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Rémi Abgrall Président
Professeur, University of Zürich
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Pascal Omnes Rapporteur
Directeur de recherche, CEA

Barbara Verfürth Rapporteure
Professeure, University of Bonn

Karen Veroy-Grepl Examinatrice
Professeure, Eindhoven University of Technology





THESIS

for the degree of
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Abstract
This thesis is concerned with computational methods for multiscale partial differential
equations (PDEs), and in particular the multiscale finite element method (MsFEM). This
is a finite element type method that performs a Galerkin approximation of the PDE on
a problem-dependent basis. Three particular difficulties related to the method are ad-
dressed in this thesis. First, the intrusiveness of the MsFEM is considered. Since the
MsFEM uses a problem-dependent basis, it cannot easily be implemented in generic in-
dustrial codes and this hinders its adoption beyond academic environments. A generic
methodology is proposed to translate the MsFEM into an effective problem that can be
solved by generic codes. It is shown by theoretical convergence estimates and numerical
experiments that the new methodology is as accurate as the original MsFEM. Second,
MsFEMs for advection-dominated problems are studied. These problems cause additional
instabilities for naive discretizations. An explanation is found for the instability of previ-
ously proposed methods. Numerical experiments show the stability of an MsFEM with
Crouzeix-Raviart type boundary conditions enriched with bubble functions. Third, a new
convergence analysis for the MsFEM is presented that, for the first time, establishes con-
vergence under minimal regularity hypotheses. This bridges an important gap between
the theoretical understanding of the method and its field of application, where the usual
regularity hypotheses are rarely satisfied.

Keywords: Partial differential equations, numerical analysis, multiscale problems,
MsFEM, non-intrusive methods, advection-dominated problems.

Résumé
Cette thèse porte sur les méthodes numériques pour les équations aux dérivées partielles
(EDP) multi-échelles, et en particulier sur la méthode dite des éléments finis multi-échelles
(MsFEM). Celle-ci est une méthode de type éléments finis qui consiste en une approx-
imation de Galerkin de l’EDP sur une base dépendant du problème. Trois difficultés
particulières liées à cette méthode sont abordées dans cette thèse. Premièrement, puisque
la MsFEM utilise une base dépendant du problème, la méthode ne peut être facilement
implémentée dans des codes industriels génériques. Cela freine la diffusion de la MsFEM
au-delà des environnements académiques. Une méthodologie générique est proposée pour
convertir la MsFEM en un problème effectif qui peut être résolu par des codes génériques.
Il est démontré par des résultats théoriques ainsi que des expériences numériques que la
nouvelle méthodologie est aussi précise que la MsFEM originale. Deuxièmement, les Ms-
FEM adaptées aux problèmes dominés par l’advection sont étudiées. Ce régime spécifique
rend instables les discrétisations näıves. Une explication est trouvée pour l’instabilité de
certaines méthodes proposées précédemment. Des expériences numériques montrent la
stabilité d’une MsFEM avec des conditions aux limites de type Crouzeix-Raviart enrichie
par des fonctions bulles. Troisièmement, une nouvelle analyse de convergence pour la
MsFEM est présentée, permettant pour la première fois d’établir la convergence sous des
hypothèses de régularité minimales. Cette démarche est importante pour réduire l’écart
entre la théorie pour la MsFEM et son application en pratique, où les hypothèses de
régularité habituelles sont rarement satisfaites.

Mots-clés : Equations aux dérivées partielles, analyse numérique, problèmes multi-
échelles, méthodes MsFEM, approches non intrusives, problèmes dominés par l’advection.
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CHAPTER 1

Résumé étendu en français
Extended summary in French

Nous donnons ici un résumé des résultats contenus dans cette thèse en français, tous
les autres chaptires étant rédigés en anglais. Nous renvoyons à l’IntroductionIntroduction pour une
introduction plus élaborée.

1.1. Motivation

Dans cette thèse, nous nous intéressons à la résolution numérique d’équations aux dérivées
partielles (EDP) multi-échelles, c’est-à-dire, à coefficients hautement oscillants. La dimen-
sion spatiale qui caractérise les oscillations est beaucoup plus petite que les dimensions
de la taille du modèle global. Les modèles avec des propriétés multi-échelles apparaissent
naturellement dans de nombreux domaines de la science et de l’ingénierie moderne. Dans
le contexte des sciences des matériaux, on peut penser aux matériaux composites pour
la conception des ailes d’avion, à l’étude de fibres qui sont elles-mêmes une collection
de fibres plus fines, ou à l’utilisation du béton dans de nombreuses applications de génie
civil. Nous mentionnons également la modélisation des écoulements souterrains, par ex-
emple pour comprendre comment un polluant peut se propager à travers la surface de la
terre, ou le flux d’air à travers une ville densément peuplée. Nous nous concentrons sur
les propriétés multi-échelles en espace, et non en temps, ce qui nécessite des approches
différentes en raison de la nature séquentielle du temps.

La simulation numérique d’un modèle multi-échelle basée sur la discrétisation complète
de la micro-échelle conduit à un système linéaire énorme, dont la résolution peut prendre
un temps de calcul considérable (voire prohibitif) ou peut être impossible en raison des
contraintes de mémoire des outils de calcul disponibles. Or, souvent on ne s’intéresse
pas aux fluctuations précises de la solution de l’EDP à l’échelle de ses variations les plus
fines. Une connaissance beaucoup plus grossière, globale et macroscopique des propriétés
des matériaux est suffisante dans ces cas, du moins dans un premier temps. On peut
donc espérer qu’un modèle numérique qui lui aussi est grossier puisse fournir les informa-
tions désirées. Cependant, la microstructure du modèle contribue aux propriétés macro-
scopiques émergentes et ne peut être entièrement ignorée dans les simulations numériques.
Des méthodes numériques multi-échelles ont été conçues pour incorporer la microstructure
dans une approximation grossière.
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1. Résumé étendu en français

Cette thèse se concentre principalement sur l’une de ces méthodes multi-échelles dite
la méthode des éléments finis multi-échelles. Les sujets liés à cette méthode qui seront
abordés sont les suivants.

Une partie importante de la thèse (la Partie II) traite de l’adaptation de la méthode
des éléments finis multi-échelles de manière à ce qu’elle puisse être mise en œuvre à l’aide
de grands logiciels existants actuellement utilisés dans l’industrie, sans avoir besoin de
modifier ce logiciel, c’est-à-dire, sans être intrusif. Nous considérons cela comme une
démarche essentielle pour toute méthode numérique afin de faciliter son utilisation pour
des applications plus avancées.

Nous considérons dans la Partie IIII le développement des méthodes éléments finis multi-
échelles pour les problèmes dominés par l’advection. Ce régime spécifique rend instables
les discrétisations näıves. Malgré quelques résultats dans la littérature, aucune approche
optimale n’a encore pu être identifiée. Nous donnerons quelques nouvelles perspectives.

La Partie IIIIII propose une nouvelle analyse de convergence de la méthode des éléments
finis multi-échelles sous des hypothèses de régularité minimales sur les coefficients de
l’EDP, là où les analyses existantes s’appuient sur des hypothèses de continuité qui sont
rarement satisfaites dans les modèles visés par la méthode.

Les méthodes numériques proposées seront étudiées numériquement et comparées à
d’autres méthodes numériques connues. Nos études seront également complétées par une
analyse de convergence mathématique lorsque nous serons en mesure de l’établir.

1.2. Contexte

Nous étudierons dans cette thèse des méthodes de type éléments finis. Rappelons la
méthode pour l’exemple d’une équation de diffusion. Soit Ω le domaine macroscopique
du problème. Etant donnée une matrice de diffusion Aε (où le symbole ε représente la
taille de la microstructure), nous cherchons la fonction uε ∈ H1

0 (Ω) qui résout l’EDP

− div(Aε∇uε) = f dans Ω, (1.1)

ou bien, de façon équivalente, la fonction uε est aussi l’unique solution du problème

Trouver uε ∈ H1
0 (Ω) telle que

∫
Ω

∇v · Aε∇uε =

∫
Ω

fv pour tout v ∈ H1
0 (Ω), (1.2)

communément appelée formulation variationnelle de l’EDP.
Nous introduisons ensuite un maillage du domaine Ω et un espace de dimension finie VH

tel que

(i) les fonctions de VH sont polynomiales sur chaque maille, et
(ii) l’espace VH admet une base de fonctions localisées sur un petit nombre de mailles.

La méthode des éléments finis (EF) consiste alors en la restriction du problème (1.21.2) à
l’espace VH :

Trouver uεH ∈ VH telle que

∫
Ω

∇vH · Aε∇uεH =

∫
Ω

f vH pour tout vH ∈ VH . (1.3)

Ceci est appelé l’approximation de Galerkin du problème (1.21.2) sur l’espace VH . Cet espace
étant de dimension finie, ce problème se traduit en un système linéaire, et la méthode EF
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1.2 – Contexte

consiste en la construction et la résolution de ce système.
Le point (i)(i) ci-dessus est utile pour les propriétés d’approximation de VH et simplifie

le calcul des coefficients du système linéaire associé au problème discret (1.31.3). L’existence
d’une base localisée est essentielle pour une construction efficace dudit système linéaire
sur ordinateur et pour sa structure creuse.

Des méthodes EF ont été développées pour une grande variété de problèmes dans tous
les domaines de la science et de l’ingénierie. Les principes décrits ci-dessus ont d’ailleurs
facilité la conception de logiciels très généraux pour les EF. Cela a largement contribué au
succès de la méthode dans les milieux académiques ainsi qu’industriels. Des traitements
plus complets peuvent être lus dans [5252, 7373, 88, 3737, 129129].

Dans le contexte des problèmes multi-échelles, la méthode EF requiert un maillage
au niveau de la plus fine micro-échelle. Quand la microstructure n’est pas résolue par le
maillage, le résultat de la méthode est faux. Nous illustrerons ceci dans la Section 2.1.12.1.1
(voir en particulier les Figures 2.22.2, 2.32.3, 2.62.6 et 2.72.7). Il est important de noter que

non seulement les petites échelles de uε ne sont pas bien représentées par la méthode EF
sur un maillage grossier, mais aussi les propriétés macroscopiques de l’approximation

sont fausses si la microstructure n’est pas prise en compte.

En revanche, un maillage très fin donne lieu à un espace VH de dimension très élevée
et pour des modèles réels, la résolution sur ordinateur du système linéaire résultant est
impossible.

Cette défaillance des méthodes standards a mené au développement de méthodes
dédiées dites “multi-échelles” avec le but d’obtenir une approximation fiable de la solu-
tion de l’EDP sans la résolution d’un système linéaire immense. Ces méthodes s’éloignent
de la grande généralité des méthodes EF, et construisent un modèle numérique grossier,
dédié à l’approximation efficace d’une EDP donnée. Elles consistent généralement en deux
étapes.

Pendant la première étape, dite l’étape offline, la microstructure est prétraitée numéri-
quement d’une manière appropriée (voir ci-dessous pour l’exemple de la méthode des
éléments finis multi-échelles). L’utilisation d’un maillage fin est inévitable pour cela.
Typiquement, une stratégie de “diviser pour régner” est adoptée : le modèle global
est divisé en plusieurs sous-domaines plus petits, qui sont tous traités séparément. Par
conséquent, l’étape offline ne nécessite pas la résolution irréalisable d’un grand système
linéaire tel que c’est le cas pour la résolution du problème original. L’étape offline est
souvent adaptée au calcul parallèle, ce qui permet d’augmenter l’efficacité de cette étape.

Dans une deuxième étape, dite l’étape online, les résultats de tous les calculs locaux
de l’étape offline sont combinés afin d’obtenir une approximation raisonnablement précise
de uε sur un maillage grossier à un coût de calcul abordable.

Dans cette procédure, l’étape offline est coûteuse alors que le coût de calcul de l’étape
online est largement réduit. Les méthodes multi-échelles sont donc efficaces quand un
problème avec une microstructure fixée doit être résolu plusiers fois pour des conditions
au bord ou des termes sources qui changent, par exemple. Dans ce cas, seule la méthode
online est à répéter, et elle est beaucoup moins coûteuse que le calcul direct de la solution
sur un maillage très fin. On peut penser, dans un milieu hétérogène donné, à la résolution
de problèmes non-stationnaires, aux problèmes inverses, à la quantification d’incertitude,
à l’évaluation des risques, au design, au contrôle et à l’optimisation, etc.

Des introductions générales aux méthodes multi-échelles sont disponibles dans [7272, 1515,
1212]. Des références plus précises sont données dans la Section 2.2.22.2.2.
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1. Résumé étendu en français

La méthode des éléments finis multi-échelles. Nous détaillons ici le principe de la
méthode des éléments finis multi-échelles (méthode MsFEM pour l’anglais multiscale finite
element method) qui a été introduite dans [9898]. Soit TH une triangulation conforme du
domaine Ω, et pour chaque nœud interne xi du maillage, soit φP1

i la fonction affine par
morceaux qui vaut 1 en xi et qui vaut 0 dans tous les autres nœuds. Nous remarquons au
passage que ces fonctions forment une base pour la méthode EF classique P1 de Lagrange.
Notons leur nombre par N .

Durant l’étape offline de la MsFEM, nous résolvons les problèmes suivants définissant
les fonctions de base multi-échelles φεi , pour chaque 1 ≤ i ≤ N ,

∀K ∈ TH ,

{
− div(Aε∇φεi ) = 0 dans K,

φεi = φP1
i sur ∂K.

(1.4)

L’étape online consiste ensuite à résoudre l’approximation de Galerkin du problème (1.21.2)
sur l’espace V ε

H engendré par les fonctions multi-échelles, c’est-à-dire,

Trouver uεH ∈ V ε
H telle que

∫
Ω

∇vεH · Aε∇uεH =

∫
Ω

f vεH pour tout vεH ∈ V ε
H . (1.5)

La dimension de l’espace V ε
H adapté au problème est identique à celle de l’espace VH de

la méthode EF P1. Il découle de (1.41.4) que le support de chaque fonction de base multi-
échelle est égal au support de la fonction P1 φ

P1
i correspondante. La résolution du système

linéaire associé à (1.51.5) a donc la même complexité que pour la méthode P1 standard sur
le même maillage. A la différence des fonctions φP1

i , les fonctions φεi ‘connaissent’ les
oscillations de Aε au sein de chaque maille du maillage. Nous pouvons donc espérer que
la méthode MsFEM donne une approximation fiable de uε sur un maillage grossier alors
que la méthode EF P1 n’en est pas capable. Ceci est effectivement le cas. Nous renvoyons
à la Section 2.2.32.2.3 pour plus de détails.

Le défaut principal de la MsFEM comme elle est décrite ci-dessus est le choix des
conditions affines aux bords de chaque maille K dans (1.41.4). Puisque les conditions au
bord de uε ne sont connues que sur le bord du domaine global ∂Ω, et que nous cher-
chons des fonctions de base avec un support restreint pour l’espace V ε

H , il est nécessaire
d’inventer des conditions au bord locales. Il est clair que le choix dans (1.41.4) ne reflète
pas le caractère oscillant de uε. Des améliorations ont été proposées dans la littérature.
Nous mentionnons la technique d’oversampling [9898] et les conditions au bord locales de
type Crouzeix-Raviart [112112] (MsFEM-CR). La méthode MsFEM avec les conditions au
bord locales comme dans (1.41.4) est appelée MsFEM-lin ici. Nous renvoyons encore à la
Section 2.2.32.2.3 pour plus de détails.

1.3. Contributions de la thèse

1.3.1. Approches MsFEM non-intrusives. Nous avons vu dans la section précédente
que la MsFEM remplace les fonctions de base génériques, polynomiales de la méthode
EF P1 par des fonctions de base dépendant du problème ayant le même support afin de
conserver les propriétés creuses de la méthode tout en augmentant sa performance pour
une microstructure donnée. Nous considérons dans la Partie II de la thèse l’impact pratique
de ce choix pour la mise en œuvre de la méthode.

Concentrons-nous ici sur la construction du système linéaire associé aux problèmes
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1.3 – Contributions de la thèse

discrets (1.31.3) et (1.51.5). Cela nécessite d’évaluer des intégrales des fonctions de base de
l’espace discret VH choisi. Pour les méthodes EF traditionnelles avec des fonctions de
base polynomiales, cela peut être automatisé pour une grande variété de problèmes car
les formules de quadrature standards peuvent facilement être évaluées sur chaque élément
du maillage. Cette grande généralité des logiciels pour les méthodes EF est au cœur du
large succès de la méthode en science mais aussi dans l’industrie. Le fait de changer les
fonctions de base pour chaque problème individuel signifie que toutes ces routines dans
les logiciels EF génériques doivent être adaptées. La MsFEM est donc intrusive. Ce
caractère intrusif freine l’utilisation de la méthode dans des contextes industriels, où l’on
ne souhaite pas ou l’on ne peut pas modifier un code qui est le fruit de plusieurs années
de développement. Il semble essentiel qu’un code EF existant et optimisé puisse être
utilisé avec le moins de modifications possible pour que la méthode MsFEM puisse être
adoptée lorsqu’un code EF traditionnel est déjà en utilisation. À notre connaissance, la
question de rendre les approches MsFEM moins intrusives n’avait pas été abordée dans
la littérature avant les travaux de cette thèse.

La partie II de cette thèse propose une modification mineure de la MsFEM tradition-
nelle (la notion de ‘mineur’ sera précisée dans les Contributions 44, 55 et 66 ci-dessous),
permettant une mise en œuvre de la méthode en utilisant un logiciel EF existant sans
modifier aucune de ses routines internes. Cette approche est basée sur une ré-écriture des
fonctions multi-échelles φεi définies dans (1.41.4), pour tout 1 ≤ i ≤ N , sous la forme (voir
l’Équation (4.104.10))

∀K ∈ TH , φεi = φP1
i +

d∑
α=1

(
∂αφ

P1
i

)∣∣
K
χε,αK dans K,

où, pour chaque K ∈ TH et chaque 1 ≤ α ≤ d, nous définissons la fonction χε,αK ∈ H1
0 (K)

appelée correcteur numérique comme l’unique solution au problème{
−div(Aε∇χε,αK ) = div(Aεeα) dans K,

χε,αK = 0 sur ∂K.
(1.6)

La microstructure qui a été encodée dans les fonctions φεi est ainsi entièrement portée par
les correcteurs numériques.

Ayant à notre disposition les correcteurs numériques, nous définissons un coefficient
effectif, constant dans chaque maille grossière, par

A
∣∣
K

=

∫
K

(
eβ +∇χε,βK

)
· Aε (eα +∇χε,αK ) pour chaque K ∈ TH . (1.7)

Nous démontrerons que le système linéaire associé à la méthode MsFEM (1.51.5) est le même
que le système obtenu par une discrétisation par des EF P1 du problème effectif{

−div
(
A∇u

)
= f dans Ω,

u = 0 sur ∂Ω,
(1.8)

sur le maillage grossier TH . Le problème effectif peut être résolu par une méthode EF P1

standard car le coefficient effectif est constant par morceaux.

Ces observations ont mené à la première contribution de cette thèse qui est résumée
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1. Résumé étendu en français

comme suit.

Contribution 1. Approche MsFEM non-intrusive; voir l’Algorithme 4.14.1.

→ Dans l’étape offline, calculer les correcteurs numériques définis par (1.61.6) maille
par maille. Utiliser ces correcteurs numériques pour calculer le coefficient effectif
dans (1.71.7).

→ Dans l’étape online, résoudre l’EDP effective (1.81.8) avec un logiciel EF exis-
tant.

→ Nous introduirons une étape de post-processing afin d’obtenir l’approximation
MsFEM de uε à partir de la solution du problème effectif et des correcteurs
numériques calculés dans l’étape offline.

Nous passons ensuite à la généralisation de cette approche non-intrusive à d’autres
méthodes MsFEM. En effet, nous rappelons que différentes variantes existent en fonction
du choix des conditions au bord locales dans la définition des fonctions multi-échelles. La
méthode MsFEM peut également être adaptée à d’autres équations que celle de la diffusion
pure (nous considérerons uniquement des dérivées spatiales dans cette thèse), donnant
possiblement lieu à différentes EDP dans les problèmes locaux (1.41.4). Un exemple est
donné dans la Section 1.3.21.3.2. Nous prenons en compte tous ces choix dans une formulation
générale de la méthode MsFEM. Une motivation supplémentaire pour cette formulation
générale était d’établir une analyse de convergence commune pour les méthodes MsFEM-
lin et MsFEM-CR, dont un début est présenté dans la Partie IIIIII de la thèse.

Contribution 2. Nous introduisons une formulation générale de la méthode MsFEM
pour des EDP linéaires d’ordre 2, couvrant la MsFEM-lin, la MsFEM-CR, et une tech-
nique d’oversampling pour les deux variantes. La technique d’oversampling pour la
MsFEM-CR est également une nouvelle contribution de la thèse. De plus, nous donnons
une définition rigoureuse de la technique d’oversampling pour les mailles qui touchent
la frontière ∂Ω du domaine global, ce qui est souvent incomplet dans la littérature. La
formulation générale contient une généralisation de l’écriture (1.61.6), qui est essentielle
pour la contribution suivante.

Contribution 3. L’approche non-intrusive de la Contribution 11 est étendue à la for-
mulation générale de la méthode MsFEM dans l’Algorithme 6.16.1. Le problème global
effectif correspondant peut être résolu par un logiciel EF standard capable de traiter des
EDP linéaires d’ordre 2 à coefficients constants par morceaux.

La contribution suivante porte sur la différence entre la méthode MsFEM classique et
la méthode obtenue en suivant l’approche non-intrusive. L’estimation suivante est établie
dans la Section 6.26.2.

Contribution 4. Reformulation du Théorème 6.36.3:
Soit V ε

H l’espace engendré par les fonctions multi-échelles. Soit aε, resp. F , la
forme bilinéaire, resp. la forme linéaire, correspondant à la formulation variationelle
de l’EDP. (Nous considérons des variantes broken si la méthode est non-conforme.)
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L’approche non-intrusive de la méthode MsFEM

Trouver uεH ∈ V ε
H telle que aε(uεH , v

ε
H) = F (vεH) pour tout vεH ∈ V ε

H

correspond à trouver uεH ∈ V ε
H telle que

aε(uεH , φ
ε
i ) = F

(
φP1
i

)
pour tout 1 ≤ i ≤ N,

où la fonction multi-échelle φεi est définie à partir de la fonction de base standard φP1
i

et des correcteurs numériques dans (6.36.3).

Nous appliquerons également l’approche non-intrusive à une variante Petrov-Galerkin
de la méthode MsFEM, où les fonctions test multi-échelles sont remplacées par les fonc-
tions test de l’espace P1 standard. Nous trouverons que l’approche non-intrusive est
équivalente à la méthode originale.

Contribution 5. Reformulation du Théorème 6.26.2:
Considérons la méthode MsFEM Petrov-Galerkin suivante:

Trouver uεH ∈ V ε
H telle que aε(uεH , vH) = F (vH) pour tout vH ∈ V P1

H ,

où V P1
H est l’espace P1 de Lagrange quand on considère la méthode MsFEM-lin, et V P1

H

est l’espace P1 de Crouzeix-Raviart quand on considère la méthode MsFEM-CR. La
solution de cette méthode est identique à la solution de la variante non-intrusive de
la méthode.

Dans quelques cas particuliers, on peut démontrer que l’approche non-intrusive pour la
méthode MsFEM (Galerkin) est aussi identique à la méthode MsFEM Petrov-Galerkin in-
troduite ci-dessus; voir le Lemme 6.46.4. Pour l’équation de la diffusion pure, nous établirons
les résultats suivants.

Contribution 6. Reformulation du Lemme 7.17.1 et du Théorème 7.107.10:
Nous considérons l’équation de la diffusion pure. Soit ‘MsFEM’ la méthode MsFEM-
lin ou la méthode MsFEM-CR, sans l’utilisation de la technique d’oversampling. Alors
l’approche non-intrusive de la méthode MsFEM Galerkin cöıncide avec la méthode Ms-
FEM Petrov-Galerkin.
Soit uε,GH , resp. uε,PG

H , l’approximation de uε obtenue par la méthode MsFEM Galerkin,
resp. la méthode MsFEM Petrov-Galerkin. Si f ∈ L2(Ω), il existe une constante C > 0
indépendante de ε, H et f telle que∥∥∥uε,GH − uε,PG

H

∥∥∥
H1(TH)

≤ CH‖f‖L2(Ω).

La dernière contribution de la Partie II de la thèse est dédiée à l’implémentation de la
méthode MsFEM en FreeFEM++ et les conclusions provenant des expérimentations
numériques dans le cas de l’équation de la diffusion pure pour des coefficients de diffusion
périodiques et non-périodiques.

Contribution 7. Toutes les variantes de la méthode MsFEM couvertes par la formu-
lation générale du Chapitre 55 de cette thèse, ont été implémentées en FreeFEM++,
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1. Résumé étendu en français

s’appuyant sur la structure commune entre ces méthodes qui a été identifiée grâce à la
formulation générale de la Contribution 22. Le code correspondant est disponible à [2929].
Les expérimentations numériques pour l’équation de la diffusion pure montrent que
la méthode MsFEM Petrov-Galerkin, ainsi que la variante non-intrusive de la méthode
MsFEM Galerkin, sont proches de la méthode MsFEM Galerkin originale. L’éventuelle
erreur introduite par le passage à une approche non-intrusive est donc négligeable. De
plus, cette observation est robuste par rapport à la périodicité ou non du coefficient de
diffusion.

1.3.2. Méthodes MsFEM pour les problèmes avec advection dominante. Dans la
partie IIII de la thèse, nous nous concentrerons sur l’équation d’advection-diffusion, c’est-
à-dire que uε est la solution de l’équation suivante sur Ω :

− div(Aε∇uε) + b · ∇uε = f, (1.9)

avec un champ d’advection b ∈ L∞(Ω) (et sous certaines hypothèses supplémentaires qui
seront précisées dans le Chapitre 99). Nous considérons toujours un coefficient de diffusion
hautement oscillant Aε comme précédemment, et les problèmes associés à la méthode EF
sur un maillage grossier persistent. Une autre difficulté pour l’approximation numérique
de uε apparâıt : nous nous intéressons particulièrement au cas où l’advection est dominante
devant la diffusion. Nous étudierons des méthodes MsFEM qui visent à traiter les deux
difficultés dans la Partie IIII.

Il est bien connu que, sous l’influence d’un champ d’advection dominant, la solu-
tion exacte uε peut développer des couches limites, où la solution est caractérisée par
un fort gradient dans une petite partie du domaine. Il est également bien connu que
les méthodes EF standards ne parviennent pas à capturer uε à moins que le maillage
sous-jacent soit suffisamment fin pour prendre en compte ces couches limites. Sur un
maillage grossier, l’approximation numérique montre de grandes oscillations qui peuvent
se propager dans tout le domaine, alors que la solution exacte ne varie que lentement à
l’extérieur de la couche limite. On dit que la méthode EF est instable dans le régime
dominé par l’advection. Si la position de la couche limite est inconnue, une méthode EF
standard nécessite donc un maillage très fin sur l’ensemble du domaine, ou des techniques
d’adaptation de maillage itératives, qui peuvent toutes deux être coûteuses en termes de
calcul. Des méthodes dites de stabilisation ont été développées pour obtenir une approx-
imation adéquate sur un maillage grossier dans le cas des coefficients non-oscillants il y
a plusieurs décennies. Ces méthodes introduisent toutes un paramètre de stabilisation et
la qualité de l’approximation est sensible au choix de ce paramètre. En revanche, nous
regarderons la stabilisation à travers les méthodes de type MsFEM dans cette thèse.

Il est clair que la méthode MsFEM définie par les fonctions multi-échelles dans (1.41.4) est
instable aussi, car elle cöıncide avec la méthode EF classique P1 quand Aε est constante.
Cette instabilité est illustrée par la Figure 10.110.1 du Chapitre 1010. Cette méthode a été
stabilisée par la méthode de stabilisation classique dite SUPG dans [114114]. Nous nous
concentrerons dans cette thèse sur une autre variante de la méthode MsFEM où les
fonctions multi-échelles sont obtenues à partir de problèmes locaux contenant tous les
termes de l’EDP (1.91.9), c’est-à-dire,

∀K ∈ TH ,

{
− div(Aε∇φε,adv

i ) + b · ∇φε,adv
i = 0 dans K,

φεi = φP1
i sur ∂K,

(1.10)
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pour tout 1 ≤ i ≤ N , que nous appelons la méthode adv-MsFEM-lin. Cette méthode a
été étudiée dans [127127, 128128, 114114, 119119], mais toutes ses propriétés de stabilisation ne sont
pas encore bien comprises. Les contributions à propos de cette méthode sont résumées
ci-dessous.

Tout d’abord nous considérons la méthode adv-MsFEM-lin en dimension 1. Nous
parlons de la méthode adv-MsFEM tout court, puisque le choix des conditions au bord
dans les problèmes locaux (1.101.10) ne jouent un rôle qu’en dimension supérieure.

Contribution 8. Reformulation du Théorème 10.410.4:
En dimension 1, quand f = 0 et pour tout choix de conditions au bord sur ∂Ω,
l’approximation de la méthode adv-MsFEM est égale à la solution exacte de (2.272.27).
Puisque les instabilités d’une méthode EF sont liées au choix des conditions de Dirichlet
sur ∂Ω plutôt qu’au terme source f dans (1.91.9), nous en concluons que la méthode adv-
MsFEM est stable. La stabilité pour f non-nulle est en effet observée numériquement.

Nous verrons aussi dans le Chapitre 1010 que les fonctions multi-échelles φε,adv
i définies

par (1.101.10) peuvent être fortement déformées sous l’influence du champ d’advection, et
qu’elles ont dans ce cas des couches limites à l’intérieur de chaque maille. Voir la Fig-
ure 2.102.10. Cela rend la méthode inappropriée pour l’approximation de (1.91.9). Nous pro-
posons de remédier à ce problème, tout en conservant la stabilité de la méthode, en
ajoutant à l’espace d’approximation une bulle Bε,adv

K sur chaque maille grossière K ∈ TH .
Cette bulle est définie comme l’unique solution dans H1

0 (K) du problème

− div(Aε∇Bε,adv
K ) + b · ∇Bε,adv

K = 1 dans K.

et mène à la méthode adv-MsFEM-lin-B (voir (2.302.30) pour la définition précise). Pour
cette méthode, nous présenterons les résultats suivants dans cette thèse.

Contribution 9. Si Aε = m Id pour m > 0, et si b et f sont constants par morceaux,
alors on peut associer à la méthode adv-MsFEM-lin-B un schéma effectif sur l’espace
standard P1 de Lagrange qui cöıncide avec la méthode classique des residual-free bub-
bles [4141]. Ce schéma est le même que la formulation stabilisée SUPG avec un paramètre
de stabilisation

1) qui a, en 1D, l’unique valeur pour laquelle le schéma effectif est exact aux nœuds
(et la méthode adv-MsFEM-B est même exacte), mais

2) dont la valeur en dimension supérieure est trop petite pour assurer la stabilisation
complète du schéma.

Cette contribution explique donc l’instabilité de la méthode adv-MsFEM-lin en di-
mension 2 qui a été observée numériquement dans [114114]. Pour la dimension 2, nous avons
découvert la stabilité de la méthode adv-MsFEM-CR, où les fonctions multi-échelles φε,adv

i

dans (1.91.9) sont définies avec des conditions de continuité faibles au bord de la maille K.
Les conclusions des expérimentations numériques du Chapitre 1212 sont les suivantes.

Contribution 10. La méthode adv-MsFEM-CR est stable. Néanmoins, sa précision
se dégrade dans le régime dominé par l’advection en raison de la forme inadéquate des
fonctions multi-échelles, et l’ajout de fonctions bulles est nécessaire pour préserver la
précision dans ce régime. L’erreur commise par la méthode adv-MsFEM-CR-B est
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1. Résumé étendu en français

robuste par rapport à l’importance relative de l’advection. La seule autre méthode
étudiée ici ayant cette propriété est la méthode MsFEM-lin stabilisée par la technique
SUPG. Contrairement à la méthode MsFEM-lin SUPG, la robustesse de la méthode
adv-MsFEM-CR-B ne dépend pas d’un paramètre qui doit être correctement choisi.
Enfin, nous introduirons une variante non-intrusive de la méthode adv-MsFEM-CR-
B qui s’avère même légèrement plus précise que la méthode originale dans le régime
dominé par l’advection.

1.3.3. Analyse de convergence de la MsFEM sous des hypothèses de régularité
minimales. Des analyses de convergence pour diverses méthodes MsFEM sont disponibles
dans la littérature. Elles estiment la différence uε − uεH avec une dépendance explicite
en ε (la taille de la microstructure) et en H (la taille des mailles grossiers). Tous les
résultats que nous connaissons considèrent le cas où Aε = Aper(·/ε) pour une matrice
périodique Aper (voir [9898, 9999, 7070, 100100, 99, 112112, 113113, 9494, 116116, 114114, 5353]). Dans ce cadre,
la théorie de l’homogénéisation montre que la suite des solutions (uε)ε>0 tend vers une
fonction u? ∈ H1

0 (Ω) lorsque ε→ 0, et l’hypothèse de périodicité permet d’établir un taux
de convergence en ε (entre uε et une correction multi-échelle de u?) [2828, 3333]. Ce taux de
convergence est essentiel dans une analyse de convergence.

A cette hypothèse de périodicité s’ajoutent des hypothèses de régularité pour Aper

pour obtenir le taux de convergence évoqué ci-dessus. On suppose dans la littérature
que Aper est höldérienne. Une telle hypothèse est très restrictive du point de vue de
la modélisation car les matériaux multi-échelles sont typiquement caractérisés par des
coefficients discontinus. Dans le Chapitre 1313, nous démontrerons le théorème suivant,
sans aucune hypothèse sur Aper à part celles qui assurent le caractère bien-posé de (1.11.1).

Contribution 11. Reformulation du Théorème 13.113.1:
Supposons que Aε = Aper(·/ε) pour une matrice périodique Aper qui n’est pas
nécessairement höldérienne. Soit uεH l’approximation numérique de uε par la méthode
MsFEM-lin ou la méthode MsFEM-CR. Soit (TH)H une famille de triangulations
régulière et quasi-uniforme. Supposons que ε ≤ H et que u? ∈ H2(Ω). Alors

|uε − uεH |H1(TH) ≤ C

(
H|u?|H2(Ω) +

√
ε

H
|u?|H1(Ω)

)
.
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CHAPTER 2

Introduction

This introduction provides the context and motivation of the research that is documented
in this thesis, and it includes a summary of the main research contributions with an
outlook on future research directions associated to each research topic. Parts II, IIII and IIIIII
of the thesis each detail the contributions to one specific research area. The thesis is
organized in such a way that these three parts can be read independently.

2.1. Motivation

This thesis is concerned with computational methods for partial differential equations
in multiscale models. Models with multiscale properties naturally appear in many areas
of modern science and engineering. In the context of materials science, one could think
of composite materials for the design of aircraft wings, the study of fibers which are
themselves a collection of many finer fibers, or the use of concrete in many civil-engineering
applications. We also mention the modeling of sub-surface flow, for instance to understand
how a pollutant may spread through the earth’s surface, or the flow of the air through
a dense city center. In this thesis, we consider multiscale properties in space, like in the
above examples, and not in time, which require different approaches due to the sequential
nature of time.

In many cases one wishes to perform numerical simulations, that is, to find an approxi-
mation of the unknown quantities of the model by executing some dedicated software on a
computer, in order to understand the properties of the model. This can be the case when
physical experiments are deemed too costly, take too much time, or when obtaining the
desired information from an experimental setup is not even possible at all. Simulations
can also be a solution when an approximate answer is needed within a limited amount
of time that does not allow for elaborate experiments, or if the model is to be studied
for a large variation of different parameter values in the early stages of a design process.
All these various needs have led to the development of a plethora of computational tech-
niques (and the development of the associated hardware and software) over the past seven
decades.

The above examples of multiscale models are all characterized by variations on a
scale that is much smaller than the global dimension of the system. The numerical
simulation of a multiscale model based on the complete discretization of the microscale
then leads to an enormous linear system, the resolution of which may take a considerable
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2. Introduction

(possibly prohibitively large) amount of computational time, or may be impossible due to
memory constraints of the available computer architecture. Direct numerical simulation
is therefore often unfeasible.

In many applications, one is not actually interested in the precise fluctuations of the
solution of the model at the scale of its finest variations. Much coarser, global, macro-
scopic knowledge of material properties is often sufficient, at least as a first step. One
may thus hope that a corresponding coarse numerical model can provide the desired in-
formation. However, the microstructure of the model does have a large impact on the
emergent macroscopic properties, and it cannot be entirely discarded in numerical simu-
lations. In Section 2.1.12.1.1 we will show for the explicit example of the finite element method
(one particularly successful computational technique) that a reliable solution cannot be
obtained if the small variations of the model are ignored.

The above considerations have motivated the development of multiscale computational
techniques, which have known a particular interest during the past three decades. The
goal of such techniques is to preprocess the microstructure in such a way that, once
the preprocessing step has been completed, a coarse numerical model is available that
provides a reasonably accurate approximation of the global properties of the system of
interest at a low computation cost. Note that the preprocessing step is unavoidably
computationally expensive since it has to process the microstructure properly. However,
it typically follows a ‘divide and conquer’ strategy and does not require equally extensive
computational resources as the resolution of the original problem, at least when the space
dimension is not too large (e.g. in dimension 2 or 3). It is also usually suited for parallel
computation. A multiscale approach is therefore advantageous when similar problems
are to be solved many times, in which case the expensive preprocessing step has to be
performed only once. Since the global numerical model is coarse, it can be solved rapidly,
yielding a significant computational gain compared to the repeated direct simulation of
the complete microstructure. Nonetheless, when the problem at hand is to be solved only
once, multiscale approaches may still be beneficial if the global problem cannot be treated
directly. One may also consider iterative methods, that share some ideas with multiscale
methodes, on which we comment in Section 2.2.22.2.2.

This thesis mainly focuses on one such multiscale method known as the multiscale finite
element method. We cannot treat all applications mentioned above within the scope of the
present thesis. We rather consider somewhat abstract models that are a building block
for the resolution of many of the above-mentioned applications. The focus is on settings
for which, in spite of some research efforts in the past, a definite best approach has not
yet been identified. A considerable part of the thesis also investigates the adaptation of
the multiscale finite element method in such a way that it can be implemented by the use
of large, existing software packages that are currently used in industry, without the need
to modify this software. That is, without being intrusive. We consider this an essential
feature of any computational technique in order to facilitate its use for more advanced
applications, and have accordingly included the mention of ‘non-intrusive methods’ in
the title of the thesis. The proposed numerical methods are studied numerically and
compared to other known numerical models. This is complemented by a mathematical
convergence analysis when we are able to conduct it.

In the rest of this introduction, we motivate the advent of multiscale computational
techniques during the past decades and give an overview of key contributions in the field.
Then we give a more detailed description of the research contributions of the thesis that
are presented in Parts II, IIII and IIIIII.
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2.1 – Motivation

2.1.1. The finite element method. We consider numerical methods of finite element
type in this thesis. Let us recall the principle of the finite element method on the example
of a simple diffusion equation. We fix a domain Ω ⊂ Rd and we consider the partial
differential equation (PDE)

− div(A∇u) = f in Ω, (2.1)

subject to the boundary condition u = 0 on the boundary ∂Ω of the domain. This
equation appears in the modeling of thermal or electric conductivity, for instance, in
which case u is the (unknown) temperature or electric potential, respectively, and the
matrix A is a d×d matrix that characterizes the conductivity of the medium at any point
of the domain Ω. The equation also appears in more complicated models arising from
physics, engineering, biology, etc. It is also a building block for the discretization of many
more involved (non-linear, non-stationary) models.

For the purpose of designing a finite element method (FEM) for the PDE (2.12.1), the
PDE is written in a weak formulation, also called variational formulation. For simplicity,
we suppose that f ∈ L2(Ω). Then the variational formulation of (2.12.1) is as follows: find
u ∈ H1

0 (Ω) such that, for all v ∈ H1
0 (Ω), it holds∫
Ω

∇v · A∇u =

∫
Ω

fv. (2.2)

It is a classical result that u solves the weak form (2.22.2) if and only if it satisfies the
strong form (2.12.1) in the sense of distributions. Moreover, when the matrix A is elliptic
(that is, ξ · Aξ ≥ m‖ξ‖2 for all ξ ∈ Rd and for some m > 0) and bounded, one can
show well-posedness of (2.12.1) by the classical Lax-Milgram Theorem. We refer e.g. to [129129,
Chapter 3] for details.

A classical idea in the approximation of variational problems is to solve the problem
obtained when H1

0 (Ω) is replaced by a finite-dimensional subspace VH . We can then define
the numerical approximation uH ∈ VH as the unique solution to∫

Ω

∇vH · A∇uH =

∫
Ω

f vH for all vH ∈ VH . (2.3)

This is called a Galerkin approximation of (2.22.2). Clearly, there exists great flexibility in
the design of Galerkin approximations based on the choice of the subspace VH . Once VH
is fixed and a basis has been chosen, the problem (2.32.3) is equivalent to a linear system
whose number of unknowns equals dim(VH) and which consists of the same number of
equations, obtained upon choosing for vH in (2.32.3) the basis functions of VH . We also
say that (2.32.3) is tested against the basis of VH . Under the same conditions as for the
continuous problem (2.22.2), the discrete problem (2.32.3) has a unique solution.

Finite element methods correspond to choosing a subspace VH in the Galerkin approx-
imation (2.32.3) with certain characteristic, advantageous properties. In short, for a classical
FEM, the space VH

(i) is constructed on a mesh of the domain Ω,
(ii) consists of functions that are polynomial on each mesh element,

(iii) has a basis of functions that are localized on a small number of mesh elements as
much as possible.

The piecewise polynomial character of the space VH (throughout this thesis, ‘piecewise’
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means that the property is true on every mesh element) ensures useful approximation
properties of the space VH , and it guarantees that the coefficients of the linear system
resulting from (2.32.3) are easy to compute. The localization of the basis functions is essential
for an efficient computation of these coefficients on a computer, and for a sparse structure
of the linear system. The dimension of VH is also called the number of degrees of freedom
of the FEM.

For the second property above, the description ‘functions that are close to polynomials’
would in fact be more appropriate (albeit rather vague), in order not to neglect the
possibility of isoparametric finite elements. We do not consider such methods in this
thesis.

Many spaces with the above properties have been developed for various applications.
An overview is beyond the scope of this introduction. Thorough introductions to finite
element methods can be found in many textbooks. We cite [7373, 88, 3737, 129129]. We also
mention the classical monograph [5252]. An interesting historical account of the birth of
finite element methods can be found in [8080], and a brief account of the development of
the method during the 20th century in [126126].

The FEM has had huge success in scientific computing for almost any branch of
science and engineering. It is nowadays widespread due to its established performance
for a wide range of applications. It can be used for the approximation of symmetric and
nonsymmetric problems, for non-linear problems and eigenvalue problems. The popularity
of the FEM is also due to the fact that general-purpose software can be written for
large classes of FEMs with relative ease due to the above three characteristic principles.
Moreover, the FEM enjoys an elaborate and well-understood mathematical framework
to study its performance (e.g., convergence upon mesh refinement and increase of the
polynomial degree), the foundations of which were laid in the 1970s.

Before investigating the FEM for multiscale problems specifically, let us comment on
some liberty in defining FEMs that is not contained in the succinct presentation above.
In particular, the concepts of Petrov-Galerkin methods and of non-conforming methods
shall play a role in this thesis.

In the linear system corresponding to (2.32.3), the unknowns are the coefficients of uH in
the basis of VH . The equations are obtained upon testing (2.32.3) against the basis functions
of VH . However, in principle, a linear system can be obtained upon testing (2.32.3) against
different functions that do not belong to VH . An FEM then takes the form: find uH ∈ VH
such that ∫

Ω

∇wH · A∇uH =

∫
Ω

f wH for all wH ∈ WH , (2.4)

where WH can, in principle, be any finite-dimensional space with the same dimension
as VH . We call VH the trial space (or approximation space), and WH the test space.
When the test and trial spaces are different, we speak of a Petrov-Galerkin approximation
of (2.22.2). The freedom in the choice of test space can be used to improve the stability
properties of the FEM. We cite [5858]: “. . . in designing Petrov-Galerkin methods, while we
must choose trial spaces with good approximation properties, we may design test spaces
solely to obtain good stability properties.” This has further been explored in the series
of works [5959, 6060, 135135]. The use of Petrov-Galerkin approximations long predates these
relatively recent works, and is as old as the finite element method itself. In the context
of advection-dominated problems, which we will consider in more detail in Part IIII of the
thesis, the benefit of Petrov-Galerkin formulations was also investigated, e.g., in [4343, 122122,
7777].
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The use of Petrov-Galerkin approximations may also be advantageous for the imple-
mentation of an FEM. This point of view is extensively discussed for multiscale methods
in Part II of the thesis. We also refer to [7171].

We further mention that, in fact, the trial and test spaces need not be subspaces
of H1

0 (Ω) to design effective FEMs. There is indeed a huge variety of such non-conforming
finite element methods, as they are called. In this thesis, we will consider variants of the
classical finite element introduced in [5656] by Crouzeix and Raviart, which now carries
their names. In particular, this finite element is not continuous (but continuous only in a
weak sense). One can even go further in this direction and employ Discontinuous Galerkin
methods. We refer to [6161] for an introduction.

2.1.2. The finite element method applied to multiscale problems. Somewhat contrary
to the many successes of the FEM that were underlined above, we will now show that the
direct use of FEMs, at least in their classical form, is not efficient for the resolution of
multiscale problems. This has led to the development of dedicated multiscale approaches,
which we review in Section 2.22.2. We restrict ourselves here to the example of the diffusion
equation.

Let us introduce a strongly heterogeneous diffusion coefficient Aε, a d × d matrix
satisfying the same ellipticity property as above. We use the superscript ε throughout to
remind the reader of the presence of a small scale, the scale of the heterogeneities of the
medium that is modeled by Aε, which is much smaller than the typical dimensions of the
domain Ω. Correspondingly, we denote by uε ∈ H1

0 (Ω) the solution to (2.12.1) when A is
replaced by Aε, which equivalently solves∫

Ω

∇v · Aε∇uε =

∫
Ω

fv for all v ∈ H1
0 (Ω). (2.5)

We now recall the classical Lagrange FEM of order 1. It is based on continuous
piecewise polynomials of degree 1 for the trial space VH . More precisely, let TH be a
conformal simplicial mesh (often called a triangulation) of Ω. For detailed definitions
we refer to [129129] in order to keep the presentation concise. Here, H denotes the size of
the mesh elements, typically defined as H = max

K∈TH
diam(K). For simplicity, we suppose

that Ω is a polyhedron, so that Ω =
⋃

K∈TH

K. Now VH is the P1 Lagrange space

V P1
H =

{
v ∈ C 0(Ω) | v = 0 on ∂Ω and ∀K ∈ TH , v|K ∈ P1(K)

}
,

where P1(K) denotes the space of all polynomials on K of total degree at most 1. The
notation V P1

H may also be used to indicate other spaces of piecewise affine functions later
on in this introduction. The standard basis of this space in the case of a one-dimensional
domain Ω = (0, 1) is shown in Figure 2.12.1. The basis functions clearly satisfy the locality
property required above.

The space V P1
H is a subspace of H1

0 (Ω). We can thus define the P1 FEM approximation
uεH ∈ V

P1
H as the unique solution in V P1

H to the problem∫
Ω

∇vH · Aε∇uεH =

∫
Ω

f vH for all vH ∈ V P1
H . (2.6)

Convergence of uεH towards uε is guaranteed (under certain regularity properties of the
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Figure 2.2: For the diffusion coeffi-
cient (2.82.8), the difference between uεH and
the exact solution uε is large when the mesh
size H does not resolve the microscale ε.

mesh for which we refer to the BibliographyBibliography) as H → 0. See, for instance, Theorem 3.16
of [7373], which gives the following order of convergence:

‖uε − uεH‖H1(Ω) ≤ CH|uε|H2(Ω). (2.7)

(Here, |·|H2(Ω) denotes the H2-semi-norm; one can show that uε belongs to H2(Ω) if we
assume that Ω is convex, see [8585, Theorem 3.2.1.2].)

The multiscale character of the diffusion coefficient Aε requires that the mesh size H
properly resolves the heterogeneities of the problem at the microscopic scale ε in order
to reach the convergence (2.72.7). In this case, the dimension of the space V P1

H is huge, and
accordingly, the linear system corresponding to (2.62.6) will be large. The resolution of the
linear system becomes numerically intractable for many relevant applications.

Figure 2.22.2 shows an illustration in the one-dimensional case. For the diffusion coeffi-
cient

Aε(x) =

{
1 if bx/εc is even,

10 if bx/εc is odd,
(2.8)

and the right-hand side f(x) = 100x3, we show the exact solution uε and the P1 FEM
approximation uεH defined by (2.62.6). The mesh size used is H = 2ε. Note that, even
though H > ε, this is still small if one considers that ε is a microscopically small length
scale. Yet the numerical approximation uεH fails to approximate the solution anywhere
on Ω. Here, we must distinguish two different properties of the approximation uεH :

1. The microscopic oscillations of uε are not captured by uεH . This is obviously impos-
sible when the approximation space V P1

H does not contain any oscillations at this
length scale.

2. The macroscopic profile of uε is not captured by uεH . This is a shortcoming of the
FEM methodology itself rather than the approximation space, because one easily
imagines a piecewise affine function being much closer to uε than the “approxima-
tion” of Figure 2.22.2.

The same phenomenon persists for higher-dimensional problems. We show a two-
dimensional example in Figure 2.32.3 for the PDE − div(Aε∇uε) = 500, which illustrates the
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2.1 – Motivation

vast number of degrees of freedom that is required to obtain a satisfactory approximation
with the P1 FEM. To properly resolve a diffusion coefficient with only 25 heterogeneities
in an otherwise homogeneous medium, even a naive P1 approximation with more than
1500 degrees of freedom looses a considerable amount of information about the global
profile of uε. One readily understands that the requried number of degrees of freedom
explodes for real-sized three-dimensional systems with hundreds of heterogeneities. We
summarize the above observations as follows:

The P1 FEM cannot be used to compute an approximation of uε if the mesh is coarse.
All macroscopic properties are lost if the microstructure is ignored.

This conclusion remains true for higher-order FEMs when the mesh does not resolve the
microstructure.

Aε = 1 Aε = 30

(a) Diffusion coefficient Aε.

Isovalues

(b) 106 degrees of freedom, H � ε.

Isovalues

(c) 1521 degrees of freedom, H ∼ ε.

Isovalues

(d) 81 degrees of freedom, H � ε.

Figure 2.3: Finite element approximations for the diffusion coefficient in (aa) and three
different mesh sizes H. The maximum of the solution drops rapidly when the mesh does
not sufficiently accurately resolve the heterogeneities.

Let us now give some explanation for the inability of the FEM to capture even the
global properties of uε if the mesh is too coarse. In the Galerkin approximation (2.62.6),
note that the gradients ∇vH and ∇uεH are constant inside each element of the mesh. We
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can thus rewrite the left-hand side as∫
Ω

∇vH · Aε∇uεH =
∑
K∈TH

∇vH |K ·
(∫

K

Aε
)
∇uεH |K =

∫
Ω

∇vH · Aav∇uεH , (2.9)

where Aav is a matrix that is constant in each mesh element and is defined by the averages

Aav|K =
1

|K|

∫
K

Aε for all K ∈ TH . (2.10)

Thus, for all matrices that have the same piecewise average as Aε, the P1 Lagrange FEM
gives the same approximation. This is not a problem as long as the diffusion matrix
varies mildly around its average inside each element of the mesh TH , which would be
the case if we could afford to use a sufficiently fine mesh. When the diffusion matrix
varies rapidly inside the element, Figures 2.22.2 and 2.32.3 show that the effective behaviour of
the solution uε is quite different from the properties predicted by the FEM, which only
sees Aav. In particular, it was shown in [2121] that coefficients can be constructed for which
the P1 FEM converges arbitrarily slowly on a uniform mesh in 1D.

To understand why replacing Aε by Aav, as happens implicitly in the FEM, is illegiti-
mate, it is instructive to focus on a one-dimensional example. In the one-dimensional case,
say on the domain Ω = (0, 1), the problem reduces to the ordinary differential equation
−(Aε(uε)′)′ = f with homogeneous Dirichlet boundary conditions. The equation can be
integrated directly; this yields

uε(x) = −
∫ x

0

Cε + F (t)

Aε(t)
dt with Cε = −

∫ 1

0

F (t)/Aε(t) dt∫ 1

0

1/Aε(t) dt

,

and where F is a primitive of f . When, for instance, Aε = Aper(·/ε) where Aper is periodic
with period 1, it is easy to show that, for any integrable function g,∫ 1

0

g(t)

Aε(t)
dt→

∫ 1

0

1

A?
g(t) dt as ε→ 0,

where

A? =

(∫ 1

0

1

Aper

)−1

(2.11)

is the harmonic average of Aper. Consequently, Cε converges to the constant C? defined
as

C? = −A?
∫ 1

0

1

A?
F (t) dt,

and uε converges (pointwise) to the function u? that is given by

u?(x) = −
∫ x

0

1

A?
(C? + F (t)) dt.

One immediately sees that u? is a solution to the differential equation −(A?(uε)′)′ = f
with the constant diffusion coefficient A?. However, A? is the harmonic average of Aper,
and not the arithmetic average (2.102.10) that is encoded in the FEM through (2.92.9).
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2.2 – Introduction to multiscale methods

We point the reader towards [3333, Section 2.1] for interesting and more general consid-
erations regarding these simple computations. For the purposes of this introduction, the
conclusion for a periodic diffusion coefficient is twofold:

1. The solution uε is, at least when ε is small (and in a sense that can be made precise)
close to u?, which is the solution to a differential equation with a constant coefficient,
but

2. this coefficient is not equal to, and is in general very different from the averaged
coefficient Aav from (2.102.10) that is seen by the P1 FEM.

Let us give an optimistic interpretation of these observations: for a multiscale problem,
there may exist a piecewise constant, ‘effective’ diffusion coefficient, which describes the
macroscopic behaviour of uε more accurately than Aav. In the context of the mathemat-
ical theory of homogenization, this may be formalized in the limit that the microscopic
parameter tends to 0. The existence of effective coefficients is a commonly used prin-
ciple in materials science, and they can be characterized by physical measurements, for
instance. In order to use the FEM for simulations in the multiscale context, it must be
adapted such that, either implicitly or explicitly, the effective properties of the problem
are captured. This is the goal of the multiscale methods that we describe in the next
section. We will also see that homogenization theory justifies many of the above remarks
in a general setting.

To conclude this section about the finite element method in general, let us comment
on the convergence (2.72.7) of the FEM. We now know that a small value of the mesh size H
does not necessarily mean that the error uε−uεH is small when the coefficient Aε is strongly
heterogeneous. We also understand that the error does not decrease upon mesh refinement
as long as the resulting mesh is too coarse to resolve the microstructure of Aε, because the
FEM approximation is still based on the erroneous average Aav. Is there a contradiction?
The answer is, of course, no. When Aε is highly oscillatory, with oscillations at the scale ε,
the second derivatives of uε are of the order of ε−1. The error in (2.72.7) may thus be large
when H/ε is large, i.e., when the microstructure is not properly resolved. The classical
error estimate remains valid, but becomes meaningless in the multiscale context.

2.2. Introduction to multiscale methods

We start this section with a theoretical approach rather than a numerical one: a short
description of the mathematical theory of homogenization. We will also explain why the
direct use of this theory is rather limited in practice, and then move on to numerical
approaches for multiscale problems.

2.2.1. Homogenization theory. In the mathematical theory of homogenization, a se-
quence of diffusion coefficients Aε indexed by ε → 0 is considered along with the corre-
sponding solutions uε to (2.52.5). One aims to study the existence of a limit uε as ε → 0,
and the properties of this limit function when it exists.

One of the most general notions in homogenization theory is that of H-convergence.
For all 0 < m ≤M we introduce the space of (bounded, invertible) matrices

Mm,M =
{
A ∈ Rd×d | ∀ ξ ∈ Rd : ξ · Aξ ≥ m‖ξ‖2, ξ · A−1ξ ≥M−1‖ξ‖2

}
.
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2. Introduction

A sequence of matrices Aε in L∞(Ω,Mm,M) is said to H-converge to A? ∈ L∞(Ω,Mm,M)
(called homogenized limit, or H-limit) if, for any f ∈ H−1(Ω) the sequence of solutions
uε to (2.52.5) satisfies {

uε ⇀ u? weakly in H1
0 (Ω),

Aε∇uε ⇀ A?∇u? weakly in L2(Ω)d as ε→ 0,

where u? ∈ H1
0 (Ω) is the solution to∫

Ω

∇v · A?∇u? = 〈f, v〉H−1(Ω),H1
0 (Ω) for all v ∈ H1

0 (Ω), (2.12)

or equivalently, u? solves to the so-called homogenized equation − div(A?∇u?) = f . An
important (compactness) result is that any sequence of matrices in L∞(Ω,Mm,M) has
an H-converging subsequence. For this result and those below and their and proofs, we
refer to [77, Chapter 1]. It also contains an account of other ideas in homogenization (the
theory of Γ-convergence, the probabilistic theory of homogenization, physical approaches
to averaging) with many references. Among the vast literature regarding H-convergence,
let us mention [124124, 134134, 133133, 3333]. The theory of homogenization also goes beyond the
study of the pure diffusion equation. In this regard one may consult [3333, Chapter 6], for
instance.

For our purposes, let us rephrase the above as follows: if we suppose that we are along
a subsequence such that Aε H-converges towards A?, the function uε is, when ε is small
enough, close to u?, which is characterized by A?. The matrix A? does not depend on
the microscopic parameter ε. If A? varies slowly (we will see below that A? is constant
when Aε is the rescaling of a fixed periodic matrix), the FEM can provide us with an
approximation of u?, and thus of uε. All these approximate ideas can be made precise
in particular situations for a more rigorous convergence analysis. We recall the one-
dimensional periodic setting considered above in which we found A? to be the harmonic
average (2.112.11), which is in fact constant throughout Ω.

The homogenized matrix A? can be characterized as follows. For α = 1, . . . , d, let
eα be the α-th canonical basis vector of Rd and xα the α-th coordinate function. Then,
denoting the limit in the sense of distributions by D ′(Ω) - lim,

A?eα = D ′(Ω) - lim
ε→0

Aε∇vεα,

where (vεα)ε is a sequence in H1(Ω) of so-called oscillating test functions, satisfying{
vεα ⇀ xα weakly in H1(Ω),

− div(Aε∇vεα)→ − div(A?eα) strongly in H−1(Ω) as ε→ 0.
(2.13)

We note that this characterization is not explicit, since the sequence of oscillating test
functions depends on A?. Moreover, the oscillating test functions are not defined uniquely,
since an arbitrary sequence of functions that converges to 0 strongly inH1

0 (Ω) can be added
to any such sequence. This characterization does confirm, however, that the arithmetic
average (2.92.9) encoded in the standard P1 FEM is much too naive a notion of averaging
to treat the microscale ε properly.

The above characterization can be made explicit in some cases when the matrices of
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2.2 – Introduction to multiscale methods

the sequence (Aε)ε have a specific structure. Let us consider the periodic case, where Aε =
Aper(·/ε) for a Q-periodic function Aper. Here Q denotes the unit cube of Rd. A detailed
account of homogenization theory in this setting can be found in [2828]. The oscillating test
functions can now be defined explicitly as

vεα = xα + εwper
α (·/ε), α = 1, . . . , d, (2.14)

where the corrector function wper
α is defined as the periodic solution in H1(Q) to

− div(Aper(∇wper
α + eα)) = 0, (2.15)

which is unique up to an irrelevant additive constant. The homogenized limit of Aε is
then given by

A?eα =

∫
Q

Aper(∇wper
α + eα), 1 ≤ α ≤ d, (2.16)

and it is constant. Upon introducing Aper,av =

∫
Q

Aper, we can rewrite this expression as

A?eα = Aper,aveα +

∫
Q

Aper(∇wper
α ), 1 ≤ α ≤ d, (2.17)

that is, the homogenized matrix A? equals the arithmetic average of Aper, which is correctly
approximated by (2.102.10) seen in the P1 FEM, plus a correction term that depends, through
the corrector functions wper

α , on Aper in a non-linear way. Note that the expression for A?

is no longer the harmonic mean of Aper as was the case in the one-dimensional setting.
Let us also mention that the corrector function can be used to build an approximation
of uε in the H1-norm (as opposed to the weak convergence in (2.132.13) obtained for u?).
This is made precise in Section 4.74.7.

In summary, the notion of averaging encoded in a standard FEM should be corrected
when the underlying mesh does not resolve the microstructure. In view of the intricate,
non-linear dependence between Aε and A?, it seems impossible to propose a generic FEM
that incorporates the suitable correction for any microstructure. In the periodic case,
however, the following problem-dependent computational strategy can be deduced from
the above for a known microstructure Aper:

1. For α = 1, . . . , d, we use an FEM on Q to solve (2.152.15) for wper
α .

2. We compute A? from (2.162.16).
3. Since A? is constant, the P1 FEM can now be used to compute an approximation

of u? from (2.122.12) on a coarse mesh.
4. An approximation of uε can now be constructed from u? and a linear combination

of the corrector functions wper
1 , . . . , wper

d .

This procedure, and its approximation qualities, are extensively discussed in [3333, Sec-
tions 5.1.2-5.1.3]. It results in a tremendous computational gain, since none of the finite
element approximations above has to resolve the microscale ε. Hence, a microscopically
fine mesh for the entire domain Ω is never used. However, to put this method into practice,
it is essential that Aε be the rescaling of a fixed, known, periodic matrix Aper.

Explicit descriptions of the corrector functions and the homogenized matrix are also
available for some perturbations of the periodic setting. We refer to [3333, Chapter 4]
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and [8383]. In [3333, Section 5.1.4], the implications of such perturbations for the above
approach are detailed. We summarize two factors that complicate the computational
procedure outlined above for the periodic setting. First, the corrector equation (2.152.15)
is, in general, not posed on a bounded domain, but on the entire space Rd. Second,
the homogenized matrix may no longer be given by an average as in (2.162.16), but as the
asymptotic limit of the average over large volumes. The above procedure may be adapted
to such settings, and it may still be advantageous to put the approach into practice if
the problem (2.52.5) has to be solved many times for different right-hand sides. Indeed, the
homogenized matrix A? only has to be computed once, and once it has been computed,
the resolution of the homogenized equation (2.122.12) is extremely fast compared to the full
resolution of (2.52.5) on a fine mesh.

Even beyond these complications, it may be the case that no theoretical framework
is known for the specific microstructure at hand, and that no explicit description of the
corrector functions wεα and the homogenized matrix A? are available. One might even
wonder if, given a single real-life microstructure Aε, it can be embedded in a sequence of
diffusion coefficients so that the limit of uε as ε→ 0 can be studied. This is often far from
trivial, for instance if the microstructure is obtained from measurements on the system
under consideration.

Different numerical techniques are thus required to treat more general problems than
those accessible through homogenization theory. The theory that is briefly outlined in this
section, albeit well-developed theoretically, can only serve as a guideline for the design
of such techniques. Nevertheless, we would like to mention that homogenization theory
still plays a key role in the convergence theory of many such multiscale computational
methods.

2.2.2. Multiscale computational methods; numerical homogenization. Here we give a
general overview of various multiscale computational approaches of finite element type that
aim to include the microscopic information of the model, while solving global problems
such as (2.62.6) only on a low-dimensional space such as VH . The numerical methods that
are studied in the rest of the thesis fall under this category of computational approaches.
Contrary to the homogenization theory recalled above, these do not rely on an asymptotic
study of the microstructure in order to formulate a problem on a coarse space. This implies
that multiscale approaches generally consist of two steps. A first offline stage during which
the microstructure is processed in some appropriate way (see below for examples). Since
this stage is to be performed numerically, the use of a fine mesh is unavoidable. Typically,
a ‘divide and conquer’ strategy is adopted: the global model is divided into several smaller
subdomains that are processed separately. This way, the offline stage does not lead to
numerically intractable problems such as the resolution of the original model on a fine
mesh. It is often amenable to parallel computing, allowing to increase the computational
efficiency of the procedure. In a second step, the online stage, the results of all local
computations are combined in order to obtain a reasonably accurate approximation of uε

on a coarse mesh at an affordable computational cost.

Since the microstructure is processed numerically rather than analytically to replace
the averaged coefficient from (2.102.10) by a more appropriate ‘effective model’, in the spirit
of the homogenized coefficient in (2.122.12), this field of scientific computing is also called
numerical homogenization. See [7272, 1515, 1212] for more detailed reviews of the field.

Obvious ways to include the fine-scale information of Aε in the approximation space VH
may be through the computation of eigenfunctions of the associated differential opera-
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tor, or by the computation (on a fine mesh) of the inverse image of a small number of
selected simple functions. Such functions are in general global. Hence, one may not be
able to actually compute them. There is also a more fundamental problem. Recall prop-
erty (iii)(iii) on page 1313 that underlies the efficiency of the FEM: its basis functions are local.
Therefore, and we quote [1212], “The true art in numerical homogenization is to identify a
localized basis of the generalized finite element space to preserve the favourable sparsity
and complexity properties of standard FEMs without affecting the universal accuracy.”

We emphasize that the goal of numerical homogenization is not to obtain the same
accuracy as would be obtained if one were capable of solving the large-scale linear system
associated to an FEM resolving the entire microstructure. If this is what one wishes
to achieve, iterative methods such as domain decomposition methods and the multigrid
method could be considered. These are general-purpose methods to accelerate the res-
olution of generic FEMs (and other discretization techniques). Such methods iterate
between the resolution of local and (coarse) global problems until a convergence criterion
is met. Multiscale methods are one-shot, bottom-up methods, and our goal is to design a
single coarse problem that provides sufficient accuracy under this constraint, specifically
adapted to the PDE and its coefficients at hand. On the other hand, ideas of the mul-
tiscale methods we discuss below can also be used to build efficient preconditioners for
iterative methods applied to multiscale problems. We refer to [11, 8484, 3636]. An introduction
to iterative methods that does right to the field is beyond the scope of this text. We
mention the introductory texts [4242, 6363].

Numerical homogenization techniques are mainly of interest under two conditions:

1. A coarse approximation of the solution uε is sufficient, so a microscopic discretization
is not required by the problem specifications.

2. The same microstructure has to be processed many times. One can think of non-
stationary problems, inverse problems, uncertainty quantification, risk assessment,
design loops, control and optimization problems, etc.

Let us detail the second point. We have explained so far that the FEM is a generic method,
but that it suffers from a great loss of accuracy when applied to multiscale problems with
a coarse mesh. However, if the problem is to be solved only once, it is best to resort
to available standard techniques to solve the problem on a fine mesh whenever possible.
If, on the other hand, a problem with the same microstructure is to be solved multiple
times, for instance because the right-hand side f in (2.52.5) changes, or different boundary
conditions are imposed, the computational cost accumulates and becomes so large that
one might consider resorting to more specialized techniques. Numerical homogenization
approaches design a coarse, problem-dependent model for the online stage which is cheap
to solve. The expensive part of the strategy, the offline stage, is only executed once.
The computational gain with respect to a classical FEM on a coarse mesh thus increases
each time the problem is solved again. By giving up the generality of classical FEMs, we
improve the performance of the method for the problem at hand. We consider the impact
of this choice on the implementation of the method in Section 2.3.12.3.1 and more elaborately
in Part II of the thesis.

We now mention a few concrete examples of numerical homogenization techniques.
The Heterogeneous Multiscale Method (HMM) was introduced in [6767]. It was classified
in [1212] as a homogenization-based method. The method supposes that an effective model
for the PDE under consideration exists and that its form is known. The effective coeffi-
cients of the model are then estimated in the quadrature points of an FEM on a coarse

23



2. Introduction

mesh. The estimation is carried out by the resolution of a subscale problem inspired by
homogenization theory (such as the corrector problem (2.152.15)) in small cells around each
quadrature point. These cells must be large enough to be representative of the local mi-
crostructure. The computation of these effective coefficients constitutes the offline stage
of the method. The online stage then consists in solving a standard FEM approximation
of the effective model on the aforementioned coarse mesh. We refer to [55] for a detailed
review of the method, its analysis and the many applications of the HMM framework.

Another class of multiscale methods identified in [1212] is that of variational approaches.
Contrary to the HMM, all these approaches aim to correct the Galerkin approxima-
tion (2.62.6) through the use of all the scales that cannot be resolved by the coarse mesh,
and not just in small representative elements around a small number of points through-
out the domain. We introduce the ideas behind the Multiscale Finite Element Method
(MsFEM) and the Localized Orthogonal Decomposition (LOD).

The MsFEM [9898] performs a Galerkin approximation of (2.52.5) on a low-dimensional,
problem-dependent space. This idea originally dates back to [2020, 1818]. The basis functions
of this space are computed (numerically) during the offline stage. They are defined as the
solution to a PDE like (2.152.15). This PDE has to be localized (since we want to keep the
local character of standard finite element functions) by a choice of boundary conditions
on each mesh element. This has led to the definition of numerous MsFEM variants that
are revisited in more detail in the next section. The online stage consists in performing a
Galerkin approximation on the pre-computed space.

The convergence analysis of the MsFEM is carried out under periodicity assumptions
and relies on available results from homogenization theory, exploiting the fact that the
problem-dependent basis functions solve a PDE similar to the corrector equation (2.152.15).
See, for instance, [7070, 9999, 99, 112112]. This is also the case for the HMM. It is important
to note that such assumptions are not required to put the approach into practice on a
specific problem.

The MsFEM can also be related to the general framework of the Variational Multiscale
Method (VMM) [101101] based on local Green’s functions of the differential operator inside
each mesh element, and the equivalent concept of residual-free bubbles [3838]; this relation-
ship is given in (2.222.22) below. Nonetheless, the presentation of the MsFEM is classically
closer to the interpretation based on homogenization theory. The contributions of this
thesis reveal that the link with the VMM can be useful for both the implementation of
the method and the understanding of some of its stabilizing properties. See, in particular,
Equation (2.222.22) and Contributions 11, 33 and 99 in Section 2.32.3 below.

The more general VMM framework of [102102] introduces global corrector Green’s func-
tions, and defines problem-dependent basis functions that are globally supported. There-
fore, these ideal basis functions (ideal from an approximation point of view) are not
suitable for the use in an FEM. When the coarse space is defined as the image of an ap-
propriate projection operator, it was observed that the basis functions decay exponentially.
This was first proved for elliptic problems in [120120]. A modified localization strategy for
these functions was used to introduce in [9393] what is now known as the LOD. Yet another
variant with basis functions that decay even faster was recently proposed in [9090]. The
offline and online stages of the LOD are thus similar in nature to those of the MsFEM and
consist in the computation of a low-dimensional problem-dependent discretization space
on which a subsequent Galerkin approximation is performed. An additional parameter
in the definition of the LOD is the width of the patches to which the basis functions are
localized. These have to be taken larger than the support of the classical P1 Lagrange
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basis functions, unlike the MsFEM basis functions, which have exactly the same support
as the P1 basis functions.

The exponential decay of the ideal basis functions and the convergence of the LOD
can be shown without any assumptions on the microstructure. A general framework for
the LOD is described in [1212]. We also refer the reader to the monograph [121121].

One may draw parallels between the techniques described above and the field of model
order reduction for parameterized PDEs [5555, 2727], and especially localized model order
reduction [4444]. Indeed, the problem-dependent spaces above can be seen as reduced-order
subspaces of the finite element space that fully resolves the microstructure, and both
methods rely on (local) solves of the model to construct a suitable low-dimensional space
that approximates the solution of the global problem. We do not, however, consider
a parameterized family of PDEs, but a single fixed microstructure that is encoded in
a dedicated approximation space. A more detailed review of model order reduction is
beyond the scope of this thesis and we refer to the above references.

Finally, let us mention one particular topic that we consider particularly important
for multiscale methods. In Section 2.3.12.3.1, we discuss the problem of intrusiveness, which
is central to Part II of the thesis. It considers the question of how to adapt existing FEM
software to a multiscale approach. In the next section, we review the MsFEM in more
detail, which is the approach on which this thesis focuses. Some more details on the HMM
and the LOD, with a focus on the related intrusiveness, can be found in Section 6.46.4.

2.2.3. The multiscale finite element method. The MsFEM was described above as an
FEM that performs a Galerkin approximation of (2.52.5) on a problem-dependent space.
The original space proposed in [9898] is defined as follows. Consider a (coarse) mesh TH

and the P1 Lagrange space V P1
H associated to this mesh. We denote the interior vertices

of the mesh (those that do not lie on ∂Ω) by x1, . . . , xN . Let φP1
1 , . . . , φ

P1
N be the standard

basis of VH defined by the property φP1
i (xj) = δi,j for all 1 ≤ i, j ≤ N . See Figure 2.12.1

for an illustration in dimension 1. Then for all 1 ≤ i ≤ N , we define a multiscale basis
function φεi as the unique solution to

∀K ∈ TH ,

{
− div(Aε∇φεi ) = 0 in K,

φεi = φP1
i on ∂K.

(2.18)

We show an example of such multiscale basis functions in Figure 2.42.4 in dimension 1. We
give an example of a P1 basis function and a multiscale basis function in dimension 2 in
Figure 2.52.5.

For any interface of the mesh, the local boundary conditions for a multiscale basis
function φεi are the same on both sides of the interface. Therefore, each basis function φεi
is continuous and it belongs to H1

0 (Ω). Consequently, the multiscale space

V ε
H = span {φεi | 1 ≤ i ≤ N}

is a subspace of H1
0 (Ω). The Galerkin projection

Find uεH ∈ V ε
H such that

∫
Ω

∇vεH · Aε∇uεH =

∫
Ω

f vεH for all vεH ∈ V ε
H (2.19)

thus has a unique solution, like the continuous problem (2.52.5). This is called the MsFEM
approximation of uε.
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Figure 2.4: Example of a highly oscillatory coefficient Aε and the associated multiscale
basis functions in 1D.

(a) φP1
i (b) φεi

Figure 2.5: Example of (aa) a P1 basis function and (bb) a multiscale basis function associ-
ated to the same vertex in 2D.

In practice, no analytical expression for the basis functions φεi is known beyond the
one-dimensional situation. They have to be approximated numerically. To this end, a
fine mesh that resolves the microstructure of Aε is used for each K ∈ TH , and (2.182.18) can
be approximated by, e.g., a standard P1 FEM on this mesh. Since the problems on all
mesh elements are independent, these computations can moreover be executed in parallel.
This is the offline stage of the MsFEM. The resolution of (2.192.19), once the basis multiscale
basis functions have been computed, constitutes the online stage. This comprises the
construction of the linear system associated to (2.192.19) and its resolution. Note that the
matrix of this linear system only depends on the multiscale basis functions, and not on
the right-hand side, and can therefore also be computed once and for all during the offline
stage of the MsFEM. In what follows, we omit the explicit reference to the numerical
approximations of the φεi that are used in practice for ease of exposition. The statements
below can be generalized to the situation where this fine-scale discretization is taken into
account. The associated additional numerical error can be supposed small since the fine
mesh resolves the microstrucure. This error can be studied explicitly (as is done in [99], for
instance), but will be neglected in this thesis, as is also common in the MsFEM literature.
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The MsFEM in dimension 1. Let us now consider the performance of the MsFEM. We
first give some elements applicable to the one-dimensional situation. It is easy to show that
the MsFEM is exact at the vertices of the mesh in dimension 1, i.e., uεH(xi) = uε(xi) for
all vertices xi of the mesh, regardless of the mesh size used. This is a well-known property
of FEMs in dimension 1 with test functions that solve locally the adjoint problem to the
PDE under consideration. Since the problem (2.52.5) is self-adjoint (in dimension 1, Aε is
a scalar, so we do not need to assume that it is symmetric here), the MsFEM satisfies
the exactness property. We observe a radical difference with respect to the situation of
the classical P1 FEM, for which we have seen that, with the same number of degrees of
freedom, it fails to even find an approximate value of uε at the vertices of the mesh; see
Figure 2.22.2.

A rate of convergence can also be established by relatively elementary arguments. If
we consider an interval Ω divided into a number of subintervals all of equal length H, it
is shown in [3333, Section 5.2.1.2] that

‖uε − uεH‖H1(Ω) ≤ CH‖f‖L2(Ω), (2.20)

whenever m ≤ aε(x) ≤ M for almost all x ∈ Ω and with a constant C that does not
depend on ε. (The estimate from [3333, Section 5.2.1.2] only has the L2-norm of (uε− uεH)′

on the left-hand side; by the Poincaré inequality on H1
0 (Ω), the two norms are equivalent.)

The key point here is that the right-hand side f is independent of the microstructure, in
sharp contrast to the error bound in (2.72.7). The MsFEM estimate (2.202.20) is thus meaningful
in all regimes of H and ε, while we have seen that the bound (2.72.7) for the classical P1

FEM may be large when H/ε is large.

The above properties provide a solid theoretical motivation, at least in dimension 1,
for the introduction of the MsFEM (and for the LOD, which coincides with the MsFEM in
dimension 1). Numerical results confirm the superior quality of the MsFEM. In Figure 2.62.6
we show the relative errors ‖uεh − uεH‖L2(Ω)/‖uεh‖L2(Ω) and ‖(uεh − uεH)′‖L2(Ω)/‖(uεh)′‖L2(Ω)

with respect to a numerically computed reference solution uεh as the mesh size H varies.

The diffusion coefficient for these computations is Aε(x) = 2 + cos

(
2πx

ε

)
and the right-

hand side is f(x) = x3. We used ε = 2−9 ≈ 0.002 and computed the basis functions of
the MsFEM on a uniform fine mesh of size h = 2−14 = ε/32. The reference solution is
computed by a P1 FEM on the same mesh. The P1 FEM error displays a plateau when
H > ε. This can be explained by our findings in (2.92.9). Even if we refine the mesh size,
the FEM continues to compute an approximation to a PDE with an incorrect effective
diffusion coefficient (the arithmetic average of Aε, while the harmonic average corresponds
to the homogenized limit and would yield a much better approximation). The error of the
MsFEM, on the other hand, decreases with the precise convergence rate predicted above,
and is in the asymptotic regime of convergence even when H � ε.

It is also noteworthy that the error analysis in 1D is carried out without any assump-
tions on the structure of Aε except that it is bounded from above and from below. In
particular, no arguments of homogenization theory are necessary to establish the rate of
convergence. The critical point in the analysis is that the error between uε and its nodal
interpolant in the MsFEM space V ε

H vanishes at the nodes and is therefore completely
localized. It can thus be estimated by integrations by parts and Poincaré inequalities.
This argument is intrinsically restricted to the one-dimensional situation.
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Figure 2.6: Errors of the P1 FEM and the MsFEM in the L2-norm and the semi-H1-norm
for a highly oscillatory diffusion coefficient in 1D.

The MsFEM in higher dimension. The automatic localization of the error, as we just
found in dimension 1, does not carry over to the higher-dimensional situation. As we
quoted from [1212] before, localization is the essence of the design of a numerical homog-
enization technique. It is only in the higher-dimensional case that different localization
choices come into play.

For the MsFEM methodology, the localization is maximal, since the problems (2.182.18)
are entirely localized to a single mesh element K, and the MsFEM basis functions enjoy
the same favourable localization properties as those of the P1 FEM. This comes at the cost
of placing rather arbitrary boundary conditions on ∂K for each local problem. Optimal
boundary conditions would reflect the oscillatory behaviour of uε over the mesh interfaces.
On the contrary, the piecewise affine boundary conditions used in (2.182.18) discard all os-
cillations around the mesh interfaces. The difference with respect to the one-dimensional
case is that, in the latter, the boundary conditions are set at the endpoints of an interval,
hence the space of possible boundary conditions for uε only has dimension 2. As soon as
we are in a higher-dimensional case, the dimension of possible boundary conditions at the
boundary of a mesh element is infinite.

The design of improved multiscale finite element methods since its original introduc-
tion can, at least for pure diffusion problems, be characterized as the quest for improved
boundary conditions for the multiscale basis functions. The choice of affine conditions
in (2.182.18) was already realized to be suboptimal at the time of their introduction in [9898]
and in the same work, an oversampling variant was proposed. In this case, the local prob-
lems (2.182.18) are posed on a simplex larger than K, again with affine boundary conditions.
The restriction to K of the solutions to these problems, which are now oscillatory on ∂K,
are used to construct the multiscale basis functions. This MsFEM variant is described in
detail in Chapter 55 of the thesis. Another approach is the MsFEM with Crouzeix-Raviart
type boundary conditions proposed in [112112]. It does not prescribe Dirichlet boundary
conditions in the local problems, but only sets the average over each interface (and a con-
stant flux, see Example 5.135.13). The resulting basis functions are only weakly continuous
in the sense that the average jump over each interface is zero. This MsFEM approach
was found to be particularly useful when combined with bubble functions and applied
to the case of perforated domains [113113]. Note that, in order to introduce more flexible
local boundary conditions, both of the above MsFEM approaches use non-conforming

28



2.2 – Introduction to multiscale methods

approximation spaces (i.e., the basis functions described above do not belong to H1
0 (Ω)

due to jumps over element interfaces). A different path was followed in [99, 9494], where
higher-order variants of the MsFEM are proposed. (Indeed, note that the MsFEM with
basis functions as in (2.182.18) reduces to the standard P1 FEM if Aε is constant. Hence, it
can be considered an MsFEM of order 1.) We also mention the work [5353] that proposes
a high-order method for general polytopal meshes.

Let us now explain the impact of the localization of the MsFEM basis functions on
the convergence analysis of the MsFEM in higher dimension. In contrast to the one-
dimensional case, the convergence analysis can no longer be carried out without any
additional assumptions on the structure of Aε. All analyses of the MsFEM and its vari-
ations that we are aware of (see [9898, 9999, 7070, 100100, 99, 112112, 113113, 9494, 116116, 114114, 5353]) assume
that Aε = Aper(·/ε) is the rescaling of a periodic matrix Aper. In that case, explicit results
known from homogenization theory allow to obtain a precise rate of convergence of the
error in terms of H and ε around the interfaces of the mesh, where boundary layers are
formed due to the choice of artificial boundary conditions in the local problems (2.182.18).
We emphasize that the assumption of periodicity is not needed for the actual application
of the MsFEM. The typical error estimate obtained for an MsFEM (of order 1 on the
coarse mesh) is of the form

‖uε − uεH‖H1(Ω) ≤ CH‖u?‖H2(Ω) + C

(√
ε+H +

√
ε

H

)
‖∇u?‖W 1,∞(Ω), (2.21)

where u? is the homogenized limit of uε (see (2.122.12)). It is assumed that Aper and u? are
sufficiently regular. We extensively discuss regularity in Section 2.3.32.3.3, where we introduce
a new analysis of MsFEMs that does not require such additional regularity hypotheses.

In the regime where H is larger than ε but not that much larger, the error bound (2.212.21)
grows when H decreases. This is known as the resonance effect in the literature, inter-
rupting convergence of the MsFEM when the mesh size H is close to the typical size of
the microscopic variations of Aε. Convergence is then only resumed when H < ε, when
the microstructure is resolved by the mesh and the MsFEM is close to the P1 FEM.

The oversampling variant of the MsFEM studied in [7070] allows to replace the fac-
tor

√
ε/H by ε/H, and the Petrov-Galerkin variant (with P1 Lagrange test functions)

of [100100] by just ε, by assuming a large (possibly prohibitively large) oversampling ratio.
The higher-order methods [99, 9494, 5353] replace the factor H by Hk if the approximation
space is sufficiently large and the homogenized solution u? belongs to Hk+1(Ω).

The resonance effect is not only an artefact of the numerical analysis, but also appears
in practice. In Figure 2.72.7 we show the errors as the mesh size H varies for the P1 FEM,
the MsFEM using the basis functions (2.182.18) (referred to as MsFEM-lin here, because
of the affine boundary conditions) and the MsFEM variant with oversampling from [9898]
using a so-called homothety ratio of 3 (MsFEM-OS(3); see Definition 5.75.7 for details). The
computations are performed on the domain Ω and the coarse mesh is a uniform 1/H×1/H
triangulation of Ω. We consider the diffusion coefficient

Aε,per(x) = νε(x) Id, νε(x1, x2) = 1 + 100 cos2 (π x1/ε) sin2 (π x2/ε),

with ε = π/150 ≈ 0.02 and the right-hand side f(x1, x2) = sin (x1) sin (x2). The MsFEM
approximations are compared to a reference solution uεh computed by a P1 Lagrange
FEM on a uniform 1024 × 1024 triangulation of Ω. The same fine mesh is used for
the computation of the MsFEM basis functions. All computations are executed with
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FreeFEM++ [9191] and the associated scripts are available at [2929].
Figure 2.72.7 shows that the P1 FEM error is again stuck at a high error plateau in the

regime H > ε. The MsFEMs perform significantly better, even though the MsFEM-
lin suffers from the resonance error for rather large values of H and its performance is
comparable to the P1 FEM when H ≈ ε. The oversampling strategy clearly shows an
improvement of the error and the resonance effect appears for smaller values of H than
for the MsFEM-lin.
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Figure 2.7: Comparison of the errors of three different FEMs applied to a highly oscillatory
diffusion coefficient in 2D as the mesh size H varies.

Other improvements of the MsFEM have been proposed that rely on the resolution
of local spectral problems. Different ideas to use spectral problems in the construction
of a finite element approach were proposed and analysed in [1919, 9696, 9595]. Local spectral
problems to enrich MsFEM type methods were introduced in [6868, 9797]. These enrichment
strategies consider fine-scale finite element spaces of harmonic functions with non-zero
boundary conditions on each coarse mesh element. Spectral problems are solved in these
spaces to select relevant modes for the enrichment of an MsFEM space like those described
above. However, these spectral problems are posed in high-dimensional spaces that can be
thought of as parameterized by all possible boundary conditions on the fine mesh. In order
to identify the relevant modes more efficiently, ideas from localized model order reduction
can be used, in particular, random techniques to reduce the dimension of the spectral
problems. We refer to [8989, 4545], and to [4747, 6262] for examples of randomized techniques for
MsFEM type methods. They were also used for efficient sampling of high-dimensional
spaces in the LOD proposed in [9090]. A different type of enrichment of classical MsFEM
spaces, which is polynomial-based rather than spectral-based, can be found in [117117] for
the MsFEM-lin, and in [7474] for the MsFEM-CR applied to Stokes flows. For the work
of this thesis, however, we study the use and design of the lowest-dimensional MsFEM
spaces without any of the above-mentioned enrichment strategies. The topics of this thesis
(intrusivenss in Part II, instabilities due to advective effects in Part IIII) are relevant for all
MsFEM variants, and it seems necessary to draw conclusions for the most basic MsFEM
variants first.

Remark 2.1. The localization strategy for the LOD is quite different from the MsFEM.
The LOD first proposes an exact decomposition of the solution on a discrete space of
globally supported multiscale basis functions and a space of unresolved features, which
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corresponds to the kernel of a quasi-interpolation operator. It then approximates the
multiscale basis functions by localization on patches of mesh elements around the original
support of the P1 basis function. The error analysis of this procedure, which can be
carried out without any periodicity assumptions and assumptions on the regularity of
the coefficient Aε, shows that the common convergence rates of the FEM with respect
to H are preserved if the thickness δ of the patches satisfies δ ≥ CH log (H−1) [9393].
In this thesis we focus on methods of MsFEM type in order to keep the same sparsity
properties as those of classical FEMs.

2.3. Contributions of the thesis

Here we give a detailed summary of the research contributions of Parts II, IIII and IIIIII of
the thesis. We also mention some directions for future research.

2.3.1. Non-intrusive implementation of the MsFEM. We have emphasized above that
the MsFEM replaces the classical P1 FEM basis functions by problem-dependent basis
functions with the same support to maintain favourable sparsity properties of the FEM
while making the method more efficient for a given microstructure. We did not discuss
the practical impact of replacing generic, polynomial basis functions by multiscale basis
functions on the implementation of the method. Let us do so here. We focus on the
construction of the linear system that corresponds to the discrete problem (2.62.6) or (2.192.19).
This requires integrations of the basis functions of the discrete space. For traditional
FEMs with polynomial basis functions, this can be automated for a large variety of prob-
lems because standard quadrature formulas can easily be evaluated on each mesh element.
The large generality of FEM software is at the core of its wide success in science but also
in industry. Changing the basis functions means that all such highly efficient routines in
generic FEM software should be adapted for each individual problem. The MsFEM is
thus intrusive. For more details, see Section 4.34.3.

The implementation of an MsFEM is rightfully considered relatively easy in compari-
son to the full implementation from scratch of a traditional FEM [6969, 125125]. Nevertheless,
the intrusive character of the MsFEM hinders the use of the method in industrial con-
texts, because there is a huge reluctance to modify a legacy code that has been developed
over the time of several years, if this is even possible at all. It thus seems essential that
an existing, optimized FEM code can be used with as little modifications as possible for
the MsFEM to be adopted when such a traditional FEM legacy code is already in use. To
the best of our knowledge, the question of how to make MsFEM approaches less intrusive
had not been addressed in the literature before the work of this thesis.

Part II of this thesis proposes a minor modification of the MsFEM, commonly presented
as (2.192.19), that allows for an MsFEM implementation using existing FEM software without
changing any of its internal routines. The notion of ‘minor’ modifications here will be
specified in Contributions 44, 55 and 66 below. We outline the new implementation here.

The intrusiveness of the MsFEM is due to the following fact: the microstructure is
preprocessed through the computation of specialized basis functions in (2.182.18), thereby
coupling the microstructure explicitly to the global numerical model. We observe in
Equation (4.104.10) that, for each 1 ≤ i ≤ N , the multiscale basis functions can also be
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written as

∀K ∈ TH , φεi = φP1
i +

d∑
α=1

(
∂αφ

P1
i

)∣∣
K
χε,αK in K, (2.22)

where for each K ∈ TH and all 1 ≤ α ≤ d, we define the function χε,αK ∈ H1
0 (K) as the

unique solution to {
−div(Aε∇χε,αK ) = div(Aεeα) in K,

χε,αK = 0 on ∂K.
(2.23)

We note in passing that these functions correspond to the residual-free bubbles of [3838], even
though this work did not introduce them for the purpose of numerical homogenization.
The microstructure that is encoded in the MsFEM is fully captured by the functions χε,αK ,
which can be computed separately on each mesh element and independently of the basis
functions φP1

i , contrary to the formulation of φεi in (2.182.18). These functions are illustrated
in Figure 2.82.8. Each multiscale basis function is thus rewritten as the sum of a standard
P1 basis function and a linear combination of the functions χε,αK .

φεi φP1
i χε,1K χε,2K

∂φP1
i

∂x1

∂φP1
i

∂x2

= + +

Figure 2.8: The multiscale basis function φεi can be written as the sum of a standard FEM
basis function φP1

i and a linear combination of the numerical correctors χε,1K and χε,2K . We
show a single mesh element K in 2D and the basis function associated to the bottom right
vertex of K.

Note that the gradients of the P1 basis functions in (2.222.22) are constant on each mesh
element K. Combining this with linearity of the problem, we show in (4.134.13) that, for all
1 ≤ i, j ≤ N , ∫

Ω

∇φεj Aε∇φεi =

∫
Ω

∇φP1
j A∇φP1

i , (2.24)

such that the entries of the linear system of the MsFEM are entirely expressed in terms
of the standard P1 basis functions φP1

i and the piecewise constant matrix A defined as

A
∣∣
K

=

∫
K

(
eβ +∇χε,βK

)
· Aε (eα +∇χε,αK ) for all K ∈ TH . (2.25)

The right-hand side of (2.242.24) corresponds exactly to the coefficients of the linear system
associated to the P1 FEM approximation of{

−div
(
A∇u

)
= f in Ω,

u = 0 on ∂Ω.
(2.26)

Since A is piecewise constant, this problem can be solved by a standard FEM on a coarse
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mesh.

In the spirit of (2.172.17), we can rewrite the expression for A as Aav defined in (2.102.10) plus
a certain correction. Therefore, the functions χε,αK are called numerical correctors, and A
the effective diffusion coefficient associated to the MsFEM.

The above considerations have led to the introduction of the MsFEM Algorithm 4.14.1,
summarized as the non-intrusive MsFEM workflow below. It decouples processing the
microstructure in the offline stage from the resolution of a global finite element problem
in the online stage thanks to the numerical correctors and the effective coefficient. This
allows to solve the global FEM problem with an existing legacy code for P1 finite elements
after computing the numerical correctors and the effective diffusion coefficient. The code
for the latter can be developed separately, without modifying the legacy code. We com-
ment on the difference with respect to the original MsFEM below in Contributions 44
and 66.

Contribution 1. Non-intrusive MsFEM workflow; for details see Algorithm 4.14.1.

→ In the offline stage, compute numerical correctors in each mesh element
from (2.232.23). Use the numerical correctors to average the microstructure in the
form of the effective, piecewise constant coefficient in (2.252.25).

→ In the online stage, solve the effective PDE (2.262.26) by a standard FEM with a
legacy code.

→ We introduce a post-processing stage to restore microscopic features in the macro-
scopic FEM result from the online stage with the help of the numerical correctors
computed in the offline stage.

We recognize in the non-intrusive MsFEM workflow all the same steps as in the compu-
tational strategy for periodic homogenization that was derived in Section 2.2.12.2.1. However,
in contrast to this computational strategy, the numerical corrector and effective quantities
we introduce here for the MsFEM need to be computed on every mesh element, and are
in general different from one mesh element to the other (and this remains true even if the
coefficient Aε is periodic).

We next consider the generalization of the approach to other MsFEMs. It was ex-
plained in Section 2.2.32.2.3 that different boundary conditions can be considered than those
in (2.182.18), which we call the MsFEM-lin. We recall the MsFEM-OS (oversampling) and
the MsFEM-CR (Crouzeix-Raviart). Moreover, the MsFEM definition may be adapted
to different PDEs (we exclusively consider PDEs with spatial derivatives in this thesis),
possibly changing both the global PDE and the PDE defining the multiscale basis func-
tions and hence the numerical correctors. We refer to Section 5.15.1 for details. (See also
Section 2.3.22.3.2 for some examples.) In order to study the extension of the non-intrusive Ms-
FEM workflow to different MsFEMs, we formulate a general framework to define MsFEMs
for linear second-order PDEs in Chapter 55 of the thesis. A key element of this framework
is that the MsFEM basis functions are defined by a generalization of (2.222.22) where the
P1 function φP1

i can either belong to the P1 Lagrange or the P1 Crouzeix-Raviart space.
In the general framework, we also extend the oversampling technique described for the
MsFEM-lin above to the MsFEM-CR variant. An additional motivation for this general
framework has been to establish a common convergence analysis for the MsFEM-lin and
the MsFEM-CR, a start of which is presented in Part IIIIII of this thesis.
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Contribution 2. We propose a general framework for the formulation of MsFEMs for
linear second-order PDEs, covering the MsFEM-lin and MsFEM-CR variants as well as
two different oversampling techniques for both of them. The oversampling technique for
the MsFEM-CR is another contribution of the thesis. Furthermore, we give a rigorous
definition of the oversampling procedure near the boundary ∂Ω of the global domain,
which is often missing in the literature. Within the full generality of our framework, the
equivalence of definitions of the multiscale basis functions as solutions to local PDEs and
as a sum of a P1 basis function and a linear combination of locally defined numerical
correctors is established in Lemmas 5.225.22 and 5.235.23.

Contribution 3. The non-intrusive MsFEM of Contribution 11 is generalized to our
general MsFEM framework in Algorithm 6.16.1. The global effective problem of the online
stage can be solved by any legacy FEM software for general linear second-order PDEs
with piecewise constant coefficients.

Let us now comment on the relation between the traditional MsFEM and the method
obtained following our non-intrusive workflow. In Section 6.26.2 we establish the following.

Contribution 4. Rephrasing Theorem 6.36.3:
Let V ε

H be the MsFEM space under consideration, and let aε, respectively F , be the
bilinear form, resp. the linear form, of the variational formulation of the global PDE
on Ω, broken over the mesh elements if the MsFEM is non-conforming. Then the
non-intrusive variant of the MsFEM

Find uεH ∈ V ε
H such that aε(uεH , v

ε
H) = F (vεH) for all vεH ∈ V ε

H

corresponds to finding uεH ∈ V ε
H such that

aε(uεH , φ
ε
i ) = F

(
φP1
i

)
for all 1 ≤ i ≤ N,

where the multiscale basis function φεi is defined in terms of the P1 basis function φP1
i

and the appropriate numerical correctors in (6.36.3).

This is easily understood on the example detailed above. Indeed, Equation (2.242.24)
shows that the matrix of the linear system related to the MsFEM, and thus the left-
hand side of the discrete variational formulation, is unchanged upon introducing the
non-intrusive variant. The above result states that the same holds true within the general
framework. On the contrary, the right-hand side of the non-intrusive MsFEM is obtained
upon discretizing (2.262.26) by a standard P1 FEM, so the right-hand side is tested against
P1 basis functions rather than multiscale basis functions. Following the same reasoning
for a Petrov-Galerkin MsFEM in Section 6.16.1, we obtain the following property.

Contribution 5. Rephrasing Theorem 6.26.2:
Conisder the Petrov-Galerkin MsFEM

Find uεH ∈ V ε
H such that aε(uεH , vH) = F (vH) for all vH ∈ V P1

H ,

where V P1
H is the P1 Lagrange space for MsFEM-lin variants, and the P1 Crouzeix-

Raviart space for MsFEM-CR variants. The solution obtained with this MsFEM is
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identical to the solution of its non-intrusive implementation.

In some particular cases, the non-intrusive implementation of the (Galerkin) MsFEM
coincides with the Petrov-Galerkin MsFEM; see Lemma 6.46.4. In the particular case of pure
diffusion problems, we have the following comparison of the Galerkin and Petrov-Galerkin
MsFEM.

Contribution 6. Rephrasing Lemma 7.17.1 and Theorem 7.107.10:
We consider a pure diffusion problem. Let ‘MsFEM’ refer to the MsFEM-lin or the
MsFEM-CR, both without oversampling. Then the non-intrusive variant of the Galerkin
MsFEM coincides with the Petrov-Galerkin MsFEM.
Let uε,GH , respectively uε,PG

H , denote the approximation of uε provided by the Galerkin
MsFEM, resp. the Petrov-Galerkin MsFEM. When f ∈ L2(Ω), there exists a con-
stant C > 0 independent of ε, H and f such that∥∥∥uε,GH − uε,PG

H

∥∥∥
H1(TH)

≤ CH‖f‖L2(Ω).

Additional estimates are established in Chapter 77 under additional structural assump-
tions on the diffusion coefficient.

The final contributions of Part II of the thesis are concerned with the implementation of
the MsFEM in FreeFEM++ and some of the conclusions that are drawn from numerical
experiments for pure diffusion problems both with periodic and non-periodic diffusion
coefficients.

Contribution 7. All MsFEM variants described by the common framework of Chap-
ter 55 are implemented in FreeFEM++, taking advantage of the common structure
that is identified in the general MsFEM framework. The corresponding scripts are
available at [2929]. Numerical experiments for pure diffusion problems show that the
Petrov-Galerkin MsFEM as well as the non-intrusive variant of the Galerkin MsFEM
is close to the original Galerkin MsFEM. Any possible additional error introduced by
making the MsFEM non-intrusive is thus negligible. These observations are robust with
respect to (non-)periodicity of the diffusion coefficient.

Outlook. The development of the non-intrusive MsFEM framework of Part II relies to
a great extent on the relation (2.222.22) without any higher-order derivatives of φP1

i , i.e., it
relies on the fact that φP1

i is piecewise affine. For the high-order MsFEMs proposed in [99,
9494], similar expressions can be derived for the multiscale basis functions, but piecewise Pk
functions are required in such expansions. In Section 8.28.2 we propose a generalization of the
non-intrusive approach on the example of the P2 MsFEM of [99]. The effective coefficients
are given by up to fourth order tensors and the effective PDE becomes a fourth-order PDE
if the original problem was a second-order PDE. The expressions obtained are considerably
more involved than for the MsFEMs that are covered by our general framework. It does
not seem obvious to easily implement this ‘non-intrusive’ approach.

Let us also mention that the various improvements of the MsFEM that proceed by
enriching the MsFEM space, briefly described at the end of Section 2.2.32.2.3, are not covered
by our general framework. Additional or different ideas may be required to propose
efficient non-intrusive implementations of such MsFEMs.
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Finally, it is appropriate to say that our general framework does not set the boundaries
as to what might be considered a ‘P1 MsFEM’. We have aimed to identify a common
structure among those MsFEMs we are aware of, and exploited this structure to define
a non-intrusive implementation for all of them. Other ideas to improve the boundary
conditions of the local problems in the MsFEM may still be found, and we hope that our
considerations will also be valuable for new variants. In this regard, we mention the work
of [33, 44], where insights into parabolic cell problems are used to obtain an exponentially
converging resonance error for the HMM. These ideas may also be explored to further
improve the oversampling strategy for the MsFEM.

2.3.2. MsFEMs for the stabilization of advection-dominated problems. In Part IIII of
this thesis we focus explicitly on the advection-diffusion equation, i.e., uε is the solution
to

− div(Aε∇uε) + b · ∇uε = f, (2.27)

with an advection field b ∈ L∞(Ω) (and under some more hypotheses that are specified in
Chapter 99). We still consider a strongly heterogeneous diffusion coefficient Aε as above,
and the related problems for an FEM on a coarse mesh remain. Another difficulty for the
numerical approximation of uε is added: we are particularly interested in the case when
the advective effects dominate the diffusive effects. We shall consider multiscale methods
that aim to handle both difficulties in Part IIII.

It is well-known that, under the influence of a dominating advection field, the exact
solution uε can develop sharp boundary layers, where the solution has a strong gradient in
a small part of the domain. It is also well-known that standard FEMs fail to capture uε

unless the underlying mesh is sufficiently fine to resolve the boundary layers. When
this is not the case, its numerical approximation suffers from large oscillations that can
propagate through the entire domain, while the exact solution only varies slowly outside
the boundary layer. This is illustrated in Figure 2.92.9. It is said that the FEM is unstable in
the advection-dominated regime. We recall this phenomenon in more detail in Chapter 99.
If the position of the boundary layer is unknown, a standard FEM thus requires a fine
mesh over the entire domain, or iterative mesh adaptation techniques, both of which can
be costly computationally.
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Figure 2.9: Solution u to −mu′′ + u′ = 1
and its P1 approximation for m = 2−7 and
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In the context of slowly-varying diffusion coefficients, the question of removing the
above-mentioned spurious oscillations from the numerical approximation has been inves-
tigated since long and has lead to multiple efficient so-called stabilization techniques such
as the SUPG method from [4343] or the methods developed in [103103, 104104]. A general expo-
sition of such techniques can be found in the textbooks [131131, 129129]. These techniques are
highly sensitive to the correct choice of certain stabilization parameters. (See [107107] for a
review of proposed choices and their motivation.) Although useful guidelines are available
in the literature, for which improved convergence results can be established, these only
provide an order of magnitude depending on the constants that appear in inverse inequal-
ities. For such results we refer again to the aforementioned textbooks. The question of
how to determine an ‘optimal’ stabilization parameter in dimension higher than 1 is still
unsolved.

We observe the following similarities between multiscale problems as described in Sec-
tion 2.22.2 and single-scale advection-dominated problems: both can be solved by an FEM
on a sufficiently fine mesh, both lead to macroscopically incorrect results when the small-
scale phenomena are not resolved due to a mesh that is too coarse, and adapted FEMs
have been designed to capture the macroscopic scales for both problems on a coarse mesh.
In particular, the above-mentioned stabilization techniques and the numerical homoge-
nization approaches that were mentioned in the previous sections all bear similarities with
the general VMM mentioned in Section 2.2.22.2.2. The aforementioned multiscale approaches
have also been used to include stabilizing effects for advection-dominated problems. The
LOD was used to this end when the diffusion coefficient is constant in [118118, 3434]. An HMM
for steady advection-diffusion problems is presented and analysed in [66], and for unsteady
advection-diffusion problems it can be found in [9292]. In Part IIII of this thesis we only
study MsFEM type methods for the steady advection-diffusion equation.

Let us discuss the development of MsFEMs for advection-diffusion problems in some
more detail. At the time of the introduction of the method in [9898], it was proposed to
encode only the leading order elliptic operator of the PDE in these basis functions. The
MsFEM basis functions are then defined by (2.182.18) (but possibly with a different choice
of local boundary conditions), also for a non-zero advection field b in (2.272.27). Evidently,
this method can have no stabilizing properties for advection-dominated problems since it
coincides with the P1 FEM if Aε is constant, irrespectively of the size of b. This is illus-
trated in Figure 10.110.1 in Chapter 1010. This variant of the MsFEM was investigated in [114114]
for advection-dominated problems, where the combination with the classical SUPG sta-
bilization was proposed and was found to achieve the required stability in the advection-
dominated regime.

Another MsFEM may be proposed by changing the PDE solved locally by the mul-
tiscale basis functions in order to also encode the advective effects in the approximation
space. One can hope that this also encodes stabilizing properties in the approximation
space. To this end, we introduce the basis functions φε,adv

i , for 1 ≤ i ≤ N , as the solution
to

∀K ∈ TH ,

{
− div(Aε∇φε,adv

i ) + b · ∇φε,adv
i = 0 in K,

φεi = φP1
i on ∂K.

(2.28)

See Figure 2.102.10. We refer by ‘adv-MsFEM-lin’ to the MsFEM that corresponds to the
Galerkin approximation on the space spanned by the basis functions φε,adv

i . Such an
MsFEM was first investigated in [127127, 128128] for both steady and unsteady problems. How-
ever, there is not yet a general understanding of the stabilizing properties of this MsFEM
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variant, even for a constant advection field. This has motivated the investigation of adv-
MsFEM approaches that is reported in Part IIII of the thesis. Let us also mention the
work [1010], which combines the MsFEM proposed in [99] with the method of characteristics
to obtain a stable approximation of non-stationary advection-diffusion problems.

A convergence analysis for the adv-MsFEM-lin variant was given in dimension 1
in [114114, 119119], but the method was found to be unstable in higher dimension. In Chap-
ter 1010 we provide new insights into the stability of the adv-MsFEM-lin in dimension 1
and the lack of stability in higher dimension. The first contribution is the following. Note
that in 1D, all choices for the local boundary conditions coincide, and we refer to the
adv-MsFEM-lin simply by adv-MsFEM in the following.

Contribution 8. Rephrasing Theorem 10.410.4:
In dimension 1, when f = 0 and for any choice of boundary conditions on ∂Ω, the
adv-MsFEM approximation equals the exact solution to (2.272.27). Since instabilities are
due to the Dirichlet boundary conditions rather than the source term f , we conclude
that the adv-MsFEM is stable. Stability for non-zero f is indeed observed numerically.

We also observe in Chapter 1010 that the adv-MsFEM-lin basis functions can be strongly
deformed under the influence of the advection field, and display boundary layers inside
each mesh element. This can clearly be seen on the example in Figure 2.102.10. Such basis
functions are not suitable for an accurate representation of the exact solution uε, which
only develops a boundary layer near the boundary of the global domain. To overcome this
problem, while preserving the stability of the adv-MsFEM-lin (that is, in dimension 1), we
propose the addition of bubble functions to the approximation space. These are defined,
for all K ∈ TH , as the unique solution Bε,adv

K ∈ H1
0 (K) to

− div(Aε∇Bε,adv
K ) + b · ∇Bε,adv

K = 1 in K. (2.29)

We define the adv-MsFEM-lin-B as the following multiscale finite element method. Let
V ε,adv
H,B be the multiscale space

V ε,adv
H,B = span

{
φε,adv
i

∣∣∣ 1 ≤ i ≤ N
}⊕

span
{
Bε,adv
K

∣∣∣ K ∈ TH

}
.

The adv-MsFEM-lin-B approximation of uε is the unique function uε,adv
H,B ∈ V ε,adv

H,B such
that∫

Ω

∇vε,adv
H,B · A

ε∇uε,adv
H,B + vε,adv

H,B b · ∇uε,adv
H,B =

∫
Ω

f vε,adv
H,B for all vε,adv

H,B ∈ V
ε,adv
H,B . (2.30)

This is simply a Galerkin approximation of the variational formulation of (2.272.27) on the
space V ε,adv

H,B . To understand the stabilizing properties of the adv-MsFEM-lin-B, we use
a characterization like (2.222.22) that is established in the general framework of Part II, and
combine it with the residual-free bubble method of [4141]. There exist numerical correctors
χε,adv,1
K , . . . , χε,adv,d

K such that

∀K ∈ TH , uε,adv
H,B = uH +

d∑
α=1

∂α

(
uε,adv
H

∣∣∣
K

)
χε,adv,α
K + βKB

ε,adv
K on K, (2.31)

for some uH ∈ V P1
H that is called the underlying P1 part of the solution, and for some
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constants βK ∈ R. Inserting this in (2.302.30), it is possible to derive an effective scheme only
for uH (by a method known as static condensation). This allows to make an interesting
link with the classical stabilization literature, and the conclusions that can be drawn are
contained in the next contribution.

Contribution 9. When Aε = m Id with m > 0, and when b and f are piecewise
constant, the effective scheme for the underlying P1 part uH resulting from the adv-
MsFEM-lin-B coincides with the scheme obtained with the residual-free bubble method.
Classical results show that the effective scheme coincides with the SUPG scheme with
a specific value of the stabilization parameter. Moreover, it is known that

1) in 1D, this stabilization parameter has the unique value for which nodal exactness
is obtained (the adv-MsFEM-B is even exact in this case), but

2) this stabilization parameter is too small to achieve full stabilization for higher-
dimensional problems.

In view of Contribution 99, the final contributions of the thesis focus on the design of a
stable MsFEM in dimension higher than 1. Here we exploit the fact that the local bound-
ary conditions in (2.282.28) are to be invented. This gives us some freedom that may have an
impact on the stabilizing effects encoded in the MsFEM. We present in Chapter 1111 the
adv-MsFEM-CR and the adv-MsFEM-CR-B, using basis functions that are only weakly
continuous across the interfaces of the mesh, and possibly adding bubble functions, which
only vanish weakly (in the sense of the average) on the interfaces. See (11.111.1) and (11.511.5) for
precise definitions. Contrary to the adv-MsFEM-lin or the MsFEM-CR basis functions,
we cannot establish well-posedness of the adv-MsFEM-CR basis functions. We observed
that the fine mesh used during the offline stage should be taken sufficiently fine to ensure
an accurate computation of these basis functions. The conclusions from our numerical
experiments with this method are summarized as follows.

Contribution 10. The adv-MsFEM-CR is stable, in the sense that the underlying P1

part of the solution is free from unphysical oscillations. Its accuracy degrades in the
advection-dominated regime due to the inadequate shape of the basis functions, and
the addition of bubble functions is required to preserve accuracy in this regime. The
error committed by the adv-MsFEM-CR-B is found to be robust with respect to the
relative effect of the advection. The only other method in our study with this property
is the MsFEM-lin with SUPG stabilization. Contrary to the MsFEM-lin SUPG, the
robustness of the adv-MsFEM-CR-B does not depend on a parameter that has to be
properly adjusted. Finally, we introduce a non-intrusive variant of the adv-MsFEM-CR-
B that turns out to be slightly more accurate than the original method in the advection-
dominated regime.

A final observation about the bubble functions is important to understand the effi-
ciency of the MsFEM variant with bubbles. We show in Section 11.311.3 that the coefficient βK
in (2.312.31) is (both for the adv-MsFEM-lin-B and the adv-MsFEM-CR-B) given by

βK =

∫
K

fBε,adv
K∫

K

Bε,adv
K

. (2.32)
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Thus, the number of unknowns to be computed by the resolution of a linear system is
the same for the adv-MsFEM-(lin/CR)-B as for the adv-MsFEM-(lin/CR) without bubble
functions. In other words, the linear system to be solved in the online stage has the same
size for both variants and the computational cost of the online stage does not increase
significantly upon adding bubble functions. The only increase of the computational cost
is in the offline stage, because one additional bubble function has to be computed per
mesh element. The non-intrusive approximation of the adv-MsFEM-(lin/CR)-B consists
in applying the techniques of Part II, along with replacing (2.322.32) by

βK =
1

|K|

∫
K

f.

This way, the coefficient βK can be computed by single-scale finite element software
operating on a coarse mesh that does not have access to numerical quadrature rules on
the fine mesh on which the bubble function Bε,adv

K is defined.

Outlook. There is an important drawback of the adv-MsFEM-CR-B (the method that
we discovered to be stable in this thesis): the basis functions encoding the stabilizing
properties depend on the advection field b. They should in principle be recomputed when
the advection field changes, which is the case in many non-stationary equations, opti-
mization problems, etc. This is unfeasible in practice, since it requires that the expensive
offline stage of the MsFEM be executed for each iteration – it is no longer offline. For
the adv-MsFEM-CR-B to be efficient for such problems, it should be combined with
other model-order reduction techniques. One may explore, for instance, the reduced ba-
sis method, as is done in [3535] in the context of the LOD. See [130130] for a comprehensive
introduction to reduced bases.

At the same time, our numerical observation that the adv-MsFEM-CR-B is stable
in the advection-dominated regime motivates the pursuit of more theoretical studies. It
might be insightful to know if the method can, for constant coefficients, be interpreted as a
stabilized variant of a standard Crouzeix-Raviart discretization (just like we found for the
adv-MsFEM-lin-B in Contribution 99 in relation to the residual-free bubble method). The
works [108108, 110110, 1717, 6464] focus on the stabilization of non-conforming FEMs for problems
with slowly-varying coefficients, but a link with the adv-MsFEM-CR-B has not yet been
found. This seems a preliminary step to a rigorous analysis of the more challenging
multiscale setting. It may also lead to new ideas for the stabilization of non-conforming
FEMs for single-scale problems.

2.3.3. Convergence analysis of the MsFEM under minimal regularity hypothes. We
stated in Section 2.2.32.2.3 that the error estimate (2.212.21), and its variations for different
MsFEMs, are obtained, for all analyses that we are aware of, under the assumption of
a rescaled periodic diffusion coefficient, i.e., Aε = Aper(·/ε). Moreover, and this is the
part of the analysis that we aim to improve, it is assumed that Aper is Hölder continu-
ous and that the homogenized limit u? belongs to W 2,∞(Ω). However, for well-posedness
of (2.52.5), it suffices to assume that Aper is elliptic and uniformly bounded, without any
additional regularity hypotheses. Such regularity assumptions are extremely restrictive
from a modelling point of view, because real multiscale materials such as composite mate-
rials are typically characterized by discontinuous coefficients. In Chapter 1313, we propose
a new convergence analysis of the MsFEM that shows an error bound similar to (2.212.21),
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merely assuming that Aper is bounded. We also weaken the required regularity of u?, only
assuming that u? ∈ H2(Ω). We summarize the main ideas behind our analysis below.

Let us first explain the role of the periodicity assumption in the analysis. The definition
of the MsFEM basis functions in (2.182.18) combines the oscillatory behaviour of Aε inside
a mesh element K with non-oscillatory local boundary conditions on ∂K. These local
boundary conditions are not satisfied by uε (except on the global boundary ∂Ω) and
induce oscillatory boundary layers in the error uε − uεH around ∂K. This is explained by
the expression (2.352.35) below. The size of these boundary layers has to be characterized
in terms of H and ε. To this end, a more detailed description of uε is used, based on
some arguments that we outline below. Although different local boundary conditions are
imposed for different MsFEM variants, the principle generalizes since no MsFEM can
prescribe the exact oscillatory behaviour of uε on ∂K.

If Aε is embedded in a sequence of matrices for ε→ 0, and if the sequence H-converges
to a matrix A? (which is true up to taking a subsequence), we know that uε converges to u?

solution to (2.122.12). However, according to the definition of H-convergence, the convergence
is only weak in H1

0 (Ω) (and strong in L2(Ω) by the Rellich Theorem [77, Lemma 1.2.6]).
Strong convergence of the gradient can be obtained with the help of corrector results.
Using the oscillating test functions vεα defined in (2.132.13), we have

uε(x) ≈ uε,1(x) := u?(x) +
d∑

α=1

∂αu
?(x) (vεα(x)− xα),

and ∇(uε − uε,1) converges to zero strongly in L1
loc(Ω). The function uε,1 is called the

first-order two-scale expansion of uε. See, e.g., [77, Section 1.3.6].

The above framework for the first-order two-scale expansion is too general to obtain
a rate of convergence with respect to ε. (We recall that an explicit characterization of vεα
is not even available.) This is why additional structural properties for Aε are assumed in
the literature. When Aε = Aper(·/ε), by (2.142.14), we have

uε(x) ≈ uε,1(x) = u?(x) + ε

d∑
α=1

∂αu
?(x)wper

α

(x
ε

)
. (2.33)

The fact that wper
α solves (2.152.15) in a suitable functional space does allow to establish a

rate of convergence for uε − uε,1 in the periodic setting. A classical result of periodic
homogenization (see, e.g., [112112, Proposition 3.1] and [134134, p. 28]) shows that if, for all
1 ≤ α ≤ d, wper

α ∈ W 1,∞(Q) and if u? ∈ W 2,∞(Ω), there exists a constant C > 0 that does
not depend on ε such that

‖uε − uε,1‖H1(Ω) ≤ C
√
ε‖∇u?‖W 1,∞(Ω). (2.34)

The regularity assumption for Aper originates at this point: if Aper is Hölder continuous,
the functions wper

α are indeed in W 1,∞(Q). (See [3333, Theorem A.12].)

A similar expansion holds for the MsFEM solution uεH . Since each multiscale basis
function φεi solves (2.182.18) on all mesh elements K, and since A? is constant in the peri-
odic setting, one can show that the homogenized limit of φεi is φP1

i for all 1 ≤ i ≤ N .
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Consequently, the MsFEM solution uεH satisfies, on all K ∈ TH ,

uεH ≈ uε,1H := u?H + ε

d∑
α=1

∂α(u?H |K)wper
α

(x
ε

)
on K, (2.35)

where u?H ∈ V P1
H is defined by the property u?H(xi) = uεH(xi) for all 1 ≤ i ≤ N . The

difference uεH − u
ε,1
H can be bounded on each K using a localized variant of (2.342.34). See [99,

Lemma 2.13], for instance. Note that uεH − u
ε,1
H has an oscillatory boundary layer around

the interfaces ∂K, since the functions wper
α

( ·
ε

)
oscillate on ∂K but the functions uεH

and u?H do not. Also note that ∇u?H is piecewise constant.

Schematically, the MsFEM analyses in the literature rely on writing the error of the
MsFEM as

uε − uεH =
(
uε − uε,1

)
+
(
uε,1 − uε,1H

)
+
(
uε,1H − u

ε
H

)
.

The first and last term are estimated using the homogenization properties (2.332.33) and
(2.352.35), and contribute to an order

√
ε and

√
ε/H in the error bound (2.212.21). The second

term is essentially a difference between u? and a function from the standard P1 space V P1
H ,

which is estimated using standard interpolation arguments from finite element analysis
and contributes to an order H in the error bound (2.212.21).

While the above sketch of an MsFEM convergence proof does, of course, have to be
complemented by a rigorous study of all approximations that are used, it is sufficient to
introduce the ideas behind our new convergence analysis. First one may note that the
boundary layer around ∂Ω is estimated twice: once when estimating uε − uε,1 on Ω and
a second time when estimating uε,1H − uεH on those mesh elements K that touch ∂Ω. Also
note that uε and uεH in fact satisfy the same Dirichlet condition on ∂Ω, and there is no
oscillatory boundary layer in the error here. It is introduced in the analysis by the choice
of looking at the intermediate quantity uε − uε,1. Thus, it seems that the estimate (2.342.34)
may be improved if we do not use uε,1 in the analysis.

In the convergence proof of Chapter 1313, we follow this line of thought. We show in
Lemma 13.1213.12 an interpolation result for uε − uε,1H directly, and show that the error is
bounded by the difference u? − u?H , which can be estimated using classical interpolation
results. (To be more precise, in Lemma 13.1213.12, we show an interpolation estimate for
an arbitrary element vH ∈ V P1

H instead of u?H , which is later combined with the Céa
or Strang Lemma, and we include an estimate of the boundary layer.) This results in
Corollary 13.1413.14, which provides an interpolation estimate for uε by the multiscale space V ε

H

in terms of the interpolation error of u? by the standard P1 space V P1
H .

The main advantage of this analysis is the following. Estimates for the oscillatory
boundary layer need never be applied to uε,1 as in (2.342.34), but only to functions like uε,1H
of the form (2.352.35) with u?H ∈ V P1

H . The difference with uε,1 from (2.332.33) is that u?H is
piecewise affine and we can use the fact that all Sobolev norms are equivalent on the finite-
dimensional space V P1

H . Such regularity is not known for u? a priori. As a consequence,
we will see that we can establish our central homogenization property of Lemma 13.1113.11
without assuming any regularity on Aε and u?. This is in sharp contrast to the classical
analyses that rely on (2.342.34).

Additionally, we point out the similarities between the definition of a multiscale ba-
sis function φεi in (2.222.22) and the two-scale expansion uε,1H in (2.352.35). The generalization
of (2.222.22) in the MsFEM framework of Contribution 22 helped us realize that the central
role of uε,1H in our analysis can be used in the analysis of the MsFEM-lin as well as the
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MsFEM-CR. Part IIIIII of this thesis presents for the first time a unifying convergence
proof for both MsFEM variants. We note, however, that the MsFEM-CR requires some
additional arguments due to its non-conforming character.

The above considerations have led to the following result that is proved in Chapter 1313.

Contribution 11. Rephrasing Theorem 13.113.1:
Suppose that Aε = Aper(·/ε), where Aper is periodic, but not necessarily Hölder con-
tinuous. Let uεH be the MsFEM-lin or MsFEM-CR approximation of uε. Suppose
that (TH)H is a regular family of simplicial meshes and that it is quasi-uniform,
that ε ≤ H, and that u? ∈ H2(Ω). Then

|uε − uεH |H1(TH) ≤ C

(
H|u?|H2(Ω) +

√
ε

H
|u?|H1(Ω)

)
.

Contrary to the previously available analyses, no additional regularity is required for Aε

besides its coercivity and boundedness. We also note that the term with the prefactor
√
ε

is no longer present, making our estimate sharper than (2.212.21). This is due to the fact that
we no longer use the estimate (2.342.34) in the analysis. Regarding the regularity assumed
for the homogenized solution u?, the condition u? ∈ H2(Ω) is unavoidable since even
the standard P1 FEM requires the same regularity for the solution in order to establish
convergence at the rate H; see (2.72.7). Hence, our convergence analysis for the MsFEM is
carried out under minimal regularity hypotheses. Finally, Contribution 66 shows that the
same rate of convergence is obtained for the Petrov-Galerkin variant of the MsFEM with
test function in the standard P1 space.

Outlook. Let us outline a few research directions that could be pursued to further im-
prove the convergence analysis in the MsFEM literature. Contribution 1111 states a con-
vergence result for the MsFEM-lin and the MsFEM-CR. Oversampling variants are not
considered. For the MsFEM-lin with oversampling, convergence proofs can be found
in [7070, 100100]. It may be interesting to extend the proof under minimal regularity hypothe-
ses to this setting, and to one of the oversampling variants of the MsFEM-CR proposed
in this thesis.

Another possible extension concerns the high-order MsFEMs as proposed in [99, 9494].
We recall that one of the main novelties in our analysis is that we no longer introduce uε,1

from (2.332.33) but rather compare uε directly to uε,1H defined in (2.352.35). Then we exploit
that u?H is piecewise smooth (since it belongs to the standard finite element space V P1

H )
while this is not known for u?. This still holds true when V P1

H is replaced by a space of
piecewise higher-order polynomials. Inverse inequalities can be applied to obtain estimates
in any desired Sobolev norm. Using these observations, it may be possible to generalize
the analysis of Part IIIIII to high-order MsFEMs.

A final future research direction could be to weaken the structural hypotheses on Aε.
We worked with the periodicity hypothesis, like all other analyses we are of, in order
to have a rate of convergence for the approximations in (2.332.33) and (2.352.35). Rates of
convergence for the corrector results have also been established for certain perturbations of
the periodic setting. We refer to [3333, 8383]. Such results may be useful to prove convergence
of the MsFEM in perturbations of the periodic setting as well.
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NON-INTRUSIVE IMPLEMENTATION OF

MULTISCALE FINITE ELEMENT METHODS





CHAPTER 3

An illustrative example

In Section 2.3.12.3.1 of the general IntroductionIntroduction, we introduced the question of designing non-
intrusive MsFEMs in order to ease the adoption of the method in situations where a
large legacy code for traditional FEMs is already in use. Our first work on this topic
was published in [3232]. The contents of the article are reproduced in this chapter in its
entirety because of its concise and pedagogical character. It can be read independently
of the rest of the thesis. Minor modifications to the text of [3232] have been made only for
the purpose of coherence with the rest of the thesis. The other chapters of Part II of the
thesis (Chapters 44 to 88) address the design of non-intrusive MsFEMs in a more general
setting.

3.1. Introduction

We consider the highly oscillatory diffusion problem

− div (Aε∇uε) = f in Ω, uε = 0 on ∂Ω, (3.1)

in a bounded domain Ω ⊂ Rd, where the diffusion coefficient Aε is assumed to oscillate on
a typical length scale of size ε much smaller than the diameter of Ω, and to satisfy the usual
ellipticity assumptions (see Section 3.23.2 below for details). The reason for considering (3.13.1)
is two-fold: first, this problem is ubiquitous in scientific computing; second, we see it as
a template to develop new ideas that we will next extend to other problems.

We seek a numerical approximation of (3.13.1) by applying a Galerkin approach. It
is well-known that standard finite element methods yield an approximation of poor ac-
curacy, as a consequence of the highly oscillatory nature of the problem, unless a pro-
hibitively expensive fine mesh is employed. Dedicated multiscale approaches have thus
been introduced, which provide a reasonably accurate approximation of (3.13.1) for a limited
computational cost. Among the many multiscale approaches that have been proposed in
the literature, we mention the Heterogeneous Multiscale Method (henceforth abbreviated
as HMM) [55], the Localized Orthogonal Decomposition method (LOD) [1212], and the Mul-
tiscale Finite Element Method (MsFEM) on which we focus here (see [9898, 6969, 111111] for a
comprehensive exposition).

Specifically, the MsFEM method is a finite element type method, which consists of
two steps:
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• an “offline” stage, where highly oscillatory, problem-dependent (but right-hand side
independent) basis functions are numerically computed as solutions to local prob-
lems (that mimick the reference problem on a subdomain);

• an “online” stage, where a Galerkin approximation of (3.13.1), performed in the finite-
dimensional space generated by the basis functions computed in the offline stage, is
solved. This provides a numerical solution that, in the H1(Ω) norm, approximates
the solution uε to the highly oscillatory problem (3.13.1).

The MsFEM approach is particularly interesting in multi-query contexts, where (3.13.1) is to
be repeatedly solved for multiple right-hand sides f (think e.g. of optimization problems,
or of time-dependent problems where (3.13.1) would be the typical equation to solve to
advance from one time step to the next). In this case, the offline stage is only performed
once and a significant computational gain is thus achieved.

Several MsFEM variants exist, depending on the specific definition of the basis func-
tions. Although their implementation is rightfully considered to be relatively easy (see
e.g. [6969, 125125]), they are all definitely intrusive. They indeed require to change the finite
element basis set and adjust it to the problem at hand. Our aim in this chapter is to
investigate how these approaches can be adapted (possibly at the price of a marginal loss
in their efficiency) so that they become as little intrusive as possible, thereby allowing
to use only a legacy, single-scale software (based on standard finite elements) to recover
an accurate approximation of (3.13.1). We believe that such an endeavor will eventually
facilitate the dissemination of MsFEM methods within industrial, non-academic codes.

This chapter is organized as follows. In Section 3.23.2, on the example of the diffusion
problem (3.13.1), we introduce the simplest MsFEM approach (namely the so-called linear
MsFEM) in a Galerkin setting (see Algorithm 3.13.1), and present its non-intrusive variant,
namely Algorithm 3.23.2. We also outline the relation between this variant and a Petrov-
Galerkin variant of the MsFEM. Some elements of numerical analysis (along with an
illustrative numerical result) are provided in Section 3.33.3, to estimate the additional error
introduced by the non-intrusive implementation of the method. It is well-known that
the linear MsFEM variant considered in Sections 3.23.2 and 3.33.3 is outperformed by several
MsFEM variants. For pedagogical purposes, we have deliberately chosen to present our
ideas on this simple variant and to collect in Section 3.43.4 some concluding remarks on the
many possible extensions of our methodology to design non-intrusive implementations of
existing approaches.

We have implemented the two algorithms we describe below in the finite element
software FreeFEM++ [9191], and the corresponding scripts can be found at [2929]. Note that
the non-intrusive variant (i.e., Algorithm 3.23.2) is easy to implement in any finite element
software, since it is designed to be used in any legacy code.

A comprehensive presentation of our procedure, with applications to several MsFEM
variants, several equations and various boundary conditions, is the subject of ongoing
investigations (see the remainder of Part II of the thesis).

3.2. Non-intrusive implementation of MsFEM: a simple
case

We provide problem (3.13.1) with all the usual assumptions that make it well-posed at the
continuous level and amenable to a classical Galerkin approximation. In particular, we
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assume that Aε ∈ L∞(Ω,Rd×d) satisfies the bounds

∀ξ ∈ Rd, m |ξ|2 ≤ ξ · Aε(x)ξ a.e. in Ω

and ∀ξ, η ∈ Rd, |η · Aε(x)ξ| ≤M |ξ| |η| a.e. in Ω,
(3.2)

for some M ≥ m > 0 independent of ε, and that f does not oscillate on the microscopic
scale ε. Note that no further structural assumptions on Aε are made (in particular, Aε

need not be of the form A(·/ε) for a fixed rescaled function A). We respectively denote
by

aε(u, v) =

∫
Ω

∇v · Aε∇u and F (v) =

∫
Ω

fv (3.3)

the bilinear and linear forms associated to the variational formulation of (3.13.1). We seek a
numerical approximation of (3.13.1) by applying an MsFEM type Galerkin approach. To this
end, we introduce a conformal simplicial mesh TH of Ω (i.e., made of triangles if d = 2,
tetrahedra if d = 3) and denote by VH the usual conformal P1 approximation space on

TH . For any u, v ∈ H1(K), we also define aεK(u, v) =

∫
K

∇v · Aε∇u and FK(v) =

∫
K

fv.

3.2.1. The Multiscale Finite Element Method. The MsFEM is a Galerkin approxima-
tion that adapts the finite-dimensional approximation space in order to obtain a satisfac-
tory accuracy even on a coarse mesh. Let x1, . . . , xNv be the interior vertices (i.e., the
Nv vertices that do not lie on ∂Ω) of TH , and let φP1

i be the unique element of VH such
that φP1

i (xj) = δi,j for all 1 ≤ j ≤ Nv. For any 1 ≤ i ≤ Nv, we define the multiscale basis
function φεi ∈ H1

0 (Ω), which is supported by the exact same mesh elements as φP1
i , by

∀K ∈ TH , − div (Aε∇φεi ) = 0 in K and φεi = φP1
i on ∂K. (3.4)

The multiscale approximation space is defined as

V ε
H = span {φεi , 1 ≤ i ≤ Nv} ,

and it has the same dimension as VH . The MsFEM approach then consists in computing
the approximation uεH ∈ V ε

H defined by the problem

∀vεH ∈ V ε
H , aε(uεH , v

ε
H) = F (vεH). (3.5)

Since the space V ε
H is problem-dependent, we can hope (and this is indeed the case) the

approximation (3.53.5) to capture the exact solution much better than a P1 approximation
on the same mesh (even on a mesh of size H of the order of ε).

The computation of {φεi}1≤i≤Nv is called the offline stage of the MsFEM. All the
problems (3.43.4) on different mesh elements are independent of each other, and can thus
be solved in parallel. On the other hand, the term online stage is used for the resolution
of the global problem (3.53.5), where the number of degrees of freedom is the same as in a
standard P1 approximation on VH .

Remark 3.1 (Fine-scale discretization). In practice, the local problems (3.43.4) need to
be approximated, for instance using a standard P1 approximation on a fine mesh (of
K ∈ TH) of mesh size h ≤ ε which resolves the oscillations of Aε. We omit here this
additional discretization. All that follows can readily be extended to the case when only
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I. NON-INTRUSIVE IMPLEMENTATION OF MULTISCALE FINITE ELEMENT METHODS

some numerical approximation of φεi is available.

The MsFEM approach can schematically be presented as Algorithm 3.13.1. Lines 11–1111
(resp. 1212–1616) constitute the offline (resp. online) stage.

Algorithm 3.1 MsFEM approach for Problem (3.13.1) (see comments in the text)

1: Construct a mesh TH of Ω, denote Nv the number of internal vertices and N (n,K)
the global index of the vertex of K ∈ TH that has local index 1 ≤ n ≤ d+ 1 in K

2: for 1 ≤ i ≤ Nv do
3: Solve for φεi in (3.43.4)
4: end for

5: Set Aε := 0 and Fε := 0
6: for all K ∈ TH do
7: for 1 ≤ m ≤ d+ 1 do
8: Set j := N (m,K)
9: for 1 ≤ n ≤ d+ 1 do

10: Set i := N (n,K) and Aεj,i += aεK
(
φεi , φ

ε
j

)
11: end for
12: Set Fεj += FK

(
φεj
)

13: end for
14: end for

15: Solve the linear system Aε U ε = Fε

16: Obtain the MsFEM approximation uεH =
Nv∑
i=1

U ε
i φ

ε
i

Implementing Algorithm 3.13.1 in an industrial code is challenging. Indeed, the practical
implementation of any finite element method relies on (i) the construction of a mesh, (ii)
the construction of the linear system associated to the discrete variational formulation
and (iii) the resolution of the linear system. An efficient implementation of the second
step heavily relies on the choice of the discretization space. Regarding the construction
of the linear system (performed in line 1010 of Algorithm 3.13.1), it is by no means obvious
to adapt existing finite element codes based on generic spaces like VH to a different,
problem-dependent choice of space such as V ε

H . No analytic expressions for the basis
functions φεi are available (and thus a fine mesh should be used to approximate them),
the computation of aεK

(
φεi , φ

ε
j

)
and FK

(
φεj
)

should be performed by quadrature rules on
the fine mesh because the integrands are highly oscillatory, one should have at hand the
correspondence between element and vertex indices in the coarse mesh, the assembly of
the global stiffness matrix

{
Aεj,i
}

1≤i,j≤Nv
should be manually performed, etc. To alleviate

these obstacles, we shall next introduce a way of implementing MsFEM that capitalizes
on an existing code for solving (3.13.1) by a P1 approximation on TH in the case of slowly-
varying diffusion coefficients.

To the best of our knowledge, the question of how to make MsFEM approaches less
intrusive has not been studied in the literature, and this work (that will be complemented
in the remainder of Part II) is a first step in that direction. On the other hand, for
some other multiscale approaches (including HMM and LOD), this question has been
(at least partially) addressed. By construction, HMM methods are less invasive, since
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they primarily aim at approximating uε on the coarse scales. The first step of these
methods somewhat consists in building an effective, slowly-varying diffusion coefficient
(which plays the role of the matrix A introduced in (3.113.11) below), which can next be
used in any single-scale solver. The LOD approach, which, similarly to MsFEM, aims
at approximating uε on the coarse and the fine scales, is also invasive in general, since it
also introduces adapted basis functions. As shown in [7979], the LOD can be recast as a P1

discretization of an appropriate single-scale problem, an observation which opens the way
to non-intrusive implementations. Note however that, despite its current intrusiveness,
MsFEM has its own advantages over other multiscale approaches: it directly aims at
approximating the oscillatory solution uε (including its fine-scale details), and makes use
of fully localized basis functions to do so.

3.2.2. Equivalent problem on the macroscopic scale. Our starting point for reducing
intrusiveness in the above MsFEM implementation is the following key observation. On
any K ∈ TH , by linearity of the definition (3.43.4) of φεi in terms of φP1

i , and because the
finite element space VH consists of functions that are piecewise affine (that is to say, ∇φP1

i

is constant in each K), we have the expansion

φεi (x)|K = φP1
i (x) +

d∑
α=1

(∂αφ
P1
i )|K χε,αK (x), (3.6)

for any basis function φεi of V ε
H . Here, χε,αK ∈ H1

0 (K) is defined as the solution to the local
problem

− div (Aε∇χε,αK ) = div (Aεeα) in K, χε,αK = 0 on ∂K, (3.7)

where eα denotes the α-th canonical unit vector of Rd. Considering indeed the right-hand

side of (3.63.6), we compute that its gradient in K is
d∑

α=1

(∂αφ
P1
i )|K (eα +∇χε,αK (x)). In view

of (3.73.7), we obtain

− divAε

[
d∑

α=1

(∂αφ
P1
i )|K (eα +∇χε,αK )

]
= 0 in K.

The right-hand side of (3.63.6) therefore satisfies the PDE in (3.43.4). It also satisfies the
boundary conditions in (3.43.4), in view of the boundary conditions in (3.73.7). Since the
solution to (3.43.4) is unique, we deduce the identity (3.63.6).

For each K ∈ TH and each 1 ≤ α ≤ d, we extend χε,αK by 0 outside K, thereby
obtaining a function χε,αK ∈ H1

0 (Ω). We then deduce from (3.63.6) that there is a one-to-one
correspondence between functions in V ε

H and functions in VH . More precisely, for any
vεH ∈ V ε

H , there exists a unique vH ∈ VH such that

vεH = vH +
∑
K∈TH

d∑
α=1

(∂αvH)|K χε,αK , (3.8)

and conversely, for any vH ∈ VH , we have vH+
∑
K∈TH

d∑
α=1

(∂αvH)|K χε,αK ∈ V
ε
H . In particular,

the function associated to φεi ∈ V ε
H is φP1

i ∈ VH .
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We now consider the linear system associated to (3.53.5) and insert therein the expan-

sion (3.83.8) for the multiscale basis functions. The solution to (3.53.5) reads uεH =
Nv∑
i=1

U ε
i φ

ε
i ,

where U ε =
(
U ε

1 , . . . , U
ε
Nv

)T
is the solution to

Aε U ε = Fε, (3.9)

where, for all 1 ≤ i, j ≤ Nv, we define Aεj,i = aε
(
φεi , φ

ε
j

)
and Fεj = F

(
φεj
)
.

Taking vεH = φεi (and thus vH = φP1
i ) in (3.83.8) and using that∇φP1

i is piecewise constant,
we write

∇φεi =
∑
K∈TH

d∑
α=1

(∂αφ
P1
i )|K (eα +∇χε,αK ) .

Inserting this relation in the definition of the matrix elements Aεj,i, we obtain

Aεj,i =

∫
Ω

∇φεj · Aε∇φεi

=
∑
K∈TH

d∑
α,β=1

(∂βφ
P1
j )|K

(∫
K

(
eβ +∇χε,βK

)
· Aε (eα +∇χε,αK )

)
(∂αφ

P1
i )|K

=
∑
K∈TH

d∑
α,β=1

(∂βφ
P1
j )|K aεK

(
xα + χε,αK , xβ + χε,βK

)
(∂αφ

P1
i )|K , (3.10)

where xα = x · eα is the α-th coordinate function. We now define the piecewise constant
matrix-valued field A ∈ P0(TH ,Rd×d) by

Aβ,α
∣∣
K

=
1

|K|
aεK

(
xα + χε,αK , xβ + χε,βK

)
for each K ∈ TH and 1 ≤ α, β ≤ d, (3.11)

where |K| denotes the area or volume of the mesh element K. Using (3.73.7) and the
bounds (3.23.2) satisfied by Aε, it is easy to show (see Lemma 7.27.2 for the lower bound; the
upper bound can be shown by similar arguments) that A satisfies the following uniform
lower and upper bounds: for any ξ and η in Rd,

m |ξ|2 ≤ ξ · A(x)ξ and
∣∣η · A(x)ξ

∣∣ ≤M

(
1 +

M

m

)
|ξ| |η| a.e. in Ω. (3.12)

Motivated by (3.103.10) and (3.113.11), we introduce the coarse-scale problem

− div
(
A∇u

)
= f in Ω, u = 0 on ∂Ω, (3.13)

and its P1 Galerkin discretization: find uH ∈ VH such that

∀ vH ∈ VH , aA(uH , vH) = F (vH), (3.14)

where the linear form F is defined by (3.33.3) and the bilinear form aA is defined by

∀u, v ∈ H1
0 (Ω), aA(u, v) =

∑
K∈TH

aAK(u, v) with aAK(u, v) =

∫
K

∇v · A∇u.
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Problem (3.143.14) equivalently writes

AP1 UP1 = FP1 , (3.15)

with
∀1 ≤ i, j ≤ Nv, A

P1
j,i = aA

(
φP1
i , φ

P1
j

)
, F

P1
j = F

(
φP1
j

)
. (3.16)

We then deduce from (3.103.10) that

Aεj,i =

∫
Ω

∇φP1
j · A∇φ

P1
i = A

P1
j,i, (3.17)

where we recall that the piecewise constant matrix A given by (3.113.11), and therefore the
stiffness matrix AP1 , depends on the fine-scale oscillations of Aε. The above calculations
yield the following result.

Lemma 3.2. The stiffness matrix Aε in (3.93.9) of the MsFEM problem (3.53.5) is identical
to the stiffness matrix AP1 in (3.153.15) of the P1 problem (3.143.14).

We note that the right-hand side vector Fε in (3.93.9) is in general different from the
right-hand side vector FP1 in (3.153.15), since we integrate f against highly oscillatory basis
functions in the former problem and against P1 basis functions in the latter. The solutions
U ε and UP1 to (3.93.9) and (3.153.15), respectively, are thus a priori different.

The above observations suggest using the identity (3.173.17) of the stiffness matrices to
replace the MsFEM discrete problem (3.93.9) by the discrete problem (3.153.15) stemming from
the P1 Galerkin approximation of the single scale problem (3.133.13), which itself may be
easily implemented in legacy codes. This results in our non-intrusive MsFEM strategy
presented in Algorithm 3.23.2. We can distinguish there the offline stage (in lines 11–1414) and
the online stage (in lines 1515–2020). The few lines that differ between Algorithm 3.23.2 and a
standard P1 algorithm are highlighted in blue. The lines in black are already present in
standard codes and are written in Algorithm 3.23.2 for the sake of completeness.

The superiority of Algorithm 3.23.2 over the classical MsFEM Algorithm 3.13.1 is that
the global problem of the online stage (including its right-hand side) can be completely
constructed and solved using a pre-existing P1 PDE solver. The only requirements in the
legacy code are the ability to provide piecewise constant diffusion coefficients to the solver
and the existence of a procedure which provides the value of the solution at any point
in Ω. The part of the offline stage which manipulates fine meshes (in lines 33-66) and the
post-processing step (in line 2020) can, on the other hand, be developed independently. The
requirement for these fine-scale solvers is that they have access to the coarse mesh TH of
the global solver and that they can evaluate uH anywhere in Ω (which is useful in line 2020).
Note also that the fine-scale problem (3.73.7) is only indexed by the coarse mesh element
K, in contrast to the fine-scale problem (3.43.4), which is indexed both by the coarse mesh
element K and the vertex index i. In the latter case, one has to know, for each element K,
the global number of the element vertices, a piece of information which may be difficult to
access in a legacy code. In the former case, this correspondence is not needed to compute
A and uεH , which are entirely defined element-wise.

Remark 3.3 (Link with homogenization theory). The above non-intrusive implemen-
tation involves quantities which are of course reminiscent of standard quantities intro-
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Algorithm 3.2 Non-intrusive MsFEM approach for Problem (3.13.1) (see comments in the
text)

1: Construct a mesh TH of Ω, denote Nv the number of internal vertices and N (n,K)
the global index of the vertex of K ∈ TH that has local index 1 ≤ n ≤ d+ 1 in K

2: for all K ∈ TH do
3: for 1 ≤ α ≤ d do
4: Solve for χε,αK defined by (3.73.7)
5: end for
6: Compute A|K defined by (3.113.11)
7: end for

8: Set AP1 := 0 and FP1 := 0
9: for all K ∈ TH do

10: for 1 ≤ m ≤ d+ 1 do
11: Set j := N (m,K)
12: for 1 ≤ n ≤ d+ 1 do
13: Set i := N (n,K) and AP1

j,i += aAK
(
φP1
i , φ

P1
j

)
14: end for
15: Compute FP1

j += FK
(
φP1
j

)
16: end for
17: end for

18: Solve the linear system AP1UP1 = FP1

19: Obtain the coarse approximation uH =
Nv∑
i=1

UP1
i φP1

i

20: Obtain the MsFEM approximation given in K by uεH = uH +
d∑

α=1

(∂αuH)|K χε,αK

duced in homogenization. The problem (3.73.7), the effective diffusion matrix (3.113.11), the
single-scale problem (3.133.13) and the expansion (3.83.8) resemble the corrector problem, the
homogenized matrix, the homogenized problem and the two-scale expansion of the os-
cillatory solution, respectively. In the same spirit, in the case when Aε is the rescaling
of some periodic matrix, it can be shown (see Lemma 7.117.11) that the effective diffusion
matrix A converges to the homogenized matrix when ε→ 0.

As shown by (3.173.17), the matrix AP1 in (3.153.15) is identical to the matrix Aε in (3.93.9).
However, in general, the right-hand sides Fε in (3.93.9) and FP1 in (3.153.15) are different. This
motivates the introduction of the following Petrov-Galerkin variant of the MsFEM: find
uε,PGH ∈ V ε

H such that

∀ vH ∈ VH , aε
(
uε,PGH , vH

)
= F (vH). (3.18)

Note that, in contrast to (3.53.5), we take the test functions in the P1 space VH rather than
in the multiscale space V ε

H . We denote Aε,PGj,i = aε
(
φεi , φ

P1
j

)
the stiffness matrix of the

resulting linear system. Of course, the right-hand side vector of this linear system is equal
to FP1 defined by (3.163.16).
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Lemma 3.4. The stiffness matrices Aε and Aε,PG of the problems (3.53.5) and (3.183.18) are
identical (and thus identical to AP1). The right-hand side vector of (3.183.18) is identical to
the right-hand side vector FP1 of the problem (3.143.14). The solution uε,PGH to the Petrov-
Galerkin MsFEM (3.183.18) thus coincides with the function uεH computed by Algorithm 3.23.2.

Proof. To prove this lemma, it is enough to show that the stiffness matrices of (3.53.5)
and (3.183.18) are equal. Using an integration by parts, we compute

aε
(
φεi , φ

ε
j − φ

P1
j

)
=
∑
K∈TH

∫
K

∇
(
φεj − φ

P1
j

)
· Aε∇φεi

=
∑
K∈TH

∫
∂K

(
φεj − φ

P1
j

)
n · Aε∇φεi −

∫
K

(
φεj − φ

P1
j

)
div (Aε∇φεi ) , (3.19)

where n is the unit outward normal vector on ∂K. The two terms above vanish in view
of (3.43.4). This implies the identity of the stiffness matrices of (3.53.5) and (3.183.18) and the
well-posedness of the Petrov-Galerkin approximation (3.183.18). �

To summarize, the above procedure to go from the MsFEM problem (3.53.5) to its non-
intrusive implementation described in Algorithm 3.23.2 is based on the following steps:

1. we use the linearity of the problem and the fact that gradients of P1 basis functions
are constant in each mesh element to establish the identity (3.63.6);

2. we can then recast the MsFEM stiffness matrix Aε as the stiffness matrix AP1 of the
P1 discretization of an appropriate problem;

3. we approximate the right-hand side Fε of the MsFEM problem by a right-hand side
FP1 which can be computed in a manner consistent with a P1 discretization;

4. we postprocess the P1 solution to obtain an approximation of the reference solution.

We nowhere use in these steps that the discrete problem we are actually solving (here
(3.153.15)) in fact corresponds to some discretization (here, a Petrov-Galerkin discretization)
of the reference problem. This correspondence is useful to estimate the error introduced
by the non-intrusive implementation (a task we perform in Section 3.33.3 below), but it does
not necessarily hold for other variants of MsFEM (e.g. the oversampling variant briefly
mentioned in Section 3.43.4 below) and it is not required to put the non-intrusive approach
in action.

We expect the computational cost of Algorithm 3.23.2 to be smaller than that of Algo-
rithm 3.13.1, since FP1 is cheaper to compute than Fε (we do not need to use a quadrature rule
on the fine mesh). On the other hand, Algorithm 3.23.2 (and non-intrusive implementations
in general) may introduce additional numerical errors. We estimate these in Section 3.33.3.

3.3. Comparison of Galerkin and Petrov-Galerkin MsFEM

3.3.1. Theoretical results. In this section, we estimate the difference between the solu-
tions to the Galerkin and the Petrov-Galerkin approximations (3.53.5) and (3.183.18). We first
recall that, for any vεH ∈ V ε

H , there exists a unique vH ∈ VH such that (3.83.8) holds. We
now establish a variational relation between vεH and vH .
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Lemma 3.5. Let vεH ∈ V ε
H . There exists a unique vH ∈ VH such that (3.83.8) holds, and

vH is the unique solution in VH to the problem

∀wH ∈ VH , aA(vH , wH) = aε(vεH , wH), (3.20)

where A is defined by (3.113.11). In addition, we have ‖∇vH‖L2(Ω) ≤
M

m
‖∇vεH‖L2(Ω).

Proof. We take some vεH ∈ V ε
H and expand it following (3.83.8): we thus write vεH = vH +∑

K∈TH

d∑
α=1

(∂αvH)|K χε,αK for some vH ∈ VH . Consider now some wH ∈ VH . Using (3.73.7),

(3.113.11) and that ∇wH and ∇vH are piecewise constant, we compute that

aε(vεH , wH) =
∑
K∈TH

d∑
α,β=1

(∂βwH)|K
(∫

K

eβ · Aε (eα +∇χε,αK )

)
(∂αvH)|K = aA(vH , wH).

We thus observe that vH satisfies (3.203.20). In addition, the equation (3.203.20) completely

characterizes vH , since aA is coercive on H1
0 (Ω) in view of (3.123.12). The estimate for vH

directly follows by taking wH = vH in (3.203.20) and using the coercivity of A and the upper
bound on Aε. �

We now proceed with the following error estimate.

Lemma 3.6. Let uε,GH denote the solution to the approximation (3.53.5) (provided by Algo-
rithm 3.13.1), where we have added the superscript G to emphasize that (3.53.5) is a Galerkin
approximation. Let uε,PGH be the solution to the Petrov-Galerkin approximation (3.183.18)
(provided by Algorithm 3.23.2). Assume that f ∈ L2(Ω). There exists a constant C inde-
pendent of ε, H and f such that∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

≤ C H ‖f‖L2(Ω).

The classical error estimate for the Galerkin MsFEM approach (3.53.5) is obtained in
the literature under the assumption that Aε is actually the rescaling of a given periodic
matrix. The bound on ‖uε,GH − uε‖H1(Ω) in this estimate reads C (H +

√
ε +

√
ε/H) for

some C independent of ε and H (see e.g. [6969]). Lemma 3.63.6 and a triangle inequality show
that the same convergence rate holds for the Petrov-Galerkin MsFEM approach (3.183.18),
of course under the same periodicity assumption.

Proof. Let eεH = uε,GH − uε,PGH . Since the numerical approximations uε,GH and uε,PGH both
belong to V ε

H , we are in position to use (3.83.8) for eεH ∈ V ε
H : there thus exists eP1

H ∈ VH such
that

eεH = eP1
H + eosc

H with eosc
H =

∑
K∈TH

d∑
α=1

(∂αe
P1
H )|K χε,αK . (3.21)

We can thus write

aε(eεH , e
ε
H) = aε

(
uε,GH , eεH

)
− aε

(
uε,PGH , eP1

H

)
− aε

(
uε,PGH , eosc

H

)
.
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Since eεH can be used as a test function in (3.53.5) and eP1
H in (3.183.18), this implies

aε(eεH , e
ε
H) = (f, eεH)L2(Ω) − (f, eP1

H )L2(Ω) − aε(uε,PGH , eosc
H ) = (f, eosc

H )L2(Ω) − aε(uε,PGH , eosc
H ).

Using that eosc
H vanishes on all the edges of the coarse mesh (because of the boundary

conditions satisfied by χε,αK ), the same integration by parts that led to (3.193.19) shows that

aε
(
uε,PGH , eosc

H

)
= 0. We therefore infer from the above equation and the Cauchy-Schwarz

inequality that
aε(eεH , e

ε
H) ≤ ‖f‖L2(Ω) ‖eosc

H ‖L2(Ω) . (3.22)

We proceed by bounding ‖eosc
H ‖L2(Ω) from above in terms of ‖∇eεH‖L2(Ω) in the right-hand

side of (3.223.22). The Poincaré inequality in each K implies that there exists a constant
C, independent of H but dependent on the regularity of the mesh, such that, for any
K ∈ TH ,

‖eosc
H ‖L2(K) ≤ C H ‖∇eosc

H ‖L2(K) . (3.23)

Using the problem (3.73.7) satisfied by each χε,αK , the identity (3.213.21) and the fact that ∂αe
P1
H

is constant in each K, we observe that eosc
H satisfies the following variational formulation

in each K ∈ TH :

∀ v ∈ H1
0 (K), aεK (eosc

H , v) = −
d∑

α=1

(∂αe
P1
H )|K aεK (xα, v) = −aεK

(
eP1
H , v

)
.

Upon testing against v = eosc
H ∈ H1

0 (K) and using the bounds (3.23.2), it follows that

‖∇eosc
H ‖L2(K) ≤

M

m

∥∥∇eP1
H

∥∥
L2(K)

. We thus deduce from (3.233.23) that

‖eosc
H ‖L2(Ω) ≤ C H

M

m

∥∥∇eP1
H

∥∥
L2(Ω)

. (3.24)

In order to estimate ∇eP1
H in terms of eεH , we apply Lemma 3.53.5 to vεH = eεH ∈ V ε

H and

obtain that
∥∥∇eP1

H

∥∥
L2(Ω)

≤ M

m
‖∇eεH‖L2(Ω). Upon inserting this estimate and (3.243.24) in

the right-hand side of (3.223.22), and using the lower bound (3.23.2) on Aε in the left-hand
side of (3.223.22), it follows that ‖∇eεH‖L2(Ω) ≤ C H ‖f‖L2(Ω). We conclude the proof by the
application of a Poincaré inequality in Ω. �

3.3.2. Numerical results. We now present some numerical examples to illustrate the
above result. We take Ω = (0, 1)2, Aε(x) = aεper(x) Id with

aεper(x) = 1 + 100 cos2(π x1/ε) sin2(π x2/ε), (3.25)

which is ε-periodic, and f(x) = sin(x1) sin(x2). For ε = π/150 ≈ 0.02, we consider the
reference solution uref (computed in practice on a fine mesh of size h = 1/1024), and,
for various values of H (ranging from 1/4 to 1/256), the solution uε,GH to the Galerkin
approximation (3.53.5) and the solution uε,PGH to the Petrov-Galerkin approximation (3.183.18).

In Table 3.13.1, we show the error
∥∥∥uε,GH − uref

∥∥∥
H1(Ω)

and the difference
∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

.

As expected from Lemma 3.63.6, we observe that the difference uε,GH − uε,PGH is extremely
small (here by a factor of at least 300) in comparison to the error uε,GH −uref . The intrusive
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and the non-intrusive MsFEMs thus share the same accuracy.

Table 3.1: Errors between uε,GH , uε,PGH and uref for several values of H (periodic case).

H/ε
∥∥∥uε,GH − uref

∥∥∥
H1(Ω)

∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

11.94 5.64× 10−3 1.55× 10−5

5.97 4.81× 10−3 1.29× 10−5

2.98 6.26× 10−3 8.51× 10−6

1.49 7.99× 10−3 1.08× 10−5

0.75 9.54× 10−3 9.93× 10−6

0.37 8.56× 10−3 6.65× 10−6

0.19 6.58× 10−3 3.53× 10−6

To demonstrate the robustness of our conclusions with respect to the choice of Aε, we
next consider two other cases, a locally-periodic example and a fully non-periodic one.
Recall that the purpose of MsFEM approaches is to address general multiscale settings.
In contrast to quantitative homogenization theory, their implementation does not rely on
any geometric assumption on the microstructure, such as periodicity.

In the first situation, we set Aε(x) =
(
1 + cos2(2πx1)

)
aεper(x) Id where aεper is defined

by (3.253.25). We therefore have Aε(x) = Aloc−per

(
x,
x

ε

)
Id, where, for any fixed x ∈ Ω, the

function y ∈ Rd → Aloc−per(x, y) is Zd-periodic. In the second situation, we take

Aε(x) = 1 +
(
1 + 100 cos2(πx1/ε) sin2(πx2/ε)

)
cos2

(
x2

1 + x2
2

ε

)
.

All the other parameters are identical to those of the periodic test case. In Tables 3.23.2

and 3.33.3, we show the error
∥∥∥uε,GH − uref

∥∥∥
H1(Ω)

and the difference
∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

for

various values of H. As in the periodic case, we again observe that the difference uε,GH −
uε,PGH is extremely small (by a factor of at least 50 in the locally periodic case and at
least 200 in the fully non-periodic case) in comparison to the error uε,GH − uref . Again, the
intrusive and the non-intrusive MsFEMs share the same accuracy.

3.4. Concluding remarks on possible extensions

Despite the fact that it significantly improves upon the classical FEM approach, the Ms-
FEM approach using the basis functions φεi defined by (3.43.4) suffers from a well-known
shortcoming, due to the fact that affine boundary conditions are imposed for φεi . The
method cannot yield an accurate approximation of the reference solution uε near the edges
of the coarse mesh elements, since the exact solution oscillates along the edges while the
numerical approximation does not. To overcome this drawback, several alternative defi-
nitions of the multiscale basis functions have been proposed, leading to different MsFEM
variants, including the oversampling variant, introduced in [9898] and nowadays considered
to be a reference MsFEM variant. We investigate in the remainder of Part II how the
non-intrusive implementation procedure presented here can be extended to that case. We
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Table 3.2: Errors between uε,GH , uε,PGH and uref for several values of H (locally periodic
case).

H/ε
∥∥∥uε,GH − uref

∥∥∥
H1(Ω)

∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

11.94 3.65× 10−3 7.17× 10−5

5.97 3.17× 10−3 1.95× 10−5

2.98 4.14× 10−3 6.62× 10−6

1.49 5.33× 10−3 7.93× 10−6

0.75 6.36× 10−3 7.13× 10−6

0.37 5.71× 10−3 4.77× 10−6

0.19 4.39× 10−3 2.55× 10−6

Table 3.3: Errors between uε,GH , uε,PGH and uref for several values of H (non-periodic case).

H/ε
∥∥∥uε,GH − uref

∥∥∥
H1(Ω)

∥∥∥uε,GH − uε,PGH

∥∥∥
H1(Ω)

11.94 8.69× 10−3 2.32× 10−5

5.97 7.11× 10−3 3.22× 10−5

2.98 8.81× 10−3 2.59× 10−5

1.49 1.12× 10−2 2.51× 10−5

0.75 1.30× 10−2 1.53× 10−5

0.37 1.07× 10−2 9.85× 10−6

0.19 7.55× 10−3 4.00× 10−6

note that oversampling multiscale basis functions are again defined in terms of φP1
i in a

linear manner, which allows to obtain a formula analogous to (3.63.6). The stiffness matri-
ces of the Galerkin and the Petrov-Galerkin approximations are in general different (in
contrast to the case studied here, see Lemma 3.43.4), but the two of them can be expressed
as the stiffness matrix obtained using a standard P1 approximation of the single-scale
problem (3.133.13), for a suitably defined piecewise constant effective matrix A. For the sake
of conciseness of the present chapter, we postpone the presentation of all the details of
these extensions to the next chapters.

To outline the versatility of the above procedure leading to a non-intrusive implemen-
tation, we eventually make a few remarks on the advection-diffusion problem

− div(Aε∇uε) + b · ∇uε = f in Ω, uε = 0 on ∂Ω.

The MsFEM basis functions may be defined by (3.43.4) or by a similar equation including
the advection term (see e.g. [114114] and Part IIII of this thesis). Oversampling may also be
used. In all cases, for the same reasons as above, an identity of the type (3.63.6) holds, which
allows to express the stiffness matrix of the approach as the stiffness matrix obtained using
a standard P1 finite element approximation of a single-scale problem containing diffusion
and advection terms, with appropriate definitions of a diffusion matrix A and an advection
field b that are both piecewise constant. This is detailed in the remainder of Part II.
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CHAPTER 4

The intrusive nature of the MsFEM

Chapters 44 to 77 discuss non-intrusive implementation strategies of MsFEMs, possibly after
small modifications of the method. The contents of these chapters have been published
in [3131]. The non-intrusive approach of Chapter 33 is generalized here to a wide variety
of (previously known and some unknown) MsFEMs. We focus on MsFEMs with an
‘underlying P1 space’ (to be defined in Chapter 55). In Chapter 88, we briefly consider the
extension of the non-intrusive implementation strategy to higher-order MsFEMs on one
particular example (in Section 8.28.2), and we propose different oversampling strategies for
the MsFEM-CR than those proposed in [3131].

In the present chapter, we recall the basic principles of the FEM and the MsFEM
and we illustrate the intrusive character of the MsFEM. We also recall the non-intrusive
MsFEM approach that was proposed in Chapter 33 for the simplest MsFEM variant on the
example of a diffusion problem. We highlight a link between the non-intrusive MsFEM
approach and classical homogenization here. Then we summarize in Chapter 55 which
properties of the MsFEM are essential for the non-intrusive workflow, and show that all
these properties can be found within a general framework covering a wide variety of Ms-
FEMs. We extend the non-intrusive MsFEM approach to this general MsFEM framework
in Chapter 66. In Chapter 33 we saw that the non-intrusive MsFEM approach is equivalent
to a Petrov-Galerkin MsFEM (with P1 test functions). This is no longer true for all Ms-
FEMs covered by our general framework, and we obtain two non-intrusive MsFEMs: the
Petrov-Galerkin MsFEM, which is completely equivalent to its non-intrusive implemen-
tation, and an approximate version of the Galerkin MsFEM that can be implemented in
a non-intrusive way. The three essential formulas for the formulation of the non-intrusive
MsFEM can easily be compared across these chapters, since they are highlighted in special
blue boxes in Chapter 44 for the diffusion setting and in Chapters 55 and 66 for the general
framework. We study the difference between the original and non-intrusive MsFEM more
closely in Chapter 77 for the general MsFEM framework in the setting of diffusion prob-
lems. We obtain a number of convergence results for the difference between the intrusive
and non-intrusive MsFEM approximations. The different MsFEM approaches introduced
in this part of the thesis are compared numerically in Section 7.47.4. We shall assess the
efficiency of our approaches for diffusion problems with coefficients that are not covered
by the convergence results of Chapter 77. Our results show that the Petrov-Galerkin Ms-
FEM as well as the non-intrusive approximation of the Galerkin MsFEM are close to
the original Galerkin MsFEM. Any possible additional error introduced by making the
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MsFEM non-intrusive is thus negligible.

Notation. Let us introduce some notation that will be used in the remaining chapters of
Part II. We adopt standard notation for Sobolev spaces. In particular, H1(Ω) denotes the
space of functions u ∈ L2(Ω) whose first derivatives (in the sense of distributions) belong
to L2(Ω) and H1

0 (Ω) its subspace of functions with vanishing trace on the boundary of Ω.
The dual space of H1

0 (Ω) is denoted H−1(Ω). The space W 1,∞(Ω) is the space of almost
everywhere bounded functions whose derivatives are also bounded almost everywhere.
Further, for a given simplicial mesh TH of Ω, we use the notation H1(TH) to denote the
broken Sobolev space

H1(TH) =
{
u ∈ L2(Ω)

∣∣u|K ∈ H1(K) for all mesh elements K ∈ TH

}
.

The standard norm for the space H1(Ω) is ‖u‖H1(Ω) =
√
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) and the

corresponding broken norm is ‖u‖H1(TH) =

√ ∑
K∈TH

‖u‖2
H1(K). The space of functions whose

restriction to each element of TH is a polynomial of degree k is denoted Pk(TH).

4.1. Discrete variational formulation

Let d ≥ 1 denote the space dimension of interest and let Ω ⊂ Rd be a bounded polytope
(e.g. a polygon in dimension d = 2, a polyhedron in dimension d = 3). Convexity of Ω
can be assumed for elliptic regularity results to hold, for which we refer to [8585]. This
technical assumption is not necessary for the algorithmic aspects of the MsFEM that are
the main focus of Part II of this thesis.

By way of example, we consider first the diffusion equation with homogeneous Dirich-
let boundary conditions. In a second step, from Section 5.1.35.1.3 onwards, we will also
consider more general problems, and we will mention other types of boundary conditions
in Section 6.36.3. More precisely, we focus here on the boundary value problem{

−div(Aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(4.1)

where the diffusion tensor Aε ∈ L∞(Ω, Rd×d) satisfies the uniform bounds

∀ ξ ∈ Rd, m|ξ|2 ≤ ξ · Aε(x) ξ a.e. in Ω,

and ∀ ξ, η ∈ Rd, |η · Aε(x)ξ| ≤M |ξ| |η| a.e. in Ω,
(4.2)

for some M ≥ m > 0 independent of ε. The right-hand side f does not vary on the
microscopic scale ε. We denote the diffusion tensor with a superscript ε to keep in mind
that Aε might be highly oscillatory on a typical length scale of size ε much smaller than
the diameter of Ω (assumed to be of order 1). No further structural assumptions on Aε

are made. In particular, Aε need not be the rescaling of a fixed periodic matrix of the
form Aε(x) = A(x/ε). We will specialize to this periodic setting in Section 7.37.3 only
to obtain convergence results, but this assumption is of no relevance for the practical
implementation of the MsFEM. Let us also mention that none of the considerations in
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Chapters 44 to 88 require symmetry of the diffusion tensor. Our development of non-
intrusive MsFEMs also generalizes to linear systems of PDEs. The analysis we provide
is also expected to extend to e.g. the system of linear elasticity up to some technicalities
that we do not consider here.

For simplicity of exposition, we assume that f ∈ L2(Ω) (rather than f ∈ H−1(Ω), for
which the problem (4.14.1) is in fact well-posed). We do so to avoid unnecessary technicali-
ties. Our proposed non-intrusive MsFEM carries over to the more general case. For some
convergence results, the condition f ∈ L2(Ω) cannot be relaxed. In this case, this is also
explicitly stated.

Problem (4.14.1) admits a unique solution in the space H1
0 (Ω). This solution is also

characterized by the variational formulation{
Find uε ∈ H1

0 (Ω) such that

aε,diff(uε, v) = F (v) for all v ∈ H1
0 (Ω),

(4.3)

where the bilinear form aε,diff and the linear form F are defined, for any u, v ∈ H1
0 (Ω), by

aε,diff(u, v) =

∫
Ω

∇v · Aε∇u, F (v) =

∫
Ω

fv. (4.4)

The coercivity hypothesis in (4.24.2) ensures that the bilinear form aε,diff is coercive on the
space H1

0 (Ω). Then the Lax-Milgram Theorem [8181, Theorem 5.8] shows that (4.34.3) is
indeed well-posed.

The numerical approximation of (4.34.3) with a finite element method starts by the in-
troduction of a mesh TH for Ω. The subscript H denotes the typical size of the mesh
elements. We assume TH to be a simplicial, conformal mesh. For some convergence re-
sults, we shall assume quasi-uniformity. These assumptions are standard in finite element
analysis. We refer, e.g., to [129129, 5252, 7373] for a general exposition and various examples.
Again, these regularity properties of the mesh do not have any impact on the imple-
mentation of the MsFEM on a given mesh. The regularity plays a role only to obtain
convergence results.

A finite element method for (4.14.1) is obtained by restricting the equivalent formula-
tion (4.34.3) to a finite-dimensional subspace of H1

0 (Ω), typically consisting of functions that
are piecewise polynomial on the mesh TH . We suppose that we are in the regime where H
is larger than or comparable to the microscale ε. In this case, it is well known that a
Galerkin approximation of (4.34.3) on, say, the standard (conforming) Lagrange P1 space
on TH provides only a poor, not to say an incorrect approximation of uε. See Section 2.1.22.1.2
and [1212, Example 1.1], for instance, for explicit examples where the P1 approximation on
a coarse mesh fails. At the same time, the use of a finite element method on a fine mesh
of size H � ε might be unfeasible from a computational point of view because of its pro-
hibitive computational cost. To remedy this issue, we shall next introduce the multiscale
finite element method (MsFEM) [9898, 6969].

4.2. A simple multiscale finite element method

The MsFEM is a Galerkin approximation of (4.34.3) for which the approximation space is
adapted in order to achieve satisfactory accuracy even on a coarse mesh. The correct
choice of approximation space yields a numerical approximation that is much closer to
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uε than a standard P1-approximation when ε is smaller than H, and especially when ε
becomes asymptotically small. To begin with, we introduce here the simplest variant
of the MsFEM, which originally appeared in [9898], before moving on to other MsFEM
variants in Section 5.1.35.1.3.

Let x1, . . . , xN0 be an enumeration of the interior vertices of the mesh TH , i.e., the
vertices that do not lie on ∂Ω. We denote by φP1

i the unique piecewise P1 function such
that φP1

i (xj) = δi,j for all 1 ≤ j ≤ N0. (These are the basis functions for the standard P1

Lagrange finite element.) We define the multiscale basis functions φεi (for 1 ≤ i ≤ N0) by

∀ K ∈ TH ,

{
−div(Aε∇φεi ) = 0 in K,

φεi = φP1
i on ∂K.

(4.5)

All these problems, on each mesh element K, are again well-posed by coercivity of Aε and
the Lax-Milgram Theorem. The functions φεi so defined belong to the global space H1

0 (Ω)
because the local boundary conditions on ∂K imply continuity across all mesh elements
K. It is also immediately seen that φεi is supported by exactly the same mesh elements
as φP1

i .

Remark 4.1. On each mesh element K, problem (4.54.5) defines at most d+ 1 non-trivial
basis functions. Let i1, . . . , id+1 be the indices of the vertices of K. It is easily inferred

from (4.54.5) that φεid+1

∣∣∣
K

= 1−
d∑
j=1

φεij

∣∣∣
K
. Thus, one only has to compute d basis functions

by the resolution of the PDE (4.54.5) on K.

The multiscale approximation space is defined as V ε
H,0 = span{φεi | 1 ≤ i ≤ N0}. This

is a finite-dimensional space of the same dimension as the one used for a P1 Lagrange
finite element approximation on the mesh TH . The MsFEM consists in computing the
approximation uεH ∈ V ε

H,0 defined by the problem

∀ vεH ∈ V ε
H,0, aε,diff(uεH , v

ε
H) = F (vεH) . (4.6)

Since V ε
H,0 is a subspace of H1

0 (Ω), the bilinear form aε,diff is coercive on V ε
H,0 and the

discrete problem (4.64.6) is again well-posed by virtue of the Lax-Milgram Theorem.

The computation of the multiscale basis functions φεi is called the offline stage of the
MsFEM and only has to be carried out once if (4.14.1) has to be solved multiple times
for different right-hand sides. Also note that all problems (4.54.5) are independent of each
other, and can thus be solved in parallel. Once all basis functions are known, one can
compute the stiffness matrix of the MsFEM (see Section 4.34.3 for more details), which is
also part of the offline stage. In practice, the φεi are approximated numerically on a fine
mesh of K ∈ TH of mesh size h ≤ ε that resolves the oscillations of Aε. We omit these
details here because they have no importance for the non-intrusive strategy that we shall
propose below.

The resolution of the global problem (4.64.6), each time the right-hand side F changes,
is called the online stage. The computational cost for this problem is the same as for a
standard P1 approximation on the same mesh. A further discussion of the practical imple-
mentation of the MsFEM is provided in Section 4.34.3. This discussion partially reproduces
some elements of Chapter 33. We include it here to clarify and motivate the developments
in the sequel.
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4.3. Intrusive workflow

The practical resolution of the global problem (4.64.6) consists in the construction and
resolution of the following linear system:

AεU ε = Fε, (4.7)

with the stiffness matrix Aε and the right-hand side Fε of the linear system given by

∀ 1 ≤ i, j ≤ N0, Aεj,i = aε,diff
(
φεi , φ

ε
j

)
, Fεj = F

(
φεj
)
, (4.8)

where we recall that N0 denotes the number of interior vertices of TH . The MsFEM

approximation uεH is given by uεH =

N0∑
i=1

U ε
i φ

ε
i . The MsFEM can then be written (as

it is traditionally presented) as in Algorithm 4.14.1. We use the notation aε,diff
K (u, v) =∫

K

∇v · Aε∇u for all u, v ∈ H1(K) and we write FK(v) =

∫
K

fv for any v ∈ L2(K).

Algorithm 4.1 MsFEM approach for problem (4.14.1) (see comments in the text)

1: Construct a mesh TH of Ω, denote N0 the number of internal vertices and N (n,K)
the global index of the vertex of K ∈ TH that has local index 1 ≤ n ≤ d+ 1 in K

2: Set Aε := 0 and Fε := 0
3: for all K ∈ TH do
4: for 1 ≤ n ≤ d+ 1 do
5: Set i := N (n,K)
6: Solve for φεi |K in (4.54.5)
7: end for
8: for 1 ≤ l ≤ d+ 1 do
9: Set j := N (l,K)

10: for 1 ≤ n ≤ d+ 1 do
11: Set i := N (n,K) and Aεj,i += aε,diff

K (φεi , φ
ε
j)

12: end for
13: Set Fεj += FK(φεj)
14: end for
15: end for

16: Solve the linear system AεU ε = Fε

17: Obtain the MsFEM approximation uεH =
N0∑
i=1

U ε
i φ

ε
i

Lines 11-1212 of Algorithm 4.14.1 (resp. 1313-1717) constitute the offline (resp. online) stage of
the MsFEM. Note that the computation of the stiffness matrix Aε in line 1111 only depends
on the multiscale basis functions (and not on the right-hand side f) and can therefore be
carried out once and for all in the offline stage. Also note that, for an efficient computation
of the φεi in line 66, one should apply Remark 4.14.1. Only the online stage is to be repeated
when problem (4.14.1) is to be solved multiple times for various right-hand sides f .

Implementing Algorithm 4.14.1 in an industrial code is challenging. Indeed, the practical
implementation of any finite element method relies on (i) the construction of a mesh, (ii)
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the construction of the linear system associated to the discrete variational formulation
and (iii) the resolution of the linear system. An efficient implementation of the second
step heavily relies on the choice of the discretization space.

Regarding the construction of the linear system (performed in line 1111 of Algorithm 4.14.1),
it is by no means obvious to adapt existing finite element codes based on generic approxi-
mation spaces (for instance spaces of piecewise polynomial functions, such as the piecewise
affine functions that we will introduce in Definition 5.45.4 below) to a different, problem-
dependent choice of space such as V ε

H . No analytic expressions for the basis functions φεi
are available (and thus a fine mesh should be used to approximate them), the computa-
tion of aεK(φεi , φ

ε
j) should be performed by quadrature rules on the fine mesh because the

integrands are highly oscillatory, one should have at hand the correspondence between
element and vertex indices of the coarse mesh (N (n,K) in Algorithm 4.14.1), the assembly
of the global stiffness matrix {Aεj,i}1≤i,j≤N0 should be executed by a dedicated new piece of
software, etc. To alleviate these obstacles, we introduce below a way of implementing the
MsFEM that capitalizes on an existing code for solving (4.14.1) by a P1 approximation on
TH in the case of slowly varying diffusion coefficients. The three central identities for our
approach that we aim to generalize in the remainder of Part II are framed in distinctive
blue boxes.

4.4. Effective problem on the macroscopic scale

Let us consider the construction of the stiffness matrix of the MsFEM in more detail. The
stiffness matrix defined in (4.84.8) requires the computation of the quantities

Aεj,i = aε,diff(φεi , φ
ε
j) =

∑
K∈TH

∫
K

∇φεj · Aε∇φεi , (4.9)

for all 1 ≤ i, j ≤ N0.

Following Chapter 33, we rewrite the multiscale basis functions as

∀K ∈ TH , φεi = φP1
i +

d∑
α=1

(
∂αφ

P1
i

)∣∣
K
χε,αK in K, (4.10)

for all 1 ≤ i ≤ N0, where, for each mesh element K, we define the numerical corrector
χε,αK ∈ H1

0 (Ω) (1 ≤ α ≤ d) as the function supported by K that is the unique solution to
the local problem {

−div(Aε∇χε,αK ) = div(Aεeα) in K,

χε,αK = 0 on ∂K.
(4.11)

Here, eα denotes the α-th canonical unit vector of Rd. The expansion (4.104.10) is obtained
upon rewriting (4.54.5) as a PDE for φεi − φP1

i , and then using linearity of the PDE and

the fact that ∇φP1
i is constant in K to show that

d∑
α=1

(
∂αφ

P1
i

)∣∣
K
χε,αK is indeed the unique

solution to this PDE.
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Inserting (4.104.10) for the trial and test functions in (4.94.9) and again exploiting the fact
that all φP1

i have piecewise constant gradients, we obtain

Aεj,i =
∑
K∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣
K

(∫
K

(
eβ +∇χε,βK

)
· Aε (eα +∇χε,αK )

) (
∂αφ

P1
i

)∣∣
K

=
∑
K∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣
K
aε,diff
K

(
xα + χε,αK , xβ + χε,βK

) (
∂αφ

P1
i

)∣∣
K
.

Next we define the piecewise constant effective diffusion tensor A ∈ P0(TH , Rd×d) by

Aβ,α
∣∣
K

=
1

|K|
aε,diff
K

(
xα + χε,αK , xβ + χε,βK

)
, (4.12)

for each K ∈ TH and all 1 ≤ α, β ≤ d, and where |K| denotes the measure of the mesh
element K. Then (4.94.9) can be written as

Aεj,i =

∫
Ω

∇φP1
j · A∇φ

P1
i . (4.13)

Motivated by (4.134.13), we introduce the coarse-scale problem{
−div

(
A∇u

)
= f in Ω,

u = 0 on ∂Ω,
(4.14)

and its Galerkin discretization with P1 Lagrange elements: with

VH,0 = span
{
φP1
i | 1 ≤ i ≤ N0

}
(note that the definition of VH,0 will be generalized in Definition 5.55.5), find uH,0 ∈ VH,0
such that

∀ vH ∈ VH,0, adiff(uH , vH) = F (vH), (4.15)

where the linear form F is defined in (4.34.3) and the bilinear form adiff is defined as

∀u, v ∈ H1
0 (Ω), adiff(u, v) =

∫
Ω

∇v · A∇u. (4.16)

Problem (4.154.15) equivalently writes

AP1 UP1 = FP1 , (4.17)

with
∀ 1 ≤ i, j ≤ N0, A

P1
j,i = adiff

(
φP1
i , φ

P1
j

)
, F

P1
j = F

(
φP1
j

)
. (4.18)

Comparing the expressions (4.134.13) and (4.184.18), we deduce that Aε = AP1 . In other words:

Lemma 4.2. The stiffness matrix of the MsFEM problem (4.64.6) is identical to the stiff-
ness matrix of the P1 problem (4.154.15).
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I. NON-INTRUSIVE IMPLEMENTATION OF MULTISCALE FINITE ELEMENT METHODS

This lemma immediately implies that the P1 problem (4.154.15) is well-posed, since the
MsFEM (4.64.6) itself is well-posed.

Let us point out that problems (4.144.14) and (4.154.15) are defined entirely in terms of quan-
tities that vary only on the macroscopic scale H. The finite element problem (4.154.15) can
thus be solved using a legacy code that is designed for standard FEMs. Lemma 4.24.2 then
suggests including the P1 approximation (4.154.15) of the effective, coarse-scale problem (4.144.14)
as an integral part of the MsFEM approach. We do so in Algorithm 4.24.2 below.

The right-hand side vector Fε in (4.84.8) is, in general, different from FP1 in (4.184.18).
Indeed, we integrate the product of f with highly oscillatory basis functions in the former
problem and with P1 basis functions in the latter. The solutions U ε and UP1 to (4.74.7)
and (4.174.17), respectively, are thus different a priori.

4.5. Non-intrusive workflow

We propose the following non-intrusive MsFEM variant:

Set uεH = uH +
∑
K∈TH

(∂αuH)|K χε,αK ∈ V
ε
H,0,

where uH ∈ VH,0 is the unique solution to (4.154.15).

(4.19)

The MsFEM approximation uεH is well-defined, since we have seen above that prob-
lem (4.154.15) is well-posed.

Note that the symbol uεH shall be used here and in the sequel for the solution to various
MsFEMs variants to alleviate the notation. The exact MsFEM will be specified by the
context. We will use distinct notation for different MsFEM variants when required for
clarity.

The most efficient way to compute uεH from uH is not as stated here, however. The
evaluation of uH(x) may require the determination of the degrees of freedom associated
to the simplex K to which x belongs. This demands the use of the internal mechanisms
of the legacy code that is used to compute uH . The use of the legacy code can be avoided
by expanding uH as follows. For any affine function ϕ on K, we have

ϕ(x) = ϕ (xc,K) +
d∑

α=1

∂αϕ
(
xα − xαc,K

)
on K, (4.20)

where xα denotes the function that to a point x ∈ Ω associates its α-th coordinate, and
xc,K = (x1

c,K , . . . , x
d
c,K) is the centroid of K. If one uses the legacy code to store the values

of uH(xc,K) and ∂αuH element by element at the end of the online stage, then uεH defined
in (4.194.19) can be computed element by element according to

∀K ∈ TH , uεH(x) = uH(xc,K) +
d∑

α=1

(∂αuH)|K
(
xα − xαc,K + χε,αK (x)

)
on K, (4.21)

without using the legacy code.
The above observations culminate in the computational approach presented in Algo-

rithm 4.24.2. We can distinguish

(1) the offline stage consisting of lines 11-77,
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(2) the online stage being executed entirely in line 88,

(3) a post-processing step in line 99.

Algorithm 4.2 Non-intrusive MsFEM approach for problem (4.14.1)

1: Let TH be the mesh used by the legacy code

2: for all K ∈ TH do
3: for 1 ≤ α ≤ d do
4: Solve for χε,αK defined by (4.114.11)
5: end for
6: Compute A|K defined by (4.124.12)
7: end for

8: Use the legacy code to solve for uH defined by (4.154.15) and to save {uH(xc,K)}K∈TH
and {(∂αuH)|K}K∈TH , 1≤α≤d

9: Obtain the MsFEM approximation uεH by (4.214.21)

The superiority of Algorithm 4.24.2 over the classical MsFEM Algorithm 4.14.1 is that the
global problem of the online stage can completely be constructed and solved by the use of
a pre-existing P1 PDE solver. The only requirements for the legacy code are the function-
ality to provide piecewise constant diffusion coefficients to the solver and the existence of
a procedure to store the value of the P1 solution and its gradient at the centroids of the
mesh. An additional advantage in the online stage is that the construction of the right-
hand side FP1 (see (4.184.18)) for the global problem only requires a numerical quadrature on
the coarse mesh and is therefore cheaper than the construction of Fε (see (4.84.8)), involving
the multiscale basis functions and requiring numerical quadratures at the microscale.

The part of the offline stage that manipulates fine meshes (lines 22-77) and the post-
processing step can be developed independently of the legacy code used in line 88. The
requirement for these fine-scale solvers is that they have access to the coarse mesh TH

used by the global solver. Note also that the local problem (4.114.11) is only indexed by the
coarse mesh element K, in contrast to the local problem (4.54.5) that is indexed both by
the coarse mesh element K and the vertex index i. For the latter problems, one has to
know, for each element K, the global index that corresponds to the vertices of K, a piece
of information that may be difficult to access in a legacy code. For the problems (4.114.11),
this correspondence is not needed to compute A, nor for the computation of the fine-scale
solution uεH in (4.214.21), both of which are entirely defined element-wise.

Remark 4.3 (Quantities of interest). In the post-processing step of Algorithm 4.24.2, it
is easy to compute pointwise values of the approximation uεH by (4.214.21) and to use these
for further computational steps, such as the evaluation of the energy or other quantities
of interest. This task can be carried out element wise, hence Equation (4.214.21) can easily
be used. (See also Remark 7.137.13.)

Remark 4.4 (Visualization). We focus our attention here on the visualization of the
MsFEM approximation uεH , which can be an important tool in engineering practices.
Visualization requires the combination of information on neighbouring mesh elements,
and this can in general not be carried out by the legacy code since it does not have access
to the fine meshes used to compute the numerical correctors. Even if this were the case,
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the fine meshes may not yield a globally conformal mesh when combined. The question
of a global visualization then becomes a complex one that requires innovations beyond
the contributions of this thesis. Instead, we propose the following two-step visualization
approach:

• One can visualize the coarse part uH of the MsFEM approximation for a global
view of the solution with the tools provided by the legacy code that is used to
compute uH ;

• The fine scale details of uεH in regions of interest can be studied through zooms
inside mesh elements, using the code that is used for computations at the mi-
croscale.

4.6. Interpretation of the non-intrusive MsFEM

We emphasized above that the right-hand sides of the linear system for the MsFEM
in (4.84.8) and the linear system solved for the non-intrusive MsFEM in (4.184.18) are different
in general. This motivates the comparison of the non-intrusive MsFEM approach (4.194.19)
to the following Petrov-Galerkin MsFEM:

Find uεH ∈ V ε
H,0 such that aε,diff

(
uεH , φ

P1
j

)
= F

(
φP1
j

)
for all 1 ≤ j ≤ N0, (4.22)

based on the trial space V ε
H,0 and the test space VH,0 for both the bilinear and the linear

form. The following result was shown in Lemma 3.43.4.

Lemma 4.5. The non-intrusive MsFEM variant (4.194.19) coincides with the Petrov-
Galerkin MsFEM (4.224.22).

The non-intrusive MsFEM approach is generalized in Chapter 66 after the development
of a general framework to define a wide variety of MsFEMs in Section 5.1.35.1.3. Lemma 4.54.5
does not generalize to the full framework. We will see the conditions under which the
non-intrusive approach leads to a Petrov-Galerkin MsFEM in Lemma 6.46.4.

4.7. Relation to homogenization theory

We highlight in this section the fact that many ingredients of our non-intrusive MsFEM
approach are reminiscent of standard quantities of homogenization theory, or the theory
of H-convergence, which studies the limit of a sequence of solutions uε to a PDE as ε
tends to 0. This relation to H-convergence provides an interesting interpretation of the
effective tensor A introduced in (4.124.12).

Let us suppose in this section (and in this section only for the purposes of Part II,
except for Section 7.37.3) that Aε(x) = Aper(x/ε) for some bounded, Zd-periodic matrix Aper

satisfying the coercivity property in (4.24.2). In this case, the sequence of matrices Aε has a
homogenized limit that is explicitly known. (An explicit characterization of the limit is
not available for H-convergence in general.) We summarize the main results below. See,
for instance, [2828, 134134] or [77, Chapter 1] for details on periodic homogenization.

Due to H-convergence of Aε, the functions uε, solution to (4.14.1), converge to a limit
function u? (weakly in H1(Ω), strongly in L2(Ω)) as ε→ 0. The homogenized limit u? is
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the solution to the homogenized equation (4.254.25) below.
Let Q denote the unit cube of Rd. We introduce the corrector functions w1, . . . , wd ∈

H1
per(Q) solution to {

−div(Aper∇wα) = div(Apereα) in Rd,

wα is Q-periodic,
(4.23)

which uniquely defines wα up to an irrelevant additive constant. The entries of the
(constant) homogenized diffusion tensor A? ∈ Rd×d are given by

A?β,α =

∫
Q

(eβ +∇wβ) · Aper(eα +∇wα), 1 ≤ α, β ≤ d. (4.24)

The homogenized limit u? of uε is the unique solution in H1
0 (Ω) to the boundary value

problem {
−div(A?∇u?) = f in Ω,

u? = 0 on ∂Ω.
(4.25)

The truncated reconstruction of u? that is called the first-order two-scale expansion takes
the form

uε,1(x) = u?(x) + ε
d∑

α=1

∂αu
?(x)wα

(x
ε

)
. (4.26)

Under suitable regularity assumptions, the difference uε − uε,1 converges to 0 strongly
in H1(Ω) as ε→ 0. This property will be used for the convergence results in Section 7.37.3.

In the periodic setting, the expansion (4.264.26) can be used to construct a numerical
approximation of uε, without the need of any computations at the fine scale. This ap-
proximation is presumably valid only in the regime of very small parameters ε and deteri-
orates if ε grows. Moreover, in more general settings, the corrector functions are not local
nor explicit, for their definition involves a PDE posed on the whole domain Ω and that
depends on an effective tensor that is itself defined in terms of the corrector functions.
Details can be found, e.g., in [77, 124124, 134134]. This prevents the H-convergence theory from
being directly applicable for the numerical approximation of uε.

Numerical homogenization techniques, that draw their inspiration from the various el-
ements above, offer an alternative for the approximation of uε that can be applied in much
more general contexts. We can see the similarities between the corrector functions wα
in (4.234.23) and the numerical correctors χε,αK in (4.114.11). Note that the χε,αK solve problems
similar to (4.234.23), but that they need to be solved at the microscale and on each mesh
element K. Similarly, we note the resemblance between the reconstruction (4.264.26) and the
definition of uεH in (4.194.19), and between the homogenized coefficient A? defined in (4.244.24)
and the effective macroscopic coefficient A from (4.124.12). However, contrary to A?, the
MsFEM quantity A has to be computed on an element-by-element basis, and it is not
necessarily constant throughout Ω. Finally, the MsFEM analogue of the homogenized
problem (4.254.25) is the resolution of the effective macroscale problem (4.144.14).

Example 4.6. A particular setting, although academic in nature and only useful for
pedagogical purposes, actually leads to an MsFEM approximation that is exactly equiv-
alent to a discretization of the periodic homogenization setting. Consider (4.14.1) in 2D
posed on the unit square. Let us consider a mesh consisting of squares that are per-
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fectly aligned with the periodicity of Aε. We solve the corrector problems (4.114.11) on all
square mesh elements with periodic boundary conditions and subsequently compute the
effective diffusion tensor A according to (4.124.12).
In this case, the problems for the numerical correctors all reduce to (4.234.23) and A is
constant and equal to the homogenized coefficient A? as defined by (4.244.24). A Q1 dis-
cretization of the effective problem (4.144.14) thus constitutes a non-intrusive MsFEM that
is equivalent to the Q1 approximation of the homogenized equation (4.254.25).
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CHAPTER 5

A general framework for multiscale
finite element methods

5.1. Why develop a general framework?

In this chapter we develop a general framework for a wide variety of MsFEMs in an
abstract setting. We motivate first why this general framework for MsFEMs is useful.

5.1.1. Local boundary conditions. First, let us explain why various MsFEMs have
been proposed in the literature. One reason is that different equations than (4.14.1) (e.g.
advection-diffusion equations) give rise to different choices of the local problem (4.54.5),
depending on which terms of the global PDE are included (see, for instance, [114114] and
Part IIII of this thesis.)

The other reason is that, even for the pure diffusion problem (4.14.1), the choice of
the basis functions defined in (4.54.5) has an important drawback. The definition of the
multiscale basis functions requires a choice of arbitrary boundary conditions on the mesh
element boundary ∂K, since the exact boundary condition satisfied by uε is unknown.
In (4.54.5), affine boundary conditions are imposed. In view of this choice, we shall refer to
the MsFEM defined above as the ‘MsFEM-lin’.

The MsFEM-lin cannot yield an accurate representation of uε near ∂K if Aε is highly
oscillatory and the mesh TH is coarse. Variations on the definition of the functions φεi
have been proposed to improve the MsFEM. Here we summarize the ideas of oversampling
and of MsFEM à la Crouzeix-Raviart, which together inspire the formulation of a general
MsFEM framework in this chapter.

The oversampling variant of the MsFEM was introduced along with the variant based
on (4.54.5) at the time of its first appearance in [9898]. For this method, an oversampling
domain SK is associated to each mesh element K (details are provided in Section 5.4.15.4.1).
The problems (4.54.5) are solved on the larger domain SK rather than K, so the inadequate
boundary conditions are pushed away from the actual mesh elements. To construct the
multiscale basis functions, the resulting functions on SK are restricted to the actual mesh
elements K and suitably combined around each vertex xi. The new multiscale basis
functions oscillate on ∂K if the oversampling patch is taken large enough. We note that,
in general, this strategy leads to discontinuous basis functions. Hence, the finite element
space obtained is no longer conforming.
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The MsFEM with Crouzeix-Raviart type boundary conditions for the local problems
(which we shall abbreviate as ‘MsFEM-CR’) was introduced in [112112]. It uses basis func-
tions associated to the edges of the mesh (in contrast to the MsFEM-lin presented above,
and its oversampling variant, where basis functions are associated to the vertices of the
mesh). A typical basis function satisfies the following on ∂K: the flux through each face
of K is constant, and the constants are determined by the condition that the average of
the basis function be 1 over one particular face and 0 over all other faces. Again, this is
a way to avoid imposing any conditions on the trace of the basis function directly. The
multiscale functions can thus be oscillatory on the faces of the mesh. As is the case for
oversampling methods, the resulting finite element space is non-conforming.

All of these variations, applied to any MsFEM for linear second-order PDEs, are
covered by the general MsFEM framework.

5.1.2. The non-intrusive approach. The intrusiveness of the specific MsFEM-lin variant
introduced in Section 4.24.2 is exemplary for all MsFEMs described in Section 5.1.15.1.1. It
turns out that the non-intrusive MsFEM approach introduced in Chapter 33 and recalled
in Section 4.54.5 can also be generalized to all these MsFEM variants. We summarize the
key ingredients that allow for the formulation of the non-intrusive MsFEM approach of
Algorithm 4.24.2 (corresponding to the identities in the blue boxes in Section 4.44.4).

The non-intrusive MsFEM follows from the expansion (4.104.10), namely the expression of
the multiscale basis function as a P1 basis function and a linear combination of numerical
correctors that are fully localized. We note that

• the full localization of the numerical correctors defined in (4.114.11) allows the pre-
processing of the microstructure independently of the global approximation indices
related to the finite element method;

• the expansion (4.104.10) follows from the fact that ∇φP1
i is piecewise constant combined

with linearity of the local problems (4.54.5);

• the stiffness matrix can be formulated in terms of a piecewise constant effective
diffusion tensor in (4.134.13) thanks to full localization of the corrector functions, the
piecewise constant gradient of φP1

i in the expansion (4.104.10) and bilinearity of the
global problem (4.34.3).

These observations provide the main structure of the general framework. First, we
choose an underlying, low-dimensional space of piecewise affine functions to which the
MsFEM is associated (Definition 5.45.4). This will be the standard conforming Lagrange
space of order 1 (for the MsFEM-lin), or the Crouzeix-Raviart space of order 1 (for the
MsFEM-CR). Second we need to formulate the local problems for the numerical correctors
(Definitions 5.115.11 and 5.165.16). This involves the definition of oversampling patches (for
MsFEMs with oversampling, Definition 5.75.7), and an extension of the notion of degrees of
freedom to define the boundary conditions for the numerical correctors (Definition 5.55.5,
5.85.8 and 5.95.9) on oversampling patches. It is then possible to define the multiscale basis
functions by a generalization of (4.104.10) (see Definition 5.215.21) and finally to define the
MsFEM for our general framework in Definition 5.285.28.

Remark 5.1. We note that our development of non-intrusive MsFEM approaches re-
lies to a great extent on the fact that (4.104.10), and its generalization (5.105.10) in the general
framework developed below, provide a description of the multiscale basis functions in
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terms of P1 basis functions, without the need of higher-order functions, in a linear man-
ner. Higher-order MsFEMs can be found in [99, 9494] (see also [117117]). Possible analogues
of (5.105.10) for such MsFEMs and the subsequent techniques to design a non-intrusive
MsFEM variant are more involved. We give some developments in this direction in
Section 8.28.2.

5.1.3. Other motivations for the general framework. Besides a unified formulation
of our non-intrusive MsFEM approach, our general framework can also be beneficial to
concrete code development for the MsFEM. Common features among various multiscale
methods have previously been used to design flexible and efficient software for the im-
plementation of such methods on the DUNE platform [2424, 2323] within the Exa-Dune
project [2626]. For example, the distribution of local problems over multiple processors
and subsequent coupling in a global problem are handled by designated software com-
ponents [2525]. Our work may contribute to the efficient implementation of all MsFEMs
covered by our general framework in such a project and similar endeavours yet to come.

When formulating the general framework, we also clarify a few practical matters that
are often left pending in the various research articles we are aware of. In particular, we
give a rigorous definition of the oversampling procedure near the boundary ∂Ω of the
global domain.

As we explore the general framework, we will also propose an MsFEM variant that
has not yet appeared in the literature: the MsFEM-CR combined with the oversampling
technique (see Example 5.255.25). We hope that our framework may also further the devel-
opment of new MsFEM variants in an attempt to improve on the shortcomings of the
methods known today.

Finally, the present study may also uncover a deeper understanding of MsFEMs by
paving the way to a unified convergence analysis of different variants. A first step in this
direction is made in Part IIIIII of this thesis.

We develop here a general framework for multiscale finite element methods. The ulti-
mate aim is to generalize the key identities of Section 4.44.4. This is done in Definitions 5.115.11
and 5.165.16 for the numerical correctors introduced in (4.114.11), and in Definition 5.215.21 for the
expansion (4.104.10) of the multiscale basis functions. This allows the reformulation of the
linear system of the MsFEM as the linear system of an effective problem in (6.86.8) (for a
Petrov-Galerkin MsFEM) and (6.126.12) (for a Galerkin MsFEM) in Chapter 66. The other
notions introduced in this chapter, although rather technical and abstract, are necessary
tools to capture a wide variety of MsFEMs in our general framework.

5.2. The continuous problem

The abstract variational problem for our general MsFEM framework is as follows. Let aε

be a continuous bilinear form on H1(Ω)×H1(Ω). We are interested in the solution to the
problem

Find uε ∈ H1
0 (Ω) such that aε(uε, v) = F (v) for any v ∈ H1

0 (Ω), (5.1)

where F is defined as in (4.44.4) for any f ∈ L2(Ω). To ensure well-posedness of (5.15.1), we
suppose that the bilinear form aε is coercive on H1

0 (Ω). The bilinear form aε may contain
coefficients that oscillate on a microscopically small scale.
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The oversampling and Crouzeix-Raviart variants of the MsFEM introduced in Sec-
tion 5.1.15.1.1 show that we need to accommodate for approximation spaces with discontinu-
ities at the interfaces. This requires some additional assumptions on the formulation of
the abstract problem. We suppose that the bilinear form aε is in fact defined on the bro-
ken Sobolev space H1(TH)×H1(TH). More precisely, we assume that we can represent
it as aε =

∑
K∈TH

aεK , where, for each K ∈ TH , aεK is a continuous bilinear form defined on

H1(K)×H1(K).

To ensure well-posedness of MsFEMs, which may use non-conforming approximation
spaces, coercivity on H1

0 (Ω) may be insufficient. Therefore, we add the following coercivity
hypothesis for the bilinear forms aεK :

for all K ∈ TH , there exists αK > 0 such that

∀u ∈ H1(K), aεK(u, u) ≥ αK ‖∇u‖2
L2(K).

(5.2)

In order to perform a convergence analysis, one also has to assume that the αK are
bounded from below by some α̃ > 0 that does not depend on H. We provide convergence
results in Chapter 77 for the pure diffusion problem (4.14.1), in which case we have αK = m
from (4.24.2).

As an example, the introductory problem (4.14.1) with the associated bilinear form aε,diff

is covered by this framework as is made explicit in Example 5.25.2 below. Other second-order
PDEs that fit in our abstract variational formulation are given in Example 5.35.3.

Example 5.2. The diffusion problem (4.14.1) is covered by the abstract variational for-
mulation above. Indeed, we can set

aε = aε,diff ,

where aε,diff is the bilinear form defined in (4.44.4). Further, we define

aεK(u, v) = aε,diff
K (u, v) :=

∫
K

∇v · Aε∇u,

for all u, v ∈ H1(TH), so that we have indeed aε,diff =
∑

K∈TH

aε,diff
K . Clearly, each aε,diff

K

satisfies (5.25.2) with αK = m the coercivity constant from (4.24.2).

Example 5.3. The reaction-advection-diffusion equation,

−div(Aε∇uε) + b · ∇uε + σuε = f,

with a divergence-free advection field b : Ω 7→ Rd and a non-negative reaction coefficient
σ : Ω 7→ R, can be modelled (under some regularity hypotheses that we do not state
here) with the bilinear forms

aεK(u, v) =

∫
K

∇v · Aε∇u+ v b · ∇u+ σuv.

However, these bilinear forms aεK do not satisfy (5.25.2) even though the bilinear form aε is
coercive on H1

0 (Ω). To this end, a skew-symmetrized formulation of the transport term
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can be used. The skew-symmetrized formulation uses the bilinear form

aεK(u, v) =

∫
K

∇v · Aε∇u+
1

2
v b · ∇u− 1

2
u b · ∇v + σuv, (5.3)

which does satisfy (5.25.2). Assumption (5.25.2) is used for proving well-posedness of the
MsFEM in Lemma 5.295.29, but note that both choices for aεK mentioned here can be
studied in practice. We refer e.g. to [108108, 115115] and to Remark 11.311.3 in Part IIII for
more details. Within the general MsFEM framework, b and σ are allowed to be highly
oscillatory, and this may impact the specific MsFEM strategy to be preferred.

5.3. Piecewise affine structure

In Section 4.24.2, we have seen that the relation between multiscale basis functions and
piecewise affine functions is essential for the development of our non-intrusive MsFEM.
For the MsFEM definition in the general framework, we start by choosing such a structure
in the following definition.

Definition 5.4. Let a mesh TH be given. The underlying P1 space for the MsFEM,
denoted VH , is one of the following two spaces: the Lagrange approximation space

V L
H = {v ∈ P1(TH) | v is continuous on Ω},

in which case we shall refer to the associated MsFEM as the MsFEM-lin, or the Crouzeix-
Raviart approximation space

V CR
H =

{
v ∈ P1(TH) | ∀ K ∈ TH , ∀e ∈ F (K) such that e ⊂ Ω :

∫
e

JvK = 0

}
,

in which case the associated MsFEM shall be called the MsFEM-CR. We use the nota-
tion F (K) for the set of faces of K and JvK denotes the jump of v over the face e. The
space V L

H is a subspace of H1(Ω), but V CR
H is not. Note that no restrictions apply on

faces lying on ∂Ω.

We note that the underlying P1 space has the following property: if v ∈ VH is piecewise
constant on the mesh TH , then v is constant in Ω. Contrary to the space V L

H , functions
in the Crouzeix-Raviart space V CR

H are discontinuous in general. They are continuous,
however, at the centroids of all faces of the mesh.

For standard finite elements, the notion of degrees of freedom allows to characterize
any finite element function. The idea of the MsFEM is to preserve this notion of degrees
of freedom (in a suitable way made precise below) in the definition of a multiscale ap-
proximation space, while adapting the piecewise affine structure to the microstructure of
the PDE. We formalize this notion for the two underlying P1 spaces that we introduced
in Definition 5.45.4. The definition involves an arbitrary simplex K, which is typically an
element of the mesh TH , or an associated oversampling patch (for the oversampling tech-
nique of the MsFEM) that we shall define in Definition 5.75.7. The latter is not always
a simplex, and we extend Definition 5.55.5 to such oversampling patches in Definition 5.85.8
and 5.95.9.
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Definition 5.5. A degree of freedom operator (DOF operator) Γ associates to any
simplex K ⊂ Rd and v ∈ P1(K) a vector Γ(K, v) ∈ Rd+1, whose components are called
the degrees of freedom of v on K, in such a way that the application v 7→ Γ(K, v) is
a linear bijection from P1(K) to Rd+1. More precisely, Γ(K, ·) will denote in the sequel
one of the following two operators:

1. (DOF operator for the MsFEM-lin.) Let x0, . . . , xd denote the vertices of K. We
set

∀ v ∈ P1(K), ΓL(K, v) = (v(x0), . . . , v(xd)) .

For K ∈ TH , the degree of freedom [ΓL(K, ·)]j is said to be associated to the
boundary if, for all v ∈ P1(K), [ΓL(K, v)]j = v(x) for a vertex x of the mesh
that lies on ∂Ω.

2. (DOF operator for the MsFEM-CR.) Let e0, . . . , ed denote the faces of K. We set

∀ v ∈ P1(K), ΓCR(K, v) =

(
1

|e0|

∫
e0

v, . . . ,
1

|ed|

∫
ed

v

)
.

For K ∈ TH , the degree of freedom [ΓCR(K, ·)]j is said to be associated to the

boundary if, for all v ∈ P1(K), [ΓCR(K, v)]j =
1

|e|

∫
e

v for a face e of the mesh

that lies on ∂Ω.

The P1 test space is defined as

VH,0 =

{
v ∈ VH

∣∣∣∣∣ ∀K ∈ TH , ∀ 1 ≤ j ≤ d+ 1, [Γ(K, v)]j = 0 if the degree

of freedom [Γ(K, ·)]j is associated to the boundary

}
.

The P1 test space is used in practice to approximate the subspaceH1
0 (Ω) ofH1(Ω). The

degrees of freedom are defined element per element and are thus local. Global properties
of the underlying P1 space VH are most easily made explicit through the identification of
a basis for VH .

Definition 5.6. Let VH be an underlying P1 space as in Definition 5.45.4, and let Γ be the
associated DOF operator. We shall denote by N the dimension of VH . The P1 basis
functions φP1

1 , . . . , φ
P1
N are defined as follows:

• For the MsFEM-lin, let x1, . . . , xN be an enumeration of the (internal and bound-
ary) vertices of TH . Then φP1

i is defined by φP1
i (xj) = δi,j for all 1 ≤ i, j ≤ N .

• For the MsFEM-CR, let e1, . . . , eN be an enumeration of the (internal and bound-

ary) faces of TH . Then φP1
i is defined by

1

|ej|

∫
ej

φP1
i = δi,j for all 1 ≤ i, j ≤ N .

In both cases, these functions form a basis of the corresponding space VH of Defini-
tion 5.45.4.
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5.4. Local problems

5.4.1. Oversampling patches. To replace the (standard) underlying P1 space by a space
of the same (low) dimension, adapted to the microstructure of aε, we associate to each
mesh element K ∈ TH an oversampling patch. It serves to avoid imposing artificial,
non-oscillatory boundary conditions on K directly when computing numerical correctors
to process the microstructure.

Definition 5.7. Let K ∈ TH be any mesh element and let S ′K be a simplex obtained
from K by homothety around the centroid of K with homothety ratio ρ ≥ 1. The
oversampling patch SK is defined as SK = S ′K ∩ Ω.

See Figure 5.15.1 for an illustration of the construction of oversampling patches in di-
mension 2. We allow for the trivial homothety ratio ρ = 1. In this case, the patch SK
coincides with K.

We will call an MsFEM without oversampling an MsFEM for which all over-
sampling patches satisfy SK = K. Otherwise, the MsFEM is called an MsFEM with
oversampling. We speak simply of an MsFEM when there are no assumptions on the
oversampling patches.

∂Ω

K
SK

(a)

K

S ′K

SK

∂Ω

(b)

Figure 5.1: Oversampling patches for the MsFEM in 2D. Left: the patch for the mesh
element K is obtained from K by homothety. Right: The triangle S ′K partially lies outside
the domain Ω and the oversampling patch SK is not homothetic to K. It is not even a
triangle.

For most mesh elements K, the patch SK in Definition 5.75.7 is a simplex. However, for
mesh elements close to the boundary ∂Ω, alternative constructions should be considered.
We have not found any explicit description of such a construction in the literature. This
complicates the reproducibility of the method as well as a rigorous convergence analysis.
The precise definitions of this section provide a first step to address these issues. A fully
rigorous convergence analysis of the MsFEM with oversampling as described here has not
yet been accomplished and would be one of the interesting extensions of the analysis of
Part IIIIII of this thesis.

5.4.2. Degrees of freedom on oversampling patches. Definition 5.55.5 provides the defi-
nition of DOF operators on any simplex. For the MsFEM, we wish to compute multiscale
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functions on oversampling patches SK , in which case Definition 5.55.5 may be insufficient.
We illustrated this in Figure 5.1b5.1b. Indeed, the number of vertices/faces of the oversam-
pling patch may be larger than d+ 1. In order to associate a multiscale basis function to
every P1 basis function, we still need a notion of DOF operator such that Γ(SK , ·) is a
linear bijection from P1(SK) to Rd+1. Therefore, we extend the definition of the degrees
of freedom operators ΓL and ΓCR in Definition 5.85.8 and 5.95.9.

Definition 5.8. Let K ∈ TH and let SK be its associated oversampling patch.
Let x0, . . . , xd be a selection of d+ 1 distinct vertices of SK . We define the DOF oper-
ator ΓL by

∀ v ∈ P1(SK), ΓL(SK , v) = (v(x0), . . . , v(xd)) .

We note that any choice of d + 1 nodal values unequivocally characterizes an affine
function on SK . Hence, ΓL(SK , ·) is indeed a bijection. Now the precise choice of the
vertices in Definition 5.85.8 is unimportant, because ΓL(SK , ·) will only be used in the sequel
to describe the trace of P1 functions on ∂SK in boundary value problems. For any P1

function, this trace is uniquely defined by its values in d + 1 distinct vertices of SK .
Finally, when SK is a simplex, it has only d + 1 vertices and Definition 5.85.8 reduces to
Definition 5.55.5.

To generalize the notion of degrees of freedom for the Crouzeix-Raviart space to non-
simplicial patches, we need to introduce some additional notation. On the boundary of
a non-simplicial oversampling patch, we can identify some faces that collapse to a single
vertex if we shrink SK to K. We call these faces the additional faces and denote the set
containing them by Fa(SK). The other faces of SK are referred to as the dilated faces,
collected in the set Fd(SK). When the patch SK does not touch ∂Ω, we have Fd(SK) =
F (SK) and Fa(SK) = ∅. In Figure 5.2a5.2a, for example, the additional faces are exactly
those faces that lie on ∂Ω. This is not always the case, as is illustrated by Figure 5.2b5.2b.

For the definition of ΓCR(SK , ·), we shall rely on the existence of d + 1 dilated faces,
because we need ΓCR(SK , ·) to be a bijection between P1(SK) and Rd+1. This imposes a
constraint on the choice of the homothety ratio used to construct SK . For example, in
the case of Figure 5.2a5.2a, the lower right dilated face falls outside Ω if the homothety ratio
is too large, and the oversampling patch SK only has two dilated faces (edges here) and
two additional faces. We do not consider this case hereafter.

K

SK

∂Ω

(a)

K

SK

∂Ω

(b)

Figure 5.2: Non-simplicial oversampling patches in 2D. The dilated edges of the patch SK,
those that ‘correspond’ to the edges of the original triangle K, are dashed and drawn in
red.
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Definition 5.9. Let K ∈ TH and let SK be its associated oversampling patch. We
assume that SK has d + 1 dilated faces, and we denote them by e0, . . . , ed. We define
the DOF operator ΓCR by

∀ v ∈ P1(SK), ΓCR(SK , v) =

(
1

|e0|

∫
e0

v, . . . ,
1

|ed|

∫
ed

v

)
.

When SK is a simplex, we have Fd(SK) = F (SK), and Definition 5.95.9 coincides with
the respective elements of Definition 5.55.5.

5.4.3. Numerical correctors: first oversampling strategy. We now provide the precise
assumptions under which we will consider local problems, i.e., the analogues of (4.54.5)
defining the MsFEM-lin basis functions and the definition of the numerical correctors
in (4.114.11). In fact, since the numerical correctors play an essential role in the construction
of non-intrusive MsFEM approaches, we define the numerical correctors first and use them
to define the multiscale basis functions in Definition 5.215.21.

We discuss two definitions of the numerical correctors, corresponding to two ways to
define the oversampling technique for the MsFEM. The functional settings for these con-
structions are provided by Definition 5.105.10 and 5.155.15. These definitions involve a ‘sampling
space’, whose name is inspired by the idea that only a limited number of local prob-
lems will be solved to encode the microstructure of the PDE in the numerical model. The
choice of sampling space has to accommodate for the boundary conditions that one wishes
to impose on the numerical correctors and basis functions (e.g. essential or natural; see
Examples 5.125.12 and 5.135.13).

Definition 5.10. Let K ∈ TH , let SK be its associated oversampling patch and let Γ be
a DOF operator from Definition 5.55.5, 5.85.8 or 5.95.9. A subspace VK of H1(SK) and bilinear
form sεK : VK × VK → R are called sampling space and sampling form, respectively,
if they satisfy the following:

1. the space VK contains the space of affine functions P1(SK);

2. the operator Γ(SK , ·) is well-defined on VK ;

3. the DOF -extended local problem: find v ∈ VK such that{
sεK(v, w) = 〈g, w〉 for all w ∈ VK,0,

Γ(SK , v) = given,
(5.4)

has a unique solution for any g ∈ (H1(SK))′. Here, VK,0 = {w ∈ VK | Γ(SK , w) =
0} is the sampling test space.

Problem (5.45.4) is called ‘DOF -extended’ because the degrees of freedom, controlling
the boundary conditions associated to the local problem, are imposed on the oversampling
patch SK rather than the (generally smaller) mesh element K.

The sampling form sεK shall be used to encode the oscillations of the bilinear form aε

and thus the microstructure of the problem in the multiscale finite element functions.
There is some flexibility in choosing the sampling form; one may choose to include all the
same terms as those in the bilinear form aεK of the original problem (5.15.1), or only some
of them. When the MsFEM was first proposed in [9898], it was suggested that sεK should
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include those terms that correspond to the highest-order terms of the PDE that is to be
solved. In the context of the advection-diffusion equation, one may thus choose to include
in our MsFEM framework only the diffusion terms, or both the diffusion and advection
terms. Both options have been studied e.g. in [114114, 115115].

In the functional setting of Definition 5.105.10, the generalization of (4.114.11) to define the
numerical correctors for the general MsFEM framework is as follows.

Definition 5.11. For all K ∈ TH , for any 0 ≤ α ≤ d, we introduce the function χε,α,eSK
∈

VK,0 as the unique solution to the corrector problem

∀w ∈ VK,0, sεK
(
χε,α,eSK

, w
)

=

{
−sεK (1, w) if α = 0,

−sεK
(
xα − xαc,K , w

)
if 1 ≤ α ≤ d.

(5.5)

The DOF -extended numerical corrector χε,α,eK is defined as the restriction of χε,α,eSK
to K, extended to all of Ω by 0.

Note that the above definition introduces one more numerical corrector than intro-
duced in (4.114.11) (namely the corrector for α = 0). The precise definition of the numerical
correctors is chosen such that the analogous expansion of (4.104.10) for the general frame-
work (see (5.105.10)) leads to a PDE for the multiscale basis functions analogous to (4.54.5);
we show this in Lemma 5.225.22 and (for a second oversampling strategy introduced be-
low) in Lemma 5.235.23. In the following example, we see that Definition 5.115.11 is indeed a
generalization of the numerical correctors defined by (4.114.11) in Section 4.44.4.

Example 5.12 (MsFEM-lin for diffusion problems). We consider VH = V L
H and Γ =

ΓL from Definition 5.55.5. For the diffusion problem (4.14.1), we have aε = aε,diff and we
set sεK = aε,diff

K (see Example 5.25.2). The sampling space for the MsFEM-lin is defined as

VK = V L
K :=

{
v ∈ H1(SK) | ∃w ∈ P1(SK) such that v|∂SK = w|∂SK

}
.

Then the sampling test space V L
K,0 is the space H1

0 (SK). In this case, it holds

aε,diff
K (1, w) = 0 for all w ∈ V L

K,0. Consequently, the DOF -extended numerical cor-

rector χε,0,eK is identically equal to 0; we obtain indeed exactly d numerical correctors as
in Section 4.44.4. For the non-trivial numerical correctors, Definition 5.115.11 corresponds to
the weak formulation of the following boundary value problem:

−div(Aε∇χε,α,eSK
) = div(Aεeα) in SK , χε,α,eSK

= 0 on ∂SK , (5.6)

which is clearly well-posed.

Example 5.13 (MsFEM-CR for diffusion problems). Taking aε, aεK and sεK as in
the previous example, we construct the MsFEM-CR with the sampling space V CR

K :=
H1(SK). With VH = V CR

H and Γ = ΓCR from Definition 5.55.5, the corrector problem (5.55.5)
for α = 0 reduces to χε,0,eK = 0, as in Example 5.125.12. For 1 ≤ α ≤ d, the DOF -extended
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numerical corrector χε,α,eK is obtained from the boundary value problem:

−div(Aε∇χε,α,eSK
) = div(Aεeα) in SK ,

~n · Aε∇χε,α,eSK
= −~n · Aεeα on each h ∈ Fa(SK),

~n · Aε∇χε,α,eSK
= ch − ~n · Aεeα on each h ∈ Fd(SK),

1

|h|

∫
h

χε,α,eSK
= 0 for each h ∈ Fd(SK),

(5.7)

where ~n denotes the outward unit vector on ∂SK and ch is a constant whose value is
uniquely determined by the above problem. We note that the condition for the flux on
the additional faces of SK is entirely determined by the right-hand side in (5.55.5), whereas
the flux on the dilated faces of SK involves an additional constant, due to the fact that
the test functions in V CR

K,0 cannot take arbitrary values on the dilated faces. Indeed,
their mean vanishes on these faces according to Definition 5.105.10.
When SK = K and when the faces of K do not lie on ∂Ω, this corresponds to the setting
of the original MsFEM-CR defined in [112112]. The latter work also provides an alternative
characterization of the multiscale Crouzeix-Raviart space.
When a face e of K lies on ∂Ω, the basis functions that we will define below in Section 5.55.5
do not satisfy φεe = 0 on e, but only satisfy a weak boundary condition in the average
sense on e (and so does the corresponding MsFEM approximation to (5.15.1) defined
below). This does not correspond to the original definition of the MsFEM-CR in [112112,
113113]. The MsFEM-CR with local boundary conditions as defined here was studied in [5757,
123123, 105105].

Remark 5.14. In both Examples 5.125.12 and 5.135.13, the numerical corrector χε,0,eK vanishes,
because sεK(1, w) = 0 for all w in the sampling test space. This is no longer the case
e.g. for an MsFEM for advection-diffusion problems in which the sampling problem
uses the skew-symmetrized bilinear form defined in (5.35.3). In this case, the numerical
corrector χε,0,eK does not vanish. In the corresponding effective numerical scheme that
we will derive in (6.116.11), this leads to a term of order 0 even if such a term is not present
in the advection-diffusion equation itself.

When SK = K (i.e., in the absence of oversampling), the DOF operator allows us
to prescribe certain continuity properties on the faces of the mesh elements K. More
precisely, when the MsFEM-lin with DOF operator ΓL is employed, the numerical cor-
rectors χε,α,eK vanish at the vertices of the mesh, and, with the correct choice of sampling
space (see Example 5.125.12), they vanish on all faces of K and are thus continuous on Ω.
When the MsFEM-CR with DOF operator ΓCR is considered, we obtain weak continuity
of the numerical correctors over all faces of the mesh. The definition of the multiscale
basis functions that we give below (see Definition 5.215.21, in the vein of the expansion (4.104.10))
shows that the continuity properties of the P1 basis functions of the underlying P1 space
are not perturbed when building the multiscale basis functions.

In the general case, when the oversampling patch SK is larger than K, we cannot
preserve any of these continuity properties if we use DOF -extended local problems for
our local computations, since the values on ∂K are not controlled by the degrees of
freedom Γ(SK , ·) on ∂SK . Therefore, we introduce another variant of the local problems
to define DOF -continuous numerical correctors in the next section.
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5.4.4. Numerical correctors: second oversampling strategy.

Definition 5.15. Let K ∈ TH and let VK and sεK be a sampling space and sampling
form, respectively, according to Definition 5.105.10. Additionally, suppose that the opera-
tor Γ(K, ·) is well-defined on VK . Then a DOF -continuous local problem is to find
v ∈ VK such that {

sεK(v, w) = 〈g, w〉 for all w ∈ VK,0,

Γ(K, v) = given,
(5.8)

for some g ∈ (H1(SK))′.

Definition 5.16. Suppose any DOF -continuous local problem in Definition 5.155.15 is well-
posed. Then we introduce, for all K ∈ TH and all 0 ≤ α ≤ d, the functions χε,α,cSK

as the

unique functions in VK with Γ
(
K,χε,α,cSK

)
= 0 satisfying the corrector problem (5.55.5). We

define the DOF -continuous numerical correctors χε,α,cK as the restriction of χε,α,cSK
to K, extended to all of Ω by 0.

We emphasize that the local problems of Definition 5.115.11 and 5.165.16 use test functions w
in the same space VK,0. This means that the test functions satisfy Γ(SK , w) = 0 rather
than Γ(K,w) = 0. The difference between DOF -extended and DOF -continuous numer-
ical correctors is that the former satisfy Γ(SK , χ

ε,α,e
K ) = 0, whereas the latter satisfy

Γ(K,χε,α,cK ) = 0.

Remark 5.17. Clearly, when SK = K, there is no difference between the DOF -
extended and DOF -continuous problems (5.45.4) and (5.85.8). We shall in this case simply
refer (5.45.4) (or (5.85.8)) as local problems, and we write χε,α,•K = χε,αK for the numerical
correctors of MsFEMs without oversampling.

Example 5.18 (MsFEM-lin for diffusion problems). Continuing Example 5.125.12, consider
now the DOF -continuous numerical corrector χε,α,cK . Equation (5.85.8) solves the following
problem for 1 ≤ α ≤ d: there exists w ∈ P1(SK) such that

−div(Aε∇χε,α,cK ) = div(Aεeα) in SK , χε,α,cK = w on ∂SK ,

and χε,α,cK = 0 at the vertices of K.

The boundary condition on ∂SK is complemented by a condition at the vertices of K.
Except when Aε is constant (and a solution is χε,α,cK = 0), it is not evident whether a
solution to this problem exists. For α = 0, the numerical corrector χε,0,cK vanishes, as in
the DOF -extended case.

Example 5.19 (MsFEM-CR for diffusion problems). For the MsFEM-CR considered in
Example 5.135.13, the DOF -continuous numerical correctors satisfy the same problem (5.75.7)
(for 1 ≤ α ≤ d) as the DOF -extended numerical correctors, but with the average

condition (the final equation in (5.75.7)) replaced by
1

|h|

∫
h

χε,α,cK = 0 for each h ∈ F (K).

As we saw for the MsFEM-lin in Example 5.185.18, this is not a standard boundary value
problem on SK . For the case α = 0, we have χε,0,cK = 0, which clearly satisfies the

constraints
1

|h|

∫
h

χε,0,cK = 0 for each h ∈ F (K).
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Examples 5.125.12 and 5.135.13 show that a DOF -extended local problem is typically equiv-
alent to a PDE with boundary conditions on SK . Under reasonable assumptions, these
problems have a unique solution as required by Definition 5.105.10. We have seen in Exam-
ples 5.185.18 and 5.195.19 that this is not the case for DOF -continuous problems, for which one
finds some boundary conditions on ∂SK (because the degrees of freedom of test functions
in VK,0 are prescribed on SK) and another set of conditions on ∂K that are explicitly
imposed through the degrees of freedom on K in (5.85.8). Well-posedness is not obvious in
general, and cannot always be deduced from well-posedness of the DOF -extended coun-
terpart (5.45.4). We address the well-posedness of DOF -continuous problems in more detail
in Section 5.4.55.4.5. The advantage of DOF -continuous oversampling is that it imposes cer-
tain continuity properties on the multiscale basis functions, and we will see in Section 7.47.4
that it yields better numerical approximations than DOF -extended oversampling.

Remark 5.20. Other oversampling strategies for the MsFEM-CR than those defined
above are proposed in Section 8.18.1. These were formulated after the publication of the
contents of the present chapter in [3131].

5.4.5. Well-posedness of DOF -continuous numerical correctors. We have seen in Ex-
amples 5.185.18 and 5.195.19 that DOF -continuous local problems lead to non-standard boundary
conditions. This poses not only a theoretical issue, but also a computational challenge. To
complete our study of the general MsFEM framework, we now present a computational
strategy to obtain the DOF -continuous numerical correctors, and we use this strategy to
discuss the well-posedness of the associated local problems.

In Definition 5.105.10 we assume the well-posedness of DOF -extended problems, and we
have seen in Examples 5.125.12 and 5.135.13 that this is a natural assumption. It is also nat-
ural to assume that we can compute DOF -extended numerical correctors numerically.
We compute the DOF -continuous numerical correctors from the DOF -extended numer-
ical correctors, by subtracting a linear combination of suitable functions W β from the
DOF -extended numerical correctors. The W β must all satisfy the homogeneous equation
sεK
(
W β, w

)
= 0 for all w ∈ VK,0, in order not to perturb the local problem (5.55.5) that

is already satisfied by both types of numerical correctors. We shall use the functions
W 0 := 1 + χε,0,eSK

and W β := xβ − xβc,K + χε,β,eSK
for 1 ≤ β ≤ d, where χε,β,eSK

is defined in
Definition 5.115.11. The precise strategy is as follows.

Fix 0 ≤ α ≤ d. We look for coefficients cα0 , . . . , c
α
d such that χε,α,cSK

= χε,α,eSK
−

d∑
β=0

cαβW
β

on K, where we recall that χε,α,cSK
is defined by Definition 5.165.16. Note that both sides

of the equation clearly satisfy (5.55.5). The desired equality thus holds if and only if

Γ

(
K,χε,α,eSK

−
d∑

β=0

cαβW
β

)
= 0. Since the DOF operators are linear, this leads to the

linear system

 | | |
Γ(K,W 0) Γ(K,W 1) . . . Γ(K,W d)
| | |


︸ ︷︷ ︸

=: M


cα0
cα1
...
cαd

 = Γ
(
K,χε,α,eSK

)
. (5.9)
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Invertibility of the matrix M is thus a sufficient condition for the existence of all DOF -
continuous numerical correctors, and the resolution of the linear system (5.95.9) for each α
(where all DOF -extended numerical correctors are replaced by their numerical approxi-
mation) allows to compute the DOF -continuous numerical correctors numerically.

Before studying the invertibility of the matrix M in a few special cases, let us consider
the matrix composed of the degrees of freedom on SK , i.e., the matrix

M̃ :=

 | | |
Γ(SK ,W

0) Γ(SK ,W
1) . . . Γ(SK ,W

d)
| | |

 .
By definition of the functions χε,β,cSK

, we have Γ(SK ,W
β) = Γ(SK , x

β−xβc,K) for 1 ≤ β ≤ d,
and Γ(SK ,W

0) = Γ(SK , 1). Note that the constant function together with the coordinate
functions xβ − xβc,K (1 ≤ β ≤ d) span P1(SK). Since Γ(SK , ·) is a bijection, the vectors

Γ(SK ,W
0), . . . ,Γ(SK ,W

d) are linearly independent. Hence the matrix M̃ is invertible.
One may hope that the linear independence of the vectors Γ(SK ,W

β) is preserved for
the degrees of freedom on the interior boundary ∂K instead of ∂SK , yielding invertibility
of M. We found this to hold for all numerical tests that we performed, involving both the
MsFEM-lin and the MsFEM-CR.

We can prove invertibility of M in a few special cases. When sεK is the sampling form
that was used in Example 5.125.12 (corresponding to a diffusion problem; we will consider
this case until the end of this section) and if Aε is constant, all numerical correctors vanish

on SK and the foregoing argument for the matrix M̃ shows invertibility of M.

In the periodic setting (see Section 4.74.7), even though Aε itself is not constant, its
homogenized limit A? is. In this case, the χε,β,eSK

converge to zero weakly in H1(SK).
(We show this in Lemma 7.77.7 in the absence of oversampling, but the argument can
be generalized to DOF -extended oversampling.) Now consider the MsFEM-CR. The
weak convergence of the χε,β,eSK

in H1(SK) ensures weak convergence on each face of K in

the H1/2-norm by continuity of the trace operator. Since the embedding of H1/2(∂K) in
L2(∂K) is compact, the χε,β,eSK

converge to 0 strongly in L2 on each face ofK. Consequently,

the degrees of freedom Γ(K,χε,β,eSK
) (the averages on the faces of K) converge to zero as

ε → 0. Thus, Γ(K,W 0) → Γ(K, 1) and Γ(K,W β) → Γ(K, xβ − xβc,K) as ε → 0 for all

1 ≤ β ≤ d and, by the above argument for the matrix M̃, the matrix M is invertible in
this limit. By continuity of the determinant function, the matrix M is invertible when ε
is small enough, and the DOF -continuous basis functions exist in this regime.

The study of the DOF -continuous numerical correctors for the MsFEM-lin is more
delicate, since pointwise operations are involved in evaluating the degrees of freedom,
which are ill-defined on H1(SK). One can invoke the De Giorgi-Nash result, which can be
found e.g. in [8181, Theorem 8.22], to see that the multiscale basis functions, obtained from
the numerical correctors in Definition 5.215.21 below, are in fact continuous for any bounded
diffusion tensor. (See Example 5.245.24 for a definition of the multiscale basis functions for
the MsFEM-lin independent of the numerical correctors.) Pointwise evaluation is then
justified. It would therefore be convenient to study the DOF -continuous basis functions
directly, without the intermediate step of the numerical correctors. We do not further
pursue this topic here.
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5.5. The multiscale basis functions

We can now define the multiscale basis functions for the approximation of the abstract
problem (5.15.1) in terms of the numerical correctors. We recall that in Section 4.24.2, the
numerical correctors were derived from the definition of the basis functions. An equivalent
definition of the multiscale basis functions, independent of the numerical correctors, is
given in Lemmas 5.225.22 and 5.235.23. Recall that φP1

1 , . . . , φ
P1
N is a basis of the space VH (see

Definition 5.65.6). We can suppose that the first N0 basis functions form a basis of VH,0.
The following definition is the generalization of (4.104.10) to the general MsFEM framework.

Definition 5.21. For each i = 1, . . . , N , the multiscale basis function φεi is defined
by

∀K ∈ TH , φεi |K = φP1
i

∣∣
K

+ φP1
i (xc,K)χε,0,•K +

d∑
α=1

∂α
(
φP1
i

∣∣
K

)
χε,α,•K , (5.10)

where • = e corresponds to DOF -extended multiscale basis functions and • = c corre-
sponds to DOF -continuous multiscale basis functions.

The DOF -extended multiscale basis functions satisfy a variational problem on the
oversampling patches SK as shown by the following lemma.

Lemma 5.22. Let K be any mesh element and let 1 ≤ i ≤ N . Consider an MsFEM
with DOF-extended basis functions. Define an extension of φεi from K to SK by

φ̂εi = φ̂P1
i

∣∣
K

+ φP1
i (xc,K) χε,0,eSK

+
d∑

α=1

∂α
(
φP1
i

∣∣
K

)
χε,α,eSK

in SK , (5.11)

where φ̂P1
i

∣∣
K

denotes the affine extension of φP1
i

∣∣
K

to SK, and χε,α,eK is as in Defini-

tion 5.115.11. Then φ̂εi is the unique solution in VK to
sεK

(
φ̂εi , w

)
= 0 for all w ∈ VK,0,

Γ
(
SK , φ̂εi

)
= Γ

(
SK , φ̂

P1
i

∣∣
K

)
.

(5.12)

In the case of the MsFEM-lin for the diffusion problem (4.14.1), problem (5.125.12) with SK =
K coincides with the definition of the multiscale basis functions in (4.54.5); see Example 5.245.24.

Proof. Problem (5.125.12) has a unique solution in view of Definition 5.105.10. It thus suffices to

show that φ̂εi satisfies (5.125.12). Since the numerical correctors χε,α,eK belong to VK,0 for all

0 ≤ α ≤ d, it is clear from (5.115.11) that Γ
(
SK , φ̂εi

)
= Γ

(
SK , φ̂

P1
i

∣∣
K

)
.

Inserting (5.115.11) into (5.125.12) and applying (5.55.5) to all χε,α,eK , we find, for any w ∈ VK,0,

sεK

(
φ̂εi , w

)
= sεK

(
φ̂P1
i

∣∣
K
, w

)
+ φP1

i (xc,K) sεK
(
χε,0,eSK

, w
)

+
d∑

α=1

(
∂αφ

P1
i

)∣∣
K
sεK
(
χε,α,eSK

, w
)

87
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= sεK

(
φ̂P1
i

∣∣
K
, w

)
− φP1

i (xc,K) sεK (1, w)−
d∑

α=1

(
∂αφ

P1
i

)∣∣
K
sεK
(
xα − xαc,K , w

)
= sεK

(
φ̂P1
i

∣∣
K
, w

)
− sεK

(
φP1
i (xc,K) +

d∑
α=1

(
∂αφ

P1
i

)∣∣
K

(
xα − xαc,K

)
, w

)
.

Here we use that sεK is a bilinear form on VK , that all piecewise affine functions are

contained in VK according to Definition 5.105.10 (this ensures that φ̂εi indeed lies in the
domain of sεK), and the property that ∇φP1

i is piecewise constant. Finally, we use (4.204.20)

for ϕ = φ̂P1
i to conclude that sεK

(
φ̂εi , w

)
= sεK

(
φ̂P1
i

∣∣
K
, w

)
− sεK

(
φ̂P1
i

∣∣
K
, w

)
= 0, which

establishes the desired variational formulation satisfied by φ̂εi . �

If the DOF -continuous problems (5.85.8) are well-posed, we obtain by the same argu-
ments the following result for DOF -continuous multiscale basis functions.

Lemma 5.23. Let K be any mesh element and let 1 ≤ i ≤ N . Assume that any DOF-
continuous local problem (5.85.8) is well-posed. Consider an MsFEM with DOF-continuous
basis functions. Define an extension of φεi from K to SK by

φ̂εi = φ̂P1
i

∣∣
K

+ φP1
i (xc,K) χε,0,cSK

+
d∑

α=1

∂α
(
φP1
i

∣∣
K

)
χε,α,cSK

in SK ,

where χε,α,cK is as in Definition 5.165.16, and φ̂P1
i

∣∣
K

is as defined in Lemma 5.225.22. Then φ̂εi
is the unique solution in VK tos

ε
K

(
φ̂εi , w

)
= 0 for all w ∈ VK,0,

Γ
(
K, φ̂εi

)
= Γ

(
K,φP1

i

)
.

(5.13)

Example 5.24 (MsFEM-lin for diffusion problems). In the setting of Example 5.125.12,
any DOF -extended multiscale basis function φεi for the MsFEM-lin constructed in (5.125.12)

is obtained, in each mesh element K, as the restriction of a function φ̂εi , which is the

unique solution in H1(SK) to −div(Aε∇φ̂εi ) = 0 in SK with φ̂εi = φ̂P1
i on ∂SK . For a

DOF -continuous basis function, φ̂εi solves the same PDE in SK , is affine on ∂SK , and

satisfies φ̂εi (xj) = φP1
i (xj) at all vertices xj of K.

Example 5.25 (MsFEM-CR for diffusion problems). In the continuation of Exam-
ple 5.135.13, the DOF -extended multiscale basis function φεi for the MsFEM-CR is the

restriction to K of φ̂εi , the unique solution in H1(SK) to

−div(Aε∇φ̂εi ) = 0 in SK ,

~n · Aε∇φ̂εi = 0 on each h ∈ Fa(SK),

~n · Aε∇φ̂εi = ch on each h ∈ Fd(SK),
1

|h|

∫
h

φ̂εi =
1

|h|

∫
h

φ̂P1
i for each h ∈ Fd(SK),
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where the constants ch are uniquely determined by the problem. We recall that the sets
of faces Fa(SK) and Fd(SK) are defined in Section 5.4.25.4.2. For DOF -continuous basis
functions, the last condition is applied to the faces h ∈ F (K) (and all other conditions
remain unchanged).

Our general framework allows two characterizations of the multiscale basis functions,
namely (5.105.10) and (5.125.12) or (5.135.13), as was the case for the MsFEM studied in Section 4.24.2
(where φεi is given by (4.54.5) or (4.104.10)). The essential advantage of (5.105.10) is that the mi-
croscale is fully encoded in the numerical correctors χε,α,•K , that can be computed element
per element without any global information. In particular, the global index i of the multi-
scale basis function φεi is irrelevant for the computation of the numerical correctors. The
expression in (5.105.10) is therefore the crucial relationship that we will employ to develop
non-intrusive MsFEMs within the general framework in Chapter 66, just as was (4.104.10) in
Sections 4.44.4 and 4.54.5.

The second formulation of the multiscale basis functions, as solutions to the local
problems (5.125.12) or (5.135.13), provides a more direct interpretation of the multiscale basis
functions in terms of the sampling form chosen. It also gives a relation between the degrees
of freedom of the P1 basis functions and the associated multiscale basis function. This is
useful in particular for the well-posedness of the MsFEM, that we study in Lemma 5.295.29.

Remark 5.26. Our definition of the multiscale basis functions in (5.105.10) is reminiscent
of the Variational Multiscale Method, a framework developed in [101101, 102102] to adapt
Galerkin approximations on low-dimensional spaces to the presence of multiscale fea-
tures. In this context, our formulation of the MsFEM also exhibits a link with residual-
free bubbles, see e.g. [4141, 3838, 102102].

Remark 5.27. The first introduction of the MsFEM in [9898] corresponds to the idea
of oversampling with DOF -continuous basis functions. Although their existence cannot
be established in general, they are computed numerically by taking linear combinations
of DOF -extended basis functions (following an analogous strategy to the one we dis-
cussed in Section 5.4.55.4.5). The MsFEM with DOF -extended basis functions is studied
in the works [7070, 100100] dealing with the convergence analysis of the MsFEM-lin with
oversampling.
Let us also note that the combination of Crouzeix-Raviart MsFEM and oversampling
has, to the best of our knowledge, not yet been proposed in the literature. This method,
for which the basis functions are given explicitly in Example 5.255.25, is a natural by-product
of the identification of the abstract MsFEM framework.

5.6. The global problem

We can now define the multiscale trial and test spaces, respectively V ε
H and V ε

H,0, as
follows:

V ε
H = {φεi | 1 ≤ i ≤ N} , V ε

H,0 = {φεi | 1 ≤ i ≤ N0} .

We recall that we have assumed the first N0 basis functions of VH to form a basis of VH,0
in Section 5.55.5. Note that we only use V ε

H,0 in the present section, because (5.15.1) is posed
with homogeneous Dirichlet boundary conditions, but that the larger space V ε

H is useful
for more general boundary conditions (see Section 6.36.3). Applying (5.105.10), we have the
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equivalent characterization in terms of the P1 space VH ,

V ε
H =

{
vεH = vH +

∑
K∈TH

(
vH(xc,K)χε,0,•K +

d∑
α=1

∂α(vH |K)χε,α,•K

)∣∣∣∣∣ vH ∈ VH
}
. (5.14)

Definition 5.28. Let VH be an underlying P1 space defined in Definition 5.45.4 with the
associated DOF operator Γ from Definition 5.55.5 and Definition 5.85.8-5.95.9. Define for each
mesh element K ∈ TH an oversampling patch (Definition 5.75.7), a sampling space and
sampling form in accordance with Definition 5.105.10. Let the multiscale basis functions φεi
be given as in Definition 5.215.21. Then a Multiscale Finite Element Method (MsFEM)
for problem (5.15.1) is: find uεH ∈ V ε

H,0 such that

∀ vεH ∈ V ε
H,0,

∑
K∈TH

aεK (uεH , v
ε
H) = F (vεH) . (5.15)

In the following lemma, we investigate the well-posedness of the MsFEM.

Lemma 5.29. Consider an MsFEM without oversampling, or an MsFEM with over-
sampling using DOF-continuous basis functions (assuming the associated basis functions
are well-defined). When aε satisfies (5.25.2), the MsFEM (5.155.15) has a unique solution.

Proof. Note that, with DOF -continuous oversampling, but also without oversampling,
the multiscale basis functions satisfy (5.135.13). In particular, all degrees of freedom of uεH
related to the boundary vanish. Also note that, the dimension of V ε

H,0 being finite, it
suffices to show that uεH = 0 is the unique solution to problem (5.155.15) with F = 0.

If 0 = F (uεH) = aε(uεH , u
ε
H), it follows from (5.25.2) that uεH is piecewise constant. Let

us write uεH =

N0∑
i=1

αi φ
ε
i for some coefficients αi ∈ R and introduce the function uH =

N0∑
i=1

αi φ
P1
i ∈ VH . Because of (5.135.13), we have Γ(K, uεH) = Γ(K, uH) for all mesh elementsK.

Since uεH is piecewise constant and Γ(K, ·) is a bijection from P1(K) to Rd+1 (recall
Definition 5.55.5), it follows that uεH = uH . In particular, the multiscale function uεH in fact
belongs to the underlying P1 space VH .

We remarked immediately below Definition 5.45.4 that, for either of the two spaces VH =
V L
H or V CR

H , the above implies that uεH is constant throughout Ω. Since the degrees of
freedom of uεH associated to the boundary vanish, we readily deduce that uεH = 0. �

We do not know of the existence of a result on the well-posedness of MsFEMs with
oversampling using DOF -extended multiscale basis functions. In [100100], the authors es-
tablish an inf-sup result for a variant of the MsFEM-lin with oversampling that uses P1

test functions (see also Definition 6.16.1). This result is obtained for a periodic diffusion
coefficient in the limit of sufficiently small ε.
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CHAPTER 6

Non-intrusive MsFEM for the general
framework

We show in this chapter how to develop a non-intrusive implementation for the general
MsFEM framework of Chapter 55. We have seen in Lemma 4.54.5 that, for a particular
MsFEM variant, the non-intrusive Galerkin MsFEM approach coincides with a Petrov-
Galerkin MsFEM. This does not hold true for all MsFEMs in the general framework.
We first develop a non-intrusive MsFEM approach for a Petrov-Galerkin MsFEM in the
general framework. We show that the non-intrusive approach for the Petrov-Galerkin
MsFEM is actually equivalent to the Petrov-Galerkin MsFEM itself. In a second step,
we introduce a non-intrusive approximation of the Galerkin MsFEM. Before doing so, let
us summarize the main steps of Sections 4.44.4 and 4.54.5 to obtain a non-intrusive MsFEM
approach:

(1) the expansion (4.104.10) allows to recast the matrix Aε of the linear system for the
MsFEM as the matrix AP1 associated to the P1 discretization of an effective problem;

(2) we approximate the right-hand side Fε of the MsFEM problem by the right-hand
side FP1 of this P1 discretization;

(3) the post-processing step (4.214.21) applied to the P1 approximation of the effective
problem yields the MsFEM approximation.

6.1. The Petrov-Galerkin MsFEM

We recall that the abstract continuous problem for which we developed the MsFEM in
Section 5.1.35.1.3 is given by (5.15.1) and that it can be rewritten in terms of the bilinear forms aεK
satisfying (5.25.2). Petrov-Galerkin variants of the multiscale finite element method with P1

test functions were previously studied in [100100, 9494]. In our general MsFEM framework, the
adaptation of Definition 5.285.28 to a Petrov-Galerkin MsFEM is the following.

Definition 6.1. Let VH be an underlying P1 space defined in Definition 5.45.4 with the
associated DOF operator Γ from Definition 5.55.5 and Definition 5.85.8-5.95.9. Define for each
mesh element K ∈ TH an oversampling patch (Definition 5.75.7), a sampling space and
sampling form in accordance with Definition 5.105.10. Let the multiscale basis functions φεi
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be given as in Definition 5.215.21. Then a Petrov-Galerkin Multiscale Finite Element
Method (PG-MsFEM) for problem (5.15.1) is: find uεH ∈ V ε

H,0 such that

∀ vH ∈ VH,0,
∑
K∈TH

aεK(uεH , vH) = F (vH). (6.1)

When confusion may arise, we shall refer to the MsFEM defined in Definition 5.285.28 as
the Galerkin MsFEM (G-MsFEM). To study well-posedness of the PG-MsFEM, it is most
convenient to relate this method to the G-MsFEM. Therefore, we postpone well-posedness
of (6.16.1) to Lemma 6.46.4.

We now execute step (1)(1) of the summary of the non-intrusive MsFEM approach at
the beginning of this chapter. The matrix Aε of the linear system associated to (6.16.1) is
defined by

Aεj,i =
∑
K∈TH

aεK
(
φεi , φ

P1
j

)
, 1 ≤ i, j ≤ N0. (6.2)

To find an effective P1 formulation with the same linear system, we will use the defini-
tion (5.105.10) of the multiscale basis functions in the general framework, but first we combine
it with (4.204.20) applied to ϕ = φP1

i to rewrite (5.105.10) as

φεi |K = φP1
i (xc,K) + φP1

i (xc,K)χε,0,•K +
d∑

α=1

∂αφ
P1
i

∣∣
K

(
xα − xαc,K + χε,α,•K

)
= φP1

i (xc,K) Λε,0
K +

d∑
α=1

∂αφ
P1
i

∣∣
K

Λε,α
K , (6.3)

where
Λε,0
K := 1 + χε,0,•K , Λε,α

K := xα − xαc,K + χε,α,•K , (6.4)

for all 1 ≤ α ≤ d and each K ∈ TH . We recall that • ∈ {e, c} indicates the choice
of DOF -extended or DOF -continuous basis functions. Inserting (6.36.3) into (6.26.2) for φεi
and (4.204.20) for ϕ = φP1

j yields

Aεj,i =
∑
K∈TH

(
φP1
i (xc,K) aεK

(
Λε,0
K , 1

)
φP1
j (xc,K) +

d∑
α=1

(
∂αφ

P1
i

)∣∣
K
aεK(Λε,α

K , 1)φP1
j (xc,K)

+
d∑

β=1

φP1
i (xc,K) aεK

(
Λε,0
K , xβ − xβc,K

) (
∂βφ

P1
j

)∣∣
K

+
d∑

α,β=1

(
∂αφ

P1
i

)∣∣
K
aεK

(
Λε,α
K , xβ − xβc,K

) (
∂βφ

P1
j

)∣∣
K

)
,

and therefore,

Aεj,i =
∑
K∈TH

|K|
(
MφP1

i φP1
j

)
(xc,K)

+

∫
K

φP1
j B

1 · ∇φP1
i + φP1

i B
2 · ∇φP1

j +∇φP1
j · A∇φ

P1
i ,

(6.5)
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where we have defined the effective mass M , (adjoint) advection vector B
1

and B
2
, and

the effective diffusion tensor A, for all 1 ≤ α, β ≤ d and for each K ∈ TH , as

M
∣∣
K

=
1

|K|
aεK
(
Λε,0
K , 1

)
, B

1

α

∣∣∣
K

=
1

|K|
aεK(Λε,α

K , 1),

B
2

β

∣∣∣
K

=
1

|K|
aεK

(
Λε,0
K , xβ − xβc,K

)
, Aβ,α

∣∣
K

=
1

|K|
aεK

(
Λε,α
K , xβ − xβc,K

)
.

(6.6)

Note that M , B
1
, B

2
and A are all piecewise constant quantities. All integrals in (6.56.5) can

be computed exactly by evaluating the integrand at the centroid. With this quadrature
rule, we observe that the term |K|

(
MφP1

i φP1
j

)
(xc,K) also equals the numerical approxi-

mation of the integral

∫
K

MφP1
i φ

P1
j .

The new expression (6.56.5) for the matrix of the linear system motivates us to introduce
the effective bilinear forms aK defined on H1(K)×H1(K) by

aK(u, v) =

∫
K

∇v · A∇u+ v
(
B

1 · ∇u
)

+ u
(
B

2 · ∇v
)

+M uv, for all u, v ∈ H1(K),

(6.7)

and the associated P1 Galerkin approximation on the space VH,0:

Find uH ∈ VH,0 such that
∑
K∈TH

aK(uH , vH) = F (vH) for all vH ∈ VH,0. (6.8)

This discrete problem leads to a linear system with the matrix

A
P1
j,i = a

(
φP1
i , φ

P1
j

)
=
∑
K∈TH

aK(φP1
i , φ

P1
j ), 1 ≤ i, j ≤ N0.

The identity (6.56.5) thus implies the following result, which generalizes Lemma 4.24.2 to the
PG-MsFEM in the general framework.

Theorem 6.2. The matrices Aε and AP1 are identical if the integrals in (6.76.7) are eval-
uated at the centroid of each mesh element K for the computation of AP1. Then the
PG-MsFEM (6.16.1) coincides with the resolution of the effective problem (6.86.8) combined
with the post-processing step

uεH |K = uH(xc,K) Λε,0
K +

d∑
α=1

∂αuH |K Λε,α
K . (6.9)

Note that step (2)(2) of the summary at the beginning of this chapter is irrelevant for
the PG-MsFEM. The computation of the right-hand side in (6.16.1) is clearly part of any
standard FEM software. We refer to Remark 4.34.3 and 4.44.4 for some additional comments
on the post-processing step.

The computational approach described by Theorem 6.26.2 naturally fits within the non-
intrusive workflow of Algorithm 4.24.2. The numerical correctors on line 44 are, of course,
replaced by those of Definition 5.115.11 or Definition 5.165.16. Line 66 is replaced by the compu-
tation of all effective quantities in (6.66.6), where Λε,α

K is related to the numerical correctors
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by (6.46.4). The online phase in line 88 amounts to solving the P1 problem (6.86.8), where all
integrations to construct the matrix of the linear system are to be performed by evaluation
at the centroid. (This is not the case for the construction of the right-hand side, however.)
Finally, in the post-processing phase, we construct uεH from uH by virtue of (6.96.9).

Next we generalize the above expansions to design a non-intrusive approximation of
the G-MsFEM.

6.2. The non-intrusive Galerkin MsFEM

For the G-MsFEM (introduced in Definition 5.285.28), we need to replace the P1 test space
VH,0 of the PG-MsFEM by the multiscale test space V ε

H,0. The matrix of the linear system
associated to (5.155.15) is given by

A
ε,G
j,i =

∑
K∈TH

aεK
(
φεi , φ

ε
j

)
, 1 ≤ i, j ≤ N0.

Upon inserting (5.105.10) for the test function φεj , we find, for all 1 ≤ i, j ≤ N0,

A
ε,G
j,i = Aεj,i +

∑
K∈TH

(
φP1
j (xc,K) aεK

(
φεi , χ

ε,0,•
K

)
+

d∑
β=1

(
∂βφ

P1
j

)∣∣
K
aεK

(
φεi , χ

ε,β,•
K

))
,

where Aε is the matrix of the Petrov-Galerkin MsFEM, see (6.26.2) and (6.56.5).

An effective formulation can again be derived by inserting (6.36.3) for the φεi . We obtain

A
ε,G
j,i =

∑
K∈TH

|K|
(
M

G
φP1
i φP1

j

)
(xc,K)

+

∫
K

φP1
j B

1,G · ∇φP1
i + φP1

i B
2,G · ∇φP1

j +∇φP1
j · A

G∇φP1
i ,

where the effective mass, (adjoint) advection vectors and diffusion tensor are given by
(using those defined in (6.66.6))

M
G
∣∣∣
K

= M
∣∣
K

+
1

|K|
aεK
(
Λε,0
K , χε,0,•K

)
,

B
1,G

α

∣∣∣
K

= B
1

α

∣∣∣
K

+
1

|K|
aεK
(
Λε,α
K , χε,0,•K

)
,

B
2,G

β

∣∣∣
K

= B
2

β

∣∣∣
K

+
1

|K|
aεK

(
Λε,0
K , χε,β,•K

)
,

A
G

β,α

∣∣∣
K

= Aβ,α
∣∣
K

+
1

|K|
aεK

(
Λε,α
K , χε,β,•K

)
.

(6.10)

Again, these quantities are all piecewise constant. We can now introduce aG =
∑

K∈TH

aG
K ,

the effective bilinear forms aG
K , for all K ∈ TH , being defined by

aG
K(u, v) =

∫
K

∇v · AG∇u+ v
(
B

1,G · ∇u
)

+ u
(
B

2,G · ∇v
)

+M
G
u v. (6.11)
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This leads to the formulation of the following effective variational problem:

Find uH ∈ VH,0 such that
∑
K∈TH

aG
K(uH , vH) = F (vH) for all vH ∈ VH,0. (6.12)

The associated linear system has coefficients AP1,G
j,i = aG

(
φP1
i , φ

P1
j

)
. We have the following

analogue of Theorem 6.26.2, which generalizes Lemma 4.24.2 to the G-MsFEM in the general
framework.

Theorem 6.3. The matrices Aε,G and AP1,G are identical if the integrals in (6.116.11) are
evaluated at the centroid of each mesh element K in the computation of AP1,G.

Contrary to the matrices, the right-hand sides of the effective problem (6.126.12) and
the Galerkin MsFEM (5.155.15) are not equal in general. We apply step (2)(2) formulated at
the beginning of this chapter: the right-hand side of the G-MsFEM is approximated by
the right-hand side of the effective problem to obtain an approximate, but non-intrusive,
MsFEM. The non-intrusive G-MsFEM becomes:

Find uεH ∈ V ε
H,0 such that

∑
K∈TH

aεK
(
uεH , φ

ε
j

)
= F

(
φP1
j

)
for all 1 ≤ j ≤ N0. (6.13)

This problem is no longer a Galerkin approximation of (4.14.1), because different test spaces
are used for the bilinear and for the linear form. In view of Theorem 6.36.3, the non-intrusive
MsFEM can equivalently be formulated as

compute uH ∈ VH,0 solution to (6.126.12) and compute uεH from uH by (6.96.9),

provided all integrals in (6.116.11) are evaluated at the centroid for the construction of the
matrix of the linear system in (6.126.12).

The latter formulation of the non-intrusive MsFEM immediately suggests how to ef-
fectively implement the non-intrusive MsFEM in a non-intrusive way similar to Algo-
rithm 4.24.2. For completeness, we provide the algorithm for the non-intrusive G-MsFEM
in Algorithm 6.16.1.

Algorithm 6.1 Non-intrusive G-MsFEM for the general framework

1: Let TH be the mesh used by the legacy code, let • ∈ {e, c} be the chosen oversampling
variant

2: for all K ∈ TH do
3: for 0 ≤ α ≤ d do
4: Solve for the applicable χε,α,•K from Definition 5.115.11 or 5.165.16
5: end for
6: Compute the effective tensors defined in (6.106.10)
7: end for

8: Use the legacy code to construct the matrix AP1 by evaluating (6.116.11) at the centroid
of each mesh element and to solve for uH defined by (6.126.12)

9: Save {uH(xc,K)}K∈TH
and {(∂αuH)|K}K∈TH , 1≤α≤d

10: Obtain the MsFEM approximation uεH from (6.96.9)
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The discussion surrounding Algorithm 4.24.2 regarding the advantages for the implemen-
tation of this non-intrusive MsFEM approach also applies here.

Let us now comment on the well-posedness of the MsFEMs for the general frame-
work introduced above. We recall that the hypotheses of the general framework without
oversampling, or with DOF -continuous oversampling, provide well-posedness of the G-
MsFEM (5.155.15) by Lemma 5.295.29. In this case, the non-intrusive approximation (6.136.13) is
also well-posed, because the matrices associated to both MsFEM variants are the same.
Regarding the PG-MsFEM (6.16.1), we can only establish well-posedness if the associated
matrix coincides with the matrix of the corresponding Galerkin MsFEM. This is stated
in the following lemma, which generalizes Lemma 4.54.5 to the general framework.

Lemma 6.4. Consider a G-MsFEM as defined by Definition 5.285.28 without oversampling
and suppose that the sampling form sεK equals the local bilinear form aεK. Then the matrix
associated to this G-MsFEM coincides with the matrix associated to the corresponding
PG-MsFEM of Definition 6.16.1. Consequently, the non-intrusive Galerkin MsFEM (6.136.13)
coincides with the Petrov-Galerkin MsFEM (6.16.1) and in particular, the Petrov-Galerkin
MsFEM is well-posed.

Proof. To prove the lemma, we show that the matrices corresponding to the linear
problems defined in (6.136.13) and (6.16.1) are equal. Using that sεK = aεK , we have for all
1 ≤ i, j ≤ N0,

A
ε,G
j,i − Aεj,i =

∑
K∈TH

aεK
(
φεi , φ

ε
j − φ

P1
j

)
=
∑
K∈TH

sεK
(
φεi , φ

ε
j − φ

P1
j

)
= 0. (6.14)

The last equality stems from the fact that the multiscale basis functions satisfy Γ(K,φεi ) =
Γ(K,φP1

i ) for all K, so that φεj − φ
P1
j ∈ VK,0 (see (5.125.12) with SK = K and recall Defini-

tion 5.105.10 for the sampling test space V ε
K,0), and the variational problem in (5.125.12) (with

SK = K) shows that the above quantity vanishes. �

6.3. Further extensions of the non-intrusive MsFEM

We sketch some other FEM settings to which we have applied the above strategy to
develop non-intrusive MsFEM approaches.

Stabilized finite element formulations. In the context of advection-diffusion prob-
lems, stabilized finite element formulations add mesh-dependent terms to a discrete vari-
ational formulation (such as (5.155.15)) to remove numerical instabilities, for example caused
by sharp boundary layers of the exact solution. See [114114] for such a variant of the MsFEM
and see [4343, 103103, 129129] for the stabilization of single-scale problems. The expansion (6.36.3)
can also be inserted in these additional terms to find a non-intrusive implementation of
the associated MsFEM.

Petrov-Galerkin formulations. Other test spaces than the P1 space VH,0 can be
considered in Petrov-Galerkin formulations. An example would be to use multiscale test
functions that locally solve the adjoint problem rather than the direct problem, introduc-
ing yet another bilinear form than sεK in (5.125.12) or (5.135.13). See e.g. [7777]. An expansion of
the kind (6.36.3) can still be found for such test functions, with a suitably adapted definition
of the numerical correctors. This way, a non-intrusive formulation can be found using the
techniques of Part II of this thesis.
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Non-homogeneous Dirichlet conditions. Suppose that a legacy FEM code can
provide a solution to an effective problem such as (6.86.8) posed on the space VH,0 and
complemented with non-homogeneous Dirichlet conditions for uH on ∂Ω. This solution
can directly be used to construct a multiscale approximation uεH ∈ V ε

H from (6.96.9). The
translation of the Dirichlet condition to the MsFEM approximation is as follows: if DOF -
continuous oversampling is applied, the function uεH satisfies [Γ(K, uεH)]j = [Γ(K, uH)]j
for all degrees of freedom associated to the boundary. Here, [Γ(K, uH)]j is determined
by the legacy code. When DOF -extended oversampling is used, the degrees of freedom
associated to the boundary are equal to the sum of [Γ(K, uH)]j and a perturbation due
to the fact that the degrees of freedom of the numerical correctors do not vanish.

Neumann conditions. To apply Neumann conditions on ∂Ω, one solves a Galerkin
approximation of the variational formulation in the space V ε

H . The suitable adaptation
of (5.155.15) can be approximated by a non-intrusive Galerkin MsFEM following the same
methodology as above. The effective P1 approximation that is obtained corresponds to
the resolution of an effective PDE with Neumann conditions, for which a legacy code can
be used. In the case of the diffusion problem (4.14.1), the Neumann boundary condition
in the effective problem is imposed on the effective flux ~n · A∇uH , where A is defined
in (4.124.12).

Parabolic equations. When a parabolic equation is discretized in time, problems of
the form (5.15.1) are typically obtained for each time step, but with a right-hand side that
depends on the solution of the previous time step. This term belongs to the space V ε

H ,
so it varies on the microscale and cannot be integrated numerically by the legacy code
that operates on the coarse mesh. The non-intrusive strategy of the foregoing sections
cannot be applied directly to find a non-intrusive MsFEM. In the vein of our non-intrusive
approach, one could introduce an additional approximation by replacing the multiscale
solution of the previous time step by its underlying P1 representation in the P1 space VH .
Studying the effect of this approximation is beyond the scope of the present work.

6.4. Intrusiveness of other multiscale methods

Some work on the formulation of effective P1 problems in multiscale methods, and the
related question of non-intrusive approaches, can be found in the literature. We discuss
here the case of the Heterogeneous Multiscale Method (HMM) and the localized orthogo-
nal decomposition (LOD) in the context of numerical homogenization, and provide some
additional references to other fields at the end of this section.

6.4.1. The heterogeneous multiscale method. Let us briefly describe the finite element
HMM such as introduced e.g. in [55]. It is assumed that (4.14.1) can be solved by applying a
finite element to an effective equation like (4.144.14) for an effective diffusion tensor A that is
to be approximated based on the microstructure. The effective model will be resolved with
existing finite element software. The HMM is thus non-intrusive by construction. Let us
focus on a legacy code using a P1 finite element method and denote by xK the centroid
of the mesh element K for each K ∈ TH . Then the bilinear form in the variational
formulation of the effective equation (see (4.164.16)) can be written

adiff(uH , vH) =
∑
K∈TH

|K| Ā(xK)∇uH(xK) · ∇vH(xK). (6.15)
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The effective coefficient Ā is thus to be computed (or approximated) only at the centroid
of each coarse mesh element K. To this end, small sampling domains Kδ are introduced
around each xK . On each sampling domain, numerical correctors χε,αKδ are computed that
solve the equation

− div
(
Aε∇(χε,αKδ + xα)

)
= 0 in Kδ,

equipped with some choice of boundary conditions. These are used to compute Ā accord-
ing to the formula

Aβ,α(xK) :=
1

|Kδ|

∫
Kδ

eβ · Aε(eα +∇χε,αKδ ) for each K ∈ TH .

When one chooses Kδ = K and uses homogeneous Dirichlet boundary conditions on ∂K,
it can be shown that this effective tensor corresponds exactly to (4.124.12). In this sense,
the HMM is a generalization of the MsFEM. When we consider more general problems
than the diffusion problem, there is an important difference between the two methods.
For the MsFEM, the form of the effective equation and the definition of the effective
coefficients follow directly from the choice of basis functions, and thus from the choice of
local problems. For the HMM, the local problems and the effective equation are formu-
lated independently, and the link between the two is only justified heuristically, drawing
inspiration from homogenization theory.

In terms of intrusiveness, the (non-intrusive) Petrov-Galerkin MsFEM (Definition 6.16.1),
the non-intrusive Galerkin MsFEM (6.136.13) and the HMM are much alike. Similar problems
have to be solved to compute the effective macroscopic coefficient in the offline stage. With
both methods, a legacy code can be used for the effective problem as soon as the effective
coefficient has been computed externally and can be read by the legacy code.

In practice, the sampling domains Kδ used for the HMM are much smaller than an
entire coarse mesh element K that is used for the local problems of the MsFEM. One
must ensure that Kδ captures the microstructure sufficiently well. Another difference
between the two methods is that the solution of the effective problem of the HMM does
not impose an immediate reconstruction of the microscopic scale that approximates uε in
the H1-norm, since the microscopic structure is only sampled in the subdomains Kδ and
not throughout the entire domain. In contrast, the MsFEM yields an approximation of
the solution uε in the L2- and H1-norms. However, periodic extensions of the microscopic
information in each Kδ may be considered to restore the microscale with the HMM. We
refer e.g. to [22].

6.4.2. The localized orthogonal decomposition. Here we compare the implementation
of the MsFEM to the LOD. See [120120] for the original introduction of the method for
symmetric elliptic problems, and [1212] for a more general framework.

Like the MsFEM, the method relies on the computation of numerical correctors. These
correctors are, in contrast, not supported by a single mesh element, but by an element
patch around a central mesh element K. We denote these numerical correctors by qαK,l,
where l is an integer indicating the size of the patch that supports the corrector, and α
indicates the space direction to which the corrector is associated (1 ≤ α ≤ d), as before.
We do not further detail the definition of the numerical correctors, since it is carried out
in an offline stage independently of the legacy code. Let us simply mention that the
computation of qαK,l becomes more expensive as l increases.

To compare the implementation of the LOD to our non-intrusive MsFEM variants, it
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is most illustrative to consider the Petrov-Galerkin variant discussed in [7979]. The discrete
problem on the coarse mesh is defined on the conforming P1 space that we denote by VH,0.
It reads: find uH,l ∈ VH,0 such that

aε,diff
(
uH,l, vH + C (l)vH

)
= F (vH) ∀ vH ∈ VH,0, (6.16)

where, for any vH ∈ VH , the corrector C (l)vH is defined as

C (l)vH =
∑
K∈TH

d∑
α=1

(∂αvH)|K qαK,l. (6.17)

A post-processing step as in our Algorithm 4.24.2 can be applied to compute

uεH,l = (1 + C (l))uH,l.

Remark 6.5. In the (non-localized) limit l→∞, the discrete problem (6.166.16) is equiv-
alent to finding uH,∞ ∈ VH,0 such that

∀ vH ∈ VH,0, aε,diff
(
uH,∞ + C (∞)uH,∞, vH

)
= F (vH).

This shows that the LOD presented in [7979], before localization, is indeed a Petrov-
Galerkin approximation of (4.34.3) on the trial space (1 + C (∞))VH,0. We refer e.g. to
[7171] for more details on Galerkin and Petrov-Galerkin LOD methods, in particular for a
discussion of the advantages regarding the implementation of Petrov-Galerkin variants
with respect to Galerkin variants.

Although the corrector definition (6.176.17) resembles the expansion (4.104.10) for the Ms-
FEM, the fact that the correctors qαK,l are not supported by a single mesh element has
severe implications for the effective problem, as we shall see now. The matrix Aε for the
linear system associated to (6.166.16) is given by

Aεj,i =
∑
T∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣
T

(∫
T

eβ · Aεeα
) (

∂αφ
P1
i

)∣∣
T

+

∑
K∈TH

d∑
β=1

(
∂βφ

P1
j

)∣∣
K

∫
Ω

∇qβK,l · A
ε∇φP1

i

=
∑

T,K∈TH

d∑
α,β=1

(
∂βφ

P1
j

)∣∣
K

(∫
T

{
δT,Keβ +∇qβK,l

}
· Aεeα

) (
∂αφ

P1
i

)∣∣
T

=

∫
Ω

∫
Ω

∇φP1
j (y) ·A (l)(x, y)∇φP1

i (x) dy dx, (6.18)

where the piecewise constant tensor A (l) : Ω×Ω→ Rd×d is defined for any T,K ∈ TH as

A (l)
β,α

∣∣∣
T×K

=
1

|T | |K|

∫
T

{
δT,Keβ +∇qβK,l

}
· Aεeα, 1 ≤ α, β ≤ d.

We observe that the effective macroscopic problem (6.186.18) for the LOD involves a
bilinear form with a double integral. It is not natural to expect an existing code for
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diffusion problems to be equipped for the discretization of such terms. The original
version of the LOD is thus much more intrusive than the MsFEM, unless l = 1, in which
case the numerical correctors are defined on a single mesh element.

In order to obtain an effective discrete problem that resembles the discretization of a
diffusion problem, the following is suggested in [7979]. Note that for any mesh element K ∈
TH , the effective tensor A (l)(•, K) contains the contributions to the effective scheme of
the numerical correctors associated to K. In particular, if l = 1, we have A (1)(T,K) = 0
when T 6= K. The idea is to concentrate all contributions in all of Ω associated to the
correctors q1

K,l, . . . q
d
K,l in an effective diffusion coefficient whose support is K. This is

done by summing the contributions over the entire domain. We introduce the piecewise

constant tensor A
(l)

: Ω→ Rd×d as

A
(l)

β,α

∣∣∣
K

=

∫
Ω

A (l)
β,α(x,K) dx

=
1

|K|

(∫
K

eβ · Aεeα +

∫
Ω

∇qβK,l · A
εeα

)
, 1 ≤ α, β ≤ d, K ∈ TH .

The LOD (6.166.16) is subsequently replaced by: find uH ∈ VH,0 such that

∀ vH ∈ VH,0,
∫

Ω

∇φP1
j · A

(l)

β,α∇φ
P1
i = F (vH). (6.19)

Despite a more expensive offline stage, the macroscopic problem (6.196.19) has exactly the
same structure as the Petrov-Galerkin MsFEM (7.47.4) and yields a non-intrusive LOD vari-
ant. It has to be noted, however, that well-posedness of the approximate problem (6.196.19)
cannot be guaranteed a priori and can only be checked after the construction of the

matrix A
(l)

.

6.4.3. Non-intrusive methods in other fields of computing. The question of non-
intrusive implementations of multiscale algorithms is an interesting and relevant question
in many more fields of scientific computing than we can discuss here. Beyond the field
of finite element methods, we mention the multiscale finite volume method [106106, 8888], in
which a non-intrusive coupling between the local and global computations is natural, since
the local computations lead to transmissibilities that can be used in a separate, global
finite volume simulator. Other than numerical homogenization methods, there are mixed
finite element methods for multiscale modelling [5050, 1414, 1616] and domain decomposition
techniques (such as the generalized FEM, patches of finite elements, numerical zoom;
see [3939, 8282, 1313]), for which non-intrusive approaches can e.g. be found in [6666, 8787]. Finally,
we would like to mention the reduced basis method for the efficient resolution of param-
eterized PDEs. Non-intrusive adaptations of this method (both for finite element and
finite volume schemes) have been proposed and analysed e.g. in [4848, 4949, 8686].

100



CHAPTER 7

Comparison of the classical and
non-intrusive MsFEM for diffusion

problems

We study in this chapter a particular setting within the general MsFEM framework,
namely that of MsFEMs for diffusion problems. To this end, we adopt in this chapter the
choice aεK = aε,diff

K defined in Example 5.25.2, and for the sampling form we set sεK = aε,diff
K .

7.1. The general framework for diffusion problems

For the convenience of the reader, we first give an explicit description of the simplifications
of the general framework in the diffusion setting. In Definition 5.115.11 and 5.165.16 for the
numerical correctors, Equation (5.55.5) reduces to

aε,diff
K

(
χε,α,•SK

, w
)

= −aε,diff
K (xα, w) , (7.1)

for all w ∈ VK,0 (where VK,0 is the sampling test space for either the MsFEM-lin or the
MsFEM-CR; see Examples 5.125.12 and 5.135.13) when 1 ≤ α ≤ d, whereas χε,0,•SK

= 0. (The
notation χε,αK will be used in the absence of oversampling, see Remark 5.175.17.) This means
that Λε,0

K = 1 in (6.36.3). Consequently, regarding the formulation of the effective P1 problem,
only the effective diffusion coefficient does not vanish in (6.66.6) and (6.106.10). Its definition
in (6.106.10) is identical to the formula in (4.124.12) for the applicable choice of the numerical
correctors.

The definition of the multiscale basis functions by (5.105.10) reduces to (4.104.10) (again
upon replacing the numerical correctors χε,αK by the relevant ones for the MsFEM under
consideration). Hence, we can associate a multiscale counterpart in V ε

H to any vH ∈ VH ,
given by

vεH = vH +
∑
K∈TH

d∑
α=1

(∂αvH)|K χε,α,•K . (7.2)

The non-intrusive MsFEM (6.136.13) becomes
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Find uεH ∈ V ε
H,0 such that

∑
K∈TH

aε,diff
K

(
uεH , φ

ε
j

)
= F

(
φP1
j

)
for all 1 ≤ j ≤ N0. (7.3)

Lemma 6.46.4 now amounts to the following.

Lemma 7.1. Let ‘MsFEM’ refer to the MsFEM-lin or the MsFEM-CR, both without
oversampling. The non-intrusive Galerkin MsFEM (7.37.3) coincides with the following
Petrov-Galerkin MsFEM:

Find uεH ∈ V ε
H,0 such that

∑
K∈TH

aε,diff
K

(
uεH , φ

P1
j

)
= F

(
φP1
j

)
for all 1 ≤ j ≤ N0, (7.4)

We will specify for all results in this section to which specific MsFEMs they apply
among the MsFEM-lin and the MsFEM-CR, with or without oversampling. Lemmas 7.27.2
and 7.47.4 and Theorem 7.107.10 are generalizations of results in Chapter 33, where the MsFEM-
lin without oversampling is considered.

7.2. Convergence results

We estimate here the difference between the solutions to the (intrusive) Galerkin ap-
proximation (5.155.15) and the non-intrusive MsFEM (7.37.3), which coincides with the Petrov-
Galerkin MsFEM (7.47.4). We first show coercivity of the effective diffusion tensor A.

Lemma 7.2. Consider the MsFEM-lin or the MsFEM-CR, without oversampling, or
the MsFEM-CR with DOF-continuous oversampling. The effective tensor A defined
by (4.124.12) with the appropriate numerical correctors satisfies

∀ ξ ∈ Rd, m|ξ|2 ≤ ξ · Aξ.

Here, m is the same coercivity constant as in (4.24.2).

Proof. Let ξ = (ξ1, . . . , ξd) ∈ Rd, and let K be any simplex of the mesh TH . We have

|K| ξ · A
∣∣
K
ξ =

d∑
α,β=1

aε,diff
K

(
ξα (xα + χε,αK ) , ξβ

(
xβ + χε,βK

))
=

∫
K

(ξ +∇χξ) · Aε(ξ +∇χξ),

denoting by χξ the function χξ =
d∑

α=1

ξαχ
ε,α
K . Using (4.24.2), we obtain

|K| ξ · A
∣∣
K
ξ ≥ m

∫
K

∣∣ξ +∇χξ
∣∣2 ≥ m |K| |ξ|2 + 2m

∫
K

ξ · ∇χξ.

Using an integration by parts, we see that

∫
K

ξ · ∇χξ =

∫
∂K

χξ n · ξ, where n is the unit

outward normal vector on ∂K. In the case of the MsFEM-lin, the function χξ vanishes
on ∂K. In the case of the MsFEM-CR with DOF -continuous oversampling, or without
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oversampling, the function χξ has average zero on each face of K. Since the factor n · ξ is

constant on each face, the integral again vanishes. In conclusion, we have

∫
K

ξ · ∇χξ = 0.

We thus obtain the inequality ξ · A
∣∣
K
ξ ≥ m|ξ|2. Since K ∈ TH is arbitrary here, this

shows coercivity of A and completes the proof. �

Coercivity of A implies coercivity of the bilinear form adiff on H1
0 (Ω). By an application

of the Lax-Milgram Theorem, we conclude that the (continuous) effective problem (4.144.14)
is well-posed for the MsFEM-lin and the MsFEM-CR without oversampling, and for the
MsFEM-CR with DOF -continuous oversampling.

Remark 7.3. The proof of the above lemma does not extend to the MsFEM-lin with
oversampling, because there is no global information about χε,αK on the faces of K.

The following lemma provides a variational characterization of the bijection (7.27.2) on
the space V ε

H,0.

Lemma 7.4. Consider the MsFEM-lin or the MsFEM-CR, both without oversampling.
Let vεH ∈ V ε

H,0. The unique vH ∈ VH,0 for which (7.27.2) holds, is the unique solution
in VH,0 to the problem

∀wH ∈ VH,0, adiff(vH , wH) = aε,diff(vεH , wH). (7.5)

In addition, we have, with the constants m and M from (4.24.2), the estimate

‖∇vH‖L2(TH) ≤
M

m
‖∇vεH‖L2(TH).

Proof. Let vH ∈ VH,0 be the unique element of VH,0 such that vεH and vH satisfy (7.27.2).
Take any wH ∈ VH,0. Using that ∇vH and ∇wH are piecewise constant, we compute

aε,diff(vεH , wH) =
∑
K∈TH

d∑
α,β=1

(∂βwH)|K aε,diff
K

(
xα + χε,αK , xβ

)
(∂αvH)|K .

For the MsFEM without oversampling, the numerical correctors belong to the sampling
test space VK,0. We can thus use (7.17.1) to obtain

∀ 1 ≤ α, β ≤ d, aε,diff
K

(
xα + χε,αK , xβ

)
= aε,diff

K

(
xα + χε,αK , xβ + χε,βK

)
.

Using the definitions of A in (4.124.12) and of adiff in (4.164.16) (we recall that these expressions
hold true here upon replacing the numerical correctors by those under consideration), we
conclude that

aε,diff(vεH , wH) =
∑
K∈TH

d∑
α,β=1

∫
K

∂βwH Aβ,α ∂αvH = adiff(vH , wH).

It follows that vH satisfies (7.57.5). In addition, in view of the coercivity of A established in
Lemma 7.27.2 and by the Lax-Milgram Theorem, problem (7.57.5) uniquely characterizes vH .

The estimate on vH follows by testing the characterization (7.57.5) against wH = vH .
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This yields

m ‖∇vH‖2
L2(TH) ≤ adiff(vH , vH) = aε,diff(vεH , vH) =

∑
K∈TH

∫
K

∇vH · Aε∇vεH

≤M
∑
K∈TH

‖∇vH‖L2(K) ‖∇v
ε
H‖L2(K) .

The first inequality follows from coercivity of A and the second inequality from the upper
bound on Aε in (4.24.2) and the Cauchy-Schwarz inequality. With a discrete Cauchy-Schwarz
inequality, we obtain

m ‖∇vH‖2
L2(TH) ≤M

∑
K∈TH

‖∇vH‖L2(K) ‖∇v
ε
H‖L2(K) ≤M ‖∇vH‖L2(TH) ‖∇v

ε
H‖L2(TH) .

The proof is completed upon simplifying by ‖∇vH‖L2(TH). �

For the remainder of this chapter, we consider MsFEMs without oversampling. Let uε,GH
denote the solution to the MsFEM approximation (5.155.15) (we use the superscript G to
stress that this is a Galerkin approximation) and let uε,PG

H denote the solution to the non-
intrusive MsFEM (7.37.3) (which is equivalent to the Petrov-Galerkin MsFEM (7.47.4), since
we do not apply the oversampling technique).

We first study the error uε,GH −u
ε,PG
H when ε→ 0. In this case, we do not need a rate of

convergence in H and we shall relax the condition f ∈ L2(Ω) to the condition f ∈ H−1(Ω).
Then the definition of the linear form F in (4.44.4) has to be adapted. Given f ∈ H−1(Ω),

there exist f0, f1, . . . , fd ∈ L2(Ω) such that F (v) =
∑
K∈TH

(∫
K

f0 v +
d∑

β=1

∫
K

fβ ∂βv

)
,

which is in fact well-defined for any v ∈ H1(TH) and thus in particular on VH , the
underlying affine space for the MsFEM, and the multiscale space V ε

H .
We consider in Theorem 7.57.5 a sequence of diffusion tensors Aε that H-converges to a

constant diffusion tensor. This means that uε converges weakly in H1(Ω) as ε→ 0 towards
a function u? ∈ H1

0 (Ω), solution to the homogenized problem (4.254.25), and Aε∇uε ⇀ A?∇u?
weakly in L2(Ω).

Theorem 7.5. Consider the MsFEM-lin or the MsFEM-CR, both without oversampling.
Suppose that (Aε)ε>0 is a sequence of matrices satisfying (4.24.2) that H-converges to a

constant matrix. Let f ∈ H−1(Ω). Then
∥∥∥uε,GH − uε,PG

H

∥∥∥
H1(TH)

→ 0 as ε→ 0.

Remark 7.6. A rate of convergence can be obtained under some additional structural
assumptions on Aε; see Theorem 7.127.12.

We need a few auxiliary results to establish Theorem 7.57.5. The first result below
concerns the convergence of the numerical correctors as ε→ 0.

Lemma 7.7. Suppose that Aε H-converges to a constant homogenized matrix A?. Con-
sider the MsFEM-lin or the MsFEM-CR, both without oversampling. Then, for all
K ∈ TH and all 1 ≤ α ≤ d, we have χε,αK ⇀ 0 weakly in H1(K) as ε→ 0.

Proof. We introduce for each α = 1, . . . , d the function τ ε,α = xα+χε,αK . Then (7.17.1) implies
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the equation −div(Aε∇τ ε,α) = 0 in K. For the MsFEM-lin, the boundary conditions of
the local problems for χε,αK (see (5.65.6) with SK = K) lead to τ ε,α = xα on ∂K. The
boundary conditions associated to the MsFEM-CR follow from (5.75.7) and are as follows:

the flux ~n·Aε∇τ ε,α is constant on each face ofK (but may depend on ε) and

∫
h

τ ε,α =

∫
h

xα

for all faces h of K.

It follows that the homogenized limit τ ?,α of τ ε,α satisfies the equation

−div(A?∇τ ?,α) = 0 in K.

For the MsFEM-lin, the boundary condition for the homogenized problem is τ ?,α = xα

on ∂K. The boundary conditions associated to the MsFEM-CR are a constant flux

~n · A?∇τα,? on each face of K and

∫
h

τ ?,α =

∫
h

xα for all faces h of K.

Both for the MsFEM-lin and the MsFEM-CR, the homogenized equation has a unique
solution, which is easily seen to be τ ?,α = xα, because A? is constant. Therefore, τ ?,α ⇀ xα

weakly in H1(K). Subtracting the function xα, we deduce the desired convergence. �

We will also use the following result, which is a straightforward generalization of the
extended Poincaré inequality in [7373, Lemma 3.31].

Lemma 7.8. Let W be the subspace of H1(TH) defined by

W =

{
v ∈ H1(TH)

∣∣∣∣ ∫
h

JvK = 0 for each face h of Th,

∫
h

v = 0 for each face h ⊂ ∂Ω

}
.

There exists a constant C > 0 depending only on Ω but not on H such that

∀ v ∈ W, ‖v‖L2(Ω) ≤ C ‖∇v‖L2(TH).

Note that the multiscale space V ε
H,0 is contained in W for both the MsFEM-lin and

the MsFEM-CR, without oversampling. Finally, we provide a number of useful bounds
for the difference between uε,GH and uε,PG

H .

Lemma 7.9. Let f ∈ H−1(Ω) and consider the MsFEM-lin or the MsFEM-CR, both
without oversampling. Let eεH = uε,GH − u

ε,PG
H . There exists a unique eP1

H ∈ VH,0 and a
linear combination of the numerical correctors, that we denote by eosc

H , such that eεH =
eP1
H + eosc

H , and it holds, with the constants m,M from (4.24.2) and the constant C from
Lemma 7.87.8,

aε,diff(eεH , e
ε
H) = F (eosc

H ), (7.6)

‖∇eosc
H ‖L2(K) ≤

M

m

∥∥∇eP1
H

∥∥
L2(K)

for all K ∈ TH , (7.7)∥∥∇eP1
H

∥∥
L2(TH)

≤ M

m
‖∇eεH‖L2(TH) , (7.8)

‖∇eεH‖L2(TH) ≤
√

1 + C2
M2

m3
‖F‖L (H1(TH)), (7.9)

where ‖·‖L (H1(TH)) is the operator norm on L (H1(TH)).
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Proof. Since the numerical approximations uε,GH and uε,PG
H both belong to the multiscale

approximation space V ε
H,0, it follows that eεH ∈ V ε

H,0, and we are in a position to use (7.27.2)

on V ε
H,0: there exists a unique eP1

H ∈ VH,0 such that

eεH = eP1
H + eosc

H , eosc
H =

∑
K∈TH

d∑
α=1

(
∂αe

P1
H

)∣∣
K
χε,αK . (7.10)

Applying Lemma 7.47.4 to vεH = eεH ,we immediately obtain (7.87.8).
Now recall that the numerical correctors are defined by (7.17.1). Using the fact that ∇eP1

H

is piecewise constant, this implies that eosc
H satisfies the following variational problem in

each K ∈ TH :
∀w ∈ VK,0, aε,diff

K (eosc
H , w) = −aε,diff

K

(
eP1
H , w

)
.

Without oversampling, it holds χε,αK ∈ VK,0 for each 1 ≤ α ≤ d, so eosc
H can be used as a

test function here. With the bounds in (4.24.2), implying continuity and coercivity of aε,diff
K ,

we obtain (7.77.7).
Next using (7.107.10), we can write

aε,diff(eεH , e
ε
H) = aε,diff

(
uε,GH , eεH

)
− aε,diff

(
uε,PG
H , eP1

H

)
− aε,diff

(
uε,PG
H , eosc

H

)
.

We deduce from (6.146.14) that aε,diff
(
uε,PG
H , eosc

H

)
= 0. Since eεH can be used as a test

function in the discrete problem (5.155.15) and eP1
H in (7.47.4), we have aε,diff

(
uε,GH , eεH

)
−

aε,diff
(
uε,PG
H , eP1

H

)
= F (eosc

H ), which shows (7.67.6). It follows that

aε,diff(eεH , e
ε
H) ≤ ‖F‖L (H1(TH)) ‖eosc

H ‖H1(TH) ≤ ‖F‖L (H1(TH))

√
1 + C2 ‖∇eosc

H ‖L2(TH) ,

where C is the Poincaré constant from Lemma 7.87.8. Now applying (7.77.7) and (7.87.8) on the
right, and using coercivity of aε,diff on the left, we find

m ‖∇eεH‖
2
L2(TH) ≤

√
1 + C2

(
M

m

)2

‖F‖L (H1(TH)) ‖∇eεH‖L2(TH) ,

from which we deduce (7.97.9). �

Proof of Theorem 7.57.5. Let eεH = uε,GH − uε,PG
H . We will use (7.107.10). By Lemma 7.97.9, we

have (7.67.6). Combined with (4.24.2) and Lemma 7.87.8, this implies

C
∥∥∥uε,GH − uε,PG

H

∥∥∥2

H1(TH)
≤ aε,diff(eεH , e

ε
H) = F (eosc

H ) =
∑
K∈TH

d∑
α=1

(
∂αe

P1
H

)∣∣
K
F (χε,αK ) .

By Lemma 7.77.7, we know that χε,αK ⇀ 0 as ε → 0 weakly in H1(K) for each K and for
each α. Therefore, F (χε,αK ) → 0 as ε → 0. In view of (7.87.8) and (7.97.9), every deriva-
tive

(
∂αe

P1
H

)∣∣
K

is bounded independently of ε. It follows that F (eosc
H )→ 0 as ε→ 0. The

conclusion now follows from the above inequality. �

We next study the convergence of uε,GH − u
ε,PG
H as H → 0. To this end, we return to

the original hypotheses of Chapter 44, i.e., f ∈ L2(Ω). Note that for the next result, the
additional H-convergence hypothesis of Theorem 7.57.5 for Aε is not needed.
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Theorem 7.10. Consider the MsFEM-lin or the MsFEM-CR, both without oversam-
pling. Assume that f ∈ L2(Ω). Then there exists a constant C independent of ε, H
and f such that ∥∥∥uε,GH − uε,PG

H

∥∥∥
H1(TH)

≤ CH‖f‖L2(Ω).

To prove this lemma, we will use some Poincaré-Friedrichs inequalities, for which we
refer e.g. to [112112, Lemma 4.3], [7373, Lemma B.66].

Proof. Let eεH = uε,GH −u
ε,PG
H and recall the results of Lemma 7.97.9. We have eεH = eP1

H + eosc
H

(see (7.107.10)), and (7.67.6) provides, for f ∈ L2(Ω), the equality aε,diff(eεH , e
ε
H) = (f, eosc

H )L2(Ω) .
Hence, by the Cauchy-Schwarz inequality,

aε,diff(eεH , e
ε
H) ≤ ‖f‖L2(Ω) ‖eosc

H ‖L2(Ω) . (7.11)

For the MsFEM-lin (without oversampling), it holds that χε,αK = 0 on ∂K for all mesh
elements K and all 1 ≤ α ≤ d, and it follows that eosc

H = 0 on the boundaries of all mesh

elements. In the case of the MsFEM-CR (without oversampling), it holds that

∫
h

χε,αK = 0

for all faces h of the mesh and all 1 ≤ α ≤ d. (Note that the average of χε,αK over any face h
is well-defined even if χε,αK is in general discontinuous along faces.) Since ∂αe

P1
H is constant

on each mesh element K, we also have

∫
h

eosc
H = 0. Hence, both for the MsFEM-lin and

for the MsFEM-CR, an appropriate variant of the Poincaré-Friedrichs inequality yields a
constant C independent of K but dependent on the regularity of the mesh, such that

‖eosc
H ‖L2(K) ≤ CH ‖∇eosc

H ‖L2(K) . (7.12)

Upon inserting the inequalities (7.127.12), (7.77.7) and (7.87.8) into (7.117.11), it follows that

aε,diff(eεH , e
ε
H) ≤ CH

(
M

m

)2

‖∇eεH‖L2(TH) ‖f‖L2(Ω).

One more time using the lower bound in (4.24.2), we find

‖∇eεH‖L2(TH) ≤ CH
M2

m3
‖f‖L2(Ω).

The proof is concluded by application of Lemma 7.87.8 to eεH . �

7.3. Convergence results in the periodic setting

We now study the MsFEM-lin applied to the periodic setting introduced in Section 4.74.7
in some more detail. To the best of our knowledge, all convergence results known for the
MsFEM are obtained in this periodic setting (see e.g. [7070, 100100, 6969, 99, 9494, 112112, 113113, 116116,
115115]). The analysis in these works relies on the explicit description of the microstructure
that we summarized in Section 4.74.7. In particular, recall the existence of a homogenized
diffusion coefficient given by (4.244.24) and the first-order two-scale expansion (4.264.26). We
emphasize, however, that the application of the MsFEM does not require the periodic
setting, nor does it even suppose the PDE under consideration to be embedded in a
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sequence of PDEs for a family of parameters ε that tend 0. We refer to Section 7.47.4 for
examples of such numerical experiments.

Applying the MsFEM to a sequence of matrices Aε = Aper(·/ε), we obtain a sequence
of effective tensors A(ε). Each A(ε) is defined by (4.124.12) for a fixed value of ε. We have
the following convergence result.

Lemma 7.11. Let A(ε) be the sequence of effective tensors obtained in (4.124.12) by ap-
plying the MsFEM-lin without oversampling to Aε = Aper(·/ε). We have A(ε) → A?

as ε→ 0.

Proof. We fix a mesh element K ∈ TH . First observe that A(ε) and A? satisfy

Aβ,α(ε)
∣∣
K

=
1

|K|
aε,diff
K

(
xα + χε,αK , xβ

)
, A?β,α =

∫
Q

eβ · Aper(eα +∇wα), (7.13)

for each 1 ≤ α, β ≤ d, in view of the variational formulations satisfied by χε,αK (solution to
the PDE (4.114.11)) and wα (solution to the PDE (4.234.23)). We recall that Q is the unit cube
of Rd.

Now let τ ε,α = xα+χε,αK . In view of Lemma 7.77.7, τ ε,α ⇀ τ ?,α as ε→ 0 weakly in H1(K),
with τ ?,α(x) = xα. Writing the two-scale expansion (4.264.26) of τ ε,α, we thus have, when ε
is small,

τ ε,α(x) ≈ τ ?,α(x) + ε
d∑

γ=1

wγ

(x
ε

)
∂γτ

?,α(x) = xα + εwα

(x
ε

)
,

and the difference tends to zero in H1(K) as ε→ 0. Inserting this convergence in (7.137.13),
we deduce that

lim
ε→0

Aβ,α(ε)
∣∣
K

= lim
ε→0

1

|K|

∫
K

eβ · Aper
(x
ε

)(
eα +∇wα

(x
ε

))
dx = A?β,α.

The convergence to the mean on the unit cube in the last equality follows from the Q-
periodicity of the function eβ · Aper (eα +∇wα). �

The following theorem studies the convergence of uε,GH − uε,PG
H towards 0 as ε → 0

for the MsFEM-lin without oversampling. As was stated in Remark 7.67.6, thanks to the
periodic setting, we now obtain a rate for the convergence stated in Theorem 7.57.5.

Theorem 7.12. Let f ∈ L2(Ω). Consider the MsFEM-lin without oversampling.
For Aε = Aper(·/ε) sufficiently regular, we have∥∥∥uε,GH − uε,PG

H

∥∥∥
H1(Ω)

≤ Cε ‖f‖L2(Ω),

where the constant C depends on the dimension d and the constants m,M in (4.24.2), but
not on ε, H or f .

Proof. Let eεH = uε,GH − uε,PG
H . Lemma 7.97.9 applies, so we can use (7.67.6) and a Cauchy-

Schwarz inequality to find
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aε,diff(eεH , e
ε
H) ≤ ‖f‖L2(Ω) ‖eosc

H ‖L2(Ω) = ‖f‖L2(Ω)

∥∥∥∥∥ ∑
K∈TH

d∑
α=1

(
∂αe

P1
H

)∣∣
K
χε,αK

∥∥∥∥∥
L2(Ω)

. (7.14)

Next we seek a bound on χε,αK in L2(K). Using (4.114.11) and (4.234.23), we have

div
(
Aper

( ·
ε

)
∇
[
χε,αK − εwα

( ·
ε

)])
= 0 in K.

Since χε,αK vanishes on ∂K (recall that we consider the MsFEM-lin without oversampling),
the maximum principle [8181, Theorem 8.1] yields

∥∥∥χε,αK − εwα ( ·ε)∥∥∥L2(K)
≤ sup

∂K

∣∣∣χε,αK − εwα ( ·ε)∣∣∣
√∫

K

1 = ε |K|1/2 sup
∂K

∣∣∣wα ( ·
ε

)∣∣∣ .
When Aper is sufficiently regular, the corrector functions wα are uniformly bounded. Then
for each K ∈ TH and each 1 ≤ α ≤ d, we have

‖χε,αK ‖L2(K) ≤
∥∥∥χε,αK − εwα ( ·ε)∥∥∥L2(K)

+ ε
∥∥∥wα ( ·

ε

)∥∥∥
L2(K)

≤ Cε|K|1/2.

Since all χε,αK have disjoint supports, we can use the latter estimate to bound∥∥∥∥∥ ∑
K∈TH

d∑
α=1

(
∂αe

P1
H

)∣∣
K
χε,αK

∥∥∥∥∥
2

L2(Ω)

=
∑
K∈TH

∥∥∥∥∥
d∑

α=1

(
∂αe

P1
H

)∣∣
K
χε,αK

∥∥∥∥∥
2

L2(K)

≤ Cε2
∑
K∈TH

d∑
α=1

|K|
((
∂αe

P1
H

)∣∣
K

)2

= Cε2
∑
K∈TH

d∑
α=1

∥∥∂αeP1
H

∥∥2

L2(K)

= Cε2
∥∥∇eP1

H

∥∥2

L2(Ω)
. (7.15)

We insert (7.157.15) combined with (7.87.8) into (7.147.14) to find

aε,diff(eεH , e
ε
H) ≤ Cε ‖f‖L2(Ω) ‖∇eεH‖L2(Ω) .

Applying the coercivity property in (4.24.2) on the left-hand side and a Poincaré inequality
on Ω, we obtain the desired result. �

The classical error estimate for the Galerkin MsFEM approach (4.64.6) is obtained in the
periodic setting and under some regularity assumption on Aper and on the homogenized
limit u?. The bound obtained in [6969, Theorem 6.5] reads∥∥∥uε − uε,GH ∥∥∥

H1(Ω)
≤ C

(
H + ε+

√
ε/H

)
, (7.16)

for some C independent of ε and H. Theorem 7.127.12 shows that the same estimate holds
true for uε,PG

H , the Petrov-Galerkin MsFEM approximation, under the correct regularity
assumptions. We note that the bound for uε,PG

H can also be inferred from Theorem 7.107.10.
However, since the MsFEM is applied in the regime where ε < H, the result of Theo-
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rem 7.127.12 is more precise, thanks to the extra structural assumptions made on the diffusion
tensor Aε.

7.4. Numerical study of non-intrusive MsFEMs

In this section, we compare the Galerkin MsFEM (5.155.15), its non-intrusive approxima-
tion (6.136.13) and the Petrov-Galerkin MsFEM (6.16.1) on a concrete numerical example in
2D (d = 2). The numerical approximations obtained for these various MsFEMs shall be
denoted uε,GH , uε,G-ni

H and uε,PG
H , respectively.

7.4.1. Description of the numerical experiments. We consider the pure diffusion equa-

tion (4.14.1) on the domain Ω = (0, 1)× (0, 1). Thus, the local bilinear forms are aεK = aε,diff
K

defined in Example 5.25.2, where we consider the three diffusion tensors

Aε,per(x) = νε(x) Id, νε(x) = 1 + 100 cos2 (π x1/ε) sin2 (π x2/ε), (7.17a)

Aε,lp(x) =
(
1 + cos2 (2πx1)

)
Aε,per(x), (7.17b)

Aε,np(x) = νε,np(x) Id, (7.17c)

νε,np(x) = 1 +
(
1 + 100 cos2 (π x1/ε) sin2 (π x2/ε)

)
cos2

(
x2

1 + x2
2

ε

)
.

We fix f(x) = sin (x1) sin (x2).
The coefficient Aε,per is ε-periodic with period ε = π/150 ≈ 0.02. The coefficient Aε,lp is

locally periodic and, although a homogenized coefficient exists (see [2828]), it is not constant.
Consequently, a certain number of lemmas established in Chapter 77 are not known to hold
true. Finally, we include the coefficient Aε,np as an example of a multiscale problem for
which we are not aware of any explicit homogenization results. We will see nevertheless
that the non-intrusive MsFEMs that we introduced above provide good approximations
compared to their intrusive G-MsFEM counterparts for all test cases.

A reference solution uεh is computed on a uniform 1024 × 1024 mesh Th by means of
a standard P1 finite element method using FreeFEM++ [9191]. The mesh Th (as well
as the coarse mesh introduced below) consists of squares cut in two along a diagonal
that is in the same direction for all squares, i.e., such as the meshes in Figure 5.15.1. The
FreeFEM++ scripts to perform all different MsFEMs can be found at [2929].

We compare the reference solution uεh to MsFEM solutions obtained on a coarse
mesh TH for varying H. The mesh TH is a uniform 1/H × 1/H triangulation of Ω.
We test the MsFEM-lin and the MsFEM-CR using the sampling operator sεK = aε,diff

K .
All oversampling methods in this chapter use a homothety ratio of 3 for the construction
of the oversampling patches in Definition 5.75.7. A precise definition of the associated basis
functions can be found in Examples 5.245.24 and 5.255.25. The mesh Th is a refinement of TH

for all values of H. Therefore, for each K ∈ TH , we use the corresponding submesh
of Th (consisting of all triangles included in K) for the numerical approximation of the
numerical correctors in (5.55.5) by P1 Lagrange finite elements.

Remark 7.13. We provide a few remarks on the computation of the error, which takes
place in the post-processing step of the MsFEM. Evidently, these computations have
to be carried out by integration on the fine scale and one may try to perform these
computations on the global mesh Th. However, the legacy code does not, in general,
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operate on the global fine mesh. Moreover, we stress that the approximation uεH is in
general discontinuous across element edges (for the MsFEM-CR, and for all MsFEMs
with oversampling), and can therefore not be represented globally by e.g. a piecewise P1

function on the fine mesh Th (even if one supposes that Th is conformal). Thus, one has
to compute the error element by element, using the code for the microscale, according
to the sum

‖uε − uεH‖
2
H1(TH) =

∑
K∈TH

‖uε − uεH‖
2
H1(K) .

To do so, Equation (6.96.9) can be used on each element K to find the correct values of uεH ,
and the global fine mesh Th is never used.

7.4.2. Results. We first compare the approximations uε,GH and uε,G-ni
H for varying H in

Figure 7.17.1 for MsFEMs without oversampling and MsFEMs with DOF -continuous over-
sampling. Without oversampling (OS), the approximation uε,G-ni

H equals uε,PG
H due to

Lemma 6.46.4. We also report the error committed by the G-MsFEM. We observe that,
without oversampling, the difference uε,GH − u

ε,G-ni
H is much smaller than this error. As a

result, the errors obtained with the G-MsFEM and its non-intrusive approximation are of
the same size. Indeed, the error of the non-intrusive G-MsFEM-lin deviates from the error
of the G-MsFEM-lin by at most 0.05% for all tests that we report here. For the MsFEM-
CR, this is at most 1.2%. In both cases, the two MsFEM variants thus have practically
the same accuracy. This is in agreement with the theoretical result of Theorem 7.107.10.

The estimates obtained in Chapter 77 do not apply to MsFEMs with oversampling.
From Figure 7.17.1, we can see that the difference uε,GH − u

ε,G-ni
H is still small with respect to

the error committed by the G-MsFEM when DOF -continuous oversampling is applied.
The approximation errors for the non-intrusive G-MsFEMs with DOF -continuous over-
sampling differ by at most 1.3% from the error of the G-MsFEM. Similar conclusions
hold for the MsFEM-lin with DOF -extended oversampling. The difference between the
G-MsFEM and the non-intrusive G-MsFEM is larger for the MsFEM-CR with DOF -
extended oversampling. We do not include these results in the comparison of Figure 7.17.1
because both methods perform particularly badly when compared to the G-MsFEM with-
out oversampling.

Let us also point out the qualitative and quantitative similarities between the perfor-
mance of the MsFEM for the periodic and the non-periodic diffusion coefficients. Although
the study of the homogenized limit of uε becomes increasingly difficult for the various co-
efficients (7.17a7.17a) to (7.17c7.17c), the non-intrusive approximation does not deteriorate the
accuracy of the MsFEM in these numerical tests.

Before moving on to a comparison with the Petrov-Galerkin MsFEMs with oversam-
pling, let us discuss a phenomenon in Figure 7.17.1 and 7.27.2 known as the ‘resonance effect’
in the literature, preventing convergence of the MsFEM if the coarse scale H is close to ε.
Upon further decreasing H, convergence is found only when H is sufficiently small with
respect to the microscale ε, in which case we are in the regime of classical FEMs. From a
theoretical point of view, this is explained by the term

√
ε/H in the error estimate (7.167.16)

(or ε/H for the MsFEM-lin with oversampling; see [7070]). We note that the same error
estimate was obtained in [112112] for the MsFEM-CR (without oversampling). Figure 7.27.2
shows that the resonance effect is more pronounced for the MsFEM-lin with oversampling
than for the MsFEM-CR with oversampling.

We consider next in Figure 7.27.2 MsFEMs with the two different oversampling strategies
of Section 5.1.35.1.3: DOF -continuous and DOF -extended oversampling. The PG-MsFEM
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Figure 7.1: Solid lines: difference between the Galerkin MsFEM approximation (uε,GH de-
fined by (5.155.15)) and the non-intrusive Galerkin MsFEM approximation (uε,G-ni

H defined
by (6.136.13)), without oversampling (no OS) and with DOF-continuous oversampling (OSc),
for the diffusion coefficients in (7.177.17) as the mesh size H varies. Dashed lines: error of
the Galerkin MsFEM with respect to the reference solution. All values are normalized with
respect to the H1 norm of the reference solution.
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variant, with or without oversampling, is completely equivalent to its non-intrusive im-
plementation by virtue of Theorem 6.26.2. With oversampling, however, it does not coincide
with the (intrusive or non-intrusive) G-MsFEM.

With oversampling, the matrices of the linear systems for the G-MsFEM and PG-
MsFEM are different; Lemma 6.46.4 does not apply. The result is that the differences uε,GH −
uε,PG
H are larger than the differences uε,GH − u

ε,G-ni
H . This is reflected in the numerical errors

of the methods. We show the errors of the PG-MsFEM and the G-MsFEM with respect
to the reference solution uεh in Figure 7.27.2. (The non-intrusive G-MsFEM is too close to
the G-MsFEM to be distinguishable on the scale of Figure 7.27.2 for all MsFEMs except
the MsFEM with DOF -extended oversampling.) The G-MsFEM without oversampling is
also shown to highlight the effect of oversampling.

Let us first consider the two different oversampling strategies. For all Galerkin Ms-
FEMs, it is clear that the DOF -continuous variant performs (much) better than the
DOF -extended variant. For the Petrov-Galerkin MsFEMs, the difference between the
two oversampling strategies is smaller, but the DOF -continuous version of oversampling
continues to perform better over all.

Although clear differences in the performance of the Galerkin and Petrov-Galerkin
MsFEMs with DOF -continuous oversampling can be observed, these differences are small
and both MsFEM approaches have a comparable accuracy. There is no systematic dis-
advantage in choosing the non-intrusive PG-MsFEM over the (intrusive or non-intrusive)
G-MsFEM. Moreover, the non-periodic test cases again show the robustness of all MsFEM
variants when going beyond the setting of periodic homogenization. In particular, this
demonstrates the robustness of the non-intrusive approaches for the MsFEM developed
in this thesis.
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Figure 7.2: Comparison of the errors of the (intrusive) Galerkin MsFEM (5.155.15) and the
(non-intrusive) Petrov-Galerkin MsFEM (6.16.1) for the diffusion coefficients in (7.177.17) as
the mesh size H varies. Different oversampling strategies are applied: DOF-continuous
(OSc, Definition 5.165.16) and DOF-extended (OSe, Definition 5.115.11). The Galerkin MsFEM
without OS is included to illustrate the effect of the OS strategies.
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CHAPTER 8

Some further considerations

In this chapter we collect two topics related to the developments of Chapters 44 to 77.
We first discuss in Section 8.18.1 alternative oversampling techniques for the MsFEM-CR
that were not introduced in the published work [3131], and then consider some aspects of a
non-intrusive implementation of higher-order MsFEMs in Section 8.28.2.

8.1. Different oversampling techniques for the MsFEM-CR

In this section we propose two variations on the oversampling technique for the MsFEM-
CR that was first defined in the general framework of Chapter 55. The difference resides in
the definition of the numerical correctors for those mesh elements that touch the bound-
ary ∂Ω. The oversampling variants presented below have not been included in the presen-
tation of the general MsFEM framework of this thesis (even though the framework could
be modified accordingly), because we followed the presentation of the published work [3131].

We focus on the pure diffusion problem of Example 5.25.2 as in Chapter 77. Any multiscale
function is then defined in terms of a P1 Crouzeix-Raviart function vH as in (7.27.2), i.e.,

vεH = vH +
∑
K∈TH

d∑
α=1

(∂αvH)|K χε,α,•K , (8.1)

We recall that • ∈ {e, c} denotes the choice of DOF -extended or DOF -continuous over-
sampling according to Definitions 5.115.11 and 5.165.16. Definitions of the numerical correctors
for diffusion problems used in Chapter 55 were given in Examples 5.135.13 and 5.195.19. Different
numerical correctors are proposed in this section.

Motivation for a different oversampling strategy. In (8.18.1), the coarse part vH of the
multiscale function is used for the resolution of the effective problem resulting from the
MsFEM (6.126.12). A difference between the MsFEM-lin and the MsFEM-CR is that the
Dirichlet boundary conditions of the exact solution are respected exactly by the P1 La-
grange space (corresponding to the MsFEM-lin), but only in a weak sense (on average on
each face of the mesh lying on ∂Ω) by the P1 Crouzeix-Raviart space. The convergence
analysis for both the P1 Lagrange and Crouzeix-Raviart FEMs is well-established (see,
e.g., [7373, Theorems 3.16 and 3.38]) and, in spite of this difference in the treatment of the
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boundary conditions, both methods commit an error of order H in the approximation of
the effective PDE. The oscillatory behaviour of the solution uε is encoded in the numerical
correctors.

The purpose of oversampling is to better reflect the oscillations of uε near the mesh ele-
ment boundaries in the numerical correctors. The oversampling strategy for the MsFEM-
CR of Chapter 55 does not exploit the fact that the exact boundary conditions of uε are
known along ∂Ω (contrary to the MsFEM-lin, where the numerical correctors are always
defined with homogeneous Dirichlet conditions for all mesh elements). Therefore, the
oversampling strategy does not seem optimal. We thus propose below two different ways
to incorporate (strong) Dirichlet conditions on ∂Ω in the numerical correctors, rather than
the weak boundary conditions that are used in the definitions of Chapter 55, to which we
shall refer as “weak boundary condition” (WBC) oversampling. Our numerical results at
the end of this section show that other oversampling strategies can indeed perform better
than the WBC oversampling variant.

The “vanishing boundary condition” variant. Let K ∈ TH be a mesh element and SK
its associated oversampling patch. The first option we consider is to impose the same
Dirichlet conditions as those for the correctors of the MsFEM-lin on those faces of SK
that lie on ∂Ω. We call this option the “vanishing boundary condition” variant because
the numerical correctors vanish on ∂Ω. We recall the distinction between the set of dilated
faces Fd(SK) of SK and the set of additional faces Fa(SK) that was made in Section 5.4.25.4.2.
Note that the set of additional faces Fa(SK) only contains faces lying on ∂Ω, since they
are obtained from intersecting a homothetic trasformation of K with ∂Ω. On the other
hand, some dilated faces of SK may also lie on ∂Ω. The definition of the numerical
correctors in Examples 5.135.13 and 5.195.19 should thus be modified as follows to impose strong
Dirichlet conditions on ∂Ω.

Definition 8.1. For all 1 ≤ α ≤ d, the vanishing boundary condition (VBC) DOF -
extended numerical corrector χε,α,eK is defined as the restriction to K of the unique
function χε,α,eSK

in H1(SK) such that

−div(Aε∇χε,α,eSK
) = div(Aεeα) in SK ,

χε,α,eSK
= 0 on ∂SK ∩ ∂Ω,

~n · Aε∇χε,α,eSK
= ch − ~n · Aεeα on each h ∈ Fd(SK) that does not lie on ∂Ω,

1

|h|

∫
h

χε,α,eSK
= 0 for each h ∈ Fd(SK) that does not lie on ∂Ω,

where the constants ch are uniquely determined by the above problem. We define the
VBC DOF -continuous numerical corrector χε,α,cK as the restrction to K of the solu-
tion to the same problem where the average condition in the last line is replaced by
1

|h|

∫
h

χε,α,cK = 0 for each face h ∈ F (K) that does not lie on ∂Ω.

As announced above, when ∂SK∩∂Ω = ∅, this definition coincides with the definition
of the numerical correctors in Chapter 55.

The multiscale functions vεH in (8.18.1) constructed with the VBC numerical correctors
satisfy vεH = vH on ∂Ω, where vH is a P1 Crouzeix-Raviart function and is thus discon-
tinuous along ∂Ω in general. Consequently, the multiscale functions are discontinuous
along ∂Ω in general, and may not reproduce the exact boundary condition of uε on ∂Ω
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even if uε = 0 on ∂Ω. The fact that the boundary conditions is not interpolated exactly
need not be a problem to obtain an accurate FEM. Indeed, the same holds true for the
standard P1 Crouzeix-Raviart FEM, for which the same type of convergence estimates
have been established as for the P1 Lagrange FEM. The numerical results of Figure 8.18.1
confirm that a numerical approximation is obtained with VBC oversampling whose accu-
racy is comparable to that of the MsFEM-lin with oversampling.

The “affine boundary condition” variant. We now present another variant such that
constant boundary conditions on ∂Ω are reproduced exactly by the multiscale space. The
MsFEM-CR (with or without oversampling) implements a boundary condition by fixing
the average of the approximation over each face lying on ∂Ω. Let K ∈ TH be such that
(at least) one of its faces h lies on ∂Ω. If we use DOF -continuous numerical correctors,
we have, for any multiscale function vεH defined in (8.18.1),

1

|h|

∫
h

vεH =
1

|h|

∫
h

vH +
d∑

α=1

(∂αvH)|K
1

|h|

∫
h

χε,α,cK =
1

|h|

∫
e

vH = vH(xc,h),

where xc,h is the centroid of the face h. The MsFEM-CR thus sets the value of vH at xc,h
equal to the average of the boundary condition of the global problem over h. If we want to
encode a constant Dirichlet boundary condition exactly in the multiscale approximation,
we should construct multiscale functions such that vεH = vH(xc,h) on h.

We shall do so now for both DOF -extended and DOF -continuous oversampling. To
find the correct boundary conditions to be used for the numerical correctors, we use the
identity (4.204.20) (noting that we can indeed replace the centroid of K by the centroid of h
here). This yields

vεH = vH(xc,h) +
d∑

α=1

(∂αvH)|K
(
xα − xαc,h + χε,α,•K

)
on h.

Hence, vεH = vH(xc,h) on h if and only if the sum over α vanishes. Since this is to hold
for all vH ∈ VH , we obtain the necessary and sufficient condition, for all 1 ≤ α ≤ d,

xα − xαc,h + χε,α,•K = 0 on h if h lies on ∂Ω. (8.2)

We conclude that, to exactly reproduce a constant Dirichlet condition along ∂Ω, the
numerical correctors have to satisfy the affine Dirichlet condition (8.28.2). Hence, we use
the name “affine boundary condition” variant for the numerical correctors in the next
definition.

Definition 8.2. For all 1 ≤ α ≤ d, the affine boundary condition (ABC) DOF -extended
numerical corrector χε,α,eK is defined as the restriction to K of the unique function χε,α,eSK
in H1(SK) such that

−div(Aε∇χε,α,eSK
) = div(Aεeα) in SK ,

χε,α,eSK
= xαc,h − xα on each h ∈ F (SK) that lies on ∂Ω,

~n · Aε∇χε,α,eSK
= ch − ~n · Aεeα on each h ∈ Fd(SK) that does not lie on ∂Ω,

1

|h|

∫
h

χε,α,eSK
= 0 for each h ∈ Fd(SK) that does not lie on ∂Ω,
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where the constants ch are uniquely determined by the above problem. We define the
ABC DOF -continuous numerical corrector χε,α,cK as the restriction to K of the solu-
tion to the same problem where the average condition in the last line is replaced by
1

|h|

∫
h

χε,α,cK = 0 for each face h ∈ F (K) that does not lie on ∂Ω.

For non-constant boundary conditions on ∂Ω, the choice of ABC numerical correctors
yields an MsFEM approximation that is piecewise constant on the boundary.

Remark 8.3. An ABC adaptation of the numerical correctors for the MsFEM-CR
without oversampling can be defined similarly in order to reproduce constant Dirichlet
conditions on ∂Ω exactly. This corresponds to the original definition of the MsFEM-
CR in [112112]. In this case, however, the Dirichlet condition is not encoded in all mesh
elements touching ∂Ω. Consider for example Figure 5.2a5.2a. The triangle K in this figure
touches ∂Ω in two of its vertices while all its faces lie inside Ω. Changing the boundary
conditions on Ω therefore has no influence on the local problems for this mesh element.
We observed that the ABC variant of the MsFEM-CR without oversampling does not
lead to a significant improvement of its accuracy, in contrast to the oversampling variants
that are reported in Figure 8.18.1.

Numerical results. We compare the performance of the different oversampling strate-
gies defined above in Figure 8.18.1. The corresponding MsFEMs are tested in both the
Galerkin formulation of Definition 5.285.28 and the Petrov-Galerkin formulation of Defini-
tion 6.16.1. (As was observed in Section 7.47.4, the non-intrusive Galerkin MsFEM (6.136.13)
still yields the same accuracy as the Galerkin MsFEM, also for the new oversampling
variants.) The test case corresponds exactly to the one of Section 7.47.4 with the periodic
diffusion coefficient (7.17a7.17a). We show the relative H1 error with respect to the reference
solution for varying coarse mesh sizes H. The homothety ratio used for the definition of
the oversampling patches equals 3, and we only consider DOF -continuous oversampling.
It was observed in the numerical experiments that DOF -continuous oversampling yields
better results than DOF -extended oversampling (and even much better for the Galerkin
MsFEM), like in Section 7.47.4. Finally, we reproduce the results of Section 7.47.4 for the
Galerkin MsFEM-lin with DOF -continuous oversampling for comparison.

We observe in Figure 8.18.1 that both of the new oversampling variants (VBC and ABC)
significantly improve on the MsFEM-CR with oversampling as it was defined in Chap-
ter 55. Moreover, both variations improve on the MsFEM-lin with oversampling in the
regime H > ε (which is the regime of interest for the MsFEM). It can also be seen
that the Galerkin and Petrov-Galerkin formulations of the MsFEM-CR are still close for
all oversampling strategies. The particular choice of the Galerkin MsFEM with ABC
DOF -continuous numerical correctors is the most accurate method in these tests.

8.2. Non-intrusive implementation of a P2 MsFEM

The developments of Chapters 44 to 77 rely to a great extent on the fact that the multiscale
basis functions are expressed (or defined) in terms of piecewise affine functions in (5.105.10).
This was already observed in Remark 5.15.1. We have used at multiple occasions the fact
that the gradients of the P1 basis functions are constant. In this section, we consider a
possible extension of the non-intrusive approach to the higher-order MsFEM of [99]. (To
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Figure 8.1: Comparison of different oversampling strategies for the MsFEM-CR applied
to the diffusion coefficient in (7.17a7.17a) as the mesh size H varies. The Crouzeix-Raviart
MsFEM is considered for DOF-continuous numerical correctors with weak, vanishing and
affine boundary conditions. All methods shown use oversampling and a homothety ratio
of 3. The results of the MFEM-lin correspond to those of Section 7.47.4, without a modified
oversampling strategy.

be precise, we will actually consider a Petrov-Galerkin variant of the method.) Another
high-order MsFEM was proposed in [9494]. We only treat the example of the pure diffusion
equation, which is sufficient to reveal a number of complications in the generalization of
the non-intrusive approach.

8.2.1. Definition of a high-order MsFEM. For the pure diffusion problem (4.14.1), we
recall that the numerical correctors χε,αK (without oversampling) are defined, for 1 ≤ α ≤ d,
by (4.104.10). The multiscale basis functions for the MsFEMs of the previous chapters are
then defined as

φεi |K = φP1
i |K +

d∑
α=1

(∂αφ
P1
i )|Kχε,αK for all K ∈ TH .

The high-order MsFEM of [99] is based on the observation that this is equivalent to the
change of coordinates on K given by

φεi |K (x) = φP1
i

∣∣
K

(x+Xε
K(x)) on K, (8.3)

where we introduce the vector Xε
K = [χε,αK ]dα=1.

Let us now introduce for any integer k > 0 the Pk Lagrange finite element space

V k
H = {vH ∈ C (Ω) | ∀K ∈ TH : vH |K ∈ Pk(K), and vH |∂Ω = 0} .

For any vH ∈ V k
H , the change of coordinates (8.38.3) can be used to define a multiscale

function, on each K ∈ TH , by

vH |K (x) = vH |K (x+Xε
K(x)) on K. (8.4)
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We define the multiscale approximation space

V k,ε
H =

{
vεH | vH ∈ V k

H

}
,

that is used for the definition of a high-order MsFEM.

The MsFEM of [99] is a Galerkin approximation on V ε
H . We have already seen in

Chapter 55 that the computations to obtain an effective finite element scheme are simplified
if we consider a Petrov-Galerkin formulation with standard test functions. The Galerkin
case can be studied similarly. Hence, we consider in this chapter the following MsFEM:
find uεH ∈ V

k,ε
H such that∫

Ω

∇vH · Aε∇uεH =

∫
Ω

f vH for all vH ∈ V k
H . (8.5)

Moreover, we restrict ourselves to the P2 variant of the above MsFEM in this chapter.

To obtain a non-intrusive MsFEM workflow for the above method in the spirit of
Algorithm 6.16.1, the first step, i.e., the computation of the numerical correctors, remains
unchanged. The question that we aim to answer in the following sections is if we can
express the stiffness matrix of the MsFEM in terms of the standard P2 basis functions
and appropriately defined effective quantities. Such a formulation of the stiffness matrix
can be used in a non-intrusive formulation of the P2 MsFEM if the expression for the
stiffness matrix can be computed by a standard P2 finite element code.

Let (φPk
i )1≤i≤N be a basis for V k

H , and for each 1 ≤ i ≤ N , associate a multiscale basis
function φεi to φP2

i according to (8.48.4). The stiffness matrix Aε of the MsFEM (8.58.5) is then
given by

Aεj,i =

∫
Ω

∇φP2
j · Aε∇φεi , 1 ≤ i, j ≤ N . (8.6)

For a non-intrusive implementation of the P2 MsFEM, we must find an expression for
these integrals in terms of integrals of piecewise P2 functions only. We start with a study
of integrals like the one in (8.68.6) for an arbitrary matrix A in Section 8.2.28.2.2. This leads to
a reformulation of the integral that is used to obtain an effective formulation of the P2

MsFEM in Section 8.2.38.2.3.

8.2.2. Exact quadrature for quadratic functions. Fix a mesh element K ∈ TH . Let
A ∈ L∞(K)d×d be any d × d matrix, and let g, h be two arbitrary functions belonging
to P2(K). We look for an equivalent expression of the integral∫

K

∇h · A∇g (8.7)

in terms of integrals of P2(K) functions only. The main ingredient for our reformulation
of the integral is the expansion of g and h around the vertices of a quadrature formula

for K. Let
(
xKl , ω

K
l

)d+1

l=1
be a set of quadrature points and weights such that we have the

equality

∫
K

ϕ =
d+1∑
l=1

ωKl ϕ
(
xKl
)

for any ϕ ∈ P2(K). In particular, it holds

d+1∑
l=1

ωl = |K|. (8.8)
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To simplify the notation, we will write (xl, ωl) instead of (xKl , ω
K
l ) since we consider a

fixed mesh element.

Since g is a polynomial of degree 2, it holds, for all 1 ≤ l ≤ d+ 1,

∇g(x) = ∇g(xl) +
d∑

α=1

(xα − xαl )∂α∇g = ∇g(xl) +D2(g) [x− xl], x ∈ K, (8.9)

where D2g [x− xi] is to be read as a matrix-vector product. Note that the second deriva-
tives of g are constant on K. Clearly, the same expansion holds for h.

Using (8.88.8) and inserting the expansion (8.98.9) in (8.78.7) for g and h, we obtain∫
K

∇h · A∇g =
d+1∑
l=1

ωl
|K|

∫
K

∇h · A∇g

=
d+1∑
l=1

ωl
|K|

∫
K

(
∇h(xl) +D2(h) [x− xl]

)
· A
(
∇g(xl) +D2(g) [x− xl]

)
=

d+1∑
l=1

ωl
|K|

{
∇h(xl) ·

(∫
K

A

)
∇g(xl) +

d∑
α=1

∂α∇h
(∫

K

(xα − xαl )A

)
∇g(xl) +

d∑
α=1

∇h(xl) ·
(∫

K

(xα − xαl )A

)
∂α∇g +

d∑
α,β=1

∂β∇h ·
(∫

K

(
xβ − xβl

)
(xα − xαl )A

)
∂α∇g

}
.

We collect the above moments of A in the three tensors A 0(A) ∈ P0(K, Rd×d), A 1(A) ∈
P1(K, Rd×d×d) and A 2(A) ∈ P2(K, Rd×d×d×d) defined by

A 0(A)α,β =
1

|K|

∫
K

Aβ,α,

A 1(A)α,β,γ(y) =
1

|K|

∫
K

(xγ − yγ)Aβ,α, for l = 1, . . . , d+ 1,

A 2(A)α,β,γ,δ(y) =
1

|K|

∫
K

(xγ − yγ)
(
xδ − yδ

)
Aβ,α, for l = 1, . . . , d+ 1.

(8.10)
With these definitions, the above computations can be summarized as∫

K

∇h · A∇g =
d+1∑
l=1

ωl
{
∂βhA 0(A)α,β ∂αg + ∂γ∂βhA 1(A)α,β,γ ∂αg +

∂βhA 1(A)α,β,γ ∂γ∂αg + ∂δ∂βhA 2(A)α,β,γ,δ ∂γ∂αg
}

(xl) .

(8.11)

Here and in the sequel, we apply the Einstein summation convention to repeated Greek
indices. The right-hand side in (8.118.11) can be interpreted as the application of the quadra-

ture rule
(
xKl , ω

K
l

)d+1

l=1
to the function in curly brackets.
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Note that all terms in the curly brackets are polynomials of degree at most 2. For
instance, ∂βh and ∂αg are polynomials of degree at most 1, and A 0(A)α,β is constant, for

all 1 ≤ α, β ≤ d. Also recall that the quadrature rule
(
xKl , ω

K
l

)d+1

l=1
is exact on P2(K).

Hence, the numerical quadrature on the right-hand side of (8.118.11) is equal to the integral
over K, i.e.,∫

K

∇h · A∇g =

∫
K

∂βhA 0(A)α,β ∂αg + ∂γ∂βhA 1(A)α,β,γ ∂αg +

∂βhA 1(A)α,β,γ ∂γ∂αg + ∂δ∂βhA 2(A)α,β,γ,δ ∂γ∂αg.

(8.12)

In Section 8.2.38.2.3, the identity (8.128.12) will be our main tool in the reformulation of P2

MsFEM as an effective scheme involving only piecewise P2 functions.

Remark 8.4. Even though we derived Equation (8.128.12) with the help of one given
quadrature formula, none of the quantities on the right-hand side depend on this choice.
In particular, the effective tensors A 0(A), A 1(A) and A 2(A) only depend on the ma-
trix A and the mesh element K.

8.2.3. Effective formulation of the P2 MsFEM. In this section, we address the compu-
tation of the stiffness matrix Aεj,i from (8.68.6). Let us fix i and j between 1 and N . First
we compute ∇φεi . The chain rule shows that, for any mesh element K and all x ∈ K,

∇φεi |K (x) = (Id +∇Xε
K(x))∇φP2

i (x+Xε
K(x)),

where ∇Xε
K denotes the matrix

∇Xε
K =

∂1χ
ε,1
K · · · ∂1χ

ε,d
K

...
. . .

...

∂dχ
ε,1
K · · · ∂dχ

ε,d
K

 .

Since ∇φP2
i is piecewise P1, it follows, for all x ∈ K,

∇φεi |K (x) = (Id +∇Xε
K(x))

(
∇φP2

i (x) + D2
(
φP2
i

)∣∣
K
Xε
K(x)

)
. (8.13)

We can thus expand the matrix element Aεj,i as

Aεj,i =
∑
K∈TH

∫
K

∇φP2
j · Aε (Id +∇Xε

K)
(
∇φP2

i +D2
(
φP2
i

)
Xε
K

)
=
∑
K∈TH

∫
K

∇φP2
j · Aε (Id +∇Xε

K)∇φP2
i︸ ︷︷ ︸

=: IK

+

d∑
ζ=1

∫
K

∇φP2
j · Aε (Id +∇Xε

K)χε,ζK ∇
(
∂ζφ

P2
i

)
︸ ︷︷ ︸

=: IIK(ζ)

.

We can compute the terms IK by applying (8.128.12) to the matrix A = (Id +∇Xε
K) for
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each mesh element K. Let us define the tensors A0, A1 and A2 by

A0

∣∣
K

= A0(Id +∇Xε
K),

A1

∣∣
K

= A1(Id +∇Xε
K),

A2

∣∣
K

= A2(Id +∇Xε
K),

for all K ∈ TH . (8.14)

referring to (8.108.10) for detailed definitions. Then it holds, for all K ∈ TH ,

IK =

∫
K

∂βφ
P2
j A0

α,β
∂αφ

P2
i + ∂γ∂βφ

P2
j A1

α,β,γ
∂αφ

P2
i +

∂βφ
P2
j A1

α,β,γ
∂γ∂αφ

P2
i + ∂δ∂βφ

P2
j A2

α,β,γ,δ
∂γ∂αφ

P2
i .

For all K ∈ TH and 1 ≤ ζ ≤ d, we can compute IIK(ζ) by applying (8.128.12) to h = φP2
j ,

g = ∂ζφ
P2
i , and A = (Id +∇Xε

K)χε,ζK . Note that g is affine on K in this case, so all its
second derivatives vanish. Hence, we define the tensors D0 and D1 by

D
α,β,ζ

0

∣∣∣
K

= A0

(
(Id +∇Xε

K)χε,ζK

)α,β
,

D
α,β,ζ,γ

1

∣∣∣
K

= A1

(
(Id +∇Xε

K)χε,ζK

)α,β,γ
,

for all K ∈ TH . (8.15)

Then we can express IIK(ζ) as

IIK(ζ) =

∫
K

∂βφ
P2
j D0

α,β,ζ
∂ζ∂αφ

P2
i + ∂γ∂βφ

P2
j D1

α,β,ζ,γ
∂ζ∂αφ

P2
i .

Remark 8.5. Note that the tensor A2 is symmetric with respect to its third and fourth
index, but that D1 is not.

Now summing all the above contributions, we find

Aεj,i =
∑
K∈TH

∫
K

∂βφ
P2
j A

α,β

0 ∂αφ
P2
i + ∂γ∂βφ

P2
j A

α,β,γ

1 ∂αφ
P2
i +

∂βφ
P2
j

[
A
α,β,γ

1 +D
α,β,γ

0

]
∂γ∂αφ

P2
i + ∂δ∂βφ

P2
j

[
A
α,β,γ,δ

2 +D
α,β,γ,δ

1

]
∂γ∂αφ

P2
i .

(8.16)

Upon introducing, for all K ∈ TH , the effective bilinear form

aP2
K (u, v) =

∫
K

∂βv A
α,β

0 ∂αu+ ∂γ∂βv A
α,β,γ

1 ∂αu+ ∂βv
[
A
α,β,γ

1 +D
α,β,γ

0

]
∂γ∂αu+

∂δ∂βv
[
A
α,β,γ,δ

2 +D
α,β,γ,δ

1

]
∂γ∂αu for all u, v ∈ H2(TH),

we can rewrite the above as the identity

Aεj,i =
∑
K∈TH

aP2
K

(
φP2
i , φ

P2
j

)
.

This corresponds to the P2 discretization of a fourth order PDE. Recall that the original
MsFEM problem (8.58.5) is a discretization of a second order PDE. The structure of the
effective problem is thus considerably more invovled than that of the MsFEM.
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If a standard P2 finite element code is available that can solve general fourth-order
PDEs, one can use it to solve the linear system

AεU ε = FP2 ,

where FP2
j =

∫
Ω

f φP2
j , once the numerical correctors and the effective tensors from (8.148.14)

and (8.158.15) have been computed in the offline stage. Note that, in contrast to the MsFEM
studied in Chapter 66, the effective tensors are no longer all constant, but are piecewise
P2 functions. One should thus compute all their coefficients as input to the legacy FEM
software. Once the linear system has been solved in the online stage of the MsFEM, the
solution to (8.58.5) is given by

uεH =
N∑
i=1

U ε
i φ

ε
i .

In conclusion, we see that an effective PDE can be formulated such that its P2 dis-
cretization is equivalent to the MsFEM problem (8.58.5), with the property that all effective
tensors are P2 functions. In comparison to the P1 case studied in detail before, the ef-
fective PDE is no longer of second order and its formulation requires the computation of
many more coefficients. The order of the effective PDE and the number of coefficients
to be computed will further increase when higher-order MsFEMs are considered. The
implementation of the effective PDE in a given legacy code may become a problem in
itself. Therefore, we do not pursue the development of non-intrusive Pk MsFEMs in as
much generality as was done for the P1 MsFEM.
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PART II

MULTISCALE FINITE ELEMENT METHODS

FOR ADVECTION-DOMINATED PROBLEMS





CHAPTER 9

Introduction and classical stabilization
methods

We have seen in the IntroductionIntroduction that a standard FEM shows instabilities for the ap-
proximation of advection-diffusion problems with dominant advection terms, and that
the same holds for an MsFEM that encodes only the diffusive terms in the basis func-
tions. The development of stable numerical methods for the approximation of PDEs in
heterogeneous media and in the advection-dominated regime is the topic of Part IIII of this
thesis. The contents of this part of the thesis are being prepared for publication in [3030].

We illustrate the instability of the P1 FEM in this chapter in some more detail, and
we briefly review classical stabilization methods. In particular, we recall the connection
between the SUPG method and the use of residual-free bubbles. These results are well-
known and the reader familiar with stabilization methods may wish to skip some parts
of this chapter and only look at Sections 9.29.2, 9.4.19.4.1 and 9.4.29.4.2 for the introduction of some
notation that is used in the sequel.

In Chapter 1010 we recall the basic principles of the MsFEM in order to keep Part IIII self-
contained, and then derive an MsFEM from the residual-free bubble framework, with basis
functions adapted to both the advective and diffusive parts of the differential operator.
This identification with the residual-free bubble framework is used to show stability of
the method in 1D as well as to give an explanation for the instability of the method
in higher dimension, which was previously observed numerically in [114114]. Even in the
one-dimensional setting, we observe that this MsFEM cannot achieve high accuracy in
spite of its stability, and we solve this problem through the addition of suitable bubble
functions to the approximation space in Section 10.310.3. The performance of this method is
illustrated numerically in 1D in Section 10.410.4 and later, in Chapter 1212, in 2D.

For higher-dimensional problems, we introduce the concept of weak bubbles in Chap-
ter 1111, and we will see that these bubbles can be used to define an MsFEM with Crouzeix-
Raviart type boundary conditions (denoted adv-MsFEM-CR here), an idea originally in-
troduced in [112112]. The enrichment of the approximation space by bubble functions (this
time by weak bubbles) is also proposed, following the developments of the one-dimensional
setting. In Section 11.411.4, we summarize the non-intrusive implementation approach for
MsFEMs developed in Part II and extend it to MsFEMs with additional bubble functions.

Finally, the numerical results of Chapter 1212 show that the adv-MsFEM-CR enriched
with weak bubbles is stable. The results also show that the non-intrusive implementation
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of the additional bubble functions yields the largest accuracy among all numerical methods
investigated here. The adv-MsFEM-CR with bubbles is the first stable MsFEM that
maintains a competitive accuracy in both the advection- and diffusion-dominated regimes
and does not depend on an additional stabilization parameter that has to be properly
adjusted.

9.1. Advection-dominated problems

We recall the instability of the finite element method on a coarse mesh in the advection-
dominated regime for a PDE with constant coefficients in 1D. To this end, we consider
the following boundary value problem for u:{

−mu′′ + b u′ = 1 in (0, 1),

u(0) = 0, u(1) = 0,
(9.1)

where b is a positive constant for now. Then u is given by

u(x) =
x

b
− 1

b

e
b
m
x − 1

e
b
m − 1

.

When b/m � 1, the solution u displays a sharp boundary layer near x = 1, where the
derivative of u is much larger than outside the boundary layer. In this sense (9.19.1) leads
to multiscale phenomena even with constant coefficients.

It is insightful to note that u can be decomposed into a slowly varying part vs and a

multiscale part vε such that u = vs + vε, where vs(x) =
x

b
is the solution to−m (vs)′′ + b (vs)′ = 1 in Ω,

vs(0) = 0, vs(1) =
1

b
,

(9.2a)

and vε is thus the solution to the following boundary value problem without source term:−m (vε)′′ + b (vε)′ = 0 in Ω,

vε(0) = 0, vε(1) = −1

b
.

(9.2b)

From this decomposition, it is clear that the multiscale behaviour of u is due to the
Dirichlet conditions that do not match the source term of the PDE in (9.19.1), contrary to
the conditions imposed in (9.2a9.2a). Problem (9.2b9.2b) shows that a boundary layer can emerge
in the advection-dominated regime even in the absence of a source term.

Now consider the P1 finite element approximation of u on the grid 0 = x0, x1, . . . , xN =
1 with xi − xi−1 = H (1 ≤ i ≤ N). We split the approximation of u into two problems
according to (9.29.2). In this simple case, the approximations of both vs and vε can be
computed explicitly. It is easy to see that the finite element approximation of (9.2a9.2a) is
exact, whereas the approximation vεH of vε in (9.2b9.2b) is of the form

vεH(xi) = −1

b

1− γi

1− γN
, γ =

1 + PeH
1− PeH

, xi = iH, i = 0, . . . , N.
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Here, PeH =
bH

2m
is the local or numerical Péclet number. We see that the numerical

approximation of vε oscillates in the domain (0, 1) when PeH > 1, whereas vε itself
is monotone. In other words, when the mesh size H is too large, the finite element
approximation of uε displays spurious oscillations that are unphysical. This phenomenon
generalizes to higher-dimensional settings, and the spurious oscillations become more
pronounced as the strength of the advection field b further increases. The standard finite
element approximation of (9.39.3) is therefore said to be unstable.

Stabilization methods aim to provide an accurate numerical approximation of u outside
the boundary layer even when a coarse mesh is used (with a large local Péclet number),
thus capturing the correct behaviour of vs. In dimension 1, adapted finite element strate-
gies are known that yield a nodally exact approximation for u when the coefficients of the
PDE and the source term are piecewise constant, thus removing the spurious oscillations
of a standard FEM. For higher-dimensional problems, a method yielding nodal exactness
is not known, and the performance of stabilization methods is judged by stronger stability
properties, convergence estimates with an improved dependence on the advection field,
and the extent to which spurious oscillations are suppressed in practice. We recall some
stabilization methods in Sections 9.39.3 and 9.49.4.

9.2. The multiscale setting

The next chapters of Part IIII focus on the numerical approximation of uε ∈ H1(Ω) defined
as the solution to the PDE{

L εuε = − div(Aε∇uε) + b · ∇uε = f in Ω,

uε = g on ∂Ω,
(9.3)

with a Dirichlet boundary condition g ∈ H1/2(∂Ω) and a source term f ∈ L2(Ω). The
problem is posed on Ω ⊂ Rd, an open, bounded polytope in d-dimensional space (a
polygon in dimension 2, a polyhedron in dimension 3). Since Ω has a Lipschitz boundary,
the boundary condition g is the trace of a function g ∈ H1(Ω) (denoted here by the same
symbol g; see [8585, Theorem 1.5.1.3]).

The diffusion tensor Aε ∈ L∞
(
Ω,Rd×d) is bounded and coercive, that is,

for almost all x ∈ Ω,

{
∀ ξ ∈ Rd, m|ξ|2 ≤ ξ · Aε(x)ξ,

∀ ξ1, ξ2 ∈ Rd, |ξ2 · Aε(x)ξ1| ≤M |ξ2| |ξ1|,
(9.4)

for constants 0 < m ≤M (that are independent of ε). We write the diffusion tensor with
a superscript ε, because we focus on highly heterogeneous diffusion coefficients that may
oscillate on a length scale ε much smaller than the diameter of Ω. Note that we shall use no
further assumptions (such as periodicity) on Aε for the design of the numerical approaches
in Chapters 1010 and 1111. Finally, we assume that the advection field b ∈ L∞

(
Ω,Rd

)
satisfies

div(b) = 0 (9.5)

in the sense of distributions. Then the problem (9.39.3) has a unique solution. Other
conditions can also be considered that ensure well-posedness of (9.39.3). For instance, the
weaker conditions div(b) ∈ Ld/2(Ω) and div(b) ≤ 0 almost everywhere on Ω are in fact
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sufficient for our purposes, but we assume (9.59.5) to simplify the exposition of strongly
consistent stabilization methods in Section 9.39.3. The general case can be found in [129129,
Chapter 13].

The variational (or weak) formulation of (9.39.3) that we will use is: find uε ∈ H1(Ω)
such that uε − g belongs to H1

0 (Ω) and satisfies

aε(uε, v) = F (v) for all v ∈ H1
0 (Ω), (9.6)

where, for all u, v ∈ H1(Ω),

aε(u, v) =

∫
Ω

∇v · Aε∇u+ v b · ∇u, F (v) =

∫
Ω

f v.

Under the above assumptions (9.49.4) and (9.59.5), it is classical to show that aε is coercive
on H1

0 (Ω), such that a unique solution to (9.69.6) exists by the Lax-Milgram Theorem (see,
e.g., [129129, Chapter 13]).

We recall that an FEM for the approximation of (9.39.3) is obtained upon restricting the
variational formulation (9.69.6) to finite-dimensional trial and test spaces of functions with
localized supports. To this end, we introduce a conformal mesh TH of Ω and define the
trial space

VH = {v ∈ C (Ω) | ∀K ∈ TH , v|K ∈ P1(K)} ,

that is, the space of all continuous functions that are piecewise affine. Note that VH ⊂
H1(Ω). We also define the test space

VH,0 = VH ∩H1
0 (Ω).

Finally, let IH : H1(Ω) 7→ VH be a suitable interpolation operator for the boundary
condition. The (standard, conforming) Lagrange P1 finite element method then is to
find uH ∈ VH such that{

aε(uH , vH) = F (vH) for all vH ∈ VH,0,
uH −IH(g) ∈ VH,0.

(9.7)

We have seen in Section 9.19.1 that the exact solution uε may have a strong boundary
layer near the outflow boundary if the advection is dominant over the diffusive effects
in (9.39.3). We also recalled that the P1 FEM (9.79.7) produces a numerical approximation
with unphysical oscillations propagating through the entire domain, if the underlying mesh
is not sufficiently fine to resolve the boundary layer well, and this remains true in higher
dimension. In Chapters 1010 and 1111, we focus on stabilizing properties of multiscale finite
element methods aimed at removing such oscillations from the numerical approximation,
while also incorporating the strongly heterogeneous character of Aε properly. The aim is
to identify numerical methods that are robust when we pass from the advection-dominated
to the diffusion-dominated regime. References to related contributions in the field were
given in Section 2.3.22.3.2.

Remark 9.1. It is common practice in the literature to only consider (9.39.3) with ho-
mogeneous boundary conditions (g = 0), because the resolution of the problem with
non-homogeneous boundary conditions by the FEM only requires some standard adap-
tations. One can use a lifting of the boundary conditions or use a penalization technique.
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We refer to [7373, Section 8.4] for details. However, for the case of advection-dominated
problems, we emphasized in Section 9.19.1 that the instability of standard FEMs is caused
by the Dirichlet boundary conditions, even when f = 0. In this case, the problem (9.39.3)
becomes trivial when homogeneous boundary conditions are imposed. It is therefore
more insightful for the understanding of stabilizing properties of the methods intro-
duced in Chapters 1010 and 1111 to treat the general case of possibly non-homogeneous
boundary conditions. See for instance Theorem 10.410.4 and Corollary 11.511.5 in this regard.

9.3. Strongly consistent stabilization methods

We recall here the concept of strongly consistent stabilization methods for problems with-
out a multiscale diffusion coefficient. Therefore, we consider the single-scale operator

L u = −m∆u+ b · ∇u, (9.8)

where m > 0 and b ∈ Rd are constant. We denote (using (9.59.5)) by Lsv = −m∆v and
Lssv = b · ∇v the symmetric and skew-symmetric part of L , respectively. In this case, u
can equivalently be defined by the variational formulation

a(u, v) =

∫
Ω

m∇u · ∇v + v b · ∇u = F (v) for all v ∈ H1
0 (Ω),

where F is as in (9.69.6). The finite element approximation (9.79.7) becomes: find uH ∈ VH
such that {

a(uH , vH) = F (vH) for all vH ∈ VH,0,
uH −IH(g) ∈ VH,0.

(9.9)

Strongly consistent stabilization methods consist of adding the residue of the PDE in
each mesh element K ∈ TH to the discrete variational problem (9.99.9), with a weight (τ
below) that depends on the advection field. The additional terms are chosen such that
stronger stability properties hold for the numerical scheme, in particular in the streamline
direction. More precisely, a strongly consistent stabilization method consists in finding
uH ∈ VH such that{

a(uH , vH) + aH(uH , vH) = F (vH) + FH(vH) for all vH ∈ VH,0,
uH −IH(g) ∈ VH,0,

(9.10)

where, for all u, v ∈ VH , we introduce the stabilization terms

aH(uH , vH) =
∑
K∈TH

∫
K

τ (L uH) ((Lss + ρLs)vH) ,

FH(vH) =
∑
K∈TH

∫
K

τ f ((Lss + ρLs)vH) .

(9.11)

Note that Ls vanishes on P1(K) for all K ∈ TH , and the parameter ρ thus disappears
from the above definitions. When higher-order polynomial approximation spaces are used
for the finite element method, different schemes emerge for different choices of ρ. The
choice ρ = −1 yields the Douglas-Wang method [6565, 7575], the choice ρ = 1 leads to
the Galerkin Least Squares method [103103], and the Streamline Upwind/Petrov-Galerkin
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(SUPG) method [4343] corresponds to ρ = 0. We restrict ourselves to the SUPG method in
this work.

Remark 9.2. In our numerical tests for the P1 SUPG method, even when the diffusion
coefficient is not constant, we still replace L uH by LssuH in (9.119.11).

These methods are called strongly consistent because any solution u ∈ H1(Ω) of (9.89.8)
satisfies aH(u, vH) = FH(vH) for all vH ∈ VH,0 and thus satisfies the stabilized discrete
formulation. In 1D, the stabilization term aH corresponds to elementary techniques such
as upwinding and adding artificial diffusion. The stabilization term FH and subsequent
consistency of the stabilization methods secure high-order convergence when high-order
polynomial spaces are used [109109, 131131].

The stabilization parameter τ that appears in the definition of the stabilization terms
must be carefully adjusted to the coefficients of the PDE. This is the topic of many research
articles and we refer e.g. to [107107] for a review of some choices and their motivations.
Roughly speaking, in the advection dominated regime PeH > 1, a suitable choice for τ is

of the order of
diam(K)

2 |bK |
in each mesh element K, where bK is a characteristic value of b

in K. This scaling of τ results in the advection-dominated regime in a coercivity constant
of a+aH of the order of m+τ |b|2 ≈ m+ |b|H ≈ |b|H on VH , while the continuity constant
is of the order of m+ |b|H+τ |b|2 ≈ m+ 3

2
|b|H ≈ 3

2
|b|H. The two constants are thus of the

same order for all values of m. When no stabilization is applied, the coercivity constant
is just m and coercivity is lost in the limit m→ 0. For higher-order finite elements, it is
suggested that τ should be taken smaller (see [7878]).

9.4. Variational stabilization methods

9.4.1. The variational multiscale framework. We now return to the approximation
of uε, solution to the multiscale PDE (9.39.3). The variational multiscale framework (VMF)
[101101, 102102] is a now classical approach for the adaptation of standard finite element methods
to multiscale phenomena. It relies on the concept of resolved and unresolved scales. The
space of resolved scales is the space in which the finite element approximation is sought.
The unresolved scales are then all components of uε outside this space. In [102102], the
resolved scales in the context of the FEM equal the P1 space VH . In order to localize the
unresolved scales to each mesh element K ∈ TH separately, the bubble space

BH =
⊕
K∈TH

H1
0 (K) (9.12)

is used for the unresolved scales. One hopes that the space VH ⊕BH captures sufficiently
many multiscale features of uε in order to design an accurate finite element method. This
is true in 1D, since VH ⊕BH = H1

0 (Ω), but in higher dimension, this space discards all
possible oscillations of uε on the interfaces of the mesh. In the context of stabilization
methods, the result is that full stabilization is not achieved by the residual-free bubble
method that we recall below. In the context of the multiscale finite element method, this
problem has lead to the introduction of the so-called oversampling technique, which seeks
for a better approximation of uε on the mesh interfaces (see Section 10.110.1.)

A concrete instance of the VMF requires the choice of a discrete subspace of BH , which
will be used in the numerical scheme. One aims to capture the effect of the bubble func-
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tions on the space of resolved scales VH . (We provide a concrete example of this approach
in Section 9.4.29.4.2.) It was observed in [5454, 4141, 101101] that a generic, problem-independent
choice of bubble functions is not effective. On the other hand, it was established in [2222]
that, given certain stabilized finite element formulations, a set of bubbles exist from which
the stabilization terms can be derived. This justifies the attempt to search for a suitable
choice of bubble functions within the VMF. The residual-free bubble (RFB) method is of
particular interest in combination with the MsFEM as we will see in Chapter 1010.

9.4.2. The residual-free bubble method. We now recall the RFB method [7676, 3838] in the
context of the highly oscillatory PDE (9.39.3), and recall how it is related to stabilization. Let
us mention the more general framework studied in [4040], where the coarse space includes
functions whose traces on the interfaces of the mesh are higher-order polynomials.

Consider a Galerkin approximation of (9.69.6) on the (infinite-dimensional) space VH ⊕
BH . The residual-free bubble approximation to (9.69.6) is the unique function uH + uB ∈
VH ⊕BH such that{

aε(uH + uB, v) = F (v) for all v ∈ VH,0 ⊕BH ,

uH −IH(g) ∈ VH,0.
(9.13)

Restricting the test function v to the bubble space BH , it follows that uB is the unique
solution in BH to

∀ v ∈ BH , aε(uB, v) = F (v)− aε(uH , v). (9.14)

Equivalently, the bubble part uB solves, on each K ∈ TH , the PDE

L ε
KuB = −L ε

KuH + f, (9.15)

with homogeneous Dirichlet boundary conditions on ∂K. Here, L ε
K denotes the restriction

of the differential operator L ε to K. The bubble function uB is called ‘residual-free’
because (9.159.15) ensures that the RFB approximation satisfies L ε

K(uH + uB) = f = L ε
Ku

ε

for each K, i.e., the local residue of the solution vanishes.
Although the bubble part uB of the solution is defined in an infinite-dimensional space

and depends on the coarse part uH , the PDE (9.159.15) shows that uB can actually be found
in the finite-dimensional space

Bε
H(f) =

⊕
K∈TH

(L ε
K)−1 ({L ε

KvH |K | vH ∈ VH})⊕ span
{

(L ε
K)−1(f |K)

}
(9.16)

where (L ε
K)−1 is the inverse operator of L ε

K on H1
0 (K). For later reference, let us define,

for all K ∈ TH , the spaces

Bε
K(f) = span

{
(L ε

K)−1(f |K)
}
. (9.17)

Since uH + uB belongs to the RFB space VH ⊕ Bε
H(f), a Galerkin approximation

of (9.139.13) on the RFB space has exactly the same solution as (9.139.13). In other words, the
RFB method is equivalent to the following finite-dimensional problem: find uH + uB ∈
VH ⊕Bε

H(f) such that{
aε(uH + uB, vH,B) = F (vH,B) for all vH,B ∈ VH,0 ⊕Bε

H(f),

uH −IH(g) ∈ VH,0.
(9.18)
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The RFB method is an interesting tool to inspire the design of a stable FEM in
dimension 1 due to the following result.

Lemma 9.3. In dimension 1, the residual-free bubble method, that is, the Galerkin
approximation of (9.69.6) on the space VH ⊕ Bε

H(f), is exact. Consequently, since the
bubble part of the solution vanishes at the nodes, the coarse part uH is a nodally exact
approximation of uε.

This result is a consequence of the fact that the decomposition H1(Ω) = VH ⊕BH

holds in dimension 1. Indeed, this is essential to ensure that the solution uε to (9.39.3) lies
in the RFB space VH ⊕ Bε

H(f). In particular, the residual-free bubble method provides
a stable finite-dimensional reformulation of (9.39.3) for any choice of boundary conditions
and for any right-hand side in dimension 1. We discuss the stabilizing effect obtained by
following the RFB methodology in Section 9.4.39.4.3.

Let us note that the exact computation of the bubble space Bε
H(f) is impossible except

for simplified one-dimensional cases. Moreover, it depends on the right-hand side of the
PDE, and can thus not be used directly as a numerical method for the approximation
of (9.39.3). It was therefore suggested in [7676, 3838] to use an analytic approximation of the
space Bε

H(f) to enrich the space VH in practice, as is done e.g. in [4141]. We will see in
Chapter 1010, however, that it is common to compute a numerical approximation of the RFB
space during the so-called offline stage of modern methods for numerical homogenization
(see Remark 10.610.6).

9.4.3. Deriving the SUPG method from the RFB method. We restrict the RFB
method here to the single-scale PDE (9.89.8) with a constant advection field and a piecewise
constant right-hand side f . Let us summarize the classical analysis of [3838, 4141]. The bub-
ble space Bε

H(f) is now spanned by a single bubble per mesh element K, that we denote
by bK , and that is the unique solution in H1

0 (K) to

−m∆bK + b · ∇bK = 1.

Then it is clear from (9.159.15) that the bubble part uB equals, in terms of the coarse part of
the solution uH ∈ VH ,

uB =
∑
K∈TH

(f − b · ∇uH)|K bK . (9.19)

Here we use that uH satisfies ∆uH = 0 in each mesh element K since it is a piecewise
affine function, and that b and f are (piecewise) constant.

Inserting this expression for uB in (9.189.18) and testing against vH ∈ VH , one finds a
discrete problem for uH on the space VH . (This procedure is known as static condensation
in the finite element literature.) Since b and f are (piecewise) constant, the scheme for uH
can be rewritten as

a(uH , vH) +
∑
K∈TH

∫
K

τB (b · ∇uH)(b · ∇vH) = F (vH) +

∑
K∈TH

∫
K

τB f b·∇vH for all vH ∈ VH,0,

uH −IH(g) ∈ VH,0.

(9.20)
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where the stabilization parameter τB appears, which is given in each mesh element K ∈
TH by

τB
∣∣
K

=
1

|K|

∫
K

bK . (9.21)

We note that this is precisely the SUPG scheme, see (9.119.11) with ρ = 0, and we can expect
stabilizing properties. The stabilizing effect of the RFB is directly linked to the bubble
function bK through the value of the stabilization parameter obtained from (9.219.21).

In the one-dimensional case, the parameter τB can easily be computed analytically
and equals the unique value for which the SUPG method is known to provide a solution
that is exact at the vertices of the mesh. It then corresponds to the Il’in-Allen-Southwell
scheme [1111]. The scheme was also derived in [5151]. Note that nodal exactness can directly
be inferred from Lemma 9.39.3 with the interpretation of the RFB method.

In dimension larger than 1, VH ⊕BH is no longer an exact decomposition of H1(Ω),
and no exactness results are known for either the SUPG or the RFB method. The
parameter τB given by (9.219.21) is in fact too small to achieve full stabilization [4141]. The
stabilization parameter that is actually used with the SUPG method is a generalization
to higher dimension of the formula of the ideal parameter for the one-dimensional setting
(see [107107]).

In Section 10.310.3, we propose an MsFEM enriched with bubbles. We will exploit a
link with the RFB method to show exactness properties of the MsFEM approximation,
and thus stability, in dimension 1. See Theorems 10.410.4 and 10.710.7. We will explain why
such results cannot be expected to hold true for higher-dimensional problems. Then we
consider in Chapter 1111 an MsFEM based on unresolved scales that only vanish weakly
(in the sense of the average) on the interfaces of the mesh. Equivalently, we will speak
of ‘weak bubbles’. The stabilizing effect of this framework is established in the numerical
results of Chapter 1212.
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CHAPTER 10

Multiscale finite element methods for
advection-diffusion problems

In this chapter and the following, we focus on the PDE (9.39.3) with a strongly heterogeneous
diffusion coefficient as introduced in Section 9.29.2. We have seen in the IntroductionIntroduction that
the P1 FEM is incapable of providing an approximation of uε on a coarse mesh, and in
Chapter 99 that, moreover, spurious oscillations appear in the advection-dominated regime.
We consider in this chapter and the next MsFEM type approaches (see Section 10.110.1) for
problems with a multiscale diffusion coefficient and a possibly dominant advection field.
For the convenience of the reader, we first recall the principle of the MsFEM that was
also introduced in the IntroductionIntroduction.

10.1. The multiscale finite element method

The multiscale finite element method (MsFEM) seeks a Galerkin approximation of (9.39.3)
on an approximation space that is adapted to the differential operator L ε. This idea
was first introduced in [2020]. One hopes (and this is indeed the case) that by ‘correctly’
encoding the multiscale features in the approximation space, an accurate finite element
method is obtained even with a coarse mesh.

The original MsFEM proposed in [9898] uses multiscale basis functions that locally,
inside each mesh element K ∈ TH , resolve the oscillations of the leading order elliptic
part of the differential operator and satisfy affine boundary conditions on ∂K. We shall
refer to it here as the MsFEM-lin. More precisely, let φP1

1 , . . . , φ
P1
N denote the standard

basis of VH defined by φP1
i (xj) = δi,j for all vertices xj of the mesh TH . Then define, for

1 ≤ i ≤ N , the multiscale basis function φεi ∈ H1(Ω) by the boundary value problems

∀ K ∈ TH ,

{
−div(Aε∇φεi ) = 0 in K,

φεi = φP1
i on ∂K.

(10.1)

Note that φεi indeed belongs to H1(Ω) because continuity is imposed on the interfaces
of the mesh. Also note that φεi has the same support as the corresponding P1 basis
function φP1

i .

Now define the multiscale trial space V ε
H = span{φεi | 1 ≤ i ≤ N} and the multiscale
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test space V ε
H,0 = V ε

H ∩H1
0 (Ω), and introduce an interpolation operator I ε

H : H1(Ω) 7→ V ε
H

for the boundary condition in (9.39.3) as follows: we replace each basis function φP1
i in the

definition of IH (the interpolation operator to the space VH) by φεi . Then the MsFEM-lin
is defined as finding uεH ∈ V ε

H such that{
aε(uεH , v

ε
H) = F (vεH) for all vεH ∈ V ε

H,0,

uεH −I ε
H(g) ∈ V ε

H,0.
(10.2)

In order to put the MsFEM into practice, the multiscale basis functions φεi have to be
computed numerically. This requires another discretization, for instance by a P1 Lagrange
FEM on a fine mesh of K that resolves the microstructure. Note, however, that these
problems are localized and might therefore be solved by modest computational resources
even when a direct discretization of (9.39.3) cannot be solved numerically. Moreover, the
problems (10.110.1) on all K and for all different i are independent and can thus be solved
in parallel. These computations form the offline stage. The global problem (10.210.2) on
the low-dimensional space V ε

H,0 is solved in the online stage. The number of unknowns
in the online stage is thus small. The online stage is repeated each time the right-hand
side or the boundary conditions on ∂Ω change. Note that the matrix related to the linear
system resulting from (10.210.2) can be computed once and for all after the computation of
the multiscale basis functions in the offline stage.

One of the main drawbacks of the MsFEM-lin is the fact that affine boundary condi-
tions are imposed in the local problems (10.110.1). The ‘best’ boundary conditions, namely
those of uε, are of course unknown, and some choice of boundary conditions is required
to localize the multiscale basis functions. The affine conditions in (10.110.1) suppress all
oscillations near the boundary of the mesh elements.

The design of MsFEMs after its first introduction can be characterized as a search
for improved boundary conditions for the multiscale basis functions. We mention here
the Crouzeix-Raviart type boundary conditions (see [112112]), to which we will come back in
Chapter 1111, and the oversampling technique, which places the (affine) boundary conditions
of (10.110.1) on an extended domain larger than K. In the context of diffusion problems, it
was proposed along with the MsFEM-lin in [9898]. For the Crouzeix-Raviart type boundary
conditions it is introduced in Chapter 55 of this thesis. Hierarchical enrichment of the
multiscale space has been considered in [6868, 9797, 4646, 117117].

Remark 10.1. All oversampling strategies described in Chapter 55 and Section 8.18.1 have
been investigated for the approximation of (9.39.3), but large numerical instabilities were
observed in the advection-dominated regime. They are not further reported in this
thesis.

In spite of the development of improved boundary conditions for the MsFEM, it is easy
to understand that all these MsFEM variants cannot provide an accurate approximation
of uε in the advection-dominated regime. Indeed, the MsFEM reduces to an (unstable)
P1 finite element method in the particular case when Aε is constant. The MsFEM-lin
was stabilized by application of the SUPG method in [114114]. Introducing a stabilization
parameter τ , the stabilized formulation of (10.210.2), which we call the MsFEM-lin SUPG,
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reads

aε
(
uε,SUPG
H , vεH

)
+
∑
K∈TH

∫
K

τ
(
b · ∇uε,SUPG

H

)
(b · ∇vεH)

= F (vεH) +
∑
K∈TH

∫
K

f τ (b · ∇vεH) for all vεH ∈ V ε
H,0,

uε,SUPG
H −I ε

H(g) ∈ V ε
H,0.

(10.3)

10.2. A residual-free bubble point of view

Another idea to build a stable MsFEM was also proposed in [114114], replacing the definition
of the multiscale basis functions in (10.110.1) by multiscale functions that also encode the
advective effects. We are going to recover the same method here from a link with the
RFB framework.

Remark 10.2. Let us remark that the adv-MsFEM-lin that we define in (10.610.6) below
was actually found not to provide stability in dimension larger than 1 in [114114]. We
choose to recall the method here because our new stabilization method in Chapter 1111
can be seen as a variation on this earlier idea. We also provide new insights into the
adv-MsFEM-lin, explaining why stability is achieved in dimension 1 but not beyond.

Given a space of coarse scales VH , the RFB method introduces a space of bubbles
defined on each mesh element by Bε

H(f) in (9.169.16). In the spirit of the MsFEM, we
can replace the space of coarse scales VH by a space encoding some properties of the
differential operator L ε. We propose here to choose a coarse space that reduces the size
of the space Bε

H(f), hoping that in doing so, we transfer some stabilization properties of
the RFB method (recall Lemma 9.39.3) to the coarse space. We explained in Section 9.19.1
that instabilities for advection-dominated problems are caused by boundary conditions
that are incompatible with the flow problem, even when f = 0. Let us thus consider, at
least as a first step, the space Bε

H(f = 0), for which we recall that

Bε
H(f = 0) =

⊕
K∈TH

(L ε
K)−1 ({L ε

KvH |K | vH ∈ VH}) .

This space vanishes if we choose the space of coarse scales such that vH ∈ VH satisfies
L ε
KvH = 0 for all K ∈ TH . Therefore, we define the space

V ε,adv
H =

{
vε,adv
H ∈ VH ⊕BH

∣∣∣ aε(vε,adv
H , v

)
= 0 for all v ∈ BH

}
. (10.4)

We recall the definition of BH in (9.129.12). Applying the RFB-method to the space V ε,adv
H ,

the space for the bubble part Bε
H(f = 0) is empty. We recall that, according to Lemma 9.39.3,

the RFB method gives an exact characterizaton of uε in dimension 1. Now the coarse
space V ε,adv

H includes all properties needed to obtain the same result without an additional
bubble space when f = 0. This is the content of Theorem 10.410.4 below.

We add both the superscripts ε and adv to the name of the space to emphasize that
this multiscale space is adapted to both the heterogeneities of Aε and to the advection
field. The results of the following lemma are easy to show.
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Lemma 10.3. The space V ε,adv
H has finite dimension N = dim (VH), and a basis is given

by the functions φε,adv
i solving, for i = 1, . . . , N ,

∀ K ∈ TH ,

{
−div(Aε∇φε,adv

i ) + b · ∇φε,adv
i = 0, in K,

φε,adv
i = φP1

i , on ∂K.
(10.5)

As in (10.110.1), each basis function φε,adv
i is associated to the vertex xi of the mesh. In

view of the similarities between (10.510.5) and (10.110.1), we call the restriction of (9.69.6) to the
finite-dimensional space V ε,adv

H the adv-MsFEM-lin: find uε,adv
H ∈ V ε,adv

H such that aε
(
uε,adv
H , vε,adv

H

)
= F

(
vε,adv
H

)
, for all vε,adv

H ∈ V ε,adv
H,0

uε,adv
H −I ε,adv

H (g) ∈ V ε,adv
H,0 .

(10.6)

The interpolation operator I ε,adv
H : H1(Ω) → V ε,adv

H is defined by replacing each basis
function φP1

i in the definition of IH by φε,adv
i .

We can show that the solution of the RFB method (9.189.18) coincides with the adv-
MsFEM-lin approximation (10.610.6) when f = 0. This link between the adv-MsFEM and
the RFB method yields exactness of the adv-MsFEM in 1D, as is stated in the following
theorem. The interpretation of the MsFEM as an RFB method is essentially contained
in (10.710.7) below, which is precisely the representation of the multiscale finite element
space V ε,adv

H used in the general framework of Chapter 55; see also (5.145.14).

Theorem 10.4. When f = 0, the adv-MsFEM-lin approximation uε,adv
H equals the RFB

solution defined in (9.189.18). In particular, in dimension 1 and when f = 0, the adv-
MsFEM-lin is exact for any choice of boundary conditions.

The above theorem implies that the adv-MsFEM-lin provides a stable approximation
of (9.39.3) in dimension 1 when f = 0. Since the instability of a finite element method is in
fact related to the boundary conditions rather than the right-hand side (as explained in
Section 9.19.1), we expect this stability to be preserved for generic right-hand sides f . This
is indeed the case, as we will see from numerical evidence in Section 10.310.3.

Proof of Theorem 10.410.4. The second assertion of the theorem follows from the first one due
to Lemma 9.39.3. Let us show that uε,adv

H belongs to the space VH ⊕Bε
H(f) and solves (9.189.18)

for f = 0.
We start by showing that V ε,adv

H ⊂ VH ⊕Bε
H(f = 0). Let us note that

V ε,adv
H =

{
vH +

∑
K∈TH

d∑
α=1

∂α(vH |K)χε,adv,α
K

∣∣∣∣∣ vH ∈ VH
}
, (10.7)

where, for each K ∈ TH and 1 ≤ α ≤ d, the function χε,adv,α
K ∈ H1

0 (K) is defined

by L ε
K

(
χε,adv,α
K

)
= −L ε

K(xα) and extended by 0 outside K, and xα denotes the α-th

coordinate function. This is the characterization (5.145.14) of the multiscale space given in
the general MsFEM framework of Part II in the setting of the adv-MsFEM-lin.

For any vH ∈ VH , set vosc
H =

∑
K∈TH

d∑
α=1

∂α(vH |K)χε,adv,α
K . Then, for each K ∈ TH , since
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∂αvH is constant on K, it holds

L ε
K(vosc

H ) =
d∑

α=1

∂α(vH |K)L ε
K

(
χε,adv,α
K

)
= −

d∑
α=1

∂α(vH |K)L ε
K(xα)

= −L ε
K

(
d∑

α=1

∂α(vH |K)xα

)
= L ε

K(−vH),

where we use in the final equality that L ε
K only acts on the gradient of its argument.

According to (9.169.16), vosc
H thus belongs to Bε

H(f = 0), from which we conclude that V ε,adv
H ⊂

VH ⊕ Bε
H(f = 0). Hence, uε,adv

H indeed belongs to the residual-free bubble space VH ⊕
Bε
H(f = 0).

We next need to establish that uε,adv
H is a solution to (9.189.18). According to (10.710.7),

there exists uH ∈ VH (which is in fact unique) such that uε,adv
H = uH + uosc

H . By the
construction of the interpolation operator I ε,adv

H , and since uosc
H ∈ Bε

H(f = 0) vanishes
on all interfaces of the mesh, we deduce from (10.610.6) that uH equals IH(g) on ∂Ω. Thus,
uH −IH(g) ∈ VH,0.

Finally, let us compute aε
(
uε,adv
H , vH,B

)
for an arbitrary test function vH,B = vH + vB

belonging to the space VH,0 ⊕ Bε
H(f = 0). We may write vH,B = vH + vosc

H + (vB − vosc
H ).

The function vH + vosc
H belongs to V ε,adv

H by (10.710.7), so (10.610.6) yields

aε
(
uε,adv
H , vH + vosc

H

)
= F (vH + vosc

H ) = 0,

since f = 0. We also note that vB and vosc
H both vanish on all interfaces of the mesh, i.e.,

vB − vosc
H ∈ BH . Thus, we see from (10.410.4) that

aε
(
uε,adv
H , vB − vosc

H

)
= 0.

Combining the two preceding equalities gives

aε
(
uε,adv
H , vH + vB

)
= 0.

This shows that uε,adv
H solves (9.189.18).

Since the solution to (9.189.18) is unique in the space VH ⊕ Bε
H(f = 0), we have shown

that uε,adv
H equals the RFB solution. �

Remark 10.5. In practice, when the multiscale basis functions φε,adv
i are obtained from

a numerical approximation of (10.510.5), the numerical approximation provided by the adv-
MsFEM-lin cannot be equal to uε. Under the hypotheses of Theorem 10.410.4, if the φε,adv

i

are computed by a P1 FEM on a fine mesh of each K ∈ TH , it can be shown that uε,adv
H is

equal to the P1 approximation of (9.39.3) on the global fine mesh obtained from combining
all fine meshes of the coarse mesh elements.

143



II. MULTISCALE FINITE ELEMENT METHODS FOR ADVECTION-DOMINATED PROBLEMS

Remark 10.6. The above theorem provides us with the interpretation of the adv-
MsFEM-lin as a particularly efficient implementation of the RFB space when f = 0.
Rather than enlarging the P1 approximation space VH by Bε

H(f = 0), the space VH
is replaced by the multiscale space V ε,adv

H of the same dimension, and which produces
the same solution as the RFB method. In particular, the (relevant) bubble functions
of the space Bε

H(f = 0) are captured by the (numerical) computation of the basis
functions φε,adv

i and do not need to be approximated analytically to capture their effect
at the coarse scale.

In spite of the stability provided by Theorem 10.410.4 in dimension 1 when f = 0, there
are two important drawbacks of the adv-MsFEM-lin as such. The first is related to the
very shape of the multiscale basis functions themselves. This problem is addressed in
Section 10.310.3. The second issue concerns the generalization to higher dimension that we
discuss in Section 10.510.5, and for which we shall propose a different method in Chapter 1111.

10.3. Enrichment by additional residual-free bubble func-
tions

We provide a one-dimensional illustration of some MsFEMs in Figure 10.110.1 for the following
choice of the coefficients in (9.39.3):

aε(x) = α

(
2 + cos

(
2πx

ε

))
, (10.8)

where α = 2−7, ε = 2−5, and we further set b = 1 and f(x) = sin2 (3πx). We used
H = 2−3 and all basis functions were computed by a P1 FEM on a fine mesh of size
h = 2−9.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

uε

uεH
uε,adv
H

uε,adv
H,B

0.2 0.5

Figure 10.1: Comparison of the exact solution uε of (9.39.3) and its approximation by the
MsFEM-lin (uεH defined by (10.210.2)), the adv-MsFEM-lin (uε,adv

H defined by (10.610.6)) and
the adv-MsFEM-lin-B (uε,adv

H,B defined by (10.1010.10)). The zoom clearly shows that the adv-
MsFEM-lin basis functions are close to step functions.

It is clear that the MsFEM-lin approximation uεH is unstable. On the contrary, we
can observe the stability of the adv-MsFEM-lin. Although the nodal exactness property
of Theorem 10.410.4 is not observed here for the adv-MsFEM-lin (this is not a contradiction
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with Theorem 10.410.4, because the right-hand side of the PDE does not vanish), the spurious
oscillations of the unstable MsFEM-lin have vanished. We thus see numerically that the
result of Theorem 10.410.4 is sufficient to ensure a stable approximation of (9.39.3) for generic
right-hand sides.

One clear disadvantage of the adv-MsFEM-lin is also visible in Figure 10.110.1: the basis
functions φε,adv

i are heavily deformed by the advection field. In combination with the
boundary conditions imposed in the local problems (10.510.5), this results in basis functions
having sharp boundary layers inside each coarse mesh element and being close to step
functions. On the contrary, the exact solution varies smoothly and only shows a boundary
layer near the outflow at x = 1. This prevents an accurate approximation of the exact
solution uε of (9.39.3) by the adv-MsFEM-lin in spite of the stability of the method.

To design an improved MsFEM (at least for 1D problems), we return our attention
to the RFB method, which gives an exact description of uε according to Lemma 9.39.3.
Inserting the space V ε

H in (9.169.16) for VH , we see that the components of the RFB method

that are missing in the adv-MsFEM-lin are contained in the space
⊕
K∈TH

Bε
K(f), where we

recall the definition of the spaces Bε
K(f) in (9.179.17). We propose to enrich the approxima-

tion space V ε,adv
H by an approximate version of the spaces Bε

K(f), which cannot be used
themselves in an FEM, because they depend on the right-hand side f .

We enrich the adv-MsFEM-lin space by the span of a single bubble function per mesh
element that corresponds to Bε

K(f) if f is piecewise constant. For any K ∈ TH , we define
the bubble function Bε,adv

K ∈ H1
0 (K) as the unique solution to L ε

KB
ε,adv
K = 1 in K, and

extend it by 0 outside K. Equivalently, Bε,adv
K is the unique solution in BH to

aε
(
Bε,adv
K , v

)
=

∫
K

v for all v ∈ BH . (10.9)

We next define the spaces

V ε,adv
H,B = V ε,adv

H

⊕
K∈TH

span
{
Bε,adv
K

}
, V ε,adv

H,B,0 = V ε,adv
H,0

⊕
K∈TH

span
{
Bε,adv
K

}
,

and the adv-MsFEM-lin with bubbles, abbreviated adv-MsFEM-lin-B: find uε,adv
H,B ∈ V

ε,adv
H,B

such that  aε
(
uε,adv
H,B , v

ε,adv
H,B

)
= F

(
vε,adv
H,B

)
for all vε,adv

H,B ∈ V
ε,adv
H,B,0,

uε,adv
H,B −I ε,adv

H (g) ∈ V ε,adv
H,B,0.

(10.10)

Here, the interpolation operator I ε,adv
H is the same as used in the adv-MsFEM-lin (10.610.6).

The computation of the multiscale space V ε,adv
H,B requires one additional computation per

mesh element in the offline stage of the MsFEM with respect to the adv-MsFEM in order
to compute the additional bubble functions Bε,adv

K .

We have the following property. The proof follows the same steps as the proof of
Theorem 10.410.4 and is omitted here.

Theorem 10.7. When f is piecewise constant, the adv-MsFEM-lin-B approxima-
tion uε,adv

H,B equals the RFB solution defined in (9.189.18). In particular, in dimension 1 and
when f is piecewise constant, the adv-MsFEM-lin-B is exact for any choice of boundary
conditions.
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This theorem shows an improved accuracy of the adv-MsFEM-lin-B with respect to
the adv-MsFEM-lin for any piecewise constant f . The improved accuracy is observed
numerically also when f is not piecewise constant. See Figures 10.110.1 and 10.210.2.

10.4. Numerical experiment in 1D

In this section we compare the numerical methods introduced above on a one-dimensional
example. It is in this setting that Theorem 10.710.7 guarantees an exact approximation for
piecewise constant f . The numerical results here go beyond that assumption. Although
a one-dimensional setting may be an overly simplified situation, we will draw some con-
clusions that are important for the assessment of the more challenging two-dimensional
situation of Chapter 1212.

The test case in this section is based on the diffusion coefficient (10.810.8) with b = 1
and ε = 2−8, and on the right-hand side f(x) = sin2 (3πx) on the domain Ω = (0, 1).
We used H = 2−6 as the mesh size for the MsFEM. For the fine mesh, on which the
reference solution (denoted uεh) and the multiscale basis functions are computed, we used
h = 2−5 min {ε, α}, such that the fine mesh resolves the microstructure and the local
Péclet number of the fine mesh satisfies Peh < 2−6 for all tests. For the MsFEM-lin
SUPG, we used the stabilization parameter

τ =
H

2|b|

(
coth PeH −

1

PeH

)
with PeH =

|b|H
2α

,

which is the ideal value (9.219.21) for the P1 SUPG method in 1D for a constant diffusion
coefficient equal to α.

In Figure 10.210.2, we aim to distinguish between unstable methods, which develop spu-
rious oscillations propagating from the boundary layer at x = 1 for small values of α,
and stable methods. Therefore, we measure the error outside the mesh element where the
boundary layer lies, i.e., on ΩOBLE = (0, 1 − H) (OBLE for ‘outside the boundary layer
element’). The errors are normalized with respect to the norm of the reference solution uεh
on the same domain ΩOBLE. We comment on this choice of error measure in Remark 12.112.1.

The results of Figure 10.210.2 confirm that the P1 method and the MsFEM-lin are not
stable, since they suffer from spurious oscillations due to which the error explodes even
when measured on ΩOBLE. The P1 and P1 SUPG methods, as well as the MsFEM-lin
and MsFEM-lin SUPG, yield identical results in the diffusion-dominated regime. This is
natural because no stabilization is required in that regime, and in fact the stabilization
parameter τ is negligible here. The point where stabilized and unstabilized methods start
to differ can also be used as an indication of when the advection starts to dominate. We
discuss this further in Section 12.1.312.1.3.

Among the stable methods, we find the P1 SUPG method, the MsFEM-lin SUPG, the
adv-MsFEM-lin and the adv-MsFEM-lin-B. We note first that the adv-MsFEM-lin is not
accurate in the advection-dominated regime, even though it does not suffer from spurious
oscillations in ΩOBLE. This was anticipated above as a result of the inappropriate shape of
the basis functions φε,adv

i under the influence of a strong advection field (recall Figure 10.110.1).
The error of the P1 (SUPG) FEM is larger than that of the multiscale methods by one
order of magnitude in the diffusion-dominated regime, as can be expected from the fact
that aε is highly oscillatory with 4 periods per coarse mesh element (H = 4ε).

On the other hand, we observe in the advection-dominated regime that the accuracy of
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Figure 10.2: Relative errors outside the boundary layer element between the reference
solution uεh and various numerical approximations uεH , for the one-dimensional test
case (10.810.8), for varying α, with b = 1, ε = 2−8 and H = 2−6. The P1 and P1 SUPG
methods, as well as the MsFEM-lin and MsFEM-lin SUPG, yield identical results in the
diffusion-dominated regime.

the P1 SUPG method is comparable to the adv-MsFEM-lin-B, and that it even performs
better than the MsFEM-lin SUPG. This confirms the earlier findings of [114114], stating that
the multiscale character of the diffusion is overshadowed by the advective effects when
those dominate the diffusive effects. A more intuitive understanding of this phenomenon
is provided by Figure 10.310.3, which shows the derivative of the reference solution uεh and
several numerical approximations on a coarse mesh. The two cases shown correspond to
the values α = 2−9 and α = 2−13 in Figure 10.210.2.

It is clear from Figure 10.310.3 that the amplitude of the oscillations of (uεh)
′ decreases

with decreasing α. However, the basis functions of the MsFEM SUPG are independent
of the multiplicative factor α, which cancels in (10.110.1). Consequently, the oscillations of
the basis functions of the MsFEM SUPG are too large when the advective term strongly
dominates the diffusion. On the other hand, the P1 SUPG method encodes no fine-scale
oscillations, which becomes a better approximation of the actual behaviour of uεh in the
H1-norm when α decreases. The only method that captures the oscillations correctly
throughout the entire regime of diffusion strengths is the adv-MsFEM-lin-B.

As a final observation for the 1D test case, we point out that the accuracy of the adv-
MsFEM-lin-B decreases over almost three orders of magnitude when α decreases in the
range studied here. Nevertheless, the method would be exact for all α if f were piecewise
constant. The results of Figure 10.210.2 show that a perturbation of the piecewise constant
situation has a relatively small impact on the accuracy of the adv-MsFEM-lin-B in the
diffusion-dominated regime, but a much larger impact in the advection-dominated regime.
The large increase in the error if we deviate from the piecewise constant situation when
the advection is dominant shows that we cannot expect high accuracy in more challenging
situations such as the advection-dominated regime in two-dimensional problems.

In Section 10.510.5, we explain why the above findings do not all generalize to higher
dimension. We consider numerical experiments in 2D with a more suitable MsFEM variant
in Chapter 1212.
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Figure 10.3: Fine-scale oscillations of the derivative of the reference solution uεh and three
stable (Ms)FEM approximations, for two different values of the diffusion strength α. The
P1 SUPG approximation is denoted by uSUPG

H . For α = 2−9, the MsFEM SUPG approx-
imation uε,SUPG

H and adv-MsFEM-lin-B approximation uε,adv
H,B visually coincide with uεh on

the scale of this plot. For α = 2−13, only uε,adv
H,B captures the oscillations of uεh correctly

(except close the boundary of mesh elements).

Remark 10.8. The adv-MsFEM-lin-B can be enriched with more bubbles in order to
extend the exactness results of Theorem 10.710.7 to more general right-hand sides f . For
example, if f is any (piecewise) polynomial of degree p, the exact solution uε lies in an
adv-MsFEM space enriched with p+ 1 suitable bubble functions per mesh element.

10.5. On the generalization to higher dimension

It was observed in numerical experiments in [114114] that the adv-MsFEM-lin is not stable
in dimension 2, unlike the one-dimensional setting in which we have Theorem 10.410.4 and for
which our numerical results also confirm stability. Here we provide a previously unknown
explanation for those observations.

The exactness results of Sections 10.210.2 and 10.310.3 cannot hold in dimension larger than 1,
because they rely on the exactness of the RFB method, a property that is only true when
VH ⊕ BH (or V ε,adv

H ⊕ BH) is an exact decomposition of H1
0 (Ω). Besides the fact that

these theoretical results no longer hold, the loss of stability in higher dimension observed
in practice can be understood as follows.

We first consider the adv-MsFEM-lin-B and draw some conclusions for the method
without bubbles below. Let us rewrite the multiscale approximation uε,adv

H,B as a sum of

coarse scale and multiscale parts. Following the characterization (10.710.7) of V ε,adv
H , we have

uε,adv
H,B = uH +

∑
K∈TH

d∑
α=1

∂α(uH |K)χε,adv,α
K +

∑
K∈TH

βK B
ε,adv
K ,

for some uH ∈ VH and βK ∈ R. We recall that Bε,adv
K is defined in (10.910.9). The coeffi-

cients βK can be expressed in terms of uH upon testing (10.1010.10) against Bε,adv
K . Inserting
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the expression in (10.1010.10), and testing against vε,adv
H ∈ V ε,adv

H (that we also expand as
in (10.710.7)), we obtain a numerical scheme for uH . This scheme can be rewritten as a gen-
eralized form of (9.209.20) with d+ 1 different stabilization parameters per mesh element K:
one for each function χε,adv,α

K and one related to Bε,adv
K .

The most insightful case is that of constant coefficients. It then holds that χε,adv,α
K =

−bαBε,adv
K , where bα = b · eα, and the effective scheme can be formulated in terms of a

single stabilization parameter given by (9.219.21). (Note that Bε,adv
K coincides with the bubble

function bK used in (9.219.21) in the case of constant coefficients.) We refer to [4141] for the
details of the derivation of the effective scheme. In fact, we know from Theorem 10.710.7
that the adv-MsFEM-B coincides with the RFB method for a piecewise constant right-
hand side. Hence, the discussion of Section 9.4.39.4.3 applies, and the scheme for uH takes
exactly the form (9.209.20) with a single stabilization parameter taking the value (9.219.21). As
we recalled in Section 9.4.39.4.3, this is the ideal parameter yielding nodal exactness of uH
in 1D, but in higher dimension this value is too small to achieve full stabilization and
some spurious oscillations remain in uH . The full multiscale solution uε,adv

H,B suffers from

the same spurious oscillations as uH , because all χε,adv,α
K and Bε,adv

K vanish on the mesh
element boundaries.

Let us now explain what the above observations imply for the adv-MsFEM-lin (without
bubbles) that was previously found to be unstable in dimension 2, see [114114]. An effective
scheme for uH can be obtained following again the steps of [4141]. We obtain

a(uH , vH) +
∑
K∈TH

∫
K

τB (b · ∇uH)(b · ∇vH) = F (vH)+

−
∑
K∈TH

∫
K

τB f b·∇vH for all vH ∈ VH,0,

uH −IH(g) ∈ VH,0,

which differs from the SUPG scheme (9.209.20) only by the minus sign in front of the sum on
the second line. However, we have emphasized throughout that the stability or instability
of the FEM is not related to the right-hand side (in particular because it persists in
the case when f = 0), and thus the left-hand side of the above scheme is decisive for the
stability of the FEM. Hence, the same conclusions as above with regard to the effectiveness
of the stabilization parameter τB apply to the adv-MsFEM-lin: it encodes the perfect
stabilization parameter in the one-dimensional situation, but does not achieve full stability
beyond that setting. This can also be observed in Figure 12.2d12.2d when we consider numerical
experiments in 2D.

Remark 10.9. An expansion of the type (10.710.7) also holds for the basis functions of
the MsFEM-lin (see (10.110.1)) for a suitable counterpart of the functions χε,adv,α

K . We
refer to Part II for details, where these representations were used to design non-intrusive
implementations of MsFEMs. (See also Section 11.411.4.) However, unlike the space V ε,adv

H ,
the multiscale space V ε

H of the MsFEM-lin is not a subspace of the RFB space defined
in (9.169.16) (except in the pure diffusion case). Therefore, no connection with classical
stabilization methods can be made for the MsFEM-lin.

In a general way, we can summarize the above conclusions regarding the higher-
dimensional setting as follows: the bubble space (9.129.12), with bubble functions that vanish
on all interfaces of the mesh, is too small a choice for the unresolved scales to stabilize
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a finite element method. In the next chapter we relax the condition on the interfaces of
the mesh. We will consider an MsFEM based on unresolved scales that only vanish in a
weak sense (on average on each face) on the coarse mesh element boundaries.
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CHAPTER 11

An MsFEM with weak bubbles

In Chapter 1010, we have given a new interpretation of the adv-MsFEM-lin with bubbles
that allows to explain why the method is stable in dimension 1, but not in higher dimen-
sion. In the present chapter, we consider a variant of the MsFEM with Crouzeix-Raviart
type boundary conditions, which we abbreviate as MsFEM-CR. This method was first
introduced in [112112] for pure diffusion problems. The multiscale basis functions introduced
in that work reduce to the classical P1 Crouzeix-Raviart element when applied to constant
diffusion, hence the name of the method. The MsFEM-CR was found to be particularly
advantageous when enriched with bubble functions for the resolution of PDEs in perfo-
rated domains in [113113]. The method has been adapted in the spirit of the adv-MsFEM-lin
for the numerical approximation of advection-diffusion problems in [114114], but without the
bubble enrichment that we will propose below to obtain a sufficiently accurate MsFEM.
The enrichment by bubble functions was used in [115115, 5757], again in the context of perfo-
rated domains. To the best of our knowledge, the insights into the stabilizing properties
of the approximation space that we present in this thesis are new.

The MsFEM-CR relies on unresolved scales that only vanish weakly, i.e., on average,
on the mesh element interfaces, in contrast to the space BH . More precisely, we define,
for each K ∈ TH , the space

H1,w
0 (K) =

{
v ∈ H1(K)

∣∣∣∣ ∫
e

v = 0 for all e ∈ EH(K)

}
,

where EH(K) denotes the set of faces of the mesh element K. We define the space of
weak bubbles as

Bw
H =

⊕
K∈TH

H1,w
0 (K).

The weak bubbles are continuous across mesh elements in a weak sense, namely, in
the sense that the average jump of the bubble functions over each interface vanishes. In
particular, Bw

H is not a subspace of H1(Ω). We thus extend our functional setting to the
broken H1 space with weak continuity conditions, that is,

H1,w(TH) =

{
v ∈ L2(Ω)

∣∣∣∣v|K ∈ H1(K) for all K ∈ TH and

∫
e

JvK = 0 for all e ∈ E in
H

}
,

where E in
H is the set of all internal interfaces of the mesh TH and JvK denotes the jump

151
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of v over such an interface e. We also define E ∂
H as those interfaces of the mesh that lie

on ∂Ω and EH = E in
H ∪ E ∂

H as the set of all interfaces of TH . Equipped with the broken
H1 norm,

‖v‖H1(TH) =

( ∑
K∈TH

‖v‖2
H1(K)

)1/2

,

we endow H1,w(TH) with the structure of a Hilbert space. We also define the subspace
of functions that vanish on average on the boundary faces of the mesh as

H1,w
0 (TH) =

{
v ∈ H1,w(TH)

∣∣∣∣∫
e

v = 0 for all e ∈ E ∂
H

}
.

Note that the broken H1 space can be written as the direct sum H1,w(TH) = V w
H ⊕Bw

H ,
where V w

H is the P1 Crouzeix-Raviart space defined as

V w
H =

{
v ∈ P1(TH)

∣∣∣∣ ∫
e

JvK = 0 for all e ∈ E in
H

}
.

Also note that the exact solution uε to (9.39.3) belongs to H1,w(TH) (because H1(Ω) ⊂
H1,w(TH)). This is in sharp contrast to the bubble space used in Chapter 1010, for which
it holds in general that uε /∈ VH ⊕BH when the ambient dimension is larger than 1.

11.1. The coarse scales

Generalizing (10.410.4) to the space of weak bubbles, we propose the multiscale approximation
space

W ε,adv
H =

{
wε,adv
H ∈ H1,w(TH)

∣∣∣ aε(wε,adv
H , w

)
= 0 for all w ∈ Bw

H

}
.

We introduce one multiscale basis function for W ε,adv
H associated to each interface e ∈ EH .

The basis function φε,adv
e is defined by the variational problem

∀K ∈ TH ,


aεK
(
φε,adv
e , v

)
= 0 for all v ∈ H1,w

0 (K),

1

|h|

∫
h

φε,adv
e = δe,h for each h ∈ EH(K).

(11.1)

Here, δe,h is the Kronecker delta and aεK is the restriction of the bilinear form aε toH1(K)×
H1(K). We do not know how to establish well-posedness of these problems because the
bilinear form aεK is not coercive on H1,w

0 (K) in general. However, if the φε,adv
e are well-

defined, it is easy to verify that they form a basis of W ε,adv
H and one can show by standard

analysis arguments that they satisfy the equivalent PDE
− div(Aε∇φε,adv

e ) + b · ∇φε,adv
e = 0 in K,

~n · Aε∇φε,adv
e = λh on each h ∈ F (K),

1

h

∫
h

φε,adv
e = δe,h for each h ∈ F (K),

(11.2)

where ~n is the outward unit normal vector on ∂K and λh is a constant that depends
on h and that is uniquely determined by this problem. To circumvent the problem of
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well-posedness, one can choose to work with a different bilinear form based on a skew-
symmetric formulation of the advective term in (9.39.3). We provide some more details on
this possibility in Remark 11.311.3. In practice, a discrete approximation of (11.211.2) can be
solved. See Chapter 1212 for details on our computational approach.

The adv-MsFEM-CR is now defined as follows: find wε,adv
H ∈ W ε,adv

H such that
∑
K∈TH

aεK

(
wε,adv
H , vε,adv

H

)
= F

(
vε,adv
H

)
for all vε,adv

H ∈ W ε,adv
H,0 ,∫

e

wε,adv
H =

∫
e

g for all e ∈ E ∂
H ,

(11.3)

where the multiscale test space W ε,adv
H,0 is defined as W ε,adv

H,0 = W ε,adv
H ∩H1,w

0 (TH).

Remark 11.1. The original MsFEM-CR is obtained upon setting b = 0 in the definition
of the space W ε,adv

H .

Let us stress that the approximation space W ε,adv
H is not a subspace of H1(Ω) and thus

that the adv-MsFEM-CR (11.311.3) is a non-conforming approximation of (9.69.6). Moreover,
an interpolation operator in the spirit of IH (see (9.79.7)) based on nodal values cannot
be defined on W ε,adv

H due to discontinuities on ∂Ω. Therefore, the boundary condition
in (11.311.3) is imposed in a weak sense, like the continuity condition of the space H1,w(TH).
Here we deviate from the definition of the MsFEM-CR in [112112, 113113]. Our choice of
boundary conditions was also employed in [5757, 123123, 105105].

In dimension 1, the adv-MsFEM-lin and the adv-MsFEM-CR basis functions coincide.
It thus follows from our study in dimension 1 (see Section 10.310.3 and Figure 10.110.1) that the
basis functions are substantially deformed under the influence of the advection field when
it is dominant. This carries over to the two-dimensional case (both for the adv-MsFEM-
lin and the adv-MsFEM-CR) as is illustrated for the adv-MsFEM-CR in Figure 11.111.1. The
multiscale space W ε,adv

H is thus unable to provide a sufficiently accurate solution. Hence,
we follow the development of Section 10.310.3, and enrich the multiscale space W ε,adv

H with
additional bubble functions from the space of unresolved scales Bw

H .

Isovalues

Figure 11.1: Comparison of a P1 CR basis function (left) and an adv-MsFEM-CR basis
function (right) in the presence of a strong advection field.
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11.2. Additional bubbles for the adv-MsFEM-CR

The adaptation of the bubble functions Bε,adv
K ∈ BH (see (10.910.9)) to the space of weak

bubbles Bw
H takes the following form. We define for each K ∈ TH the weak bubble

function Bε,adv,w
K as the unique solution in Bw

H to

aεK

(
Bε,adv,w
K , v

)
=

∫
K

v for all v ∈ H1,w
0 (K). (11.4)

Note that Bε,adv,w
K vanishes outside K, and that Bε,adv,w

K solves L ε
KB

ε,adv,w
K = 1 in K.

Then we define the augmented multiscale spaces

W ε,adv
H,B = W ε,adv

H

⊕
K∈TH

span
{
Bε,adv,w
K

}
, W ε,adv

H,B,0 = W ε,adv
H,0

⊕
K∈TH

span
{
Bε,adv,w
K

}
,

and the adv-MsFEM-CR with (weak) bubbles, abbreviated as adv-MsFEM-CR-B, as:
find wε,adv

H,B ∈ W
ε,adv
H,B such that
∑
K∈TH

aεK

(
wε,adv
H,B , v

ε,adv
H,B

)
= F

(
vε,adv
H,B

)
for all vε,adv

H,B ∈ W
ε,adv
H,B,0,∫

e

wε,adv
H,B =

∫
e

g for all e ∈ E ∂
H .

(11.5)

This MsFEM with weak bubbles satisfies a result analogous to Theorem 10.710.7 for a
generalization of the continuous problem (9.39.3) on the space with weak continuity. Let us
introduce these notions now. On the space H1,w(TH) we consider the following problem
for νεH : 

∑
K∈TH

aεK(νεH , v) = F (v) for all v ∈ H1,w
0 (TH),∫

e

νεH =

∫
e

g for all e ∈ E ∂
H .

(11.6)

With respect to (9.69.6), the interelement continuity is relaxed. Jumps are allowed as long
as the weak continuity condition of the space H1,w(TH) is satisfied. Again, we cannot
show well-posedness of (11.611.6) unless we change the bilinear form. Supposing that a
unique solution exists, we have the following result. Contrary to Theorems 10.410.4 and 10.710.7
concerning the adv-MsFEM-lin, it holds true in any dimension.

Theorem 11.2. Suppose that f is piecewise constant and that the problems (11.111.1),
(11.411.4), (11.511.5) and (11.611.6) all have a unique solution. Then the adv-MsFEM-CR-B pro-
vides the exact solution to (11.611.6), that is, wε,adv

H,B = νεH .

Proof. We show that νεH belongs to the finite-dimensional space W ε,adv
H,B . The function

ϕ = νεH −
∑
K∈TH

f |K Bε,adv,w
K satisfies

∀K ∈ TH , ∀w ∈ Bw
K , aεK(ϕ,w) = aεK(νεH , w)− f |K aεK

(
Bε,adv,w
K , w

)
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=

∫
K

f w − f |K
∫
K

w

= 0,

using (11.611.6) and (11.411.4) in the second equality and the fact that f is piecewise constant
in the third equality. Thus, ϕ ∈ W ε,adv

H and this concludes the proof by the classical Céa
Lemma. �

In order to assess the quality of wε,adv
H,B as an approximation of uε, solution to (9.39.3), the

question is of course to what extent νεH and uε are close. To the best of our knowledge
this is an open question, and this could be an interesting research direction to further
understand the stabilizing properties of the adv-MsFEM-CR. Our numerical results in
Chapter 1212 show that wε,adv

H,B is indeed a stable approximation of uε in the advection-
dominated regime.

Remark 11.3 (Alternative variational formulation). We noted above that the bilinear
form aεK is not coercive on the space H1,w

0 (K), so the standard Lax-Milgram theory
cannot be applied to show well-posedness of the definition (11.111.1) of the adv-MsFEM-
CR basis functions. A skew-symmetrized version of the advective term is frequently
used in the literature, see e.g. [108108]. It is defined, for any u, v ∈ H1(K), as

aε,SS
K (u, v) =

∫
K

∇v · Aε∇u+
1

2
v b · ∇u− 1

2
u b · ∇v − 1

2
u v div(b),

where the last term vanishes under the assumption (9.59.5). One can show that aε,SS
K is

coercive on H1
0 (K) as long as div(b) ≤ 0.

It is easily seen that for any u, v ∈ H1
0 (Ω), we have

∑
K∈TH

aε,SS
K (u, v) = aε(u, v), by

integration by parts. We could thus replace aε by aε,SS throughout without modifying
the original solution of the problem (9.39.3). The adv-MsFEM-lin and adv-MsFEM-CR
spaces do change. We did not adopt the bilinear form aε,SS

K in this thesis, because our
numerical experiments show that the versions of the adv-MsFEM with this bilinear form
are less accurate than those with the form aεK . It is not clear why. We would like to
point out, however, that Theorem 11.211.2 (and Corollary 11.511.5 below) remain true when aεK
is replaced by aε,SS

K , and well-posedness of (11.111.1), (11.411.4), (11.511.5) and (11.611.6) is guaranteed
in this case.

Remark 11.4. Whether (11.511.5) can be used to stabilize (9.69.6) may also be studied in
the constant coefficient case. Then (11.511.5) corresponds to a P1 Crouzeix-Raviart method
with bubble functions. For the adv-MsFEM-lin, studies of the RFB method for con-
stant coefficient problems have led to multiple insights even for the multiscale case in
Chapter 1010. We are not aware of similar studies for the P1 Crouzeix-Raviart FEM. For
alternative stabilization approaches designed specifically for the P1 Crouzeix-Raviart
FEM we refer to [108108, 110110, 6464] and the references therein.

11.3. A closer look at the bubbles

We now investigate the role of the bubble functions in the linear system resulting from
the two adv-MsFEM variants with bubbles (10.1010.10) and (11.511.5). The notation of the adv-
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MsFEM-CR-B is employed, but the analysis directly carries over to the adv-MsFEM-lin-B.

We use the basis
{
φε,adv
e

}
e∈E inH

for W ε,adv
H,0 and

{
Bε,adv,w
K

}
K∈TH

for the bubble space.

The matrix of the linear system corresponding to (11.511.5) then is

Aε,adv =

(
AW,W AW,B

AB,W AB,B

)
, (11.7)

where
A
W,W
h,e =

∑
T∈TH

aεT

(
φε,adv
e , φε,adv

h

)
for all e, h ∈ E in

H ,

A
B,B
K′,K =

∑
T∈TH

aεT

(
Bε,adv,w
K , Bε,adv,w

K′

)
for all K,K ′ ∈ TH ,

A
W,B
h,K =

∑
T∈TH

aεT

(
Bε,adv,w
K , φε,adv

h

)
for all K ∈ TH , h ∈ E in

H ,

A
B,W
K′,e =

∑
T∈TH

aεT

(
φε,adv
e , Bε,adv,w

K′

)
= 0 for all e ∈ E in

H , K
′ ∈ TH .

(11.8)

The lower left block vanishes because φε,adv
e solves (11.111.1) and Bε,adv,w

K′ ∈ H1,w
0 (K ′). More-

over, the right lower block AB,B is diagonal because all bubble functions have disjoint
supports. Its diagonal entries are

A
B,B
K,K = aεK

(
Bε,adv,w
K , Bε,adv,w

K

)
=

∫
K

Bε,adv,w
K ,

where we used (11.411.4). (Note that we could show positivity of this quantity if aεK were
coercive on H1,w

0 (K).) The bubble part wε,adv
B ∈ Bε,adv,w

H of the adv-MsFEM-CR-B ap-
proximation wε,adv

H,B can thus be explicitly computed and equals

wε,adv
B =

∑
K∈TH

∫
K

fBε,adv,w
K∫

K

Bε,adv,w
K

Bε,adv,w
K , (11.9)

which reduces to
wε,adv
B =

∑
K∈TH

f |KBε,adv,w
K (11.10)

if f is piecewise constant.

With an explicit expression for wε,adv
B at hand, we obtain a scheme for the coarse scale

part wε,adv
W = wε,adv

H,B −w
ε,adv
B of wε,adv

H,B (as pointed out above, this is generally known as static
condensation in the FEM literature). The addition of bubble functions therefore does not
increase the size of the linear system that has to be solved in order to compute wε,adv

H,B

from (11.511.5) (with respect to the size of the linear system associated to (11.311.3)).

In the particular case that f is piecewise constant, upon inserting (11.1011.10), the scheme
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for wε,adv
W writes

∑
K∈TH

aεK

(
wε,adv
W , vε,adv

H

)
= F

(
vε,adv
H

)
−

∑
K∈TH

(
1

|K|

∫
K

f

)
aεK

(
Bε,adv,w
K , vε,adv

H

)
for all vε,adv

H ∈ W ε,adv
H,0 ,∫

e

wε,adv
W =

∫
e

g for all e ∈ E ∂
H .

(11.11a)
In fact, one can also compute wε,adv

W from (11.11a11.11a) when f is not piecewise constant. This
results in a new numerical method that no longer coincides with the adv-MsFEM-CR-B
in general.

More precisely, we formulate the adv-MsFEM-CR-β as follows:

Set wε,adv
H,β = wε,adv

W +
∑
K∈TH

(
1

|K|

∫
K

f

)
Bε,adv,w
K , where wε,adv

W solves (11.11a11.11a). (11.11b)

Directly computing the coefficients of the bubble functions according to either (11.911.9)
or (11.1011.10) is advantageous because it reduces the number of unknowns in wε,adv

H,B and
thus results in a smaller linear system to be solved. An additional advantage of the
adv-MsFEM-CR-β is that the computation of these coefficients does not require any inte-
grations at the microscale. The implications for the implementation of the adv-MsFEM-
CR-β are further considered in Section 11.411.4. The accuracy of the adv-MsFEM-B and the
adv-MsFEM-CR-β is compared in Chapter 1212.

In the special case f = 0, it is clear from (11.1011.10) that wε,adv
B = 0. Consequently,

the adv-MsFEM-CR and the adv-MsFEM-CR-B coincide. We thus obtain the following
property as a corollary to Theorem 11.211.2.

Corollary 11.5. Suppose that f = 0 and that (11.511.5) and (11.611.6) both have a unique
solution. Then the adv-MsFEM-CR (11.311.3) provides the exact solution to (11.611.6), that is,
wε,adv
H = νεH .

Besides the fact that (11.1011.10) allows one to compute the coefficients of the bubble
function, it also explains why it is important to add bubble functions to the multiscale
approximation space when advective effects are dominant. Consider Equation (9.39.3) for
a decreasing magnitude of the diffusion tensor Aε. The solution uε then stays of the
same order of magnitude. Since the coefficients in front of the bubble functions in (11.1011.10)
are independent of Aε, the relative importance of the bubble functions in the numerical
approximation is directly determined by the size of the bubble functions. In dimension 1,
and for piecewise constant coefficients, the bubble functions are easily computed explicitly.
(The problem defining the bubble functions is a rescaled version of (9.19.1).) They become
larger when the diffusion parameter m decreases. This is illustrated in Figure 11.211.2. At
the same time, the boundary layers of the multiscale functions (in both the spaces V ε,adv

H

and W ε,adv
H ) inside each coarse mesh element become more pronounced, and the bubble

functions compensate these boundary layers. In higher dimension, an explicit computation
is not obvious, but numerical computations of the bubble functions confirm that the
bubble functions become larger when the diffusion coefficient decreases. See Figure 11.311.3.
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Figure 11.2: Bubble functions BK on the one-dimensional domain (0, 0.125) solving
−mB′′K +B′K = 1 as m varies.

Isovalues
(
×10−2

)

Figure 11.3: Bubble functions for the adv-MsFEM-lin-B with |b| = 1 and H = 2−4. Left:
Aε oscillates around the value 2−6. Right: Aε oscillates around the value 2−9.

11.4. Non-intrusive implementation

We focus in this section on the implementation of adv-MsFEM variants with bubbles.
The central part of the implementation of the MsFEM is the construction and resolution
of the linear system associated to (11.511.5). We write

wε,adv
H,B −

∑
e∈E ∂H

(
1

|e|

∫
e

g

)
φε,adv
e =

∑
e∈E inH

W ε,adv
e φε,adv

e +
∑
K∈TH

W ε,adv
K Bε,adv,w

K ∈ H1,w
0 (TH),

for some coefficients
(
W ε,adv
e

)
e∈E inH

and
(
W ε,adv
K

)
K∈TH

. Then the MsFEM approxima-

tion wε,adv
H,B is found upon computing W ε,adv = (W ε,adv

e ,W ε,adv
K ), solution to the linear

system
Aε,adv W ε,adv = Fε,adv,

where Aε,adv is defined in (11.711.7) and the vector Fε,adv, indexed by the internal edges of TH

and the mesh elements as in Section 11.311.3, is defined as

F
ε,adv
h = F

(
φε,adv
h

)
for all h ∈ E in

H ,

F
ε,adv
K = F

(
Bε,adv,w
K

)
for all K ∈ TH .
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Note that, for the sake of clarity, we discuss adv-MsFEM-CR variants explicitly in this
section, but that all applies to the corresponding adv-MsFEM-lin variants as well.

An efficient construction of this linear system requires a laborious development process,
as was discussed in Section 4.34.3. There it was also explained that it is not straightforward
to adapt an existing finite element code, processing generic polynomial basis functions,
to perform the numerical integrations involved in computing Aε,adv and Fε,adv, which are
defined in terms of the multiscale basis functions. An alternative MsFEM and imple-
mentation strategy were proposed to render the MsFEM less intrusive. It leads to the
formulation of a standard FEM approximation of an effective PDE.

We next apply the methodology for a non-intrusive implementation of MsFEMs pre-
sented in Part II to the adv-MsFEM. We extend the methods of Part II with a non-
intrusive approach for the multiscale bubble functions in the discrete formulation. Let us
note that our non-intrusive formulation for MsFEMs with bubbles uses a right-hand side
in H−1(TH), even if the right-hand side f of (9.39.3) belongs to L2(Ω). The standard finite
element code must be able to handle such terms. This is an additional requirement for
the software used that was not present in the non-intrusive MsFEMs of Chapter 66.

11.4.1. The adv-MsFEM without bubbles. One non-intrusive MsFEM approach pro-
posed in Chapter 66 (see Remark 11.911.9 for another possibility) is the following Petrov-
Galerkin (PG) MsFEM: find wε,adv,PG

H ∈ W ε,adv
H such that

∑
K∈TH

aεK

(
wε,adv,PG
H , φP1

e

)
=

∫
Ω

f φP1
e for all e ∈ E in

H ,∫
e

wε,adv,PG
H =

∫
e

g for all e ∈ E ∂
H ,

(11.12)

where piecewise affine test functions are used in the discrete problem. The test func-
tions φP1

e ∈ V w
H (we recall that this is the P1 Crouzeix-Raviart space) are piecewise affine

functions defined by the property
1

h

∫
h

φε,adv
e = δe,h for each h ∈ F (K).

Due to the following result, the adv-MsFEM-CR (11.311.3) and the PG adv-MsFEM-CR
coincide when f = 0. In particular, Corollary 11.511.5 (concerning the adv-MsFEM without
bubbles) also holds true for the Petrov-Galerkin formulation.

Theorem 11.6. For any h ∈ EH , let φh ∈ H1,w(TH) be any function such that

∫
e

φh =∫
e

φε,adv
h for all e ∈ E in

H . Consider the case f = 0. Then the adv-MsFEM-CR (11.311.3)

coincides with the adv-MsFEM-CR with test functions (φh)h∈E inH
.

Proof. Since f = 0, the proof amounts to showing that the matrix AW,W defined in (11.811.8)
coincides with the matrix AW,φ obtained upon replacing each test function φε,adv

h by φh,

i.e., AW,φh,e =
∑
K∈TH

aεK
(
φε,adv
e , φh

)
. From (11.111.1), it readily follows that, for all e, h ∈ E in

H ,

A
W,W
h,e − A

W,φ
h,e =

∑
K∈TH

aεK

(
φε,adv
e , φε,adv

h − φh
)

= 0.
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Note that the function φε,adv
h −φh can indeed be used as a test function in (11.111.1), because∫

e

φh =

∫
e

φε,adv
h for all e ∈ E in

H . �

Remark 11.7. If, with the notation of Theorem 11.611.6, we choose the test functions φh
as local solutions to the adjoint problem to (11.111.1), i.e.,

∀K ∈ TH ,


aεK(v, φh) = 0, for all v ∈ H1,w

0 (K),

1

|e|

∫
e

φh = δh,e for each e ∈ EH(K),

it can be shown that the resulting finite element method is the same as the scheme for
the coarse part of the adv-MsFEM-CR-B when f is piecewise constant (see (11.11a11.11a)).
The idea that a Petrov-Galerkin method can provide stability is classical in the one-
dimensional case. We refer e.g. to [131131, pp. 82-84] and the references therein.
Even when f is not piecewise constant, one can show that the adv-MsFEM-CR with
test functions solving the adjoint equation provides an approximation wε,adv?

H satisfying∫
e

wε,adv?
H =

∫
e

νεH (νεH was defined in (11.611.6)) for all e ∈ EH .

Let us now recall the non-intrusive MsFEM approach for solving (11.1211.12). It is based
on the expansion of the multiscale basis functions in terms of P1 Crouzeix-Raviart basis
functions φP1

e ∈ V w
H as

φε,adv
e = φP1

e +
∑
K∈TH

d∑
α=1

∂α
(
φP1
e

∣∣
K

)
χε,adv,α
K . (11.13)

The so-called numerical correctors χε,adv,α
K ∈ H1,w

0 (K) (α = 1, . . . , d) are defined by the

problem aε
(
χε,adv,α
K + xα, v

)
= 0 for all v ∈ H1,w

0 (K). The terminology of numerical

correctors stems from the close resemblance of (11.1311.13) to the first-order expansion of uε

in homogenization theory, for which corrector functions resolving the microstructure are
introduced. A similar expansion was given for the adv-MsFEM-lin basis functions φε,adv

i

in (10.710.7) (with suitably defined numerical correctors). Note that each numerical corrector
depends only on the mesh element K to which it is associated and the local values of the
coefficients of the PDE inside this mesh element.

The numerical correctors are used to define a piecewise constant diffusion matrix A
and advection field b as follows:

∀K ∈ TH ,

Aβ,α =
1

|K|
aε
(
xα + χε,adv,α

K , xβ
)
, 1 ≤ α, β ≤ d,

bα =
1

|K|
aε
(
xα + χε,adv,α

K , 1
)
, 1 ≤ α ≤ d.

(11.14)

With these effective coefficients, we define the effective bilinear form

aK(u, v) =

∫
K

∇v · A∇u+ v b · ∇u for all u, v ∈ H1(K). (11.15)

Denoting AW,P1 the matrix of the linear system associated to the PG method (11.1211.12), we
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have the identities, for all interfaces e, h ∈ E in
H ,

A
W,P1

h,e =
∑
K∈TH

aεK
(
φε,adv
e , φP1

h

)
=
∑
K∈TH

aK
(
φP1
e , φ

P1
h

)
. (11.16)

These identities are purely algebraic and rely on the fact that ∇φP1
e is constant on each

mesh element and for each e. On the right, we recognize the expression for the linear sys-
tem associated to a standard P1 Crouzeix-Raviart FEM that solves the following problem:
find wε,adv

H ∈ V w
H such that

∑
K∈TH

aK

(
wε,adv
H , vH

)
= F (vH) for all vH ∈ V w

H,0,∫
e

wε,adv
H =

∫
e

g for all e ∈ E ∂
H .

(11.17)

Once the effective coefficients in (11.1411.14) have been computed, the problem (11.1711.17) can be
solved by a standard Crouzeix-Raviart finite element solver.

Since the right-hand sides of the discrete problems (11.1211.12) and (11.1711.17) are identical,
and because of (11.1611.16), the linear systems related to both problems are the same. We
can thus compute the solution to (11.1211.12) by solving (11.1711.17) and expanding the solution
of the linear system along the basis φε,adv

e rather than φP1
e . This is equivalent to setting

wε,adv,ni
H = wε,adv

H +
∑
K∈TH

d∑
α=1

∂α

(
wε,adv
H

∣∣∣
K

)
χε,adv,α
K , where wε,adv

H solves (11.1711.17). (11.18)

This is called a non-intrusive implementation because only finite element problems based
on standard P1 elements have to be solved.

Remark 11.8. The (Galerkin) adv-MsFEM-CR (11.311.3) and the PG variant (11.1211.12) only
differ in the right-hand side of the discrete formulation (as is shown by Theorem 11.611.6).
The error analysis of Chapter 77 shows that, for pure diffusion problems, the difference
between the two methods converges to 0 at the same rate as the mesh size H. Numer-
ical examples showed that both MsFEM variants have the same accuracy (in both the
case of the adv-MsFEM-CR and the adv-MsFEM-lin). Our numerical experiments (see
Figure 12.712.7) investigate this question for advection-diffusion problems.

Remark 11.9. Another non-intrusive MsFEM approach was proposed in Part II, which
corresponds to taking multiscale test functions on the left-hand side and P1 test functions
on the right-hand side in (11.1211.12). Although it was shown in Lemma 6.46.4 that this variant
coincides with (11.1211.12), this is no longer the case when we add bubble functions to the
approximation space. (See also Remark 11.1011.10.) Since our numerical tests indicate that
this ‘intermediate’ approach in between (11.311.3) and (11.1211.12) is, when enriched with bubble
functions, less accurate than the Galerkin and Petrov-Galerkin variants defined above,
we do not further detail it here.

11.4.2. Extension to MsFEMs with bubbles. We now turn our attention to a non-
intrusive implementation of the adv-MsFEM-CR with bubbles. We can consider either
the adv-MsFEM-CR-B (11.511.5) or the adv-MsFEM-CR-β (11.11b11.11b). For both methods, the
coefficients for the bubble part can be computed element per element independently of
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the degrees of freedom in the space W ε,adv
H , either according to (11.911.9) or as the average

of the right-hand side f in (11.11b11.11b). For a non-intrusive implementation of the MsFEM,
one must avoid integrals over the products of f and highly oscillatory functions, since the
numerical quadrature in a standard finite element simulator on the coarse mesh TH is not
adapted to the approximation of such integrals. Such integrals appear in (11.911.9) but not
in (11.11b11.11b).

For these reasons, we explicitly study the implementation of a PG variant of the
adv-MsFEM-CR-β here. More precisely, we set

wε,adv,PG
H,β = wε,adv,PG

W +
∑
K∈TH

(
1

|K|

∫
K

f

)
Bε,adv,w
K , (11.19a)

where wε,adv,PG
W ∈ W ε,adv

H solves

∑
K∈TH

aεK

(
wε,adv,PG
W , vH

)
= F (vH)

−
∑
K∈TH

(
1

|K|

∫
K

f

)
aεK

(
Bε,adv,w
K , vH

)
for all vH ∈ V w

H,0,∫
e

wε,adv,PG
W =

∫
e

g for all e ∈ E ∂
H .

(11.19b)

The discrete problem (11.19b11.19b) is obtained from (11.11a11.11a) upon replacing all test functions
by their piecewise affine counterpart.

The matrix of the system (11.19b11.19b) is exactly the matrix AW,P1 from (11.1611.16). It can
thus be constructed in a non-intrusive fashion following (11.1411.14) to (11.1711.17). It remains to
find a formulation of the right-hand side in terms of a P1 scheme on the coarse mesh that
does not require any integrations on the microscale.

Fix any P1 Crouzeix-Raviart function vH ∈ V w
H . Note that any such function satisfies,

in all K ∈ TH ,

vH |K (x) = vH(xc,K) +
d∑

α=1

∂α(vH |K)
(
xα − xαc,K

)
in K,

because it is piecewise affine. Here xc,K = (x1
c,K , . . . , x

d
c,K) denotes the centroid of K.

Upon inserting this expression in the multiscale terms on the right-hand side of (11.19b11.19b),
we obtain, for all K ∈ TH ,

aεK

(
Bε,adv,w
K , vH

)
= vH(xc,K) aεK

(
Bε,adv,w
K , 1

)
+

d∑
α=1

∂α(vH |K) aεK

(
Bε,adv,w
K , xα − xαc,K

)
.

We propose to compute in the offline stage of the MsFEM the quantities R0,R1, . . . ,Rd

defined as

R0|K =
1

|K|
aεK

(
Bε,adv,w
K , 1

)
,

Rα|K =
1

|K|
aεK

(
Bε,adv,w
K , xα − xαc,K

)
, α = 1, . . . , d.
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Then it holds

∑
K∈TH

βK a
ε
K

(
Bε,adv,w
K , vH

)
=
∑
K∈TH

βK |K|

(
R0 vH(xc,K) +

d∑
α=1

Rα ∂α(vH |K)

)
,

where βK =

(
1

|K|

∫
K

f

)
. This can finally be rewritten as

∑
K∈TH

βK a
ε
K

(
Bε,adv,w
K , vH

)
=
∑
K∈TH

βK

∫
K

R0 vH + R · ∇vH , (11.20)

where we introduce the notation R = (R1, . . . ,Rd). Assuming a standard finite ele-
ment solver has a routine to compute the averages of the function f , these terms can be
computed once the quantities R0, . . . ,Rd have been precomputed in the offline stage.

A non-intrusive formulation of the PG adv-MsFEM-CR-β can now be formulated as
follows:

Set wε,adv,PG
H,β = wε,adv,PG

H +
∑
K∈TH

d∑
α=1

∂α

(
wε,adv,PG
H

∣∣∣
K

)
χε,adv,α
K +

∑
K∈TH

(
1

|K|

∫
K

f

)
Bε,adv,w
K ,

(11.21a)

where wε,adv,PG
H ∈ V w

H solves

∑
K∈TH

aK

(
wε,adv,PG
H , vH

)
=

∫
Ω

fvH +

∑
K∈TH

βK

∫
K

R0 vH + R · ∇vH for all vH ∈ V w
H,0,∫

e

wε,adv
H =

∫
e

g for all e ∈ E ∂
H .

(11.21b)

The latter problem no longer contains oscillatory coefficients and can be solved by a
standard P1 Crouzeix-Raviart finite element solver.

Remark 11.10. For the Galerkin formulation (11.1111.11) of the adv-MsFEM-CR-β, we
obtain a similar non-intrusive formulation of the type (11.2011.20) when the P1 function vH
is replaced by a multiscale function vεH , upon replacing R1, . . . ,Rd by

RG
α

∣∣
K

= Rα|K +
1

|K|
aεK

(
Bε,adv,w
K , χε,adv,α

K

)
, α = 1, . . . , d.

A non-intrusive implementation of (11.11a11.11a) requires replacing F (vεH) by F (vH). The
resulting method is not equivalent to (11.11b11.11b) and was found in our experiments to
produce less accurate results than both the Galerkin and the Petrov-Galerkin variant
of the adv-MsFEM-CR-β. It is therefore not further reported here.
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CHAPTER 12

Numerical results

We present in this chapter a comparison of various MsFEM and stabilization approaches
presented in Chapters 1010 and 1111 on two representative test cases for (9.39.3) in dimension
d = 2, on the domain Ω = (0, 1)2.

12.1. First test case

Our first test case is

Aε(x, y) = µε(x, y) Id, µε(x, y) = α

(
1 +

3

4
cos (2πx/ε) sin (2πy/ε)

)
, (12.1a)

b(x, y) =

(
1 + y
2− x

)
/
√

5 + 2y − 4x+ y2 + x2, (12.1b)

f(x, y) = 2 + sin (2πx) + x cos (2πy), (12.1c)

and g = 0, for varying values of α determining the relative importance of the advective
and diffusive effects. The results are qualitatively the same for a similar test case with
a constant advection field and constant right-hand side. Note that the advection field
defined by (12.1b12.1b) is normalized and divergence-free and thus satisfies the assumptions set
in Chapter 99. It is drawn in Figure 12.112.1, along with the reference solution for ε = α = 2−7,
computed by a P1 Lagrange FEM on a mesh of size h = 2−11. The boundary layer at the
outflow can clearly be observed along the top and right sides of Ω.

For the MSFEM-lin SUPG (10.310.3), we need to define the stabilization parameter τ ,
that we take constant on each mesh element K ∈ TH . Following [107107], we set

τ =
diam(K; b)

2|b|

(
coth PeK −

1

PeK

)
in K, (12.2)

where diam(K; b) is the diameter of K in the direction of b and the element Péclet

number PeK is defined as PeK =
|b| diam(K; b)

2α
. In all these definitions, b is evaluated at

the centroid of K. In the one-dimensional case with piecewise constant coefficients, this
choice of τ corresponds to the optimal value yielding a nodally exact solution, which was
also characterized as (9.219.21) in the context of the RFB method. Note that it is not obvious
to propose the correct value of the diffusion field in the definition of PeK in the highly
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oscillatory case, because one has to choose which value of the diffusion coefficient is used
in the definition of PeK . Our choice here corresponds to the average of the maximum and
minimum values of µε in (12.1a12.1a) and is found to yield satisfactory results.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) (b)

Figure 12.1: Test case (12.112.1). Left: the advection field (12.1b12.1b). Right: reference solution
for ε = α = 2−7.

12.1.1. Stability. We first assess the stability of some MsFEM approaches in Figure 12.212.2.
The figure shows the P1 part of the MsFEM approximation for some parameter values in
the advection-dominated regime. It is defined as follows: the numerical approximation is
written as a sum of a piecewise affine function and numerical correctors (or bubble func-
tions) as in (11.1311.13), and the P1 part of the MsFEM approximation is the first mentioned
piecewise affine function. This part of the solution is sufficient to investigate stability,
since the numerical correctors vanish in all the vertices for the MsFEM-lin variants, and
vanish on average on all edges for the MsFEM-CR variants. Therefore, they do not change
the global behaviour of the numerical approximation.

Spurious oscillations that propagate far from the boundary layer are clearly visible
for the (unstabilized) MsFEM-lin and MsFEM-CR. These spurious oscillations are re-
moved from the MsFEM-lin when we add the SUPG stabilization that was proposed
in [114114]. On the other hand, the adv-MsFEM-lin approach reduces the spurious oscilla-
tions but is not able to suppress them completely. The effective stabilization captured
by the adv-MsFEM-lin basis functions is too small, as was explained in Section 10.510.5. For
the adv-MsFEM-CR, we see that no instabilities propagate outside the boundary layer.
Stabilizing effects are better extracted from the numerical correctors in the space of weak
bubbles H1,w

0 (K) than in the traditional bubble space H1
0 (K).

Let us also note that none of the MsFEM approximations in Figure 12.212.2 use the
enrichment of the MsFEM space by additional bubble functions. Indeed, the bubble
functions are introduced to maintain a good accuracy in the advection-dominated regime,
when the multiscale basis functions are heavily deformed, but the stability properties are
already encoded in the bubble functions that are identified with the numerical correctors
in (11.1311.13).

12.1.2. Error measurement outside the boundary layer. For a qualitative comparison
of the different methods, we compute the error in the H1-norm. The main objective
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Isovalues

-40

(a) MsFEM-lin SUPG (10.310.3)

(b) MsFEM-lin (10.210.2) (c) MsFEM-CR (see Remark 11.111.1)

(d) adv-MsFEM-lin (10.610.6) (e) adv-MsFEM-CR (11.311.3)

Figure 12.2: The P1 part of various MsFEM approximations applied to the test case (12.112.1)
when ε = 2−7, α = 2−8, and H = 2−4. Note that the colour code is not linear in the
overshoot regions.
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ΩOBLE

Figure 12.3: We measure the error out-
side the boundary layer elements, that is,
in ΩOBLE, the domain highlighted in gray.

10−2 10−1
10−1

100

α

‖u
H
−
u
h
‖ H

1
(Ω

O
B

L
E
),

re
l

P1

P1 SUPG

Figure 12.4: Errors outside the boundary
layer for P1 FEMs for the PDE −α∆u +
b · ∇u = f on a coarse mesh TH with H =
2−4.

of FEMs on a coarse mesh for advection-dominated problems is to capture the solution
outside the boundary layer. The boundary layer itself cannot be resolved by standard
finite elements due to the complex behaviour of the boundary layer within a single mesh
element. The adv-MsFEM variants that we consider have problem-adapted basis func-
tions that may in principle recover the boundary layer. We focus on this possibility in
Figure 12.612.6.

Here we measure the error of the numerical approximation outside all mesh elements K
that contain a part of the boundary layer of uε that is visualized in Figure 12.1b12.1b. We
call this the region ‘outside the boundary layer mesh elements’ (OBLE), and denote
it ΩOBLE = (0, 1 − H)2, where H is the length of the legs of the mesh elements. See
Figure 12.312.3. To be precise, we compute the errors in the following relative norm:

‖uH − uεh‖H1(TH ;ΩOBLE),rel =

√ ∑
K∈TH ,K⊂ΩOBLE

‖uH − uεh‖2
H1(K)

‖uεh‖H1(ΩOBLE)

,

for any uH that is piecewise H1. Here, uεh ∈ H1(Ω) is the P1 Lagrange approximation
of (9.39.3) on a fine mesh of a mesh size h that is specified below.

Remark 12.1. Our definition of the relative error differs from the one in the ear-
lier publication [114114] in the normalization factor. We use ‖uεh‖H1(ΩOBLE), whereas the
earlier work used ‖uεh‖H1(Ω). Note that the latter norm (on the entire domain Ω) is
unbounded as α → 0, because of the ever sharper boundary layer in Ω \ ΩOBLE that is
unbounded in H1(Ω). This different choice does not, of course, change the classifica-
tion of the performance of the numerical methods at a fixed value of α. However, the
division by ‖uεh‖H1(Ω) may give the erroneous impression that certain methods perform
exceptionally well in the advection-dominated regime (for small α) because of a large
normalization factor. Our choice for normalizing by the norm of the reference solution
on ΩOBLE should give a better understanding of the actual accuracy of the numerical
methods.

In Figure 12.412.4 we show the errors in this norm for a test case with constant coefficients
and for the P1 FEM and its stabilization by the SUPG method. We observe that the error
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of the P1 FEM grows by several orders of magnitude due to its instability. On the contrary,
the error committed by the P1 SUPG method outside the boundary layer is stable for all
values of the diffusion coefficient.

In Figure 12.512.5, we compare various numerical methods for the approximation of (9.39.3)
with coefficients defined in (12.112.1) on a coarse mesh with legs of size H = 2−4, and for α
varying from 2−1 to 2−10 ≈ 0.001. We further set ε = 2−7. The fine mesh, used for the
computation of the reference solution and the multiscale basis functions, has legs of length
h = 2−11 = ε/16 when α ≥ 2−9 and h = 2−12 when α = 2−10. The fine mesh is sufficiently
fine to avoid instabilities of the Lagrange P1 FEM. For the smallest value of α, the fine
mesh is refined because the choice h = 2−11 did not allow to compute the adv-MsFEM-CR
basis functions (see (11.211.2)) correctly in our computations. All computations are executed
with FreeFEM [9191]. The code used is available at [2929].
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Figure 12.5: Errors outside the boundary layer elements between the reference solution uεh
and various numerical approximations uεH , for the test case (12.112.1) with ε = 2−7, H = 2−4

and varying α.

The instability of the P1 FEM and the MsFEM is confirmed for small values of α
by large relative errors even outside the boundary layer. In spite of the stability of
the adv-MsFEM-CR that is observed in Figure 12.212.2, the accuracy of the adv-MsFEM-
CR is also low. This is expected due to strongly deformed multiscale functions in the
spaceW ε,adv

H . This phenomenon was also observed in the one-dimensional situation studied
in Section 10.410.4. We further see that the accuracy of the MsFEM-lin SUPG and the adv-
MsFEM-CR variants with bubble functions is robust with respect to α, showing the same
fluctuations as the P1 SUPG method in the single-scale case of Figure 12.412.4. We point
out that the adv-MsFEM-CR-B and adv-MsFEM-CR-β are the only methods considered
here whose accuracy does not depend on an additional (stabilization) parameter that has
to be chosen properly depending on the coefficients of the PDE.

For the one-dimensional test case of Figure 10.210.2, it was observed in the advection-
dominated regime that the P1 SUPG method and the adv-MsFEM-lin-B have comparable
accuracy and outperform the MsFEM-lin SUPG. This was explained by a decreasing
amplitude of the oscillations of the derivative of the reference solution, which is not
encoded in the MsFEM-lin basis functions. The same differences in the accuracy of the
three methods cannot be observed for the two-dimensional tests in Figure 12.512.5.
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12.1.3. Delineating the advection-dominated regime. In simulations with slowly vary-
ing coefficients, the values of α where the P1 FEM and the P1 SUPG method yield different
results can be used as an indication of the advection-dominated regime, and it corresponds
qualitatively to the regime where PeK > 1. This same distinction is harder to make in the
multiscale case, because it is not evident which value of Aε should be used for the definition
of an ‘effective numerical Péclet number’. Although a precise definition of the advection-
dominated regime may be hard to forumulate, the numerical comparison between the P1

FEM and the P1 SUPG method on the one hand, and between the MsFEM-lin and the
MsFEM-lin SUPG on the other hand, indicates when the unstabilized methods start to
suffer from instabilities.

One may notice in Figure 12.512.5 that the accuracy of the MsFEM-lin starts to degrade
for larger values of α than the P1 FEM (and this difference is even more noticeable in
Figure 12.812.8). This can be explained as follows. We recall that, for a pure diffusion
problem, the P1 FEM is equivalent to the P1 approximation of a PDE with piecewise

constant diffusion Aav given by Aav|K =
1

|K|

∫
K

Aε for all K ∈ TH . This value is, for

the diffusion coefficient in (12.1a12.1a), larger than the actual effective diffusion felt by uε.
The MsFEM yields a better approximation of the effective diffusion, with a smaller value.
The difference between the effective diffusion coefficients of the P1 FEM and the MsFEM
increases as the contrast of the diffusion coefficient increases.

We now turn our attention to the case of non-zero advection. Effective, piecewise
constant diffusion and advection coefficients A and b, respectively, can be defined for the
MsFEM-lin (SUPG) such that the resolution of each of these MsFEMs is equivalent to
solving a P1 discretization of (11.1511.15) with the corresponding effective coefficients (and
possibly with additional stabilization terms) on the coarse mesh TH . For the P1 FEM,
the effective coefficients are given, for all K ∈ TH , by

Aβ,α
∣∣
K

=
1

|K|
aε
(
xα, xβ

)
, bα

∣∣
K

=
1

|K|
aε(xα, 1), 1 ≤ α, β ≤ d,

and for the MsFEM-lin by

Aβ,α
∣∣
K

=
1

|K|
aε
(
xα + χε,αK , xβ + χε,βK

)
,

bα
∣∣
K

=
1

|K|
aε(xα + χε,αK , 1), 1 ≤ α, β ≤ d,

(12.3)

where χε,αK ∈ H1
0 (K) solves −div (Aε∇ (χε,αK + xα)) = 0. The start of the advection-

dominated regime, in the sense that spurious oscillations appear in the numerical solution,
depends on the Péclet number associated to the effective scheme and is thus method spe-
cific. It can be verified, for instance, that at a given value of α in (12.112.1), the eigenvalues
of the effective diffusion tensor for the MsFEM-lin are smaller than those of the P1 FEM.
Since the effective diffusion felt with the MsFEM-lin is smaller than for the P1 FEM, spu-
rious oscillations already appear for larger values of α when one applies the MsFEM-lin.

12.1.4. Errors including the boundary layer. We consider in Figure 12.612.6 the relative
errors on the entire domain Ω of those numerical methods that were previously identified
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Figure 12.6: Errors on the entire domain between the reference solution uεh and various
numerical approximations uεH , for the test case (12.112.1) with ε = 2−7, H = 2−4, and for
varying α. The results for the adv-MsFEM-CR-B and for the adv-MsFEM-CR-β coincide
in the figure.

as stable. We measure these errors in the relative H1-norm defined as

‖uH − uεh‖H1(TH),rel =

√ ∑
K∈TH

‖uH − uεh‖2
H1(K)

‖uεh‖H1(Ω)

.

Note that the normalization factor here is much larger than for the errors in Figure 12.512.5,
because we include the H1-norm of the reference solution in the boundary layer, which
is characterized by a large gradient. The errors are by far dominated by the error in the
boundary layer elements, i.e., in Ω \ ΩOBLE. The results are clear: the trial functions
of the P1 SUPG method and the MsFEM-lin SUPG are not adapted to the exponential
decay of uεh and commit a large error in the advection-dominated regime. The only
methods that are capable of resolving the boundary layer are the adv-MsFEM-CR variants
with or without bubbles. Note that this is achieved while no a priori information about
the location of the boundary layer of the exact solution is encoded in the multiscale
approximation space. The basis functions of the adv-MsFEM-lin may provide an even
better approximation of the boundary layer, because the boundary condition is enforced in
a strong sense, like in the continuous problem (9.39.3). However, as a result of the incomplete
stabilization of the adv-MsFEM-lin(-B), the resulting approximation does not capture the
boundary layer of uε properly due to a large overshoot in this region.

12.1.5. Non-intrusive variants. We now compare the MsFEM variants studied above
with the variants introduced in Section 11.411.4 for a non-intrusive implementation of the
MsFEM. In Figure 12.712.7, we compare the Galerkin variants of the adv-MsFEM-CR-B
(defined by (11.511.5)) and the adv-MsFEM-CR-β (defined by (11.1111.11)) with the Petrov-
Galerkin variants where each multiscale test function φε,adv

e is replaced by the piecewise
affine test function φP1

e ∈ V w
H (e ∈ E in

H ). See (11.1911.19) for the explicit formulation in the case
of the adv-MsFEM-CR-β. We recall that the PG adv-MsFEM-CR-β can be implemented
in a non-intrusive way by computing effective coefficients in the offline stage, see (11.21b11.21b).
Similarly, one can define a Petrov-Galerkin variant of the MsFEM-lin SUPG (10.310.3), the
test space being replaced by VH in this case.

For the adv-MsFEM (‘lin’ or ‘CR’, with and without bubbles) the above change of
test functions does not affect the matrix of the linear system associated to the MsFEM.
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Figure 12.7: Comparison of some MsFEM variants in Galerkin and in Petrov-Galerkin
formulation (with P1 tests functions). The test case is (12.112.1) with ε = 2−7, H = 2−4, and
varying α.

(We recall Theorem 11.611.6 for the adv-MsFEM-CR, and a similar property holds for the
adv-MsFEM-lin.) The results of Figure 12.712.7 show that the accuracy of the related Ms-
FEM variants also remains unaffected when changing to a Petrov-Galerkin method. The
accuracy of the MsFEM-lin SUPG (for which there is no analogue of Theorem 11.611.6), on
the other hand, deteriorates in the advection-dominated regime when the test functions
are changed to P1 basis functions.

12.2. Second test case

We consider a second test case with a larger contrast of the diffusion coefficient. This
way, the difference between multiscale and standard finite element approaches is expected
to be more pronounced, at least in the diffusion-dominated regime. More precisely, we
consider here

Aε(x, y) = µε(x, y) Id, µε(x, y) = α
(
1 + 100 cos2 (πx/ε) sin2 (πy/ε)

)
, (12.4a)

b(x, y) =

(
50 cos (0.3π)
50 sin (0.3π)

)
, (12.4b)

f(x, y) = 2 + sin (2πx) + x cos (2πy), (12.4c)

where we use ε = π/150 ≈ 0.02. The error of various numerical approaches as α takes
the values α = 2k for k = 2, . . . ,−6 is shown in Figure 12.812.8. We show the tests for two
different values of the coarse mesh size H. The fine mesh size is h = 2−11 except for the
smallest value of α, which again required a fine mesh size of h = 2−12 in order to compute
the adv-MsFEM-CR basis functions correctly.

The stabilization parameter of the MsFEM-lin SUPG is again given by (12.212.2), where
we still define the element Péclet number PeK based on the minimum and maximum
values of µε. We observed numerically that the accuracy of the MsFEM SUPG depends,
both in the advection and diffusion dominated regimes, strongly on the value of the
diffusion that is used in the definition of PeK . Especially in the high-contrast case, one
risks taking a value that is either too small or too large, and even more so when µε has
a more complicated, non-periodic structure. Too small a value for the diffusion results
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in too large a value for PeK and thus leads to an overly diffusive scheme in the diffusion
dominated regime. On the other hand, too large a value for the diffusion in the element
Péclet number may decrease the stabilization of the method and deteriorate its accuracy
in the advection-dominated regime. It is thus not obvious to find the correct expression
for τ in strongly heterogeneous media, and we consider it useful to introduce an alternative
method, namely the adv-MsFEM-CR-B (or -β), that is free from such a parameter, yet
is robust with respect to the diffusion strength.

Remark 12.2. We mention a new option to choose the stabilization parameter for the
MsFEM-lin SUPG that bypasses the ambiguity due to the heterogeneous character of µε.
We can compute the effective coefficients for the MsFEM-lin defined in (12.312.3). Recall
that these coefficients define an effective P1 FEM on the coarse mesh that is equivalent
to the MsFEM-lin. Hence it suffices to find a suitable stabilization parameter for the
effective scheme based on the effective coefficients, which are piecewise constant. This
strategy has not been investigated during the preparation of this thesis.
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Figure 12.8: Errors outside the boundary layer element between the reference solution uεh
and various numerical approximations uεH , for the test case (12.412.4) with ε ≈ 0.02, two
different values of H and varying α.

In Figure 12.812.8, we see that the results for the two values of H are qualitatively the
same, with the difference that advection-dominating effects are smaller at the same value
of α when H is smaller. This is to be expected, since the element Péclet number decreases
when H decreases. We observe that the error of the multiscale methods increases slightly
if H decreases from H = 2−3 to H = 2−4. This is in line with the so-called resonance
effect that is also observed in the literature, which prevents convergence of MsFEMs if
the discretization size H is close to the typical length scale of the microstructure.

As expected, the bad performance of the P1 FEM due to the unresolved microstructure
is more pronounced than in Figure 12.512.5. One can see again in Figure 12.812.8 that the
P1 FEM, the MsFEM-lin and the adv-MFEM-CR lose their accuracy in the advection-
dominated regime. The MsFEM-lin SUPG, adv-MsFEM-CR-B and the adv-MsFEM-
CR-β are the only methods that show a competitive performance in both the regimes
where advection dominates and where diffusion dominates. We underline that the adv-
MsFEM-CR variants with additional bubble functions are the only such methods that do
not depend on the choice of an additional (stabilization) parameter.
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CHAPTER 13

A convergence theorem under minimal
regularity hypotheses

In Section 2.3.32.3.3 we reviewed the error estimate (2.212.21) that has been established for multi-
ple MsFEM variants in the literature. We also indicated why an improved error estimate
under less stringent regularity hypotheses on the diffusion coefficient and the homogenized
solution seemed possible based on a more careful study of the boundary layer of the error
around the mesh interfaces. To establish the convergence proof rigorously under those
assumptions is the aim of the present chapter, which constitutes part IIIIII of this thesis. Let
us remind the reader that for the one-dimensional case, the resonance effect disappears,
and we have the error estimate (2.202.20) for which no additional regularity assumptions on
the diffusion coefficient are needed (and not even the assumption of periodicity).

The structure of this chapter is as follows. First we give in Section 13.113.1 a precise
definition of the MsFEMs that we consider, following the general framework of Chapter 55
(but without oversampling). We state the improved convergence result, Theorem 13.113.1, in
Section 13.213.2. In Section 13.313.3, we recall various notions of periodic homogenization and
numerical analysis that can be considered classical. These results are included in this
thesis for completeness, because they will be used for the proof of Theorem 13.113.1. Then
we provide the key lemmas of our convergence analysis in Section 13.413.4, which consist of
a homogenization and an interpolation estimate for the multiscale approximation space
as well as a bound for the non-conforming error. Finally, the proof of Theorem 13.113.1 is
given in Section 13.513.5. Besides the improved regularity hypotheses, another new element
of the analysis of this chapter is that it unifies the analysis of the MsFEM-lin and the
MsFEM-CR.

Notation. Throughout this chapter, we will use the following shorthand notation for
standard norms and seminorms on Sobolev spaces. For any u ∈ Hk(Ω), where Ω ⊂ Rd,

‖u‖k,Ω = ‖u‖Hk(Ω),

for Sobolev norms, and

|u|2k,Ω =
∑

α∈Zd,|α|=k

‖∂αu‖2
0,Ω
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for seminorms. For non-H1-conforming functions, we use broken (semi-)norms, denoted
by

‖u‖2
k,T =

∑
K∈T

‖u‖2
k,K ,

where T is a collection of sets such that u|K ∈ H1(K) for all K ∈ T . Typically, T will
be a mesh, or a collection of mesh elements. We further recall that, due to the Poincaré
inequality [7373, Lemma B.61], the H1-seminorm |·|1,Ω is in fact a norm on the space H1

0 (Ω)
when Ω is bounded.

13.1. Definition of the MsFEM framework

We consider MsFEMs for the approximation of uε ∈ H1(Ω), which is the solution to
the following partial differential equation (PDE) on a bounded polytope (a polygon in
dimension 2, a polyhedron in dimension 3) Ω ⊂ Rd:

− div(Aε∇uε) = f, (13.1)

and satisfying homogeneous Dirichlet conditions on ∂Ω, i.e., uε ∈ H1
0 (Ω). Here, Aε is

a highly oscillatory, uniformly bounded and elliptic d × d matrix, and f ∈ L2(Ω). The
superscript ε refers to the microscopic size of variations of the coefficient, much smaller
than the size of the global domain Ω. The dimension d ≥ 2 is arbitrary.

Problem (13.113.1) is equivalent to finding uε ∈ H1
0 (Ω) such that

∀ v ∈ H1
0 (Ω), aε(uε, v) = F (v), (13.2)

where, for any u, v ∈ H1(Ω), the bilinear form aε and the linear form F are defined by

aε(u, v) =

∫
Ω

∇v · Aε∇u, F (v) =

∫
Ω

fv.

We assume that there exist m,M > 0 (independent of ε) such that

∀ ξ ∈ Rd, m‖ξ‖2 ≤ ξ · Aε(x) ξ a.e. in Ω,

and ∀ ξ, η ∈ Rd, ‖η · Aε(x)ξ‖ ≤M ‖ξ‖ ‖η‖ a.e. in Ω,
(13.3)

Then (13.213.2) (and (13.113.1)) are well-posed due to the classical Lax-Milgram Theorem.

We consider two MsFEM variants here in the common framework of Chapter 55. The
precise definitions are recalled here to make the present chapter self-contained. It covers
the original MsFEM of [9898] where the basis functions are defined with affine boundary
conditions, henceforth abbreviated as MsFEM-lin, and the variant of [112112] where the
basis functions are defined with Crouzeix-Raviart type boundary conditions, abbreviated
as MsFEM-CR.

Let (TH)H be a family of simplicial conformal meshes of the domain Ω and with
elements of a typical size H that is larger than ε. We suppose that the family of meshes is
regular in the sense recalled in Section 13.3.313.3.3. It is also supposed in many results that the
family of meshes is quasi-uniform (see (13.2113.21)). We shall explicitly mention throughout
when this property is needed on top of the supposed regularity.

The notation VH shall be used for one of two standard finite element spaces of piecewise
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affine functions. This space is called the underlying P1 space of the MsFEM. In the case
of the MsFEM-lin, VH is the P1 Lagrange space V lin

H and in the case of the MsFEM-CR,
VH is the P1 Crouzeix-Raviart space V CR

H . Denoting P1(TH) the space of all piecewise
affine functions on TH , these spaces are defined as

V lin
H = {vH ∈ P1(TH) | vH is continuous on Ω, vH |∂Ω = 0} (MsFEM-lin), (13.4a)

and

V CR
H =

{
vH ∈ P1(TH)

∣∣∣∣ ∀K ∈ TH ,∀ e ∈ F (K) :

∫
e

JvK = 0

}
(MsFEM-CR), (13.4b)

where F (K) is the set of faces of K and JvK denotes the jump of vH over the face e, or
the restriction of v to e if e lies on ∂Ω.

The standard finite element space is adapted to the multiscale properties of Aε through
the use of numerical correctors defined on each mesh element. They are defined indepen-
dently on the mesh elements K ∈ TH in a sampling space VK . This space depends on the
underlying P1 space used, and is either defined as

VK = H1
0 (K) (MsFEM-lin), (13.5a)

for the MsFEM-lin, or as

VK =

{
v ∈ H1(K)

∣∣∣∣ ∀ e ∈ F (K) :

∫
e

v = 0

}
(MsFEM-CR), (13.5b)

for the MsFEM-CR. (We warn the reader that the notation VK differs from the notation
adopted in Part II, where the same space was denoted by VK,0. See Definition 5.105.10.) We
define the bilinear forms, for all K ∈ TH ,

aεK(u, v) =

∫
K

∇v · Aε∇u, for all u, v ∈ H1(K).

Then for each α = 1, . . . , d, we define the numerical corrector χε,αK ∈ VK as the unique
solution in VK to

∀ v ∈ VK , aεK(χε,αK , v) = −aε(xα, v), (13.6)

where xα denotes the α-th coordinate of x. We extend the numerical correctors by 0
outside K.

We can now associate a multiscale function vεH to each vH ∈ VH by

vεH = vH +
∑
K∈TH

d∑
α=1

∂α(vH |K)χε,αK , (13.7)

and we define the multiscale approximation space V ε
H (which depends on the choice made

for VH) as
V ε
H = {vεH | vH ∈ VH} . (13.8)

Combining (13.613.6) and (13.713.7) shows that the multiscale finite element functions satisfy

∀K ∈ TH , ∀ v ∈ VK , aεK(vεH , v) = 0. (13.9)
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The MsFEM approximation of uε is then defined as uεH ∈ V ε
H , the unique solution to

the finite-dimensional problem

∀ vεH ∈ V ε
H ,

∑
K∈TH

aεK(uεH , v
ε
H) = F (vεH). (13.10)

For a non-intrusive implementation of the MsFEM, a Petrov-Galerkin variant of the Ms-
FEM was proposed in Definition 6.16.1 that defines the approximation uεH ∈ V ε

H as the
unique solution to

∀ vH ∈ VH ,
∑
K∈TH

aεK(uεH , vH) = F (vH). (13.11)

The MsFEM (13.1013.10) is well-posed because (13.313.3) ensures coercivity of the bilinear form∑
K∈TH

aεK on the space V ε
H . It was shown in Lemma 6.46.4 that the Petrov-Galerkin Ms-

FEM (13.1113.11) is also well-posed.

The next chapters focus on the convergence analysis of the MsFEMs (13.1013.10) and
(13.1113.11). We explained in the IntroductionIntroduction that all error estimates known for the MsFEM
are obtained under a periodicity assumption, even though this assumption is not required
for the use of the method. We shall adopt this assumption from now on. More precisely,
we assume that Aε is of the form

Aε(x) = Aper
(x
ε

)
a.e. in Ω,

where Aper ∈ L∞(Rd)d×d satisfies (13.313.3) and is Q-periodic, with Q the unit cube of Rd.
We recall some homogenization results for the periodic setting in Section 13.3.113.3.1, and in
particular the definition of the homogenized limit u? of uε that only depends on Aper and f
and that is used in the statements of Theorem 13.113.1 and Corollary 13.213.2 below.

13.2. Statement of the convergence results

The main contribution of Part IIIIII of this thesis is the following. Here and in the sequel,
C denotes a generic constant that is independent of H, f and ε, but that may depend
on the dimension d, on Ω, on Aper and on the regularity constants of the mesh, and that
may take a different value from one occurrence to the other.

Theorem 13.1. Let uεH ∈ V ε
H be the solution to (13.1013.10). Suppose that (TH)H is a

regular family of simplicial meshes and that it is quasi-uniform, that ε ≤ H, and that
u? ∈ H2(Ω). Then

|uε − uεH |1,TH ≤ C

(
H|u?|2,Ω +

√
ε

H
|u?|1,Ω

)
.

As an immediate consequence of Theorem 7.107.10, which estimates the difference of the
MsFEM approximations from (13.1013.10) and (13.1113.11), we then also have the following result.

Corollary 13.2. Let uεH ∈ V ε
H be the solution to (13.1113.11). Suppose that (TH)H is a

regular family of simplicial meshes and that it is quasi-uniform, that ε ≤ H, and that
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u? ∈ H2(Ω). Then

|uε − uεH |1,TH ≤ C

(
H‖f‖0,Ω +H|u?|2,Ω +

√
ε

H
|u?|1,Ω

)
.

The only hypotheses on the periodic coefficient Aper are those in (13.313.3) that are used
to establish well-posedness of (13.113.1). We would like to underline that the commonly
used smoothness hypothesis of Aε is extremely restrictive from a modelling point of view,
because real multiscale materials such as composite materials are typically characterized
by discontinuous coefficients. The additional assumption that u∗ be in H2(Ω) is not very
restrictive, and in particular, much less restrictive than the usual hypothesis that u? ∈
W 2,∞(Ω). For instance, u? ∈ H2(Ω) whenever the domain Ω is convex. We refer to [8585,
Theorem 3.2.1.2] for this result. Moreover, this assumption is unavoidable since even
the standard P1 FEM requires the same regularity for the solution in order to establish
convergence at the rate H. Hence, our convergence analysis for the MsFEM is carried out
under minimal regularity hypotheses.

13.3. Auxiliary notions and results

In this section, we recall a number of classical results from periodic homogenization and
the theory of finite elements that we use to prove Theorem 13.113.1. One non-classical result
is Lemma 13.813.8, which extends a classical trace estimate to the multiscale space V ε

H . We
also construct a cut-off function that vanishes around the interfaces of the mesh, and that
will allow us to estimate boundary layers in Section 13.413.4. The reader that is familiar
with these notions may move on to Section 13.413.4 and use the present section mainly as a
reference for the proofs in the sequel. For completeness, we provide full proofs of most
results, including some results that may be considered elementary.

13.3.1. Elements of periodic homogenization theory. Homogenization theory studies
the limit of uε as ε→ 0. This limit always exists in the periodic setting we consider, and
we recall some elements here. See, for instance, [2828, 134134] or [77, Chapter 1] for details on
periodic homogenization. Although this topic was also briefly reviewed in Sections 2.2.12.2.1
and 4.74.7, we recall and complement it here to make the present chapter self-contained.

We recall the definition of the spaces

L2
per(Q) =

{
u ∈ L2

loc(Rd)
∣∣ ∀ k ∈ Zd, u(x+ k) = u(x) almost everywhere

}
and

H1
per(Q) =

{
u ∈ L2

per(Q)
∣∣ ∀ 1 ≤ α ≤ d, ∂αu ∈ L2

per(Q)
}
.

Let Q denote the unit cube of Rd. We introduce the corrector functions w1, . . . , wd ∈
H1
per(Q) solution to

−div(Aper∇wα) = div(Apereα) in Rd, (13.12)

which uniquely defines wα up to an irrelevant additive constant. The corrector functions
define the (constant) homogenized matrix A? ∈ Rd×d by

A?eα =

∫
Q

Aper(eα +∇wα), 1 ≤ α ≤ d, (13.13)
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where eα is the unit vector of Rd in the direction of xα. Like Aper, the homogenized
matrix A? satisfies the ellipticity property in (13.313.3).

The homogenized limit u? of uε is the unique solution in H1
0 (Ω) to the boundary value

problem {
−div(A?∇u?) = f in Ω

u? = 0 on Ω.
(13.14)

The sequence of functions uε converges to u? as ε → 0 weakly in H1(Ω) and strongly
in L2(Ω). The corrector functions can be used to build a reconstruction of u? (called
first-order two-scale expansion) as

uε,1(x) = u?(x) + ε

d∑
α=1

∂αu
?(x)wα

(x
ε

)
. (13.15)

Now the gradient ∇ (uε − uε,1) converges to 0 strongly in L1
loc(Ω) as ε→ 0.

This strong convergence, away from the boundary ∂Ω where non-oscillatory conditions
are imposed, is in fact the topic of our Lemma 13.513.5 below, inside each element of the
mesh TH . In order to obtain this strong convergence of the gradient of uε,1 − uε, we will
use the following property of the corrector functions. Note that for each α = 1, . . . , d, the
function Apereα +Aper∇wα−A?eα is periodic, divergence-free (thanks to (13.1213.12)) and has
zero mean (due to (13.1313.13)). Consequently, there exists a skew-symmetric matrix Zα ∈
H1
per(Q)d×d such that

[Apereα + Aper∇wα − A?eα]j =
d∑
i=1

∂i[Zα]i,j. (13.16)

This is shown in [134134, pp. 6-7] using the Fourier transform. In the special case of dimen-
sion 3, for instance, this can be reformulated as Apereα +Aper∇wα −A?eα = curl(Z̃α) for
a suitable vector Z̃α ∈ H1

per(Q)3.

13.3.2. Classical abstract error estimates. We will use the classical Céa Lemma [7373,
Lemma 2.28] in our analysis of the MsFEM-lin, and the Second Strang Lemma [7373,
Lemma 2.25] for the analysis of the non-conforming MsFEM-CR. For the convience of
the reader, we recall these general results here in our setting.

Lemma 13.3. Let uε be the solution to (13.113.1) and uεH to (13.1013.10) for the MsFEM-lin
(i.e., with the choice (13.4a13.4a) for VH and (13.5a13.5a) for VK). Then the following estimate
holds:

|uε − uεH |1,Ω ≤
M

m
inf

vεH∈V
ε
H

|uε − vεH |1,Ω.

Lemma 13.4. Let uε be the solution to (13.113.1) and uεH to (13.1013.10) for the MsFEM-CR
(i.e., with the choice (13.4b13.4b) for VH and (13.5b13.5b) for VK). Then the following estimate
holds:

|uε − uεH |1,TH ≤
M

m
inf

vεH∈V
ε
H

|uε − vεH |1,TH +
1

m
sup

vεH∈V
ε
H\{0}

∣∣∑
K∈TH

aεK(uε − uεH , vεH)
∣∣

|vεH |1,TH
.
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13.3.3. A cut-off function on individual mesh elements. To analyse the fine-scale
structure of uεH , we introduce in this section a cut-off function that vanishes near the
interfaces of the mesh. This will allow us to study homogenization properties of uεH
outside a thin layer around the mesh interfaces, where the oscillatory behaviour of uεH is
perturbed by affine boundary conditions. To this end, we first recall some notions related
to the mesh regularity.

The family of meshes (TH)H is supposed to be regular throughout this chapter. We
recall that a regular mesh (also referred to as a shape-regular or non-degenerate mesh)
satisfies the following properties:

max
K∈TH

diam(K) ≤ CH, (13.17a)

and

max
K∈TH

diam(K)

ρ(K)
≤ C, (13.17b)

for some constant C independent of H, and where ρ(K) is the diameter of the largest ball
that can be inscribed in K. Roughly speaking, this ensures that all mesh elements are of
the same size.

Since we work with a simplicial mesh, for any H, every mesh element K ∈ TH can
be obtained as the affine transformation ΦK : K̂ → K of a fixed reference simplex
K̂ ⊂ Rd. This transformation takes the form ΦK(x̂) = AK x̂ + BK for some AK ∈ Rd×d

and BK ∈ Rd. The Jacobian AK of ΦK satisfies (see [7373, Lemma 1.100])

| det (AK)| = |K|∣∣∣K̂∣∣∣ ‖AK‖ ≤
diam(K)

ρ(K̂)
, ‖A−1

K ‖ ≤
diam(K̂)

ρ(K)
, (13.18)

where ‖·‖ denotes the matrix norm induced by the Euclidean norm on Rd.

Let us now introduce the set

Kε
in = {x ∈ K | dist(x, ∂K) > ε}

of points in K lying at least a distance ε away from the boundary. The cut-off function
we will use is identically equal to 1 on Kε

in. It is constructed in the following lemma.

Lemma 13.5. For all H, there exists a cut-off function τH : Ω → R such that, for all
K ∈ TH ,

1. It holds τH |K ∈ C 0
c (K), ‖τH‖L∞(K) = 1 and τH = 1 on Kε

in.

2. We have ‖∇τH‖L∞(K) ≤
C

ε
with a constant C that is independent of K, H and ε.

Proof. Let τ : [0,∞)→ R be any smooth (C∞) function that vanishes in a neighbourhood
of 0 and that equals 1 on [1,∞). We set

τH(x) = τ

dist
(

Φ−1
K (x), ∂K̂

)
ε‖A−1

K ‖/r

 , x ∈ K,
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where r = C diam(K̂)/ρ(K̂) with C the constant in (13.17b13.17b). We note that the distance
function dist(·, ∂K̂) is Lipschitz on K̂.

Suppose that x ∈ K is such that τH(x) < 1. Then, by definition of τ , we must have

dist
(

Φ−1
K (x), ∂K̂

)
ε‖A−1

K ‖/r
< 1. (13.19)

Let x̂0 ∈ ∂K̂ be a point satisfying

dist
(

Φ−1
K (x), ∂K̂

)
= ‖Φ−1

K (x)− x̂0‖. (13.20)

Since ΦK is affine, we have ΦK(x̂0) ∈ ∂K. Therefore,

dist(x, ∂K) ≤ ‖x− ΦK(x̂0)‖ = ‖x− AK x̂0 −BK‖,
≤ ‖AK‖ ‖A−1

K (x−BK)− x̂0‖ = ‖AK‖ ‖Φ−1
K (x)− x̂0‖ (by (13.2013.20)),

= ‖AK‖ · dist
(

Φ−1
K (x), ∂K̂

)
≤ ε‖AK‖ ‖A−1

K ‖/r (by (13.1913.19)).

Now inserting (13.1813.18), (13.17b13.17b) and the definition of r, we obtain dist(x, ∂K) ≤ ε. Thus,
τH(x) = 1 when dist(x, ∂K) ≥ ε, and we have the first part of the lemma.

Regarding the gradient of τH on K, a direct computation using the chain rule yields

‖∇τH‖L∞(K) ≤
r

ε ‖A−1
K ‖
‖τ ′‖L∞(R) ‖∇ dist(·, ∂K̂)‖L∞(K̂) ‖A

−1
K ‖,

=
r

ε
‖τ ′‖L∞(R) ‖∇ dist(·, ∂K̂)‖L∞(K̂)

This is indeed the desired bound. �

The next result requires an additional regularity property, namely that the mesh be
quasi-uniform. This means that there exists a constant C > 0 independent of H such
that

ρ(K) ≥ CH. (13.21)

We can now state a useful estimate of the number of periodic cells of size ε that may
intersect the region Kε

b = K \Kε
in. The exact statement is contained in the next lemma.

Lemma 13.6. Suppose that the mesh TH is quasi-uniform. For any K ∈ TH , define

I ε
K =

{
i ∈ Zd

∣∣ ε(i+Q) ∩Kε
b 6= ∅

}
,

and cover Kε
b by

Kε
band =

⋃
i ∈ I ε

K

ε(i+Q).

Finally, suppose that H ≥ ε. Then there exists C > 0 independent of K, H and ε such
that

|Kε
band| = εd #I ε

K ≤ C|K| ε
H
,

where |T | denotes the d-dimensional volume of a set T ⊂ Rd.
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Proof. First note that any point x ∈ Kε
band that does not lie in K is at a distance of at

most ε
√
d from ∂K. We introduce the set K = {x ∈ Rd | dist(x, ∂K) ≤ ε

√
d} such that

Kε
band ⊂ K .

Furthermore, since all faces of K are (d− 1)-dimensional hyperplanes, it is easy to see
that

|K | ≤
∑

e∈F (K)

2ε
√
d
(

2ε
√
d+ diam(e)

)d−1

,

≤ Cε (ε+ diam(K))d−1 ≤ CεHd−1,

using (13.17a13.17a) and using that H ≥ ε. Now by (13.2113.21), it follows that |K| ≥ CHd, and we
obtain

|Kε
band| ≤ |K | ≤ C|K| ε/H,

which concludes the proof. �

13.3.4. Trace estimates. Another classical ingredient for the analysis of discontinu-
ous finite element spaces concerns bounds on the traces and jumps of functions. We
first present a well-known estimate for H1-conforming functions that can also be found
e.g. in [112112, Lemma 4.4]

Lemma 13.7. Let K ∈ TH and let e be any face of K. Then there is a constant C > 0

independent of e, K and H such that, for any v ∈ H1(K) with

∫
e

v = 0, it holds,

‖v‖0,e ≤ CH1/2|v|1,K .

Proof. Let v ∈ H1(K) satisfy the hypotheses of the Lemma. We first recall that the trace
of v on e is indeed well-defined by the classical trace theorem, and that the trace operator
is continuous from H1(K) to L2(e) (and in fact even for the stronger norm H1/2(e) on
the target space). See, for instance, [8585, Theorem 1.5.1.3].

As is standard, we shall use the affine transformation ΦK : K̂ → K from the reference
element K̂ to K. We denote the linear part of this transformation by AK . Let ê = Φ−1

K (e)
and set Ae = |e|/|ê|. Then a change of variable yields∫

e

|v|2 = Ae

∫
ê

|v ◦ ΦK |2.

By continuity of the trace operator on K̂, there exists C > 0 depending only on K̂ such
that ∫

ê

|v ◦ ΦK |2 ≤ C ‖v ◦ ΦK‖2
1,K̂ .

Using that

∫
ê

v ◦ Φk = 0 (because

∫
e

v = 0), the Poincaré-Friedrichs inequality (see [7373,

Lemma B.63]) yields
‖v ◦ ΦK‖1,K̂ ≤ C |v ◦ ΦK |1,K̂ ,

and thus ∫
e

|v|2 ≤ CAe

∫
K̂

(
‖AK‖2‖∇v ◦ ΦK‖2

)
.
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Another change of variables back to the element K gives

Ae

∫
K̂

(
‖AK‖2‖∇v ◦ ΦK‖2

)
= Ae

∫
K

‖AK‖2‖∇v‖2| |det (A−1
K )|.

Finally, inserting the estimates in (13.1813.18) and using mesh regularity (13.17b13.17b), we obtain

‖v‖0,e ≤ CHK

√
|e|
|K|
|v|1,K ,

setting HK = diam(K). We use that |e| ≤ Hd−1
K and that, by (13.17b13.17b), K satisfies

|K| ≥ CHd
K , to obtain

‖v‖0,e ≤ C
√
HK |v|1,K ,

The proof is completed by applying the mesh regularity property (13.17a13.17a). �

Now let us introduce some additional notation. The set of all faces of the mesh TH

is denoted by EH . For any e ∈ EH that is the common face of the mesh elements K1

and K2, and for any function v ∈ H1(TH), the traces of v1 = v|K1 and v2 = v|K2 on e
are well-defined. The jump of v over e is defined (up to a sign convention that has no
importance here) as

JvK = v1|e − v2|e on e.

Also recall the notation for broken H1-norms introduced on page 178178. The next lemma
provides an estimate for the jump of discontinuous functions belonging to the multiscale
space V ε

H .

Lemma 13.8. Let V CR
H be the Crouzeix-Raviart underlying P1 space defined in (13.4b13.4b).

For any vH ∈ V CR
H and any face e ∈ EH , it holds

‖JvεHK‖0,e ≤ CH1/2|vH |1,{K1,K2},

where vεH is defined through (13.713.7), and where K1 and K2 are the mesh elements that
share the face e. If e lies on ∂Ω, the same estimate holds with K2 = ∅.

Proof. Let vH ∈ VH . We first consider the oscillatory part vosc
H of vεH that we define as

vosc
H = vεH − vH =

d∑
α=1

∂α(vH |K)χε,αK .

Note that, by definition of the numerical correctors, vosc
H vanishes on average on all inter-

faces of the mesh.

Let K1 and K2 be the two mesh elements sharing the face e. The analysis is analogous
when e lies on ∂Ω and K2 = ∅. The application of Lemma 13.713.7 to vosc

H on both mesh
elements shows that

2 ‖Jvosc
H K‖0,e ≤

∥∥vosc
H |K1

∥∥
0,e

+
∥∥vosc

H |K2

∥∥
0,e
≤ CH1/2 |vosc

H |1,{K1,K2} . (13.22)

We now bound the seminorms |vosc
H |1,Ki in terms of |vH |1,Ki (i = 1, 2) following some steps

of the proof of Lemma 7.97.9. Using the fact that ∇vH is constant in Ki and using linearity
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of the identity (13.613.6), we find that

∀w ∈ VK , aεK(vosc
H , w) = −aεK(vH , w).

Taking w = vosc
H in the above, and using (13.313.3), we deduce

|vosc
H |1,Ki ≤ C |vH |1,Ki .

Then inserting this inequality in (13.2213.22), it holds

‖Jvosc
H K‖0,e ≤ CH1/2 |vH |1,{K1,K2} . (13.23)

It now remains to treat the jump of vH . This is a classical element of the convergence
analysis of the Crouzeix-Raviart finite element method (see, e.g., [3737, p. 282]) and we
recall it here for completeness.

For i = 1, 2, we set vH,i = vH |Ki . By definition of the space VH , the jump of vH
vanishes at the centroid of e (denoted ec), and it holds,

(vH,1 − vH,2) (x) = ∇ (vH,1|e − vH,2|e) · (x− ec) on e,

Note that∇ (vH,1|e) = ∇vH,1, respectively∇ (vH,2|e) = ∇vH,2, and that both gradients are
constant in K1, resp. K2. Set HKi = diam(Ki). Then we obtain by the Cauchy-Schwarz
inequality, ∫

e

JvHK2 =

∫
e

(vH,1 − vH,2)2

≤ C(‖∇vH,1‖+ ‖∇vH,2‖)2 ·
∫
e

‖x− ec‖2

≤ CHd+1
Ki

(
‖∇vH,1‖2 + ‖∇vH,2‖2

)
,

where the second inequality uses that |e| ≤ Hd−1
Ki

and that ‖x− ec‖ ≤ HKi for all x ∈ e.
Then we use that |Ki| ≥ CHd

Ki
(i = 1, 2) due to (13.17b13.17b), so that

‖JvHK‖2
0,e ≤ CHKi

(
|vH |21,K1

+ |vH |21,K2

)
,

and upon taking the square root and using (13.17a13.17a), we have

‖JvHK‖0,e ≤ CH1/2|vH |1,{K1,K2}.

The proof is completed upon combining the preceding inequality with (13.2313.23) and a
triangle inequality. �

13.3.5. Interpolation results. We recall now the construction of the Scott-Zhang inter-
polator defined in [132132], which we will denote by I C

H . In fact, it is a class of projections
from W l,p(Ω) onto the continuous P1 space on TH

V b
H = {vH ∈ P1(TH) | vH is continuous on Ω} ,

(defined as in (13.4a13.4a), but without the restriction of a vanishing trace on ∂Ω). The
interpolator preserves continuous piecewise P1 boundary conditions on ∂Ω. The only
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restriction for its definition is that l > 1/p, or l ≥ 1 if p = 1, so that traces on (d − 1)-
dimensional interfaces are well-defined. The interpolator enjoys the same useful stability
and approximation properties as more elementary interpolators. We provide here in fact
an extension of the definition in [132132] to obtain a well-defined interpolator for functions
that are only in W l,p(TH), i.e., having the W l,p regularity only piecewise.

Let x1, . . . , xN be an enumeration of the vertices of the mesh TH , and let φ1, . . . , φN
be the standard basis of V b

H defined by the property φi(xj) = δi,j. For each vertex xi of
the mesh, we choose a mesh element Ki ∈ TH and a face σi of Ki satisfying

xi ∈ σi, and σi ⊂ ∂Ω when xi ∈ ∂Ω.

The second condition ensures that polynomial boundary conditions are preserved. Finally,
we associate to each σi a basis ψi,1, . . . , ψi,d of P1(σi) as follows. Let φi,1, . . . , φi,d be the d
non-trivial basis functions on σi among (φi)1≤i≤N , ordered in such a way that φi,1 = φi|σi .
Then the ψi,j are the L2(σi)-dual basis to the former functions:∫

σi

φi,j ψi,k = δj,k.

This ensures that the Scott-Zhang interpolator is a projection.

With the above definitions, we define the Scott-Zhang interpolant of any v ∈ H1(TH)
as

I C
H (v) =

N∑
i=1

(∫
σi

ψi,1 v|Ki
)
φi.

Since the ψi,1 are bounded, and the trace of any function inH1(K) belongs toH1/2(∂K) for
all K ∈ TH , the interpolator is indeed well-defined on P1(TH) once the mesh elements Ki

and the interfaces σi are chosen for all 1 ≤ i ≤ N .

In the next lemma, we study the approximation and stability properties of the Scott-
Zhang interpolator. We specifically consider the application of the interpolator to the P1

Crouzeix-Raviart space. Finally, we consider the seminorm |·| 1
2
,EH

defined by

|vH | 1
2
,EH

=

(∑
e∈EH

1

H
‖JvHK‖2

0,e

)1/2

, (13.24)

for any vH that belongs to the P1 Crouzeix-Raviart space.

Lemma 13.9. For all v ∈ H2(Ω), it holds

|v −I C
H (v)|1,TH ≤ CH|v|2,Ω.

Let V CR
H be the Crouzeix-Raviart underlying P1 space defined in (13.4b13.4b), and let vH ∈

V CR
H . Then it holds

|I C
H (vH)|1,Ω ≤ C|vH |1,TH .

If, moreover, the family of meshes (TH)H is quasi-uniform, we also have

|vH −I C
H (vH)|1,TH ≤ C|vH | 1

2
,EH
.
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Proof. The first inequality of the lemma is easily obtained from Equation (4.3) in [132132]
in the same way as Theorem 4.1 of that reference.

Similarly, the second inequality of the lemma is obtained from the same Equation (4.3)
in [132132]. (See also Corollary 4.1 of this reference.) We note that, even though the analysis
in [132132] assumes globally W l,p functions, the estimates are easily verified to hold for
functions in W l,p(TH) with broken W l,p-norms.

We provide more details for the third estimate of the lemma. The idea is to use
that |vH | 1

2
,EH

= 0 implies that vH has no jumps and thus belongs to V b
H . Consequently,

I C
H (vH) = vH (since the interpolator is a projection) and the left-hand side of the desired

estimate vanishes as well. Since the space V CR
H is finite-dimensional, it follows that the

desired estimate holds true for some number C, and the proof below amounts to showing
that this constant does not depend on H. To this end, we will again use a transformation
to the reference element. However, the proof is complicated by the need to also take the
jumps across the faces of K into account in this transformation.

Let us fix vH ∈ V CR
H .

Step 1. Transformation to a patch of reference elements.
Let K̂+ be the collection of simplices that is obtained when we glue a copy of K̂ to each
of the faces of K̂, and let P1(K̂+) be the set of piecewise affine functions on K̂+. The
role of K̂+ in this analysis is to capture all jumps that v̂ ∈ P1(K̂) can have with respect
to piecewise affine functions across the faces of K̂. This is necessary because we need to
include the jumps of vH ∈ V CR

H across the faces of K in our study of the reference element.

Fix an element K ∈ TH . We use the usual affine transformation ΦK : K̂ → K to map
the quantity to be estimated to the reference element. In order to also take into account
the jumps accross K, we introduce the patch

SK = {T ∈ TH | T and K share a common face} .

There exists a continuous piecewise affine mapping ΨK : K̂+ → SK such that K̂ is mapped
to K, and more precisely, such that ΨK |K̂ = ΦK . We set v̂H = vH ◦ ΨK . This function

belongs to P1(K̂+).

Step 2. Transformation of the Scott-Zhang interpolant.
On the reference element K̂, we define φ̂i = φi ◦ ΦK for all 1 ≤ i ≤ N . Since, before
composition with ΦK , each φi is supported around a single vertex xi, there are only d+ 1
non-trivial functions φ̂i. These are in fact the P1 nodal basis functions on K̂, and we
renumber them as φ̂0, . . . , φ̂d, dropping all functions that vanish after transforming to the
mesh element K.

For each 0 ≤ i ≤ d we recall that σi is the face associated to the vertex xi in the
definition of the Scott-Zhang interpolator. We define σ̂i = Φ−1

K (σi), Ai = |σi|/|σ̂i| and

ψ̂i,1 = Ai ψi,1 ◦ ΦK . One can show that ψ̂i,1 is, for each i, part of the L2(σ̂i)-dual basis of

the functions φ̂0, . . . φ̂d restricted to σ̂i (see [132132, Equation (3.3)]), hence the functions ψ̂i,1
only depend on K through the choice of one of the faces σi in the definition of the Scott-
Zhang interpolator. In view of the regularity of the mesh, there is a bounded number of
possible choices for this for each i and for all H. For simplicity, we treat here the situation
where, for each vertex xi of the fixed mesh element K under consideration, σi is a face
of K for each i. The general situation can be treated by a modification of our argument.

With all the above notation, the Scott-Zhang interpolant I C
H (vH) after transformation
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to K̂ reads

I C
H (vH) ◦ ΦK =

d∑
i=0

(∫
σ̂i

Ai (ψi,1 vH |Ki) ◦ ΦK

)
φ̂i

=
d∑
i=0

(∫
σ̂i

ψ̂i,1 vH |Ki ◦ ΦK

)
φ̂i, (13.25)

where we recall that Ki is the mesh element associated to the vertex xi in the definition
of the Scott-Zhang interpolator. Since we treat the situation where each σi is a face of K,
the identity σi = K ∩Ki holds.

For any v̂ ∈ P1(K̂+), we now define a function Î C
H (v̂) ∈ P1(K̂) as

Î C
H (v̂) =

d∑
i=0

(∫
σ̂i

ψ̂i,1 v̂i

)
φ̂i,

with

v̂i =

{
v̂|K̂ if Ki in (13.2513.25) equals the mesh element K,

v̂|K̂i otherwise,
(13.26)

where K̂i the unique element of K+ \ {K̂} that shares the face σ̂i with K̂. Note that this
definition depends on the mesh element K through the definition of the Scott-Zhang inter-
polator. The definition of Î C

H is such that one may verify, upon comparing with (13.2513.25),

that I C
H (vH) ◦ ΦK = Î C

H (v̂H).

Step 3. The desired bound on the reference element.
We denote the set of faces of K̂ by F (K̂) and define

|v̂|21
2
,∂K̂

=
∑

ê∈F (K̂)

∫
ê

Jv̂K2.

Note that |v̂| 1
2
,∂K̂ = 0 implies that v̂ has no jumps. Then Î C

H (v̂) = v̂, because the Scott-

Zhang interpolator is a projection on the space of continuous piecewise affine functions.
In other words,

|v̂| 1
2
,∂K̂ = 0 implies that Î C

H (v̂)− v̂ = 0. (13.27)

Let us next denote by P1(K̂+)? the quotient space of P1(K̂+) by its subspace of
continuous functions. One may verify that |·|21

2
,∂K̂

is a norm on P1(K̂+)? in view of the

preceeding remarks. Then we have

sup
v̂∈P1(K̂+)?,
|v̂| 1

2 ,∂K̂
=1

∣∣∣Î C
H (v̂)− v̂

∣∣∣
1,K̂
≤ C, (13.28)

which is indeed bounded, since the supremum is taken over a compact set. (The set is
closed and bounded, and the dimension of P1(K̂+)? is finite.) The constant C in principle

depends on the mesh element K, since the definition of Î C
H depends on K through (13.2613.26).

Since the number of possibile choices in this definition is bounded independently of K
and H, the constant C can be chosen as the maximum of the constants for all possible
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choices so that (13.2813.28) holds for all K ∈ TH and for all H.

It follows from (13.2713.27) and (13.2813.28) that
∣∣∣Î C

H (v̂)− v̂
∣∣∣
1,K̂
≤ C|v̂| 1

2
,∂K̂ for all v̂ ∈ P1(K̂+).

Since v̂H = vH ◦ ΦK on K̂ and Î C
H (v̂H) = I C

H (vH) ◦ ΦK , we obtain∣∣(I C
H (vH)− vH

)
◦ ΦK

∣∣
1,K̂
≤ C|v̂H | 1

2
,∂K̂ , (13.29)

with a constant C that does not depend on K, vH and H.

Step 4. Application to the mesh element K.
Let us now return to the mesh element K. Denoting by AK the linear part of ΦK , a
change of variables yields

|I C
H (vH)− vH |21,K =

∫
K

∣∣∇ [I C
H (vH)− vH

]∣∣2
=

∫
K̂

∣∣(∇ [I C
H (vH)− vH

])
◦ ΦK

∣∣2 |det(AK)|.

Since ∇
([

I C
H (vH)− vH

]
◦ ΦK

)
= AK

(
∇
[
I C
H (vH)− vH

])
◦ ΦK , and in view of (13.1813.18)

and (13.17b13.17b), this yields

|I C
H (vH)− vH |21,K ≤ CHd−2

K

∫
K̂

∣∣∇ ([I C
H (vH)− vH

]
◦ ΦK

)∣∣2 ,
where HK = diam(K). Inserting (13.2913.29), we have

|I C
H (vH)− vH |21,K ≤ CHd−2

K |v̂H |21
2
,∂K̂

= CHd−2
K

∑
ê∈F (K̂)

∫
ê

Jv̂HK2. (13.30)

It remains to transform the integrals in the latter sum to integrals over the faces of
the original mesh element K. For any face e of K, let ê = Φ−1

K (e) and set Ae = |e|/|ê|.
Then, by a change of variables,∫

ê

Jv̂HK2 = A−1
e

∫
e

JvHK2 ≤ C

Hd−1
K

∫
e

JvHK2, (13.31)

using (13.17b13.17b) for the inequality. Upon combing (13.3013.30) and (13.3113.31),

|I C
H (vH)− vH |21,K ≤

C

HK

∑
e∈F (K)

∫
e

JvHK2 ≤ C

H

∑
e∈F (K)

∫
e

JvHK2

the second inequality using quasi-uniformity (13.2113.21). Finally summing over all mesh
elements K, we obtain

|I C
H (vH)− vH |21,TH ≤

C

H

∑
e∈EH

∫
e

JvHK2.

This completes the proof in view of the definition of |vH | 1
2
,EH

. �

The two final classical properties that we will need are an approximation and a stability
property for the interpolation operator on the Crouzeix-Raviart P1 space V CR

H . We denote
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it by I NC
H . For any v ∈ H1(Ω) we define I NC

H by

∀ e ∈ EH ,

∫
e

I NC
H (v) =

∫
e

v. (13.32)

Then, under the mesh regularity assumptions (13.1713.17), we have the following classical
interpolation result (see [7373, Theorem 1.103]): there exists C > 0 such that, for all
K ∈ TH , and all v ∈ H2(K), we have

|v −I NC
H (v)|1,K ≤ CH|v|2,K . (13.33)

This property allows us to establish the following lemma.

Lemma 13.10. For all u ∈ H2(Ω), for all H > 0, it holds

|v −I NC
H (v)|1,TH ≤ CH|v|2,Ω

and, for the seminorm |·| 1
2
,EH

defined in (13.2413.24), it holds

|I NC
H (v)| 1

2
,EH
≤ CH|v|2,Ω.

Proof. The first inequality is a direct consequence of (13.3313.33). For the second inequality, we
temporarily fix e ∈ EH . Let K1 and K2 be the two mesh elements sharing the face e. The
analysis is analogous when e ⊂ ∂Ω and K2 = ∅. The seminorm |I NC

H (v)| 1
2
,EH

comprises

a sum over the jump norms
∥∥JI NC

H (v)K
∥∥2

0,e
. Since v ∈ H2(Ω), its jump across e is zero,

so that we have∥∥JI NC
H (v)K

∥∥2

0,e
=
∥∥Jv −I NC

H (v)K
∥∥2

0,e
,

≤ 2
∥∥∥(v −I NC

H (v)
)∣∣
K1

∥∥∥2

0,e
+ 2

∥∥∥(v −I NC
H (v)

)∣∣
K2

∥∥∥2

0,e
,

the inequality resulting from a triangle inequality and Young’s inequality. By (13.3213.32),∫
e

v −I NC
H (v) = 0, so we can apply Lemma 13.713.7, followed by (13.3313.33), which yields

∥∥JI NC
H (v)K

∥∥2

0,e
≤ CH

(∣∣(v −I NC
H (v)

)∣∣2
1,{K1,K2}

)
≤ CH3|v|2,K1∪K2 .

Inserting this inequality in the definition of |I NC
H (v)| 1

2
,EH

shows the desired result. �

13.4. Three central estimates

The proof of Theorem 13.113.1 essentially relies on an interpolation estimate for the multiscale
space V ε

H that is given in Corollary 13.1413.14 and a bound on the non-conforming error for
the MsFEM-CR provided in Lemma 13.1513.15. In order to make the dependence on ε explicit
in these estimates, we frequently use a homogenization result related to functions of the
multiscale space V ε

H that is stated as the first result of this section in Lemma 13.1113.11.

Throughout this section, for any function φ, we use the notation φε (with a subscript ε)
to define the rescaled function φε(·) = φ(·/ε).
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13.4.1. First-order reconstruction for the multiscale finite element space. It is essen-
tial for the convergence analysis of the MsFEM to study the behaviour of the multiscale
finite element functions defined in (13.713.7) as ε → 0. We recall that any MsFEM func-
tion vεH ∈ V ε

H satisfies (13.913.9). Since either of the two possible choices for VK contains the
space of compactly supported test functions C∞c (K), we obtain, for any K ∈ TH ,

− div(Aε∇vεH) = 0 in K.

The homogenized limit of vεH is vH because A? (see (13.1313.13)) is constant and the boundary
conditions of vεH are preserved when we pass to the limit. It can thus be expected that
vεH is, at least when ε is small, close to its first-order two-scale reconstruction defined
analogously to uε,1 in (13.1513.15).

Rather than exactly following (13.1513.15), we introduce a truncation close to the boundary
of the mesh elements in order to obtain a homogenization estimate for the flux Aε∇vεH
in Lemma 13.1113.11. The truncation is necessary, because the expansion (13.1513.15) is highly
oscillatory near the boundary, whereas vH is not, resulting in a highly oscillatory boundary
layer. The exact definition of this truncated first-order expansion is, for any vH ∈ VH ,
the function vε,1H given by

vε,1H
∣∣
K

= vH + ε
d∑

α=1

τH ∂α(vH |K)(wα)ε for all K ∈ TH , (13.34)

where τH is the cut-off function from Lemma 13.513.5, which vanishes around the interfaces
of the mesh.

A homogenization estimate for the convergence of Aε∇vε,1H towards A?∇vH is given
in the following lemma. The difference between vε,1H and the actual MsFEM function vεH
defined by (13.713.7) will be studied below in Lemma 13.1313.13.

Lemma 13.11. Let vH ∈ VH and introduce vε,1H by (13.3413.34). Suppose that the family of
meshes (TH)H is quasi-uniform and that ε ≤ H. Then

Aε∇vε,1H = A?∇vH +R(vH), (13.35)

where R(vH) satisfies, for any K ∈ TH and any q ∈ H1(K),∣∣∣∣∫
K

R(vH) · ∇q
∣∣∣∣ ≤ C

√
ε

H
|vH |1,K |q|1,K .

Proof. Fix any K ∈ TH . The combination of (13.3413.34) and (13.1613.16) shows that (13.3513.35) holds
for

R(vH) = (1− τH)(Aε − A?)∇vH + Aε

(
d∑

α=1

ε∇τH ∂α(vH |K)(wα)ε

)
+

τH

[
d∑

α=1

d∑
i=1

∂α (vH |K) (∂i[Zα]i,j)ε

]
1≤j≤d

,

with a skew-symmetric matrix Zα ∈ H1
per(Q)d×d. Upon multiplication by ∇q and integra-
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tion over K, the third term becomes

d∑
α,i,j=1

∫
K

τH ∂αvH (∂i[Zα]i,j)ε ∂jq =
d∑

α,i,j=1

ε

∫
K

∂iτH ∂αvH ([Zα]i,j)ε ∂jq,

by an integration by parts over the derivative with index i, using that (∂iφ)ε = ε∂i(φε)
for any function φ. The boundary term vanishes because τH = 0 on ∂K. The terms with
a second derivative on q, i.e., τH ∂αvH ([Zα]i,j)ε ∂j,iq vanish under the sum over i and j,
because Zα is skew-symmetric. Also note that ∂α,ivH = 0 because vH is affine on K. It
thus holds,∣∣∣∣∫

K

R(vH) · ∇q
∣∣∣∣ ≤ ∫

Kε
b

‖Aε − A?‖ · ‖∇vH‖ · ‖∇q‖+
d∑

α=1

∫
Kε
b

‖Aε‖ · ‖∇q‖ · |∂αvH(wα)ε|+

d∑
α,i,j=1

∫
Kε
b

|∂αvH | ·
∣∣([Zα]i,j)ε

∣∣ · |∂jq|,
recalling the properties of τH stated in Lemma 13.513.5 and recalling that Kε

b = K \ Kε
in.

Note in particular that ∇τH vanishes on Kε
in.

To bound these terms, we use the fact that Aε and A? are uniformly bounded (A? is
even constant) on Ω, and that wα ∈ L2

per(Q) and Zα ∈ L2
per(Q)d×d. The Cauchy-Schwarz

inequality thus yields∣∣∣∣∫
K

R(vH) · ∇q
∣∣∣∣ ≤ C‖∇q‖0,K

(
‖∇vH‖0,Kε

b
+

d∑
α=1

d∑
α=1

‖∂αvH (wα)ε‖0,Kε
b

+ ‖∂αvH (Zα)ε‖0,Kε
b

)
.

(13.36)

Let φ be any function in L2
per(Q). Since ∇vH is constant in K, we have

‖(∂αvH) φε‖2
0,Kε

b
= |∂α(vH |K)|2 ‖φε‖2

0,Kε
b

≤ |∂α(vH |K)|2 ‖φε‖2
0,Kε

band

=
∑
i∈I ε

K

|∂α(vH |K)|2 ‖φε‖2
0,ε(i+Q),

where Kε
band and I ε

K are as defined in Lemma 13.613.6. Applying the results of this lemma,
we further obtain∑

i∈I ε
K

|∂α(vH |K)|2 ‖φε‖2
0,ε(i+Q) = εd (#I ε

K) |∂α(vH |K)|2 ‖φ‖2
0,Q

≤ C
ε

H
|K| |∂α(vH |K)|2 ‖φ‖2

0,Q = C
ε

H
‖∂αvH‖2

0,K ‖φ‖2
0,Q.

Since the functions wα and the entries of Zα belong to L2
per(Q), the above argument
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can be applied in (13.3613.36) and leads to the estimate

‖∇vH‖0,Kε
b

+
d∑

α=1

‖∂αvH (wα)ε‖0,Kε
b

+ ‖∂αvH(Zα)ε‖0,Kε
b
≤ C

√
ε

H
‖∇vH‖0,K .

Inserting this inequality in (13.3613.36) completes the proof. �

13.4.2. Interpolation estimate. Here we show the following interpolation result for our
multiscale finite element space V ε

H . More precisely, the interpolation quality of V ε
H is ex-

pressed in terms of approximation properties of the underlying P1 space VH . We start with
an interpolation result for the (truncated) first-order two-scale reconstruction of (13.3413.34)
in Lemma 13.1213.12. The interpolation property for the space V ε

H will follow below in Corol-
lary 13.1413.14.

Lemma 13.12. Let uε and u? be the solutions to (13.113.1) and (13.1413.14), respectively, and
suppose that the family of meshes (TH)H is quasi-uniform and that ε ≤ H. Let vH ∈ VH
be arbitrary and define vε,1H in each K ∈ TH by (13.3413.34). Then

|uε − vε,1H |1,TH ≤ C

(
|u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
.

We recall that EH denotes the set of faces of the mesh and that |vH | 1
2
,EH

is defined

in (13.2413.24).

Proof. Fix vH ∈ VH and set vH,C = I C
H (vH). We recall that I C

H denotes the Scott-Zhang
interpolation operator from Section 13.3.513.3.5. Note that vH,C = vH when vH is continuous,
but that the interpolant is in general different from vH itself. Defining the truncated
first-order expansions vε,1H,C and vε,1H as in (13.3413.34), we have, by the triangle inequality,

|uε − vε,1H |1,TH ≤ |u
ε − vε,1H,C |1,Ω + |vε,1H,C − v

ε,1
H |1,TH . (13.37)

To treat the first term in (13.3713.37), we set q = uε − vε,1H,C . Then we apply Lemma 13.1113.11
to vH,C and we use (13.313.3) to obtain

|uε − vε,1H,C |
2
1,Ω ≤ C

∫
Ω

∇q · Aε∇(uε − vε,1H,C)

= C

∫
Ω

∇q · (Aε∇uε − A?∇vH,C −R(vH,C)) .

Since q ∈ H1
0 (Ω), we deduce from (13.213.2) and (13.1413.14) that∫

Ω

∇q · Aε∇uε =

∫
Ω

fq =

∫
Ω

∇q · A?∇u?.

Therefore,

|uε − vε,1H,C |
2
1,Ω ≤ C

∫
Ω

|∇q · A?∇(u? − vH,C)|+ |∇q ·R(vH,C)|.

Applying the Cauchy-Schwarz inequality, (13.313.3) and Lemma 13.1113.11 and cancelling by
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|q|1,Ω = |uε − vε,1H,C |1,Ω yields

|uε − vε,1H,C |1,Ω ≤ C

(
|u? − vH,C |1,Ω +

√
ε

H
|vH,C |1,Ω

)
.

Then we apply Lemma 13.913.9 to obtain

|uε − vε,1H,C |1,Ω ≤ C

(
|u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
. (13.38)

For the second term in (13.3713.37) (which in fact vanishes if VH = V lin
H defined in (13.4a13.4a)),

we apply Lemma 13.1113.11 to the function wH = vH,C − vH on each K ∈ TH . This yields
(using again the bounds in (13.313.3), and the Cauchy-Schwarz inequality in the last line)

|wε,1H |
2
1,TH
≤ C

∑
K∈TH

∫
K

∇wε,1H · A
ε∇wε,1H

= C
∑
K∈TH

∫
K

∇wε,1H · A
?∇wH +

∫
K

R(wH) · ∇wε,1H

≤ C|wε,1H |1,TH
(
|wH |1,TH +

√
ε

H
|wH |1,TH

)
.

Simplifying by |wε,1H |1,TH and applying Lemma 13.913.9 to wH = vH,C − vH , we obtain

|vε,1H,C − v
ε,1
H |1,TH ≤ C

(
1 +

√
ε

H

)
|vH | 1

2
,EH
≤ C|vH | 1

2
,EH
, (13.39)

the last inequality being true because ε ≤ H.
The lemma is now shown upon inserting (13.3813.38) and (13.3913.39) in (13.3713.37). �

We now provide a bound on the difference between the truncated reconstruction vε,1H
and the multiscale function vεH .

Lemma 13.13. Suppose that the family of meshes (TH)H is quasi-uniform. Let vH ∈ VH
be arbitrary and define vεH by (13.713.7) and vε,1H by (13.3413.34) for all K ∈ TH . It holds

|vεH − v
ε,1
H |1,TH ≤ C

√
ε

H
|vH |1,TH .

Proof. We temporarily fix a mesh element K ∈ TH and set r = vε,1H −vεH on K. By (13.313.3)
and Lemma 13.1113.11 applied to vH , we have

|vε,1H −v
ε
H |21,K ≤ C

∫
K

∇r ·Aε∇(vε,1H −v
ε
H) =

∫
K

∇r ·(A?∇vH − Aε∇vεH +R(vH)) . (13.40)

Note that (13.713.7) and (13.3413.34) imply that r ∈ VK . In particular, r vanishes on average on
the faces of K for either of the two choices of VK that we consider; see (13.513.5). Since,
moreover, A? and ∇vH are constant on K, an integration by parts shows that∫

K

∇r · A?∇vH = A?∇vH ·
∫
∂K

r ~n = 0. (13.41)
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Since r ∈ VK , it can be used as a test function in (13.913.9). Therefore,∫
K

∇r · Aε∇vεH = aεK(vεH , r) = 0. (13.42)

Combining (13.4013.40), (13.4113.41) and (13.4213.42), and applying Lemma 13.1113.11 to bound the term
containing R(vH), we obtain

|vε,1H − v
ε
H |1,K ≤ C

√
ε

H
|vH |1,K ,

after simplification on both sides by |r|1,K . Squaring and summing this inequality over
all mesh elements yields the desired result. �

As an immediate corollary to Lemmas 13.1213.12 and 13.1313.13, we obtain the following inter-
polation result for the multiscale space V ε

H .

Corollary 13.14. Let uε and u? be the solutions to (13.113.1) and (13.1413.14), respectively,
and suppose that the family of meshes (TH)H is quasi-uniform and that ε ≤ H. Let
vH ∈ VH be arbitrary and define vεH by (13.713.7). Then

|uε − vεH |1,TH ≤ C

(
|u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
.

13.4.3. Non-conforming error. The analysis of the MsFEM-CR requires one additional
ingredient with respect to the analysis of the MsFEM-lin. Due to the fact that the
approximation space is not a subspace of H1(Ω), the non-conforming error in Lemma 13.413.4
is nonzero. A useful estimate for the non-conforming error is given by the following lemma.

Lemma 13.15. Let uε, uεH and u? be the solutions to (13.113.1), (13.1013.10) and (13.1413.14),
respectively, and suppose that u? ∈ H2(Ω). Let V CR

H be the P1 Crouzeix-Raviart space
defined in (13.4b13.4b) and V ε

H the associated MsFEM space defined by (13.813.8). Also suppose
that the family of meshes (TH)H is quasi-uniform and that ε ≤ H. Then, for any
vH ∈ VH , it holds

sup
wεH∈V

ε
H\{0}

∣∣∣∣∣ ∑K∈TH

aεK(uε − uεH , wεH)

∣∣∣∣∣
|wεH |1,TH

≤

C

(
H|u?|2,Ω+|u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
.

Proof. Let wεH ∈ V ε
H be arbitrary. For any vH ∈ VH , associating to it vε,1H by (13.3413.34), we

have∑
K∈TH

aεK(uε − uεH , wεH) =
∑
K∈TH

aεK
(
uε − vε,1H , wεH

)
+
∑
K∈TH

aεK
(
vε,1H − u

ε
H , w

ε
H

)
. (13.43)
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We can apply Lemma 13.1213.12 to the terms in the first sum, which yields∣∣∣∣∣ ∑
K∈TH

aεK
(
uε − vε,1H , wεH

)∣∣∣∣∣ ≤ C|uε − vε,1H |1,Ω|w
ε
H |1,TH

≤ C

(
|u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
|wεH |1,TH . (13.44)

Regarding the second sum in (13.4313.43), since uεH solves (13.1013.10), it holds∑
K∈TH

aεK(uεH , w
ε
H) =

∫
Ω

f wεH =
∑
K∈TH

∫
K

∇wεH · A?∇u? −
∫
∂K

wεH ~n · A?∇u?, (13.45)

where we introduce the homogenized limit u? of uε by using (13.1413.14) and an integration
by parts in the second equality. Next, applying Lemma 13.1113.11 to vH , we have∑

K∈TH

aεK
(
vε,1H , wεH

)
=
∑
K∈TH

∫
K

∇wεH · A?∇vH +

∫
K

∇wεH ·R(vH) (13.46)

Combining (13.4513.45) and (13.4613.46), we can thus write∑
K∈TH

aεK
(
vε,1H − u

ε
H , w

ε
H

)
=
∑
K∈TH

∫
K

∇wεH · A?∇(vH − u?) +

∫
K

∇wεH ·R(vH) +∫
∂K

wεH ~n · A?∇u?.

Using the Cauchy-Schwarz inequality for the first term on the right-hand side and inserting
the estimate of Lemma 13.1113.11 for the second term, it follows∣∣∣∣∣ ∑

K∈TH

aεK
(
vε,1H − u

ε
H , w

ε
H

)∣∣∣∣∣ ≤ C

(
|u? − vH |1,TH |w

ε
H |1,TH +

√
ε

H
|vH |1,K |wεH |1,K

+

∣∣∣∣∣∑
e∈EH

∫
e

JwεHK~ne · A?∇u?
∣∣∣∣∣
)
,

(13.47)

where we choose for every face e of TH an orientation of the unit normal vector ~ne on e,
and where JwεHK is defined as follows: let K1(e) and K2(e) be the two mesh elements
sharing the face e, and, for definiteness, let ~ne be the unit outward normal to K1(e) on e,
and let (wεH)1 = wεH |K1(e), and (wεH)2 = wεH |K2(e), then JwεHK = (wεH)1|e− (wεH)2|e ; when e
lies on ∂Ω (and K2(e) = ∅), we simply set JwεHK = (wεH)1|e. It remains to bound the
terms involving the jumps of wεH .

Note that, by definition of the multiscale space V ε
H , it holds for all e ∈ EH that∫

e

JwεHK = 0. Therefore, setting ce =

∫
e

~ne · Aε∇u?, it holds

∑
e∈EH

∫
e

JwεHK~ne · A?∇u? =
∑
e∈EH

∫
e

JwεHK (~ne · A?∇u? − ce) ,
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and, by the Cauchy-Schwarz inequality, we obtain∣∣∣∣∣∑
e∈EH

∫
e

JwεHK~ne · A?∇u?
∣∣∣∣∣ ≤∑

e∈EH

‖JwεHK‖0,e ‖~ne · A?∇u? − ce‖0,e.

For any e ∈ EH , we can now apply Lemma 13.713.7 to the function ~ne · A?∇u? − ce, which
has zero average on e (by definition of ce). We can also apply Lemma 13.813.8 to wεH . Then
it follows, ∣∣∣∣∣∑

e∈EH

∫
e

JwεHK~ne · A?∇u?
∣∣∣∣∣ ≤ CH

∑
e∈EH

|wεH |1,{K1(e),K2(e)} |u?|2,K1(e)

≤ CH|wεH |1,TH |u?|2,Ω, (13.48)

where the second inequality is obtained by a discrete Cauchy-Schwarz inequality.

We now insert (13.4813.48) in (13.4713.47) and use the resulting inequality and (13.4413.44) to bound
the two sums in (13.4313.43) after applying a triangle inequality. The lemma is then proved
upon division by |wεH |1,TH . �

13.5. Proof of Theorem 13.113.1

We can now prove the main result of part IIIIII of the thesis.

Proof of Theorem 13.113.1. Let vH ∈ VH be the following interpolant of the homogenized
limit u? of uε in the underlying P1 space: for the MsFEM-lin, we set vH = I C

H (u?),
the Scott-Zhang interpolant in the Lagrange P1 space, and for the MsFEM-CR we set
vH = I NC

H (u?) the interpolant in the Crouzeix-Raviart P1 space defined in (13.3213.32). Using
Lemma 13.313.3 in the case of the MsFEM-lin or Lemma 13.413.4 for the MsFEM-CR, we find
that

|uε − uεH |1,TH ≤ C|uε − vεH |1,TH + Enc,

where vεH ∈ V ε
H is defined in terms of vH by (13.713.7) and the non-conforming error Enc is zero

for the MsFEM-lin and given by the second term on the right-hand side in Lemma 13.413.4
for the MsFEM-CR.

We estimate the interpolation error |uε−vεH |1,TH by means of Corollary 13.1413.14, and Enc
by Lemma 13.1513.15, to obtain

|uε − uεH |1,TH ≤ C

(
H|u?|2,Ω + |u? − vH |1,TH + |vH | 1

2
,EH

+

√
ε

H
|vH |1,TH

)
.

In the case of the MsFEM-lin, we note that |vH | 1
2
,EH

= 0 and we use Lemma 13.913.9 to

estimate |u? − vH |1,TH . We employ Lemma 13.1013.10 in the case of the MsFEM-CR. In both
cases, we conclude that

|uε − uεH |1,TH ≤ C

(
H|u?|2,Ω +

√
ε

H
|vH |1,TH

)
.

Finally, we note that |vH |1,TH ≤ |vH−u?|1,TH + |u?|1,Ω, and we apply Lemma 13.913.9 or 13.1013.10
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to obtain √
ε

H
|vH |1,TH ≤

√
εH|u?|2,Ω +

√
ε

H
|u?|1,Ω.

Since ε ≤ H, combining the last two inequalities leads to

|uε − uεH |1,TH ≤ C

(
H|u?|2,Ω +

√
ε

H
|u?|1,Ω

)
,

and the proof is complete. �
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[109] C. Johnson, U. Nävert, and J. Pitkäranta. Finite element methods for linear hyperbolic
problems. Computer Methods in Applied Mechanics and Engineering, 45:285–312, 19841984.

[110] P. Knobloch and L. Tobiska. The Pmod1 Element: A New Nonconforming Finite Element
for Convection-Diffusion Problems. SIAM Journal on Numerical Analysis, 41(2):436–456,
20032003.

[111] C. Le Bris and F. Legoll. Examples of computational approaches for elliptic, possibly
multiscale PDEs with random inputs. Journal of Computational Physics, 328:455–473,
20172017.

[112] C. Le Bris, F. Legoll, and A. Lozinski. MsFEM à la Crouzeix-Raviart for Highly Os-
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