))2 ,

w(xi) : computed from high-fidelity data

w(xi) : RFR predicted

is greater than 0.97 for both D(1)
c (training error) and D(2)

c (generalization error) ∀c ∈ C.

Regarding unseen scenarios, R2 is greater than 0.95, for ASJ and 2DZP, and greater than 0.85,

for 2DWMH. Absolute discrepancies between high-fidelity data and RFR predictions, reported

in Figures 5.7a and 5.7b, show very low values.
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(a) 2DWMH test case. (b) ASJ test case.

Figure 5.7: ∆|wRF R − wHF |.

On the other hand, it is worth noting that, using the methodology, relevant SBL-SpaRTA

models are assigned the right weight in different regions of the domain. For instance, in Figures

5.8 and 5.9, are plotted the colormaps of the weights wk computed from high-fidelity data for

two training cases (namely, CD and ANSJ) and the five SBL-SpaRTA models. In the same

figures we also report the iso-contours of the longitudinal velocity of the baseline model, to

illustrate how the models are scored in different flow regions. In the CD case (Figure 5.8), all
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models are scored equally upstream of the throat, except at the beginning of the convergent,

where the ANSJ model is downgraded compared to the others. On the other hand, in the

separated region downstream of the throat, the SEP model is assigned a much higher weight

than the other ones. The ANSJ model exhibits the worst score almost everywhere. For the

ANSJ case (Figure 5.9), the models have essentially equal weights in the potential cone region,

which is insensitive to the turbulence model. Immediately downstream of this region, the ZPG

and APG models exhibit relatively high performance scores. As expected, the ANSJ model

is assigned the highest score in the far jet region. On the contrary, the SEP model exhibits a

very low score almost everywhere. Overall, all of these results underscore a significant outcome:

customized models exhibit a clear regional performance, mainly directed by the change in the

underlying physics. To explore additional maps of model weights for various training flow cases

exhibiting similar patterns and interpretations, readers are encouraged to refer to the Appendix

C.1.
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(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure 5.8: Colormaps of exact optimal
model weights for the CD flow (various SBL-
SpaRTA) and iso-contours of the longitudinal
velocity (baseline model).

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure 5.9: Colormaps of exact optimal model
weights for the ANSJ flow (various SBL-
SpaRTA) and iso-contours of the longitudinal
velocity (baseline model).
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5.3 Model aggregation results

In the following, we first apply the X-MA approach to two flows included in the training

sets used to learn the SBL-SpaRTA corrections or the X-MA weighting functions. Then, we

evaluate X-MA for generalization and compute an aggregated prediction for three unseen flows

selected from those proposed in the NASA turbulence modeling testing challenge. [115]. In all

cases, the X-MA results are obtained as follows:

1. The five models of Table 5.2 are used to make stochastic predictions of flow at stake, i.e.

to estimate the mean E(dk) and the variance V ar(dk) of any output flow quantity.

2. At each mesh point, the baseline model solution (identical to the CHAN solution) is used

to compute the features of Table 5.3

3. The features are fed to the trained RF to obtain the weighting functions wk

4. The mean and variance of the X-MA aggregated solution are then computed.

5.3.1 Application of X-MA to flows in the training set

The X-MA is first applied to two flows among those used to train the weighting functions.

We select one of the canonical fully-developed channel flows (CHAN) and one of the separated

flows (CD). CHAN data were also used to train one of the SBL-SpaRTA models, which occurred

to be identical to the baseline model (zero corrections). For CD, the model learned on the set of

SEP flows in Table 5.1 improved the results over the baseline (CHANmodel), but did not predict

the small separation bubble in the divergent, while all other models largely overestimated the

bubble size (see the results reported in Figure 5.4a).

In Figure 5.10 we plot the expectancy of the X-MA velocity profile along with the reference

DNS data and baseline model. In the picture, the grey-shaded area represents the convex

accessible region, i.e. the envelope of solutions given by the five component models. We

also reported error bars, corresponding to ±3
√

V arX-MA. The solution is in good agreement
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with the DNS, and it slightly outperforms the baseline k-ω SST model in the log layer. The

weights attributed to the various models are reported in the lower panel of the same figure. In

the viscous sublayer all models are assigned equal weights, since all models predict the linear

solution. In the log layer, the ANSJ model is downgraded, whereas the ZPG and APG models

are assigned similar weights because they exhibit a similar performance (see Figure 5.2a). The

SEP model is eventually assigned an increased weight in the defect layer, but its contribution

remains small overall. Despite the large spread of the accessible area, the solution variance

is rather small. This is due to the fact that 1) most models (except ANSJ) predict similar

solutions with small posterior variance due to the residual uncertainties in model parameters

and 2) the outlier model ANSJ is affected zero weight in the region where it strongly deviates

from the other models.

Figure 5.11 displays the expectancy and error bars of the friction coefficient distribution

for the CD case. For this case, the SEP model is assigned the highest weight (close to 1 in

most regions), but the ANSJ model takes over in the throat region, where the SEP model

is overly dissipative. Of note, the APG model is assigned a slightly higher weight than the

other models in the divergent, i.e. in the adverse pressure gradient region, but its contribution

remains similar to the ZPG and CHAN models overall. This confirms that the ZPG, CHAN and

APG models behave rather similarly to each other and the baseline k-ω SST. The automatic

selection of the locally best performing models by means of the weighting functions allows to

capture the recirculation bubble, which was missed or overestimated by the component models.

In most regions, the error bars are small because a single model tends to prevail. The X-MA

prediction couldn’t reach the high-fidelity values of Cf directly after reattachment since the

convex accessible envelop of the solutions do not comprise these data points.

87



5.3. MODEL AGGREGATION RESULTS

Figure 5.10: X-MA prediction of the veloc-
ity profile for the turbulent channel flow at
Reτ = 1000. The grey shade represents the
accessible region.

Figure 5.11: X-MA prediction of the skin
friction distribution along the bottom wall
for the converging-diverging (CD) channel
flow. The grey shade represents the acces-
sible region.

5.3.2 X-MA prediction of unseen flows

Next, we assess the X-MA for flow cases that were not used for training the SBL-SpaRTA

models or the RF weighting functions. For that purpose, we selected three test cases of increas-

ing difficulty from the NASA 2022 Symposium on Turbulence modeling Collaborative Testing

Challenge [115], discussed in the following. More details about the setup and the computational
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grids can be found in Chapter 3.

Turbulent flat plate (2DZP)

We consider the turbulent flat plate test case from https://turbmodels.larc.nasa.gov/

flatplate.html. In Figure 5.12 (left panel) we report the velocity profile at the streamwise

location x = 0.97 where Reθ ≈ 10000. The Figure shows that the X-MA expectancy is in

good agreement with both the baseline k-ω SST prediction and with Coles’ mean velocity

profile [116, 117]. In the Figure we also report the accessible region (grey shade) and error

bars corresponding to ±3 standard variations of the X-MA prediction. Such intervals are much

narrower than the accessible zone because the outlier models (such as the ANSJ model) are

assigned low weights, which penalizes their contribution to the total variance. Models trained

on similar cases, e.g. ZPG, CHAN, and APG, exhibit comparable weighting functions (shown in

the bottom part) . The SEP model, specifically tailored for separated flows, is assigned locally

a slightly higher weight in the external part of the boundary layer, as previously observed for

the channel flow case. Finally, the ANSJ is assigned low weight in most of the flow.

The right panel of Figure 5.12 displays the skin friction coefficient distribution along the

plate wall and the corresponding weighting functions. The skin friction was not used for training

the weights, but it is tightly related to the velocity profiles. As a consequence, we want to see if

the weighting functions trained on the velocity are still meaningful. Again, the X-MA prediction

is in good agreement with the baseline calculation, which in turn agrees well with the turbulent

correlation (equation 6-121) from [118]. In this case the models are ranked according to the

values that the weighting functions take at the wall location, where all models are almost equally

weighted, with the ANSJ model being slightly below. Note that the goal of X-MA is not to

select a single ”best” model in each flow region, but to determine an optimal combination of

the component models that captures the data. In this case, some models overpredict the skin

friction, while others underpredict it. The RF captures this behavior and assigns approximately

equal weights after excluding the outlier, so that on average X-MA predicts the correct value.

Despite a large spread in model predictions, the ANSJ model is assigned again a low enough
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weight to limit its contribution to the X-MA average and variance, which reduces the predictive

uncertainty.

Figure 5.12: X-MA prediction of the velocity profile at x = 0.97 (top left) and of the skin
friction distribution along the wall (top right) for the NASA turbulent flat plate flow case
(2DZP). The bottom panels show the corresponding weighting function distributions. The grey
shade represents the accessible region. Error bars correspond to ±3 standard deviations.

Axisymmetric Subsonic Jet (ASJ)

The second test case is the NASA Axisymmetric subsonic jet. Figure 5.13 displays the

distribution of the horizontal velocity along the jet axis. The X-MA expected solution shows

an excellent agreement with the reference experimental data, and it represents a significant
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improvement over the baseline. In the potential region, all component models are assigned

approximately equal weights, except for the SEP model, which is slightly penalized. In the

early jet region there is no clear winner and the mixture smoothly switches from one model

to another, until only the ANSJ model emerges in the far jet. The velocity profiles reported

in Figure 5.14 also match very well the reference data, except for the last profile, which is

not included in the X-MA accessible region. In this case, the X-MA prediction lies along the

boundary closest to the data, and its ±3 standard deviations uncertainty bars encompass the

reference data. Interestingly, the discrepancies among component models tend to increase when

moving downstream. This showcases that at the farest stations, the ANSJ model performs

better than the others yet exhibits a discrepancy with respect to the reference. The large

uncertainty bars in the regions of dominance of wANSJ proves also that this region of the flow

is highly sensitive to this models’ calibration.

Wall-Mounted Hump (2DWMH)

The left panel of Figure 5.15 shows the pressure coefficient distribution along the wall. The

X-MA captures very well the high-fidelity data, some discrepancies being visible within the

separated region (corresponding to the pressure plateau located approximately between the

abscissas 0.75 and 1). The predictions clearly outperform the baseline model in the diverging

part. Upstream of the hump, the models designed for flat plates are assigned equal weights (re-

ported in the bottom panel), the SEP model emerges as the highest weighted model throughout

the flow, whereas the ANSJ model is assigned a low weight. The X-MA uncertainty bars are

small upstream (except at pressure extrema) and they become larger in the separated region,

highlighting the high sensitivity of this region to the injection of eddy-viscosity performed by

the SEP model. In the right panel we report the skin friction distribution for the same case.

X-MA captures rather well the reference, showing a great improvement over the baseline and

capturing the reattachment location rather well. The weights are the same as for the pres-

sure coefficient, since they only depend on the local flow features and not on the QoI to be

predicted. The component models solutions for the Cf are widespread over a large accessible
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Figure 5.13: Distribution of the streamwise velocity along symmetry axis for the Axisymmetric
Subsonic Jet (ASJ) case. The grey shade represents the accessible region. Error bars correspond
to ±3 standard deviations.
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Figure 5.14: Profiles of the streamwise velocity U at various horizontal locations for the Ax-
isymmetric Subsonic Jet (ASJ) case.
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area, but again the error bars are rather small because only one of the models is assigned a

high weight, while the unsuitable model here, the ANSJ model, which is responsible for this

significant discrepancy in the accessible area, is evidently rated poorly, and the three models

(CHAN, ZPG and APG) predict similar solutions. Unfortunately, the bars do not always fully

encompass the reference solution, but they are very closely aligned and show clear improve-

ment compared to the baseline. In Figures 5.16 and 5.17, we can observe a good agreement

between the aggregated X-MA solutions for both horizontal velocity and Reynolds shear stress

and the high-fidelity data when compared to the baseline model. This agreement is particularly

present in the separated region (0.8 ≤ x ≤ 1.2), where the velocity profiles closely match to the

experimental data, in contrast to the baseline model, which fails to exhibit attached velocity

profiles. Concerning the Reynolds shear stress profiles, the X-MA prediction closely approaches

the higher values observed in the high-fidelity data, surpassing again the performance of the

baseline model.

5.3.3 Summary of the results and discussion

To provide an overall picture of the performance of the proposed X-MA methodology on un-

seen flow cases, the improvement metric (5.13) is displayed in Table 5.4 for the three prediction

cases and with various models, namely, the individual customized models and the aggregated

X-MA prediction. The results show that the customized models perform remarkably well for

flows similar to those they have been trained on. However, their performance significantly

deteriorates for significantly different flows. Conversely, the X-MA prediction consistently out-

performs the baseline k-ω SST model for all cases. In certain cases, the X-MA prediction even

surpasses the performance of the optimal customized model. This shows that the X-MA pre-

diction effectively captures the combined effects of the different customized models used in the

mixture by enhancing the prediction locally where the customized model predictions may not

be optimal.
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Figure 5.15: Distribution of the pressure coefficient (top left) and skin friction coefficient (top
right) along the wall for the NASA wall-mounted hump case (2DWMH). The weighting function
distributions are reported in the bottom panel. The grey shade represents the accessible region.
Error bars correspond to ±3 standard deviations.
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Figure 5.16: Profiles of the streamwise velocity U at various horizontal locations for the Wall-
Mounted Hump case.
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Figure 5.17: Profiles of Reynolds shear stress τxy at various horizontal locations for the Wall-
Mounted Hump case.
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case QoI X-MA M (ZP G) M (CHAN) M (AP G) M (ANSJ) M (SEP )

2DZP
U 7.0 6.6 0 5.5 -927.1 -241.0
Cf 10.6 6.2 0 4.2 -3580.0 -1868.0

ASJ
U 79.6 8.5 0 -13.6 72.0 -535.9
τxy 13.3 5.6 0 -21.3 51.6 -595.1

2DWMH

U 76.0 -18.9 0 -70.6 -1265.8 65.4
τxy 74.1 -3.8 0 37.0 -152.4 60.9
Cp 17.9 -6.7 0 -36.0 -1098.0 -21.5
Cf 64.0 -18.2 0 -9.7 -819.2 47.6

Table 5.4: Improvements in (%) wrt the baseline k-ω SST for the test cases.

5.4 Conclusions

In this chapter, we presented a machine-learning methodology for aggregating data-driven

turbulence models trained for narrow classes of flows and thus providing predictions of more

general unseen flows. The model aggregation also provides an estimate of predictive uncertainty.

First, the customized turbulence models are trained on several flow cases encompassing

selected types of physical phenomena and operating conditions, following the SBL-SpaRTA

framework presented in details in Chapter 4. Then, in order to make predictions of more

general flows including features of the various training flow classes, we propose a Mixture-of-

Experts approach, named space-dependent model aggregation (X-MA) consisting in building

a local convex linear combination of the solutions predicted by the set of learned turbulence

models by means of weighting functions that depend on a vector of well-chosen flow features

and reflecting the local plausibility of every model.

Results prove first that the customized models perform well for flows within or close to

those in the training set, but extrapolate badly to very different flows, because of opposite

correction requirements. A good example is given by the jet flow and the separated flows: for

the jet, the correction tends to reduce the model eddy viscosity, while for the separated flows

terms contributing to increase turbulent dissipation are needed. For flat plate and channel

flows (including flat plate flows with adverse pressure gradients), the learned model corrections

produce no or little changes with respect to the baseline model. Moreover, postdiction and
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predictions, resp. both on training and test cases, clearly demonstrate that the appropriate

models are activated in their respective zones of expertise, leading to significantly improved

aggregated solution across various quantities of interest. Importantly, the aggregation approach

does not compromise the accuracy of predictions for canonical flows, where the baseline models

already perform well. In addition, the model mixture provides an estimate of the predictive

variance, i.e. a measure of model uncertainty: in regions of large discrepancies of the individual

solutions, the X-MA variance becomes larger, thus warning the user about the reliability of the

computed prediction. The cost of the uncertainties calculations can be greatly reduced by using

a sparse uncertainty quantification method for selecting and computing a reduced number of

the PC expansion coefficients, such as the one available in the equadratures package [113] used

in this study.

Despite the promising results, the external model aggregation approach does not constitute

a turbulence model, but rather an uncertainty quantification method. The non-intrusive X-MA

method consists in post-processing individual model predictions, and the aggregated prediction

is not a solution of the conservation equations. This is why in the next chapter we investigate

an intrusive version of X-MA, consisting in generating a blended turbulence model that is then

propagated through the mean flow equations.
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Chapter 6

Intrusive space-dependent aggregation of
data-driven turbulence models
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The methodology proposed in the previous chapter showed promise for merging the predic-

tions of different data-driven models, or ”experts”, each one trained on a different class of flows.

The approach, inspired by model aggregation techniques used in so-called ensemble machine

learning, ends up producing an estimate of the expected (average) solution, weighted according

to the local model performance scores. However, such an averaged prediction, however, is not

necessarily consistent with the conservation equations. This is acceptable in the context of

uncertainty quantification, but it may be a problem for applications where the exact conserva-

tion of some physical quantities (e.g. mass and energy) is mandatory. In addition, the RFR

approximation of the model weights functions is not always smooth, requiring the application

of a filter.

For all of these reasons, this chapter explores an alternative approach, referred to as ”in-
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trusive X-MA”, which uses the model weights to construct a blended SBL-SpaRTA model that

combines various customized SBL-SpaRTA corrections of the Reynolds stress tensor.

6.1 Intrusive X-MA

Let K be a set of SBL-SpaRTA models. In contrast to the non-intrusive version described in

Chapter 5, in the case of the intrusive method, mixing occurs directly at the level of Reynolds

tensor construction. Therefore, the equations solved by the solver are:



∂Ui

∂xi

= 0

Uj
∂Ui

∂xj

= −1
ρ

∂P

∂xi

+ ∂

∂xj

(
ν

∂Uj

∂xJ

− τij

)
∂k

∂t
+ Uj

∂k

∂xj

= Pk + R − β∗kω + ∂

∂xj

(
(ν + σkνt)

∂k

∂xj

)
∂ω

∂t
+ Uj

∂ω

∂xj

= γ

νt

( Pk + R ) − βω2 + ∂

∂xj

(
(ν + σωνt)

∂ω

∂xj

)

with 

τij = 2k

(
1
3δij + b0

ij +
K∑

k=1
wk(η(x))b∆(k)

ij

)

Pk = min
(

2νtS
2 − 2k

(
K∑

k=1
wk(η(x))b∆(k)

ij

)
∂Ui

∂xj

, 10β∗ωk

)

R = 2k

(
K∑

k=1
wk(η(x))bR(k)

ij

)
∂Ui

∂xj

where the b∆(k)
ij and the bR(k)

ij are the corrections for the kth SBL-SpaRTA model. The construc-

tion of weight functions is also performed similarly to the non-intrusive method :

1. in a first step, the exact values of weight functions are calculated at certain points within

the domain where high-fidelity data are available by using Equations (5.8) and (5.9)
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rewritten below:

wk(δ(k)(x); δ̄(x); σw) = gk(δ(k)(x); δ̄(x); σw)
K∑

l=1
gl(δ(l)(x); δ̄(x); σw)

gk

(
δ(k)(x); δ̄(x); σw

)
= exp

−

(
δ(k)(x) − δ̄(x)

)T

.
(

δ(k)(x) − δ̄(x)
)

√
V ar(δ̄) × 2σ2

w


2. in the next step, an algorithm of regression is utilized to learn the relationship

η(x) =
(
η1(x), ..., η11(x)

)
︸ ︷︷ ︸

local flow features

ML−−→
W

(
w1
(
δ(1)(x); δ̄(x); σw

)
, ..., wK

(
δ(K)(x); δ̄(x); σw

))
︸ ︷︷ ︸

local models weights

(6.1)

based on the values computed in the first stage, η still being the set of features described

in Section 5.2.1.

First, let’s remember that the features at each point in the flow domain are computed using the

baseline k −ω SST model and are consistent with those used in the previous chapter. Similarly,

both the local flow features and the model weights are computed for the training flow cases

presented in Table 6.1:

Training cases Description Source
CHAN DNS of turbulent channel flows [90]

180 ≤ Reτ ≤ 5000 [112]
ANSJ PIV of near sonic axisymmetric jet [95]
SEP LES of Periodic Hills (PH) at Re = 10595 [99]

DNS of converging-diverging channel (CD) at Re = 13600 [97]
LES of curved backward facing step (CBFS) at Re = 13700 [98]

Table 6.1: List of data used to train the ML regressor of model weights.

Next, the coefficient σw still needs to be determined in the equations used to calculate the

weights.

Regarding the regression step, although the RFR used in Chapter 5 to represent the weight-

ing functions has proven effective in a non-intrusive setting, it is intrinsically non-smooth which
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could lead to numerical problems when the blended model is integrated into the CFD solver in

the intrusive setting. For this purpose, we look for an alternative regressor that can provide an

accurate and smooth representation of the weighting functions. Preliminary tests showed that

both linear and polynomial regression methods produce poor training scores when attempting

to map the model weights to the space of physical flow features. This suggests that the re-

lationship between the two is highly non-linear. Consequently, we seek a regressor capable of

handling these complex, non-linear patterns while delivering smooth and reliable predictions,

making Gaussian Process Regressors (GPR)[119] a good candidate for our modeling approach.

GPR is a non-parametric and probabilistic ML model used for regression tasks. It excels in

modeling complex and non-linear relationships between input and output variables, with the

flexibility to adapt to various patterns. Key to GPR is the choice of kernel functions, which

define data point similarities. Initial tests demonstrated that when experimenting with various

kernel functions, the radial basis function (RBF) kernels consistently produced the smoothest

and most accurate regression results. Given the importance of these characteristics in our

chosen regressor, we have opted for the RBF kernels. The model hyperparameters, including

noise levels and smoothness, are learned from the data. To train the GPR, the total number

of training points was limited to approximately N = 3000 to manage the training cost of the

GPR, which involves inverting an N × N matrix. It is worth noting that this dataset size is

smaller than what is used for training the RFR in the previous chapter. We spaced the data

points to prevent redundancy and, in areas where no turbulence is expected, as far away from

the boundary layer, we used even wider space between points to save computational resources.

Finally, the resulting turbulence model correction consists of all the posterior probability

distributions for the chosen models’ parameters and their associated deterministic tensor and

weighting terms, making it a stochastic model. This stochastic correction is propagated into

the flow solver using once again the sparse PCE (Polynomial Chaos Expansion) [113].

In Chapter 5, we show that, for the 2D cases under consideration, the most influential mod-
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els among the five considered as building blocks are the M(CHAN) model, which is identical

to the baseline k − ω SST, the separated model M(SEP ), and the jet model M(ANSJ). As a

consequence, and in order to simplify the intrusive setting, in this chapter we retain only these

three models.

The complete intrusive X-MA process is detailed in Section 6.1.1.

6.1.1 Complete intrusive X-MA process

As with non-intrusive X-MA, the description of the complete intrusive process includes, on

the one hand, the search for an optimal σw and, on the other, the optimal regression parameters.

In practice, the optimal σw is sought from the set E = {1, 10−1, 10−2, 10−3, 10−4} using a grid

search method. The optimization criterion is based on the comparison of a certain QoI between

high-fidelity data and intrusive X-MA. For better readability, weights computed from a given

QoI are denoted wQoI (weight calculation implies σw). Horizontal velocity U and Reynolds

shear stress τxy are the QoI considered in this study for weights construction. In contrast to

the unified hyperparameter approach in the non-intrusive X-MA, further numerical tests have

demonstrated that better results can be achieved by choosing different hyperparameters for

each training flow dataset. The complete process is as follows:

1. A set K of K SBL-SpaRTA corrective models are considered. K = {baseline k − ω SST,

M(SEP ), M(ANSJ)}.

2. A set C of C flows of various configurations are considered for which high-fidelity data are

available at some points in the physical space. C = {CHAN, ANSJ, CD, CBFS, PH}.

Each dataset corresponding to a flow configuration c ∈ C is denoted by Dc (DCHAN ,

DANSJ ...). Dc = {x(c)
i , QoI

(
x(c)

i

)
}Nc

i=1 where QoI
(
x(c)

i

)
is a raw vector of QoI evaluated

at x(c)
i , and Nc the number of data points in Dc. The horizontal velocity and the Reynolds

shear stress are the QoI considered in the study so that QoI = (U, τxy). Each Dc is splitted

into two subsets D(1)
c and D(2)

c .
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3. For each c ∈ C:

(a) K RANS computations, corresponding to the K corrective models, are performed

using a grid mesh comprising, among others, the x(c)
i s of D(1)

c .

(b) A set of vectors η
(c)
i of features are computed from the baseline k − ω SST and for

each x(c)
i of D(1)

c .

(c) For each 2σ2
w ∈ E and each QoI ∈ QoI component :

i. Exact weights are computed for each point in D(1)
c by using Equations (5.8)

and (5.9) (the QoI is denoted δ in these equations). The set of exact weights is

denoted W(QoI)
2σ2

w,c.

ii. The parameters of the regression R(QoI)
2σ2

w,c are computed by means of η
(c)
i and

W(QoI)
2σ2

w,c (Equation 6.1).

iii. Based on the regression R(QoI)
2σ2

w,c, an aggregated X-MA solution is computed on a

grid including the x(c)
i .

iv. The discrepancy between the aggregated X-MA solution and the high-fidelity

data is estimated over D(2)
c , by using the improvement measure ImpQoI(%)

(Equation (5.13)). The improvement metric is evaluated using the same QoI

employed to construct the model weights.

(d) Based on the improvement measures of 3c, a ”best” set of model weights W(QoI)
(2σ2

w)∗,c is

selected for every QoI ∈ QoI:

σ∗
w

(
QoI, D(2)

c

)
= arg max

2σ2
w∈E

(
ImpQoI(%)

)
(6.2)

(e) To select an optimal weights set (there is one set per QoI component resulting from

step 3d), the improvement metric is applied to the quantity of interest q not used to

construct model weights:

W(QoI)∗

(2σ2
w)∗,c = arg max

q∈QoI−{QoI}

(
Impq(%)

)
(6.3)

4. Accounting for the C weights sets W(QoI)∗

(2σ2
w)∗,c and the C features sets η

(c)
i , the parameters

of a latest global regression R are estimated (Equation 6.1).
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5. A new flow is predicted from the CFD solver, in conjunction with the X-MA method and

the regressor R.

To ensure a fair comparison between the intrusive and non-intrusive X-MA, the same pro-

cess is employed to select the optimal set of weights and train the GPR accordingly for both

paradigms. The distinction in their application lies in the calculation of the ”aggregated X-MA

solution”, used to compute the improvement metric in steps 3(c)iv, 3d and 3e:

• For the non-intrusive X-MA, the aggregated X-MA prediction of a QoI from is obtained as

the linear combination of the K RANS solutions provided by the building-block models,

via the weighting functions (Eq. (5.11)).

• For the intrusive X-MA, the weighting functions are used to determine the X-MA blended

correction b∆ and R. The latter is then propagated through the CFD solver to predict

the QoI.

Of note, both the intrusive and the non-intrusive X-MA approaches yielded the same weighting

functions, which are trained externally prior to the prediction step.

Based on numerical tests, the choice of the horizontal velocity U , as the QoI used for weight

calculation, leads to more accurate results than any other QoI - more details can be found in

Appendix D where different kind of data are used to train the model weights. In Table 6.2

we summarize the improvements achieved over the baseline model for the training cases using

different values of the hyperparameter σw. In the same table we also report results obtained by

using the single component models.
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case 2σ2
w(U)∗ QoI Non-intrusive X-MA Intrusive X-MA M(CHAN) M(ANSJ) M(SEP )

CHAN
1 U 91.6 78.9 0 -15654 -319.3

τxy 48.1 -186.5 0 -90.6 -247

ANSJ
10−4 U 80.6 53.1 0 78.7 -260.7

τxy 57.6 51.9 0 78.7 -334.3

CD
10−2 U 73.0 68.3 0 -642.3 31.3

τxy 24.8 20.5 0 -198.3 31.1

CBFS
10−3 U 85.2 78.3 0 -393.2 93.6

τxy 78.1 72.7 0 -84.7 83.5

PH
10−4 U 86.3 78.7 0 -132.8 83.3

τxy 20.4 36.1 0 -70.4 27.6

Table 6.2: Improvements in (%) wrt the baseline k-ω SST on training cases using the optimal
wU

While M(SEP ) and M(ANSJ) models outperform the baseline model (M(CHAN)) solely in their

respective training flows, the non-intrusive X-MA consistently surpasses the baseline model in

all training cases. The intrusive X-MA also outperforms the baseline in all training cases, but

is relatively less accurate than the non-intrusive method. The reasons for this slight decrease in

performance of intrusive X-MA compared to non-intrusive X-MA will be discussed in Section

6.2.

In addition to the improvement metric, the absolute error between the weights calculated

from the high-fidelity data and those calculated by regression was plotted for the different

training and test cases. The results show that the regression makes very few errors with only

minor exceptions possibly related to the GPR architecture, data informativeness, or features

mismatches in test cases. These results are available in Appendices D.3.1 and D.3.2.

Finally, the resulting set of model weights for both training and test flow cases (Tables 6.1

and 6.3), respectively, can be found in Figures 6.1 and 6.2.
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Test cases Description
2DZP 2D Zero Pressure Gradient Flat Plate Validation Case
ASJ Axisymmetric Subsonic Jet

2DWMH 2D NASA Wall-Mounted Hump Separated Flow Validation Case

Table 6.3: List of test flow cases.

In Figure 6.1, separated regions are primarily characterized by high weights of M(SEP ). The

k − ω SST model is notably prominent in the dead water region for separated cases and near

the flat plate boundary layer in the CBFS case, as anticipated. In contrast, M(ANSJ) dominates

the far jet region in the ANSJ flow case, while the k −ω SST model receives high weights in the

region between the near jet and far jet. The spatial distribution of model weights reaffirms the

localized advantage of customized models. While these models are designed for specific cases,

their benefits are only applicable in certain regions. This reinforces the hypothesis that there

is a need to aggregate these models. In the test cases, we focus on 2DWMH and ASJ (Figure

6.2). In the 2DWMH case, M(SEP ) is prominent in the recirculation region, while downstream,

the k − ω SST model takes precedence in the established attached boundary layer. M(ANSJ)’s

importance is reduced, except near the hump, where strong pressure gradients occur. In the ASJ

case, we observe a weight distribution similar to that of the ANSJ case: M(ANSJ) is dominant

in the far jet region, the k − ω SST model in the region between the far and near jet and in the

outer region of the free shear layer, and M(SEP ) weights is overall negligible.
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(a) Converging diverging channel.

(b) Curved backward facing step.

(c) Periodic hills.

(d) Axisymmetric near-sonic jet.

Figure 6.1: Optimized model weights for the training flow cases.
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(a) Wall-mounted hump.

(b) Axisymmetric subsonic jet.

Figure 6.2: Optimized model weights for the test flow cases.
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6.2 Comparison of the intrusive and non-intrusive X-MA

In this section, we evaluate the predictive performance for both intrusive and non-intrusive

X-MA. We begin with a presentation of the training results as represented by a series of plots

of various QoI in the training flow cases. Following this, we shift our focus to a meticulous

analysis of the predictions on test flow cases, serving as an evaluation for the generalization

capabilities of both intrusive and non-intrusive X-MA paradigms in unseen scenarios. These

test plots rigorously assess the effectiveness of the paradigms under the choice of horizontal

velocity to construct model weights as well as the use of Gaussian Process Regressors (GPR)

as regression algorithm when confronted with previously unseen data.

6.2.1 X-MA results for flows in the training set

Turbulent channel flow

We first consider the results for a turbulent channel flow at Reτ = 1000, illustrated in Figure

6.3a. This figure first highlights that both intrusive and non-intrusive predictions match well

with the high-fidelity data, slightly surpassing the baseline k − ω SST model in the log region.

Within the viscous sublayer of the boundary layer, all the models are assigned similar weights,

due to the reduced turbulent stresses. However, a noticeable enhancement is observed in the

logarithmic zone of the boundary layer. This improvement can be attributed to the combination

of M(SEP ) and the baseline k −ω SST in the logarithmic region, which leads to a more accurate

slope in the logarithmic portion of the velocity profile. Further away from the logarithmic zone,

in Figure 6.3a, a shift is noticeable as the baseline k − ω SST begins to dominate over M(SEP ).

On the other hand, both M(SEP ) and M(ANSJ) are inaccurate in modeling the velocity profiles.

In particular, the performance of M(ANSJ) is particularly poor, and this is effectively reflected

in its corresponding local weight, starting from the exit of the viscous sublayer. In Figure 6.3b,

the non-intrusive X-MA prediction fits better the high-fidelity data, while the intrusive one

exhibits a little discrepancy, primarily evident in the log region.
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(a) U+. (b) τ+
xy.

Figure 6.3: U+ vs. y+ and τ+
xy vs. y+ and the corresponding model weights w for the periodic

channel flow case at Reτ = 1000. M(CHAN) ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity
data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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Axisymmetric near-sonic jet flow

In Figure 6.4 we show the profile of the streamwise velocity along the axisymmetric axis,

alongside the distributions of weights assigned to the candidate models. The baseline model

(M(CHAN)) mispredicts the velocity profiles along the x-axis. M(SEP ) performs even worse,

because it tends to increase the eddy viscosity production. On the contrary, the M(ANSJ)

model captures well the high-fidelity data in the far jet region 8Djet to 10Djet. The non-

intrusive X-MA captures very well the high-fidelity solution, which is located within the convex

envelope of the component model solutions. Specifically, the non-intrusive solution captures

well the transition between the near jet region (from 0 to 8Djet) and the far jet region (from

10 to 18Djet), thanks to the smooth transition from one component model to another. The

intrusive X-MA approach provides a rather accurate solution, surpassing the baseline k−ω SST

model. However, it appears to be less accurate than the non-intrusive X-MA. We attribute this

slight degradation in performance to transport effects: the extra eddy viscosity introduced by

M(SEP ) in the inlet is transported downstream, reducing the jet spreading rate. A similar effect

is also observed in Figure 6.5a for the horizontal velocity profiles at various stations.

The Reynolds shear stresses at the same locations, are shown in Figure 6.5b. The overall

performance of X-MA remains good, with predictions that outperform the baseline model.

Separated flow cases

Finally, we use X-MA to predict one of the separated flows used for training, namely, the

converging-diverging (CD) channel. In Figure 6.6 we report the friction coefficient distribution

at the bottom wall, the horizontal velocity profiles, and the Reynolds shear stresses along

the horizontal x−axis at various stations. Several comments are in order. First, in Figure

6.6a, we observe distinct behaviors from the three candidate models. the baseline k − ω SST

predicts a relatively large recirculation bubble following the throat of the converging-diverging

section, whereas M(ANSJ) predicts an even larger separation bubble. In contrast, M(SEP )

improves the results overall, but predicts no separation bubble, the high-fidelity separation

bubble being extremely short. Although based on only three models and a different weight
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Figure 6.4: U vs. x/Djet along the horizontal axis and the corresponding model weights w for
the ANSJ flow case. Baseline k −ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity data
( ); Non-intrusive X-MA ( ); Intrusive X-MA: ( ).
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(a) U.

(b) τxy.

Figure 6.5: Horizontal velocity U and Reynolds shear stresses τxy at various x/Djet positions
for the ANSJ flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity
data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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regressor compared to Figure 5.11, the non-intrusive X-MA does an excellent job of optimally

combining the component models. It assigns higher weight to M(ANSJ) before the onset of

separation, then transitions to M(SEP ) immediately after separation. As a result, the separation

bubble is very well captured. Downstream of the reattachment point, the non-intrusive X-MA

solution follows the M(SEP ) prediction of Cf , which is the closest to high-fidelity data. The

intrusive X-MA solution also performs consistently better than individual models, but it is less

accurate than the non-intrusive approach. The blended model yields a recirculation bubble of

reduced size, separating slightly downstream and reattaching downstream of the high-fidelity

position, though still smaller in comparison to the baseline model. We also notice that, while

the effect of M(ANSJ) before the separation point is immediate in the non-intrusive X-MA,

this effect or contribution seems to experience a spatial delay in the intrusive paradigm. The

effective influence of M(ANSJ) is also faintly perceived downstream, where the recirculation

bubble tends to delay reattachment compared to a classical friction coefficient prediction of

the category M(SEP ). Far downstream from the reattachment, the intrusive X-MA solution

approaches the non-intrusive X-MA and the high-fidelity data.

In Figures 6.6b and 6.6c, we present the horizontal velocity and Reynolds shear stress

profiles. Here, the non-intrusive X-MA prediction matches remarkably well the high-fidelity

data and M(SEP ). The intrusive X-MA prediction is also very good, but again it does not reach

the accuracy of intrusive X-MA, due to transport effects. The non-intrusive X-MA prediction

of Reynolds shear stress aligns well with both the high-fidelity data and M(SEP ) prediction.

The overall performance of the non-intrusive X-MA approach remains very good compared to

the baseline. However, in the intrusive X-MA approach, it is not possible to control exactly

the effect of the corrections, because the effect of models applied at one point in the flow

contaminate other points, especially downstream. For the second and third training cases, the

reader can refer to the Appendix D Section D.1, where a similar detailed analysis is presented.
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(a) Cf .

(b) U + x.

(c) −75τxy + x.

Figure 6.6: Horizontal velocity U and Reynolds shear stresses τxy at various x positions for the
CD flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity data ( );
Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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6.2.2 Prediction of unseen flows

2D Flat Plate

In Figure 6.7a, we present the profiles of U+ along y+ at x = 0.97, accompanied by the local

model weights. Clearly, both intrusive and non-intrusive X-MA predictions exhibit excellent

alignment with the high-fidelity data. In the viscous sublayer, the baseline k − ω SST and

M(ANSJ) are assigned equal weights, while M(SEP ) is locally given double weight. Nevertheless,

this adjustment does not compromise the overall results. In the logarithmic and outer regions,

a mixture of both M(SEP ) and the baseline model contributes is used.

Figure 6.7b shows the friction coefficient for the same 2DZP case. Once again, both intrusive

and non-intrusive X-MA predictions closely match the levels of high-fidelity values. However, in

the initial section of the flat plate, several models are activated, with M(ANSJ) being assigned the

highest weight. The interpretation of the weights applied in this region is not straightforward.

One possible explanation for this behavior could be the presence of a localized high-pressure

gradient near the onset of the boundary layer at x = 0, which closely resembles the conditions

that trigger M(ANSJ). Further downstream, a perfect agreement with high-fidelity data for both

non-intrusive and intrusive X-MA. This strong concordance underscores the robustness of the

X-MA approach in reproducing canonical flows.

Axisymmetric subsonic jet

The second test case is the axisymmetric subsonic jet flow (ASJ). Given its resemblance

to the ANSJ training case, we anticipate a similar behavior in this scenario. As depicted in

Figure 6.8, the M(ANSJ) model captures the high-fidelity data very well only in the far jet

region. The behaviors of the baseline k − ω SST and M(SEP ) models are similar to those

observed for the ANSJ case. The non-intrusive X-MA prediction in the region between 6Djet

and 12Djet follows mainly the one of the baseline model and the M(ANSJ), leading to a decrease

of velocity along x−axis compared to high-fidelity data. However, we recall that when using

non-intrusive X-MA with 5 candidate SBL-SpaRTA models (Chapter 5), the predictions in this
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(a) U+. (b) Cf .

Figure 6.7: U+ vs. y+ and Cf vs. x for the 2DZP flow case. Baseline k −ω SST ( ); M(ANSJ)

( ); M(SEP ) ( ); High-fidelity data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).

120



6.2. COMPARISON OF THE INTRUSIVE AND NON-INTRUSIVE X-MA

intermediate regions show significant improvement, thanks to the contributions of many models

(Figure 5.13). This raises the question of determining the ideal number of candidate models

to employ in order to attain optimal accuracy without incurring excessive computational costs

in terms of the number of simulations to be run. In addition, Figure 6.2b reveals that the

GPR-predicted weights in the intermediate region between the near and far jet regions do not

correspond to the optimal weights based on the reference solution, which may also explain the

decreased accuracy in this case compared to the results of Chapter 5 (Figures 5.13 and 5.14).

Moreover, the intrusive X-MA solution shows a certain latency in its response to the baseline

model local weights because of transport of the correction, resulting in a closer alignment to the

M(ANSJ) model in this intermediate region. Between the ANSJ training case and the ASJ test

case, a notable difference is the Mach number, which is approximately reduced by a factor of

5. Despite this substantial change, the X-MA approach continues to yield satisfactory results.

Notably, the correct spreading of the jet in the far jet region is maintained at a satisfactory

level, significantly outperforming the predictions obtained from the baseline k − ω SST model.

The consistency in performance improvements is further confirmed by the data shown in Figure

6.9, where the horizontal velocity and Reynolds shear stresses predicted by both the intrusive

and non-intrusive X-MA methods remain closely aligned with high-fidelity data.

2D Wall-mounted hump

Moving on to the NASA 2DWall-Mounted Hump, this specific case serves as a representative

example of separated flow scenarios. It operates at a significantly higher Reynolds number

(80 × 106) when compared to the training flow cases that feature relatively moderate Reynolds

numbers (around 104). Therefore, this test case entails an extrapolation in both geometry and

Reynolds number.

The pressure and friction coefficients are displayed in Figure 6.10, along with the model

weights across the wall. The regions preceding separation are predominantly influenced by the

baseline model, while the M(SEP ) and M(ANSJ) models are assigned similar moderate weights.

In this case, this benefits to the intrusive X-MA prediction, where the locally received turbulent
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Figure 6.8: U vs. x/Djet along the axisymmetric horizontal axis and the corresponding model
weights w for the ASJ flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( );
High-fidelity data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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(a) U .

(b) τxy.

Figure 6.9: Horizontal velocity U and Reynolds shear stresses τxy at various x/Djet positions
for the ASJ flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity
data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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(a) Cp. (b) Cf .

Figure 6.10: Pressure coefficient Cp and friction coefficient Cf along x axis for the WMH flow
case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity data ( ); Non-
intrusive X-MA ( ); Intrusive X-MA ( ).

kinetic energy production is improved.

Beyond the reattachment point, the M(SEP ) correction becomes predominant. Conse-

quently, both intrusive and non-intrusive X-MA predictions of skin friction accurately depict

the size and location of the recirculation bubble. Moving further downstream, the baseline

model regains its influence, while the impact of M(SEP ) diminishes at the expense of the base-

line model. This decrease in M(SEP )’s contribution is not immediately reflected in the intrusive

X-MA predictions, primarily due to transport effects.

The profiles of horizontal velocity and Reynolds shear stress at various stations along the

hump are presented in Figure 6.11. Figure 6.11a shows that both the non-intrusive and intrusive

X-MA predictions closely mirror the high-fidelity velocity profiles. In Figure 6.11b, both X-
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MA paradigms exhibit a slightly reduced performance in comparison to M(SEP ) alone but still

clearly outperform the baseline model. Overall, these observations provide confidence in the

X-MA ability to enhance predictive accuracy for unseen flow cases.

To conclude this analysis, the performance of both intrusive and non-intrusive paradigms

on the test cases is quantitatively assessed in Table 6.4 using the Imp(%) metric. Both non-

intrusive and intrusive approaches improve the baseline model. The advantage of one over

the other is not very clear-cut. The intrusive X-MA consistently shows a notable level of

improvement across all unseen test cases, which positions it as a promising candidate for future

developments.

case QoI Non-intrusive X-MA Intrusive X-MA M(CHAN) M(ANSJ) M(SEP )

2DZP
U+ 0.3 3.6 0 -3304.1 -117.2
Cf 5.7 9.7 0 -469.2 -21.2

ASJ
U 71.5 56.5 0 62.7 -650.7
τxy 32.4 55.6 0 56.2 -562.9

2DWMH
U 8.1 45.4 0 -251.3 46.7
τxy 50.6 45.8 0 -38.9 75.8
Cf 27.0 64.2 0 -441.2 67.6
Cp 29.1 13.4 0 -498.2 16.2

Table 6.4: Improvements in (%) wrt the baseline k-ω SST on test cases

6.3 Conclusions

In this chapter, we introduced an alternative, intrusive, formulation of X-MA consisting

in mixing different data-driven model corrections within the flow solver, i.e. in using data-

driven weighting functions to build a blended SBL-SpaRTA model. The intrusive approach

was systematically compared to the intrusive X-MA methodology of Chapter 5. Both non-

intrusive and intrusive X-MA were able to improve over the baseline k − ω SST, and were

sometimes locally sometimes better than the customized model prediction. The intrusive X-

MA could not achieve the same accuracy as the intrusive one because of transport of the local

corrections to downstream locations in the flow. However, the intrusive X-MA is cheaper than
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(a) U .

(b) τxy.

Figure 6.11: Horizontal velocity U and Reynolds shear stresses τxy at various x positions for
the WMH flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity
data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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the non-intrusive one, because it requires less RANS simulations (a single RANS is needed if the

uncertainty in the model parameters is neglected). Additionally, the intrusive X-MA satisfies the

governing equations, contrary to the non-intrusive one. As a consequence it provides smooth

solutions, while the external model aggregation can sometimes originate wiggles or stepcase

solutions.

In summary, both intrusive and non-intrusive X-MA methodologies yield satisfactory results

for the considered set of flows. The intrusive X-MA is probably more easily acceptable for the

community of RANS users that are not interested in uncertainty quantification.
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Chapter 7

Conclusions and perspectives

Contents
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7.1 Summary

This PhD thesis aims to advance the current state-of-the-art in RANS turbulence modeling

using machine learning. The first part of the thesis explores the Sparse Bayesian Learning

(SBL) algorithm as an effective tool for sparse Bayesian regression and cost-effective uncertainty

quantification. The application of this algorithm leads to the development of sparse stochastic

EARSM-type closures, referred to as SBL-SpaRTA models. A systematic training procedure

is detailed and applied to generate models for a subset of turbulent separated flows where the

conventional k − ω SST model has limitations in predicting recirculating bubble dimensions.

The resulting models are interpretable and Galilean frame invariant. In addition, the stochastic

nature of these models replaces traditional deterministic coefficients with Gaussian probability

distributions, with mean and variance inferred from pre-processed high-fidelity data. This

approach also allows uncertainty quantification for different QoI and can be used to perform

sensitivity analysis for each of the correction terms.

A drawback of the customized SBL-SpaRTA models is that although such models are very
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effective in improving the prediction of recirculation zones, they also modify upstream and

downstream regions where the conventional k − ω SST model typically performs well. Further-

more, the SBL-SpaRTA models show suboptimal performance when dealing with flow scenarios

that do not belong to the class of flows used for training, indicating a lack of generalization.

In response to these limitations, the SBL-SpaRTA framework was used to train models

on a variety of turbulent flow cases, including turbulent flat plates with varying pressure gra-

dients, turbulent separated flows, and jet flows. Using the same methodology described in

the initial contribution, this training phase led to the generation of sparse and interpretable

SBL-SpaRTA-type corrections. These corrections allowed us to gain a deeper understanding of

the shortcomings of the baseline k − ω SST in different flow categories, and to pinpoint areas

where improvements were necessary. In addition, we were able to evaluate the additional value

provided by our customized corrections.

Then, building on the Mixture-of-Experts concept, we proceeded to learn local weighting

functions for each model based on its performance in predicting velocity data. The weighting

functions reflect local regions of better performance for each model under consideration. How-

ever, weighting functions that rely solely on spatial coordinates cannot be generalized to another

flow. To overcome this limitation, we introduced a method to link model weights to local flow

physics. This was done by training Random Forest Regressors on the local model weights, using

locally computed physical flow features derived from literature and domain knowledge. The

weighting functions were then used to aggregate the predictions of different data-driven mod-

els according to a ”non-intrusive” procedure called X-MA. The X-MA prediction consistently

improved over the baseline model across the flow domain, both for training flow cases and

for unseen flow scenarios. However, the non-intrusive X-MA itself is not a turbulence model,

but rather an uncertainty quantification methodology applied as post-processing to a set of

competing models.

The last chapter focused on the development of an intrusive X-MA procedure, which corre-

sponds to the generation of a blended turbulence model by applying a weighted combination of

data-driven corrections to the baseline model based on a set of local flow features. The blended
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model is constructed as a spatial convex linear combination of the previously developed SBL-

SpaRTA models. To enable a comparative analysis between the intrusive and non-intrusive

methods, we introduce a systematic procedure for the optimal selection of hyperparameters

governing the model weights and the identification of the most appropriate QoI for their formu-

lation. In intrusive X-MA, although data-driven corrections are applied locally, their effects are

transported by convection and diffusion, causing delays in the application/removal of a given

correction in a given flow region. This does not happen in non-intrusive X-MA, where the

results of different component models are statically blended a posteriori. As a result, intrusive

X-MA is slightly less accurate than non-intrusive X-MA. As a counterpart, the intrusive X-MA

results are a solution of the governing equations, which is not true for the non-intrusive solution,

the latter corresponding more to an uncertainty quantification method than to a turbulence

model. In addition, intrusive X-MA provides smoother solutions and is less computationally

demanding, resulting in a single RANS simulation if the uncertainties in the model parameters

are neglected.

7.2 Perspectives

The present research work offers multiple perspectives for future studies.

The SBL-SpaRTA models are trained a priori. This requires full-field high-fidelity data

generated through the k-corrective frozen procedure. This in turn requires high-fidelity data of

velocity and Reynolds stress over the entire computational domain, which is not always possible.

As a follow-up to the present study, we plan to develop a CFD-in-the-loop training procedure

(in the spirit of [71]), accelerated by ML surrogates of the CFD solver response. Such procedure

is more costly, but i) it avoids feature mismatch problems between the training and prediction

settings; ii) suppresses the need for full-field data and sets the stage for learning models directly

from sparse (e.g. experimental) observations.

Another path for improvement is to go beyond Pope’s Reynolds stress representation. Pope’s

theory assumes that the nonlinear anisotropy depends entirely on the velocity gradient tensor.
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However, this assumption implies local turbulence equilibrium, which is not satisfied in situ-

ations characterized by rapid distortions within the flow. An avenue for progress could be to

extend the SBL-SpaRTA framework to a much more comprehensive representation, relying on

the sparsity-promoting SBL procedure to select the most relevant features.

Finally, the SBL-SpaRTA needs to be extended and assessed for 3D flows. Note that the

deterministic SpaRTA approach has already been successfully applied to 3D flows in [64].

The model aggregation techniques investigated in this study have shown promise in improv-

ing the generalizability of data-driven RANS models. However, the weighting functions rely on

a specific, heuristic choice of a set of local flow features, here extracted from previous work by

Ling and Templeton [52]. More efficient feature choices are possible, and future work should

focus on feature engineering, normalization, and selection.

In addition, the choice of training data was empirical and dictated by common sense. A

more systematic study of data selection that maximizes the amount of information injected

into the learning algorithm is worthy of future work. For example, here we trained component

SBL-SpaRTA models on arbitrarily chosen model ”classes”. However, such flows may contain

several concurrent physical processes (equilibrium boundary layers, wakes, pressure gradient

regions, separated flow regions, 3D regions...). The customized model then tends to correct

the baseline model ”on average” for all such processes. Using modern clustering techniques, the

different physical processes can be extracted from each flow dataset. Data corresponding to

the same cluster in different flows could be aggregated and used to train a ”process-specific”

data-driven correction. This should lead to more accurate results than the current simpler

approach, provided an appropriate clustering algorithm can be found.

Finally, the weighting functions used in this study were trained a priori and the input

features were based on the baseline model. Again, model-consistent training of the blending

functions would allow the updated feature to be taken into account and lead to more accurate

results.

As a main take-away message, we hope to have convinced the reader that training and

aggregating models tailored to specific tasks based on local flow features shows promise for
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consistently improving RANS predictions over a range of flows, while keeping the individual

data-driven contributions simple and interpretable. Further efforts in this direction may help

to move towards generalizable data-driven RANS models.
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Appendix A

Uncertainty quantification method

In this section, we describe the uncertainty quantification (UQ) method used in the equadra-

tures library [113]. Let f(θ) be an expensive scalar-valued quantity of interest, where θ =

(θ1, ..., θd)T is a d− dimensional vector of mutually independent random variables. Here, each

parameter θi belongs to a domain Θi ∈ R. We usually consider the input domain to be a

non-compact hypercube decomposed as a cartesian product of the form Θ = Θ1 × ... × Θd.

Let ρi(θi) be a probability density function over the domain Θi. In making the assumption

that θ is a vector of independent random variables, the joint density ρ of all the probability

distributions associated with θ is given by:

ρ(θ) =
d∏

i=1
ρi(θi) (A.1)

.

As we intend to approximate f via a finite number of polynomials ϕi , we restrict indices

i to lie in a finite multi-index set I. Whilst considerable flexibility in specifying these multi-

index sets exists, well-known I include tensor product index sets, total order index sets and

hyperbolic spaces, as illustrated in Figure A.1. Each of these index sets in d dimensions is

well-defined given a fixed k ∈ N, which indicates the maximum polynomial degree associated

to these sets:

• Tensor product index set I are characterized by:

max
k

ik ≤ k, (A.2)
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and have a cardinality equal to (k + 1)d.

• Total order index set I contain multi-indices satisfying:

d∑
j=1

ij ≤ k, (A.3)

with a total order index set I has cardinality

|I| =
(

k + d

k

)

.

• For a hyperbolic space index set:  d∑
j=1

iq
j

 1
q

≤ k, (A.4)

where q is a user-defined constant that can be varied from 0.2 to 1.0. When this parameter

is set to unity q = 1, the hyperbolic index space is equivalent to a total order index space.

For values less than unity higher-order interactions terms are eliminated.

Of particular importance is the growth and interaction of the higher order terms. In total

order and hyperbolic spaces, higher order interaction terms are significantly reduced. For many

physical systems, these type of sparser basis have found utility as lower order interactions are

often far more dominant.

Now, Assume that f is sufficiently smooth and continuous such that it can be approximated

by a global polynomial p:

f(θ) ≈ p(θ)

=
N∑

j=1
ξjϕj(θ),

= Pξ

(A.5)

defined as a weighted sum of N known basis polynomials, where

ϕj(θ) =
d∏

k=1
ϕ

(k)
jk (θk) , (j1, ..., jd) ∈ Nd, (A.6)
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Figure A.1: Multi-indices for d = 2 with a maximum univariate degree of 14 for: (a) tensor
order; (b): total order; (c): hyperbolic space.

and where [P]ij = ϕj(θi) for some discretized value θi ∈ Θi. Note that the polynomials ϕj

defined in this way are mutually orthogonal in L2 weighted by ρ. More specifically, we can

state that these composite univariate polynomials must satisfy:∫
×(k)

ϕg(θk)ϕh(θi)ρk(θk)dθk = δgh, (A.7)

where δgh is the Kronecker delta; subscripts g and h denote polynomial orders. he above

expression crystallizes the choice of the orthogonal polynomial family based on the choice of

the weight function ρ(θk) . For instance if ρ(θk) were the uniform distribution with Θ(k) ∈ [a, b]

then {ϕj(θk)} would correspond to Legendre polynomials; for Gaussian weights one would use

Hermite polynomials, and so on. Details about these weight-polynomial pairs can be found in

[120].

These coefficients are defined to be:

ξj =
∫

×
f(θ)ϕj(θ)ρ(θ)dθ (A.8)

which may be interpreted as the inner product of the function over the j − th polynomial

term. The overarching goal in this section will be the utilization of Gaussian quadrature for

approximating Equation A.8 via:

ξj ≈
M∑

i=1
f(χi)ϕj(χi)ωi (A.9)
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using quadrature points {χi}M
i=1 ∈ X , and a set of corresponding weights {ωi}M

i=1, defined via:

ωi = ω̃i

M∑
i=1

ω̃i

, where ω̃i = 1
N∑

j=1
ϕj(χi)

(A.10)

To solve Equation A.9 for all j’s, we assume access to input-output model evaluations of the

form {χi, fj}M
i=1.

In equadratures, coefficient computation strategies are passed as string input methods to

the Polynomial class and include ”least-squares”, ”compressed-sensing” and ”relevance-vector-

machine”. While least-squares solutions place a restriction on the polynomial evaluation matrix

ϕ as there must be at least as many rows as columns, we rather foxus on heuristics that permit

bypassing this restriction. Assuming that the solution is sparse, i.e. with many zeros or near-

zeros, it can be shown that heuristics based on L1-minimization (LASSO) can be used. In

practice, the use of L1-minimization methods can give slow performance. The main bottleneck

to the method is the determination of the unknown hyperparameter of the LASSO problem.

Depending on the scale of the problem, it can take a wide range of values. Even when the

output is normalized, several plausible values of the L1 hyperparameter still need to be tested

with trial-and-error. This in turn implies that multiple optimization problems need to be solved

for one regression task. Below we describe an alternative approach for underdetermined sparse

regression that obviates the need for hyperparameter searching with cross validation, namely

relevance vector machines (RVMs).

The RVM is first proposed by Tipping [105] and introduced as a Bayesian method for

compressed sensing in equadratures by implementing the Sparse Bayesian Learning algorithm.

This method considers the task of coefficient computation in a probabilistic framework. The

regression model is formulated using a generative process with Gaussian noise:

f(θ) ≈
N∑

j=1
ξjϕj(θ) + ϵ = y (A.11)

where ϵ ∼ N (0, σ2). The hierarchical priors are constructed and inference is formulated in the

same manner as in Section 4.2.
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A.0.1 Computation of statistics

The Statistics class in equadratures computes moments, Sobol’ indices and higher-order

statistical metrics from the calculated coefficients. This builds upon some core ideas arising

from polynomial chaos in the context of uncertainty quantification.

Moments

Computation of the mean and variance are readily straightforward when using pseudospec-

tral approximations [121]. We can write the mean as:

E(f(θ)) ≈ E(p(θ))

= E

[
n∑

i=1
ξiϕi(θ)

]

= E [ξ1ϕ1(θ)] + E

[
n∑

i=2
ξiϕi(θ)

]
︸ ︷︷ ︸

=0

= ξ1

(A.12)

In other words, the mean is simply given by the first coefficient of the expansion. Estimating

the variance is also straightforward:

V ar(f(x)) ≈ V ar(p(x))

= E

( n∑
i=1

ξiϕi(θ) − ξ1

)2


= E

( n∑
i=2

ξiϕi(θ)
)2


=
n∑

i=2
ξ2

i

(A.13)

It is this ability to rapidly estimate statistical moments in the absence of additional sampling

that makes these polynomial approximations so useful.

Global sensitivity analysis

Engineers are often interested in the answer to the question, “which of my model parameters

are the most important?”This is the one of the objectives of global sensitivity analysis. It seeks
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to apportion the uncertainty f according to the contribution of the inputs θ. Typically, in

this context importance is characterized by the conditional variance. One relatively well-known

strategy to quantify the importance of various inputs is through Sobol’ indices (see page 323

in [121]), which can be readily approximated using orthogonal polynomial expansions [122].

As before let I be the multi-index set associated with a chosen polynomial basis used for

approximating a function f . From Equation A.13, we can write the variance as:

V ar(f(x)) = σ2 =
∑

i∈I,i ̸=1
ξ2

i (A.14)

Now Sobol’ indices represent a fraction of the total variance that is attributed to each input

variable (the first order Sobol’ indices) or combinations thereof (higher order Sobol’ indices).

Let Is be the set of multi-indices that depend only on the subset of variables s = {i1, ..., is},

i.e.,

Is =
{
i ∈ Nd : l ∈ s ⇔ il ̸= 0

}
. (A.15)

The first order partial variances σ2
j are then obtained by summing up the square of the coeffi-

cients in Is:

σ2
j =

∑
i∈Ij

ξ2
i , Ij =

{
i ∈ Nd : ij > 0

}
(A.16)

and the higher order variances σ2
i1,...,is

can be written as:

σ2
s =

∑
i∈Is

, Is =
{
i ∈ Nd : l ∈ s ⇔ il > 0

}
(A.17)

The first and higher order Sobol’ indices are then given by:

Sj =
σ2

j

σ2 and Ss = σ2
s

σ2 (A.18)
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Appendix B

SBL-SpaRTA models for turbulent
separated flows

This section reports the different models discovered for separated flows. According to the

choice of the training flows and of the regularization hyperparameter lambda, various models

are obtained, and submitted to cross-validation (see Chapter 4).

In the following, we provide the mathematical expressions of the various models, for various

choices of λ.

• λ = 102:


M(1)

b∆ = [(−0.496 ± 0.0133) + (21.6 ± 0.366)I1 + (17.4 ± 0.374)I2]T(1)

+[(7.52 ± 0.0378) + (89 ± 1.39)I2]T(2)

+[(2.78 ± 0.0825)]T(3) ± 0.00354
M(1)

bR = [(0.989 ± 0.0153)]T(1) ± 0.0157

(B.1)


M(2)

b∆ = [(−0.540 ± 0.0138) + (22.8 ± 0.376)I1 + (17.2 ± 0.395)I2]T(1)

+[(7.18 ± 0.0370) + (−69.6 ± 1.38)I2]T(2)

+[(2.82 ± 0.0848)]T(3) ± 0.00357
M(2)

bR = [(0.863 ± 0.0274)]T(1) ± 0.0381

(B.2)


M(3)

b∆ = [(−0.209 ± 0.00837) + (0.938 ± 0.221)I1]T(1)

+[(8.25 ± 0.0473) + (−72.2 ± 1.45)I1 + (29.2 ± 1.07)I2]T(2)

+[(5.08 ± 0.0881)]T(3) ± 0.00113
M(3)

bR = [(0.872 ± 0.0322)]T(1) ± 0.0358

(B.3)
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• λ = 103:
M(1)

b∆ = [(−0.406 ± 0.0123) + (16.9 ± 0.339)I1 + (15.2 ± 0.341)I2]T(1)

+[(5.36 ± 0.0190)]T(2)

+[(2.52 ± 0.0841)]T(3) ± 0.00379
M(1)

bR = [(0.982 ± 0.0152)]T(1) ± 0.0157

(B.4)


M(2)

b∆ = [(−0.465 ± 0.0125) + (18.3 ± 0.345)I1 + (14.5 ± 0.348)I2]T(1)

+[(5.54 ± 0.0194)]T(2)

+[(2.57 ± 0.0848)]T(3) ± 0.00375
M(2)

bR = [(0.840 ± 0.0270)]T(1) ± 0.0381

(B.5)


M(3)

b∆ = [(−0.172 ± 0.00544)]T(1)

+[(5.39 ± 0.0253) + (18.1 ± 0.571)I2]T(2)

+[(4.91 ± 0.0911)]T(3) ± 0.00121
M(3)

bR = [(0.839 ± 0.0316)]T(1) ± 0.0358

(B.6)

• λ = 104: 
M(1)

b∆ = [(−0.195 ± 0.00498)]T(1)

+[(5.29 ± 0.0203)]T(2)

+[(1.59 ± 0.0715)]T(3) ± 0.00408
M(1)

bR = [(0.959 ± 0.0151)]T(1) ± 0.0157

(B.7)


M(2)

b∆ = [(−0.217 ± 0.00527) + (5.88 ± 0.0637)I1]T(1)

+[(5.47 ± 0.0208)]T(2)

+[(1.62 ± 0.0722)]T(3) ± 0.00404
M(2)

bR = [(0.766 ± 0.0258)]T(1) ± 0.0381

(B.8)


M(3)

b∆ = [(−0.166 ± 0.00552)]T(1)

+[(4.75 ± 0.0170)]T(2)

+[(4.00 ± 0.0841)]T(3) ± 0.00124
M(3)

bR = [(0.737 ± 0.0296)]T(1) ± 0.358

(B.9)

• λ = 105:M(1)
b∆ = [(5.09 ± 0.0206)]T(2) + ±0.0042

M(1)
bR = [(0.887 ± 0.0145)]T(1) ± 0.0157

(B.10)

M(2)
b∆ = [(5.26 ± 0.0211)]T(2) + ±0.00417

M(2)
bR = [(0.53 ± 0.0216)]T(1) ± 0.0383

(B.11)

M(3)
b∆ = [(4.62 ± 0.0173)]T(2) + [(0.845 ± 0.0399)]T(3) ± 0.00128

M(3)
bR = [(0.407 ± 0.0222)]T(1) ± 0.0361

(B.12)
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• λ = 2 × 105: M(1)
b∆ = ±0.00669

M(1)
bR = [(0.8433 ± 0.0142)]T(1) ± 0.0158

(B.13)

M(2)
b∆ = ±0.00669

M(2)
bR = [(0.382 ± 0.0184)]T(1) ± 0.0385

(B.14)

M(3)
b∆ = ±0.00214

M(3)
bR = [(0.197 ± 0.0156)]T(1) ± 0.0364

(B.15)
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B.1. SBL MODELS VS PHYSICS-BASED EARSM

B.1 SBL models vs physics-based EARSM

In this Appendix we assess the best machine-learned model M(3) against a physics-based

EARSM model. More precisely, we consider the BSL-EARSM of Menter et al. [23], available

through the OpenFoam software. This model is based on the EARSM formulation of Wallin

and Johansson (WJ) [21] for the stress-strain relationship (derived from Pope’s generalized

eddy viscosity formulation), supplemented by the transport equations for the k-ω SST model

to reduce its sensitivity to the free-stream conditions.

In Figures B.1, B.2 and B.3 we report selected numerical results for various QoI and flow

cases. BSL-EARSM improves some QoI such as the velocity or the skin friction over the LEVM,

but it is less accurate than the present models, and specifically M(3). Additionally, it also fails

in capturing the turbulent kinetic energy profiles accurately.
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B.1. SBL MODELS VS PHYSICS-BASED EARSM

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure B.1: Streamwise velocity profiles. Baseline k − ω SST ( ), LES ( ), M(1) ( ), M(2)

( ) and M(3) ( ) compared to BSL-EARSM ( ).
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B.1. SBL MODELS VS PHYSICS-BASED EARSM

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure B.2: Friction coefficient predictions. Baseline k − ω SST ( ), LES ( ), M(1) ( ),

M(2) ( ) and M(3) ( ) compared to BSL-EARSM ( ).
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B.1. SBL MODELS VS PHYSICS-BASED EARSM

(a) Converging-diverging channel.

(b) Curved Backward-Facing Step.

(c) Periodic Hills.

Figure B.3: Turbulent kinetic energy profiles. Baseline k − ω SST ( ), LES ( ), M(1) ( )

, M(2) ( ) and M(3) ( ) compared to BSL-EARSM ( ).
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B.1. SBL MODELS VS PHYSICS-BASED EARSM
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Appendix C

Model weights for non-intrusive X-MA
(Chapter 5)

In this Appendix, we present additional data to support the findings in Chapter 5. First,

we show in Section C.1 the optimal model weights for a set of training flow cases, including

separated flow cases and turbulent boundary layers under various adverse pressure gradients

(Figures C.1, C.2, C.3, C.4, C.5 and C.6). Then, in Section C.2, we present the optimal model

weights for two test flow cases (Figures C.7 and C.8).

C.1 Model weights used for training
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C.1. MODEL WEIGHTS USED FOR TRAINING

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.1: Colormaps of exact optimal
model weights for the CBFS flow (various
SBL-SpaRTA) and iso-contours of the longi-
tudinal velocity (baseline model).

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.2: Colormaps of exact optimal
model weights for the PH flow (various SBL-
SpaRTA) and iso-contours of the longitudinal
velocity (baseline model).
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C.1. MODEL WEIGHTS USED FOR TRAINING

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.3: Colormaps of exact optimal
model weights for the APG-TBL-b1n flow
(various SBL-SpaRTA) and iso-contours of
the longitudinal velocity (baseline model).

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.4: Colormaps of exact optimal
model weights for the APG-TBL-b2n flow
(various SBL-SpaRTA) and iso-contours of
the longitudinal velocity (baseline model).
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C.1. MODEL WEIGHTS USED FOR TRAINING

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.5: Colormaps of exact optimal
model weights for the APG-TBL-m18n flow
(various SBL-SpaRTA) and iso-contours of
the longitudinal velocity (baseline model).

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.6: Colormaps of exact optimal
model weights for the APG-TBL-m13n flow
(various SBL-SpaRTA) and iso-contours of
the longitudinal velocity (baseline model).
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C.2. MODEL WEIGHTS USED FOR TESTING

C.2 Model weights used for testing
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C.2. MODEL WEIGHTS USED FOR TESTING

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.7: Colormaps of exact optimal
model weights for the ASJ flow (various SBL-
SpaRTA) and iso-contours of the longitudinal
velocity (baseline model).

(a) wZPG

(b) wCHAN

(c) wAPG

(d) wANSJ

(e) wSEP

Figure C.8: Colormaps of exact optimal
model weights for the 2DWMH flow (various
SBL-SpaRTA) and iso-contours of the longi-
tudinal velocity (baseline model).
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Appendix D

Comparison of non-intrusive and intrusive
X-MA (Chapter 6)

D.1 Complementary training results for the turbulent sepa-

rated flows

In this section of the Appendix, we display and comment on plots showing various QoI

for two turbulent separated flows used in X-MA training, but not covered in Chapter 6. The

analysis provides further insight into the behavior of the models under study.

Let’s start with the Curved Backward-Facing Step (CBFS). Figure D.1 shows plots of the

friction coefficient Cf , the horizontal velocity U , and the Reynolds shear stress τxy along the x−-

axis. Regarding Cf , in Figure D.1a, the baseline k−ω SST model tends to overestimate the size

of the recirculation bubble. On the other hand, the M(SEP ) model designed for separated flows

accurately predicts the size and location of the separation bubble, but tends to overestimate

the skin friction values in the flat plate segments before and after reattachment. In contrast,

the M(ANSJ) model underestimates the skin friction values and significantly overpredicts the

size of the separation bubble. For this range of behavior, the non-intrusive prediction closely

matches the high-fidelity data along the entire wall. Upstream, the baseline model receives

the highest weight, which is consistent because this region features a flat plate with minimal

pressure gradient, and the baseline model is known to perform well under such conditions. As

the separation point approaches, the M(SEP ) model is activated and persists until reattachment
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D.1. COMPLEMENTARY TRAINING RESULTS FOR THE TURBULENT SEPARATED
FLOWS

and beyond. Finally, after reattachment, the baseline model regains dominance in the flat plate

segment. The M(ANSJ) model shows a significant decrease along the wall, except near the

domain inlet. This may be related to the onset of the boundary layer at the domain inlet.

The interpretation of the model weights is less straightforward here and a feature mismatch is

suspected.

The intrusive X-MA prediction follows a similar pattern, capturing the position and lo-

cation of the recirculation bubble reasonably well. However, well upstream of the separation

point, the skin friction values are slightly lower than the baseline model and the non-intrusive

X-MA prediction. This observation is reminiscent of the behavior of the BSL-EARSM model

in this region, as shown in Figure B.2b. We attribute this slight decrease in our case to the

initial triggering of M(ANSJ) near the entry boundary condition. While this is primarily a

boundary effect, this small contribution of M(ANSJ), albeit on a very short portion, is advected

downstream and slightly contributes to a slight decrease in the skin friction values. However,

this happens without significantly affecting the ability of the intrusive X-MA to capture the

recirculation bubble. Another notable effect is observed after reattachment, where the friction

coefficient prediction lags behind the high-fidelity data levels, in contrast to the relatively fast

response of the non-intrusive X-MA prediction. Again, we attribute this latency to the down-

stream transport of the M(SEP ) correction as it adjusts the flow behavior after reattachment.

In Figures D.1b and D.1c, we note a very good agreement of both intrusive and non-intrusive

X-MA predictions of horizontal velocity and Reynolds shear stress with high-fidelity data over

the entire physical domain.

Next, in Figure D.2, we examine the Periodic Hills (PH). Using the same analytical approach,

we again examine the friction coefficient, horizontal velocity, and Reynolds shear stress profiles.

With respect to skin friction, both the intrusive and non-intrusive X-MA predictions agree very

well with the trends shown by M(SEP ). This alignment is largely dictated by the values of the

model weights near the wall, which are dominated by MSEP , leading to accurate predictions of

separation and reattachment. A small observation concerns a region near x = 6 and x = 8.2,

where the intrusive X-MA prediction appears to be more resilient to the abrupt change in

172



D.1. COMPLEMENTARY TRAINING RESULTS FOR THE TURBULENT SEPARATED
FLOWS

(a) Cf .

(b) 3U + x.

(c) −180τxy + x.

Figure D.1: Horizontal velocity U and Reynolds shear stresses τxy at various x positions for the
CBFS flow case. Baseline k − ω SST ( ); M(ANSJ) ( ); M(SEP ) ( ); High-fidelity data
( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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D.1. COMPLEMENTARY TRAINING RESULTS FOR THE TURBULENT SEPARATED
FLOWS

model weights, showing a smoother response, while the non-intrusive X-MA prediction shows

a slight ”wiggling” perturbation. We believe that this difference is due to the intrusive X-

MA’s inherent advantage in handling abrupt changes in model weights, as the resulting SBL-

SpaRTA composite model is fed into the CFD solver, which is able to mitigate and smooth

these perturbations, resulting in a smoother response in the intrusive X-MA case. In terms

of horizontal velocity and Reynolds shear stress, both the non-intrusive and intrusive X-MA

predictions follow the trends observed in the high-fidelity data and M(SEP ). In the outer

region of the recirculation bubble, the predictions of both paradigms show a slight decrease in

performance compared to the M(SEP ) model. However, they remain significantly superior to

the baseline kω SST model for both QoIs.

Overall, these results on these training cases highlight the potential of the intrusive X-

MA approach to deliver improved results, despite the observed variation in performance across

different regions of the flow.

174



D.1. COMPLEMENTARY TRAINING RESULTS FOR THE TURBULENT SEPARATED
FLOWS

(a) Cf .

(b) 3U + x.

(c) −25τxy + x.

Figure D.2: Friction coefficient Cf , horizontal velocity U and Reynolds shear stresses τxy at
various x positions for the PH flow case. M(CHAN) ( ); M(ANSJ) ( ); M(SEP ) ( ); High-
fidelity data ( ); Non-intrusive X-MA ( ); Intrusive X-MA ( ).
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D.2. TRAINING RESULTS USING OPTIMAL wτxy

D.2 Training results using optimal wτxy

In this section of the Appendix, we provide additional details about the procedure used

to train both intrusive and non-intrusive X-MA. Specifically, in Table D.1 we present the

ImpQoI(%) when using τxy as the QoI for constructing the model weights used for aggregations.

As noted in the 6 chapter, the improvements observed with this choice are not as significant as

those achieved with U (wU). In particular, optimizing wτxy to approximate high-fidelity values

of Reynolds shear stresses does not necessarily yield a comparable level of improvement in ap-

proximating the high-fidelity values of U (UHF ) using wτxy for aggregation, as opposed to using

wU . In many cases, there is only a small improvement or even a deterioration in the aggregated

prediction of U . This again raises the question of conditioning the RANS equations.

case 2σ2
w(U)∗ QoI Non-intrusive X-MA Intrusive X-MA M(CHAN) M(ANSJ) M(SEP )

CHAN
1 U -1335.6 -2.8 0 -15654 -319.3

τxy 79.3 1.3 0 -90.6 -247

ANSJ
10−1 U 12.0 61.3 0 78.7 -260.7

τxy 83.3 47.7 0 78.7 -334.3

CD
10−1 U -3.5 66.6 0 -642.3 31.3

τxy 39.6 46.7 0 -198.3 31.1

CBFS
10−2 U 41.5 72.8 0 -393.2 93.6

τxy 82.0 79.4 0 -84.7 83.5

PH
10−1 U 29.8 69.5 0 -132.8 83.3

τxy 64.3 51.7 0 -70.4 27.6

Table D.1: Improvements in (%) wrt the baseline k-ω SST on training cases using the optimal
wτxy
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D.3. ERRORS IN THE REGRESSION OF MODEL WEIGHTS

D.3 Errors in the regression of model weights

For validation purposes, a key emphasis is placed on the regressor’s capacity to effectively

predict the model’s weights in both training and unseen test cases. In the following, we recall

that for both training and test, the model weights are obtained by providing the GPR with

local flow features calculated using the baseline k − ω SST model.

D.3.1 Training errors

In Figures D.3 and D.4, the difference between the optimal model’s weights (wHF ), calcu-

lated using high-fidelity values of horizontal velocity and the offline converged solution of the 3

considered SBL-SpaRTA, and the model weights predicted by the GPR (wGP R), is calculated

across the computational domain of 4 training cases. The GPR-predicted weights fields closely

match their training values, with some distortions stemming from the regressor’s architecture.
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D.3. ERRORS IN THE REGRESSION OF MODEL WEIGHTS

(a) ∆|wGP R − wHF | for CD (b) ∆|wGP R − wHF | for CBFS

Figure D.3: Regression errors of model weights using GPR on the CD and CBFS training cases.
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D.3. ERRORS IN THE REGRESSION OF MODEL WEIGHTS

(a) ∆|wGP R − wHF | for PH (b) ∆|wGP R − wHF | for ANSJ

Figure D.4: Regression errors of model weights using the GPR regressor on PH and ANSJ
training cases.
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D.3. ERRORS IN THE REGRESSION OF MODEL WEIGHTS

D.3.2 Test errors

We present the model weights predictions for two unseen flow cases used for testing: ASJ and

2DWMH. Figure D.5 reveals overall minimal discrepancies across the flow field for both cases.

However, for the ASJ case there is a noticeable difference in a section of the free shear layer

for both w(ANSJ) and w(CHAN). The observed difference might have its reason in a potential

mismatch in features within this specific area. This mismatch can be influenced by variations

in operating conditions between the test and training cases, even though they have a similar

geometry. Similarly, in the 2DWMH case, a noteworthy discrepancy is observed primarily in

a section of the boundary layer after reattachment for w(ANSJ) and w(SEP ). Let’s not forget

that the training dataset includes separated flow cases under moderate Reynolds numbers of

approximately Re ≃ 104. In contrast, the test case stands out with a notably higher Reynolds

number of Re = 80 × 106. This indicates the necessity for future research to delve more deeply

into the derivation of features as well as including a wider range of operating conditions during

the training.

180



D.3. ERRORS IN THE REGRESSION OF MODEL WEIGHTS

(a) ∆|wGP R − wHF | for ASJ (b) ∆|wGP R − wHF | for 2DWMH

Figure D.5: Regression errors of model weights using GPR on the ASJ and 2DWMH test cases.
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Appendix E

Uncertainty Quantification (UQ) budget

In this Appendix, we present the budget required for uncertainty quantification in all the

conducted studies, mainly comparing the Point Collocation Method and the sparse Polynomial

Chaos Expansion (PCE) in this analysis. By ”budget”, we refer to the number of RANS

simulations necessary to obtain the desired results, which in this case are either the uncertainty

bars or the Sobol indices. Across all the tables, the superiority of the sparse PCE over the

Point Collocation Method is evident.

Point Collocation method Sparse PCE
34 = 81 15

Table E.1: Sobol indices calculation budget per flow case.(Chapter 4)

Point Collocation method Sparse PCE
ZPG 32 = 9 4
CHAN 30 = 1 1
APG 31 = 3 3
ANSJ 31 = 3 3
SEP 32 = 9 4

Total samples per case 25 15

Table E.2: Non-intrusive X-MA UQ budget per flow case in the case of aggregating 5 models’
(ZPG, CHAN, APG, SEP and ANSJ) predictions.(Chapter 5)

183



Point Collocation method Sparse PCE
Non-intrusive X-MA 30 + 32 + 31 = 13 1 + 4 + 3 = 8

Intrusive X-MA 33 = 27 10

Table E.3: Non-intrusive and intrusive X-MA UQ budget (number of calculations needed) per
flow case in the case of aggregating 3 models: CHAN, SEP and ANSJ. (Chapter 6)

Point Collocation method Sparse PCE
Non-intrusive X-MA 32 + 30 + 31 + 32 + 31 = 25 4 + 1 + 3 + 4 + 3 = 15

Intrusive X-MA 36 = 729 28

Table E.4: Non-intrusive and intrusive X-MA UQ budget (number of calculations needed) per
flow case in the case of aggregating 5 models: ZPG, CHAN, APG, SEP and ANSJ.
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Soufiane CHERROUD
Sparse Bayesian Learning and Adaptative Aggregation of

Turbulence Models

L’objectif de cette thèse est l’amélioration des modèles de turbulence RANS existants par le bi-
ais de l’apprentissage automatique (ML). Elle se structure en trois volets principaux. Tout d’abord,
l’algorithme de l’apprentissage bayésien parcimonieux (SBL) est utilisé pour identifier des fermetures
parcimonieuses et stochastiques de type EARSM pour le modèle k −ω SST. Cela vise à traiter les la-
cunes de ce modèle dans la prédiction des écoulements turbulents séparés. Les modèles ainsi obtenus,
appelés SBL-SpaRTA, se caractérisent par leur interprétabilité, leur invariance galiléenne et leur ca-
pacité à améliorer les prédictions par rapport au modèle de base, tout en fournissant des intervalles
de confiance autour des prédictions. Cependant, leur généralisation à d’autres types d’écoulements
est limitée. Cette limitation constitue la motivation de la deuxième partie de la thèse, où le cadre
précédemment développé est utilisé pour créer des modèles SBL-SpaRTA personnalisés pour divers
cas d’écoulement types, notamment des plaques planes, des écoulements séparés et des jets. Ensuite,
un régresseur ML est entrâıné pour attribuer automatiquement des poids locaux aux prédictions de
chaque modèle, en fonction de leur vraisemblance et de la physique locale de l’écoulement. Bien
que cette approche ”non intrusive” se distingue par sa capacité de généralisation et son amélioration
significative par rapport au modèle de base, ses prédictions n’adhèrent pas nécessairement aux équa-
tions de conservation. Enfin, dans la troisième partie, une alternative est proposée en appliquant
une méthodologie intrusive pour le mélange des modèles. Les modèles SBL-SpaRTA personnalisés
sont ainsi intégrés et combinés automatiquement dans le code CFD. Les résultats sont comparés à
l’approche non intrusive, permettant ainsi d’évaluer les avantages et les limites de chaque méthode.
Mots clés : Modélisation de turbulence, Apprentissage automatique, Apprentissage bayésien parci-
monieux, Modèles EARSM, Écoulements séparés, Écoulements de jet, Couches limites, Analyse de
sensibilité, Mélange de modèles d’experts, Mélange de modèles.

This PhD thesis aims to enhance the current RANS turbulence models using Machine Learning (ML),
and is organized in three main parts. First, the Sparse Bayesian Learning (SBL) algorithm is used
to derive sparse and stochastic EARSM-type closures for the baseline k − ω SST model, to address
turbulent separated flows. The resulting models, denoted SBL-SpaRTA models, are interpretable,
Galilean frame-invariant, and enable improved velocity and friction coefficient predictions compared
to the baseline, while providing confidence intervals around the predictions. While effective on
their training flow category, these models show weak generalizability. This motivates the second
part of the thesis where the precedent framework is used to derive customized SBL-SpaRTA for
a set of typical flow cases comprising flat plates, separated flows and jets. Then, a ML regressor
is trained to automatically attribute local weights to the predictions of every model, reflecting its
likelihood and knowing the local underlying physics. While this ”non-intrusive” approach exhibits
good generalizability and substantial enhancements over the baseline model for both training and
unseen test cases, its final prediction does not necessarily adhere to the conservation equations.
Finally, in the third part, this issue is addressed by applying an intrusive methodology for model
aggregating, where the customized SBL-SpaRTA are automatically blended in the CFD code using
ML. This framework is compared to the non-intrusive paradigm using a systematic methodology,
thus enabling to evaluate their merits and drawbacks.
Keywords : Turbulence modeling, Machine Learning, Sparse Bayesian Learning, Explicit Algebraic
Reynolds Stress models, Separated flows, jet flows, boundary layers, Sensitivity analysis, Mixture-
of-Experts, Model Aggregation.
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