
HAL Id: tel-04501109
https://pastel.hal.science/tel-04501109v1

Submitted on 12 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart contracts for auctions : from experimental
assessment to privacy

Lucas Massoni Sguerra

To cite this version:
Lucas Massoni Sguerra. Smart contracts for auctions : from experimental assessment to privacy.
Computer science. Université Paris sciences et lettres, 2023. English. �NNT : 2023UPSLM050�. �tel-
04501109�

https://pastel.hal.science/tel-04501109v1
https://hal.archives-ouvertes.fr

Préparée à Mines Paris-PSL

SMART CONTRACTS FOR AUCTIONS:
FROM EXPERIMENTAL ASSESSMENT TO PRIVACY

Contrats intelligents pour les enchères : de l'évaluation
expérimentale à la confidentialité

Soutenue par

Lucas MASSONI
SGUERRA
Le 19 avril 2023

Ecole doctorale n° 621

Ingénierie des systèmes,
matériaux, mécanique, en-
ergétique

Spécialité

Informatique temps-réel,
robotique et automatique

Composition du jury :

Sylvain CONCHON
Professeur, Université Paris-Saclay Président

Rachid GUERRAOUI
Professeur, EPFL Rapporteur

Maria POTOP-BUTUCARU
Professeur, Sorbonne Université Examinateur

Nour EL MADHOUN
Professeur associé, ISEP Examinateur

Emilio Jesus GALLEGO ARIAS
Jeune chercheur, IRIF Inria Examinateur

Pierre JOUVELOT
Directeur de recherche, Mines Paris Examinateur

Gérard MEMMI
Professeur, Télécom Paris Co-directeur

Fabien COELHO
Professeur, Mines Paris Directeur de thèse

Distrust and caution
are the parents of security.

BENJAMIN FRANKLIN

5

ACKNOWLEDGEMENTS

This work couldn’t have materialized without the help and support of my family, friends and
colleagues. Here I name a few of the people that inspired, encouraged and supported me during
my period as a PhD student.

First, I’d like to thank my supervisors, Emilio J. Gallego Arias, Fabien Coelho, Gérard Memmi,
and Pierre Jouvelot. Thank you for your guidance, support, rigor, and inspiring conversations.
Special thanks to Pierre Jouvelot: thank you for all the Skype calls and time you took to work with
me.

I also would like to thank the professors and staff from CRI (Centre de recherche en informa-
tique), François Irigoin, Corinne Ancourt, Claude Tadonki, Claire Medrala, Olivier Hermant and
Laurent Daverio; thank you for your support and aid.

Special thanks to my PhD colleagues Bruno Massoni Sguerra, Luc Perera, Adila Susungi,
Patryk Kiepas, Robin Le Conte des Floris, Maksim Berezov and Dongmin Son: thank you for
sharing your PhD experiences with me, and for the good times.

To my colleagues from Eniblock and The Sandbox, Maxime Vanmeerbeck, Yoann Thomas,
Christophe Convert, Vincent Herbert, Alexis Figel, Andres Adjimann and Felipe Faria, thanks
you for sharing your knowledge and enthusiasm for cryptography and blockchain systems.

Also, my friends Giuliano Tadeo Rodrigues Varela e Silva, Felipe Massao Kitanaka Matsuoka,
Nelson Gomes, Amanda Fernandes and Juan Jeronimo Fuentes, thanks for your encouragement
and support.

And finally, a special thanks to my family, specially my parents Ricardo Giaretta Sguerra and
Christina Maria Massoni Sguerra: thank you for infusing me with a passion for knowledge and
science and for always pushing me to reach my potential.

7

ABSTRACT

The advent of auctions for the allocation of sponsored search results on the Internet has brought
auctions to the foreground of e-commerce. For instance, for each Google query submitted on the
Internet, there are associated sponsored links displayed to the user, automatically sold by auctions,
resulting in billions of auctions happening online everyday. Google sale of sponsored links alone
is responsible for the movement of hundreds of billions of dollars per year.

Presently, the vast majority of auctions take place in centralized services, which requires auc-
tion participants to relinquish total control to the auctioneer, leaving the participants at the mercy
of the system, with no choice other than to trust the service, hoping that the process is efficient and
honest, i.e., that it makes good use of computer resources and won’t disclose private information.

In this thesis, we study whether blockchain technologies, designed for providing trusted envi-
ronments for the execution of programs (known in this context as “smart contracts”), provide an
efficient and secure environment for auctions. To make this analysis more concrete, we selected
a so-called “truthful” auction, known as Vickrey–Clarke–Groves for sponsored search (VCG for
search), as the basis to assess the impacts of such environments on the auction process.

The first step for our research is the formalization of VCG algorithms, also called “mecha-
nisms”; we give the specifications of the general VCG mechanism and of its VCG for search
variant using the proof assistant Coq, together with the proofs of some of their key properties.

Following up on this sound basis for the definition of auctions, we describe our rationale for
the reasoned choice of a sample of blockchain systems to be used as the basis for experimental
research. We restricted our systematic and scientifically grounded study of blockchain systems
to Ethereum and Tezos, Ethereum being the industry standard for smart contracts development
and Tezos, a newer blockchain that intends to tackle some of Ethereum’s performance issues by
selecting a more efficient consensus mechanism, proof-of-stake, instead of the proof-of-work ap-
proach used in the original Ethereum. Our performance-comparison methodology focuses on the
experimental evaluation of both system in terms of programmability, performance and cost.

Our tests indicate that, at the time of study, Ethereum surpassed Tezos in terms of programma-
bility and community support, which led us to select it as the blockchain of choice to base the
rest of our research upon. In addition, our benchmarking provides numerical evidence for the exis-
tence of significant scalability limitations for Ethereum and its proof-of-work consensus algorithm;
such shortcomings were also noted by the Ethereum community, with scalability solutions being
developed in the recent years. Due to their relevancy for the industry, we perform another bench-
mark comparison between two promising solutions: Layer-2 Polygon proof-of-stake extension and
Ethereum’s proof-of-stake Merge update. We used our VCG for search smart contract to perform
a comparison between standard Ethereum and the scalability updates. This comparison reveals the

8

advantage of both upgrades, but in the case of Polygon, put to light the fact that its dependency on
Ethereum’s pricing remains a limitation.

Even though performance issues are clearly seen by the community as key to the acceptance
of the blockchain technology, the transparency of public blockchains, though it is what ultimately
makes the technology secure, presents another severe handicap for the execution of programs that
expect a certain level of privacy, such as VCG for search. In the final chapter of this thesis, we
analyze the effects of this lack of privacy on the VCG for search ecosystem. We explore some of
the industry proposals for privacy, present three new proof-of-concepts variants of VCG for search
that increase the privacy of this type of VCG contracts and analyze their effects on the privacy of
the auction process as well as their efficiency and monetary impacts on the participants.

9

TABLE OF CONTENTS

List of Figures . 19

List of Tables . 21

Chapter 1: Introduction . 23

1.1 Contexte . 23

1.2 Principaux résultats . 25

1.2.1 Spécification et implémentation de contrats intelligents pour VCG pour la
recherche sponsorisée . 25

1.2.2 Comparaison de référence entre Ethereum et Tezos 26

1.2.3 Comparaison de référence pour les solutions de scalabilité d’Ethereum . . . 26

1.3 Structure de la thèse . 26

Chapter 2: Introduction . 29

2.1 Context . 29

2.2 Main results . 31

2.2.1 Specification and implementation of smart contracts for VCG for spon-
sored search . 31

10

2.2.2 Benchmark comparison between Ethereum and Tezos 31

2.2.3 Benchmark comparison for Ethereum scalability solutions 31

2.2.4 Privacy-preserving proof-of-concept solutions 32

2.3 Thesis structure . 32

Chapter 3: Background . 33

3.1 Cryptography . 34

3.1.1 Definition . 34

3.1.2 Hash functions . 34

3.1.3 Key Cryptography . 34

3.2 Bitcoin and blockchain . 35

3.3 Blockchain infrastructure . 36

3.3.1 Nodes . 36

3.3.2 Accounts and keys . 36

3.3.3 Transactions . 37

3.3.4 Blocks . 37

3.3.5 Mining . 39

3.3.6 Consensus . 39

3.3.6.1 Forks . 39

3.3.6.2 Finality and Confirmation blocks 41

3.3.6.3 Mainnet and Testnets . 41

11

3.4 Ethereum: a blockchain as a distributed computer 42

3.4.1 Smart contracts . 42

3.4.1.1 Chain computation . 42

3.4.1.2 Solidity . 43

3.4.1.3 Ethereum Request for Comments (ERC) 43

3.4.2 Ethereum Virtual Machine (EVM) . 44

3.4.3 Ethereum transactions . 44

3.4.4 Transaction fees . 45

3.4.4.1 Gas . 45

3.4.4.2 EIP-1559 . 46

3.4.5 Ethereum Block . 46

3.4.6 Ethereum PoW . 47

3.5 Scalability issues . 48

3.5.1 Layer 2 scaling solutions . 48

3.5.1.1 Polygon PoS . 49

3.5.2 Ethereum Merge . 50

3.5.2.1 Merge PoS protocol . 50

3.5.3 Tezos . 52

3.5.3.1 Tezos Proof-of-Stake . 52

3.5.3.2 Tezos governance and self-amendments 53

12

3.5.3.3 Tezos smart contracts . 53

3.6 Tools . 53

3.6.1 Block explorers . 54

3.6.2 Truffle . 55

3.6.3 Infura . 55

3.6.4 MetaMask . 55

Chapter 4: VCG for search auctions use case . 57

4.1 Auctions . 58

4.1.1 Principles . 59

4.1.2 Game theory notions . 60

4.1.3 Types of auctions . 61

4.1.3.1 First-price auctions . 61

4.1.3.2 Second-price and Vickrey auctions 61

4.1.4 Mechanism design . 62

4.1.5 Vickrey-Clarke-Groves mechanism . 63

4.1.6 VCG modelization and properties in Coq 64

4.2 VCG for sponsored search . 66

4.2.1 Sponsored search . 66

4.2.1.1 Basic model for sponsored search auctions 67

4.2.1.2 Generalized second-price sponsored search auction 67

13

4.2.2 VCG for sponsored search algorithm . 68

4.2.3 VCG for sponsored search in the industry 69

Chapter 5: VCG for sponsored search in smart contract form: Experiments for per-
formance evaluation . 71

5.1 Blockchain comparison . 72

5.2 Naive VCG for search smart contract . 72

5.2.1 VCG contract storage . 73

5.2.2 Public functions . 74

5.2.3 Test protocol . 75

5.3 Proof-of-work and proof-of-stake benchmarks . 75

5.3.1 Ethereum versus Tezos . 76

5.3.2 Development and tests . 76

5.3.3 VCG in Ethereum . 77

5.3.3.1 Solidity contract . 77

5.3.3.2 Ethereum Infrastructure . 78

5.3.3.3 Limitations . 80

5.3.4 VCG in Tezos . 81

5.3.4.1 SmartPy contract . 82

5.3.4.2 Tezos infrastructure . 82

5.3.4.3 Limitations . 84

14

5.3.5 Results . 84

5.3.5.1 Programmability . 85

5.3.5.2 Gas and Burned . 86

5.3.5.3 Block time . 87

5.3.5.4 Price . 87

5.3.6 Discussion . 88

5.4 Benchmarking Ethereum’s upgrades . 88

5.4.1 Target . 89

5.4.2 Development and tests . 90

5.4.2.1 Development . 90

5.4.2.2 Infrastructure . 90

5.4.3 Test protocol . 90

5.5 Results and discussion . 91

5.5.1 Ropsten PoW control case . 91

5.5.1.1 Gas consumption . 91

5.5.1.2 Ropsten’s execution time . 92

5.5.2 Gas usage for EVM-compatible contracts 92

5.5.3 Polygon PoS . 93

5.5.3.1 Gas and transaction fees . 93

5.5.3.2 Execution time and block time 94

15

5.5.4 Ethereum Merge . 94

5.5.4.1 Gas and transaction fees . 94

5.5.4.2 Execution time and block time 95

5.5.5 Polygon versus Ethereum Merge discussion 95

5.6 Discussion about the impact of performance issues on the VCG mechanism 96

Chapter 6: Privacy in Smart Contract Auctions . 99

6.1 Privacy . 100

6.1.1 Privacy in truthful sealed bid auctions . 100

6.1.2 Proposals for secure sealed-bid auctions 101

6.2 Privacy in public blockchains . 103

6.3 Privacy solutions for public blockchain systems 104

6.3.1 Existing proposals . 104

6.3.2 Public blockchain auctions . 105

6.4 Adding privacy to VCG for search . 106

6.4.1 Payment function . 107

6.4.2 Commit-reveal VCG . 107

6.4.2.1 Commit-reveal VCG smart contract implementation 108

6.4.2.2 Privacy enhancements . 111

6.4.2.3 Trade-offs . 111

6.4.3 Commit-reveal VCG with Diffie–Hellman key exchange 112

16

6.4.3.1 Diffie–Hellman key exchange 112

6.4.3.2 Multi-Party SmartDHX smart contract 113

6.4.3.3 VCG for search with Diffie–Hellman key exchange smart contract 116

6.4.3.4 Privacy enhancements . 117

6.4.3.5 Trade-offs . 119

6.4.4 Commit-reveal VCG with Diffie-Hellman and Mixer 120

6.4.4.1 Mixer . 120

6.4.4.2 Diffie-Hellman mixer . 120

6.4.4.3 Smart contract implementation 120

6.4.4.4 Privacy enhancements . 121

6.4.4.5 Trade-offs . 121

6.4.5 The price of privacy . 123

6.4.5.1 Gas comparison . 124

6.4.5.2 SmartDHX . 124

6.4.5.3 Transaction fees . 126

6.4.5.4 Analysis . 127

6.5 Conclusion and discussion . 128

Chapter 7: Conclusion and Future Work . 131

7.1 Summary of key findings and significance . 131

7.1.1 Benchmark comparison between Ethereum and Tezos 131

17

7.1.2 Benchmark comparison between Ethereum’s upgrades 131

7.1.3 Smart-contract privacy analysis and privacy-preserving proof-of-concept
proposals . 132

7.2 Limitations . 133

7.2.1 Working with Blockchains . 133

7.2.2 Privacy-preserving proof-of-concept proposals 133

7.3 Opportunities for future research . 134

7.3.1 Benchmark study focused in scalability 134

7.3.2 Privacy . 134

7.3.3 Limiting auctioneer’s participation in auction 135

7.4 Final thoughts . 136

Chapter 8: Conclusion et travaux futurs . 139

8.1 Résumé des principales conclusions et leur importance 139

8.1.1 Comparaison des performances entre Ethereum et Tezos 139

8.1.2 Comparaison des performances entre les mises à jour d’Ethereum 140

8.1.3 Analyse de la confidentialité des contrats intelligents et propositions de
preuves de concept pour préservant la confidentialité 140

8.2 Limitations . 141

8.2.1 Travailler avec des blockchains . 141

8.2.2 Propositions de preuves de concept pour la préservation de la confidentialité 142

8.3 Opportunités de recherche future . 142

18

8.3.1 Étude de référence axée sur la scalabilité 143

8.3.2 Confidentialité . 143

8.3.3 Limitation de la participation de l’organisateur d’enchères 144

8.4 Réflexions finales . 145

Bibliography . 147

Appendix A: Naive VCG for search in Solidity . 165

Appendix B: Naive VCG for search in SmartPy . 171

19

LIST OF FIGURES

3.1 Symmetric and asymmetric key encryption (from [9]) 35

3.2 Bitcoin block with Merkle tree [4] . 38

3.3 Schema describing the longest chain rule: a fork is generated following a commu-
nication failure, and, after the reestablishment of the network, a new minted block
will chose the longest chain to continue, while the shorter one is abandoned. 40

3.4 Graphical representation of the different types of forks. A soft fork will allow non-
upgraded nodes to continue to publish blocks, while a hard fork won’t, creating
two separated chains with a shared history. 41

3.5 Ethereum Merge representation [46] . 51

3.6 Example of a transaction from Etherscan(etherscan.io) the main Ethereum
block explorer . 54

3.7 Metamask interface, showing the ETH balance for the account named “Mine own”
on the Ropsten testnet . 56

4.1 Example of a Google query result page, with ads displayed on the right. The
page areas for ads have been auctioned to advertisers; their bids are linked to how
potentially interested the expected viewer is for the products they help sell. 58

5.1 Sequence diagram of the VCG for search smart contract 74

5.2 Infrastructure for Ethereum’s test . 79

etherscan.io

20

5.3 Infrastructure for Tezos testing . 83

5.4 For each VCG contract n m closing transaction, gas consumption on Ethereum
(left) and gas, fee and burned for Tezos (right, where the Y axis scale is in gas and
µXTZ). 87

5.5 Ethereum Average Transaction Fee [123] . 89

6.1 Sequence diagrams of commit reveal VCG for search smart contract 109

6.2 Class diagram for the SmartDHX smart contract 114

6.3 SmartDHX smart contract sequence diagram (for 2 participants) 115

6.4 VCG with Diffie–Hellman . 118

6.5 VCG with DH and mixer sequence diagram . 122

21

LIST OF TABLES

5.1 Gas usage comparison between the old and new contract versions of VCG for search. 91

5.2 Ropsten time of transaction with block number and number of blocks for an auction
with 3 CTRs and 10 bidders. 92

5.3 EVM-compatible gas usage by transaction. 93

5.4 Speculative transaction prices in dollars for Ethereum and Polygon. 94

5.5 Transaction fees in dollars: EIP-1559 versus legacy gas. 95

5.6 Comparison between Polygon and Ethereum Merge. 96

6.1 Gas usage for the different VCG implementations. The values in italics represent
view functions. There are 3 payments, corresponding to each of the auctioned items. 125

6.2 SmartDHX “answer” gas usage per client . 126

6.3 Fees, in US dollars, for the participants of the different POCs. 126

6.4 Fees in dollars for the 6 clients of Multi-Party SmartDHX. 127

23

CHAPTER 1

INTRODUCTION

1.1 Contexte

Les enchères sont des méthodes polyvalentes pour vendre des biens, et elles peuvent être adaptées
à différents objectifs. Elles se déroulent tous les jours dans une grande variété de contextes, que
ce soit pour vendre des antiquités, des produits alimentaires ou des annonces en ligne. L’impact
économique de l’utilisation de ces processus est énorme et a été reconnu par le Prix de la Banque
de Suède en sciences économiques en mémoire d’Alfred Nobel, considéré comme le prix “Nobel”
en économie, décerné à Milgrom et Wilson en 2020 [1].

Certaines enchères ont des propriétés qui peuvent forcer les potentiels acheteurs, appelés
“enchérisseurs”, à adopter des stratégies d’enchères spécifiques. Notre intérêt dans cette thèse
réside dans les enchères qui demandent aux enchérisseurs participants de révéler des informa-
tions jugées sensibles et/ou privées pour eux. Une enchère de cette variété est l’enchère dite
Vickrey-Clarke-Groves (VCG) pour la recherche sponsorisée (nous utilisons également le nom
de“VCG pour la recherche”, en abrégé), qui est le principal objectif de ce travail. Cette technique
d’enchère est une variante du mécanisme d’enchère VCG général, qui est considéré comme l’une
des bases de la théorie des enchères ; nous discutons de l’importance de cette technique d’enchère
dans la vie quotidienne, en particulier pour les moteurs de recherche sur Internet tels que Google,
dans le Chapitre 4.

Actuellement, la majorité des enchères qui ont lieu dans le monde sont en ligne et utilisent
des services centralisés. Dans ces services centralisés, il y a une autorité centrale qui applique
les règles et contrôle les interactions entre les enchérisseurs et le vendeur (appelé “commissaire-
priseur”, dans ce contexte). Pour participer, les enchérisseurs doivent avoir confiance dans le
système qui fournit les services ; et l’abus de cette confiance a déjà conduit à des enchères mal-
honnêtes [2] [3]. Afin d’encourager les enchérisseurs à participer aux enchères en évitant qu’elles
ne soient injustes, une approche prometteuse peut consister à profiter de la transparence et de la
confiance des systèmes décentralisés, c’est-à-dire les blockchains.

Les blockchains sont des systèmes distribués et décentralisés, d’abord introduits avec Bitcoin
au travers de l’article de 2009 intitulé “Bitcoin: A Peer-to-Peer Electronic Cash System” [4],
rédigé par un auteur mystérieux, Satoshi Nakamoto. Les blockchains sont des registres distribués
composés de plusieurs machines, appelées “nœuds”, qui communiquent entre elles et exécutent
le protocole de la blockchain, qui soutient le réseau de la blockchain. Ces nœuds prennent en
charge une base de données, en constante expansion, d’identifiants de compte et de soldes. Afin

24

de faciliter la réplication de l’état interne de la blockchain entre toutes les machines, la base
de données est divisée en blocs qui sont cryptographiquement “chaı̂nés” ensemble, d’où le nom
“blockchain”(chaı̂ne de blocs). Pour maintenir la cohérence des données entre les différents
nœuds, ces blocs doivent être transparents, c’est-à-dire accessibles et lisibles par tous les par-
ticipants de la blockchain, et leur contenu doit être facilement vérifiable pour éviter les mauvaises
conduites des nœuds malveillants. Ces caractéristiques rendent les systèmes de blockchain partic-
ulièrement sécurisés.

La deuxième génération de blockchains, introduite par Ethereum [5], a ajouté la notion de
“contrats intelligents” (smart contract) aux systèmes décentralisés. Les contrats intelligents sont
des programmes indépendants qui résident à l’intérieur d’une blockchain et qui bénéficient des
mêmes fonctionnalités de sécurité et de confiance que les données qui y sont stockées. Par con-
séquent, notre objectif initial dans cette thèse tourne autour de la tâche de mettre en œuvre VCG
pour la recherche en tant que contrat intelligent et d’analyser les implications pratiques d’une telle
implémentation.

La première étape est de sélectionner une plateforme blockchain pour notre implémentation.
Dès le début de nos recherches, il est devenu évident que, lors de la comparaison des systèmes
blockchain, l’industrie se concentre sur les mots à la mode et la publicité ; il y a un manque évident
de rigueur scientifique dans la manière dont les comparaisons existantes (voir Chapitre 5) sont
gérées. Nous avons donc décidé de généraliser notre recherche d’une plateforme blockchain en
une comparaison de référence qui, nous l’espérons, ouvrira la voie à une définition plus appropriée
et plus scientifique de la manière de comparer différents systèmes blockchain, du moins du point
de vue des contrats intelligents.

Notre première comparaison de référence se concentre sur les systèmes blockchain Ethereum
et Tezos. Ethereum est le système qui a introduit les contrats intelligents et reste toujours comme
la plateforme la plus populaire pour eux, tandis que Tezos, un système blockchain plus récent,
a fait des choix de conception intéressants pour résoudre certains problèmes présents dans les
systèmes précédents, tels que Ethereum. Les deux systèmes ont des approches différentes en ce
qui concerne les contrats intelligents, mais la différence la plus radicale réside dans le protocole
de consensus qu’ils ont adopté, c’est-à-dire les algorithmes par lesquels les systèmes distribués
s’accordent sur leur état actuel. Ethereum, à l’époque1, adoptait le mécanisme de consensus de
preuve de travail (proof-of-work ou PoW, en anglais) d’abord adopté par Bitcoin, utilisé par les
différents nœuds composant le réseau pour s’accorder sur un état commun par le biais de calculs
intensifs. Bien que robuste, cette approche limite la scalabilité du système et utilise une énorme
quantité d’énergie, ce qui est clairement un inconvénient de nos jours. Tezos adopte un mécanisme
de preuve d’enjeu (proof-of-stake ou PoS, en anglais), une alternative à la preuve de travail, dans
lequel les utilisateurs bloquent des jetons comme garantie pour avoir le droit de produire des blocs
pour la blockchain. Notre comparaison de référence a utilisé des implémentations de VCG pour
la recherche pour ces deux systèmes comme base de comparaison. Nous avons évalué les deux

1Ethereum a mis à jour son consensus sur la preuve d’enjeu le 15 septembre 2022

25

systèmes en termes de programmabilité et de performances.
Cette première comparaison a révélé des lacunes dans la plateforme Ethereum, en termes de

scalabilité et de coût d’utilisation, quelque chose qui a également été remarqué par les membres
de la dite “crypto-sphère” et qui a poussé l’industrie à rechercher des solutions à ces problèmes
tout en profitant de la part de marché et de la fiabilité d’Ethereum. Une solution préconisée par
la communauté était de mettre à jour le protocole Ethereum, ce qui nous a logiquement conduits
à réaliser une deuxième étude comparative, cette fois en se concentrant uniquement sur Ethereum
et sur la proposition la plus prometteuse pour résoudre ses problèmes de scalabilité, la “couche-
2” intégrée à Polygon PoS et la mise à jour du consensus d’Ethereum connue sous le nom de
“Merge” (voir chapitre 5). Polygon PoS est une blockchain de preuve d’enjeu caractérisée comme
une “couche-2” pour Ethereum, car elle fonctionne en parallèle du réseau Ethereum et permet
aux utilisateurs d’Ethereum d’utiliser la chaı̂ne de Polygon pour gérer les données d’Ethereum.
D’autre part, la mise à jour Merge d’Ethereum est la réponse d’Ethereum à ses problèmes de
scalabilité, une proposition visant à “fusionner” la chaı̂ne d’Ethereum avec une autre chaı̂ne de
preuve d’enjeu, afin de fonctionner comme la couche de consensus pour Ethereum, en permettant
la transition du consensus de la preuve de travail vers la preuve d’enjeu 2.

Si l’approche de référence introduite ici répond aux exigences d’efficacité des contrats intel-
ligents d’enchères, les enchères telles que VCG pour la recherche nécessitent également, en plus
d’un certain niveau d’efficacité, un certain degré de confidentialité. Comme indiqué précédemment,
ce type d’enchères exige en effet des enchérisseurs qu’ils révèlent des informations sensibles. Notre
dernière étape dans cette thèse consiste donc en une analyse de cette “exigence de confidentialité”,
que nous considérons comme d’une importance capitale si l’on souhaite que les enchères soient
utilisées dans la pratique sur les blockchains. Nous proposons ici l’adoption de certaines tech-
niques de cryptographie afin de compenser ce manque de confidentialité, tout en préservant une
certaine transparence qui incitera les enchérisseurs à participer.

1.2 Principaux résultats

Les principaux résultats de ce travail de recherche sont les suivants.

1.2.1 Spécification et implémentation de contrats intelligents pour VCG pour la recherche
sponsorisée

Pour fournir un point de départ solide à notre travail, nous donnons une spécification générale de
VCG et VCG pour la recherche en Coq, ainsi que les preuves de certaines de ses propriétés clés.
Nous fournissons ensuite des implémentations de VCG (Vickrey-Clarke-Groves) pour la recherche
sponsorisée sous forme de contrats intelligents, dans les langages Solidity et SmartPy, en ciblant
les blockchains Ethereum et Tezos.

2La fusion d’Ethereum a eu lieu le 15 septembre 2022 [6]

26

1.2.2 Comparaison de référence entre Ethereum et Tezos

Nous concevons et réalisons une expérience de comparaison de référence pour deux systèmes
blockchain, Ethereum et Tezos, avec deux algorithmes de consensus différents, preuve de travail
et preuve d’enjeu. Notre comparaison se concentre sur les contrats intelligents, ce qui distingue
notre travail des comparaisons axées sur les performances présentes dans l’industrie et les articles
académiques.

Les résultats de la comparaison de référence ont été rassemblés dans un article intitulé “Block-
chain Performance Benchmarking: a VCG Auction Smart Contract Use Case for Ethereum and
Tezos” (Évaluation des performances des blockchains : un cas d’utilisation de contrat intelli-
gent d’enchère VCG pour Ethereum et Tezos) [7] et présenté lors du quatrième Symposium in-
ternational sur les fondements et les applications de la blockchain en 2021 (Fourth International
Symposium on Foundations and Applications of Blockchain, FAB ’21).

1.2.3 Comparaison de référence pour les solutions de scalabilité d’Ethereum

Nous concevons et réalisons une deuxième expérience de comparaison de référence, une fois en-
core du point de vue des contrats intelligents et fondée sur le contrat VCG pour la recherche, mais
cette fois en comparant le réseau Ethereum avec deux propositions de solution de scalabilité : le
protocole Polygon PoS de la couche-2 et la mise à jour “Merge” de la preuve d’enjeu d’Ethereum.

1.3 Structure de la thèse

Cette thèse est composée de 6 parties principales. Après cette introduction initiale, qui pose le
contexte de notre travail, le chapitre 3 commence par présenter les bases techniques et théoriques
des technologies de la blockchain. Il commence par une présentation générale des registres dis-
tribués avec Bitcoin, suivie d’une introduction à d’autres systèmes tels que Ethereum, Polygon PoS
et Tezos. Le chapitre se concentre principalement sur Ethereum, car c’est la blockchain dont les
contrats intelligents ont servi de base à une grande partie du travail de cette thèse.

Le chapitre 4 présente l’algorithme de l’enchère VCG pour la recherche, et certaines notions
de théorie des jeux et des enchères sont introduites afin d’illustrer au mieux les caractéristiques
de VCG pour la recherche. Nous présentons également une modélisation du mécanisme VCG
général dans l’assistant de preuve Coq ; l’enchère VCG pour la recherche est une instance de ce
mécanisme général dont elle hérite toutes les propriétés utiles. Le chapitre se termine par une
contextualisation de l’utilisation de VCG dans l’industrie aujourd’hui.

Le chapitre 5 présente des implémentations de VCG pour la recherche sous forme de contrats
intelligents ciblant les blockchains Ethereum et Tezos. Ces contrats sont utilisés pour réaliser des
comparaisons de référence entre différentes plates-formes pour les applications décentralisées. La
première comparaison met en confrontation Ethereum et Tezos, tandis que la seconde aborde les
solutions de mise à l’échelle d’Ethereum, notamment Polygon en tant que couche-2 et la mise à jour

27

“Merge” d’Ethereum. Les deux comparaisons de référence se concentrent sur la programmabilité,
les performances et les coûts financiers.

Les considérations concernant la confidentialité de notre implémentation de VCG sont présen-
tées dans le chapitre 6, où nous discutons des conséquences du manque inhérent de confidentialité
de la blockchain sur les enchères telles que VCG. Nous présentons des travaux connexes traitant de
la confidentialité des enchères à l’intérieur et à l’extérieur de la blockchain et clôturons le chapitre
en présentant trois solutions de preuve de concept qui tentent d’augmenter la confidentialité des
systèmes basés sur la blockchain.

Enfin, le chapitre 7 conclut notre document en récapitulant les principales contributions et en
présentant nos intentions pour les travaux futurs.

29

CHAPTER 2

INTRODUCTION

2.1 Context

Auctions are versatile methods for selling goods, and they can be tailored for different purposes.
They occur everyday in a wide variety of settings, from selling antiques or food products to plac-
ing advertisements. The economic impact of the use of such processes is huge, and has been
recognized by the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel,
considered as the ”Nobel” prize in economics, granted to Milgrom and Wilson in 2020 [1].

Some auctions have properties that can force potential buyers, known as “bidders”, to adopt
specific bidding strategies. Our interest in this thesis lies in auctions that demand participating
bidders to reveal information deemed sensitive and/or private to them. One auction of this variety
is the so called Vickrey–Clarke–Groves (VCG) auction for sponsored search (we also use the name
“VCG for search”, for short), which is the main focus of this work. This auction technique is a
variant of the General VCG auction mechanism, which is considered as one of the cornerstones of
auction theory; we discuss the importance of this auction technique in everyday life, in particular
the search engines on the Internet such as Google, in Chapter 4.

Presently, the majority of auctions happening in the world are online, and use centralized ser-
vices. In centralized services, there is a central authority that enforces the rules and controls the
interactions between the bidders and the seller (known as “auctioneer” in this context). In order
to participate, bidders have to trust the system providing the services; this has already led to some
dishonest auctions [2] [3]. In order to increase the incentive for bidders to participate in auctions by
preventing the latter to be unfair, a promising approach can be to take advantage of the transparency
and trust of decentralized systems, i.e., blockchains.

Blockchains are distributed and decentralized systems, first introduced with Bitcoin through
the 2009 paper “Bitcoin: A Peer-to-Peer Electronic Cash System” [4] by a mysterious author,
Satoshi Nakamoto. Blockchains are distributed ledgers composed of multiple machines, known
as “nodes”, that communicate with each other and execute the blockchain protocol, which sup-
ports the blockchain network. These nodes support an ever growing database of accounts and
balances. In order to facilitate the replication of the blockchains’s internal state between all ma-
chines, the database is divided into blocks that are cryptographically “chained” together, hence the
name “blockchain”. In order to maintain the data consistent between the different nodes, these
blocks need to be transparent, i.e., accessible and readable by any blockchain participant, and their
contents need to be easily verifiable, to avoid misbehavior from malicious nodes. These character-

30

istics make blockchain systems particularly secure.
The second generation of blockchains, introduced by Ethereum [5], added the notion of “smart

contracts” into decentralized systems. Smart contracts are independent programs that live inside a
blockchain and enjoy some of the same security and trust features as the data stored there. There-
fore, our initial goal in this thesis revolves around the task of implementing VCG for search as a
smart contract, and analyse the practical implications of such an implementation.

The first step for doing so is to select a blockchain platform for our implementation. Early in
our research, it became apparent that when comparing blockchain systems, the industry focuses
on buzzwords and advertisement; there is a clear lack of scientific rigour in the way the existing
comparisons (see Chapter 5) are managed. We thus decided to develop our search for a single
blockchain platform into a benchmark comparison that, we hope, paves the way towards defining
a proper, more scientific manner to compare different blockchain systems, at least from a smart-
contract point of view.

Our first benchmark focuses on the Ethereum and Tezos blockchains systems. Ethereum is the
system that pioneered smart contracts and is still the most popular platform for them, while Tezos,
a newer blockchain system, made some interesting design choices to tackle some of the issues
present in previous systems, such as Ethereum. Both system have different approaches to smart
contracts, but the one drastic difference is the consensus protocol they adopted, i.e., the algorithms
through which distributed systems agree on their current state. Ethereum, at the time 1, adopted
the Bitcoin-style proof-of-work (PoW) consensus mechanism, used by the different systems com-
posing the network to agree on a common state through intense computation. Although robust,
this approach limits the scalability of the system and uses a huge amount of energy, a clear draw-
back nowadays. Tezos adopts a proof-of-stake (PoS) mechanism, an alternative to proof-of-work,
in which users stake coins as collateral for the right to produce blocks for the blockchain. Our
benchmark comparison used implementations of VCG for search for both systems as a basis of
comparison. We evaluated both systems in terms of programmability and performance.

This first comparison revealed shortcomings in the Ethereum platform, in terms of scalability
and price of usage, something that was also noticed by the members of the so-called “crypto-
sphere”, and which has pushed the industry to look for solutions to these issues while still enjoying
Ethereum’s market share and reliability. One solution advocated by the community was to upgrade
the Ethereum protocol, which logically led us to perform a second benchmark study, this time
focusing on Ethereum only and the most promising proposal for fixing its scalability problems,
the “Layer-2”, embedded into Polygon PoS and the Ethereum’s consensus update known as the
“Merge” (see Chapter 5). Polygon PoS is a proof-of-stake blockchain characterized as a “layer-
2” for Ethereum, for it runs in parallel to the Ethereum network, and enables Ethereum users the
option to use Polygon’s chain to handle Ethereum data. On the other hand, the Ethereum Merge
update is Ethereum’s own response to its scalability issues, a proposal to “merge” Ethereum’s chain
with another proof-of-stake chain, to function as the consensus layer for Ethereum, updating the

1Ethereum updated its concensus to proof-of-stake on September 15, 2022 [6]

31

proof-of-work consensus to proof-of-stake 2.
If the benchmark approach introduced here addresses the efficiency requirements of auction

smart contracts, auctions such as VCG for search also require, in addition to a certain level of
efficiency, a certain degree of privacy. As previously stated, this type of auctions indeed requires
bidders to reveal sensitive information. Our last step in this thesis is thus an analysis of this
“privacy requirement”, which we believe to be of key importance if one wants auctions to be used
in practice on blockchains. We propose here the adoption of some cryptography techniques in
order to counterbalance this lack of privacy, while still preserving some of the transparency that
will incentivize bidders to participate.

2.2 Main results

The main results of this research work are the following.

2.2.1 Specification and implementation of smart contracts for VCG for sponsored search

To provide a sound starting point for our work, we give a general specification of VCG and VCG
for search in Coq, together with the proofs of some of its key properties. We then provide imple-
mentations of the VCG (Vickrey–Clarke–Groves) for sponsored search in smart-contract form, in
both Solidity and SmartPy languages, targeting the Ethereum and Tezos blockchains.

2.2.2 Benchmark comparison between Ethereum and Tezos

We design and perform a benchmark-comparison experiment for two blockchain systems, Ethereum
and Tezos, with two different consensus algorithms, proof-of-work and proof-of-stake. Our com-
parison focuses on smart contracts, which distinguishes our work from the performance-driven
benchmarks present in the industry and academic papers.

The benchmark comparison results were gathered in an article titled “Blockchain Performance
Benchmarking: a VCG Auction Smart Contract Use Case for Ethereum and Tezos” [7] and pre-
sented at the Fourth International Symposium on Foundations and Applications of Blockchain
2021 (FAB ’21).

2.2.3 Benchmark comparison for Ethereum scalability solutions

We design and perform a second benchmark experiment, once again from the perspective of smart
contracts and based on the VCG for search contract, though this time comparing the Ethereum
network with two of its scalability solution proposals: the layer-2 Polygon PoS and Ethereum’s
proof-of-stake Merge update.

2Ethereum Merge took place on September 15, 2022 [6]

32

2.2.4 Privacy-preserving proof-of-concept solutions

We perform an in-depth analysis of the effects of the inherent lack of privacy induced by blockchain
systems to our VCG for search contract, an auction that demands privacy. Based on this analysis,
we present three privacy-preserving proof-of-concept solutions for our VCG for search contract.
Our proof-of-concept proposals are incremental and use cryptography techniques.

2.3 Thesis structure

This thesis has 6 main parts. After this initial introduction, which sets the context of our work,
Chapter 3 starts by presenting the technical and theoretical background of blockchain technolo-
gies. It begins with a general presentation of distributed ledgers with Bitcoin, followed by an
introduction to other systems, i.e., Ethereum, Polygon PoS and Tezos. The main focus of the chap-
ter is Ethereum, as it is the blockchain whose smart contracts were the basis of much of this thesis’
work.

Chapter 4 presents the VCG for search auction algorithm, and some notions of game and auc-
tion theory are introduced in order to better illustrate VCG for search characteristics. We also
present a modelization of the general VCG mechanism in the Coq proof assistant; the VCG for
search auction is an instance of this general mechanism from which it inherits all the useful prop-
erties. The chapter ends with a contextualization of the usage of VCG in the industry today.

Chapter 5 presents implementations of VCG for search in smart-contract form targeting the
Ethereum and Tezos blockchains. These contracts are used to perform benchmark comparisons
between different platforms for decentralized applications. The first benchmark puts face-to-face
Ethereum and Tezos, and the second one addresses Ethereum’s scaling solutions, specifically the
layer-2 Polygon and the Ethereum Merge update. Both benchmarks comparisons focus on pro-
grammability, performance and monetary cost.

Considerations over the privacy of our VCG implementation are presented in Chapter 6, where
we discuss the consequences of the blockchain’s inherent lack of privacy on auctions such as VCG.
We present related work dealing with privacy of auctions inside and outside of the blockchain, and
close the chapter by presenting three proof-of-concept solutions that attempt to increase the privacy
of blockchain-based system.

Finally, Chapter 7 concludes our document, recapitulating the key findings and presenting our
intentions for future work.

33

CHAPTER 3

BACKGROUND

Dans ce chapitre, nous explorons les bases conceptuelles et techniques des systèmes de blockchain
qui servent de fondement à cette thèse et qui sont nécessaires pour une compréhension adéquate
de nos analyses et conclusions. Le lecteur averti peut choisir de sauter cette partie, bien que nous
recommandions au moins de la survoler dans tous les cas, afin d’avoir une idée des notions sur
lesquelles nous nous appuyons, étant donné leur évolution rapide en raison du manque de maturité
de ce domaine en plein essor.

La section 3.1 introduit certaines définitions cryptographiques couramment utilisées dans les
blockchains, y compris celles utilisées dans cette thèse. La section 3.2 présente certains con-
cepts des systèmes de blockchain, avec une présentation de Bitcoin. Les aspects approfondis des
systèmes de blockchain et de leur infrastructure sont présentés et discutés dans la section 3.3.
Dans la section 3.4, la blockchain Ethereum et ses contrats intelligents sont discutés. La sec-
tion 3.5 aborde les problèmes de passage à l’échelle (scalability) du mécanisme de preuve de tra-
vail (proof-of-work ou PoW) d’Ethereum et explore également les blockchains de preuve d’enjeu
(proof-of-stake ou PoS) pertinentes pour cette thèse, telles que Tezos, Polygon PoS et le Merge
d’Ethereum. Enfin, la section 3.6 met en évidence les outils utilisés tout au long de cette thèse.

In this chapter we explore the conceptual and technical background of blockchain systems
that serve as a basis for this thesis and are necessary for a proper understanding of our analyses
and findings. The knowledgeable reader may want to skip this part, although we advise at least
skimming over it in all cases, to get a feel of the notions that we build upon, since there are rapidly
changing ones, given the lack of maturity of this burgeoning field.

Section 3.1 introduces some cryptographic definitions commonly used in blockchains, includ-
ing those employed in this thesis. Section 3.2 presents some concepts of blockchain systems,
with a presentation of Bitcoin. In-depth aspects of blockchain systems and their infrastructure are
presented and discussed in Section 3.3. In Section 3.4, the Ethereum blockchain and its smart
contracts are discussed. Section 3.5 addresses the scalability issues of Ethereum’s proof-of-work
(PoW) mechanism and also explores proof-of-stake (PoS) blockchains relevant for this thesis, i.e.,
Tezos, Polygon PoS, and the Ethereum Merge. Finally, Section 3.6 highlights the tools utilized
throughout this thesis.

34

3.1 Cryptography

Before we delve into blockchain systems, some ideas about key notions of cryptography are
needed, namely hash functions and public key cryptography.

3.1.1 Definition

Cryptography, from “crypt” meaning “hidden” and “graphy” meaning “writing” [8], is a group of
techniques that enables the communication of information between two parties in a secure context,
i.e., such that the transferred message is not shared with undesirable onlookers.

In cryptography, one defines plaintext as the readable information, and ciphertext as the en-
coded, hidden plaintext, that is decodable neither by untrusted humans nor machines. The process
of transforming plaintext into ciphertext is called encryption; the reverse process is known as de-
cryption [9].

3.1.2 Hash functions

Hashing is the process of applying a mathematical function known as a hash function over in-
puts of any arbitrary size and generating a fixed-size output. Hashes are, in general, meant to be
irreversible, one-way functions, i.e., a function that is easy to compute but difficult to invert.

There are many different hash functions in the literature; our interest in this thesis is mainly
focused on the hash functions adopted by Bitcoin and Ethereum, two blockchain systems (more
about them in the following section). We are also interested in hash functions as a way of one-way
encryption.

Bitcoin is built upon SHA-256 (Secure Hash Algorithm 256); SHA-256 generates an almost
unique 256-bit signature for an input. Ethereum adopts Keccak-256; similarly to SHA-256, it also
produces an 256-bit output from different-lengths inputs. Both hash functions belong to the SHA
(Secure Hash Algorithm) family of cryptographic hash functions published by the U.S. National
Institute of Standards and Technology.

Hash functions can be used for one-way encryption; in this type of encryption of messages, a
ciphertext can be produced, but it cannot be decrypted back into plaintext. Note that, though one
cannot decipher the ciphertext, it is easy to prove the knowledge of the plaintext by hashing it again
and generating the same resulting ciphertext.

One drawback of hashes for one-way encryption is that these techniques are susceptible to
brute-force attacks, since they are not very expensive to execute, and hash functions are determin-
istic; a trial-and-error approach to guess the plaintext input is, in theory, possible.

3.1.3 Key Cryptography

Key cryptography is a type of cryptography characterized by the usage of cryptographic “keys” to
encrypt/decrypt plaintext. Keys are strings of characters, used within an encryption algorithm to

35

Figure 3.1: Symmetric and asymmetric key encryption (from [9])

transform plaintext into ciphertext [10]. There are two types of such an application.

symmetric key cryptography This technique requires both parties to use the same secret key.

asymmetric key cryptography The other approach is characterized by the usage of a pair of keys,
one key for encryption and a different one for decryption. The key used for encryption is
known as the “public key”; this key is only used for encryption, and can be shared publicly
without compromising the integrity of the process. The other key, known as the “private
key”, can decrypt the ciphertext produced by the public key, and it needs to be kept in secret.

Figure 3.1 represents both symmetric and asymmetric key cryptographic techniques in a dia-
gram.

3.2 Bitcoin and blockchain

The Blockchain technology was first introduced in Satoshi Nakamoto’s paper [4], which describes
an electronic payment system with no central authority. Until 2009 and the first Bitcoin trans-
fer [11], virtual-money transfer systems were, indeed, always dependent on a central authority.
Central authorities were deemed necessary to ensure the security and reliability of such systems;
for instance, banks or credit card companies act for most financial transactions.

The Bitcoin system, instead of building upon a central authority, is distributed among multiple
“nodes”, i.e., machines that execute a dedicated blockchain protocol and communicate with each
other, this way supporting the Bitcoin blockchain network. These nodes manage an ever-growing
database of money transfers that is divided into blocks, all cryptographically ”chained” together,
hence the name “blockchain”.

Nakamoto’s proposal for this new distributed electronic payment system addresses two main
challenges. First, it had to ensure security and fairness in the absence of a governing authority.
The solution adopted to reach such a requirement was the use of specific cryptographic techniques,
which allow users to verify the correctness of the information being transmitted in the system and
the authenticity of the data stored there. The other challenge was the issue of coordinating the

36

decentralized nodes to produce and reach an agreement on the values stored in the blocks of data;
the solution was the adoption of a dedicated consensus mechanism to be implemented by all nodes.

At the year of this writing, 2022, Bitcoin has become incredibly popular, with an estimated
market cap, i.e., total value of existing bitcoins, of 700 billion dollars; the type of virtual money
proposed initially by Nakamoto has gained its own terminology, “cryptocurrency”. The follow-
up platforms such as Ethereum, Polygon or Tezos that adopt similar cryptographical strategies as
Bitcoin’s have been popularized with the term “blockchain”, with new generations emerging at a
rapid pace with more functionalities and improvements.

3.3 Blockchain infrastructure

In this section, we present the basic infrastructure and fundamentals of blockchain technologies
that are present in one way or another in all platforms for currency exchange or smart contract
execution.

3.3.1 Nodes

Blockchains are supported by a distributed network of computers, known as “nodes”. Nodes run
the software application, known as “client”, necessary for the creation, transmission and verifica-
tion of blocks.

Nodes are crucial for the blockchain communication, since these nodes are responsible for the
Peer-to-Peer communication between clients. They expose a REST API (Representational State
Transfer) that enables users to communicating with the chain and submitting transactions that, if
accepted, can be included in a block and update the internal storage of the blockchain (more about
transactions and block creation in Section 3.3.5)

Nodes are also responsible for keeping the blockchain records, and updating it when each new
storage update operation is performed. This can be very demanding in terms of storage, so there
are other options such as the so-called “light nodes”.

Finally, the nodes that take part in the block creation process, i.e., aggregate user transactions
in the data structure, that is a block, which will then update the internal storage of the blockchain,
are known as “miners”; the block creation process is known as “mining”.

3.3.2 Accounts and keys

Each user is represented by an account in a blockchain system; accounts can ”hold” coins and
interact with other accounts.

In order to be able to use a blockchain, users need to hold a pair of cryptography-based private-
public keys. The private key is used to ”sign” transactions, which are messages between accounts
(more about transactions in Section 3.3.3). And, with the public key, users can verify the validity

37

of a signature. These two types of keys are what characterizes, as we already saw in section 3.1.3,
asymmetric cryptography.

These keys are managed via so-called “wallets”. The word “wallet” is, in fact, misleading as it
does not hold coins; crypto-coins are stored directly in the distributed ledger that is a blockchain.
A (crypto) wallet is a piece of software for the creation of pairs of private-public keys; wallets can
also store the keys and facilitate the user interactions with the blockchain by providing signature
capabilities and querying the chain for accounts’ information.

3.3.3 Transactions

Transactions are the sole method that enables accounts to interact with the storage of blockchains.
In the simplest case, an user constructs their desired transaction with information such as the trans-
action’s user target and the amount of coins to transfer; this is known as ”forging” a transaction.
Transactions are not free, and updating the internal state of the whole blockchain requires payment,
in form of a “fee” from users. Different blockchains have different approaches for calculating said
fees; we expand on this concept in Section 3.4.4.

Once the transaction is ready, the user needs to sign it with their private key. The signed
transaction is then submitted to a node; this node will validate the contents of the transaction such
as verifying the signature and checking the validity of its values.

Transactions validated by a node are then added to the node’s memory pool (“mempool”).
Mempools are buffer zones [12] where transactions wait to be selected and treated by a miner. Each
node has their own mempool. While a transaction is waiting to be treated, the node broadcasts
the existence of this ”pending” transaction to its peers, a process that replicates the transaction
throughout the entire network of nodes.

Miners can select transactions as they wish, though usually giving preference to those with
higher fees, and form blocks with them. Through a process called “consensus” (we detail con-
sensus mechanisms in Section 3.3.6), one miner will be able to publish their block to the whole
network; this block will be appended to the already existing chain of blocks as the new head of
chain. As part of this process, the transactions belonging to this block take effect, updating the
internal storage of the chain.

3.3.4 Blocks

Blocks are, as we just saw, batches of transactions aggregated by a mining node. A blockchain
block can have different configurations, a block is usually composed of information such as:

• the identifier of the block, in form of the block hash;

• the transactions present in the block;

• a timestamp, i.e., the time of the block publication;

38

Figure 3.2: Bitcoin block with Merkle tree [4]

• a nonce, derived from the consensus mechanism;

• a Merkle tree root;

• the previous hash.

A Merkle tree, or hash tree, is a data structure used for data verification. The tree is composed
of the hashes of its child nodes [13]. Figure 3.2 represents the Merkle tree behind the Merkle root
of an example block. The leaves are constituted by the IDs1 of the transactions in the block, and a
tree node is (recursively) composed of the hashes of its children values. For example, in the figure,
Hash01 is generated by H(Hash0,Hash1) 2, for the transaction IDs Tx0 and Tx1.

If a malicious node changes one of the transaction of the block, it would alter the transaction
ID, and the change would have an direct impact on the subsequent nodes, changing the root hash,
which would indicate fraud.

Blocks are thus batches of transactions with a hash of the previous block in the chain. This links
blocks together (in a chain) because hashes are cryptographically derived from the block data. This

1In the case of Bitcoin, transaction IDs are calculated by hashing the transaction data twice, with SHA-256 [14]
2For Bitcoin, the hash function H is the double SHA-256 hashing of its argument: H(i) = SHA-256(SHA-

256(i)) [15]

39

prevents fraud, because one change in any block in history would invalidate all the following blocks
as all subsequent hashes would change and everyone running the blockchain would notice.

Once a block is published, it should be replicated in all nodes as the top block of the chain.
Note that, and this is a key point for ensuring the validity of the blockchain at all times, blocks
cannot be erased.

3.3.5 Mining

Mining is the process by which miner nodes publish a new ”head” block for the blockchain. Min-
ers are constantly building blocks with transactions from the mempool, processing these into a
block and then trying to publish this new formed block into the blockchain. Miners are constantly
competing to be able to publish their blocks; there is a consensus mechanism that assists the nodes
into reaching an agreement on which block will be the new head of the blockchain. We detail
what a consensus mechanism is in Section 3.3.6 and expand on the different types adopted by the
industry.

A miner that successfully publishes their block gets rewarded. In Bitcoin, rewards are divided
in two parts: the transaction fees from all the users whose transactions were added to the block; and
some coins that the miner rewards himself with. This self-reward is a special type of transaction,
named “coinbase transaction”; it mints new Bitcoin coins into the system. The initial coinbase
reward for mining a block in Bitcoin was 50 BTC; this reward is halved every 210,000 blocks,
until the system reaches its maximum number of Bitcoins, that being set at 21 million. Once no
more coins can be minted, the reward will be solely based on the transaction fees. This design-built
limited number of coins is what is creating the scarcity of this resource, and thus its ultimate value
(as would be for a physical resource such as gold).

3.3.6 Consensus

In a decentralized system such as a blockchain, nodes in this peer-to-peer network need help reach-
ing agreement on the system internal global state. Consensus protocols are rules that the distributed
nodes need to follow in order to reach a general agreement between the blockchain participants.

In the case of blockchains, consensus means agreeing on which is the most recent block of
the blockchain, which will henceforth update the global state of the chain. Thus, for blockchain
systems, consensus is a protocol to determine which of the miner nodes has the right to publish a
block. The most popular forms of consensus for blockchains are proof-of-work (PoW) and proof-
of-estate (PoS); the sections 3.4.6, 3.5.1.1, 3.5.2.1 and 3.5.3.1 present both protocols in more detail.

3.3.6.1 Forks

A so-called “fork” appears when a blockchain splits, creating an alternative chain. For instance,
there are temporary forks that occur whenever there is a time-limited communication failure be-
tween the network nodes. In this case, the subset of the disconnected nodes will select a different

40

last block to maintain the blockchain; this will cause two different chains to grow. Eventually, if
and when the communication is reestablished, one of the chains will most likely be longer than
the other; the protocol specifies that, in such a case, the shorter one will be abandoned; this design
principle is known as the “longest chain rule”; Figure 3.3 represents said rule.

A fork could also occur when more than one block are created at about the same time by
multiple miners. Since nodes can only validate a single new block, the spurious blocks will be
abandoned by the network; these abandoned blocks are known as “uncle blocks”, and the miners
are nonetheless rewarded for mining them, though usually the reward is smaller than for a normal
block.

Forks are also related to changes in the blockchain’s consensus mechanism. Updates to the
blockchain consensus algorithm that modify the production and validation of blocks are also known
as forks. The type of such a fork depends on whether the change is drastic or not. Changes in
which non-upgraded nodes, i.e., those that still don’t conform to the updated protocol, can still
validate and produce blocks lead to so-called soft forks. On the other hand, changes that make
non-upgraded nodes unable to participate according to the new consensus are called hard fork. A
hard fork essentially creates a new blockchain, different from the original one while keeping the
block history until that point; Figure 3.4 represents the two types of forks.

Figure 3.3: Schema describing the longest chain rule: a fork is generated following a communi-
cation failure, and, after the reestablishment of the network, a new minted block will chose the
longest chain to continue, while the shorter one is abandoned.

41

Figure 3.4: Graphical representation of the different types of forks. A soft fork will allow non-
upgraded nodes to continue to publish blocks, while a hard fork won’t, creating two separated
chains with a shared history.

3.3.6.2 Finality and Confirmation blocks

Finality is the assurance that a transaction cannot be changed, without significant loss for the
blockchain, in terms of mined coins. Finality refers to the amount of time users need to wait
to consider their transaction secure in the blockchain; waiting the stipulated time, or number of
blocks, assures the user that their transaction isn’t on a uncle block or a temporary fork [16] [17].

A common approach to measuring finality is by a number of confirmation blocks. Bitcoin,
for example, specifies 6 confirmation blocks, which means that, after waiting for 6 new blocks
to be added to the blockchain they are using, users are guaranteed that their transaction won’t be
reverted, as could be the case if they were on the short side of a fork.

3.3.6.3 Mainnet and Testnets

Testnets are instances of a blockchain system with no real-world value linked to its assets. These
networks are usually running the same software as the main network of the said blockchain, which
is normally referred to as the ”mainnet”.

Testnets are mainly used for, as their name suggests, testing purposes and are managed by the

42

community to help build adhesion to an existing infrastructure.

3.4 Ethereum: a blockchain as a distributed computer

Ethereum was first introduced in 2014 within a white paper [5] by Vitalik Buterin. Ethereum
marked the beginning of the second generation of blockchains, expanding the functionalities of
bitcoins with a scripting language that allows the system to house decentralized applications. Be-
coming live in 2015, Ethereum is presently the second most valuable blockchain system after
Bitcoin, with a market cap of 350 billion dollars.

3.4.1 Smart contracts

Ethereum introduced a special type of account in its chain, accounts that, instead of being con-
trolled by a pair of public-private keys, are controlled by code. These accounts are known as
“smart contracts”. The presence of smart contracts enabled Ethereum to expand its functionalities
over what is achieved by a distributed ledger such as Bitcoin; it made possible for the blockchain
to function as a distributed computer.

The concept of smart contracts dates back to the 1990s, with early work by Szabo [18] and
Miller [19], with a proposal for the algorithmic enforcement of agreements, but with no system
proposed for implementation. A smart contract is defined by a collection of code (functions) and
data (the contract’s state). In Ethereum, the code is usually written in the Solidity programming
language.

As with typical user’s accounts, smart contracts are identified by a 42 character hexadecimal
address. Smart contracts, as externally owned accounts, can also hold ETH (the Ethereum coin)
and “tokens” (i.e., proxies for assets), and communicate with other accounts. Although there is
a difference in the type of communication a contract can partake, contracts cannot initiate trans-
actions; they can, however, respond to and send messages, to perform internal communications
between accounts, though it must within a transaction started by an user.

Once a contract is created, it needs to be deployed into the blockchain, through a dedicated
transaction (see Section 3.4.3).

3.4.1.1 Chain computation

Within the context of smart contracts, one denotes as an “on-chain” process any computation that
happens within a smart contract inside a blockchain, enjoying thus the security and trust of the
cryptosystem. Its counterpart is an “off-chain” process, which is a computation being executed
anywhere outside of the blockchain. On-chain programs in Ethereum are written in Solidity.

43

3.4.1.2 Solidity

Solidity is a Turing-complete, object-oriented, high-level language for implementing smart con-
tracts [20]. Influenced by C++, Python and JavaScript, Solidity was designed to target the Ethereum
Virtual Machine (EVM), which is presented in detail in Section 3.4.2. Solidity is statically typed,
supporting inheritance, libraries and complex user-defined data structures.

As presented in Section 3.4.1, a smart contract is composed of its persisting state variables
and functions that can modify this state. Both are declared within a Solidity contract. A Solidty
contract is thus divided in its variables, or “data”, and its “functions”.

Any contract data must be assigned to a location: “storage” or “memory”. Storage data is kept
in the persistent storage of the blockchain; updating or storing a new value is thus very costly,
because the whole blockchain needs to be updated with this new value. On the other side, mem-
ory data only exists during the execution of a transaction, and thus are much cheaper to manipu-
late [21]. The storage data in a contract represents its state variables, which can be public, internal
or private. Being internal or private only prevents other contracts from reading or updating the
variable; the data is however still readable by onlookers. Public variables have the interesting fea-
ture of having their getter functions generated automatically by the compiler, which allows other
contracts to read their values.

Functions can be external, public, internal or private. External and public functions are part of
the contract interface, which means that they can be called from other contracts and via transaction.
Public, unlike external functions, can be called internally, within the current contract, while internal
and private ones are called within a transaction execution [22].

Solidity adds to this set of functions the concept of “view functions”. These functions are
a specific type of function, that have no “state mutability” permission; thus they do not modify
the state variables. View functions can be executed from an Ethereum client locally, without the
execution of transactions. An example of view function are getters [21].

In Solidity, “events” are used to facilitate the communication between a smart contract and
off-chain applications. Events can be emitted within a function; they are used to communicate
changes in the current state of the contract. Applications can subscribe and listen to these events
through the Remote Procedure Call (RPC) interface of an Ethereum client [23].

3.4.1.3 Ethereum Request for Comments (ERC)

Ethereum Improvement Proposals (EIPs) are standards for the Ethereum platform that address core
protocol specifications, client APIs, and, more importantly for this thesis, contract standards [24].
There are different types of EIPs: Ethereum request for comments, or ERCs, are application-level
standards and conventions, including contract standards. ERCs don’t need to be adopted by all
participants [25], though they are part of an effort to standardize some functionalities among smart
contracts.

The two most important standards that are related to this thesis work are ERC20 and ERC721.

44

ERC20 This is a standard for contracts to define and keep tract of fungible tokens [26], “fungible”
meaning that all the tokens have the same value and are mutually interchangeable. ERC20
makes it possible for different currencies to live inside the Ethereum network; these are
often refereed to as “tokens”. ERC20 is important to allow tokens to be re-used by other
applications, such as wallets and decentralized exchanges [27].

ERC721 While ERC20 defines fungible tokens, ERC721 is a standard for non-fungible tokens [28],
hence their nickname NFTs. “Non-fungible” means here that each token is unique. NFTs
have different applications, from identifier-authentication tokens to real estate deeds to art-
work.

3.4.2 Ethereum Virtual Machine (EVM)

The Ethereum virtual machine, or EVM, is the stack-based execution machine that runs bytecode
instructions, known as EVM Opcodes, to update the Ethereum systems’ internal state. Ethereum
has one (and only one) canonical state, maintained by the different nodes composing the blockchain.
The EVM defines what changes in this state by executing the transactions from block to block [16].

The EVM performs all computations in a data area called the “stack”. All in-memory values
are also stored in this stack. It has a maximum depth of 1024 elements and supports 256-bit-wide
words [29].

The EVM is completely isolated from the network, and thus contracts have no access to the
network, rendering them unable to read previous transaction data or access other network data,
unless it is through “messages”, internal calls between contracts. This restriction is necessary for
safety reasons, to allow untrusted code to be executed on the Ethereum blockchain [29]. Another
security measure adopted by the EVM is exception handling; upon detecting an error, or running
out of gas, the machine immediately halts, reverts all changes to the previous state and returns an
error to the user.

3.4.3 Ethereum transactions

Ethereum transactions refer to actions initiated by externally-owned accounts. These transactions
are submitted via an Ethereum client, with the purpose of altering the Ethereum’s internal state. A
transaction is defined by the following fields [16]:

• the recipient, i.e., a target address, which can either be an externally owned account or a
smart contract;

• a signature, generated via the sender’s private key and used for signing the data of the trans-
action and validating the sender’s identity;

• a value, i.e., the amount of ETH transferred from the sender to the recipient;

45

• data, which is an optional field to include arbitrary side data, including the code for transac-
tions if need be;

• gasLimit, which is the maximum amount of gas usable for running the transaction, which
will thus be cancelled and reverted if this limit is reached by the miner that executes it;

• gasPrice, i.e., the price of a unit of gas, in Wei (smallest denomination of Ether, 1 ETH
= 1018 Wei [30]) 3.

Depending on the purpose of the transaction, it can be classified as a “transfer”, a “contract
call” or a “contract deployment”.

transfer These transactions send ETH between accounts, being either another user or a contract.
If its target is a contract, it will call the contract’s “fallback function” once completed.

Contract call These transactions target contracts, specifying one of the contract’s functions, with
the corresponding input data. Contract calls can only be initiated by users, but contracts can
communicate between themselves via internal messages.

Contract deployment This special type of transaction is used to insert a smart contract into the
blockchain. The transaction must contain the contracts’ bytecode, generated from compil-
ing the Solidity source code, as well as inputs for the contract’s constructor function. It is
customary for developers to generate the deployment transaction via a deployment script in
JavaScript or TypeScript [31], through tools such as Hardhat [32] or Truffle (more about
Truffle in Section 3.6.2).

3.4.4 Transaction fees

In order for transactions to be acknowledged by the network, certain fees need to be paid. Here,
we present the rules for transaction fee calculation on the Ethereum network.

3.4.4.1 Gas

Gas is the “fuel” that enables computations in the Ethereum network. The purpose of the inclusion
of gas in this infrastructure is two-fold: first, preventing denial-of-service attacks by limiting how
much computation can be done in a transaction; and second, rewarding miners for their work,
since gas must be paid by the transaction issuer. Crypto wallets such as MetaMask [33] have
functionalities to calculate the gas consumption of a transaction a user is trying to execute (more
about MetaMask on Section 3.6.4). In practice, a transaction’s gas cost is defined by the sum of
the executed EVM Opcodes gas costs [34].

3The Ethereum Improvement Protocol 1559 changed the gas price into maxPriorityFeePerGas and
maxFeePerGas, both are further explained in the next subsection.

46

During the forging of a transaction, the user needs to set a gas limit and a gas price. The gas
limit is the maximum amount of gas an user is willing to consume in a transaction. A transaction
will be executed until it is completed or it reaches the gas limit. If a transaction reaches the gas
limit without finishing execution, the transaction will be reverted; the EVM will revert any changes
caused by the transaction, and the miner will be rewarded a fee of Gas limit × Gas price. If a
transaction finishes before reaching the gas limit, the sender will be charged a fee equivalent to the
amount of gas used by the transaction, i.e., Gas used × Gas price.

Gas prices are part of the kind of auction process the miners perform when selecting transac-
tions with higher gas prices, since the corresponding transactions are generally more profitable for
them.

3.4.4.2 EIP-1559

As we explain during our study in Chapter 5, gas prices in Ethereum skyrocketed in 2021, re-
straining the access to the chain. The rise in gas prices was a side-effect of Ethereum’s growth
in popularity and a consequence of the auction model adopted by this platform, known as first-
price auction. We discuss more about auctions in Chapter 4, and the Ethereum management of
transactions is actually one interesting application of this general field of economics.

Correspondingly, in August 2021, Ethereum activated the “London” hard fork, and, among the
updates in this fork was the adoption of EIP-1559, which overhauled the transaction fee mecha-
nism. Instead of a single gas price as before, users now have to list three separate values4:

1. a “Base Fee”, which is determined by the network itself, depending on the current usage and
which is subsequently burned, i.e., discarded;

2. a “Max Priority Fee”, which is optional, determined by the user, and is paid directly to
miners;

3. the “Max Fee Per Gas”, which is the absolute maximum a user is willing to pay per unit of
gas to get their transaction included in a block.

3.4.5 Ethereum Block

A block is a collection of transactions that have been executed by a miner. As of August 2022, the
Ethereum blocks’ content is made of [35] [36]:

• a timestamp, which is the time at which the block has been mined;

• the blockNumber, which is the total number of blocks in the blockchain;

4See https://www.blocknative.com/blog/eip-1559-fees

https://www.blocknative.com/blog/eip-1559-fees

47

• the baseFeePerGas, which, according to EIP-1559, is the minimum fee per gas required
in order for the transaction to be included in the block;

• the proof-of-work difficulty required to mine the block (see below);

• mixHash, a unique identifier for the block;

• parentHash, the Keccak-256 hash of the previous block’s header;

• the transactions’ The Keccak 256 hash of the root node of the trie constructed by each trans-
action of the block;

• stateRoot, the Keccak-256 hash of the root node of the entire state trie of the system (ac-
counts’ balances, contracts’ storages, contracts’ codes and account nonces) after the block’s
transactions have taken place;

• the nonce, which is a hash value that, together with mixHash, is the proof of the proof-of-
work execution.

Blocks have a set limit of gas. Ultimately, miners can choose to construct a block however they
want, but choosing transactions that fill up the block gas and with the higher gas price or priority
fee will maximize the miner’s reward from mining.

3.4.6 Ethereum PoW

As of August 2022, Ethereum’s consensus algorithm is the proof-of-work (PoW) Ethash [37] al-
gorithm. Through Ethash, in order to publish a block, miners need to find a certain nonce value,
within a set target by the protocol. The mining process is, as a whole, a race between miners, with
each participant trying to find the nonce value through a (costly) trial-and-error approach.

The general Ethash scheme can be described as follows.

1. A seed value can be calculated for each block, by scanning through all the block headers
until the current block;

2. From this seed, a miner can compute a 16 MB random 5 cache, knowing that a 1-GB dataset
can be generated from each cache value.

3. Mining consists then in trying to find a nonce number that, when hashed together with a
randomly-selected slice of the dataset, produces a result below a desired a target value.

5Software-generated randomness is actually pseudo-randomness [38]

48

The target value is defined by the block’s difficulty, being inversely proportional; a higher dif-
ficulty generates a lower target, and thus a smaller set of valid hashes. This difficulty parameter
is used to keep block production constant and prevent the creation of uncle blocks. EIP-100 [39]
defines how the difficulty is automatically incremented or decremented, taking in account the dif-
ference between the present block’s timestamp and the previous block in the chain, as well as the
presence of uncle blocks.

Miners who successfully create, or “mint”, their block can reward themselves with 2 ETH in
transactions similar to Bitcoin’s coinbases, as well as the fees from users’ transactions 6. Of course,
finding an acceptable nonce is very demanding in terms of computation time; in order to compete,
miners need thus very high-performance, expensive equipment, and the energy consumption to
take part on the PoW-consensus process is very high, which is nowadays largely criticized by the
general public. In fact, maintaining Ethereum’s network through proof-of-work requires an annual
energy of 73.2 TWh, which is similar to the consumption of a country like Austria. Thus, the
average miner will most likely lose a significant amount of money in order to mine a block, and
so, it is in their best interest to mine a valid block, so the reward will cover their cost.

3.5 Scalability issues

The Ethereum system, in its current state, is harmed, both by its choices of consensus mechanism
and its popularity. The causes of Ethereum’s scalability problems related to proof-of-work are
further explored in Chapter 5.

3.5.1 Layer 2 scaling solutions

“Layer 2” is a collective term for the solutions developed by the crypto-community to tackle
Ethereum’s scaling problems, while still taking advantage of the security and trust provided by
the Ethereum platform. The general approach taken by layer 2 solutions is to execute batches of
transactions outside of the Ethereum mainnet, and then to group the results into a single transaction
to the mainnet Ethereum, thus reducing gas fees and waiting time. In this context, Ethereum main-
net is the “layer 1”, while the outside of Ethereum platform in which transactions are executed is
the layer 2.

There are many different types of layer 2 solutions that are built on top of Ethereum, for ex-
ample side-chains, which are blockchains that run in parallel to the Ethereum network, or off-
chain solutions, such as Rollups and ZK-rollups. In this document, we concern ourselves with the
sidechain approach, specifically the Polygon proof-of-stake (PoS) chain.

6After the adoption of EIP-1559, part of these fees are burned instead of gifted to the miner

49

3.5.1.1 Polygon PoS

Polygon is a technology platform that offers a myriad of layer 2-scaling solutions, mainly targeting
the Ethereum platform. We focus on the Polygon PoS chain, a proof-of-stake blockchain that is
compatible with the Ethereum virtual machine (EVM) and works as a sidechain for Ethereum.

Polygon PoS is an adapted implementation of the Plasma framework for the Ethereum blockchain.
First introduced by Poon and Vitalik in the 2017 article “Plasma: Scalable Autonomous Smart
Contracts” [40], Plasma chains are built on top of another blockchain (known as a “root chain”
in this context). Plasma chains, or “child chains”, connect to the root chain through smart con-
tracts known as “bridges” that transfer data from one chain to the other. Bridge contracts are an
interesting topic per se, but for this thesis, we are interested in Polygon PoS as a proof-of-stake
blockchain.

Polygon PoS is a hybrid plasma and proof-of-stake platform. A Polygon node is equipped
with a two-layer implementation: a validator layer, known as “Heimdall”, and a block-producer
layer, named “Bor”. As their namesake suggest, the Bor layer will produce blocks while Heimdall
validates them.

Heimdall uses the Cosmos SDK [41] (an open-source framework for building public proof-of-
stake blockchains) and a forked version of the Tendermint Byzantine Fault Tolerant (BFT [42])
consensus engine [43], called Peppermint [44].

In a proof-of-stake consensus, such as the one adopted by Polygon PoS, users need to deposit
a certain amount of coins in order to be able to participate in the block production. These coins are
at “stake” for the purpose of ensuring the correct behavior of participants. Misbehavior can cause
the staker to lost part or the entirety of their coins.

For Polygon PoS, in order to participate in the consensus mechanism, users need to stake some
ETH in a specific smart contract in the Ethereum blockchain. Heimdall nodes monitor the staking
balances in this Ethereum contract to continuously update the staking values of the “validators”
(nodes participating in the validator layer).

The Bor implementation is a fork of Go-Ethereum [45], the official Ethereum client, with a
few modifications to accommodate Polygon’s consensus mechanism. Block producers are elected
by the PoS stakers through a voting mechanism. A block producer will then be selected for a pre-
determined interval of time to produce a block; if it fails to do so withing the time limit, its staked
coins are “slashed”, that is, the producer pays a pre-determined penalty cost, and a new producer
is voted up.

Block producers will sign on the proposed blocks, continuously growing the blockchain. After
a determined number of blocks on the Polygon chain, Heimdall will elect a “checkpoint proposer”.
A checkpoint is created by the proposer after validating the most recent blocks produced by the Bor
layer, after the previous checkpoint. This checkpoint will contain a “RootHash”, a Merkle hash
of the Bor blocks. Once the proposal checkpoint is validated by at least 2/3 of the validators, the
checkpoint is submitted to a checkpoint contract deployed on Ethereum’s mainnet, and the rewards
for participating in the consensus protocol are distributed on the Ethereum platform.

50

Since Bor is a fork of Go-Ethereum, it retains much of its characteristics, such as block data
pattern, and even more importantly, the EVM. Thus Ethereum’s smart contracts can be executed
seamlessly inside the Polygon PoS chain.

3.5.2 Ethereum Merge

The Ethereum Merge update is Ethereum’s response to its scalability problems. The Ethereum
updates form a road-map of interconnected protocol updates, designed by the Ethereum Foun-
dation, with the promise of making the Ethereum network more scalable, more secure and more
sustainable. Among these updates, we highlight the “Merge” update, an update that will upgrade
Ethereum’s consensus protocol from proof-of-work (PoW) to proof-of-stake (PoS).

With the Merge, Ethereum will adopt a two-layer protocol similar to Polygon’s PoS protocol.
The current Ethereum implementation will become the “execution layer” that will handle trans-
actions and execution, while the “Beacon chain” will become the “consensus layer”, introducing
proof-of-stake as the new consensus mechanism of the blockchain. These two chains will “merge”
into a new improved Ethereum network. The Beacon chain is a proof-of-stake chain that has ex-
isted in parallel to Ethereum’s mainnet since December 1st 2020. It was subjected to intensive
tests, until the Ethereum Foundation judged it was ready to integrate Ethereum’s mainnet. Fig-
ure 3.5 represents the merge between Ethereum’s mainnet and the beacon chain.

The Merge occurred in September 15, 2022 [6], at the time we were closing this thesis docu-
ment. Thus, during our research, it was still too early to assess how the update affected Ethereum
ecosystem. Though, before the Merge, Ethereum updated their testnets with the Merge for testing
purposes. We report on the opportunity we had to experiment with those in Chapter 5.

3.5.2.1 Merge PoS protocol

In order to become a “validator” on the Beacon chain, a user needs to deposit 32 ETH as their
“stake”, as well as run 3 different clients: an execution client, a consensus client and a validator.

Once active in the consensus mechanism, validators will receive new block proposals from
their validator peers. A validator needs to check the validity of the block data before voting on the
approval or rejection of the block.

The block time in PoS is no longer dependent on PoW; the time is fixed and divided into slots
(12 seconds) and epochs (32 slots). During a slot, a validator is randomly selected to be the block
proposer. This validator will create a block and broadcast it to its peers, as a miner would do in
Ethereum’s PoW. To validate and vote on the block creation, a committee of validators is randomly
chosen per slot as well.

Finality in Ethereum’s PoS is achieved using “checkpoint” blocks. The first block in each epoch
is a checkpoint. Validators vote for pairs of checkpoints that are deemed valid, the previous epoch
checkpoint and the new recently created. When the pair of checkpoints acquires votes from 2/3 of

51

Figure 3.5: Ethereum Merge representation [46]

the validators, they are upgraded. The previous checkpoint sees its status change from “justified”
to “finalized”, and the current one is upgraded to “justified”. Then a new epoch can begin.

Validators are rewarded for participating in the PoS mechanism, with different rewards for
proposing blocks, voting and even whistle-blowing (attesting another user’s dishonest behavior).
The block producer will be rewarded with the transaction fees, the same as miners are in PoW, thus
the Merge don’t affect transactions’ gas costs. Dishonest behavior from validators is penalized with
“slashing” (destruction) of their staked coins.

Staking doesn’t require an initial investment in powerful hardware, and it doesn’t consume
as much energy as PoW, since all the computation for finding a nonce value isn’t present in the
mechanism. The Ethereum foundation claims that “The Merge will reduce Ethereum’s energy
consumption by 99.95%” [46].

Due to not requiring expensive hardware and high energy consumption, theoretically, PoS is
more democratized than poof-of-work. Requiring only an initial deposit of 32 ETH (though there
are also different tiers, with smaller deposits), PoS is deemed more accessible than PoW, which
the Ethereum Foundation hopes will help increase the decentralization over the network.

52

3.5.3 Tezos

Tezos is a third-generation blockchain that intends to address the cost, energy and scalability issues
that affected earlier chains adopting the proof-of-work approach. Funded in 2017 by the largest
Initial Coin Offering at the time [47], Tezos is characterized by its proof-of-stake consensus mech-
anism, its self-amending properties, and its smart contracts.

3.5.3.1 Tezos Proof-of-Stake

Tezos’ consensus mechanism is quite particular for a proof-of-stake mechanism. In Tezos’ ter-
minology, miners are known as “bakers”, and mining is “baking” a block. In order to be able
to participate in the proof-of-stake mechanism, bakers need to stake a minimum of 6,000 Tez
(XTZ) [48], a sum known as a “roll”. Tezos’ proof-of-stake is particular, because it enables coin
holders to “delegate” their baking power to another baker; the ownership of the coins isn’t trans-
ferred to the baker, and both parts share the baking revenue. This delegation property has given the
consensus mechanism the title of “delegated proof-of-stake”. Delegation is interesting, because it
enables coin owners to indirectly participate in the consensus mechanism without having to invest
in expensive equipment, by abdicating their baking power to a baker they judge trustworthy.

Tezos’ proof-of-stake mechanism is named “Tenderbake”; it is a Byzantine Fault Tolerant-
style consensus algorithm, in which, differently from Bitcoin’s and Ethereum’s PoW, bakers don’t
produce a block directly. In Tenderbake, a baker will first propose a block, while others will accept
or reject the proposal [49].

Tenderbake is executed for each new block. First, a group of bakers are selected at random,
based on their stake, to form a committee, whose members are called “validators”. The baking
process will continue in rounds; each round is an attempt from the validators to reach a consensus
on which block to publish. A round consists of the following steps:

1. the round’s designated validator injects a candidate block;

2. this block diffuses over the network nodes to the other validators;

3. the validators vote either to accept or reject the block.

Rewards from baking are divided in different parts. Endorsing rewards are shared between all
validators, while the block’s proposer is rewarded with a baking reward plus the fees associated to
the transactions included in the block. If a baker misbehaves, their staked coins are “slashed”: for
example, if double baking or double endorsing, which happens when a baker proposes or endorses
two different blocks at the same time, occurs, the baker’s stake is slashed by 640 Tez. Bakers that
show evidence of double baking are rewarded with half of the slashed amount.

According to the Tezos’ Foundation, Tezos has an yearly energy consumption of 60 MWh, or
0.00006TWh [50], i.e., 0.000082% of Ethereum PoW’s 73.2 TWh.

53

3.5.3.2 Tezos governance and self-amendments

In the Tezos system, stakeholders can participate in governing the protocol. Community members
can propose updates for the protocol [51]; these protocols are voted for or against through an on-
chain process. Once a proposal is accepted by the stakeholders, there’s a two-week period for the
community of bakers and developers to update their software. This is part of the self-amendment
property of Tezos, which allows the chain to upgrade itself without the need for hard forks.

3.5.3.3 Tezos smart contracts

Tezos’ smart contracts are heavily based on Ethereum’s, but with a greater concern about formal
verification. Formal verification is the process of applying mathematical formal definitions to
testify that a program conforms to it’s specification [52]. The proposal is to avoid costly bugs,
by verifying contracts before deploying them in the blockchain. Smart contracts in the Tezos
blockchain are written in Michelson, a low-level stack based language. For high-level languages,
Tezos proposes a handful, with SmartPy and LIGO being the most adopted ones by the community
of developers [53]. In this document, we just focus on SmartPy.

SmartPy SmartPy, a Python library, functions as a complete system for the development and
test of smart contracts. SmartPy is characterized by meta-programming; the Python code, when
executed, is used to write the final Michelson contract. Yet, Tezos smart contract operations are
quite similar to Ethereum’s, with users having to forge transactions to activate a contract oper-
ation. A terminology difference is that “public” or “external” functions in Tezos are known as
“entrypoints”[54].

Tezos uses a different gas system than Ethereum. A user is charged for each transaction in two
different ways: a fee, which is credited to the block baker, and a certain amount of “burned” coins,
i.e., sent to an unreachable account. For having a transaction performed, a user needs to provide a
fee (in XTZ) and a gas limit; the transaction will then compete with other transactions to be added
to a block, taking into account two limitations, namely the hard block gas limit (10,400,000 gas)
and the hard operation gas limit (1,040,000 gas). Bakers then choose transactions, assuming that
gas fits the block and fees respect a minimum.

Whenever the size of the blockchain storage increases due to a transaction, the issuer must pay
a “burn”, in XTZ. This happens when a contract storage increases (storage burn) or when a new
contract is put on the chain (allocation burn).

3.6 Tools

Understanding the behavior of a distributed, asynchronous, complex system such as a blockchain
is difficult. Luckily, some tools help in that regard; the ones used in this thesis are presented here.

54

Figure 3.6: Example of a transaction from Etherscan(etherscan.io) the main Ethereum block
explorer

3.6.1 Block explorers

Block explorers, as their name implies, are tools for exploring the blockchain data. Due to their
continuous growth, blockchains are considered challenging to index, where “indexing is a way to
optimize the performance of a database by minimizing the number of disk accesses required when
a query is processed. It is a data structure technique which is used to quickly locate and access the
data in a database” [55].

Block explorers retrieve data from blockchains, and index it appropriately, making the blockchain
data easily available for users to query transactions, wallets or blocks, and also providing not only
the chain’s data, but also relevant insights, such as charts and statistics, that were particularly use-
ful for this thesis. In Figure 3.6, one can see the interface of Ethereum’s main block explorer,
Etherscan (etherscan.io), displaying information from a transaction; relevant information,
such as “Transaction Hash”, “Block number”, sender (From) and receiver (To), “Transaction Fee”
and “Gas Price” are all available.

etherscan.io
etherscan.io

55

3.6.2 Truffle

Truffle [56] is a development environment for smart contracts. Developed by ConsenSys (consensys.
net), Truffle offers a wide variety of functionalities for contract debugging, compilation and de-
ployment. In addition to network management, it enables users to switch between mainnet and
different testnets in a seamless manner. Truffle was originally conceived to attend to blockchains
using the Ethereum Virtual Machine, although support for other blockchains has been added as
time went [57].

3.6.3 Infura

Infura [58] is an Ethereum API provider that allows communication with blockchains without the
need of setting up an Ethereum client, which can be a time consuming operation and is heavy on
storage.

Infura provides access over HTTPS and WebSockets to the Ethereum network [59]. Offering
different tiers for different prices, each with different levels of support and numbers of daily re-
quests, the core service is however free, with a total of 100,000 requests per day, which was plenty
for our research work. Infura’s main target is the Ethereum blockchain, though support for a few
other chains is also available.

3.6.4 MetaMask

MetaMask [33] is one of the most popular cryptocurrency wallets for ETH and ETH-based tokens
(ERC20 and ERC721) [60]. MetaMask stores users’ private keys, through which they can generate
accounts that can store cryptocurrencies. MetaMask’s main utility is managing users’ private keys
in order to sign transactions to communicate with blockchains.

On top of key management, MetaMask also offers functionalities such as coin exchange and
the ability to connect to dApps (decentralized applications). MetaMast is characterized by being
a so-called “hot wallet”, which means that it needs to be connected to the internet to be usable,
while “cold wallets” can keep data offline. In the case of MetaMask, being a hot wallet translates
to it being a browser extension (though a mobile app version is also available). Image 3.7 shows
an example of its Google Chrome MetaMask pop-up interface. MetaMask stores a crypted version
of a users’ keys in the browser’s storage, decrypting them for usage once the users logs into the
wallet with their passwords [61].

consensys.net
consensys.net

56

Figure 3.7: Metamask interface, showing the ETH balance for the account named “Mine own” on
the Ropsten testnet

57

CHAPTER 4

VCG FOR SEARCH AUCTIONS USE CASE

Ce chapitre présente notre principal cas d’utilisation pour notre étude de contrats intelligents,
l’enchère de Vickrey-Clarke-Groves pour la recherche sponsorisée, ou VCG pour la recherche.
L’objectif de ce chapitre est de souligner l’importance et l’applicabilité de VCG pour la recherche
en tant que cas d’utilisation en présentant ses principales propriétés, qui revêtent une importance
pour la théorie des mécanismes.

La section 4.1 commence en fournissant un aperçu général des enchères et des concepts de la
théorie des enchères nécessaires pour analyser et caractériser l’enchère VCG. De plus, cette sec-
tion présente le mécanisme général de Vickrey-Clarke-Groves, ainsi que ses propriétés. La section
se conclut par la présentation d’une modélisation du mécanisme VCG général pour l’assistant de
preuves Coq.

La section 4.2 présente enfin l’enchère de Vickrey-Clarke-Groves pour la recherche spon-
sorisée. Tout d’abord sont présentées les enchères pour la recherche sponsorisée, ainsi que leur
objectif et les principales définitions associées. Une fois le contexte de la recherche sponsorisée
établi, nous exposons l’algorithme de l’enchère VCG pour la recherche sponsorisée, notre prin-
cipal cas d’utilisation. La section se termine par un aperçu des cas d’utilisation de VCG pour la
recherche dans l’industrie.

This chapter presents our main use-case for our smart contract study, the Vickrey–Clarke–Groves
auction for sponsored search, or VCG for search. The aim of this chapter is to underscore the sig-
nificance and applicability of VCG for search as a use case by presenting its key properties, that
are of importance for the field of mechanism design.

Section 4.1 begins by providing a general overview of auctions and auction theory concepts,
which are required to analyze and characterize the VCG acution. Furthermore, this section show-
cases the Vickrey–Clarke–Groves general mechanism, together with its properties. The section
concludes with a modelization of the general VCG mechanism with the proof assistant Coq.

Section 4.2 finally presents the Vickrey–Clarke–Groves auction for sponsored search, begin-
ning with a presentation of sponsored search auctions, their purpose and key definitions. With the
setting of sponsored search in place, we present the algorithm for the VCG auction for sponsored
search, our main use-case. The section ends with an overview of cases of VCG for search in the
industry.

58

4.1 Auctions

Auctions have been considered since antiquity as a flexible way to sell a wide variety of goods.
There are reports of auctions being used as early as 500 BC [62]. In recent years, with the advent of
the internet, auctions have taken a very central role, for instance in e-commerce [63]. In particular,
auctions for the sale of sponsored links, as they occur when any search query is performed on
Google, for instance (see Figure 4.1), are, alone, responsible for the movement of hundreds of
billions of dollars per year [64].

Figure 4.1: Example of a Google query result page, with ads displayed on the right. The page
areas for ads have been auctioned to advertisers; their bids are linked to how potentially interested
the expected viewer is for the products they help sell.

Readers unfamiliar with auction theory may think that auctions are restricted to what is com-
monly known as “English” auctions; these are ascending price auctions, such as one might come
across in auction houses for the sale of art and antiques, or in internet marketplaces such as eBay
or OpenSea. But auctions are in fact much more flexible than that.

At the most abstract level, an auction is a process to sell a good to potential buyers when the
seller is unsure of the object’s value or intends to maximize his or her revenue. In an auction,

59

the seller or a chosen intermediary, jointly known as the “auctioneer”, offers one of more objects
to potential sellers. The auctioneer does not know how much the buyers value the object being
sold; otherwise they would simply ask them to pay for the corresponding price. The fundamental
uncertainty regarding the values of objects that face both sellers and buyers is an inherent feature
of auctions [65].

In an auction, the buyers communicate their evaluation of the sold objects to the auctioneer in
the form of “bids”; bids are offers of a price. The value of a bid will depend on the buyer’s strategy,
and it usually reflects the buyer’s evaluation or, at least, the one he or she is willing to provide to
the auctioneer. In the sequel of this work, we assume that, once all bidders have cast their bids,
the selected type of auction will decide on the winner(s), allocate the object(s) to them, and charge
them a price related to their bid(s).

4.1.1 Principles

Auctions are very flexible processes and can take many shapes; they can be an eBay auction to sell
a rare Game Boy model, a contractor’s auction for a public construction project or a candle auction
to sell fresh-caught fish. Auctions can even be automated and appear to happen instantly, such as
the ones used to sell advertisements every time someone queries a search engine.

In this section, we seek to identify some important features that auctions have in common; this
will help in our understanding of the VCG for search auction and of its properties, one of the main
focal points of this thesis.

The premise of an auction is the offer of a number of goods, or objects, by an auctioneer.
Interested buyers offer prices to try to win the objects. As seen before, these offers are known
as bids; hence, whoever casts a bid is know as a bidder. Once the bidding phase is over, the
auctioneer decides on an outcome, consisting on (1) assigning the auctioned object(s) to one (or
more) of the bidders and (2) defining the prices these winning bidders need to pay for the objects.
In this framework, an auction can be characterized by the two sets of rules for bidding and for
computing the outcome.

The rules for bidding describe how bidders communicate their bids to the auctioneer. There
may be rules related to the duration of the bidding phase, for example via a specified deadline, as
is the case with eBay auctions. Yet, the duration can also depend on something less predictable;
in candle auctions, for instance, bids are accepted until the light of a designated (physical) candle
goes out. Another important aspect addressed in the bidding rules is how the bids are transmitted;
for instance, they can be publicly announced, as occurs in the so-called “open” auctions. An eBay
auction is characterized by this open-bidding style; the highest current bid is always listed. The
antithesis of open auctions are “sealed-bids” auctions. In this case, bidders communicate their bids
to the auctioneer in secret, for example in a sealed envelope. The idea is to make sure, for privacy
reasons (something we address in Chapter 6), that no bidder knows how much the other auction
participants have bid.

The second set of rules deals with the computation of the auction outcome. This outcome pro-

60

cess can again be divided in two parts: assignment and pricing. Assignment allocates the auctioned
objects to bidders, based on the values of their bids. For a single-item auction, it is customary for
the highest bidder to be awarded the object, while for multi-item auctions, the assignment pro-
cess varies. We address in more details multi-item assignments when discussing VCG for search
auctions (see Section 4.1.5).

Concerning the pricing decisions, there are multiple approaches, and the pricing method is a
tool to influence how a bidder will choose their bid in the bidding phase. The straightforward
pricing solution of charging the winner an amount equal to the value of their bid is known as
“first-price” auction. first-price auctions, though easy to understand, are difficult for the bidders
to reason about when putting their bids, as we see in Section 4.1.3.1. A popular alternative to
first-price auctions is what is known as “second-price” auction. In this case, the highest bidder
pays the price of the second-highest bid. If this can appear bewildering to the reader unfamiliar
with auction theory, second-price auctions have some interesting properties that help bidders when
deciding what bids to put; we go over these properties in Section 4.1.3.2

4.1.2 Game theory notions

In order to better understand some of the properties of auctions, a few notions on auction theory
and game theory are required; here we intend to present these relevant notions. We first introduce
a model of bidders’ behavior in order to reason over their strategies and choices.

Bidders are supposed to be always interested in the objects on sale, and each bidder i has an
evaluation of how much these said objects are worth. This value, that we reference by vi, represents
the bidder i’s maximum willingness-to-pay for the object being offered (for simplicity, we assume
here that only one object is auctioned). A lot can be inferred by how one decides to model this
value; for now, we consider that each bidder’s evaluation is private and not influenced by others.

By taking part in an auction, each participant is assigned an utility function ui (which we note u
when no confusion can occur). Utilities are a formal abstraction of the ”enjoyment” one gets from
participating in the auction process. For our model, we adopt the so-called “quasilinear utility
model”: if a bidder i loses an auction, their utility is ui = 0; if the bidder wins at a price p, then
their utility is ui = vi − p. Formally, one has:

ui =

{
0, if i loses;
vi − p, otherwise.

We assume that bidders have the goal of maximizing their utility. For our model, it would mean
obtaining the object with the lowest price possible. In our studies, we consider the bidders’ strategy
as trying to reach this goal.

In game theory, much can be observed from the analysis of strategies; here we introduce the
notion of “dominant” strategies. A dominant strategy for a player is one that, when compared to

61

other strategies, gives the best utility, no matter the strategy chosen by other players. There are
some special auctions in which ”truth telling”, meaning bidding one’s true value vi directly, is the
dominant strategy. An auction with this characteristic is known as “truthful” or “dominant-strategy
incentive compatible”.

4.1.3 Types of auctions

In this section, we explore different types of auctions, and analyse them with the concepts presented
above.

4.1.3.1 First-price auctions

The first-price auction is, as stated above, a type of auction in which the winner is charged the
totality of their bid. An example of such an auction is the English auction, which is characterized
by incremental open bids and first-pricing. This is the classic type of auction we find in auction
houses. Bidders bid publicly, with ever-increasing bids, until no one is willing to raise the last-
offered price. The pricing rule is first-price, so the highest bidder has to pay the value of their bid
for the object. An English auction is the most familiar form of auction, and likely what comes
to mind to the general public when referencing auctions. The term auction most likely has its
terminological roots in this format, coming from auctus, “increasing” in Latin.

There is no dominant strategy for English auctions; if a participant bids their true value and
wins, their utility will be ... 0. The bidder needs to come up with a bid that is below their true
evaluation, but is still big enough to ensure their win, while not knowing how other bidders will
bid, to get a strictly positive utility. Therefore, it can be difficult for bidders to decide how to bid.

4.1.3.2 Second-price and Vickrey auctions

In second-price auctions, the winner is still the highest bidder, but pays the price of the second-
highest bidder. At first glance, it may appear backwards, but second-price auctions have interesting
properties. Second-price auctions are truthful; therefore, the dominant strategy for any bidder is to
set their bid equal to their private evaluation. By the definition of dominant strategy, this strategy
guarantees to maximize the player’s utility, no matter what other bidders do.

A prominent example of second-price auctions is the Vickrey auction, first described by the
Columbia University professor William Vickrey in 1961 [66]. The Vickrey auction is a sealed-bid
auction; the bidders transmit their bids in secret to the auctioneer, which then awards the object to
the highest bidder, charging the second-highest bid as price.

To better understand how this auction works, let us imagine a user i with private value vi. We
can show that i’s utility is maximized by bidding bi = vi.

Let us thus consider B equal to the highest bid among the other bids bj: B = maxj 6=i bi. There
are only two possible outcomes (for simplicity, we reason here while assuming that all bids are
distinct):

62

• either bi < B, in which case the bidder i loses and has utility 0;

• or bi ≥ B , in which case i wins, pays the second highest bid B and has utility vi −B.

Let’s imagine the case where i doesn’t bid its true value, there are two cases.

• First, i under-bids, i.e., bi < vi. In the case that bi < B, i has utility 0, although in this case,
there is still the possibility of having B < vi, and, thus, the bidder harmed their chances by
underbidding. If bi ≥ B, i wins, with utility still being vi − B, with no gain to their utility
by underbidding.

• Second, i over-bids, i.e., bi > vi. In the case that bi < B, i has utility 0. If bi ≥ B, i wins,
with utility vi − B. In this last sub-case, there are are two possibilities: (1) vi ≥ B, which
would lead to a positive utility, and (2) B > vi, which would lead to a negative utility, an
unfortunate result.

Now, assume i bids truthfully: bi = vi. If vi < B, then the bidder i loses and their highest
utility is 0. Otherwise, if vi ≥ B, i wins and their utility is the positive value vi −B [67].

In a Vickrey auction, as long as the bidders do not deviate from their true value, they are
guaranteed non-negative utility. Losers get 0, and the winners gets bi −B, where B is the second-
highest bid; if bi = vi (truthful bidding), positive utility is guaranteed, since ui = vi − B and
bi ≥ B (condition for i to win). This property of non-negative utility, insured here by truthful
bidding, is known in economics as the “individually rational” behavior of participants.

4.1.4 Mechanism design

Mechanism design is the science of rule making, a field of economics and game theory that reasons
over games with incomplete information to generate a desirable outcome (as with auctions, an
outcome is here an allocation rule and a payment rule).

The setup for a general mechanism is the following: a seller with one object to sell to N
potential buyers, each with a private evaluation vi for the object. A mechanism is then characterized
by 3 components:

1. sets Mi of possible messages mj i from each buyer i to the seller;

2. an allocation rule π : M → ∆, with ∆ being the set of possible outcomes, i.e., the probabil-
ities of winning the object (M is the Cartesian product of all Mi);

3. payment rule µ : M → RN .

The allocation rule, a function of N messages, determines the probability π(m)i that i gets the
object. The payment rule, in turn, computes the expected payments µ(m) for all participants [65].

63

By now, the more attentive reader will have realized the similarity between the notion of a
mechanism and auctions; indeed, auctions are instances of mechanisms. For example, the Vickrey
auction is a mechanism instantiated as follows.

1. Messages are bids, and m can be assumed to be the values of participants (v1, ..., vN), due
to truthful bidding.

2. The allocation rule is such that π(m)i is 1, if mi > maxj 6=imj , and 0 otherwise.

3. The payment rule is such that µ(m)i = maxj 6=imj , if mi > maxj 6=imj , and otherwise 0;

A mechanism can be designed to enforce some interesting properties on the game. For in-
stance, “Incentive Compatibility”(IC), denotes that participants can obtain the best outcome for
themselves by acting in accordance to their true values [68]. IC is a characteristic of the so-called
“direct” mechanisms, mechanisms in which the set of messages is equal to the set of private val-
ues of participants; if, for instance, mi = vi, then this is the same as truthful bidding for auctions.
Another relevant property of direct mechanisms is “Individual Rationality” (IR); an IR mechanism
guarantees the participants non-negative utility, i.e., ui ≥ 0. Finally, the last relevant property of
mechanisms is “welfare maximization”. Social welfare can be defined as a the sum of all winners’
values; a mechanism is then “welfare-maximizing”, or efficient, if it maximizes the group’s glob-
ally stated interest in the goods. If a mechanism is welfare-maximizing, it means that the (single)
object being sold is given to the buyer who values it the most. The welfare-maximizing allocation
π∆ has more total value to the bidders than any other from the group ∆; no other allocation could
make anyone better off without making someone else worse off.

4.1.5 Vickrey-Clarke-Groves mechanism

The Vickrey–Clarke–Groves mechanism, is named after William Vickrey, Edward H. Clarke, and
Theodore Groves. For Vickrey, this is due to his contribution with the Vickrey auction, while
Edward H. Clarke[69] and Theodore Groves[70] are both credited for their study on public choice
problems, in which agents decide whether to undertake a public project – e.g., the construction of
a bridge or highway [71].

The Vickrey–Clarke–Groves (VCG) mechanism set up is as follows:

1. N strategic participants;

2. a finite set Ω of all the possible distributions of the sold objects between the participants;

3. a private valuation vi(ω) for each outcome ω ∈ Ω and each agent i.

VCG is a generalization of the Vickrey auction for different outcomes and multiple objects. But
the notion of charging the winner the highest bid is extrapolated into the concept of “externality”.
Externality is the loss in social welfare a bidder imposes by his or her participation in the auction on

64

the rest of the participants. In the Vickrey auction’s case, when one charges the second highest bid
to the single winner, what is actually charged is the externality. For example, let assume a Vickrey
auction with the sorted bids v1 > v2... > vN . Bidder 1 wins the auction, and creates a total welfare
of v1, while the rest of the bidders, 2, 3, ...N , have social welfare 0, as a group. Now let’s imagine
the same auction without the first bidder; the new order of bids would be v2 > v3... > vN , and the
new winner would be bidder 2 and the welfare would be v2. Thus, in this example, we can attest
that the externality imposed by bidder 1 is v2 − 0 = v2, the difference between the social welfares
of the others without and with bidder 1, which is the same as the Vickrey payment for bidder 1.
The Vickrey–Clarke–Groves mechanism has the same payment rule as the one introduced here,
but is generalized for more than single-object auctions.

The VCG mechanism is defined by the following three steps:

1. accept a bid bi(ω) from each buyer i for each outcome ω ∈ Ω;

2. compute an optimal outcome ω∗ that maximizes the reported1 social welfare
∑N

i=1 bi(ω) over
all ω ∈ Ω;

3. charge each bidder i their externality, meaning the social welfare loss caused to the other
bidders by i’s presence: pi = (maxω∈Ω

∑
j 6=i bj(ω))−

∑
j 6=i bj(ω

∗).

The VCG mechanism is of great significance for the study of mechanism design; it is the
golden standard for a mechanism, due to its properties of being truthful, individually rational, and
welfare-maximizing.

4.1.6 VCG modelization and properties in Coq

Even though the previous definition of the VCG mechanism is somewhat precise, we believe a
more formal approach to mechanism design in general is warranted, in particular given the increas-
ing importance of mechanisms in the society at large. This is even more the case in the context of
smart contracts, since their code cannot be updated once deployed; getting the algorithm right the
first time is the rule of the game here. The formal verification of the correctness of algorithms is
the most reliable way to validate their desired behavior.

We propose here a proof-of-concept application of this philosophy by introducing a Coq spec-
ification of the VCG mechanism described above. The Coq proof assistant, a formal proof-
management system, provides a formal language to write mathematical definitions, algorithms
and theorems about these algorithms. It also provides a user environment for the semi-interactive
development of machine-checked proofs.

We thus describe below our modelization of the VCG mechanism presented above.

1Note that the bids can be seen here as proxies of the actual values.

65

Definition For functional programmers, a mechanism in Coq is simply a higher-order function or
module, here VCG. The VCG mechanism, in Listing 4.1, is abstracted over the type O of possible
auction outcomes, a particular instance o0 (to ensure non-emptiness) and an agent i. All the types
used here are finite types, e.g. ′I n for A, i.e., the sets of bounded natural numbers, here in [0, n[.

Here, any agent, among n, is defined by its bidding, a finite function that values any possible
outcome in the Coq domain nat of natural numbers (for simplicity, we do not use reals here).
The VCG mechanism, given its last parameter, a tuple bs of biddings, must compute an optimal
outcome oStar that maximizes the total bidSum o of bids. In a truthful mechanism, where the bids
of agents and their values coincide, this outcome maximizes the global good, or social welfare.
For agent i, the price she accordingly has to pay to win whatever is in oStar for her is a penality
induced by the impact on the global good of her presence in the bidding process (welfare with i)
compared to when she is not (welfare without i, which would have yielded a possibly different
optimal outcome).

1 Variable (O : finType) (o0 : O) (i : A).
2
3 Definition bidding := {ffun O→ nat}.
4 Definition biddings := n.−tuple bidding.
5
6 Variable (bs : biddings).
7 Local Notation "’bidding_ j" := (tnth bs j) (at level 10).
8
9 Implicit Types (o : O) (bs : biddings).

10
11 Definition bidSum o := \sum_(j < n) ’bidding_j o.
12 Definition bidSum_i o := \sum_(j < n | j != i) ’bidding_j o.
13
14 Definition oStar := [arg max_(o > o0) (bidSum o)].
15
16 Definition welfare_with_i := bidSum_i oStar.
17 Definition welfare_without_i := \max_o bidSum_i o.
18
19 Definition price := welfare_without_i − welfare_with_i.

Listing 4.1: VCG mechanism in Coq

Properties We formally prove that the VCG mechanism enjoys useful properties such as No
Positive Transfer (all prices are positive, and thus the auctioneer does not have to pay bidders),
Individual Rationality (for any agent, the price is less than the value of the outcome for him) and
the most important one, Truthfulness (see Listing 4.2).

The VCG mechanism assumes the existence, for any agent i, of a valuation value i that he

66

assigns to any outcome in O. The utility of the bidding result for i, among n agents bidding bs,
is then the difference between whatever the perceived value is and the price paid (note the three
explicit arguments to the mechanism functions oStar and price). The truthfulness property that
truthful expresses is key. It states, that all things being equal, as stated by differ only i, the only
way i can increase their utility is by bidding, for any outcome o, what is for him its true value in o.

The complete proof of the VCG mechanism’s truthfulness can be found in the repository [72].
Note also that this line of work has been since largely developed further to address other mecha-
nisms, via a new mech.v Coq library (see [73], [74] and [72]).

1 Variable (value : bidding O).
2
3 Definition utility bs := value (oStar O o0 bs) − (price O o0 i bs).
4
5 Definition differ_only_i bs’ := forall j, j != i→ tnth bs’ j = ’bidding_j.
6
7 Theorem truthful bs’ :
8 ’bidding_i =1 value→
9 differ_only_i bs’→

10 utility bs’ <= utility bs.

Listing 4.2: Truthfulness definition

4.2 VCG for sponsored search

The Vickrey–Clarke–Groves mechanism, though of great importance for the field of mechanism
design, has been severely underutilized in marketplaces [75] [76] [77] until Facebook adopted an
instance of the mechanism for the sale of advertisement links in the late 2000s, known as VCG for
sponsored search.

4.2.1 Sponsored search

Today, the most common type of auction are sponsored search (SS) auctions. This type of auction is
designed with the purpose of selling sponsored links to advertisers. These links are advertisement
printed simultaneously with the results of a search engine. In such an auction, the keywords that
define the search request performed by an internet user can be, in addition to side information such
as time or location, used by advertisers to tailor the links specifically to the end user’s interests.
The ”value” of placing such a dedicated link on the side of the returned search page is of course
related to the overall market and perception by the advertisers of the odds that this particular user
will end up following the links.

Online advertisement correspond to the major source of revenue for companies such as Google
or Facebook. To illustrate the importance of SS auctions with some data, in 2021, Google’s ad

67

revenue amounted to 209.49 billion dollars, with correspond to 80% of the company revenue that
year [64]. In turn, Facebook amassed nearly 115 billion dollars from ad revenue in 2021, 97% of
the total 117.9 billion generated by the company in 2021 [78] [79].

For some context of the magnitude of sponsored search auctions happening right now, it has
been reported that Google processes 63,000 search queries every second, which adds up to 5.6
billion searches per day [80]. For each of these queries, there’s an associated sponsored link
auction to sell advertisement links.

4.2.1.1 Basic model for sponsored search auctions

In a sponsored search auction, the auctioneer wants to sell a certain number of advertisement slots.
The participating buyers are publishers, interested in the keywords related to the query. Each
result page has a certain number of “slots” (i.e., predefined locations and sizes on an HTML page)
offered; these slots have different levels of prominence, quantified into what is know as a Click-
Through Rate (CTR). A CTR is the ratio of how many times an ad was, in the past, clicked by
the final user over the number of times an ad shows on screen for its target audience (such an
appearances is also known as an “impression”).

Sponsored search auctions happen in milliseconds, before the query result page is loaded on the
client device. Participants submit keywords and bids on the ”cost-per-click”. When the advertiser’s
keyword match a user’s query, the advertiser automatically enters in the auction for these query’s
advertisement.

For example, a query containing the word ”Ferrari” will trigger an auction for advertisers in-
terested in the keyword ”car”. A certain number, k, of slots, each characterized with a ctr αj are
put on sale. The auction system then compares the bids from the n advertisers interested in the
”car” keyword. In accordance with the auction mechanism selected, slots are attributed to the k
best-bidding advertisers, and a price per click pi is computed for them. The query result page for
”Ferrari” will then be shown to the internet user with the k slots occupied by ads from the winning
bidders. If the user clicks on one of the sponsored link, he will be sent to the advertiser’s web page.
The owner of the ad will then pay the search engine for sending the user to its web page, hence the
name “pay-per-click” pricing.

4.2.1.2 Generalized second-price sponsored search auction

The most common type of auction adopted for sponsored search auctions is Generalized Second
Price (GSP) [63] [77]. First adopted by Google in 2002, it was soon adopted by other major search
engines. A GSP auction can be described by the following steps:

1. accept a bid bi from each bidder i, and relabel the bidders so that b1 ≥ b2 ≥ . . . ≥ bn;

2. assign each bidder i of the k first bidders to the i-th slot (the others lose);

68

3. charge each of the first k bidders a price pi = bi+1 per click.

GSP auctions, though similar to Vickrey auctions (if k = 1, GSP is the same as a Vickrey
auction), is not truthful [74]. For k > 1 cases, there can be an incentive for participants to underbid,
acquiring fewer clicks, but at a much reduced price that increases their utility [81].

4.2.2 VCG for sponsored search algorithm

A better alternative to GSP that is truthful and welfare-maximizing is a specialization of the VCG
mechanism, seen in Section 4.1.5, for sponsored search.

The VCG for search algorithm, in which n bidders vie for k slots, each characterized with a ctr
αj , can be outlined as follows, where the ctrs αj are assumed down-sorted [82]:

1. accept a bid bi from each bidder i, and relabel the bidders so that b1 ≥ b2 ≥ . . . ≥ bn;

2. assign each bidder i of the k first bidders to the i-th slot (the others lose);

3. charge each such bidder a price pi = 1
αi

∑k+1
j=i+1 bj(αj−1 − αj), with αk+1 = 0.

Intuitively, the price (per click) pi paid by the bidder i is designed to compensate the loss
in social welfare suffered by all the other bidders by the mere presence of the bidder i. In the
framework of search engines, such a VCG algorithm must be run each time a web page is about to
be displayed on a computer, meaning billions of times per day.

We provide in Listing 4.3 a specification (proofs omitted) in Coq of VCG for search, assuming
that the bids are already sorted and that k < n. An auction is defined by two tuples, in ctrs and
bids, indexed by slots and agents. The VCG for Search algorithm expects thus as input a tuple
cs of down-sorted rates and a tuple bs of bids, assumed as well to be down-sorted. The agent i
wins slot i (with thus i < k), paying for it price i to offset the negative impact on the global social
welfare incurred by her presence. This value, as proposed by Vickrey, Clarke and Groves, is the
sum of all the externalities, i.e., financial losses, of the agents ranked after i according to bs, who
thus do not get slot i.

For example, if cs = (5, 3, 1) and bs = (100, 50, 10, 4), then agent 0 will get slot 0 and pay
50 ∗ (5− 3) + 10 ∗ (3− 1) + 4 ∗ 1 = 124; agent 1, slot 1 for 10 ∗ (3− 1) + 4 ∗ 1 = 24; and agent
2, slot 2 for 4 ∗ 1 (agent 3 gets nothing; cs[3] is assumed 0).

1 Definition ctrs := k.−tuple ctr.
2 Definition bids := n.−tuple bid.
3
4 Variable (cs : ctrs).
5 Notation "’ctr_ s" := (tnth cs s) (at level 10).
6
7 Hypothesis sorted_ctrs : sorted_tuple cs.

69

8
9 Variable (bs : bids).

10 Notation "’bid_ j" := (tnth bs j) (at level 10).
11
12 Lemma slot_as_agent_p (s : slot) : s < n.
13 Definition slot_as_agent (s : slot) := Ordinal (slot_as_agent_p s).
14
15 Definition slot_pred (s : slot) : slot := ord_pred k s.
16
17 Definition externality (s : slot) :=
18 let j := slot_as_agent s in ’bid_j ’(ctr_(slot_pred s) ’(ctr_s)).
19
20 Definition price i := if i < k then \sum_(s < k | i.+1 <= s) externality s else 0.

Listing 4.3: VCG for sponsored search

4.2.3 VCG for sponsored search in the industry

Previously to Facebook’s adoption of VCG for search in 2006, both Vickrey auctions and VCG
mechanisms were underrepresented in marketplaces, due to the complexity of the mechanism, the
overall low revenue for the auctioneer and the need for users to have to reveal sensitive information
such as their true value. These drawbacks of the mechanism are well known since the 1990s [75]
[76] [77].

For a social network platform such as Facebook, the argument for adopting a welfare-maximizing
auction for advertisements is that, in theory, users will only be shown advertisements that are rel-
evant to them, and thus won’t be overwhelmed with advertisements that would impair their ex-
perience in the platform. According to John Hegeman, Facebook’s chief economist, VCG aids
Facebook on its long-term focus on creating value for the participants, by prioritizing content
quality over short-term revenue [83].

Facebook employs an hybrid version of VCG for sponsored search in which there is an ex-
tra factor associated to each participant, named the “quality score”, an assessment from public’s
feedback on the quality of the advertisement. In order for advertisers to participate in Facebook’s
auctions, they first need to create an advertisement campaign. To do so, the advertiser needs to se-
lect the target audience for the campaign, composed according to an age group, a location as well
as selected keywords of interest for the ad. It is also needed to set-up the budget and longevity of
the campaign. To compute the bids, Facebook offer a few alternatives; while it is still possible for
an advertiser to set its bids manually, it is discouraged, and advised only for ”advertisers who have
a strong understanding of predicted ads interaction rates”. Otherwise Facebook calculates the bid
for participants, taking in account the budget and longevity of the campaign, as well as the intent
of the advertiser.

70

From Meta Business Help Center 2 and other sources of sources of information Facebook
provides about its auctions for advertisers, it is never explained the type of auction that is taking
place. It is stated that “ we won’t charge you more than your bid to show your ad” [84], but
the auction mechanism works as a black-box for the advertisers. The problem with this lack of
transparency is that there’s lot of trust that advertisers need to place on Facebook. An advertiser
has to trust that Facebook won’t disclose or sell their information, such as budget to competitors.
Discouragingly, Facebook doesn’t have a great reputation of respecting the privacy of its users’
data. As proof of this sorry state of affairs among many other lawsuits concerning privacy of user’s
data, one can recall the Cambridge Analytical data scandal of 2018 [2], in which personal data
belonging to millions of Facebook users was collected without their consent by British consulting
firm Cambridge Analytica, predominantly to be used for political advertising.

Regardless of privacy issues, advertisers have also to take Facebook’s word on the validity of
the auction results, and, if the advertiser uses the platform’s automatic bidding tools, they also have
to trust the platform’s return estimations. Recently, evidence have arise of Facebook’s dishonesty
on revenue estimation for advertisers. On March 29, 2021, an US District, Judge James Donato,
from San Francisco, ruled that a lawsuit accusing Meta Platforms Inc’s Facebook of deceiving
advertisers about its “potential reach” can proceed into a class action. This will allow potentially
millions of individuals and businesses to sue as a group [3].

In consideration of these lack of trust and transparency in a digital advertisement platform, we
believe that sponsored search would greatly benefit from the trust and transparency of blockchain
technologies. In the next chapters, we explore a VCG for sponsored search implementation in
smart-contract form that takes advantage of the transparency and trust of public blockchains to
build more trustworthy solutions for VCG-like mechanisms.

2https://www.facebook.com/business/help

https://www.facebook.com/business/help

71

CHAPTER 5

VCG FOR SPONSORED SEARCH IN SMART
CONTRACT FORM: EXPERIMENTS FOR
PERFORMANCE EVALUATION

Dans ce chapitre, nous présentons les implémentations de VCG pour la recherche en tant que
contrats intelligents, et nous réalisons deux études de référence en utilisant ces contrats comme
base pour comparer différents systèmes de blockchain. Notre intérêt pour ce travail est double : (1)
comparer différents systèmes de blockchain en tant que plateformes pour les contrats intelligents et
(2) analyser l’impact des plateformes de développement distribué sur les mécanismes d’enchères
tels que VCG pour la recherche.

La section 5.1 met en contexte le manque de rigueur scientifique dans les comparaisons de
blockchains et souligne l’importance de la recherche présentée ici.

La section 5.2 présente notre implémentation directe de l’algorithme VCG pour la recherche
en tant que contrat intelligent, à la fois en Solidity pour Ethereum et en SmartPy pour Tezos. Ces
contrats servent de base à nos comparaisons de référence.

Cette étude comparative est divisée en deux parties. La première, présentée et discutée dans la
section 5.3, se concentre sur la comparaison de la blockchain Ethereum, fondée sur la preuve de
travail, populaire, avec l’infrastructure plus avancée fondée sur la preuve d’enjeu de Tezos.

La deuxième partie, dans la section 5.4, se concentre sur l’impact des mises à jour récentes
du protocole Ethereum, notamment la solution de preuve d’enjeu (PoS) de la couche 2 offerte par
Polygon et la mise à jour Ethereum Merge qui a introduit PoS dans la chaı̂ne.

In this chapter, we present implementations of VCG for search as smart contracts, and perform
two benchmark studies using these contracts as a basis to compare different blockchain systems.
Our interest for this work is two-fold: (1) to compare different blockchain systems as platforms
for smart contracts and (2) analyse the impact that the distributed development platforms have on
auction mechanisms such as VCG for search.

Section 5.1 contextualizes the lack of scientific rigor in blockchain comparisons and underscore
the importance of the research here presented.

Section 5.2 presents our direct implementation of the VCG for search algorithm in smart con-
tracts, in both Ethereum’s Solidity and Tezos’ SmartPy. These contracts serve as a basis for our

72

benchmark comparisons.
This benchmark study is divided in two parts. The first, presented and discussed in Section 5.3,

focuses on the comparison of the popular, proof-of-work-based Ethereum blockchain with the
more advanced, and proof-of-stake-based, Tezos infrastructure.

The second part, in Section 5.4, focuses on the impact of recent updates to the Ethereum proto-
col, namely the Layer 2 proof-of-stake (PoS) solution offered by Polygon and the Ethereum Merge
update that introduced PoS into the chain.

5.1 Blockchain comparison

Although Bitcoin already dates from 2009, blockchain systems are still a fairly recent technology,
just recently attaining mass attention1. The recent economical success of cryptocurrencies [85]
[86] [87] and other decentralized tokens, e.g., Non-Fungible Tokens (NFTs) [88], could explain the
many different alternative blockchain systems that appeared in the last decade, Ethereum (2015),
Tezos (2018), Avalanche (2020), Polkadot (2020) and Polygon (2020), among others.

The recent sprouting of different blockchain systems, each with their own coins, consensus
mechanisms, smart contracts, wallets, clients, and many more technical details, makes it difficult
for researchers, investors, developers and general users to choose a system. Every new release
of a new blockchain system, or an update to a new one, is always followed by press releases
and blog posts boasting how better this new version is compared to the market staples, with the
description of new consensus protocols, listings of faster of transaction times and/or promises of
scalability [89] [46]. Although there are comparisons and surveys of blockchain systems [90] [91]
[92] [93] [94] [95], there is still a lack of an agreed-upon, reliable method to compare different
systems [96], on top of what we believe to be a lack of scientific rigour in the way the existing
comparisons are managed.

We judge that with the in-depth comparative analysis below of our chosen blockchains as plat-
forms for VCG for search contracts, we collaborate to the challenge of defining a proper way to
compare different blockchain system, at least from a smart-contract point of view.

5.2 Naive VCG for search smart contract

For this benchmark study that intends to test and compare different blockchains as development
platforms for smart contracts, we use a naive version of VCG for search. We refer to this VCG
implementation as ”naive”, because it is a direct translation of the VCG for search algorithm to a
smart contract form, without taking into account the repercussions that a distributed/public imple-
mentation can have on the auction algorithm. This version is not only utilized for our benchmark
study of different blockchains, but it serves as basis for our study of the implications that the

1Google trends (trends.google.com) reveals that the peak of interest in the term ”blockchain” was in De-
cember 2017, which coincides with the (at the time) Bitcoin record value of $19,650

trends.google.com

73

blockchain approach can have on the chosen auction mechanism (see, for a discussion of this kind
of impact, Chapter 7).

Implementing on a given blockchain infrastructure VCG for search as a smart contract depends
on the programming language adopted by the blockchain platform. In this thesis, we implement
VCG for search using two distinct languages: Solidity, for Ethereum and other Ethereum-Virtual-
Machine-(EVM)-compatible chains, and SmartPy, for the Tezos blockchain. We strive to have
similar code for both implementations, in order to make the comparison as fair as possible. For
the presentation of the contract, we use Solidity in code examples, since its usage is more intuitive
than SmartPy.

A typical contract execution can be described by a sequence diagram (see Figure 5.2). There
are two types of actors involved, auctioneer and bidders, the same as in every auction. The whole
process is divided into three parts. First is the auction setup; for it, the auctioneer calls the function2

openAuction[uint[] calldata CTRs], which starts a new auction, using the provided
argument as the appropriate CTRs values to be auctioned. Once the auction is opened, bidders can
call bid(uint) to store their bids in the contract. Once the bids are received and the auction
can be closed, it is up to the auctioneer to perform the needed closeAuction transaction. The
contract will then generate the VCG-specific list of winners and their respective prices.

As mentioned in Section 3.4.1, smart contracts are characterized by their storage (estate) and
code (functions). We discuss below these two key parameters for our VCG implementation.

5.2.1 VCG contract storage

The following data structures are used to implement VCG for search3:

• owner(address), the address of the user who owns the auction smart contract and has
the role to act as the auctioneer;

• isOpen(bool), a flag indicating if an auction is currently opened;

• ctrs(uint[]), the array of CTRs of the slots being auctioned;

• bids(uint[]), the array of bids sent by the bidders;

• agents(address[]), the array of addresses of the bidders;

• prices(uint[]), the array of prices updated at the end of the auction with their proper
values.

2The uint type denotes unsigned integers; the [] notation is used to introduce arrays of variable length; the
keyword calldata is used to indicate that a value is located in the argument storage.

3The bool type is used for booleans; address is the Solidity builtin type for identifying participants.

74

Figure 5.1: Sequence diagram of the VCG for search smart contract

5.2.2 Public functions

Here we specify the main public functions (these would be called “entry points”, in SmartPy) of
the VCG for search contract (only the bid function is not reserved to the contract owner role):

• transferOwnership transfers the contract ownership;

• openAuction opens an auction, providing it an initial ctrs array argument;

• bid enables one bid from a participant to be received by the contract (its value argument is
stored in bids, while the originator address is registered in agents);

• cancelAuction cancels the auction (the bids and agents’ addresses are erased);

75

• closeAuction closes the auction, sorts the bid list, via insertion sort, and updates the
prices array with the proper VCG for search values.

In order to perform the sorting of bids required when closing a VCG auction, our contract imple-
ments the “insertion sort” algorithm. This choice was first adopted with the intent of incrementally
sorting the bids as they arrive through the different bidding transactions. It became however ap-
parent that later bidders would need to have to bear with higher transactions fees, since the list
of bids would be increasing along the bidding process, leading to possible longer insertion steps,
which could be considered as unfair. Moreover, through the gas used by a bidding transaction,
one could have inferred some information about the number of previous bids and thus gain some
insight about one’s chance of winning the auction, creating again unfairness and possible bias.

Consequently, we decided to exclude the sorting of the bids from the bidding phase, including
it instead inside the closeAuction function, as to make the auctioneer bear the costs of sorting.
Although insertion sort is not adapted to large sets [97] [98], we decided to keep this already
existing implementation; since both Solidity and Tezos’ contracts are the same in this regard, the
exact choice of sorting algorithm doesn’t affect our comparison analysis.

5.2.3 Test protocol

Our benchmark study relies on a unit test that performs the following transactions on each tested
blockchain:

• deployment of one VCG smart contract per auction;

• opening of an auction with a specified set of CTRs;

• bidding phase, during which a variable number of bids are issued to simulate participants;

• auction closure, producing tables of winners and prices.

We opted to deploy a new contract each time a test is performed to better track the costs incurred
by the addition of more storage to a contract (e.g., the burned XTZ for Tezos, see Section 3.5.3.3).

5.3 Proof-of-work and proof-of-stake benchmarks

Our first benchmark study came from the desire to compare two smart contract platforms with
two different consensus approaches, proof-of-work from Ethereum and proof-of-stake from Tezos.
This study was realized between the last quarter of 2020 and the first quarter of 2021, and the
results were gathered in an article titled “Blockchain Performance Benchmarking: a VCG Auction
Smart Contract Use Case for Ethereum and Tezos” [7] and presented in the Fourth International
Symposium on Foundations and Applications of Blockchain 2021 (FAB ’21).

76

5.3.1 Ethereum versus Tezos

Ethereum’s launch in 2016 marked the start of the second generation of blockchains, due to its in-
troduction of smart contracts that enabled the appearance of decentralized applications. Following
the success of Ethereum, a myriad of different blockchain platforms supporting smart contracts
emerged on the crypto scene, e.g., Tezos, to the point that today, choosing a blockchain system
to host a so-called “distributed application”, or dApp, is no straightforward choice. Indeed, the
parameters to consider are plentiful: popularity of the blockchain, prices, technological particular-
ities, compatibility with other chains, environmental impact, to cite a few.

As presented in Section 5.1, we believe that more scientific work needs to be done in the
way blockchain comparisons are presently conducted. We intend to contribute to this effort by
the present analysis of two key architectures, Ethereum and Tezos, using a real-life use case, the
Vickrey-Clarke-Groves auction for sponsored search (VCG) algorithm.

5.3.2 Development and tests

Both blockchains provide online integrated development environments (IDE) for programming
and testing smart contracts: Remix IDE4 for Solidity and SmartPy IDE5 for SmartPy/Tezos. Both
IDEs’ standard method for testing is to simulate the contract in a sandboxed blockchain [99]; if
this is appropriate to check the functional side of smart contracts, it is not representative of the
full-fledged behavior of an actual blockchain. To provide performance results that we believe to
be more pertinent, we opted to test our VCG contract in “testnets”, i.e., Ropsten for Ethereum and
Delphinet for Tezos, which are bona fide versions of the corresponding blockchains dedicated to
tests, and but without requiring to pay for smart contract execution. This way we can expect to
experience the behavior of a full-fledged blockchain without paying the transaction fees, though
we still felt the need to validate the results by comparing our results to both mainnets’ actual data
(in Section 5.3.5.3, 5.3.5.4).

To deploy and communicate with our contracts, we used Truffle, a development environment
for smart contracts6, initially conceived for Ethereum development, but for which a Tezos inte-
gration, though still under development, presented enough functionalities for our tests. Truffle’s
contract abstraction provides means to interact with contracts via JavaScript. We present the in-
frastructure for both tests in detail in Sections 5.3.3.2 and 5.3.4.2.

Our full test for this first benchmark consists of a series of unit test auctions, each with in-
creasing numbers of participants and slots, namely 10 bidders with 4 and 8 CTRs, 20 bidders with
4, 8 and 16 CTRs and 50 bidders with 4 CTRs. Recall that each CTR correspond to a slot being
auctioned; thus, in a run with 10 bidders and 4 CTRs, we have 4 winners with corresponding prices
per click. We halted our tests after 50 participants and 4 slots because the gas consumption was

4remix.ethereum.org
5smartpy.io/ide
6trufflesuite.com

remix.ethereum.org
smartpy.io/ide
trufflesuite.com

77

1 event Open(
2 uint[] ctrs
3);
4 event EndAuction(
5 address[] agents,
6 uint[] prices
7);
8 event Bid(
9 address error,

10 uint price
11);

Listing 5.1: Solidity events

already high enough to reach the gas limit of a Ropsten block; we discuss the important impact
of this performance limitation in Section 5.6. We note n m an auction with n participants and m
slots.

5.3.3 VCG in Ethereum

We describe here the way VCG contracts are implemented within Ethereum, the first blockchain
to support smart contracts and still today the most popular choice for the development of de-
centralized applications. Starting with a presentation of the particularities of our Solidity con-
tract (Ethereum’s programming language for smart contracts [20]), we also present the infrastruc-
ture used for our tests and finish with an analysis of the limitations to our tests imposed by the
blockchain.

5.3.3.1 Solidity contract

The VCG contract in Solidity for the Ethereum blockchain is given in Appendix A and is rather
straightforward to understand. Yet, it exhibits some particularities compared to its SmartPy coun-
terpart, which we discuss below. For instance, in Solidity, one can use events (see Section 3.4.1.2)
to “subscribe” to the contract and monitor it’s functioning from outside of the blockchain, for
example from a front-end application. In our VCG contract, we introduced events for auction
opening, closing and bids (see Listing 5.1).

Another advantage of Ethereum is its support for inheritance between contracts. Our VCG
contract expands another small contract called “ownable”, to be able to grant the role of “owner”
to any account. In our VCG contract, “owner” has the power to be the auctioneer, or grant this
role to someone else. Solidity’s inheritance support is particularly useful when paired with secure
libraries for smart contract development such as OpenZepellin7, a repository of audited contracts

7openzeppelin.com

openzeppelin.com

78

and libraries, well known and utilized by the Ethereum community, which helps increase con-
fidence of the reliability of one’s contracts. Though there is an “ownable” contract available in
OpenZepellin’s libraries, we decided, for ensuring the self-contained nature of our test program, to
create our own for this benchmark.

Solidity has two types of memories: “storage”, for the contract’s stable state variables, reg-
istered in the blockchain, and “memory”, which only stores variables during the execution of a
transaction. Memory is cheaper to use (in terms of gas) than storage, because there is no need to
update the blockchain’ data when it is used [100]. The actual kind of memory used for keeping the
values of variables can affect their behavior, a prime example being arrays, which are crucial for
our VCG contract. Indeed, only “storage” arrays can be of dynamic size; “memory” arrays have
to be of fixed size.

The last point we need to mention is the presence of visibility qualifiers for the contract vari-
ables and functions. These can be one of the following: “external”, for functions only, meaning
that the function is to be called from other accounts, being them users or contracts; “public”, for
functions and variables that can be called/read externally and internally; “internal”, for functions/-
variables that can only be used internally or by derived contracts; or “private”, for functions/vari-
ables that can be called/read internally, but not in derived contracts [101]. A proper usage of these
qualifiers helps to keep the contract more organized. For instance, our most complex function,
closeAuction, uses two other internal functions: swap, to swap the positions of two array
items, and calculatePrice, to compute the winners and prices at the end of a VCG auction.

5.3.3.2 Ethereum Infrastructure

The infrastructure for Ethereum testing we used is summarized in Figure 5.2. Its main components
are:

• a Python script that generates JavaScript test files according to specific testing parameters;

• a Metamask crypto wallet that hosts fake testnet coins to pay for the test transactions;

• Truffle, the development environment that is used to forge the transactions, sign them with
HDWalletProvider and send them to Infura;

• HDWalletProvider, a library that can be used to sign transactions with accounts’ mnemonics;

• Infura, a development suite that provides APIs to access Ethereum networks;

• and, finally, the Ropsten network, the test blockchain running our VCG smart contract;

Testnets are free, but in order to be able to use them, one needs an account holding enough
testnet Ether (the cryptocurrency specific to Ethereum). We used the popular cryptocurrency wallet
MetaMask [33] to create an account for our tests. Metamask uses a mnemonic phrase from which

79

Figure 5.2: Infrastructure for Ethereum’s test

80

it will generate a public and private key pair; the corresponding account address is derived from
the last 20 bytes of the hash by the hash Keccak-256 function [102] of the public key [103]. With
an account created, one can use one of the available Ropsten so-called “faucets” applications to
obtain (free) Ropsten Ether coins. With this wallet setup ready, we utilized of a Python script to
generate the JavaScript tests files for both Ethereum and Tezos (see below).

The JavaScript test files were executed via a Truffle terminal. Truffle [56] is a development tool
for smart contracts, that offers a test framework for such applications. However, in order to execute
these tests in a blockchain (either mainnet or testnet), Truffle needs assistance. For performing API
calls to the Ethereum Ropsten network, we used Infura [58], a well-known Ethereum API provider;
this saved us the work of setting up an Ethereum client on our test machines, just for performing
contract tests.

Finally, since Truffle cannot sign transactions on its own, in order to do so, we used HDWal-
letProvider. HD (Hierarchical Deterministic) WalletProvider [104] obtains the test transactions
forged by the Truffle environment and signs them with our wallet’s mnemonic.

5.3.3.3 Limitations

Even though our test environment is rather sophisticated, it still suffers from limitation. Interest-
ingly for our comparison purposes, all these were derived from the Ethereum environment. At
the time of our tests, Ropsten was the testnet that better reproduced the behavior of the Ethereum
mainnet; therefore, all the restrictions suffered by our tests would be also experienced in the “real
world”, i.e., were we to run our contract onto the mainnet.

Gas limit During our tests, we were not able to close an auction with 4 slots and 50 bidders,
since such transaction would take close to 8 million gas.

In Ethereum’s mainnet, there is a gas limit for each block; currently, it is set to 15 million units
of gas (though, depending on user’s demand, it can be doubled to 30 million units of gas). For the
Ropsten testnet, the limit is much more flexible, regularly staying under 10 million. There is no
rule for how much gas a transaction can take to itself, as long as it stays within the block limit.
Theoretically, if listed with a high enough gas price to take the lead over all other transactions in
the mempool, it could be possible to fill a block with a single transaction. Yet, it is ultimately the
miner’s decision on how to allocate transactions to compose a block. From our experience with
the tests executed in this benchmark, we were not able to execute transactions with a gas usage of
more than 8 million gas.

Pending transactions Another problem that we encountered occasionally when executing our
test protocol were “pending” transactions. This occurs when a transaction is under-priced com-
pared to the network demand; if so, it stays in the so-called Mempool of to-be-run transactions
until a miner treats it.

81

In Ethereum, each transaction contains a number called “nonce” associated with the user’s
address. This nonce is the number of transactions sent by that given address, which has to be
always increasing; for example, the system will not allow a user to submit a transaction with
nonce 2 before one with nonce 1 is treated. This is a measure introduced to prevent double-
spending [105].

When a transaction is pending, one cannot use the same address to send new transactions, until
the pending one is treated. This is a big hindrance for our scripted test approach. To get rid of
a pending transaction, we had to forge a substitute one with the same nonce used by the pending
transaction. Since this situation was not managed by our test script, each time a transaction was
pending for a long period of time, the test run had to be put to a halt.

Although we list pending transactions as a limitation, it is in fact a consequence of our test
approach, i.e., to try to automate blockchain transactions without taking explicitly into account
this issue.

High transaction prices and faucets As already mentioned, this benchmark study was con-
ducted between 2020 and 2021, when interest for Ethereum were at an all-time high, resulting
in a fierce competition for block space, even on testnets, resulting in high gas prices on Ropsten.
Therefore, our wallet would be depleted after just a couple of test runs, and we would thus need to
often replenish it via Ropsten faucets, which were not always reliable, due to the high number of
users at the time. This was a significant hindrance at that time.

5.3.4 VCG in Tezos

As done for Ethereum, in this section we present the Tezos development of the VCG for search
contract.

Tezos is a third generation blockchain, with a proof-of-stake consensus and a number of
smart contract programming languages that were, in particular, designed for easy formal verifica-
tion [106]. Among these programming languages for smart contracts, the main ones are SmartPy
and Ligo [107], which are both compiled into the lower-level Michelson dialect, the domain-
specific, stack-based language used for the implementation of Tezos’s smart contracts [108]. For
our Tezos VCG implementation, we opted for SmartPy as our programming language, since it is
widely used and offers a new twist on programming contracts via a kind of high-level metapro-
gramming approach.

The infrastructure for our test is based on Ethereum’s (presented in Section 5.3.3.2), and we
present the main differences in the following subsections. Finally, as with Ethereum, we present
the limitations that the Tezos’ development environment imposed in our tests.

82

1 @sp.entry_point
2 def bid(self, params):
3 l = sp.local(’l’, sp.len(self.data.bids))
4 self.data.bids[l.value] = (params)
5 self.data.agents[l.value] = sp.sender

Listing 5.2: SmartPy entry point for bidding

5.3.4.1 SmartPy contract

SmartPy is a high-level smart contract library for Python8. SmartyPy has special constructs for
the development of contracts, though the syntax is regular Python. Note in particular that even
SmartPy-dedicated control structures have been introduced, for instance for while loops, which
makes for a somewhat unusual programming model.

When starting a contract, it is first necessary to import the SmartPy library into the contract
Python file, via import smartpy as sp. The VCG contract starts by defining a VCG class,
inheriting from the “contract” class from SmartPy class SponsoredVCG(sp.Contract).
SmartPy contracts do not provide functions as do their Ethereum counterparts; instead they offer
entry points that users have to specify when calling a Tezos smart contract. For example, the
bidding entry point of the VCG contract is defined in Listing 5.2.

Another distinguishing point of SmartPy is the need to specify the types for expressions, which
normally is not required in Python, but is required in SmartPy’s target language, Michelson [110].
For example, we can see the casting to natural number nat() of the indexes of our bids and agents
mappings in the (sub) entry point insertSort() in the Listing 5.3, the entry point for insertion
sort, used in the VCG contract to compute the winners. As one can see on Line 15, a function to
cast values to naturals has been introduced in order to get less cluttered code. The full SmartPy
contract can be found in Annex B.

5.3.4.2 Tezos infrastructure

The infrastructure for the Tezos tests is diagrammed in Figure 5.3. By comparing it with Ethereum’s
counterpart in Figure 5.2, one can observe that the Tezos one is less complex, which hints to easier
development. Unfortunately, on the other hand, Tezos is considerably less popular than Ethereum9,
which reflects in limited support and community of developers, which in some sense is reflected
in our infrastructure. As mentioned before, Tezos offers a powerful IDE10 for the development,

8Recently, SmartPy grew to include both TypeScript and OCaml syntaxes for its contracts [109], with SmartPy’s
IDE (smartpy.io/ide) support still in beta and alpha testing, respectively

9At the time of writing, Tezos has 2.9M accounts [111], while Ethereum sports a staggering 201.23M ac-
counts [112]

10smartpy.io/ide

smartpy.io/ide
smartpy.io/ide

83

1 @sp.sub_entry_point
2 def insertSort(self, param):
3 self.data.isOpen = False
4 jx = sp.local(’jx’, param)
5 jint = sp.local(’jint’, sp.to_int(param))
6
7 def swap(i):
8 tempBid = sp.local("tempBid", self.data.bids[nat(i)])
9 tempAgent = sp.local("tempAgent", self.data.agents[nat(i)])

10 self.data.bids[nat(i)] = self.data.bids[nat(i - 1)]
11 self.data.agents[nat(i)] = self.data.agents[nat(i - 1)]
12 self.data.bids[nat(i - 1)] = tempBid.value
13 self.data.agents[nat(i - 1)] = tempAgent.value
14
15 def nat(x):
16 return sp.as_nat(x)
17
18 sp.while ((nat(jint.value) > 0) & (self.data.bids[nat(jint.value)] >=

self.data.bids[nat(jint.value - 1)])) :
19 swap(jint.value)
20 jint.value -= 1

Listing 5.3: Casting indexes to natural in SmartPy

Figure 5.3: Infrastructure for Tezos testing

84

deployment and test of its smart contracts, but since our goal is to have the closest comparison
possible between both systems, one needs to go beyond this simulation environment.

In Tezos’ case, we did not use a MataMask wallet to create a test account; instead, we relied on
pre-constructed testnet wallets available11, supplied by the Tezos itself. Fortunately, there is also
an experimental version of Truffle for Tezos, which enabled us to execute the same tests in both
blockchains. In Tezos’ case, a HDWalletProvider to sign transactions is not needed, since Truffle
does it, when a private key is stored in a proper configuration file. Finally, the last difference
between both infrastructures is that we do not needed Infura to connect to the Delphinet testnet.

5.3.4.3 Limitations

Compared to the Ethereum’s tests that were plagued with network issues, Tezos’ ones were smoother,
probably due to the proof-of-stake consensus, but also to the lower number of network users. Some
of limitations encountered in this case were related to the infrastructure. We started our tests using
Tezos’ Tezster-CLI [113], a tool box to build, deploy and interact with Tezos’ testnets, though it
proved to be unfit for out serialized test approach; fortunately we could use the Truffle integration
for Tezos, which allowed us to reuse part of the infrastructure used for the Ethereum tests. Yet,
because Tezos’ Truffle integration is still experimental, it is very rigid in its parameters, and we
were not able to configure our own gas limit or gas prices; they remained preset by Truffle.

Finally, the biggest limitation came from Tezos’ self-amending properties [114], which enables
the chain protocols to update without the need of a hard fork of the blockchain. Upgrades to the
chain occur every few months, and every time one happens the chain becomes unstable and some
tools become buggy, due to incompatibilities with the new protocol. During the development of
our tests, we witnessed the change from the Carthage [115] proposal to the Delphi [116] one,
which forced us to rework our test scripts. While the Edo [117] proposal update was approaching,
in November 2020, we felt pressured to finish all our tests in time, in order to avoid possible
complications with the new update. This is a design issue specific to Tezos which may, as one can
imagine, have a long-lasting impact on the popularity and ease-of-use of this infrastructure, at least
until a solution to this important problem is provided.

5.3.5 Results

Our comparison analysis between Ethereum and Tezos when running VCG for search auctions fo-
cuses on three key performance parameters: programmability, performance and cost. The metrics
for our comparison are derived from the data available through Truffle and the blockchains’ block
explorers (see Section 3.6.1), Etherscan12 for Ethereum and TzStats13 for Tezos. The parameters
selected were gas and burned coins, block time and transaction fees cost (in dollars) as metrics

11faucet.tzalpha.net
12ropsten.etherscan.io
13tzstats.com

faucet.tzalpha.net
ropsten.etherscan.io
tzstats.com

85

for our comparison’s parameters. Gas and burned coins are used for computation (CPU, storage)
performance assessment; they also help illustrate how both platforms units of gas are not directly
comparable. “Wall-clock” execution time could be considered as the time performance parameter,
but when working with smart contacts, since it is directly linked to each blockchain’s block time,
we consider the latter as a more representative time comparison parameter. Finally, monetary con-
siderations are strongly linked to blockchain technologies, so we look at cost issues related to our
contract execution. Cost is, in some sense, a better parameter for comparison than the previous
ones, since it is a good indicator of the practical usability of smart contracts and blockchains.

5.3.5.1 Programmability

The first, important, though somewhat subjective, point of comparison between the two blockchain
environments is the ease of programming and interacting with smart contracts.

Ethereum’s main language for writing smart contracts is Solidity, similar to Java and C++,
which we judge to be straightforward for anyone accustomed with object-oriented programming.
Ethereum also has a very active community of developers, with a fair amount of support for So-
lidity developers. Ethereum Improvement Proposals (EIPs) [24], as by their namesake, are im-
provement proposals that are discussed by the Ethereum community, and in the case of smart
contracts generate Ethereum Request for Comments (ERCs) [118] that are documented standards
for the development of contracts14. Standards are very important for smart contracts development
in Ethereum. Since trust and security are crucial for the development of dApps, the adoption of one
of the many agreed-upon standards for contracts is a way to give some credentials to a contract.
There are repositories of verified and audited contracts, implementing different ERCs and other
contract standards, which, again, can be used to boost user confidence in a dApp [119].

According to Analytic Insight’s survey on Ethereum development tools, ”Ethereum develop-
ment tools are one of the best options to develop dApps or smart contracts” [120]. And, indeed, big
staples of the crypto-industry are being first designed to serve the Ethereum blockchain, namely
Metamask [33], Truffle [56], Hardhat [121] and Infura [58]. All these tools, as we could attest
during our tests, are highly effective, making the process of deploying and communicating with a
blockchain streamlined. It is also worth noting that the Ethereum organisation offers interesting
and educational tools such as Solidity’s IDE, Remix15, which offers the possibility to execute trans-
actions broken down by EVM op-codes and to follow the changes in storage and gas consumption.

Tezos, on the other hand, is considerably less popular than Ethereum, with support either tech-
nical or from the community of developers being more scarce. For our development and tests, we
had to rely on tools developed by the Tezos Foundation, and be in contact directly with the Tezos’
team. In terms of programmability, Tezos offers four languages for smart contracts, including

14ERCs are very important for smart contract development in Ethereum, the most prominent being ERC20 [26] and
ERC721 [28], which define fungible tokens (other coins in the Ethereum network) and non-fungible tokens (NFTs)
respectively.

15remix.ethereum.org

remix.ethereum.org

86

Michelson, the stack-based language that is, in the end, executed inside its blockchain. As already
mentioned, we opted for SmartPy, a Python library; scripts are then regular Python scripts that use
SmartPy constructs. SmartPy, in our experience, presented a steeper learning curve compared to
Solidity; first, there is the need to specify types, which are not native to Python and, at first, felt
very unfamiliar; and second, SmartPy relies on meta-programming, i.e., the functions described in
the program are used to construct a smart contract that will only be executed once the contract is
deployed. Meta-programming can be a bit daunting for inexperienced users.

Finally, in terms of technical support, Tezos proved more difficult to put to use than Ethereum.
We started our tests with Tezster-CLI, a specific tool for Tezos’s contracts, which happened to be
not easily adaptable to our sequence of unit tests. Fortunately, there was an experimental version
of Truffle for Tezos, which not only was more adapted to our type of test, but also brought our
infrastructure closer to Ethereum’s.

5.3.5.2 Gas and Burned

The experimental data obtained vary significantly according to the phase of the VCG auction pro-
cess and the blockchain on which they run.

Deployment. On both blockchains, the gas for each deployment of a VCG contract is always the
same. Ethereum consumes 976,061 gas, while Tezos needs 24,017 gas while burning 1.183
XTZ for the allocation of 4,475 bytes.

Opening. When opening an auction, the ctrs are stored in the blockchain. As can be expected, the
gas and burned increase linearly with the number of slots being auctioned.

Bidding. Bids behave differently on each blockchain. Ethereum is more homogeneous, with the
first bid transaction always needing more gas, since the first push sets up the storage for
the array of bids and agents. The first bid consumes 105,917 gas, while the subsequent bids,
having only to insert a uint and an address, always consume 75,917 gas.

For Tezos, gas consumption increases with a mean of 208.2± 1.1 (s.d.) with each subsequent
bid, while the amount of coins burned is constantly 0.00925 XTZ or 0.0095 XTZ, depending
on the size of the bid.

Closing. The close auction function/entry-point is the most relevant for our comparison, since the
bulk of the VCG algorithm is performed here. The array of bids is sorted (we implemented
a simple insertion-sort algorithm), and this sorted array is used in the third step of the VCG
algorithm in order to compute the prices for the winners. Figure 5.4 is a graph of the closing
gas for each of our tests. Note that it was not possible to close the 50-bid auction in Ethereum,
the gas surpassing what the Ropsten network is accepting as gas limit for a single auction.

87

Figure 5.4: For each VCG contract n m closing transaction, gas consumption on Ethereum (left)
and gas, fee and burned for Tezos (right, where the Y axis scale is in gas and µXTZ).

5.3.5.3 Block time

For Ethereum’s main network, using Etherscan, we measured the block time at 14.82 ± 1.63 (in
seconds), while the Ropsten network clocks at 14.5 ± 1.2 seconds. Measuring Ropsten directly
from Truffle, we got a mean of 14.16± 7.72. For Tezos, its main network is advertised as providing
a constant block time of 60 seconds, while Delphinet uses half of it, i.e., 30 seconds. Using Truffle,
our tests on Tezos showed a block time of 43.07± 14.63 seconds. Note that we are not waiting for
the suggested confirmation blocks.

5.3.5.4 Price

For our experiment, coins on testnets are free, so the ETH and XTZ amounts that were spent for
this benchmarking had no actual value. Yet, an approximate prediction of the prices one would
have to pay to run our VCG test can be obtained by taking the main network prices for both of
these coins. At the time of our experiment (Mar 10 2021, 10:24 UTC), one ETH is valued at
$1,827, and one XTZ is $4.25.

For Ethereum, we used ETH Gas Station16 to get a quote for gas prices. For test purposes, we
used the price category “Standard” (91 Gwei/gas, at the time of test), which led to the following
prices for the deployment and bidding phases: $162.27, and $17.6 (first bid) and $12.6 (subsequent
ones). The varying closing phase prices can be deduced from Figure 5.4; for instance, the price for
a 10 4 auction was $49.8.

For Tezos, we used as transaction fees the ones automatically suggested by Truffle, while the
burned costs, related to storage increments, are 0.00025 XTZ for 1 byte at the time of test, for both
the main and testnets. The prices for the deployment phase are $0.03 for fee and $5.02 for burned.
For the bidding phase, the fee paid by each bidder increases by $0.000088 ± 0.0000029 each

16ethgasstation.info

ethgasstation.info

88

time, while the burned remains somewhat constant, between $0.039 and $0.04. For the closing
phase, one can refer to Figure 5.4 to get an estimate, where, for a 10 4 auction, the fee paid by the
auctioneer would be $0.133 and the burned, $0.028.

5.3.6 Discussion

Our goal with this benchmarking study was to compare the performance of two very similar smart
contracts on Ethereum and Tezos. Translating a Solidity contract to the Tezos blockchain environ-
ment proved to be quite difficult, even though this could be somewhat expected since Ethereum is
the most popular dApps platform, with thus a lot of support from its community, while Tezos, at
the time of this writing, is much less used. From our experience, most complications with Tezos
are inherent to its design philosophy. In particular, the self-amending property of this blockchain
translates into testnets being abandoned every time there is a new protocol upgrade, which led
to temporary complications for our study, either because of bugs or because some tools were not
adapted to the new testnet as fast as expected.

Ethereum’s scalability characteristics is a big drawback for our VCG implementation. The gas
limit for blocks implies a very small limit for the number of bidders, especially when compared to
standard VCG auctions in industry. Adding the system’s popularity to the scalability problems is
rising gas prices, which results in a high average transaction fee of $39.49 (recorded in February
23, 2021). These values could be considered acceptable for a transfer-value system, but, for a
dApps platform, they could lead to users abandoning the system. However, the EIP 1559 [122]
proposal to reform the Ethereum fee market and the introduction of a proof-of-stake approach
within Ethereum Merge are two welcoming changes that could positively impact the Ethereum
results in our benchmarking.

5.4 Benchmarking Ethereum’s upgrades

Our first benchmark made clear the limitations of proof-of-work (PoW) in face of proof-of-stake
(PoS); Tezos outperformed Ethereum in terms of scalability and price. Ethereum’s popularity grew
above what the chain’s PoW consensus could support, reaching a critical point between 2020 and
the first quarter of 2021 (period in which we performed our comparison test between Ethereum
and Tezos, in Section 5.3.1). DappRadar’s17 “2020 Dapp Industry” Report [123] describes that, in
a record breaking year for transaction volume for the blockchain industry, with 270 billion transac-
tions, 95% of these came from the Ethereum ecosystem. The corresponding competition for space
in a block made the gas prices rise considerably, as is visible on the “Ethereum average transaction
fee graph” from the investment research platform YCharts 18, in Figure 5.5, and, as shown in our
first benchmark comparison in Section 5.3.6, the high transaction prices limits the usability of the

17dappradar.com
18ycharts.com

dappradar.com
ycharts.com

89

Figure 5.5: Ethereum Average Transaction Fee [123]

chain. Finally, in face of the high energy consumption and negative ecological impact of proof-
of-work consensus, this technology is being criticized at large, with many condemning blockchain
technologies in general as environmental threats [124] [125] [126].

In face of the aforementioned issues, the blockchain industry in general is trying to depart
from technologies that rely on a proof-of-work consensus. DappRadar’s 2021 “Dapp Industry
Report” [127] reveals a migration of users from Ethereum to other PoS-based blockchains. No
longer encompassing 95% of dApps transactions, Ethereum now holds 60% of this market, due
to more advanced and appealing systems such as BSC, Solana, Terra, Avalanche, Hive, or Wax
entering the field while offering more robust alternatives to the one presented by Ethereum.

Yet, while new independent chains are appearing, there are “third party” groups that still wager
in Ethereum and want to profit from its success. One example is the recent appearance of so-called
layer 2 solutions. The Ethereum Foundation defines layer 2 as “a collective term to describe a
specific set of Ethereum scaling solutions. A layer 2 is a separate blockchain that extends Ethereum
and inherits the security guarantees of Ethereum” [128]. These solutions take advantage of the
underlying security infrastructure of Ethereum, but offer lower transaction prices. The most widely
adopted layer 2 solution is Polygon PoS, a proof-of-stake blockchain that operates in parallel to
Ethereum and is EVM-compatible, meaning that it can run Ethereum’s smart contracts.

Ethereum is also actively trying to update its protocol. First, on August 2021, Ethereum acti-
vated the London fork, which implemented the EIP-1559 [122], to remodel its gas system. And
the bigger update to the chain yet, known as “Ethereum Merge”, occurred in September 2022; it
intends to add PoS functionalities to Ethereum [46].

We present below the results of a second experiment based on VCG for search on these new
infrastructures, and compare them to the original Ethereum.

5.4.1 Target

For our second benchmark, we decided to stay solely within the Ethereum system, its better pro-
grammability and support, in terms of tools and community, in our opinion, offering more possibili-

90

ties for the progress of our VCG contract development and analysis. For comparison with Ehereum
mainnet, We chose two of Ethereum’s improvement solutions: the layer 2, PoS-based “Polygon
PoS” and Ethereum Merge (in the form of an Ethereum Merge testnet, since the real update was
scheduled for September 2022 [129] and our tests took place in April 2022). With this comparison,
we want to answer two questions, the first being if these upgrades solve the scalability problems
revealed by our first benchmark, and the second, how these two solutions compare to each other.
This is interesting because this analysis will assess the relevancy of the layer 2 Polygon solution in
face of the upcoming Ethereum Merge. In this comparison, since all chains are Ethereum-Virtual-
Machine (EVM) compatible, the Solidity contract and much of the infrastructure presented above
is reusable, which renders our comparison as fair as possible.

5.4.2 Development and tests

As this benchmark focuses on EVM-compatible blockchains, it was possible to reuse our VCG
contract for all tests, as well as the infrastructure. This facilitated enormously the execution of the
tests and data gathering.

5.4.2.1 Development

In this benchmark study, the contract used is relatively close to the one used in the Ethereum and
Tezos benchmarks, with a few touch-ups and updates, mainly concerning the use of the Solidity
function “require”, one of Solidity’s state-reverting exceptions used to handle errors. We used it to
assert the proper phase of the VCG for search auction, which previously was made with a series of
conditional statements, to keep the code close to Tezos.

5.4.2.2 Infrastructure

Our test infrastructure was kept very similar to the Ethereum version given in Section 5.3.3.2. This
time, all blockchains were compatible with “Truffle”, “Infura” and “MetaMask”, another point for
the increased fairness of this benchmark comparison.

A point of distinction between our benchmark tests is, that for this experiment, we did not use
our Python script; instead our test was automated in a single JavaScript file, taking advantage of
the test framework integrated in Truffle.

5.4.3 Test protocol

The test protocol is almost the same as the previous one described in Section 5.2.3. Once again,
we follow the pattern of deploying a contract, opening an auction with CTRs, bidding and finally
closing the auction. This time, we only executed one run, with 3 CTRs and 10 bidders, since we
thought this would be enough to provide a first-order comparison of both approaches, given the
regularities observed in the first benchmark experiment.

91

We first executed our test on the PoW Ropsten testnet19, considered to be our control case,
given its similarity with the current Ethereum standard. Then we continued with the execution of
the same test script in both Polygon’s main testnet and Ethereum’s Kilin. Polygon’s main testnet
is called Mumbai, which, the Polygon Foundation claims, ”replicates the Polygon mainnet” [130].
Kilin is another Ethereum testnet [131]. At the time of our benchmark test, it gave us the best
representation of how the Ethereum blockchain would behave after its update.

5.5 Results and discussion

We present below the performance results induced by the execution of the VCG for search bench-
mark on the two Ethereum upgrades mentioned above, and discuss them.

5.5.1 Ropsten PoW control case

Before we present the results from Polygon and Ethereum Merge, we first present the results for
our control case, Ethereum’s Ropsten tests.

5.5.1.1 Gas consumption

Compared to our first benchmark results from Section 5.3.5, the gas consumption changed due to
the changes made in the contract, as reported on Section 5.4.2.1, as well as due to possible changes
in the gas calculation by Ethereum.

Transaction Old VCG (gas) new VCG (gas)
Deployment 976,061 972,473
openAuction 122,847 126,539

First bid 105,917 112,516
bid 75,917 78,316

Table 5.1: Gas usage comparison between the old and new contract versions of VCG for search.

Table 5.1 compares gas consumption for equivalent transactions. Note that closeAuction
gas usage changes depending on the value and order of the bids, and since they were randomly
generated on our first benchmark, they are, as expected, no longer comparable.

19As part of Ethereum Merge effort, Ropsten was updated to proof-of-stake in May 2022; the organization was
updating the consensus mechanism of their testnets, as a rehearsal for the Ethereum mainnet merge. Our test was
executed on April 2022, one month before the update, so the network was still adopting PoW. As of today, July 2022,
the testnet has been deprecated. This is one additional example of the challenges that one has to address when doing
research on blockchain technologies.

92

5.5.1.2 Ropsten’s execution time

Once again, we took the ”wall clock” approach for our time measurement, but here, we adopted
a new technique to compute times, namely we took into account the block number of the block
where each transaction was added to the blockchain; this way, we can tell how many blocks each
transaction had to wait to be treated. And the ratio of block time vs. number of blocks should give
us a result closer to the block time as advertised by the chain.

Transaction Time (ms) Block number N. of blocks
openAuction 21,930 12216730 1

bid 33,016 12216731 1
bid 39,994 12216732 1
bid 36,064 12216733 1
bid 6,915 12216734 1
bid 13,895 12216735 1
bid 8,905 12216736 1
bid 5,932 12216737 1
bid 13,969 12216738 1
bid 35,888 12216741 3
bid 33,906 12216742 1

closeAuction 6,888 12216743 1

Table 5.2: Ropsten time of transaction with block number and number of blocks for an auction
with 3 CTRs and 10 bidders.

The wall-clock time average measured via our Truffle tests is 21.44±13.44 s. In Table 5.2, we
provide the results of a Ropsten test taking in account the block number in which each transaction
was added to the chain; we see an average of 19.44±12.87 s. The results, even when normalized
by block number, are still a far cry compared to the values announced by the Ethereum foundation
of 12 to 14 seconds of average block time [132].

5.5.2 Gas usage for EVM-compatible contracts

The concept of gas was introduced by Ethereum, as a ”unit that measures the amount of computa-
tional effort required to execute specific operations” [133]. The specific operations aforementioned
are the EVM opcodes [34], with each being associated with a gas cost [134]. In the EVM, gas con-
sumption is computed as the sum of the associated gas costs of all the EVM opcodes executed
during a transaction. Since for our benchmark we are executing the same test script in the same
contract in all blockchains, we expected for the gas used to be the same across the board.

As seen from Table 5.3, this prediction for gas used is met. It is worth mentioning that, while

93

Transaction Ropsten (gas) Matic (gas) Kiln (gas)
deployment 972,473 972,473 972,473
openAuction 126,539 126,539 126,539

First bid 112,516 112,516 112,516
bid 78,316 78,316 78,316

closeAuction 193,537 193,537 193,537

Table 5.3: EVM-compatible gas usage by transaction.

block explorers such as Etherscan20 list transaction fees in their native token currency, some chose
to list it in dollars as well, though if it is in a testnet, it is customary to set the price as $0. Con-
trastingly, Mumbai’s Polygonscan21 lists the transaction fees in dollars, in accordance with the
Polygon token price. This is most likely a strategy to highlight Polygon’s economical advantages
over Ethereum. We analyse these prices in Section 5.5.3.

5.5.3 Polygon PoS

Polygon PoS, in its origin, was an independent blockchain, named Matic [89]; it re-branded itself in
February 2021 [135] to offer scaling solutions, mainly to Ethereum. Polygon PoS is Polygon proof-
of-stake chain, which runs in parallel to Ethereum’s mainnet, and, supposedly, offers a cheaper
option for transaction executions, while relying on the safety and trust of Ethereum.

5.5.3.1 Gas and transaction fees

Since the gas consumption is the same in the different blockchains for this benchmarking study
(as seen in Section 5.5.2), we focus only here on a monetary comparison. To build the comparison
summarized in Table 5.4, we first verified the validity of Mumbai’s Polygonscan prices in USD,
by comparing them to our own estimations of the transactions fees in dollars. For our own calcula-
tions, we used Polygon mainnet’s prices for both the Polygon coin and gas cost. The price for one
Polygon coin (on Apr-24-2022) was $ 1.35, based on Yahoo! Finance’s listing 22. For the average
gas price, the same day, based on Polygon’s “PoS Average gas Price Chart” 23, we used 19.07
Gwei. With this setting, on average, the prices with mainnet data turn out to be 8.01 times larger
than the values provided by Polygonscan. Our understanding is that Polygonscan used testnet gas
prices to compute the prices in USD, which are unrealistic compared to mainnet, and thus cannot
be of much use for our comparison.

20etherscan.io)
21mumbai.polygonscan.com
22finance.yahoo.com
23polygonscan.com/chart/gasprice

etherscan.io
mumbai.polygonscan.com
finance.yahoo.com
polygonscan.com/chart/gasprice

94

To compare with Ethereum’s, we computed the transaction fees in USD based on the average
Ethereum coin price in USD and the average gas price provided on the day of the test (Apr-25-
2022) by YCharts24.

Transaction fees Ethereum (USD) Polygon (USD)
Deployment 164.29 0.025
openAuction 21.37 0.0032

First bid 19 0.0029
bid 13.23 0.0020

closeAuction 32.69.8 0.005

Table 5.4: Speculative transaction prices in dollars for Ethereum and Polygon.

From our collected data, one sees that Polygon is on average 6541.45 times cheaper than
Ethereum mainnet, comforting Polygon’s economical value as Ethereum’s layer 2 chain.

5.5.3.2 Execution time and block time

From our tests, the ”wall-clock” time for the execution of our transactions were on average 10.75±2.86
s, normalized, while taking in account the block numbers, we had 9.93±0.52 s. This quite con-
sistent, but not as fast as Polygon mainnet, which clocks on average at 2.3 s per block [136].
Compared to Ropsten results, presented in Section 5.5.1.2, Polygon’ Mumbai is faster and more
uniform, reflecting the impact of the different block production procedure of Polygon (described
in Section 3.5.1.1), which gains in consistency, compared to Ethereum’s PoW.

5.5.4 Ethereum Merge

Ethereum Merge is an update of the Ethereum network that had as main goal the introduction of
PoS to the network. At the time of writing, the so-called “merge” was scheduled for September
19 [129]25, though during our experiments, Ethereum was updating its testnets with the merge.
Which gave us the opportunity to experiment with the new chain ahead of time. Kiln, a merge
testnet provided by Ethereum, that was intended to function as Ethereum post merge, gave us the
opportunity to examine its behaviour with our VCG test.

5.5.4.1 Gas and transaction fees

Once again, the gas used by the transactions are the same (see Section 5.5.2), though this is a good
opportunity to explore Ethereum’s EIP-1559 [137] that became active in Ethereum’s networks

24ycharts.com/indicators/ethereum_price,charts.com/indicators/ethereum_
average_gas_price

25The merge update took place on September 15, 2022 [6]

ycharts.com/indicators/ethereum_price
charts.com/indicators/ethereum_average_gas_price
charts.com/indicators/ethereum_average_gas_price

95

on August 2022. EIP-1559 intends to overhaul Ethereum’s transaction fee, which has become
forbiddingly expensive, as we could attest in our first benchmark (section 5.3.6). As explained in
Section 3.4.4.2, gas price in EIP-1559 is now divided in a Base Fee and a Max Priority Fee, with a
price cap specified by Max Fee Per Gas.

We used gas prices estimations from Eth Gas Station26 for our comparison. For the time and
day of our analysis (July 24th 2022, 11:40am CET), Eth Gas Station lists Base Fee as 5 Gwei
($0.33/Transfer) and Max Priority Fee as 2 Gwei ($0.13/Transfer). Eth Gas Station also lists the
“legacy” gas price, which at the time of this comparison is 30 Gwei. For our comparison, we used
the ETH price of 1,603.49 USD. As we are able to attest by the Table 5.5, EIP-1559 prices are
in average 23.33% of the legacy Ethereum price. The benefits of the London fork are clear, and
have been reported in studies such as “Empirical Analysis of EIP-1559: Transaction Fees, Waiting
Times, and Consensus Security” [138].

Transaction fee Legacy gas (USD) EIP-1559 (USD)
Deployment 46.78 10.91
openAuction 6.08 1.42

First bid 5.41 1.26
bid 3.76 0.88

closeAuction 9.31 2.17

Table 5.5: Transaction fees in dollars: EIP-1559 versus legacy gas.

5.5.4.2 Execution time and block time

From our test’s measurements, the ”wall-clock” execution time was on average 21.27±8.02 s, and
taking into account the block numbers, we measured 15.11±5.52 s, which is very close to the
advertised 15 seconds per block. As with Polygon, Klin’s block production is faster and more
uniform than Ethereum’s PoW-based one.

5.5.5 Polygon versus Ethereum Merge discussion

Both Polygon and Ethereum Merge were conceived to improve (and capitalize, in Polygon’s case)
on the struggles that a PoW consensus inflicted on Ethereum, suffering as it approached its scalable
limits in between the end of 2020 and the first quarter of 2021, as shown by our first benchmark
study and Figure 5.5, which reflects the unacceptably high prices of Ethereum at the time. Through
our data gathered by our VCG tests, we were able to confirm the advantages of both Polygon and
Ethereum Merge over the current PoW-based Ethereum. Not only both PoS-based chains are faster

26ethgasstation.info

ethgasstation.info

96

and more consistent in their block production, but, in the case of Polygon, their transactions are
cheaper.

The more interesting discussion here, looking at the future of blockchain technology, is a com-
parison between Polygon and Ethereum Merge. With the recent update of Ethereum’s mainnet
(which took place as we were closing this document), will Polygon’s role as an Ethereum layer 2
still be relevant? From our experiments, we collected the data in Table 5.6, reflecting our results
in this comparison. Based on our data, Polygon has a clear advantage, both economically and in
terms of speed.

In terms of block time, though Polygon’s Mumbai is shown to be relatively close to Kiln, we
know that Polygon’s mainnet aims at a 2.3 seconds per block, which is faster than Ethereum Merge
ever intended to be, 12 seconds being their target block time (see Section 3.5.2.1).

With regards to monetary value, at the time of our analysis, Polygon has been shown to be
be 1862,60 times cheaper than Ethereum’s legacy approach to transaction fee, and 434,60 times
cheaper than the transaction fees computed according to EIP-1559. Note though that, recently, in
March 2022, a drop in Ethereum’s price in addition to a loss of interest in NFTs made Ethereum’s
gas made it fall lower than Polygon’s [139].

It should be pointed out that for the time being, even after the merge, Ethereum is relying on
layer 2 solutions to help escalate the Ethereum network, before their next sharding update, that will
focus on the chain’s scalability [140].

In conclusion, Polygon PoS will probably still be relevant after the Merge, for it is speed and
affordable price, though it is not sure that this will be the case forever, since price is always related
to popularity, and a shift in traffic to Polygon can always tip the scale. It’s also important to notice
the workload involved in integrating Polygon to Ethereum, with bridges.

Polygon Ethereum Merge
Price per gas unity (USD) 0.00000002 0.00001

average block-time (s) 9.93±0.52 15.11±5.52

Table 5.6: Comparison between Polygon and Ethereum Merge.

5.6 Discussion about the impact of performance issues on the VCG mechanism

As stated in our original goals for these benchmark studies, our second objective with our tests
was to assess the implications of a public ledger implementation on the VCG for search auction
mechanism. We divide our analysis of the implementation impacts in 2 parts, the first being focused
on the practical aspects of VCG, related to the way VCG for search is used in the industry today.

Remembering the usage of VCG for search in the industry (as presented Section 4.2.1.1), VCG
for search auctions happen in parallel to search queries, which take a couple of milliseconds.

97

Sponsored search auctions can moreover involve thousands of bidders in a single auction27. These
characteristics, of high speed with a high number of participants, are not compatible with the data
obtained in our benchmark tests. The auction speed in our implementation is mostly dependent on
the execution time of closeAuction, which is intrinsically related to a chain’s block time. In
our benchmark comparison, the fastest block time we encountered occured on Polygon’s mainnet,
with an average of 2.3 seconds per block (Section 5.5.3.2). This value, though low compared to
other protocols, is clearly not low enough for the current applications of VCG for search.

Concerning the number of participants, we were unable, as stated in Section 5.3.3.3, to close
an auction with 50 participants in Ethereum, and even though Tezos was able to accommodate
more participants, their number will always be associated to a block’s gas limit, which is a strin-
gent bound. Smart contracts in public blockchains were conceived for coin exchange and simple
computations, and though it is possible to execute our VCG algorithm for a certain number of par-
ticipants, accommodating the number of bidders as required by the industry would be impossible.

The second point is the impact of our implementation on the VCG for search auction mecha-
nism. The practical aspects of VCG for search, though relevant for VCG in the industry, are not
specified in the description of VCG for search auction mechanism (see Section 4.2.2). From our
analysis, the main negative impact of a blockchain implementation of VCG for search is the ensu-
ing loss of privacy. Public blockchains, as the ones used in our benchmark study, are characterized
by their transparency, an important trait for ensuring their security and trust (a big plus compared
to traditional auction mechanisms that are most of the time “black boxes” for bidders).

For VCG, transparency means the loss of sealed bids (refer to Section 4.1.1), an integral part
of the mechanism. In our VCG contract, bids can be traced back to their originating wallets, and
the bid values are available to be read by anyone interested. This lack of privacy could affect the
bidders’ incentives to bid truthfully, a key issue we analyse in Chapter 6.

The idea of implementing VCG as a smart contract, though initially appealing due to the trans-
parency of its data processing, had some less positive implications. While the practical limitations
on time, number of participants and possibly price could be overcome if we chose a more suited
scenario for a more general VCG-based mechanism outside of sponsored search (for instance, for
high-stake auctions such as radio-wave spectrum allocation for mobile operators or high-value
manufacturing contracts), the impacts on bidder privacy cannot be ignored. In the next chapter, we
explore some possible solutions for keeping the bids private.

27This approximative number of participants in a sponsored search auction was given to us by a member of the
research team of Criteo [141].

99

CHAPTER 6

PRIVACY IN SMART CONTRACT AUC-
TIONS

La transparence est un élément clé pour favoriser la sécurité des blockchains publiques ; dans ces
systèmes, toutes les données, y compris les codes de programme, sont facilement accessibles à toute
personne intéressée, ce qui facilite la détection des fraudes ou des informations altérées. Cepen-
dant, cette transparence, bien qu’elle soit une propriété fondamentale des blockchains publiques,
constitue un handicap sévère lorsqu’on souhaite maintenir une partie de ces informations secrète.

Dans notre analyse comparative de l’exécution de VCG pour la recherche sur une blockchain
publique, dans le chapitre 5, nous avons déjà mentionné que notre implémentation de VCG pour
la recherche était affectée par cette problématique de transparence et le manque de confidentialité
qui en découle. Pour que l’enchère VCG fonctionne comme initialement prévu (voir la section 4.2),
un certain degré de confidentialité est nécessaire. Le mécanisme est une enchère scellée où dire la
vérité est une stratégie dominante, et demander aux enchérisseurs d’exprimer publiquement leur
vraies préférences sur un registre distribué public constituerait un obstacle majeur à l’adoption de
VCG ou de tout autre mécanisme d’enchère scellée dans une implémentation blockchain.

Dans ce chapitre, nous abordons la notion de confidentialité dans la section 6.1 et comment
elle se rapporte au cas spécifique de l’algorithme VCG pour la recherche. Les sections 6.2 et 6.3
présentent notre analyse de la manière dont l’industrie aborde les problèmes de confidentialité
sur les blockchains publiques, et enfin, la section 6.4 présente des versions mises à jour de notre
implémentation de VCG pour la recherche qui parviennent à préserver, au moins en partie, la
confidentialité des enchérisseurs. Le chapitre se termine par une conclusion et une discussion de
nos résultats dans la section 6.5.

Transparency is a key enabler of the security of public blockchains; in these systems, all
data, including program codes, are readily available for anyone interested, making it easy to spot
frauds or altered information. However, this transparency, though a fundamental property of pub-
lic blockchains, is a severe handicap when one wishes to maintain some part of this information
secretive.

In our benchmark analysis of public-blockchain execution of VCG for search in Chapter 5,
we already mentioned that our VCG for search implementation was affected by this transparency
issue and the consequential lack of privacy. For the VCG search auction to behave as initially
intended (see Section 4.2), a certain amount of privacy is necessary; the mechanism is a truthful

100

sealed-bid auction, and calling for bidders to publicly express their private evaluation on a public
ledger would be a big setback for the adoption of VCG or any other sealed-bid auction mechanism
in a blockchain implementation.

In this chapter, we go through the notion of privacy in Section 6.1 and how it relates to the
specific case of the VCG for search algorithm. Section 6.2 and 6.3 present our analysis of how
the industry approaches privacy issues on public blockchains and, finally, Section 6.4 presents
updated versions of our VCG for search implementations that manage to preserve, at least, part
of the bidder’s privacy. The chapter ends with a conclusion and discussion of our findings, in
Section 6.5

6.1 Privacy

Privacy is a complex and subjective notion. In the words of the American jurist and economist
Richard Posner, “much ink has been spilled in trying to clarify the elusive and ill-defined concept
of privacy. I will sidestep the definitional problem by simply noting that one aspect of privacy is
the withholding or concealment of information.” [142]. We follow the same philosophy in this
document, adopting the notion that privacy is the ability to withhold any information that one
desires, and having the power to decide what to share, with whom and when.

Of course, one can envision a whole continuum of privacy policies, depending on the amount,
nature or scope of the privacy-endowed data. In our examination of VCG for search as a smart
contract, we are interested is what crucial information need to be withheld for the auction to retain
its characteristics, and how the lack of privacy originating from a public blockchain would affect
its behavior.

6.1.1 Privacy in truthful sealed bid auctions

Regarding sealed-bid auctions, the main privacy concern is the secrecy of bids, whose information
need to be concealed from other bidders and shared exclusively with the auctioneer. One could also
argue that the information of who is participating in such an auction is also a potentially sensitive
information.

Truthful sealed-bid auctions such as VCG, since they promote truthful bidding by design, face
an extra challenge concerning privacy. A truth-revealing strategy implicitly forces bidders to reveal
valuable information [71]. Rothkopf, Teisberg and Kahn (1990) [75] argue that, in Vickrey’s
conception of the auction model [66], Vickrey considered the auction as an isolated event, which
doesn’t correspond to the reality of an actual auction, which is always part of a larger stream
of commerce activities, in which a participant’s true value being reveled can negatively impact
future negotiations. Rothkopf et al. cite auctions for public constructions, which are followed
by extensive negotiations, as a good example of these long-term issues: “Most winning bidders
will negotiate for financing, construction, government permits, and labor. In these negotiations,
a winner bidder would be in disadvantage if other parties knew its true cost.” [75]. Rothkopf

101

argues that participants would be reluctant to participate in a truth-revealing auctions, unless in the
limited number of cases in which participants wouldn’t be afraid of privacy loss such as auctions
of collector seals by hobbyists 1.

Interestingly, VCG for search is a particular case. It is a truthful sealed-bid auction, though one
could argue that the results are partially public, since once the ads are printed on a search result
page, the winners and potentially the ranking of their bids are at least partially known. Bidders
that lost the auction can keep their privacy, but winners are on display. To this extent, bidders can
know if they were over-bidden, and in some cases if they themselves overbid the other participants,
which could lead the winner to re-evaluate their choice of true value 2.

As we can assess, privacy in auctions isn’t relevant just in the context of smart contracts, in the
next section we explore some proposals for privacy preservation on centralized auction system.

6.1.2 Proposals for secure sealed-bid auctions

Design of secure auctions has been an actively researched topic since the 1990s [144]. Here we
present the main studies on how the securing of sealed-bid auctions is being approached in central-
ized systems. The focus of the studies presented here isn’t the Vickrey-Clarke-Groves for spon-
sored search variant, but they nonetheless can help us to create a panorama of the different issues
of privacy plaguing auctions and the techniques being used in the literature to approach them.

Incremental bidding In “An ascending implementation of the Vickrey-Clarke-Groves mech-
anism for the Licensed Shared Access” [145], Chouayak et al. introduce an incremental Gen-
eral VCG implementation (note this is for General VGC, not the sponsored search version) for
the allocation of bandwidth, divided in identical data blocks, among Mobile Network Operators.
This incremental approach, based on the clinching auction approach proposed by Lawrence M.
Ausubel [146], works in rounds, as follows.

1. The auctioneer starts by offering a supply of k bandwidth blocks for a certain price P .

2. The bidders respond with their requested number of blocks with a price P .

3. If the sum of the requested blocks by the bidders is larger than k, the auctioneer increases the
price P by a predetermined amount y. A new round then starts, with the auctioneer offering
k blocks with the increased price P + y.

4. The auction ends when the aggregated demand from bidders is lower than or equal to the k
offered blocks;

The incremental aspect of this approach preserves some privacy of the winners, since they don’t
have to reveal the entirety of their true values.

1Vickrey auctions have been used in philately since 1893 [143].
2The so-called “winner’s curse”.

102

Cryptographic proofs In “Secure sealed-bid online auctions using discreet cryptographic proofs” [144],
the authors propose a secure sealed-bid auction system, in which neither the auctioneer nor the
bidders learn the value of the losing bids. The system applies cryptographic tools, such as circuit-
based cryptographic proofs (boolean circuits that represent a theorem, which is proved true if and
only if the theorem holds [147]) and additively homomorphic encryption for bit commitment. The
proposal is claimed to be one among the set of protocols in which the bidders decide among them-
selves who has the highest bid, without the participation of the auctioneer.

Homomorphic encryption is a special form of encryption which allows specific types of com-
putations to be carried out on ciphertexts, so that when decrypted, it matches the result of the same
operation being performed on the originating plaintext [148].

For example: let Enc(x) denote the homomorphic encryption of x, and a and b two plaintext
integers. If the homomorphic encryption is additive, which means, it preserves the homomorphic
for addition mathematical operation, Enc(a+ b) will be equivalent to Enc(a) + Enc(b).

The proposed auction, similar to the clinching auction, works as follows.

1. The bidders encrypt their bids, bit by bit and commit their encrypted bids, as part of a
commit-reveal scheme (see below);

2. the auction proceeds in rounds, with the auctioneer presenting a price in each round. The
price starts with a maximum price, is decreased in each turn, until a minimum price is
reached.

3. The bidders respond positively or negatively to each proposed price by the auctioneer.

4. When a bidder’s bid matches the current value offered by the auctioneer, the bidder is re-
quired to reveal the committed bid, for public inspection.

5. After the definition of the highest bid, the rest of the bidders publish proof certificates that
their bids are lower than the winning one.

Proof certificates are data elements that contain sufficient information to recreate cryptographic
proofs of a related property and verify those without any disclosure of private information. Here,
bidders publish enough data (but without revealing their bids) for anyone to be able to reconstruct
integer-comparison circuits and perform the computation of the AND gates, connected to input
and output ports, that specify the property of interest. These circuits can be executed with the
crypted committed bids as inputs, due to the additively homomorphic encryption characteristic of
the encryption used.

Multiparty computation In the article “Efficient Privacy-Preserving Protocols for Multi-unit
Auctions” [149], the authors address the possible lack of trust on the auctioneer by part of the bid-
ders, stating that bidders might doubt the correctness of the auction outcome or might be reluctant
to share their true values, since these valuations are often based on sensitive information. This

103

lack of privacy is viewed as a critical problem for sealed-bid auctions. To mitigate the said lack
of trust, the authors propose a mechanism in which bidders jointly compute the auction outcome,
independently of the auctioneer.

Bidders partake in a distributed generation of El Gamal keys. El Gamal is a public-key cryp-
tosystem that has homomorphic-encryption characteristics. Due to these homomorphic charac-
teristics, via multiparty computation, the bidders can jointly compute the auction results without
having to ever reveal their bids. The process indeed achieves privacy, but at the cost of high com-
putational and communication complexity.

An interesting characteristic of this approach, as well as the previous one, is that both require
users to submit zero-knowledge proofs (ZKP) in order for users to prove the validity of their private
computations, to prevent attacks from ill-intentioned bidders.

First introduced by Goldwasser et al. in the seminar paper “The Knowledge Complexity of
Interactive Proof-Systems” [150], zero knowledge protocols are a way for a prover to demonstrate
the validity of an statement (the proof) to a verifier, without revealing anything more than that the
statement is true. The denominated “zero knowledge” comes from the fact that no extra knowledge
can be acquired from the proof, except for it’s validity.

Discussion These proposals demonstrate how privacy is a very important issue for auctions, even
for centralized systems, with the proposals achieving different levels of bidder’s privacy. The
issues addressed by these approaches is however drastically different from our’s. Not only is VCG
for search a different auction type than the multi-unit sealed bids, with more complex pricing
calculations, but we were restricted by the limitations of being in a distributed blockchain-based
system. There are no means of secure or private communication and computation inside of the
blockchain, since all the data is transparent. And the small gas limits of blocks restricts what
can be accomplished with smart contracts, as we saw in our benchmark studies (see Chapter 5).
However, the simple fact of being inside a transparent distributed system remedies some of the
challenges encountered by centralized systems; for example, the bidders can trust the auctioneer,
since all the auctioneer auctions are visible in the smart contract. The same could be said for the
bidder’s actions, which do not require ZKPs to attest the honesty of their auctions. But, of course,
this significantly increased level of transparency strongly impacts what can be done when wanting
to add some level of privacy.

6.2 Privacy in public blockchains

Public blockchains, as the ones covered in this document, are by definition transparent platforms;
all the information stored into blocks is publicly available to read. This means that every trans-
action is public, traceable to the originator’s address, and both its inputs and changes to the
blockchain storage are recorded on the chain. This transparency is what ultimately guarantees
the security of the network and is fundamental for verifying the soundness of its data.

104

Since users communicate with the blockchain via transactions, as defined in Section 3.4.3, we
characterize the privacy of transactions via two properties [151]:

• anonymity, i.e., hiding the identities of both sender and receiver of a transaction;

• confidentiality, i.e., hiding the amount transferred, or in the case of smart contracts, the
input and estate changes.

The blockchains covered in this document already provide some form of weak anonymity. It
is not possible to link addresses to real-life people, unless we become aware of some off-chain
transaction that reveals who owns the private key behind an account, for instance via the payment
for some real-world service with cryptocurrencies or the purchase of cryptocurrencies on a trading
platform with fiat money. We define this type of anonymity as “pseudo-anonymity”, because once
an user’s identity is revealed, it cannot be concealed again.

On the other hand, public blockchains cannot grand any confidentiality to their transactions.
As previously stated, in a public blockchain, all the information related to a transaction is available
and transparent, since this is crucial for the safety and correctness of the chain’s data. This lack of
confidentiality is a major challenge for the widespread adoption of public blockchains. For exam-
ple, blockchains as payment platforms have the inconvenience of enabling anyone in possession of
a wallet’s address to keep track of all its spending.

The lack of confidentiality limits the types of smart contracts that can function in a public
system; two instances that would greatly benefit from the security of blockchains but are hindered
by the transparency are voting systems and the one covered in this document, namely auctions.
Yet, some projects intend to bring back some notion of privacy to blockchain systems; most focus
on anonymity of transactions, and we explore the most promising solutions in Section 6.3.

6.3 Privacy solutions for public blockchain systems

As the utilization of smart contracts expands over simple token transfers, there has been big ef-
forts in the business and research communities to try to mitigate the inherent lack of privacy in
blockchains system [152] [153]; this issue is seen as a significance hindrance for the widespread
adoption of blockchain-based systems [154] [155].

6.3.1 Existing proposals

In this section, we present some interesting approaches for bestowing some secrecy in blockchains
and smart contracts. We discuss some other proposals specifically related to auctions afterwards.

Tornado Cash Tornado Cash [156] is a (now infamous, due to the controversy the use of this
mixing software technology raised [157]) Ethereum mixer. Mixers in cryptocurrency platforms
are software solutions for the “mixing”, or shuffling, of crypto-coins in order to obscure the origin

105

of the corresponding transactions. If this can improve the anonymity of the blockchain in general,
it can also, as was the case for the ban, be used for fraudulent financial activities, i.e., money
laundering.

Tornado Cash uses zk-SNARK (“zero-knowledge succinct arguments of knowledge”) proofs
to break the link between the depositor and the withdrawer of a coin. A zk-SNARK is a proof of a
certain computation; it is difficult to compute and easy to verify, “zk” stands for zero-knowledge,
which means that the corresponding property can be proved without “knowledge”, or full revelation
of information [158]. Note that the zk-SNARK technology is growing in popularity, also being
used by other systems such as Zcash 3.

Tornado Cash generates and communicates zk-SNARK proofs off-chain. So, upon deposit of
some coins, a zk-SNARK is generated and communicated to the depositor via a secure channel.
Later, with any different account, the zk-SNARK proof can be revealed and, if verified, the user
can withdraw the coins. The usage of zero-knowledge proofs completely obscures the link between
the deposit and withdraw transactions.

BroncoVote This proposal for a secure and private e-voting system is based on Ethereum’s smart
contracts. BroncoVote [159] makes use of an off-chain server for performing Paillier homomor-
phic encryption (PHE), for the processing of users’ votes. Proposed by Paillier in 1999, Paillier
homomorphic encryption is a symmetric public-key cryptography algorithm that is characterized
by its additive homomorphism property.

Homomorphic encryption is alluring for smart-contract developers, because it allows users
to perform computational transactions directly on hidden crypted values, and the in-chain com-
putation can be performed without the need for decryption, efficiently hiding the input and output
values. In BroncoVote, PHE is used to compute the sum of votes. Paillier homomorphic encryption
is achieved through an off-chain server that voters need to communicate with before casting their
votes. Unfortunately, this off-chain server approach obviously centralizes and adds vulnerability
to the system.

6.3.2 Public blockchain auctions

Presently, most auctions occurring on public blockchains are open, first-price auctions, mostly
related to the sale of NFTs. For example, CryptoKitties4 adopts first-price, time-based, descending
Dutch auctions to sell its crypto-cats. And OpenSea5, currently the “largest web3 marketplace for
NFTs and crypto collectibles” offers its uses the choice of both English and Dutch auctions to sell
their assets.

Both types of auctions are first-price 6, and in this case, for a bidder to be publicly announcing

3https://z.cash/
4cryptokitties.co
5opensea.io
6Dutch auction is strategically equivalent to a first-price sealed-bid auction [65]

https://z.cash/
cryptokitties.co
opensea.io

106

their bid is desirable. For example, in case of goods such as NFTs, keeping a public record of all
the prices payed during auctions is advantageous, as a testimonial of the value of the sold good.
Yet, presently, the major concern in most blockchain-based auctions are front-running attacks.

The concept of front-running attacks originated in financial markets, to refer to a stock-trading
strategy used by an agent having inside knowledge of a future transaction that will affect the
corresponding price substantially [160]. Front-running attacks are a well known issue since the
70s [161]. It is illegal in the EU and USA and considered unethical.

In blockchain systems, the front-running practices take a different form, due to the transparent
nature of the systems. Attackers need only to observe the mempool, where pending transactions
reside before being added into a block. An attacker can then analyse the (transparent, by definition)
transactions in the mempool, and upon identifying a transaction that are deemed profitable by the
observer, it will send the same transaction, i.e., front-run, but with a higher gas price, in order to
try to be treated by a miner before the original transaction in the mempool is.

In auctions, blockchain’s front-running attackers can overbid honest participants or bid first,
thus assuring their ownership of the good being auctioned. To avoid front-running attacks, some
dApps are opting to execute their auctions off-chain, in a decentralized manner. The Sandbox7,
a virtual Metaverse based on Ethereum, sells its valuable NFTs “LANDs” through off-chain auc-
tions. The auction then generates a signature, which the winners can use to retrieve their “LAND”
NFT.

6.4 Adding privacy to VCG for search

In light of the aforementioned transparency requirement of blockchain systems and the privacy
needs of VCG for search, we define below the main points that we judge needed to be addressed
in our implementation of VCG for search in smart contract form:

• bidder’s anonymity, i.e., keeping the address of the bidder in secret;

• bidder’s confidentiality, i.e., keeping the value of the bid in secret;

• records secrecy, i.e., avoiding keeping a record of the auction data (bidders, bids, winners
and final prices);

• transfer secrecy, i.e., keeping secret the transfers of both goods and payment

In this section, we present three proof-of-concepts proposals for privacy enhancement on VCG
for search in smart contract form, with their corresponding solidity implementation.

Our intent is to address the privacy points presented in Section 6.4 without relying on central-
ized solutions, while preserving some of the needed transparency in order not to compromise the

7sandbox.game

sandbox.game

107

1 //struct for payment
2 struct Price {
3 uint256 price;
4 bool payed;
5 }
6 //mapping from winners to prices
7 mapping(uint256 => Price) internal winnersAndPrices;

Listing 6.1: Payment struct and map

bidders’ trust on the auction. The real challenge faced here is to find the proper balance between
transparency and obscurity. We also make use of our implementations to verify the feasibility of
the POCs and their monetary impact, derived from the extra gas used by the contracts to preserve
user’s privacy.

Our proposals combine existing modern techniques to improve privacy in the blockchain; our
contribution here has been to analyse their relevance to our VCG mechanism, and discuss what
type of changes their use would require on our smart contract. Of course, these techniques could
be used in other applications that require the same or similar level of privacy, and so our privacy-
increased VCG solutions below can be seen as significant use cases for all such contracts.

6.4.1 Payment function

Before heading into our proposals, it’s relevant to mention that our first implementation of VCG for
search in Solidity, as presented in Chapter 5, is not concerned with prize payments, that is, the act
of the VCG winners paying their corresponding prices at the end of the auction. To put this contract
in sync with the issues at stake in this chapter, we define payments as the transfer a certain quantity
of Ether (ETH) in accordance with the prices stipulated by the execution of the VCG algorithm.
Considering that this chapter is interested in the privacy of the system, and regular transactions
are essential for Ethereum’s operations, we added a payment function to our VCG contract. The
payment is based on a “Price” struct, containing the uint256 price in coins and a bool to register
if this payment has already been executed. A mapping entitled “winnersAndPrices” keeps track
of the winners’ addresses and their corresponding Price structs. Listing 6.1 represents the “Price”
struct and the “winnersAndPrices” map. Through a “payment” function, winners will send ETH
to the contract which will update the “payed” bool.

6.4.2 Commit-reveal VCG

A technique in smart contract development that is commonly used to prevent front-running attacks
is the so-called “commit-reveal” scheme [162] [163], which is an adaptation of the homonymous
cryptographic algorithm. This technique builds upon two parts: the first, commit, as it name sug-
gests, forces participants to commit to a bid value by submitting a hashed version of said value; in

108

1 function calculateHash(uint256 value, string calldata password) external view
returns (bytes32) {

2 return (keccak256(abi.encodePacked(value, password, msg.sender)));
3 }

Listing 6.2: View function for computing Keccak-256 hashes

the second, it is required for participants to reveal their original values. At the end, the contract
can verify the validity of the revealed value by comparing it to the committed hash.

For our POC implementation of the VCG contract with a aforementioned scheme, we require
bidders to commit an hashed version of their bids, using the Keccak-256 hash function, and then
to reveal their bids before the results of the auction are computed. The intention of this two-phase
approach is to hide bids from other potential bidders, in order prevent them to be influenced by or
take advantage of the existing bids. The sequence diagram provided in Figure 6.1 illustrates the
basic process of a VCG for search smart contract integrating the commit-reveal scheme for bids.

6.4.2.1 Commit-reveal VCG smart contract implementation

The auction contract operates similarly to our original implementation, described in Section 5.2,
the main difference deriving from the way in which bids are recorded in terms of storage and
functions. This time we use two different tables to store bids:

• bytes32[] public hashedBids, a table of committed hashes;

• uint256[] public bids, the table of revealed bids.

In addition, we introduce an extra mapping, “indexes”, that associates a bidder’s address to its
index in the “bids” and “agents” arrays.

The hashedBids table stores the hashed value resulting from the Keccak-256 hash value of a
bidder’s bid b, appended to a user-selected password pwd and the user’s address address, to ensure
ownership. In order to compute the hash to be committed, bidders can use any implementation of
Keccak-256, although we offer one in our contract, via the view function 8 hash, presented in
Listing 6.2. We enforce here the use of one-time string password to enhance the security of our
hashes; otherwise it would be potentially possible, in a relatively easy manner, to decipher a bid
value via brute force [165].

The bid function now receives the bytes32 result of the hashing function and stores it in the
“hashedBids” table.

8View and Pure functions in Solidity are functions that can be executed locally, without data being shared in the
blockchain. View functions don’t store any data on-chain, while Pure ones don’t store nor read parameters from the
blockchain [164]

109

Figure 6.1: Sequence diagrams of commit reveal VCG for search smart contract

110

1 //different stages of the auction
2 enum Stages {Close, Commit, Reveal, Payment}
3 modifier atStage(Stages _stage) {
4 require(stage == _stage, "Wrong stage. Action not allowed.");
5 _;
6 }
7 function nextStage() internal {
8 stage = Stages(uint256(stage) + 1);
9 }

10 Stages public stage = Stages.Close; //start with a closed auction

Listing 6.3: Stage control

Note that, due to the added complexity of the commit-reveal scheme, phase control requires
here more than the single bool “isOpen” present in our previous VCG implementation. Phase,
also called “stage”, control needed to be made more explicit into the contract, to regulate its flow
through the different steps of the auction. The stages introduced here are: “Close”, “Commit”,
“Reveal”, and “Payment”. Functions in this case have thus modifiers “atStage”, which will be
reverted if the function is called out of its determined stage. Listing 6.3 presents the code associated
with contract stage control.

After the reception of the encrypted bids, the commit phase is over; in our implementation,
the decision of phase termination is taken by the auctioneer by signalling to the contract that the
contract won’t accept more commitments, via a call to the “stopCommitPhase” function9.

In the next stage, the “revealBid” function receives, from each bidder, their uint256 bid
value and string password as inputs; the function then checks that the hash of these inputs, once
appended to the message sender’s address, is equal to the previously committed encrypted value, as
shown in the code-extract listing 6.4. If this requirement is met, the uncrypted bid is then stored in
the “bids” table; otherwise the transaction reverts (it is the bidder’s responsibility to handle errors).

Once the auctioneer decides that the reveal phase is over, it is their responsibility to compute
and publish the results. In this VCG instance, the computation of prices and the creation of the
“winnersAndPrices” map is achieved within the “closeAuction” function, similarly to the naive
VCG implementation presented in Chapter 5.

The execution of “closeAuction” will change the contract’s phase to “Payment”, and now the
auction winners can call the function payment, with a transaction carrying the winner’s associ-
ated price in coins (ETH in this case). The contract will check if the transaction sender is in the

9In our implementation, due to the sequential nature of our tests, the reveal phase will naturally occur after all
participants committed their bids, and thus the auctioneer knows when to call “stopCommitPhase”. A more realistic
implementation could be achieved with the auctioneer selecting a certain number of blocks, relative to each phase of
the auction process, as a waiting time for each of the contract phases, i.e., commit and reveal. A function modifier
would then compare the current block number to the previous phase’s block to verify if the phase is within the number
of waiting blocks and therefore active.

111

1 require(hashedBids[index] == keccak256(abi.encodePacked(value, password, msg.
sender)),"wrong value or password");

Listing 6.4: Verifying the validity of a bid value and a password

“winnersAndPrices” map and if the transaction value corresponds to the price stored in the “Price”
structure; if both checks are statisfied, the “payed” boolean of the Price structure is set to true.

A full implementation of the VCG for search smart contract, integrating the commit-reveal
scheme for bids, is, with a corresponding JavaScript test file that illustrates its mode of operation,
is available10.

6.4.2.2 Privacy enhancements

Commit-reveal-based protocols are commonly used to prevent others from obtaining information
from transactions and front-running, based on such information, this scheme is thus efficient in our
effort to hide the bids until all bidders are committed to a certain value. This way no bidders could
be influenced by other’s values, which was our intent with this approach.

Yet, analysing the efficiency of our approach under the scope of the parameters specified in
Section 6.4 shows that our commit-reveal VCG POC is still on ineffective other grounds. Indeed,
our implementation offered no enhancement in terms of bidder’s anonymity and transfers secrecy;
bidders still use their addresses to bid and are required to pay via a transfer to the contract.

On the other hand, it provided some partial relief in terms of bidder’s confidentiality and record
secrecy. Bidder’s confidentiality is ensured as long as the reveal phase is not started; but, as the
real values start to be stored in the contract storage, bidders can observe one another’s values, and
those who estimate that their chances to win the auction are too small can opt not to reveal their
values, thus preserving their true values and saving on transaction fees. For the same reason, this
implementation offers partial record secrecy for those bidders that opt not to reveal their values.

6.4.2.3 Trade-offs

The nature of the commit-reveal process imposes a split of our bid function in two steps, commit
and reveal, for a smart contract. Of course, this means a duplication on the number of transactions
required for participation in the auction. This higher number of transactions increases the cost for
participating, due to having to pay more often transaction fees. This also affects the latency of the
whole auction.

Another possible trade-off is for users not to reveal their bids, since some privacy can be gen-
erated from this feature, as stated in the previous paragraph, this can affect the VCG prices. In an
auction with k slots and n participants, if only the winning participants decide to reveal their bid,
that is only k bids are taken into account for the price calculations (as shown in Section 4.2.2), the

10github.com/LucasMSg/Smart-Contracts-For-Auctions-From-Experimental-Assessment-To-Privacy

112

last winner will have to pay a price of 0, even though the VCG for search algorithm stipulates here
a non-negative value if someone else has bid below the last kth bid. It is up to the auctioneer to
decide, in this case, if the whole transaction should be reverted or not, since the auction original
specifications are, in some sense, not met here.

6.4.3 Commit-reveal VCG with Diffie–Hellman key exchange

Diffie–Hellman key exchange (DHKE) is a scheme for the secure cryptographic exchange of keys
over a public channel. The scheme was first introduced by Whitfield Diffie and Martin Hellman
in their seminal “New Directions in Cryptography” paper [166]; the so-called DH key exchange
is a method for transmitting keying information over public channels. For such a scheme to work,
participants need to cooperate, exchanging messages to generate a shared secret key, using modular
exponentiation.

The characteristic of being designed for a public, insecure communication channel makes the
DH key exchange an interesting match for public blockchain systems, specially since one of our
goals is the preservation of the decentralized nature of our system. Here we propose a new POC
implementation of the VCG for search smart contract; it builds upon the DH key exchange to create
a shared key between bidders and the auctioneer, in an attempt to introduce some privacy to the
system, in accordance to our defined privacy requirements (see 6.4).

6.4.3.1 Diffie–Hellman key exchange

The algorithm for a two-party exchange of a commonly agreed-upon secret key can be summarized
as follows.

1. Participants 1 and 2 agree on a prime number P and a generator number; this can be done
on a non-secure channel.

2. Participants choose private keys randomly; assume, participant 1 chooses a and 2 chooses b.

3. Participants calculate A = Ga mod P and B = Gb mod P , respectively; these are known as
public keys.

4. Participants exchange their public keys.

5. Independently, participants calculate the secret key sk = (GB)amod P , which can be shown
to be the same as sk = (GA)b mod P .

A third-party observer is unable to calculate the secret key sk, because it is unable to infer the
values of either a or b from the transactions. For our implementation, we used a multi-party version
of DHKE; it generalizes the two-party approach to an arbitrary number of participants, with each
added participant having their own copy of the private key. Once the secret key is generated, the

113

participants can use it for safe communication, using symmetric cryptography, in which there’s
only one secret key for both encryption and decryption.

6.4.3.2 Multi-Party SmartDHX smart contract

Our implementation of Diffie–Hellman key exchange builds upon the Multi-Party DHKE smart
contract SmartDHX proposed by Robert Muth and Florian Tschorsch [167]. With SmartDHX,
the authors show that it is possible to implement Diffie–Hellman key exchange almost entirely in
a smart contract form. There is, however, still need for some limited use of JavaScript for the
generation of random numbers for the private keys used for the DHKE, Solidity being unequipped
to do so, since its semantics are deterministic, a necessity for all nodes in the blockchain to be able
to replicate the same execution.

The Multi-Party DHKE smart contract SmartDHX is composed of various subcontracts repre-
sented in the class diagram in Figure 6.2. Each participant in the key-exchange process relies upon
an associated MultipartySmartDiffieHellmanClient contract, which inherits the DH functionalities
from SmartDiffieHellman. In order to coordinate the exchange of messages, there is a controller
contract, MultipartySmartDiffieHellmanController. For the modulus operation, SmartDHX makes
use of the cryptographic primitives from the Solidity library11 SolCrypto, in particular its relevant
function BigMod, for modulo calculations.

The sequence diagram of Figure 6.3 presents a use case of the interactions between these con-
tracts in order for users to execute DHKE via the SmartDHX contract and generate their secret
keys. The diagram, designed from the point of view of “user1”, shows their interactions with the
associated MultipartySmartDiffieHellmanClient client, represented by MSDHClient1. User1 uses
a random seed to generate their private keys, a12 and A = Ga mod P (with the generator G and
the prime P available to the different users, since they are part of the client contract), then they
can start participating in the shared key generation process. For simplicity, we assume the exis-
tence of just another participant, with their own private key, B; the shared key, in this case, is
AB = (B)a mod P , as seen in the algorithm described in Section 6.4.3.1. The presence of more
participants would require performing multiple transactions of the answer and generateAExtB
functions. The answer function stores the intermediaries keys; for example, in a 3-person key gen-
eration process, with private keys a, b and c, one would have to handle the keysAB = (B)amod P ,
AC = (C)a mod P and BC = (C)b mod P , generated by generateAExtB(a, B), generateAExtB(c,
A) and generateAExtB(b, C) respectively. These intermediary keys would need to be “answered”,
via the answer function, so they can be stored in the controller contract, while the global shared
key ABC = (BC)a mod P will be calculated via an extra generateAExtB(a, BC).

11github.com/HarryR/solcrypto)
12Private key a is generated via uint256(keccak256(abi.encodePacked(seed))); with the random seed number gen-

erated by a JavaScript program.

github.com/HarryR/solcrypto

114

Figure 6.2: Class diagram for the SmartDHX smart contract

115

Figure 6.3: SmartDHX smart contract sequence diagram (for 2 participants)

116

6.4.3.3 VCG for search with Diffie–Hellman key exchange smart contract

There are multiple possible approaches for integrating the Diffie–Hellman key exchange algorithm
into our VCG smart contract. Our first proposal is to use the shared key introduced within the
“reveal” step of the commit-reveal scheme above. However, instead of having bidders reveal their
values of bids and passwords to the whole blockchain, now the bidders reveal those values en-
crypted via a new secret key, generated ahead of time by all the participants with SmartDHX.

The auctioneer and other key holders can then decrypt the bids and execute VCG privately,
either locally or in a view function, i.e., in a manner that won’t expose the bids publicly. The
auctioneer then can publish the auction results, once the list of winners and corresponding prices
are known, by storing these results in the smart-contract storage; the winners can then proceed
with their payments.

An auction execution following this technique is represented in the sequence diagram of Fig-
ure 6.4. The auction starts with the execution of the multi-party SmartDHX, as presented above.
The auctioneer and all the bidders have access to an associated MultipartySmartDiffieHellman-
Client contract, while the auctioneer is in charge of starting the MultipartySmartDiffieHellman-
Controller. Once a secret key is generated for the coming auction, a symmetric encryption system
is used by all the participants to encrypt and decrypt messages with the shared key.

The VCG contract follows then much of what was established by our Commit-reveal VCG,
presented in Section 6.4.2.1. The contract uses the same stages and function modifiers, to ensure
the correct flow of the auction, with the same responsibility over the flow of control being delegated
to the auctioneer, such as choosing to stop the commit phase and when to decide to compute the
results. Also, as for the commit-reveal contract, we store the bids in two different tables, “hashed-
Bids”, to store the bytes32 Keccak-256 hashes of the bids and passwords, and “encryptedBids”,
to store the revealed bids and passwords; in this instance, those are bytes, result of the encryption
with the secret key.

Unfortunately for this first proposal, the Ethereum community strongly rejects the notion of
cryptography routines being executed inside smart contracts [168], with the claim that users should
make their secret keys public once they are in a blockchain transaction. With the proof-of-concept
contract we just described, we nonetheless want to argue that it could be useful to allow cryptogra-
phy uses through view functions, which can be executed locally, without the need to communicate
with the blockchain network, though a centralized approach could also be used for the crypto-
graphic part of the process.

For our POC, we used a simple one-time pad cipher [169] for the implementation of the sym-
metric encryption and decryption processes with the secret key. Note though that OneTimePad
isn’t being quite properly used here, for we reuse a key that should be used “one-time” only; yet,
this serves to show the feasibility of a view-based encryption approach. The use of a one-time pad
also made it necessary for the format of the bids and passwords to follow certain rules, for them
to be able to be decrypted by other users without ambivalence; for our tests, we imposed that the
bids need to be written in two digits, and the passwords in 8 characters, though other rules could

117

1 function decrypt(bytes memory message, bytes calldata key) public pure returns
(string memory) {

2 bytes memory plainText = new bytes(message.length);
3 bytes memory messageinKey = abi.encode(key);
4 for (uint256 i = 0; i < (message.length); i++) {
5 plainText[i] = message[i] ˆ messageinKey[i];
6 }
7 return abi.decode(plainText, (string));
8 }

Listing 6.5: One-time pad decipher via “decrypt” function

be implemented.
Once the auctioneer chooses to terminate the bidding process and compute the results, this

has to be done in three parts. First, the values from the “encryptedBids” need to be recovered,
which can be achieved in different ways, (1) by retrieving the bids from the “hashedBids” table
and executing the one one-time pad cipher off-chain, or (2) by making use of the “decrypt” view
function present in the contract. Listing 6.5 presents the code of the decrypt function, making
use of the one-time pad cipher. The implementation also provides a “retrieveAllBids” function,
another view function that decypers all bids with the secret key. It’s the auctioneer’s responsibility
to ensure that the decrypted bids are in accordance to the committed hashes from “hashedBids”.

Second, once the bids are retrieved, the auctioneer computes the results with “closeAuction”,
which in this instance is a view function that will return the array of winners and their corre-
sponding prices. Finally, the auctioneer can publish the results and create the “winnerAndPrices”
map with the results obtained from “closeAuction”. This separation between the computation of
the VCG results and the publication of the results is necessary to ensure that the bids are never
revealed on-chain. The winners can perform now their payments via the “payment” function.

It’s worth noticing that, in our tests, the auctioneer is always honest in their calculations; we
didn’t concern ourselves with a possible misbehavior from their part, though any owner of a private
key can verify the published results by computing the auction results themselves, and refrain from
executing the payment if misbehavior is encountered.

The full implementation of our commit-reveal VCG with Diffie–Hellman key exchange con-
tract is available13. A JavaScript test file for the contract is also available at the same location.

6.4.3.4 Privacy enhancements

We assess here the performance of our Diffie–Hellman POC, taking the parameters stipulated in
Section 6.4 as guiding rules.

bidder’s anonymity Our implementation offers no anonymity for the bidders; on the contrary, it

13github.com/LucasMSg/Smart-Contracts-For-Auctions-From-Experimental-Assessment-To-Privacy

118

Figure 6.4: VCG with Diffie–Hellman

119

partially aggravates it, by requiring each participant to have an associated Diffie–Hellman
client contract (MultipartySmartDiffieHellmanClient) in order to participate in the shared-
key creation.

bidder’s confidentiality In terms of bidder’s confidentiality, our Diffie-Hellman VCG contract is
efficient in preserving the secrecy of the bids from onlookers that do not participate in the
shared-key creation, and therefore don’t hold the shared key needed to decrypt the bids. Note
that there is no confidentiality for the winners, since winning bidders have their addresses
and prices published on-chain.

record secrecy Record secrecy is kept just for the bids, due to the presence of bidder’s confiden-
tiality, but the addresses of the bidders are public, similarly to the records of winners and
prices.

transfer secrecy There is no increase in transfer secrecy with this approach: all transactions can
be traced back to their originators.

6.4.3.5 Trade-offs

The consequences of adopting the Multi-Party SmartDHX are, performance-wise, substantial, spe-
cially regarding the number of transactions. First, new smart contracts have to be added, one
MultipartySmartDiffieHellmanController and one MultipartySmartDiffieHellmanClient for each
participant, which require deployments and associated costs and time.

According to it’s article [167], SmartDHX multi-Party key-generation process requires per-
forming at least

∑n
k=1 k transactions [167], n being the number of participants (in this case, the

number of bidders plus one auctioneer) 14.
This increase in both the number of contracts and the number of transactions induces penalty

in terms of cost and latency of the auction. Note, though, it could be possible to reuse the shared
key for subsequent auctions, reducing the number of transactions.

Logically, this higher number of transactions and the necessity for bidders to participate in the
creation of the shared keys in addition to the auction itself increase the bidders’ commitment to the
auction process, in terms of participation and financially.

Finally, all the privacy enhancements derived from the secret key generated by the DHKE
process would be lost if one of the bidders decide to make it public; in this case, the privacy levels
return to those of commit-reveal VCG seen before. This is a serious security issue, and even more
so as the number of auction participants increase.

14In Section 6.4.5, we see that the number of transactions is actually much higher.

120

6.4.4 Commit-reveal VCG with Diffie-Hellman and Mixer

The final proof-of-concept approach to privacy improvement in VCG for search smart contract that
we introduce here is an upgrade of the VCG with Diffie–Hellman key exchange presented above.
This time, we build upon the introduction of a so-called “mixer” in order to enhance confidentiality
and records secrecy, obscuring winners and prices. In this approach, we’re interested in hiding the
source of payment for the “prizes”, in the case of VCG for search case, the auctioned slots.

6.4.4.1 Mixer

Mixers, also known as tumblers, are services that attempt to increase privacy in blockchain sys-
tems, by breaking the link between the origin of coins and their receiver. Mixers such as “Tornado
Cash” (an infamous mixer used for money laundering in Ethereum, see Section 6.3) allow multiple
users to deposit fixed amounts of coins on a shared pool, where the coins are mixed together, then
users retrieve those coins with different accounts than those used for deposit.

Mixers such as Tornado Cash and MicroMix [170], use zero-knowledge proofs generated off-
chain upon deposit, the prove then can be revealed for retrieving the tokens.

6.4.4.2 Diffie-Hellman mixer

The idea for our implementation is loosely based on the mixer proposed by MicroMix [170]. An
Mixer for transferring coins using zk-SNARKs (“Zero-Knowledge Succinct Non-Interactive Ar-
gument of Knowledge”), a type of zero-knowledge proof, that MicroMix generates off-chain. For
our solution, we wanted to make use of the shared key generated by Diffie-Hellman key exchange,
in a way that all calculation could be realized on-chain, which wouldn’t compromise the decen-
tralization of our system.

Our POC uses a mixer to list and receive payments from bidders, who, this way, can use
different accounts than those used for bidding; this added level of indirection increases the transfers
secrecy. Our solution relies on both the easiness for users to create new accounts [171] and the use
of a Diffie–Hellman secret key, created by multi-party key generation between the bidders and the
auctioneer.

6.4.4.3 Smart contract implementation

Our implementation expands here upon our previous VCG with Diffie–Hellman version. A typical
execution of VCG with DH and mixer is represented in the sequence diagram of Figure 6.5.

In this new version, as part of the “encryptBid” function, in which bidders reveal their commit-
ted bids encrypted by their secret keys, bidders will also include a wallet address (from a wallet
for which they hold the private key), also encrypted with the secret shared key. The auctioneer can
decipher this address, and use it, instead of the original address, when publishing the results with

121

“publishResults”. The “payment” function only accepts payments from the associated addresses,
breaking the link between bidders and payers.

The contract is similar to the Diffie–Hellman version presented in Section 6.4.3.3, with the
introduction of the necessary changes for the adoption of our mixer. A new map, “encryptedAd-
dresses”, associates the index of the bidders to an encrypted value of the new address the bidder
wants to use to execute the payment. These encrypted addresses will need to be decrypted by the
auctioneer, and the addresses corresponding to the winners of the auction will be stored together
with the winning prices by “publishResults” function.

As with the previous implementations, the full code of our VCG with Diffie–Hellman mixer
contract is available15, with an associated JavaScript test file.

6.4.4.4 Privacy enhancements

The improvements on our privacy points derived from the addition of a mixer go as follows.

bidder’s anonymity Anonymity is partially assured with the addition of a mixer, since bidders can
use a one-time “throw-away” account to bid, and use their main wallet to pay and receive
the auction’s prizes.

bidder’s confidentiality As with our previous proof-of-concept, the values of the bids are only
known by the holders of the DH secret key. With the addition of a mixer, bidders can benefit
from some confidentiality. Indeed, with no way to connect winners’ addresses to bidders,
it isn’t clear for onlookers who won and who lost the auction, though this is still known
information for the participants.

records secrecy In our implementation, the bids are not recorded in the blockchain, and the same
goes for the winners; there is no way to connect the bidders to the winning addresses, unless
the secret keys are made public, an issue we already raised.

transfers secrecy A mixer enhances the transfers secrecy, though the addresses of the bidders
and winners can be traced, the connection between the addresses of bidders and winners is
obscured by the secret key.

6.4.4.5 Trade-offs

The trade-offs with this DH and mixer approach are similar to the side-effects of the Commit-
reveal VCG with DHKE implementation, presented above. The security based on DHKE once
again demands a relatively higher number of transactions, and client contracts for all participants.
The usage of a mixer is also more demanding on the auctioneer, who here needs to decode the “en-
cryptedAddress” and publish the new addresses with the “publishResults” function. This greater

15github.com/LucasMSg/Smart-Contracts-For-Auctions-From-Experimental-Assessment-To-Privacy

122

Figure
6.5:V

C
G

w
ith

D
H

and
m

ixersequence
diagram

123

responsibility enforced on the auctioneer enhances the centralization of the auction mechanism.
Though a different implementation could be adopted in which any participant could publish the
results, this would require a voting system between the participants in order to express agreement
or disagreement on the resulting values.

6.4.5 The price of privacy

In this section, we compare and analyse our naive VCG contract with the implementations of the
privacy-enhanced proof-of-concept algorithms presented in this chapter, in terms of number of
transactions and gas usage, with the associated monetary cost. With this comparison, we intend to
analyse the feasibility of our POCs.

As previously discussed, the “Commit-reveal VCG with Diffie–Hellman key exchange” and
“Commit-reveal VCG with Diffie-Hellman and Mixer” versions perform the computation and the
publication of the winners and results in two different functions, with the results being computed
by a view function while the results are stored by “publishResults”. In order to make of a fair com-
parison between the different proposals, we developed implementations of both the naive VCG
and “Commit-reveal VCG” with a similar division; thus, their results are generated by a view func-
tion “closeAuction”, and the results are published via “publishResults”. Thus, the contracts dealt
with in this comparison are: ‘naive VCG” (VCG), ‘naive VCG with separated results” (VCGSep),
“Commit-reveal VCG” (CRVCG), “Commit-reveal VCG with separated results” (CRVCGSep),
‘Commit-reveal VCG with Diffie–Hellman key exchange” (DHVCG) and “Commit-reveal VCG
with Diffie-Hellman and Mixer” (MixerVCG).

The tests executed were composed of auctions between 5 bidders with the following set of bids,
given as integers in some arbitrary unit: [94, 95, 13, 17, 71]. For the contracts that require pass-
words as part of their commitment, we used the following set of password strings: [’0ho95rq4’,
’84620e92’, ’abw9eu56’, ’srolni0n’, ’c3kknvgf’]. The auction is supposed to sell 3 items, corre-
sponding each to different ctrs: [3, 2, 1;].

The decision to use 5 bidders in our test came from limitations with the integration of the
SmartDHX implementation we used; the contracts and tests provided by the authors in their repos-
itory [167] are slow, and a higher number of bidders will, in fact, result in timeout errors in our
JavaScript test files. So we decided to use 5 bidders in this approach to privacy-performance anal-
ysis, which is fast and already representative for the comparison we intend to make here. We leave
more thorough testing of these issues as future work.

In contrast to the benchmark comparisons described in Chapter 5, the comparison we present
here isn’t focused on comparing different blockchain systems. Therefore, for these tests we didn’t
use testnets, opting to simply execute our tests in Truffle’s testing framework, which is sufficient
to obtain gas usage for our tests. Our tests were executed in Truffle version v5.3.14, with the
JavaScript Solidity compiler Solc-js, version 0.8.1. All contracts and tests used for this comparison
are available16.

16github.com/LucasMSg/Smart-Contracts-For-Auctions-From-Experimental-Assessment-To-

124

6.4.5.1 Gas comparison

Table 6.3 represents the gas used for our different proof-of-concept algorithms, excluding the gas
used for the Diffie–Hellman key exchange, which is discussed in Section 6.4.5.2.

As previously discussed, view functions can be executed locally, without a transaction having
to be submitted to the blockchain; therefore they don’t consume gas and are considered “free” to
execute. Nevertheless, in Table 6.3, we decided to nonetheless present the estimated “gas usage” of
view functions, in the italics, since we consider this information is relevant to analyse the efficiency
of our algorithms, since they do have a cost, even though it is a local one. The “reveal” transac-
tions in the table relate as a whole to the “reveal” step of the commit-reveal scheme, which takes
different forms in the various contract functions: “revealBid”, for CRVCG and CRVCGSep, and
“encryptedBidding”, for both DHVCG and MixerVCG. “RetrieveAllBids” also refers to different
functions within our contracts: while DHVCG and MixerVCG have a function “retrieveAllBids”
that will recover the encrypted bids and decrypt them with the shared key, CRVCGSep, on the
other hand, requires the auctioneer to read the bids from the “bids” table; in this case, the gas
present in the table corresponds to the sum of gas for accessing all 5 bids.

From the table, one can observe the following fact: deployment costs increase with the algo-
rithmic complexity of the contract. This should be expected, since this is directly related to the
code size.

Also, the first bids are more gas consuming than the following ones, something we already
noticed with the naive VCG implementation. In Section 5.3.5.2 we explained that this occurs due
to the first bid setting up the storage for the arrays managed in the contract.

Note also that “closeAuction” for VCG and CRVCG are transactions, while for the other algo-
rithms, they are views. For VCGSep and CRVCGSep, the gas sum of the views “closeAuction”
and “publishResults” are similar to what happens with the “closeAuction” transactions of VCG
and CRVCG, respectively.

MixerVCG has a different style of payment, since we make use of the mixer; the winners
addresses are stored differently, thus the gas required for performing payment differ for each item.

6.4.5.2 SmartDHX

We use the SmartDHX implementation [167] for the Diffie–Hellman key exchange necessary for
DHVCG and MixerVCG. In practice, we followed the JavaScript test for Multi-party SmartDHX
“2 TestMultiPartyDHX.js”, made available by the authors17, though, for our test runs, as previ-
ously explained, we used 6 participants, or clients, (5 bidders and an auctioneer) instead of the 5
used in the original SmartDHX test.

The number of transactions performed at run time by our test are the following:

• controller deployment, 1;

Privacy/tree/main/price%20of%20privacy
17github.com/robmuth/smart-dhx

125

Transaction VCG (gas) VCGSep (gas) CRVCG (gas) CRVCGSep (gas) DHVCG (gas) MixerVCG (gas)
Deployment 1887325 1890181 2600777 2422229 3147601 3583014
openAuction 125703 125703 128636 128636 128636 131010
calculate hash 23421 23443 23443 23465

1st Bid 112907 112907 140016 139994 160454 160366
Bid 78707 78707 108604 108582 129042 128954

stopCommitPhase 27323 27323 27345 27345
encryptBid 60641 60685

encryptAddress 36055
reveal 60626 60626 81351.6 127159.2

retrieveAllBids 130533 267091 264869
retrieveAddr 114781
closeAuction 171623 76471 172229 62832 62832 60544

publishResults 103447 98650 99405 187933
payment 1 44935 44935 44973 45909 45909 46741
payment 2 44935 44935 44973 45909 45909 48644
payment 3 44935 44935 44973 45909 45909 50547

Table 6.1: Gas usage for the different VCG implementations. The values in italics represent view
functions. There are 3 payments, corresponding to each of the auctioned items.

• client deployment, 6;

• controller start, 1;

• answers: 65 (Client 0, 1; Client 1, 2; Client 2, 4; Client 3, 8; Client 4, 16; and Client 5, 31).

We put these numbers in perspective in the rest of this section, noting that “Client 5” is considered
the auctioneer.

In their article [167], the SmartDHX designers advertise a requirement of a total of
∑n

k=1 k
transactions for the execution of multi-party SmartDHX, with n being the number of clients. For
6 clients, theoretically 21 transactions should be enough, but we obtained an quite different total
number of 73 transactions. As it happens, in their GitHub repository18, the authors provide an
“helper” contract, with an “answerBatch” function that helps minimize the number of “answer”
transactions, thus explaining the discrepancy. Of course, although the number of transactions is
different, the gas used should be equivalent, since the batch function executes the same “answer”
transactions in a loop. Note that the gas cost of “answerBatch” with 6 participants exceeds the gas
block limit of Truffle, and thus we opted not to adopt the “helper” contract.

As explained in the SmartDHX original paper, the computation of the key exchanges before
the final key calculation is optimized via some kind of distributed memoization, which renders
the number of required “answer” transactions different for each participant , as we can see when
looking at each client’s number of “answers”. Assuming that each client does execute their required
“answer” transaction, the total gas used by each of them is listed in Table 6.2.

18github.com/robmuth/smart-dhx

126

Client 0 Client 1 Client 2 Client 3 Client 4 Client 5
Answers (gas) 846688 1593725 2902234 5036715 7897951 8667425

Table 6.2: SmartDHX “answer” gas usage per client

As one can see, Client 5 has to execute considerably more code in terms of gas than the other
participants (in fact, by more than a factor of 10). The execution of Multi-party SmartDHX neces-
sitates the deployment of “MultipartySmartDiffieHellmanController” and the deployment of one
“MultipartySmartDiffieHellmanClient” for each client. The controller deployment costs 2293839
gas, while the deployment cost varies for each client, with an average of 2332546.5±5292.36 gas19.
Finally, the execution of one “start” transaction by “MultipartySmartDiffieHellmanController” is
required, which consumes 990450 gas.

6.4.5.3 Transaction fees

For the monetary analysis of our privacy POCs, we estimated the prices of the different imple-
mentations in USD using the pricing calculations determined by EIP1559, as presented in Sec-
tion 3.4.4.2 and analysed in Section 5.5.4.1. As already mentioned, EIP1559 overhauled the
Ethereum fee mechanism. Since we judged it to be more representative of Ethereum’s future,
we adopted it for this analysis. Ethereum’s (ETH) price dates from July 24th 2022, 11:40am CET,
amounting 1,603.49 USD per ETH. On the same date, the gas costs from Eth Gas Station20 are
divided into a “Base Fee” of 5 Gwei and a “Max Priority Fee” of 2 Gwei.

Table 6.3 represents the different prices for the auction participants. The auctioneer is re-
sponsible for deploying the VCG smart contract and the auction control transactions, while the
bidders are responsible for the bidding and committing and revealing of their bids. The payment
fees indicated here are the prices winners are charged for transferring ETH during the “payment”
transaction.

VCG (USD) VCGSep (USD) CRVCG (USD) CRVCGSep (USD) DHVCG (USD) MixerVCG (USD)
auctioneer 24.52 23.9 32.57 30.1 38.25 44.19
1st bidder 1.19 1.19 2.25 2.25 2.71 3.22

other bidders 0.85 0.85 1.89 1.89 2.36 2.87
payment 0.5 0.54 0.54 0.51 0.51 0.54

Table 6.3: Fees, in US dollars, for the participants of the different POCs.

19The gas costs for deployment for the SmartDHX clients contract vary between them, for the client’s constructor
function calls “addClient” from the controller contract, which adds the new client to the controller “clients” table. In
order to add a new client, the “addClient” function loops over the “clients” table, to be sure that the new client hasn’t
isn’t there, resulting in different gas costs for clients depending on the number of clients already in the table. It’s worth
noting that the first client pays for the set up of the “clients” table, similarly to the higher price of the first bidders in
our VCG contracts.

20ethgasstation.info

ethgasstation.info

127

Since, for DHVCG and MixerVCG, a large part of the cost is related to the execution of the
Multi-Party SmartDHX, Table 6.4 showcases the fees in USD for each client to deploy and execute
the necessary transactions.

Cli 0 (USD) Cli 1 (USD) Client 2 (USD) Cli 3 (USD) Cli 4 (USD) Cli 5 (USD)
Total prices 35.77 43.99 58.71 82.7 114.84 160.37

Table 6.4: Fees in dollars for the 6 clients of Multi-Party SmartDHX.

As noted in the previous section, the number of “answer” transactions for the different clients
is different, Client 5, i.e., the auctioneer, having the largest number of those. We judged that it
would be fair for the auctioneer to bear the heaviest burden, although, of course, such a decision
should be agreed upon prior to the auction launch, off-chain. Thus, in the table, Client 5 pays the
fees related to both its “answer” transactions but also for the deployment of ‘MultipartySmartD-
iffieHellmanController” and the necessary “start” transaction to this contract.

6.4.5.4 Analysis

The type of items being auctioned, and more importantly their actual price, is ultimately what is
going to determine the feasibility of our POCs. The prices might not justify the use of our smart
contract implementation, due to its associated fees. But if one is considering auctioning, say bands
of the radio-wave spectrum for new mobile operators, these fees would be minuscule compared to
the future revenues.

Naive VCG and commit-reveal VCG lead to similar fees. The auctioneer fees see a 32.8%
increase from VCG to CRVCG, and 25.9% from VCGSep to CRVCGSep, due to the increase in
cost for the deployment and from the extra “stopCommit” transaction. On the bidders side, the
commit-reveal scheme demands an extra “reveal” transaction from bidders, doubling the fees for
bidders.

DHVCG and Mixer VCG, on the other hand, are considerably more costly, due to the need of
executing Multi-Party SmartDHX. For the auctioneer, considering that they should bear the heavier
load of transactions needed (as Client 5), the total fees increase from 23.9 USD, for VCGSep, to
198.62 USD, for DHVCG, and 204.56 USD ,for MixerVCG, an increase of 731.04% and 755.89%,
respectively. Considering that the key generated by SmartDHX could be reused between different
auctions, this monetary impact could be diluted over different auctions. The increase in fees for
the auctioneer, disregarding the fees from the shared key exchange, in DHVCG and MixerVCG is
of 60.04% and 85% by comparison to naive VCGSep.

Moving now to bidders, on average, they need to pay 67.2±32.04 (for the clients’ behavior
is not uniform due to SmartDHX, as we saw above) USD in fees for the execution of Multi-
party SmartDHX, amount to be added to the values presented in Table 6.3. By comparison to
VCGSep, this results in an increase of 5774.8%±2592.43% for the first bidder of DHVCG, and

128

8083.5%±3669.41% for the subsequent bidders, while, for MixerVCG, one finds 5817.64%±-
2592.43%, for the first bidder, and 8143.52%±3669.41%, for the rest. Note though that, without
the price induced by SmartDHX, the more reasonable increases are of 127.7% for the first bidder
of DHVCG, 177.64% for the other bidders of DHVCG, 70.6% for the first bidder of MixerVCG
and 237.64% for the other bidders.

As aforementioned, the values of the auctioned items and the importance of the information
the origins and values of the bids might hold need to be put in perspective by the auctioneer and
the possible participants before deciding to use one of the techniques introduced in this chapter.
Privacy concerns might be relevant enough for the auctioneer and bidders to consider accepting to
pay increased fees, and adopt one of our POCs, paying the price for the increased privacy. The
techniques and analyses presented here enable an informed choice by the auction participants, and
can be used to help them decide of a particular value-vs-fee trade-off for each auction.

6.5 Conclusion and discussion

In this section, we defined the concept of privacy, and analysed how it affects sealed-bid auctions,
as an use case. We reviewed proposals for preserving privacy of auctions in centralized systems,
which revealed to us that concerns about privacy aren’t exclusive to decentralized auctions.

We then explored how privacy can be addressed in the context of blockchains, and showed that
the transparency inherent to those systems implies the absence of secretive information.

We presented of the current approaches from the cryptosphere to preserve privacy inside of
a blockchain; in most cases it involves centralized off-chain computation, which is undesirable
to us, since we want to preserve trust in the whole auction process. After these initial analyses,
we focused on auctions inside blockchain applications, and pointed out how mostly first-price
solutions are at risk, with their biggest concern being front-running attacks. We also analysed our
VCG for search auction from Chapter 5 and defined a few key privacy points that we judged being
important to address. Finally, we proposed 3 new proof-of-concept implementations of VCG for
search that incrementally address these privacy points.

Note, to conclude, that trying to solve the privacy problem for a VCG for search implementation
is a bit a contradiction in terms. Indeed, what first enticed us to develop an auction system for
decentralized applications was the trust that users can depose on them. With much of this trust
deriving from the system’s transparency, obscuring parts of such an auction would mean taking
away from the trust. We tried, in this chapter, to find a balance between transparency and obscurity
in order to maintain the user’s trust, without exposing too much on the system.

What we ended up with, with our proposal in Section 6.4.4 was a an auction that can be ex-
ecuted without the aid of off-chain systems, manages to obscure bids from non-participants, as
well as obscure the link between winners and participants. The proposal is based on secret key
exchanges between all participants, which enables everyone to verify the validity of the auctions,
but has the undesirable effect of giving every malignant participant the power to reveal the secret
to outsiders. With the advancement of cryptographic tools and the interest in web3 and dApps, we

129

can hope that future developments will give us more possibilities to tackle out the privacy problem
addressed here, without having to make big compromises.

131

CHAPTER 7

CONCLUSION AND FUTURE WORK

We close this thesis with a recapitulation of our key findings, derived from both our benchmark
comparisons and privacy assessment of the VCG for search smart contract, as well as the limita-
tions of our research. We finish by presenting some prospects for future expansion of our research.

7.1 Summary of key findings and significance

We started this thesis with the intention to explore smart contracts as platforms for sealed-bid types
of auctions, such as VCG for search, and our research led us through different discoveries and
unveiled new and interesting research directions to expand our work. In this section, we describe
the key findings achieved during this research work.

7.1.1 Benchmark comparison between Ethereum and Tezos

Our first benchmark analysis, presented in Chapter 5, is a comparison between the proof-of-work
(PoW) Ethereum and proof-of-stake (PoS) Tezos, from the perspective of smart contracts. Our
intent was to compare both chains in terms of programmability, performance and monetary cost
(relative to transaction fees). For the comparison, we designed and implemented a naive VCG-
for-search algorithm in both Solidity and SmartPy. Our analysis made clear the limitations of the
PoW chain in face of PoS, though it also highlighted Ethereum’s superiority as a platform for smart
contract development, with more community support and better development tools.

This comparison was published in the article “Blockchain Performance Benchmarking: a VCG
Auction Smart Contract Use Case for Ethereum and Tezos” [7] and presented in the Fourth Inter-
national Symposium on Foundations and Applications of Blockchain 2021 (FAB ’21).

7.1.2 Benchmark comparison between Ethereum’s upgrades

Chapter 5 also presents a second benchmark, focused on Ethereum and two key proposals for
addressing its proof-of-work related issues: the layer 2 “Polygon PoS” and Ethereum’s own update,
the “Merge”. We believe this choice is pertinent, given the importance of these proposals in the
community, and research-wise efficient, since these platforms are both EVM-compatible, which
means we could reuse the same Solidity-based contract source code and infrastructure for our
tests.

132

Once again, the comparison attested the superiority of the PoS chains in comparison to Ethereum
PoW. Thus, the most compelling question raised by our benchmark data is the relevancy of layer
2 solutions in face of the Merge. Even though our benchmark revealed Polygon as the fastest and
cheapest chain, even when compared to Ethereum post-Merge (Klin), this superiority is, we be-
lieve, not sufficient to declare that this layer 2 solution, and possibly others, will still be relevant as
Ethereum evolves. Price is volatile, and if the Polygon PoS chain cannot offer a cheaper alternative
to execute Ethereum transactions, its will be irrelevant as a layer 2 solution.

7.1.3 Smart-contract privacy analysis and privacy-preserving proof-of-concept proposals

Chapter 6 presents an analysis of the consequences of the lack of privacy inherent to smart contracts
to a sealed-bid auction such as VCG for search. Our analysis started with a survey of the proposals
for increasing the privacy for sealed-bid auctions in centralized solutions.

It became clear that privacy is a concern even for centralized systems, though this concern is
different from ours, for the solutions presented focus on preserving the knowledge of the bids from
the auctioneer and ensuring that the auction algorithm is executed correctly. Such concerns are
not an issue in our VCG for search contract, since we are able to take advantage of the trust and
transparency directly built into this type of distributed applications.

We also examined existing tools and proposals from the crypto community that have devel-
oped in order to increase privacy in smart contracts. The proposals use cryptography tools such as
Paillier homomorphic encryption and zk-SNARKs, which unfortunately demand too much com-
putation to be executed in-chain; thus the proposals surveyed opt for off-chain solutions. Since we
strive to keep our system fully decentralized, we pursued a different approach.

In order to study the effectiveness of on-chain privacy solutions on our VCG contract, we
determined 4 key privacy points that we judged important for our system to address: bidder’s
anonymity, bidder’s confidentiality, records secrecy and transfer secrecy. We then presented three
proof-of-concepts proposals that incrementally address our privacy points: “Commit-reveal VCG”,
“VCG for search with Diffie–Hellman key exchange” and “Diffie-Hellman mixer”

Commit-reveal VCG Our first proposal is based on the idea of adding a commit-reveal scheme
on top of our VCG for search contract. The approach is efficient in ensuing that bidders are
committed to their bids, and are not influenced by each other. It also provides some partial relief
for bidder’s confidentiality and record secrecy, as bidders can opt not to reveal their values in face
of already revealed bids.

VCG for search with Diffie–Hellman key exchange In this proposal, auction participants gen-
erate a shared key via the “Diffie–Hellman key exchange” protocol in order to use symmetric
encryption to preserve the bids’ values from non-participant onlookers. The proposal is efficient
in preserving the secrecy of the bids from non participants, though the prices of prizes are still
revealed on-chain.

133

Diffie-Helman mixer In this improvement of our VCG for search with Diffie–Hellman key ex-
change approach, the link between the addresses for bids and for payments for the prizes are broken
through a mixer, which takes advantage of the Diffie-Hellman-based shared key. This scheme helps
to obscure the link between the addresses used for payment and those used for bids. The mixer
helped thus increase the privacy in our four key privacy points, though in a limited matter, since
the shared key is known by all participants.

7.2 Limitations

Here we present some limitations of our research work.

7.2.1 Working with Blockchains

A limitation for our benchmark studies was the monetary cost associated with blockchain trans-
actions. Transactions can be quite costly, specially in Ethereum (before EIP-1559), thus it never
made sense, in this research setting, to execute our tests in the corresponding mainnets of our tar-
geted blockchains. We had to compromise in adopting a free alternative, while still keeping our
tests results close to a real blockchain.

An option could have been to set up our own private network, and execute our tests in our
own client, but that wouldn’t replicate the competitive nature of blockchains, as we would be
the sole user submitting transactions, which would reflect badly on the transaction acceptance
latency. We ended up opting to use testnets for our tests. Testnets, advertised as test networks
for developers, have different types of consensus, sometimes diverging from their corresponding
mainnet, though we strove to use those most closely resembling their mainnet counterpart. In any
case, our contribution here, in addition to the admittedly possibly somewhat biased data obtained,
lies already in the protocols we designed to perform such tests.

One penalizing issue with testnets is that they often get unstable over time, as stated by Tim
Beiko, in charge of Protocol Support for the Ethereum Foundation, during his interview for the
podcast Epicenter on the subject of Ethereum’s merge [172]: testnets, specially proof-of-work
ones, with time, will present high volatility in terms of block-time values. We could indeed very
clearly attest this volatility in the Ropsten testnet, hence our need to include block-time data re-
trieved from the the corresponding mainnets and compare those to our results.

7.2.2 Privacy-preserving proof-of-concept proposals

Our proof-of-concept proposals that rely on symmetric encryption are limited by our choice of
symmetric-key algorithms. As discussed in Chapter 6, smart-contract developers are against the
adoption of symmetric encryption, for a blockchain transaction would reveal the private key. We
showed that “view” functions can be use to crypt and decrypt via symmetric-key encryption with-
out risk of compromising the private key. For our POCs, we made use of a very simple one-time

134

pad cipher for the symmetric-key encryption. One-time pads, as their name state, have to be used
only once, for re-use might compromise the private key used for encryption; thus it’s, knowingly,
being misused in our POCs. Programming a symmetric-key cypher was considered out of the scope
of our research work, and since there aren’t any Solidity implementation available, since they are
frown upon by the community, we compromised in developing the simplest symmetric-key cipher
that would fit our POC needs.

7.3 Opportunities for future research

Throughout this thesis, many questions and interesting leads for future expansion of this research
arose. As blockchain technologies adoption’s grows, our main topics of scalability and privacy
become always more relevant subjects of interest, since they are a hindrance for mass adoption.
Thus there are everyday new research and technologies being put in development in the field that
can offer solutions to the problems we presented. Here we introduce some topics that we judge
interesting to expand our research.

7.3.1 Benchmark study focused in scalability

As mentioned above, a worthwhile first endeavor for future research would be to perform our
benchmarks on mainnets instead of the testnets we had to use; of course, the need for a somewhat
significant funding for this type of real-world tests is an issue that should be handled prior to such
a validation experiment.

Moreover, our benchmark studies aren’t representative of the scalability issues that sometimes
plague blockchains. A new study focusing on the scalability of the blockchains, in terms of trans-
action and block size, should be initiated on this important issue. The comparison could be done
between different blockchains, akin to our Ethereum and Tezos benchmark.

Another proposal could be to conduct this scalability benchmark as a comparison of different
layer 2 solutions, since they were first conceived for the purpose of escalating existing blockchains.
Ethereum’s next update after the Merge, “Sharding” [140], would be a great candidate for such a
benchmark.

7.3.2 Privacy

A first interesting line of research related to our privacy work comes from one of the limitations
presented in the last section: implementing and assessing the viability of a more robust symmetric-
key cipher inside of a smart contract. Promising candidates are the popular Advanced Encryption
Standard (AES) [173] and Chacha20 [174]. An additional study could be made in order to assess
the strength of the symmetric cryptographic solution adopted.

Recent advancements in cryptography are popularising tools with very interesting properties
for smart contracts and our VCG for search problem. We seriously considered in particular full

135

homomorphic encryption and zk-SNARKS, which look like promising tools to expand our privacy
preserving POCs, before focusing on the solutions presented in this thesis. Yet, we believe that
these approaches, once a bit more mature, present great opportunities in the times to come to
distributed applications such as VCG.

In our research, we came across instances of adoption of additively homomorphic encryption
(see Chapter 6), in which additions are allowed to be performed directly on ciphertext, with the
decrypted result being the same as if the operation had been executed over plaintext. Fully ho-
momorphic encryption (FHE) [175] allows more than addition to be performed this way; it could
enable different operations and evaluations to be executed directly on ciphertext. FHE seems, once
more mature, like a perfect solution for our VCG for search, since the whole VCG for search
algorithm could be executed with crypted bids, and then users would need only to decrypt the pro-
cessed result. Of course, costs and performance issues would need to be looked at carefully before
embarking into such an approach.

Finally, zero-knowledge proofs are also quite promising for our research, more precisely zk-
SNARKs (”zero-knowledge succinct arguments of knowledge”) [158]. zk-SNARKs are “succinct”
for they don’t require extensive interactions between the “prover”, the actor who wants to prove
some statement, and the “verifier”, the one who needs to be proven something. Zk-SNARKs
proofs are fast to compute and, due to their succinct nature, are a good fit for smart contracts.
For our VCG for search contract, the auctioneer could just prove to the bidders that the auction
was executed correctly. During our research we experimented with ZoKrates 1, a toolbox for zk-
SNARKs in Ethereum, but lack of time prevented us from digging further this promising line of
research.

7.3.3 Limiting auctioneer’s participation in auction

VCG for search smart contracts are dependent on the participation of the auctioneer to function; it
is their responsibility to submit the auctioned CRTs, as well as controlling the different phases of
the auction, such as respecting the time period of bid acceptance, managing revelation (in the case
of commit-reveal schemes) and deciding when to close the auction.

The auctioneers are complicated participants of auctions; one could argue that they have, in
fact, the highest incentive to cheat, since they collect the prize money. And thus, there already
exist several proposals for auctions that exclude the auctioneer from participating in the process
(see, e.g., [144] and [149], discussed in Chapter 6).

While we believe that the transparency of smart contracts already somewhat addresses the lack
of trust in the auctioneer, a key advantage of using blockchain technology for this type of applica-
tions, more could even be done to minimize the auctioneer’s participation and possible interference
on the auction process. While some level participation from the auctioneer is unavoidable, such as
setting up the CTRs and collecting the prize’s money, we would like to explore schemes that em-

1zokrates.github.io/

zokrates.github.io/

136

power honest bidders to even execute the auction themselves, bypassing the auctioneer altogether.
Some interesting prospects we want to explore in this context are:

• a voting mechanism among the participants to approve the payment and retrieval of items,
since such a proposal would make the use of an auction process similar to multi-signature
wallets [176], based on collecting bidders’ signatures in order to approve the price transfers;

• a staking mechanism in which participants would need to put aside some coins in order to
penalize dishonest behavior and ensure the proper execution of VCG; the staked coins could
also work as an incentive for the revelation of bids during the “reveal” phase, even though
an analysis of the impact this approach could have on the utility function of VCG for search
would need to be performed.

7.4 Final thoughts

In this final section, we present some final thoughts on how we view research work in blockchain
systems. The crypto-sphere, fuelled by competition and monetary success, is constantly pushing
for technology advancements and protocol updates, without concern for scientific rigor to support
and document their platforms. This characteristic makes researching the field, specially carrying
out experiments, a constant effort of catching-up with the industry. During this thesis, the diffi-
culty of working with fast-evolving systems became apparent in a few occasions. The first case
occurred with Tezos; its self-amending properties made us have to rework tests during its protocol
updates, which sometimes made our development tools faulty. This setback generated by Tezos’
updates was both time-consuming and, at times, frustrating. This is an issue that designers of such
systems should think about ahead of time, at least if they intend to provide a sound environment
for scientifically based analysis.

Another drawback we encountered due to this inherent lack of scientific rigor relates to doc-
umentation. The chains we covered in this thesis offered documentations with varying levels of
information and consistency. Some blockchains fail to maintain or provide a concise technical
documentation, Bitcoin being a prime example. To compensate for such absence, there is a lot of
community-made documentation, with “Bitcoin Wiki” 2 being one of the chain’s main resources.
The issue with community-made content is that it is seldom updated with the latest developments,
which for us resulted in the need to constantly compare different documentations.

In some cases, such as Polygon, there is a main documentation provided by the related foun-
dation, but it isn’t totally transparent, with some data, such as the slash-penalty cost values and
block-publishing rewards, not being revealed. One could argue that this information is available
in the code of Polygon’s clients, since Polygon is an open-source project, but avoiding this extra
work is why documentations exists in the first place.

2en.bitcoin.it

en.bitcoin.it

137

Finally, we came to a situation analogue to Tezos’, during the closing days of this document.
Between September and October 2022, Ethereum Merge took place; on September 15, 2022 [6],
Ethereum mainnet merged with the beacon chain. Immediately after that date, Ethereum’ web
site ethereum.org/ provided an updated documentation, dropping all which was related to
Ethereum PoW, which put us in a difficult position when reviewing some data for Chapter 3,
specially for topics for which Ethereum’s main documentation served as a resource. Luckily,
Ethereum’s yellow paper [36], which has a more scientific approach, preserving previous iterations
of the document, was enough to provide all the information we were lacking.

We believe in the potential of blockchain systems for providing trust and security for auctions
and markets, but, for these systems to be resilient enough to provide such features, scientific rigor
is called for. We hope that this document will contribute on the endeavor of bringing science to
blockchains, so that these systems can achieve their full potential, bringing many innovations in
the years to come.

ethereum.org/

139

CHAPTER 8

CONCLUSION ET TRAVAUX FUTURS

Nous terminons cette thèse par une récapitulation de nos principales conclusions, dérivées à la
fois de nos comparaisons de référence et de l’évaluation de la confidentialité du contrat intelligent
VCG (Vickrey–Clarke–Groves) pour la recherche, ainsi que des limites de notre recherche. Nous
terminons en présentant quelques perspectives pour l’évolution future de nos recherches.

8.1 Résumé des principales conclusions et leur importance

Nous avons entamé cette thèse avec l’intention d’explorer les contrats intelligents en tant que
plateformes pour les enchères de types offres scellées, telles que VCG pour la recherche, et nos
recherches nous ont conduits à différentes découvertes et ont révélé des intéressantes nouvelles di-
rections de recherche pour élargir notre travail. Dans cette section, nous décrivons les principales
conclusions obtenues au cours de ce travail de recherche.

8.1.1 Comparaison des performances entre Ethereum et Tezos

Notre première analyse comparative, présentée dans le chapitre 5, est une comparaison entre
Ethereum, fondé sur le mécanisme de preuve de travail (PoW), et Tezos, fondé sur le mécanisme
de preuve d’enjeu (PoS), du point de vue des contrats intelligents. Notre intention était de com-
parer les deux chaı̂nes en termes de programmabilité, de performance et de coût monétaire (en ce
qui concerne les frais de transaction). Pour la comparaison, nous avons conçu et mis en œuvre
un algorithme VCG pour la recherche (naı̈f) à la fois en Solidity et en SmartPy. Notre analyse a
clairement mis en évidence les limites de la chaı̂ne PoW face à la chaı̂ne PoS, mais elle a également
souligné la supériorité d’Ethereum en tant que plateforme de développement de contrats intelli-
gents, avec un soutien communautaire plus grand et de meilleurs outils de développement.

Cette comparaison a été publiée dans l’article intitulé ”Blockchain Performance Benchmark-
ing: a VCG Auction Smart Contract Use Case for Ethereum and Tezos” (Évaluation des perfor-
mances des blockchains : un cas d’utilisation de contrat intelligent d’enchère VCG pour Ethereum
et Tezos) [7] et présentée lors du Quatrième symposium international sur les fondements et les
applications de la blockchain 2021 (Fourth International Symposium on Foundations and Appli-
cations of Blockchain, FAB ’21).

140

8.1.2 Comparaison des performances entre les mises à jour d’Ethereum

Le chapitre 5 présente également un deuxième benchmark, axé sur Ethereum et deux propositions
clés pour résoudre les problèmes liés à la preuve de travail : la couche 2 ”Polygon PoS” et la
mise à jour d’Ethereum, le ”Merge”. Nous estimons que ce choix est pertinent compte tenu de
l’importance de ces propositions dans la communauté et qu’il est également efficace sur le plan
de la recherche, car ces plateformes sont compatibles avec l’EVM (Ethereum Virtual Machine ou
machine virtuelle Ethereum), ce qui signifie que nous pouvions réutiliser le même code source de
contrat fondé sur Solidity et la même infrastructure pour nos tests.

Une fois de plus, la comparaison a confirmé la supériorité des chaı̂nes PoS par rapport à la
version d’Ethereum en PoW. Ainsi, la question la plus pertinente soulevée par nos données de
benchmark est la pertinence des solutions de couche 2 face au “Merge”. Bien que notre bench-
mark a révélé que Polygon était la chaı̂ne la plus rapide et la moins chère, même par rapport à
Ethereum après le Merge (Klin), cette supériorité, selon nous, n’est pas suffisante pour affirmer
que cette solution de couche 2, et éventuellement autres alternatives, resteront pertinentes à mesure
qu’Ethereum évolue. Le prix est volatile et si la chaı̂ne PoS de Polygon ne peut pas offrir une alter-
native moins chère pour exécuter des transactions Ethereum, elle va perdre en pertinence en tant
que solution de couche 2.

8.1.3 Analyse de la confidentialité des contrats intelligents et propositions de preuves de
concept pour préservant la confidentialité

Le chapitre 6 présente une analyse des conséquences du manque de confidentialité inhérent aux
contrats intelligents sur une enchère scellée telle que VCG pour la recherche. Notre analyse a
débuté par une étude sur les propositions visant à accroı̂tre la confidentialité des enchères scellées
dans les solutions centralisées.

Il est devenu évident que la confidentialité est une préoccupation même pour les systèmes cen-
tralisés, bien que cette préoccupation soit différente de la nôtre, car les solutions présentées se con-
centrent sur la préservation de la connaissance des offres de la part de l’organisateur d’enchères
et sur la garantie que l’algorithme de l’enchère est correctement exécuté. De telles préoccupations
ne se posent pas dans le contrat VCG pour la recherche, car nous sommes en mesure de tirer parti
de la confiance et de la transparence directement intégrées à ce type d’applications distribuées.

Nous avons également examiné les outils et propositions existants de la communauté crypto qui
ont été développés dans le but d’accroı̂tre la confidentialité des contrats intelligents. Les proposi-
tions utilisent des outils de cryptographie tels que le chiffrement homomorphique de Paillier et les
zk-SNARKs, qui malheureusement demandent trop de calculs pour être exécutés sur la blockchain;
ainsi, les propositions étudiées optent pour des solutions off-chain (hors chaı̂ne). Étant donné que
nous nous efforçons de maintenir notre système entièrement décentralisé, nous avons adopté une
approche différente.

Afin d’étudier l’efficacité des solutions de confidentialité on-chain (sur chaı̂ne) dans le contrat

141

VCG, nous avons déterminé 4 points clés de confidentialité que nous avons jugés importants pour
notre système : l’anonymat de l’enchérisseur, la confidentialité de l’enchérisseur, la confidentialité
des enregistrements et la confidentialité des transferts.

Nous avons ensuite présenté trois propositions de preuve de concept qui abordent progressive-
ment ces points de confidentialité : ”Commit-reveal VCG” (une sorte de mise en gage), ”VCG
pour la recherche avec échange de clés Diffie-Hellman” et ”Mélangeur Diffie-Hellman”.

Commit-reveal VCG Notre première proposition est fondée sur l’idée d’ajouter un schéma de
mise en gage au contrat VCG pour la recherche. Cette approche garantit que les enchérisseurs
s’engagent envers leurs offres et ne sont pas influencés les uns par les autres. Elle offre également
un soulagement partiel en ce qui concerne la confidentialité des enchérisseurs et la confidentialité
des enregistrements, car les enchérisseurs peuvent choisir de ne pas révéler leurs valeurs face aux
offres déjà révélées.

VCG pour la recherche avec échange de clés Diffie-Hellman Dans cette proposition, les par-
ticipants à l’enchère génèrent une clé partagée via le protocole ”Diffie-Hellman” afin d’utiliser le
chiffrement symétrique pour préserver la confidentialité des valeurs des offres vis-à-vis des spec-
tateurs non participants. La proposition est efficace pour préserver le secret des offres vis-à-vis
des non participants, bien que les prix des CTRs soient toujours révélés sur la chaı̂ne.

Mélangeur Diffie-Hellman Dans cette amélioration de notre approche VCG pour la recherche
avec échange de clés Diffie-Hellman, la liaison entre les adresses des offres et les adresses de
paiement des prix est rompu grâce à un mélangeur (mixer), qui tire parti de la clé partagée fondée
sur Diffie-Hellman. Ce schéma contribue à obscurcir le lien entre les adresses utilisées pour le
paiement et celles utilisées pour les offres. Le mélangeur a ainsi permis d’augmenter la confiden-
tialité concernant les quatre points clés de confidentialité, bien que de manière limitée, étant donné
que la clé partagée est connue de tous les participants.

8.2 Limitations

Voici quelques limitations de notre travail de recherche.

8.2.1 Travailler avec des blockchains

Une limitation de nos études de référence était le coût financier associé aux transactions sur les
blockchains. Les transactions pouvant être assez coûteuses, notamment sur Ethereum (avant l’EIP-
1559), il n’a donc jamais été possible, dans ce cadre de recherche, d’exécuter nos tests sur les
mainnets correspondants de nos blockchains ciblées. Nous avons dû faire un compromis en adop-
tant une alternative gratuite, tout en maintenant des résultats de tests proches d’une véritable
blockchain.

142

Une option aurait été de mettre en place notre propre réseau privé et d’exécuter les tests
sur notre propre client, mais cela ne reproduirait pas la nature compétitive des blockchains, car
nous serions les seuls utilisateurs à soumettre des transactions, ce qui pourrait nuire à la latence
d’acceptation des transactions. Nous avons finalement choisi d’utiliser des testnets pour nos tests.
Les testnets, annoncés comme des réseaux de test pour les développeurs, ont différents types de
consensus, parfois différents de leur mainnet correspondant, bien que nous nous soyons efforcés
d’utiliser ceux qui se rapprochent le plus de leur équivalent mainnet. Quoi qu’il en soit, notre
contribution ici, en plus des données admises et peut-être quelque peu biaisées obtenues, réside
déjà dans la conception et la mise au point des protocoles expérimentaux que nous avons utilisés
pour effectuer de tels tests.

Un problème pénalisant avec les testnets est qu’ils deviennent souvent instables avec le temps,
comme l’a déclaré Tim Beiko, responsable du support du protocole pour la Ethereum Foundation,
lors de son interview pour le podcast Epicenter sur le sujet du Merge d’Ethereum [172] : les
testnets, en particulier ceux fondés sur la preuve de travail, présentent avec le temps une grande
volatilité en termes de valeurs de temps de bloc. Nous avons en effet pu constater clairement
cette volatilité dans le testnet Ropsten, d’où notre besoin d’inclure les données de temps de bloc
récupérées à partir des mainnets correspondants et de les comparer à nos résultats.

8.2.2 Propositions de preuves de concept pour la préservation de la confidentialité

Nos propositions de preuve de concept qui reposent sur le chiffrement symétrique sont limitées par
notre choix d’algorithmes à clé symétrique. Comme discuté dans le chapitre 6, les développeurs
de contrats intelligents sont opposés à l’adoption du chiffrement symétrique, car une transac-
tion sur une blockchain révélerait la clé privée. Nous avons montré que les fonctions de type
‘view” peuvent être utilisées pour chiffrer et déchiffrer via un chiffrement à clé symétrique sans
risque de compromettre la clé privée. Pour nos PoCs, nous avons utilisé un chiffre de Vernam très
simple pour le chiffrement à clé symétrique. Les chiffres de Vernam (one-time pad, en anglais),
doivent être utilisés une seule fois, car une réutilisation pourrait compromettre la clé privée utilisée
pour le chiffrement ; nous les utilisons donc sciemment de manière inappropriée dans nos PoCs.
La programmation d’un chiffrement symétrique a été considérée comme étant hors du champ
d’application de notre travail de recherche, et étant donné qu’il n’existe pas d’implémentation
Solidity disponible et que celle-ci est mal vue par la communauté, nous avons fait le compromis de
développer le chiffre symétrique le plus simple qui correspondrait à nos besoins en PoC.

8.3 Opportunités de recherche future

Tout au long de cette thèse, de nombreuses questions et pistes intéressantes pour l’évolution future
de cette recherche ont émergé. À mesure que l’adoption des technologies blockchain se développe,
nos principaux sujets de scalabilité et de confidentialité deviennent des sujets d’intérêt de plus
en plus pertinents, car ils constituent un obstacle à l’adoption en masse. Ainsi, de nouvelles

143

recherches et technologies sont constamment mises en développement dans le domaine, offrant des
solutions aux problèmes que nous avons présentés. Nous introduisons ici quelques sujets que nous
jugeons intéressants pour élargir notre recherche, répartis en deux catégories : les comparaisons
futures de référence et les améliorations de la confidentialité.

8.3.1 Étude de référence axée sur la scalabilité

Comme mentionné précédemment, une première initiative intéressante pour les recherches futures
consisterait à effectuer nos benchmarks sur les mainnets plutôt que sur les testnets que nous avons
dû utiliser. Bien entendu, la nécessité d’un financement assez conséquent pour ce type de tests
en conditions réelles est un problème qui doit être résolu avant de mener une telle expérience de
validation.

De plus, nos études de référence ne sont pas représentatives des problèmes de scalabilité qui
affectent parfois les blockchains. Une nouvelle étude axée sur la scalabilité des blockchains, en
termes de taille des transactions et des blocs, devrait être lancée sur cette question importante.
La comparaison pourrait être réalisée entre différentes blockchains, semblable à notre étude de
référence sur Ethereum et Tezos.

Une autre proposition pourrait consister à réaliser ce benchmark de scalabilité en comparant
différentes solutions de couche 2, étant donné qu’elles ont été initialement conçues dans le but
d’augmenter les performances des blockchains existantes. La prochaine mise à jour d’Ethereum
après Merge, “Sharding” [140], serait un excellent candidat pour un tel benchmark.

8.3.2 Confidentialité

Une première ligne de recherche intéressante liée à notre travail sur la confidentialité découle
d’une des limitations présentées dans la dernière section : la mise en œuvre et l’évaluation de la
viabilité d’un chiffrement symétrique plus robuste à l’intérieur d’un contrat intelligent. Des candi-
dats prometteurs sont les populaire Advanced Encryption Standard (AES) [173] et Chacha20 [174].
Une étude supplémentaire pourrait être réalisée afin d’évaluer la solidité de la solution cryp-
tographique symétrique adoptée.

Les avancées récentes en cryptographie popularisent des outils aux propriétés très intéressantes
pour les contrats intelligents et notre problème de VCG pour la recherche. Nous avons sérieusement
envisagé en particulier le chiffrement totalement homomorphe et les zk-SNARKS, qui semblent être
des outils prometteurs pour étendre nos PoCs préservant la confidentialité, avant de nous concen-
trer sur les solutions présentées dans cette thèse. Cependant, nous croyons que ces approches,
une fois un peu plus matures, offriront de grandes opportunités à l’avenir pour les applications
distribuées telles que VCG.

Dans nos recherches, nous avons rencontré des cas d’adoption du chiffrement homomorphe
additif (voir le chapitre 6), dans lequel les additions peuvent être effectuées directement sur le
texte chiffré, le résultat déchiffré étant le même que si l’opération avait été effectuée sur le texte

144

en clair. Le chiffrement totalement homomorphe (FHE) [175] permet d’effectuer plus que des ad-
ditions de cette manière ; il pourrait permettre l’exécution de différentes opérations et évaluations
directement sur le texte chiffré. FHE semble, une fois de plus mature, être une solution parfaite
pour VCG pour la recherche, car l’ensemble de l’algorithme VCG pour la recherche pourrait être
exécuté avec des enchères chiffrées, et les utilisateurs n’auraient alors qu’à déchiffrer le résultat
traité. Bien sûr, les coûts et les problèmes de performances devraient être examinés attentivement
avant de se lancer dans une telle approche.

Enfin, les preuve à divulgation nulle de connaissance (zero-knowledge proofs) sont également
très prometteuses pour nos recherches, plus précisément les zk-SNARKs (“zero-knowledge suc-
cinct arguments of knowledge”) [158]. Les zk-SNARKs sont “succinctes”, car elles ne nécessitent
pas d’interactions étendues entre le “prouveur”, l’acteur qui souhaite prouver une déclaration,
et le “vérificateur”, celui qui doit être convaincu de quelque chose. Les preuves zk-SNARKs sont
rapides à calculer et, en raison de leur nature succincte, elles conviennent bien aux contrats intel-
ligents. Pour le contrat VCG pour la recherche, l’organisateur de l’enchère pourrait simplement
prouver aux enchérisseurs que l’enchère a été correctement exécutée. Au cours de nos recherches,
nous avons expérimenté avec ZoKrates1, une boı̂te à outils pour les zk-SNARKs sur Ethereum, mais
le manque de temps nous a empêchés d’approfondir davantage cette ligne de recherche promet-
teuse.

8.3.3 Limitation de la participation de l’organisateur d’enchères

Les contrats intelligents VCG pour la recherche dépendent de la participation de l’organisateur
pour fonctionner ; il leur incombe de soumettre les CRTs (taux de clics) mis aux enchères, ainsi que
de contrôler les différentes phases de l’enchère, telles que le respect de la période d’acceptation
des offres, la gestion de la révélation (dans le cas des schémas Commit-reveal) et la décision de
clôturer l’enchère.

La participation des organisateurs des enchères dans la enchère est compliquée; on pourrait
soutenir qu’ils ont en réalité le plus grand incitatif à tricher, puisqu’ils collectent l’argent des
prix. Et ainsi, il existe déjà plusieurs propositions d’enchères excluant les organizateurs de la
participation au processus (voir, par exemple [144] et [149], discutés dans le chapitre 6).

Bien que nous croyions que la transparence des contrats intelligents contribue déjà en partie
à résoudre le problème de confiance envers les organizateurs, un avantage clé de l’utilisation
de la technologie blockchain pour ce type d’applications, il est possible de faire davantage pour
minimiser la participation de l’organisateur d’enchères et les interférences éventuelles dans le
processus d’enchères. Bien qu’une certaine participation de l’organisateur soit inévitable, comme
la mise en place des règles de l’enchère et la collecte de l’argent des prix, nous souhaiterions
explorer des schémas permettant aux enchérisseurs honnêtes d’exécuter eux-mêmes l’enchère, en
contournant complètement l’organisateur.

1zokrates.github.io/

zokrates.github.io/

145

Quelques perspectives intéressantes que nous souhaitons explorer dans ce contexte sont :

• un mécanisme de vote parmi les participants pour approuver le paiement et la récupération
des articles, car une telle proposition rendrait l’utilisation d’un processus d’enchères simi-
laire aux portefeuilles multi-signatures [176], fondé sur la collecte des signatures des enché-
risseurs afin d’approuver les transferts de prix ;

• un mécanisme de preuve d’enjeu dans lequel les participants devraient mettre de côté cer-
taines pièces pour sanctionner les comportements malhonnêtes et garantir l’exécution ap-
propriée de VCG (Vickrey-Clarke-Groves) ; les pièces mises en jeu pourraient également
servir d’incitation à la révélation des offres pendant la phase de ”révélation”, bien qu’une
analyse de l’impact que cette approche pourrait avoir sur la fonction d’utilité de VCG pour
la recherche devrait être effectuée.

8.4 Réflexions finales

Dans cette dernière section, nous présentons quelques réflexions finales sur notre vision sur le
travail de recherche dans les systèmes blockchain. La communauté de la crypto-sphère, alimentée
par la concurrence et le succès financier, pousse constamment à des avancées technologiques
et à des mises à jour de protocoles, sans se soucier de la rigueur scientifique nécessaire pour
soutenir et documenter les plateformes. Cette caractéristique demande à la recherche dans ce
domaine, en particulier la réalisation d’expériences, un effort constant de rattrapage par rapport
à l’industrie. Au cours de cette thèse, la difficulté de travailler avec des systèmes en évolution
rapide est devenue évidente à plusieurs reprises. Le premier cas s’est produit avec Tezos ; ses
propriétés d’auto-amendement nous ont obligés à retravailler les tests lors de ses mises à jour de
protocole, ce qui rendait parfois nos outils de développement défectueux. Ce retard causé par les
mises à jour de Tezos était à la fois chronophage et parfois frustrant. Il s’agit d’un problème auquel
les concepteurs de tels systèmes devraient réfléchir à l’avance, s’ils ont l’intention de fournir un
environnement solide pour une analyse scientifique fondée sur des faits.

Un autre inconvénient que nous avons rencontré en raison de ce manque inhérent de rigueur
scientifique concerne la documentation. Les chaı̂nes que nous avons couvertes dans cette thèse
offrent des documentations avec des niveaux d’information et de cohérence variables. Certaines
blockchains ne parviennent pas à maintenir ou à fournir une documentation technique concise,
Bitcoin étant un exemple parfait. Pour compenser cette absence, il existe de nombreuses docu-
mentations créées par la communauté, dont le Bitcoin Wiki 2 est l’une des principales ressources
de la chaı̂ne. Le problème avec le contenu créé par la communauté est qu’il est rarement mis à
jour avec les derniers développements, ce qui nous a obligés à comparer constamment différentes
documentations.

2en.bitcoin.it

en.bitcoin.it

146

Dans certains cas, comme celui de Polygon, une documentation principale est fournie par la
fondation concernée, mais elle n’est pas totalement transparente, certaines données, telles que
les valeurs des coûts de pénalité de slash et des récompenses de publication de bloc, ne sont pas
révélées. On pourrait argumenter que ces informations sont disponibles dans le code des clients
de Polygon, puisque Polygon est un projet open source, mais éviter ce travail supplémentaire est
précisément la raison d’être des documentations.

Enfin, nous sommes arrivés à une situation similaire à celle liée à Tezos durant les derniers
jours de ce document. Entre septembre et octobre 2022, Ethereum Merge a eu lieu ; le 15 septembre
2022 [6], Ethereum mainnet a fusionné avec la chaı̂ne Beacon. Immédiatement après cette date,
le site web d’Ethereum ethereum.org/ a fourni une documentation mise à jour, supprimant
tout ce qui était lié à Ethereum preuve de travail (PoW), ce qui nous a mis dans une situation
difficile lors de l’examen de certaines données pour le chapitre 3, notamment pour les sujets pour
lesquels la documentation principale d’Ethereum servait de ressource. Heureusement, le yellow
paper d’Ethereum [36], qui adopte une approche plus scientifique en préservant les itérations
précédentes du document, a suffi pour fournir toutes les informations qui nous manquaient.

Nous croyons au potentiel des systèmes blockchain pour fournir confiance et sécurité dans les
enchères et les marchés, mais pour que ces systèmes soient suffisamment résilients pour offrir de
telles fonctionnalités, il est nécessaire de faire preuve de rigueur scientifique. Nous espérons que
ce document contribuera à l’effort de faire entrer la science dans les blockchains, afin que ces
systèmes puissent atteindre leur plein potentiel et apporter de nombreuses innovations dans les
années à venir.

ethereum.org/

147

BIBLIOGRAPHY

[1] M. De Witte and T. Ker. (2020). “Stanford economists Paul Milgrom and Robert Wil-
son win the Nobel in economic sciences,” Stanford News, [Online]. Available: https:
//news.stanford.edu/2020/10/12/stanford-economists-paul-
milgrom-robert-wilson-win-nobel-economic-sciences/. accessed:
11.10.2022.

[2] N. Confessore and M. Rosenberg. (2018). “Cambridge Analytica and Facebook: The Scan-
dal and the Fallout So Far,” [Online]. Available: https://nytimes.com/2018/04/
04/us/politics/cambridge-analytica-scandal-fallout.html. ac-
cessed: 02.07.2022.

[3] C. Tabacco. (2022). “Facebook Ad Buyers Secure Class Certification in Facebook Inflated
“Reach” Advertisement Case,” [Online]. Available: https://lawstreetmedia.
com/news/tech/facebook-ad-buyers-secure-class-certification-
in-facebook-inflated-reach-advertisement-case/. accessed: 02.07.2022.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Cryptography Mailing
list at https://metzdowd.com, 2008.

[5] V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decentralized Application
Platform,” 2014.

[6] R. Nambiampurath. (2022). “Ethereum Finally Completes The Merge,” Investopedia, [On-
line]. Available: https://www.investopedia.com/ethereum-completes-
the-merge-6666337. accessed: 08.10.2022.

[7] L. Massoni Sguerra, P. Jouvelot, E. J. Gallego Arias, G. Memmi, and F. Coelho, “Blockchain
Performance Benchmarking: a VCG Auction Smart Contract Use Case for Ethereum and
Tezos,” 2021. [Online]. Available: https://hal-mines-paristech.archives-
ouvertes.fr/hal-03210222.

[8] JASHKOTHARI1. (2022). “Cryptography and its Types,” GeeksforGeeks, [Online]. Avail-
able: https : / / www . geeksforgeeks . org / cryptography - and - its -
types/. accessed: 03.09.2022.

https://news.stanford.edu/2020/10/12/stanford-economists-paul-milgrom-robert-wilson-win-nobel-economic-sciences/
https://news.stanford.edu/2020/10/12/stanford-economists-paul-milgrom-robert-wilson-win-nobel-economic-sciences/
https://news.stanford.edu/2020/10/12/stanford-economists-paul-milgrom-robert-wilson-win-nobel-economic-sciences/
https://nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://lawstreetmedia.com/news/tech/facebook-ad-buyers-secure-class-certification-in-facebook-inflated-reach-advertisement-case/
https://lawstreetmedia.com/news/tech/facebook-ad-buyers-secure-class-certification-in-facebook-inflated-reach-advertisement-case/
https://lawstreetmedia.com/news/tech/facebook-ad-buyers-secure-class-certification-in-facebook-inflated-reach-advertisement-case/
https://www.investopedia.com/ethereum-completes-the-merge-6666337
https://www.investopedia.com/ethereum-completes-the-merge-6666337
https://hal-mines-paristech.archives-ouvertes.fr/hal-03210222
https://hal-mines-paristech.archives-ouvertes.fr/hal-03210222
https://www.geeksforgeeks.org/cryptography-and-its-types/
https://www.geeksforgeeks.org/cryptography-and-its-types/

148

[9] (2022). “Cryptography,” IBM MQ documentation, [Online]. Available: https://www.
ibm.com/docs/en/ibm- mq/7.5?topic=concepts- cryptography.
accessed: 03.09.2022.

[10] (2022). “What is a cryptographic key?” Cloudflare News, [Online]. Available: https:
//www.cloudflare.com/learning/ssl/what-is-a-cryptographic-
key/. accessed: 15.10.2022.

[11] S. Kaaru. (2022). “13 years ago, Satoshi Nakamoto sent Hal Finney 10 bitcoins in Bitcoin’s
first transaction ever,” CoinGeek, [Online]. Available: https://coingeek.com/13-
years-ago-satoshi-nakamoto-sent-hal-finney-10-bitcoins-in-
bitcoins-first-transaction-ever/. accessed: 11.10.2022.

[12] Zehraina. (2022). “What is Ethereum Mempool?” GeeksforGeeks, [Online]. Available:
https://www.geeksforgeeks.org/what- is- ethereum- mempool/.
accessed: 01.08.2022.

[13] yashi4001. (2022). “Blockchain Merkle Trees,” GeeksforGeeks, [Online]. Available: https:
//www.geeksforgeeks.org/blockchain-merkle-trees/. accessed: 01.08.2022.

[14] G. Walker. (2020). “TXID,” Learn me a bitcoin, [Online]. Available: https://learnmeabitcoin.
com/technical/txid. accessed: 01.08.2022.

[15] GR0KCHAIN. (2020). “Calculating the Merkle Root for a block,” Bitcoin Developer Net-
work, [Online]. Available: https://bitcoindev.network/calculating-
the-merkle-root-for-a-block/. accessed: 01.08.2022.

[16] (2022). “Ethereum Development Documentation,” Ethereum, [Online]. Available: https:
//ethereum.org/en/developers/docs/. accessed: 01.08.2022.

[17] O. Ifegwu. (2022). “Finality,” Binance, [Online]. Available: https : / / academy .
binance.com/en/glossary/finality. accessed: 06.08.2022.

[18] N. Szabo, “Formalizing and Securing Relationships on Public Networks,” First Monday,
vol. 2, no. 9, 1997. [Online]. Available: https://firstmonday.org/ojs/index.
php/fm/article/view/548, accessed: 03.09.2022.

[19] M. Miller, “The Future of Law,” 1997, accessed: 03.09.2022.

https://www.ibm.com/docs/en/ibm-mq/7.5?topic=concepts-cryptography
https://www.ibm.com/docs/en/ibm-mq/7.5?topic=concepts-cryptography
https://www.cloudflare.com/learning/ssl/what-is-a-cryptographic-key/
https://www.cloudflare.com/learning/ssl/what-is-a-cryptographic-key/
https://www.cloudflare.com/learning/ssl/what-is-a-cryptographic-key/
https://coingeek.com/13-years-ago-satoshi-nakamoto-sent-hal-finney-10-bitcoins-in-bitcoins-first-transaction-ever/
https://coingeek.com/13-years-ago-satoshi-nakamoto-sent-hal-finney-10-bitcoins-in-bitcoins-first-transaction-ever/
https://coingeek.com/13-years-ago-satoshi-nakamoto-sent-hal-finney-10-bitcoins-in-bitcoins-first-transaction-ever/
https://www.geeksforgeeks.org/what-is-ethereum-mempool/
https://www.geeksforgeeks.org/blockchain-merkle-trees/
https://www.geeksforgeeks.org/blockchain-merkle-trees/
https://learnmeabitcoin.com/technical/txid
https://learnmeabitcoin.com/technical/txid
https://bitcoindev.network/calculating-the-merkle-root-for-a-block/
https://bitcoindev.network/calculating-the-merkle-root-for-a-block/
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://academy.binance.com/en/glossary/finality
https://academy.binance.com/en/glossary/finality
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548

149

[20] (2021). “Solidity,” Ethereum, Solidity, [Online]. Available: https://docs.soliditylang.
org/en/v0.8.15. accessed: 22.07.2022.

[21] (2022). “Anatomy of Smart Contracts,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/smart-contracts/anatomy/. accessed: 03.09.2022.

[22] (2022). “Solidity Documentation Contracts,” Ethereum, [Online]. Available: https://
docs.soliditylang.org/en/latest/contracts. accessed: 03.09.2022.

[23] (2022). “Anatomy of Smart Contracts,” ankr, [Online]. Available: https : / / www .
ankr.com/docs/game/extra/events-and-subscriptions/. accessed:
03.09.2022.

[24] Ethereum Improvement Proposals, Ethereum, 2022. [Online]. Available: https://eips.
ethereum.org, accessed: 22.07.2022.

[25] M. Marcobello. (2022). “What Are EIP and ERC and How Are They Connected?” Coin-
Desk, [Online]. Available: https://www.coindesk.com/learn/what-are-
eip-and-erc-and-how-are-they-connected/. accessed: 03.09.2022.

[26] (2022). “ERC-20 Token Standard,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/standards/tokens/erc-20. accessed: 22.07.2022.

[27] F. Vogelsteller and V. Buterin. (2015). “Ethereum Improvement Proposals - EIP-20: Token
Standard,” Ethereum, [Online]. Available: https://eips.ethereum.org/EIPS/
eip-20. accessed: 03.09.2022.

[28] (2022). “ERC-20 Non-Fungible Token Standard,” Ethereum, [Online]. Available: https:
//ethereum.org/en/developers/docs/standards/tokens/erc-721.
accessed: 22.07.2022.

[29] M. Sangwan. (2021). “The Ethereum Virtual Machine (EVM),” Data Science Central, [On-
line]. Available: https://www.datasciencecentral.com/the-ethereum-
virtual-machine-evm/. accessed: 01.08.2022.

[30] J. Frankenfield. (2021). “Investopedia - Wei,” Investopedia, [Online]. Available: https:
//investopedia.com/terms/w/wei.asp. accessed: 24.09.2022.

https://docs.soliditylang.org/en/v0.8.15
https://docs.soliditylang.org/en/v0.8.15
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
https://docs.soliditylang.org/en/latest/contracts
https://docs.soliditylang.org/en/latest/contracts
https://www.ankr.com/docs/game/extra/events-and-subscriptions/
https://www.ankr.com/docs/game/extra/events-and-subscriptions/
https://eips.ethereum.org
https://eips.ethereum.org
https://www.coindesk.com/learn/what-are-eip-and-erc-and-how-are-they-connected/
https://www.coindesk.com/learn/what-are-eip-and-erc-and-how-are-they-connected/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://www.datasciencecentral.com/the-ethereum-virtual-machine-evm/
https://www.datasciencecentral.com/the-ethereum-virtual-machine-evm/
https://investopedia.com/terms/w/wei.asp
https://investopedia.com/terms/w/wei.asp

150

[31] (2022). “Deploying Smart Contracts,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/smart- contracts/deploying/. accessed:
06.08.2022.

[32] (2022). “Deploying your contracts,” Hardhat, [Online]. Available: https://hardhat.
org/hardhat-runner/docs/guides/deploying. accessed: 03.09.2022.

[33] (2022). “MetaMask: The crypto wallet for Defi, Web3 Dapps and NFTs,” MetaMask, [On-
line]. Available: https://metamask.io. accessed: 18.07.2022.

[34] (2021). “Ethereum Virtual Machine Opcodes,” Ethereum Stack Exchange, [Online]. Avail-
able: https://ethervm.io/. accessed: 25.09.2022.

[35] (2022). “Blocks - What is a block,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/blocks/. accessed: 06.08.2022.

[36] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger - BERLIN
VERSION 8fea825 – 2022-08-22,” Ethereum project yellow paper, 2022, accessed: 25.09.2022.

[37] (2022). “Blocks - What is a block,” Ethereum, [Online]. Available: https://ethereum.
org / en / developers / docs / consensus - mechanisms / pow / mining -
algorithms/ethash. accessed: 06.08.2022.

[38] B. Müller-Clostermann and T. Jonischkat, “Random Numbers - How Can We Create Ran-
domness in Computers?” In Algorithms Unplugged, B. Vöcking, H. Alt, M. Dietzfelbinger,
R. Reischuk, C. Scheideler, H. Vollmer, and D. Wagner, Eds. Springer Berlin Heidelberg,
2011, ISBN: 978-3-642-15328-0. [Online]. Available: https://doi.org/10.1007/
978-3-642-15328-0_25, accessed: 12.11.2022.

[39] V. Buterin. (2016). “Ethereum Improvement Proposals - EIP-100: Change difficulty adjust-
ment to target mean block time including uncles,” Ethereum, [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-100. accessed: 06.08.2022.

[40] J. Poon and V. Buterin, “Plasma: Scalable Autonomous Smart Contracts,” 2017. [Online].
Available: https://www.plasma.io/plasma.pdf, accessed: 03.09.2022.

[41] (2022). “Cosmos SDK - The world’s most used framework for building blockchains,”
Cosmos, [Online]. Available: https://v1.cosmos.network/sdk. accessed:
11.10.2022.

https://ethereum.org/en/developers/docs/smart-contracts/deploying/
https://ethereum.org/en/developers/docs/smart-contracts/deploying/
https://hardhat.org/hardhat-runner/docs/guides/deploying
https://hardhat.org/hardhat-runner/docs/guides/deploying
https://metamask.io
https://ethervm.io/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining-algorithms/ethash
https://doi.org/10.1007/978-3-642-15328-0_25
https://doi.org/10.1007/978-3-642-15328-0_25
https://eips.ethereum.org/EIPS/eip-100
https://eips.ethereum.org/EIPS/eip-100
https://www.plasma.io/plasma.pdf
https://v1.cosmos.network/sdk

151

[42] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982. [Online]. Available: https:
//doi.org/10.1145/357172.357176, accessed: 15.10.2022.

[43] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT consensus,” 2018. [On-
line]. Available: https://arxiv.org/abs/1807.04938, accessed: 12.10.2022.

[44] (2022). “Peppermint,” Polygon Wiki, [Online]. Available: https://wiki.polygon.
technology/docs/pos/peppermint/. accessed: 15.10.2022.

[45] (2022). “Go Ethereum - Official Go implementation of the Ethereum protocol,” Ethereum,
[Online]. Available: https://geth.ethereum.org/. accessed: 15.10.2022.

[46] (2022). “The Merge,” Ethereum, [Online]. Available: https://ethereum.org/en/
upgrades/merge/. accessed: 16.07.2022.

[47] S. Higgins. (2017). “$232 Million: Tezos Blockchain Project Finishes Record-Setting To-
ken Sale,” CoinDesk, [Online]. Available: https://www.coindesk.com/markets/
2017/07/13/232-million-tezos-blockchain-project-finishes-
record-setting-token-sale/. accessed: 06.08.2022.

[48] (2022). “Tezos Agora Wiki - What is baking?” Tezos, [Online]. Available: https://
wiki.tezosagora.org/learn/baking. accessed: 03.09.2022.

[49] L. Aştefanoaei, P. Chambart, A. Del Pozzo, T. Rieutord, S. Tucci, and E. Zălinescu, “Ten-
derbake – A Solution to Dynamic Repeated Consensus for Blockchains,” 2020. [Online].
Available: https://arxiv.org/abs/2001.11965, accessed: 03.09.2022.

[50] (2021). “Tezos Agora - Tezos Energy Consumption,” Tezos, [Online]. Available: https:
//wiki.tezosagora.org/learn/baking/tezos-energy-consumption.
accessed: 06.08.2022.

[51] (2021). “Governance and validation on Tezos,” Tezos, [Online]. Available: https://
tezos.com/governance/. accessed: 03.09.2022.

[52] (2021). “Tezos Agora Wiki - Formal Verification,” Tezos, [Online]. Available: wiki.
tezosagora.org/learn/smartcontracts/michelsonandcoq. accessed:
25.09.2022.

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://arxiv.org/abs/1807.04938
https://wiki.polygon.technology/docs/pos/peppermint/
https://wiki.polygon.technology/docs/pos/peppermint/
https://geth.ethereum.org/
https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/
https://www.coindesk.com/markets/2017/07/13/232-million-tezos-blockchain-project-finishes-record-setting-token-sale/
https://www.coindesk.com/markets/2017/07/13/232-million-tezos-blockchain-project-finishes-record-setting-token-sale/
https://www.coindesk.com/markets/2017/07/13/232-million-tezos-blockchain-project-finishes-record-setting-token-sale/
https://wiki.tezosagora.org/learn/baking
https://wiki.tezosagora.org/learn/baking
https://arxiv.org/abs/2001.11965
https://wiki.tezosagora.org/learn/baking/tezos-energy-consumption
https://wiki.tezosagora.org/learn/baking/tezos-energy-consumption
https://tezos.com/governance/
https://tezos.com/governance/
wiki.tezosagora.org/learn/smartcontracts/michelsonandcoq
wiki.tezosagora.org/learn/smartcontracts/michelsonandcoq

152

[53] (2021). “Tezos Agora - Smart Contracts,” OpenTezos, [Online]. Available: https://
wiki.tezosagora.org/learn/smartcontracts. accessed: 03.09.2022.

[54] M. Hiron. (2022). “Open Tezos Smart Contracts,” OpenTezos, [Online]. Available: https:
//opentezos.com/michelson/smart-contracts. accessed: 03.09.2022.

[55] A. Kaur. (2021). “Indexing in Databases,” GeeksforGeeks, [Online]. Available: https:
/ / geeksforgeeks . org / indexing - in - databases - set - 1/. accessed:
24.09.2022.

[56] (2022). “Truffle- Sweet Tools for Smart Contracts,” Truffle, [Online]. Available: https:
//trufflesuite.com. accessed: 18.07.2022.

[57] (2019). “Truffle blockchain developer tools to support Hyperledger Fabric, R3 Corda,”
Ledger Insights, [Online]. Available: https : / / www . ledgerinsights . com /
truffle-blockchain-developer-tools-hyperledger-fabric-r3-
corda/. accessed: 04.10.2022.

[58] (2022). “Infura- The World’s Most Powerful Blockchain Development Suite,” Infura, [On-
line]. Available: https://infura.io. accessed: 18.07.2022.

[59] (2022). “We focus on the infrastructure,” Infura, [Online]. Available: https://infura.
io/product/ethereum. accessed: 04.10.2022.

[60] S. Becker. (2022). “The 6 Best Crypto Wallets for Most Investors, According to Ex-
perts,” Ledger Insights, [Online]. Available: https://time.com/nextadvisor/
investing/cryptocurrency/best-crypto-wallets/. accessed: 04.10.2022.

[61] P. Wang. (2020). “How MetaMask stores your wallet secret?” [Online]. Available: https:
/ / www . wispwisp . com / index . php / 2020 / 12 / 25 / how - metamask -
stores-your-wallet-secret/. accessed: 11.10.2022.

[62] R. A. McNeal, “The Brides of Babylon: Herodotus 1.196,” Historia: Zeitschrift für Alte
Geschichte, vol. 37, no. 1, pp. 54–71, 1988. [Online]. Available: https://jstor.
org/stable/4436038?seq=1, accessed: 30.09.2022.

[63] S. Karp. (2008). “Google AdWords: A Brief History Of Online Advertising Innovation,”
Publishing 2.0, [Online]. Available: https://publishing2.scottkarp.ai/
2008/05/27/google-adwords-a-brief-history-of-online-advertising-
innovation/. accessed: 09.07.2022.

https://wiki.tezosagora.org/learn/smartcontracts
https://wiki.tezosagora.org/learn/smartcontracts
https://opentezos.com/michelson/smart-contracts
https://opentezos.com/michelson/smart-contracts
https://geeksforgeeks.org/indexing-in-databases-set-1/
https://geeksforgeeks.org/indexing-in-databases-set-1/
https://trufflesuite.com
https://trufflesuite.com
https://www.ledgerinsights.com/truffle-blockchain-developer-tools-hyperledger-fabric-r3-corda/
https://www.ledgerinsights.com/truffle-blockchain-developer-tools-hyperledger-fabric-r3-corda/
https://www.ledgerinsights.com/truffle-blockchain-developer-tools-hyperledger-fabric-r3-corda/
https://infura.io
https://infura.io/product/ethereum
https://infura.io/product/ethereum
https://time.com/nextadvisor/investing/cryptocurrency/best-crypto-wallets/
https://time.com/nextadvisor/investing/cryptocurrency/best-crypto-wallets/
https://www.wispwisp.com/index.php/2020/12/25/how-metamask-stores-your-wallet-secret/
https://www.wispwisp.com/index.php/2020/12/25/how-metamask-stores-your-wallet-secret/
https://www.wispwisp.com/index.php/2020/12/25/how-metamask-stores-your-wallet-secret/
https://jstor.org/stable/4436038?seq=1
https://jstor.org/stable/4436038?seq=1
https://publishing2.scottkarp.ai/2008/05/27/google-adwords-a-brief-history-of-online-advertising-innovation/
https://publishing2.scottkarp.ai/2008/05/27/google-adwords-a-brief-history-of-online-advertising-innovation/
https://publishing2.scottkarp.ai/2008/05/27/google-adwords-a-brief-history-of-online-advertising-innovation/

153

[64] Statista. (2022). “Advertising revenue of Google from 2001 to 2021,” [Online]. Available:
https://statista.com/statistics/266249/advertising-revenue-
of-google/. accessed: 02.07.2022.

[65] V. Krishna, Auction Theory, 2nd ed. Academic Press, 2009, ISBN: 9780123745071.

[66] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” 1961. [On-
line]. Available: https://cs.princeton.edu/courses/archive/spr09/
cos444/papers/vickrey61.pdf, accessed: 30.09.2022.

[67] T. Roughgarden, CS269I: Incentives in Computer Science - Lecture 13: Introduction to
Auctions, Nov. 2016. [Online]. Available: https://timroughgarden.org/f16/
l/l13.pdf.

[68] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game Theory. Cam-
bridge University Press, 2007.

[69] E. H. Clarke, “Multipart pricing of public goods,” 1971. [Online]. Available: https://
https://www.jstor.org/stable/30022651?seq=1, accessed: 30.09.2022.

[70] T. Groves, “Incentives in Teams,” Econometrica, vol. 41, no. 4, pp. 617–631, 1973. [On-
line]. Available: https://www.jstor.org/stable/1914085, accessed: 30.09.2022.

[71] P. Milgrom, Ed., Putting Auction Theory to Work. Cambridge U. Press, 2004, ISBN: 9780521536721.

[72] P. Jouvelot and E. J. Gallego Arias, Mech.v, 2022. [Online]. Available: https://github.
com/jouvelot/mech.v, accessed: 25.09.2022.

[73] P. Jouvelot, L. Massoni Sguerra, and E. J. Gallego Arias, “Towards a Generic Coq Proof
of the Truthfulness of Vickrey–Clarke–Groves Auctions for Search,” 2021.

[74] P. Jouvelot and E. J. Gallego Arias, A Foundational Framework for the Specification and
Verification of Mechanism Design, Poster, 2022. [Online]. Available: https://hal-
mines- paristech.archives- ouvertes.fr/hal- 03715847, accessed:
25.09.2022.

[75] M. H. Rothkopf, T. J. Teisberg, and E. P. Kahn, “Why Are Vickrey Auctions Rare?” Journal
of Political Economy, vol. 98, no. 1, pp. 94–109, 1990. [Online]. Available: https://
jstor.org/stable/2937643?seq=1, accessed: 30.09.2022.

https://statista.com/statistics/266249/advertising-revenue-of-google/
https://statista.com/statistics/266249/advertising-revenue-of-google/
https://cs.princeton.edu/courses/archive/spr09/cos444/papers/vickrey61.pdf
https://cs.princeton.edu/courses/archive/spr09/cos444/papers/vickrey61.pdf
https://timroughgarden.org/f16/l/l13.pdf
https://timroughgarden.org/f16/l/l13.pdf
https://https://www.jstor.org/stable/30022651?seq=1
https://https://www.jstor.org/stable/30022651?seq=1
https://www.jstor.org/stable/1914085
https://github.com/jouvelot/mech.v
https://github.com/jouvelot/mech.v
https://hal-mines-paristech.archives-ouvertes.fr/hal-03715847
https://hal-mines-paristech.archives-ouvertes.fr/hal-03715847
https://jstor.org/stable/2937643?seq=1
https://jstor.org/stable/2937643?seq=1

154

[76] L. M. Ausubel and P. Milgrom, “The Lovely but Lonely Vickrey Auction,” 2006. [On-
line]. Available: https://milgrom.people.stanford.edu/wp-content/
uploads/2005/12/Lovely-but-Lonely-Vickrey-Auction-072404a.
pdf, accessed: 30.09.2022.

[77] H. Varian and C. Harris, “VCG Auction in Theory and Practice,” American Economic
Review, vol. 104, no. 5, pp. 442–45, 2014. [Online]. Available: https://aeaweb.
org/articles?id=10.1257/aer.104.5.442, accessed: 30.09.2022.

[78] Statista. (2022). “Advertising revenues generated by Facebook worldwide from 2017 to
2026,” [Online]. Available: https://statista.com/statistics/544001/
facebooks-advertising-revenue-worldwide-usa/. accessed: 02.07.2022.

[79] J. Guo. (2022). “How Facebook (Meta Platforms) Makes Money,” [Online]. Available:
https://seekingalpha.com/article/4471770-how-does-facebook-
make-money. accessed: 02.07.2022.

[80] M. Prater. (2021). “25 Google Search Statistics to Bookmark ASAP,” [Online]. Available:
https://blog.hubspot.com/marketing/google-search-statistics.
accessed: 02.07.2022.

[81] T. Roughgarden. (2016). “CS269I: Incentives in Computer Science - Lecture 13: Introduc-
tion to Auctions,” [Online]. Available: http://timroughgarden.org/f16/l/
l13.pdf. accessed: 12.11.2022.

[82] T. Roughgarden, Twenty Lectures on Algorithmic Game Theory. Cambridge U. Press,
2016, ISBN: 9781316779309.

[83] C. Metz. (2015). “Facebook Doesn’t Make as Much Money as It Could — On Purpose,”
WIRED, [Online]. Available: https://www.wired.com/2015/09/facebook-
doesnt-make-much-money-couldon-purpose/. accessed: 17.10.2022.

[84] (2022). “About Ad Auctions,” Meta Business Help Center, [Online]. Available: https:
//www.facebook.com/business/help/430291176997542?id. accessed:
17.10.2022.

[85] P. Vigna. (2020). “Bitcoin Price Hits All-Time High Above $19,000, Topping 2017 Record,”
The Wall Street Journal, [Online]. Available: https : / / wsj . com / articles /
bitcoin-hits-all-time-high-of-19-786-topping-record-from-
december-2017-11606750573. accessed: 15.07.2022.

https://milgrom.people.stanford.edu/wp-content/uploads/2005/12/Lovely-but-Lonely-Vickrey-Auction-072404a.pdf
https://milgrom.people.stanford.edu/wp-content/uploads/2005/12/Lovely-but-Lonely-Vickrey-Auction-072404a.pdf
https://milgrom.people.stanford.edu/wp-content/uploads/2005/12/Lovely-but-Lonely-Vickrey-Auction-072404a.pdf
https://aeaweb.org/articles?id=10.1257/aer.104.5.442
https://aeaweb.org/articles?id=10.1257/aer.104.5.442
https://statista.com/statistics/544001/facebooks-advertising-revenue-worldwide-usa/
https://statista.com/statistics/544001/facebooks-advertising-revenue-worldwide-usa/
https://seekingalpha.com/article/4471770-how-does-facebook-make-money
https://seekingalpha.com/article/4471770-how-does-facebook-make-money
https://blog.hubspot.com/marketing/google-search-statistics
http://timroughgarden.org/f16/l/l13.pdf
http://timroughgarden.org/f16/l/l13.pdf
https://www.wired.com/2015/09/facebook-doesnt-make-much-money-couldon-purpose/
https://www.wired.com/2015/09/facebook-doesnt-make-much-money-couldon-purpose/
https://www.facebook.com/business/help/430291176997542?id
https://www.facebook.com/business/help/430291176997542?id
https://wsj.com/articles/bitcoin-hits-all-time-high-of-19-786-topping-record-from-december-2017-11606750573
https://wsj.com/articles/bitcoin-hits-all-time-high-of-19-786-topping-record-from-december-2017-11606750573
https://wsj.com/articles/bitcoin-hits-all-time-high-of-19-786-topping-record-from-december-2017-11606750573

155

[86] A. Kharpal. (2017). “Bitcoin price hits another record high above $5,800, now up 480%
this year,” CNBC, [Online]. Available: https : / / cnbc . com / 2017 / 10 / 13 /
bitcoin-price-hits-another-record-high-above-5800.html. ac-
cessed: 15.07.2022.

[87] J. Finneseth. (2021). “Ethereum price hits a new high above $4,500 right as Bitcoin recap-
tures $64k,” Cointelegraph, [Online]. Available: https://cointelegraph.com/
news/ethereum-price-hits-a-new-high-above-4-500-right-as-
bitcoin-recaptures-64k. accessed: 15.07.2022.

[88] M. Zare. (2022). “NFT Sales Hit Record-breaking $25B in 2021: Report,” Crypto Econ-
omy, [Online]. Available: https://crypto-economy.com/nft-sales-hit-
record-breaking-25b-in-2021-report/. accessed: 15.07.2022.

[89] J. Kanani, S. Nailwal, and A. Arjun, “Matic Whitepaper,” 2019. [Online]. Available: https:
//github.com/maticnetwork/whitepaper, accessed: 30.09.2022.

[90] “Comparison of Ethereum, Hyperledger Fabric and Corda,” 2017. [Online]. Available:
https://smallake.kr/wp-content/uploads/2017/07/2017_Comparison-
of-Ethereum-Hyperledger-Corda.pdf, accessed: 30.09.2022.

[91] S. Jani, “An Overview of Ethereum Its Comparison with Bitcoin,” 2017. [Online]. Avail-
able: https://researchgate.net/profile/Shailak-Jani/publication/
323078799_An_Overview_of_Ethereum_Its_Comparison_with_Bitcoin/
links/5a7ea3c14585154d57d53d5d/An-Overview-of-Ethereum-Its-
Comparison-with-Bitcoin.pdf, accessed: 30.09.2022.

[92] M. Rauchs, A. Blandin, K. Bear, and S. McKeon, “2nd Global Entreprise Blockchain
Benchmarking Study,” 2019. [Online]. Available: https://jbs.cam.ac.uk/
wp- content/uploads/2020/08/2019- 10- ccaf- second- global-
enterprise-blockchain-report.pdf.

[93] D. Perez, J. Xu, and B. Livshits, “Revisiting Transactional Statistics of High-scalability
Blockchains,” 2020. [Online]. Available: https://arxiv.org/pdf/2003.02693.
pdf%5C%C3%5C%82%5C%C2%5C%A0.

[94] (2021). “Tezos VS Ethereum: The ultimate comparison,” Smartlink, [Online]. Available:
https://smartlink.so/tezos-vs-ethereum-the-ultimate-comparison/.
accessed: 16.07.2022.

https://cnbc.com/2017/10/13/bitcoin-price-hits-another-record-high-above-5800.html
https://cnbc.com/2017/10/13/bitcoin-price-hits-another-record-high-above-5800.html
https://cointelegraph.com/news/ethereum-price-hits-a-new-high-above-4-500-right-as-bitcoin-recaptures-64k
https://cointelegraph.com/news/ethereum-price-hits-a-new-high-above-4-500-right-as-bitcoin-recaptures-64k
https://cointelegraph.com/news/ethereum-price-hits-a-new-high-above-4-500-right-as-bitcoin-recaptures-64k
https://crypto-economy.com/nft-sales-hit-record-breaking-25b-in-2021-report/
https://crypto-economy.com/nft-sales-hit-record-breaking-25b-in-2021-report/
https://github.com/maticnetwork/whitepaper
https://github.com/maticnetwork/whitepaper
https://smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://researchgate.net/profile/Shailak-Jani/publication/323078799_An_Overview_of_Ethereum_Its_Comparison_with_Bitcoin/links/5a7ea3c14585154d57d53d5d/An-Overview-of-Ethereum-Its-Comparison-with-Bitcoin.pdf
https://researchgate.net/profile/Shailak-Jani/publication/323078799_An_Overview_of_Ethereum_Its_Comparison_with_Bitcoin/links/5a7ea3c14585154d57d53d5d/An-Overview-of-Ethereum-Its-Comparison-with-Bitcoin.pdf
https://researchgate.net/profile/Shailak-Jani/publication/323078799_An_Overview_of_Ethereum_Its_Comparison_with_Bitcoin/links/5a7ea3c14585154d57d53d5d/An-Overview-of-Ethereum-Its-Comparison-with-Bitcoin.pdf
https://researchgate.net/profile/Shailak-Jani/publication/323078799_An_Overview_of_Ethereum_Its_Comparison_with_Bitcoin/links/5a7ea3c14585154d57d53d5d/An-Overview-of-Ethereum-Its-Comparison-with-Bitcoin.pdf
https://jbs.cam.ac.uk/wp-content/uploads/2020/08/2019-10-ccaf-second-global-enterprise-blockchain-report.pdf
https://jbs.cam.ac.uk/wp-content/uploads/2020/08/2019-10-ccaf-second-global-enterprise-blockchain-report.pdf
https://jbs.cam.ac.uk/wp-content/uploads/2020/08/2019-10-ccaf-second-global-enterprise-blockchain-report.pdf
https://arxiv.org/pdf/2003.02693.pdf%5C%C3%5C%82%5C%C2%5C%A0
https://arxiv.org/pdf/2003.02693.pdf%5C%C3%5C%82%5C%C2%5C%A0
https://smartlink.so/tezos-vs-ethereum-the-ultimate-comparison/

156

[95] D. Hamilton. (2022). “Avalanche Vs. Ethereum – What’s the Difference?” Securities.io,
[Online]. Available: https://securities.io/avalanche-avax-vs-ethereum-
eth-everything-you-need-to-know/. accessed: 16.07.2022.

[96] L. Kokoris-Kogias. (2022). “Understanding Blockchain Latency and Throughput,” Paradigm,
[Online]. Available: https://paradigm.xyz/2022/07/consensus-throughput.
accessed: 16.07.2022.

[97] P. Prajapati, N. Bhatt, and N. Bhatt, “Performance comparison of different sorting algo-
rithms,” vol. VI, no. Vi, pp. 39–41, 2017.

[98] J. Goddard. (2022). “Sorting in Solidity without Comparison,” Medium, [Online]. Avail-
able: https://medium.com/coinmonks/sorting-in-solidity-without-
comparison-4eb47e04ff0d. accessed: 18.11.2022.

[99] Remix Ethereum IDE Deploy & Run, Ethereum, 2019. [Online]. Available: https://
remix-ide.readthedocs.io/en/latest/run.html, accessed: 30.09.2022.

[100] (2022). “Anatomy of Smart Contracts - Memory,” Ethereum, [Online]. Available: https:
//ethereum.org/en/developers/docs/smart-contracts/anatomy/
#memory. accessed: 17.07.2022.

[101] (2022). “Visibility Quantifiers,” TutorialsPoint, [Online]. Available: https://tutorialspoint.
com/solidity/solidity_contracts.htm. accessed: 18.07.2022.

[102] (2022). “Hashing Algorithms,” Ethers, [Online]. Available: https://docs.ethers.
io/v5/api/utils/hashing. accessed: 18.07.2022.

[103] A. M. Antonopoulos and G. Wood, Mastering Ethereum. O’Reilly Media, Inc, 2018, ch. 4,
ISBN: 9781491971949. [Online]. Available: https://oreilly.com/library/
view/mastering-ethereum/9781491971932/ch04.html, accessed: 18.07.2022.

[104] (2019). “Truffle-hdwallet-provider,” Truffle, [Online]. Available: https://github.
com/trufflesuite/truffle-hdwallet-provider. accessed: 18.07.2022.

[105] (2022). “Ethereum Accounts,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/accounts/. accessed: 25.09.2022.

https://securities.io/avalanche-avax-vs-ethereum-eth-everything-you-need-to-know/
https://securities.io/avalanche-avax-vs-ethereum-eth-everything-you-need-to-know/
https://paradigm.xyz/2022/07/consensus-throughput
https://medium.com/coinmonks/sorting-in-solidity-without-comparison-4eb47e04ff0d
https://medium.com/coinmonks/sorting-in-solidity-without-comparison-4eb47e04ff0d
https://remix-ide.readthedocs.io/en/latest/run.html
https://remix-ide.readthedocs.io/en/latest/run.html
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/#memory
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/#memory
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/#memory
https://tutorialspoint.com/solidity/solidity_contracts.htm
https://tutorialspoint.com/solidity/solidity_contracts.htm
https://docs.ethers.io/v5/api/utils/hashing
https://docs.ethers.io/v5/api/utils/hashing
https://oreilly.com/library/view/mastering-ethereum/9781491971932/ch04.html
https://oreilly.com/library/view/mastering-ethereum/9781491971932/ch04.html
https://github.com/trufflesuite/truffle-hdwallet-provider
https://github.com/trufflesuite/truffle-hdwallet-provider
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/accounts/

157

[106] (2021). “Tezos Agora Wiki - Smart Contracts on Tezos,” Tezos, SmartPy, [Online]. Avail-
able: https://wiki.tezosagora.org/learn/smartcontracts. accessed:
22.07.2022.

[107] (2021). “Tezos Agora Wiki - High-Level Languages of Tezo,” Tezos, [Online]. Avail-
able: https://wiki.tezosagora.org/learn/smartcontracts#high-
level-languages-of-tezos. accessed: 22.07.2022.

[108] (2021). “Tezos Agora Wiki - Michelson,” Tezos, [Online]. Available: https://wiki.
tezosagora.org/learn/smartcontracts/michelson. accessed: 22.07.2022.

[109] (2021). “SmartPy Overview - What is SmartPy?” Tezos, SmartPy, [Online]. Available:
https://smartpy.io/docs. accessed: 22.07.2022.

[110] (2021). “SmartPy - Typing,” Tezos, SmartPy, [Online]. Available: https://smartpy.
io/docs/general/types/. accessed: 22.07.2022.

[111] (2022). “TzKT Tezos Blockchain Explorer - Tezos Accounts,” TzKT, [Online]. Available:
https://tzkt.io/accounts. accessed: 22.07.2022.

[112] (2022). “Ethereum Cumulative Unique Addresses,” YCharts, [Online]. Available: https:
//ycharts.com/indicators/ethereum_cumulative_unique_addresses.
accessed: 22.07.2022.

[113] (2021). “Tezster-CLI,” Tezos, [Online]. Available: https://github.com/Tezsure/
Tezster-CLI. accessed: 20.09.2022.

[114] (2022). “Tezos Governance Overview,” Tezos, [Online]. Available: https://wiki.
tezos.com/learn/governance/tezos-governance-overview. accessed:
20.09.2022.

[115] Paradigm. (2019). “Tezos Governance Overview,” Tezos, [Online]. Available: https:
//medium.com/paradigm-research/tezos-the-carthage-proposal-
the-carthagenet-test-network-the-first-version-of-a-baker-
registry-10e455075d93. accessed: 20.09.2022.

[116] (2021). “Protocol Delphi,” Tezos, [Online]. Available: https://tezos.gitlab.io/
protocols/007_delphi.html. accessed: 20.09.2022.

https://wiki.tezosagora.org/learn/smartcontracts
https://wiki.tezosagora.org/learn/smartcontracts#high-level-languages-of-tezos
https://wiki.tezosagora.org/learn/smartcontracts#high-level-languages-of-tezos
https://wiki.tezosagora.org/learn/smartcontracts/michelson
https://wiki.tezosagora.org/learn/smartcontracts/michelson
https://smartpy.io/docs
https://smartpy.io/docs/general/types/
https://smartpy.io/docs/general/types/
https://tzkt.io/accounts
https://ycharts.com/indicators/ethereum_cumulative_unique_addresses
https://ycharts.com/indicators/ethereum_cumulative_unique_addresses
https://github.com/Tezsure/Tezster-CLI
https://github.com/Tezsure/Tezster-CLI
https://wiki.tezos.com/learn/governance/tezos-governance-overview
https://wiki.tezos.com/learn/governance/tezos-governance-overview
https://medium.com/paradigm-research/tezos-the-carthage-proposal-the-carthagenet-test-network-the-first-version-of-a-baker-registry-10e455075d93
https://medium.com/paradigm-research/tezos-the-carthage-proposal-the-carthagenet-test-network-the-first-version-of-a-baker-registry-10e455075d93
https://medium.com/paradigm-research/tezos-the-carthage-proposal-the-carthagenet-test-network-the-first-version-of-a-baker-registry-10e455075d93
https://medium.com/paradigm-research/tezos-the-carthage-proposal-the-carthagenet-test-network-the-first-version-of-a-baker-registry-10e455075d93
https://tezos.gitlab.io/protocols/007_delphi.html
https://tezos.gitlab.io/protocols/007_delphi.html

158

[117] C. Wiser. (2021). “Tezos Edo Upgrade + Network Effects,” Tezos, [Online]. Available:
https://medium.com/tqtezos/tezos-edo-upgrade-network-effects-
5adc20075de4. accessed: 20.09.2022.

[118] Ethereum Improvement Proposals, Ethereum, 2022. [Online]. Available: https://eips.
ethereum.org/erc, accessed: 22.07.2022.

[119] (2020). “The standard for secure blockchain applications,” OpenZeppelin, [Online]. Avail-
able: https://www.openzeppelin.com/. accessed: 11.10.2022.

[120] (2021). “Top 10 Ethereum development tools in 2021,” Analytics Insight, [Online]. Avail-
able: https://analyticsinsight.net/top-10-ethereum-development-
tools-in-2021. accessed: 20.09.2022.

[121] (2022). “Top 10 Ethereum development tools in 2021,” Hardhat - Ethereum development
environment for professionals, [Online]. Available: https://hardhat.org. accessed:
20.09.2022.

[122] Ethereum improvement proposal 1559, Ethereum-bad, 2019. [Online]. Available: https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md,
accessed: 30.09.2022.

[123] (2021). “2020 Dapp Industry Report,” DappRadar, [Online]. Available: https://static.
coindesk.com/wp- content/uploads/2021/01/DappRadar- 2020-
Dapp-Industry-Report.pdf. accessed: 08.07.2022.

[124] J. Truby, R. D. Brown, A. Dahdal, and I. Ibrahim, “Blockchain, climate damage, and death:
Policy interventions to reduce the carbon emissions, mortality, and net-zero implications
of non-fungible tokens and Bitcoin,” Energy Research Social Science, vol. 88, p. 102 499,
2022. [Online]. Available: https://sciencedirect.com/science/article/
pii/S221462962200007X, accessed: 30.09.2022.

[125] F. Rousselot. (2022). “Cryptocurrency, NFTs and the metaverse threaten an environmental
nightmare – here’s how to avoid it,” [Online]. Available: https://theconversation.
com/cryptocurrency-nfts-and-the-metaverse-threaten-an-environmental-
nightmare-heres-how-to-avoid-it-175761. accessed: 08.07.2022.

[126] E. J. Beyer. (2022). “NFTs and the Environment: Why the Anger Is Unjustified,” [Online].
Available: https://nftnow.com/features/nfts-and-the-environment-
why-the-anger-is-unjustified/. accessed: 08.07.2022.

https://medium.com/tqtezos/tezos-edo-upgrade-network-effects-5adc20075de4
https://medium.com/tqtezos/tezos-edo-upgrade-network-effects-5adc20075de4
https://eips.ethereum.org/erc
https://eips.ethereum.org/erc
https://www.openzeppelin.com/
https://analyticsinsight.net/top-10-ethereum-development-tools-in-2021
https://analyticsinsight.net/top-10-ethereum-development-tools-in-2021
https://hardhat.org
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://static.coindesk.com/wp-content/uploads/2021/01/DappRadar-2020-Dapp-Industry-Report.pdf
https://static.coindesk.com/wp-content/uploads/2021/01/DappRadar-2020-Dapp-Industry-Report.pdf
https://static.coindesk.com/wp-content/uploads/2021/01/DappRadar-2020-Dapp-Industry-Report.pdf
https://sciencedirect.com/science/article/pii/S221462962200007X
https://sciencedirect.com/science/article/pii/S221462962200007X
https://theconversation.com/cryptocurrency-nfts-and-the-metaverse-threaten-an-environmental-nightmare-heres-how-to-avoid-it-175761
https://theconversation.com/cryptocurrency-nfts-and-the-metaverse-threaten-an-environmental-nightmare-heres-how-to-avoid-it-175761
https://theconversation.com/cryptocurrency-nfts-and-the-metaverse-threaten-an-environmental-nightmare-heres-how-to-avoid-it-175761
https://nftnow.com/features/nfts-and-the-environment-why-the-anger-is-unjustified/
https://nftnow.com/features/nfts-and-the-environment-why-the-anger-is-unjustified/

159

[127] (2022). “2021 Dapp Industry Report,” DappRadar, [Online]. Available: https://dappradar.
com/blog/2021-dapp-industry-report. accessed: 08.07.2022.

[128] F. Rousselot, Ethereum for everyone, Ethereum, 2022. [Online]. Available: https://
ethereum.org/en/layer-2/, accessed: 08.07.2022.

[129] O. Adejumo. (2022). “Ethereum developers pick September 19 for Merge,” CryptoSlate,
[Online]. Available: https://cryptoslate.com/ethereum-developers-
pick-september-19-for-merge. accessed: 20.09.2022.

[130] (2022). “Mumbai PoS Testnet,” Polygon, [Online]. Available: https://docs.polygon.
technology/docs/develop/network- details/network/#mumbai-
pos-testnet. accessed: 10.07.2022.

[131] (2022). “Announcing the Kiln Merge Testnet,” Ethereum, [Online]. Available: https:
//log.ethereum.org/2022/03/14/kiln-merge-testnet/. accessed:
10.07.2022.

[132] (2022). “Ethereum Blocks - Block Time,” Ethereum, [Online]. Available: https://
ethereum.org/gl/developers/docs/blocks. accessed: 20.09.2022.

[133] (2022). “WHAT IS GAS?” Ethereum, [Online]. Available: https://ethereum.org/
en/developers/docs/gas/#what-is-gas. accessed: 14.07.2022.

[134] (2020). “EVM OPCODE Gas Costs,” [Online]. Available: https://github.com/
djrtwo/evm-opcode-gas-costs. accessed: 14.07.2022.

[135] (2022). “What is Polygon? (MATIC),” Kraken, [Online]. Available: https://www.
kraken.com/en-gb/learn/what-is-polygon-matic. accessed: 01.08.2022.

[136] (2022). “Polygon PoS Chain Average Block Time Chart,” Polygonscan, [Online]. Avail-
able: https://polygonscan.com/chart/blocktime. accessed: 20.09.2022.

[137] (2022). “Gas And Fees - EIP-1559,” Ethereum, [Online]. Available: https://ethereum.
org/en/developers/docs/gas/#eip-1559. accessed: 20.09.2022.

[138] Y. Liu, Y. Lu, K. Nayak, F. Zhang, L. Zhang, and Y. Zhao, “Empirical Analysis of EIP-
1559: Transaction Fees, Waiting Time, and Consensus Security,” arXiv e-prints, arXiv:2201.05574,
arXiv:2201.05574, Jan. 2022. arXiv: 2201.05574 [econ.GN], accessed: 22.10.2022.

https://dappradar.com/blog/2021-dapp-industry-report
https://dappradar.com/blog/2021-dapp-industry-report
https://ethereum.org/en/layer-2/
https://ethereum.org/en/layer-2/
https://cryptoslate.com/ethereum-developers-pick-september-19-for-merge
https://cryptoslate.com/ethereum-developers-pick-september-19-for-merge
https://docs.polygon.technology/docs/develop/network-details/network/#mumbai-pos-testnet
https://docs.polygon.technology/docs/develop/network-details/network/#mumbai-pos-testnet
https://docs.polygon.technology/docs/develop/network-details/network/#mumbai-pos-testnet
https://log.ethereum.org/2022/03/14/kiln-merge-testnet/
https://log.ethereum.org/2022/03/14/kiln-merge-testnet/
https://ethereum.org/gl/developers/docs/blocks
https://ethereum.org/gl/developers/docs/blocks
https://ethereum.org/en/developers/docs/gas/#what-is-gas
https://ethereum.org/en/developers/docs/gas/#what-is-gas
https://github.com/djrtwo/evm-opcode-gas-costs
https://github.com/djrtwo/evm-opcode-gas-costs
https://www.kraken.com/en-gb/learn/what-is-polygon-matic
https://www.kraken.com/en-gb/learn/what-is-polygon-matic
https://polygonscan.com/chart/blocktime
https://ethereum.org/en/developers/docs/gas/#eip-1559
https://ethereum.org/en/developers/docs/gas/#eip-1559
https://arxiv.org/abs/2201.05574

160

[139] L. Dobos. (2022). “Gas fees: Ethereum is now cheaper than Polygon,” CryptoSlate, [On-
line]. Available: https://cryptoslate.com/gas-fees-ethereum-is-
now-cheaper-than-polygon/. accessed: 01.08.2022.

[140] (2022). “Ethereum Sharding,” Ethereum, [Online]. Available: https://ethereum.
org/en/upgrades/sharding/55. accessed: 03.09.2022.

[141] (2022). “Criteo,” Criteo, [Online]. Available: https://www.criteo.com/. accessed:
01.08.2022.

[142] F. Schoeman, Ed., Auction Theory, An Anthology. Cambridge U. Press, 1984, ISBN: 9780511625138.

[143] D. Lucking-Reiley, “Vickrey Auctions in Practice: From Nineteenth-Century Philately to
Twenty-First-Century E-Commerce,” Journal of Economic Perspectives, vol. 14, no. 3,
pp. 183–192, Sep. 2000. [Online]. Available: https://www.aeaweb.org/articles?
id=10.1257/jep.14.3.183, accessed: 01.08.2022.

[144] J. Montenegro, M. Fischer, J. Lopez, and R. Peralta, “Secure sealed-bid online auctions us-
ing discreet cryptographic proofs,” Mathematical and Computer Modelling - MATH COM-
PUT MODELLING, vol. 57, Jun. 2013, accessed: 03.09.2022.

[145] A. Chouayakh, A. Bechler, I. Amigo, L. Nuaymi, and P. Maillé, An Ascending Imple-
mentation of the Vickrey-Clarke-Groves Mechanism for the Licensed Shared Access. Sep.
2021, pp. 87–100, ISBN: 978-3-030-87472-8. [Online]. Available: https : / / www .
researchgate.net/publication/354798506_An_Ascending_Implementation_
of_the_Vickrey-Clarke-Groves_Mechanism_for_the_Licensed_
Shared_Access, accessed: 01.08.2022.

[146] L. Ausubel, “An Efficient Ascending-Bid Auction for Multiple Objects,” American Eco-
nomic Review, vol. 94, pp. 1452–1475, Dec. 2004. [Online]. Available: https://www.
researchgate.net/publication/4901671_An_Efficient_Ascending-
Bid_Auction_for_Multiple_Objects, accessed: 01.08.2022.

[147] J. Boyar, I. Damgård, and R. Peralta, “Short Non-Interactive Cryptographic Proofs,” 2000.
[Online]. Available: doi.org/10.1007/s001450010011, accessed: 25.09.2022.

[148] X. Yi, R. Paulet, and E. Bertino, New Directions in Cryptography. Springer, Cham, 2014,
ISBN: 978-3-319-12228-1. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-319-12229-8_2, accessed: 01.08.2022.

https://cryptoslate.com/gas-fees-ethereum-is-now-cheaper-than-polygon/
https://cryptoslate.com/gas-fees-ethereum-is-now-cheaper-than-polygon/
https://ethereum.org/en/upgrades/sharding/55
https://ethereum.org/en/upgrades/sharding/55
https://www.criteo.com/
https://www.aeaweb.org/articles?id=10.1257/jep.14.3.183
https://www.aeaweb.org/articles?id=10.1257/jep.14.3.183
https://www.researchgate.net/publication/354798506_An_Ascending_Implementation_of_the_Vickrey-Clarke-Groves_Mechanism_for_the_Licensed_Shared_Access
https://www.researchgate.net/publication/354798506_An_Ascending_Implementation_of_the_Vickrey-Clarke-Groves_Mechanism_for_the_Licensed_Shared_Access
https://www.researchgate.net/publication/354798506_An_Ascending_Implementation_of_the_Vickrey-Clarke-Groves_Mechanism_for_the_Licensed_Shared_Access
https://www.researchgate.net/publication/354798506_An_Ascending_Implementation_of_the_Vickrey-Clarke-Groves_Mechanism_for_the_Licensed_Shared_Access
https://www.researchgate.net/publication/4901671_An_Efficient_Ascending-Bid_Auction_for_Multiple_Objects
https://www.researchgate.net/publication/4901671_An_Efficient_Ascending-Bid_Auction_for_Multiple_Objects
https://www.researchgate.net/publication/4901671_An_Efficient_Ascending-Bid_Auction_for_Multiple_Objects
doi.org/10.1007/s001450010011
https://link.springer.com/chapter/10.1007/978-3-319-12229-8_2
https://link.springer.com/chapter/10.1007/978-3-319-12229-8_2

161

[149] F. Brandt and T. Sandholm, Efficient Privacy-Preserving Protocols for Multi-unit Auc-
tions. Feb. 2005, vol. 3570, pp. 298–312, ISBN: 978-3-540-26656-3. [Online]. Available:
https://www.researchgate.net/publication/220797039_Efficient_
Privacy-Preserving_Protocols_for_Multi-unit_Auctions, accessed:
01.08.2022.

[150] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proof-Systems,” in Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, ser. STOC ’85, Providence, Rhode Island, USA: Association for Com-
puting Machinery, 1985, pp. 291–304, ISBN: 0897911512. [Online]. Available: https:
//doi.org/10.1145/22145.22178, accessed: 22.10.2022.

[151] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs: Short
Proofs for Confidential Transactions and More,” 2018. [Online]. Available: https://
eprint.iacr.org/2017/1066.pdf, accessed: 30.09.2022.

[152] (2022). “Polygon zkEVM Public Testnet: The Next Chapter for Ethereum,” Polygon, [On-
line]. Available: https://blog.polygon.technology/polygon-zkevm-
public-testnet-the-next-chapter-for-ethereum/. accessed: 22.10.2022.

[153] (2022). “AZTEC NETWORK The Privacy Layer for Web3,” Aztec, [Online]. Available:
https://aztec.network/. accessed: 22.10.2022.

[154] K. Mesquita. (2022). “On-chain privacy is key to the wider mass adoption of crypto,”
Cointelegraph, [Online]. Available: https://cointelegraph.com/news/on-
chain-privacy-is-key-to-the-wider-mass-adoption-of-crypto.
accessed: 22.10.2022.

[155] P. Angell. (2022). “Why Web3 Is Not Yet Safe Enough For Mass Adoption,” Screen Rant,
[Online]. Available: https://screenrant.com/web3- mass- adoption-
safety-privacy-issues/. accessed: 22.10.2022.

[156] (2022). “Tornado Cash,” [Online]. Available: https://github.com/tornadocash.
accessed: 01.08.2022.

[157] J. Southurst. (2022). “Dutch police arrest Tornado Cash developer, highlighting illegal-
ity of ‘coin mixers’,” CoinGeek, [Online]. Available: https://coingeek.com/
dutch- police- arrest- tornado- cash- developer- highlighting-
illegality-of-coin-mixers/. accessed: 03.09.2022.

https://www.researchgate.net/publication/220797039_Efficient_Privacy-Preserving_Protocols_for_Multi-unit_Auctions
https://www.researchgate.net/publication/220797039_Efficient_Privacy-Preserving_Protocols_for_Multi-unit_Auctions
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/2017/1066.pdf
https://blog.polygon.technology/polygon-zkevm-public-testnet-the-next-chapter-for-ethereum/
https://blog.polygon.technology/polygon-zkevm-public-testnet-the-next-chapter-for-ethereum/
https://aztec.network/
https://cointelegraph.com/news/on-chain-privacy-is-key-to-the-wider-mass-adoption-of-crypto
https://cointelegraph.com/news/on-chain-privacy-is-key-to-the-wider-mass-adoption-of-crypto
https://screenrant.com/web3-mass-adoption-safety-privacy-issues/
https://screenrant.com/web3-mass-adoption-safety-privacy-issues/
https://github.com/tornadocash
https://coingeek.com/dutch-police-arrest-tornado-cash-developer-highlighting-illegality-of-coin-mixers/
https://coingeek.com/dutch-police-arrest-tornado-cash-developer-highlighting-illegality-of-coin-mixers/
https://coingeek.com/dutch-police-arrest-tornado-cash-developer-highlighting-illegality-of-coin-mixers/

162

[158] V. Buterin. (2021). “An approximate introduction to how zk-SNARKs are possible,” [On-
line]. Available: https://vitalik.ca/general/2021/01/26/snarks.
html. accessed: 01.08.2022.

[159] G. Dagher, P. Marella, M. Matea, and J. Mohler, “BroncoVote: Secure Voting System Us-
ing Ethereum’s Blockchain,” 2018. [Online]. Available: https://researchgate.
net/publication/322874160_BroncoVote_Secure_Voting_System_
using_Ethereum’s_Blockchain, accessed: 30.09.2022.

[160] C. Mitchell. (2022). “Front-Running,” [Online]. Available: https://www.investopedia.
com/terms/f/frontrunning.asp. accessed: 01.08.2022.

[161] S. Häfner and A. Stewart, “Front-Running, Smart Contracts, and Candle Auctions,” 2021.
[Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=3846363, accessed: 01.08.2022.

[162] E. Onica. and C.-I. Schifirneţ., “Towards Efficient Hashing in Ethereum Smart Contracts,”
in Proceedings of the 16th International Conference on Software Technologies - ICSOFT,,
INSTICC, SciTePress, 2021, pp. 660–666, ISBN: 978-989-758-523-4. [Online]. Avail-
able: https://www.scitepress.org/PublicationsDetail.aspx?ID=
uXzmScb67p8=&t=1, accessed: 01.08.2022.

[163] A. Sobol, Frontrunning on Automated Decentralized Exchange in Proof Of Stake Environ-
ment, Cryptology ePrint Archive, Paper 2020/1206, 2020. [Online]. Available: https:
//ia.cr/2020/1206, accessed: 01.08.2022.

[164] T. Nabi. (2022). “Pure vs view in solidity,” [Online]. Available: https://hashnode.
com/post/pure-vs-view-in-solidity-cl04tbzlh07kaudnv1ial1gio.
accessed: 16.11.2022.

[165] (2022). “What is a brute force attack?” Cloudflare, [Online]. Available: https : / /
www.cloudflare.com/learning/bots/brute-force-attack/. accessed:
03.09.2022.

[166] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” 2020. [Online]. Avail-
able: https://ee.stanford.edu/˜hellman/publications/24.pdf,
accessed: 01.08.2022.

https://vitalik.ca/general/2021/01/26/snarks.html
https://vitalik.ca/general/2021/01/26/snarks.html
https://researchgate.net/publication/322874160_BroncoVote_Secure_Voting_System_using_Ethereum's_Blockchain
https://researchgate.net/publication/322874160_BroncoVote_Secure_Voting_System_using_Ethereum's_Blockchain
https://researchgate.net/publication/322874160_BroncoVote_Secure_Voting_System_using_Ethereum's_Blockchain
https://www.investopedia.com/terms/f/frontrunning.asp
https://www.investopedia.com/terms/f/frontrunning.asp
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3846363
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3846363
https://www.scitepress.org/PublicationsDetail.aspx?ID=uXzmScb67p8=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=uXzmScb67p8=&t=1
https://ia.cr/2020/1206
https://ia.cr/2020/1206
https://hashnode.com/post/pure-vs-view-in-solidity-cl04tbzlh07kaudnv1ial1gio
https://hashnode.com/post/pure-vs-view-in-solidity-cl04tbzlh07kaudnv1ial1gio
https://www.cloudflare.com/learning/bots/brute-force-attack/
https://www.cloudflare.com/learning/bots/brute-force-attack/
https://ee.stanford.edu/~hellman/publications/24.pdf

163

[167] R. Muth and F. Tschorsch, “SmartDHX: Diffie-Hellman Key Exchange with Smart Con-
tracts,” 2020. [Online]. Available: https://eprint.iacr.org/2020/325.pdf,
accessed: 01.08.2022.

[168] (2018). “Cryptography in a smart contract,” [Online]. Available: https://ethereum.
org/en/developers/docs/accounts/. accessed: 25.09.2022.

[169] A. Froehlich. (2022). “One-Time Pad,” TechTarget, [Online]. Available: https://www.
techtarget . com / searchsecurity / definition / one - time - pad. ac-
cessed: 01.08.2022.

[170] B. WhiteHat, K. Gurkan, and K. Wei Jie, MicroMix: A noncustodial Ethereum mixer based
on zero-knowledge signalling, 2019. [Online]. Available: https://github.com/
weijiekoh/mixer, accessed: 03.09.2022.

[171] W.-M. Lee. (2021). “Blockchain Series — How MetaMask Creates Accounts,” Meta Busi-
ness Help Center, [Online]. Available: https://levelup.gitconnected.com/
blockchain-series-how-metamask-creates-accounts-a8971b21a74b.
accessed: 21.10.2022.

[172] J. Schweitzer, S. Couture, and T. Beiko, Epicenter - Episode 451 Ethereum Foundation
– The Ethereum Merge, Epicenter, 2022. [Online]. Available: https://epicenter.
tv/episodes/451/, accessed: 10.10.2022.

[173] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and J. Dray, Ad-
vanced Encryption Standard (AES), 2001-11-26 2001, accessed: 21.10.2022.

[174] J. P. Degabriele, J. Govinden, F. Günther, and K. G. Paterson, “The Security of ChaCha20-
Poly1305 in the Multi-User Setting,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’21, Virtual Event, Republic of Ko-
rea: Association for Computing Machinery, 2021, pp. 1981–2003, ISBN: 9781450384544.
[Online]. Available: https://doi.org/10.1145/3460120.3484814, accessed:
21.10.2022.

[175] M. Creeger, “The Rise of Fully Homomorphic Encryption: Often Called the Holy Grail
of Cryptography, Commercial FHE is Near,” Queue, vol. 20, no. 4, pp. 39–60, Aug. 2022.
[Online]. Available: https://doi.org/10.1145/3561800, accessed: 21.10.2022.

https://eprint.iacr.org/2020/325.pdf
https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/accounts/
https://www.techtarget.com/searchsecurity/definition/one-time-pad
https://www.techtarget.com/searchsecurity/definition/one-time-pad
https://github.com/weijiekoh/mixer
https://github.com/weijiekoh/mixer
https://levelup.gitconnected.com/blockchain-series-how-metamask-creates-accounts-a8971b21a74b
https://levelup.gitconnected.com/blockchain-series-how-metamask-creates-accounts-a8971b21a74b
https://epicenter.tv/episodes/451/
https://epicenter.tv/episodes/451/
https://doi.org/10.1145/3460120.3484814
https://doi.org/10.1145/3561800

164

[176] O. Pomerantz. (2022). “Security choices and multi-signature wallets,” [Online]. Available:
https://blog.logrocket.com/security-choices-multi-signature-
wallets. accessed: 16.11.2022.

https://blog.logrocket.com/security-choices-multi-signature-wallets
https://blog.logrocket.com/security-choices-multi-signature-wallets

165

APPENDIX A

NAIVE VCG FOR SEARCH IN SOLIDITY

1 //Author: Lucas Massoni Sguerra
2 //Institution: CRI - MINES ParisTech
3 //contact: lucas.sguerra@mines-paristech.fr
4
5 pragma solidity >=0.7.0 <0.8.0;
6
7 //Contract owned, from which VCG will inherit ownership, a basic access
8 //control mechanism
9 contract owned {

10 constructor() {
11 //setting owner as the contract deployer
12 owner = msg.sender;
13 }
14
15 address payable owner;
16
17 //modifier that only allows the owner address to call certain functions
18 modifier onlyOwner {
19 require(msg.sender == owner, "Only owner can call this function.");
20 _;
21 }
22
23 function transferOwnership(address payable newOwner) external onlyOwner {
24 if (newOwner != address(0)) {
25 owner = newOwner;
26 }
27 }
28 }
29
30 //VCG contract inheriting ownership from owned contract
31 contract VCG is owned {
32 //Flag to signalize if an auction is underway
33 bool isOpen;
34 //auctions click-through rate values
35 uint256[] private ctrs;
36 //bids values
37 uint256[] private bids;
38 //bidders’ addresses

166

39 address[] private agents;
40 //winners’ prices
41 uint256[] private prices;
42
43 //Events
44 //Event emmited when an auction is opened, broadcasting the ctrs
45 event Open(uint256[] ctrs);
46 //Event emmited when an auction is ended, broadcasting winner agents and

corresponding prices
47 event EndAuction(address[] agents, uint256[] prices);
48 //Error event, with was substitued by an require in our updated contract
49 event ErrorEvent(string error);
50
51 //Constructior, set owner and isOpen as false
52 constructor() {
53 owner = msg.sender;
54 isOpen = false;
55 }
56
57 //Function open auction, updating the ctr values
58 function openAuction(uint256[] calldata newCTRs) external onlyOwner {
59 if (!isOpen) {
60 isOpen = true;
61 delete prices;
62 delete bids;
63 delete agents;
64 ctrs = newCTRs;
65 emit Open(ctrs);
66 } else {
67 emit ErrorEvent("Ongoing auction");
68 }
69 }
70
71 //Unused (for test only)
72 function updateCTRs(uint256[] calldata newCTRs) external onlyOwner {
73 if (!isOpen) {
74 ctrs = newCTRs;
75 }
76 }
77
78 //Function for bidding, stores the bidder’s address and bid value
79 function bid(uint256 amount) external returns (uint256 numberOfBids) {
80 if (!isOpen) {
81 emit ErrorEvent("auction not open yet");
82 return 0;
83 } else {
84 bids.push(amount);
85 agents.push(msg.sender);

167

86 return bids.length;
87 }
88 }
89
90 //Function for closing auction
91 //sort bids and calculate winners and corresponding prices
92 function closeAuction() public onlyOwner returns (uint256[] memory Prices)

{
93 isOpen = false;
94 uint256 length = bids.length;
95 if (bids.length > 0) {
96 uint256[] memory data = bids;
97 uint256[] memory labels = bids;
98
99 for (uint256 j = 0; j < length; j++) {

100 labels[j] = j;
101 }
102
103 for (uint256 j = 0; j < length; j++) {
104 uint256 i = j;
105 while ((i > 0) && (data[i] >= data[i - 1])) {
106 swap(i, data, labels);
107 i--;
108 }
109 }
110
111 uint256[] memory result = calculatePrice(labels);
112
113 return result;
114 } else {
115 emit ErrorEvent("No bids to be auctioned");
116 }
117 }
118
119 //Internal function to calculate winner’s prices following VCG’s algorithm
120 function calculatePrice(uint256[] memory labels) internal
121 returns (uint256[] memory) {
122 for (uint256 i = 0; (i < ctrs.length && i < agents.length); i++) {
123 uint256 price_i = 0;
124
125 for (uint256 j = (i + 1); j < (ctrs.length + 1); j++) {
126 price_i =
127 price_i + (getElement(bids, labels[j]) *
128 (getElement(ctrs, j - 1) - getElement(ctrs, j)));
129 }
130 prices.push(price_i);
131 }
132 emit EndAuction(agentsSlice(labels), prices);

168

133 return prices;
134 }
135
136 //Swap the positions of two elemements in the data and
137 //labels table, part of the insert sort of closeAuction
138 function swap(
139 uint256 i,
140 uint256[] memory data,
141 uint256[] memory labels
142) internal pure {
143 uint256 tempData = data[i];
144 uint256 tempLabels = labels[i];
145 data[i] = data[i - 1];
146 labels[i] = labels[i - 1];
147 data[i - 1] = tempData;
148 labels[i - 1] = tempLabels;
149 }
150
151 //Slices agents array, to generate a winners table
152 function agentsSlice(uint256[] memory labels) private view returns (

address[] memory winners) {
153 winners = new address[](ctrs.length);
154 if (ctrs.length < agents.length) {
155 for (uint256 i = 0; i < ctrs.length; i++) {
156 winners[i] = (agents[labels[i]]);
157 }
158 return winners;
159 } else {
160 return agents;
161 }
162 }
163
164 //Function to cancel auction and reset parameters
165 function cancelAuction() public {
166 if (isOpen) {
167 isOpen = false;
168 if (bids.length > 0) {
169 delete bids;
170 delete agents;
171 delete ctrs;
172 }
173 }
174 }
175
176 //Get element from list at position i
177 //if there isn’t an element, returns zero
178 function getElement(uint256[] storage list, uint256 i) internal view

returns (uint256 value) {

169

179 if (i < list.length) return list[i];
180 else return 0;
181 }
182
183 //View function to check if an auction in underway
184 function isOPen() public view returns (bool) {
185 return isOpen;
186 }
187 }

171

APPENDIX B

NAIVE VCG FOR SEARCH IN SMARTPY

1 #Author: Lucas Massoni Sguerra
2 #Institution: CRI - MINES ParisTech
3 #contact: lucas.sguerra@mines-paristech.fr
4
5 #Importing SmartPy
6 import smartpy as sp
7
8 #Defining our VCG contract
9 class SponsoredVCG(sp.Contract):

10 def __init__(self, owner):
11 self.init(
12 owner = owner,
13 isOpen = sp.bool(False),
14 #initiaizing click-through rates map
15 ctrs = sp.map(l = {}),
16 #initiaizing bids map
17 bids = sp.map(l = {}),
18 #initiaizing agents map
19 agents = sp.map(l = {}),
20 #initiaizing prices map
21 prices = sp.map(l = {}),
22)
23
24 #transfer ownership entry point
25 @sp.entry_point
26 def transferOwnership(self, params):
27 sp.verify(sp.sender == self.data.owner)
28 self.data.owner = params
29
30 #Update CTRs entry point, unused (for test only)
31 @sp.entry_point
32 def updateCTRs(self, params):
33 sp.verify(sp.sender == self.data.owner)
34 sp.if (self.data.isOpen == False) :
35 self.data.ctrs = params
36
37
38 #Open auction entrypoint, with ctrs values as input

172

39 @sp.entry_point
40 def openAuction(self, params):
41 sp.verify(sp.sender == self.data.owner)
42 sp.if (self.data.isOpen == False) :
43 self.data.isOpen = True
44 self.data.prices = ({})
45 self.data.bids = ({})
46 self.data.agents = ({})
47 self.data.ctrs = params
48
49 #Entrypoint for bidding
50 @sp.entry_point
51 def bid(self, params):
52 #length of bids map
53 l = sp.local(’l’, sp.len(self.data.bids))
54 #store bid value
55 self.data.bids[l.value] = (params)
56 #store bidder’s address
57 self.data.agents[l.value] = sp.sender
58
59 #Entrypoint that cancels ongoin auction and reset parameters
60 @sp.entry_point
61 def cancelAuction(self):
62 sp.verify(sp.sender == self.data.owner)
63 sp.if (self.data.isOpen) :
64 self.data.isOpen = False
65 self.data.bids = ({})
66 self.data.agents = ({})
67 self.data.ctrs = ({})
68
69 #Endpoint to close auction, and calculate winners and prices
70 @sp.entry_point
71 def closeAuction(self):
72 sp.verify(sp.sender == self.data.owner)
73 l = sp.local(’l’, sp.len(self.data.bids))
74 j = sp.local(’j’, l.value - sp.nat(1))
75 sp.for x in self.data.bids.items():
76 #Sorting bids
77 self.insertSort(x.key)
78 self.calculatePrice(2)
79
80 #Sub entrypoint, similar to an internal function.
81 #Here used for insertion sort of the bids
82 @sp.sub_entry_point
83 def insertSort(self, param):
84 self.data.isOpen = False
85 jx = sp.local(’jx’, param)
86 jint = sp.local(’jint’, sp.to_int(param))

173

87
88 def swap(i):
89 tempBid = sp.local("tempBid", self.data.bids[nat(i)])
90 tempAgent = sp.local("tempAgent", self.data.agents[nat(i)])
91 self.data.bids[nat(i)] = self.data.bids[nat(i - 1)]
92 self.data.agents[nat(i)] = self.data.agents[nat(i - 1)]
93 self.data.bids[nat(i - 1)] = tempBid.value
94 self.data.agents[nat(i - 1)] = tempAgent.value
95
96 def nat(x):
97 return sp.as_nat(x)
98
99 sp.while ((nat(jint.value) > 0) &

100 (self.data.bids[nat(jint.value)] >=
101 self.data.bids[nat(jint.value - 1)])) :
102 swap(jint.value)
103 jint.value -= 1
104
105 #Sub entrypoint for calculating prices
106 @sp.sub_entry_point
107 def calculatePrice(self, param):
108 sp.if (sp.len(self.data.bids) > 0) :
109 lenCtr = sp.local("lenctr", sp.len(self.data.ctrs))
110 self.data.ctrs[lenCtr.value] = 0
111 i = sp.local(’i’, 0)
112 jc = sp.local(’jc’, 0)
113 price_i = sp.local("price_i", 0)
114 oneNat = sp.as_nat(1)
115 sp.while ((i.value < lenCtr.value) &
116 (i.value < sp.len(self.data.bids))):
117 price_i.value = 0
118 jc.value = i.value + oneNat
119 sp.while (jc.value < (lenCtr.value + 1)):
120 price_i.value = price_i.value + (self.data.bids[jc.value]

* (self.data.ctrs[sp.as_nat(sp.to_int(jc.value) - 1)] - self.data.ctrs[jc.
value]))

121 jc.value += 1
122 self.data.prices[i.value] = price_i.value
123 i.value += 1
124 del self.data.ctrs[lenCtr.value]

RÉSUMÉ

La sécurité et la transparence des blockchains semblent fournir un environnement adapté
pour les enchères. Nous nous focalisons sur l'enchère Vickrey-Clarke-Groves pour la
recherche sponsorisée (VCG) pour évaluer cette hypothèse. Nous proposons et utilisons
une méthodologie pour la comparaison de différents blockchains du point de vue des
contrats intelligents (smart contracts). En utilisant VCG, nous avons comparé Ethereum
et Tezos ainsi que les mises à jour récentes d’Ethereum sous la forme d'Ethereum Merge
et Polygon POS. Enfin, nous analysons les conséquences du manque de confidentialité
des blockchains dans une enchère telle que VCG, en proposant trois nouveaux
algorithmes pour en atténuer les effets négatifs.

KEYWORDS

Smart contracts, Auction theory, Cryptocurrency, Game theory, Privacy, Vickrey–Clarke–
Groves mechanism.

MOTS CLÉS

Smart contracts, Théorie des enchères, Cryptomonnaies, Théorie des jeux,
Confidentialité, Mécanisme de Vickrey-Clarke-Groves.

ABSTRACT

The security and transparency of blockchain systems should provide an attractive
environment for auctions. We focus on the auction known as Vickrey–Clarke–Groves for
sponsored search (VCG for search) to assess this claim. We proposed and made use of
a methodology for the comparison of different blockchain systems from the perspective of
smart contracts. Using VCG for search, we compared Ethereum and Tezos as well as the
recent updates to the Ethereum protocol in the form of the Ethereum Merge and Polygon
POS. Finally we analyze the consequences of the inherent lack of privacy of blockchains
to a truthful auction such as VCG for search, proposing three new algorithms to mitigate
these negative effects.

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contexte
	Principaux résultats
	Spécification et implémentation de contrats intelligents pour VCG pour la recherche sponsorisée
	Comparaison de référence entre Ethereum et Tezos
	Comparaison de référence pour les solutions de scalabilité d'Ethereum

	Structure de la thèse

	Introduction
	Context
	Main results
	Specification and implementation of smart contracts for VCG for sponsored search
	Benchmark comparison between Ethereum and Tezos
	Benchmark comparison for Ethereum scalability solutions
	Privacy-preserving proof-of-concept solutions

	Thesis structure

	Background
	Cryptography
	Definition
	Hash functions
	Key Cryptography

	Bitcoin and blockchain
	Blockchain infrastructure
	Nodes
	Accounts and keys
	Transactions
	Blocks
	Mining
	Consensus

	Ethereum: a blockchain as a distributed computer
	Smart contracts
	Ethereum Virtual Machine (EVM)
	Ethereum transactions
	Transaction fees
	Ethereum Block
	Ethereum PoW

	Scalability issues
	Layer 2 scaling solutions
	Ethereum Merge
	Tezos

	Tools
	Block explorers
	Truffle
	Infura
	MetaMask

	VCG for search auctions use case
	Auctions
	Principles
	Game theory notions
	Types of auctions
	Mechanism design
	Vickrey-Clarke-Groves mechanism
	VCG modelization and properties in Coq

	VCG for sponsored search
	Sponsored search
	VCG for sponsored search algorithm
	VCG for sponsored search in the industry

	VCG for sponsored search in smart contract form: Experiments for performance evaluation
	Blockchain comparison
	Naive VCG for search smart contract
	VCG contract storage
	Public functions
	Test protocol

	Proof-of-work and proof-of-stake benchmarks
	Ethereum versus Tezos
	Development and tests
	VCG in Ethereum
	VCG in Tezos
	Results
	Discussion

	Benchmarking Ethereum's upgrades
	Target
	Development and tests
	Test protocol

	Results and discussion
	Ropsten PoW control case
	Gas usage for EVM-compatible contracts
	Polygon PoS
	Ethereum Merge
	Polygon versus Ethereum Merge discussion

	Discussion about the impact of performance issues on the VCG mechanism

	Privacy in Smart Contract Auctions
	Privacy
	Privacy in truthful sealed bid auctions
	Proposals for secure sealed-bid auctions

	Privacy in public blockchains
	Privacy solutions for public blockchain systems
	Existing proposals
	Public blockchain auctions

	Adding privacy to VCG for search
	Payment function
	Commit-reveal VCG
	Commit-reveal VCG with Diffie–Hellman key exchange
	Commit-reveal VCG with Diffie-Hellman and Mixer
	The price of privacy

	Conclusion and discussion

	Conclusion and Future Work
	Summary of key findings and significance
	Benchmark comparison between Ethereum and Tezos
	Benchmark comparison between Ethereum's upgrades
	Smart-contract privacy analysis and privacy-preserving proof-of-concept proposals

	Limitations
	Working with Blockchains
	Privacy-preserving proof-of-concept proposals

	Opportunities for future research
	Benchmark study focused in scalability
	Privacy
	Limiting auctioneer's participation in auction

	Final thoughts

	Conclusion et travaux futurs
	Résumé des principales conclusions et leur importance
	Comparaison des performances entre Ethereum et Tezos
	Comparaison des performances entre les mises à jour d'Ethereum
	Analyse de la confidentialité des contrats intelligents et propositions de preuves de concept pour préservant la confidentialité

	Limitations
	Travailler avec des blockchains
	Propositions de preuves de concept pour la préservation de la confidentialité

	Opportunités de recherche future
	Étude de référence axée sur la scalabilité
	Confidentialité
	Limitation de la participation de l'organisateur d'enchères

	Réflexions finales

	Bibliography
	Naive VCG for search in Solidity
	Naive VCG for search in SmartPy

