
HAL Id: tel-04511333
https://pastel.hal.science/tel-04511333

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Class-Incremental Learning in an Exemplar-Free setup
Grégoire Petit

To cite this version:
Grégoire Petit. Class-Incremental Learning in an Exemplar-Free setup. Machine Learning [cs.LG].
École des Ponts ParisTech, 2023. English. �NNT : 2023ENPC0040�. �tel-04511333�

https://pastel.hal.science/tel-04511333
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
de l’École des Ponts ParisTech

Class-Incremental Learning in an
Exemplar-Free Setup

École doctorale MSTIC N°532

Informatique

Thèse préparée au CEA Tech, équipe LASTI et au LIGM - UMR
8049, équipe IMAGINE

Thèse soutenue le 5 décembre 2023, par
Grégoire PETIT

Composition du jury:

Françoise PRETEUX Présidente & Examinatrice
Institut Mines-Télécom

Ioannis KANELLOS Rapporteur
IMT Atlantique

Joost VAN DE WEIJER Rapporteur
Universitat Autónoma de Barcelona

Tyler HAYES Examinatrice
NAVER LABS Europe

David PICARD Directeur de thèse
Ecole des Ponts ParisTech

Bertrand DELEZOIDE Directeur de thèse
CEA LIST

Adrian POPESCU Encadrant de thèse
CEA LIST

Abstract

This thesis explores the challenges and strategies associated with Class-Incremental Learning
(CIL), a branch of machine learning that focuses on the efficient integration of new classes
into existing models. The work addresses key difficulties, including catastrophic forgetting
and the trade-off between stability and plasticity, especially in scenarios where past class
data is not storable. A number of innovative methods are proposed, ranging from strategic
management of the model parameter distribution to the creation of a pseudo-feature generator
for improved stability-plasticity balance. The study also provides a thorough experimental
analysis of various factors influencing CIL performance, such as initial training strategies,
neural architecture selection, and CIL algorithm choice. The research culminates in the
provision of practical guidelines for effective incremental learning to facilitate the real-world
application of CIL. In summary, the thesis contributes significant insights and methods to
the field of machine learning, fostering a better understanding and use of Class-Incremental
Learning.

Cette thèse explore les défis et les stratégies associés à l’apprentissage incrémental de classe
(CIL), une branche de l’apprentissage automatique qui se concentre sur l’intégration efficace
de nouvelles classes dans les modèles existants. Le travail aborde les principales difficultés, y
compris l’oubli catastrophique et le compromis entre la stabilité et la plasticité, en particulier
dans les scénarios où les données sur les classes passées ne sont pas stockables. Un certain
nombre de méthodes innovantes sont proposées, allant de la gestion stratégique de la distri-
bution des paramètres du modèle à la création d’un générateur de pseudo-caractéristiques
pour un meilleur équilibre entre stabilité et plasticité. L’étude fournit également une analyse
expérimentale approfondie des divers facteurs influençant les performances du CIL, tels que
les stratégies d’entrainements initiaux, la sélection de l’architecture neuronale et le choix de
l’algorithme du CIL. La recherche aboutit à la fourniture de lignes directrices pratiques pour
un apprentissage incrémental efficace afin de faciliter l’application du CIL dans le monde
réel. En résumé, cette thèse apporte significativement des idées et des méthodes au domaine
de l’apprentissage automatique, en favorisant une meilleure compréhension et une meilleure
utilisation de l’apprentissage incrémental par classe.

iii

Acknowledgement

I don’t really know how to start this section. I’ve been thinking about it for a while, and I
still don’t know how to express my gratitude to everyone who helped me along this journey.
I’ve been fortunate to have the support of many people, and I am deeply grateful for their
contributions.

I offer my sincerest gratitude to my advisor, Dr. Adrian Popescu, for his unwavering support,
invaluable insights, and constructive feedback, all of which have been pivotal in shaping
this thesis. Your dedication to my academic growth has been a source of inspiration and
motivation. You taught me to be a researcher, to think critically, and to persevere in the face
of challenges. I am also thankful for the freedom you gave me to explore my ideas and the
trust you placed in me to deliver. I am deeply appreciative of your mentorship and friendship.
I look forward to our continued collaboration and friendship. I am thankful to my directors,
Dr. Bertrand Delezoide and Dr. David Picard, for their mentorship and support, creating an
environment that fostered my learning and development. Your trust in my abilities and the
freedom you gave to my research has greatly contributed to my confidence and to build the
researcher I am today.

I extend my gratitude to the members of the Jury, whose expertise and discernment greatly
enhanced the quality of my defense. Prof. Francoise Prêteux, as the jury president, your
thought-provoking questions provided new perspectives on my work, for which I am
immensely thankful. A profound acknowledgment goes to Prof. Ioannis Kanellos, one
of the reviewers. Prof. Kanellos, your role in my academic journey transcends that of a
reviewer; you have been an inspirational mentor since my days at IMT Atlantique. Your
encouragement and faith in my capabilities catalyzed my pursuit of this PhD, profoundly
influencing my academic path. I am also deeply appreciative of Dr. Joost van de Weijer’s
meticulous evaluations and insightful feedback during the review. Your dedication and
engagement in this process have been both encouraging and enjoyable. Additionally, I thank
Dr. Tyler Hayes for her perceptive inquiries and unique perspectives during my defense.
I eagerly anticipate future scholarly exchanges at upcoming conferences, where we can
continue to learn from each other’s work in a stimulating and enjoyable manner.

v

My heartfelt thanks go to my family, my unwavering pillars of support. Your strength and
resilience have empowered me to chase my dreams, even in the toughest times.

To my parents, Eric and Stéphanie, your constant faith and support have been a guiding
beacon in my journey. Your love, wisdom, and devotion are the bedrock of my academic
pursuits. Your teachings, like a resounding bell, constantly remind me of our roots and values.
Thank you for instilling in me the ethos of hard work, perseverance, and an unquenchable
desire for knowledge... Without ever forgetting the importance of love. Your contributions
to my life are immeasurable, and I am eternally grateful.

To my brothers, Marc and Pierre-Yves, my lifelong companions and friends, your influence
and support have been priceless. You’ve been with me through every challenge and success,
providing a listening ear, wise advice, or a laugh to lighten the mood. Our shared experiences
and mutual respect have added immense value to my life, offering solace and normalcy in
the midst of academic demands. Your journeys, challenges, and achievements continually
remind me of our family’s resilience and core values. Thank you for accompanying me on
this path.

I extend my deepest appreciation to my cherished friends, Alban, Alice, Bastien, Gavin,
Hugo, Jessi, Joseph, Kamil, Louis, Mathilde, Micha, Nathan, Noha, Nolwenn, Pauline,
Pierre, Raphaël, Raymond, Sébastien, Tobias, and Tom, who have been a source of constant
encouragement, joy, and companionship. Your support during our collective struggles and
victories has made this path not just tolerable but enjoyable. Thank you for enduring my
frequent academic ramblings, the laughter at almost every occasion, late-night calls, all the
little touches, and for sharing dreams and aspirations. You’ve turned the strenuous process
of earning a PhD into a profound and humane adventure. I am indebted to you for your
steadfast support and friendship. Your presence has brightened my journey and reassured
me of a group of loyal friends for life’s challenges. I eagerly anticipate celebrating our
future achievements together.

Finally, I extend my deep appreciation to my colleagues at the CEA Tech and the IMAGINE
Lab of ENPC. I am grateful for the stimulating discussions, the shared moments of joy and
frustration, and the sense of scientific community we’ve friendly built together. Also, I
thank everyone who has directly or indirectly contributed to this work and supported me
throughout this journey.

You all embody the idea that pursuing a PhD is a communal effort, not a solitary pursuit.

vi

Contents

0.1 Definitions . 1
0.2 Acronyms . 4
0.3 Notations . 4

1 Introduction 7
1.1 Motivation . 7
1.2 Background . 9

1.2.1 What mean to learn? . 9
1.2.2 Datasets . 10
1.2.3 Data preprocessing . 11
1.2.4 Risks . 12
1.2.5 Learning approaches . 14
1.2.6 Deep Learning . 15

1.3 Challenges in Class-Incremental Learning 18
1.4 Metrics . 20

1.4.1 Initial Accuracy . 21
1.4.2 Final Accuracy . 21
1.4.3 Mean Incremental Accuracy . 21
1.4.4 Mean Forgetting . 22

1.5 Training Procedures . 22
1.5.1 Classical Training . 22
1.5.2 Class Incremental Training . 24

1.6 Examplar-Free Class-Incremental Learning 24
1.7 Contributions overview . 27

1.7.1 PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning 28
1.7.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental

Learning . 28
1.7.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-

Incremental Learning . 29

2 State of the Art in Exemplar-Free Class Incremental Learning 31
2.1 Model-Growth based Incremental Learning 33
2.2 Fixed-Representation-Based Incremental Learning 39
2.3 Finetuning-Based Class-Incremental Learning 42

2.3.1 Basic Concepts of Finetuning-Based Class-Incremental Learning . 42

vii

2.3.2 Major Developments and Methods in Finetuning-Based Class-
Incremental Learning . 43

2.3.3 Advanced Applications and Emerging Trends in Finetuning-Based
Class-Incremental Learning . 44

2.4 Pre-training Techniques for CIL . 45
2.4.1 Self-Supervised Learning and Its Role in Pre-Training 46
2.4.2 Pre-training Applications in Class Incremental Learning 46

2.5 Exemplar-Based Class-Incremental Learning 46
2.6 Our EFCIL contributions . 49

3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning 51
3.1 Introduction . 51
3.2 Related Work . 52
3.3 Proposed Method . 55

3.3.1 Problem Formalization . 55
3.3.2 PlaStIL Description . 56

3.4 Experiments . 58
3.4.1 Datasets . 58
3.4.2 State-of-the-art methods . 59
3.4.3 Implementation . 60
3.4.4 Main results . 61
3.4.5 Method analysis . 64

3.5 Conclusion . 67

4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental
Learning 69
4.1 Introduction . 69
4.2 Related Work . 71
4.3 Proposed Method . 73

4.3.1 Generation of pseudo-features . 74
4.3.2 Selection of pseudo-features . 75
4.3.3 Linear classification layer training 75

4.4 Evaluation . 76
4.4.1 Results . 79
4.4.2 Method analysis . 82

4.5 Conclusion . 85

5 An Analysis of Initial Training Strategies for Exemplar-Free Class-
Incremental Learning 87
5.1 Introduction . 88
5.2 Background . 89

5.2.1 Pre-training methods . 89
5.2.2 Class-Incremental Learning (CIL) 90

viii

5.3 Problem statement . 91
5.3.1 EFCIL process . 92
5.3.2 Training strategies for the initial model 92

5.4 Experimental setting . 93
5.4.1 Initial training strategies . 93
5.4.2 Target datasets . 93
5.4.3 Incremental learning . 94
5.4.4 Metrics . 94

5.5 Analysis of results . 95
5.5.1 Modeling causal effects . 95
5.5.2 Metrics and confounding Factors 97
5.5.3 Linear Regression . 98
5.5.4 Factors influencing incremental performance 99
5.5.5 Comparison of initial training strategies 101
5.5.6 Further analysis of initial training strategies 102

5.6 Discussion . 105
5.7 Conclusion . 106

6 Conclusion 107
6.1 General conclusion . 107
6.2 Contributions . 109

6.2.1 PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning109
6.2.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental

Learning . 110
6.2.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-

Incremental Learning . 111
6.3 Future work and perspective . 111

Bibliography 115

A List of publications 137

B Datasets details and implementation details 139
B.1 Datasets details . 139

B.1.1 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning139
B.1.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental

Learning . 139
B.1.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-

Incremental Learning . 140
B.2 Implementation details . 140

B.2.1 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning141
B.2.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental

Learning . 142

ix

B.2.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-
Incremental Learning . 143

B.3 Influence of factors on accuracy . 144

C Résumé en français 149
C.1 Introduction . 149
C.2 État de l’art . 150
C.3 PlaStIL : Apprentissage par classe sans mémoire, plastique et stable 151
C.4 FeTrIL : Translation des caractéristiques pour l’apprentissage incrémental

par classe sans exemple . 152
C.5 Analyse des stratégies d’initialisation pour l’apprentissage incrémental de

classes sans exemple . 153

x

Lexicon

0.1 Definitions

• A class in machine learning denotes a set of data that has inherent similarities to each
other and distinct differences when compared to instances in other classes.

• A state in learning systems denotes a particular configuration of classes that the
system is to learn. It is often constituted as a set of classes.

• An incremental state refers to a state that is different from the initial or original state,
often indicating the incorporation of new classes or data into the learning system.

• Catastrophic Forgetting describes the unfavorable scenario in which a learning
model, in the process of learning new states, inadvertently erases information about
previously learned states, thus hindering its performance on older tasks.

• A Backbone refers to the basic model, typically a deep neural network architecture,
that the incremental learning system uses to learn and discriminate between new
classes.

• A Loss Function quantifies the discrepancy between the model’s predictions and
the actual results during the training phase and serves as a guide for the optimal
adjustment of the model’s parameters.

• Contrastive Learning is a self-supervised learning approach that learns to discrim-
inate between classes by contrasting the representations of positive (similar) and
negative (dissimilar) pairs of samples, allowing the system to build robust class
representations without the need for additional exemplars from previous classes.

• Knowledge Distillation refers to the process of transferring knowledge from an
existing, typically larger and more complex model (the "teacher") to a newer, often

1

simpler model (the "student") learning a new class. This technique serves to combat
catastrophic forgetting by encouraging the student model to retain insights about past
classes while learning new ones.

• Backpropagation is an efficient algorithm used to compute the gradient of the loss
function with respect to the model’s parameters, which is then used to update the
parameters during the training phase.

• Gradient Descent is an optimization strategy used to iteratively refine the parameters
of the model during the training phase, using the gradient of the loss function with
respect to those parameters.

• An Optimizer is a method or tool that strategically changes the model’s parameters
or hyperparameters during the training phase in order to minimize the loss function.

• Weight Decay is a regularization technique used to prevent overfitting during the
model training process by adding a penalty to the size of the model parameters.

• The term Momentum in machine learning refers to a hyperparameter that determines
the extent to which past gradients influence the current step taken by the optimizer
during the model’s training phase.

• The term Learning Rate refers to a critical hyperparameter that determines the size
of the step taken by the optimizer during the model’s training process.

• A Learning Rate Scheduler is a function or policy that systematically modulates the
learning rate during the training process, typically reducing it over time to improve
convergence.

• An Epoch is a complete pass or iteration over the entire training data set.

• The Chain Rule is a fundamental mathematical rule used to compute the derivative
of composite functions and plays a critical role in the backpropagation algorithm.

• A Batch is defined as a smaller subset of the training data set that is used in an
iteration of model training. The amount of data within the batch, known as the batch
size, affects the speed and accuracy of the learning process.

• Overfitting describes a common problem in machine learning where a model overly
adapts to the training data, leading to lower performance when encountering unseen
data due to a lack of generalization.

2 Contents

• Underfitting is a scenario where the simplicity of the model fails to capture the
complexity of the data, resulting in suboptimal performance on both training and
unseen data.

• Regularization refers to a technique used to prevent overfitting. It does this by
integrating a penalty term into the loss function that limits the complexity of the
model.

• An Activation Function is a mathematical function used within a neural network.
Its purpose is to transform the input signal into a usable output signal for the next
layer, introducing nonlinear properties into the network’s decision function and thus
enabling the learning of complex patterns.

• Dropout is a specific regularization technique used in neural networks where a portion
of the neurons within a layer are randomly ignored during the training process. This
helps prevent overfitting.

• A Convolutional Neural Network (CNN) is a specialized type of deep learning
model. CNNs excel at processing grid-like data, such as images, by preserving
the spatial relationships between features. They use convolutional layers with filter
windows called "kernels" to scan over the data.

• A Transformer is a specialized type of deep learning model. Characterized by
its use of self-attention mechanisms, a transformer model assigns varying levels of
importance, or attention, to different elements within the input sequence. This ability
empowers the model to comprehend the context and dependencies between elements,
regardless of their distance from each other in the sequence.

• Transfer Learning is a machine learning approach where a pre-trained model is
utilized as a starting point for a related task. This method leverages the knowledge
acquired from solving a previous problem to tackle a similar, often smaller, problem.

• Fine-tuning refers to the process of making minor adjustments to the parameters of
an already trained model when it’s applied to a related task.

• Data Augmentation describes the technique of enlarging the size of a training dataset
by creating modified versions of existing instances, including transformations like
rotating, scaling, or cropping in the context of image data.

• Feature Extraction is the procedure of converting raw data into a collection of
features or a feature vector, which can be effectively processed by a machine learning
model. These features are designed to encapsulate the essential attributes of the data.

0.1 Definitions 3

• Latent Space refers to the compressed, abstract representation of data within the
hidden layers of a machine learning model. It is a lower-dimensional space in which
high-dimensional inputs are encoded in a way that captures their essential features.

0.2 Acronyms

During the course of this thesis, the following acronyms are used:

• AI Artificial Intelligence

• ML Machine Learning

• DL Deep Learning

• CL Continual Learning

• IL Incremental Learning

• CIL Class Incremental Learning

• DIL Domain Incremental Learning

• TIL Task Incremental Learning

• EBCIL Exemplar Based Class Incremental Learning

• EFCIL Exemplar Free Class Incremental Learning

• CNN Convolutional Neural Network

0.3 Notations

During the course of this thesis, the following notations are used:

M the full model;

F the feature extractor, i.e. the full model without the classification layer;

B the model base which includes the initial layers;

4 Contents

T the model top which includes the subsequent layers up to the classification one;

W the classification layer which provides class predictions.

D the training dataset;

Ci the i-th class in the dataset;

Dk the training dataset for the k-th incremental state;

wi the weight of the classification layer associated to the i-th class;

T the number of incremental states in a evenly divided incremental learning scenario;

K the number of incremental states in an incremental learning scenario where half of
the classes are learned in the first state and the other half in the subsequent states;

N the number of classes in the dataset;

Acc the incremental accuracy;

0.3 Notations 5

1Introduction

„Ma mémoire est plus fidèle
qui sait si bien oublier.
Elle a sans doute un peu brouillé
les lignes, défait les contours,
estompé les décors qui restent imprécis. . .
Mais au souvenir réussi
elle a laissé son goût d’amour.

— Paul Géraldy
Toi et Moi

1.1 Motivation

Embarking on a journey through the corridors of mind, one of my earliest experiences comes
to life: the image of my parents patiently introducing me to the world of reading, writing,
numbers, and the diverse realm of animals, plants, country flags, and even car brands.
Those formative moments, marked by the excitement of acquiring new knowledge and the
pride of recognizing distinct patterns, remain etched in my mind like intricate brushstrokes
on the canvas of my childhood. Little did I know that those innocent encounters with
learning would lay the foundation for a lifelong quest to understand the intricate workings
of advanced learning algorithms, neural networks, and the compelling orchestration of data
analysis.

As I grew older, I became increasingly fascinated by the power of learning and the ability to
acquire new knowledge and skills. I was intrigued by the idea of learning from experience
and the ability to adapt to new situations, acquire new skills and knowledge, and continuously
improve my performance. I noticed that with each new language I tackled, the learning
process seemed to become somewhat less daunting. Similarly, when I took up a new
instrument, I found the challenge to be a bit more manageable. I was able to acquire new
knowledge more rapidly and effectively due to my prior acquisition of general knowledge
foundations upon which subsequent learning in those specific domains could build.

Therefore, learning from experience is a critical aspect of human intelligence, enabling us
to adapt to new situations, acquire new skills and knowledge, and continuously improve

7

our performance. This ability is desired in artificial intelligence (AI) systems that aim
to replicate and enhance human cognitive abilities. One of the most ambitious goals in
Machine Learning (ML) research is to enable machines to learn continuously from a stream
of data, similar to how humans learn throughout their lives. This capability, called Continual
Learning (CL), allows machines to acquire new knowledge incrementally while preserving
what was learned in the past.

However, Continual Learning poses a strong challenge because traditional Machine Learning
(ML) algorithms are not designed to handle the complexity and variability of real-world data
streams [Fre99]. One of the primary obstacles is the phenomenon of catastrophic forgetting,
a situation in which a model tends to lose previously learned information when introduced
to new data [MC89]. This problem curbs the adaptability of Machine Learning systems to
novel tasks, as they risk losing previously acquired knowledge.

Therefore, it is crucial to develop Machine Learning algorithms that are able to learn con-
tinuously, retain their knowledge, and adapt to new situations without losing previously
learned information. This thesis explores the fundamental concepts, challenges, and de-
velopments in incremental learning, with a particular focus on overcoming the problem of
plasticity/stability.

Continual learning takes several forms, including Task-Incremental Learning, Domain-
Incremental Learning, and Class-Incremental Learning (CIL). Among these, Class-
Incremental Learning is particularly challenging due to the nature of the problem. In
Class-Incremental Learning, the learning system must incrementally learn a sequence of
new classes, where each class is learned once and never revisited. This constraint means that
the system cannot retrieve data from previously learned classes, making it highly vulnerable
to catastrophic forgetting.

The problem of catastrophic forgetting in Class-Incremental Learning is exacerbated by
the likelihood that the model’s representations of previously learned classes will be over-
written or distorted when new classes are introduced. As a result, the model’s ability to
recognize previously learned classes can be severely compromised by the plasticity of
the network, leading to degraded performance on earlier tasks. To address this problem,
various techniques such as repetition, regularization, generative replay, fixed model ap-
proach, and model-growth approach have been proposed to mitigate catastrophic forgetting
in Class-Incremental Learning.

The plasticity/stability dilemma, often considered a fundamental issue in Continual Learn-
ing, overshadows even the challenge of catastrophic forgetting alone. Plasticity refers to
the ability of an AI system to adapt to new information by adjusting its internal models,
while stability involves preserving and protecting the knowledge that the system has al-
ready acquired. Essentially, there is a delicate balance between learning new information

8 Chapter 1 Introduction

(plasticity) and retaining old information (stability). This balance is arguably more critical
than only preventing catastrophic forgetting because it also involves the integration of new
information.

For example, consider a Machine Learning system that learns to recognize different breeds
of dogs. If the system relies too much on plasticity, it may efficiently learn to recognize new
breeds that are introduced to it, but at the same time, it may forget how to recognize the
breeds that it has learned about before: this is catastrophic forgetting. On the other hand,
if the system is biased too much toward stability, it may retain the ability to recognize the
breeds it has previously learned but struggle to learn new breeds.

This dilemma also arises when comparing traditional Machine Learning models with their
Continual Learning counterparts. Traditional models that emphasize stability can remember
their training data quite well but often fail to incorporate new data or adapt to shifts in data
distribution. In contrast, a model that adopts a Continual Learning approach and main-
tains a balance between plasticity and stability can effectively handle real-world situations
where the data is not stationary but evolves continuously over time. Therefore, solving
the plasticity/stability dilemma is essential for developing truly adaptive and resilient AI
systems.

This thesis provides an overview of these techniques and discusses their effectiveness in
real-world scenarios.

1.2 Background

Now that we have introduced the motivation for this thesis, we will provide some background
information on the topics covered in this thesis. This section provides a brief overview of
the fundamental concepts and terminology.

1.2.1 What mean to learn?

From the Oxford dictionary, the definition of to learn is:

to gain knowledge or skill by studying, from experience, from being taught, etc.

Subsequently, the concept of learning can be delineated as the dynamic acquisition of
knowledge or skills through dedicated study, immersive experience, or guided instruction.
Nevertheless, within the domain of Machine Learning, this definition takes on a nuanced
perspective. Through discerning patterns and interconnections within the dataset, the
Machine Learning model extrapolates these insights to formulate predictions or decisions.

1.2 Background 9

This process is akin to the human learning process, where we learn from experience and
apply our knowledge to new situations.

To do so, the first need for a Machine Learning model to learn is data.

1.2.2 Datasets

Machine Learning techniques are used to extract information from data and apply it to new
data that was not in the original data set. This is called data-driven processing. Data-driven
processing is necessary when there is no specific knowledge about how to process the data,
such as how to recognize text characters. In this case, Machine Learning can be used to
learn a process from a large amount of data (here, text scan images and their transcription
into strings of characters).

Here is another example of a problem that can be solved with Machine Learning: Spam
filtering. There is no known algorithm that can filter spam perfectly. However, Machine
Learning can be used to learn a process from a large amount of data (email messages labeled
as spam or non-spam) that can accurately filter spam emails with high precision and recall.

To be able to classify those emails as spam or non-spam, we could think of programming
something with domain knowledge. For example, we could program a rule that says that if
the mail contains the words Awesome and Deal, then it is spam. However, this rule would
not be very effective because it would not be able to detect spam emails that do not contain
the words Awesome and Deal. Domain knowledge refers to the specialized information and
expertise about a specific subject or field that is used to solve problems in that field.

The key difference between Machine Learning and domain knowledge is that Machine
Learning can be used to solve problems for which there is no known algorithm. This
is because Machine Learning can learn from data, even in cases where the data doesn’t
explicitly provide rules to solve the problem. Domain knowledge, on the other hand, is useful
for problems for which there is a known solution that can be expressed in an algorithm.

To learn from data, we first need to define the data that we will use. This data is called a
dataset. A dataset is a collection of data that is used for Machine Learning. Datasets can be
as simple as a single file or as complex as a database with millions of records. The size and
complexity of the dataset will depend on the complexity of the Machine Learning model
that we want to train. In other words, a dataset is a collection of data that is used to train a
machine-learning model. The dataset should be representative of the data that the model
will be used to process in the real world. For example, if we want to train a model to classify
spam emails, the dataset should include a representative sample of spam and non-spam
emails.

10 Chapter 1 Introduction

While datasets serve as the foundation for training Machine Learning models, the concept
of dynamic datasets introduces an element of adaptability and evolution into the realm of
data-driven processing. Dynamic datasets embrace the idea that Machine Learning models
can be continuously refined and improved as new data becomes available, even in cases
where the problem does not have a predefined algorithmic solution.

1.2.3 Data preprocessing

Because raw data is often noisy and unstructured, it is necessary to preprocess the data
before using it for Machine Learning. Data preprocessing is the process of preparing raw
data for Machine Learning. Imagine you have to deal with the spam email classification
problem. You have a dataset of emails labeled as spam or non-spam. The dataset contains a
lot of noise and unstructured data. For example, some emails are missing the subject line,
some emails have multiple recipients, and some emails have attachments. To make the data
more structured and easier to process, you need to preprocess it. This involves cleaning the
data, formatting it correctly, and creating new features.

Data preprocessing is the place for introducing specific knowledge. This includes tasks such
as:

• Cleaning the data: Removing errors, outliers, and missing values. This can be done
by removing rows or columns with missing values, replacing missing values with the
mean or median, or imputing missing values with a value from a similar row.

• Formatting the data: Standardizing data types and ranges. This can be done by
converting categorical variables to numerical variables, converting numerical variables
to categorical variables, or converting numerical variables to a standard range.

• Feature engineering: Create new features from existing ones. This can be done by
combining multiple features into one, creating new features based on existing ones,
or creating new features based on domain knowledge.

• Dimensionality reduction: Reduce the number of features to improve performance.
This can be done by removing features that are not predictive of the target variable,
removing features that are highly correlated with each other, or combining several
features into a single feature.

• Data partitioning: Separating data into training, validation, and test sets. This can be
done by randomly splitting the data into training, validation, and test sets, or by using
a stratified split to ensure that each set contains a representative sample of the data.

1.2 Background 11

Data preprocessing is an important step in Machine Learning because it can improve
the accuracy and performance of Machine Learning models. By cleaning and properly
formatting the data, we can ensure that the model is trained on data that is accurate and
consistent. Feature engineering can help us create new features that are more predictive of
the target variable. Dimensionality reduction can help us improve model performance by
reducing the number of features the model needs to learn. Splitting the data into training,
validation, and test sets allows us to evaluate the performance of the model on unseen
data.

Here are some of the benefits of data preprocessing in Machine Learning:

• Improved accuracy: Data preprocessing can help improve the accuracy of Machine
Learning models by removing errors, outliers, and missing values from the data. This
can help ensure that the model is trained on data that is accurate and consistent.

• Increase performance: Data preprocessing can also help increase the performance
of Machine Learning models by reducing the number of features the model needs to
learn. This can be done through dimensionality reduction, which can help improve
the speed and accuracy of the model.

• Understand the data better: Data preprocessing can also help us better understand
the data we are working with. This can be done by cleaning the data, formatting it
correctly, and creating new features. This can help us identify patterns in the data and
make better decisions about how to train the machine-learning model.

Overall, data preprocessing is an important step in Machine Learning that can help improve
the accuracy, performance, and understanding of Machine Learning models.

1.2.4 Risks

Once the data is preprocessed, we can use it to train a Machine Learning model. To do so,
the model must be able to learn from the data. This means that the model must be able to
know when it is making a mistake and correct itself. This is called risk minimization. Risk
can be interpreted as the cost of making a mistake. In most cases, however, it is impossible
to know the true risk. Therefore, we need to define a proxy for risk, called empirical risk.
Empirical risk is calculated by averaging the loss over a sample of data. The key to defining
empirical risk is related to the law of large numbers. The law of large numbers states that as
the number of samples increases, the empirical risk converges to the actual risk.

Empirical risk is used to train Machine Learning models. Empirical Risk Minimization
(ERM) aims to find a model that minimizes empirical risk. This means that the model will

12 Chapter 1 Introduction

make as few mistakes as possible on the training data. However, it is important to remember
that empirical risk is only an estimate of generalization error: the model can still make
mistakes on unseen data.

Training dataset fold1 fold2 fold3 ... foldK

Experiment 1 Val1

Experiment 2 Val2

Experiment 3 Val3

...
...

Experiment K ValK

Fig. 1.1.: Illustration of the cross-validation procedure, with K folds.

To reduce the risk of making mistakes on unseen data, we can use a technique called cross-
validation, illustrated in Figure 1.1. In K-fold cross-validation, the training set is K times
divided into two parts: a pseudo-training set and a validation set. The model is trained on
the pseudo-training set and then evaluated on the validation set. The cross-validation error
is the error rate on the validation set. The goal of cross-validation is to find a model that
minimizes the cross-validation error. This means that the model will make as few errors as
possible on unseen data.

Cross-validation is particularly usefull because it allows us to estimate the true risk of a
Machine Learning model. Indeed, since the process is repeated K times, and each time the
model is trained on a different pseudo-training set and evaluated on a different validation set,
we can get a better estimate of the true risk of the model. This, at the end, helps us choose a
model that is more likely to make accurate predictions on unseen data.

Figure 1.1 illustrates the principle of cross-validation with K folds of the training set D.
K experiments are performed. In the experiment k ∈ J1, KK, the model is trained on the
pseudo-training set D\foldk and evaluated on the validation set foldk. The cross-validation
error is the average error rate over the K experiments. Note that the folds are not necessarily
chosen adjacent, but rather randomly seeded and then chosen.

We can evaluate two main things using cross-validation: the mean error rate and the variance
of the error rate. The mean error rate is the average error rate over the K experiments. The
variance of the error rate is the variance of the error rate over the K experiments. The goal
of cross-validation is to find a model that minimizes the mean error rate and the variance of
the error rate. This means that the model will make as few errors as possible on unseen data
and that the model will make consistent errors on unseen data.

1.2 Background 13

By using cross-validation, we can get a better estimate of the true risk of a Machine Learning
model. This helps us choose a model that is more likely to make accurate predictions on
unseen data.

1.2.5 Learning approaches

We will now introduce the different learning approaches that are used in Machine Learning.
These approaches are used to solve different types of problems. Depending on the availability
of the labels, we can define 4 main learning approaches, from the most to the least supervised:
supervised learning, weakly supervised learning, semi-supervised learning, and unsupervised
learning.

• Supervised learning: in this approach, the model is trained on a set of labeled data.
The data consists of input features and output labels. The goal of supervised learning
is to learn a function that maps input features to output labels. This function can then
be used to make predictions on unseen data. We distinguish two types of supervised
learning: classification and regression. In regression, the output labels are continuous
values. In classification, the output labels are discrete values.

• Weakly-supervised learning: in this approach, the model is trained on a set of
weakly-labeled data. The data consists of input features and weakly-labeled output
labels. The goal of weakly-supervised learning is to learn a function that maps input
features to weakly-labeled output labels, i.e. labels that do not necessarily match the
actual output labels (if any). This function can then be used to make predictions on
unseen data.

• Semi-supervised learning: in this approach, the model is trained on a set of labeled
and unlabeled data. The data consists of input features and output labels. Some of
the data is labeled, and some of the data is unlabeled. The goal of semi-supervised
learning is to learn a function that maps input features to output labels. This function
can then be used to make predictions on unseen data.

• Unsupervised learning: in this approach, the model is trained on a set of unlabeled
data. The data consists of input features only. The goals of unsupervised learning are
multiple: generalized feature extractor training, clustering, dimensionality reduction,
density estimation, and anomaly detection.

14 Chapter 1 Introduction

1.2.6 Deep Learning

To learn hierarchical features from raw data, we are introducing Deep learning, a branch of
Machine Learning that uses deep neural networks to learn from data. Deep neural networks
are inspired by the structure of the human brain. They consist of multiple layers of neurons
that are connected to each other. Each neuron applies a mathematical transformation to its
input (usually a weighted sum followed by an activation function). The output of the model
represents predicted probabilities for each possible class. Which makes it well-suited for
tasks involving unstructured data such as images, text, and audio.

Activation and neurons

To introduce non-linearity into the network, an activation function f is applied to the output
of each neuron. This allows the network to learn more complex patterns in the data. Without
activation functions, deep neural networks would only be able to learn linear relationships
between the input and output data. This would severely limit their ability to learn complex
patterns, such as those found in images, text, and audio. Figure 1.2 illustrates how a neuron
works.

a
(0)
1

a
(0)
2

a
(0)
n

a
(1)
m

a
(1)
1

w1,1w1,1

w1,2w1,2

w1,nw1,n...

...

= f

(
n∑

i=1

w1,ia
(0)
i + b

(0)
1

)

= f

(
n∑

i=1

wm,ia
(0)
i + b(0)m

)

Fig. 1.2.: Illustration of the working principle of a neuron.

The activation of this layer is then calculated as follows:

a

(1)
1

a
(1)
2
...

a
(1)
m

 = f

w1,0 w1,1 . . . w1,n

w2,0 w2,1 . . . w2,n

...
...

. . .
...

wm,0 wm,1 . . . wm,n

a

(0)
1

a
(0)
2
...

a
(0)
n

 +

b

(0)
1

b
(0)
2
...

b
(0)
m

 (1.1)

In Equation 1.1, a
(l)
i denotes the activation of the neuron i in the layer l, wi,j denotes the

weight of the connection between the neuron i in the layer l and the neuron j in the layer
l −1, b

(l)
i denotes the bias of the neuron i in the layer l, and f denotes the activation function.

1.2 Background 15

The activation function is applied to the weighted sum of the inputs and the bias. The output
of the activation function is the activation of the neuron. The activation of the neuron is then
passed to the next layer of the network:

Multi-layer Perceptron

A fundamental neural architecture is the multi-layer perceptron (MLP), which operates as a
feedforward neural network consisting of multiple layers of neurons. Each layer maintains
full connectivity with the next layer, with the input layer being the foremost, the output layer
being the final, and the intermediate layers being referred to as hidden layers. The number
of neurons in the input layer reflects the input features, while the number of neurons in the
output layer reflects the output labels. The number of hidden layer neurons depends on the
previous layer. Figure 1.3 illustrates the structure of an MLP.

x1

x2

x3

x4

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
m1

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
m2

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
5

a
(3)
m3

...

y1

y2

y3

yk

...

input
layer hidden layers output

layer

Fig. 1.3.: Illustration of the working principle of an MLP.

In Figure 1.3, the input layer consists of n neurons, the hidden layers consist of m1, m2,
and m3 neurons, and the output layer consists of k neurons.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are used to extract richer insights from data,
especially when dealing with complex inputs such as images. CNNs are a category of
deep neural networks tailored for tasks such as image classification and object detection in
computer vision. Inspired by the architecture of the human visual cortex, CNNs consist of a
series of convolutional and pooling layers. The convolutional layers apply a series of filters

16 Chapter 1 Introduction

to the input image to extract features, illustrated in Figure 1.4. The pooling layers, illustrated
in Figure 1.5, reduce the dimensionality of the feature maps by downsampling them. The
output of the final pooling layer is fed into a fully connected layer, which performs the final
classification.

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 1 1 1 0

0 0 1 1 1 0 0

0 1 1 1 0 0 0

input

∗
1 0 1

0 1 0

1 0 1

kernel

=

3 3 1 1 0

1 3 3 1 1

1 2 3 4 1

1 2 4 3 3

1 4 3 4 1

output

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Fig. 1.4.: Illustration of the working principle of a convolutional layer.

8 7 5 3

12 9 5 7

13 2 10 3

9 4 5 14

12 7

13 14

9 5

7 8

2x2 pooling, stride 2

input

Max pooling

Average pooling

Fig. 1.5.: Illustration of the working principle of two common pooling layers.

Transformers

The Transformer emerges as a distinctive neural network architecture and a current alterna-
tive to the commonly used CNNs.

Central to Transformer’s innovation is its attention mechanism, a key feature that allows the
model to assign importance to different parts of an input sequence during prediction. The
attention mechanism allows the model to capture relationships between different patches,
enabling it to recognize spatial hierarchies and dependencies in the image.

One of the most current transformer architectures is ViT, introduced by [Dos+21], described
in Figure 1.6. ViT is a transformer-based architecture that uses a sequence of an image
patches and their position embedding as input. The image patches are flattened and fed into
a transformer encoder, which outputs a sequence of feature vectors. The feature vectors are
then fed into an MLP.

1.2 Background 17

Fig. 1.6.: Illustration of the ViT architecture. Source [Dos+21].

As Machine Learning continues to evolve and expand its reach into diverse domains, these
foundational principles remain essential. They serve as a compass to help researchers, data
scientists, and engineers navigate the complexities of real-world data and develop models
that enhance our understanding, automate decision-making, and drive innovation in fields
ranging from healthcare and finance to natural language processing and computer vision. In
the following sections, we take a closer look at the challenges of Machine Learning, with a
particular focus on Class-Incremental Learning. We will also discuss the specific challenges
of Class-Incremental Learning and how they can be addressed.

1.3 Challenges in Class-Incremental Learning

As introduced in Section 1.1, the ability to learn continuously is a critical aspect of human
intelligence, enabling us to adapt to new situations, acquire new skills and knowledge,
and continuously improve our performance. This ability is desired in artificial intelligence
(AI) systems that aim to replicate and enhance human cognitive abilities. One of the
most ambitious goals in Machine Learning (ML) research is to enable machines to learn
continuously from a stream of data, similar to how humans learn throughout their lives.
This capability, called Continual Learning (CL), allows machines to acquire new knowledge
incrementally while preserving what was learned in the past.

Though, there are many challenges associated with Continual Learning:

Memory requirements are critical in CIL because the model must continuously learn a
large number of classes, each with a limited number of examples. It’s infeasible to store all
images of previously learned classes, as memory requirements would grow linearly with the

18 Chapter 1 Introduction

number of classes, leading to computational and storage problems. Therefore, the model
should be designed to minimize the impact on memory usage when learning new classes.

Computational requirements are also important in CIL. The model should learn new
classes quickly and efficiently without compromising the quality of the learned represen-
tations. As the number of classes increases, the training time for each new class escalates,
leading to computational constraints. Techniques used to mitigate feature drift, such as
distillation, can further increase the computational cost of training. Therefore, efficient
learning algorithms are needed to learn new classes with limited computational resources.

The number of states the model must learn in CIL can significantly affect its performance.
Learning a large number of states exacerbates the effect of catastrophic forgetting, as the
model must retain more information without revisiting past examples. As the number
of classes increases, the model’s memory and computational requirements also increase,
making it more difficult to learn new classes effectively.

The variability of data stream structures plays a critical role in the model’s ability to
adapt and learn new classes efficiently. Aspects such as data type, update frequency, and
the size of incremental states can all influence the learning process. The variability in
data stream structures requires tailored Class-Incremental Learning approaches that can
handle different data types, adapt to different update frequencies, and effectively use the
information available in incremental states.

Scenario variability can have a significant impact on model performance in CIL, particularly
with respect to mitigating catastrophic forgetting. Different scenarios dictate how many
classes make up the initial state, and thus the richness of the feature space from which the
model learns.

Addressing these challenges is critical to developing more intelligent and versatile arti-
ficial intelligence systems. Class-Incremental Learning aims to emulate human learning
capabilities, allowing machines to continuously acquire new knowledge without losing
previously learned information. By addressing issues such as memory requirements, com-
putational costs, and variability in scenarios and data stream structures, with respect to
plasticity/stability, we can make Machine Learning models more adaptive and efficient.

In addition, Class-Incremental Learning has significant implications for practical applica-
tions. In real-world scenarios, the emergence of new classes or concepts is common. For
example, in computer vision, models must learn and recognize new object categories without
losing the ability to recognize previously learned categories. Addressing the challenges of
Class-Incremental Learning enables the deployment of Machine Learning systems that can
continuously adapt to new tasks, domains, or classes, thereby improving performance and
capabilities in various application domains.

1.3 Challenges in Class-Incremental Learning 19

CIL Memory Requirements

Computational Requirements

Number of States

Data Stream Structure Variability Scenario Variability

Fig. 1.7.: Outlines of the five major challenges that are directly linked to Class-Incremental Learn-
ing.

Overcoming the challenges of Class-Incremental Learning also promotes resource efficiency.
By reducing memory requirements and computational costs, we can design models that
require fewer resources to train and deploy, extending their accessibility and applicability
to a wider range of devices and environments. This is particularly important for deploying
Machine Learning in resource-constrained environments like edge devices or embedded
systems.

In addition to promoting resource efficiency, Class-Incremental Learning offers promising
advantages for addressing environmental issues, especially in the context of energy con-
servation and sustainable computing practices. The reduced memory and computational
requirements of Class-Incremental Learning methods make them well-suited for use on
energy-efficient devices and green computing environments.

Finally, overcoming these challenges advances the broader field of Machine Learning and
artificial intelligence. Developing robust techniques for dealing with Class-Incremental
Learning improves our understanding of Continual Learning, memory management, and
adaptation in Machine Learning models. This knowledge can also contribute to the devel-
opment of more sophisticated learning algorithms, improved training methods, and better
knowledge retention and transfer strategies in AI systems.

1.4 Metrics

In order to evaluate the performance of a model, we need to define a notion of performance.
This notion of performance is called a metric. There are many different metrics that can be
used to evaluate the performance of a model. The most common metric is accuracy. The
accuracy of a model on a dataset Dtest is defined in Equation 1.2 as the proportion of correct
predictions made by the model on the dataset Dtest:

acc(M, Dtest) = 1
|Dtest|

∑
(x,y)∈Dtest

1M(x)=y (1.2)

20 Chapter 1 Introduction

where M denotes the model, Dtest denotes the test dataset, x denotes an input sample, y

denotes the corresponding output label, and 1M(x)=y denotes the indicator function that is
equal to 1 if M(x) = y and 0 otherwise.

Several metrics are commonly used to evaluate the performance of a model in the context of
CIL. In this section, we will introduce the most common metrics used in the literature and
explain how they are calculated. We will also discuss the advantages and disadvantages of
each metric and how they can be used to evaluate the performance of a model in the context
of CIL. Here, the focus is on the model’s performance over a K-step incremental learning
procedure [Zhu+21b; Zhu+22; Zhu+21a; JLM21].

1.4.1 Initial Accuracy

To provide a more balanced statistical perspective in Section 5.5, we account for the initial
accuracy. This metric corresponds to the performance of the first model on the initial data
subset D1 and is designated as Acc1, i.e., Acc1 = acc(M1, D1). This metric is not properly
incremental, as it does not account for the performance of the model on the incremental
data subsets D2, D3, . . . , DK . However, the following metrics are heavily influenced by the
initial accuracy (this will be studied in Chapter 5), and thus it is important to consider it in
the analysis.

1.4.2 Final Accuracy

The final accuracy of the incremental learning process, noted as AccK , reflects the perfor-
mance of the last model on the comprehensive dataset D, i.e., AccK = acc(MK , D).

1.4.3 Mean Incremental Accuracy

The average incremental accuracy, denoted here as Acc, offers a commonly utilized evalua-
tion technique in the realm of CIL. The calculation of Acc is as follows:

Acc = 1
K − 1

K∑
k=2

acc(Mk,
k⋃

i=1
Di) (1.3)

In the above formula, acc(M, D) denotes the accuracy of the model M on the dataset D.
This metric does not factor in the accuracy of the initial model.

1.4 Metrics 21

In some cases [Pet+23a], the mean incremental accuracy includes the first, non-incremental,
state. It is then defined as follows:

Acc = 1
K

K∑
k=1

acc(Mk,
k⋃

i=1
Di) (1.4)

1.4.4 Mean Forgetting

The metric of average forgetting, represented as F , can be computed as:

F = b × f(D1) + 1 − b

K − 1

K∑
k=2

f(Dk) (1.5)

where b denotes the proportion of the initial data subset D1 in the dataset D, i.e.,
b = |D1|/|D|. Here, f(Dk) = max

k′∈Jk,KK
(acc(Mk′ , Dk) − acc(MK , Dk)) represents the

difference between the highest performance attained on the data subset Dk during the CIL
process and the final performance of the model on the same data subset [Mir+22].

In the Acc metric, more weight is attributed to earlier classes since the model is evaluated
on all classes encountered up to each step. This implies that a high Acc does not necessarily
assure superior performance in more recent classes, especially when a substantial number
of classes are initially learned. The forgetting metric serves as a complement to accuracy,
emphasizing model stability. A lower value for F signifies that the model’s performance for
a particular class remains relatively stable throughout the incremental process.

1.5 Training Procedures

Now that we set our objectives, we will delve into the details of our training procedures, em-
phasizing the aspects that distinguish the usual, non-continual, approach from the continual
one.

1.5.1 Classical Training

The classical model training process typically consists of the following steps:

1. Model Initialization: The model parameters, including weights and biases, are typi-
cally initialized randomly or with predetermined values. These parameters determine
the initial behavior of the model.

22 Chapter 1 Introduction

2. Forward Propagation: The model receives input data and processes them through
its layers (made up of neurons) to generate predictions. Each neuron applies a
mathematical transformation to its input (usually a weighted sum followed by an
activation function). The output of the model represents predicted probabilities for
each possible class.

3. Loss Calculation: After generating the predicted probabilities, the model calculates
the loss by comparing these predictions to the true labels or target values. The goal is
to minimize this loss by encouraging the model to assign high probabilities to correct
classes and lower probabilities to incorrect ones.

4. Backpropagation: Once the loss is calculated, the model uses backpropagation
to update its parameters. Backpropagation calculates the loss gradients associated
with each model parameter. These gradients provide the direction and magnitude of
parameter updates needed to minimize the loss. The chain rule helps to efficiently
backpropagate the gradients through the layers of the model.

5. Parameter Update: The gradients obtained by backpropagation are used to update
the model parameters. An optimization algorithm such as Stochastic Gradient Descent
(SGD) or its variants is used. The update rule adjusts the parameters to reduce the
loss. The learning rate, which controls the step size of the parameter update, is crucial
for the convergence and stability of the training process.

6. Iteration: Steps 2-5 are repeated iteratively, either for a specified number of epochs
or until a convergence criterion is met. Each iteration processes a mini-batch of
training data, a subset of the total training set. This mini-batch training allows for
computationally efficient parameter updates.

7. Validation and Early Stopping: During training, the performance of the model is
periodically evaluated against a validation set. Validation metrics, such as accuracy or
loss, help monitor the model’s generalization to unseen data and potential overfitting.
If performance begins to decline on the validation set, early termination can be used
to avoid unnecessary iterations.

8. Model Evaluation: Once the training process is complete, the model’s performance
is evaluated on a separate test set. This evaluation provides insight into the model’s
generalization ability and predictive accuracy for real-world scenarios.

1.5 Training Procedures 23

1.5.2 Class Incremental Training

Class-incremental training is similar to classical training but requires adaptation to accom-
modate the incremental nature of the learning process. The main differences between the
two procedures are:

1. Model Initialization: Similar to classical training, but in Class-Incremental Learning,
the model is usually initialized with the final classifier of the size of the number of
classes in the first task.

2. Forward Propagation: The forward propagation step is identical to classical training,
but in Class-Incremental Learning, only the data of the classes of the current task are
fed into the model.

3. Loss Calculation: Since the model is only exposed to images from the classes of
the current task, the loss is calculated only for those classes, making it agnostic to
previous states. To address this, several methods are proposed in the chapter 2.

4. Backpropagation: This step is identical to classical training.

5. Parameter Update: Also identical to classical training. However, in Class-
Incremental Learning, the gradients are computed only for the classes of the current
task. Hyperparameters must be tuned to avoid erasing prior knowledge.

6. Iteration: This step is the same as in classical training.

7. Validation and Early Stopping: The procedures for validation and early termination
are the same as in classical training, but the validation set must consist of the classes
of the current task.

8. Model Evaluation: This step is identical to the classical training. However, the test
set must include all classes from each task.

Figure 1.8 illustrates the process of training, and highlights the main differences we face in
Class-Incremental Learning.

1.6 Examplar-Free Class-Incremental Learning

As introduced in subsection 1.3, one of the main challenges of incremental learning is
mitigating the phenomenon of catastrophic forgetting. This problem arises when an agent

24 Chapter 1 Introduction

Start

Model Initialization

Forward Propagation

Loss Calculation

Backpropagation

Parameter Update

Iteration

Validation & Early Stopping

Model Evaluation

End

Initialized with the final classifier of the
size of the number of classes in the first
task.

Only the classes of the current task are
fed into the model.

Loss is calculated only for classes of
the current task, making it agnostic to
previous states.

Gradients are computed only for the
classes of the current task. Hyperparame-
ters must be tuned to avoid erasing prior
knowledge.

The validation set must consist of the
classes of the current task.

The test set must include all classes from
each task.

Fig. 1.8.: Flowchart of the Classical Training Procedure for Machine Learning Models and descrip-
tion of the specificities of the CIL training.

1.6 Examplar-Free Class-Incremental Learning 25

loses previously acquired knowledge as it assimilates new information [MC89; Fre99;
Kem+18]. A critical goal of incremental learning is to strike a balance between plasticity,
which allows the agent to adapt to new information, and stability, which facilitates the
retention of previously acquired knowledge [MBB13; Cha+18].

To combat catastrophic forgetting, detailed in Section 2.5, many incremental learning meth-
ods resort to using a buffer that stores past data samples for replay during training [Mas+21;
BPK21]. By replaying these past samples, the agent can better preserve its previously
acquired knowledge, making the incremental learning process more akin to unbalanced
learning [BPK21]. However, the assumption that past samples are always available limits the
applicability of incremental learning. Here are the main reasons that justify this paradigm:

• Resource constraints: Storing and managing a large buffer of past data samples
can be computationally expensive and memory intensive. In resource-constrained
environments or on devices with limited storage capacity, it may not be feasible to
retain and access all past samples during the incremental learning process.

• Privacy and security: Certain applications, especially those involving sensitive data
such as healthcare or finance, may have strict privacy and security regulations that
prevent the storage and replay of past samples. Storing and managing historical data
can raise concerns about data breaches or unauthorized access.

• Data variability: As the incremental learning process continues, the model may
encounter a wide range of data types, distributions, and concepts. Some past exam-
ples may no longer be relevant or representative of the current task, reducing the
effectiveness of knowledge retention through replay.

• Real-time data streams: In some real-world scenarios, data is streamed in real-time,
and the agent must learn from the most recent information without the luxury of
replaying past samples. For example, in online learning or robotics, the agent must
adapt to the latest data it receives without dwelling on historical data.

To address this limitation, there has been a burgeoning research effort dedicated to Examplar-
Free Class-Incremental Learning (EFCIL) [BPK21; Mas+21]. In this approach, an agent
learns to classify new data incrementally without relying on examples of previously seen
classes. This setup presents a particularly challenging plasticity/stability dilemma, as the
agent must learn from new data while avoiding catastrophic forgetting of previously acquired
knowledge. EFCIL is an active area of research, with recent studies showing promising
results [BPK21; Mas+21].

In the field of EFCIL, three main types of approaches can be distinguished:

26 Chapter 1 Introduction

• Model-Growth Methods: These methods expand the model’s capacity to accom-
modate new classes. This approach allows the model to learn new classes without
too much interference with previously learned classes. However, this approach is not
scalable, as the model’s size increases with each new task.

• Finetuning-based approaches: Knowledge distillation methods are often used in
EFCIL. In these approaches, the model is trained to emulate its own previous results
on the new data, in addition to learning the new tasks. The purpose of this method is
to ensure that the model does not forget its previously learned decision boundaries. It
usually does favor plasticity.

• Fixed Model Methods: These approaches maintain a fixed part of the model, such as
the feature extractor, while allowing other parts to be updated. The fixed part of the
model encapsulates knowledge from previous tasks and is not affected by new data,
mitigating catastrophic forgetting, and favoring stability.

Each of these approaches provides unique solutions to the challenges of EFCIL, addressing
the trade-off between learning new classes and retaining knowledge of old ones. These
methods continue to be an active area of research in the Machine Learning community.

In real-world scenarios, the challenges of EFCIL often arise in applications where resource
constraints and the inability to store large amounts of historical data are paramount. For
example, in Internet of Things (IoT) environments, resource-constrained devices with limited
memory and processing power must continuously adapt to new sensor data streams while
retaining knowledge of previously encountered classes. Similarly, microchips embedded
in various devices and systems, such as medical instruments or autonomous vehicles, must
learn and adapt to new tasks without the luxury of storing large amounts of historical data.
These cases underscore the critical need for efficient and effective EFCIL solutions to ensure
the continuous evolution and adaptability of intelligent systems in resource-constrained,
data-rich environments.

1.7 Contributions overview

This section explains the main contributions of this thesis, which primarily focuses on
addressing the plasticity/stability dilemma in Class-Incremental Learning (CIL). This thesis
presents two novel methodologies - Plastic and Stable Memory-Free Class-Incremental
Learning (PlaStIL)1 and Feature Translation for Exemplar-Free Class-Incremental Learn-

1Grégoire Petit, Adrian Popescu, Eden Belouadah, David Picard, and Bertrand Delezoide. „PlaStIL: Plastic
and Stable Memory-Free Class-Incremental Learning“. In: Proceedings of The 2nd Conference on Lifelong
Learning Agents. Ed. by Sarath Chandar, Razvan Pascanu, and Doina Precup. Proceedings of Machine
Learning Research. PMLR, 2023

1.7 Contributions overview 27

ing (FeTrIL)2. It also provides a comprehensive analysis of initial training strategies for
exemplar-free Class-Incremental Learning3.

1.7.1 PlaStIL: Plastic and Stable Memory-Free
Class-Incremental Learning

In Chapter 3 we present an approach to the plasticity-stability dilemma, introduced in
Section 1.6, which requires a balance between plasticity (the ability to learn new data) and
stability (the ability to retain previously learned knowledge). Traditionally, the compromise
between plasticity and stability is achieved by using a memory buffer, detailed in Section 2.5
or by storing two deep models, detailed in Section 2.3. The latter method involves integrating
new classes through fine-tuning, coupled with knowledge distillation from the previous
incremental state. However, this approach can be inefficient because it requires the storage
and computation of two separate deep models. This work proposes a solution that uses
a similar number of parameters as distillation-based methods, detailed in Subsection 2.3,
but distributes them differently. This distribution aims to achieve a better balance between
plasticity and stability. Specifically, the proposed method freezes the feature extractor
after the initial state and embeds several model tops to ensure high plasticity. This is a
technique inspired by transfer-based incremental methods. By freezing the feature extractor,
the model provides stability by training the classes from the oldest incremental states
with this unchanging extractor. The model uses partially fine-tuned models to introduce
plasticity to new classes. A specially designed plasticity layer is introduced that can
be incorporated into any transfer-based method designed for exemplar-free incremental
learning. The method is validated by applying it to two existing transfer-based incremental
learning methods and evaluating its performance on three large datasets. The results show
that the proposed method outperforms the existing methods in all tested configurations,
demonstrating improved performance and effectiveness in class incremental learning.

1.7.2 FeTrIL: Feature Translation for Exemplar-Free
Class-Incremental Learning

In Chapter 4 we address mainly the same plasticity-stability dilemma, introduced in 1.6 as
PlaStIL does, as tackled in Subsection 1.7.1. Existing methods typically prioritize either
stability, by using a fixed feature extractor after the initial incremental state, or plasticity,
by successive fine-tuning of the model. In this section, we propose a novel method that

2Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. „FeTrIL: Feature
Translation for Exemplar-Free Class-Incremental Learning“. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). Jan. 2023, pp. 3911–3920

3Grégoire Petit, Michael Soumm, Feillet Eva, Adrian Popescu, David Picard, and Bertrand Delezoide. „An
Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning“. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Jan. 2024

28 Chapter 1 Introduction

combines the best of both approaches to improve the balance between stability and plasticity.
The approach introduces a fixed feature extractor coupled with a pseudo-feature generator, an
effective, though simple, component that uses the geometric translation of new class features
to create representations of past classes. The key strength of this generator is its simplicity
and effectiveness; it doesn’t need to store exemplars of past classes, but only the centroid
representations of those classes. Using these centroids, the generator creates pseudo-features
for past classes, which are combined with actual features of new classes. These pseudo-
features and actual features are then fed into a linear classifier that is incrementally trained
to discriminate between all classes. The proposed method is computationally efficient
because it updates a minimal component of the deep model, the linear classifier, during
the incremental process, making it faster than mainstream methods that update the entire
deep model. The method is validated through experiments on three challenging datasets
in different incremental settings. Compared to ten existing methods, the FeTrIL approach
showed superior performance in most cases, demonstrating its effectiveness in exemplar-free
Class-Incremental Learning.

1.7.3 An Analysis of Initial Training Strategies for
Exemplar-Free Class-Incremental Learning

In Chapter 5, we delve into the central dilemma in EFCIL: effectively integrating new classes
into the model while mitigating the risk of catastrophic forgetting, particularly in scenarios
where past data cannot be stored. Existing methods tend to focus on the target dataset of
the EFCIL process, but recent trends suggest that models pre-trained in a self-supervised
manner on large datasets can also be effective, detailed in Section 2.4.

The study points out that the initial model of the EFCIL process can be built in two ways:
using only the first batch of the target dataset, or incorporating pre-trained weights from
an auxiliary dataset. This choice of initial training strategy can significantly affect the
performance of the incremental learning model, yet this aspect hasn’t been thoroughly
studied. This section also points out that performance is influenced by factors such as the
EFCIL algorithm used, the neural architecture, the nature of the target task, the distribution
of classes in the data stream, and the number of examples available for learning. To gain
insight into these factors, the work conducted an extensive experimental study and proposed
a statistical analysis framework. This framework aims to quantify the relative contribution
of each factor to incremental performance. The main finding of the study is that the initial
training strategy has a significant impact on the average incremental accuracy. However, the
choice of EFCIL algorithm plays a more critical role in preventing forgetting. Based on its
findings, Chapter 5 provides in Section 5.6 practical recommendations for choosing the right
initial training strategy for different incremental learning use cases. These suggestions are
designed to facilitate the practical application and deployment of incremental learning, which
is the main interest of this study. By providing a comprehensive analysis of influencing

1.7 Contributions overview 29

factors and practical recommendations, the study makes a significant contribution to our
understanding of class-based incremental learning and its optimization.

30 Chapter 1 Introduction

2State of the Art in Exemplar-Free
Class Incremental Learning

„Do not go gentle into that good night

— Dylan Thomas
(1914-1953)

Continual Learning is a subfield of Machine Learning that aims to enable a model to learn
from a stream of data. It can be divided into several subfields, as presented in Figure 2.1:

• Generic Incremental Learning aims to learn from a stream of tasks, without any
assumption on the domain. Each task is a set of classes, without any necessary
coherence between the classes of the same task. It is not the focus of this thesis.

• Domain-Incremental Learning aims to learn from a stream of tasks, where each
task is a different domain. At inference time, the model does not have access to the
domain of the instance to classify. It is not the focus of this thesis.

• Task-Incremental Learning aims to learn from a stream of tasks, where each task
is a different domain. At inference time, the model has access to the task id of the
instance to classify. It is not the focus of this thesis.

• Class-Incremental Learning aims to learn from a stream of tasks, without any
assumption on the domain. Each task is a set of classes, without any necessary
coherence between the classes of the same task. At inference time, the model does
not have access to the domain of the instance to classify. It is the focus of this thesis.
One-Class Incremental Learning is a subfield of Class-Incremental Learning that
aims to learn from a stream of instances, but with the constraint that the model can
only learn one class per state, without any prior on the label space.

To solve Class-Incremental Learning problems, researchers have proposed many approaches.
They can be divided into two main categories: Exemplar-Based and Exemplar-Free.
Exemplar-Based methods store a subset of the training data, called exemplars, and use
them to mitigate the forgetting of the model. Exemplar-Free methods do not store any
exemplar, and use other techniques to manage a good stability-plasticity trade-off.

31

Generic
Incremental

Learning

Domain
Incremental

Learning

One-Class
Incremental

Learning

Task Incremental
Learning Task ID at inference

Class Incremental
Learning

State1 State2 State3

Classes

Domain A

Domain B

Domain C

Fig. 2.1.: Comparative illustration showing the unique characteristics of Generic Incremental Learn-
ing, Domain Incremental Learning, Task Incremental Learning, and (One-)Class Incre-
mental Learning. Each of these learning approaches is shown with its specific context
and learning paradigm, providing a clear distinction in terms of task adaptability, data
domain change, class integration, and generic incremental adaptation.

More than the plasticity-stability tradeoff, there is 6 main criteria that can be used to evaluate
Continual Learning methods:

• Complexity: Incremental learning refers to the ability of a model to incorporate new
information or classes without making significant changes to its existing structure.
This is important to avoid catastrophic forgetting, where new information overrides or
erases previously learned knowledge. A good incremental learning system should be
able to adjust its internal representations or model parameters to accommodate new
information without significantly disrupting existing knowledge.

• Memory: Memory in incremental learning refers to the ability of the system to retain
information about past classes. Some incremental learning methods use external
memory (a buffer or storage) to store exemplars or samples from previous classes,
allowing the model to remember and adapt its knowledge. The model can then use
these exemplars to prevent forgetting and improve performance on old classes when
new classes are introduced.

32 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

• Accuracy: The accuracy of an incremental learning system is critical. As new classes
are added, the system should strive to achieve a level of performance comparable
to what would be achieved if all classes were learned simultaneously using stan-
dard methods. Maintaining high accuracy is challenging because of the potential
for interference between old and new classes. Effective methods should minimize
such interference and ensure that the accuracy of both old and new classes remains
satisfactory.

• Timeliness: Timeliness refers to the delay required for new data to be integrated into
incremental models. Rapid integration is desirable to avoid falling behind evolving
data distributions. A good incremental learning system should be able to quickly
adapt to new data while maintaining a stable representation of previously learned
information.

• Plasticity-Stability: Plasticity refers to the model’s ability to adapt and learn new
information, while stability refers to its ability to retain previously learned information.
Finding the right balance between plasticity and stability is critical for incremental
learning. A system that’s too plastic can quickly adapt to new classes but risks
forgetting old ones, while a system that’s too stable may resist change and struggle to
incorporate new knowledge.

• Scalability: Scalability is the ability of incremental learning methods to handle
large numbers of classes. As the number of classes increases, the challenges of
interference and forgetting become more pronounced. Effective methods should
show good performance even when dealing with a large number of classes, without
significant degradation in accuracy or efficiency.

Tables 2.1 and 2.2 present the 3 main types of methods and how well they perform in terms
of these factors. We can see that although the objective is quite clear, depending on the type
of method, no one reaches perfection in terms of these 6 criteria.

We can divide the Exemplar-Free methods into three main categories: Model-Growth based,
Finetuning based, and Fixed-Model based. We will now present each of these categories,
and how they rank in terms of criteria presented in Section 1.3.

2.1 Model-Growth based Incremental Learning

On the 6 criteria presented above, Model-Growth based methods rank as follows:

2.1 Model-Growth based Incremental Learning 33

Model-Growth based Fixed-Representation
based

Fine-Tuning based

C
om

pl
ex

ity The model grows by in-
tegrating new parameters
and connecting them via
weights, or by adding
small networks to incorpo-
rate new knowledge. The
key challenge is to opti-
mize this model expan-
sion to improve perfor-
mance.

After the initial non-
incremental phase, the
model remains fixed. In
a simple setting, only
the parameters needed
for new class weights
are added. In a more
sophisticated setting,
additional parameters are
introduced to improve the
performance of previous
classes.

This category of in-
cremental learning
techniques operates
with a fixed backbone
structure. The number of
parameters is minimally
affected by adjustments
to the classification layer
to balance between past
and new classes.

M
em

or
y Model growth allows

these methods to be used
without the need for ex-
emplar memory. Instead
of storing raw data from
past classes, memory is
dedicated to additional
model parameters and
weights, providing a more
efficient way to retain
information about past
classes.

Fixed representations
don’t update the model
during the incremental
learning process and then
have minimal reliance on
past class memory. Class
weights once learned dur-
ing their first encounter,
can be used consistently
in all future incremental
stages.

The effectiveness of these
methods depends heavily
on the size of the past
memory. However, the
goal of EFCIL is at odds
with storing past exem-
plars. By using knowl-
edge distillation or by ex-
ploiting statistical proper-
ties of past states, memory
requirements can be mini-
mized.

A
cc

ur
ac

y Performance is tied to
the amount of model
growth allowed. When
growth is limited, model
growth-based methods un-
derperform compared to
fine-tuning-based meth-
ods. However, when sig-
nificant growth is allowed,
performance approaches
that of traditional learn-
ing, although this contra-
dicts the need of EFCIL
to keep model complexity
relatively constant.

Fixed representation
methods typically offer
lower accuracy than
fine-tuning approaches
due to limited initial
data. Yet, with a robust
pseudo-feature generator,
they can achieve superior
results. Performance
benefits from training the
initial model on a large
dataset, contingent upon
dataset availability. Over
time, fixed representation
methods exhibit greater
stability and resistance
to forgetting compared
to fine-tuning and model
growth strategies.

Recent methods have
significantly improved
performance over pre-
vious work. These
gains are achieved by
advanced knowledge
distillation definitions,
framing incremental
learning as an unbalanced
learning problem, or
a combination of both.
The performance gap
with classical machine
learning cannot be re-
duced enough because no
memory of past classes is
allowed in EFCIL.

Tab. 2.1.: Sensibilities of Model-Growth based, Fixed-Representation based and Fine-Tuning based
methods over complexity, memory, and accuracy. Green means that the type of method
is well suited for the criterion, orange means that it is not well suited, and red means that
it is not suited at all.

34 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

Model-Growth based Fixed-Representation
based

Fine-Tuning based

Ti
m

el
in

es
s Because retraining is re-

quired for each incremen-
tal update, the complex-
ity of model growth is
typically similar to that
of fine-tuning-based meth-
ods.

Since training is only re-
quired for the classifier
weight layer, fast integra-
tion of new knowledge is
possible.

New classes cannot be
classified until retraining
has completed their incor-
poration into the model.
For time-critical applica-
tions, the training process
can be accelerated, but the
optimality of the results
may be sacrificed.

Pl
as

tic
ity

-S
ta

bi
lit

y Model-Growth-based
methods are intentionally
designed to handle differ-
ent visual tasks. The key
challenge is to minimize
the number of additional
parameters needed for
each new task.

The plasticity of the
model is limited because
the representation is fixed
in the initial state after
learning. Performance
can decrease significantly
if the incremental tasks
change drastically and
the initial representation
is no longer transferable.
Though the stability is
highly favored

Model updates allow
adaptation to new data
flowing into the system.
Because no memory is
allocated in EFCIL, the
plasticity becomes too
significant, and this shift
is managed by knowledge
distillation or imbalance
handling.

Sc
al

ab
ili

ty These methods scale well
with new classes or tasks,
provided that the systems
on which they are de-
ployed have sufficient re-
sources to support the
associated model growth
during the training and in-
ference phases, as well as
for storage.

Fixed representation-
based methods have
limited dependence on
bounded memory and
can accommodate a
large number of classes.
This is possible because
class weights are learned
initially and reused later.

Finetuning based method
can scale well with new
classes or tasks, provided
that the systems on which
they are deployed have
sufficient resources to sup-
port the operations associ-
ated with the training.

Tab. 2.2.: Sensibilities of Model-Growth based, Fixed-Representation based and Fine-Tuning based
methods over timeliness, plasticity, and scalability. Green means that the type of method
is well suited for the criterion, orange means that it is not well suited, and red means that
it is not suited at all.

2.1 Model-Growth based Incremental Learning 35

• Complexity: Because the model grows with each new task, the complexity of the
model increases with the number of tasks. This is not ideal for long-term learning
scenarios, where the model can become too large and resource-intensive.

• Memory: Model-Growth based methods do not need the use of external memory to
store exemplars or samples from previous classes. Instead, they rely on the model’s
internal structure to retain knowledge of past classes. This can be problematic in
long-term learning scenarios, where the model’s capacity to retain knowledge is
limited.

• Accuracy: Model-Growth based method’s accuracy highly depends on the model’s
ability to grow with each new task. If the model is not able to grow enough, the
accuracy will generally be low. If the model is able to grow enough, the accuracy can
be high.

• Timeliness: Retraining the model with each new task is time-consuming, especially
because the model’s size increases with each new task. This can be problematic in
long-term learning scenarios, where the model can become too large and resource-
intensive.

• Plasticity-Stability: Model-Growth based methods are generally stable and plastic
because the model grows with each new task. However, the model’s plasticity and
stability can be limited by the model’s capacity to grow with each new task.

• Scalability: Model-Growth based methods are as scalable as the model’s ability to
grow with each new task. If the model is not able to grow enough, the scalability will
be low. If the model is able to grow enough, the scalability can be high.

Incremental learning and network growth have become critical areas of focus in the quest
for more flexible and adaptive deep learning models. Various methods have been proposed
in the literature to increase the representational capacity of a model by adding complexity or
modifying the network architecture.

In the first stages of incremental learning, Neural Gas (NG) networks [MBS93] and their
growing variant [Fri94] were noteworthy. These are related to Self-Organizing Maps (SOMs)
and have been widely used for incremental learning tasks. PROjection-PREdiction (PRO-
PRE) [GK17], an incremental learner based on NG and SOMs, implements an additional
supervised readout layer and a concept drift detection mechanism, thereby improving its
adaptability to changing data distributions.

Neural Gas with local Principal Component Analysis (NGPCA) [AAP10] focuses on online
incremental learning, especially for robotic platforms performing object manipulation tasks.

36 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

Similarly, Dynamic Online Growing Neural Gas (DYNG) [BC13] controls the growth rate
of the NG network to accelerate learning for new knowledge while slowing growth for
previously learned knowledge.

The TOpology-Preserving knowledge InCrementer (TOPIC) [Tao+20b] adapts neural gas
for class incremental learning, with a special focus on visual datasets and few-shot learning.
Similarly, a topology-preserving network called TPCIL was introduced in [Tao+20a]. TPCIL
fights catastrophic forgetting by modeling the feature space using an Elastic Hebbian Graph
and preserving the topology using a topology-preserving loss.

Wang et al [WRH17] proposed a unique method called "Growing a Brain", which increases
the representational capacity by modifying the structure of the network, either by widening
(adding more neurons to a layer) or deepening (adding more layers) the network. This
flexibility allows the model to adapt to increasingly complex data sets or tasks.

Similarly, Progressive Neural Networks (PNNs) [Rus+16] use knowledge from past tasks
and retain it by using multiple models during the training process. This design forms a
"progressive" structure in which each new task directly benefits from the retained knowledge
of previous tasks, thereby reducing catastrophic forgetting.

Roy et al. [RPR20] introduced an adaptive network that operates in a tree-like growth pattern.
This network expands based on the reorganization of the feature hierarchy whenever new
tasks are introduced, allowing for a dynamic and responsive increase in representational
capacity.

Aljundi et al. [ACT17] presented a lifelong learning architecture based on a network of
specialized subnetworks (experts) coupled with a gating mechanism. This gating mechanism
determines which expert to engage for knowledge transfer based on the given task, thereby
maximizing task-specific learning and performance.

Deep Adaptation Networks (DANs) [RT17] also contribute to the Model-Growth based
Class-Incremental Learning literature by introducing additional parameters for each new
task. This approach significantly expands the architecture as new tasks arrive, which is
particularly useful when a model encounters a large number of novel tasks.

An alternative method [RBV18] builds on the idea of shared parameters across multiple
neural networks. It uses modular adapters to connect these networks, allowing each to
specialize for a particular task, thereby increasing the overall adaptability and efficiency of
the model.

Several techniques, including PackNet [ML18], Uncertainty-guided Continual Learning
(UCL) [Ahn+19], Continual Learning through Neuronal Plasticity (CLNP) [GKC19], AGS-

2.1 Model-Growth based Incremental Learning 37

CL [Jun+20], and Network Importance Sampling and Pruning Algorithm (NISPA) [Mus],
identify the most important neurons or parameters for the current task. They then free the
less important parts for use in subsequent tasks. Liberation is achieved by various strategies
such as iterative pruning [ML18], activation value analysis [GKC19; Mus; Jun+20], or
uncertainty estimation [Ahn+19]. However, these approaches have limitations in handling
large numbers of tasks due to performance loss at high compression.

In response, Piggyback [MDL18] extends PackNet by implementing network quantization
and suggesting masks for individual weights, allowing a larger number of tasks to be trained
with a single base network. In the same vein, Hard Attention to the Task (HAT) [Ser+18],
SupSup [Wor+20], MEAT [Xue+22], WSN [Kan+22], and H2 [JK22] use optimization
of a binary mask to designate specific neurons or parameters for each task. The masked
regions of old tasks are then frozen, preventing their modification and preserving the learned
knowledge.

Another approach, Memory Aware Synapses (MAS) [Alj+18], uses a mechanism to identify
the most important weights in the model based on the sensitivity of the output function. This
approach was later adapted for use with unlabeled data sets [AKT19], demonstrating its
versatility and adaptability.

Methods such as Dynamically Expandable Networks (DEN) [Yoo+18], Co-Participation
Geometric (CPG) [Hun+19], and Dual-Memory Generative Memory Networks (DGM)
[Ost+19] have introduced a dynamic element into network architectures. These methods
expand the network architecture when the capacity is insufficient to learn a new task. This
dynamic expansion is intended to alleviate the limitations imposed by fixed network capacity
and to provide the system with a flexible learning structure.

The dynamic architecture can be further optimized to increase parameter efficiency and
facilitate knowledge transfer. Techniques such as Reinforcement Continual Learning
(RCL) [XZ18], Balanced Neural Structure (BNS) [Qin+21], Learn to Grow (LtG) [Li+19],
and Bayesian Structure Adaptation (BSA) [KCR21] employ strategies such as reinforce-
ment learning, architecture search, and variational Bayes to optimize the architecture for
incremental learning.

Despite the potential benefits of dynamically expanding the network, it is critical to ensure
scalability by applying sparsity and parameter reusability constraints, as explained in Sub-
section 1.3. Since network expansion should occur at a rate slower than task growth, these
constraints prevent excessive network growth and promote efficient use of parameters.

In summary, recent advances in network growth and incremental learning have shown
promising results in improving the adaptability and performance of deep learning models.

38 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

These diverse approaches provide the foundation for further development of sophisticated
methods to handle dynamically changing tasks and datasets.

Consequently, we can recap the main advantages and limitations of Model-Growth-based
methods as follows:

• Advantages:

– Designed to handle different visual tasks: Model-Growth based methods are
intentionally designed to accommodate various tasks, making them versatile in
handling incremental learning scenarios with diverse classes.

– Scalability: These methods can scale well with new classes or tasks, provided
that sufficient resources are available for model growth during training and
inference.

– Minimal Catastrophic Forgetting: As the model grows with new classes, it can
retain the knowledge of past classes, mitigating catastrophic forgetting to some
extent.

• Limitations:

– Memory and Computational Demands: Model-Growth-based methods require
substantial memory and computational resources as the model grows with
each new class, making them computationally expensive in long-term learning
scenarios and not adapted for EFCIL scenarios.

– Need for Parameter Control: To prevent the model from becoming too large or
resource-intensive, careful control of the number of additional parameters for
each new task is essential.

2.2 Fixed-Representation-Based Incremental
Learning

Another branch of research in incremental learning is fixed representation methods. These
methods typically use a deep model trained in the first, non-incremental, state to extract
features that are then used for incremental learning. However, once trained, the deep
representation is kept fixed and is not updated for each incremental step.

On the 6 criteria presented above, Fixed-Representation based methods rank as follows:

2.2 Fixed-Representation-Based Incremental Learning 39

• Complexity: Fixed-Representation based methods have really low complexity be-
cause the model is not updated during the incremental learning process.

• Memory: Fixed-Representation based methods have a low memory dependency.

• Accuracy: Fixed-Representation based methods’ accuracy highly depends on the
quality of the initial representation. If the initial representation is good, the accuracy
will generally be high. If the initial representation is not good, the accuracy can be
low.

• Timeliness: Fixed-Representation based methods are really fast because the model is
not updated during the incremental learning process.

• Plasticity-Stability: Fixed-Representation based methods are generally stable be-
cause the model is not updated during the incremental learning process. However, the
model’s plasticity can be limited by the quality of the initial representation.

• Scalability: Fixed-Representation based methods’ scalability heavily depends on the
fixed representation.

A basic variant of this approach is briefly described in [Reb+17], where a Nearest Class
Mean classifier is directly applied on top of the fixed representation of the model trained on
the initial state classes. Despite its simplicity, this approach often yields suboptimal results
due to inefficient use of the learned deep representations. Recent studies have proposed
the use of a substantial pre-trained model paired with a k-NN classifier, forming a robust
baseline for continual learning algorithms [Jan+22; Pel22].

Deep Shallow Incremental Learning (DeeSIL) [BP18] provides a more effective alternative
by applying a transfer learning scheme [KSL18; Raz+14]. DeeSIL uses a fixed deep
representation to learn the initial set of classes and then applies support vector machines
(SVMs) [BGV92] to incrementally learn new classes. This hybrid method ensures that
the deep representation is used effectively, and the classifier can be incrementally updated
without retraining the entire model.

FearNet [KK18] provides a unique, biologically inspired approach to fixed representation
learning. FearNet uses separate networks for long-term and short-term memory to represent
past and novel classes. A decision mechanism is implemented to decide which of the two
networks should be used for each test example, providing a flexible way to access past and
newly learned knowledge.

Deep Streaming Linear Discriminant Analysis (DSLDA) [HK20] is another online approach
based on the SLDA algorithm [POK05]. In this method, the network is trained on the

40 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

initial batch of classes and then frozen. During subsequent training stages, a class-specific
running mean vector and a common covariance matrix are continuously updated, allowing
incremental learning while preserving the initial deep representation.

REplay using Memory INDexing (REMIND) [Hay+20] presents a methodology inspired
by the hippocampal indexing theory. REMIND uses an initial representation that is only
partially updated afterward. It uses a vector quantization technique to store compressed
intermediate representations of images. These representations are later used for memory
consolidation, effectively balancing the demands of storage and retrieval.

In the study by Gallardo et al. [GHK20], the authors investigate the use of a pre-trained,
fixed feature extractor in a self-supervised manner. An innovative approach in this area is
represented by Learning to Prompt for Continual Learning (L2P) [Wan+22b]. This method
focuses on training a concise memory system that efficiently manages both task-invariant
and task-specific knowledge.

In summary, fixed representation methods provide valuable insights into how deep learning
models can be adapted for incremental learning tasks. While there are challenges to be
overcome, particularly in terms of effectively exploiting deep representations and managing
memory resources, the methods described above provide promising avenues for future
research in this area.

Consequently, we can recap the main advantages and limitations of Fixed-Representation-
Based methods as follows:

• Advantages:

– Scalability: Fixed-Representation-based methods can accommodate a large
number of classes without linearly increasing memory requirements, making
them more scalable in long-term learning scenarios.

– Stability: Fixed-Representation-based methods are more stable as the represen-
tation is fixed and does not change during training of new tasks.

– Reduced Computational Demands: Since the representation is fixed, the compu-
tational overhead associated with model growth is avoided during training and
inference.

• Limitations:

– Limited Plasticity: Fixed-Representation-based methods have limited plasticity
due to the fixed representation in the initial state after learning. Performance

2.2 Fixed-Representation-Based Incremental Learning 41

can decrease significantly if incremental tasks change drastically, and the initial
representation is no longer transferable.

– Update Challenges: Incorporating new knowledge into the fixed representation
can be challenging since the representation is not updated during training of new
tasks.

2.3 Finetuning-Based Class-Incremental Learning

On the 6 criteria presented above, Finetuning-Based methods ranks as follows:

• Complexity: Finetuning-Based methods have a low complexity because the model is
increasing slowly during the incremental learning process.

• Memory: Finetuning-Based models are better with a big memory because they can
store more exemplars, and then use them to mitigate the forgetting of the model.

• Accuracy: Finetuning-Based methods’ accuracy highly depends on the amount of
memory available. If the memory is big enough, the accuracy will generally be high.
However, in EFCIL scenarios, the memory is prohibitive, and the accuracy is generally
lower than fixed-representation-based methods.

• Timeliness: Finetuning-Based methods’ timeliness is not that good because the model
needs to be retrained with each new task.

• Plasticity-Stability: Finetuning-Based methods are generally plastic because the
model is updated during the incremental learning process as new tasks arrive. However,
the model’s stability can be limited by the amount of memory available: if the memory
is not big enough, the model will forget the old classes, sacrificing stability for
plasticity.

• Scalability: Finetuning-Based methods’ scalability heavily depends on the amount
of memory available.

2.3.1 Basic Concepts of Finetuning-Based Class-Incremental
Learning

As explained in the Subsection 1.3, one main challenge in Class-Incremental Learning is the
discrepancy between the states’ distributions. Therefore, to mitigate the forgetting of the

42 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

model, one common approach is to craft a loss that penalizes the drift between the latent
representations of the old and new states. This type of method is called Distillation-Based
methods.

Knowledge distillation approaches aim to preserve the network’s ability to correctly identify
previously learned classes by preventing activation drift [Cha+18; Hou+19]. These methods
are primarily designed to preserve the network’s ability to identify previously learned classes
based on the fact that the distillation loss constrained the latent space of the current state to
correctly classify previous classes. Importantly, most knowledge distillation-based methods,
including those proposed by Li and Hoiem [LH16] and Dhar et al. [Dha+18], are designed
to learn continuously from a stream of data instances sufficient for each new task.

2.3.2 Major Developments and Methods in Finetuning-Based
Class-Incremental Learning

Among Distillation-Based methods, Learning without Forgetting (LwF) [LH16] is one of the
first techniques that applies a loss function to penalize the differences between the current
network’s output and the output it had on previous tasks. This was originally proposed
for image classification. iCaRL, proposed by Rebuffi et al. [Reb+17], extended LwF by
introducing an exemplar set and a trade-off between old and new classes to balance the
learning process.

Rannen et al. [Ran+17] extended LwF by introducing an under-complete autoencoder,
which projects features to a manifold with fewer dimensions, allowing important features
from previous tasks to be retained without increasing the model size. They also pointed
out the limitations of LwF in handling different data distributions between different tasks.
Belouadah et al. [BPK20] uses a vanilla FT backbone and tackles catastrophic forgetting
by reusing the past classifiers learned when these classes were first learned, while Castro
et al. [Cas+18] propose a similar approach, but with an end-to-end architecture. Simon et
al. [SKH21] conducted knowledge distillation directly on low-dimensional manifolds.

The Learning without Memorizing (LwM) method [Dha+18], applies attention maps from
previous tasks to guide the training of new tasks. It aims to ensure that important features for
class labels remain consistent across tasks. The method introduces an attention distillation
loss. In Bias Correction (BiC) proposed by Wu et al. [Wu+19], a dynamic trade-off term
is introduced to account for the varying number of old and new classes, thus adjusting
the balance of learning. Fini et al. proposed a two-stage method known as Batch-Level
Distillation (BLD) [Fin+20]. Douillard et al. also approached the problem differently
with Pooled Outputs Distillation (PODNet) [Dou+20], treating continual learning as a
representation learning problem.

2.3 Finetuning-Based Class-Incremental Learning 43

Co-transport for Class-Incremental Learning (COIL) [ZYZ21] uses the co-transport tech-
nique to exploit semantic relationships between old and new models. Kurmi et al. proposed
a distillation loss using prediction uncertainty and self-attention [Kur+21].

2.3.3 Advanced Applications and Emerging Trends in
Finetuning-Based Class-Incremental Learning

Knowledge distillation has been further applied to diverse areas such as semantic image
segmentation [MZ19; Cer+20; Dou+21; MZ21], object detection [SSA17], class-conditional
image generation [Wu+18; Zha+19], and person re-identification [Pu+21]. It has also been
used in image and video captioning [Ngu+19], and in methods that use unlabeled data
instances with labeled instances and a global distillation method [Lee+19].

Knowledge distillation also addresses challenges such as inconsistent causal effect [Hu+21],
data imbalance [Hou+19], bias toward new tasks [Zha+20], concept drift [He+20a], and
semantic distribution shift [Cer+20; Dou+21]. It has also been used for knowledge trans-
fer at selected levels using the Expectation-Maximization (EM) method [LBE21] and in
the Continual Learning with Forgetting Avoidance and Knowledge Transfer (CAT) ap-
proach [KLH20]. Prototype Augmentation and Self-Supervision for Incremental Learning
(PASS) [Zhu+21b] uses prototypes of past classes in combination with distillation in order
to counter catastrophic forgetting. Self-Supervised Models are Continual Learners [Fin+22]
proposes a novel approach that transforms self-supervised loss functions into distillation
mechanisms by introducing a prediction network that maps current representations to their
past state, thereby significantly improving the quality of learned representations across
different CL settings with minimal need for hyperparameter tuning.

Class-Incremental Learning via Dual Augmentation (IL2A) [Zhu+21a] uses class and seman-
tic augmentation to manage representation and classifier biases. Lastly, the MUlti-Classifier
(MUC) [Liu+20c] integrates an ensemble of auxiliary classifiers to provide more effective
regularization constraints. Self-Sustaining Representation Expansion (SSRE) [Zhu+22] uti-
lizes structure reorganization, main-branch distillation, and a prototype selection mechanism
to optimize representation, retain old class features, and enhance discrimination between
old and new classes, without the need to store old class samples. Balanced Softmax Cross-
Entropy for Incremental Learning with and without Memory (BSIL) [JLM21] addresses
catastrophic forgetting and model bias in deep neural networks by employing a balanced
softmax cross-entropy that can be integrated with other state-of-the-art class-incremental
learning approaches to improve accuracy and potentially reduce computational cost, even in
EFCIL.

44 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

More recently, novel methods such as R-DFCIL [Gao+22] and MBP [Liu+22] have emerged.
These encode structural information from the old model into the new, model relationships,
and ensure consistent distance rankings between the old and new models.

Consequently, we can recap the main advantages and limitations of Finetuning-Based
methods as follows:

• Advantages:

– Plasticity: Fine-tuning enables the model to adapt to new data flowing into the
system, allowing for some level of plasticity.

• Limitations:

– Timeliness: Fine-tuning does not allow fast integration of new knowledge
because it requires more than the training for the classifier weight layer, which
can be critical in time.

– Limited Stability: Fine-tuning is not stable because it can lead to catastrophic
forgetting of the previous knowledge since no previous knowledge is preserved
in EFCIL methods.

2.4 Pre-training Techniques for CIL

Pre-training techniques are a critical component of Machine Learning that uses models
initially trained on a source dataset as the basis for training subsequent models on a target
dataset [RM19]. This strategy, called transfer learning, typically involves starting the
weights of the target model with those of the source model. These weights can either remain
unchanged, except for the classification layer (linear probing), or be updated with the target
data (fine-tuning).

Transfer learning has several pragmatic advantages, such as reducing the computational
effort required to train a new model on a different dataset, and facilitating accurate model
learning in few-shot scenarios due to the ability of pre-trained models to extract complicated
features from novel input data [Tan+18]. Some scholars have investigated the pre-training
of models to enhance their transferability [Gei+18; Tam+17; KSL18; Abn+21], concluding
that a model’s ability to generalize is enhanced by the volume, caliber, and diversity of its
source training data [Oqu+23].

2.4 Pre-training Techniques for CIL 45

2.4.1 Self-Supervised Learning and Its Role in Pre-Training

Recently, Self-Supervised Learning (SSL) has attracted attention for its potential to gen-
erate diverse, reusable features for subsequent tasks [Dha+21]. SSL allows models to
learn from unlabeled data without relying on explicit annotations [JT20]. By exploiting
inherent structure or information in the data, surrogate labeling tasks such as predicting
missing image patches, image rotations, or colorizations can be formulated. An example of
this is MoCov3 [He+20b; CXH21], which uses a contrast loss function to obtain similar
representations for two randomly enhanced portions of the same input image. Other SSL
methods, such as BYOL [Gri+20] and DINOv2 [Oqu+23], trained on large datasets, have
demonstrated their efficiency as feature extractors that can be reused for other tasks.

However, it’s important to recognize that while repurposing pre-trained models as frozen
feature extractors is relatively straightforward, fine-tuning them in the midst of a domain
shift can be challenging [Kum+22], a fact that has significant relevance for CIL since many
existing models depend on fine-tuning.

2.4.2 Pre-training Applications in Class Incremental
Learning

Recent advancements in Continual Incremental Learning (CIL) leverage pre-trained models
as an efficient foundation for the incremental process, as suggested in studies like [Tia+23]
and [Wu+22]. Similar approaches that incorporate dynamic prompting are explored in
works like [Wan+22b]. The research presented in [Ost+22] utilizes pre-trained models to
introduce a low-compute method that includes the replay of past training samples. This
concept of employing a pre-trained feature extractor is particularly advantageous when
training data is limited, as encountered in few-shot CIL scenarios, as discussed in [Ahm+22].
Energy Self-Normalization [Wan+23a] leverages a pre-trained transformer model, trains
classifiers per state, and then merges them by combining a temperature-controlled energy
metric, an anchor-based energy self-normalization strategy, and a voting-based inference
augmentation strategy. However, the substantial parametric size of pre-trained models, often
in the hundreds of millions, is often an obstacle for continual learning applications [HK22].
One solution to alleviate this problem is to use knowledge distillation to derive smaller
models from larger ones [HVD15; Tou+21].

2.5 Exemplar-Based Class-Incremental Learning

The Exemplar-Based methods can be found in the previous sections too, but since they
are not the focus of this thesis, we emphasized their usage in an Exemplar-Free Class-

46 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

Incremental Learning setting. Here are the main methods to use exemplars in Class-
Incremental Learning.

Exemplar-based methods are used to mitigate model forgetting by storing a subset of the
training data, called "exemplars". These exemplars are then used to retrain the model. There
are several methods for selecting these exemplars, the most common being:

• Random: This approach randomly selects exemplars from the available training data.
This simple but effective method ensures a broad representation of the data, although
it may not always focus on the most informative or representative samples.

• Herding: Unlike random selection, the herding technique deliberately selects ex-
emplars that tend to preserve the mean sample of each class. This strategy ensures
that the selected samples are highly representative of their respective classes, thus
capturing the central tendencies of the class distributions.

• Custom selection: More complex methods, such as Mnemonics introduced
in [Liu+20b], use updatable exemplars that are chosen in an end-to-end fashion.
Interestingly, these exemplars are typically located at the boundary of the class data
distribution. This positioning helps the model discriminate between classes more
effectively, as these boundary cases often provide more distinctive and discriminative
information for learning.

(a) Random selection (b) Herding selection (c) Custom selection

Fig. 2.2.: Comparison of exemplar selection methods. Source [Liu+20b].

On Figure 2.2, we can see the difference between (a)the random selection, (b)the herding
selection and (c)the custom (here Mnemonics) selection. The random selection selects
random samples from the training set, creating a representative subset of the training set.
The herding selection selects samples that are close to the mean of the class, creating a
subset of the training set that is representative of the mean of the class. The mnemonics
selection selects samples that are at the boundary of the class.

By using these techniques to select exemplars, exemplar-based methods can maintain a
reliable and representative summary of past data, facilitating more effective incremental
learning. Once the exemplars are selected, the training process is described in Section 1.5.1,

2.5 Exemplar-Based Class-Incremental Learning 47

which often brings back the training procedure of EBCIL problems to traditional ML
problems.

Instead of using the exemplars to directly retrain the model, the Exemplar-Based methods
can use them to optimize the model. For instance, they can be used to learn the subset of
correlations common to all tasks. For example, A-GEM [Cha+19] replays stored samples,
ensuring that the loss on the replayed data is used as an inequality constraint. In other words,
the loss on the current data is optimized while adhering to the constraint that the loss on the
replayed data cannot increase.

Instead of storing exemplars, some methods use compressed information to perform the
incremental learning. For instance, the method proposed in [Wan+22a] utilizes determinantal
point processes to establish a well-judged equilibrium between the quality of images and
the quantity of samples per class.

The Generative Feature Replay For Class-Incremental Learning (GFR-IL) [Liu+20a] fuses
generative replay with distillation, utilizing a generator network to replay learned feature
representations. The Deep Generative Replay (DGR) [Shi+17] employs generative models
to combine old data with new data. Lastly, the Continual Neural Dirichlet Process Mixture
(CN-DPM) [Lee+20] adopts a Bayesian nonparametric approach to dynamically adjust
the complexity of the model as new tasks emerge. The End-to-End Incremental Learning
(EEIL) [Cas+18] method fuses distillation-based techniques with rehearsal strategies. This
method uses a small sample of previous classes to stabilize the learning of new classes.

As a result, it achieves an enhancement in accuracy compared to several pre-existing
methods. Additionally, this accuracy boost is attained while ensuring that the computational
cost remains closely aligned with that of the herding technique. On a different approach,
the method proposed in [Isc+20] retains features from previous classes. This enables the
potential to maintain a greater number of exemplar representations within a comparable
buffer setup. However, since the method is not based on a fixed representation, the adaptation
of features is essential to ensure their compatibility across different incremental states and
then requires additional computational resources and an additional network to perform this
adaptation. Class prototype creation has been examined in learning contexts other than
CIL. An intriguing method, centered around few-shot learning, was introduced in [DL19]
and presents a distance-based classifier that utilizes an approximated Mahalanobis distance.
In Chapter 4, we will present a method that uses a fixed representation and a pseudo-
feature generator to generate features of past classes, thus avoiding the need for additional
computational resources and an additional network to perform this adaptation.

48 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

2.6 Our EFCIL contributions

As seen in the previous sections, various approaches are attempting to address the challenges
of EFCIL. However, existing methods often fall short in providing a comprehensive solution
that can adapt to a wide range of real-world scenarios.

In light of these limitations, this thesis aims to make substantial contributions to the field of
continual learning. The proposed solutions revolve around achieving an optimal balance
between plasticity and stability in the learning process, mitigating the effects of catastrophic
forgetting, and efficiently integrating new classes without requiring additional memory
buffers or massive computational resources.

The first contribution, PlaStIL[Pet+23a], detailed in Chapter 3, presents a novel approach
that distributes model parameters differently to achieve a better balance between plasticity
and stability. By introducing a plasticity layer, our method integrates new classes with
partially fine-tuned models while preserving past knowledge with a frozen feature extractor.
This approach can be easily incorporated into any transfer-based method designed for
exemplar-free incremental learning. Experimental results, conducted on three large datasets,
validate the performance superiority of our proposed method compared to existing ones.

The second contribution, FeTrIL[Pet+23b], detailed in Chapter 4, approaches the challenge
of EFCIL from a unique perspective. Instead of focusing on fine-tuning the model or using
a fixed feature extractor, we propose a method that combines both. Our approach introduces
a pseudo-feature generator that uses the geometric translation of new class features to create
representations of past classes. This method allows for an efficient storage scheme and
a significantly faster incremental process. An experimental comparison with ten existing
methods shows that our approach outperforms most of them in a variety of scenarios and
datasets.

Finally, the third contribution[Pet+24], detailed in Chapter 5, presents a comprehensive
experimental study to understand the relative influences of several factors on the performance
of EFCIL. These include the initial learning strategy, the choice of the EFCIL algorithm, the
neural architecture, the nature of the target task, the class distribution, and the number of
examples available for learning. We find that the initial training strategy is the key factor
influencing the average incremental accuracy, while the choice of the EFCIL algorithm
plays a crucial role in preventing forgetting. Based on these findings, we provide practical
recommendations to guide the selection of the appropriate initial training strategy for
different incremental learning use cases.

Each contribution provides unique insights and solutions to the various challenges associated
with class incremental learning, representing an important step towards more efficient and

2.6 Our EFCIL contributions 49

effective learning from streaming data. The following chapters delve into the specifics of
each contribution.

50 Chapter 2 State of the Art in Exemplar-Free Class Incremental Learning

3PlaStIL: Plastic and Stable
Exemplar-Free Class-Incremental
Learning

„Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

— Robert Frost
The Road Not Taken (1/4)

3.1 Introduction

Introduced in Chapter 1, Class-incremental learning (CIL) enables the adaptation of artifi-
cial agents to dynamic environments in which data occur sequentially. CIL is particularly
useful when the training process is performed under memory and/or computational con-
straints [Mas+21]. However, it is really susceptible to catastrophic forgetting, which refers
to the tendency to forget past information when learning new data [Kem+18; MC89]. As
seen in Section 2.3 most CIL methods [Dou+20; Hou+19; JS18; Reb+17; Wu+19] use
fine-tuning with knowledge distillation [HVD15] from the previous model to preserve
past information. Knowledge distillation has been progressively refined [Hou+19; JS18;
WGL21; Yu+20; Zho+19] to improve CIL performance. An alternative approach to CIL
is inspired by transfer learning [Raz+14]. These methods, described in Section 2.2, use a
feature extractor that is frozen after the initial CIL state [BP18; Hay+20; HK20; Reb+17].
They become competitive in exemplar-free CIL, a difficult setting due to a strong effect
of catastrophic forgetting [Mas+21]. The main challenge, as explain in Section 1.3, is to
find a good plasticity-stability balance because fine-tuning methods favor plasticity, while
transfer-based methods only address stability.

In this work, we tackle exemplar-free CIL (EFCIL) by combining the two types of ap-
proaches described above. Building on the strong performance of transfer-based meth-
ods [BPK21; HK20], we introduce a plasticity component by partially fine-tuning models

51

1 2 3 4 5 6 7 8 9 10
Incremental state

0%
20%
40%
60%
80%

100%
To

p-
1

ac
cu

ra
cy

ILSVRC, K = 10

PlaStILall=48.8
DeeSIL=45.6
LUCIR=37.4 New Past

1 2 3 4 5 6 7 8 9 10
Incremental state

0%
20%
40%
60%
80%

100% Landmarks, K = 10

PlaStILall=83.5
DeeSIL=81.8
LUCIR=75.0 New Past

1 2 3 4 5 6 7 8 9 10
Incremental state

0%
20%
40%
60%
80%

100% iNaturalist, K = 10

PlaStILall=46.7
DeeSIL=43.3
LUCIR=39.4 New Past

Fig. 3.1.: Accuracy of past and new classes in exemplar-free CIL for three large-scale datasets with
K = 10 incremental states. LUCIR [Hou+19] uses distillation to preserve past knowledge
and favors plasticity. DeeSIL [BP18] transfers features from the initial frozen model to
all subsequent states and focuses on stability. PlaStIL offers a better plasticity-stability
balance. Note that the proportion of past classes increases as the incremental process
advances and so does their weight in global accuracy.

for recent classes. The results from Figure 3.1 show that our method gives a better global
accuracy compared to DeeSIL [BP18] and LUCIR [Hou+19], two representative methods
focused on stability and plasticity, respectively. Accuracy is presented separately for past
and new classes for existing methods to examine the plasticity-stability balance offered by
each method. LUCIR has optimal plasticity (best accuracy of new classes), while DeeSIL
has optimal stability (best accuracy for past classes). However, the performance of both
methods is strongly degraded on the complementary dimensions. Our method is close to
LUCIR in terms of plasticity and to DeeSIL in terms of stability. Consequently, it ensures a
better balance between these two properties of EFCIL.

PlaStIL is inspired by transfer learning but adds a partial fine-tuning component to boost plas-
ticity. It is applicable to any transfer-based method and we exemplify it with DSLDA [HK20]
and DeeSIL [BP18]. We introduce a hybrid classification layer that combines classification
weights learned with the initial model for past classes and with the fine-tuned models for
recent classes. We evaluate the proposed approach on three datasets which contain 1000
classes each. The number of incremental states is varied to assess the robustness of the
tested methods. Results show that performance gains are obtained by adding the proposed
plasticity component to transfer-based methods. Equally interesting, important performance
improvements are obtained over distillation-based methods, which are the mainstream
methods deployed to tackle CIL [Hou+19; JS18; Reb+17; Smi+21; WGL21]. We will
open-source the code to facilitate reproducibility.

3.2 Related Work

Incremental learning is interesting when artificial agents need to learn under memory or
computational constraints [Mas+21; Par+19; Reb+17]. The main challenge in CIL is
to tackle the catastrophic forgetting phenomenon [Kem+18; MC89]. A suitable balance

52 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

between plasticity and stability of the learned models is sought [MBB13]. Plasticity and
stability are needed in order to accommodate new data and preserve previously learned
knowledge, respectively [Cha+18]. As noted in a recent survey [Mas+21], a large majority
of CIL-related works use a memory buffer that stores samples of past classes in order
to improve overall performance. Replaying these samples facilitates the preservation
of past knowledge, thus making the incremental learning process akin to imbalanced
learning [BPK21]. However, the assumption that past samples are available is strong
and limits the applicability of CIL. A growing research effort was devoted to exemplar-free
CIL (EFCIL) [BPK21; Mas+21]. The plasticity-stability dilemma is particularly challenging
without memory since the effects of catastrophic forgetting are stronger in this case [BPK20;
Reb+17; Smi+21; WGL21].

Survey papers such as [Lan+19; Mas+21] analyze different types of continual learning
methods which are usable in exemplar-free CIL. Parameter-isolation methods, such as
HAT [Ser+18] or PackNet [ML18] were designed for task-incremental learning, a setting
in which the task ID is known at inference time. They learn task-specific masks to reduce
catastrophic forgetting. However, they are impractical in task-agnostic scenarios since the
simultaneous evaluation of all tasks is not possible and specific forward passes are needed
for each task [Mas+21]. Regularization-based methods are a popular solution to EFCIL and
they fall into two subcategories, namely data-focused or prior-focused approaches. Existing
works [Lan+19; Mas+21] showed that data-focused methods outperform prior-focused on
in EFCIL scenarios. Consequently, we discuss data-focused methods and use representative
examples of them in experiments. According to [BPK21; Mas+21], most methods update
learned models in each IL state using fine-tuning for plasticity and different flavors of
knowledge distillation [HVD15] for stability. Alternatively, a few works [BP18; Dha+21;
Hay+20; HK20] use an initial representation throughout the incremental process. We discuss
the merits and limitations of both approaches below and position our contribution with
respect to them.

Distillation-based methods are inspired by LwF [LH16], an adaptation of knowledge dis-
tillation [HVD15] to an incremental context. The authors of [Dha+18] add an attention
mechanism to the distillation loss to preserve information from past classes and obtain an
improvement over LwF. Since its initial use for exemplar-based CIL in iCaRL [Reb+17],
distillation was refined and complemented with other components to improve the plasticity-
stability compromise. LUCIR [Hou+19] applies distillation on feature vectors instead of
raw classification scores to preserve the geometry of past classes, and an inter-class sepa-
ration to maximize the distances between past and new classes. LwM [Dha+18] adds an
attention mechanism to the distillation loss to preserve information from base classes. An
interesting solution is proposed in [Yu+20], where the feature drift between incremental
steps is estimated based on features of samples associated with new classes. However, this
method has a large footprint since it needs a large multi-layer perceptron and also stores
past features to learn the transformation. A feature transformation method is designed

3.2 Related Work 53

for task-incremental learning and adapted for CIL by predicting the task associated with
each test sample [Ver+21]. The authors of [Smi+21] combined feature drift minimization
and class separability to improve distillation. The authors of [WGL21] proposed an ap-
proach stabilizing the fine-tuned model, adding reciprocal adaptive weights to weigh past
and new classes in the loss, and introducing multi-perspective training set augmentation.
They reported significant gains in exemplar-free CIL compared to LUCIR [Hou+19] and
SDC [Yu+20] using a protocol in which half of the dataset is available initially [Hou+19].
Distillation is widely used but a series of studies question its usefulness [BPK21; Mas+21;
PTD20], especially for large-scale datasets. One explanation for the lack of scalability of
distillation is that inter-class confusion becomes too strong when the number of past classes
is high. Another challenge is that distillation needs to store the previous deep model to
preserve past knowledge. The total footprint of these methods is double the footprint of the
backbone model used.

A second group of methods learns a deep representation in the initial state and uses it as a
feature extractor throughout the CIL process. They are inspired by transfer learning [Tan+18]
and favor stability since the initial representation is frozen. Usually, these methods learn
shallow external classifiers on top of the initial deep representation. The nearest class mean
(NCM) [Men+13] was introduced in [Reb+17], linear SVCs [CV95] were used in [BP18]
and extreme value machines [Rud+17] were tested by [Dha+21]. REMIND [Hay+20] uses
a vector quantization technique to save compressed image representations which are later
reconstructed for memory consolidation by training model tops. The main difference with
our proposal is that the past is represented via compressed image representations instead
of model tops. DSLDA [HK20] updates continuously a class-specific mean vector and a
shared covariance matrix. The predicted label is the one having the closest Gaussian in the
feature space defined by these vectors and matrix. These methods are simple and suited for
exemplar-free CIL, particularly for large-scale datasets where they outperform distillation-
based methods [BPK21; Mas+21]. Equally important, they only use the initial model
and thus have a smaller footprint. Their main drawbacks are the genericity of the initial
representation and the sensitivity to strong domain variations. Their performance drops if a
small number of classes is initially available [BPK21] and if the incremental classes have
a large domain shift with classes learned initially [Lan+19]. The robustness of the initial
representation can be improved is an assumption is made that a model pre-trained with a
large amount of data is available and that its features are transferable to the incremental
datasets [Hay+20]. ESN [Wan+23a] is an interesting method that was proposed very recently
and makes this assumption, similarly to REMIND and DSLDA. ESN leverages a pre-trained
transformer model, trains classifiers per state, and then merges them by combining a
temperature-controlled energy metric, an anchor-based energy self-normalization strategy,
and a voting-based inference augmentation strategy to ensure impartial and robust EFCIL
predictions. Here, we experiment without a large pre-trained model in order to cover cases
where there is a large domain drift between the pre-training and the incremental datasets.

54 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

3.3 Proposed Method

3.3.1 Problem Formalization

The CIL process is divided into K states, with n classes learned in each state. In EFCIL, no
past data can be stored for future use. The predictions associated with observed classes are
noted p. We write the structure of a deep model as:

M = {B, T , W} (3.1)

with: M - the full model; B - the model base which includes the initial layers; T - the model
top which includes the subsequent layers up to the classification one; W - the classification
layer which provides class predictions.

Assuming that the CIL process includes K states, the objective is to learn K models in order
to incorporate all classes which arrive sequentially. The incremental learning process can be
written as:

M1 → M2 → ... → Mk → ... → MK−1 → MK (3.2)

Each incremental model needs to integrate newly arrived data, while also preserving past
knowledge. Assuming that the current state is k ≥ 2, the majority of existing CIL meth-
ods [Cas+18; Hou+19; Reb+17; Smi+21; WGL21; Wu+19] fine-tunes the entire current
model Mk by distilling knowledge from Mk−1. We note w1

k to w
(k−1)×n
k the classifier

weights of the past states 1 to k − 1, and w
(k−1)×n+1
k to wk×n

k the classifier weights of the
new state k.

Their classification layer is written as:

Wft
k = {w1

k, ..., wn
k , ..., w

(k−1)×n
k , w

(k−1)×n+1
k , ..., wk×n

k } (3.3)

They are all trained using Tk, the model top learned in the kth state. The Wft
k layer is biased

toward new classes since it is learned with all samples from the current state, but only with
the representation of past classes stored in Mk−1 [Hou+19; Reb+17; Wu+19]. This group
of methods focuses on CIL plasticity at the expense of stability [BPK21; Mas+21].

Transfer-based methods [BP18; Hay+20; HK20] freeze the feature extractor F1 = {B1, T1}
after the initial non-incremental state. All the classes observed during the CIL process are
learned with F1 as features extractor. The classification layer can be written as:

Wfix
1 = {w1

1, ..., wn
1 , ..., w

(k−1)×n
1 , w

(k−1)×n+1
1 , ..., wk×n

1 } (3.4)

3.3 Proposed Method 55

All classifier weights from Eq. 3.4 are learned with image features provided by F1, the
feature extractor learned initially, inducing a bias toward initial classes. It is suboptimal
for classes learned in states k ≥ 2 because their samples were not used to train F1. These
methods focus on CIL stability at the expense of plasticity [Mas+21].

3.3.2 PlaStIL Description

PlaStIL is motivated by recent studies which question the role of distillation in CIL, par-
ticularly for large-scale datasets [BPK21; Mas+21; PTD20]. Instead of Mk−1 needed for
distillation, PlaStIL uses two or more model tops T which have an equivalent number of
parameters at most. PlaStIL is inspired by feature transferability works [NSZ20; Yos+14]
which show that higher layers of a model, included in T , are the most important for success-
ful transfer learning. Consequently, the initial layers B are frozen and shared throughout the
incremental process. A combination of model tops which includes T1, the one learned in the
first incremental state, and those of the most recent state(s) is used in PlaStIL. Similar to
transfer-based CIL methods [BP18; Hay+20; HK20], T1 ensures stability for classes first
encountered in past states for which a dedicated top model is not available. Different from
existing methods, model top(s) are available for the most recent state(s), thus improving the
overall plasticity of PlaStIL. The number of different model tops which can be stored instead
of Mk−1 depends on the number of higher layers that are fine-tuned in each incremental
state. The larger the number of layers in T , the larger its parametric footprint is and the
lower the number of storable model tops will be.

The method is illustrated in Figure 3.2 with a toy example that includes K = 4 IL states,
with n = 2 new classes per state and which assumes that up to three model tops can
be stored. Up to the third state, PlaStIL stores a model top per state, and corresponding
classifier weights are learned for each model top. In the fourth state, one of the model tops
needs to be removed in order to keep the parameters footprint bounded. Consequently, T2 is
removed and the initial model top T1 is used. Note that T1 is used to learn classifier weights
for all classes when they occur initially. These initial weights are stored for usage in later
incremental states in order to cover all past classes for which dedicated model tops cannot
be stored. The storage of the initial weights generates a small parameters overhead but its
size is small and does not increase over time. If the classifier weights are d-dimensional,
the number of supplementary parameters is n × d. Moreover, this overhead can be easily
compensated by the choice of the number of parameters in T and the number of such model
tops which are stored. In Figure 3.2, initial classifier weights w3

1 and w4
1 are first learned

in state 2 but only used in state 4, when T2 is no longer available. In state 4, T1 is used for
classes that first occurred in states 1 and 2 (classifiers weights w1

1 to w4
1). T3 is reused along

with its classifier weights w5
3 and w6

3, learned for the classes which were learned in state 3.

56 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

Input data

Model base

Model top

Classification
layers

State1 State2 State3 State4

Fig. 3.2.: PlaStIL overview using a toy example with K = 4 CIL states and n = 2 new classes
learned per state. The global memory footprint is equivalent to that of distillation-based
methods, but this memory is used differently. We assume that a model base and at most
three model tops can be used. A base B, is learned initially and then frozen, as is T1
which is needed to ensure stability. Initial classifier weights are trained using T1 in each
state and reserved for future use. Classifier weights that are actually used in each state are
highlighted in red. In state 4, the recent model tops (T4 and T3) are included to ensure
plasticity. Classifier weights w7

4 and w8
4 , associated with the new classes from state 4 are

learned with features provided by T4. w5
3 and w6

3 were learned with T3 features in state 3,
when they were new. w1

1 to w4
1 were learned with T1 features, in states 1 and 3. w5

1 to w8
1

are reserved for future use. T2 is discarded to keep the total memory footprint of PlaStIL
bounded. Best viewed in color.

Finally, classifier weights of new classes w7
4 and w8

4 are learned with T4. This results in a
hybrid classification weights layer which is defined as:

Whyb
k = {w1

1, ..., wj×n
1 , ..., wj×n+1

j+1 , ..., w
(j+1)×n
j+1 , ..., w

(k−1)×n+1
k , ..., wk×n

k } (3.5)

where we assume that k − j + 1 models can be stored, with 2 ≤ j ≤ k; the blocks of classes
learned with features from different model tops are color coded.

In Equation 3.5, classifier weights of the first j incremental states are learned with the
features provided by the initial model top T1. Those of the most recent states (j + 1 to k) are
learned with features provided by model tops Tj+1 to Tk. An advantage of the layer from
Equation 3.5 is that it ensures a good balance between stability, via T1 and plasticity, via
Tj+1 to Tk. The number of storable model tops varies inversely with the number of layers
that they include. We report results with three top depths in Section 3.4. A choice between
internal and external classifiers has to be made for the implementation of this classification
layer. Experiments from [BPK21] indicate that external classifiers are easier to optimize
when transferring features from M1 to subsequent incremental states.

PlaStIL is primarily intended for a CIL scenario under the assumption that the parametric
budget should not increase over time. If memory is allowed to grow over time, the method
could store a larger number of model tops. The model top creation and removal policy could
be adapted depending on the continual learning scenario being explored. For instance, if

3.3 Proposed Method 57

classes were grouped semantically, as it is the case in task-incremental learning, it might be
better to create model tops for states which include classes that are most dissimilar from
those of the initial model. Another interesting scenario assumes that past classes can be
revisited, with new samples of them arriving later in the incremental process. In this case,
model tops could be created for the current state if the amount of samples for revisited
classes is smaller than those associated with existing tops. Such a top creation policy would
be based on the assumption that the less revisiting there is, the more likely a new top would
be due to the fact that the current state includes more novelty. In practice, the total number of
stored model tops will depend on the total budget available on the device. When the memory
budget is reached, one of the selection strategies listed above can be applied depending on
the characteristics of the continual learning process. In Subsection 3.4.5, we show that the
creation of model tops for the most recent states is a good solution for class incremental
learning. While interesting, the adaptation of PlaStIL to other continual learning scenarios
is out of the immediate scope and is thus left for future work.

3.4 Experiments

We evaluate PlaStIL with three large-scale datasets designed for different visual tasks. We
compare it to a representative set of EFCIL methods. We vary the total number of states K

using K ∈ {5, 10, 20} because the length of the CIL process has strong effects on EFCIL
performance [Mas+21]. The evaluation metric is the top-1 accuracy averaged over all
incremental states. Following a common practice in CIL [Cas+18; Hou+19; Wu+19], the
performance on the initial state is excluded because it is not incremental.

3.4.1 Datasets

Two recent comparative studies [BPK21; Mas+21] show that the size of the evaluation
datasets has a strong influence on performance in exemplar-free CIL. We thus select large-
scale datasets which provide a more realistic scenario for evaluation compared to medium-
scale ones which are still used [Smi+21; WGL21]. We run experiments with:

• ILSVRC [Rus+15] - the well-known subset of ImageNet [Den+09] built for the epony-
mous competition and also used in CIL [Cas+18; Hou+19; Reb+17; Wu+19]. The
training and testing sets are composed of 1,231,167 and 50,000 images, respectively.

• Landmarks - a subset of a landmarks recognition dataset [Noh+17] which includes a
total of over 30000 classes. We select the 1000 classes having the largest number of
images. The training and testing sets are composed of 374,367 and 20,000 images,
respectively.

58 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

• iNaturalist - a subset of the dataset used for the iNaturalist challenge [Van+18]. The
full version includes 10000 fine-grained classes for natural species. We sample 1000
classes from different super-categories to obtain a diversified subset. The training and
testing sets are composed of 300,000 and 10,000 images, respectively.

More details about the datasets are provided in the appendix of this thesis in B.1

3.4.2 State-of-the-art methods

We compare PlaStIL with the following existing methods:

• LwF [Reb+17] - is a CIL version of the initial method from [LH16]. It tackles
forgetting using a distillation loss.

• SIW [BPK20] - uses a vanilla FT backbone and tackles catastrophic forgetting by
reusing the past classifiers learned when these classes were first learned.

• LUCIR [Hou+19] - adapts distillation to feature vectors instead of raw scores to
preserve the geometry of past classes and also pushes for inter-class separation.
Note that while initially proposed for CIL with memory, this method showed strong
performance in EFCIL too [BPK21].

• SPB-M [WGL21] - is a recent method that focuses on balancing plasticity and stability
in exemplar-free CIL. We report results with the multi-perspective variant, which
has the best overall performance in [WGL21]. SPB-M provides very competitive
performance compared to LUCIR when half of the dataset is initially available.

• PASS [Zhu+21b] - uses prototypes of past classes in combination with distillation in
order to counter catastrophic forgetting.

• REMIND [Hay+20] - encodes knowledge about past classes by storing compressed
image representations. It is compared with our method by allocating the amount of
storage used for model tops in our method to compressed representations of past
samples.

• DSLDA [HK20] - is based on Gaussian functions defined in the features space by
specific mean class vectors and a covariance matrix that is shared among all classes.
This method is interesting since its classification layer provides an efficient inter-class
separability mechanism.

3.4 Experiments 59

• DeeSIL [BP18] - freezes the initial model uses linear SVCs [CV95] for the final layer,
which is trained independently for each state.

The first four methods fine-tune models incrementally. REMIND trains model tops using a
compressed replay buffer and is very relevant for comparison here. DSLDA and DeeSIL
are transfer-based, and PlaStIL can be applied to them. They were implemented using their
original optimal parameters. Whenever the original experimental settings were different
from the ones used here, the correct functioning of the baselines was carefully checked. The
obtained accuracy was coherent with the results reported in the original papers and/or in
comparative studies such as [BPK21; Mas+21] in all cases. See details about the reproduced
results in the appendix.

We experiment with three versions of PlaStIL designed to ensure that its parameters footprint
is equivalent to (or lower than) that of distillation-based methods. We assume that the
incremental process is in the kth state and test:

• PlaStIL1 - fine-tunes model tops T limited to the last convolutional layer of ResNet-
18, which includes approximately 21.45% of the model parameters. Consequently,
we can fit T1, Tk−3, Tk−2, Tk−1 and Tk in memory.

• PlaStIL2 - fine-tunes T which includes the last two convolutional layers of ResNet-18,
which includes approximately 42.9% of the model parameters. We can fit T1, Tk−1

and Tk in the allowed parameters memory.

• PlaStILall - trains all the layers of the current model in kth state and we can only use
T1 and Tk in each IL state.

PlaStIL variant test different variants of the compromise between the number of model tops
and their depth. PlaStIL1 fine-tunes only the last convolutional layer of model tops and
maximizes the number of such storable models. PlaStILall provides optimal transfer since
all layers are trained with new data but can accommodate only the current model. PlaStIL2

provides a compromise between top depth and the number of storable models.

We also provide results for: (1) vanilla fine-tuning (FT) - a baseline that does not counter
catastrophic forgetting at all, and (2) Joint - an upper bound that consists of standard
training in which all data are available at once.

3.4.3 Implementation

A ResNet-18 [He+16] architecture was used as a backbone in all experiments. All methods
were run with the published optimal parameters and minor adaptation of the codes to unify

60 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

data loaders: FT [BPK20], LwF [Reb+17], LUCIR [Hou+19], SIW [Smi+21], DSLDA
[HK20] and DeeSIL [BP18]. SPB-M[WGL21] has no public implementation and we
reimplemented the method. We verified its correctness by comparing the accuracy obtained
with our implementation (60.1) to the original one (59.7) for ILSVRC split tested by the
authors [WGL21]. All methods were implemented in PyTorch [Pas+19], except for LwF
which uses the Tensorflow [Mar+15] implementation of LwF from [Reb+17] because it
provides better performance compared to later implementations [JS18; Wu+19]. The training
procedure from [Hay+20] was used to obtain initial models for all transfer-based methods.
These initial models were trained for 90 epochs, with a learning rate of 0.1, a batch size of
128, and a weight decay of 10−4. We used stochastic gradient descent for optimization and
divided the learning rate by 10 every 30 epochs. Detailed parameters are presented in the
appendix B.2.1 of this thesis.

3.4.4 Main results

The results presented in Table 3.1 show that all PlaStIL variants improve over the transfer-
based methods to which they are added for all tested datasets and CIL configurations. The
gains are generally higher for K = 5 states but remain consistent for the K = {10, 20}. For
instance, PlaStIL1 gains 6.2, 6.4 and 4.4 points for ILSVRC split into 5, 10 and 20 states,
respectively. The best overall performance is obtained with PlaStIL1, followed by PlaStIL2

and PlaStILall applied on top of DeeSIL. A combination of recent model tops which fine-
tune only the last convolutional layer is best here. Our method applied to DeeSIL provides
best performance for 5 and 10 incremental states. Gains are equally interesting for DSLDA,
particularly for K = 20. This baseline has better performance than DeeSIL for all three
datasets when K = 20. The application of PlaStIL on top of DSLDA leads to slightly better
performance compared to the version built on top of DeeSIL for ILSVRC (42.5 vs. 41.9) and
iNaturalist (37.4 vs 36.4). The better behavior of DSLDA for longer incremental sequences
is explainable since this method features a global inter-class separability component. In
contrast, DeeSIL only separates classes within each state and its discriminative power is
reduced when each state includes a low number of classes.

Distillation-based methods have lower performance compared to transfer-based methods
for the tested large-scale datasets. This result is coherent with previous findings regarding
scalability problems of distillation [BPK21; Mas+21; PTD20]. The difference between
PlaStIL applied to DeeSIL and DSLDA and distillation-based methods is very consequent.
It is in the double-digit range compared to LUCIR, the best distillation-based method, for
five configurations out of nine tested. This difference reaches a maximum value of 27.6
top-1 accuracy points for Landmarks with K = 20 states and a minimum of 2.7 points
for the same dataset with K = 5 states. SPB-M is a recent method that compares very
favorably with LUCIR when half of the dataset is allowed in the initial state [WGL21].
However, its behavior is globally similar to that of LUCIR, with performance gains for

3.4 Experiments 61

CIL Method mem on disk ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

FT (lower bound) 44.59MB 26.6 18.3 12.2 31.3 21.0 13.4 25.6 17.5 11.4
LwF [Reb+17] 44.59MB 24.0 21.1 17.4 36.9 34.7 28.0 23.9 21.5 16.3
SIW [BPK20] 44.59MB 38.3 35.2 26.8 66.4 55.7 41.4 38.6 30.9 17.2
LUCIR [Hou+19] 89.18MB 50.4 37.4 24.4 89.5 75.0 50.5 54.9 39.4 24.8
SPB-M [WGL21] 89.18MB 38.9 37.3 30.4 81.6 70.4 57.1 46.7 39.6 29.8
PASS [Zhu+21b] 89.18MB 39.4 35.9 29.8 65.0 55.1 42.3 48.0 40.9 31.8
REMIND [Hay+20] 89.18MB 52.2 44.8 35.9 83.3 77.5 72.2 50.6 39.4 31.3
DSLDA [HK20] 45.59MB 51.3 45.4 39.2 82.7 78.5 74.5 49.7 42.1 34.8
w/ PlaStIL1 93.44MB 56.8 50.1 42.2 86.8 82.1 76.1 53.8 45.6 36.6
w/ PlaStIL2 87.52MB 58.3 50.6 42.5 87.8 82.1 76.0 56.1 46.2 36.9
w/ PlaStILall 91.18MB 57.7 49.8 41.9 86.9 81.3 75.5 56.2 46.3 37.4
DeeSIL [BP18] 44.59MB 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 88.44MB 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL2 84.52MB 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStILall 89.18MB 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6
Joint (upper bound) 73.0 97.4 75.6

Tab. 3.1.: Average top-1 accuracy with three numbers of states K per dataset. PlaStIL is applied on
top of DeeSIL and DSLDA. Best results - in bold, second best - underlined.

K = 20 states and losses for K = 5. This happens because SPB-M is more dependent on
the representativeness of the initial model compared to LUCIR since it features a strong
stability component. LwF and SIW, the two other methods which update models in each
incremental state have even lower performance than LUCIR and SPB-M. The comparison
with REMIND is also favorable in all tested configurations. This indicates that, given an
identical memory budget, the use of model tops is more effective than the use of a replay
buffer made of compressed samples of the past. All EFCIL methods need a supplementary
budget to ensure the plasticity-stability balance. The takeaway from the comparison of
PlaStIL with mainstream methods is that this budget is much better spent on partially
fine-tuned model tops than on storing the previous model needed for distillation.

The results per dataset show that ILSVRC and iNaturalist are harder to solve compared to
Landmarks. The gains obtained by PlaStIL are smaller for Landmarks since the progress
margin is reduced. The performance gap between the evaluated methods and Joint is large.
The fact that the gap widens with the number of incremental states has specific explanations
for the two types of methods. Past knowledge becomes harder to preserve when the number
of fine-tuning rounds increases in LUCIR, SPB-M, SIW, and LwF. For transfer-based
methods, past knowledge is encoded using a weaker feature extractor. PlaStIL reduces the
gap with Joint, but the results reported here show that exemplar-free class-incremental
learning remains a very challenging problem.

We propose a more detailed presentation of the incremental accuracy in Figure 3.3. These
results confirm the large gap between the proposed methods and distillation-based ones.
SPB-M has lower performance at the start of the process, but then becomes better than
LUCIR, because of the representativeness of the initial model, as previously explained.

62 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

ILSVRC, K = 5
PlaStIL1=58.6
FeTrIL=54.7
LUCIR=50.4
SPB-M=38.9
DSLDA=51.3
DeeSIL=52.4

PlaStIL1=58.6
FeTrIL=54.7
LUCIR=50.4
SPB-M=38.9
DSLDA=51.3
DeeSIL=52.4

1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

ILSVRC, K = 10
PlaStIL1=51.8
FeTrIL=49.1
LUCIR=37.4
SPB-M=37.3
DSLDA=45.4
DeeSIL=45.4

PlaStIL1=51.8
FeTrIL=49.1
LUCIR=37.4
SPB-M=37.3
DSLDA=45.4
DeeSIL=45.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

ILSVRC, K = 20
PlaStIL1=41.9
FeTrIL=42.8
LUCIR=24.4
SPB-M=24.3
DSLDA=39.2
DeeSIL=37.5

PlaStIL1=41.9
FeTrIL=42.8
LUCIR=24.4
SPB-M=24.3
DSLDA=39.2
DeeSIL=37.5

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%
To

p-
1

ac
cu

ra
cy

Landmarks, K = 5
PlaStIL1=92.1
FeTrIL=86.1
LUCIR=89.5
SPB-M=81.6
DSLDA=82.7
DeeSIL=87.4

PlaStIL1=92.1
FeTrIL=86.1
LUCIR=89.5
SPB-M=81.6
DSLDA=82.7
DeeSIL=87.4

1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% Landmarks, K = 10

PlaStIL1=86.4
FeTrIL=81.2
LUCIR=75.0
SPB-M=70.4
DSLDA=78.5
DeeSIL=80.8

PlaStIL1=86.4
FeTrIL=81.2
LUCIR=75.0
SPB-M=70.4
DSLDA=78.5
DeeSIL=80.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

Landmarks, K = 20
PlaStIL1=78.1
FeTrIL=77.7
LUCIR=50.5
SPB-M=57.1
DSLDA=74.5
DeeSIL=73.8

PlaStIL1=78.1
FeTrIL=77.7
LUCIR=50.5
SPB-M=57.1
DSLDA=74.5
DeeSIL=73.8

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

iNaturalist, K = 5
PlaStIL1=56.8
FeTrIL=52.9
LUCIR=54.9
SPB-M=46.7
DSLDA=49.7
DeeSIL=52.7

PlaStIL1=56.8
FeTrIL=52.9
LUCIR=54.9
SPB-M=46.7
DSLDA=49.7
DeeSIL=52.7

1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% iNaturalist, K = 10
PlaStIL1=47.5
FeTrIL=45.3
LUCIR=39.4
SPB-M=39.6
DSLDA=42.1
DeeSIL=43.5

PlaStIL1=47.5
FeTrIL=45.3
LUCIR=39.4
SPB-M=39.6
DSLDA=42.1
DeeSIL=43.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1
ac

cu
ra

cy

iNaturalist, K = 20
PlaStIL1=36.4
FeTrIL=38.7
LUCIR=24.8
SPB-M=29.8
DSLDA=34.8
DeeSIL=33.9

PlaStIL1=36.4
FeTrIL=38.7
LUCIR=24.8
SPB-M=29.8
DSLDA=34.8
DeeSIL=33.9

Fig. 3.3.: Incremental accuracy across all states for K ∈ {5, 10, 20}. Plots are presented for the
best methods from Table 3.1.

Init. dataset Landmarks iNaturalist ILSVRC iNaturalist Landmarks ILSVRC

IL dataset ILSVRC Landmarks iNaturalist
DSLDA [HK20] 19.3 29.2 67.8 60.1 16.1 35.2
DeeSIL [BP18] 21.6 29.6 70.5 61.9 16.2 36.1
DeeSIL w/ PlaStIL1 28.1 33.8 76.8 68.3 21.4 39.2
Joint 72.98 97.41 75.60

Tab. 3.2.: Average top-1 incremental accuracy in a dataset transfer learning configuration. Results
are given for transferring between all pairs of initial and target datasets. All experiments
are run with K = 10 states. Best results are in bold.

The results from Table 3.1 show that transfer-based methods work well when features are
transferred within the same dataset.

In Table 3.2, we examine the behavior of PlaStIL in a transfer scenario that involves a
domain gap. The transfer is done between all pairs of initial and incremental datasets.
The results show that PlaStIL1 is more resilient to transfer compared to the transfer-based
baselines. The best results are obtained with ILSVRC as initial models and iNaturalist
and Landmarks as incremental datasets. This is intuitive since ILSVRC contains more
diversified concepts and produces more generic features. It also has more samples per class
compared to the other two datasets and its feature extractor is more robust. The accuracy
obtained with a transfer from ILSVRC is comparable with that of best distillation-based
methods from Table 3.1. The results with iNaturalist as the initial dataset are lower, but
still interesting. Performance is lower when the domain shift between the initial and the
target datasets is more important and if the initial model is learned on domain-specific data.
This is, for instance, the case when Landmarks is used to train the initial model since this
dataset only includes geographic landmarks. Note that transfer would be more efficient if

3.4 Experiments 63

1 2 3 4 5 6 7 8 9 10
Incremental state

40%

50%

60%

70%

80%
To

p-
1

ac
cu

ra
cy

ILSVRC, K = 10
PlaStILall = 48.6%
PlaStIL2 = 47.7%
PlaStIL1 = 47.4%
DeeSIL = 45.4%

PlaStILall = 48.6%
PlaStIL2 = 47.7%
PlaStIL1 = 47.4%
DeeSIL = 45.4%

1 2 3 4 5 6 7 8 9 10
Incremental state

75%

80%

85%

90%

95%

Landmarks, K = 10
PlaStILall = 83.4%
PlaStIL2 = 83.2%
PlaStIL1 = 82.7%
DeeSIL = 80.8%

PlaStILall = 83.4%
PlaStIL2 = 83.2%
PlaStIL1 = 82.7%
DeeSIL = 80.8%

1 2 3 4 5 6 7 8 9 10
Incremental state

40%

50%

60%

70%

80% iNaturalist, K = 10
PlaStILall = 47.1%
PlaStIL2 = 45.1%
PlaStIL1 = 44.4%
DeeSIL = 43.5%

PlaStILall = 47.1%
PlaStIL2 = 45.1%
PlaStIL1 = 44.4%
DeeSIL = 43.5%

Fig. 3.4.: Top-1 incremental accuracy of three versions of PlaStIL applied to DeeSIL when using
a single model top with variable fine-tuning depth. DeeSIL is a limit case in which the
whole feature extractor is frozen. Best viewed in color.

larger initial datasets were used to reinforce the initial representation, as proposed in [BP18;
HK20]. However, for fairness, our focus is on transfer experiments that use the same number
of initial classes as in Table 3.1.

3.4.5 Method analysis

We conduct an analysis of PlaStIL in terms of model footprint and number of operations
needed to infer test image predictions. These experiments are run using PlaStIL applied on
top of DeeSIL since this variant has the best overall results. They are important in order to
highlight the merits and limitations of the proposed method.

Model footprint. Incremental learning algorithms are particularly useful in memory-
constrained environments. Their model footprint is thus an important characteristic.
Distillation-based methods require the storage of models Mk and Mk−1 to preserve past
knowledge. Transfer-based methods only need M1, but they optimize stability at the
expense of plasticity. The three versions of PlaStIL, whose performance is presented in
Table 3.1, store B1, the initial model base, and a variable number of model tops. Each of the
four recent model tops used by PlaStIL1 fine-tunes the last convolutional layer of ResNet-
18 [He+16], which accounts for 21.45% of the total number of the model’s parameters.
The parametric footprint of PlaStIL1 is thus lower than that of distillation-based methods.
PlaStIL2 has the same footprint as PlaStIL1 since it stores two tops which account for 42.9%
of ResNet-18 parameters each.

As an ablation of PlaStIL, we also present results with a single model top, regardless of
its fine-tuning depth in Figure 3.4. Naturally, PlaStILall obtains the best results in this
configuration, but interesting gains are still obtained with model tops which fine-tune one or
two final convolutional layers in PlaStIL1 and PlaStIL2, respectively.

64 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

0 1 2 3 4 5 6 7 8 910
Rank of top new class

+0%

+2%

+4%

+6%

Ac
cu

ra
cy

 g
ai

n
+0%

+25%

+50%

+75%

+100%PlaStIL1

0 1 2 3 4 5 6 7 8 910
Rank of top new class

+0%

+2%

+4%

+6%

+0%

+25%

+50%

+75%

+100%PlaStIL2

0 1 2 3 4 5 6 7 8 910
Rank of top new class

+0%

+2%

+4%

+6%

+0%

+25%

+50%

+75%

+100%

Su
pp

le
m

en
ta

ry
in

fe
re

nc
es

PlaStILall

Fig. 3.5.: Top-1 accuracy gains obtained with the three variants of PlaStIL applied to DeeSIL with
different thresholds for the rank of the top new class among the predictions generated with
Equation 3.4. Results are shown for ILSVRC with K = 10 states. The corresponding per-
centage of supplementary inferences needed for each threshold is also plotted. Interesting
gains are obtained starting with a recent class predicted in the second position, which
requires approximately 25% of supplementary inferences for PlaStIL1. Best viewed in
color.

Inference complexity. The classification layer defined in Equation 3.5 is fed with features
from the initial and the updated model top(s), for past and recent classes, respectively. By
default, PlaStIL inferences requires an extraction of features for all used model tops. This
supplementary inferences cost varies for PlaStIL variants due to the different number of
parameters in the model top(s) that they use. This supplementary computational cost can
be reduced if predictions are first computed using the initial model only, as defined in
Equation 3.4. Then, subsequent model tops are used only if one of their classes is strongly
activated for the test image. A top is used for inferences only if at least one of its associated
classes is ranked among the top classes of the of the classification layer from Equation 3.4.
The closer to 1 this rank threshold is, the smaller the added computational cost will be since
fewer tops are likely to be used for inference. However, a restriction to small ranks might
also discard useful model tops and thus reduce the positive effect of PlaStIL. Evaluation is
done with top ranks of the new class in Wfix

k between 1 and 10 to examine the trade-off
between inference complexity and performance. The obtained accuracy, as well as the
added inference cost, for the three variants of PlaStIL applied over DeeSIL are presented
in Figure 3.5. The results show that performance gains relative to DeeSIL rise sharply.
The best balance between performance gains and added costs is obtained for PlaStIL1.
This is explained by the fact that T has the lowest number of parameters for this variant.
Their activation can be done in a finer manner, resulting in a reduced overall inference
cost. Interesting PlaStIL gains are obtained starting with a recent class being ranked second
position by DeeSIL. The accuracy curve becomes practically flat if a recent class is ranked
beyond the third position by the baseline. The results presented in Figure 3.5 provide further
support to the fact that PlaStIL1 is the most appropriate choice as a plasticity layer added on
top of DeeSIL.

Choice of model tops. The main experiments used model tops created for the most recent
incremental states. Other top creation and removal policies are possible, and we compare
the one proposed here with an oracle that performs an optimal selection of tops. The oracle
selects model tops associated with different states so as to maximize the average incremental

3.4 Experiments 65

CIL Method ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

DeeSIL 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL1+oracle 58.6 51.8 42.1 92.1 86.4 78.7 56.8 47.8 36.8
w/ PlaStIL2 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStIL2+oracle 59.3 50.3 40.1 92.2 85.2 77.3 57.5 47.1 36.5
w/ PlaStILall 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6
w/ PlaStILall+oracle 57.9 48.7 39.3 90.7 83.7 75.8 58.3 47.5 36.0

Tab. 3.3.: Comparison of PlaStIL on top of DeeSIL [BP18] with a version that knowing the final
composition of the different states will only fine-tune the relevant states (PlaStIL +oracle).
The average gains are of +0.2% with PlaStIL +oracle.

CIL Method mem on disk ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

REMIND 89.18MB 52.2 44.8 35.9 83.3 77.5 72.2 50.6 39.4 31.3
REMIND 133.78MB 52.3 44.9 36.2 83.4 79.3 75.8 50.9 43.8 35.0
REMIND 222.96MB 52.3 44.4 39.7 84.2 81.0 78.0 53.7 46.5 37.8
DeeSIL 44.59MB 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 88.44MB 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL2 84.52MB 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStILall 89.18MB 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6

Tab. 3.4.: Average top-1 accuracy with three numbers of states K per dataset, comparison of
PlaStIL1 on top of DeeSIL [BP18] with REMIND [Hay+20] with different budgets for
the storage of their compressed vectors (1, 2 and 4 times the size of a ResNet18 on disk).
Best results - in bold, second best - underlined.

accuracy of the CIL process by aggregating the accuracy of different incremental states
computed on the test set. The results from Table 3.3 indicate that the creation of tops for the
most recent states provides a performance level that is close to the optimal one achievable
by the oracle. This is explained by the fact that the evaluated CIL scenarios use a random
assignment of classes to states. Other selection strategies might be more appropriate if the
assumptions made about the order of arrival of classes or data were different, as discussed
in Subsection 3.3.2.

Analysis of the number of model tops. The results of Figure 3.6 demonstrate that as the
number of tops increases, the accuracy of the model improves. However, it is important
to note that this improvement in accuracy comes at the cost of increased memory usage
on disk. This trade-off between accuracy and resource usage is a crucial consideration for
optimizing model performance in practice in an exemplar-free setting.

Comparison with another type of memory usage. The results from Table 3.4 show that
PlaStIL strategy of storing model tops suits better the experiments than storing compressed
representation vectors, even for a larger memory on disk.

66 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

1 2 3 4 5
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100%PlaStILall, ILSVRC, K = 5
1 top-89.2MB-57.7%
2 tops-133.8MB-61.9%
3 tops-178.4MB-64.7%
4 tops-223.0MB-66.0%

1 2 3 4 5 6 7 8 9 10
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStILall, ILSVRC, K = 10
1 top-89.2MB-48.6%
2 tops-133.8MB-52.1%
3 tops-178.4MB-55.2%
4 tops-223.0MB-57.9%
5 tops-267.6MB-60.1%
6 tops-312.1MB-61.8%
7 tops-356.7MB-63.0%
8 tops-401.3MB-63.7%
9 tops-445.9MB-64.1%

1 2 3 4 5 6 7 8 9 1011121314151617181920
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStILall, ILSVRC, K = 20
1 top-89.2MB-39.0%
2 tops-133.8MB-41.2%
3 tops-178.4MB-43.5%
4 tops-223.0MB-45.8%
5 tops-267.6MB-47.9%
6 tops-312.1MB-49.8%
7 tops-356.7MB-51.6%
8 tops-401.3MB-53.1%
9 tops-445.9MB-54.5%
10 tops-490.5MB-55.7%
11 tops-535.1MB-56.7%
12 tops-579.7MB-57.6%
13 tops-624.3MB-58.3%
14 tops-668.9MB-59.0%
15 tops-713.5MB-59.4%
16 tops-758.1MB-59.8%
17 tops-802.7MB-60.1%
18 tops-847.2MB-60.2%
19 tops-891.8MB-60.3%

1 2 3 4 5
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100%PlaStIL2, ILSVRC, K = 5
1 top-64.6MB-56.3%
2 tops-84.5MB-59.2%
3 tops-104.5MB-61.1%
4 tops-124.5MB-62.0%

1 2 3 4 5 6 7 8 9 10
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStIL2, ILSVRC, K = 10
1 top-64.6MB-47.7%
2 tops-84.5MB-50.2%
3 tops-104.5MB-52.4%
4 tops-124.5MB-54.3%
5 tops-144.4MB-55.8%
6 tops-164.4MB-57.1%
7 tops-184.3MB-57.9%
8 tops-204.3MB-58.5%
9 tops-224.3MB-58.8%

1 2 3 4 5 6 7 8 9 1011121314151617181920
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStIL2, ILSVRC, K = 20
1 top-64.6MB-38.4%
2 tops-84.5MB-39.7%
3 tops-104.5MB-41.2%
4 tops-124.5MB-42.7%
5 tops-144.4MB-44.1%
6 tops-164.4MB-45.5%
7 tops-184.3MB-46.7%
8 tops-204.3MB-47.8%
9 tops-224.3MB-48.8%
10 tops-244.2MB-49.7%
11 tops-264.2MB-50.5%
12 tops-284.2MB-51.2%
13 tops-304.1MB-51.7%
14 tops-324.1MB-52.2%
15 tops-344.1MB-52.6%
16 tops-364.0MB-52.9%
17 tops-384.0MB-53.1%
18 tops-404.0MB-53.2%
19 tops-423.9MB-53.3%

1 2 3 4 5
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100%PlaStIL1, ILSVRC, K = 5
1 top-55.6MB-55.1%
2 tops-66.5MB-56.9%
3 tops-77.5MB-58.1%
4 tops-88.4MB-58.6%

1 2 3 4 5 6 7 8 9 10
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStIL1, ILSVRC, K = 10
1 top-55.6MB-47.4%
2 tops-66.5MB-49.2%
3 tops-77.5MB-50.6%
4 tops-88.4MB-51.8%
5 tops-99.4MB-52.7%
6 tops-110.4MB-53.4%
7 tops-121.3MB-53.9%
8 tops-132.3MB-54.3%
9 tops-143.2MB-54.4%

1 2 3 4 5 6 7 8 9 1011121314151617181920
Incremental state

20%

30%

40%

50%

60%

70%

80%

90%

100% PlaStIL1, ILSVRC, K = 20
1 top-55.6MB-38.6%
2 tops-66.5MB-39.8%
3 tops-77.5MB-40.9%
4 tops-88.4MB-41.9%
5 tops-99.4MB-42.9%
6 tops-110.4MB-43.7%
7 tops-121.3MB-44.5%
8 tops-132.3MB-45.2%
9 tops-143.2MB-45.8%
10 tops-154.2MB-46.4%
11 tops-165.2MB-46.9%
12 tops-176.1MB-47.3%
13 tops-187.1MB-47.7%
14 tops-198.0MB-48.0%
15 tops-209.0MB-48.2%
16 tops-220.0MB-48.4%
17 tops-230.9MB-48.5%
18 tops-241.9MB-48.6%
19 tops-252.8MB-48.6%

Fig. 3.6.: Effect of varying the number of additional tops on incremental accuracy, on ILSVRC with
K ∈ {5, 10, 20}. As the number of tops increases, the accuracy of the model improves.
However, this comes at the cost of increased memory usage on disk. Best viewed in color.

3.5 Conclusion

We proposed a new method that adds a plasticity layer to transfer-based methods in exemplar-
free CIL. Plasticity is improved by training dedicated model tops which fine-tune a variable
number of deep model layers for one or more recent incremental states. The predictions
of the different model tops used by our method are integrated into a hybrid classification
layer. Model tops improve accuracy compared to the transfer-based method to which they
are added to in order improve plasticity. These improvements are obtained by introducing
supplementary parameters so as to have a total footprint that remains lower than that
of distillation-based methods. The comparison of these methods with PlaStIL is clearly
favorable to the latter. The takeaway is that the parameters allocated to the previous model
in distillation-based approaches are better spent on partially fine-tuned model tops. This
finding is aligned with those reported in recent comparative studies which question the
usefulness of distillation in large-scale CIL with or without memory [BPK21; Mas+21;
PTD20]. We believe that future studies should consider transfer-based methods to assess
progress in exemplar-free CIL in a fair and comprehensive manner. We plan to optimize
the stability-plasticity compromise for EFCIL to further improve the encouraging results
reported here. First, we will try to devise a classifier that predicts the most probable initial
state for each test sample, following the proposal made in [Ver+21]. If successful, this

3.5 Conclusion 67

prediction would reduce the classification space to individual states and remove the need for a
hybrid classification layer. Second, we will investigate the use of pre-trained representations
learned with larger amounts of supervised or semi-supervised data, as proposed in [Dha+21;
Hay+20; Wan+23a]. Such models can be seamlessly integrated into the PlaStIL pipeline.

68 Chapter 3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning

4FeTrIL: Feature Translation for
Exemplar-Free Class-Incremental
Learning

„Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

— Robert Frost
The Road Not Taken (2/4)

4.1 Introduction

As detailled in Chapter 1, Deep learning [GBC16] has dramatically improved the quality of
automatic visual recognition, both in terms of accuracy and scale. Current models discrimi-
nate between thousands of classes with an accuracy often close to that of human recognition,
assuming that sufficient training examples are provided. Unlike humans, algorithms reach
optimal performance only if trained with all data at once whenever new classes are learned.
This is an important limitation because data often occur in sequences [Lan+19] and their
storage is costly. Also, iterative retraining to integrate new data is computationally costly
and difficult in time- or computation-constrained applications [HK22; Rav+21]. Incremental
learning [SF86] was introduced to reduce the memory and computational costs of machine
learning algorithms. The main problem faced by class-incremental learning (CIL) methods
is catastrophic forgetting [Kem+18; MC89], the tendency of neural nets to underfit past
classes when ingesting new data. As explained in Section 2.5, many solutions [Cas+18;
Hou+19; Reb+17; Wu+19; Zha+20], based on deep nets, use replay from a bounded memory
of the past to reduce forgetting. However, replay-based methods make a strong assump-
tion because past data are often unavailable [Ven+17]. Also, the footprint of the image
memory can be problematic for memory-constrained devices [Rav+21]. Exemplar-free
class-incremental learning (EFCIL) methods recently gained momentum [Yu+20; Smi+21;
Zhu+21a; Zhu+21b]. Most of them use distillation [HVD15] to preserve past knowledge
and generally favor plasticity. New classes are well predicted since models are learned

69

Initial state

f(C1) f(C2) f(C3)

(a)

Incremental state 1

f1(C1)
f1(C2)

f1(C3)
f(C4)

(b)

Incremental state 2

f2(C1)
f2(C2)

f2(C3)
f2(C4)

f(C5)

(c)

Actual features

f(C1)
f(C2)

f(C3)
f(C4)

f(C5)

(d)

Fig. 4.1.: Illustration of the proposed pseudo-feature generation procedure. This toy example
includes an initial state (3 classes) and two IL states (1 new class per state) in subfigures
(a), (b) and (c). Subfigure (d) provides the actual features of all classes that would be
available for classical learning. The illustration uses a 2D projection of actual features.
Pseudo-features of past classes are generated by geometric translation of features of the
new class added in each state with the difference between the centroids of the target past
class and of the new class. While imperfect, the pseudo-feature generator produces a
usable representation of past classes. Best viewed in color.

70 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

with all new data and only a representation of past data [Mas+21; PTD20; Zhu+22]. A few
EFCIL methods [BP18; Dha+21], including PlaStIL [Pet+23a], described in Chapter 3, are
inspired by transfer learning [Sha+14; Tan+18]. They learn a feature extractor in the initial
state and use it as such later to train new classifiers. In this case, stability is often favored
over plasticity since the model is frozen [Mas+21].

We introduce FeTrIL, a new EFCIL method that combines a frozen feature extractor and a
pseudo-feature generator to improve incremental performance. New classes are represented
by their image features obtained from the feature extractor. Past classes are represented
by pseudo-features which are derived from features of new classes by using a geometric
translation process. This translation moves features toward a region of the features space
which is relevant for past classes. The proposed pseudo-feature generation is adapted
for EFCIL since it is simple, fast and only requires the storage of the centroids for past
classes. FeTrIL is illustrated with a toy example in Figure 4.1. We run experiments with a
standard EFCIL setting [Hou+19; Zhu+21a; Zhu+21b], which consists of a larger initial
state, followed by smaller states which include the same number of classes. Results show
that the proposed approach has better behavior compared to ten existing methods.

4.2 Related Work

CIL algorithms are needed when data arrive sequentially and/or computational constraints
are important [HK22; Lan+19; Mas+21; Par+19]. Their objective is to ensure a good balance
between plasticity, i.e. integration of new information, and stability, i.e. preservation of
knowledge about past classes [MBB13]. This is challenging because the lack of past data
leads to catastrophic forgetting, i.e. the tendency of neural networks to focus on newly
learned data at the expense of past knowledge [MC89]. Recent reviews of CIL [BPK21;
Mas+21] show that a majority of methods replay samples of past classes to mitigate for-
getting [Cas+18; Hou+19; Reb+17; Zha+20]. One advantage here is that the network
architecture remains constant throughout the incremental process. However, these methods
have two major drawbacks:

(1) First, the assumption that past samples are available is strong since in many cases past
data cannot be stored due, for instance, to privacy restrictions [Ven+17] and

(2) the memory footprint of the stored images is high.

Here, we investigate EFCIL, with a focus on methods that keep the network size constant.
This setting is very challenging since it imposes strong constraints on both memory and
computational costs. A majority of existing methods use regularization to update the deep
model for each incremental step [Mas+21], and adapt distillation [HVD15] to preserve

4.2 Related Work 71

past knowledge by penalizing variations for past classes during model updates. Note
that, while some of the distillation-based methods were introduced in an EBCIL setting,
many of them are also applicable to EFCIL. This approach to CIL was popularized by
iCaRL [Reb+17], itself inspired by learning without forgetting (LwF) [LH16]. Distillation
was later refined and complemented with other components to improve the plasticity-stability
compromise. LUCIR [Hou+19] applies distillation on features instead of raw classification
scores to preserve the geometry of past classes, and an inter-class separation to maximize
the distances between past and new classes. The problem was partially addressed by adding
specific class separability components in [Dou+20; Hou+19]. Distillation-based methods
need to store the current and the preceding model for incremental updates. Their memory
footprint is larger compared to methods that do not use distillation [Mas+21].

Another important problem in CIL is the semantic drift between incremental states. Auxiliary
classifiers were introduced in [Liu+20c] to reduce the effect of forgetting. ABD [Smi+21]
uses image inversion to produce pseudo-samples of past classes. The method is interesting
but image inversion is difficult for complex datasets. Another interesting solution is proposed
in [Yu+20], where the features drift between incremental steps is estimated from that of new
classes. Recent EFCIL approaches [Zhu+21a; Zhu+21b; Zhu+22], described in Section 2.3,
use past class prototypes in conjunction with distillation to improve performance. Prototype
augmentation is proposed in PASS [Zhu+21b] to improve the discrimination of classes
learned in different incremental states. Feature generation for past classes is introduced
in IL2A [Zhu+21a] by leveraging information about the class distribution. This approach
is difficult to scale up because a covariance matrix needs to be stored for each class. A
prototype selection mechanism is introduced in SSRE [Zhu+22] to better discriminate
past from new classes. FeTrIL shares the idea of using class prototypes with [Yu+20;
Zhu+21a; Zhu+21b; Zhu+22]. An important difference is that we freeze the model after the
initial state, while the other methods deploy more sophisticated mechanisms to integrate
prototypes in a knowledge distillation process. Past comparative studies [BPK21; Mas+21]
found that, while appealing in theory, distillation-based methods underperform in EFCIL,
particularly for large-scale datasets. Second, since the representation space is fixed, a
simple geometric translation of actual features of new classes is sufficient to produce usable
pseudo-features. In contrast, IL2A [Zhu+21a], the work which is closest to ours, needs to
store a covariance matrix per class to obtain optimal performance. Third, the use of a fixed
extractor simplifies the training process since only the final linear layer is trained, compared
to a fine-tuning of the backbone model required by recent methods which use prototypes
and feature generation.

Another line of work, described in Section 2.2, takes inspiration from transfer learn-
ing [NSZ20; Sha+14] to tackle EFCIL. A feature extractor is trained in the initial non-
incremental state and fixed afterward. Then, an external classification layer is updated in
each incremental state to integrate new classes. The nearest class mean (NCM) [Men+13]
was used in [Reb+17], linear SVMs [Ped+12] were used in [BP18] and extreme value

72 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

Fig. 4.2.: FeTrIL overview for a toy example with an initial state (3 classes) and two incremental
states (1 class per state). The feature extractor F is trained in the initial state, using sets
of data X1, X2, X3, and then frozen afterward. The generator G uses features f(Cn) of
the new class extracted with F and prototypes of past classes µ(Cp) to generate pseudo-
features of past classes f̂ t(Cp) in the tth state. Prototypes (µ(Ci)) are the centroids of
all classes (past and new). They are learned when classes are first seen and then stored
throughout the IL process. A linear classifier L is used to learn classification weights
w(Ci) for all seen classes (past and new).

machines [Rud+17] were tested by [Dha+21]. The advantages of transfer-learning methods
are their simplicity, since only the classification layer is updated, and their lower mem-
ory requirement since they need a single deep model to function. These methods give
competitive performance compared to distillation-based ones in EFCIL, particularly at
scale [BPK21]. However, features are not updated, and they are sensitive to large domain
shifts between incremental tasks [Lan+19]. Equally, existing transfer-learning-inspired
works do not sufficiently address inter-class separability, which is in focus here.

Class prototype creation was studied in other learning settings than CIL. A very interesting
method focused on few-shot learning was proposed in [DL19]. A distance-based classifier
that uses an approximation of the Mahalanobis distance is proposed. The means and vari-
ances of new classes are predicted using two supplementary neural networks. While adapted
for few-shot learning, such an approach is not fully adapted in CIL. First, the supplementary
neural networks require a large number of supplementary parameters. This is a disadvantage
here since CIL methods are needed in computationally-constrained environments. Second,
we do not focus on few-shot learning and the means of past classes are well-placed in the
representation space.

4.3 Proposed Method

The objective of CIL is to learn a total of N classes which appear sequentially during
training. This process includes an initial state (0) and T incremental ones. New classes need
to be recognized alongside past classes which were learned in previous states. We focus on
the EFCIL setting [Reb+17; Smi+21; Yu+20; Zhu+22], which assumes that no past images

4.3 Proposed Method 73

can be stored. This scenario is more challenging than EBCIL since catastrophic forgetting
needs to be tackled without resorting to replay [Mas+21]. There is no intersection between
the classes learned in different incremental states.

The global functioning of FeTrIL is illustrated in Figure 4.2. It uses a feature extractor, a
pseudo-feature generator based on geometric translation, and an external classification layer
in order to address EFCIL. Inspired by transfer-learning based CIL [BP18; Reb+17], the
feature extractor F is frozen after the initial state. This ensures a stable representation space
throughout the entire CIL process. Given that images of past classes cannot be stored in
EFCIL, a generator G is used to produce pseudo-features of past classes (f̂ t(Cp)). G takes
features of new classes (f(Cn)) and prototypes of past and new classes (µ(Cp), µ(Cn)) as
inputs. A linear classifier L combines features and pseudo-features to jointly train classifiers
for all seen classes (past and new). The pseudo-features generation is crucial since it enables
class discrimination across all incremental states. The hypotheses made here are that:

(1) while imperfect, the pseudo-features still produce effective representations of past
classes, and

(2) using a frozen extractor in combination with a generator in EFCIL is preferable to
mainstream distillation-based methods [Yu+20; Zhu+21a; Zhu+21b; Zhu+22].

These hypotheses are tested through the extensive experiments in Section 4.4. We present
the main components of FeTrIL in the next subsections.

4.3.1 Generation of pseudo-features

The pseudo-feature generator, illustrated in Figure 4.1, produces effective representations
of past classes. Existing approaches which generate past data rely on methods such as
generative adversarial networks [He+18], image inversion [Smi+21], or covariance-based
past class models [Zhu+21a]. We propose a much simpler alternative which is defined as:

f̂ t(cp) = f(cn) + µ(Cp) − µ(Cn) (4.1)

with: Cp - target past class for which pseudo-features are needed; Cn - new class for
which images b are available; f(cn) - features of a sample cn of class Cn extracted with
F ; µ(Cp), µ(Cn) - mean features of classes Cp and Cn extracted with F ; f̂ t(cp) - pseudo-
feature vector of a pseudo-sample cp of class Cp produced in the tth incremental state.

Eq. 4.1 translates the value of each dimension with the difference between the values of the
corresponding dimension of µ(Cp) and µ(Cn). It creates a pseudo-feature vector situated in
the region of the representation space associated to target class Cp based on actual features

74 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

of a new class f(Cn). The computational cost of generation is very small since it only
involves additions and subtractions. µ(Cp) is needed to drive the geometric translation
toward a region of the representation space which is relevant for Cp. Centroids are computed
when classes occur for the first time and then stored. Their reuse is possible because F is
fixed after the initial step and its associated features do not evolve.

4.3.2 Selection of pseudo-features

Eq. 4.1 translates the features for a single sample. If each class is represented by s samples,
the generation process needs to be repeated s times. The overview of FeTrIL (Figure 4.2)
and of the pseudo-feature generation (Figure 4.1) use a minimal example which adds a
single class per IL state. When CIL states include several classes Cn, the s pseudo-features
of each class Cp can be obtained using different strategies, depending on how features of
new classes are used. We deploy the following strategies:

• FeTrILk: s features are transferred from the kth similar new class of each past class Cp.
Similarities between the target Cp and the Cn available in the current state is computed
using the cosine similarity between the centroids of each pair of classes. Experiments are
run with different values of k to assess if a variable class similarity has a significant effect
on EFCIL performance. Since translation is based on a single new class, the distribution
of pseudo-features will be similar to that of features of Cn, but in the region of the
representation space around µ(Cp).

• FeTrILrand: s features are randomly selected from all new classes. This strategy assesses
whether a more diversified source of features from different Cn produces an effective
representation of class Cp.

• FeTrILherd: s features are selected from any new class based on a herding algo-
rithm [Wel09]. It assumes that sampling should include features which produce a good
approximation of the past class. Herding was introduced in EBCIL in order to obtain
an accurate approximation of each class by using only a few samples [Reb+17] and its
usefulness was later confirmed [BPK21; Hou+19; Wu+19]. It is adapted here to obtain a
good approximation of the sample distribution of Cp with s pseudo-features.

The comparison of these different strategies will allow us to determine whether the geometric
translation of features is prevalent, or if a particular configuration of the features around the
centroid of the target past class is needed.

4.3.3 Linear classification layer training

We assume that the CIL process is in the tth CIL state, which includes P past classes and
N new classes. The combination of the feature generator (Subsection 4.3.1) and selection

4.3 Proposed Method 75

(Subsection 4.3.2) provides a set f̂ t(Cp) of s pseudo-features for each class Cp. The
objective is to train a linear classifier for all P + N seen classes which takes pseudo features
of past classes and actual features of new classes as inputs. This linear layer is defined as:

Wt = {wt(C1), ..., wt(CP), wt(CP +1), ..., wt(CP +N)} (4.2)

with: wt - the weight of known classes in the tth CIL state.

Wt can be implemented using different classifiers, and we instantiate two versions in
Section 4.4: (1) FeTrIL using LinearSVCs [Ped+12] as external classifiers, and (2) FeTrILfc

using a fully-connected layer to enable end-to-end training.

4.4 Evaluation

We evaluate FeTrIL by using a comprehensive EFCIL evaluation scenario [Zhu+21a;
Zhu+21b; Zhu+22]. This setting includes four datasets and CIL states of different sizes.

Datasets. We use four public datasets:

(1) CIFAR-100 [Kri09] - 100 classes, 32x32 pixels images, 500 and 100 images/class for
training and test;

(2) TinyImageNet [LY15] - 200 leaf clases from ImageNet, 64x64 pixels images, 500 and
50 for training and test;

(3) ImageNet-Subset - 100 classes subset of ImageNet LSVRC dataset [Rus+15], 1300
and 50 for training and test;

(4) ILSVRC - full dataset from [Rus+15].

Incremental setting. We use a classical EFCIL protocol from [Zhu+21a; Zhu+21b; Zhu+22].
The number of classes in the initial state is larger, and the rest of the classes are evenly
distributed between incremental states. CIFAR-100 and ImageNet-Subset are tested with:

(1) 50 initial classes and 5 IL states of 10 classes,

(2) 50 initial classes and 10 IL states of 5 classes,

(3) 40 initial classes and 20 states of 3 classes, and

(4) 40 initial classes and 60 states of 1 class.

76 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

Compared to [Zhu+21a; Zhu+21b; Zhu+22], configurations (1) and (3) for ImageNet-Subset
are added for more consistent evaluation. TinyImageNet is tested with 100 initial classes
and the other classes are distributed as follows:

(1) 5 states of 20 classes,

(2) 10 states of 10 classes,

(3) 20 states of 5 classes, and

(4) 100 states of 1 class.

Configuration (4) is interesting since it enables one-class increments, which brings us in
the One-Class Incremental scenario, described in Figure 2.1. It cannot be deployed for any
of the compared EFCIL methods since they require at least two classes per increment to
update models. ILSVRC is tested with 500 initial classes, and the other 500 are split evenly
among T ∈ {5, 10, 20} states. This enables a comprehensive comparison of the methods in
varied EFCIL configurations. Naturally, task IDs are not available at test time.

Compared methods. We use the following EFCIL methods in evaluation: EWC [Kir+17],
LwF-MC [Reb+17], DeeSIL [BP18], LUCIR [Hou+19], MUC [Liu+20c], SDC [Yu+20],
PASS [Zhu+21b], ABD [Smi+21], IL2A [Zhu+21a], SSRE [Zhu+22]. As we discussed
in Section 4.2, these methods cover a large variety of EFCIL approaches. The inclusion
of recent works [Zhu+21a; Zhu+21b; Zhu+22] is important to situate our contribution
with respect to current EFCIL trends. While focus is on EFCIL, we follow [Zhu+22]
and include a comparisonwith EBCIL methods. We test our method against the AANets
approach [LSS21], and against the EBCIL methods to which AANETS was added (LU-
CIR [Hou+19], Mnemonics [Liu+20b], PODNet [Dou+20]). Whenever available, results
of compared methods marked with ∗ are reproduced either from their initial paper or
from [Zhu+22] for EFCIL or from [LSS21] for EBCIL. The other results are recomputed
using the original configurations of the methods.

Implementation details. Following [Reb+17; Zhu+21a; Zhu+21b; Zhu+22], we use
ResNet-18 [He+16] in all experiments. FeTrIL initial training is done uniquely with images
of initial classes to ensure comparability with existing methods. The feature extractor is
trained in the initial state and then frozen for the remainder of the IL process. We implement
supervised training with cross-entropy loss, SGD optimization, and a batch size of 128, for
a total of 160 epochs. The initial learning rate is 0.1, and it decays by 0.1 after every 50
epochs. To ensure comparability, classes are assigned to IL states using the same random
seed as in the compared methods [Hou+19; Zhu+21b; Zhu+21a; Zhu+22].

4.4 Evaluation 77

CIL Method CIFAR-100 TinyImageNet ImageNet-Subset

T=5 T=10 T=20 T=60 T=5 T=10 T=20 T=100 T=5 T=10 T=20 T=60

EWC∗ [Kir+17] 24.5 21.2 15.9 x 18.8 15.8 12.4 x - 20.4 - x
LwF-MC∗ [Reb+17] 45.9 27.4 20.1 x 29.1 23.1 17.4 x - 31.2 - x
LUCIR [Hou+19] 51.2 41.1 25.2 x 41.7 28.1 18.9 x 56.8 41.4 28.5 x
MUC∗ [Liu+20c] 49.4 30.2 21.3 x 32.6 26.6 21.9 x - 35.1 - x
SDC∗ [Yu+20] 56.8 57.0 58.9 x - - - x - 61.2 - x
ABD∗ [Smi+21] 63.8 62.5 57.4 x - - - x - - - x
PASS∗ [Zhu+21b] 63.5 61.8 58.1 x 49.6 47.3 42.1 x 64.4 61.8 51.3 x
IL2A∗ [Zhu+21a] 66.0 60.3 57.9 x 47.3 44.7 40.0 x - - - x
SSRE∗ [Zhu+22] 65.9 65.0 61.7 x 50.4 48.9 48.2 x - 67.7 - x
DeeSIL [BP18] 60.0 50.6 38.1 x 49.8 43.9 34.1 x
DSLDA [HK20] 64.0 63.8 60.8 60.5 53.1 52.9 52.8 52.6 71.3 71.2 71.0 70.8
FeTrIL1 66.3 65.2 61.5 59.8 54.8 53.1 52.2 50.2 72.2 71.2 67.1 65.4

CIL Method ImageNet

T=5 T=10 T=20

LUCIR [Hou+19] 47.4 37.2 26.6
DeeSIL [BP18] 61.9 54.6 45.8
DSLDA [HK20] 64.0 63.8 63.6
FeTrIL1 66.1 65.0 63.8

Tab. 4.1.: Average top-1 incremental accuracy in EFCIL with different numbers of incremental
steps. FeTrIL1 results are reported with pseudo-features translated from the most similar
new class. "-" cells indicate that results were not available. "x" cells indicate that the con-
figuration is impossible for that method. Best results - in bold, second best - underlined.

We provide implementation details for the final layer (Eq. 4.2) introduced in Subsection 4.3.3.
The hyperparameters of the classification layers were optimized on a pool of 50 classes
selected randomly from ImageNet, but disjoint from ILSVRC or ImageNet-Subset. L2-
normalization is applied before the linear layer. The LinearSVC layer included in FeTrIL1

uses 1.0 and 0.0001 for regularization and the tolerance parameters. The number of samples
is higher than the dimensionality of the features, and we solve the primal rather than the dual
optimization problem. The classifiers are then trained using a standard one-against-the-rest
procedure. In Subsection 4.4.2, we also test a one-vs-many strategy to accelerate incremental
updates. The second variant, FeTrIL1

fc, uses a fully-connected layer as the final layer and
implements an end-to-end training strategy. FeTrIL1

fc is trained for 50 epochs with an initial
learning rate of 0.1, 0.1 decay, and 10 epochs patience.

Evaluation metric. The average incremental accuracy, widely used in CIL [Mas+21;
Reb+17], is the main evaluation measure. For comparability with [Zhu+21a; Zhu+21b;
Zhu+22], it is computed as the average accuracy of all states, including the initial one. We
equally provide per-state accuracy curves to have a more detailed view of the accuracy
evolution during the CIL process. Following [Zhu+22], we run each configuration of FeTrIL
three times and report the averaged results.

78 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

CIL Method CUB200 Flower102

T = 5 T = 10 T = 5 T = 10

SDC[Yu+20] 70.0 65.8 86.8 80.4
FeTrIL1 71.6 71.0 90.4 89.7

Tab. 4.2.: Comparison of SDC [Yu+20] with FeTrIL1 using the evaluation protocol for two supple-
mentary datasets used in [Yu+20]. Best results in bold.

4.4.1 Results

Comparison to existing EFCIL methods. The results from Table 4.1 show that FeTrIL1

outperforms all compared methods in 11 tested configurations out of 12. It is also close
to the best in the remaining one. The second best results are obtained with the recent
SSRE method [Zhu+22]. FeTrIL1 and SSRE accuracies are close to each other for CIFAR-
100, with relative differences between 0.4 and -0.2. The performance gain brought by
FeTrIL is of over 4 and 3 top-1 accuracy points for TinyImageNet and ImageNet-Subset,
respectively. PASS [Zhu+21b] and IL2A [Zhu+21a], two other recent EFCIL methods,
have lower average performance. We note that EFCIL performance boost was recently
reported, with methods such as PASS, IL2A, and SSRE. These methods combine knowledge
distillation and sophisticated mechanisms for dealing with the stability-plasticity dilemma.
In contrast, our method uses a fixed feature extractor and a lightweight pseudo-feature
generator. FeTrIL only optimizes a linear classification layer, while compared recent
methods use backpropagation of the entire model, and need much more computational
resources and time to perform the IL process. A more in-depth discussion of complexity
is proposed in Subsection 4.4.2. The performance of the ILSVRC dataset is also very
interesting. Direct comparison to PASS or SSRE is impossible since these methods were
not tested at scale. However, we can safely assume that FeTrIL1 is better given PASS and
SSRE accuracy for the simpler ImageNet-Subset. ILSVRC results show that the simple
method proposed here is effective for a high range of classes. Interestingly, ILSVRC
performance is stabler compared to smaller datasets since the pool of new classes available
for pseudo-features generation is larger.

In Table 4.2, we compare FeTrIL to SDC [Yu+20] using the evaluation protocol and datasets
from [Yu+20]. Half of the datasets are assigned to the initial state and the rest of the
classes are split evenly among the remaining states. Following [Yu+20], the training of the
initial FeTrIL model for CUB200 and Flower102 datasets is initialized with a pre-trained
ILSVRC model. We do the same here to facilitate comparison with the original paper. The
results from Table 4.2 indicate that FeTrIL1 is clearly better than SDC [Yu+20] in all tested
configurations.

4.4 Evaluation 79

CIL Method ImageNet50 ImageNet100

T = 5 T = 20

ABD[Smi+21] 71.5 12.1
FeTrIL1 89.0 39.0

Tab. 4.3.: Comparison of ABD [Smi+21] with FeTrIL using the authors’ evaluation protocol.
ImageNet50 includes 50 classes and 5 states of 10 classes. ImageNet100 includes 100
classes, with 20 states of 5 classes each. Note that [Smi+21] uses top-5 accuracy for
ImageNet50 and top-1 for ImageNet100 and we present the same numbers. Best results
in bold.

CIL Method CIFAR-100 ImageNet-Subset

T = 5 T = 10 T = 5 T = 10

LUCIR [Hou+19] 63.2 61.1 70.8 68.3
+AAnets 66.7 65.3 72.6 69.2
Mnemonics [Liu+20b] 63.3 62.3 72.6 71.4
+AAnets 67.6 65.7 72.9 71.9
PODNet [Dou+20] 64.8 63.2 75.5 74.3
+AAnets 66.3 64.3 77.0 75.6
FeTrIL1 66.3 65.2 71.9 70.8

Tab. 4.4.: Comparison of FeTrIL with AANets [LSS21], applied on top of EBCIL baselines which
store 20 exemplars of past classes to mitigate catastrophic forgetting.

In Table 4.3, we present results obtained with FeTrIL and Always Be Dreaming
(ABD) [Smi+21] a method that combines distillation and image inversion to address EFCIL.
The comparison is done for two ILSVRC [Rus+15] subsets which include 50 and 100
classes, respectively. FeTrIL outperforms ABD by a large margin in both configurations.
This result is explained by the difficulty of deploying image inversion in an efficient manner
for visually complex images, such as those included in ImageNet.

Comparison to EBCIL methods. This comparison is interesting because EFCIL is a much
more challenging task than EBCIL [BPK21; Mas+21], and an important performance gap
between the two was observed. This is intuitive since the storage of images of past classes
in EBCIL mitigates catastrophic forgetting. Following [Hou+19; LSS21], a memory of
20 images per class is allowed for all EBCIL methods tested here. FeTrIL is better than
all three base methods to which AANets is applied for CIFAR-100. For ImageNet-Subset,
FeTrIL accuracy is better than LUCIR’s, slightly behind that of Mnemonics [Liu+20b] and
approximately 3.5 points lower than that of PODNet [Dou+20]. The performance of FeTrIL
remains close to that of EBCIL methods in a majority of cases even after the introduction
of AANets. The results from Table 4.4 indicate that, while still present, the gap between
EFCIL and EBCIL methods is narrowing.

80 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% CIFAR-100, T = 10
PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

IL2A
FeTrIL

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% TinyImageNet, T = 10
PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

IL2A
FeTrIL

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

20%

40%

60%

80%

100% ImageNet-Subset, T = 10

PASS
LUCIR

MUC
LwF-MC

SSRE
DeeSIL

FeTrIL

Fig. 4.3.: Evolution of top-1 accuracy for an incremental process with T = 10 IL states. Best
viewed in color.

Comparison to a transfer-learning baseline. DeeSIL [BP18] is a simple application
of transfer learning to EFCIL. It has no class separability mechanism across different
incremental states since classifiers are learned within each state. The need for global
separability, included in FeTrIL, is shown by the comparison of short and long CIL processes.
DeeSIL [BP18] performance is good for T = 5 because each class is trained against
enough other classes, but drops significantly for T = 20, when there are few new classes.
The important performance gain brought by FeTrIL highlights the importance of class
separability.

Behavior for minimal incremental updates. Compared EFCIL methods can only be
updated with a minimum of two classes per CIL state since they use discriminative classifiers,
which require both positive and negative samples. In practice, it is interesting to enable
updates once each new class is available. This is possible with FeTrIL because pseudo-
features can all originate from a single new class. Results in the right columns of CIFAR-100,
TinyImageNet, and ImageNet-Subset from Table 4.1 show that the accuracy obtained with
one class increments is close to that observed for T = 20. This highlights the robustness of
FeTrIL with respect to frequent updates.

Influence of the final classification layer. FeTrIL1 compares favorably with FeTrIL1
fc.

LinearSVC gives better performance than a fully-connected layer, particularly for a large
number of incremental steps. However, FeTrIL1

fc is also competitive, outperforming existing
methods in most configurations.

Detailed view of accuracy. We illustrate the evolution of accuracy across incremental
states in Figure 4.3 to complement the averaged results from Table 4.1. These detailed
results confirm the good behavior of the proposed method. The evolution of accuracy for

4.4 Evaluation 81

CIFAR-100 TinyImageNet ImageNet-Subset

T = 5

FeTrIL1 66.3 54.8 72.2
FeTrIL5 65.7 53.8 72.2
FeTrIL10 65.1 53.8 71.6
FeTrILherd 66.2 53.8 72.1
FeTrILrand 65.1 51.5 70.3

Tab. 4.5.: Average top-1 CIL accuracy obtained with the variants of pseudo-feature selection from
Subsection 4.3.2 for T = 5. We set k = {1, 5, 10} for the similarity rank between the
past and new classes to test the effect of class similarities. There are 10 (CIFAR-100 and
ImageNet-Subset) and 20 (TinyImageNet) new classes per state from which to select
features translation.

FeTrIL and SSRE is very similar for CIFAR-100, FeTrIL method is better throughout the
process for TinyImageNet, and also better than SSRE for the first incremental states for
ImageNet-Subset. The performance gain with respect to the other compared methods is
much more significant for all incremental states.

Generally speaking, no EFCIL method can ensure a class separability comparable to that
provided by standard learning with all images of all classes available simultaneously. The
objective is to find a good balance between the stability and the plasticity of EFCIL repre-
sentations. The experiments from Table 4.1 show that, while imperfect, the combination of
features and pseudo-features used in FeTrIL1 provides better performance compared to meth-
ods that update the model using variants of knowledge distillation and more complicated
class prototypes.

4.4.2 Method analysis

We present an analysis of: (1) the selection strategies, (2) the memory footprint of the
methods, (3) the complexity of model updates, and (4) the stability-plasticity balance.

Pseudo-feature selection comparison. FeTrIL can use any past-new classes combination
for translation. In Table 4.5, we compare the selection strategies from Subsection 4.3.2.
Accuracy varies in a relatively small range for all strategies, indicating that FeTrIL is robust
to the way features of new classes are selected, and it can be successfully implemented with
any of the strategies. FeTrIL1 is better than the other selection methods and this motivates
its use in the main experiments. Class similarity matters, but results with FeTrIL10 remain
interesting. FeTrILherd also has interesting accuracy, but is slightly behind that of FeTrIL1.
The results from Table 4.5 motivate the use of FeTrIL1 in the main experiments. Overall, the
geometric translation toward the centroid of the past class is by far more important than the
new classes features sampling policy. This finding is also supported by the results obtained
with a single new class per CIL state (Table 4.1).

82 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

Memory footprint. A low memory footprint is a desirable property of incremental learning
algorithms because they are most useful in memory-constrained applications [Mas+21;
Rav+21; Reb+17], and recommended for embedded devices [HK22]. All EFCIL methods
need to store a representation of past classes to counter catastrophic forgetting. Natu-
rally, this representation should be as compact as possible. Mainstream methods (such as
LwF-MC [LH16], PASS [Zhu+21b], IL2A [Zhu+21b], and SSRE [Zhu+22]) need to the
previous and current deep models during CIL updates for distillation. ResNet-18 [He+16],
the most frequent CIL backbone, has approximately 11.4M parameters. Consequently,
distillation-based methods require around 22.8M parameters. Transfer-based methods, such
as DeeSIL [BP18] and FeTrIL, use only the deep model learned in the initial state and
frozen afterwards, and only need 11.4M parameters for the model. DeeSIL does not need
supplementary parameters during incremental updates. However, this comes at the cost of
poor global discrimination of classes, which is reflected in the final performance. FeTrIL
stores the class centroids of past classes in order to perform feature translation. Each class
needs 512 parameters, which leads to a supplementary 51.2K and 102.4 memory need for
100 and 200 classes, respectively. The class similarities needed for pseudo-feature selection
(Subsection 4.3.2) can be computed sequentially and the added memory cost of this step is
negligible. PASS [Zhu+21b], IL2A [Zhu+21a] and SSRE [Zhu+22] also requires the storage
of a prototype (mean representation) for each past class and their footprint is equivalent
to that of FeTrIL. IL2A [Zhu+21a] additionally stores a covariance matrix per past class
(512x512 for ResNet-18) for optimal functioning, which is prohibitive.

Complexity of incremental updates. CIL is useful in resource-constrained environments,
and the integration of new classes should be fast [HK22; Rav+21]. Distillation-based meth-
ods retrain the full backbone model at each update. This is costly because backpropagation
complexity depends on the network architecture, the number of samples and the number
of epochs [GBC16]. Updates of transfer-based methods are simpler because they update
only the final layer. DeeSIL trains linear classifiers using a one-vs-all procedure within
each CIL state. The complexity of one training epoch for all classifiers in a CIL state is
O((n

T)2sd) [BB07], with n - total number of classes in the dataset, d - dimensionality of
features and s - samples per class. FeTrIL retrains all linear classifiers, past and new, in each
CIL state to improve global separability. Its complexity is O(n2sd) in the last incremental
state, which includes all classes. However, the one-versus-all training can be replaced with a
one-versus-many training with negligible loss of accuracy. A sampling of negative features
is performed to respect a predefined ratio r between negatives and positives used to train
each classifier. This approximation has O(rnsd) complexity. It is interesting since r < n,
and is more and more useful as n grows during the IL process since r remains constant.

In Figure 4.4, we present results with different r values for CIFAR-100, TinyImageNet and
ImageNet-Subset, T = 10. Accuracy drops when negative sampling is performed, but it
is close to that of one-vs-all training when r = 25 and r = 10. Performance drops more
significantly for r = 1, when each linear classifier is learned with an aggressive sampling of

4.4 Evaluation 83

0 1 2 3 4 5 6 7 8 9 10
Incremental state

20%
40%
60%
80%

100%

To
p-

1
ac

cu
ra

cy

CIFAR-100, T = 10

ova - 65.2
r = 25 - 65.1

r = 10 - 64.6
r = 1 - 59.8

ova - 65.2
r = 25 - 65.1

r = 10 - 64.6
r = 1 - 59.8

0 1 2 3 4 5 6 7 8 9 10
Incremental state

20%
40%
60%
80%

100% TinyImageNet, T = 10
ova - 53.1
r = 25 - 52.8

r = 10 - 51.8
r = 1 - 46.0

ova - 53.1
r = 25 - 52.8

r = 10 - 51.8
r = 1 - 46.0

0 1 2 3 4 5 6 7 8 9 10
Incremental state

20%
40%
60%
80%

100% ImageNet-Subset, T = 10

ova - 71.2
r = 25 - 70.8

r = 10 - 70.0
r = 1 - 67.3

ova - 71.2
r = 25 - 70.8

r = 10 - 70.0
r = 1 - 67.3

Fig. 4.4.: Top-1 incremental accuracy of FeTrIL1 for approximate training of the classification layer
with different ratios for negative sampling. ova denotes a classical one-vs-all training
procedure.

negatives. Globally, Figure 4.4 indicates that FeTrIL increments can be accelerated with
little accuracy loss. This highlights the possibility of accelerating the training of FeTrIL
with very limited accuracy loss.

We measure the time needed for incremental training of ImageNet-Subset, T = 10. The
training of the initial model is similar for all models and is thus discarded. FeTrIL training
is done on a single thread of an Intel E5-2620v4 CPU, and only takes 1 hour, 4 minutes and
16 seconds. If FeTrIL is run with r = 10 ratio between positives and negatives, training
time is only 15 minutes and 3 seconds. In comparison, PASS [Zhu+21b] needs 11 hours, 8
minutes and 19 seconds on an NVIDIA V100 GPU, with 4 workers for data loading. While
clearly favorable to FeTrIL, the comparison is biased in favor of PASS since this method
uses an entire GPU, in comparison to a single CPU thread for FeTrIL. Further speed gains
are possible for our method by using a GPU implementation of the linear layer. Our method
would run much faster with a GPU implementation of the linear layer. Note that the running
time of the other methods, such as LUCIR [Hou+19] and SSRE [Zhu+22], which perform
backpropagation is similar to that of PASS [Zhu+21b].

Stability-plasticity balance. CIL should ideally ensure a similar accuracy level for past and
new classes [Mas+21; Zhu+22]. Figure 4.5 shows that the two methods have complementary
behavior, which results from the way deep backbones are used. SSRE is biased toward new
classes since the model is fine-tuned in each incremental state. FeTrIL favors past classes
because the deep model is learned with the initial classes (a subset of past classes) and then
frozen. The accuracy gap between past and new classes is smaller for FeTrIL compared to

84 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

0 1 2 3 4 5 6 7 8 9 10
Incremental state

0%

25%

50%

75%

100%

To
p-

1
ac

cu
ra

cy

Past
New

Avg

SSRE

Past
New

Avg

0 1 2 3 4 5 6 7 8 9 10
Incremental state

FeTrIL
TinyImageNet, T = 10

Fig. 4.5.: Top-1 incremental accuracy per state for past and new classes for TinyImageNet, with
T = 10 incremental states for FeTrIL1 and SSRE, the best compared method. An ideal
method would provide high accuracy, but also similar performance for past and new
classes. The accuracy of past and new classes is globally closer for FeTrIL1 , which
indicates that our method provides a better stability-plasticity balance than SSRE. Overall
accuracy is better for FeTrIL1 in Figure 4.3 because the contribution of new classes in
each state diminishes during the CIL process.

SSRE, except for state 4. There, low performance on new classes is probably explained by a
strong domain shift compared to the initial state. Globally, the proposed method improves
the stability-plasticity balance.

4.5 Conclusion

We introduce FeTrIL, a new method that addresses exemplar-free class-incremental learning.
The proposed combination of a frozen feature extractor and of a pseudo-feature generator
improves results compared to recent EFCIL methods. The generation of pseudo-features is
simple since it consists in a geometric translation, yet effective. Our proposal is advantageous
from memory and speed perspectives compared to mainstream methods [Hou+19; Reb+17;
Smi+21; Ver+21; Yu+20; Zhu+21a; Zhu+21b; Zhu+22]. This is particularly important
for edge devices [HK22; Rav+21], whose storage and computation capacities are limited.
FeTrIL performance is also close to that of exemplar-based methods, which need to store
samples of past classes to mitigate catastrophic forgetting. While a gap between exemplar-
based and exemplar-free setting subsists, it becomes significantly narrower. The results
reported here resonate with past works which show that simple methods can be highly
effective in CIL [BPK21; Mas+21; PTD20]. They question the usefulness of the knowledge
distillation component, used by a majority of existing methods. The FeTrIL code will be
made public to enable reproducibility.

The main limitations of the proposed method motivate our future work. First, FeTrIL uses
a frozen feature extractor learned on the initial state and tends to favor past classes over
new ones. We will investigate ways to combine the pseudo-feature generation mechanism
and fine-tuning to further improve global performance, as well as the stability-plasticity
balance. Second, FeTrIL produces usable pseudo-features, but past class representations
would be better if the pseudo-features would be more similar to the original features of past
classes. We will study methods that generate more refined features, for instance by using

4.5 Conclusion 85

the distribution of the initial features. Last but not least, the tested selection strategies are all
effective. However, they could be further improved by filtering out outliers based on the
localization of pseudo-features in the representation space.

86 Chapter 4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning

5An Analysis of Initial Training
Strategies for Exemplar-Free
Class-Incremental Learning

„And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

— Robert Frost
The Road Not Taken (3/4)

Initial training strategy CIL Algorithms
BSIL [JLM21] DSLDA [HK20] FeTrIL [Pet+23b]

Arch Method FT Ext Sup µAcc W µAcc W µAcc W
RN50 CE ✓ × SL 44.9 0 53.7 4 51.0 0
RN50 CE × ✓ SL 39.9 0 61.4 0 60.6 0
RN50 CE ✓ ✓ SL 62.9 1 65.3 0 68.4 1
RN50 BYOL ✓ × SSL 11.2 0 42.2 0 34.4 0
RN50 BYOL × ✓ SSL 35.3 0 63.3 0 62.0 0
RN50 BYOL ✓ ✓ SSL 60.2 0 70.0 2 70.2 0
RN50 MoCoV3 ✓ × SSL 14.9 0 49.6 0 41.1 0
RN50 MoCoV3 × ✓ SSL 36.3 0 67.9 1 65.3 0
RN50 MoCoV3 ✓ ✓ SSL 64.7 2 71.8 2 72.0 0
ViT-S DeiT × ✓ SL 35.0 0 58.7 0 56.3 0
ViT-S DeiT ✓ ✓ SL 11.2 0 37.4 0 27.4 0
ViT-S DINOv2 × ✓ SSL 70.4 4 75.7 9 72.4 6
ViT-S DINOv2 ✓ ✓ SSL 24.0 0 45.9 0 39.2 0

Tab. 5.1.: Performance of three EFCIL algorithms with different training strategies for the initial
model averaged over 16 target datasets and two EFCIL scenarios. BSIL [JLM21]
is a recent EFCIL algorithm that is representative of fine-tuning-based CIL works.
DSLDA [HK20] and FetrIL [Pet+23b] adapt linear probing [Kum+22] for EFCIL. We
present the averaged incremental accuracy (µAcc) and the number of cases (W) in which
a combination of algorithm and initial training strategy performs best for a combination
of target dataset and EFCIL scenario (see Sec.5.4). Initial training strategies are defined
by: Arch- deep architecture used (ResNet50 (RN50) [He+16] or vision transformer
(ViT-S) [Dos+21]); Method - initial training method; FT - fine-tuning on initial classes of
the target dataset; Ext- use of an external dataset, such as ILSVRC [Rus+15]; Sup - type
of supervision for the initial model: self-supervised (SSL) or supervised (SL).

87

5.1 Introduction

Real-world applications of Machine Learning (ML) often involve training models from
data streams characterized by distributional changes and limited access to past data [HK22;
VT19]. This scenario presents a challenge for standard ML algorithms, as explained in
Section 1.5, as they assume that all training data is available at once. Continual learning
addresses this challenge by building models designed to incorporate new data while preserv-
ing previous knowledge [Rin97]. Class-incremental learning (CIL) is a type of continual
learning that handles the case where the data stream is made up of batches of classes. As
explained in Section 1.6, it is particularly challenging in the exemplar-free case (EFCIL), i.e.
when storing examples of previous classes is impossible due to memory or confidentiality
constraints [HK20; Zhu+22]. CIL algorithms must find a balance between knowledge
retention, i.e. stability, and adaptation to new information, i.e. plasticity [Mas+21; WGL21;
MBB13]. Many existing EFCIL methods [JLM21; LH16; Reb+17; Zhu+21a; Zhu+21b;
Zhu+22] update the model at each incremental step using supervised fine-tuning com-
bined with a distillation loss, and thus tend to favor plasticity over stability. Another line
of work [HK20; Pet+23b] freezes the initial model and only updates the classifier. This
approach has recently gained interest [Jan+22; Pel22; Wan+22b] due to the availability
of models pre-trained on large external datasets, often through self-supervision [He+20b;
Oqu+23]. While pre-trained models provide diverse and generic features, there are limits to
their transferability [Abn+21], and these limits have not been studied in depth in the context
of EFCIL.

We propose a comprehensive analysis framework to disentangle the factors that influence
EFCIL performance. Focus is put on the strategies to obtain the initial model of the
incremental process. We consider the type of neural architecture, the training method,
the depth of fine-tuning, the availability of external data, and the supervision mode for
obtaining this initial model. The initial training strategies are compared using three EFCIL
algorithms, representative of the state of the art, on 16 target datasets, under 2 challenging
CIL scenarios. The obtained results are summarized in Table 5.1. The main findings are
that: (1) pre-training with external data improves accuracy, (2) self-supervision in the initial
step boosts incremental learning, particularly when the pre-trained model is fine-tuned
on the initial classes, and (3) EFCIL algorithms based on transfer learning have better
performance than their fine-tuning-based counterparts. However, the distribution of best
performance, presented in Table 5.1, shows that no combination of an EFCIL algorithm and
an initial training strategy is best in all cases. This echoes the results of previous studies
such as [BPK21; Fei+23]. Therefore, it is interesting to understand the contribution of the
different factors influencing EFCIL performance. To this aim, we analyze these strategies in
depth in Section 5.5, and use this analysis to formulate EFCIL-related recommendations
in Section 5.6. The insights brought by the proposed analysis could benefit both continual
learning researchers and practitioners. The proposed framework can improve the evaluation

88 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

and analysis of EFCIL methods. Continual learning practitioners can use the results of this
study to better design their incremental learning systems.

5.2 Background

5.2.1 Pre-training methods

Transfer learning involves using a model trained on a source dataset as a starting point for
training another model on a target dataset [RM19]. In the case of transfer learning, the
weights of the target model are generally initialized with the weights of the source model.
These weights can remain fixed, except for the classification layer (linear probing), or
they can be updated on the target data (fine-tuning). Transfer learning has several practical
advantages [Tan+18]. It reduces the computational effort to train a new model on a new
dataset. It also enables learning an accurate model in few-shot settings, because models pre-
trained on large datasets are able to extract complex features even for new input data. Some
authors investigate how to pre-train the model in order to make it more transferable [Gei+18;
Tam+17; KSL18]. Model generalization is favored by the quantity, quality, and diversity
of its source training data [Oqu+23]. However, the parametric footprint of pre-trained
models, typically in the range of hundreds of millions, is often too high for continual
learning applications [HK22]. Smaller models can be obtained from larger models through
knowledge distillation [HVD15; Tou+21].

Self-Supervised Learning (SSL) has recently gained interest thanks to its ability to pro-
duce diverse, reusable features for downstream tasks. SSL enables a model to learn from
unlabeled data without relying on explicit annotations [JT20]. It leverages the inherent
structure or information present within the data itself to create surrogate labeling tasks
e.g. predicting missing image patches, image rotations, or colorizations. For example,
MoCov3 [He+20b; CXH21] uses a contrastive loss function to obtain similar representations
for two randomly augmented crops of the same input image. Recently, SSL methods trained
on large datasets such as BYOL [Gri+20] and DINOv2 [Oqu+23] have provided efficient
feature extractors, reusable for other tasks. We note that, while the reuse of pre-trained
models as frozen feature extractors is easy, their fine-tuning in the presence of domain shift
might be challenging [Kum+22]. This is important in the context of CIL since many existing
models are based on fine-tuning.

We compare various pre-training methods to obtain the initial model of a CIL process
(Subsec. 5.3.2). We consider (i) the case where the initial model is trained using only the
initial batch of data and (ii) the case where an external dataset was available for pre-training.
In the first case, the initial model is either obtained using classic supervised learning or
using an SSL algorithm, here MoCov3 [CXH21]. In the second case, we start the EFCIL

5.2 Background 89

process with a model whose weights have been learned either in a supervised manner, in a
self-supervised manner [Gri+20; Oqu+23], or through distillation [Tou+21]. This allows us
to study the transferability of the resulting initial models, in combination with various CIL
methods.

5.2.2 Class-Incremental Learning (CIL)

continual learning aims to build models that are able to continuously and adaptively learn
about their environment. In CIL, learning a classification model is a sequential pro-
cess, where each step in the sequence consists of integrating a set of new classes into
the model [BPK21; Lan+19; Mas+21; Par+19]. In the exemplar-free setting, at a given stage
in the process, the model must be able to recognize all the classes encountered so far, with
access only to the current batch of classes or with limited access to past data samples.

The main challenge faced by CIL models is their tendency to forget previously acquired
information when confronted with new information. This phenomenon is called catastrophic
forgetting or catastrophic interference, as it is caused by the "interference" of new infor-
mation with previous information [MC89; Fre99]. Forgetting may be reduced by storing
examples from past classes, a strategy called rehearsal [Reb+17]. However, the availability
of past data and the possibility to store it may be unrealistic in practice. Thus, we focus on
exemplar-free CIL rather than rehearsal-based CIL.

Two main directions may be considered to deal with forgetting in artificial neural networks.
A first family of CIL approaches lets the network grow as new capabilities must be learned,
e.g. [WRH17]. In the extreme case, this approach can result in zero forgetting. But at
the same time, it is not realistic to make the model grow infinitely. A second family of
methods considers a network of constant size throughout the incremental process (except
the classifier) and proposes various strategies for obtaining models which ensure a balance
between stability, the need to preserve the performance of past classes, and plasticity, needed
to recognize new classes. The weights of the initial model may be fine-tuned in combination
with knowledge distillation between the previous model and the one which is currently
learned. [LH16; Hou+19; JLM21; Dou+20; Zhu+21a; Zhu+21b; Zhu+22]. This type of
approach favors plasticity over stability because models are retrained with all data of new
classes and the incremental model incrementally learned on past classes. An alternative is to
use a pre-trained model or to freeze the model learned in the initial incremental state and to
train only a linear classification layer afterwards [BP18; HK20; Pet+23b]. Recent works
propose to use a large pre-trained model combined with a k-NN classifier as a challenging
baseline for continual learning algorithms [Jan+22; Pel22]. These works adapt linear
probing, the basic transfer learning approach [KSL18], to an incremental context. They
favor stability over plasticity since the feature extractor is not adapted during the incremental
process [Mas+21]. The main challenge is that the initial model needs to be transferable to

90 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

new classes in order to preserve good performance. Importantly, they are much faster than
the fine-tuning-based methods because only the classification layer is trained.

Recent works propose to improve the learned representation by fine-tuning the model with a
combination between cross-entropy loss and a self-supervised learning objective [Fin+22;
Tan+23]. The authors of [GHK20] explore the use of a fixed feature extractor pre-trained in a
self-supervised way. Another recent trend in CIL is to use a pre-trained model as an efficient
starting point for the incremental process [Tia+23; Wu+22]. The authors of [Wan+22b] also
propose a method based on dynamic prompting. In [Ost+22], pre-trained models are used to
propose a compute-low method with a replay of past training samples. Using a pre-trained
feature extractor is also interesting for cases where training data is scarce, as in few-shot
CIL [Ahm+22].

The present work proposes a comprehensive study of training strategies for the initial model,
with a focus on the interaction of these methods with different EFCIL algorithms. We
experiment with transformer-based and CNN architectures, in combination with fine-tuning-
based and transfer-learning-based EFCIL algorithms.

5.3 Problem statement

EFCIL process

Logs
1248

MetricsStatistical analysis

Recommendations

Initial training

13

Datasets

16

Scenarios

2

Model updates

3

Logs

1248

Logs

1248

Fig. 5.1.: Overview of the proposed analysis framework of initial training strategies for EFCIL.

We summarize the proposed analysis framework in Figure 5.1. It combines a comprehensive
modeling of the EFCIL process and initial training strategies as inputs for a statistical
analysis that uses different EFCIL metrics. Recommendations for the design of EFCIL
approaches are made based on the conclusions of the statistical analysis.

5.3 Problem statement 91

5.3.1 EFCIL process

Let us consider a dataset D split over K subsets, D = D1 ∪ D2 ∪ · · · ∪ DK , and an
exemplar-free CIL algorithm Incr. A CIL process consists in learning a classification
model incrementally over K non-overlapping steps using Incr. At each step k ∈ J1, KK,
the model is updated using Incr and the data subset Dk, whose associated set of classes is
denoted by Ck. The data subsets D1, D2, · · · , DK composing the complete dataset D satisfy
the following constraint: for k, k′ ∈ {1, 2, . . . , K} with k ̸= k′, Ck ∩ Ck′ = ∅, i.e. each
class is only present in a single data subset. The use of an exemplar-free algorithm Incr

implies that when the training is performed at the kth step, no example from any of the data
subsets of the previous steps can be accessed. Although this is a more difficult setting, it is
also more realistic in practice [HK22; BPK21].

Incremental model updates. The initial model M1 is obtained following one of the
training strategies presented in 5.3.2. At the kth step of the CIL process, k ∈ J2, KK,
the classification model Mk recovers the weights of the model Mk−1 obtained in step
k − 1 and is updated using the data subset Dk and the algorithm Incr. Many EFCIL
algorithms [JLM21] perform a full fine-tuning of the network weights at each incremental
step, thus favoring plasticity. Alternatively, algorithms such as [HK20; Pet+23b] only retrain
the classifier, thus favoring stability. As a compromise, it is also possible to freeze a part of
the model and update only the last layers. We cover these three cases in our experiments.

Scenario. A scenario is characterized by the distribution of classes among the steps of
the CIL process. We denote by b the proportion of the classes available in the initial step:
b = Card(C1)/Card(C). There are two commonly used scenarios [BPK21] (i) equal
splitting of classes across the steps or (ii) half of the classes in the first step and the rest of
the classes are divided equally between subsequent steps.

5.3.2 Training strategies for the initial model

In the following, we describe the main characteristics of the training strategies used in our
experimental study to obtain the initial model of the incremental learning process. Further
experimental settings are reported in Section 5.4.

Network architecture. So far, most CIL methods have been proposed in combination with
a convolutional neural network, but visual transformer (ViT) networks have recently gained
popularity in CIL [Dou+22]. In order to provide a fair comparison between the two types
of architecture, we use a ResNet50 [He+16], and a ViT-Small [Dos+21] network, which
contains a similar number of parameters (23.5M and 22.1M parameters respectively).

92 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

Model initialization. At the first step of the CIL process, the weights of the model may
either be randomly initialized or transferred from a pre-trained model. In the second case,
depending on the choice of the user, the dataset D∗ used for pre-training may either be an
auxiliary dataset (e.g. ILSVRC [Rus+15]), referred to as source dataset, or the first data
subset D1 of the incremental process.

Label availability. We consider that all examples from the target dataset D are labeled,
and we experiment with both supervised learning and self-supervised learning to obtain the
initial model using D1. Labels may not be available for the external dataset D∗. In this case,
the training initialization is performed using a self-supervised pre-training algorithm (e.g.,
DINOv2 [Oqu+23]).

5.4 Experimental setting

We describe the experimental parameters and the metrics we use to evaluate EFCIL models.
The combination of parameters results in 1,248 experiments in total (Figure 5.1).

5.4.1 Initial training strategies

We compare different strategies for training an initial model, as summarized in Table 5.1.
We use Resnet50 [He+16] and ViT-S [Dos+21] networks, which are representative of CNNs
and transformers and have similar sizes (∼20M parameters). The training is done either
using a self-supervised method (BYOL [Gri+20], DINOv2 [He+20b], MoCov3 [CXH21])
or a supervised one (DeiT and cross-entropy (CE)). We present results for pre-training with
external data (i.e. ILSVRC [Rus+15] for BYOL, DeiT and CE; a 150M-images dataset +
ILSVRC for DINOv2) and training on the first batch. We compare the effect of freezing the
weights of (i) the pre-trained model or (ii) further optimizing the last layers of the model
(e.g. the last convolutional block in ResNet50) on the initial data subset D1. The first type
of experiment is denoted by the suffix “-t", the second by the suffix “-ft". In the case where
the pre-training algorithm is applied to D1 and not to D⋆, there is no suffix.

5.4.2 Target datasets

For a comprehensive evaluation and to account for the diversity of visual tasks, we evaluate
the training strategies on 16 target datasets, sampled from publicly available datasets. They
cover different domains (plants, animals, landmarks, food, faces, traffic signs etc.), and
different types of images (natural, drawings, paintings). IMN1001 and IMN1002 consist
of 100 classes randomly selected from ImageNet-21k [Den+09]. Flora is a thematic sub-
set of ImageNet consisting of 100 classes belonging to the “flora" concept. IMN1001,

5.4 Experimental setting 93

IMN1002 and Flora have no mutual overlap and no overlap with ILSVRC [Den+09;
Rus+15]. Amph100 and Fungi100, sampled from iNaturalist [Van+18], respectively con-
tain 100 classes of amphibians and fungi, selected so as to avoid overlap with animal
and fungi classes from ILSVRC. We also sample 100-class subsets from other popular
datasets: WikiArt100 [SE15], Casia100 [Yi+14], Food100 [BGV14], Air100 [Maj+13],
MTSD100 [MY16], Land100 [Wey+20], Logo100 [Wan+20] and Qdraw100 [HE17]. Fi-
nally, we consider three 1000-class subsets: Casia1k [Yi+14], Land1k [Noh+17], and
iNat1k [Van+18]. The number of training images per dataset varies from 60 to 750. More
details on the datasets are provided in the appendix of this thesis, at Chapter B.

5.4.3 Incremental learning

EFCIL scenario b. We experiment on two widely used CIL scenarios [Hou+19; BPK21].
In the first scenario, the classes are equally distributed over 10 steps, e.g. 10 classes per step
for a 100-class dataset. In the second scenario, half of the classes are learned in the initial
step, and the other half is equally distributed over 10 incremental steps, e.g. 50 + 10 · 5
classes for a 100-class dataset.

CIL algorithm Incr. We experiment with one fine-tuning based algorithm, namely
BSIL[JLM21], which adds a balanced softmax without exemplars to LUCIR [Hou+19]. We
also experiment with two fixed-representation-based algorithms, namely DSLDA [HK20]
and FeTrIL [Pet+23b].

5.4.4 Metrics

The performance of EFCIL models can be evaluated in several ways [Mas+21], discussed
below.

Average incremental accuracy Acc. In EFCIL, a model trained over a K-step incremental
process is commonly evaluated using the average incremental accuracy [Zhu+21b; Zhu+22;
Zhu+21a; JLM21]. We denote it by Acc and compute it by:

Acc = 1
K − 1

K∑
k=2

acc(Mk,
k⋃

i=1
Di) (5.1)

where acc(M, D) is the accuracy of the model M on the dataset D. Following common
practice in CIL [Cas+18; Pet+23b; Zhu+22], Acc does not take the accuracy of the initial
model into account.

94 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

Average forgetting F . Average forgetting, denoted here by F , is computed by:

F = b × f(D1) + 1 − b

K − 1

K∑
k=2

f(Dk) (5.2)

where f(Dk) = max
k′∈Jk,KK

acc(Mk′ , Dk) − acc(MK , Dk)) is the difference between the

best performance achieved on the data subset Dk during the EFCIL process and the final
performance of the model on this data subset [Mir+22].

Initial accuracy Acc1. To unskew the statistical models we present in Section 5.5, we
consider the initial accuracy, defined as the accuracy of the first model on the first data
subset D1 and denoted by Acc1, i.e. Acc1 = acc(M1, D1).

Final accuracy AccK . The accuracy of the last model of the incremental learning process
on the complete dataset D is denoted by AccK , i.e. AccK = acc(MK , D).

Acc gives more weight to past classes since at each step, the model is evaluated on all
seen classes. Consequently, a high average incremental accuracy does not guarantee a high
accuracy on the latest classes, particularly when half of the classes are learned initially.
Forgetting is complementary to accuracy, as it focuses on model stability. A low value
for F indicates that, on average, the performance for a given class remains stable over the
incremental process.

5.5 Analysis of results

We present a statistical analysis of the results from Table 5.1, which highlights the effects
of pre-training strategies and of EFCIL algorithms on EFCIL performance. The statistical
model and associated findings are presented below.

5.5.1 Modeling causal effects

Our objective is to identify the primary factors that influence the performance of EFCIL
algorithms. To interpret causal effects, we employ multiple linear regressions using the
Ordinary Least Squares (OLS) method, following established statistical and econometric
practices [AP09; Gar+13]. In a linear regression, we aim to explain a target variable
Y using explanatory variables Xi. The target variable is endogenous, i.e. determined
by its relationship with other variables. If the outcome of a variable Xi is selected by
the experimenter, it is said to be exogenous, i.e. not caused by other variables. For a
given experiment, we denote by Y the target metric accuracy (endogenous), Data the
evaluation dataset (exogenous), Train the initial training strategy (exogenous), and Incr

5.5 Analysis of results 95

the incremental algorithm (exogenous). We also consider the initial accuracy Acc1 as an
endogenous variable that may influence performance and can be controlled in our regressions.
Other parameters, such as the total number of classes or the dataset, are examined as potential
predictors of a metric.

An OLS regression fits a model of the following form:

Y = β0 + β1Train + β2Incr + β3Data + . . . + ε, (5.3)

where the intercept β0 is a scalar and ε is assumed to be normally distributed Gaussian noise.
Since Train, Incr, and Data are categorical, we encode them as one-hot vectors. Thus,
β1, β2, and β3 are vectors of the same size as the number of possible categories for each
variable. To emphasize the explanatory variables and to simplify notation, in the following
we denote the above regression model (Eq. 5.3) as "Y ∼ Train + Incr + Data + . . .".

Under appropriate assumptions1, the estimated coefficients can be interpreted as estimated
causal effects. The statistical significance of these effects is assessed by examining the
p-value of the associated Student t-test for each coefficient [Gar+13]. Following established
statistical practices [Gar+13], we set the significance value at .05. The significance, sign,
magnitude, and interpretation of each estimated coefficient depend on the regression model.
In particular, introducing more exogenous variables can cause instability in the regression.
Therefore, for each metric Y , we adopt the following methodology to select only the most
influential factors:

1. We use multiple regression models to represent the evaluation metric Y as a linear
combination of different variables, or of the product of these variables. We ensure
that the chosen regressions exhibit no collinearity or numerical issues2.

2. Subsequently, we select a regression model using the Akaike Information Criterion
(AIC) [Aka98], which regularizes the likelihood of the model based on its degrees of
freedom.

3. We interpret the regression coefficients, the coefficient of determination R2, and
examine the Q-Q plot of the residuals ε̂ to verify their normality.

4. Next, we conduct an Analysis of Variance (ANOVA) [Gar+13] on the regression to
obtain aggregated statistics on the categorical variables.

1Primarily, non-perfect collinearity among exogenous variables and the normality of the estimated residuals ε̂
2We assess this by examining the smallest eigenvalue of the Gram matrix of the data XT X . Although Ridge

or Lasso regression could address these concerns, their coefficients are less interpretable than those of OLS.

96 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

5. Finally, we interpret the partial η2 derived from the ANOVA as a measure of the
importance of each variable.

A regression on a categorical variable requires the setting of a reference value for it. There-
fore, the coefficient(s) associated with this categorical variable represent the causal effects
of this variable with respect to the reference level. However, we want to compare all initial
training strategies with each other to derive practical recommendations. Therefore, we use
the following protocol to generate pairwise significant differences:

(1) perform the same regression multiple times using a different reference category;

(2) sum-up the pairwise comparisons in a double-entry matrix;

(3) since we are performing multiple tests, we need to adjust the significance threshold
of each test using Bonferroni correction [Gar+13], which consists of dividing the
p-value threshold by the number of tests;

(4) plot a heatmap of the pairwise comparisons between the choice of a parameter.

5.5.2 Metrics and confounding Factors

In Figure 5.2, we examine the relationship between the evaluation metrics defined in
Subsection 5.4.4. We observe a strong positive correlation between Acc and AccK . There is
a weak negative correlation between average incremental accuracy and forgetting, which is
expected due to the inherent trade-off between stability (i.e. low forgetting) and plasticity
in CIL (i.e. high performance on new classes). We note a significant correlation between
average incremental accuracy and accuracy in the initial state. This correlation is expected
since half of our experiments are done with half of the classes in the initial step. Additionally,
the average incremental accuracy (Eq. 5.1) evaluates each model on each class, from the
first occurrence of the class to the end of the incremental process, thus giving greater
influence to earlier classes. Conversely, there is a weak correlation between forgetting and
initial accuracy. This implies that the performance on the initial batch of classes does not
significantly impact the model’s stability throughout the incremental steps.

Acc AccK Acc1 F

Acc
AccK

Acc1
F

1.00
0.98 1.00
0.80 0.75 1.00
-0.22 -0.26 0.18 1.00

Fig. 5.2.: Correlation between the endogenous variables.

5.5 Analysis of results 97

Based on these observations, we choose the average incremental accuracy Acc and the
average forgetting F as the metrics of interest for our study, and include the effect of the
initial accuracy in their models. Controlling the initial accuracy in a regression model is
important to draw accurate conclusions: if pure accuracy is sought, then it can be left out of
the model. However, the goal of CIL algorithms is not solely to be accurate on average, but
rather to be accurate while preventing forgetting. Hence, to analyze the actual incremental
contribution of each method, initial accuracy should be included in the regression.

5.5.3 Linear Regression

Variable selection. We use the Python module statsmodels for our linear regressions.
We first consider a broad range of explanatory variables:

• Acc1: the accuracy of the first state,

• Data: dummy variable for the type of target dataset,

• Train: dummy variable for the initial training strategy,

• Incr: dummy variable for the incremental method used,

• nmean: the mean number of images per class in the experiment,

• Small: binary variable encoding if the training images are so small that they have to
be up-scaled,

• Width: mean width of the images used for the experiment,

• B: binary variable encoding for the 2 possible CIL scenarios (i.e. either 10% or 50%
of the total number of classes learned in the initial step of the process),

• N : the total number of classes,

• N1: the number of images in the first state.

It has to be noted that some of these variables are highly collinear with each other since they
are properties of the dataset of the experiment.

We first perform 1-variable regressions of the incremental accuracy Acc and the forgetting
F . We identify the most important variables by looking at the R2 of the regressions that
have a sufficiently small p − value (at the .05 threshold). Results are presented in tables 5.2

98 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

and 5.3. We select the four most important variables and use them to fit more complex linear
regression models that combine these selected variables.

Variable p-value R2

Acc1 2.96e-240 0.63
Train 1.17e-87 0.33
Data 2.25-55 0.23
Incr 7.52e-29 0.11
nmean 8.16e-20 0.07
Small 1.84e-05 0.02
Width 9.78e-03 0.01

B 1.05e-01 0.00
N 2.41e-01 0.00
N1 2.87e-01 0.00

Tab. 5.2.: Variables predicting accuracy,
sorted by decreasing importance

Variable p-value R2

Incr 2.20e-222 0.62
Train 6.46e-15 0.08
Acc1 7.71e-10 0.03
Data 2.66e-03 0.02

N 7.50e-04 0.01
B 3.43e-02 0.00
N1 4.13e-02 0.00

nmean 1.07e-01 0.00
Small 6.88e-01 0.00
Width 7.17e-01 0.00

Tab. 5.3.: Variables predicting forgetting,
sorted by decreasing importance

Model selection. We perform linear regressions with many different combinations of the
selected variables. We find that introducing product variables, such as Train × Incr with
the intent of directly modeling the interactions between the initial training strategy and the
incremental method, introduces collinearity problems. Therefore, we choose to study such
interactions following the protocol presented in Section 5.5.

We select the following model:

Acc ∼ Incr + Train + Data. (5.4)

The output of the regression is shown in Figure 5.4. To verify the quality of the regression,
we also plot the residuals along with a Q-Q plot to verify their normality, as well as a scale-
location plot to verify homoscedasticity (constant variance), and a residual vs. leverage plot
to look for possible influential outliers. All of these diagnostics are shown in Figure 5.3.

5.5.4 Factors influencing incremental performance

This subsection presents the aggregated influence of the considered parameters. The mod-
els and findings presented in Table 5.4 are obtained with the methodology presented in
Subsection 5.5.1.

Main influences. In Table 5.4, the most significant factor affecting average incremental
accuracy is the choice of initial training strategy. However, upon controlling the impact of
initial accuracy, the selected incremental algorithm has a greater importance. This distinction
is primarily attributed to BSIL, which exhibits an average incremental accuracy 16 points
below that of FeTrIL and DSLDA.

5.5 Analysis of results 99

0.0 0.2 0.4 0.6 0.8 1.0
Fitted values

0.4

0.2

0.0

0.2

0.4

0.6
Re

sid
ua

ls
912

344

757

Residuals vs Fitted

3 2 1 0 1 2 3 4
Theoretical Quantiles

3

2

1

0

1

2

3

4

St
an

da
rd

ize
d

Re
sid

ua
ls

912

344

757

Normal Q-Q

0.0 0.2 0.4 0.6 0.8 1.0
Fitted values

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|S
ta

nd
ar

di
ze

d
Re

sid
ua

ls|

912

344757

Scale-Location

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Leverage

3

2

1

0

1

2

3

4
St

an
da

rd
ize

d
Re

sid
ua

ls

912

370

344

Residuals vs Leverage

Cook's distance

Fig. 5.3.: Diagnostics of the regression for the accuracy as in Equation 5.4.

Regarding forgetting, the incremental algorithm is the most influential parameter. Here,
this effect is not driven by any specific outlier method. Further analysis shows that initial
accuracy also plays a significant role in predicting the level of forgetting. The associated
regression coefficient is .16 (±.02), indicating that a 1-point increase in initial accuracy
results in a 16-point increase of forgetting.

Given that accuracy ranges between 0 and 1, a lower initial accuracy decreases the likelihood
of experiencing high levels of forgetting. Hence, a trade-off arises concerning the initial
accuracy: while its enhancement greatly improves the average incremental accuracy, it
also appears to amplify forgetting. This should be taken into account when comparing CIL
algorithms. From a research perspective, the incremental algorithm remains influential in
the metrics, particularly when controlling for initial accuracy or focusing on forgetting.
However, in practical applications of CIL, the final accuracy may be more important. Given
its strong correlation with average incremental accuracy, increasing the initial accuracy
becomes more advantageous in this case.

100 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

Fig. 5.4.: Output of the regression for the accuracy

5.5.5 Comparison of initial training strategies

In Figure 5.5, we observe notable variations in accuracy among different initial training
strategies, thus prompting the identification of three regimes:

1. Strategies that surpass supervised learning without transfer: MoCoV3-ft,
DINOv2-t, BYOL-ft, SL(ResNet)-ft, MoCov3-t.

These approaches exhibit superior performance by generating a robust latent space,
whose features are transferable. MoCoV3-ft enhances its latent space by fine-tuning,
enabling better generalization compared to other methods. DINOv2-t follows, lever-
aging its extensive self-supervised training on a very large amount of data. BYOL-ft
and SL(ResNet)-ft closely follow, highlighting the advantage gained from additional
adaptation steps on the target dataset following pre-training. MoCov3-t is fifth,
showing that features generated through an adapted self-supervised method have a
generalization capability that can be leveraged in CIL.

2. Strategies that exhibit no significant improvement over supervised learning
without transfer: SL(ResNet)-ft, BYOL-t, SL(DeiT)-t.

5.5 Analysis of results 101

Model R2 variable η2

Acc ∼ Incr + Train + Data 0.69
T rain 0.32
Data 0.24
Incr 0.11

Acc ∼ Acc1 + Incr + Train + Data 0.81

Acc1 0.25
Incr 0.22

T rain 0.10
Data 0.06

F ∼ Incr + Train + Data 0.71
Incr 0.61

T rain 0.06
Data 0.03

Tab. 5.4.: ANOVA results for each considered regression. Variables are significant at p < 0.05 and
ordered by decreasing importance.

Our analysis underlines the capability of well-designed self-supervised methods to
outperform supervised pre-training approaches.

3. Strategies that underperform compared to supervised learning without transfer:
MoCoV3, BYOL, DINOv2-ft, SL(DeiT)-ft.

The inferior performance of self-supervised methods can be attributed to the limited
initial data. Furthermore, the challenging nature of fine-tuning for transformer models
contributes to the underwhelming outcomes observed in these models.

The analysis of the average forgetting, illustrated in Figure 5.6, indicates that the majority
of pairwise initial training strategies exhibit no significant distinctions. However, DINOv2-t
exhibits lower forgetting compared to other strategies, including SL (ResNet). This is partic-
ularly remarkable considering that DINOv2-t has the highest initial accuracy. Conversely,
fine-tuned transfer models (DINOv2-ft, SL(DeiT)-ft) also display a lower forgetting, albeit
primarily attributed to their inherently low initial accuracy, which leaves little room for
further decline in their accuracy.

5.5.6 Further analysis of initial training strategies

We now inquire whether the preceding general analysis can be nuanced in specific scenarios.
To this end, we perform the same analysis as in the previous section by performing the
regression on subsets of the data.

Influence of the dataset. Regarding target datasets that are most different from the pre-
training dataset, the benefit of pre-training with or without fine-tuning is lower due to the
domain gap. It should be noted that specialized datasets such as Qdraw100 and Casia100

102 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

2.1

11 8.4

11 8.8 0.39

25 23 14 14

25 23 14 14 0.06

28 26 18 17 3.7 3.6

29 26 18 18 3.8 3.8 0.19

32 30 22 21 7.4 7.3 3.7 3.5

40 38 30 29 16 16 12 12 8.3

42 40 31 31 17 17 13 13 9.5 1.2

43 41 33 32 19 18 15 15 11 2.8 1.6

44 42 34 33 20 20 16 16 12 3.9 2.7 1.1

11

11

25 23 14 14

25 23 14 14

28 26 18 17

29 26 18 18

32 30 22 21 7.4 7.3

40 38 30 29 16 16 12 12 8.3

42 40 31 31 17 17 13 13 9.5

43 41 33 32 19 18 15 15 11

44 42 34 33 20 20 16 16 12

Fig. 5.5.: Accuracy gain by using strategy in row i over strategy in column j , e.g. "The accuracy of
BYOL-ft is 17pts higher than SL(ResNet)". Only results in bold are statistically different.

BYO
L-t

MoC
oV

3-t

SL(
DeiT

)-t

SL(
Re

sN
et)

-t

SL(
Re

sN
et)

BYO
L-f

t

MoC
oV

3-f
t

MoC
oV

3
BYO

L

SL(
Re

sN
et)

-ft

DINOv2
-t

DINOv2
-ft

SL(
DeiT

)-ft

BYOL-t
MoCoV3-t
SL(DeiT)-t

SL(ResNet)-t
SL(ResNet)

BYOL-ft
MoCoV3-ft

MoCoV3
BYOL

SL(ResNet)-ft
DINOv2-t

DINOv2-ft
SL(DeiT)-ft

-0.34

-2.7 -2.3

-2.8 -2.4 -0.11

-3.3 -3 -0.65 -0.55

-4.1 -3.8 -1.4 -1.3 -0.79

-4.8 -4.5 -2.2 -2.1 -1.5 -0.73

-5.4 -5 -2.7 -2.6 -2.1 -1.3 -0.54

-5.9 -5.5 -3.2 -3.1 -2.6 -1.8 -1.1 -0.52

-6.2 -5.9 -3.6 -3.5 -2.9 -2.1 -1.4 -0.88 -0.36

-7.2 -6.9 -4.5 -4.4 -3.9 -3.1 -2.4 -1.8 -1.3 -0.97

-7.9 -7.5 -5.2 -5.1 -4.6 -3.8 -3 -2.5 -2 -1.6 -0.67

-13 -12 -9.9 -9.8 -9.3 -8.5 -7.7 -7.2 -6.7 -6.3 -5.4 -4.7

-4.1 -3.8

-4.8 -4.5

-5.4 -5

-6.2 -5.9 -3.6 -3.5

-7.2 -6.9 -4.5 -4.4 -3.9

-7.9 -7.5 -5.2 -5.1 -4.6 -3.8

-13 -12 -9.9 -9.8 -9.3 -8.5 -7.7 -7.2 -6.7 -6.3 -5.4 -4.7

Fig. 5.6.: Overall pairwise comparisons on Forgetting. Only results in bold are statistically different.

5.5 Analysis of results 103

also contain smaller images than those of ILSVRC. Whether the difference in performance
is caused by a semantic gap or an image-size gap is unclear.

Influence of the incremental scenario. Regarding accuracy, we find that most differences
among methods come from the scenarios with 50 initial classes or less. In scenarios
containing 10 initial classes, all strategies that were previously not significantly better than
SL(ResNet) start to outperform it. In scenarios with 50 initial classes, it becomes more
difficult to precisely rank the top initial training strategies. In scenarios with 100 initial
classes, no strategy is significantly better than any other one (which can come from the
lower number of experiments with these scenarios).

Influence of Incremental method. We find that FeTrIL and DSLDA exhibit a similar
pattern for Acc and F , contrary to BSIL. For FeTrIL and DSLDA, the differences between
the best initial training strategies are less clear, but the general trend previously described
still holds, in particular for the accuracy. The choice of the training strategy does not clearly
impact the forgetting. On the other hand, BSIL is much more sensitive to the initial training
strategy. Fine-tuned methods clearly outperform classical learning and plain transfer (except
for DINOv2-t), whether it concerns the accuracy or the forgetting. Moreover, SL(ResNet)
is a stronger baseline for BSIL than for the other methods when considering incremental
accuracy.

Qdra
w10

0

Amph
10

0

Log
o1

00

Lan
d1

00

Casi
a1

00

MTS
D10

0

Fun
gi1

00
Air1

00

Foo
d1

00

IMN10
0_2

IMN10
0_1 Flo

ra
Art1

00

Lan
d1

k
iNat1

k

Casi
a1

k

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DINOv2-t with BSIL
DINOv2-t with DSLDA
DINOv2-t with FeTrIL

MoCoV3-ft with BSIL
MoCoV3-ft with DSLDA
MoCoV3-ft with FeTrIL

SL(ResNet) with BSIL
SL(ResNet) with DSLDA
SL(ResNet) with FeTrIL

Fig. 5.7.: Interaction plot of the best strategies for different transfer types and for the 3 CIL
algorithms. Similar slopes indicate similar behaviors. A change in slope indicates a
change in behavior.

104 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

5.6 Discussion

We summarize our findings and propose recommendations for the design of EFCIL ap-
proaches.

Does the use of a model pre-trained on an external dataset D⋆ always improve perfor-
mance on the target dataset D? Figure 5.7 highlights that no single initial training strategy
outperforms the others on all datasets. As illustrated in Table 5.1, pre-training is clearly
better on average, but there are exceptions. Intuitively, the use of a pre-trained model without
fine-tuning (DINOv2-t in Figure 5.7), is clearly preferable for datasets such as IMN1001

and Flora which are closely related to the dataset used for pre-training. Inversely, the
supervised training method SL(ResNet) is better when the gap between the source and the
target datasets is important, such is the case for Casia1k. MoCov3-ft is a good compromise
since it leverages pre-training, but adapts the representation via partial fine-tuning. The
initial training strategy should be selected by considering characteristics of the dataset such
as: the number of classes, number of samples per class, domain gap with pre-training, and
size of the initial batch of classes.

In the absence of an external dataset, is it better to train the initial model in a supervised
way or with a self-supervised learning method? As shown in Figure 5.5, supervised
learning on the initial data is better on average. However, self-supervised learning is better
when the amount of data available initially is limited, making it difficult to train a supervised
model effectively.

Should the pre-trained model be fine-tuned on the first batch of data, or frozen?
Existing EFCIL works that use pre-trained transformers keep their weights fixed [Jan+22;
Pel22; Wan+22b]. This might be explained by the fact that fine-tuning these models might
be detrimental in transfer learning [Kum+22]. Inversely, the performance of CNN-based
training strategies, such as BYOL or MoCov3, increases after partial fine-tuning. This is
explained by the fact that the layers of CNNs are reusable across tasks, while fine-tuning the
last layers with initial target data improves transferability in subsequent EFCIL steps.

How does the performance of EFCIL algorithms vary with initial training strategies?
Table 5.1 and Figure 5.7 show that the performance of BSIL varies much more than that
of DSLDA and FeTrIL. This is particularly clear for transformer models, where BSIL
performance is strongly degraded when fine-tuning of pre-trained models is used. In
contrast, the variation of performance for DSLDA and FeTrIL is much lower when testing
partial fine-tuning and transfer strategies on top of pre-trained models. This suggests that
both initial training strategies are usable in practice for transfer-learning based EFCIL
algorithms.

5.6 Discussion 105

What is the impact of using transformers versus convolutional neural networks? The
averaged results presented in Table 5.1 and the detailed ones from Figure 5.7 show that the
difference between the best training strategies based on transformers and on CNNs is small.
This is particularly the case when CNNs are pre-trained in a self-supervised manner and
then partially fine-tuned on the initial batch of target data. Our finding echoes those reported
in recent comparative studies of the two types of neural architectures which conclude that
there is no absolute winner [PTK22; Wan+23b]. The implication for EFCIL is that the use
of both types of architecture should be explored in future works.

5.7 Conclusion

We perform an analysis of EFCIL in an evaluation setting that includes numerous and
diverse classification tasks. We confirm the findings of existing comparative studies which
have shown that no CIL algorithm is the best in all cases [BPK21; Mas+21; Fei+23] and
that algorithms based on transfer learning provide accuracy and stability for EFCIL [HK20;
Jan+22]. Our main finding is that the initial training strategy is the dominant factor influenc-
ing the average incremental accuracy, but that the choice of CIL algorithm is more important
in preventing forgetting. Beyond the fact that there is no silver bullet approach to dealing
with EFCIL, our in-depth statistical study quantifies the effect of different components of
EFCIL approaches and thus enables informed decisions to be made when designing new
methods or implementing EFCIL in practice.

106 Chapter 5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental

Learning

6Conclusion

„I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

— Robert Frost
The Road Not Taken (4/4)

6.1 General conclusion

Exemplar-Free Class-Incremental Learning (EFCIL) is the specialized subfield within the
broader domain of Machine Learning and Artificial Intelligence, where a Machine Learning
model needs to continuously adapt and expand its knowledge to accommodate new batches
of classes, named states, while retaining the ability to recognize previously learned classes.

The exemplar-free aspect of EFCIL distinguishes it from other incremental learning methods
that rely on retaining specific examples or exemplars from previous classes to aid in learning
new classes. In EFCIL, the model does not have access to stored exemplars, making the
learning process more challenging.

As discussed in Chapter 1, EFCIL is a complex and challenging domain that requires
innovative solutions to enable continual learning of new classes while preserving previously
acquired knowledge. Several key challenges contribute to the complexity of EFCIL, each of
which requires careful consideration and specialized approaches.

First, EFCIL faces the problem of memory. The model continuously learns a large number
of classes, without the possibility to recall any images of previously learned classes. The
linear growth of the memory requirement with the number of classes would otherwise pose
significant computational and storage problems. Therefore, it is critical to design the EFCIL
model in a way that minimizes the impact on memory usage when new classes are added.

107

Second, computational requirements are a significant challenge in EFCIL. As the num-
ber of classes increases, the training time for each new class also increases, leading to
computational bottlenecks. Techniques to mitigate feature drift, such as distillation, can
further increase the computational cost of training. In this context, the development of
resource-efficient learning algorithms capable of learning new classes with limited computa-
tional resources is critical. These algorithms should strike a balance between retaining past
knowledge and efficiently acquiring knowledge from new classes.

The number of states that the model must learn is another critical factor affecting EFCIL
performance. As the model accumulates knowledge about an increasing number of classes,
the challenge of catastrophic forgetting becomes more pronounced. The model must retain
information without revisiting past examples, which becomes increasingly difficult as
the number of classes grows. To mitigate catastrophic forgetting, it is essential to explore
techniques that allow the model to effectively retain some sort of past knowledge. Addressing
the relationship between the number of states and the potential for catastrophic forgetting
will be critical to the development of robust EFCIL algorithms.

The variability of data stream structures presents a significant hurdle to achieving efficient
and adaptive EFCIL. The characteristics of the data stream, including data types, update
frequency, and the size of incremental states, all affect the learning process. The diverse
nature of data stream structures requires tailored class-incremental learning approaches
that can handle different data types and adapt to different update frequencies. Moreover,
these approaches should effectively use the information available in incremental states to
optimally support the learning of new classes.

Finally, scenario variability has a significant impact on the performance of EFCIL models,
particularly with respect to mitigating catastrophic forgetting. Different scenarios dictate the
composition of the initial state, which affects the richness of the feature space from which
the model learns. Investigating how to optimize the initial state composition and developing
strategies to effectively adapt the model to different scenarios will be critical to improving
the model’s adaptability and generalization capabilities.

To that extent, we introduced different methods in Chapter 2. Those methods can be
split into three categories: Model-Growth based, Finetuning-Based, and Fixed-Model
based. Model-Growth based methods exhibit scalability, accommodating new classes with
sufficient resources for model growth during training and inference. Additionally, they offer
some mitigation of catastrophic forgetting as the model grows with new classes, retaining
knowledge of past classes to some extent. However, Model-Growth based methods demand
substantial memory and computational resources due to the model’s growth with each new
class, making them computationally expensive in long-term learning scenarios. Controlling
the number of additional parameters for each new task is crucial to prevent the model
from becoming excessively large and resource-intensive. Fine-tuning enables the model

108 Chapter 6 Conclusion

to adapt to new data, offering some level of plasticity to accommodate changes in the
system. However, Fine-tuning has limitations in terms of timeliness, as it does not allow
fast integration of new knowledge, requiring more than just training the classifier weight
layer, which can be critical in time-sensitive applications. Additionally, it lacks stability,
as it may lead to catastrophic forgetting of previously acquired knowledge, given that no
previous knowledge is preserved in EFCIL methods. Fixed-Representation based methods
accommodate a large number of classes without linearly increasing memory requirements,
making them suitable for long-term learning scenarios. They are more stable since the
representation remains fixed and unchanged during the training of new tasks, contributing
to reduced computational demands and stability. Nonetheless, Fixed-Representation based
methods have limited plasticity as the fixed representation in the initial state may become
less transferable if incremental tasks change drastically.

6.2 Contributions

Within the scope of this thesis, our emphasis on enhancing efficiency, plasticity, and stability
has led us to incorporate two Fixed-Representation based techniques alongside a statistical
analysis. These methods have been carefully crafted and integrated to address key challenges
in our research, ensuring a comprehensive exploration of the chosen factors while providing
valuable insights into EFCIL.

6.2.1 PlaStIL: Plastic and Stable Memory-Free
Class-Incremental Learning

The PlaStIL approach addresses a critical challenge in Class-Incremental Learning (CIL),
which is finding the right balance between plasticity and stability. Plasticity refers to the
ability of the model to learn new data, while stability pertains to retaining knowledge of
previously learned classes. Traditional methods in CIL use memory buffers or maintain
two separate deep models to achieve this balance, but these approaches can be inefficient in
terms of memory usage and computational requirements.

PlaStIL proposes a novel solution that distributes a similar number of parameters as
distillation-based methods but in a more efficient way. It freezes the feature extractor
after the initial state and introduces several model tops to ensure high plasticity. By freezing
the feature extractor, the model retains stability by training the oldest incremental classes
with this unchanging extractor. On the other hand, it introduces plasticity to new classes
using partially fine-tuned models and a specially designed plasticity layer. This approach
allows PlaStIL to provide a balanced trade-off between plasticity and stability.

6.2 Contributions 109

PlaStIL is evaluated on three large datasets, and the results demonstrate its superiority
over existing methods in various configurations. By achieving better performance and
effectiveness in class incremental learning, PlaStIL offers a promising advancement in
addressing the plasticity-stability dilemma in CIL.

However, PlaStIL still requires a large number of parameters, two separate deep models
in terms of size. The plasticity layer is not able to retain the knowledge of all past classes,
only the last few ones and the model still requires storage equivalent to two separate deep
models. To address these limitations, we introduce FeTrIL, which is a more efficient and
stable approach to Exemplar-Free Class-Incremental Learning.

6.2.2 FeTrIL: Feature Translation for Exemplar-Free
Class-Incremental Learning

FeTrIL, like PlaStIL, focuses on the plasticity-stability dilemma in Exemplar-Free Class-
Incremental Learning (EFCIL). Traditional EFCIL methods prioritize either stability, using
fixed feature extractors, or plasticity, through successive fine-tuning of the model. FeTrIL
aims to strike a better balance between these two aspects by introducing a novel approach.

The key contribution of FeTrIL is the introduction of a pseudo-feature generator, which is an
effective and simple component. This generator does not require storing exemplars of past
classes but instead uses the centroid representations of those classes. Using these centroids,
FeTrIL creates pseudo-features for past classes, which are combined with actual features of
new classes. These combined features are then used to incrementally train a linear classifier
that discriminates between all classes.

The advantage of this approach is its computational efficiency since only a minimal com-
ponent of the deep model, the linear classifier, needs to be updated during the incremental
process. This makes FeTrIL faster compared to mainstream methods that update the entire
deep model.

FeTrIL is evaluated on three challenging datasets in different incremental settings, and it
outperforms ten existing methods in most cases, demonstrating its effectiveness in exemplar-
free class-incremental learning. By combining the strengths of fixed feature extractors with
the simplicity and efficiency of the pseudo-feature generator, FeTrIL offers a novel and
promising solution to the plasticity-stability dilemma in EFCIL.

As discussed in Chapter 2, and emphasized in PlaStIL and FeTrIL, the initial state is a
critical component of the EFCIL process. The initial state is the starting point, and it can
significantly impact the performance of the model. Therefore, we introduce a statistical

110 Chapter 6 Conclusion

analysis framework to quantify the relative contribution of Initial Training Strategies to
incremental performance.

6.2.3 An Analysis of Initial Training Strategies for
Exemplar-Free Class-Incremental Learning

This work focuses on studying how the initial model of the EFCIL process can be built in
two ways: using only the first batch of the target dataset or incorporating pre-trained weights
from an auxiliary dataset. This choice of initial training strategy can significantly impact the
performance of the incremental learning model.

To gain deeper insights, this work conducts an extensive experimental study and introduces
a statistical analysis framework to quantify the relative contribution of different factors
to incremental performance. The main finding is that the initial training strategy has
a significant impact on the average incremental accuracy, but the choice of the Class-
Incremental Learning (CIL) algorithm plays a more critical role in preventing forgetting.
For example, initializing the model with pre-trained weights from DinoV2 often provides a
better feature space and then leads to better incremental performance. However, the choice
of the CIL algorithm is more critical in preventing catastrophic forgetting. For example,
the Finetuning-based method, is often more prone to catastrophic forgetting than the Fixed-
Representation based methods. Though, there are exceptions to this rule, such as the study
shows.

Based on these findings, the study provides practical recommendations for choosing the
right initial training strategy for different incremental learning use cases. This analysis
contributes to a better understanding of the factors influencing class-based incremental
learning and offers valuable insights to optimize and deploy incremental learning methods
effectively.

6.3 Future work and perspective

The research presented in this thesis lays the foundation for further advances in Exemplar-
Free Class-Incremental Learning (EFCIL) and addresses critical challenges related to
plasticity, stability, and efficiency. Building on these contributions, there are several avenues
for future research and perspectives that can further advance the field of EFCIL:

• Transfer learning and pretraining: As demonstrated in Chapter 5, expanding the
use of transfer learning and pretraining in EFCIL is promising. Investigating how
to effectively adapt pre-trained models on large datasets to incremental learning

6.3 Future work and perspective 111

environments could improve the initial training strategy and mitigate catastrophic
forgetting.

• Lifelong learning strategies: Exploring lifelong learning approaches that enable
continual learning of multiple tasks over extended periods of time and states could
provide insights into how to more effectively handle the continuous stream of data
in EFCIL. Such strategies could allow the model to periodically revisit past tasks to
reinforce its knowledge without relying on exemplars.

• Dynamic model architectures: Designing dynamic model architectures that can
grow and shrink based on task complexity and available resources could address the
memory and computational demands associated with model growth-based methods
discussed in Section 2.1. Such dynamic architectures could adapt to the incremental
learning process and allocate resources more efficiently.

• Handling data stream variability: Investigating how to more effectively handle
variability in data stream structures could improve the adaptability of EFCIL models
to other Continual Learning scenarios, discussed in Chapter 2. Methods that can adapt
to different data types, update frequencies, and incremental state sizes could lead to
more versatile and robust EFCIL solutions.

• Real-world applications: Extending the evaluation of EFCIL methods to real-world
applications and complex scenarios would provide practical insights into their ef-
fectiveness and potential limitations. Applying EFCIL to various domains, such as
robotics, autonomous vehicles, or natural language processing, could shed light on its
applicability in real-world settings.

• Benchmark Datasets: The development of benchmark datasets specifically designed
for EFCIL could facilitate fair and comprehensive comparisons between different
methods. Standardized evaluation protocols and datasets would allow researchers to
assess the performance of their approaches under consistent conditions.

• Incremental learning competitions: Organizing competitions focused on EFCIL
could encourage the development of innovative solutions and accelerate the ad-
vancement of the field. Such competitions could also facilitate the development of
benchmark datasets and evaluation protocols.

• Incremental learning libraries: Developing open-source libraries for EFCIL could
facilitate the adoption of incremental learning methods in real-world applications.
Such libraries could provide a common framework for researchers and practitioners
to develop and test their approaches.

112 Chapter 6 Conclusion

In conclusion, the contributions presented in this thesis (PlaStIL, FeTrIL, and the statistical
analysis framework) provide valuable insights into addressing the challenges of Exemplar-
Free Class-Incremental Learning. The identified future work and perspectives open up
exciting opportunities for further research and innovation, paving the way for more effi-
cient, stable, and adaptive Exemplar-Free Class-Incremental Learning methods that can
accommodate the continuous evolution of data and tasks in different domains.

6.3 Future work and perspective 113

Bibliography

[AAP10] Ignazio Aleo, Paolo Arena, and Luca Patané. „Incremental learning for visual classifica-
tion using neural gas“. In: The 2010 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2010, pp. 1–6 (cit. on p. 36).

[Abn+21] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. „Exploring
the limits of large scale pre-training“. In: arXiv preprint arXiv:2110.02095 (2021) (cit.
on pp. 45, 88).

[ACT17] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. „Expert Gate: Lifelong
Learning with a Network of Experts“. In: Conference on Computer Vision and Pattern
Recognition. CVPR. 2017 (cit. on p. 37).

[Ahm+22] Touqeer Ahmad, Akshay Raj Dhamija, Steve Cruz, et al. „Few-shot class incremental
learning leveraging self-supervised features“. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2022, pp. 3900–3910 (cit. on pp. 46,
91).

[Ahn+19] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. „Uncertainty-based
continual learning with adaptive regularization“. In: Advances in neural information
processing systems 32 (2019) (cit. on pp. 37, 38).

[Aka98] Hirotogu Akaike. „Information Theory and an Extension of the Maximum Likelihood
Principle“. In: Selected Papers of Hirotugu Akaike. Ed. by Emanuel Parzen, Kunio
Tanabe, and Genshiro Kitagawa. New York, NY: Springer New York, 1998, pp. 199–213
(cit. on p. 96).

[AKT19] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. „Task-Free Continual Learn-
ing“. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 11254–11263 (cit. on p. 38).

[Alj+18] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. „Memory Aware Synapses: Learning what (not) to forget“. In: Proceedings
of the European Conference on Computer Vision (ECCV). Sept. 2018 (cit. on p. 38).

[AP09] Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiri-
cist’s companion. Princeton university press, 2009 (cit. on p. 95).

[BB07] Léon Bottou and Olivier Bousquet. „The tradeoffs of large scale learning“. In: Advances
in neural information processing systems 20 (2007) (cit. on p. 83).

[BC13] Oliver Beyer and Philipp Cimiano. „DYNG: Dynamic Online Growing Neural Gas for
stream data classification.“ In: ESANN. 2013 (cit. on p. 37).

115

[BGV14] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. „Food-101 – Mining Dis-
criminative Components with Random Forests“. In: European Conference on Computer
Vision. 2014 (cit. on pp. 94, 140).

[BGV92] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. „A Training Algorithm for
Optimal Margin Classifiers“. In: Proceedings of the Fifth Annual ACM Conference on
Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992.
Ed. by David Haussler. ACM, 1992, pp. 144–152 (cit. on p. 40).

[BP18] Eden Belouadah and Adrian Popescu. „DeeSIL: Deep-Shallow Incremental Learning“.
In: TaskCV Workshop @ ECCV 2018. (2018) (cit. on pp. 40, 51–56, 60–64, 66, 71, 72,
74, 77, 78, 81, 83, 90, 141, 143).

[BPK20] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. „Initial Classifier Weights
Replay for Memoryless Class Incremental Learning“. In: British Machine Vision Con-
ference (BMVC). 2020 (cit. on pp. 43, 53, 59, 61, 62, 141, 142).

[BPK21] Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. „A comprehensive study of
class incremental learning algorithms for visual tasks“. In: Neural Networks 135 (2021),
pp. 38–54 (cit. on pp. 26, 51, 53–61, 67, 71–73, 75, 80, 85, 88, 90, 92, 94, 106).

[Cas+18] Francisco M Castro, Manuel J Marin-Jiménez, Nicolás Guil, Cordelia Schmid, and
Karteek Alahari. „End-to-end incremental learning“. In: Proceedings of the European
Conference on computer vision (ECCV). 2018, pp. 233–248 (cit. on pp. 43, 48, 55, 58,
69, 71, 94, 139).

[Cer+20] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara
Caputo. „Modeling the Background for Incremental Learning in Semantic Segmenta-
tion“. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). July 2020 (cit. on p. 44).

[Cha+18] Arslan Chaudhry, Puneet Kumar Dokania, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. „Riemannian Walk for Incremental Learning: Understanding Forgetting and In-
transigence“. In: Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XI. Ed. by Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss. Vol. 11215. Lecture Notes in Computer
Science. Springer, 2018, pp. 556–572 (cit. on pp. 26, 43, 53).

[Cha+19] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
„Efficient Lifelong Learning with A-GEM“. In: International Conference on Learning
Representations. 2019 (cit. on p. 48).

[CV95] Corinna Cortes and Vladimir Vapnik. „Support-vector networks“. In: Machine learning
20.3 (1995), pp. 273–297 (cit. on pp. 54, 60).

[CXH21] Xinlei Chen, Saining Xie, and Kaiming He. „An empirical study of training self-
supervised vision transformers“. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2021, pp. 9640–9649 (cit. on pp. 46, 89, 93).

[Den+09] Jia Deng, Wei Dong, Richard Socher, et al. „ImageNet: A large-scale hierarchical image
database“. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. 2009, pp. 248–255
(cit. on pp. 58, 93, 94, 140).

[Dha+18] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.
„Learning without Memorizing“. In: CoRR abs/1811.08051 (2018) (cit. on pp. 43, 53).

116 Bibliography

[Dha+21] Akshay Raj Dhamija, Touqeer Ahmad, Jonathan Schwan, et al. „Self-Supervised Fea-
tures Improve Open-World Learning“. In: arXiv preprint arXiv:2102.07848 (2021) (cit.
on pp. 46, 53, 54, 68, 71, 73).

[DL19] Debasmit Das and CS George Lee. „A two-stage approach to few-shot learning for
image recognition“. In: IEEE Transactions on Image Processing 29 (2019), pp. 3336–
3350 (cit. on pp. 48, 73).

[Dos+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. „An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale“. In: International Confer-
ence on Learning Representations. 2021 (cit. on pp. 17, 18, 87, 92, 93).

[Dou+20] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle.
„Podnet: Pooled outputs distillation for small-tasks incremental learning“. In: Computer
vision-ECCV 2020-16th European conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XX. Vol. 12365. Springer. 2020, pp. 86–102 (cit. on pp. 43, 51, 72, 77,
80, 90).

[Dou+21] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. „Plop: Learn-
ing without forgetting for continual semantic segmentation“. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 4040–
4050 (cit. on p. 44).

[Dou+22] Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. „DyTox:
Transformers for Continual Learning With DYnamic TOken eXpansion“. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
July 2022, pp. 9285–9295 (cit. on p. 92).

[Fei+23] Eva Feillet, Grégoire Petit, Adrian Popescu, Marina Reyboz, and Céline Hudelot.
„AdvisIL - A Class-Incremental Learning Advisor“. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). Jan. 2023, pp. 2400–
2409 (cit. on pp. 88, 106, 137).

[Fin+20] Enrico Fini, Stéphane Lathuiliere, Enver Sangineto, Moin Nabi, and Elisa Ricci. „Online
continual learning under extreme memory constraints“. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXVIII 16. Springer. 2020, pp. 720–735 (cit. on p. 43).

[Fin+22] Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, et al. „Self-supervised
models are continual learners“. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022, pp. 9621–9630 (cit. on pp. 44, 91).

[Fre99] Robert M French. „Catastrophic forgetting in connectionist networks“. In: Trends in
cognitive sciences 3.4 (1999), pp. 128–135 (cit. on pp. 8, 26, 90).

[Fri94] Bernd Fritzke. „A growing neural gas network learns topologies“. In: Advances in neural
information processing systems 7 (1994), pp. 625–632 (cit. on p. 36).

[Gao+22] Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. „R-DFCIL: Relation-
Guided Representation Learning for Data-Free Class Incremental Learning“. In: Com-
puter Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXIII. Springer. 2022, pp. 423–439 (cit. on p. 45).

[Gar+13] James Gareth, Witten Daniela, Hastie Trevor, and Tibshirani Robert. An introduction to
statistical learning: with applications in R. Spinger, 2013 (cit. on pp. 95–97).

Bibliography 117

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016
(cit. on pp. 69, 83).

[Gei+18] Robert Geirhos, Carlos R. M. Temme, Jonas Rauber, et al. „Generalisation in humans
and deep neural networks“. In: Advances in Neural Information Processing Systems.
Ed. by S. Bengio, H. Wallach, H. Larochelle, et al. Vol. 31. Curran Associates, Inc.,
2018 (cit. on pp. 45, 89).

[GHK20] Jhair Gallardo, Tyler L Hayes, and Christopher Kanan. „Self-supervised training en-
hances online continual learning“. In: British Machine Vision Conference (BMVC). 2020
(cit. on pp. 41, 91).

[GK17] Alexander Gepperth and Cem Karaoguz. „Incremental learning with self-organizing
maps“. In: 2017 12th International Workshop on Self-Organizing Maps and Learning
Vector Quantization, Clustering and Data Visualization (WSOM). IEEE. 2017, pp. 1–8
(cit. on p. 36).

[GKC19] Siavash Golkar, Micheal Kagan, and Kyunghyun Cho. „Continual Learning via Neural
Pruning“. In: Real Neurons & Hidden Units: Future directions at the intersection of
neuroscience and artificial intelligence @ NeurIPS 2019. 2019 (cit. on pp. 37, 38).

[Gri+20] Jean-Bastien Grill, Florian Strub, Florent Altché, et al. „Bootstrap your own latent-a new
approach to self-supervised learning“. In: Advances in neural information processing
systems 33 (2020), pp. 21271–21284 (cit. on pp. 46, 89, 90, 93).

[Hay+20] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan.
„Remind your neural network to prevent catastrophic forgetting“. In: European Confer-
ence on Computer Vision. Springer. 2020, pp. 466–483 (cit. on pp. 41, 51, 53–56, 59,
61, 62, 66, 68, 141, 142).

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Deep Residual Learning
for Image Recognition“. In: Conference on Computer Vision and Pattern Recognition.
CVPR. 2016 (cit. on pp. 60, 64, 77, 83, 87, 92, 93, 141, 142).

[He+18] Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen. „Exemplar-Supported Gener-
ative Reproduction for Class Incremental Learning“. In: British Machine Vision Confer-
ence 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018.
2018, p. 98 (cit. on p. 74).

[He+20a] Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. „Incremental Learning in
Online Scenario“. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). July 2020 (cit. on p. 44).

[He+20b] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. „Momentum con-
trast for unsupervised visual representation learning“. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020, pp. 9729–9738 (cit. on
pp. 46, 88, 89, 93).

[HE17] David Ha and Douglas Eck. „A Neural Representation of Sketch Drawings“. In: CoRR
abs/1704.03477 (2017). arXiv: 1704.03477 (cit. on pp. 94, 140).

[HK20] Tyler L Hayes and Christopher Kanan. „Lifelong machine learning with deep streaming
linear discriminant analysis“. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 220–221 (cit. on pp. 40, 51–56,
59, 61–64, 78, 87, 88, 90, 92, 94, 106, 141, 143).

118 Bibliography

https://arxiv.org/abs/1704.03477

[HK22] Tyler L. Hayes and Christopher Kanan. „Online Continual Learning for Embedded
Devices“. In: Conference on Lifelong Learning Agents (CoLLAs). Aug. 2022 (cit. on
pp. 46, 69, 71, 83, 85, 88, 89, 92).

[Hou+19] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. „Learning a
Unified Classifier Incrementally via Rebalancing“. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
2019, pp. 831–839 (cit. on pp. 43, 44, 51–55, 58, 59, 61, 62, 69, 71, 72, 75, 77, 78, 80,
84, 85, 90, 94, 139, 141–143).

[Hu+21] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and Hanwang Zhang.
„Distilling Causal Effect of Data in Class-Incremental Learning“. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). July 2021,
pp. 3957–3966 (cit. on p. 44).

[Hun+19] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, et al. „Compacting, picking and growing
for unforgetting continual learning“. In: Advances in Neural Information Processing
Systems 32 (2019) (cit. on p. 38).

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. „Distilling the Knowledge in a
Neural Network“. In: CoRR abs/1503.02531 (2015) (cit. on pp. 46, 51, 53, 69, 71, 89).

[Isc+20] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. „Memory-
efficient incremental learning through feature adaptation“. In: European Conference on
Computer Vision. Springer. 2020, pp. 699–715 (cit. on p. 48).

[Jan+22] Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny.
„Pauljanson002/pretrained-cl: A Simple Baseline that Questions the Use of
Pretrained-Models in Continual Learning (Accepted at DistShift workshop at Neurips
2022)“. In: (2022) (cit. on pp. 40, 88, 90, 105, 106).

[JK22] Hyundong Jin and Eunwoo Kim. „Helpful or Harmful: Inter-task Association in Contin-
ual Learning“. In: European Conference on Computer Vision. Springer. 2022, pp. 519–
535 (cit. on p. 38).

[JLM21] Quentin Jodelet, Xin Liu, and Tsuyoshi Murata. „Balanced softmax cross-entropy for
incremental learning“. In: Artificial Neural Networks and Machine Learning–ICANN
2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia,
September 14–17, 2021, Proceedings, Part II. Springer. 2021, pp. 385–396 (cit. on
pp. 21, 44, 87, 88, 90, 92, 94, 143).

[JS18] Khurram Javed and Faisal Shafait. „Revisiting Distillation and Incremental Classifier
Learning“. In: CoRR abs/1807.02802 (2018) (cit. on pp. 51, 52, 61).

[JT20] Longlong Jing and Yingli Tian. „Self-supervised visual feature learning with deep neural
networks: A survey“. In: IEEE transactions on pattern analysis and machine intelligence
43.11 (2020), pp. 4037–4058 (cit. on pp. 46, 89).

[Jun+20] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. „Continual learning
with node-importance based adaptive group sparse regularization“. In: Advances in
neural information processing systems 33 (2020), pp. 3647–3658 (cit. on p. 38).

[Kan+22] Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, et al. „Forget-
free continual learning with winning subnetworks“. In: International Conference on
Machine Learning. PMLR. 2022, pp. 10734–10750 (cit. on p. 38).

Bibliography 119

[KCR21] Abhishek Kumar, Sunabha Chatterjee, and Piyush Rai. „Bayesian structural adaptation
for continual learning“. In: International Conference on Machine Learning. PMLR.
2021, pp. 5850–5860 (cit. on p. 38).

[Kem+18] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan.
„Measuring catastrophic forgetting in neural networks“. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 2018 (cit. on pp. 26, 51, 52, 69).

[Kir+17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, et al. „Overcoming catastrophic
forgetting in neural networks“. In: Proceedings of the national academy of sciences
114.13 (2017), pp. 3521–3526 (cit. on pp. 77, 78).

[KK18] Ronald Kemker and Christopher Kanan. „FearNet: Brain-Inspired Model for Incremental
Learning“. In: 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. 2018
(cit. on p. 40).

[KLH20] Zixuan Ke, Bing Liu, and Xingchang Huang. „Continual Learning of a Mixed Sequence
of Similar and Dissimilar Tasks“. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 18493–18504 (cit. on p. 44).

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep.
University of Toronto, 2009 (cit. on pp. 76, 139).

[KSL18] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. „Do Better ImageNet Models
Transfer Better?“ In: CoRR abs/1805.08974 (2018) (cit. on pp. 40, 45, 89, 90).

[Kum+22] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy
Liang. „Fine-Tuning can Distort Pretrained Features and Underperform Out-of-
Distribution“. In: International Conference on Learning Representations. 2022 (cit.
on pp. 46, 87, 89, 105).

[Kur+21] Vinod K Kurmi, Badri N Patro, Venkatesh K Subramanian, and Vinay P Namboodiri.
„Do Not Forget to Attend to Uncertainty while Mitigating Catastrophic Forgetting“. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2021, pp. 736–745 (cit. on p. 44).

[Lan+19] Matthias De Lange, Rahaf Aljundi, Marc Masana, et al. „Continual learning: A compar-
ative study on how to defy forgetting in classification tasks“. In: CoRR abs/1909.08383
(2019) (cit. on pp. 53, 54, 69, 71, 73, 90).

[LBE21] Seungwon Lee, Sima Behpour, and Eric Eaton. „Sharing Less is More: Lifelong Learn-
ing in Deep Networks with Selective Layer Transfer“. In: Proceedings of the 38th
International Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 6065–6075
(cit. on p. 44).

[Lee+19] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. „Overcoming catastrophic for-
getting with unlabeled data in the wild“. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 312–321 (cit. on p. 44).

[Lee+20] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. „A Neural Dirichlet Process
Mixture Model for Task-Free Continual Learning“. In: International Conference on
Learning Representations. 2020 (cit. on p. 48).

120 Bibliography

[LH16] Zhizhong Li and Derek Hoiem. „Learning Without Forgetting“. In: European Conference
on Computer Vision. ECCV. 2016 (cit. on pp. 43, 53, 59, 72, 83, 88, 90).

[Li+19] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. „Learn to grow:
A continual structure learning framework for overcoming catastrophic forgetting“. In:
International Conference on Machine Learning. PMLR. 2019, pp. 3925–3934 (cit. on
p. 38).

[Liu+20a] Xialei Liu, Chenshen Wu, Mikel Menta, et al. „Generative feature replay for class-
incremental learning“. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 226–227 (cit. on p. 48).

[Liu+20b] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. „Mnemonics
Training: Multi-Class Incremental Learning Without Forgetting“. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020. IEEE, 2020, pp. 12242–12251 (cit. on pp. 47, 77, 80).

[Liu+20c] Yu Liu, Sarah Parisot, Gregory Slabaugh, et al. „More classifiers, less forgetting: A
generic multi-classifier paradigm for incremental learning“. In: European Conference
on Computer Vision. Springer. 2020, pp. 699–716 (cit. on pp. 44, 72, 77, 78).

[Liu+22] Yu Liu, Xiaopeng Hong, Xiaoyu Tao, et al. „Model behavior preserving for class-
incremental learning“. In: IEEE Transactions on Neural Networks and Learning Systems
(2022) (cit. on p. 45).

[LSS21] Yaoyao Liu, Bernt Schiele, and Qianru Sun. „Adaptive Aggregation Networks for Class-
Incremental Learning“. In: Conference on Computer Vision and Pattern Recognition.
CVPR. 2021 (cit. on pp. 77, 80).

[LY15] Ya Le and Xuan Yang. „Tiny imagenet visual recognition challenge“. In: CS 231N 7.7
(2015), p. 3 (cit. on pp. 76, 139).

[Maj+13] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-Grained Visual
Classification of Aircraft. Tech. rep. 2013. arXiv: 1306.5151 [cs-cv] (cit. on
pp. 94, 140).

[Mar+15] Martin Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015
(cit. on p. 61).

[Mas+21] Marc Masana, Xialei Liu, Bartlomiej Twardowski, et al. Class-incremental learning:
survey and performance evaluation on image classification. 2021. arXiv: 2010.15277
[cs.LG] (cit. on pp. 26, 51–56, 58, 60, 61, 67, 71, 72, 74, 78, 80, 83–85, 88, 90, 94,
106).

[MBB13] M Mermillod, A Bugaiska, and P Bonin. „The stability-plasticity dilemma: investigating
the continuum from catastrophic forgetting to age-limited learning effects.“ In: Frontiers
in Psychology 4 (2013), pp. 504–504 (cit. on pp. 26, 53, 71, 88).

[MBS93] Thomas M Martinetz, Stanislav G Berkovich, and Klaus J Schulten. „’Neural-gas’
network for vector quantization and its application to time-series prediction“. In: IEEE
transactions on neural networks 4.4 (1993), pp. 558–569 (cit. on p. 36).

[MC89] Michael Mccloskey and Neil J. Cohen. „Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem“. In: The Psychology of Learning and
Motivation 24 (1989), pp. 104–169 (cit. on pp. 8, 26, 51, 52, 69, 71, 90).

Bibliography 121

https://arxiv.org/abs/1306.5151
https://arxiv.org/abs/2010.15277
https://arxiv.org/abs/2010.15277

[MDL18] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. „Piggyback: Adapting a Single
Network to Multiple Tasks by Learning to Mask Weights“. In: ECCV (4). Vol. 11208.
Lecture Notes in Computer Science. Springer, 2018, pp. 72–88 (cit. on p. 38).

[Men+13] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. „Distance-
based image classification: Generalizing to new classes at near-zero cost“. In: IEEE
transactions on pattern analysis and machine intelligence 35.11 (2013), pp. 2624–2637
(cit. on pp. 54, 72).

[Mir+22] Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, et al. „Wide neural networks forget
less catastrophically“. In: International Conference on Machine Learning. PMLR. 2022,
pp. 15699–15717 (cit. on pp. 22, 95).

[ML18] Arun Mallya and Svetlana Lazebnik. „PackNet: Adding Multiple Tasks to a Single
Network by Iterative Pruning“. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. 2018,
pp. 7765–7773 (cit. on pp. 37, 38, 53).

[Mus] Constantine Dovrolis Mustafa B Gurbuz. „NISPA: Neuro-Inspired Stability-Plasticity
Adaptation for Continual Learning in Sparse Networks“. In: Proceedings of the 39th
International Conference on Machine Learning 162 () (cit. on p. 38).

[MY16] Ahmed Madani and Rubiyah Yusof. „Malaysian traffic sign dataset for traffic sign
detection and recognition systems“. In: Journal of Telecommunication, Electronic and
Computer Engineering (JTEC) 8.11 (2016), pp. 137–143 (cit. on pp. 94, 140).

[MZ19] Umberto Michieli and Pietro Zanuttigh. „Incremental learning techniques for semantic
segmentation“. In: Proceedings of the IEEE/CVF international conference on computer
vision workshops. 2019 (cit. on p. 44).

[MZ21] Umberto Michieli and Pietro Zanuttigh. „Continual semantic segmentation via repulsion-
attraction of sparse and disentangled latent representations“. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 1114–1124
(cit. on p. 44).

[Ngu+19] Giang Nguyen, Tae Joon Jun, Trung Tran, Tolcha Yalew, and Daeyoung Kim. „Con-
tCap: A scalable framework for continual image captioning“. In: arXiv preprint
arXiv:1909.08745 (2019) (cit. on p. 44).

[Noh+17] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. „Large-
scale image retrieval with attentive deep local features“. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 3456–3465 (cit. on pp. 58, 94,
139, 140).

[NSZ20] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. „What is being transferred in
transfer learning?“ In: Advances in neural information processing systems 33 (2020),
pp. 512–523 (cit. on pp. 56, 72).

[Oqu+23] Maxime Oquab, Timothée Darcet, Theo Moutakanni, et al. DINOv2: Learning Robust
Visual Features without Supervision. 2023 (cit. on pp. 45, 46, 88–90, 93).

[Ost+19] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi.
„Learning to remember: A synaptic plasticity driven framework for continual learning“.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2019, pp. 11321–11329 (cit. on p. 38).

122 Bibliography

[Ost+22] Oleksiy Ostapenko, Timothee Lesort, Pau Rodriguez, et al. „Continual Learning with
Foundation Models: An Empirical Study of Latent Replay“. In: Proceedings of The 1st
Conference on Lifelong Learning Agents. Ed. by Sarath Chandar, Razvan Pascanu, and
Doina Precup. Vol. 199. Proceedings of Machine Learning Research. PMLR, Aug. 2022,
pp. 60–91 (cit. on pp. 46, 91).

[Par+19] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. „Continual Lifelong Learning with Neural Networks: A Review“. In: Neural
Networks 113 (2019) (cit. on pp. 52, 71, 90).

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, et al. „PyTorch: An Imperative Style, High-
Performance Deep Learning Library“. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, et al. Curran Associates,
Inc., 2019, pp. 8024–8035 (cit. on p. 61).

[Ped+12] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, et al. „Scikit-learn: Machine
Learning in Python“. In: CoRR abs/1201.0490 (2012) (cit. on pp. 72, 76).

[Pel22] Francesco Pelosin. „Simpler is better: off-the-shelf continual learning through pretrained
backbones“. In: arXiv preprint arXiv:2205.01586 (2022) (cit. on pp. 40, 88, 90, 105).

[Pet+23a] Grégoire Petit, Adrian Popescu, Eden Belouadah, David Picard, and Bertrand Delezoide.
„PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning“. In: Proceedings
of The 2nd Conference on Lifelong Learning Agents. Ed. by Sarath Chandar, Razvan
Pascanu, and Doina Precup. Proceedings of Machine Learning Research. PMLR, 2023
(cit. on pp. 22, 27, 49, 71, 137).

[Pet+23b] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Dele-
zoide. „FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning“. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). Jan. 2023, pp. 3911–3920 (cit. on pp. 28, 49, 87, 88, 90, 92, 94, 137, 143).

[Pet+24] Grégoire Petit, Michael Soumm, Feillet Eva, et al. „An Analysis of Initial Train-
ing Strategies for Exemplar-Free Class-Incremental Learning“. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Jan. 2024
(cit. on pp. 28, 49, 137).

[POK05] Shaoning Pang, Seiichi Ozawa, and Nikola K. Kasabov. „Incremental linear discriminant
analysis for classification of data streams“. In: IEEE Trans. Syst. Man Cybern. Part B
35.5 (2005), pp. 905–914 (cit. on p. 40).

[PTD20] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. „GDumb: A simple approach that
questions our progress in continual learning“. In: European Conference on Computer
Vision. Springer. 2020, pp. 524–540 (cit. on pp. 54, 56, 61, 67, 71, 85).

[PTK22] Francesco Pinto, Philip HS Torr, and Puneet K. Dokania. „An impartial take to the cnn
vs transformer robustness contest“. In: Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIII. Springer.
2022, pp. 466–480 (cit. on p. 106).

[Pu+21] Nan Pu, Wei Chen, Yu Liu, Erwin M Bakker, and Michael S Lew. „Lifelong person re-
identification via adaptive knowledge accumulation“. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 7901–7910 (cit. on
p. 44).

Bibliography 123

[Qin+21] Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. „Bns: Building network
structures dynamically for continual learning“. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 20608–20620 (cit. on p. 38).

[Ran+17] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. „Encoder
based lifelong learning“. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 1320–1328 (cit. on p. 43).

[Rav+21] Leonardo Ravaglia, Manuele Rusci, Davide Nadalini, et al. „A TinyML Platform for
On-Device Continual Learning With Quantized Latent Replays“. In: IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 11.4 (2021), pp. 789–802 (cit. on
pp. 69, 83, 85).

[Raz+14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. „CNN
Features Off-the-Shelf: An Astounding Baseline for Recognition“. In: Conference on
Computer Vision and Pattern Recognition Workshop. CVPR-W. 2014 (cit. on pp. 40,
51).

[RBV18] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. „Efficient Parametrization
of Multi-Domain Deep Neural Networks“. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
2018, pp. 8119–8127 (cit. on p. 37).

[Reb+17] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lam-
pert. „iCaRL: Incremental Classifier and Representation Learning“. In: Conference on
Computer Vision and Pattern Recognition. CVPR. 2017 (cit. on pp. 40, 43, 51–55, 58,
59, 61, 62, 69, 71–75, 77, 78, 83, 85, 88, 90, 139, 141).

[Rin97] Mark B Ring. „CHILD: A first step towards continual learning“. In: Machine Learning
28.1 (1997), pp. 77–104 (cit. on p. 88).

[RM19] Ricardo Ribani and Mauricio Marengoni. „A Survey of Transfer Learning for Convolu-
tional Neural Networks“. In: 2019 32nd SIBGRAPI Conference on Graphics, Patterns
and Images Tutorials (SIBGRAPI-T). 2019, pp. 47–57 (cit. on pp. 45, 89).

[RPR20] Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. „Tree-CNN: A hierarchical
Deep Convolutional Neural Network for incremental learning“. In: Neural Networks
121 (2020), pp. 148–160 (cit. on p. 37).

[RT17] Amir Rosenfeld and John K. Tsotsos. „Incremental Learning Through Deep Adaptation“.
In: CoRR abs/1705.04228 (2017) (cit. on p. 37).

[Rud+17] Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult. „The extreme
value machine“. In: IEEE transactions on pattern analysis and machine intelligence
40.3 (2017), pp. 762–768 (cit. on pp. 54, 73).

[Rus+15] Olga Russakovsky, Jia Deng, Hao Su, et al. „ImageNet Large Scale Visual Recognition
Challenge“. In: International Journal of Computer Vision 115.3 (2015), pp. 211–252
(cit. on pp. 58, 76, 80, 87, 93, 94, 139, 140).

[Rus+16] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, et al. „Progressive Neural
Networks“. In: CoRR abs/1606.04671 (2016) (cit. on p. 37).

[SE15] Babak Saleh and Ahmed Elgammal. „Large-scale classification of fine-art paintings:
Learning the right metric on the right feature“. In: arXiv preprint arXiv:1505.00855
(2015) (cit. on pp. 94, 140).

124 Bibliography

[Ser+18] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. „Overcoming
catastrophic forgetting with hard attention to the task“. In: International Conference on
Machine Learning. PMLR. 2018, pp. 4548–4557 (cit. on pp. 38, 53).

[SF86] Jeffrey C Schlimmer and Douglas Fisher. „A case study of incremental concept induc-
tion“. In: AAAI. Vol. 86. 1986, pp. 496–501 (cit. on p. 69).

[Sha+14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. „CNN
features off-the-shelf: an astounding baseline for recognition“. In: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. 2014, pp. 806–
813 (cit. on pp. 71, 72).

[Shi+17] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. „Continual learning with
deep generative replay“. In: Advances in neural information processing systems 30
(2017) (cit. on p. 48).

[SKH21] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. „On learning the geodesic path
for incremental learning“. In: Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition. 2021, pp. 1591–1600 (cit. on p. 43).

[Smi+21] James Smith, Yen-Chang Hsu, Jonathan Balloch, et al. „Always be dreaming: A new
approach for data-free class-incremental learning“. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 9374–9384 (cit. on pp. 52–55,
58, 61, 69, 72–74, 77, 78, 80, 85).

[SSA17] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. „Incremental Learning of
Object Detectors without Catastrophic Forgetting“. In: IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. 2017, pp. 3420–
3429 (cit. on p. 44).

[Tam+17] Youssef Tamaazousti, Hervé Le Borgne, Céline Hudelot, Mohamed El Amine Seddik,
and Mohamed Tamaazousti. „Learning More Universal Representations for Transfer-
Learning“. In: CoRR abs/1712.09708 (2017) (cit. on pp. 45, 89).

[Tan+18] Chuanqi Tan, Fuchun Sun, Tao Kong, et al. „A survey on deep transfer learning“. In:
International conference on artificial neural networks. Springer. 2018, pp. 270–279
(cit. on pp. 45, 54, 71, 89).

[Tan+23] Chi Ian Tang, Lorena Qendro, Dimitris Spathis, et al. „Practical self-supervised continual
learning with continual fine-tuning“. In: arXiv preprint arXiv:2303.17235 (2023) (cit. on
p. 91).

[Tao+20a] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. „Topology-
preserving class-incremental learning“. In: Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16.
Springer. 2020, pp. 254–270 (cit. on p. 37).

[Tao+20b] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, et al. „Few-shot class-incremental learn-
ing“. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 12183–12192 (cit. on p. 37).

[Tia+23] Songsong Tian, Weijun Li, Xin Ning, et al. „Continuous transfer of neural network
representational similarity for incremental learning“. In: Neurocomputing 545 (2023),
p. 126300 (cit. on pp. 46, 91).

Bibliography 125

[Tou+21] Hugo Touvron, Matthieu Cord, Matthijs Douze, et al. „Training data-efficient image
transformers & distillation through attention“. In: International conference on machine
learning. PMLR. 2021, pp. 10347–10357 (cit. on pp. 46, 89, 90).

[Van+18] Grant Van Horn, Oisin Mac Aodha, Yang Song, et al. „The inaturalist species classifica-
tion and detection dataset“. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 8769–8778 (cit. on pp. 59, 94, 139, 140).

[Ven+17] Ragav Venkatesan, Hemanth Venkateswara, Sethuraman Panchanathan, and Baoxin
Li. „A strategy for an uncompromising incremental learner“. In: arXiv preprint
arXiv:1705.00744 (2017) (cit. on pp. 69, 71).

[Ver+21] Vinay Kumar Verma, Kevin J. Liang, Nikhil Mehta, Piyush Rai, and Lawrence Carin.
„Efficient Feature Transformations for Discriminative and Generative Continual Learn-
ing“. In: CoRR abs/2103.13558 (2021) (cit. on pp. 54, 67, 85).

[VT19] Gido M Van de Ven and Andreas S Tolias. „Three scenarios for continual learning“. In:
arXiv preprint arXiv:1904.07734 (2019) (cit. on p. 88).

[Wan+20] Jing Wang, Weiqing Min, Sujuan Hou, et al. „Logo-2K+: A large-scale logo dataset
for scalable logo classification“. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34 (4). 2020, pp. 6194–6201 (cit. on pp. 94, 140).

[Wan+22a] Liyuan Wang, Xingxing Zhang, Kuo Yang, et al. „Memory Replay with Data Compres-
sion for Continual Learning“. In: International Conference on Learning Representations.
2022 (cit. on p. 48).

[Wan+22b] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, et al. „Learning to prompt for continual
learning“. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 139–149 (cit. on pp. 41, 46, 88, 91, 105).

[Wan+23a] Yabin Wang, Zhiheng Ma, Zhiwu Huang, et al. „Isolation and Impartial Aggregation: A
Paradigm of Incremental Learning without Interference“. In: 2023 AAAI Conference.
2023 (cit. on pp. 46, 54, 68).

[Wan+23b] Zeyu Wang, Yutong Bai, Yuyin Zhou, and Cihang Xie. „Can CNNs Be More Robust
Than Transformers?“ In: (2023) (cit. on p. 106).

[Wel09] Max Welling. „Herding dynamical weights to learn“. In: Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009. 2009, pp. 1121–1128 (cit. on p. 75).

[Wey+20] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. „Google landmarks dataset v2-
a large-scale benchmark for instance-level recognition and retrieval“. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 2575–
2584 (cit. on pp. 94, 140).

[WGL21] Guile Wu, Shaogang Gong, and Pan Li. „Striking a Balance Between Stability and Plas-
ticity for Class-Incremental Learning“. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 1124–1133 (cit. on pp. 51–55, 58, 59, 61, 62,
88, 142).

[Wor+20] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, et al. „Supermasks in superposi-
tion“. In: Advances in Neural Information Processing Systems 33 (2020), pp. 15173–
15184 (cit. on p. 38).

126 Bibliography

[WRH17] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. „Growing a Brain: Fine-Tuning
by Increasing Model Capacity“. In: Conference on Computer Vision and Pattern Recog-
nition. CVPR. 2017 (cit. on pp. 37, 90).

[Wu+18] Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van De Weijer, Bogdan Raducanu, et al.
„Memory replay gans: Learning to generate new categories without forgetting“. In:
Advances in Neural Information Processing Systems 31 (2018) (cit. on p. 44).

[Wu+19] Yue Wu, Yinpeng Chen, Lijuan Wang, et al. „Large Scale Incremental Learning“. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019. 2019, pp. 374–382 (cit. on pp. 43, 51, 55, 58, 61,
69, 75).

[Wu+22] Tz-Ying Wu, Gurumurthy Swaminathan, Zhizhong Li, et al. „Class-Incremental Learn-
ing With Strong Pre-Trained Models“. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2022, pp. 9601–9610 (cit. on
pp. 46, 91).

[Xue+22] Mengqi Xue, Haofei Zhang, Jie Song, and Mingli Song. „Meta-attention for vit-backed
continual learning“. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 150–159 (cit. on p. 38).

[XZ18] Ju Xu and Zhanxing Zhu. „Reinforced continual learning“. In: Advances in Neural
Information Processing Systems 31 (2018) (cit. on p. 38).

[Yi+14] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. „Learning face representation from
scratch“. In: arXiv preprint arXiv:1411.7923 (2014) (cit. on pp. 94, 140).

[Yoo+18] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. „Lifelong Learning
with Dynamically Expandable Networks“. In: ICLR, 2018 (cit. on p. 38).

[Yos+14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. „How transferable are
features in deep neural networks?“ In: Advances in neural information processing
systems 27 (2014) (cit. on p. 56).

[Yu+20] Lu Yu, Bartlomiej Twardowski, Xialei Liu, et al. „Semantic Drift Compensation for
Class-Incremental Learning“. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020,
pp. 6980–6989 (cit. on pp. 51, 53, 54, 69, 72–74, 77–79, 85).

[Zha+19] Mengyao Zhai, Lei Chen, Frederick Tung, et al. „Lifelong GAN: Continual Learning
for Conditional Image Generation“. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). Oct. 2019 (cit. on p. 44).

[Zha+20] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. „Maintaining Discrim-
ination and Fairness in Class Incremental Learning“. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020. IEEE, 2020, pp. 13205–13214 (cit. on pp. 44, 69, 71).

[Zho+19] Peng Zhou, Long Mai, Jianming Zhang, et al. „M2KD: Multi-model and Multi-level
Knowledge Distillation for Incremental Learning“. In: CoRR abs/1904.01769 (2019)
(cit. on p. 51).

[Zhu+21a] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu. „Class-Incremental Learning
via Dual Augmentation“. In: Advances in Neural Information Processing Systems 34
(2021) (cit. on pp. 21, 44, 69, 71, 72, 74, 76–79, 83, 85, 88, 90, 94).

Bibliography 127

[Zhu+21b] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. „Prototype Aug-
mentation and Self-Supervision for Incremental Learning“. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 5871–5880 (cit. on pp. 21, 44, 59, 62, 69, 71, 72, 74, 76–79, 83–85, 88, 90, 94).

[Zhu+22] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. „Self-Sustaining Repre-
sentation Expansion for Non-Exemplar Class-Incremental Learning“. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 9296–
9305 (cit. on pp. 21, 44, 71–74, 76–79, 83–85, 88, 90, 94).

[ZYZ21] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. „Co-transport for class-incremental
learning“. In: Proceedings of the 29th ACM International Conference on Multimedia.
2021, pp. 1645–1654 (cit. on p. 44).

128 Bibliography

List of Figures

1.1 Illustration of the cross-validation procedure, with K folds. 13

1.2 Illustration of the working principle of a neuron. 15

1.3 Illustration of the working principle of an MLP. 16

1.4 Illustration of the working principle of a convolutional layer. 17

1.5 Illustration of the working principle of two common pooling layers. 17

1.6 Illustration of the ViT architecture. Source [Dos+21]. 18

1.7 Outlines of the five major challenges that are directly linked to Class-
Incremental Learning. 20

1.8 Flowchart of the Classical Training Procedure for Machine Learning Models
and description of the specificities of the CIL training. 25

2.1 Comparative illustration showing the unique characteristics of Generic Incre-
mental Learning, Domain Incremental Learning, Task Incremental Learning,
and (One-)Class Incremental Learning. Each of these learning approaches
is shown with its specific context and learning paradigm, providing a clear
distinction in terms of task adaptability, data domain change, class integration,
and generic incremental adaptation. 32

2.2 Comparison of exemplar selection methods. Source [Liu+20b]. 47

3.1 Accuracy of past and new classes in exemplar-free CIL for three large-scale
datasets with K = 10 incremental states. LUCIR [Hou+19] uses distillation
to preserve past knowledge and favors plasticity. DeeSIL [BP18] transfers
features from the initial frozen model to all subsequent states and focuses
on stability. PlaStIL offers a better plasticity-stability balance. Note that the
proportion of past classes increases as the incremental process advances and
so does their weight in global accuracy. 52

129

3.2 PlaStIL overview using a toy example with K = 4 CIL states and n = 2
new classes learned per state. The global memory footprint is equivalent
to that of distillation-based methods, but this memory is used differently.
We assume that a model base and at most three model tops can be used.
A base B, is learned initially and then frozen, as is T1 which is needed to
ensure stability. Initial classifier weights are trained using T1 in each state
and reserved for future use. Classifier weights that are actually used in each
state are highlighted in red. In state 4, the recent model tops (T4 and T3) are
included to ensure plasticity. Classifier weights w7

4 and w8
4, associated with

the new classes from state 4 are learned with features provided by T4. w5
3

and w6
3 were learned with T3 features in state 3, when they were new. w1

1 to
w4

1 were learned with T1 features, in states 1 and 3. w5
1 to w8

1 are reserved
for future use. T2 is discarded to keep the total memory footprint of PlaStIL
bounded. Best viewed in color. 57

3.3 Incremental accuracy across all states for K ∈ {5, 10, 20}. Plots are presented
for the best methods from Table 3.1. 63

3.4 Top-1 incremental accuracy of three versions of PlaStIL applied to DeeSIL
when using a single model top with variable fine-tuning depth. DeeSIL is a
limit case in which the whole feature extractor is frozen. Best viewed in color. 64

3.5 Top-1 accuracy gains obtained with the three variants of PlaStIL applied to
DeeSIL with different thresholds for the rank of the top new class among the
predictions generated with Equation 3.4. Results are shown for ILSVRC with
K = 10 states. The corresponding percentage of supplementary inferences
needed for each threshold is also plotted. Interesting gains are obtained
starting with a recent class predicted in the second position, which requires
approximately 25% of supplementary inferences for PlaStIL1. Best viewed in
color. 65

3.6 Effect of varying the number of additional tops on incremental accuracy, on
ILSVRC with K ∈ {5, 10, 20}. As the number of tops increases, the accuracy
of the model improves. However, this comes at the cost of increased memory
usage on disk. Best viewed in color. 67

4.1 Illustration of the proposed pseudo-feature generation procedure. This toy
example includes an initial state (3 classes) and two IL states (1 new class per
state) in subfigures (a), (b) and (c). Subfigure (d) provides the actual features
of all classes that would be available for classical learning. The illustration
uses a 2D projection of actual features. Pseudo-features of past classes are
generated by geometric translation of features of the new class added in each
state with the difference between the centroids of the target past class and
of the new class. While imperfect, the pseudo-feature generator produces a
usable representation of past classes. Best viewed in color. 70

130 List of Figures

4.2 FeTrIL overview for a toy example with an initial state (3 classes) and two
incremental states (1 class per state). The feature extractor F is trained in
the initial state, using sets of data X1, X2, X3, and then frozen afterward.
The generator G uses features f(Cn) of the new class extracted with F and
prototypes of past classes µ(Cp) to generate pseudo-features of past classes
f̂ t(Cp) in the tth state. Prototypes (µ(Ci)) are the centroids of all classes
(past and new). They are learned when classes are first seen and then stored
throughout the IL process. A linear classifier L is used to learn classification
weights w(Ci) for all seen classes (past and new). 73

4.3 Evolution of top-1 accuracy for an incremental process with T = 10 IL states.
Best viewed in color. 81

4.4 Top-1 incremental accuracy of FeTrIL1 for approximate training of the clas-
sification layer with different ratios for negative sampling. ova denotes a
classical one-vs-all training procedure. 84

4.5 Top-1 incremental accuracy per state for past and new classes for TinyIm-
ageNet, with T = 10 incremental states for FeTrIL1 and SSRE, the best
compared method. An ideal method would provide high accuracy, but also
similar performance for past and new classes. The accuracy of past and new
classes is globally closer for FeTrIL1 , which indicates that our method pro-
vides a better stability-plasticity balance than SSRE. Overall accuracy is better
for FeTrIL1 in Figure 4.3 because the contribution of new classes in each state
diminishes during the CIL process. 85

5.1 Overview of the proposed analysis framework of initial training strategies for
EFCIL. 91

5.2 Correlation between the endogenous variables. 97
5.3 Diagnostics of the regression for the accuracy as in Equation 5.4. 100
5.4 Output of the regression for the accuracy . 101
5.5 Accuracy gain by using strategy in row i over strategy in column j , e.g. "The

accuracy of BYOL-ft is 17pts higher than SL(ResNet)". Only results in bold
are statistically different. 103

5.6 Overall pairwise comparisons on Forgetting. Only results in bold are statisti-
cally different. 103

5.7 Interaction plot of the best strategies for different transfer types and for the 3
CIL algorithms. Similar slopes indicate similar behaviors. A change in slope
indicates a change in behavior. 104

B.1 Overall pairwise comparisons . 145
B.2 Pairwise gain of accuracy per dataset . 146
B.3 Pairwise gain of accuracy per method . 147
B.4 Pairwise gain of accuracy per number of classes in the initial state 148

List of Figures 131

List of Tables

2.1 Sensibilities of Model-Growth based, Fixed-Representation based and Fine-
Tuning based methods over complexity, memory, and accuracy. Green means
that the type of method is well suited for the criterion, orange means that it is
not well suited, and red means that it is not suited at all. 34

2.2 Sensibilities of Model-Growth based, Fixed-Representation based and Fine-
Tuning based methods over timeliness, plasticity, and scalability. Green means
that the type of method is well suited for the criterion, orange means that it is
not well suited, and red means that it is not suited at all. 35

3.1 Average top-1 accuracy with three numbers of states K per dataset. PlaS-
tIL is applied on top of DeeSIL and DSLDA. Best results - in bold,
second best - underlined. 62

3.2 Average top-1 incremental accuracy in a dataset transfer learning configuration.
Results are given for transferring between all pairs of initial and target datasets.
All experiments are run with K = 10 states. Best results are in bold. 63

3.3 Comparison of PlaStIL on top of DeeSIL [BP18] with a version that knowing
the final composition of the different states will only fine-tune the relevant
states (PlaStIL +oracle). The average gains are of +0.2% with PlaStIL +oracle. 66

3.4 Average top-1 accuracy with three numbers of states K per dataset, compar-
ison of PlaStIL1 on top of DeeSIL [BP18] with REMIND [Hay+20] with
different budgets for the storage of their compressed vectors (1, 2 and 4 times
the size of a ResNet18 on disk). Best results - in bold, second best - underlined. 66

4.1 Average top-1 incremental accuracy in EFCIL with different numbers of
incremental steps. FeTrIL1 results are reported with pseudo-features translated
from the most similar new class. "-" cells indicate that results were not
available. "x" cells indicate that the configuration is impossible for that
method. Best results - in bold, second best - underlined. 78

4.2 Comparison of SDC [Yu+20] with FeTrIL1 using the evaluation protocol for
two supplementary datasets used in [Yu+20]. Best results in bold. 79

4.3 Comparison of ABD [Smi+21] with FeTrIL using the authors’ evaluation pro-
tocol. ImageNet50 includes 50 classes and 5 states of 10 classes. ImageNet100
includes 100 classes, with 20 states of 5 classes each. Note that [Smi+21] uses
top-5 accuracy for ImageNet50 and top-1 for ImageNet100 and we present
the same numbers. Best results in bold. 80

133

4.4 Comparison of FeTrIL with AANets [LSS21], applied on top of EBCIL
baselines which store 20 exemplars of past classes to mitigate catastrophic
forgetting. 80

4.5 Average top-1 CIL accuracy obtained with the variants of pseudo-feature
selection from Subsection 4.3.2 for T = 5. We set k = {1, 5, 10} for
the similarity rank between the past and new classes to test the effect of
class similarities. There are 10 (CIFAR-100 and ImageNet-Subset) and 20
(TinyImageNet) new classes per state from which to select features translation. 82

5.1 Performance of three EFCIL algorithms with different training strategies for
the initial model averaged over 16 target datasets and two EFCIL scenarios.
BSIL [JLM21] is a recent EFCIL algorithm that is representative of fine-
tuning-based CIL works. DSLDA [HK20] and FetrIL [Pet+23b] adapt linear
probing [Kum+22] for EFCIL. We present the averaged incremental accuracy
(µAcc) and the number of cases (W) in which a combination of algorithm and
initial training strategy performs best for a combination of target dataset and
EFCIL scenario (see Sec.5.4). Initial training strategies are defined by: Arch-
deep architecture used (ResNet50 (RN50) [He+16] or vision transformer
(ViT-S) [Dos+21]); Method - initial training method; FT - fine-tuning on
initial classes of the target dataset; Ext- use of an external dataset, such as
ILSVRC [Rus+15]; Sup - type of supervision for the initial model: self-
supervised (SSL) or supervised (SL). 87

5.2 Variables predicting accuracy, sorted by decreasing importance 99
5.3 Variables predicting forgetting, sorted by decreasing importance 99
5.4 ANOVA results for each considered regression. Variables are significant at

p < 0.05 and ordered by decreasing importance. 102

B.1 Summary of datasets. µ is the mean number of train images per class and σ is
the standard deviation . 139

B.2 Summary of datasets. µ is the mean number of train images per class and σ is
the standard deviation . 139

B.3 Number of images per class in the train and test subsets of each target dataset.
The average and the standard deviation of the number of images per class are
denoted by µ and σ respectively. 140

134 List of Tables

List of Tables 135

AList of publications

Grégoire Petit, Michael Soumm, Feillet Eva, Adrian Popescu, David Picard, and Bertrand
Delezoide. „An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental
Learning“. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). Jan. 2024

Grégoire Petit, Adrian Popescu, Eden Belouadah, David Picard, and Bertrand
Delezoide. „PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning“. In:
Proceedings of The 2nd Conference on Lifelong Learning Agents. Ed. by Sarath Chandar,
Razvan Pascanu, and Doina Precup. Proceedings of Machine Learning Research. PMLR,
2023

Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand
Delezoide. „FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning“.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). Jan. 2023, pp. 3911–3920

Eva Feillet, Grégoire Petit, Adrian Popescu, Marina Reyboz, and Céline Hudelot.
„AdvisIL - A Class-Incremental Learning Advisor“. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). Jan. 2023, pp. 2400–
2409

137

BDatasets details and
implementation details

B.1 Datasets details

B.1.1 PlaStIL: Plastic and Stable Exemplar-Free
Class-Incremental Learning

Dataset #Train #Test µ(Train) σ(Train)
ILSV RC [Rus+15] 1,231,167 50,000 1231.2 70.2

Landmarks [Noh+17] 374,367 20,000 374.4 103.8
iNaturalist [Van+18] 300,00 10,000 300.0 0.0

Tab. B.1.: Summary of datasets. µ is the mean number of train images per class and σ is the
standard deviation

The datasets used in evaluation are designed for three visual classification tasks: object,
natural species, and landmark recognition. Their main statistics are in Table B.1.

B.1.2 FeTrIL: Feature Translation for Exemplar-Free
Class-Incremental Learning

Dataset #Train #Test µ(Train) σ(Train)
CIFAR-100 [Kri09] 50,000 10,000 500.0 0.0

TinyImageNet [LY15] 100,000 10,000 500.0 0.0
ImageNet-Subset [Rus+15] 128856 5,000 1288.56 44.85

ILSVRC [Rus+15] 1,231,167 50,000 1231.2 70.2
Tab. B.2.: Summary of datasets. µ is the mean number of train images per class and σ is the

standard deviation

The datasets used in evaluation are designed for visual classification tasks. Their main
statistics are in Table B.2. Since the actual test subsets are not provided by the orga-
nizers of the ImageNet LSVRC competition, we follow common practice in incremental
learning [Reb+17; Cas+18; Hou+19] and use the original validation subsets for the test
phase.

139

B.1.3 An Analysis of Initial Training Strategies for
Exemplar-Free Class-Incremental Learning

Dataset µtrain µtest σtrain σtest

Casia100 250.0 50.0 0.0 0.0
Food100 750.0 250.0 0.0 0.0
Land100 300.0 50.0 0.0 0.0
IMN1001 340.0 60.0 0.0 0.0
IMN1002 340.0 60.0 0.0 0.0

Flora 340.0 60.0 0.0 0.0
Logo100 80.0 15.0 0.0 0.0

Qdraw100 500.0 100.0 0.0 0.0
Art100 150.0 25.0 0.0 0.0

MTSD100 100.0 20.0 0.0 0.0
Air100 80.0 20.0 0.0 0.0

Fungi100 300.0 10.0 0.0 0.0
Amph100 300.0 10.0 0.0 0.0
Land1k 374.37 20.0 103.83 0.0
iNat1k 300.0 10.0 0.0 0.0
Casia1k 60.0 28.0 0.0 0.0

Tab. B.3.: Number of images per class in the train and test subsets of each target dataset. The
average and the standard deviation of the number of images per class are denoted by µ
and σ respectively.

We experiment with a wide variety of datasets in terms of domain, granularity, number
of samples per class, and complexity of patterns to recognize. We select thirteen datasets
containing 100 classes and three datasets containing 1000 classes as follows. The datasets
IMN1001 and IMN1002 are obtained by randomly sampling 100 classes from ImageNet-
21k [Den+09] which are not present in ILSVRC [Rus+15]. Flora is a thematic subset
of ImageNet obtained by sampling 100 classes under the concept ‘flora‘, without inter-
section with ILSVRC. We also used 100-classes subsets of WikiArt [SE15] (Art100),
Casia-align [Yi+14] (Casia100), Food101 [BGV14] (Food100), FGVC-Aircraft [Maj+13]
(Air100), MTSD [MY16] (MTSD100), Google Landmarks v2 [Wey+20] (Land100),
Logo2K [Wan+20] (Logo100) and Quickdraw [HE17] (Qdraw100). We build two fine-
grained subsets from iNaturalist [Van+18] (2018 version) by selecting (i) amphibia species
(Amph100) and (ii) fungi species (Fungi100) which do not intersect with the ILSVRC
dataset. Finally, we also use three 1000-classes subsets of Casia-align (Casia1k), Google
Landmarks v1 [Noh+17] (Land1k), and iNaturalist (iNat1k), respectively.

The average number of images per dataset is reported in Table B.3.

B.2 Implementation details

140 Chapter B Datasets details and implementation details

B.2.1 PlaStIL: Plastic and Stable Exemplar-Free
Class-Incremental Learning

As already mentioned in Section 3.4.3, we used the authors’ optimal parameters to run all
baselines. A ResNet-18 model [He+16] and an SGD optimizer with momentum = 0.9 are
used for all methods. We explicitly list the learning parameters of each method hereafter:

Learning from scratch
This type of learning is used to train models of the initial state (because it is not incremental),
and also Joint, the upper bound method where all classes are learned with all their data at
once.

Following [BPK20], Joint and the first models of FT and SIW [BPK20] are run for 120
epochs using batch size = 256 and weight decay = 0.0001. The lr is set to 0.1 and is
divided by 10 when the error plateaus for 10 epochs.

For REMIND [Hay+20], DSLDA [HK20], DeeSIL [BP18], FixedNCM [Reb+17] and
PlaStIL, we follow [Hay+20] and run the model for 90 epochs using lr = 0.1, batch size =
128, weight decay = 0.00001. The lr is set to its initial value decayed by 10 every 30
epochs. The lr is constrained to not decrease beneath 0.001.

For LUCIR, LwF, the first model is trained in the same manner as subsequent models
(detailed below), following the authors of [Hou+19; Reb+17].

Incremental Learning
Here, we describe the hyper-parameters used to train the models incrementally for model-
update-based methods.

• FT [BPK20] - IL models are trained for 35 epochs with batch size = 256,
momentum = 0.9 and weight decay = 0.0001. The learning rate is set to
lr = 0.1/t at the beginning of each incremental state (t ≥ 2) and is divided by
10 when the error plateaus for 5 consecutive epochs.

• LwF [Reb+17] - all models are trained for 60 epochs using lr = 1.0, batch size =
128, and weight decay = 0.0001. The learning rate is divided by 5 at epochs 20, 30,
40, and 50.

• LUCIR [Hou+19] - all models are trained for 90 epochs using lr = 0.1, batch size =
128 and weight decay = 0.0001. The lr is divided by 10 at epochs 30 and 60. The
method-specific parameters are the same as those from the original paper [Hou+19]
and can also be found once we release the codes and configuration files.

B.2 Implementation details 141

• SIW [BPK20] - is trained using the same hyper-parameters of FT following the
authors.

• SPB-M [WGL21] - all models are trained for 90 epochs using lr = 0.1, batch size =
128 and weight decay = 0.0001. The lr is divided by 10 at epochs 30 and 60. The
method-specific parameters are the same as those from the original paper [WGL21]
and can also be found once we release the codes and configuration files. Note that
SPB-M [WGL21] has no available code, we implemented it by modifying significantly
the code of LUCIR [Hou+19], and verified its correctness on the results the authors
provided in their paper.

• REMIND [Hay+20] - method-specific parameters are the same as those from the
original paper, and run from the available code, using the advised version of pytorch

We reimplemented the method and verified its correct functioning using the protocol from
the original paper.

B.2.2 FeTrIL: Feature Translation for Exemplar-Free
Class-Incremental Learning

When implementations of compared methods were available, we first tested them using
the protocol and datasets from the original paper to make sure that we reproduced their
results. We then used the authors’ optimal parameters to test these methods in our evaluation
setting. Note that for the sake of fairness, all baselines were run using both training and
validation sets (from Table B.2). A ResNet-18 model [He+16] and an SGD optimizer with
momentum = 0.9 are used for all methods. We explicitly list the learning parameters of
each method hereafter:

1. Training the initial model:

This training regime is needed to obtain the initial model for each method, and also
Joint training which can be considered the upper bound method where all classes are
learned with all their data at once. We used the parameters provided by the authors as
follows.

Joint and the first models of FT and SIW are trained using the parameters
from [BPK20]. Each model is learned for 120 epochs using batch size = 256
and weight decay = 0.0001. The lr is set to 0.1 and is divided by 10 when the error
plateaus for 10 epochs.

142 Chapter B Datasets details and implementation details

The lr is set to its initial value decayed by 10 every 30 epochs. The lr is constrained
to not decrease beneath 0.001.

For LUCIR, the first model is trained in the same manner as subsequent models
(detailed below), following the original protocol from [Hou+19].

2. Training the incremental models:

Here, we describe the hyper-parameters used to train the methods which were retrained
for Chapter 4.

• LUCIR [Hou+19] - all models are trained for 90 epochs using lr = 0.1,
batch size = 128 and weight decay = 0.0001. The lr is divided by 10 at
epochs 30 and 60. The method-specific parameters are the same as those from
the original paper [Hou+19] and can also be found once we release the codes
and configuration files.

• DeeSIL [BP18] - the initial model is the same one used for FeTrIL. The training
of linear classifiers is also done using the same parameters.

B.2.3 An Analysis of Initial Training Strategies for
Exemplar-Free Class-Incremental Learning

Incremental learning algorithms

• BSIL. Our implementation of LUCIR [Hou+19] algorithm with a Balanced Cross-
Entropy loss [JLM21] is based on the original repository of [Hou+19]1. LUCIR was
initially proposed as a CIL algorithm with rehearsal. In practice, as we focus on
EFCIL, we set the size of LUCIR’s memory buffer to zero.

• DSLDA. Our implementation is based on the original repository of [HK20]2.

• FeTrIL. Our implementation is based on the original repository of [Pet+23b]3.

Pre-training algorithms

1https://github.com/hshustc/CVPR19_Incremental_Learning
2https://github.com/tyler-hayes/Deep_SLDA
3https://github.com/GregoirePetit/FeTrIL

B.2 Implementation details 143

https://github.com/hshustc/CVPR19_Incremental_Learning
https://github.com/tyler-hayes/Deep_SLDA
https://github.com/GregoirePetit/FeTrIL

The pre-trained models are taken from the repositories indicated in the footnotes: DINOv24,
BYOL5, and DeiT6. We also used the method MoCov37 for training models with a ResNet50
architecture in a self-supervised manner on the initial data subset of each target dataset.

Fine-tuning

We use PyTorch8 implementation of ResNet50 architecture and the ViT-Small transformer
architecture from the checkpoints of DINOv2 and DeiT. When fine-tuning the models, in the
case of ResNet50, we freeze the first 3 convolutional blocks and only update the parameters
belonging to the last convolutional block, as well as the linear layer. In the case of ViT-Small,
we freeze the blocks up to block 8 and update the blocks 9 to 11, as well as the linear layer.
In both cases, the parameters are updated using a learning rate equal to one-tenth of the
value of the base learning rate used to pre-train the model.

B.3 Influence of factors on accuracy

In this section, we provide additional information about the statistical study of Chapter 5.

Let us recall the overall pairwise comparisons in Figure B.1. We explore the effects of other
variables by splitting the data with respect to a studied variable and report the regression
results separately.

• Figure B.2 presents the results for each target dataset

• Figure B.3 presents the results for each incremental algorithm

• Figure B.4 presents the results depending on the number of classes in the first stats

4https://github.com/facebookresearch/dinov2
5https://github.com/yaox12/BYOL-PyTorch
6https://github.com/facebookresearch/deit
7https://github.com/facebookresearch/moco-v3/tree/main
8https://pytorch.org/vision/main/_modules/torchvision/models/resnet.
html#resnet50

144 Chapter B Datasets details and implementation details

https://github.com/facebookresearch/dinov2
https://github.com/yaox12/BYOL-PyTorch
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/moco-v3/tree/main
https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html#resnet50
https://pytorch.org/vision/main/_modules/torchvision/models/resnet.html#resnet50

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

2.1

11 8.4

11 8.8 0.39

25 23 14 14

25 23 14 14 0.06

28 26 18 17 3.7 3.6

29 26 18 18 3.8 3.8 0.19

32 30 22 21 7.4 7.3 3.7 3.5

40 38 30 29 16 16 12 12 8.3

42 40 31 31 17 17 13 13 9.5 1.2

43 41 33 32 19 18 15 15 11 2.8 1.6

44 42 34 33 20 20 16 16 12 3.9 2.7 1.1

11

11

25 23 14 14

25 23 14 14

28 26 18 17

29 26 18 18

32 30 22 21 7.4 7.3

40 38 30 29 16 16 12 12 8.3

42 40 31 31 17 17 13 13 9.5

43 41 33 32 19 18 15 15 11

44 42 34 33 20 20 16 16 12

Fig. B.1.: Overall pairwise comparisons

B.3 Influence of factors on accuracy 145

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

1.8
20 19
17 15 -3.6
24 23 4 7.6
32 30 12 15 7.7
39 38 19 23 15 7.4
40 38 20 23 16 8.2 0.79
42 40 22 25 18 10 2.6 1.8
48 46 27 31 23 16 8.3 7.5 5.6
48 46 28 31 24 16 8.6 7.8 5.9 0.3
49 47 28 32 24 17 9.3 8.5 6.6 0.99 0.69
43 42 23 27 19 11 4 3.2 1.4 -4.3 -4.6 -5.3

20
17
24
32 30
39 38 19 23 15
40 38 20 23 16
42 40 22 25 18
48 46 27 31 23
48 46 28 31 24
49 47 28 32 24 17
43 42 23 27 19

Art100

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

-5.1
16 22
47 52 30

-1.9 3.2 -18 -49
2.4 7.6 -14 -44 4.4
0.64 5.8 -16 -46 2.6 -1.8
16 21 -0.46 -31 18 14 15
27 32 11 -20 29 25 27 11
34 39 17 -13 36 31 33 18 6.5
36 41 20 -11 38 34 36 20 8.8 2.4
23 29 7 -23 25 21 23 7.5 -3.9 -10 -13

47 52 30
-49
-44
-46
-31

27 32 29 25 27
34 39 36 31 33
36 41 38 34 36

29

Casia1k

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

16
32 15
19 2.1 -13
28 11 -3.8 9.2
33 17 1.5 15 5.3
37 21 5.9 19 9.8 4.4
40 23 8.1 21 12 6.6 2.2
38 21 6.3 19 10 4.8 0.4 -1.8
46 30 15 28 18 13 8.7 6.6 8.3
46 30 15 28 19 13 9 6.9 8.6 0.33
47 30 15 28 19 14 9.1 6.9 8.7 0.39 0.06
60 44 29 42 32 27 23 20 22 14 14 14

32

28
33
37
40
38
46 28
46 28
47 28
60 29 42 32 27

Flora

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

40
27 -13
36 -4.3 9.1
59 19 32 23
61 21 34 25 2
67 27 40 31 8.1 6
60 20 33 24 1.3 -0.7 -6.7
69 28 42 32 9.5 7.5 1.5 8.2
68 27 41 32 8.6 6.6 0.6 7.3 -0.87
69 28 42 32 9.6 7.6 1.6 8.3 0.08 0.95
77 37 50 41 18 16 10 17 8.6 9.5 8.5

40
27
36
59 32
61 34
67 27 40 31
60 33
69 28 42 32
68 27 41 32
69 28 42 32
77 37 50 41

IMN100_1

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

4.8
24 19
15 10 -8.3
23 18 -0.6 7.7
48 43 24 33 25
50 45 26 34 27 1.9
55 50 32 40 32 7.4 5.5
48 44 25 33 25 0.6 -1.4 -6.8
57 52 33 41 34 8.9 7 1.5 8.3
55 50 31 40 32 7.1 5.2 -0.29 6.6 -1.8
56 51 32 41 33 8.2 6.3 0.79 7.6 -0.71 1.1
66 61 42 50 43 18 16 11 17 9 11 9.8

48 43 33
50 45 34
55 50 32 40 32
48 44 33
57 52 33 41 34
55 50 31 40 32
56 51 32 41 33
66 61 42 50 43

IMN100_2

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

-44
-0.78 44
-31 13 -31
-7 37 -6.2 24
-7 38 -6.2 24 0.04

0.12 45 0.9 31 7.1 7.1
-2.1 42 -1.4 29 4.9 4.8 -2.3
-0.75 44 0.03 31 6.2 6.2 -0.87 1.4

12 57 13 43 19 19 12 14 13
12 56 12 43 19 18 11 14 12 -0.53
11 56 12 43 18 18 11 14 12 -0.66 -0.13
20 64 21 51 27 27 20 22 21 7.8 8.3 8.4

-44
44

-31 -31
37
38
45 31
42 29
44 31
57 43
56 43
56 43
64 51 27 27

Food100

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

-5
-6.9 -1.8
-4.5 0.47 2.3
8.1 13 15 13
17 22 24 22 9
17 22 24 21 8.8 -0.17
18 23 25 23 9.8 0.86 1
31 36 38 36 23 14 14 13
34 39 41 39 26 17 17 16 2.9
39 44 46 44 31 22 22 21 8.2 5.3
41 46 48 46 33 24 24 23 10 7.4 2.1
48 53 54 52 39 30 31 30 16 14 8.2 6.1

24 22
17 24 21
18 25 23
31 36 38 36 23
34 39 41 39 26 17
39 44 46 44 31 22 22 21
41 46 48 46 33 24 24 23
48 53 54 52 39 30 31 30

Air100

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
DINOv2-t

-20
-4.2 15
13 33 17
26 45 30 13
23 42 27 9.4 -3.3
30 49 34 16 3.7 7
29 49 34 16 3.5 6.8 -0.22
36 55 40 22 9.8 13 6.1 6.3
34 54 39 21 8.5 12 4.8 5 -1.3
43 62 47 29 17 20 13 13 6.9 8.2

33
45 30
42 27

30 49 34
29 49 34
36 55 40 22
34 54 39
43 62 47 29

Fungi100

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

14
6.6 -7
42 29 36
33 20 27 -9
34 20 27 -8.6 0.45
36 22 29 -6.8 2.2 1.8
34 20 27 -8.4 0.67 0.22 -1.6
51 37 44 8.7 18 17 16 17
48 35 42 5.9 15 14 13 14 -2.8
49 35 43 6.7 16 15 14 15 -2 0.84
58 44 51 16 25 24 22 24 6.8 9.7 8.8

42

36

51 37
48
49 35
58 44

iNat1k

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

3.1
9.9 6.7
20 17 9.8
24 21 14 4.6
20 17 11 0.84 -3.8
27 24 17 7.2 2.6 6.4
26 22 16 5.9 1.3 5.1 -1.2
36 33 26 16 12 15 9 10
33 30 23 13 8.6 12 6 7.3 -3
38 35 28 18 14 18 11 12 2.2 5.2
44 41 34 25 20 24 18 19 8.5 11 6.3
29 26 19 9 4.4 8.2 1.8 3.1 -7.2 -4.2 -9.4 -16

36
33
38 28
44 34

MTSD100

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

-2
-22 -20
7.6 9.6 29
18 20 40 10

-2.6 -0.6 19 -10 -20
15 17 36 7 -3.2 17

0.26 2.3 22 -7.3 -18 2.9 -14
16 18 38 8.7 -1.5 19 1.7 16
20 22 42 13 2.4 23 5.6 20 3.9
26 28 48 19 8.6 29 12 26 10 6.3
30 32 52 22 12 33 15 30 14 9.8 3.5
18 20 40 11 0.32 21 3.6 18 1.8 -2 -8.3 -12

29
40

36

38
42

26 28 48 29 26
30 32 52 33 30

40

Casia100

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

14
18 4.4
23 9 4.6
34 20 15 11
38 24 20 15 4
46 32 28 23 12 8.2
46 32 28 23 12 8.3 0.1
46 32 27 23 12 7.9 -0.33 -0.43
58 44 39 35 24 20 12 12 12
56 42 38 33 22 18 10 10 10 -1.5
57 44 39 35 24 20 11 11 12 -0.25 1.2
61 47 42 38 27 23 15 14 15 2.9 4.4 3.2

34
38
46 32
46 32
46 32
58 44 39 35
56 42 38 33
57 44 39 35
61 47 42 38

Land100

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

20
17 -2.4
26 5.9 8.4
30 11 13 4.8
45 25 28 19 15
45 26 28 20 15 0.61
48 28 30 22 17 2.7 2.1
49 30 32 24 19 4.5 3.9 1.8
54 34 37 28 23 8.9 8.3 6.2 4.4
57 37 40 31 26 12 11 9.2 7.4 3
59 40 42 34 29 14 14 12 9.9 5.5 2.5
53 33 35 27 22 7.8 7.2 5.1 3.3 -1.1 -4.1 -6.6

26
30
45 28
45 26 28 20
48 28 30 22 17
49 30 32 24 19
54 34 37 28 23
57 37 40 31 26
59 40 42 34 29
53 33 35 27 22

Logo100

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
DINOv2-t

13
-2.4 -15
5.7 -7.2 8.1
24 11 26 18
20 6.9 22 14 -4.2
23 10 26 18 -0.8 3.4
28 15 31 23 4.2 8.5 5.1
32 19 35 27 8.2 12 9 3.9
32 20 35 27 8.4 13 9.2 4.2 0.22
48 35 50 42 24 28 25 20 16 15

24 26 18
20 22
23 26 18
28 31 23
32 35 27
32 35 27
48 35 50 42 24 28 25 20

Amph100

SL(
DeiT

)-ft

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
DINOv2-ft

MoCoV3
SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

3.4
15 12
27 24 12
5.7 2.2 -9.5 -22
12 8.9 -2.8 -15 6.7
13 9.9 -1.8 -14 7.7 0.98
16 13 1.1 -11 11 3.9 2.9
31 27 15 3.2 25 18 17 14
31 27 16 3.3 25 18 17 14 0.17
31 27 16 3.5 25 19 18 15 0.34 0.17
24 21 8.9 -3.3 18 12 11 7.8 -6.5 -6.7 -6.8

Land1k

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft
BYOL

DINOv2-ft
MoCoV3

SL(ResNet)
SL(DeiT)-t

BYOL-t
SL(ResNet)-t

MoCoV3-t
SL(ResNet)-ft

BYOL-ft
MoCoV3-ft
DINOv2-t

7.6
17 9
15 7.2 -1.8
33 25 16 18
22 14 5.4 7.2 -11
17 9 0.07 1.9 -16 -5.3
16 8.5 -0.5 1.3 -17 -5.9 -0.57
19 12 2.8 4.6 -13 -2.5 2.8 3.3
31 23 14 16 -1.7 9 14 15 12
33 25 16 18 -0.16 11 16 16 13 1.5
33 25 16 18 -0.19 11 16 16 13 1.5 -0.03
26 19 9.6 11 -6.5 4.2 9.5 10 6.8 -4.8 -6.4 -6.3

33

33
33

Qdraw100

Fig. B.2.: Pairwise gain of accuracy per dataset

146 Chapter B Datasets details and implementation details

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft

BYOL

DINOv2-ft

MoCoV3

SL(ResNet)

SL(DeiT)-t

BYOL-t

SL(ResNet)-t

MoCoV3-t

SL(ResNet)-ft

BYOL-ft

MoCoV3-ft

DINOv2-t

2.1

13 11

5.7 3.5 -7.1

35 33 22 29

20 18 7.1 14 -15

25 23 12 19 -9.6 5.1

29 27 16 23 -6 8.7 3.6

27 25 14 21 -7.9 6.9 1.7 -1.9

53 51 40 47 18 33 28 24 26

50 48 37 44 15 30 25 21 23 -2.7

53 51 41 48 19 34 28 25 27 0.8 3.5

55 53 42 50 21 35 30 27 28 2.6 5.3 1.8

13

35 33 22 29

20

25 23 12 19

29 27 16 23

27 25 14 21

53 51 40 47 18 33 28 24 26

50 48 37 44 15 30 25 21 23

53 51 41 48 19 34 28 25 27

55 53 42 50 21 35 30 27 28

BSIL

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft

BYOL

DINOv2-ft

MoCoV3

SL(ResNet)

SL(DeiT)-t

BYOL-t

SL(ResNet)-t

MoCoV3-t

SL(ResNet)-ft

BYOL-ft

MoCoV3-ft

DINOv2-t

2.4

7.8 5.4

12 9.6 4.2

16 14 8.5 4.2

21 19 13 9.3 5

26 23 18 14 9.6 4.6

24 22 16 12 7.7 2.7 -1.9

30 28 23 18 14 9.2 4.6 6.5

28 26 20 16 12 6.6 2.1 3.9 -2.5

33 30 25 21 16 11 6.7 8.6 2.1 4.7

33 31 25 21 17 12 7.2 9 2.6 5.1 0.42

38 36 30 26 22 17 12 14 7.8 10 5.7 5.2

12

16

21 19 13

26 23 18 14

24 22 16 12

30 28 23 18 14

28 26 20 16 12

33 30 25 21 16 11

33 31 25 21 17 12

38 36 30 26 22 17 12 14 10

DSLDA

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft

BYOL

DINOv2-ft

MoCoV3

SL(ResNet)

SL(DeiT)-t

BYOL-t

SL(ResNet)-t

MoCoV3-t

SL(ResNet)-ft

BYOL-ft

MoCoV3-ft

DINOv2-t

1.7

11 9.5

14 12 2.5

24 22 12 9.9

29 27 18 15 5.2

35 33 23 21 11 5.8

33 31 22 19 9.6 4.3 -1.4

38 36 27 24 14 9 3.3 4.7

41 39 30 27 17 12 6.4 7.8 3.1

43 41 32 29 19 14 8.2 9.6 4.9 1.8

43 42 32 30 20 15 8.8 10 5.5 2.4 0.59

45 43 34 31 21 16 10 12 7.1 4 2.2 1.6

11

14

24 22 12 9.9

29 27 18 15

35 33 23 21 11

33 31 22 19 9.6

38 36 27 24 14

41 39 30 27 17 12

43 41 32 29 19 14 9.6

43 42 32 30 20 15 10

45 43 34 31 21 16 10 12

FeTrIL

Fig. B.3.: Pairwise gain of accuracy per method

B.3 Influence of factors on accuracy 147

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft

BYOL

DINOv2-ft

MoCoV3

SL(ResNet)

SL(DeiT)-t

BYOL-t

SL(ResNet)-t

MoCoV3-t

SL(ResNet)-ft

BYOL-ft

MoCoV3-ft

DINOv2-t

3

8.5 5.5

12 9.4 3.9

17 14 8.3 4.4

38 35 29 25 21

42 39 33 29 25 4.1

41 38 33 29 24 3.5 -0.64

45 42 36 32 28 7 3 3.6

43 40 34 30 26 5.2 1.1 1.7 -1.9

48 45 39 35 31 10 6 6.6 3 4.9

49 46 41 37 32 12 7.5 8.2 4.6 6.5 1.6

55 52 46 42 38 17 13 14 10 12 7.1 5.5

8.5

12

17 14 8.3

38 35 29 25 21

42 39 33 29 25

41 38 33 29 24

45 42 36 32 28

43 40 34 30 26

48 45 39 35 31 10

49 46 41 37 32 12

55 52 46 42 38 17 13 14 10 12

With 10 base classes

SL(
DeiT

)-ft BYO
L

DINOv2
-ft

MoC
oV

3

SL(
Re

sN
et)

SL(
DeiT

)-t
BYO

L-t

SL(
Re

sN
et)

-t

MoC
oV

3-t

SL(
Re

sN
et)

-ft

BYO
L-f

t

MoC
oV

3-f
t

DINOv2
-t

SL(DeiT)-ft

BYOL

DINOv2-ft

MoCoV3

SL(ResNet)

SL(DeiT)-t

BYOL-t

SL(ResNet)-t

MoCoV3-t

SL(ResNet)-ft

BYOL-ft

MoCoV3-ft

DINOv2-t

8.7

17 8.6

8.3 -0.42 -9

26 18 9 18

17 8.7 0.11 9.1 -8.9

21 12 3.6 13 -5.4 3.5

22 13 4.7 14 -4.3 4.6 1.1

24 15 6.8 16 -2.2 6.7 3.2 2.1

40 31 23 32 14 23 19 18 16

38 29 20 29 11 20 17 16 14 -2.4

40 31 22 31 13 22 19 18 16 -0.46 1.9

38 29 21 30 12 21 17 16 14 -2.1 0.35 -1.6

17

26 18 18

17

21 13

22 14

24 16

40 31 23 32 14 23 19 18 16

38 29 20 29 11 20 17 16 14

40 31 22 31 13 22 19 18 16

38 29 21 30 12 21 17 16 14

With 50 base classes

Fig. B.4.: Pairwise gain of accuracy per number of classes in the initial state

148 Chapter B Datasets details and implementation details

CRésumé en français

C.1 Introduction

Nous introduisons dans le chapitre 1, l’apprentissage incrémental de classes sans exem-
ple (EFCIL). L’EFCIL est un domaine complexe et difficile qui nécessite des solutions
innovantes pour permettre l’apprentissage continu de nouvelles classes tout en préservant
les connaissances précédemment acquises. Plusieurs défis majeurs contribuent à la com-
plexité de l’EFCIL, chacun d’entre eux nécessitant un examen attentif et des approches
spécialisées.

Tout d’abord, l’EFCIL est confronté au problème de la mémoire. Le modèle apprend
continuellement un grand nombre de classes, sans avoir la possibilité de rappeler les images
des classes apprises précédemment. La croissance linéaire des besoins en mémoire avec
le nombre de classes poserait sinon d’importants problèmes de calcul et de stockage. Il
est donc essentiel de concevoir le modèle EFCIL de manière à minimiser l’impact sur
l’utilisation de la mémoire lorsque de nouvelles classes sont ajoutées.

Deuxièmement, les exigences en matière de calcul constituent un défi important de
l’EFCIL. Il est impératif d’apprendre de nouvelles classes efficacement sans compromettre
la qualité des représentations apprises. Lorsque le nombre de classes augmente, le temps
d’apprentissage pour chaque nouvelle classe augmente également, ce qui entraîne des goulets
d’étranglement au niveau du calcul. Les techniques visant à atténuer la dérive des carac-
téristiques, telles que la distillation, peuvent encore augmenter le coût de l’apprentissage.
Dans ce contexte, il est essentiel de développer des algorithmes d’apprentissage économes
en ressources, capables d’apprendre de nouvelles classes avec des ressources informatiques
limitées. Ces algorithmes doivent trouver un équilibre entre la conservation des connais-
sances antérieures (stabilité) et l’acquisition efficace de connaissances des nouvelles classes
(plasticité).

Le nombre d’états que le modèle doit apprendre est un autre facteur critique affectant les
performances de l’EFCIL. Au fur et à mesure que le modèle accumule des connaissances
sur un nombre croissant de classes, le défi de l’oubli catastrophique devient plus prononcé.
Le modèle doit conserver les informations sans revenir sur les exemples passés, ce qui
devient de plus en plus difficile à mesure que le nombre de classes augmente. Pour atténuer
l’oubli catastrophique, il est essentiel d’explorer des techniques qui permettent au modèle

149

de conserver efficacement une certaine forme de connaissance du passé. La prise en compte
de la relation entre le nombre d’états et le potentiel d’oubli catastrophique est essentielle
pour le développement d’algorithmes EFCIL robustes.

La variabilité des structures des flux de données constitue un obstacle important à la
réalisation d’un apprentissage EFCIL efficace et adaptatif. Les caractéristiques du flux de
données, y compris les types de données, la fréquence de mise à jour et la taille des états
incrémentaux, affectent toutes le processus d’apprentissage.

La diversité des structures des flux de données nécessite des approches d’apprentissage
incrémental par classe adaptées, capables de gérer différents types de données et de s’adapter
à différentes fréquences de mise à jour. En outre, ces approches doivent utiliser efficacement
les informations disponibles dans les états incrémentaux pour soutenir de manière optimale
l’apprentissage de nouvelles classes.

Enfin, la variabilité des scénarios a un impact significatif sur les performances des modèles
EFCIL, en particulier en ce qui concerne l’atténuation des oublis catastrophiques. Différents
scénarios dictent la composition de l’état initial, ce qui affecte la richesse de l’espace des
caractéristiques à partir duquel le modèle apprend. L’étude de la manière d’optimiser la
composition de l’état initial et l’élaboration de stratégies permettant d’adapter efficacement
le modèle à différents scénarios sont essentielles pour améliorer les capacités d’adaptation
et de généralisation du modèle.

C.2 État de l’art

Les méthodes de l’état de l’art de l’EFCIL peuvent être divisées en trois catégories : basées
sur la croissance du modèle, basées sur le réglage fin et basées sur un modèle fixe. Les
méthodes basées sur la croissance du modèle sont évolutives et permettent d’accueillir de
nouvelles classes avec des ressources suffisantes pour la croissance du modèle au cours
de la formation et de l’inférence. En outre, elles permettent d’atténuer le risque d’oubli
catastrophique lorsque le modèle s’enrichit de nouvelles classes, en conservant dans une
certaine mesure la connaissance des classes antérieures. Cependant, les méthodes basées
sur la croissance du modèle nécessitent une mémoire et des ressources informatiques
importantes en raison de la croissance du modèle avec chaque nouvelle classe, ce qui les
rend coûteuses en termes de calcul et de memoire dans les scénarios d’apprentissage à long
terme. Il est essentiel de contrôler le nombre de paramètres supplémentaires pour chaque
nouvelle tâche afin d’éviter que le modèle ne devienne excessivement grand et gourmand en
ressources. Le réglage fin permet au modèle de s’adapter aux nouvelles données, offrant un
certain niveau de plasticité pour tenir compte des changements dans le système. Cependant,
le réglage fin a des limites en termes de rapidité, car il ne permet pas l’intégration rapide de

150 Chapter C Résumé en français

nouvelles connaissances, nécessitant plus qu’un simple entraînement de la couche de poids
du classificateur, ce qui peut s’avérer critique dans les applications sensibles au temps. En
outre, il manque de stabilité, car il peut conduire à un oubli catastrophique des connaissances
acquises précédemment, étant donné qu’aucune connaissance antérieure n’est préservée
dans les méthodes d’EFCIL. Les méthodes basées sur la représentation fixe permettent
quant à elles de prendre en charge un grand nombre de classes sans augmentation linéaire
des besoins en mémoire, ce qui les rend adaptées aux scénarios d’apprentissage à long
terme. Elles sont plus stables puisque la représentation reste fixe et donc inchangée pendant
l’apprentissage de nouvelles tâches, ce qui contribue à réduire les besoins de calcul et la
stabilité. Néanmoins, les méthodes basées sur la représentation fixe ont une plasticité limitée
car la représentation, fixée dans l’état initial, peut devenir moins transférable si les tâches
incrémentales changent radicalement d’un état à l’autre.

Ainsi, en termes d’efficacité, de plasticité et de stabilité, nous avons choisi d’introduire deux
méthodes basées sur un modèle fixe et une analyse statistique dans cette thèse.

C.3 PlaStIL : Apprentissage par classe sans
mémoire, plastique et stable

L’approche PlaStIL s’attaque à un défi essentiel de l’EFCIL, qui consiste à trouver le
bon équilibre entre plasticité et stabilité. La plasticité se réfère à la capacité du modèle
à apprendre de nouvelles données, tandis que la stabilité se rapporte à la conservation de
la connaissance des classes précédemment apprises. Les méthodes traditionnelles de CIL
utilisent des tampons de mémoire ou maintiennent deux modèles profonds séparés pour
atteindre cet équilibre, mais ces approches sont souvent inefficaces en termes d’utilisation
de la mémoire et de besoins de calcul.

PlaStIL propose une nouvelle solution qui distribue un nombre similaire de paramètres
que les méthodes basées sur la distillation, mais d’une manière plus efficace. Elle gèle
l’extracteur de caractéristiques après l’état initial et introduit plusieurs têtes de modèle pour
assurer une grande plasticité. En gelant l’extracteur de caractéristiques, le modèle conserve
sa stabilité en formant les classes incrémentales les plus anciennes à l’aide de cet extracteur
fixe. D’autre part, il introduit la plasticité dans les nouvelles classes en utilisant des têtes de
modèles partiellement affinées. Cette approche permet à PlaStIL de fournir un compromis
équilibré entre plasticité et stabilité.

La méthode est évaluée de manière approfondie sur trois grands ensembles de données, et les
résultats démontrent son efficacité sur les méthodes existantes dans diverses configurations.
En obtenant de meilleures performances et une plus grande efficacité dans l’apprentissage

C.3 PlaStIL : Apprentissage par classe sans mémoire, plastique et stable 151

incrémental par classe, PlaStIL constitue une avancée prometteuse dans la résolution du
dilemme plasticité-stabilité dans l’EFCIL.

C.4 FeTrIL : Translation des caractéristiques pour
l’apprentissage incrémental par classe sans
exemple

FeTrIL, comme PlaStIL, se concentre sur le dilemme plasticité-stabilité dans l’EFCIL. Les
méthodes traditionnelles d’EFCIL privilégient soit la stabilité, en utilisant des extracteurs
de caractéristiques fixes, soit la plasticité, en procédant à des ajustements successifs du
modèle. FeTrIL vise à trouver un meilleur équilibre entre ces deux aspects en introduisant
une nouvelle approche.

La principale contribution de FeTrIL est l’introduction d’un générateur de pseudo-
caractéristiques, qui est un composant efficace et simple. Ce générateur ne nécessite
pas de stocker des exemples de classes antérieures, mais utilise plutôt les représentations des
centroïdes de ces classes. À l’aide de ces centroïdes, FeTrIL crée des pseudo-caractéristiques
pour les classes passées, qui sont combinées avec les caractéristiques réelles des nouvelles
classes. Ces caractéristiques combinées sont ensuite utilisées pour entraîner de manière
incrémentale un classificateur linéaire qui fait la distinction entre toutes les classes.

L’avantage de cette approche est son efficacité en termes de calcul, puisque seul un com-
posant minimal du modèle profond, le classificateur linéaire, doit être mis à jour au cours
du processus incrémental. FeTrIL est donc plus rapide que les méthodes traditionnelles qui
mettent à jour l’ensemble du modèle profond.

FeTrIL est évalué de manière approfondie sur trois ensembles de données difficiles dans
différents contextes incrémentaux, et il surpasse dix méthodes existantes dans la plupart des
cas, démontrant son efficacité dans l’EFCIL. En combinant les forces des extracteurs de car-
actéristiques fixes avec la simplicité et l’efficacité du générateur de pseudo-caractéristiques,
FeTrIL offre une solution nouvelle et prometteuse au dilemme plasticité-stabilité dans
l’EFCIL.

152 Chapter C Résumé en français

C.5 Analyse des stratégies d’initialisation pour
l’apprentissage incrémental de classes sans
exemple

Cette contribution aborde un défi fondamental de l’EFCIL, à savoir l’incorporation de
nouvelles classes dans le modèle sans oublier les connaissances acquises précédemment.
Contrairement à l’apprentissage incrémental traditionnel où les données antérieures peuvent
être stockées dans une mémoire tampon, les méthodes EFCIL ne peuvent pas s’appuyer sur
des exemples, ce qui rend la stratégie d’initialisation cruciale.

La contribution se concentre sur l’étude de la façon dont le modèle initial du processus
EFCIL peut être construit de deux façons : en utilisant uniquement l’état initial de l’ensemble
de données cible ou en incorporant des poids pré-entraînés à partir d’un ensemble de données
auxiliaire.

Afin d’obtenir des informations plus approfondies, la contribution mène une étude expéri-
mentale étendue et introduit un cadre d’analyse statistique pour quantifier la contribution
relative des différents facteurs à la performance incrémentale. La principale conclusion
est que la stratégie d’initialisation a un impact significatif sur la précision incrémentale
moyenne, mais que le choix de l’algorithme d’apprentissage incrémental par classe (CIL)
joue un rôle plus important dans la prévention de l’oubli.

Sur la base de ces résultats, l’étude fournit des recommandations pratiques pour choisir la
bonne stratégie d’initialisation pour différents cas d’utilisation de l’EFCIL. Cette analyse
contribue à une meilleure compréhension des facteurs influençant l’apprentissage incré-
mental basé sur les classes et offre des indications précieuses pour optimiser et déployer
efficacement les méthodes d’EFCIL.

C.5 Analyse des stratégies d’initialisation pour l’apprentissage incrémental de classes sans
exemple 153

	Cover
	Abstract
	Acknowledgement
	0.1 Definitions
	0.2 Acronyms
	0.3 Notations

	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 What mean to learn?
	1.2.2 Datasets
	1.2.3 Data preprocessing
	1.2.4 Risks
	1.2.5 Learning approaches
	1.2.6 Deep Learning

	1.3 Challenges in Class-Incremental Learning
	1.4 Metrics
	1.4.1 Initial Accuracy
	1.4.2 Final Accuracy
	1.4.3 Mean Incremental Accuracy
	1.4.4 Mean Forgetting

	1.5 Training Procedures
	1.5.1 Classical Training
	1.5.2 Class Incremental Training

	1.6 Examplar-Free Class-Incremental Learning
	1.7 Contributions overview
	1.7.1 PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning
	1.7.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
	1.7.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning

	2 State of the Art in Exemplar-Free Class Incremental Learning
	2.1 Model-Growth based Incremental Learning
	2.2 Fixed-Representation-Based Incremental Learning
	2.3 Finetuning-Based Class-Incremental Learning
	2.3.1 Basic Concepts of Finetuning-Based Class-Incremental Learning
	2.3.2 Major Developments and Methods in Finetuning-Based Class-Incremental Learning
	2.3.3 Advanced Applications and Emerging Trends in Finetuning-Based Class-Incremental Learning

	2.4 Pre-training Techniques for CIL
	2.4.1 Self-Supervised Learning and Its Role in Pre-Training
	2.4.2 Pre-training Applications in Class Incremental Learning

	2.5 Exemplar-Based Class-Incremental Learning
	2.6 Our EFCIL contributions

	3 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning
	3.1 Introduction
	3.2 Related Work
	3.3 Proposed Method
	3.3.1 Problem Formalization
	3.3.2 PlaStIL Description

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 State-of-the-art methods
	3.4.3 Implementation
	3.4.4 Main results
	3.4.5 Method analysis

	3.5 Conclusion

	4 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Method
	4.3.1 Generation of pseudo-features
	4.3.2 Selection of pseudo-features
	4.3.3 Linear classification layer training

	4.4 Evaluation
	4.4.1 Results
	4.4.2 Method analysis

	4.5 Conclusion

	5 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning
	5.1 Introduction
	5.2 Background
	5.2.1 Pre-training methods
	5.2.2 Class-Incremental Learning (CIL)

	5.3 Problem statement
	5.3.1 EFCIL process
	5.3.2 Training strategies for the initial model

	5.4 Experimental setting
	5.4.1 Initial training strategies
	5.4.2 Target datasets
	5.4.3 Incremental learning
	5.4.4 Metrics

	5.5 Analysis of results
	5.5.1 Modeling causal effects
	5.5.2 Metrics and confounding Factors
	5.5.3 Linear Regression
	5.5.4 Factors influencing incremental performance
	5.5.5 Comparison of initial training strategies
	5.5.6 Further analysis of initial training strategies

	5.6 Discussion
	5.7 Conclusion

	6 Conclusion
	6.1 General conclusion
	6.2 Contributions
	6.2.1 PlaStIL: Plastic and Stable Memory-Free Class-Incremental Learning
	6.2.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
	6.2.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning

	6.3 Future work and perspective

	Bibliography
	A List of publications
	B Datasets details and implementation details
	B.1 Datasets details
	B.1.1 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning
	B.1.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
	B.1.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning

	B.2 Implementation details
	B.2.1 PlaStIL: Plastic and Stable Exemplar-Free Class-Incremental Learning
	B.2.2 FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
	B.2.3 An Analysis of Initial Training Strategies for Exemplar-Free Class-Incremental Learning

	B.3 Influence of factors on accuracy

	C Résumé en français
	C.1 Introduction
	C.2 État de l'art
	C.3 PlaStIL : Apprentissage par classe sans mémoire, plastique et stable
	C.4 FeTrIL : Translation des caractéristiques pour l'apprentissage incrémental par classe sans exemple
	C.5 Analyse des stratégies d'initialisation pour l'apprentissage incrémental de classes sans exemple

