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Abstract

This thesis explores new deep learning approaches for modeling and analyz-
ing real-world 3D data. 3D data processing is helpful for numerous high-impact
applications, such as autonomous driving, territory management, industry fa-
cilities monitoring, forest inventory, and biomass measurement. However, the
high annotation and processing cost of large-scale 3D data makes it particu-
larly hard to use machine learning approaches. Furthermore, the difficulty of
visually analyzing 3D data worsens the lack of interpretability of deep learning
methods, limiting their adoption.

The computer vision community has proposed numerous methods to ana-
lyze 3D data for tasks such as shape classification, scene segmentation, and
scene decomposition. Instead of leveraging world knowledge through hand-
crafted descriptors, modern deep learning relies on large datasets for superior
performance. However, they typically require considerable annotations and
computations, and their decisions are often difficult to understand. In this
thesis, we propose contributions that address all these limitations.

The first contribution of this thesis is an efficient deep architecture for ana-
lyzing dynamic LiDAR scans in real-time. Our approach explicitly models the
acquisition geometry of rotating LiDAR sensors widely used for autonomous
driving. In contrast to methods that process data acquired through entire rota-
tions of the sensor, our model considers small angular rotations. Our proposed
architecture achieves state-of-the-art accuracy with processing time reduced
by five times and model size by fifty times compared to recent methods.

The second contribution is a deep learning method to summarize exten-
sive 3D shape collections with a small set of 3D template shapes. We learn
end-to-end a small number of 3D prototypical shapes that can be transformed
to reconstruct an input point cloud. Our approach uses compact and inter-
pretable representations in 3D space that can be viewed and manipulated,
facilitating the annotation of unstructured 3D shape collections. This allows
us to achieve state-of-the-art results for few-shot semantic segmentation.

The third contribution expands the above unsupervised analysis framework
to parse large real-world 3D scans into interpretable parts. We introduce a
probabilistic reconstruction model that decomposes an input 3D point cloud
into a small set of learned prototypical shapes. Our network can automat-
ically determine how many prototypes to use for each scene. Our visually
interpretable representations outperform state-of-the-art unsupervised parsing
methods in terms of decomposition accuracy. Furthermore, our model trains
without any manual annotations.

This thesis also introduces two open-access and large-scale annotated real-
world LiDAR datasets: HelixNet and the Earth Parser Dataset. HelixNet is
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the largest open-source dataset of rotating LiDAR scans with dense annota-
tions. It provides point-level sensor metadata crucial for precisely measuring
the latency of semantic segmentation methods for autonomous driving. The
Earth Parser Dataset consists of seven large aerial LiDAR scans, which can be
used to evaluate the performance of real-world 3D processing in diverse and
realistic environments.

We hope our work will encourage further research on efficient and inter-
pretable models for real-world 3D data processing.

Keywords: Deep learning, unsupervised learning, interpretable methods,
efficient machine learning, real-time processing.
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Résumé

Cette thèse explore de nouvelles approches d’apprentissage profond pour
l’analyse des données 3D du monde réel. Le traitement des données 3D est utile
pour de nombreuses applications telles que la conduite autonome, la gestion
du territoire, la surveillance des installations industrielles, l’inventaire forestier
et la mesure de biomasse. Cependant, l’annotation et l’analyse des données 3D
peuvent être exigeantes. En particulier, il est souvent difficile de respecter des
contraintes liées à l’utilisation des ressources de calcul ou d’annotations. La
difficulté d’interpréter et de comprendre le fonctionnement interne des modèles
d’apprentissage profond peut également limiter leur adoption.

Des efforts considérables ont été déployés pour concevoir des méthodes
d’analyse des données 3D, afin d’effectuer des tâches telles que la classification
de formes ou la segmentation et la décomposition de scènes. Les premières
analyses automatisées s’appuyaient sur des descripteurs créés à la main et in-
corporaient des connaissances préalables sur les acquisitions du monde réel. Les
techniques modernes d’apprentissage profond ont de meilleures performances,
mais, sont souvent coûteuses en calcul, dépendent de grands ensembles de
données annotées, et sont peu interprétables. Les contributions de cette thèse
répondent à ces limitations.

Notre première contribution est une architecture d’apprentissage profond
pour l’analyse efficace de séquences LiDAR en temps réel. Notre approche
prend en compte la géométrie d’acquisition des capteurs LiDAR rotatifs, que
de nombreuses pipelines de conduite autonome utilisent. Par rapport aux
travaux antérieurs, qui considèrent des rotations complètes des capteurs Li-
DAR individuellement, notre modèle traite l’acquisition par petits incréments.
L’archi-tecture que nous proposons à une performance comparable à celle des
meilleures méthodes, tout en réduisant le temps de traitement de plus de cinq
fois, et la taille du modèle de plus de cinquante fois.

Notre deuxième contribution est une méthode d’apprentissage profond per-
mettant de résumer de vastes collections de formes 3D à l’aide d’un petit
ensemble de formes 3D. Nous apprenons un faible nombre de formes prototyp-
iques 3D qui sont alignées et déformées pour reconstruire les nuages de points
d’entrée. Notre représentation compacte et interprétable des collections de
formes 3D permet d’obtenir des résultats à l’état de l’art de la segmentation
sémantique avec peu d’exemples annotés.

Notre troisième contribution développe l’analyse non supervisée pour la dé-
composition de scans 3D du monde réel en parties interprétables. Nous intro-
duisons un modèle de reconstruction probabiliste permettant de décomposer
un nuage de points 3D à l’aide d’un petit ensemble de formes prototypiques
apprises. Nous surpassons les méthodes non supervisées les plus récentes en
matière de précision de décomposition, tout en produisant des représentations
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visuellement interprétables. Nous offrons des avantages significatifs par rap-
port aux approches existantes car notre modèle ne nécessite pas d’annotations
lors de l’entrâınement.

Cette thèse présente également deux jeux de données annotés du monde
réel en accès libre, HelixNet et Earth Parser Dataset, acquis respectivement
avec des LiDAR terrestres et aériens. HelixNet est le plus grand jeu de
données LiDAR de conduite autonome avec des annotations denses, et four-
nit les métadonnées du capteur pour chaque point, cruciales pour mesurer
précisément la latence des méthodes de segmentation sémantique. Le Earth
Parser Dataset se compose de sept scènes LiDAR aériennes, qui peuvent être
utilisées pour évaluer les performances des techniques de traitement 3D dans
divers environnements.

Nous espérons que ces jeux de données, et ces méthodes fiables tenant compte
des spécificités des acquisitions dans le monde réel, encourageront la poursuite
de la recherche vers des modèles plus efficaces et plus interprétables.

Mots-clés : apprentissage profond, réseau de neurones, traitement en temps
réel, apprentissage non supervisé, méthodes interprétables, méthodes efficaces.
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abelle Simunic, Stéphanie Bonnel, and Alain Sombris, thank you for supporting
the research teams.

To my friends and family. I am very grateful for having you around me.
Thank you, Augustin, Jean-Charles, Joseph, and Laetitia, for being such won-
derful friends. You are always here when needed, and I really enjoy the time
we spend having dinner, walking in Paris, sharing thoughts, painting minis,
and discovering whiskies together. I hope it will last. I would also like to thank
my parents for everything they gave me. I was pretty annoying as a child as I
would always question everything and ask for well-built answers. Thank you
for teaching me how to use this gift wisely. I still have a lot to learn.

Dear Mom, dear Thibaut, Mathilde, and Quitterie, we went through hard
times, but our strength lies in staying close and constantly getting up. Thank
you for our ever-lasting love, which overflows outside the family.

Finally, Emma, I can’t thank you enough. The past ten years have been
enlightened by your presence next to me. Thank you for your unconditional
support and love.



Contents

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Publications and Research Activities . . . . . . . . . . . . . . . . 10

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 15

2.1 3D Data Representation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 3D Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 3D Point Cloud Datasets . . . . . . . . . . . . . . . . . . . . . . . 30

3 Online Segmentation of LiDAR Sequences 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 A Dataset for Online LiDAR Segmentation . . . . . . . . . . . . 39

3.4 Fast LiDAR Segmentation with Transformers . . . . . . . . . . . 43

3.5 Evaluating Online Semantic Segmentation . . . . . . . . . . . . . 50

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Exploring Shape Collections 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Modeling Shape Collections . . . . . . . . . . . . . . . . . . . . . 62

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Discovering Prototypes in Aerial Scans 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



CONTENTS xi

6 Conclusion 109
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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Chapter 1

Introduction

From autonomous driving to territory management, 3D data processing has

numerous impactful applications. This thesis presents real-time, unsupervised,

and interpretable methods for understanding 3D data. This chapter outlines

the goals, motivations, challenges, and contributions of our work.

1.1 Goals

Our work is related to 3D computer vision, and spans autonomous driving,

shape modeling, or building reconstruction; see Figure 1.1. In this thesis,

we aim to design real-time, unsupervised, and interpretable 3D perception

methods.

Real-time 3D data processing. Our first goal is to develop accurate meth-

ods for processing real-world 3D acquisitions in real time. In the case of em-

barked sensors, 3D data streams are particularly challenging to analyze due to

the sensor’s complicated geometry, the high acquisition rate, and the real-time

constraint. We aim at accelerating embarked data processing with models

that have only a fraction of current models’ parameters, while preserving high

performance.

Unsupervised 3D data processing. Our second goal is to gain insight

about large scenes or collections of 3D objects without manual annotations.

While it is now easier than ever to acquire large quantities of 3D data, they

remain particularly costly to annotate, visualize, and understand. To address

1
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(a) LiDAR processing on the KITTI-360 [186] dataset.

(b) Shapes from ABC [158], commonly used ones, and 3D shape decomposition [317].

(c) Lightweight reconstruction of polygonal surfaces from point clouds [236].

Figure 1.1: 3D Representations and Applications. 3D data can take var-
ious forms, from unordered point clouds to highly structured models. They
are used for a variety of tasks such as autonomous driving, graphic design and
building models.

this issue, we propose to design unsupervised methods for summarizing large

shape collections in a viewable format. Our methods aim to assist in un-

derstanding, manipulating, and annotating large-scale 3D data. We aim at

enabling one to easily perform downstream unsupervised tasks, such as clus-

tering or few-shot semantic segmentation.

Interpretable 3D data processing. Our third goal is to design approaches

whose underlying mechanisms are easily understandable. Contrary to deep

learning methods that rely on abstract representations, our goal is to learn

representations in input space that can be easily manipulated and annotated.

Such methods allow us to explore and better understand data, which may

prove pivotal to their adoption.

1.2 Motivations

Our work is motivated by the challenges and opportunities of real-world 3D

data processing. First, we recognize the potential of 3D processing tools to

improve actions and designs of public policies. Second, our objective is to con-
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tribute to the development of deep learning models that (i) meet the stringent

requirements of applications such as autonomous driving, (ii) contribute to re-

ducing the environmental impact of computer vision by reducing its computing

needs, and (iii) improve the acceptability and comprehension of learning-based

methods by increasing their interpretability.

1.2.1 Data-Driven Public Policies

Public policies can greatly benefit from a better understanding of the terri-

tory. Figure 1.2 gives examples of applications which we detail in the follow-

ing.

Risk prevention. 3D data can significantly help risk prevention. Detailed

3D maps are useful for identifying areas at risk of flooding [235, 337, 2], land-

slides [147, 110], or forest fires [217]. Carefully monitoring those areas is cru-

cial to develop early warning systems and emergency response strategies. 3D

models of buildings and infrastructure can assist in identifying areas at risk

of damage during disasters [379, 333]. Such models can also help estimate

the structural integrity of infrastructures with 3D data, and design evacuation

plans to save lives and minimize damage [220].

Agriculture. 3D data can be used to monitor crop growth and health, detect

pests and diseases, and optimize irrigation and fertilization [265, 21]. Real-

world scans can also help to monitor permanent grasslands, groves, and other

natural habitats to identify areas at risk of degradation or loss, and limit soil

artificialization [45]. 3D acquisitions can also support public services by guid-

ing and monitoring agricultural public policies, such as European’s Common

Agricultural Policy (CAP) [65].

Forestry. 3D data can be used for forest inventory, biomass measurement,

biodiversity estimation, habitat cartography, and plant health monitoring [348,

153]. LiDAR data can be used as a surrogate for various ground measurements

and can be collected in large areas with less effort than traditional field mea-

surements [108]. 2D aerial and satellite images acquire only part of the real

world, as the canopy blocks ground acquisitions. With aerial LiDAR sys-

tems acquiring point clouds from above the canopy while still capturing the



4 CHAPTER 1. INTRODUCTION

(a) Flood risks estimation.

Figure from [165].

(b) Landslide prevention.

Figure from [110].

(c) Agriculture monitoring.

Figure from [21].

(d) Forest monitoring.

Figure from [153].

(e) Heat island modelization.

Figure from [60].

(f) Photovoltaic potential map.

Figure from [40].

Figure 1.2: 3D Data Usage for Public Policies. Public action can benefit
from the acquisition and processing of 3D data in various ways, from risk
management to environmental monitoring.

ground, analyzing the multilevel data structure expands the possibilities for

forest monitoring.

Urban management. Urban management can also benefit from 3D mod-

eling [334]. Digital twins of cities [162], merging 2D and 3D acquisitions with

vectorized information on population and circulation for example, can help

evaluate urban expansion, provide economic intelligence tools [359, 372], cal-

culate and prevent the risks of heat islands [60, 225].
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Energy transition. With the growing need for low-carbon energy, 3D data

can also be used in renewable energy production sites. This includes calculat-

ing the photovoltaic potential of entire countries with aerial LiDAR acquisi-

tions [202, 40] and simulating the installation of wind turbines and barrages

with 3D acquisitions.

As 3D sensors become ubiquitous, 3D data is becoming increasingly relevant

to better understand human activities and their environmental impact. Such

applications to public policies are among the key motivations of this thesis,

especially for works presented in Chapters 3 and 5.

1.2.2 Efficient and Interpretable Data Processing

In recent years, data processing capacities have increased alongside the com-

putation and annotation requirements of deep learning methods, leading to a

growing interest in computer vision, see Figure 1.3. As a result, it is essential

to explore more efficient artificial intelligence methods. In this section, we

start by highlighting how current machine learning methods can fail to meet

application-specific constraints. We then discuss the concerning increase in

energy consumption of artificial intelligence systems. Finally, we explain how

public usage is influenced by models’ understanding and acceptability.

Autonomous driving. While self-driving car technology has advanced rapidly

in recent years [362, 114], fully autonomous navigation in real-world environ-

ments remains beyond the reach of current systems. 3D perception pipelines

in autonomous driving must have a low latency—14 meters are traveled in one

second at 50km/h speed—and process the data faster than it is acquired to

match real-time requirements. To meet this challenge, academic and industry

researchers must carefully select the sensors, processing methods, and comput-

ing devices used for real-time 3D perception. Recent advances in algorithms’

performance and efficiency [365] have made the use of sensors capturing a vehi-

cle’s surroundings at high frequency viable. Jointly, the development of more

efficient hardware has been widely explored. Field Programmable Gate Arrays

(FPGAs) helps to handle real-time requirements [261], and LiDAR1 sensors in-

1“Light Detection And Ranging” (LiDAR) is a remote sensing technology that measures
distance by illuminating a target with a laser light and measuring the time of flight of the
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(a) The performance of 3D perception algorithm is increasing steadily; here on the
widely used large-scale 3D dataset SemanticKITTI [23]. Figure from [63].

(b) The computational needs of Artificial Intelligence (AI) systems is increasing
exponentially. The models’ computational cost increases exponentially during the
pre-deep learning era, and recent architectures’ computational demand is growing
even faster. Figure from [105].

(c) The public interest and curiosity for AI and deep learning in particular has
reached new levels. We show here the online research interest for terms “Deep
learning” and “What is ai?” over the years [109]. Alongside the increasing interest
in deep learning, the exponential increase in users who want to know more about
AI shows the public’s concerns. The “research interest” reflects the proportion of searches for a

given keyword in a specific period, compared to the period where the usage rate of this keyword is the highest

(value of 100). Therefore, a value of 50 means that the keyword has been used half as often as its peak use.

Figure 1.3: Global Trends in AI’s Efficiency and Interest. The
widespread adoption of AI systems is driven by their increasingly remarkable
performance and the availability of massive computing resources. Mitigating
the adverse environmental effects of data processing techniques and ensuring
public acceptance is key for developing sustainable technologies.
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creasingly match the requirements of autonomous driving pipelines [184].

Environmental impact. However impressive, recent deep learning advances

have also led to a substantial increase in their computational costs [80, 286,

105]. The energy consumption of deep learning model training and inference

raises concerns about their environmental impact. Our aim is to design more

frugal AI methods, i.e. methods that use less processing power, to help mitigate

the adverse effects of energy consumption needs. Measuring the environmental

footprint of algorithms is not straightforward, and there is currently no con-

sensus on how to evaluate it. Therefore, users use a variety of proxies, such

as FLoating-point OPerations (FLOPs) per inference, or training or inference

time, to assess the efficiency of deep learning methods.

Moreover, working toward models that consume less and toward better

evaluations of the method’s resource needs is crucial for artificial intelligence

sustainability and acceptability [7, 201].

Acceptability. We believe that computer vision tools should be efficient,

but also interpretable and transparent to facilitate their adoption. Smaller and

more easily explainable models can increase their acceptability and adoption in

fields such as the medical domain [18], for example, and therefore their positive

impact. By working towards more interpretable computer vision models, we

hope to increase their transparency and make them accessible to a broader

range of users.

1.3 Challenges

This thesis focuses on three main challenges: first, the difficulty of handling

complex real-world 3D scenes with varying levels of clutter and occlusion;

second, the scarcity of annotated datasets; and third, the challenge of inter-

pretable deep learning.

1.3.1 Real-World Scene Complexity

Real-world scenes are often complex. They usually contain objects of mul-

tiple scales and varying geometries that can move during acquisition. Such

reflected light with a sensor.
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scenes are also often captured by sensors with limitations in their acquisition

capabilities, such as occlusions, limited resolutions, and measurement errors.

The amount of data to be processed, more than 106 points/seconds for rotat-

ing LiDARs for example, can also be challenging. These limitations complicate

data processing and analysis, which require sophisticated algorithms to extract

meaningful information. Facing this challenge is critical to understand the

complexity of 3D scenes for various applications such as robotics, autonomous

driving, and virtual reality. More generally, going beyond toy, synthetic, and

object-centric data is crucial to prove useful methods.

1.3.2 Lack of Annotated Datasets

Unlike 2D images, 3D data require complex tools to segment and label in-

dividual points or surfaces. This process can be labor-intensive and time-

consuming, especially for large datasets or complex scenes. Thus, the scarcity

of publicly available annotated 3D datasets limits the ability of researchers to

develop and evaluate algorithms. To design more robust evaluation schemes,

3D computer vision research needs more efficient and accurate 3D annotation

tools and more diverse annotated datasets for various applications, such as

object recognition, scene understanding, and robotics.

Moreover, even if unsupervised techniques can compensate for the lack of

annotated datasets, designing deep learning methods that do not rely on large

annotated datasets is often challenging.

1.3.3 Deep Learning Interpretability

Building deep interpretable models is a challenging task due to the complex-

ity of models that can have millions of parameters and the lack of transparency

in their decision-making process. This lack of interpretability can lead to mis-

trust in the model’s output and make identifying errors difficult. In fields such

as healthcare and finance, where decisions based on artificial intelligence are

critical, this lack of transparency can pose legal and ethical challenges. To ad-

dress these challenges, it is essential to develop new techniques that can provide

insight into the inner workings of models. While difficult to design, these tech-

niques include visualization tools and the creation of explainable frameworks

that provide transparency and accountability in the decision-making process.
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By developing more interpretable models, we can improve the reliability and

acceptability of deep learning models.

1.4 Contributions

In this thesis, we present two contributions to enhance the efficiency and

interpretability of real-world 3D data analysis.

Our first contribution is an architecture specifically designed to process

rotating LiDAR acquisitions in real time. Our model takes into account the

geometry of the sensor, and achieves state-of-the-art semantic segmentation

performance on LiDAR sequences, while reducing the latency by more than

five times and the number of parameters by fifty times compared to existing

approaches.

Our second contribution is an unsupervised and interpretable pipeline for

processing 3D point clouds. A key feature of our method is learning data

representations directly in 3D space. This allows us to visualize, manipulate,

and annotate the learned shapes, contributing to the interpretability of the

network’s reasoning. Our method unfolds into two main aspects. First, it

facilitates structuring, analyzing, and visualizing large shape collections. Sec-

ond, it can parse large real-world 3D scans composed of recurrent objects by

discovering meaningful and viewable prototypical shapes.

In addition to these two technical contributions, we also provide two open-

source datasets. Indeed, the lack of diversity in the datasets used to design

and test the current state-of-the-art methods, hampers the effectiveness of 3D

computer vision pipelines. For example, autonomous driving datasets are of-

ten acquired only in suburban areas [23, 186], and ignore dense urban areas,

historical centers, and natural areas. Increasing the diversity of datasets is

essential to ensure the generalization of algorithms to a broader range of en-

vironments. In this thesis, we introduce two open-source annotated datasets

acquired in the French territory:

• HelixNet [194], the largest open-source dataset of rotating LiDAR scans

with dense annotations, which provides point-level sensor metadata cru-

cial for precisely assessing real-time semantic segmentation methods for

autonomous driving,
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Figure 1.4: Thesis Timeline. From 2020 to 2023, we wrote four articles and
presented three of them in international conferences and workshops.

• and the Earth Parser Dataset [197], which consists of seven large aerial

LiDAR scans, and can be used to evaluate the performances of real-world

3D processing techniques in diverse environments including cities, crop

fields, a power plant, forests, and a marina.

Both datasets are part of wider programs deployed by the Institut national

de l’information géographique et forestière — French Mapping Agency (IGN),

aiming at describing the French territory for public policies: Stereopolis [248]

and LiDAR-HD [142]2, respectively. Our goal in annotating, curating, and

sharing parts of these datasets is to enable the computer vision community

to easily evaluate the robustness of 3D analysis methods through diverse and

challenging settings.

1.5 Publications and Research Activities

The manuscript presents three main projects, two of which have been pub-

lished in international conferences and workshops, while the third is under

review for an upcoming international computer vision conference. In addition,

an extension of our work from three-dimensional data to audio data has been

presented at an international Music Information Retrieval (MIR) conference

and an international computer vision conference workshop. Figure 1.4 shows

a timeline of the thesis.

The implementations accompanying the projects have been released in

2The French national program LiDAR-HD [142] deployed by the IGN aims at acquiring
and diffusing a 3D cartography of French territory. The dense point cloud will be acquired
by aerial LiDAR between 2020 and 2024, containing at least 20 points per square meter, or
1013 points in total.
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open-source3 and interactive visualizations of the results have been made avail-

able on dedicated project pages4. The proposed datasets have been published

on Zenodo and have already been downloaded over 150 times, with more than

7TB of downloaded data.

I also contributed to the research community by presenting my work to sev-

eral research teams (INRIA team Willow, ISAS-CEA, Centre Borelli, ENAC-

EPFL), groups (GDR ISIS, ISPRS Congress), public administrations (French

Ministry of Ecology, IGN, BKG), and private companies (SAMP.ai, Deezer

Research). Additionally, I have been actively involved in the research activi-

ties of the teams I was part of, including organizing research meetings regu-

larly in the LASTIG, teaching computer vision lessons at the Ecole des Ponts

ParisTech (15h) and the Ecole Nationale des Sciences Géographiques (25h),

and organizing a 3D deep learning for remote sensing tutorial at ISPRS 2022

Congress.

The contributions of the thesis can be summarized as follows:

Publications at International Conferences

� Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Online Semantic Segmenta-

tion of LiDAR Sequences: Dataset and Algorithm”, ECCV, 2022.

� Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Mathieu

Aubry, Loic Landrieu, “A Model You Can Hear: Audio Identification With

Playable Prototypes”, ISMIR, 2022.

� Romain Loiseau, Tom Monnier, Mathieu Aubry, Loic Landrieu, “Representing

Shape Collections with Alignment-Aware Linear Models”, 3DV, 2021.

Publications at International Workshops

� Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Helix4D: Online Semantic

Segmentation of LiDAR Sequences”, CVPR Transformer for Vision Workshop,

2022.

� Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Mathieu

Aubry, Loic Landrieu, “A Model You Can Hear: Audio Classification With

Playable Prototypes”, CVPR Sight and Sound Workshop, 2022.

3https://github.com/romainloiseau
4https://romainloiseau.fr
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� Romain Loiseau, Tom Monnier, Mathieu Aubry, Loic Landrieu, “Representing

Shape Collections with Alignment-Aware Linear Models”, ICCV Learning 3D

Representations for Shape and Appearance Workshop, 2021.

Publications Under Review

� Romain Loiseau, Elliot Vincent, Mathieu Aubry, Loic Landrieu, “Learnable

Earth Parser: Discovering 3D Prototypes in Aerial Scans”, arXiv, 2023.

Open-Source Implementations

� romainloiseau/EarthParserDataset 19 �

� romainloiseau/LearnableEarthParser 25 �

� romainloiseau/a-model-you-can-hear 33 �

� romainloiseau/HelixNet 39 �

� romainloiseau/Helix4D 47 �

� romainloiseau/deep-linear-shapes 28 �

Datasets

 Earth Parser Dataset: 7 aerial LiDAR scans, covering 7.7km2 with annotations

in diverse urban and natural environment.

 HelixNet: 10B annotated 3D points captured by a moving vehicle for au-

tonomous driving. 568 �

1.6 Thesis Outline

As shown in Figure 1.5, this thesis is structured as follows:

Chapter 2. Related Work. We present an overview of 3D data represen-

tations, tasks, methods, and datasets commonly used in the field.

Chapter 3. Online Segmentation of LiDAR Sequences. We propose

a novel 3D point cloud semantic segmentation approach that takes advan-

tage of the geometry of the LiDAR sensor to achieve real-time inference while

achieving state-of-the-art segmentation performances. We also introduce an

open-source annotated dataset to evaluate and design real-time segmentation

methods.



1.6. THESIS OUTLINE 13

↓

(a) Chapter 3. Semantic
segmentation of embarked
LiDAR acquisitions.

↓

(b) Chapter 4. Shape dis-
covery in large unordered
3D collections.

↓

(c) Chapter 5. Under-
standing real-world uncu-
rated aerial LiDAR scans.

Figure 1.5: Thesis Outline. This thesis discusses 3D data processing from
semantic segmentation to clustering and shape discovery.

Chapter 4. Exploring Shape Collections. We propose learning alignment-

aware viewable and deformable prototypes to gain insights into large unordered

collections of 3D shapes in an unsupervised setting. We demonstrate state-of-

the-art results for shape clustering and few-shot semantic segmentation.

Chapter 5. Discovering Prototypes in Aerial Scans. We extend the

3D prototype learning framework introduced in Chapter 4 to large-scale real-

world 3D aerial acquisitions. We also introduce an open-source aerial LiDAR

dataset acquired in various environments, such as forests, urban areas, and

marinas.

Chapter 6. Conclusion. We summarize the contributions of our work. We

also propose future research directions toward efficient and interpretable real-

world 3D data processing.





Chapter 2

Related Work

Recent advances in 3D data collection and processing have benefited many

applications, such as self-driving cars, territory management, and medical data

analysis. This chapter presents some of the key concepts and challenges of 3D

data processing. We discuss the different types of 3D data representations,

present some of the main tasks and approaches to solve them, and describe

some of the most predominant 3D datasets.

2.1 3D Data Representation

In this section, we discuss different ways to represent 3D data, from raw

data representations to handcrafted and learned descriptors.

2.1.1 Geometric Representation

3D data can be encoded in many different manners, such as point clouds,

meshes, voxels-grids, implicit functions, and primitives-based representations.

Figure 2.1 gives examples of different types of representations.

Point clouds. 3D point clouds are a popular representation of 3D objects

or scenes and consist of a set of points in 3D space. Each point is associated

with its 3D coordinates and may also include attributes such as color, nor-

mal, and intensity. Point clouds are typically obtained with laser sensors or

photogrammetry. Here, we present the most common ways to produce point

clouds.

15
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(a) Point clouds.

Figure from [194].

(b) Voxels.

Figure from [298].

(c) Octrees.

Figure from [264].

(d) Implicit functions.

Figure from [250].

(e) Meshs.

Figure from [5].

(f) CAD models.

Figure from [158].

(g) Structured models. Figure from [48].

Figure 2.1: 3D Geometric Representations. 3D data can be represented
in various ways.

• LiDAR sensors acquire point clouds directly through light Time-of-

Flight (ToF) measurement. They acquire precise point clouds, but due

to their relatively high price point, their usage was reserved for long time

for specific limited applications [178]. As the size and cost of LiDARs

decrease and their reliability increases, the popularity of these sensors

grows steadily. It is now possible to scan entire countries using airborne

LiDARs [238, 142], smartphone manufacturers are equipping their smart-

phones with LiDAR sensors [8], and automotive suppliers are designing

LiDAR sensors dedicated to autonomous driving [323].

• Depth cameras acquire point clouds by emitting and analyzing infrared

light. They use structured light emitters and 1D or 2D arrays of photode-

tectors to obtain a depth image [136]. Their high spatial and temporal

resolution makes them suitable for 3D data acquisitions [169]. However,

because they use infrared light emitters, they are specifically suited for
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indoor rather than outdoor applications, in which the sunlight prevents

their use.

• Sets of images can also be used to generate point clouds [243]. Such

methods often rely on matching pixels from images whose camera posi-

tions and orientations are known or estimated to deduce the correspond-

ing 3D point position. Keypoint matching can be achieved by comparing

handcrafted image descriptors such as Scale-Invariant Feature Transform

(SIFT) [199] or Speeded-Up Robust Features (SURF) [22], or learned im-

age features [312, 226, 203, 81, 204, 290]. The main advantage of these

methods is that they rely on simple camera acquisitions without the need

for specialized equipment. However, the resulting point cloud may lack

precision and detail [34]. Reconstructing specular materials can also re-

sult in inaccurate 3D reconstructions due to light reflection [143, 271, 3,

278].

The use of 3D point clouds has shown promising results for 3D scene and

object analysis. During the past decade, point clouds have been proven to

be particularly suited to deep learning-based approaches. Neural networks

have been designed to process unordered point sets [257, 256], to leverage

graph neural networks to model local relationships [335], and to perform new

learning-based operations to improve point cloud processing [183, 311].

However, a notable limitation is the absence of structured connectivity in-

formation within point clouds, which significantly hampers the computational

efficiency of local feature extraction for large point clouds. Additionally, point

clouds inherently lack the ability to represent surfaces accurately, as achiev-

ing infinite resolution becomes computationally infeasible. They also fail to

provide valuable insights into the interior and exterior characteristics of ob-

jects. Moreover, they can have variable local densities and are incompatible

with physical simulation. Despite these formidable obstacles, researchers have

demonstrated the utility of point clouds in various computer vision tasks.

Meshes. Meshes are commonly used to represent a 3D surface. They consist

of connected polygons, typically triangles. They are suitable for 3D rendering,

as they are easy to manipulate for relighting and simulation, and compati-

ble with modern graphics pipelines. 3D meshes can be generated from point
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clouds using algorithms such as Delaunay triangulation [75, 86, 215], from

multiple views [133, 321], or from implicit functions using the marching cubes

algorithm [198]. Vertices can be associated with information such as normals

or colors. Textures can also be applied using UV maps, which provide a two-

dimensional representation of the 3D surface. Meshes are well suited for many

applications, from industrial design to large-scale modeling, as they can satisfy

properties such as water-tightness or closeness under certain constraints.

However, creating a high-quality mesh from a noisy point cloud can be chal-

lenging [228, 291, 212]. Recent work has explored learning-based approaches

to address this problem by directly regressing meshes from point clouds [115,

353] or images [107]. Mesh-based representations can also be memory intensive

to manipulate, especially for high-resolution models. They can also suffer from

topological deficiencies such as non-manifold edges or vertices [84].

Voxels. Akin to 2D pixel representations, 3D voxels are a widely used 3D

representation in which the 3D space is partitioned into a regular grid of small

cubes. Each voxel usually stores an occupancy value. Voxels can also be

associated with other properties, such as color or semantic labels. Because

convolutions are naturally defined for voxels, several computer vision tasks

use this representation.

However, the cubic complexity of this representation makes the process-

ing computationally expensive. This limits the resolution of the processed

3D shape and makes voxel representations unsuitable for large-scale scenes.

Indeed, at high-resolution, scanned surfaces represent a zero-measure set of

occupied voxels. To address this problem, more efficient data structures have

been proposed, such as octrees [218]. Octrees provide a flexible and hierar-

chical representation of the 3D space by dividing it into octants, where each

octant’s resolution adapts to the data’s local density. Using octrees leads to

a more efficient representation of 3D data and reduces the computational cost

of 3D voxel-based methods, making them more practical for real-world appli-

cations [264, 358, 138].

Implicit functions. Implicit functions have emerged as a powerful alterna-

tive to voxel-based representations for 3D shape modeling and reconstruction.

They provide a continuous representation of a shape by mapping the 3D space
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to an occupancy value or a distance—possibly signed—to the closest shape

boundary. Such continuous functions allow for infinite and adaptative resolu-

tion, and can be approximated with neural networks. They can be used for

3D shape reconstruction and completion from camera observations [250, 56,

222, 103] and from a variety of inputs, such as low and high-resolution voxels,

sparse and dense point clouds, and complete or incomplete shapes [58, 55].

Subsequently, they have been used to capture local 3D geometric details [54],

animate people in clothing based on body pose [314], and generalize to shapes

with unseen 3D transformations [259].

However, their adoption has been limited by their high computational cost,

particularly for high-resolution inputs. Moreover, they are often used for 3D

generation or rendering, and their applications to 3D analysis are often limited.

Structured models. Simple parametric shapes can be combined to repre-

sent complex 3D objects. They serve as building blocks for more complex

3D models, providing high-level information on the underlying shapes. Using

parametric shapes to represent objects or scenes can provide high-level struc-

tural information to represent digitized 3D data. Extracting a more compact

shape representation with structured models can be used for shape analysis,

segmentation, and synthesis [251, 253, 236]. Moreover, primitive-based rep-

resentations can facilitate efficient and scalable 3D generative modeling [181,

176]. However, those models are mostly useful for getting shape representa-

tions, and can have difficulties modeling details at varying scales.

The most common structured models for modeling shapes with varying

levels of detail are Computer-Aided Design (CAD) models. CADs typically

comprise both geometric shapes and parameterized constraints that support

the design process. CAD models has significantly impacted the design process

of manufactured objects by making them accessible.

This thesis primarily concentrates on real-world LiDAR acquisitions, thus

placing a major emphasis on point clouds. However, depending on the use

cases, we explored a range of 3D geometric representations in the development

of our methods. Although the geometry of objects and scenes carries informa-

tive cues, achieving automated analysis requires discriminative descriptors.
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2.1.2 Classical Descriptors

Understanding 3D data structures begins with characterizing shapes. To

achieve accurate results in subsequent tasks, shape descriptors must be dis-

criminative, robust, and affordable to compute. 3D descriptors can be based

on local, spectral, or scene-related features. Here, we focus on local descrip-

tors that provide comprehensive information about each point, voxel, or region

within a 3D scene or object. It is worth noting that the same principles apply

to global descriptors, which describe complete 3D objects.

Local descriptors. Various features can be derived from the local geometry

of a point cloud or a mesh.

• Planarity, linearity, and verticality can be computed from the eigen-

values of a point neighborhood covariance matrix [254, 342, 117]. These

features can provide more detailed information about the local geometry

of a point cloud by varying [31] or optimizing [76] the neighboring scales.

• Surface normals’ directions and orientations convey essential informa-

tion about the underlying object or scene. Mesh-based representations

provide local surface normal directions for each face, but their orientation

may suffer from uncertainties regarding the interior/exterior boundaries

of the scene. Alternatively, surface normals can be derived by comput-

ing the gradient of an implicit function on the surface of an object [318].

The normal direction of 3D points can be estimated by performing Prin-

cipal Component Analysis (PCA) on the relative position of its neigh-

bors. However, estimating point-cloud normals remains challenging due

to noise or ambiguity in the orientation [160, 282, 223].

• Histogram-based descriptors have also proven to be useful for describ-

ing 3D shapes. For point clouds with normals, Spin image [150, 151]

computes a 2D histogram of local point density in a polar coordinate

system tangent to the object’s surface. First designed for images, the

shape context descriptor [24] was extended to meshes with histograms

in geodesic polar coordinates [159]. MeshHOG [363] computes a his-

togram of gradients of a mesh texture. 3-dimensional Histograms of

Oriented Gradients (HOG) have also been used in various computer vi-
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sion tasks [281, 72, 170, 1]. Additionally, non-spherical neighborhoods

can be used to encode features such as height distributions [229].

Spectral descriptors. The first spectral descriptors used the eigenvalues

and eigenfunctions of the Laplace-Beltrami operator on a surface. Being robust

to near-isometric transformations of the input, they are suitable for describing

non-rigid shapes. The Global Point Signature (GPS) [275] proposes to describe

a point by evaluating the set of normalized eigenfunctions sorted according to

their eigenvalues. As small modifications of the shape can change the order

of eigenfunctions, the GPS can only be used to compare two shapes that are

identical with respect to an isometric deformation. The Heat Kernel Signature

(HKS) [302] describes shapes with heat diffusion equations, by measuring the

temperature of a point after heating only this point for a given time. HKS

has been extended to compute scale-invariant features to better represent non-

rigid 3D models [41] and to other filter families such as the Schrödinger wave

equation with the Wave Kernel Signature (WKS) [14].

Spectral descriptors have proven to be effective for shape matching with

functional maps [242]. Functional maps optimize correspondences between the

eigenfunctions of the Laplace-Beltrami operator for two shapes and ensure that

the maps preserve descriptors across deformed shapes.

Other descriptors describe a 3D location with respect to an entire scene.

For example, using the elevation, or position with respect to the road, can give

great insight for understanding outdoor scenes. These handcrafted features

are often specific to the application for which they are designed.

Given those 3D descriptors, deciding the one to use depends on the input

data and the specific application [338, 233, 123, 124].

2.1.3 Deep Learning Features

Neural networks successfully tackled numerous challenges in 3D shape anal-

ysis. Deep learning features have been successfully used for tasks as diverse

as classification [207], segmentation [311], shape generation [115, 310], match-

ing [244], denoising [132] and compression [138]. Deep learning pipelines often

directly output the final prediction from a raw input, making the notion of
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descriptor poorly defined. However, deep learning-based methods typically

comprise an encoder and a decoder. The encoder is often a set of opera-

tions designed to extract low-resolution high-level information about objects

or scenes, while the decoder produces the final output. Here and in Figure 2.2,

we present the deep learning techniques that are most relevant to this thesis.

3D convolutions. Convolutional Neural Networks (CNNs) have revolution-

ized 2D image analysis [161], but their application to 3D data has first been

limited by their computational complexity.

• Discrete convolutions. The direct approach of using 3D convolutions

on voxelized representations of real-world data is inefficient, due to the

large amount of their empty voxels leading to the computation of useless

operations. However, implementation efforts to perform convolutions on

sparse data structures such as MinkowskiNet [59], SparseConvNet [112],

and SPVConv [307] have emerged as promising solutions to this problem,

enabling efficient discrete convolution.

• Continuous convolutions. KPConv [311] and ConvPoint [37] lever-

age local information while avoiding suffering from discrete convolution

computational drawbacks. These continuous formulations of convolu-

tions operate on point clouds without intermediate representation. They

learn convolution weights along with the position of kernel points regard-

ing center points, thus producing a continuous generalization of convo-

lutions that does not rely on grids, see Figure 2.2b.

• Convolutions on non-Euclidian spaces. Convolutions applied di-

rectly on the surface of an object have the advantage of being invariant

to isometric deformations, deformations that preserve geodesic distances

on the shape. This is particularly useful when analyzing shapes that can

be deformed, such as human bodies. Geodesic-CNNs (GCNNs) general-

ize CNNs on non-Euclidean manifolds. GCNNs create local patches with

polar coordinates defined along the surface geodesics, see Figure 2.2c.

Then, local filters are applied on these patches to extract discriminant

features [213]. However, the resulting features are invariant with respect

to the orientation of the patch, leading to losing directional informa-

tion. Multi-Directional-GCNNs [255] improves on this work by keeping
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(a) Discrete convolutions. Figure from [298].

(b) Continuous convolutions. Figure from [311].

(c) Convolutions on non-Euclidian spaces. Figure from [213].

(d) Pooling-based features. Figure from [125].

(e) Graph-based networks. Figure from [125].

Figure 2.2: 3D Deep Learning Paradigms. Choosing among the deep
learning-based 3D processing methods depends on each specific input data
and application.
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patches directional information until the last layer of the network, lead-

ing to more discriminative and robust features. Anisotropic-CNNs (AC-

NNs) [35] uses anisotropic heat kernels, see Section 2.1.2, to extract local

mesh features for shape correspondences. While GCNN and ACNN use

fixed patches with polar coordinates or heat kernels, mixture model net-

works [232] generalize convolutions on manifolds and graphs by directly

learning the coordinate system of extracted patches. MeshCNN [130]

jointly uses convolutions on mesh edges while learning which edges to

collapse for classification and segmentation.

Pooling-based features. PointNet [257] proposes to learn 3D representa-

tions by applying pointwise Multi-Layer Perceptrons (MLPs) and pooling op-

erations on unordered point sets. The key idea is that unordered sets require

operations invariant to the orders of points. They applied point-level linear

layers and object-level pooling to learn 3D representation. However, they do

not generalize to complex scenes because they do not exploit local 3D struc-

tures. Hierarchical representations [256] addressed this issue by learning and

aggregating features on different scales. DeepSets [364] generalize neural net-

works on sets for a variety of modalities, including point clouds, with the same

permutation-invariant principle.

Graph convolutions. Graph neural networks have also been used to ana-

lyze 3D point clouds. Message passing over graph edges [106] is well suited for

3D data and has been widely used on meshes [328, 224] and point clouds [292,

258, 335]. Graph neural networks applied to superpoint representations [249,

117, 97, 188, 167] also enable fast and accurate semantic segmentation on

large-scale 3D point clouds [168].

More recently, attention mechanisms [326] have been leveraged for point

clouds with 3D transformer networks, and achieved state-of-the-art perfor-

mances for various tasks [227, 373, 122, 164, 260]. Indeed, those transformer

architectures are a way to learn to generate dynamic graphs.

Capsule networks. Capsule networks [134] group neurons into “capsules”

that represent objects or parts of objects. They were first developed to detect

and link parts of objects in images [276]. The 3D capsule approach [375]
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explicitly tries to learn shape representations invariant to 3D transformations

and can be applied to many tasks. 3D capsules have been extended to learn

spatial relationships [341], to be equivariant to rotations [376], and to model

non-rigid 3D shapes [377].

Deep functional maps. Deep functional maps learn descriptors for per-

forming shape matching with functional map [242]. In particular, FMNet [189]

trains a siamese network from ground truth dense correspondences. Other ap-

proaches train deep functional maps to learn descriptors without supervision

by minimizing the distortion of geodesic distances [129] or heat kernels [15].

Deep functional maps have also been used for semantic segmentation [356, 12]

and partial shape matching [287].

2.2 3D Tasks

In this section, we discuss the 3D computer vision tasks that are most per-

tinent for our research, see Figure 2.3. We give an overview of classification,

clustering, semantic segmentation, and primitive fitting. We focus mainly on

deep learning approaches, which are the most relevant to our work.

2.2.1 Shape Classification

The goal of shape classification is to assign a class to 3D objects regardless

of their pose or deformation, see Figure 2.3a. Early attempts at point cloud

classification demonstrated promising but limited performance [46]. They re-

lied on extracting handcrafted features from 3D neighborhoods given as in-

put to discriminative learning algorithms [180, 366]. However, a new set of

methods based on deep learning emerged with the growing computing and ac-

quisitions’ capabilities. At first, the use of discrete 3D CNNs was promising

but computationally heavy [214, 99, 128]. PointNet [257] and its hierarchi-

cal version PointNet++ [256] showed significant improvements by operating

directly on point clouds by using permutation invariant pooling operators.

Point convolutions [183, 13, 311], graph convolutions [335], discrete convolu-

tions on voxels [298, 264, 59, 112], and self-organizing network [173] have also

been explored for shape classification. More recently, transformer networks



26 CHAPTER 2. RELATED WORK

horse cat horse

(a) Shape classification.

Figure from [256].

(b) Shape clustering.

Figure from [367].

(c) Semantic segmentation. Figure from [274].

(d) Object parsing. Figure from [289].

Figure 2.3: 3D Tasks. Our work is related to several computer vision tasks
aiming at understanding 3D data.

have emerged as the new paradigm for shape classification [373, 122]. Finally,

shape classification is often used on synthetic shape collections as a pretext

task to demonstrate the robustness of developed methods.

2.2.2 Shape Clustering

Clustering shapes amounts at organizing 3D models into semantically mean-

ingful groups. It is challenging because of the potential objects’ deformation

and misalignment. Methods based on handcrafted descriptors [200, 366] or

auto-encoders [313, 269] trained using a reconstruction loss [353, 237, 382]

often failed to effectively cluster 3D models.
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Self-supervised features. Recently, to answer the difficulty of annotating

3D data, self-supervised learning techniques have shown promising results for

pre-training models. Some methods learn features through reconstruction [353,

131, 279]. Other works learn 3D features using contrastive learning across dif-

ferent representations [370]. Inspired by text and image masked autoencoders,

some recent methods pre-train point-cloud-based architectures via occlusion

completion [247, 351, 331, 361, 352].

Self-supervised methods have shown promising success in shape clustering

by using descriptors invariant to transformations [367, 277]. To better process

unaligned shapes collections, rotation-invariant representations have also been

explored [357, 52, 371, 179].

2.2.3 Semantic Segmentation

While shape classification and clustering expect to predict a single class for

a shape, 3D semantic segmentation consists in predicting dense labels for an

object or scene. It is a crucial part of understanding one’s surroundings, and

hence has many applications in robotics, autonomous driving, and augmented

reality. Pre-deep learning methods used discriminative algorithms to map

handcrafted point descriptors to class predictions [339] with Gaussian Mixture

Models [166], Support Vector Machines [285] or Random Forests [51]. Deep

learning methods have been the dominant paradigm in the past decade. U-

Net-style [270] neural networks allow one to predict dense labels with any

feature extraction framework. First designed for medical images [270] and

volumes [61], the decoder combines both upsampled decoded features and high-

resolution features from intermediate encoder layers, see Figure 2.4.

Using this architecture on 3D point clouds, PointNet++ [256] pioneered

deep learning indoor semantic segmentation on ScanNet [73]. For large-scale

scenes, 2D projections of 3D can be segmented with 2D convolutional neural

networks and reprojected back to the point cloud [38]. Moreover, local 2D

representations of 3D point clouds could benefit from local geometry [300,

309]. Convolutions in their continuous [311] or sparse [112, 59] formulation

have also been shown to be robust and versatile building blocks for semantic

segmentation pipelines. Landrieu et al . [168] pools points into geometrically

homogeneous superpoints to efficiently process large-scale scenes. Despite the
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Figure 2.4: U-Net Architecture. U-Net-style networks extract features
of decreasing spatial resolution with a sequence of convolutional and down-
sampling layers. The resulting abstract low-resolution feature representation
is then upsampled with unpooling operations, while simultaneously preserving
high-resolution details by associating the encoded features at each intermediate
resolution. Figure from [61].

computational complexity of attention mechanisms, transformers have recently

shown great performances [373, 122, 354]. Additionally, while some methods

rely solely on point clouds, DeepViewAgg [267] merges 2D and 3D features

with an attention mechanism for point clouds’ semantic segmentation.

Although published in a short period of time, the literature was quickly

adapted for specific applications. For example, semantic segmentation on Li-

DAR datasets for autonomous driving has been addressed using range im-

ages [185, 304, 69] and Bird-Eye-View (BEV) projections [368]. Sparse con-

volutions [113, 59] have also facilitated working with discrete convolutions in

Cartesian [307, 57] or cylindrical [381, 135] coordinates.

Few-shot segmentation. Methods that can perform segmentation while

being trained on very few annotated samples have gained attention due to

their potential to reduce annotation costs and handle new classes. However, the

task is challenging and requires leveraging prior knowledge and incorporating

effective transfer learning strategies. Gadelha et al . [95] extract shape regions

by learning convex decompositions of 3D shapes. Groueix et al . [116] and

Wang et al . [332] propagate annotations through shape matching by learning

to deform 3D objects. More recent approaches use learned 3D features to



2.2. 3D TASKS 29

match 3D models in larger scenes [374]. Furthermore, few-shot 3D semantic

segmentation may benefit significantly from the advancing abilities of self-

supervised networks to learn meaningful 3D features.

2.2.4 Primitive Based Analysis

Primitive-based point cloud decomposition. Modeling shapes as a set

of primitives such as blocks [268], cylinders [28] or superquadrics [20] has a rich

history in vision and graphics [152]. Classical applications include reverse engi-

neering [25], shape completion [283, 305] and editing [96]. A variety of methods

have been developed to find primitives in unstructured 3D scenes, including

seed growing techniques [171, 172], genetic algorithms [53], RANSAC [89]-

based technique [111, 284, 182, 262], and probabilistic methods [190, 346].

Primitive discovery with deep learning. Deep learning has recently be-

come the dominant paradigm for primitive discovery. For such task, supervised

methods [384, 175] are limited by the availability of annotated datasets. Fol-

lowing the seminal work of Tulsiani et al . [317], some unsupervised approaches

only rely on a reconstruction loss to learn primitive decomposition [252, 253].

Even if these methods provide accurate shape decomposition, they are often

limited to a restricted set of parametric shapes and evaluated on synthetic

datasets.

The number of primitives used for scene or object decomposition determine

a tradeoff between compacity and precision. This has been explored with re-

current networks [384, 174, 288], capsule networks [375], reinforcement learning

strategies [317] or probabilistic models [252]. Primitive discovery also relates

to approaches that consists in learning prototypical shapes directly instead of

being restricted to a set of parametric primitives [78].

However, most of the above methods are trained and evaluated on well-

curated synthetic datasets, such as ModelNet [347], ShapeNet [48], or D-

FAUST [33]. They are typically evaluated on instances of known classes, which

questions their robustness to real-world data.
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2.3 3D Point Cloud Datasets

The 3D computer vision literature considers a variety of synthetic and real-

world datasets. In this work, we focus on large-scale 3D point clouds acquired

in realistic settings. We consider, for example, unstructured collections of 3D

models and large aerial or terrestrial LiDAR acquisitions; see Figure 2.5. We

present in this section the most relevant datasets for this thesis, and therefore

we do not discuss all types of 3D datasets such as indoor RGB-D datasets [350,

297, 9, 73, 49], datasets of scanned objects [322, 345] or datasets for human

motion analysis [6, 146, 32, 206, 29].

We first introduce the main object-centric synthetic datasets employed in

the computer vision community. Second, we describe ways to simulate large-

scale real-world datasets from existing 3D models. Third, we describe some of

the datasets used in autonomous driving and collected directly from embarked

3D sensors. Fourth, we present several 3D aerial datasets, which are acquired

from LiDARs mounted on airborne platforms and offer unique challenges for

point cloud processing.

2.3.1 Collections of Structured 3D Models

Synthetic 3D datasets offer a compelling alternative to expensive real-world

acquisitions. Synthetic datasets are constructed from virtual 3D models and

scenes, offering numerous advantages for developing new 3D data processing

methodologies. One significant benefit is that ground truth annotations can be

easily created for various tasks such as classification or semantic segmentation,

making them ideal for supervised learning. Additionally, it is easier to control

noise, occlusion, and lighting conditions on synthetic datasets.

ShapeNet [48] and ModelNet [347] are annotated datasets of 3D shapes

that span a variety of categories, from chairs and cars to airplanes and tables.

A subset of ShapeNet has been densely annotated [280], decomposing each

object into several parts. For example, the table’s legs and plates are anno-

tated as different classes. The more recently released 3D-FUTURE [94] and

ABO [64] datasets compile high-quality CAD models of household objects with

more geometric details and informative textures. Another relevant dataset is

ABC [158], a large unannotated collection of one million CAD models that

represent shapes designed for industrial purposes. For the purpose of our the-
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(a) ShapeNet [48]. (b) ABC [158].

(c) Aerial LiDAR simulator [211].
(d) PreSIL [141]: GTA-V generated.

(e) SemanticKitti [23]. (f) KITTI-360 [186]. (g) HelixNet [194].

(h) SUM [98]. (i) DALES [325]. (j) Earth Parser
Dataset [197].

Figure 2.5: 3D Datasets. As research is pushing the limits of 3D data anal-
ysis, the results are driven in part by the growing availability of high-quality
datasets.

sis, we can easily use those structured models in our point-cloud processing

pipelines by sampling points on the surfaces.

2.3.2 Large-Scale Simulated Datasets

To expand beyond simple shapes, more realistic datasets have been created

using video game engines or by simulating aerial LiDAR acquisitions from

existing meshes. These datasets enable the training and evaluation of com-

puter vision models in more complex and diverse environments. For example,

the PreSIL dataset [141] contains simulated 2D and 3D sequences captured

from the popular video game “Grand Theft Auto V”, providing realistic urban
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scenes with complex interactions between vehicles and pedestrians. Simulating

aerial LiDAR [211, 208] or autonomous driving sensors [83] acquisitions from

existing 3D models also provides realistic 3D urban environments for train-

ing semantic segmentation and object detection models [79]. These datasets

enable researchers to explore new computer vision applications in challenging

simulated scenarios which approximate real-world ones.

2.3.3 Autonomous Driving 3D Datasets

As autonomous driving becomes an increasingly realistic prospect, multiple

datasets have been proposed to evaluate the performance of perception algo-

rithms [239, 68]. In addition to cameras, rotating LiDAR sensors have become

one of the most prevalent sensors mounted on autonomous vehicles due to their

high accuracy, low latency, and steadily decreasing prices [273]. KITTI [101]

and its annotations from SemanticKITTI [23] is one of the most widely used

dataset for semantic scene understanding using LiDAR sequences. Released

more recently, KITTI-360 [186] and the Waymo Open Dataset [303] contain

images and LiDAR acquisitions with 2D and 3D annotations. ApolloScape

[139], DublinCity [383], and TerraMobilita/iQmulus [324] have been acquired

with LiDAR setups that offer scans of urban environments with high precision

and density. However, their acquisitions are incompatible with real-time road

perception. Several prominent datasets such as NuScene [43] or the very large

ONCE dataset [209] provide only object-level annotations (i.e. boxes), which

do not allow training models to predict dense labels. Even if those acquisitions

are often highly precise, the amount of acquired data, the cost of annotating

3D data, and the diversity of sensors, make it challenging to design generic

methods for autonomous driving perception.

2.3.4 Aerial LiDAR Datasets

The increase in the availability of aerial LiDAR technology has led to the

multiplication of open datasets [240, 355, 98, 383] of varying sizes from 1 to 10

km2 [325, 294]. These large-scale aerial scans are particularly challenging due

to the high number of acquired points, and the occlusion between real-world

objects, resulting in raw imperfect 3D scans. Moreover, these scans are often

limited to dense urban environments and do not capture the diversity of real-
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world terrains. Even if some specialized datasets focus on forested areas [153,

340], current aerial LiDAR datasets still do not cover the diversity of the real

world evenly.





Chapter 3

Online Segmentation of LiDAR

Sequences: Dataset and

Algorithm

z + αt
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(a) Temporal acquisition (b) Online processing (c) Semantic labels

considered voxel receptive field sensor position

Figure 3.1: Online LiDAR Segmentation. The 3D point sequences of rotat-
ing LiDAR data of our proposed dataset HelixNet follow a complex helix-like
structure in space and time, represented in (a) by using the vertical axis for
both time and elevation. We propose an efficient spatio-temporal transformer
to process angular slices of data centered on the sensor’s position. The slices
are partitioned into voxels, each attending other voxels from past slices to build
a large spatio-temporal receptive field (b). Our proposed model can segment
the LiDAR point stream (c) with state-of-the-art accuracy and in real-time.
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Abstract

Roof-mounted spinning LiDAR sensors are widely used by autonomous vehi-

cles. However, most semantic datasets and algorithms used for LiDAR se-

quence segmentation operate on 360○ frames, causing an acquisition latency

incompatible with real-time applications. To address this issue, we first in-

troduce HelixNet, a 10 billion point dataset with fine-grained labels, times-

tamps, and sensor rotation information necessary to accurately assess the

real-time readiness of segmentation algorithms. Second, we propose Helix4D,

a compact and efficient spatio-temporal transformer architecture specifically

designed for rotating LiDAR sequences. Helix4D operates on acquisition slices

corresponding to a fraction of a full sensor rotation, significantly reducing the

total latency. Helix4D reaches accuracy on par with the best segmentation

algorithms on HelixNet and SemanticKITTI with a reduction of over 5× in

terms of latency and 50× in model size. The code and data are available at:

https://romainloiseau.fr/helixnet.

This chapter’s work was initially presented in:

• Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Online Semantic Seg-

mentation of LiDAR Sequences: Dataset and Algorithm”, ECCV, 2022.

• Romain Loiseau, Mathieu Aubry, Loic Landrieu, “Helix4D: Online Se-

mantic Segmentation of LiDAR Sequences”, CVPR Transformer for Vi-

sion Workshop, 2022.
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3.1 Introduction

Due to their low acquisition latency and high precision, rotating LiDAR sen-

sors are among the most prevalent sensors for autonomous vehicles [273]. The

acquired sequences of 3D points exhibit a complex structure in which the tem-

poral and spatial dimensions are entangled through the rotation of the sensor

around a reference point in motion; see Figure 3.1. However, this structure

is often not reflected in the formatting of open-access LiDAR datasets [23,

149, 186], which are discrete sequences of range images, or frames, each corre-

sponding to a 360○ degree arc around the sensor. Consequently, most LiDAR

semantic segmentation methods operate on one or several such frames at the

same time, in the image [69] or point cloud [381, 368, 307] format. However,

waiting for an entire frame to be acquired introduces an unavoidable latency

of more than 100ms on top of the processing time, excluding applications for

high-speed or urban driving. In this chapter, we address this issue by introduc-

ing (i) HelixNet, the largest available LiDAR dataset, whose fine-grained point

information allows for the realistic real-time evaluation of segmentation meth-

ods, and (ii) Helix4D, a spatio-temporal transformer designed for the efficient

segmentation of LiDAR sequences.

Our dataset HelixNet, has several key advantages compared to standard

datasets such as SemanticKITTI [23], see Table 3.1. By organizing points

with respect to sensor rotation and reporting their precise release times, we

can accurately benchmark the real-time readiness of leading state-of-the-art

LiDAR sequence segmentation algorithms. Furthermore, the pointwise sensor

orientation allows us to split the data into slices of acquisition corresponding

to a fraction of the sensor’s rotation. These slices can be processed sequentially

by our proposed network Helix4D, resulting in a lower acquisition latency and

a more realistic scenario for autonomous driving. Based on a spatio-temporal

transformer designed explicitly for LiDAR sequences, Helix4D is more than 50

times smaller than the current best semantic segmentation architectures and

reaches state-of-the-art performance with significantly reduced latency.
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3.2 Related Work

Semantic segmentation of rotating LiDAR data. A first set of meth-

ods designed for rotating LiDAR sequences processes the data in range image

format [185, 304, 69]: 2D projections showing the distances between the sensor

and acquired 3D points. Taking advantage of advances in the implementation

of sparse convolutions [113, 59], a second set of methods projects the point

cloud into fine grids in polar [368], Cartesian [307, 57] or cylindrical [381, 135]

coordinates. A third kind of approach exploits the temporal dimension of Li-

DAR acquisitions by stacking contiguous frames [59, 16]. Observing that cylin-

drical partitions better capture the geometry of rotating LiDAR acquisition,

our proposed method Helix4D builds on the proposed Cylinder3D [381] archi-

tecture by adding an attention mechanism which models the spatio-temporal

acquisition.

Attention-based networks. Due to their remarkable performance and scal-

ability, transformers [326] have quickly been adapted from text processing

to images [82, 191, 299, 44], videos [10], or meshes [187]. Transformers are

also well suited to handle unordered sets, such as 3D point clouds [122, 373].

In particular, their scalability can be leveraged to achieve large receptive

fields [210, 245] and more discriminative features [27] than purely convolutional

approaches. Transformers can also efficiently process complex temporal [154,

330] and spatio-temporal [85] sequences. In the wake of hybrid convolution-

transformer models [121, 62, 71], our proposed model Helix4D combines ef-

ficient cylindrical convolutions with a simplified spatio-temporal transformer

architecture operating at low resolution.

Roof-mounted rotating LiDAR datasets. This chapter focuses on se-

mantic segmentation algorithms for roof-mounted rotating LiDAR sensors. In

previously released datasets, the 3D points are given as sets called “frames”,

each representing a full 360 degrees rotation of the sensor. In Table 3.1, we

report several key characteristics of other existing datasets that are either or-

ganized in complete sensor rotations [149, 101, 23, 186, 104] or in an arbitrary

number of rotations [272, 306]. On the contrary, the 3D points of HelixNet

are given with respect to the sensor rotation and in the order in which they

are made available. This last point proves crucial for evaluating the precision
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Table 3.1: Embarked LiDAR Datasets with Semantic Point Anno-
tations. With over 8.8B annotated 3D points, HelixNet is 70% larger than
SemanticKITTI, and includes more diverse scenes spanning 6 different French
cities. Contrary to other datasets, HelixNet arranges points with respect to
the sensor rotation and contains fine-grained information about their release
time.

Dataset labels frames classes span format

HelixNet (Ours) 8.85B 78k 9 6 cities sensor rotation

SemanticKITTI [101, 23] 5.2B 43k 19 1 city frame

Rellis3D [149] 1.5B 13k 16 1 city frame

KITTI-360 [186] 1.0B 81k 37 1 city frame

A2D2 [104] 387M 41k 38 3 cities frames

Paris-Lille-3D [272] 143M N/A 50 2 cities multi-frame

Toronto3D [306] 78M N/A 8 1 city multi-frame

and latency of segmentation algorithms in a setting that is compatible with

real-time inference. Moreover, our proposed dataset HelixNet is 70% larger

than SemanticKITTI [101, 23], and spans 6 cities and various environments.

3.3 HelixNet: A Dataset for Online LiDAR

Segmentation

We introduce HelixNet, a new large-scale and open-access LiDAR dataset in-

tended for the evaluation of real-time semantic segmentation algorithms. In

contrast to other large-scale datasets, HelixNet includes fine-grained data on

sensor rotation and position, as well as point release time. We report the

localization of the sequences of HelixNet in detail in Figure 3.4.

General characteristics. As seen in Figure 3.2, HelixNet contains 20 se-

quences of 3D points, each corresponding to 6 to 7 minutes of continuous

acquisition, for a total of 129 minutes. Scanning was performed by an HDL-

64E Velodyne rotating LiDAR [144] mounted on a mobile platform [248]. As

shown in Figure 3.3, HelixNet covers multiple cities and a wide variety of envi-

ronments such as a university campus, dense historical centers, and a highway

interchange. With a total of 10 billion points across 78 800 frames and 8.85
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Training Set

1- Clermont 2- Clermont 3- CASQY 4- CASQY

5- CASQY 6- Paris (11°) 7- Clermont (Uni) 8- Clermont (Uni)

9- Paris (6°) 10- Paris (6°) 11- Paris (6°) 12- Paris (6°)

Validation Set

13- Paris (5°) 14- Vincennes

Test Set

15- Guyancourt 16- Vincennes (SE) 17- Vincennes (SE) 18- Amiens

19- Amiens 20- Amiens

Figure 3.2: Coverage from HelixNet. We split the acquisitions into 12
training, 2 validation, and 6 testing sequences. HelixNet contains diverse
scenes in various urban environments from static or mobile sensors.
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beginning of extract end of extract
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Seq. 1- Clermont-Ferrand Seq. 5- CASQY Seq. 13- Paris (5°)

Unlabeled Road Other surface Building Vegetation

Traffic signs Static vehicle Moving vehicle Pedestrian Artifact

Figure 3.3: Extracts from HelixNet. Our proposed dataset contains various
urban scenes from motorway to pedestrian plazas and historical centers. In
the first row, we represent extracts of 15 to 30 seconds of acquisition colored
according to the point release time. In the second row, we represent the point
semantic labels.

billion individual labels, HelixNet is the largest densely annotated open-access

rotating LiDAR dataset by a factor of 1.7 as shown in Table 3.1. HelixNet

follows the file format of SemanticKITTI [23] allowing researchers to evaluate

existing code with minimal effort.

We use a 9-classes nomenclature: road (16.4% of all points), other sur-

face (22.0%), building (31.3%), vegetation (8.5%), traffic signs (1.6%), static

vehicle (4.9%), moving vehicle (2.1%), pedestrian (0.9%), and acquisition arti-

fact (0.05%). Points without labels correspond to either un-annotated (6.2%)

parts of the clouds due to their ambiguity, or point without echos (6.1%). Com-

pared to fine-grained classes such as the ones used by SemanticKITTI [23] or

Paris-Lille3D [272], our focused nomenclature limits class imbalance and makes

macro-averaged metrics more stable.

Each point is associated with the 9 following values: (1-3) Cartesian coordi-

nates in a fixed frame of a reference, (4-6) cylindrical coordinate relative to the

sensor at the time of acquisition, (7) intensity, (8) fiber index, and (9) packet

output time. As detailed in the next paragraph, the last two features are not

typically available in large-scale datasets and cannot be inferred. However,



42 CHAPTER 3. ONLINE SEGMENTATION OF LIDAR SEQUENCES

(a) France (b) Paris agglomeration

Figure 3.4: Localization of the Sequences. HelixNet’s data were acquired
in 6 different cities with 4 of them in the Paris agglomeration, spanning a large
variety of landscapes and urban configuration.

they play a key role in measuring latency in a real-time setting.

Sensor-based timing and grouping. A rotating LiDAR consists of a set of

lasers—or fibers—arranged on a rotating sensor head. The lasers send periodic

pulses of light whose return times give the position of the impact points relative

to the sensor. In the context of autonomous driving, these sensors are typi-

cally deployed on a moving platform and capture 3D points with centimetric

accuracy. The sensor releases the data stream as a discrete temporal sequence

of packets of 3D points. For an HDL-64E LiDAR, each packet contains 6 × 64

points, corresponding to around 1○ rotation of the sensor. To represent the

real-time operational setting of autonomous driving, we associate with each

point the timestamp of its packet output event, i.e. the instant the packet is

available and not the acquisition time of the point. The latency between the

acquisition of the first point and the complete transfer of its packet is 278µs.

Although small compared to acquisition and inference times, this more rig-

orous timing constitutes a step towards a more realistic evaluation setting of

segmentation algorithms of LiDAR sequences.

On top of its absolute position, we associate with each individual point its

cylindrical coordinates relative to the position of the sensor at the exact time of

its acquisition. This differs from other datasets such as SemanticKITTI [23],

which gives the relative position of all points but the absolute position of

the sensor only once per frame. While sensor movement can be interpolated,

the vehicle trajectory might not be linear and the sensor head rotates. For
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(a) Rotation of the sensor head (b) Slices covering 120○

Figure 3.5: Sensor Acquisition Geometry. We represent in (a) the acqui-
sition of a rotating sensor, which is split into 1⁄3 turn slices in (b). As the laser
emitters position forms an angle of over 17.3○ around the sensor head, taking
slices with respect to the sensor rotation θ results in a jagged profile.

comparison, at 50km/h, the sensor moves more than 1.4m during each rotation.

LiDAR sequences are typically split into frames containing points that cover

a 360○ degree arc around the sensor. However, the acquisition geometry makes

this grouping artificial. Indeed, the fibers (i.e. the individual lasers) do not

all face the same direction: they are arranged around the sensor’s heads at

different angles, with a range of more than 17.3○. This means that the points

within a packet are not vertically aligned but present a jagged profile as seen

in Figure 3.5. In order to obtain frames with straight edges such as those of

SemanticKITTI [23], we would have to consider an acquisition over a sensor

rotation of 377○, adding a further 5ms of latency. Contrary to other datasets,

HelixNet contains the index of the emitter of each point and organizes the

points with respect to the angle of the sensor itself. This allows us to easily

build frames or frame portions that are directly consistent with the rotation

of the sensor head itself. This is important for measuring the real latency of

segmentation methods and, as described in the next section, contributes to the

efficiency of our proposed network.

3.4 Helix4D: Fast LiDAR Segmentation with

Transformers

We consider a sequence of 3D points acquired by a rotating LiDAR on a mobile

platform, which we split into chronologically ordered slices of acquisition. As

represented in Figure 3.6, we process each slice with a U-Net architecture [270]
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with cylindrical convolutions [381]. At the lowest resolution, a spatio-temporal

transformer network connects neighboring voxels in space and time, resulting

in a large receptive field. We first describe the construction of slices, then our

cylindrical U-Net, and finally the transformer module.

3.4.1 Temporal Slicing

Instead of processing the data frame-by-frame, we propose to split the se-

quence into slices covering a fixed portion of the sensor rotation, resulting in

a shorter acquisition time and a lower latency. Each point i of the sequence is

characterized by the angular position θi of the sensor head at its exact time of

acquisition. The points are sorted in chronological acquisition order i.e. θi ≤ θj

if i < j. We partition the sequence into groups of contiguous points called

slices, acquired during a portion ∆θ ∈]0, 2π] of a full rotation of the sensor it-

self. Choosing ∆θ = 2π corresponds to the classic frame-by-frame setting and

implies an acquisition latency of 104ms in HelixNet or SemanticKITTI [23]. A

slice size of ∆θ = 2π/5 leads to an acquisition latency of 21ms, which is more

conducive to real-time processing of driving data.

3.4.2 Cylindrical U-Net

Inspired by the Cylinder3D model [381], we first discretize each slice along a

fine cylindrical partition grid (1). Each point i is associated with a descriptor

x
point

i based on its intensity, relative position with respect to the sensor in

Cartesian and cylindrical coordinates, and its offset with respect to the center

of its voxels in grid (1). We compute the point feature f
point

i by applying a

shared MLP Epoint to x
point

i for all points i in the slice. The resulting f
point

i are

then maxpooled with respect to the voxels of grid (1) to serve as input to a

convolutional encoder Egrid. The network Egrid is composed of sparse cylindrical

convolutions [113] and strided convolutions for downsampling. Egrid produces

a set of L sparse feature maps f grid(1),⋯, f grid(L) with decreasing resolutions:

f
point

i = Epoint �xpoint

i � (3.1)

f grid(1),⋯,f grid(L) = Egrid �maxpool �fpoint�� , (3.2)
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Figure 3.6: Helix4D Architecture. A point sequence is split into angular
slices, whose points are encoded by Epoint and pooled along a fine-grained
cylindrical partition. A convolutional encoder Egrid yields feature maps at lower
resolutions. We apply W consecutive spatio-temporal transformer blocks T w

on the coarse voxels, with attention spanning across current and past slices.
The resulting features are up-sampled to full resolution with a convolutional
decoder Dgrid using the encoder’s maps at intermediate resolutions through
skip connections. Finally, the grid features are allocated to the points, which
are classified by Dpoint.

where maxpool is performed with respect to grid (1). At the lowest resolu-

tion grid (L), we apply the transformer-based module T presented in the next

subsection to the feature map f grid(L) to obtain the coarse cylindrical map

ggrid(L):

ggrid(L) = T �f grid(L)� . (3.3)

The decoder Dgrid combines cylindrical convolutions and strided transposed

convolutions to map ggrid(L) to a feature map ggrid(1) at the highest resolution,

and uses the maps f grid(L−1),⋯, f grid(1) through residual skip connections. We

concatenate for each point i the descriptor ggrid(1)(i) of its voxel in grid (1) and

its point feature f
point

i . Finally, the point decoder Dpoint associates a vector of

class scores cpointi with each point i:

ggrid(1) = Dgrid �ggrid(L), f grid(L−1),⋯, f grid(1)� (3.4)

c
point

i = Dpoint ��ggrid(1)(i), fpoint

i �� , (3.5)

where [ ⋅ ] is the channelwise concatenation operator. The network is super-

vised by the cross-entropy and Lovász-softmax [26] losses directly on the point
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prediction, without class weights.

Our approach differs from Cylinder3D [381] by relying on simple 3 × 3 ×

3 sparse cylindrical convolutions instead of asymmetrical convolutions and

dimension-based context modeling. Furthermore, we do not use voxel-wise

supervision.

Our simplified architecture results in a lighter computational and memory

load, but can still learn rich spatio-temporal features thanks to the addition

of the transformer module described below.

3.4.3 Spatio-Temporal Transformer

We denote by V the set of non-empty voxels at the lowest resolution grid (L)

for all slices of the considered sequence. We associate with each voxel v of

V a feature f voxel
v defined as the value of f grid(L) at v. We remark that f voxel

can be ordered as a non-strictly ordered time sequence, and propose to succes-

sively apply W independent transformer blocks T 1,⋯,T W whose architecture

is described below. We denote by gvoxel the resulting spatio-temporal voxel

representation:

gvoxel = T W ○ ⋯ ○ T 1(f voxel) . (3.6)

We associate each voxel v of V with the absolute position (Xv, Yv, Zv) of its

center, the release time Tv of its first point, and the index Iv of the sensor

rotation of its corresponding slice. In order to use a sparse attention scheme,

we define for each voxel v a spatio-temporal mask M(v) characterized by a

radius R and a set of rotation offsets P ⊂ N:

M(v) = {u ∣ ∥(Xv, Yv, Zv) − (Xu, Yu, Zu)∥ < R , Iv − Iu ∈ P} . (3.7)

In the context of autonomous driving, we choose R = 6m and P = {0,5,10}.

With a standard rotation speed of 10Hz, this corresponds to slices 0.5 and 1

seconds in the past along with the current one. See Figure 3.7 for an illustration

of the receptive field and attention maps.

Simplified transformer block. We now define a single transformer block

T w with H heads operating on a sequence of voxel features f voxel of dimension
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−1 sec. −0.5 sec. 0 sec. −1 sec. −0.5 sec. 0 sec.

spatio-temporal mask M(v) voxel v sensor position cross-voxel attention

Figure 3.7: Spatio-Temporal Attention. We represent the spatio-temporal
mask and attention score of one head of the transformer for two different voxels.
The network gathers information from different frame offsets P as the sensor
moves.

D. For each head h and each voxel v, we apply the following operations:

(i) A single linear layer Lh generates both a key kh
v of dimension K and a

value valhv of dimension D/H.

(ii) For all voxels u in the mask M(v), we define the compatibility score yhu,v

as the cross-product between keys and with a learned relative positional

encoding PEh(u, v).

(iii) The cross-voxel attention ahu,v is obtained with a scaled softmax.

(iv) The values valhu of voxels in M(v) are averaged into a vector f̃h
v using their

respective cross-voxel attention as weights.

(v) The vectors f̃h
v are concatenated channelwise across heads and added to

the input of the block to define its output.

These operations can be summarized as follows:

kh
v ,val

h
v = Lh �f voxel

v � (3.8)

yhu,v = �kh
v �⊺ �kh

u +PE
h(u, v)� for u ∈M(v) (3.9)

�ahu,v�u∈M(v)= softmax ��yhu,v�u∈M(v) /
√
K� (3.10)

f̃h
v = ∑u∈M(v) a

h
u,vval

h
u (3.11)

T w(f voxel)v = f
voxel
v + [f̃ 1

v ,⋯, f̃H
v ] . (3.12)

Our design is similar to the classical transformer architecture but uses keys

as queries to save memory and computation. We also do not use feed-forward
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Figure 3.8: Relative Positional Encoding Bins. Each of the four dimension
are split into irregular bins inspired by Wu et al . [344].

networks after averaging the values: the only learnable part of a block T w is

its linear layers Lh and its relative positional encoding PEh.

Since gvoxel only requires information about the voxels of the current and

past slices, it can be computed sequentially for all slices in the order in which

the sensor releases them. For a given slice, the voxel map ggrid(L) for non-

empty voxels is given by the values of gvoxel, and set to zero otherwise. To

save computation at inference time, we store in memory the keys, values, and

absolute positions of the voxels in past slices with a fixed buffer of max(P )

rotations. This allows us to allocate a large spatio-temporal receptive field to

each voxel without supplementary computations.

Relative positional encoding. We propose to learn relative positional

vectors PEh(u, v) that encode the spatio-temporal offset (Xu, Yu, Zu, Tu) −
(Xv, Yv, Zv, Tv) between voxels u and v for each transformer block w inde-

pendently. Inspired by the work of Wu et al . [344], we first discretize the

offsets along each dimension d ∈ {X,Y,Z,T} with Bd irregular bins. For each

dimension d and head h, we learn Bd weight vectors of size K. We define the

functions PEh
d ∶ R ↦ RK that map the d-dimension of an offset to the vector

associated with its corresponding bin. The positional encoding between two

voxels u and v is the sum of the vectors corresponding to their discretized

offsets in each dimension:

PEh(u, v) = PEh
X(Xu −Xv) + PE

h
Y (Yu − Yv)

+ PEh
Z(Zu −Zv) + PE

h
T (Tu − Tv) . (3.13)
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ŷh,T

Head 1 Head 2 Head 3 Head 4

Figure 3.9: Positional Encoding. We plot the average compatibility with
respect to the offset learned for the second encoder block of Helix4D within
different dimensional bins. The compatibility is the cross product between
voxel keys and the positional encoding, averaged over 3 rotations of HelixNet
(see Equation 3.15).

Relative positional encoding vectors are used directly in the calculation of the

compatibility score, as given in Equation 3.9. We use BX = BY = BZ = 7 and

BT = Card(P ) = 3 irregular bins for the relative positional encoding. For an

offset x along dimension d ∈ {X,Y,Z,T}, the corresponding bin for the pair of

voxels u, v is given by the following piecewise function [344, Eq 18]:

bind(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌊x/ρd⌉ if ∣x∣ ≤ αρd

sign(x) ×min �β, �α + ln(∣x∣/(αρd))
ln(γ/α) (β − α)�� if ∣x∣ > αρd ,

(3.14)

where ⌊ ⋅ ⌉ denotes the rounding operation, α = 2, β = 3, and γ = 1.25, and

ρX = ρY = 1.5m, ρZ = 0.5m, and ρT = 5 × 104ms. See Figure 3.8 for a visual

representation of bins.

We represent in Figure 3.9 the compatibility ŷh,d(b) between keys and

relative positional encodings within each bin b, head h and dimension d ∈
{X,Y,Z,T} averaged over 3 rotations:

ŷh,d(b) =
1

Card (Vd(b))
�

(v,u)∈Vd(b)

�kh
v �⊺ �PEh(u, v)� , (3.15)

where Vd(b) = {(v, u) ∈ V ∣ bin(du−dv) = b}. We observe differentiated behaviors

between the heads: Head 1 focuses on near voxels, Head 2 and Head 3 focus

on the area above/below the voxel, respectively, and Head 4 focuses on the
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(a) Range image

(b) 2D polar grid (c) 3D Euclidean grid (d) 3D cylinder grid

Figure 3.10: Data Partitioning Schemes. We represent commonly used
partitioning: (a) SalsaNeXt [69] uses range images, (b) PolarNet [368] uses a
bird-eye-view polar partition, (c) SPVNAS [307] uses a classic regular 3D grid,
(d) Cylinder3D [381] uses a cylinder grid. Grids not to scale.

current frame.

3.5 Evaluating Online Semantic Segmentation

We evaluate the performance and inference time of our approach and other

state-of-the-art methods in both online and frame-by-frame settings. We use

our proposed dataset HelixNet and the standard SemanticKITTI dataset.

Online evaluation setting. We aim at evaluating the real-time readiness

of rotating LiDAR semantic segmentation algorithms in the context of au-

tonomous driving. The total latency of a model is determined by its inference

speed and also the time it takes to acquire its input. Operating on full frames

requires at least 104ms of acquisition, which is incompatible with realistic au-

tonomous driving scenarios. Instead, we propose an online evaluation setting

using the slices defined in Sec. 3.4.1. By default, we use a slice size of a fifth

turn of the sensor head: ∆θ = 2π/5, corresponding to 21ms of acquisition.

Slices are processed sequentially. We define the inference latency of a seg-

mentation method as the average time between the release of the last point of a

slice and its segmentation. To meet the real-time requirement, inference must

be faster than the acquisition of a slice. Slower processing would cause the

classification to continuously fall behind. Although thinner slices directly re-

duce acquisition latency, they also make the real-time requirement more strict:
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Table 3.2: Semantic Segmentation Results. Performance of He-
lix4D and competing approaches on HelixNet and on the validation set of
SemanticKITTI⋆, in the frame-by-frame and online setting. We report the
mean Intersection-over-Union (mIoU) and the inference time in ms. Methods
meeting the real-time requirement are indicated with ✓and those who do not
with ✗. ⋆ SemanticKITTI is denoted as SK. Measuring the latency on this
dataset requires making non-realistic approximations about the fiber position.

Method
Size Full frame 104ms 1⁄5 frame 21ms

×106 HelixNet SK⋆ Inf. (ms) HelixNet SK⋆ Inf. (ms)

SalsaNeXt [69] 6.7 69.4 55.8 23 ✓ 68.2 55.6 10 ✓

PolarNet [368] 13.6 73.6 58.2 49 ✓ 72.2 56.9 36 ✗

Pan. PolarNet [380] 13.7 — 64.5 50 ✓ — 60.3 44 ✗

SPVNAS [307] 10.8 73.4 64.7 73 ✓ 69.9 57.8 44 ✗

Cylinder3D [381] 55.9 76.6 66.9 108 ✗ 75.0 65.3 54 ✗

Helix4D (Ours) 1.0 79.4 66.7 45 ✓ 78.7 66.8 19 ✓

as a full turn must be processed in less than 104ms, a fifth turn must be in at

most 21ms.

Adapting SemanticKITTI. SemanticKITTI [23, 101] contains 43 552 frames

along 22 sequences of LiDAR scans densely annotated with 19 classes. In con-

trast to HelixNet, SemanticKITTI is not formatted with respect to the sensor

rotation and only gives the acquisition time and sensor position once per frame.

To measure the latency, we make the following approximations: (i) the fibers

are assumed to be vertically aligned, meaning that the angle of the points is

the same as the sensor’s; (ii) we interpolate the acquisition time of points be-

tween frames from their angular positions; (iii) we use the acquisition time as

release time. To obtain the absolute positions of the voxels, we assume that

the sensor jumps between the positions given by the LiDAR poses for each

frame. In our open-source implementation, we provide an adapted dataloader

allowing methods already running on SemanticKITTI to be evaluated in the

online setting with minimal adaptation.

Adapting competing methods. To evaluate the semantic segmentation

performance and latency of other segmentation algorithms in the online setting,

we process the point clouds corresponding to each slice independently and

sequentially. This approach restricts the spatial receptive field to the extent of

the slices. However, as the sensor moves, it is not straightforward to add past
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Table 3.3: HelixNet Semantic Segmentation Scores. We report the IoU
for each class of HelixNet evaluated in the online setting with slices of 72○.

Method R
oa
d

O
th
er
su
rfa
ce

B
ui
ld
in
g

Ve
ge
ta
tio
n

Tr
affi
c
sig
ns

St
at
ic
ve
hi
cl
e

M
ov
in
g
ve
hi
cl
e

Pe
de
st
ria
n

A
rt
ifa
ct

Avg

SalsaNeXt [69] 84.4 76.1 88.7 70.7 61.4 58.6 35.1 68.5 69.7 68.2

PolarNet [368] 86.2 77.9 91.2 77.9 63.2 64.8 35.4 68.1 84.8 72.2

SPVNAS [307] 80.5 77.1 93.0 81.8 68.0 60.9 36.9 71.7 59.0 69.9

Cylinder3D [381] 85.3 78.4 93.5 83.9 66.2 63.3 35.7 77.7 90.9 75.0

Helix4D (Ours) 87.8 82.5 94.0 84.4 68.9 72.3 46.4 78.8 93.3 78.7

slices whose relative positions may no longer be valid. By modeling the spatio-

temporal offset between voxels, Helix4D does not suffer from this limitation.

We selected five segmentation algorithms with open-source implementa-

tions and trained models for SemanticKITTI. SalsaNeXt [69] uses range im-

ages, PolarNet [368] and panoptic PolarNet [380] a bird’s eye view polar grid,

SPVNAS [307] a regular grid, and Cylinder3D [381] a cylindrical grid. See Fig-

ure 3.10 for a representation of each method’s partition. We do not consider

methods that stack frames as their structure and resulting latency is incom-

patible with the online setting. When using SemanticKITTI, we evaluate the

provided pretrained models on the validation set. On HelixNet, we retrain the

models from scratch using the procedure of their official repository. We re-

moved all test-time augmentations that resulted in prohibitive inference time.

All methods are evaluated on the same workstation using a NVIDIA TESLA

V100 32Go GPU.

Analysis. In Table 3.2, we report performance in frame-by-frame and on-

line setting with slices of 72○, for Helix4D and competing methods, for He-

lixNet and SemanticKITTI. We observe that Helix4D yields state-of-the-art

accuracy, with mIoU scores only matched by Cylinder3D [381]. However,

Cylinder3D is 50 times larger in terms of parameters and twice slower, not

meeting the real-time requirement even in the full frame setting. As reported

in Table 3.3, distinguishing moving vehicles in HelixNet is particularly diffi-

cult. Our approach even largely outperforms Panoptic PolarNet despite this

method using instance annotation as supervision, preventing us from evalu-

ating on HelixNet. Helix4D yields significantly improved scores thanks to its
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Figure 3.11: Influence of Slice Size. We plot the processing time (left, in
ms) and precision (right, in mIoU) of different methods with respect to the
considered size of slices, estimated on the validation set of SemanticKITTI [23].
Methods whose inference time is slower than the acquisition time of the slice
(red shaded area) do not meet the real time requirement.

larger spatio-temporal receptive fields: 14m and 1000ms vs . 8m and 21ms for

Cylinder3D for a fifth rotation. In the online setting, only two approaches

meet the real-time requirement: SalsaNeXt [69] and Helix4D. Our approach

outperforms SalsaNeXt by over 10 mIoU points in both the full frame and the

on-line settings. In short, Helix4D is as accurate as the largest and slowest

models with an inference speed comparable to that of the fastest and less accu-

rate models. The total latency (acquisition plus inference time) of our model

evaluated online is 40ms (21 + 19ms), and reaches the same performance as

Cylinder3D evaluated on full frame with a latency of 212ms (104+ 108ms), an

acceleration of more than 5 folds.

In Figure 3.11, we report the inference time and mIoU for different slice

sizes. Due to various overheads, the inference time appears in an affine rela-

tionship with the size of slices, making the real-time requirement stricter for

smaller slices. Due to its very design, the performance of Helix4D is not af-

fected by the slice size. In contrast, competing methods perform worse with

smaller slices.

Ablation study. We assess on SemanticKITTI the impact of different design

choices by evaluating several alterations of our method, reported in Table 3.4.

(a) Asymmetric Convolutions: we replace the 3 × 3 × 3 convolutions in

our U-Net with the convolution design proposed by Cylinder3D [381]. We did
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Table 3.4: Ablation Study. We report the speed and accuracy of several
modification of our Helix4D on the validation set of SemanticKITTI.

Method
Size Full Frame 104ms 1⁄5 Frame 21ms

×103 mIoU Inf. (ms) mIoU Inf. (ms)

Helix4D 985 66.7 45 ✓ 66.8 19 ✓

(a) Asymmetric Convolutions 1171 66.6 56 ✓ 66.6 31 ✗

(b) Cylindrical U-Net 985 58.6 22 ✓ 60.2 16 ✓

(c) Slice-by-Slice 985 62.9 29 ✓ 62.6 19 ✓

(d) w. Queries 993 65.2 45 ✓ 64.8 20 ✓

(e) w/o. Positional Encoding 983 64.3 41 ✓ 64.1 18 ✓

(f) Helix4D Tiny 306 65.3 45 ✓ 64.9 17 ✓

not observe a significant change in performance and an increase in run-time of

50%, failing the real-time requirement for slices of 72○.

(b) Cylindrical U-Net: we replace the transformer by a 1×1×1 convolution

on the voxels of the lowest resolution. We observe a slight decrease in run-

time and a significant drop of over 6 mIoU points. This result shows that

the transformer is able to learn meaningful spatio-temporal features at low

resolution.

(c) Slice-by-Slice: we restrict the mask M(v) of each voxel to its current

slice. This reduction in the temporal receptive field results in a drop of 4 mIoU

points, without any appreciable acceleration.

(d) w. Queries: we modify our simplified transformer to associate a query

for each voxel along with keys and values, and use key-queries compatibilities.

This does not affect the run-time and slightly decreases the performance.

(e) w/o. Positional Encoding: we remove the relative positional encoding

PE in the calculation of compatibilities in equation Equation 3.9. This leads

to a slightly decreased run time, but decreases performance by more than

2.5 points. This illustrates the advantage of explicitly modeling the spatio-

temporal voxel offsets.

(f) Helix4D Tiny: we replace the learned pooling in our U-Net with max-

pools and use narrower feature maps for a total of 306k parameters. This

method only performs two points under Helix4D with a third of its parame-

ters.
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3.6 Conclusion

In this chapter, we introduced a novel online inference setting for the semantic

segmentation of sequences of rotating LiDAR 3D point clouds. Our proposed

large-scale dataset HelixNet contains specific sensor information that allows a

rigorous evaluation of the performance and latency of segmentation methods in

our online setting. We also introduced Helix4D, a transformer-based network

specifically designed for online segmentation, achieving state-of-the-art results

with a fraction of the latency and parameters of competing methods. We hope

that our open-source dataset and implementation will encourage the evaluation

of future semantic LiDAR segmentation methods in more realistic settings

and help to bridge the gap between academic work on 3D perception and the

operational constraints of autonomous driving.
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Chapter 4

Representing Shape Collections

with Alignment-Aware Linear

Models

✲
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✻

✲
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✲

✻

Figure 4.1: Discovered Linear Models. Our approach discovers without
supervision linear shape models from large collections of shapes. We show two
examples of two-dimensional families and eight additional prototypes discov-
ered for ABC [158] (left) and ShapeNet [48] (right).

57



58 CHAPTER 4. EXPLORING SHAPE COLLECTIONS

Abstract

In this chapter, we revisit the classical representation of 3D point clouds as

linear shape models. Our key insight is to leverage deep learning to repre-

sent a collection of shapes as affine transformations of low-dimensional linear

shape models. Each linear model is characterized by a shape prototype, a low-

dimensional shape basis and two neural networks. The networks take as input

a point cloud and predict the coordinates of a shape in the linear basis and

the affine transformation which best approximate the input. Both linear mod-

els and neural networks are learned end-to-end using a single reconstruction

loss. The main advantage of our approach is that, in contrast to many recent

deep approaches which learn feature-based complex shape representations, our

model is explicit and every operation occurs in 3D space. As a result, our lin-

ear shape models can be easily visualized and annotated, and failure cases

can be visually understood. While our main goal is to introduce a compact

and interpretable representation of shape collections, we show it leads to state

of the art results for few-shot segmentation. Code and data are available at:

https://romainloiseau.fr/deep-linear-shapes.

This chapter’s work was initially presented in:

• Romain Loiseau, Tom Monnier, Mathieu Aubry, Loic Landrieu, “Repre-

senting Shape Collections with Alignment-Aware Linear Models”, 3DV,

2021.

• Romain Loiseau, Tom Monnier, Mathieu Aubry, Loic Landrieu, “Repre-

senting Shape Collections with Alignment-Aware Linear Models”, ICCV

Learning 3D Representations for Shape and Appearance Workshop, 2021.
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Figure 4.2: Method Overview. Given an input point cloud x, we predict
for each shape model Rk the element that best reconstructs the input: the
projection network Pk outputs the coordinates a of a shape in a linear family,
and the alignment network Ak predicts the parameters of an affine transfor-
mation Ak(x) which is applied to the selected shape. The input point cloud
is then assigned to the shape model that best reconstructs it, here highlighted
in green.

4.1 Introduction

Picture a company acquiring thousands of 3D scans of technical components;

how to leverage, organize, or even simply visualize these 3D models? Deep

shape analysis techniques have flourished over the last years [125] but, even

when motivated by geometric intuitions, these methods and their results re-

main hard to interpret and interact with. Moreover, they are often limited

by the availability of domain and application-specific annotations. Instead of

pushing for even more complex architectures, we operate directly in 3D space

and revisit the simple linear shape model with a deep learning perspective.

As illustrated in Figure 4.1, we model a collection of 3D shapes with a set

of low-dimensional linear shape models. Each linear model is defined by a

prototype 3D point cloud and a set of vector basis that can be interpreted as

fields of translation vectors for each point of the prototype. By adding a linear

combination of this basis vector to the prototype, one can continuously move

in a low-dimensional subspace of the shape space.

We face three key challenges when trying to represent 3D shape collections

with such linear models. First, comparing shapes using Chamfer or Earth

Mover distances has strong limitations for shape analysis, since they are im-

pacted by simple rigid or affine shape transformations, which cannot be easily

represented by linear models. Transformation-invariant distances such as the

Gromov-Hausdorff Distance [221] can be defined to overcome this problem, but
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they are typically very hard to work with. Second, finding the coordinates in

the shape basis that best reconstruct a sample according to a given similarity

measure is a difficult non-convex problem. Third, operations as simple as aver-

aging are non-trivial for point clouds, and dimensionality reduction techniques

such as Principal Component Analysis [343] do not directly apply.

In this work, we present an unsupervised approach that learns small sets of

linear shape models to explain large collections of point clouds. We propose to

solve this task with a clustering formulation directly in 3D space, where clusters

are associated to linear shape families, each modeled as a reference prototype

point cloud and a set of basis vectors that can be interpreted as displacement

fields. We explore two ways of defining such displacement fields—either using a

pointwise parametrization or an implicit one based on parametric differentiable

functions of 3D space—and analyze their benefits. In addition, to predict

the coordinates of a point cloud in the linear basis and account for shape

transformations, we extend the idea from the work of Monnier et al . [230] on

transformation-invariant image clustering to the setting of 3D shape alignment.

By jointly learning linear shape families and parametric functions predicting

both shape basis coordinates and alignment parameters, our approach is able

to discover rich and meaningful shape models from a collection of point clouds

without any supervision.

We believe that our method has strong advantages compared to recent

unsupervised 3D shape analysis approaches. First, by manipulating objects

directly in 3D space, our results are easy to interpret and visualize. Second,

our linear shape models can serve as a mean to explore large collections of

raw 3D point clouds. Finally, we show that despite its simplicity, our model

yields competitive results for shape clustering and state-of-the-art results for

few-shot shape segmentation.

Our contributions can be summarized as follows:

• we present an unsupervised method to represent large point cloud col-

lections with a small set of linear families of shapes;

• we extend the DTI clustering framework to learn linear shape models by

introducing projection networks;

• we analyse two different representations for linear shape modeling and
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show the benefits of representing them with continuous functions of space

rather than pointwise displacements;

• we demonstrate qualitative results for visualizing the large unstructured

ABC dataset [158] and obtain state-of-the-art few-shot segmentation per-

formances on the standard ShapeNetPart dataset [48].

4.2 Related Work

Shape reconstruction. Deprelle et al . [78] introduces a 3D shape recon-

struction model obtained by combining and transforming learned elementary

structures. This method shares similarities with ours as it allows learning

prototypes of shape parts. However, Deprelle et al . uses a fixed number of

prototypes to reconstruct inputs, and thus lacks interpretability on the pres-

ence and position of parts. Moreover, it focuses on reconstruction accuracy,

and mainly follows the AtlasNet [115] deformation framework.

Linear shape modeling. The idea of representing a collection using a low-

dimensional image basis was first developed for images of faces [295]. Popu-

larized by the classical eigenfaces model [319], linear models have since been

applied to various computer vision problems and data. A linear 3D face model

was designed in [30] and applied to new view synthesis. [67] demonstrated

applications to medical data. Non-rigid surface-from-motion can also benefit

from linear shape basis decomposition to recover 3D shapes [39, 316, 74]. An

application of linear modeling to unsupervised 3D keypoint discovery was re-

cently demonstrated in [87]. These linear models are typically learned from a

set of examples using principal component analysis, factorization techniques

[315], or defined manually [336]. Furthermore, some recent work proposes to

analyze shape collections through implicit representations [148, 378, 77]. In

contrast, we propose a learning-based approach to model arbitrary unregistered

shapes from large collections of examples, and we use several low-dimensional

linear families.
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4.3 Modeling Shape Collections

Our goal is to explain a collection of N point clouds x1, . . . , xN with a small

set of K shape models. For simplicity, we assume that all point clouds have

the same number M of points. We propose to solve this task with a clustering

formulation described in Sec. 4.3.1. We then describe how we model alignment

(Sec. 4.3.2) and linear shape families (Sec. 4.3.3) resulting in our final modeling.

Finally, we present how we parametrize our linear shape models and give some

training details (Sec. 4.3.4).

4.3.1 Method Overview

We build a set of K shape models R = {R1, . . . ,RK}. Each Rk maps a sample

point cloud x to a reconstructed point cloud Rk(x) which can be interpreted as

the approximation of x by the corresponding model. We denote by d a distance

between point clouds which measures the quality of a reconstruction. We use

the Chamfer distance in all our experiments. We learn the shape models R by

minimizing the loss

L(R) = �
x∈x1,...,xN

K

min
k=1

d �x,Rk(x)� , (4.1)

which can be interpreted as a clustering objective defined as the sum of the

reconstruction errors with optimal cluster assignment.

Prototype model. The simplest form of Rk is a constant function:

Rk
proto(x) = c

k ∈ RM×3 , (4.2)

where each ck can be seen as a prototype point cloud. Such prototype point

clouds can be learned by minimizing L with batch Stochastic Gradient De-

scent (SGD). This amounts to performing stochastic K-means [36] for 3D point

clouds. Note that this is a weak reconstruction model, however, our goal is

not to learn the most faithful reconstruction, but rather to summarize the

collection.
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4.3.2 Alignment-Aware Model

A clear limitation of the prototype model is that it does not take into account

simple geometric transformations of the point clouds, such as rigid transfor-

mations. For example, point clouds can be close to a model’s prototype ck

according to the distance d, while a rotated or translated version of the same

point cloud is far away. We would like both point clouds to be associated with

the same shape model. To address this issue, we incorporate in each model

Rk an affine alignment component. In practice, we use neural networks Ak—

which we refer to as alignment networks—whose goal is to predict an affine

transformation Ak(x) aligning the prototype ck with a target point cloud x.

This results in an alignment-aware model Rk
align defined by:

Rk
align(x) = A

k(x) �ck� , (4.3)

where the affine transformation Ak(x) is applied to each point of the prototype

point cloud ck. The alignment networks A1, . . . ,AK can be trained alongside

the prototypes c1, . . . , cK by minimizing Equation 4.1. This model can be seen

as an extension of the recent Deep Transformation-Invariant (DTI) clustering

framework [230] developed for images to point clouds. Indeed, our alignment

models can be understood as defining an approximation of an affine-invariant

version of the distance d according to which the clustering is performed. In this

part, we rather view these networks as an integral part of the shape models.

Note that different transformation models could be considered. In our

experimental analysis, we study variations of the model using weaker trans-

formations, such as rigid transformations or scaling, and show the benefits of

the affine model. On the contrary, one could consider complex deformations

parametrized by deep networks, such as the ones used in FoldingNet [353] or

AtlasNet [115], which would surely lead to higher accuracy reconstructions.

However, such transformations completely change the geometry of a point

cloud and are hard to interpret.

4.3.3 Linear Shape Modeling

Our goal in this section is to model changes in objects more subtle than those

that can be modeled by affine transformations, such as the angle of the wings
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of an airplane, while maintaining the model intepretability. We propose to

associate a linear shape family to each prototype point cloud.

Linear shape families. For each model k, we define a linear shape family

as a pair formed by (i) a prototype point cloud ck in RM×3 and (ii) a set vk of D

basis vectors vk = {vk1 , . . . , v
k
D}, where each vki ∈ RM×3 associates to each point

of the prototype a 3D vector and can be interpreted as displacement fields.

Each (ck, vk) defines a continuous collection of shapes covered by translating

the points of ck along the directions defined by vk. Each element u of the linear

family (ck, vk) is characterized by a vector a in RD defining its coordinates in

the linear shape family:

u = ck +
D�
i=1

ai v
k
i . (4.4)

The vector a can be interpreted as the set of amplitudes to apply to the dis-

placement fields {vk1 , . . . , v
k
D}. Note this formally describes an affine space but

we follow the convention of previous works and refer to it as linear.1 Also note

that we do not explicitly enforce linear independence between basis vectors,

but their high dimensionality (M × 3) leads to such independence in practice.

Projection networks. If we had access to ordered point clouds, i.e. lists

of M points in R3 where the i-th points are in correspondence, we would be

able to use the L2 distance to measure point clouds similarity. In this case,

computing the coordinates of the element of the linear family closest to a target

point cloud would simply amount to performing Euclidean projection. This

is however not the case for unordered point clouds, for which the notion of

distance is more complicated. For common point cloud similarity measures

such as the Chamfer distance, finding the closest point cloud in a linear family

is a difficult non-convex optimization problem. This task is made even harder

by the fact that we use our alignment networks to transform the elements of

the family before comparing them with the input cloud.

Therefore, we propose to leverage deep learning to estimate which element

of a linear family is the closest to a target point cloud after alignment. More

specifically, we associate to each linear family (ck, vk) a neural network Pk

which aims at associating to a given input sample the coordinates of the ele-

1An analogy can be made with the face reconstruction model EigenFace [320]: c is
equivalent to the mean face, and v to the eigenfaces.
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Figure 4.3: Learned Prototypes and Comparisons. We compare the
prototypes from our different shape modeling discovered in ABC [158] (left,
5 shape models out of 10) and ShapeNetCore [48] (right, 5 shape models out
of 55). Note how sharp the prototypes become when the shape modeling
complexity increases, respectively with alignment-awareness and 5-dimensional
linear families.

ment in the linear family minimizing the distance d. The output of the network

Pk(x) ∈ RD is interpreted as the coordinates a of the point cloud defined in

Equation 4.4. By analogy with the L2 distance case, we refer to these networks

as projection networks.

Full model. We define our final shape model R as a collection of models

Rk
full each composed of a linear family (ck, vk), an alignment network Ak and a

projection network Pk. Given a target point cloud x, our model reconstructs

it by (i) selecting an element of the linear family (ck, vk) through the projec-

tion network Pk, and (ii) aligning it with the target using the transformation

predicted by the alignment network Ak. More formally, we write each shape

model as:

Rk
full(x) = A

k(x) �ck + D�
i=1

�Pk(x)�
i
vki � , (4.5)

where [Pk(x)]i refers to the i-th component of Pk(x) and the affine transfor-

mation Ak(x) is applied to each point of the point cloud independently. Again,

we optimize jointly the ck, vk,Ak and Pk to minimize the reconstruction loss

defined in Equation (4.1).

4.3.4 Parameterization and Training Details

We first describe how we parametrize the linear families, then provide imple-

mentation details such as networks architecture and our curriculum learning
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strategy.

Linear family parametrization. While the prototypical point cloud ck is

modeled directly using learnable parameters in RM×3, the basis vectors vki can

be parametrized in two different ways:

• Pointwise parametrization: for each model k, we represent vk as vectors

of learnable parameters of sizeD×(M×3) that can directly be interpreted

as D pointwise displacement vectors of the prototype ck.

• Implicit parametrization: we use implicit parametric functions of the 3D

space modeled as neural networks to define the displacement fields. More

precisely, for each model k and basis dimension i, we learn a parametric

function Vki ∶ R3 ↦ R3 mapping any point in the 3D space to a displace-

ment direction. Writing [ck]p the 3D coordinates of the p-th point of

prototype ck, the 3D coordinates [vki ]p of the i-th basis vector associated

to the point p are [vki ]p = V
k
i ([c

k]p).

Intuitively, the pointwise parametrization seems better suited for modeling

complex and discontinuous transformations within a shape family such as the

appearance/disappearance of object parts. On the contrary, the transforma-

tions learned with implicit parametrizations are derived from continuous func-

tions of the 3D space and can be expected to be more regular.

We compare both settings in Section 4.4.2, and show that pointwise para-

metrizations provide better shape reconstructions, but that implicit para-

metrization yields more interpretable transformations, preserving semantic

correspondences. Thus, unless specified otherwise, we use the implicit parametriza-

tion of the basis in the rest of the chapter.

Architecture. For each model k, the alignment network Ak takes as input a

point cloud and outputs a vector in R12 corresponding to a linear 3D operator

and a translation vector applied to each point of the model. The projection

network Pk also takes a point cloud as input and outputs a vector in RD that is

interpreted as coordinates in the linear family (ck, vk). These networks share

a common PointNet [257] backbone encoder which acts as a global feature

extractor. This shared encoder starts with a sequence of three linear layers with

batch normalization [145] and ReLU activation acting on points independently
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Figure 4.4: Influence of Degrees of Freedom D on ModelNet. The re-
construction error (CD) decreases with added degrees of freedom. In contrast,
the clustering Accuracy stops increasing when D ≥ 3, hinting that we have
reached a sufficient level of complexity.

and sequentially generating representations of size 64, 128 and 1024, and ends

with a max-pooling over all points. This encoder is then followed by 2 ×K

MLPs corresponding to each prediction task (alignment or projection) and

each shape model. Each MLP has one hidden layer of size 128. The implicit

parametrizations Vki ∶ R3 ↦ R3 are MLPs with 2 hidden layers of size 128.

Curriculum learning. Inspired by the curriculum learning strategy of [230],

we propose to learn our models by gradually increasing the models complex-

ity. We first learn raw prototype models (Rk
proto), an optimization which cor-

responds to performing a gradient-based K-means algorithm in the 3D space.

Second, we augment each model with alignment awareness (Rk
align). Finally,

we gradually increase the linear families dimension up to the desired one, re-

sulting in our final shape model (Rk
full). Curriculum learning allows the model

to choose the number of displacement fields D according to the complexity of

the studied dataset. Early stopping occurs when the benefit of adding a new

degree of liberty (i.e. increasing D by one) does not meet a criterion on the

loss or on a validation task, see Figure 4.4.

Alignment networks and basis vectors are initially set to identity and zero,

respectively. When unfreezing a new module (alignment or a dimension of

projection), the learning rate for the new weights is initially set to a tenth of

the learning rate applied for the rest of the network, and gradually increased

over 50 epochs to the global learning rate. This “warm-up” heuristic helps the

network learn more smoothly from one step of the curriculum to the next.
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Initialization strategy. As it is the case for many clustering algorithms,

initialization can be critical. In our case, we initialize the prototype point

clouds with samples of the training set chosen according to a k-means++

strategy [11] with respect to the Chamfer distance.

Cluster reassignment. To prevent empty clusters, we reassign at the end of

each epoch any cluster that was selected fewer times than 20% of the expected

size of clusters (N/K) in the evenly distributed cluster assignment of Equa-

tion 4.1. Clusters are reassigned by selecting and duplicating another cluster.

The duplicated cluster is chosen with a probability proportional to the mean

of its reconstruction error over the last epoch. To break the symmetry, we

add Gaussian noise with variance 10−4 to both its prototype and vector basis.

The alignment and projection networks are copied without adding noise. We

decrease the reassignment threshold tenfold after each curriculum step in order

to preserve less populated but expressive clusters.

Training strategy. We use the Adam optimizer [155] with a learning rate

of 0.001, a batch size of 64, and neither weight decay nor data augmentation.

Our model takes point clouds in R1024×3 as input for all experiments, except

for the few-shot segmentation task that takes point clouds in R2048×3 as input.

Implementation details. Our implementation uses PyTorch, Torch-Points3D [50],

and an efficient CUDA implementation of the Chamfer distance which signifi-

cantly speeds up training.

Memory and speed. With K = 10 prototypes and D = 5, our model has

4.6M parameters. For comparison, the reconstruction models proposed by

Wang et al . [332] and Groueix et al . [116] have respectively 2.6M and 10.0M

parameters. Our model can be trained on a single NVIDIA GeForce RTX

2080Ti within a few hours on the 3 991 samples of ModelNet10, and in less

than a day on ShapeNetCore. Inference on all samples from ShapeNetCore

(≈ 50k shapes) takes less than 4 minutes.
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Figure 4.5: Basis Vectors. Examples of linear shape models obtained after
training on ABC with D = 5. The prototype is represented at the top and each
row corresponds to one of the dimension of the linear families. The models’
basis vectors correspond to complex morphological changes.

4.4 Experiments

In this section, we analyze the benefits of our method to represent shape col-

lections, first qualitatively (Section 4.4.1) then quantitatively (Section 4.4.2).

Finally, we demonstrate that it leads to results on par with state of the art for

few-shot and low shot shape segmentation (Section 4.4.3).

4.4.1 Qualitative Results

We demonstrate the potential of our method for exploring large shape collec-

tions.

Datasets. The ShapeNet dataset [48] is a large collection of over 50K 3D

models organized along 55 common object categories such as chairs, airplanes,

or cars. The ABC dataset [158] is a very large collection of Computer-Aided

Design (CAD) models of diverse mechanical object parts, such as screws or

pipes. We used the first six chunks from this dataset and considered the

connected components of each mesh as separate objects (≈ 70K shapes). We
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apply our approach using 55 shape models for ShapeNet and 10 for ABC. For

both datasets, we uniformly sample points on the objects’ surface to obtain

point clouds.

Prototypes. We present in Figure 4.3 examples of prototypes learned when

successively adding different components of our method. The first line, denoted

“Ours, proto”, represents the linear families’ prototypes learned during the

first stage of our training (Rproto). The second line, denoted “Ours, align”,

displays the learned prototypes after the second stage of our training (Ralign),

during which affine alignment networks are learned jointly with their model’s

prototype. Finally, the third line denoted “Ours, full D = 5” illustrates the

prototypes learned at the last stage of training (Rfull) alongside linear shape

families of dimension 5 and their associated projection networks. We show the

center of each linear shape model, defined by taking the median amplitude

ai in each dimension i when considering all point clouds associated with the

model, i.e. point clouds for which this model outputs the best reconstruction.

The prototypes learned with the Chamfer distance (first line) appear noisy,

hinting that they are not well aligned with the shapes they try to approximate.

When adding alignment networks, we obtain the prototypes of the second

line, which are much cleaner, outlining the interest of using a transformation-

invariant model, as well as the fact that our approach can effectively learn

such a model. Finally, the prototypes obtained with our full method are even

sharper and smoother, indicating that linear shape families can better model

the associated point clouds.

Our results on the ABC dataset outline the capacity of our full model to

differentiate between different types of shapes, as prototypes correspond to

different object types. By looking at the prototypes, one can grasp at a glance

the diversity of shapes contained in this large-scale dataset.

Linear shape models. In Figure 4.5, we illustrate some of the linear shape

models learned on ABC. The top row shows the center of the linear shape

models, and the subsequent lines illustrate the five basis vectors. For each

model and each basis vector, we represent two shapes whose amplitudes for

the considered dimensions are set to the 5-th and 95-th percentile values of all

point clouds associated to the model, while the other amplitudes remain at the
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(a) 10 prototypes learned from the aligned ModelNet10 dataset.
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(b) 10 prototypes learned from the rotated ModelNet10 dataset.

Figure 4.6: Modeling ModelNet10. Prototype learned on ModelNet’s [347]
aligned version (a) and with random z-axis rotations (b). In this figure, the
models are manually rearranged to be in correspondence across the two ex-
periments. Note how our model without alignment networks (“Ours, proto”)
is unable to learn meaningful prototypes on un-aligned data. In contrast, our
models with alignment networks learn sharp and informative prototypes de-
spite the rotations. This shows that alignment networks allow our model to
handle a raw, un-aligned dataset to produce a compact overview of its shape
diversity.

median value. Again, we can see how the different dimensions give insights on

the diversity of shapes within the dataset.

We represent in Figure 4.6 the models learned on ModelNet with ran-

dom rotations. We observe that when alignment networks are used, the ob-

tained prototypes are similar to the ones obtained on the aligned version of

the dataset. This shows that our approach can be used successfully on raw,

un-aligned datasets.

Reconstructions. In Figure 4.10, we show examples of reconstructed shapes

from ShapeNet (airplanes, cars, and chairs) for three different linear shape

families. As expected, the model is able to reconstruct objects precisely while

remaining visually interpretable. We show some reconstruction results in Fig-
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Figure 4.7: Visualizing Reconstructions on ABC. The left-most columns
represent prototypes from all 10 linear models learned on the ABC dataset.
For each prototype, we select 6 samples for which this model gives the best
reconstruction (“Input”, top line). We then represent the associated recon-
struction provided by the model (“Output”, top line). Each family represents
a wide variety of morphologically homogeneous shapes: round rings, square
rings, bent archs, cylinders, etc... Looking at the prototypes gives us a concise
overview of the shape diversity.

ure 4.7 and Figure 4.8 for ABC and ShapeNet, respectively. For each model,

we represent some sample shapes for which the model provides the reconstruc-

tion with the lowest error. Viewing our approach in terms of clustering, this

amounts to showing elements from the clusters associated with each model.

Note that in Figure 4.8, our linear models are associated with rich subsets of

shapes which remain mostly semantically homogeneous.

4.4.2 Quantitative Analysis for Clustering and Recon-

struction

The qualitative results described in the previous section outline the potential

of our approach for visualizing and analyzing large, unstructured, and diverse

shape collections. We now provide a more quantitative analysis of these results

on the standard ModelNet10 dataset [347].
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Figure 4.8: Visualizing Reconstructions on ShapeNet. The left-most
columns represent prototypes from some of the 55 linear models learned on
the ShapeNet dataset. For each prototype, we select 6 samples for which this
model gives the best reconstruction (“Input”, top line). We then represent
the associated reconstruction provided by the model (“Output”, top line). We
observe that the samples associated with a given model are for the most part
semantically homogeneous, and well represented by their prototype.

Data and evaluation. ModelNet10 contains 3991 train and 909 test aligned

3D point clouds obtained from CAD models of 10 different classes. We use

this dataset both in its original aligned version and also with added random

rotations around the z-axis to evaluate the capacity of our method to represent
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Table 4.1: Results on ModelNet10. We present results with 10 linear
shapes models, first for different restrictions of the alignment networks, then
for different basis vector configurations. The steps in the curriculum training
of our model are in bold. We report clustering accuracy in % (“Accuracy”)
and the Chamfer distance multiplied by 103 (“CD”), Results are averaged over
five runs.

Accuracy CD

Ours, proto 63.9 ± 1.5 20.0 ± 0.4

... with supervision 79.0 ± 0.2 23.5 ± 0.0

O
u
rs
,
al
ig
n

Rigid transformation (6D) 64.6 ± 5.2 16.2 ± 0.1

Trans. + Iso. Scaling (4D) 71.5 ± 4.1 15.0 ± 0.1

Trans. + Aniso. Scaling (6D) 74.1 ± 3.0 10.4 ± 0.1

Linear (9D) 71.85 ± 4.7 11.1 ± 0.1

Affine (12D) 75.9 ± 3.0 9.7 ± 0.0

... with supervision 88.9 ± 0.5 11.2 ± 0.0

O
u
rs
,
fu
ll

D
=
1 Pointwise parametrization 74.3 ± 1.7 7.9 ± 0.0

Implicit parametrization 77.5 ± 2.8 8.1 ± 0.0

... with supervision 89.7 ± 0.6 9.5 ± 0.0

D
=
5 Pointwise parametrization 75.1 ± 1.7 5.7 ± 0.0

Implicit parametrization 77.0 ± 3.4 5.9 ± 0.0

... with supervision 90.4 ± 1.0 7.8 ± 0.0

FoldingNet [353] 76.3 ± 7.5 3.5 ± 0.0

unaligned data. Unless specified otherwise, the results are given for the original

dataset. We trained the different variants of our method with 10 reconstruction

models on train and test shapes of ModelNet10. We evaluate in Table 4.1

the clustering accuracy and reconstruction error measured by the Chamfer

Distance. To measure the quality of the resulting clustering, we assign to each

model the majority label of its associated point clouds from the train set. The

accuracy of the classification is then defined by assigning to test shapes the

label of the model giving the best reconstruction.

Alignment. We compute the performance of our models only defined by pro-

totypes (“Ours, proto”), and then train models with alignments of different

complexities (“Ours, align”). We first evaluate a model whose alignment net-

works are restricted to a rigid transformation (“Rigid transformation (6D)”),

with rotations parametrized with quaternions. We also evaluate models with a



4.4. EXPERIMENTS 75

Table 4.2: Non-Aligned Data. Clustering Accuracy (“Accuracy”, in %)
and reconstruction error (“CD”, Chamfer distance multiplied by 103) obtained
with 10 linear shapes models on the rotated version of ModelNet10. ∆CD is
the difference of reconstruction error when training the same model on the
aligned or unaligned datasets.

Accuracy ∆Accuracy CD ∆CD

Ours, proto 41.2 ± 3.4 −22.7 30.1 ± 0.1 −10.1

Ours, align 61.8 ± 3.3 −14.1 11.0 ± 0.1 −1.3

Ours, full D = 1 65.2 ± 6.7 −12.3 9.3 ± 0.0 −1.2

Ours, full D = 5 68.8 ± 7.9 −8.2 6.7 ± 0.0 −0.8

scaling and a translation (“Trans. + Iso. Scaling (4D)”), axis-aligned scalings

and a translation (“Trans + Aniso. Scaling (6D)”), a linear transformation

(“Linear (9D)”), and finally an affine transformation (“Affine (12D)”). We

observe that using alignment networks allows significant clustering improve-

ment in terms of accuracy and reconstruction quality. Moreover, restricting

the output of the alignment networks leads to a lower performance: even for

centered and rotation-aligned data such as ModelNet, allowing complex align-

ments benefits both clustering and reconstruction.

Linear families. We then evaluate models with affine alignment but differ-

ent linear basis (“ours, full”). We compare the results between one-dimensional

(D = 1) and five-dimensional (D = 5) linear families as well as between ba-

sis vectors learned in the pointwise and implicit parametrization (see Sec-

tion 4.3.3). Increasing the dimension of the shape families improves the recon-

struction error but slightly decreases the clustering accuracy with the implicit

parametrization. This can be explained by the models becoming too expres-

sive, resulting in point clouds from different classes being associated with the

same model.

Baseline and supervised upper bound. As a baseline, we performed k-

means clustering in feature space using the implementation of FoldingNet [353]

proposed by [308]. The resulting accuracy is comparable to that of our best

models’. However, FoldingNet relies on learning black-box deep deformations

of a planar patch, and the resulting shape family and generation process are

thus harder to interpret than ours.
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Figure 4.9: Model Selection. We can select the number of clusters K using
the BIC. We obtain 7 clusters for ModelNet and 30 for ShapeNet, which is
consistent with the shapes’ diversity.

We also trained our model in a supervized manner by associating a class

to each model, and only training each model on point clouds from their class

(“with supervision” lines, in light gray). As expected, this “oracle” setting

performs better in terms of clustering accuracy, but with lower reconstruction

quality. This can be explained by the presence of classes with high variability

such as chairs which require several families to fully cover, and similar classes

such as desks and tables which can be well reconstructed by a single family.

Non-aligned data. In Table 4.2, we report our approach’s performance

when trained on ModelNet10 with random rotations. We observe that adding

alignment networks to the model results in significantly better metrics com-

pared to simple prototypes. Our full models with alignment are able to reach

reconstruction qualities almost comparable to the equivalent models trained on

aligned shapes. Similarly, the drop in clustering performance is reduced when

adding the alignment networks and linear shape families. This outlines the ca-

pacity of our models to handle raw unaligned data. We present in Figure 4.6

illustrations of the prototypes learned in both setting.

Choice of K. The number of models can be automatically selected through

usual model selection heuristics such as the Bayesian Information Criterion

(BIC), as we show in Figure 4.9. Being entirely unsupervized, there is no

restriction on how linear families relate to classes: complex classes can be

represented by several models, and similar classes by a single family. However,

as demonstrated in our clustering experiments, when the number of classes

and models are the same, linear families and classes tend to be assigned on a

one-to-one basis
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Table 4.3: 10-shot Segmentation. We report pointwise IoU for 9 classes
and the average IoU over all 16 classes of ShapeNetPart. See text for details.

airplane bag cap car chair lamp laptop mug table avg

Shared encoder

Gadelha et al . 2020 [95] — — — — — — — — — 74.1

Ours, full D = 5 (random) 71.7 70.6 84.0 62.1 78.8 68.7 93.1 87.5 70.6 72.5

Ours, full D = 5 (prototype) 79.4 73.0 81.8 72.1 83.6 76.1 94.7 89.8 76.2 77.4

One encoder per class

Wang et al . 2020 [332] 67.3 74.4 86.3 — 83.4 68.7 93.8 90.9 74.2 —

Groueix et al . 2019 [116] 67.1 — — 61.4 78.9 65.8 — — 66.1 —

Ours, full D = 5 (random) 72.2 66.0 75.5 63.0 79.1 68.9 93.1 84.2 69.4 —

Ours, full D = 5 (prototype) 80.0 79.7 76.1 72.0 83.6 77.1 94.9 91.1 75.9 —

4.4.3 Application to Few/Low-Shot Segmentation

Our linear shape models can perform semantic segmentation by transferring

point labels from the model’s prototype to the reconstructed point cloud. More

precisely, given an input point cloud x, we identify the model k with the lowest

reconstruction error. We then compute x̃ = Rk
full(x), the point cloud recon-

structed by this model. We transfer the point annotation from the prototype

ck to x̃. Finally, each point of x is assigned the label of the closest point of

x̃. This strategy is especially meaningful in a few-shot setting, since only the

prototypes need to be annotated.

Few-shot segmentation. In this setting, where we only use a few annota-

tions for each class and train our model with only the reconstruction loss as

described earlier, we consider two methods to annotate the prototypes:

• Random. We randomly pick one sample from the train set for each model

and propagate its labels to their nearest points of the aligned prototype.

• Prototype. We align all samples from the train set for each model’s

prototype and label each point with majority voting. This second setting

is meant to emulate the manual annotation of the 10 prototypes. While

this is not directly comparable to other approaches, it outlines the crucial

advantage given by our approach, which identifies a small set of prototype

shapes that can be annotated instead of using random samples. Some

prototypes annotated in this manner can be seen in Figure 4.10.
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Figure 4.10: Reconstruction Results. Examples of samples annotated
pointwise with our semantic-segmentation method (D = 5). We visually se-
lected failure cases where semantic regions were wrongly predicted. Prototypes
are represented on the left column, the “input” lines display input samples with

ground truth annotations and the “output” lines our reconstruction with pixel la-

bels propagated from the prototype.

We use the densely annotated ShapeNetPart [280] to evaluate the segmen-

tation performance of our few-shot segmentation scheme. We report in Ta-

ble 4.3 the performance of our 10-shot segmentation scheme for nine classes of

ShapeNetCore, and the average performance over all 16 classes. As mentioned

in Section 4.3.4, all the alignment and projection networks share a common

PointNet [257] encoder which acts as a global feature extractor. To compare

with previous works that use either a shared model or a different model per

class, we present results using either a single encoder for all classes or one

encoder per class. Using only 10 samples from the dataset to annotate our

prototypes, we observe that the annotation from random samples performs

on par or better than state-of-the-art approaches. Annotating prototypes (us-

ing all training samples) significantly outperforms all methods. This shows

that our approach can be used to precisely and densely annotate large shape

datasets with minimal human intervention. We also observe some failure cases
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Table 4.4: Low-Shot Supervised Segmentation Results on ShapeNet-
Part. We report the IoU averaged over all classes.

Training data SONet [173] 3D-PointCapsNet [375] Ours, full D = 5

1% 64 67 68

5% 69 70 72

shown in the last column of Figure 4.10: since our model can only move points

and not add or subtract them, shapes with optional parts, such as the arms of

chairs, may be mislabeled.

Low-shot semantic segmentation. Our model can also be trained in a

low-shot setting, and can learn to perform semantic segmentation from a small

number of annotated examples. We first initialize a set number of prototypes

per class with random examples from the training set. This allows us to

associate each prototype’s point with a part semantic label. We then perform

our standard training scheme, but with an altered Chamfer distance, which can

only match points with the same part label from the true and reconstructed

point clouds. At inference time, we can associate a part label to each point of

the input shape by taking the points’ closest neighbor in their reconstructed

shape. This setting is supervised in the sense that we use the point labels

explicitly during training. As presented in Table 4.4, our model trained on

only 1 and 5% of the annotated shapes yields an improvement of +1 and +2

average IoU points respectively, compared to 3D-Capsule [375]. In contrast

to this more complex model, our linear shape models remain viewable and

interpretable.

4.5 Conclusion

We presented a new take on linear shape models with deep learning, represent-

ing large un-annotated collections of 3D shapes. Our alignment-aware model

produces concise, expressive and interpretable overviews of unaligned point

clouds collections. We show that our method leads to state-of-the-art results

for few-shot segmentation.
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Chapter 5

Learnable Earth Parser:

Discovering 3D Prototypes in

Aerial Scans

Figure 5.1: Learnable Earth Parser. Our unsupervised method takes
large aerial 3D scans as input and model them with a small set of learned
prototypes. Our approach is trained without annotation and produces legible
decomposition of complex scenes, which can be used for semantic and instance
segmentation.
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Abstract

We propose an unsupervised method for parsing large 3D scans of real-world

scenes into interpretable parts. Our goal is to provide a practical tool for ana-

lyzing 3D scenes with unique characteristics in the context of aerial surveying

and mapping, without relying on application-specific user annotations. Our

approach is based on a probabilistic reconstruction model that decomposes

an input 3D point cloud into a small set of learned prototypical shapes. Our

model provides an interpretable reconstruction of complex scenes and leads

to relevant instance and semantic segmentations. To demonstrate the useful-

ness of our results, we introduce a novel dataset of seven diverse aerial LiDAR

scans. We show that our method outperforms state-of-the-art unsupervised

methods in terms of decomposition accuracy while remaining visually inter-

pretable. Our method offers significant advantage over existing approaches,

as it does not require any manual annotations, making it a practical and

efficient tool for 3D scene analysis. Our code and dataset are available at

https://romainloiseau.fr/learnable-earth-parser.

This chapter’s work was initially presented in:

• Romain Loiseau, Elliot Vincent, Mathieu Aubry, Loic Landrieu, “Learn-

able Earth Parser: Discovering 3D Prototypes in Aerial Scans”, arXiv,

2023.
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Ts(X)

β1

s βk

s
βK

s
⋯ ⋯

affine
transform

αs

S slots

prototype choiceslot activation

input X reconstructionM(X)

Ms(X)

⋯ ⋯
P1 Pk PK

Figure 5.2: Method Overview. Our model approximates an input point
cloud X with S slot models. Each slot maps X to an affine 3D deformation
Ts(X), a slot activation probability αs, and the joint probabilities β1

s ,⋯,βK
s

of the slot being activated and choosing one of the K prototype point clouds
P1,⋯,PK . The outputMs(X) of an activated slot s is obtained by applying
the transformation Ts(X) to its most likely prototype. Non-activated slots do
not contribute to the output.

5.1 Introduction

Modern aerial 3D scanning technologies open up unprecedented opportuni-

ties for environmental monitoring and economic intelligence. However, their

practical use remains challenging due to the complexity of real-world scenes,

the diversity of usage scenarios, and the difficulty of annotation. Therefore,

our aim is to develop an approach that could help perform tasks as diverse

as counting trees in a forest, identifying the various components of a factory,

measuring the surface of greenhouses or monitor urban growth, all in an un-

supervised fashion.

To do so, we address two important limitations of existing 3D deep learning

methods. First, they are often primarily designed, trained, and tested on

synthetic [347, 48, 280, 216] or highly curated data [9, 186, 157], which fail to

capture the endless variability of the real world. Moreover, they often assume

that annotations are available for tasks of interest. Second, even unsupervised

approaches [4, 370] often rely on learning abstract feature representations,

making them difficult to interpret [369]. Although some work has attempted to

decompose 3D shapes into meaningful components without supervision [317,

78, 252, 195], they were all designed on simple synthetic shapes and none

generalizes to real data.

To overcome these limitations, we present the Learnable Earth Parser, an

unsupervised deep learning method designed to decompose large-scale 3D point
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clouds into interpretable parts. Our model learns a small set of 3D prototypical

shapes that are selected, positioned, rotated, and resized to reconstruct an

input point cloud. We introduce a novel probabilistic formulation that enables

the design of a reconstruction loss for training jointly the selection of prototypes

with the rest of the model.

To evaluate the effectiveness of our approach, we created a new open-access

dataset consisting of 7 aerial LiDAR scans, covering 7.7km2 and containing 98

million 3D points with annotations in diverse urban and natural environments.

Our results demonstrate that the Learnable Earth Parser learns decomposi-

tions superior to traditional and deep learning baselines, leading to convincing

performance for semantic and instance segmentation, as shown in Figure 5.1.

We believe that our contributions provide researchers and practitioners

with new tools and resources to tackle the challenges of real-world 3D data.

5.2 Related Work

Our proposed unsupervised method uses point-cloud reconstruction to learn

to decompose large aerial point clouds and is evaluated on a novel and diverse

dataset of 3D scans. In the following, we briefly present related work for

primitive-based point cloud decomposition and automatic decomposition of

LiDAR data.

Aerial LiDAR datasets. We propose a dataset that spans 7.7km2, which

is of similar scale than prominent datasets [240, 355, 98, 383] of varying sizes

from 1 to 10 km2 [325, 294]. In contrast to these existing datasets, our Earth

Parser Dataset covers a variety of urban, natural, and rural scenes, making it

more representative of the diversity of possible usage scenarios.

LiDAR scan decomposition. Automatically parsing large LiDAR scans

poses unique challenges due to the size and diversity of the acquisitions [349].

Previous approaches used simple shape primitives, such as lines [120, 70],

planes [236, 100, 118], or volumes [177]. These may not be expressive enough

to capture the complexity of scanned objects. Other approaches are designed

for specific object classes, such as trees [219] or buildings [163, 137], but re-

main limited in their ability to represent a wide range of shapes. In contrast,
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our Learnable Earth Parser overcomes these limitations by learning ad-hoc

prototypes for each new scene, ensuring both expressivity and adaptability.

LiDAR data are often treated as digital elevation models, i.e. images with

pixel elevations [127, 193, 119]. Thus, our work is related to image-based

primitive prediction [268, 126, 156, 251] and unsupervised multi-object image

segmentation [192, 296, 231, 360]. However, 3D point clouds have higher

precision and can better represent multi-layered structures such as forest areas.

Being able to decompose real-world scenes with unknown characteristics

and jointly learning primitive shapes and parsing would constitute a significant

step towards more realistic unsupervised primitive discovery.

5.3 Method

Our goal is to learn to break down a point cloud into simpler and more eas-

ily understandable components. To achieve this, we propose an analysis-by-

synthesis approach where we train a highly-constrained modelM to approxi-

mate a point cloud as a combination of simple 3D shapes.

5.3.1 Probabilistic Scene Reconstruction Model

In this section, we first define our model, which selects up to S shapes among

K prototypes and deform each to best approximate an input point cloud X, as

illustrated in Figure 5.2. We then explain how we can model the selection as a

probabilistic process, which will enable us to define meaningful training losses.

This can be seen as an extension of the model of Paschalidou et al . [252] to

multiple primitives.

Scene reconstruction model. Our full model M is the combination of S

reconstruction models Ms, which we refer to as slots in analogy to the Slot

Attention approach [192]. Each slot contributes to the final reconstruction

only if it is activated. Slot activation is determined by a binary variable as:

Ms is activated if and only if as = 1. The output ofM(X) is the combination

of the reconstructions from all activated slots:

M(X) = ⋃
s=1⋯S
as=1

Ms(X) . (5.1)
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Each slot model outputs a point cloud which we define as the deformation of

one of the K learnable prototype 3D point clouds P1,⋯,PK shared across all

slots. We associate to each slot s a network Ts which maps X to a an affine

transformation in 3D space Ts(X). The outputMs(X) of slot s is determined

by a variable bs ∈ {1,⋯,K}. If bs = k, then the output of Ms(X) is Yk
s , the

result of applying the transformation Ts(X) to the prototype Pk:

Yk
s = Ts(X)[P

k] . (5.2)

Please note that Yk
s is a function of X. However, to keep our notations simple,

we omit this dependence.

Probabilistic modeling. We make our reconstruction model probabilistic

by modeling a and b as random variables following (multi-)Bernoulli distribu-

tions. We call αs the probability the slot s is activated and βk
s the probability

that it is activated and selects the prototype k, leading to a reconstruction Yk
s :

p(as = 1) = αs (5.3)

p(as = 1, bs = k) = β
k
s . (5.4)

For each slot, we predict the vector (1 − αs,β1
s , ...β

K
s ) with a neural network

taking the point cloud X as input and finishing with a softmax layer. Again,

we don’t write the dependency of the αs and βs on X explicitly to simplify the

notations.

The full modelM(X) and the slots modelsMs(X) can now be seen as ran-

dom variables, producing different potential reconstructions with probabilities

given by α and β. During inference, we consider only slots with αs > 0.5 and

select the prototype with highest βk
s . However, during training, we compute

all reconstructions Yk
s .

5.3.2 Training Losses

Given a large 3D scene we train our model by sampling square patches X

from the scene. For each batch of patches, we minimize a loss composed of

a reconstruction loss Lrec and several regularization terms Lreg implementing
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different priors:

L(M) = EX [Lrec (M,X)] + Lreg (M) . (5.5)

Reconstruction loss. We define the reconstruction loss Lrec as the sum of

two losses:

Lrec(M,X) = Lacc(M,X) + Lcov(M,X) . (5.6)

Lacc encourages likely reconstructions ofM(X) to accurately approximate X,

and Lcov ensures coverage, i.e., that each points of X is well-reconstructed

by at least one activated models. We define each term using the asymmetric

Chamfer distance d between two point clouds X and Y defined as:

d(X,Y) =
1

∣X∣ �x∈Xmin
y∈Y

∣∣x − y∣∣22 , (5.7)

with ∣.∣ the number of points in a point cloud. We write d(x,Y) the distance

between the point x and its closest point in Y, considering x as a point cloud

containing a single point.

We define Lacc as the average over all slots s of the expected distance

betweenMs(X) and X:

Lacc(M,X) =
1

S

S�
s=1

Ea,b [d (Ms(X),X)] (5.8)

=
1

S

S�
s=1

K�
k=1

βk
s d �Yk

s ,X� . (5.9)

Conversely, we define Lcov as the average over all points x of X of the expected

distance between x and its closest point in the reconstruction:

Lcov(M,X) =
1

∣X∣ �x∈XEa,b �min
s∣as=1

d (x,Ms(X))� . (5.10)

Following the ideas of Paschalidou et al . [252], we first define ∆(x, s) as the

expected distance between x and Ms(X) conditionally to the slot s being
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activated:

∆(x, s) = Ebs∣as=1 [d (x,Ms(X))] (5.11)

=
1

αs

K�
k=1

βk
s d �x,Yk

s� . (5.12)

Next, we compute for each point x a permutation σx of [1, S] such that

∆(x,σx(s)) is non-decreasing, i.e.:

∆ (x,σx (1)) ≤ ⋯ ≤∆ (x,σx (S)) . (5.13)

If s is the closest activated slot to x, then all the slots closer to x must be

deactivated. This observation leads us to rewrite Lcov as follows:

Lcov(M,X) =
1

∣X∣ �x∈X
S�
s=1

∆(x, s) αs ∏
r<σx(s)

(1 − ασ−1x (r)
) , (5.14)

with σ−1 the inverse permutation of σ.

Regularization losses. We define several regularization losses implement-

ing our priors on the model output and preventing degenerate local minima:

• To encourage the slot activation to be sparse, we use the following loss

penalizing slot activation:

Lact(M) =
S�
s=1

EX [αs] . (5.15)

• To avoid slots that are never used, we use the following loss, which we

compute batch-wise:

Lslot(M) = − S�
s=1

min� EX [αs]

∑S
t=1EX [αt]

, �S� , (5.16)

with �S a hyperparameter that can be interpreted as the smallest acceptable

relative use frequency for a slot.

• To avoid unused prototypes, we use the following loss:

Lproto(M) = − K�
k=1

min
⎛
⎝
EX �∑S

s=1 β
k
s �

EX �∑S
s=1αs� , �K

⎞
⎠ , (5.17)
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with �K a hyperparameter that can be interpreted as the smallest acceptable

relative use frequency for a prototype.

The full regularization loss is a weighted sum of the three losses described

above:

Lreg = λactLact + λslotLslot + λprotoLproto , (5.18)

where we use λact = 10−4, λslot = λproto = 0.1 and �S = �K = 0.1 in all our

experiments on the Earth Parser Dataset.

Final loss. We train our model to minimize the following loss:

L(X,M) = Lrec (X,M)+Lreg (M) . (5.19)

5.3.3 Training and implementation details

Model configuration. We process the input point cloud X using a similar

architecture as in [252]. We first voxelize it into a 64×64×64 grid and convert

it to a vector using a sequence of 6 3D sparse convolutions [66] and 6 strided

convolutions. The resulting representation is then transformed using one linear

layer for each slot. These features are then decoded by simple 2-layer MLPs:

one generates the distribution parameters αs and βk
s , and the other ones the

parameters of the 3D transformations Ts(X). The transformations include an

anisotropic scaling, a y-axis tilt of ±π/10, a rotation around the z-axis, and a

translation, in this specific order. We use S = 64 slots and K = 6 prototypes

as default parameters.

The intensity of the return signal of each point is available in the LiDAR

scans. We associate each prototype with a single learnable intensity parameter

and perform the Chamfer distance (Equation 5.7) in 4 dimensions: spatial

coordinates normalized to [0,1]3 and intensity to [0,0.1].

Curriculum learning. The network predicts simultaneously the slot’s prob-

ability distributions and their deformations. This results in many concurrent

degrees of freedom and can make the training process unstable. Therefore,

following Monnier et al . [231] and Loiseau et al . [195], we implement a multi-

stage curriculum learning strategy. We first initialize the prototypes as point



94 CHAPTER 5. DISCOVERING PROTOTYPES IN AERIAL SCANS

Table 5.1: Earth Parser Dataset. Our proposed dataset is composed of 7
diverse scenes.

Name
Surface # points annotation num. of
in km2 ×106 ratio in % classes

Crop fields 1.1 19.7 77.4 2
Forest 1.1 46.7 97.8 2
Greenhouses 0.1 1.3 95.6 3
Marina 0.1 0.5 92.7 2
Power plant 0.2 8.6 78.4 4
Urban 1.1 15.7 95.9 3
Windturbines 4.2 5.6 — —

Total 7.7 98.3 89.6 —

clouds uniformly sampled from a random cuboid and gradually unfreeze the

model parameters in the following order: (i) translation, rotation, tilt, slot

activation, and choice of prototype; (ii) intensities of the prototypes, when

available; (iii) scales of the prototypes; (iv) shapes of the prototypes (positions

of their 3D points); (v) anisotropic scalings of the prototypes. As shown in

the result section (Section 5.4), each step of this curriculum scheme improves

the performances.

Prototypes selection. We automatically select the number of prototypes

for a complete scene using a simple greedy algorithm. We measure the increase

of reconstruction loss when preventing the model from selecting each prototype

individually. We remove the prototype with the lowest increase if it is lower

than 5%, and iterate.

Detailed architecture. Our model takes a point cloud X and computes

a voxelization in a grid of size 64 × 64 × 64. As shown in Figure 5.5, our

model is composed of (i) a point encoder Epoint, (ii) a scene encoder Escene,

(iii) S slot feature extractors Ds and (iv) five shared slot parameters genera-

tors: Dproba,Dscale,Drot-y,Drot-z,Dtranslate. We provide details on these networks

below.

• Point encoder. Each input point of X is associated with a 10-dimensional

descriptor: (1-3) normalized position in the tile in [−1, 1]3, (4-6) rgb color, (7)

normalized LiDAR reflectance, and (8-10) its offset relative to the center of
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Figure 5.5: Learnable Earth Parser Detailed Architecture. Details of
the architecture showing all layers in Epoint,Escene,Ds,Dproba,Dscale,Drot-y,Drot-z

and Dtranslate. We use LayerNorm [17] and LeakyRelu after all hidden layers.

its assigned voxel. The point encoder Epoint is a linear layer that maps these

descriptors to a 16-dimensional point feature.

• Scene encoder. We compute voxel features by max-pooling the features

of the points associated to each voxel. The scene encoder Escene then maps

these voxel features to a single scene feature, a vector of size 1024, by using a

sequence of 6 3D sparse convolutions [66] with kernel size [3,3,3] and 6 strided

convolutions with kernel size [2,2, 2] and stride [2,2,2].

• Slot feature extractor. Each slot s takes as input the scene feature

produced by Escene and maps it to a slot feature of size 128 with a dedicated

linear layer Ds.

• Slot parameters generators. Five 3-layers MLPs are shared by all slots

to map their slot features to the associated parameters of the reconstruction

model.

- Dproba outputs the slot activation and prototype choice probability αs et βk
s .

- Dscale outputs three scales in [−1/2,2], corresponding to scaling the proto-

types in each canonical directions.

- Drot-y outputs a rotation in [−π/10,π/10] to be applied around the y axis.
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- Drot-z outputs a 2D point on the unit circle which is then mapped to a

rotation in [−π,π] to be applied around the z axis.

- Dtranslate outputs a 3D translation vector in R3.

These parameters are used to determine the activation of the slot, choose a

prototype, then apply a sequence of transformations in the following order:

scaling, y-rotation, z-rotation, and translation.

Implementation details. Our model is trained separately for each scene by

randomly sampling square patches. During training, the patches are subsam-

pled to a maximum 10000 points. We use the efficient CUDA implementation

of the Chamfer distance by PyTorch3D [263] which significantly speeds up

training. We use the ADAM optimizer [155] with a learning rate of 10−4 and

default parameters, except for the prototypes’ intensities, scales and points’

positions which we learn without weight decay. We define an “epoch” as 512

batches of 64 patches, and each stage of the curriculum is trained until con-

vergence. Due to the arbitrary square shape of our samples X, some objects

can appear only partly in a patch. We don’t want the network to learn pro-

totypes specifically to fit such object parts, as it is an artifact of our sampling

procedure. Instead, we propose to ignore the points of the reconstruction Yk
s

that falls beyond the normalized [−1,1] extent of the patches. This allows the
network to predict full objects without being penalized in terms of accuracy.

To do so, we modify Equation 5.9 as follows:

Lacc(M,X) =
1

S

S�
s=1

K�
k=1

βk
s d �Ỹk

s ,X� , (5.20)

where Ỹk
s is the subset of points of Yk

s that falls within the horizontal extent

of their patch [−1, 1]2×R. To prevent the slots from predicting shapes outside

of the patch extent, we regularize our model by the square Euclidean distance

between the output of Dtranslate and the set [−1,1]2 ×R for each slot.

5.4 Results

In this section, we assess quantitatively and qualitatively the ability of our

method to parse complex 3D aerial data. In Section 5.4.1, we first give an
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overview of our proposed dataset of aerial LiDAR scans. In Section 5.4.2, we

then discuss our evaluation metrics and baselines. Finally, we present quanti-

tative (Section 5.4.3) and qualitative (Section 5.4.4) analysis of our results.

5.4.1 Earth Parser Dataset

We introduce a new dataset to train and evaluate parsing methods on large,

uncurated aerial LiDAR scans. We use data from the French Mapping Agency

associated to the LiDAR-HD [142] project. Each scan is composed of several

airborne LiDAR acquisitions taken at different angles and fused, leading to

a minimum resolution of 20 points/m2. The points are associated with their

laser reflectance (intensity), and colorized based on asynchronous aerial pho-

tography. The majority of 3D points are annotated with a coarse semantic

label, such as ground, building, or vegetation.

We selected 7 scenes, covering over 7.7km2 and a total of 98 million 3D

points, with diverse content and complexity, such as dense habitations, forests,

or complex industrial facilities. The characteristics of the scenes are detailed

in Table 5.1 and each is visualized in Figure 5.3.

Classes names. As show in Table 5.2, each scene of the Earth Parser

Dataset is annotated with different classes among “ground”, “vegetation”,

“building”, “boats”, “bridge”, “electric lines”, and “windturbine”.

Localization. We report the localization of the scenes of Earth Parser Dataset

in Table 5.2. Our dataset has been acquired in various environments dis-

tributed on the French territory.

5.4.2 Evaluation Metrics and Baselines

We quantitatively evaluated our performances for reconstruction and semantic

segmentation and compared with several unsupervised scene decomposition

approaches.

Evaluation metrics. The goal of our model is to summarize a point cloud

using few prototypes and the quality of the reconstruction is of course critical.
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Table 5.2: Earth Parser Dataset Classes and Localisation. We show the
class names and color codes for the seven scenes of our dataset. Unlabeled
points are represented in black . The Earth Parser Dataset was acquired at
different locations in France, spanning a wide variety of environments.

Crop fields Forest Greenhouses Marina Power plant Urban Windturbines

Ground Ground Ground Boats Ground Ground Ground

Vegetation Vegetation Vegetation Bridge Vegetation Vegetation Vegetation

Building Building Building Windturbine

Electric lines
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We measure it using the symmetric Chamfer distance (“Cham.” in the Ta-

bles) between the input and the output of our model, only taking the points’

positions into account (not the intensity).

If the points of our prototype point clouds are associated to a semantic class,

we can propagate the labels from the reconstruction to the input cloud and

perform semantic segmentation. We then evaluate the quality of the prediction

with the class-averaged Intersection-over-Union (mIoU) metric. In a practical

scenario, an operator can manually annotate the points of the 3D prototypes,

which can then be used to label the entirety of X with minimal effort. To

perform automatic evaluation, we assign instead to each prototype’s point the

most frequent class in the reconstructions of the closest point in the input (see

Figure 5.8).

Baselines. We adapted several unsupervised approaches for scene recon-

struction and/or semantic segmentation tasks to provide baselines for our ap-

proach:

• k-means. We cluster the points of the input with the k-means algorithm [205]

using as many clusters as we use prototypes in our method. We obtained the

best results by using a combination of the point’s intensity and elevation as fea-

tures for clustering. We then assign to each centroid its most frequent class,

leading to a semantic segmentation. This method does not reconstruct the

input, but gives us a simple baseline score for semantic segmentation.

• SuperQuadrics revisited. We use the method of Paschalidou et al . [252]

to learn to approximate the scenes with an adaptive number of superquadrics

[20]. It provides a baseline for reconstruction and a qualitative comparison for

instance segmentation.

• DTI-Sprites. We use the point cloud to construct a digital elevation model,

i.e. a 2.5D image where each pixel has an elevation and intensity value. We

then adapt the unsupervised image decomposition approach of Monnier et

al . [231] to break down this image into a set of 2.5D sprites. We evaluate the

quality of the 2.5D reconstruction by sampling 25 point per pixel and using

its elevation and the semantic segmentation in a way similar to our method.

• AtlasNet v2. This extension [78] of AtlasNet [115] uses a fixed number of

learnable prototype point clouds to reconstruct the input. It can be evaluated

for both reconstruction and semantic segmentation in a way similar to ours.
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We extend it to handle intensity in a manner akin to our approach, which

improves its segmentation results.

Similar to our method, we train all baselines except k-means by sampling

square patches in each scene. Figure 5.4 shows the output of the reconstruction

methods.

5.4.3 Quantitative Results

Earth Parser Dataset. Quantitative reconstruction and semantic segmen-

tation results are provided in Table 5.3. Despite being highly constrained, our

model yields the best reconstruction in 6 out of 7 scenes. Moreover, our model

significantly outperforms all the other evaluated methods in terms of semantic

segmentation across all scenes.

Despite its simplicity, the k-means baseline provides semantic segmentation

performance on par with our best reconstruction baselines. DTI-Sprites [231]

leads to lower reconstruction quality, which is expected as it models a 3D point

cloud in 2.5D and this hurts its semantic segmentation performances. Atlas-

Net v2 [78] provides good reconstructions but segmentation fails for scenes

such as crop fields or urban areas due to its inability to adapt the prototypes

used depending on the considered patches. On the contrary, SuperQuadrics

[252] can adjust the number of prototypes used and their shapes to some de-

gree, but it is not adapted for semantic segmentation since it uses a single

type of prototype. In contrast, our approach learns a small set of prototypical

shapes and our probabilistic slot selection approach can handle inputs with a

varying number of objects.

Ablation study. The results of our ablation study are reported in Table 5.4.

First, we observe that the prototype selection post-processing step has limited

impact on the quality of the prediction and reconstructions, but it allows us

to significantly decrease the number of prototypes and adapt it to the scene.

Second, we evaluate the impact of reducing the expressivity of our model. We

successively remove: (i) the anisotropic scaling of T , and the possibility of

learning the prototype’s (ii) points position, (iii) scale, and (iv) intensity. As

expected, each deformation we remove decreases the quality of the 3D recon-

struction and segmentation. Learning such model with a curriculum scheme
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Table 5.4: Ablation Study. We evaluate the effect of our prototype selection
post-processing, our model’s degrees of freedom, and our different regulariza-
tion losses. See text for details.

Urban Marina

Cham. mIoU Cham. mIoU

Learnable Earth Parser 0.29 83.2 0.82 78.7

w/o post-processing 0.28 83.7 0.96 78.3

ex
p
re
ss
iv
it
y w/o aniso-scale 0.33 82.4 1.04 67.2

w/o prototypes 0.36 68.3 1.07 42.8

w/o scales 0.55 58.9 1.33 40.8

w/o intensities 0.55 58.7 1.09 40.8

lo
ss
es

w/o Lact 0.17 54.1 0.80 56.9

w/o Lslot 0.25 77.8 0.81 43.7

w/o Lproto 0.28 57.2 0.97 40.7

enables us to demonstrate strong reconstruction and semantic performances,

without falling into bad minima. Third, we study the impact of removing the

regularization losses introduced in Section 5.3.2. As expected, removing any

of these losses clearly decreases the semantic segmentation performance, but

improves the reconstruction quality for the losses related to the slots’ activa-

tion.

ShapeNet. We also evaluate the performance of our model on the 2690

planes from ShapeNet-Part [280], whose points are annotated as wing, engine,

tail, or body. Since those point clouds are aligned, we experimented with

and without random rotations around the z-axis during training and eval-

uation. We report the performance of our approach, AtlasNet v2 [78] and

SuperQuadrics revisited [252], and illustrations of a reconstructed shape from

the dataset in Table 5.5. While AtlasNet v2 provides a better reconstruction

and segmentation in the aligned dataset, our model can better handle rota-

tions. SuperQuadrics reconstructions make sense qualitatively, but are much

worse in terms of accuracy, and do not enable semantic segmentation.
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Table 5.5: Synthetic Shapes. We train our method on all planes from
ShapeNet-Part [280], with and without random rotations. We show the recon-
struction of an input plane and the prototypes learned on the dataset without
rotations.

AtlasNet v2 [78] SuperQuadrics [252] Ours

a
li
g
n
e
d

Recons.

Protos. —

Cham. 0.89 3.07 0.95

mIoU 72.8 — 67.8

w
it
h

ra
n
d
o
m

ro
ta
ti
o
n
s

Recons.

Protos. —

Cham. 1.46 2.91 1.34

mIoU 34.5 — 68.6

5.4.4 Qualitative Results

Reconstruction. Figure 5.4 shows the reconstructions of our method and

baselines for two scenes. DTI-Sprites only provides a 2.5D reconstitution and

struggles to capture objects like wires or poles accurately. AtlasNet v2 suffers

from its inability to adapt its prototype usage to the input. SuperQuadrics’

primitives are too coarse for reconstructing the diversity of objects present in

a complex scan and are of a single type. In contrast, our Learnable Earth

Parser models the intensity and can adapt to diverse shapes.

Instance segmentation. We can perform instance segmentation simply by

considering each slot as a different instance. This is particularly interesting for

parsing natural woodlands, a key endeavor for forest management [234] and
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Figure 5.6: Instance Segmentation. We can identify the reconstruction of
each slot as a separate instance, allowing us to perform instance segmentation
of complex data such as dense natural forests or boats in a marina. For this
visualization, we considered the points associated to “trees” or “boat hull”
prototypes and color each of their instance randomly. We represent the in-
stances predicted with our algorithm and by SuperQuadric [252]. We see that
SuperQuadrics’ reconstruction struggles modeling complex objects with only
one instance. Moreover, our method make it easier to differentiate between
different object types such as “trees” or “boat hull”, while all superquadric are
generated in the same way.

biomass estimation [88]. While this task has a long history of handcrafted ap-

proaches [327], current deep learning approaches are mostly limited to artificial

or low-density forests [301]. As shown qualitatively in Figure 5.6, our Learn-

able Earth Parser can learn without any supervision to separate individual

trees in dense forests or boats in a marina from aerial LiDAR scans. We show

a comparison of the instance segmentation produced by SuperQuadrics [252]

and our Learnable Earth Parser. Since SuperQuadrics [252] uses a restricted

family of 3D shapes to reconstruct an input scene, it has worst qualitative

performances for instance segmentation when compared to our model, which

learns scene-specific prototypes and can provide semantic information.

Semantic segmentation. Associating to each point of the input the seman-

tic class of the closest reconstructed point, we can perform semantic segmen-

tation. As shown in Figure 5.7, our model can predict with minimal effort the

semantic segmentation of a urban district or a power plant.
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Urban Power plant

Ground Truth Prediction Ground Truth Prediction

Figure 5.7: Semantic Segmentation. Our Learnable Earth Parser can per-
form semantic segmentation of large real-world scene based on prototypes an-
notation. Black points in the ground truth are non-annotated points.

Windturbines (3/5) Marina (3/3)

Power plant (3/4) Greenhouses (3/5)

Figure 5.8: Learned Prototypes. Selected learned prototypes on different
scenes. We show three prototypes among those selected by our post-processing
selection.

Interpretable prototypes. In Figure 5.8, we show prototypes learned on

our Earth Parser Dataset with colors showing the associated semantic label

for each point. These prototypes give at a glance insights on the content of

these real-world scenes. Our model is able to learn a wide variety of shapes,

such as boats’ masts, wind turbines or greenhouses. Our selection strategy is

also able to adapt the number of prototypes to the complexity of the overall

scene.

Earth Parser Dataset results. We show in Figure 5.9 the ground truth

semantic segmentation, our predicted semantic segmentation, our reconstruc-

tion and our learned prototypes. They showcase the quality, interpretability,

and diversity of use cases of our model on this dataset of aerial LiDAR scans.
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Ground Semantic

Truth Segmentation Reconstruction Prototypes
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Figure 5.9: Qualitative Results. For all scenes of the Earth Parser Dataset,
we show the ground truth labels, the semantic segmentation, reconstruction,
and prototypes learned by our Learnable Earth Parser.
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5.5 Conclusion

We introduced a novel unsupervised method for parsing complex real-world

aerial scans into simple parts using a small set of learned prototypical shapes.

We demonstrate the quality and interpretability of our results on a novel

dataset of aerial LiDAR scans. To the best of our knowledge, we are the

first to demonstrate the possibility of performing deep unsupervised 3D shape

analysis on such a challenging real-world dataset. We believe that our results

open new perspectives for computer-assisted environment monitoring and eco-

nomic intelligence.
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Chapter 6

Conclusion

In this chapter, we summarize our contributions and outline some future re-

search directions.

6.1 Contributions

The key takeaways from this thesis are twofold: (i) the acquisition geometry

of 3D sensors can be leveraged to accelerate data processing and improve

efficiency, and (ii) the use of models operating in input space leads to powerful

and interpretable unsupervised methods. By developing methods which take

into account the sensor’s specificity and that do not need to be trained on

gigantic amounts of annotated data, we worked toward more efficient and

interpretable models for real-world 3D data analysis. In this thesis, we make

three main contributions:

Online Segmentation of LiDAR Sequences. In Chapter 3, we propose

a novel approach that takes advantage of the acquisition geometry of LiDAR

sensors. Our real-time semantic segmentation method is based on an effi-

cient spatio-temporal transformer and outperforms existing methods in terms

of latency and compacity while preserving state-of-the-art segmentation per-

formances. We also introduce an open-source annotated dataset specifically

designed to assess and design real-time segmentation methods. We hope that

this work will encourage future work to take advantage of the specificities of

LiDAR data to reach higher efficiency.

109
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Exploring Shape Collections. In Chapter 4, we present a new take on

linear shape models with deep learning. We present an interpretable unsu-

pervised representation learning framework for large unstructured 3D shape

collections. Our alignment-aware model allows for concise, expressive, and

interpretable overviews of unaligned point-cloud collections.

Discovering Prototypes in Aerial Scans. In Chapter 5, we extend the

3D unsupervised learning framework of Chapter 4 to parse complex aerial

scans into simple parts using a small set of learned shapes. We also present

an open-source dataset acquired by aerial LiDAR in various environments,

such as forests, urban areas, and marinas. We demonstrate the possibility

of performing deep unsupervised 3D shape analysis on challenging real-world

data. We believe that our results open new perspectives for computer-assisted

environment monitoring and economic intelligence, such as improved biomass

or urban expansion monitoring.

6.2 Perspectives

In this section, we discuss exciting research directions to extend the results

of this thesis. First, we propose approaches to improve the efficiency of deep

learning methods for real-world 3D data. Second, we consider possible exten-

sions of the deep transformation-invariant clustering framework to other data

and applications.

6.2.1 Improving the Efficiency of 3D Data Representa-

tions

As the amount of computing resources needed to train and deploy state-of-the-

art deep learning models continues to grow, we believe that working toward

more computationally efficient models is crucial. Here, we discuss ideas to

improve the efficiency of 3D deep learning methods through better data rep-

resentations.

In Chapter 3, we showed that by considering the structure of the 3D sensor,

we could leverage transformer models to obtain better performances and com-

putational efficiency. Additionally, operating on coarser 3D partitions than
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commonly used regular grids, while maintaining high semantic consistency,

could also benefit computational efficiency. Indeed, such coarser partitions

can be used to compress the data and exploit spatial redundancy, making sub-

sequent processes less demanding. To this aim, Landrieu et al . [167] propose to

over-segment 3D point clouds into superpoints with significant improvements

compared to state-of-the-art. Using a transformer on top of a precomputed

geometric partition has also shown great promise when applied to large-scale

real-world 3D data [266]. Thus, learning end-to-end a way to perform coarse

partitioning of the 3D space alongside a dedicated transformer could enable

more efficient and accurate models. Such models have already shown promis-

ing results on instance segmentation [140] but are not end-to-end. Finally,

adapting attention mechanisms to learned 3D partitioning could enhance both

methods’ performances and efficiency.

6.2.2 Improving Transformation-Invariant Clustering

Some classical approaches have explored representing data collections with a

few deformable prototypes [91, 92, 90, 93]. More recently, the deep transformation-

invariant clustering framework introduced by Monnier et al . [230] enabled to

learn deformations alongside the prototypes, making it suitable for large image

collections. In this thesis, we extended this framework to 3D shapes [195] and

real-world 3D scenes [197]. This framework could be extended further to parse

scenes with a multi-scale structure, or to other data type entirely.

New modalities. In this thesis, we considered 3D objects and scenes, but

the deep transformation-invariant framework can also be applied to other

modalities such as sounds or images for example. We now propose a generic

formulation of the deep transformation-invariant framework. For an arbitrary

modality space Ω, the method requires:

(i) a set X of N samples x ∈ Ω,
(ii) a differentiable distance d ∶ Ω ×Ω↦R between elements of Ω, and

(iii) a family of parametric differentiable deformations Tθ ∶ Ω ↦ Ω operating

on the elements of Ω, with θ the parameters of the transformations.
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Deep transformation-invariant clustering approaches rely on a reconstruction

loss to perform clustering. The generic clustering objective function L can be

written as:

L(X,P,Θ) = �
x∈X

K

min
k=1

d �x,TΘ(x) (Pk)� , (6.1)

with P = {P1,⋯, PK} ∈ ΩK a set of K learnable prototypes, and Θ a neural

network which takes as input an element of Ω and which outputs the parame-

ters θ of the transformation Tθ to apply to prototypes to reconstruct this given

input. Different variations of this loss can be designed when using a variable

number of prototypes to reconstruct an input [231, 197], when generating the

prototypes [293], or when using supervision [329].

While the work of Monnier et al . [230] has been designed for images, we ex-

tended it to three-dimensional point clouds at object [195] and scene level [197].

Other work developed the framework for other modalities such as character

analysis and recognition in text lines [293] and clustering and classification of

satellite image time series [329]. During the thesis, we also had the opportunity

to adapt this framework to audio data, leading to the following publications:

• Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Math-

ieu Aubry, Loic Landrieu, “A Model You Can Hear: Audio Identification

With Playable Prototypes”, ISMIR, 2022.

• Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Math-

ieu Aubry, Loic Landrieu, “A Model You Can Hear: Audio Classification

With Playable Prototypes”, CVPR Sight and Sound Workshop, 2022.

In this work1 [196], we were motivated by the fact that current sound-processing

methods typically rely on abstract and high-dimensional representations that

are difficult to interpret. Inspired by approaches developed for image and 3D

data, we propose an audio identification model based on learnable prototypes

in spectral space. We design data-specific audio transformation networks to

model gain, pitch, and high and low-frequency filters, see Figure 6.1. The

learned audio prototypes can be used to cluster and classify input audio sam-

ples from large collections of sounds. Our model can be trained with or without

supervision and reaches state-of-the-art instrument and speaker identification

1Code available at https://romainloiseau.fr/a-model-you-can-hear.
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Figure 6.1: A Model You Can Hear Overview. Given an input sound,
we predict for each prototype a gain, a pitch shift, as well as low and high
frequency filters at each timestamp to generate the output. Prototypes and
transformations are learned jointly using a reconstruction loss that can be
supervised or not.

results on the SOL [19, 47] and Librispeech [246] datasets, respectively. Our

model also remains easily interpretable, as our prototypes can be directly lis-

tened to and manipulated in amplitude and pitch, and capture the timber of

individual instruments and voices.

The deep transformation-invariant clustering framework has been proven

useful for analyzing unstructured data collections. It is also very generic, as

shown by the variety of modalities it can handle. For example, medical data

such as spine CT scans, and historical data where patterns can be identified,

would be particularly suited for such methods.

Multi-scale clustering. The Deep Transformation Invariant clustering ap-

proach could also benefit multi-scale scene analysis. For example, our parsing

method has shown promising results for real-world 3D scene decomposition.

However, our 3D prototypes are all with the same 3D scale. Learning with

such prototypes leads to scene decomposition at a fixed level of detail. Us-

ing prototypes with different scales could enable a more fine-grained scene

representation and capture both large structures and small structures with

more details. However, doing so in an end-to-end framework raises several

challenges: (i) learned prototypes of the smaller scale may overfit the input

scene, leading the model not to use larger ones, and (ii) the computational

complexity would increase, as the number of potentially activated slots needed

to reconstruct a scene would grow with the number of potentially discovered

structures.
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A.1 Aperçu de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.2 Modalitées 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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Chapter A

Résumé long en français

Analyse de Données 3D du Monde Réel :
Efficacité et Interprétabilité

A.1 Introduction

Le traitement des données 3D a de nombreuses applications: dans l’industrie

par exemple avec la conduite autonome, ou encore en appui aux politiques

publiques pour la gestion du territoire. Dans cette thèse, nous nous interes-

sons à la conception de méthodes pour le traitement des données 3D, fonc-

tionnant en temps réel, non supervisées ou interprétables. Ce chapitre détaille

les objectifs, les motivations, les défis et les contributions de notre travail de

recherche.

Notre principale motivation réside dans les défis et les opportunités du traite-

ment des données 3D réelles. Nous pensons qu’il est crucial de concevoir des

méthodes efficaces qui (i) répondent aux exigences d’applications telles que

la conduite autonome, (ii) contribuent à réduire l’impact environnemental de

l’intelligence artificielle en minimisant les besoins de calcul, et (iii) garantis-

sent l’acceptabilité sociale des méthodes d’apprentissage via des modèles plus

interprétables. L’impact potentiel des outils de traitement 3D sur l’action

publique nous pousse à vouloir créer des méthodes qui peuvent être facile-

ment adaptées aux besoins et applications spécifiques. De plus, nous sommes

préoccupés par la diversité limitée des jeux de données du monde réel, que le

domaine de la vision 3D utilise actuellement, et qui se concentrent souvent sur
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↓

(a) Chapitre 3. Seg-
mentation sémantique des
acquisitions LiDAR em-
barquées.

↓

(b) Chapitre 4.
Découverte de formes
dans de grandes collec-
tions 3D.

↓

(c) Chapitre 5. Anal-
yse de données aériennes
LiDAR non annotées du
monde réel.

Figure A.1: Aperçu de la thèse. Dans cette thèse, nous abordons le traite-
ment des données 3D, de la segmentation sémantique au regroupement et à la
découverte de formes.

les zones urbaines denses. Ainsi, notre objectif est de contribuer à la création

et au partage de jeux de données plus diversifiés qui représentent mieux les

scénari du monde réel.

Le domaine de la vision par ordinateur 3D présente de nombreux défis à

relever. Certains défis spécifiques ont retenu notre attention. Premièrement, la

difficulté de traiter des scènes 3D complexes du monde réel présentant différents

niveaux d’encombrement et d’occultation. Deuxièmement, la rareté des en-

sembles de données annotés permettant le développement des algorithmes. Et

troisièmement, le défi de l’interprétabilité de l’apprentissage profond, qui est

crucial pour comprendre et expliquer le fonctionnement interne des modèles

complexes.

Cette thèse apporte une contribution significative au domaine de la vision

3D par ordinateur. Ce manuscrit présente trois projets principaux, dont deux

ont été publiés dans des conférences et des ateliers internationaux, tandis que

le troisième est en cours d’examen pour être publié dans une conférence in-

ternationale de vision par ordinateur. De plus, une extension de notre travail
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(a) Nuage de points.

Illustration issue de [194].

(b) Voxels.

Illustration issue de [298].

(c) Octrees.

Illustration issue de [264].

(d) Fonctions implicites.

Illustration issue de [250].

(e) Maillages.

Illustration issue de [5].

(f) Modèles CAD.

Illustration issue de [158].

(g) Modèles structurés. Illustration issue de [48].

Figure A.2: Modalitées 3D. Les données 3D peuvent être représentées de
différentes manières en fonction de chaque objectif spécifique.

pour les données tridimensionnelles aux données audio a été présentée lors

d’une conférence internationale d’analyse de données audio, et lors d’un ate-

lier d’une conférence internationale de vision par ordinateur.

Comme vu en Figure A.1, cette thèse est structurée de la manière suivante :

Chapitre 2. État de l’art. Nous présentons les représentations, les tâches,

les méthodes et les ensembles de données 3D les plus couramment utilisés dans

le domaine.

Chapitre 3. Segmentation sémantique en temps réel de séquences

LiDAR. Nous proposons une nouvelle approche, qui exploite la géométrie

du capteur LiDAR pour concevoir une méthode de segmentation sémantique

en temps réel surpassant les méthodes existantes en termes de latence, tout en

préservant les performances de segmentation sémantique. Nous introduisons
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également un ensemble de données annotées public, conçu pour évaluer et

concevoir des méthodes de segmentation en temps réel.

Chapitre 4. Compréhension non supervisée de collections de formes

3D à grande échelle. Nous proposons d’apprendre des prototypes visibles

pour comprendre des grandes collections de formes 3D, dans un contexte non

supervisé. Nous présentons des résultats à l’état de l’art du regroupement de

formes et de la segmentation sémantique avec très peu d’exemples annotés.

Chapitre 5. Prototypes appris en 3D pour des données du monde réel

à grande échelle. Nous étendons le cadre d’apprentissage de prototypes 3D

présenté dans le Chapitre 4 pour comprendre les acquisitions aériennes 3D du

monde réel à grande échelle avec des prototypes appris. Nous introduisons

également un ensemble de données LiDAR aériennes public acquis dans divers

environnements, tels que des forêts, des zones urbaines et des ports de plai-

sance.

Chapitre 6. Conclusion. Dans ce chapitre, nous résumons nos contribu-

tions et discutons des principales limites de notre travail. Nous proposons

également des pistes de recherche futures pour le traitement des données 3D.

A.2 État de l’art

Les avancées récentes dans la collecte et le traitement des données 3D ont été

utilisées pour des applications telles que les véhicules autonomes, la gestion du

territoire et l’analyse des données médicales. Ce chapitre présente les concepts

clés du traitement des données 3D liés à notre travail. Nous commençons par

discuter des représentations des données 3D, nous expliquons ensuite les tâches

et les approches principales, et terminons par présenter les jeux de données 3D

les plus utilisés.

Les principales façons de représenter et structurer les données 3D sont les

suivantes : les nuages de points, les représentations basées sur les voxels, les

fonctions implicites, les maillages et les représentations basées sur des primi-

tives. Consultez la Figure A.2 pour des exemples.
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horse cat horse

(a) Classification de formes.

Illustration issue de [256].

(b) Regroupement de formes.

Illustration issue de [367].

(c) Segmentation sémantique. Illustration issue de [274].

(d) Découpage d’objets. Illustration issue de [289].

Figure A.3: Tâches 3D. Nous nous interessons à plusieurs tâches de vision
par ordinateur ayant pour objectif d’analyser des données 3D.

La caractérisation des formes est la première étape pour comprendre la struc-

ture des données 3D. Les descripteurs de forme doivent être discriminants et

faciles à calculer. Avant l’avènement de l’apprentissage profond, les descrip-

teurs 3D s’appuyaient principalement sur des caractéristiques géométriques [254,

342, 117, 281, 72, 170, 1], spectrales [275, 302, 41, 14] et globales.

Les réseaux neuronaux ont réussi à relever de nombreux défis en matière

d’analyse de formes 3D. Les principales approches d’extraction de caractéristiques

3D peuvent être classifiées en fonction de la représentation des données 3D

qu’elles utilisent : voxels [59], nuages de points [257], graphes [168], sur-

faces [42, 115], modèles structurés [174, 102], ou plus récemment des modèles
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(a) ShapeNet [48]. (b) ABC [158].

(c) Simulateur LiDAR [211].
(d) PreSIL [141]: généré depuis GTA-V.

(e) SemanticKitti [23]. (f) KITTI-360 [186]. (g) HelixNet [194].

(h) SUM [98]. (i) DALES [325]. (j) Earth Parser
Dataset [197].

Figure A.4: Jeux de données 3D. Alors que les méthodes de traitement des
données 3D sont de plus en plus performantes, leurs résultats et leur robustesse
sont guidés en partie par l’augmentation croissante de la quantité de jeux de
données 3D de bonne qualité.

volumétriques implicites [250, 56, 222]. L’apprentissage profond a été utilisé

avec succès pour des tâches aussi diverses que la classification [207], la segmen-

tation [311], la génération de formes [115, 310], la mise en correspondance [244],

le débruitage [132] et la compression [138]. Nous détaillons les entrées et sorties

de chaque tâche, expliquons les approches existantes et fournissons quelques

exemples d’applications dans la Figure A.3.

Dans cette thèse, nous nous intéressons au traitement de nuages de points

3D, acquis à partir de capteurs 3D ou non. La littérature utilise beaucoup

de jeux de données synthétiques et du monde réel différents pour évaluer
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Training Set Validation Set

1- Clermont 2- Clermont 3- CASQY 13- Paris (5°) 14- Vincennes

4- CASQY 5- CASQY 6- Paris (11°) 15- Guyancourt 16- Vincennes (SE)

7- Clermont (Uni) 8- Clermont (Uni) 9- Paris (6°) 17- Vincennes (SE) 18- Amiens

10- Paris (6°) 11- Paris (6°) 12- Paris (6°) 19- Amiens 20- Amiens

Test Set

Figure A.5: HelixNet. Nous avons divisé les acquisitions en 12 séquences
d’entrâınement, 2 de validation et 6 de test. HelixNet contient des scènes dans
différents environnements urbains provenant de capteurs statiques ou mobiles.

les méthodes. La Figure A.4 présente ces différents jeux de données. Nous

présentons les principaux ensembles de données synthétiques centrés sur les

objets couramment utilisés dans la communauté de la vision par ordinateur

pour développer de nouvelles méthodes de traitement. Ensuite, nous décrivons

des ensembles de données principalement utilisés dans la conduite autonome et

collectés directement à partir de capteurs 3D. Enfin, nous présentons plusieurs

ensembles de données LiDAR, qui sont acquis à partir de capteurs montés sur

des plates-formes aériennes et offrent des défis uniques pour le traitement des

nuages de points, en raison de leur grande échelle.

A.3 Segmentation automatique de flux LiDAR

Les capteurs LiDAR rotatifs montés sur les toits de véhicules sont largement

utilisés par les véhicules autonomes. Cependant, la plupart des jeux de données

sémantiques et des algorithmes, utilisés pour la segmentation des séquences

LiDAR, utilisent des rotations complètes du capteur, entrâınant une latence

d’acquisition incompatible avec les applications en temps réel.
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Figure A.6: Helix4D. Une séquence d’acquisition est divisée en tranches, dont
les points sont encodés par Epoint et agrégés dans une partition cylindrique fine.
Un encodeur convolutionnel Egrid produit des descripteurs à des résolutions
plus basses. Nous appliquons W mécanismes d’attention spatio-temporels T w

consécutifs sur les voxels les plus larges, avec une attention s’étendant sur les
tranches d’acquisition courantes et passées. Les descripteurs résultants sont
échantillonnés à la résolution d’origine avec un décodeur convolutionnel Dgrid en
utilisant les descripteurs de l’encodeur aux résolutions intermédiaires. Enfin,
les descripteurs sur la grille sont reprojetés sur les points, qui sont classés par
Dpoint.

Table A.1: Resultats de segmentation sémantique. Performance de
Helix4D et des approches concurrentes sur HelixNet et sur l’ensemble de val-
idation de SemanticKITTI⋆, avec en entrée 360 ou 72 degrés d’acquisition.
Nous rapportons la moyenne de l’Intersection-over-Union (mIoU) et le temps
d’inférence en ms. Les méthodes répondant à l’exigence de temps réel sont in-
diquées par ✓et celles qui ne le sont pas par ✗. ⋆ SemanticKITTI est désigné
par SK. Mesurer la latence sur cet ensemble de données nécessite de faire des
approximations non-réalistes sur la position de la fibre.

Méthode
Taille Rotation 104ms 1⁄5 rotation 21ms

×106 HelixNet SK⋆ Inf. (ms) HelixNet SK⋆ Inf. (ms)

SalsaNeXt [69] 6.7 69.4 55.8 23 ✓ 68.2 55.6 10 ✓

PolarNet [368] 13.6 73.6 58.2 49 ✓ 72.2 56.9 36 ✗

Pan. PolarNet [380] 13.7 — 64.5 50 ✓ — 60.3 44 ✗

SPVNAS [307] 10.8 73.4 64.7 73 ✓ 69.9 57.8 44 ✗

Cylinder3D [381] 55.9 76.6 66.9 108 ✗ 75.0 65.3 54 ✗

Helix4D 1.0 79.4 66.7 45 ✓ 78.7 66.8 19 ✓

HelixNet. Pour résoudre ce problème, nous introduisons d’abord HelixNet

(voir Figure A.5), un ensemble de données de 10 milliards de points an-

notés, contenant des horodatages et des informations de rotation de capteur

nécessaires pour évaluer avec précision la capacité des algorithmes de segmen-
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✲

✻

✲

✻

✲

✻

✲

✻

Figure A.7: Prototypes appris. Notre approche permet de découvrir sans
supervision des modèles linéaires de formes à partir de grandes collections de
formes. Nous montrons deux exemples de familles à deux dimensions et huit
prototypes découverts pour ABC [158] (gauche) et ShapeNet [48] (droite).

tation à analyser les données en temps réel.

Helix4D. Deuxièmement, nous proposons Helix4D (voir Figure A.6), une

architecture contenant un mécanisme d’attention spatio-temporel compact et

efficace spécialement conçue pour les séquences LiDAR rotatives. Helix4D

fonctionne sur des tranches d’acquisition correspondant à une fraction d’une

rotation complète du capteur, réduisant ainsi considérablement la latence.

Comme montré en Table A.1, Helix4D atteint une précision comparable

aux meilleurs algorithmes de segmentation sur HelixNet et SemanticKITTI,

en divisant la latence par plus de 5 et la taille du modèle par plus de 50.

A.4 Exploration de collections de formes 3D

Dans ce chapitre, nous revisitons la représentation classique des nuages de

points 3D avec des prototypes qui sont des modèles de formes linéaires. L’idée

clé est d’utiliser l’apprentissage profond pour représenter une collection de

formes 3D, sous forme de transformations affines de modèles de formes linéaires

de faible dimension.

Modèles linéaires de forme. Chaque modèle linéaire est caractérisé par

un prototype de forme, une base de forme de faible dimension, et deux réseaux

neuronaux. Comme montré en Figure A.8, les réseaux prennent en entrée

un nuage de points, et prédisent les coordonnées d’une forme dans la base

linéaire, et la transformation affine qui approxime le mieux l’entrée. Les
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Figure A.8: Architecture du modèle. Étant donné un nuage de points
d’entrée x, nous prédisons pour chaque modèle de forme Rk l’élément qui re-
construit le mieux l’entrée : le réseau de projection Pk produit les coordonnées
a d’une forme dans la famille linéaire, et le réseau d’alignement Ak prédit les
paramètres d’une transformation affine Ak(x) qui est appliquée à la forme
sélectionnée. Le nuage de points d’entrée est ensuite assigné au modèle de
forme qui le reconstruit le mieux, ici mis en évidence en vert.

Table A.2: Résultats sur ModelNet10. Nous présentons les résultats avec
10 modèles de formes linéaires, d’abord pour différentes restrictions des réseaux
d’alignement, puis pour différentes configurations de familles linéaires. Les
étapes d’entrâınement de notre modèle sont en gras. Nous rapportons le taux
de classification correct en % (“Accuracy”) et la distance de Chamfer multipliée
par 103 (“CD”). Les résultats sont en moyenne sur cinq exécutions.

Accuracy CD

Ours, proto 63.9 ± 1.5 20.0 ± 0.4

... with supervision 79.0 ± 0.2 23.5 ± 0.0

O
u
rs
,
al
ig
n

Rigid transformation (6D) 64.6 ± 5.2 16.2 ± 0.1

Trans. + Iso. Scaling (4D) 71.5 ± 4.1 15.0 ± 0.1

Trans. + Aniso. Scaling (6D) 74.1 ± 3.0 10.4 ± 0.1

Linear (9D) 71.85 ± 4.7 11.1 ± 0.1

Affine (12D) 75.9 ± 3.0 9.7 ± 0.0

... with supervision 88.9 ± 0.5 11.2 ± 0.0

O
u
rs
,
fu
ll

D
=
1 Pointwise parametrization 74.3 ± 1.7 7.9 ± 0.0

Implicit parametrization 77.5 ± 2.8 8.1 ± 0.0

... with supervision 89.7 ± 0.6 9.5 ± 0.0

D
=
5 Pointwise parametrization 75.1 ± 1.7 5.7 ± 0.0

Implicit parametrization 77.0 ± 3.4 5.9 ± 0.0

... with supervision 90.4 ± 1.0 7.8 ± 0.0

FoldingNet [353] 76.3 ± 7.5 3.5 ± 0.0
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Table A.3: 10-shot segmentation. Nous rapportons l’IoU pour 9 classes et
l’IoU moyen sur l’ensemble des 16 classes de ShapeNetPart. Notre modèle
produit des résultats à l’état de l’art de la segmentation sémantique avec 10
exemples annotés à l’entrainement.

airplane bag cap car chair lamp laptop mug table avg

Shared encoder

Gadelha et al . 2020 [95] — — — — — — — — — 74.1

Ours, full D = 5 (random) 71.7 70.6 84.0 62.1 78.8 68.7 93.1 87.5 70.6 72.5

Ours, full D = 5 (prototype) 79.4 73.0 81.8 72.1 83.6 76.1 94.7 89.8 76.2 77.4

One encoder per class

Wang et al . 2020 [332] 67.3 74.4 86.3 — 83.4 68.7 93.8 90.9 74.2 —

Groueix et al . 2019 [116] 67.1 — — 61.4 78.9 65.8 — — 66.1 —

Ours, full D = 5 (random) 72.2 66.0 75.5 63.0 79.1 68.9 93.1 84.2 69.4 —

Ours, full D = 5 (prototype) 80.0 79.7 76.1 72.0 83.6 77.1 94.9 91.1 75.9 —

modèles linéaires et les réseaux neuronaux sont appris de bout en bout en

utilisant une seule fonction de coût de reconstruction.

Le principal avantage de notre approche est que, contrairement à de nom-

breuses approches récentes qui apprennent des représentations de formes com-

plexes basées sur des caractéristiques abstraites, notre modèle est explicite

et toutes les opérations se produisent dans l’espace 3D. Par conséquent, nos

modèles de formes linéaires peuvent être facilement visualisés et annotés, et

les cas d’échec peuvent être compris visuellement.

Bien que notre objectif principal soit d’introduire une représentation com-

pacte et interprétable de collections de formes, nous montrons, en Table A.2

et Table A.3, qu’elle conduit également à des résultats à l’état de l’art du re-

groupement de collections de formes et de la segmentation sémantique avec

très peu d’exemples annotés à l’entrainement.

A.5 Découverte de prototypes 3D dans des

scans aériens

Dans cette partie, nous proposons une méthode non supervisée pour analyser

de grandes acquisitions 3D de scènes du monde réel en parties interprétables.

Notre objectif est de fournir un outil simple, pour analyser des scènes 3D avec
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Figure A.9: Résultats qualitatifs. Notre méthode non supervisée prend en
entrée de grandes numérisations 3D aériennes et les modèle avec un petit en-
semble de prototypes appris. Notre approche est entrâınée sans annotation et
produit une décomposition lisible de scènes complexes, qui peut être utilisée
pour la segmentation sémantique et par instance.

des caractéristiques uniques dans le contexte d’acquisitions aérienne et de la

cartographie, sans compter sur des annotations spécifiques à l’application de

l’utilisateur. Comme montré en Figure A.9, notre modèle produit sans au-

cune annotation, les segmentations sémantiques et segmentations d’instances

de scènes complexes.

Learnable Earth Parser. Comme montré en Figure A.10, notre approche

est basée sur un modèle de reconstruction probabiliste, qui décompose un

nuage de points 3D en un petit nombre de prototypes appris. Notre modèle

fournit une reconstruction interprétable de scènes complexes et produit des

segmentations sémantiques et d’instances.

Earth Parser Dataset. Pour démontrer l’utilité de nos résultats, nous

présentons un nouveau jeu de données de sept acquisitions par LiDAR aériens.

Comme vu en Figure A.11, notre jeu de données est composé de scènes dans

des envorionnements variés, montrant par exemple une centrale électrique, une

forêt, ou un port de plaisance.
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Figure A.10: Learnable Earth Parser. Notre modèle approxime un nuage
de points d’entrée X avec S sous-modèles. Chaque sous-modèle associe X
à une déformation affine 3D Ts(X), une probabilité d’activation αs, et les
probabilités conjointes β1

s ,⋯,βK
s du sous-modèle étant activé et choisissant

l’un des K nuages de points prototypes P1,⋯,PK . La sortie Ms(X) d’un
sous-modèle activé s est obtenue en appliquant la transformation Ts(X) à son
prototype le plus probable. Les sous-modèles non activés ne contribuent pas
à la sortie.

Table A.4: Résultats sur le Earth Parser Dataset. Nous rapportons la
qualité de la reconstruction (Cham.) et de la segmentation sémantique (mIoU)
pour chacune des scènes du Earth Parser Dataset. Bien que notre méthode
ne fournisse pas toujours les reconstructions les plus fidèles, elle conduit à la
classification de points la plus précise.

R
ec
.

Se
m
an
ticCrop fields Forest Greenhouses Marina Power plant Urban Windturbines

Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham.

k-means (i,z) [205] ✗ ✓ — 93.8 — 71.5 — 39.3 — 41.4 — 42.8 — 56.5 —

SuperQuadrics [252] 3D ✗ 0.86 — 1.04 — 0.60 — 0.93 — 0.58 — 0.40 — 13.5

DTI-Sprites [231] 2.5D+i ✓ 6.10 83.2 14.59 40.2 5.36 42.0 6.16 41.4 5.36 29.0 2.99 47.3 36.19

AtlasNet v2 [78] 3D+i ✓ 1.07 43.1 1.58 71.4 0.56 49.1 0.73 42.1 0.45 41.6 0.63 48.8 8.80

Ours 3D+i ✓ 0.72 96.9 0.88 83.7 0.40 91.3 0.82 78.7 0.44 52.2 0.29 83.2 6.65

Comme montré en Figure A.4, nous surpassons les autres méthodes non su-

pervisées en termes de précision de la décomposition, tout en restant visuelle-

ment interprétable. Notre méthode offre un avantage significatif par rapport

aux approches existantes, car elle ne nécessite aucune annotation manuelle, ce

qui en fait un outil pratique et efficace pour l’analyse de scènes 3D.

A.6 Conclusion

Nous avons introduit de nouveaux ensembles de données 3D du monde réel

ainsi que des méthodes dédiées, et les avons utilisés pour faire avancer l’état

de l’art pour diverses tâches.
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Windturbines Forest Crop fields Urban

Power plant Greenhouses Marina

Figure A.11: Earth Parser Dataset. Notre jeu de données contient 7 scènes
représentant divers environnements urbains et naturels, acquis par LiDAR
aérien. Les illustrations de la centrale électrique et des serres montrent les
scènes complètes, tandis que les autres montrent un sous-ensemble de chaque
scène couvrant entre 25 et 50% de la superficie totale.

Dans le chapitre 3, nous proposons une nouvelle approche qui tire parti de

la géométrie du capteur LiDAR. Notre méthode de segmentation sémantique

en temps réel repose sur un mécanisme d’attention spatio-temporel efficace, et

surpasse les méthodes existantes en termes de latence, tout en préservant les

performances de segmentation de l’état de l’art. Nous introduisons également

un ensemble de données annotées public spécifiquement conçu pour l’évaluation

et la conception de méthodes de segmentation en temps réel. Nous espérons

que ce travail ouvrira la voie à des méthodes exploitant les spécificités des

données, pour concevoir des méthodes efficaces et précises.

Dans le chapitre 4, nous présentons une nouvelle approche des modèles

linéaires de formes avec l’apprentissage profond. Notre modèle produit des

aperçus concis, expressifs et interprétables de collections de nuages de points

non alignés. Nous montrons que notre méthode conduit à des résultats à l’état

de l’art de la segmentation avec peu d’exemples annotés. Nous espérons que

ce travail permettra de meilleures représentations non supervisées de vastes

collections de formes 3D non structurées.

Dans le chapitre 5, nous étendons le cadre d’apprentissage de prototypes 3D

introduit dans le chapitre 4, pour découper des scans aériens complexes du

monde réel en parties simples à l’aide d’un petit ensemble de formes prototyp-

iques apprises. Nous introduisons également un ensemble de données LiDAR

aérien public acquis dans différents environnements tels que les forêts, les zones
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urbaines et les marinas. Nous montrons la possibilité d’effectuer une analyse

de formes 3D profonde non supervisée sur un ensemble de données du monde

réel. Nous pensons que nos résultats ouvrent de nouvelles perspectives pour

la gestion de l’environnement assistée par ordinateur, et pour l’intelligence

économique.

Les deux principales leçons tirées de cette thèse sont : (i) la géométrie du

capteur 3D peut être exploitée pour mieux représenter les données, ce qui per-

met de gagner en efficacité ; et (ii) l’utilisation de connaissances préalables

sur les données peut aider à concevoir des méthodes non supervisées puis-

santes et pertinentes. Les travaux précédents utilisent souvent des données

3D sans s’adaptater aux spécificités du capteur, ou nécessitent des quantités

massives de données annotées pour être entrâınés. Au contraire, nous avons

conçu des modèles efficaces spécifiquement adaptés aux données 3D. Comme le

démontrent nos expérimentations, cela permet d’obtenir des modèles beaucoup

plus efficaces sans perdre en précision.








