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Novel separated representations
for challenging industrial
applications: space, time and
parameters

Abstract

Every transient problem in continuum mechanics is characterized by three variables:
space, time and parameters. The space defines the physical domain, enabling the
definition of diverse systems. The time captures dynamic processes, allowing for tran-
sient behavior analysis. The parameters control system and modeling characteristics.
Together, these elements drive the accuracy and relevance of computational science,
making them essential for understanding and predicting real-world phenomena.

The complexity arising from managing space, time, and parameters in numerical simu-
lations can be particularly challenging in some scenarios. This is the case, for instance,
when dealing with thin structures, small time steps combined with long time intervals,
and a high number of parameters over large domains.

The numerical simulation of three-dimensional models in thin geometries presents im-
portant challenges since maintaining the mesh granularity proportional to the thick-
ness dimension requires an impractical number of elements for the entire structure.
This issue is currently encountered in automotive industry when considering vehicle
crash simulations, where most of the components are thin structures.

When time multiscale behaviours occur, standard discretization techniques are con-
straint to mesh up to the finest scale to predict accurately the response of the system.
This results in a prohibitive computational when the phenomena must be observed
over a long duration. This occurs, for instance, in material science when dealing with
fatigue damage assessments and cyclic visco-elasto-plastic fatigue problems.

A large number of parameters increases the dimensionality of the parameter space
exponentially, making its exploration computationally intensive. The data generated
from numerous simulations can be difficult to manage and advanced meta-modeling
techniques are required. This typically happens in optimal design problems of multi-
component parametric structures.

To address these challenges, it is essential to strike a balance between accuracy and
computational efficiency, requiring ad-hoc advanced developments. In this thesis the
three challenges are separately addressed via novel separation-based techniques.
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Nouvelles représentations
séparées pour des applications
industrielles complexes : espace,
temps et paramètres

Résumé

Chaque problème transitoire en mécanique des milieux continus est caractérisé par
trois variables : l’espace, le temps et les paramètres. L’espace définit le domaine phy-
sique, permettant la description de divers systèmes. Le temps capture les processus
dynamiques, autorisant l’analyse des comportements transitoires. Les paramètres in-
fluent sur les caractéristiques des systèmes et de la modélisation. Ensemble, ces élé-
ments influent sur l’exactitude et la pertinence de la science computationnelle, les
rendant essentiels pour la compréhension et la prédiction des phénomènes réels.

La gestion de l’espace, du temps et des paramètres dans les simulations numériques
est particulièrement impactée dans certains scenarios. Cela est le cas, par exemple,
lorsqu’il s’agit de structures minces, de petits pas de temps combinés à de longs inter-
valles, et d’un grand nombre de paramètres sur de vastes domaines.

La simulation numérique de modèles tridimensionnels dans des géométries minces
présente d’importants défis, car maintenir la granularité du maillage proportionnelle
à la dimension de l’épaisseur nécessite un nombre impraticable d’éléments pour toute
la structure. Cela survient souvent dans l’industrie automobile lors de simulations de
crash, où la plupart des composants sont des structures minces.

Lorsque des comportements multiscales dans le temps surviennent, les techniques de
discrétisation standard sont contraintes de mailler jusqu’à l’échelle la plus fine pour
prédire avec précision la réponse du système. Cela entraîne un coût computationnel
prohibitif lorsque les phénomènes sont observés sur une longue durée, comme c’est le
cas en science des matériaux lors de l’évaluation des endommagements par fatigue.

Un grand nombre de paramètres augmente de manière exponentielle la dimension de
l’espace paramètrique, limitant son exploration. Les données générées par de nom-
breuses simulations peuvent être difficiles à gérer et des techniques avancées de méta-
modélisation sont nécessaires. Cela se produit généralement dans des problèmes de
conception optimale de structures paramétriques à plusieurs composants.

Pour relever ces défis, il est essentiel de trouver un équilibre entre la précision et
l’efficacité computationnelle, nécessitant des développements avancés. Dans cette thèse,
les trois défis sont abordés via des nouvelles techniques basées sur les représentations
séparéés.
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Résumé etendu

Contexte et motivations

L’espace, le temps et les paramètres sont les trois variables fondamentales décrivant
tout système physique. L’espace se réfère à la région dans laquelle les objets physiques
et les phénomènes sont observés. Le temps régit l’évolution des différents proces-
sus. Les paramètres sont essentiels pour construire des modèles mathématiques des
phénomènes physiques, tenant compte des propriétés spécifiques et des caractéris-
tiques des systèmes analysés. Par conséquent, ces variables jouent un rôle clé dans
l’ingénierie basée sur la simulation [1–3], où des modèles fiables nécessitent des de-
scriptions précises de la région spatiale, de l’évolution temporelle et des analyses de
sensibilité aux paramètres adéquates.

Dans les simulations numériques [4, 5], le domaine spatial est généralement discrétisé
en éléments (c’est-à-dire, des éléments solides lors de la considération d’un espace
tridimensionnel) ou en points de grille, définissant ce qu’on appelle le maillage com-
putationnel. De même, le domaine temporel est discrétisé en petits pas de temps.
Les équations et modèles gouvernants sont ensuite transférés dans leurs équivalents
discrets, adaptés au calcul numérique via la méthode des éléments finis (MEF) et
ses variantes. Le domaine paramétrique est exploré en résolvant les équations pour
différentes valeurs des paramètres et en observant les changements résultants dans la
réponse du système. Il est bien connu que la taille du maillage affecte la précision
et la stabilité de la simulation, mais aussi le temps de calcul, car des maillages plus
fins entraînent des coûts computationnels plus élevés. Cela se produit également dans
les analyses paramétriques, où un plus grand nombre de paramètres ou des plages
de paramètres plus vastes nécessitent un temps de calcul plus long pour explorer le
domaine paramétrique.

En réalité, malgré les progrès réalisés en analyse numérique et en informatique haute
performance, de nombreux problèmes du monde réel et des systèmes à grande échelle
peuvent entraîner des simulations prohibitives en termes de coût. La réduction d’ordre
de modèle (ROM) [6,7] est la branche de la science computationnelle qui aborde cette
question, cherchant le juste équilibre entre la qualité de la simulation et l’efficacité.
Cette thèse vise à enrichir les techniques actuelles de ROM sur trois niveaux, à savoir
1. l’espace, 2. le temps et 3. les paramètres, motivée par trois scénarios difficiles
différents rencontrés de nos jours dans l’ingénierie basée sur la simulation.

En ce qui concerne l’espace, le travail se concentre sur la nécessité d’un cadre de
simulation efficace, valide des géométries minces aux géométries épaisses en mécanique
des structures. En ce qui concerne le temps, le défi consiste à combiner une très longue
durée des phénomènes avec un très petit pas de temps, pour des problèmes complexes
et non linéaires en mécanique des solides. Enfin, en ce qui concerne les paramètres, le
travail se concentre sur des problèmes de conception multi-composants impliquant un
grand nombre de paramètres de modélisation.

Chaque défi est donc motivé par une dimension caractéristique dans le système. Pour
l’espace, cette dimension est l’épaisseur de la structure. Pour le temps, il s’agit du
nombre de cycles de charge ou de la durée de la simulation. Pour les paramètres, cela
correspond au nombre de paramètres.

Les motivations de ces trois axes sont exposées plus en détail ci-dessous, en omettant
un aperçu approfondi et une description de la recherche et de la littérature les plus
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récentes sur les sujets, qui seront fournies par la suite dans chaque chapitre associé.

Espace

La résolution de modèles 3D dans des géométries dégénérées, où une dimension car-
actéristique est inférieure aux autres, n’est pas trivial. C’est le cas des plaques et
des coques, où l’épaisseur (souvent appelée dimension hors plan) est plus petite par
rapport à ses autres dimensions (appelées dimensions dans le plan) [8]. Pour citer
quelques exemples de telles structures, en ingénierie, elles sont rencontrées dans les
composants et les corps d’automobiles, d’aéronefs ou de navires, dans les dispositifs
micro-électromécaniques ou les batteries électriques, dans les pipelines et les réser-
voirs. En architecture, elles font souvent partie de ponts, de bâtiments et de dômes.
Dans la nature, on peut simplement imaginer des œufs, des mollusques, des squelettes,
des membranes biologiques ou la peau humaine.

Lors de la discrétisation d’un domaine dégénéré de ce type, le rapport d’aspect des
éléments de maillage (c’est-à-dire le rapport entre le côté le plus long de l’élément et le
côté le plus court) peut devenir important. Cependant, des éléments avec de mauvais
rapports d’aspect peuvent conduire à une instabilité numérique, des imprécisions et des
problèmes de convergence. Pour éviter cela, la granularité du maillage doit s’ajuster
à la dimension de l’épaisseur, nécessitant un nombre d’éléments impraticable pour
mailler l’ensemble de la structure.

Cette propriété limite l’applicabilité de la méthode des éléments finis (MEF) tradi-
tionnelle basée sur des éléments solides 3D, conduisant à la nécessité de développer des
éléments spécialisés, appelés éléments coque 2D [9,10]. Ceux-ci reposent sur la théorie
des coques, qui fait certaines hypothèses sur le comportement à travers l’épaisseur.
De la même manière, les structures longues et élancées sont généralement discrétisées
à l’aide des éléments poutre 1D, qui reposent sur la théorie de la poutre.

Malgré leur efficacité dans de nombreux scénarios, les éléments de coque présentent
également plusieurs inconvénients : (a) ils sont principalement conçus pour analyser
le comportement dans le plan, et peuvent ne pas bien fonctionner dans des situations
où les déformations hors plan ou les effets de flambage sont significatifs ; (b) ils
sont généralement utilisés pour des analyses linéaires, et peuvent ne pas être adaptés
aux analyses non linéaires, telles que l’élasticité non linéaire due aux non linéarités
matérielles ou géométriques, les comportements élastoplastiques ou les comportements
complexes de multiphysique ; (c) la théorie de base des coques est développée pour des
structures de coques minces et les résultats peuvent être compromis lors du passage
de coques minces à modérément épaisses ou épaisses, où des formulations d’ordre
supérieur et des éléments coque épais spécifiques sont nécessaires (généralement, le
choix du bon type d’élément n’est pas évident).

Cependant, les éléments coque classiques restent encore le choix le plus courant dans
l’industrie, en raison de leur efficacité. Pour donner une idée, dans un véhicule complet,
on peut compter environ 102 éléments poutre, 106 éléments coque et 104 éléments
solides. Une méthode actuellement utilisée pour contourner les problèmes mentionnés
ci-dessus consiste à effectuer, pendant la simulation, un remaillage coque vers solide
pour certaines parties spécifiques, lorsque les résultats commencent à paraître douteux
et lorsque des effets physiques plus complexes doivent être capturés. Cela nécessite une
extrusion de la pièce suivie d’un remaillage impliquant un grand nombre d’éléments
solides, ce qui augmente considérablement le temps de calcul. De plus, cette procédure
entraîne également d’autres difficultés telles que le couplage de la partie extrudée
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avec les éléments poutre 1D ou les éléments coque 2D environnants, ce qui n’est
généralement pas trivial.

Si l’on considère la structure de la caisse en blanc (CEB), presque toutes les pièces
sont des structures minces, comme le montre la figure 1, où trois d’entre elles sont
mises en évidence en orange.

Figure 1: Exemples de structures minces dans la caisse en blanc (avec l’aimable autorisation
du groupe ESI).

Dans ce contexte, l’objectif principal de la thèse est de suggérer et d’explorer des voies
alternatives pour un cadre de simulation efficace, valide de structures coques minces
à épaisses.

Temps

Malgré la disponibilité de plates-formes informatiques haute performance, la solution
numérique de problèmes complexes, dépendant du temps et non linéaires, peut en-
core de nos jours représenter un défi ardu. Cette problématique est encore accentuée
dans le cas de comportements multi-échelles, où des effets se produisent à différentes
échelles spatiales et temporelles. Dans de tels contextes, le traitement des différentes
échelles du problème peut être obligatoire pour définir des modèles fiables. Ces défis
sont rencontrés en mécanique des solides numérique (CSM) [11], lorsqu’il s’agit de
métamatériaux, de fabrication additive, de formage de tôles, de viscoplasticité cy-
clique ou de dynamique avec des chargements impliquant plusieurs échelles de temps
caractéristiques.

En tant que défi majeur, cette situation devient extrêmement délicate lorsque les
phénomènes doivent être simulés sur des intervalles de temps très longs et, en même
temps, la réponse du système doit englober les différentes échelles de temps présentes
dans le modèle. Les techniques de discrétisation standard sont contraintes de mailler
jusqu’à l’échelle la plus fine pour prédire avec précision la réponse du système, ce qui
entraîne une augmentation dramatique des coûts informatiques et, dans certains cas,
devient informatiquement irréalisable. De plus, de tels scénarios entraînent d’autres
problèmes tels que l’accumulation d’erreurs d’arrondi numériques, la saturation des
ressources de stockage ou la nécessité de pas de temps adaptatifs.

Prenons le cas de simulations fines de fatigue cyclique, où les dommages de fatigue
s’accumulent progressivement à chaque cycle. Pour donner un ordre de grandeur, le
nombre de cycles jusqu’à la défaillance en fatigue se situe entre 104-105 dans le cas
de la fatigue à faible cycle (LCF), 105-107 pour la fatigue à grand cycle (HCF), et
plus de 107 pour la fatigue à très grand cycle (VHCF). Par exemple, la plupart des
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applications portantes dans les véhicules, les pièces de moteurs, sont soumises à 108

cycles, tandis que les composants ferroviaires, les ponts et les roues sont soumis à
109 cycles au cours de leur durée de vie [12, 13]. De plus, pour une simulation à fine
échelle, 103 pas de temps pourraient être nécessaires sur un seul cycle. Ces chiffres
montrent directement que simuler chaque cycle individuel est irréalisable.

Au lieu de simuler tous les cycles individuels, d’autres techniques sont utilisées, telles
que des approches statistiques, des modèles d’accumulation de dommages, des tech-
niques de simplification telles que le comptage rainflow ou la règle de Miner [14–16].

Dans ce contexte, la thèse vise à proposer une nouvelle procédure de multi-échelle
temporelle et à enquêter sur son efficacité dans des problèmes non linéaires.

Paramètres

La plupart des applications et des processus en ingénierie nécessitent des études
paramétriques, où la dépendance paramétrique peut être de nature à la fois physique
(par exemple, les coefficients du modèle, les termes sources) et géométrique (par ex-
emple, la forme du domaine). Cela se produit, par exemple, dans l’optimisation, la
quantification et la propagation de l’incertitude, l’identification inverse ou le contrôle
basé sur la simulation. Dans tous ces scénarios nécessitant de nombreuses requêtes,
des évaluations quasi temps réel de la réponse du système sont nécessaires. Malgré
les progrès réalisés dans la réduction d’ordre du modèle (MOR) et l’apprentissage au-
tomatique (ML) [6,7] pour construire des approximations paramétriques, la tâche reste
difficile lorsqu’il s’agit de grands domaines, de systèmes à grande échelle, combinés à
un grand nombre de paramètres.

En fait, à mesure que le nombre de paramètres augmente, la dimensionnalité du prob-
lème augmente de manière exponentielle (malédiction de la dimension) et un grand
nombre de simulations, chacune impliquant différentes combinaisons de paramètres,
sont nécessaires pour explorer l’espace des paramètres, sollicitant les ressources in-
formatiques, la mémoire et le stockage. De plus, dans un espace de paramètres de
grande dimension, les paramètres peuvent être interdépendants, ce qui rend difficile
l’identification des combinaisons les plus pertinentes à étudier. Cela peut conduire
à l’exploration d’ensembles de paramètres redondants ou non informatifs. D’autres
limitations concernent l’identification des ensembles de paramètres optimaux, l’étude
de la sensibilité des paramètres, mais aussi l’interprétabilité et la validation du modèle
lui-même.

Ce problème se rencontre dans les structures paramétriques multi-composants, où
divers composants ou pièces interagissent et leurs comportements dépendent de dif-
férents paramètres. Pour donner une idée des difficultés, prenons à nouveau un prob-
lème industriel en ingénierie automobile. La construction d’une solution de crash
paramétrique d’une structure composée de 200 pièces, chacune impliquant un matériau
paramétrique décrit par 3 paramètres et l’épaisseur de la pièce. Ainsi, le nombre de
paramètres devient exorbitant, atteignant 800. Dans les technologies de régression les
plus avancées, le nombre de données (solutions de problèmes haute résolution) évolue
avec le nombre de paramètres. Dans le cas présent, même en utilisant les techniques de
régression les plus avancées, plus de 800 solutions haute-fidélité semblent nécessaires,
mais compte tenu du fait que chacune de ces solutions implique une journée de calcul,
le coût computationnel représente 3 années de calculs.
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La figure 2 illustre le défi, mettant en évidence quelques composants paramétriques
possibles dans le pilier B d’un véhicule.

Figure 2: Exemple d’une structure multiparamétrique dans l’industrie automobile (avec
l’aimable autorisation du groupe Hyundai Motor).

Représentations séparées

Considérons un problème différentiel générique défini sur la région spatiale Ω ⊂ Rn

(avec n = 1, 2, 3), évoluant dans l’intervalle de temps I ⊂ R et incorporant des
paramètres résidant dans l’espace paramétrique Θ ⊂ Rd (avec d ∈ N). Soit x =
(x, y, z) ∈ Ω le vecteur des coordonnées spatiales, t ∈ I la coordonnée temporelle et
p = (p1, . . . , pd) ∈ Θ le vecteur des paramètres.

En négligeant les dérivées temporelles, une équation aux dérivées partielles (EDP)
paramétrique générique peut être exprimée comme suit :

L(u(x , t);p) = f(x , t) (1)

où L(•) fait référence à un opérateur différentiel générique (éventuellement non linéaire)
impliquant des dérivées dans l’espace et présentant une dépendance paramétrique par
rapport au vecteur p. De plus, f est le terme source et u est la solution du problème
(ces fonctions peuvent éventuellement être vectorielles).

Le problème (1) est équipé d’une condition initiale appropriée spécifiant l’état initial
de u et de conditions aux limites caractérisant son comportement à la frontière du
domaine ∂Ω, définissant ainsi un problème de valeurs aux limites (PVL). La nature
spécifique de (1) dépend du problème physique ou du système particulier qui est
modélisé. Des ouvrages tels que [17–19] fournissent une large gamme d’exemples et
une base théorique solide sur de tels problèmes.

De nombreuses techniques ont été développées dans le cadre de l’analyse numérique
des EDP [20], permettant des solutions de haute fidélité pour une grande variété
de problèmes différentiels, avec des bornes d’erreur certifiées. Des exemples de ces
méthodes sont les différences finies [21], les éléments finis [22], les volumes finis [23], les
éléments de frontière [24], les méthodes spectrales [25] ou l’analyse isogéométrique [26].

Considérons d’abord les paramètres p comme fixes. En général, lors de la résolution
de (1) numériquement, la solution est approximée comme suit :

u(x, t) ≈
Nx∑
i=1

ψi(x)ui(t) (2)

où Nx est le nombre de points de maillage dans tout le domaine spatial Ω, ψi(x) sont
des fonctions de forme spatiales choisies de manière opportune et ui(t) sont les valeurs



xiv
Nouvelles représentations séparées pour des applications industrielles complexes :

espace, temps et paramètres

nodales inconnues. L’approximation (2) est injectée dans le problème (1) (plus précisé-
ment dans sa formulation faible), ce qui conduit à un système algébrique dépendant
du temps d’équations (linéaires ou non linéaires). Ensuite, une méthode de marche
dans le temps est introduite et les systèmes sont résolus de manière incrémentielle (si
des dérivées temporelles apparaissent également, une attention particulière doit être
portée au choix de la méthode temporelle).

Des expansions séparées similaires sont promues dans les modèles réduits classiques.
Par exemple, en considérant la décomposition orthogonale aux valeurs propres (POD)
[27,28], l’approximation est donnée par

u(x, t) ≈ uPOD(x , t) =
M∑
k=1

wx
k (x )α

t
k(t), (3)

où les fonctions wx
k (x ) et αt

k(t), pour k = 1, . . . ,M , sont les modes spatiaux et tem-
porels, qui forment des bases réduites de fonctions spatiales et temporelles. De plus,
les modes POD satisfont une propriété d’orthogonalité qui garantit l’optimalité de la
décomposition.

Les bases réduites POD regroupent la structure la plus typique ou caractéristique
du système, réduisant la dimension de plusieurs ordres de grandeur par rapport aux
modèles numériques traditionnellement employés. Cependant, l’inconvénient est que
cette approximation est calculée a posteriori, c’est-à-dire une fois que le problème (1)
est résolu au moyen de techniques habituelles.

La décomposition propre généralisée (PGD) [29,30] est une généralisation de la POD
qui permet le calcul de représentations séparées similaires a priori, c’est-à-dire pendant
la résolution du problème (1). Dans ce contexte, l’approximation supposée est écrite
comme suit

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t), (4)

où les fonctions Ux
k (x ) et U t

k(t), pour k = 1, . . . ,m, sont les modes spatiaux et tem-
porels inconnus, qui ne sont généralement pas orthogonaux par rapport à ceux du
POD. La solution (4) est construite de manière itérative par un enrichissement modal
successif. En cherchant l’enrichissement m, les termes précédents m− 1 sont connus,
donc um(x , t) s’exprime comme

um(x , t) =
m−1∑
k=1

Ux
k (x )U

t
k(t) + Ux

m(x )U t
m(t), (5)

et est injectée dans le problème (1). La séparation des variables est exploitée au
niveau des opérateurs différentiels pour construire des problèmes différentiels spatiaux
et temporels séparés, pour Ux

m(x ) et U t
m(t), respectivement. Une séquence de prob-

lèmes spatiaux et temporels séparés est résolue jusqu’à ce qu’un point fixe soit atteint
pour le produit Ux

m(x )U t
m(t). Cette technique est connue sous le nom de stratégie de

direction alternée, où les problèmes séparés sont abordés via des différences finies ou
des éléments finis standard [31].

Pour avoir une idée des économies computationnelles, considérons un modèle transi-
toire standard défini dans un espace physique en 3D. Impliquant k pas de temps, les
stratégies incrémentales habituelles doivent résoudre k problèmes 3D (généralement
non linéaires). En laissant p être le nombre d’itérations non linéaires nécessaires pour
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calculer chaque terme de la somme finie, il faudrait résoudre environ mp problèmes
3D pour calculer les fonctions spatiales et mp problèmes 1D pour calculer les fonc-
tions temporelles. En général, mp est plusieurs ordres de grandeur inférieur à k. De
plus, selon le problème analysé, d’autres décompositions peuvent être imposées pour
obtenir des gains computationnels encore plus remarquables (par exemple, l’espace
peut être entièrement ou partiellement séparé).

Un grand avantage des représentations basées sur la PGD est la possibilité d’inclure
les paramètres en tant que coordonnées supplémentaires du problème dans la décom-
position, permettant de construire efficacement des modèles de grande dimension, qui
peuvent être considérés comme des vade-mecums computationnels ou des abaques
numériques [31–35]. Dans ce cas, la solution s’exprime comme

um(x , t,p) =
m∑
k=1

Ux
k (x )U

t
k(t)U

p1
k (p1) · · ·Upd

k (pd), (6)

où Upj
k sont des fonctions univariées du paramètre pj .

Les modèles paramétriques basés sur la PGD reposent sur une phase hors ligne poten-
tiellement coûteuse où un problème de grande dimension est résolu, et une phase en
ligne où des évaluations efficaces du modèle sont effectuées, permettant une simulation
en temps réel.

Ci-dessous, nous présentons brièvement les représentations séparées adoptées dans
ce travail, qui sont séparées spatialement, temporellement et paramétriquement pour
l’espace, le temps et les paramètres, respectivement.

Espace

Considérons un domaine en forme de plaque Ω = Ωxy ×Ωz avec Ωz = [−h/2, h/2], où
l’épaisseur h est inférieure aux dimensions dans le plan. Pour contourner les problèmes
précédemment discutés liés à une discrétisation entièrement tridimensionnelle de telles
géométries dégénérées, des méthodes efficaces développées dans le cadre de la PGD
sont basées sur l’expression d’une fonction d’espace sous une forme séparée dans le
plan/hors du plan

um(x ) =
m∑
k=1

Uxy
k (x, y)U z

k (z). (7)

Dans ce contexte, les solutions 3D (Nx degrés de liberté) sont calculées en alternant des
séries de problèmes 2D (Nxy degrés de liberté) et 1D (Nz degrés de liberté), préservant
le coût computationnel d’une simulation 2D, tout en permettant une représentation
détaillée et précise de la solution le long de la coordonnée d’épaisseur. La figure 3
montre la décomposition du domaine de calcul 3D en grilles 2D dans le plan et 1D
hors du plan, entraînant une réduction importante du nombre initial de degrés de
liberté.

Les représentations séparées dans l’espace telles que (7) ont été appliquées avec suc-
cès en mécanique des structures [36–42], pour la simulation d’écoulements de fluides
newtoniens et non newtoniens se produisant dans des laminés composites et multi-
axiaux, dans des inserts composites thermoplastiques et dans des polymères minces
rugueux [43–46], pour des écoulements dans des milieux poreux stratifiés [47], pour des
écoulements viscoplastiques non linéaires [48] et pour des processus micro-ondes dans
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Figure 3: Décomposition d’une grille de calcul 3D dans une géométrie en forme de plaque.

des laminés composites à plis minces [38, 49, 50]. Pour avoir une idée des gains com-
putationnels, on peut consulter, par exemple, [38] où plusieurs exemples numériques
sont discutés.

Cependant, malgré l’efficacité de telles méthodes, leur applicabilité à des problèmes à
grande échelle est souvent limitée en raison de leur nature intrusive. De nombreuses
tentatives ont été menées dans cette direction pour proposer des solutions PGD moins
intrusives, facilitant leur implémentation dans un logiciel commercial.

Dans [40], une approche plan/hors-plan peu intrusive est proposée pour l’élasto-
plasticité, permettant l’intégration de descriptions entièrement 3D dans les logiciels
de plaques existants. De plus, une approche algébrique non intrusive plan/hors-
plan a été développée dans [51] et appliquée à la modélisation mécanique de tis-
sus 3D. La méthodologie a ensuite été appliquée avec succès en élastodynamique
paramétrique [52] et pour la simulation mécanique haute résolution d’une cellule de
batterie lithium-ion stratifiée [53].

Dans ce travail, nous proposons une nouvelle approche plan/hors-plan moins intrusive
pour la mécanique des structures, basée sur la combinaison des théories de coques
(d’ordre un et d’ordre supérieur) avec un cadre d’apprentissage automatique.

Temps

Considérons l’intervalle de temps I = (0, Tf ) avec Tf ≫ 0. Pour la simulation
numérique de phénomènes à long terme nécessitant un pas de temps très petit ou
pour des phénomènes présentant plusieurs échelles de temps, une représentation sé-
parée dans le temps peut être adoptée. Cela peut être fait via une représentation
séparée espace-microtemps-macrotemps [54,55]

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t) ≈

M∑
k=1

Ux
k (x )U

τ
k (τ)U

T
k (T ), (8)

ou en imposant la décomposition multi-temps pour le calcul de la fonction temporelle
(sous-modes micro/macrotemps) [55,56]

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t) ≈

m∑
k=1

Ux
k (x )

mk∑
j=1

U τ
k,j(τ)U

T
k,j(T ), (9)

où deux nouvelles coordonnées temporelles indépendantes τ (microtemps, ou temps
rapide) et T (macrotemps, ou temps lent) doivent être introduites. De plus, dans
l’équation (8), le nouveau nombre de modes est noté M (en général, M > m), tandis
que dans l’équation (9), le nombre de modes impliqués dans la séparation espace-
temps est toujours m et mk désigne le nombre de sous-modes temporels nécessaires
pour approximer la fonction à échelle unique pour le mode global actuel k.
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La figure 4 montre le maillage temporel fin défini le long de la variable temporelle
habituelle t, obtenu à partir d’un maillage fin le long de la variable micro-échelle rapide
τ et d’un maillage grossier le long de la variable macro-échelle lente T . Si une approche
standard de marche dans le temps nécessite une discrétisation de l’intervalle de temps
I au moyen de Nt pas de temps, dans l’approche multi-temps, cela se recouvre comme
Nt = NτNT en mappant Nτ micro-degrés de liberté sur une grille plus grossière de
NT intervalles macro.

Figure 4: Décomposition d’un maillage temporel fin à une échelle en un maillage à plusieurs
échelles.

Dans ce contexte, une solution à petite unique (Nt degrés de liberté) est calculée en
alternant des séries de problèmes à petite échelle (dimension Nτ ) et de problèmes à
grande échelle (dimension NT ), faisant passer le coût computationnel et les besoins
en mémoire de Nt = NτNT à Nτ +NT .

Jusqu’à présent, cette décomposition n’a été appliquée qu’à des cas linéaires, tels
que des problèmes thermiques et élastodynamiques à plusieurs échelles [54,55]. Dans
cette thèse, la procédure est étendue au cadre non linéaire de l’élasto-plasticité. De
plus, pour permettre la simulation de problèmes à très long terme, la formulation est
couplée à un cadre d’apprentissage automatique le long de la macro-échelle.

Paramètres

Considérons le domaine paramétrique Θ ⊂ Rd, avec d ≫ 1. La PGD permet de
calculer une solution paramétrique multivariée en traitant les paramètres comme des
coordonnées supplémentaires du problème et en considérant une représentation séparée
des paramètres

um(x , t,p) =
m∑
k=1

Ux
k (x )U

t
k(t)U

p1
k (p1) · · ·Upd

k (pd). (10)

Même si la dimension du problème augmente considérablement, la forme séparée
de la solution PGD conduit à de petits problèmes indépendants dans chaque di-
rection paramétrique, dont les solutions sont des fonctions paramétriques univar-
iées (ou modes). Cet aspect puissant, associé à ses nombreuses applications (telles
que l’identification inversée a posteriori et l’optimisation), est discuté dans la re-
vue [57]. De plus, des études récentes combinent le solveur paramétrique basé sur la
PGD avec des descriptions géométriques basées sur les NURBS, permettant d’intégrer
efficacement également des paramètres géométriques complexes dans la décomposi-
tion [58,59,59,60].

Grâce à la capacité à traiter des espaces de grande dimension, de telles approxima-
tions séparées suscitent un grand intérêt dans l’industrie, et plusieurs variantes non
intrusives de la PGD ont été développées pour des études paramétriques [61–69]. Dans
ce sens, la PGD sert de méthode de réduction de modèle basée sur des snapshots de
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simulation et devient un outil puissant pour effectuer des régressions non linéaires
multiparamétriques avec peu de données.

Indépendamment de la nature intrusive ou non intrusive de la PGD, la création d’un
modèle unique dans de grands domaines physiques et paramétriques est une tâche
délicate. Une voie précieuse pour améliorer la précision consiste à partitionner l’espace
physique afin de construire un modèle dans chacun des patchs résultants. En général,
les modèles quasi linéaires locaux performent mieux que les modèles non linéaires
riches dans l’ensemble du domaine spatial.

Ainsi, les schémas partitionnés sont reformulés dans un cadre paramétrique basé sur
la PGD [70–72]. Dans ce contexte, le modèle paramétrique est construit via une
procédure de décomposition de domaine avec une double perspective. D’une part,
traiter des systèmes locaux plus petits réduit la complexité d’un problème global.
D’autre part, cela améliore les perspectives physiques des modèles qui deviennent de
plus en plus complexes et corrélés en dimensions élevées.

Dans cette thèse, nous proposons et étudions une procédure générale pour construire
des modèles paramétriques dans le contexte de systèmes multi-composants. Cela
repose sur la séparation du domaine en composants non chevauchants, la modélisation
du squelette des interfaces et la construction de sous-problèmes locaux par composant
et de substituts paramétriques peu coûteux. Ceci est illustré de manière schématique
dans la figure 5.

Figure 5: Décomposition d’un problème paramétrique unique P en sous-problèmes par com-
posant Pp.
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Contenu du manuscrit

Ce manuscrit est structuré en trois chapitres, alignés sur les trois défis abordés de
l’espace, du temps et des paramètres.

Chapitre 2 : Espace

Dans la section 2.2, la théorie des coques du premier ordre est décrite, mettant l’accent
sur ses limitations. Dans la section 2.3, la théorie améliorée proposée est présentée,
en accordant une attention particulière aux détails de mise en œuvre dans un solveur
commercial. Dans la section 2.4, quelques exemples numériques sont discutés. Enfin,
la section 2.6 donne une brève conclusion et des perspectives.

Chapitre 3 : Temps

Le chapitre est divisé en deux sections. La section 3.2 est consacrée au calcul d’une
réponse multi-échelle en temps en élasto-plasticité cyclique. La section 3.3 exploite les
résultats de la section 3.2 pour construire un modèle efficace des relations constitutives
non linéaires. Les sections sont structurées comme suit.

1. Section 3.2 : La sous-section 3.2.1 présente l’énoncé du problème dans ses
formes forte et faible. La sous-section 3.2.2 reformule le problème dans le cadre
numérique de la Décomposition Propre Généralisée, en commençant par la sépa-
ration de l’espace et du temps, puis en abordant la séparation multi-temps. La
sous-section 3.2.3 présente les résultats des essais de traction charge-décharge.
La sous-section 3.2.4 donne des conclusions et des perspectives.

2. Section 3.3 : La sous-section 3.3.1 rappelle brièvement le cadre théorique et
numérique déjà introduit dans la section 3.2. La sous-section 3.3.2 entre dans
les détails de toutes les méthodes utilisées pour construire le modèle basé sur les
données. La sous-section 3.3.3 présente les résultats numériques en considérant
deux tests de référence en 2D, en faisant varier la géométrie et la loi de plasticité.
Enfin, la sous-section 3.3.4 fournit des conclusions et des perspectives.

Chapitre 4 : Paramètres

Le chapitre est structuré comme suit. La section 4.2 décrit toutes les étapes de la
procédure proposée : (1) définition du squelette des interfaces ; (2) identification des
paramètres du modèle local ; (3) identification des conditions de transmission ; (4)
construction du modèle réduit local ; (5) imposition de l’équilibre du squelette des
interfaces. La section 4.3 présente des applications à deux problèmes de référence.
La première exemple concerne un problème de conduction en régime permanent. La
deuxième exemple concerne l’état mécanique d’une plaque élastique mince. La section
4.3 donne des remarques conclusives et des perspectives.
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1.1 Context and motivations

Space, time, and parameters are the three basic variables describing any physical sys-
tem. The space refers to the region in which the physical objects and phenomena are
observed. The time governs the evolution of the different processes. The parameters
are essential for building mathematical models of the physical phenomena, accounting
for the specific properties and characteristics of the analyzed systems. Therefore, these
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2 1.1 Context and motivations

variables play a key role in simulation-based engineering [1–3], where reliable mod-
els require accurate descriptions of the spatial region, time evolution, and adequate
parameter sensitivity analyses.

In numerical simulations [4,5], the spatial domain is typically discretized into elements
(i.e., solid elements when considering a three-dimensional space) or grid points, defin-
ing the so-called computational mesh. Similarly, the time domain is discretized into
small time steps. The governing equations and models are then transferred into their
discrete counterparts, suitable for numerical computing via the so-called finite ele-
ment method (FEM) and its variants. The parametric domain is explored solving the
equations for different values of the parameters and observing the resulting changes
in the system’s response. It is well known that the mesh size affects the accuracy
and stability of the simulation, but also the computing time since finer meshes yield
higher computational costs. This also happens in parametric analyses, where a higher
number of parameters, or larger parameter ranges, require longer computing time to
explore the parametric domain.

In fact, despite the progress in numerical analysis and high-performance computing,
many real-world problems and large-scale systems can lead to cost-prohibitive simu-
lations. Model order reduction (MOR) [6, 7] is the branch of computational science
which faces this matter, seeking the right balance between simulation quality and effi-
ciency. This thesis aims at enriching the current state-of-the-art MOR techniques on
three levels, that is 1. space, 2. time and 3. parameters, motivated by three different
challenging scenarios encountered nowadays in simulation-based engineering.

In space, the work focuses on the necessity of an efficient simulation framework valid
from thin to thick geometries in structural mechanics. In time, the challenge is com-
bining a very long duration of the phenomena with very small time step, for complex
nonlinear problems in solid mechanics. Finally, as concerns the parameters, the work
focuses on multi-component design problems involving a high-number of modeling
parameters.

Each challenge is therefore motivated by a characteristic dimension in the system.
For the space, such dimension is the thickness of the structure. For the time, it is the
number of loading cycles or the duration of the simulation. For the parameters, this
stands in the number of parameters.

The motivations of such three axes are exposed in more detail here below, omitting
an extensive overview and description of most recent research and literature on the
topics, which will be provided afterwards in each related chapter.

1.1.1 Space

The solution of 3D models in degenerated geometries, where one characteristic dimen-
sion is lower then others, is not trivial. This is the case of plates and shells, where the
thickness (often referred as out-of-plane dimension) is smaller compared to its other
dimensions (referred as in-plane ones) [8]. To cite a few examples of such structures,
in engineering, they are encountered in automobile, aircraft or ship components and
bodies, in micro-elecromechanical devices or electric batteries, in pipelines and tanks.
In architecture, they are often parts of bridges, buildings and domes. In nature, one
can simply imagine eggs, mollusks, skeletons, biologic membranes or the human skin.

When discretizing such a degenerated domain, the aspect ratio of the mesh elements
(i.e., the ratio of the element’s longest side to its shortest side) can become highly
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skewed. However, elements with poor aspect ratios can lead to numerical instability,
inaccuracies, and convergence problems. To avoid this, the mesh granularity must
scale with the thickness dimension, requiring an impractical number of elements to
mesh the whole structure.

This property limits the applicability of traditional FEM based on 3D solid elements,
leading to the necessity of developing specialized elements, known as 2D shell el-
ements [9, 10]. These are based on the so-called shell theory, which makes some
assumptions about the through-the-thickness behavior. In the same way, long and
slender structures are usually discretized using the so-called 1D beam elements, rely-
ing on the beam theory.

Despite their effectiveness in many scenarios, shell elements also have several draw-
backs: (a) they are primarily designed to analyze in-plane behavior, and they may
not perform well in situations where out-of-plane deformations or buckling effects are
significant; (b) shell elements are typically used for linear analyses, and they may not
be suitable for nonlinear analyses, such as nonlinear elasticity due to material or ge-
ometrical nonlinearities, elastoplastic behaviors or complex multi-physics behaviors;
(c) the basic shell theory is developed for thin-shell structures and results may be
compromised when switching from thin to moderately-thick or thick-shell structures,
where higher-order formulations and specific thick shell elements are required (usually
the choice of the right element type is not evident).

Nevertheless, classic shell elements still represent the most common choice in industry,
due to their efficiency. To give an idea, in full vehicle, we can count approximately 102

beam elements, 106 shell elements and 104 solid elements. One method currently used
to get around the problems mentioned above is to execute, during the simulation, a
shell-to-solid remeshing (SSR) for some specific parts, when the results start appearing
doubtful and when more intricate physics effects need to be captured. This requires an
extrude of the part followed by a remeshing involving a high number of solid elements,
which significantly increases the computing time. Moreover, this procedure also entails
other difficulties such as the coupling of the extruded part with the surrounding 1D
beam elements or 2D shell elements, which is usually not trivial.

If we consider the body in white (BIW) structure, almost all pieces are thin structures,
as shown in the figure 1.1, where three of them are highlighted in orange.

Figure 1.1: Examples of thin structures in the body in white (courtesy of ESI group).

In this context, the main objective of the thesis is to suggest and investigate alternative
routes for an efficient simulation framework valid from thin to thick shell structures.
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1.1.2 Time

Despite the availability of high performance computing platforms, the numerical so-
lution of complex, time-dependent, non-linear problems still nowadays may be a cum-
bersome challenge. This issue is even acerbated in case of multiscale behaviors, where
effects occur at different space and time scales. In such contexts, the treatment of
the different scales of the problem can be compulsory to define reliable models. Such
challenges are encountered in computational solid mechanics (CSM) [11], when deal-
ing with metamaterials, additive manufacturing, sheet metal forming, cyclic visco-
plasticity or dynamics with loadings involving multiple characteristic times.

As a major challenge, this situation becomes extremely delicate when the phenomena
shall be simulated over very large time intervals and, at the same time, the system
response must encompass the different time scales present in the model. Standard
discretization techniques are constraint to mesh up to the finest scale to predict accu-
rately the response of the system, resulting in a dramatic increase in computational
cost and, in some cases, becoming computationally infeasible. Additionally, such sce-
narios entail other issues such as the accumulation of numerical round-off errors, the
saturation of storage resources or the requirement of adaptive time-steps.

Let us take the case of fine-scale cyclic fatigue simulations, where fatigue damage
accumulates gradually with each cycle. To give some order of magnitude, the number
of cycles to failure in fatigue life amounts to 104-105 in the case of low cycle fatigue
(LCF), 105-107 for high cycle fatigue (HCF), and more then 107 for very high cycle
fatigue (VHCF). For instance, most of the load-bearing applications in vehicles, engine
parts, are loaded with 108 cycles, while railway components, bridges and wheels are
loaded with 109 cycles in their lifetime [12, 13]. Moreover, for a fine-scale simulation,
103 time steps could be necessary over a single cycle. These figures directly show that
simulating every individual cycle is infeasible.

Instead of simulating all single cycles, other techniques are employed, such as statistical
approaches, damage accumulation models, simplification techniques such as rainflow-
counting algorithm or the Miner’s rule [14–16].

In this sense, the thesis aims at proposing a new time multiscale procedure and inves-
tigating its effectiveness in nonlinear problems.

1.1.3 Parameters

Most of engineering applications and processes require parametric studies, where the
parametric dependency can be of both physical (e.g., model coefficients, source terms)
and geometric (e.g., domain shape) nature. This happens, for instance, in optimiza-
tion, uncertainty quantification and propagation, inverse identification or simulation-
based control. In all these many-query scenarios, almost real-time evaluations of
the system response are needed. Despite the advances in the model order reduction
(MOR) and machine learning (ML) [6, 7] to build parametric surrogates, the task is
still challenging when dealing with in large domains, large-scale systems, combined
with a high number of parameters.

In fact, as the number of parameters increases, the problem’s dimensionality grows ex-
ponentially (curse of dimensionality) and a large number of simulations, each involving
different parameter combinations, are required to explore the parameter space, strain-
ing computational resources, memory, and storage. Moreover, in a high-dimensional
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parameter space, parameters may be interdependent, making it challenging to iden-
tify the most relevant combinations to study. This can lead to the exploration of
redundant or uninformative parameter sets. Other limitations are the identification
of optimal parameter sets, the study of parameter sensitivities, but also the model
interpretability and validation itself.

This issue is typically encountered in multi-component parametric structures, where
various components or parts interact and their behaviors depend on different pa-
rameters. To give an idea of the difficulties, we take again an industrial problem in
automotive engineering. The construction of a parametric crash solution of a structure
composed of 200 parts, each one involving a parametric material described by 3 pa-
rameters and the part thickness. Thus, the number of parameters becomes exorbitant,
800. In the most advanced regression technologies the number of data (high-resolution
problem solutions) scales with the number of parameters. In the present case, even
by using the most advanced regression techniques more than 800 high-fidelity solu-
tions seems compulsory, but considering that each of these solutions implies one-day
computation, the computational cost represents 3 years calculations.

Figure 1.2 exemplifies the challenge, highlighting some possible parametric compo-
nents in the vehicle B-pillar.

Figure 1.2: Example of a multi-parametric structure in automotive (courtesy of Hyundai
Motor Group).

1.2 Separated representations

Let us consider a generic differential problem defined over the spatial region Ω ⊂
Rn (with n = 1, 2, 3), evolving within the time interval I ⊂ R and incorporating
parameters residing in the parametric space Θ ⊂ Rd (with d ∈ N). Let x = (x, y, z) ∈
Ω be the vector of spatial coordinates, t ∈ I the time coordinate and p = (p1, . . . , pd) ∈
Θ the vector of parameters.

Neglecting the time derivatives, a generic parametric partial differential equation
(PDE) can expressed as

L(u(x , t);p) = f(x , t) (1.2.1)

where L(•) refers to a generic (eventually nonlinear) differential operator involving
the derivatives in space and exhibiting a parametric dependency upon the vector p.
Moreover, f is the source term and u is the problem solution (these can eventually be
vector-valued functions).

Problem (1.2.1) is equipped with a suitable initial condition specifying the initial
state of u and boundary conditions characterizing its behavior at the boundary of the
domain ∂Ω, defining a so-called boundary value problem (BVP). The specific nature of
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1.2.1 depends on the particular physical problem or system being modeled. Textbooks
such as [17–19] provide a wide range of examples and a solid theoretical background
about such problems.

Many techniques have been developed in the framework of numerical analysis of PDEs
[20], allowing high-fidelity solutions of a wide variety of differential problems, with
certified error bounds. Examples of these methods are finite differences [21], finite
elements [22], finite volumes [23], boundary elements [24], spectral methods [25] or
isogeometric analysis [26].

Let us first keep the parameters p fixed. Generally, when solving (1.2.1) numerically,
the solution is approximated as

u(x, t) ≈
Nx∑
i=1

ψi(x)ui(t) (1.2.2)

where Nx is the number of mesh points throughout the spatial domain Ω, ψi(x)
are opportunely chosen spatial shape functions and ui(t) the unknown nodal values.
Approximation (1.2.2) is injected into problem (1.2.1) (more precisely in its weak
formulation) leading to a time-dependent algebraic system of (linear or nonlinear)
equations. Afterwards, a time marching scheme is introduced and the systems are
solved incrementally (if time derivatives also appear, special care must be paid to the
choice of the time scheme).

Similar separated expansions are promoted in classical reduced-order models. For
instance, when considering the proper orthogonal decomposition (POD) [27, 28], the
approximation reads

u(x, t) ≈ uPOD(x , t) =
M∑
k=1

wx
k (x )α

t
k(t), (1.2.3)

where the functions wx
k (x ) and αt

k(t), for k = 1, . . . ,M , are the space and time modes,
which form low-dimensional reduced bases of spatial and time functions. Moreover,
the POD modes satisfy an orthogonality property which guarantees the optimality of
the decomposition.

The POD reduced bases gather the most typical or characteristic structure of the sys-
tem, reducing the dimension of several order of magnitudes compared to traditionally
employed numerical models. However, the inconvenient is that such approximation is
computed a posteriori, that is only once problem (1.2.1) is solved by means of usual
techniques.

The proper generalized decomposition (PGD) [29, 30] is a generalization of the POD
which enables the computation of similar separated representations a priori, that is
while solving problem (1.2.1). In this context, the assumed approximation is written
as

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t), (1.2.4)

where the functions Ux
k (x ) and U t

k(t), for k = 1, . . . ,m, are the unknown space and
time modes, which are, in general, not orthogonal compared to the POD ones. Solution
(1.2.4) is built iteratively by successive modal enrichment. When looking for the
enrichment m, the previous m− 1 terms are known, thus um(x , t) is expressed as

um(x , t) =
m−1∑
k=1

Ux
k (x )U

t
k(t) + Ux

m(x )U t
m(t), (1.2.5)
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and injected into problem (1.2.1). The separation of variables is exploited at the level
of the differential operators to build separated space and time differential problems,
for Ux

m(x ) and U t
m(t), respectively. A sequence of separated space and time problems

in solved until a fixed point is reached for the product Ux
m(x )U t

m(t). This technique
is known as alternating direction strategy, where the separated problems are tackled
via standard finite differences or finite elements [31].

To get an idea of the computational savings, let us consider a standard transient
model defined in a 3D physical space. Involving k time steps, usual incremental
strategies must solve k (in general nonlinear) 3D problems. Letting p be the number
of nonlinear iterations needed for computing each term of the finite sum, one should
solve around mp 3D problems for computing the space functions and mp 1D problems
for computing the time functions. In general, mp is many order of magnitudes lower
than k. Moreover, depending on the analyzed problem, further decompositions can be
enforced to obtain even more remarkable computational gains (for instance, the space
can be fully or partially separated).

A great advantage of PGD-based representations is the possibility of including param-
eters as problem extra-coordinates within the decomposition, enabling to efficiently
build high-dimensional models, which can be seen as computational vademecums or
digital abacuses [31–35]. In this case the solution is expressed as

um(x , t,p) =
m∑
k=1

Ux
k (x )U

t
k(t)U

p1
k (p1) · · ·Upd

k (pd), (1.2.6)

where Upj
k are univariate functions of the parameter pj .

PGD-based parametric models rely on a potentially expensive offline phase in which
a high-dimensional problem is solved and an online phase where efficient evaluations
of the model are performed, enabling real-time simulation.

Here below we quickly introduce the separated representations adopted in this work,
which are space-separated, time-separated and parameters-separated for space, time
and parameters, respectively.

1.2.1 Space

Let us consider a plate-like domain Ω = Ωxy × Ωz with Ωz = [−h/2, h/2], where
the thickness h is lower then the in-plane dimensions. To circumvent the previously
discussed issues related to a fully 3D discretization of such degenerate geometries,
efficient methods developed in the PGD framework are based on expressing a function
of space in an in-plane/out-of-plane separated form

um(x ) =
m∑
k=1

Uxy
k (x, y)U z

k (z). (1.2.7)

In this context, 3D solutions (Nx degrees of freedom) are computed alternating series
of 2D (Nxy degrees of freedom) and 1D (Nz degrees of freedom) problems, preserving
the computational cost of a 2D simulation, while enabling a detailed and accurate
representation of the solution along the thickness coordinate. Figure 1.3 shows the
decomposition of the 3D computational domain into the 2D in-plane and 1D out-
of-plane grids, entailing an important reduction of the original number of degrees of
freedom.
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Figure 1.3: Decomposition of a 3D computational grid in a plate-like geometry.

Space-separated representations such as (1.2.7) have been successfully applied in struc-
tural mechanics [36–42], for the simulation of squeeze flows of Newtonian and non
Newtonian fluids occurring in composite and multiaxial laminates, in thermoplastic
composite inserts and in thin rough polymers [43–46], to flows in stratified porous
media [47], to nonlinear viscoplastic flows [48] and to microwave processes in thin-ply
composites laminates [38,49,50]. To have an idea of the computational gains, one can
check, for instance [38] where several numerical examples are discussed.

However, despite the effectiveness of such methods, their applicability to large-scale
problems is often limited by their intrusive nature. Many attempts have been con-
ducted in this direction to propose less intrusive PGD-based solutions, facilitating the
implementation into a commercial software.

In [40] a minimally-intrusive in-plane/out-of-plane approach is proposed for elasto-
plasticity, allowing the integration of fully 3D descriptions into existing plate software.
Moreover, a non-intrusive algebraic in-plane/out-of-plane approach was developed in
[51] and applied to the mechanical modeling of 3D woven fabrics. The methodology
has then successfully been applied in parametric elastodynamics [52] and for the high-
resolution mechanical simulation of a layered lithium-ion battery cell [53].

In this work we propose a novel less-intrusive in-plane/out-of-plane approach for struc-
tural mechanics, based on combining the shell theories (first-order and higher-order)
with a machine learning framework.

1.2.2 Time

Let us consider the time interval I = (0, Tf ) with Tf ≫ 0. For the numerical simulation
of long-term simulations requiring a really small time step or for phenomena exhibiting
multiple time scales, a time-separated representation can be adopted. This can be done
via a space-microtime-macrotime separated representation [54,55]

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t) ≈

M∑
k=1

Ux
k (x )U

τ
k (τ)U

T
k (T ), (1.2.8)

or imposing the multi-time decomposition for the computation of the time function
(micro/macro time sub-modes) [55,56]

um(x , t) =
m∑
k=1

Ux
k (x )U

t
k(t) ≈

m∑
k=1

Ux
k (x )

mk∑
j=1

U τ
k,j(τ)U

T
k,j(T ), (1.2.9)

where two new independent time coordinates τ (microtime, or fast time) and T (macro-
time, or slow time) to be introduced. Moreover, in equation (1.2.8) the new number
of modes is denoted as M (in general, M > m), while in equation (1.2.9) the number
of modes involved in the space-time separation is still m and mk denotes the number
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of time sub-modes required to approximate the single-scale function for the current
global mode k.

Figure 1.4 shows the fine time grid defined along the usual time variable t obtained as
from a fine grid along the fast micro-scale variable τ and a coarse grid along the slow
macro-scale variable T . If a standard time-marching approach requires a discretization
of the time interval I by means of Nt time steps, in the multi-time approach this is
recovered as Nt = NτNT by mapping Nτ micro-dofs onto a coarser grid of NT macro
intervals.

Figure 1.4: Decomposition of a single-scale fine time grid into a multi-scale one.

In this context, a fine-scale solution (Nt degrees of freedom) is computed alternating
series of micro-scale (dimension Nτ ) and macro-scale problems (dimension NT ), mak-
ing the computational cost and memory requirements switching from Nt = NτNT to
Nτ +NT .

So far this decomposition has been applied only in linear cases, such as thermal and
elastodynamic multiscale problems [54,55]. In this thesis, the procedure is extended to
the nonlinear setting of elasto-plasticity. Moreover, to enable the simulation of really
long-term problems, the formulation is coupled with a machine learning framework
along the macro-scale.

1.2.3 Parameters

Let us consider the parametric domain Θ ⊂ Rd, with d ≫ 1. The PGD allows
to compute a multi-variate parametric solution treating the parameters as problem
extra-coordinates and considering a parameters-separated representation

um(x , t,p) =
m∑
k=1

Ux
k (x )U

t
k(t)U

p1
k (p1) · · ·Upd

k (pd). (1.2.10)

Even if the dimensionality of the problem considerably increases, the separated form
of the PGD solution conducts to small independent problems in each parametric direc-
tion, whose solutions are univariate parametric functions (or modes). This powerful
aspect together with its many applications (such as a posteriori inverse identification
and optimization) are discussed in the review [57]. Moreover, recent studies com-
bine the PGD-based parametric solver with NURBS-based geometrical descriptions,
allowing to efficiently integrate also complex geometric parameters in the decomposi-
tion [58,59,59,60].

Thanks to the capability of dealing with high-dimensional spaces, such separated
approximations have reached a great interest in industry and several non-intrusive
PGD variants have been developed for parametric studies [61–69]. In this sense, the
PGD serves as a snapshots-based model-reduction method and becomes a powerful
tool to perform multi-parametric nonlinear regressions at the scarce-data limit.
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Independently from the intrusive or non-intrusive nature of the PGD, creating a unique
model in large physical and parametric domains is a tricky issue. A valuable route
for enhancing accuracy consists in partitioning the physical space, in order to build a
model in each of the resulting patches. Local quasi-linear models perform in general
better than rich nonlinear ones in the whole space domain.

Partitioned schemes are thus being recast in a PGD-based parametric framework
[70–72]. In this context, the parametric model is built via a domain-decomposition
procedure with a double perspective. On the one hand, dealing with smaller local
systems reduces the complexity of a single global problem. On the other hand, this
improves the physics insights of the models which become the more and more intricate
and correlated in high dimensions.

In this thesis, we propose and investigate a general procedure to build parametric
models in the context of multi-component systems. This is based on separating the
domain in non-overlapping components, modeling the interfaces skeleton and build-
ing local by-components and computationally cheap parametric surrogates. This is
schematically illustrated in figure 1.5.

Figure 1.5: Decomposition of a single parametric problem P into by-component subproblems
Pp.

1.3 Manuscript content

This manuscript is structured in three chapters, aligned with the three addressed
challenges of space, time and parameters.

1.3.1 Chapter 2: Space

In section 2.2 the first-order shell theory is described, emphasizing its limitations.
In section 2.3 the proposed enhanced theory is presented, paying attention to the
implementation details in a commercial solver. In section 2.4 some numerical examples
are discussed. Finally, section 2.6 gives a short conclusion and perspectives.

1.3.2 Chapter 3: Time

The chapter is divided into two sections. Section 3.2 is dedicated to the computation of
a time-multiscale response in cyclic elasto-plasticity. Section 3.3 exploits the results
of section 3.2 to build an efficient data-driven model of the nonlinear constitutive
relations. The sections are structured as follows.
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1. Section 3.2. Subsection 3.2.1 presents the problem statement in its strong and
weak forms. Subsection 3.2.2 recasts the problem in the numerical framework
of the proper generalized decomposition, starting from the space and time sep-
aration and then addressing the multi-time separation. Subsection 3.2.3 shows
the results on load-unload tensile tests. Subsection 3.2.4 gives conclusions and
perspectives.

2. Section 3.3. Subsection 3.3.1 briefly recalls the theoretical and numerical
framework already introduced in section 3.2. Subsection 3.3.2 enters in the
details of all the methods exploited to build the data-driven model. Subsection
3.3.3 shows the numerical results considering two benchmark tests in 2D, varying
the geometry and plasticity law. Finally, subsection 3.3.4 provides conclusions
and perspectives.

1.3.3 Chapter 4: Parameters

The chapter is structured as follows. Section 4.2 describes all the steps of the proposed
procedure: (1) definition of the interfaces skeleton; (2) identification of local model
parameters; (3) identification od transmission conditions; (4) construction of local
ROM; (5) imposition of the interface skeleton equilibrium. Section 4.3 shows applica-
tions two benchmark problems. The first example concerns a steady state conduction
problem. The second example deals with the mechanical state of a thin elastic plate.
Section 4.3 gives conclusive remarks and perspectives.

1.4 Contributions to automotive engineering

A significant part of this thesis has been devoted to the application of PGD-based
model reduction tools in automotive engineering. These contributions, not covered by
the manuscript, can be resumed in two areas: (1) vehicle crashworthiness, safety and
optimization; (2) safety aspects of lithium-ion batteries in electric vehicles.

1.4.1 Vehicle crashworthiness, safety and optimization

In the automotive industry, building parametric surrogate models is a fundamental
tool to evaluate, in real time, the performance of newly designed car components.
Such models allow to compute any quantity of interest (QoI), such as a specific safety
protocol index, for any choice of material and/or geometrical parameters characteriz-
ing the component, within the stringent real time constraint. For instance, they can
be exploited to guarantee safer designs (e.g., maximizing energy absorption by the
crash boxes) or to reduce manufacturing costs (e.g., minimizing the mass of a specific
structure under some safety protocol constraints). In general, these parametric simu-
lation tools allow a significant gain in terms of manufacturing costs and time delays
during the investigation phase.

Non-intrusive PGD techniques [61] construct the reduced representation from high-
fidelity solution snapshots obtained via any commercial software, requiring only post-
processing steps such as interpolations into the parametric space. Thanks to their
non-intrusive character and to the capability of handling a high-number of parameters
while limiting the overfitting, sPGD-based surrogates have reached a great interest in
industry [62–68].
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In [63], we focus on the vehicle frontal structure system considering its performance in
a full-frontal crash scenario. In the front structure system we parameterize the crash
boxes (left and right) and the inner/outer side front members (left and right, front
and rear) with respect to the part thickness and the material parameters, for a total
number of 13 parameters. The structure is shown in figure 1.6.

Figure 1.6: Vehicle frontal structure under study (courtesy of Hyundai Motor Group).

The core of the work is considering material properties in the metamodel, such as
the parameters characterizing the Krupkowski strain-hardening plasticity law. For
this to be done, two important novelties are introduced. The first one concerns the
design of experiments (DoE) and, particularly, a physics-informed sampling strategy
following the manifolds experimentally observed. The second one is related to the
strain-dependent plasticity accounted by using Neural Networks, respecting the static
and dynamic tests experimentally performed over materials specimens. These points
are exposed in more detail here below.

Sampling strategy For each steel part, we consider the 3 parameters (n,K, ε0)
characterizing the Krupkowski strain-hardening law

σ = K(ε+ ε0)
n,

linking the true strength and the true strain.

To obtain physically-consistent results, the design of experiments –DoE– is based on
three physical properties: the yield strength YS (Rp), the ultimate tensile strength
UTS (Rm) and the uniform elongation U-El (Ag, in %). From the sampled tuple
(YS, UTS, U-El), we compute the corresponding Krupkowski parameters (K,n, ε0) by
means of a non-linear optimization algorithm, as shown in figure 1.7, which shows the
location of such points over a typical plasticity curve linking the engineering strength
and engineering strain.

Available experimental data (in Hyundai Motor Group) collect the material properties
observed (YS, UTS, U-El) for tests performed over specimens ranging from mild steel
to press hardened steel (PHS). With the aim of sampling new materials close to the
manifold of experimental data, we propose a sampling strategy based on the k-nearest
neighbors (alternatives would be manifold learning techniques)
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Figure 1.7: Plasticity curve (σ, ε) and location of sampled points.

Strain-rate effect Since strain-rate effect is also considered4, the material of
a part is identified by a rate-dependent plasticity curve (i.e., a plasticity curve for
each rate). Also in this case, an experimental dataset is available. This links material
properties observed at quasi-static test (YS,UTS,UEl)QS with the ones obtained at
dynamic test under a strain rate r, (YS,UTS,UEl)Dr .

After the sampling of a virtual material through its properties at quasi-static test, its
response to strain-rate is predicted through trained neural-networks models over the
available data, allowing to obtain a plasticity curve for each rate characterizing such
newly defined material.

Multi-sPGD Another element of novelty of this work is the usage of a multi-
PGD approach to enhance the quality of the model. In fact, a clear bifurcation in the
parametric space is observed, due to two different behaviors in the system response,
that is buckling and compression modes.

The multi-PGD approach consists in clustering the high-fidelity solutions related to
the considered sampling, for example by invoking the k-means [73] or a hierarchical
cluster. Then, a nonlinear regression model Mk is created from the solutions in each
cluster k. Finally, the trickiest issue becomes the way of associating a cluster to any
parameters choice, that is, performing an accurate classification.

The procedure, shown in figure 1.8, can be summarized in the following steps:

1. clustering high-fidelity solutions related to a design of experiments;

2. creating a regression model in each cluster (for instance, via the standard sPGD-
based algorithms);

3. constructing a classifier able to associate a cluster to any parameters choice and
to select the most suitable regression model.

When a parameter choice is in the border of two clusters, one could compute both
regressions and then proceed to average them. Another procedure consists of rendering
continuous the approximations of the different clusters by constructing a partition of
unity on a mesh attached to the cluster centers of gravity. Another possibility consists
in using mowing least squares in the regression construction like in the element-free
Galerkin methods.
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Figure 1.8: Multi-PGD procedure.

1.4.2 Safety aspects of lithium-ion batteries in electric ve-
hicles

In the conception and design phase of electric vehicles (EVs), additional safety require-
ments for batteries must be addressed. In face, a crucial safety concern is preventing
internal short circuits (SCs) in battery cells resulting from damage during a crash, due
to the associated fire hazard. However, evaluating SC risk in vehicle-level crash simu-
lations is intricate due to phenomena occurring at various scales. The vehicle deforms
on a macroscale level during impact, while battery cells locally deform, damaging the
thin separator foil and potentially leading to an internal SC. This scales cascade is
shown in figure 1.9.

Figure 1.9: Various length scales occurring in EV crash simulation (courtesy of ESI Group).

However, integrating detailed cell descriptions into crash simulations is impractical due
to model size and the resulting very small stable timestep imposed by explicit time
discretization. To get an idea of the complexity of such scales cascade, the number
of elements needed for a detailed model of a single cell (meso-scale level) is around 5
millions, which is comparable to the number of elements required for the whole vehicle
(macro-scale level). Considering that one module consists of around 16 cells and that
one battery pack is composed of around 24 modules, this would bring to billions of
elements only for the battery, which is unaffordable. In terms of time-steps the meso-
scale cell model is around 10−3 µs, while the macro-scale vehicle model about 0.5 µs,
implying major simulation challenges.
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Model order reduction and machine learning have therefore reached an important place
in the field of battery simulations and efficient PGD-based solutions have recently been
proposed in [53,64,74].

Detailed battery cell simulation Lithium-ion cells can be considered as
laminates of thin plies called anode, separator, and cathode [75]. The stack-up of such
layers is often called jellyroll or jellystack and is shown in figure 1.10.

Figure 1.10: Detailed cell model structure (courtesy of ESI Group).

Detailed modeling approaches [76,77] consider the layers individually. Unfortunately,
the usage of simplification hypotheses for thin structures, coming from shell theories, is
limited since the cells are vulnerable towards out-of-plane loading (in fact, the internal
short-circuit is mainly caused by the rupture of the separators). As a consequence,
a rich description of out-of-plane strains and stresses is necessary and requires the
employment of solid elements. This situation strongly impacts the computational
efficiency, since the minimum element dimension is limited with the ply thickness
(usual drawbacks arising when meshing thin structures with volume elements).

To reduce these computational issues, RVE models have been proposed, which limit
the cell to a so-called representative volume element (RVE) or unit cell, and the
entire mechanical behavior of the cell is determined with the help of homogenization
theories [78, 79]. However, the numerical simulation of a detailed unit cell via solid-
based meshes can still be computationally expensive when using volume elements. In
particular, this is experienced when employing implicit schemes, which requires the
inversion of a big assembled liner system.

In [53], we suggest to overcome this issue in a non-intrusive manner, exploiting the
PGD-based in-plane/out-of-plane decomposition to solve the algebraic system result-
ing from the finite element assembly, yielding important computational gains.

Macro-mechanical models calibration Another class of homogenized
models is constituted by the macro-mechanical ones [80–82]. The goal of this modeling
is to obtain a computationally efficient model of the lithium-ion cell that reflects the
mechanical behavior against different load cases. For this purpose, both 1D and 2D
elements are used. The basic scheme of this modeling approach is shown in figure
1.11 and consists of three main components: pouch (blue), middle layer (green), and
beams (red).

These models are extremely efficient. To have an idea of the computational gains, they
allow to reduce from the 5 million elements and a 10−3 µs time-step of the meso-scale
model (8 hours simulation on 64 CPUs) to 20 thousand elements and a time-step about
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Figure 1.11: Macroscopic modeling approach (courtesy of Vehicle Safety Institute).

0.1 µs time-step (5 minutes simulation on 16 CPUs), making the battery simulation
scalable with respect to the full vehicle crash.

However, these artificial material properties cannot be determined by component tests
and must be calibrated by cell tests. This step can be time costly due to the number of
calibration parameters and of test configurations to be examined, especially when pro-
ceeding experimentally. For instance, figure 1.12 shows three different configurations,
where also the material and geometrical properties of the impactor can be varied.

Figure 1.12: Isometric view of four different test configurations (courtesy of Vehicle Safety
Institute).

Parametric investigations have therefore reached a growing interest in this context
and an efficient meta-modelling approach based on the sPGD and ANOVA-PGD is
considered in [64, 74]. In these studies, a parametric model is built from high-fidelity
finite elements simulations, varying the impactor properties (material and geometrical)
for several loading cases. Afterwards, the metamodels allow the computation of system
response in real-time and therefore enable the fast calibration of the macro-mechanical
model against the experimental data.
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Abstract
Plate and shell structures are commonly found in many mechanical systems. In this context,
the 2D simulation based on the shell theory appears as an appealing choice since it reduces the
computational complexity. Nevertheless, this 2D framework may fail to capture rich physics
(such as plastic flow localization, stress concentration, striction and fracture) compromising
the usual assumptions made in shell theories and, in these scenarios, a 3D discretization
becomes compulsory. Unfortunately, the resultant meshes often entail an excessive number of
degrees of freedom, as the mesh granularity needs to proportionately scale with the thickness
dimension to prevent overly distorted elements.

In this chapter, we propose a novel finite element formulation for thin to thick structures,
based on enriching the first-order Reissner-Mindlin 2D theory. Such formulation preserves
the in-plane kinematics of the classical first-order theory, while enriching the out-of-plane
one via higher-order polynomials. This is done without increasing the number of degrees of
freedom of the standard shell element, but using a machine learning (ML) model to predict
the out-of-plane polynomials.

We present the implementation prototype in an industrial solver, limiting the intrusiveness of
the procedure. Afterwards, we consider some benchmark tests in elasticity and elasto-plasticity
where classical shell elements would lead to inaccurate mechanical predictions.
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2.1 Introduction

Most of mechanical systems and complex structures exhibit plates and shells com-
ponents (i.e., having planar dimensions much larger than their thicknesses), making
them crucial to computational structural mechanics [8–10, 97, 98]. In this field, most
commonly employed approaches make use of some kinematic and mechanic assump-
tions to reduce the three-dimensional nature of mechanical models to two-dimensional
reduced models defined in the plate (or shell) middle surface. For instance, first-order
theories assume that the plate thickness remains constant during deformation and
that the displacement varies linearly across the plate thickness.

Plates and shells theories are widely employed in industry [99,100] since they guarantee
extremely efficient numerical simulations. For instance, the Reissner–Mindlin shell
theory [101,102] is commonly used to predict the deformation of thin and moderately
thick shells accounting for transverse shear deformation effects1. A common numerical
drawback of such theory is known as shear locking effect, arising in case of thin-walled
structures. This can be prevented via reduced integration, among other possibilities
[9].

More complex drawbacks are physical rather than numerical. Indeed, due to their
inability to account for three-dimensional effects like plastic flow localization, stress
concentration, striction and fracture, classical first-order theories may not always en-
sure reliable simulations [103]. This issue is typically encountered in sheet metal
forming [104] or in multilayered composite manufacturing processes [105, 106]. Such
forming processes may induce an important through-the-thickness evolution of the
thermo-mechanical fields, producing residual stresses and distorted formed parts.

In these scenarios, three-dimensional models become compulsory. Nevertheless, given
the degenerate nature of the geometry, the usage of meshes based on solid elements
is limited. Indeed, to avoid overly distorted elements which would compromise the
simulation results, the granularity of the mesh should scale with the domain thick-
ness. This produces an extremely high number of elements resulting in a prohibitive
computational cost.

This issue is faced, for instance, when employing the shell-to-solid remeshing (SSR)
procedure, available in ESI VPS [107]. Here, according to specific criteria, when
the shell-based simulation does not guarantee reliable results, the part of interest is
extruded and a solid-based remeshing is performed. This usually involves a high num-
ber of solid elements, which significantly increases the computing time. Moreover, this
procedure also entails other difficulties such as the coupling of the extruded part with
the surrounding 1D beam elements or 2D shell elements, which is usually not trivial.
This issues are even acerbated in case of junctions, were the remeshing inevitably
causes highly skewed element ratios in the corners, as shown in figure 2.1.

Several representations and new finite elements types have been developed to avoid
the just referred issues. For instance, solid-shell elements lie halfway between thin-
shell and traditional solid elements and are specifically designed to overcome shear
locking [108–114]. As a main disadvantage, many solid-shell approaches do not have

1Contrarily from Kirchhoff–Love plates theory, where both transverse shear and transverse normal
strain effects are neglected, limiting the deformation to bending.
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Figure 2.1: Shell-to-solid remeshing (courtesy of ESI Group).

a great meshing flexibility and opportune pre-processing steps are often required.
Furthermore, although the computing time is shorter than simulations based on solid
elements, it still cannot match that of shells-based ones.

Other techniques are based on enriching the shell-based descriptions to account for
more complex out-of-plane behaviors, enabling thickness-stretching effects and 3D
constitutive relations [115–117]. Higher-order theories enhance the kinematic assump-
tion of classical theories considering higher-order polynomial displacements (such as
quadratical or cubic) over the thickness [118, 119]. Hierarchical shell formulations
suggest a parametrization of the through-the-thickness behavior via hierarchical high
order functions [120].

Many advancements in this research line rely also on the Carrera unified formulation
(CUF) [121–124], which arbitrarily expands unknown variables, such as displacement
or stress components, to degenerate any structural theories into generalized kinemat-
ics.

Substantially different approaches are instead based on the in-plane/out-of-plane sep-
arated representations developed in the framework of the proper generalized decom-
position (PGD) [36–39]2. In this context, 3D solutions are computed alternating series
of 2D (in-plane) and 1D (out-of-plane) problems, preserving the computational cost of
a 2D simulation, while enabling a detailed and accurate representation of the solution
evolution along the thickness coordinate. However, despite the effectiveness of such
methods, their applicability to large-scale problems is often limited by their intrusive
nature. Many attempts have been conducted in this direction to propose less intrusive
PGD-based solutions [40–42,51,53].

The primary objective of the current study is to suggest and investigate novel options
with the dual aim of improving the quality of conventional shell-based simulations
when the 2D theory’s predictions are questioned while maintaining the same comput-
ing cost. Many features from the works described before are inherited for this aim.
The formulation specifically retains the in-plane kinematics of the traditional first-
order theory while enhancing the out-of-plane one using higher-order polynomials. As
a novelty, a machine learning framework is introduced to predict the proper kinematic,

2These approaches are not limited to structural mechanics, and have been successfully applied
also to other contexts, such as fluid-dynamics in narrow gaps [43–45] or electromagnetism in laminates
[49,50].
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in each in-plane position, in order to avoid increasing the number of degrees of freedom
of the typical shell element.

In past works, a similar technique has been proposed for the solution of parametric
heat conduction problems in thin structures [125]. This work can be seen as an
extension of [125] to structural mechanics.

The chapter is structured as follows. In section 2.2 the first-order shell theory is
described, emphasizing its limitations. In section 2.3 the proposed enhanced theory is
presented, paying attention to the implementation details in a commercial solver. In
section 2.4 some numerical examples are discussed. Finally, section 2.6 gives a short
conclusion and perspectives.

2.2 Shell theory

In what follows, a geometrically degenerated system is referred as a plate or shell-like
geometry, representative of a generic structure having the out-of-plane dimension h
(thickness) much lower then the in-plane ones. This is represented in Fig. 2.2.

Figure 2.2: Example of a shell-like structure.

The numerical simulation of problems defined in such domains mostly involves plate
and shell elements, based on specific mechanical theories, as widely discussed in [9,10].
In particular, we will focus on Reissner–Mindlin plate theory, which is an extension
of Kirchhoff plate theory. While the former works also for thick plates, the latter
models only thin plate situations (thickness/average size ≤ 0.1). The classic thin
plate Kirchhoff theory establishes that the normal remains straight and orthogonal to
the middle plane after deformation. The more advanced thick plate theory proposed
by Reissner and Mindlin assumes that normals remain straight, though not necessarily
orthogonal to the middle plane after deformation. The two theories will be summerized
here below.

Thin plates: Kirchhoff theory A thin plate is a domain Ω = Ωxy × Ωz

with Ωz =
[
−h

2 ,
h
2

]
. The theory starts by reducing the structure to its middle plane

(or middle surface) Ωm corresponding to z = 0, which is also referred as the reference
plane. Let uQ = (u, v, w) denote the displacement vector of a generic point xQ

belonging to the plate.

The assumptions of the Kirchhoff thin plate theory are reported here below.

1. The points belonging to the middle plane (z = 0) only move vertically, that is

uP =
(
0, 0, w

)
∀xP ∈ Ωm.
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2. The points along a normal to the middle plane have the same vertical displace-
ment. This is equivalent to ask for the thickness of the plate to be invariant
during deformation.

3. The normal stress σz is negligible, which is known as plane stress assumption.

4. A straight line normal to the undeformed middle plane remains straight and
normal to the deformed middle plane, which is the normal orthogonality con-
dition.

Thick/thin plates: Reissner-Mindlin theory The Reissner-Mindlin
plate bending theory shares the first three assumptions of Kirchhoff plate theory.
However, the fourth hypothesis concerning the normal is reformulated as follows.

4. A straight line normal to the undeformed middle plane remains straight but
not necessarily orthogonal to the middle plane after deformation.

Displacement For both theories, the 3D displacement field is expressed in terms
of the middle plane kinematic variables w, θx and θy:

u(x, y, z) = zθy(x, y)

v(x, y, z) = −zθx(x, y)
w(x, y, z) = w(x, y)

(2.2.1)

where θx and θy are the angles defining the rotation of the normal vector to the middle
surface Ωm. Consequently, in both cases, the displacement vector contains the vertical
displacement (deflection) of the points on the middle plane and two rotations:

u = (θy, θx, w)
T . (2.2.2)

In particular, for the Kirchhoff theory, the rotations of the normal coincide with the
slopes of the middle plane at each point; this means that, in the plane xz, θx = ∂w

∂y

and, in the plane yz, θy = −∂w
∂x . For the Reissner–Mindlin theory, the rotations

of the normal are obtained with an additional rotation resulting from the lack of
orthogonality of the normal with the middle plane after deformation; this means that,
in the plane xz, θx = ∂w

∂y + ϕx and, in the plane yz, θy = −∂w
∂x + ϕy.

Actually, the hypothesis of straight normals in both theories is an approximation of
the true plate kinematics. Indeed, in reality, the plate normals are distorted during
deformation. This effect is more important for thick plates. The angles θx and θy
can be interpreted as the rotations of the straight line representing the “average”
deformation of the normal [9].

To summarize the plate theories, (a) the straight sections, i.e. the sections perpendic-
ular to the mid-surface, remain straight; (b) the material points located on a normal to
the undeformed mid-surface remain on a straight line in the deformed configuration.
The two theories are often resumed as in figure 2.3.

These assumptions imply that the displacement fields vary linearly in the thickness of
the plate. This means that a generic point xQ(x, y, z) belonging to the plate follows
the first-order kinematics:uQ(x, y, z)vQ(x, y, z)

wQ(x, y, z)

 =

uP (x, y)vP (x, y)
wP (x, y)

+ z

 θy(x, y)
−θx(x, y)

0

 (2.2.3)
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Figure 2.3: Kirchhoff versus Reissner–Mindlin theory.

where uP , vP and wP are the displacements of the middle plane and θx, θy the rotations
of this surface with respect to the two axis x and y, respectively. For what concerns
shear strains γxz and γyz, they are null in the Kirchhoff thin plate theory while constant
through-the-thickness in the Reissner–Mindlin thick plate theory.

A shell-elements based simulation can be viewed as represented in figure 2.4. In
particular, the degenerated solid Ω of figure 2.2 is reduced to its middle surface
Ωm, which is discretized in surface elements Ae, having five degrees of freedom per
node ue

i = (ui, vi, wi, θ
i
x, θ

i
y). Moreover, a given number of integration points is fixed

through-the-thickness (in the figure three points). The straight lines illustrate the
through-the-thickness kinematics.

Figure 2.4: Illustration of a 2D shell-elements based simulation.

In terms of stresses, the thick plate theory recovers the shear stresses τxz and τyz which
is more consistent than the thin plate one. However, both theories consider σzz = 0,
which does not happen in the exact three-dimensional elasticity.

However, when curvatures are no longer small and shear strains become important,
the main approximation of straight normals after deformation become doubtful and a
fully 3D finite-elements based simulation has to be carried out. A 3D-based simulation
is schematized in figure 2.5. One can observe that here solid elements having three
degrees of freedom are considered. The computed kinematics can be of higher order
and can vary according to the in-plane location. This implies that 3D effects such as
striction can be observed (ie. h′ < h).

However, a fully 3D discretization of such domains, discussed in the introductory
section, would imply too distorted elements or a unaffordable huge number of regular
elements, due to the extremely small thickness.
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Figure 2.5: Illustration of a 3D finite-elements based simulation.

2.3 Enhanced theory

Equations (2.2.3) mean that the displacement in the thin/thick plate is a single-mode
separated approximation of in-plane and out-of-plane functions. Actually the out-of-
plane contribution is uniform across the plate in the sense that it does not depend
on the in-plane nodal position. In each in-plane location, displacements u and v are
linear across the thickness, while the in-plane contribution is given by the rotations
of the mid-surface. The out-of-plane displacement w is instead constant along the
thickness.

The linear variation of the displacement field along the thickness is not a valid hy-
pothesis when the domain the thickness (out-of-plane) dimension is not much lower
than the other ones (in-plane) dimensions, for instance. Hypotheses are invalid also
in case of plastic behaviours or other kind of localized deformations.

In [40] authors extend the classical PGD-based in-plane/out-of-plane separated rep-
resentation in structural mechanics. In such work, authors show satisfactory results
in elasticity and plasticity, employing a multi-mode separated approximation, which
reads

u(x, y, z) =

u(x, y, z)v(x, y, z)
w(x, y, z)

 ≈
N∑
i=1

θiy(x, y)f iu(z)θix(x, y)f
i
v(z)

wi(x, y)f iw(z)

. (2.3.1)

This is actually a way to avoid simplification hypothesis related to plate theories,
and to capture a richer behaviour along the thickness. Indeed the PGD solution is
comparable to a fully 3D FEM simulation. For instance, in [40], it is shown how the
proposed method is able to take into consideration the σzz component, which is ignored
in plate theory, and allows to obtain the parabolic evolution around the thickness for
the σxy and σyz typical of a 3D solution. At the meanwhile, its intrusiveness limits
the implementation of such procedure into commercial software.

In this thesis, the theory is expressed in a less intrusive way to favor the implementa-
tion within ESI VPS software. To this purpose, we consider an enriched formulation
of the plate theory, based on allowing a higher order kinematics, through higher-order
out-of-plane functions, supposed to be known. The enriched-theory displacement field
of a generic point xQ(x, y, z) readsuQ(x, y, z)vQ(x, y, z)

wQ(x, y, z)

 =

uP (x, y)vP (x, y)
wP (x, y)

+

gx(z)θy(x, y)gy(z)θx(x, y)
gz(z)w(x, y)

 (2.3.2)
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which coincides with the first order theory (2.2.3) for gx(z) = z, gy(z) = −z, gz(z) = 0.

The geometry is still based on the planer facet approach (first order):

xQ = xP + zn, z ∈
[
−h
2
,
h

2

]
.

The through-the-thickness functions gx(z), gy(z), gz(z) are generic polynomial as-
sumed known and depending only on the z direction. Within the enriched theory
θx, θy, w do not represent rotations and deflection as those of Reissner-Mindlin theory
explained before.

Afterwards, the higher-order-kinematics can be embedded within the 2D computation
of the in-plane functions. For this purpose the 3D mesh is associated to the 2D one
obtained through its middle surface. The general procedure is based on defining in
the undeformed configuration columns Ce of 3D elements which are associated to the
shell mesh via the middle element Ae. This is schematized in figure 2.6.

Figure 2.6: Association of solid-based mesh to shell-based one.

The implemented flowchart is illustrated in figure 2.7. Starting from the assumed
displacement (2.3.2), an enriched problem can be assembled within the plane. The out-
of-plane kinematic functions are predicted by a machine learning framework which is
trained exploiting results coming from a 3D (parametric or non-parametric) simulation
(which can be PGD-based [40] if the FE one is not affordable computationally).

2.3.1 Finite element formulation of the in-plane problem

The finite element approximation starts by introducing a partition of the domain
Ωm into non-overlapping subdomains (or, finite elements) Ae as Ωm ≈

⋃N
e=1A

e, as
illustrated in figure 2.6 (right). Same occurs for the boundary, which is decomposed
as Γm ≈

⋃N
e=1 Γ

e =
⋃N

e=1 Γ
e
d ∪

⋃N
e=1 Γ

e
t . We have denoted by Γe

d and by Γe
t the

finite boundary elements with enforced displacement and traction, respectively. The
displacement field associated with a local element reads

u(x, t) ≈
Nloc∑
i=1

Ni(x)u
e
i (t) =N

T (x)ue(t)

where Ni(x) are element shape functions, while ue
i (t) are the time-dependent nodal

displacements and Nloc denotes the number of degrees of freedom of the element Ae.
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Figure 2.7: Implementation prototype in ESI VPS – Creation of a dynamic library contain-
ing a machine learning model framework.

In what follows, we consider a four-node and bilinear two-dimensional quadrilateral
element, with nodal variables ue

i = (ui, vi, wi, θ
i
x, θ

i
y), for i = 1, . . . , 4.

In isoparametric form, the finite element approximation of the displacement field is

u(ξ, t) ≈
Nloc∑
i=1

Ni(ξ)u
e
i (t) =N

T (ξ)ue(t)

x(ξ) =

Nloc∑
i=1

Ni(ξ)x
e
i =N

T (ξ)xe

where xe collects the nodal coordinates of the element Ae in the physical space, while
ξ are the parametric (reference) coordinates. The derivative of shape functions with
respect to parametric coordinates are obtained by the classical chain rule, accounting
for the Jacobian J of the transformation between ξ and x:

Ni,ξ = JNi,x, Ni,ξm = xl,ξmNi,xl
.

Consequently, the derivative of the shape functions with respect to the physical coor-
dinate is Ni,x = J−1Ni,ξ.

Equation of motion The equation of motion reads:

fv − ρü− Cu̇−∇ · σ = 0

where fv is the force vector per unit volume, ρ is the mass density, C is the damping
coefficient and σ the stress tensor.

Following the virtual power principle, we multiply the equation of motion by the
virtual velocity function u̇∗, integrate over the current configuration Ae and apply the
divergence theorem. This leads to

M eüe +Ceu̇e + f e
int = f

e
ext (2.3.3)

where
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• M e =
∫
Ae ρN

TNdAe is the element mass matrix;

• Ce =
∫
Ae CN

TNdAe is the element damping matrix;

• f e
int =

∫
AeB

TσdAe is the internal force vector;

• f e
ext =

∫
AeN

TfvdA
e +

∫
ΓeN

TfsdΓ
e +

∫
ΓeN

TrdΓe is the external force vector
(volume, surface and source loads);

• üe and u̇e are the vectors of nodal acceleration and velocity;

• N(ξ, η) the Lagrange shape functions and B the strain operator such that εe =
Bue.

To compute the strain operatorB of the higher-order element formulation, we consider
equation 2.3.2 and we develop the displacement field and the strain field. For the sake
of notation simplicity the index related to the current element is omitted.

Displacement The displacement field is expanded as

uQ(x, y, z) =

Nloc∑
i=1

Ni(ξ, η)u
i
Q =

Nloc∑
i=1

Ni(ξ, η)u
i
P + gx(z)

Nloc∑
i=1

Ni(ξ, η)θ
i
y

vQ(x, y, z) =

Nloc∑
i=1

Ni(ξ, η)v
i
Q =

Nloc∑
i=1

Ni(ξ, η)v
i
P + gy(z)

Nloc∑
i=1

Ni(ξ, η)θ
i
x

wQ(x, y, z) =

Nloc∑
i=1

Ni(ξ, η)w
i
Q =

Nloc∑
i=1

Ni(ξ, η)w
i
P + gz(z)

Nloc∑
i=1

Ni(ξ, η)wi.

Strain The corresponding strain is obtained as follows

εxx(x, y, z) = uQ,x = uP,x + gx(z)θy,x

=

Nloc∑
i=1

Ni,x(ξ, η)u
i
Q =

Nloc∑
i=1

Ni,x(ξ, η)u
i
P + gx(z)

Nloc∑
i=1

Ni,x(ξ, η)θ
i
y

εyy(x, y, z) = vQ,y = vP,y + gy(z)θx,y

=

Nloc∑
i=1

Ni,y(ξ, η)v
i
Q =

Nloc∑
i=1

Ni,y(ξ, η)v
i
P + gy(z)

Nloc∑
i=1

Ni,y(ξ, η)θ
i
x

γxy(x, y, z) = uQ,y + vQ,x = uP,y + vP,x + gx(z)θy,y + gy(z)θx,x

=

Nloc∑
i=1

Ni,y(ξ, η)u
i
Q +

Nloc∑
i=1

Ni,x(ξ, η)v
i
Q

+ gx(z)

Nloc∑
i=1

Ni,y(ξ, η)θ
i
y + gy(z)

Nloc∑
i=1

Ni,x(ξ, η)θ
i
x

γxz(x, y, z) = uQ,z + wQ,x = gx,z(z)θy + wP,x + gz(z)w,x

= gx,z

Nloc∑
i=1

Ni(ξ, η)θ
i
y + (1 + gz(z))

Nloc∑
i=1

Ni,x(ξ, η)wi

γyz(x, y, z) = vQ,z + wQ,y = gy,z(z)θx + wP,y + gz(z)w,y
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= gy,z

Nloc∑
i=1

Ni(ξ, η)θ
i
x + (1 + gz(z))

Nloc∑
i=1

Ni,y(ξ, η)wi

εzz(x, y, z) = wQ,z + gz,z(z)w = gz,z

Nloc∑
i=1

Ni(ξ, η)wi.

We can then express the strain operator for the enriched formulation as

εe = Beue

εe =
(
B1 B2 B3 B4

)
u1

u2

u3

u4

,
where ui = (ui, vi, wi, θ

i
x, θ

i
y), for i = 1, . . . , 4. In particular, the table here below

illustrates the application of the operator Bi to the displacement vector ui.

ui vi wi θix θiy
εx Ni,x gx(z)Ni,x

εy Ni,y gy(z)Ni,y

εz gz,z(z)Ni

γxy Ni,y Ni,x gy(z)Ni,x gx(z)Ni,y

γxz (1 + gz(z))Ni,x gx,z(z)Ni

γyz (1 + gz(z))Ni,y gy,z(z)Ni

Table 2.1: Operator Bi, for i = 1, . . . , 4.

From these computations, one can notice that the local assembly of problem 2.3.3
requires the integration of quantities over Ae, which can be reduced to separated inte-
grals over Ae for the in-plane functions and over [−h

2 ,
h
2 ] for the out-of-plane functions.

Indeed, the assembly of the internal force vector can be developed as follows

f e
int =

∫
Ae

BTσdAe =

∫ h
2

−h
2

∫
Ae

BTσdAedz

and, considering the computations in Table 2.1, we can explicitly write the force and
momentum assembly of each in-plane mesh node i:

fx =

∫
Ae

Ni,xdA
e

∫ h
2

−h
2

σxxdz +

∫
Ae

Ni,ydA
e

∫ h
2

−h
2

σxydz

fy =

∫
Ae

Ni,ydA
e

∫ h
2

−h
2

σyydz +

∫
Ae

Ni,xdA
e

∫ h
2

−h
2

σxydz

fz =

∫
Ae

NidA
e

∫ h
2

−h
2

gz,z(z)σzzdz +

∫
Ae

Ni,xdA
e

∫ h
2

−h
2

(1 + gz(z))σxzdz+∫
Ae

Ni,ydA
e

∫ h
2

−h
2

(1 + gz(z))σyzdz

mx =

∫
Ae

Ni,ydA
e

∫ h
2

−h
2

gy(z)σyydz +

∫
Ae

Ni,xdA
e

∫ h
2

−h
2

gy(z)σxydz+
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∫
Ae

NidA
e

∫ h
2

−h
2

gy,z(z)σyzdz

my =

∫
Ae

Ni,xdA
e

∫ h
2

−h
2

gx(z)σxxdz +

∫
Ae

Ni,ydA
e

∫ h
2

−h
2

gx(z)σxydz+∫
Ae

NidA
e

∫ h
2

−h
2

gx,z(z)σxzdz.

The computation of the in-plane and out-of-plane integrals is carried out through
standard Gaussian quadrature.

2.3.2 Out-of-plane kinematics estimation

At this point only functions gx(z), gy(z), gz(z) are needed to finalize of the operators
and right-hand-side via computation of all the out-of-plane integrals.

The enhanced kinematics can be extracted from 3D simulations performed in an initial
offline stage. The through-the-thickness displacements of Ce are reconstructed and
fitted with higher-order polynomial functions associated to the corresponding shell
element Ae. The out-of-plane functions can be provided per element or per node, at
each time step or could be unchanged over a given time interval. Supposing that each
node has an associated out-of-plane function, for instance, the z-component of the
displacement over an element is expanded as

wQ(x, y, z) =

Nloc∑
i=1

Ni(ξ, η)w
i
Q =

Nloc∑
i=1

Ni(ξ, η)w
i
P +

Nloc∑
i=1

Ni(ξ, η)g
i
z(z)wi,

meaning that giz(z) acts like a local weight allowing a richer out-of-plane physics.

Afterwards, all the integrals can be computed ans the in-plane problem solved. In such
a way, the the higher-order-kinematics can be embedded within the 2D computation
of the in-plane functions. The procedure is schematized in figure 2.8.

Figure 2.8: Illustration of a 2D enhanced simulation.



Space 31

2.4 3D simulations

In this section, we give a few numerical examples in elasticity and elasto-plasticity.
When plasticity is considered, the chosen model is a standard von Mises (J2) plasticity,
whose yield surface is defined by

Φ(σ(t), εp(t)) =
√
3J2 − σy,t = 0, (2.4.1)

where J2 = J2(t) denotes the second deviatoric invariant

J2 = J2(s) =
1

2
s : s, s = σ − 1

3
tr(σ)I (2.4.2)

and σy,t is the uniaxial yield stress, which evolves through a suitable strain-hardening
curve. The details of this evaluation are given below.

Making the assumption of isotropic hardening, at any state of hardening, the evolution
of the yield surface (3.2.16) corresponds to a uniform (isotropic) expansion of the initial
one. This is obtained assuming σy,t being a function of the accumulated (or effective)
plastic strain

ε̄pt =

∫ t

0

√
2

3
ε̇p : ε̇pds. (2.4.3)

In particular, assuming linear hardening, σy,t is given by

σy,t = σy,0 +Hε̄pt , (2.4.4)

where σy,0 is the initial yield stress and H is the (constant) hardening modulus.

Additionally, a standard associative plastic flow rule is considered, meaning that the
plastic strain rate is a tensor normal to the yield surface in the stress space, that is

ε̇p = λ̇N , N :=
∂Φ

∂σ
=

√
3

2

s

∥s∥
. (2.4.5)

Following usual notations, in equation (3.2.20), λ̇ denotes the unknown plastic multi-
plier. Specifically, when considering an associative hardening rule, it holds [126]

˙̄εp =

√
2

3
∥ε̇p∥ = λ̇. (2.4.6)

For every test case, some in-plane locations are considered (indicated over the mesh
with red dots), to illustrate the out-of-plane evolution of specific quantities of interest
(such as the displacement and stress components).

2.4.1 Test case 1

Here a clamped square thick elastic plate under distributed loading is considered. The
simulation set-up is illustrated in figure 2.9 and the simulation parameters reported
in table 2.9.

l h E ν F Nxy Nz

500 [mm] 100 [mm] 195 · 109 [GPa] 0.3 200 [kN] 400 10

Table 2.2: Simulation parameters (test case 1).



32 2.4 3D simulations

Figure 2.9: Geometry and loading conditions (test case 1).

Figure 2.10: 3D displacement contours (test case 1).

The contour plot of the displacement components is given in figure 2.10.

In particular, we can focus on the out-of-plane displacement and stress profiles, shown
in figures 2.11 and 2.12, respectively. The red points illustrated over the structure
represent the in-plane locations in which the out-of-plane evolution is considered.

This example shows out-of-plane displacements with cubic evolution in components u
and v and a quadratic profile for the component w. Moreover, from figure 2.12 we can
observe non-negligible shear stresses, as would instead be predicted by the first-order
theory.

Figure 2.11: Out-of-plane displacement profiles (test case 1).

2.4.2 Test case 2

Here a clamped square thick elastic plate under compressive loading is considered.
Such kind of compression is crucial for consolidating the layers and removing any
trapped air or excess resin in composite laminates manufacturing process. A proper
consolidation improves the mechanical properties of the composite.

The simulation set-up is illustrated in figure 2.13 and the simulation parameters re-
ported in table 2.13.
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Figure 2.12: Out-of-plane stress profiles (test case 1).

Figure 2.13: Geometry and loading conditions (test case 2).

l h E ν w0 Nxy Nz

500 [mm] 100 [mm] 195 · 109 [GPa] 0.3 10 [mm] 400 10

Table 2.3: Simulation parameters (test case 2).

The contour plot of the displacement components is given in figure 2.14.

Figure 2.14: 3D displacement contours (test case 2).

The out-of-plane displacement and stress profiles are shown in figures 2.15 and 2.16,
respectively. The red points illustrated over the structure represent the in-plane loca-
tions in which the out-of-plane evolution is considered.

This example shows out-of-plane displacements with quadratic evolution in compo-
nents u and v and a linear profile (constant in the plane) for the component w. This
example could not be treated using the first-order theory since it implies a change of
thickness.
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Moreover, in terms of stresses, polynomial profiles are computed. The evolution is
quadratic for the normal stresses σxx, σyy and σzz and for the in-plane shear stress
σxy. The out-of-plane shear stresses σxz and σyz have a cubic evolution.

Figure 2.15: Out-of-plane displacement profiles (test case 2).

Figure 2.16: Out-of-plane stress profiles (test case 2).

2.4.3 Test case 3

Here an elastic-plastic thick plate under 3-points bending test is considered. The
simulation set-up is illustrated in figure 2.17 and the simulation parameters are fixed
according table 2.4.

Figure 2.17: Geometry and loading conditions (test case 3).

Lx Ly h E ν w0 σy,0 H Nxy Nz

10 [cm] 6 [cm] 1 [cm] 195 [GPa] 0.3 4 [mm] 502 [MPa] 0.05 [GPa] 400 10

Table 2.4: Simulation parameters (test case 3).
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The computed displacement contours are shown in figure 2.18. Moreover, figure 2.19
furnishes the contour of the plastic strain and Von Mises stress.

Figure 2.18: 3D displacement contours (test case 3).

Figure 2.19: Plastic strain and Von Mises stress contours (test case 3).

In particular, figure 2.20 gives the effective plastic strain and plastic strain tensor
components out-of-plane profiles, corresponding to the in-plane locations exhibiting
maximum effective plastic strain. As one can observe from these profiles, for z between
0.002 and 0.004 the structure is in elastic regimen.

Figure 2.20: Out-of-plane plastic strain profiles (test case 3).

The corresponding displacements and stresses out-of-plane profiles are shown in figures
2.21 and 2.22, respectively. As expected from a 3 points bending test, the component
v is null (aside from some boundary effects). The components u and w are linear and
quadratic, respectively.
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Figure 2.21: Out-of-plane displacement profiles (test case 3).

Figure 2.22: Out-of-plane stress profiles (test case 3).

2.4.4 Test case 4

Here a T-joint specimen under flexion is considered, as illustrated in the test set-up
of figure 2.23. The simulation parameters are fixed according table 2.5.

Figure 2.23: Geometry and loading conditions (test case 4).

l1 l2 h E ν w0 σy,0 H Nxy Nz

10 [cm] 3 [cm] 1.5 [cm] 195 [GPa] 0.3 4 [mm] 502 [MPa] 0.05 [GPa] 114 6

Table 2.5: Simulation parameters (test case 4).

The computed displacement contours are shown in figure 2.24. Moreover, figure 2.25
furnishes the contour of the plastic strain and Von Mises stress.

In particular, figure 2.26 gives the plastic strain out-of-plane profiles, corresponding to
the in-plane locations exhibiting maximum effective plastic strain. As one can observe
from these profiles, for z between 0.005 and 0.01 the structure is in elastic regimen.

The corresponding displacements and stresses out-of-plane profiles are shown in figures
2.27 and 2.28, respectively. In this use-case, we can observe that the first order theory
well describes the solution and the higher-order enhancement is not necessary.
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Figure 2.24: 3D displacement contours (test case 4).

Figure 2.25: Plastic strain and Von Mises stress contours (test case 4).

Figure 2.26: Out-of-plane plastic strain profiles (test case 4).

Figure 2.27: Out-of-plane displacement profiles (test case 4).
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Figure 2.28: Out-of-plane stress profiles (test case 4).

2.4.5 Test case 5

Here a tensile test over a dogbone shaped specimen is considered, as illustrated in the
test set-up of figure 2.29. The simulation parameters are fixed according table 2.6.

Figure 2.29: Geometry and loading conditions (test case 5).

Lx Ly h E ν u0 σy,0 H Nxy Nz

10 [cm] 2.5 [cm] 1 [cm] 195 [GPa] 0.3 8 [mm] 502 [MPa] 0.05 [GPa] 500 10

Table 2.6: Simulation parameters (test case 5).

The computed displacement contours are shown in figure 2.30. Moreover, figure 2.31
furnishes the contour of the plastic strain and Von Mises stress.

Figure 2.30: 3D displacement contours (test case 5).

In particular, figure 2.32 gives the plastic strain out-of-plane profiles, corresponding
to the in-plane locations exhibiting maximum effective plastic strain.

The corresponding displacements and stresses out-of-plane profiles are shown in figures
2.33 and 2.34, respectively. We can observe that the kinematics differs from the one
assumed by the first order theory and the enhanced theory is necessary to obtain
three-dimensional effects.
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Figure 2.31: Plastic strain and Von Mises stress contours (test case 5).

Figure 2.32: Out-of-plane plastic strain profiles (test case 5).

Figure 2.33: Out-of-plane displacement profiles (test case 5).

Figure 2.34: Out-of-plane stress profiles (test case 5).

2.5 Machine learning based training

For a given geometric configuration and fixed material properties (e.g., for each test
case illustrated in subsection 2.4), from the high-fidelity 3D simulation, in each in-
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plane location i = 1, . . . , Nxy, we can approximate the out-of-plane displacements
with a polynomial function. For instance, considering a third order polynomial, the
approximation reads

ui(z) ≈ upi (z) = bu,i0 + bu,i1 z + bu,i2 z2 + bw,i
3 z3

vi(z) ≈ vpi (z) = bv,i0 + bv,i1 z + bv,i2 z2 + bw,i
3 z3

wi(z) ≈ wp
i (z) = bw,i

0 + bw,i
1 z + bw,i

2 z2 + bw,i
3 z3.

To this purpose, it suffices to fill the matrices U,V,W ∈ RNz×Nxy containing the
out-of-plane values to be fitted at every in-plane location locations (by columns). The
unknown polynomial coefficients collected in the matrices bU,bV,bW ∈ R4×Nxy are
then obtained via the least square method, by solving

(ZT
3 Z3)bU = ZT

3 U

(ZT
3 Z3)bV = ZT

3 V

(ZT
3 Z3)bW = ZT

3 W,

where Z3 = (1, z, z2, z3) ∈ RNz×4 is the Vandermonde matrix of order 3. For each in-
plane location, we have therefore computed four coefficients representing the related
out-of-plane function.

At this stage, we can consider a design of experiments (DOE) based on Ns com-
binations of problem parameters, which can be geometrical, material and modeling
properties. Denoting with pk, for k = 1, . . . , Ns, a given tuple of parameters, from the
output of the corresponding 3D simulation we can compute the associated out-of-plane
coefficients matrices, that is

(b1
F, . . . ,b

Ns
F ) ∈ R4×(NxyNs), F = U,V,W.

These data can be exploited to build a regression between the parameters and the
associated polynomial coefficients, using for instance artificial neural-networks [125].

2.6 Conclusions

In this work, we have proposed a new methodology to incorporate three-dimensional
effects in shell-based simulations. The proposed formulation enhances the kinematics
assumed by usual first-order plates theories, introducing higher-order ones learnable
via a machine learning framework.

The procedure is inspired by the in-plane/out-of-plane space separation promoted
in the framework of the proper generalized decomposition. However, to favor its
implementation in ESI VPS (or other commercial software), the in-plane/out-of-plane
formulation is recast in a non-intrusive manner. In this sense, the out-of-plane function
is learned in an offline phase, while the in-plane (kinematically-enhanced) computation
is performed within the industrial solver.

Several examples in elasticity and elasto-plasticity, under different geometric and load-
ing configurations, have been presented, to show the interest of the procedure. Current
research is focusing on the architecture of machine learning framework able to learn
the out-of-plane kinematics for specific industrial parts.
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Time

Abstract
Many engineering problems are defined in very large time intervals (e.g., when dealing with
fatigue, aging, dynamics with loadings involving multiple characteristic times) and, at the same
time, the response must encompass the different time scales present in the model. Following
standard time marching approaches, a suitable time step that captures the evolution of the
finest scale has to be adopted to ensure a reliable modeling, leading to a prohibitive simulation
cost.

In this chapter, we investigate a time marching scheme based on a tensorial decomposition
of the time axis, straightforwardly introduced in the framework of the proper generalized
decomposition. The time coordinate is transformed into a multi-dimensional time through
new separated coordinates, the micro and the macro times. From a physical viewpoint, the
time evolution of all the quantities involved in the problem can be followed along two time
scales, the fast one (micro-scale) and the slow one (macro-scale).

We apply the method to compute a time multiscale response of an elastic-plastic structure un-
der cyclic loading. Such micro-macro characterization of the time response is then exploited to
build a data-driven model of the elasto-plastic constitutive relation, with the aim of addressing
long time-horizon simulations. This can be viewed as a predictor-corrector scheme where the
prediction is driven by the macrotime evolution and the correction is performed via a sparse
sampling in space. Once the nonlinear term is forecast, the multi-time PGD algorithm allows
the fast computation of the total strain.
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3.1 Introduction

Due to the dramatically long duration of the phenomenon and the stringent require-
ments on the grid granularity, direct simulations of structures subject to a high number
of loading cycles remains a real challenge.

This issue is often encountered in computational mechanics, when dealing with cu-
mulative fatigue damage assessments [127, 128], crack initiation and failure propa-
gation [129] or cyclic visco-elasto-plastic fatigue problems [130–132]. For instance,
standard numerical techniques fail in simulating the fatigue life, representing a major
design issue in various fields of applications such as aircraft, auto parts, railways and
jet engines, among many others [12,13].

One of the reasons of the excessive complexity stands in the history-dependent be-
haviours which require the reconstruction of the whole past history [133–138]. Indeed,
when this is combined with fine spatial meshes and very long time horizons, the com-
putational complexity leads to cost-prohibitive simulations and to the necessity of
adopting suitable simplified models.

Different works have been proposed in this direction, most of them applied to the large
time increment (LATIN) method [139] together with the proper generalized decom-
position (PGD). For instance, several multiscale approximations have been developed
in [140–145], where the computational time is reduced via an interpolation of the
solution at different time scales. In this context, global admissibility conditions and
constitutive relations are imposed along the fast scale defined within the so-called
“nodal cycle” and the information between the “nodal cycles” is interpolated to define
the slow scale.

Other works rely on some hyper-reduction techniques, such as the reference point
method [146,147] or the extension of the gappy-POD technique to the space-time do-
main [56], but these were restricted for nonlinear behaviors at internal variables, which
is not the case for history-dependent behaviors. In particular, in [56], the concept
of temporal sub-modes was introduced in LATIN-PGD approximations of nonlinear
problems in solid mechanics. Here, the continuity of micro functions is ensured by
means of symmetric-antisymmetric characterizations, while the macro functions are
computed by using the finite element method in time.

In this thesis, we focus specifically on the multi-time separated representation pro-
posed in the framework of the PGD [54,55, 148]. Micro (fast) and macro (slow) time
separated coordinates, τ and T , are defined and the corresponding evolution com-
puted in terms of PGD modes. Such multiscale approach does not require time scale
separation, contrarily to time homogenization techniques. The term separation in this
work is, actually, meant in the context of separation of variables (i.e., PGD-like). The
two time scales are coexisting within the formulation meaning that kinematics and
mechanics variables are computed simultaneously along the micro and macro scales.

In a first part of this work, we extend such PGD-based time decomposition from
[54,55] to the non-linear setting of cyclic elasto-plasticity. In particular, we show that
such decomposition correctly performs when assuming history-dependent nonlinear
behaviors, as plasticity promotes. However, here, the integration of plasticity does
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not gain from the multi-time format of the time scheme and the evaluation of the
nonlinear term still requires the reconstruction of the past history. This compromises
the full computation in case of cyclic fatigue, thus so far the technique shares the
typical shortcomings of conventional methodologies in computational plasticity.

In a second part of the work, we push the technique a step further towards long-term
simulations involving a high number of cycles, focusing on the nonlinear constitu-
tive relations. To this purpose, we combine the time-multiscale characterization with
suitable data-driven techniques, establishing a predictor-corrector scheme. Predictor-
corrector schemes are commonly employed also in cycle-jumping techniques [149–152].
In fact, in usual cycle-jumping methods, the extrapolated state is employed as the ini-
tial state for future finite element simulations, which are used as reference within the
correction step. The drawback of such approach is that, being incremental in the
predictions, the committed error is accumulated.

On the contrary, the predictor-corrector scheme here proposed is not incremental.
This is achieved (a) treating exclusively the macrotime functions via the predictor-
corrector scheme; (b) accounting for the spatial functions through sparse sampling
and data completion techniques; (c) assuming unchanged the microtime functions
and, afterwards, correcting them via a successive enrichment.

As a last introductory comment, the strategy ensures the equilibrium globally in
space and time. All the stages of the procedure are based on iterative schemes whose
solutions’ quality is determined and, if necessary, enhanced according to suitable con-
vergence criteria, guaranteeing robustness.

For the sake of simplicity, the chapter is divided into two sections. Section 3.2 is
dedicated to the computation of a time-multiscale response in cyclic elasto-plasticity.
Section 3.3 exploits the results of section 3.2 to build an efficient data-driven model
of the nonlinear constitutive relations. The sections are structured as follows.

1. Section 3.2. Subsection 3.2.1 presents the problem statement in its strong and
weak forms. Subsection 3.2.2 recasts the problem in the numerical framework
of the proper generalized decomposition, starting from the space and time sep-
aration and then addressing the multi-time separation. Subsection 3.2.3 shows
the results on load-unload tensile tests. Subsection 3.2.4 gives conclusions and
perspectives.

2. Section 3.3. Subsection 3.3.1 briefly recalls the theoretical and numerical
framework already introduced in section 3.2. Subsection 3.3.2 enters in the
details of all the methods exploited to build the data-driven model. Subsection
3.3.3 shows the numerical results considering two benchmark tests in 2D, varying
the geometry and plasticity law. Finally, subsection 3.3.4 provides conclusions
and perspectives.

3.2 Multi-time PGD in cyclic elasto-plasticity

3.2.1 Theoretical framework

Neglecting the time derivatives, a quasi-static (nonlinear) problem can be expressed
as

L(u(x , t)) = f(x , t) (3.2.1)
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where L(•) refers to a generic nonlinear differential operator involving the derivatives
in space. Here the time dependence is associated to the loading f(x , t).

As shown in [54–56], when using the PGD, the solution of (3.2.1) can efficiently be
computed in the separated space/multi-time form as soon as L is a linear operator.

In case of nonlinearities, the nonlinear operator L can be decomposed in a linear part
Ll and a nonlinear one Lnl. In such a way, problem (3.2.1) can be rewritten as (3.2.2)

Ll(u(x , t)) = f(x , t)− Lnl(u(x , t)), (3.2.2)

which is easily linearized, for instance as

Ll(u
(l)(x , t)) = f(x , t)− Lnl(u

(l−1)(x , t)), (3.2.3)

where the superscript (l) refers to the nonlinear iteration. The solution of the lin-
earized problem can be computed using a full space/micro-time/macro-time decom-
position [54,55]

u(l)(x , t) ≈
∑
k

Ux
k (x )U

τ
k (τ)U

T
k (T ), (3.2.4)

or starting with a space/time separation and imposing a further multi-time decompo-
sition for the computation of the time function (micro/macro time sub-modes)

u(l)(x , t) ≈
∑
k

Ux
k (x )U

t
k(t) ≈

∑
k

Ux
k (x )

∑
j

U τ
k,j(τ)U

T
k,j(T ). (3.2.5)

In approximation (3.2.5), each time function is expressed in terms of micro-macro
time sub-modes, as also suggested in [56]. However, while in [56] a symmetric-
antisymmetric characterization is assumed for the sub-modes, here they are simply
defined in the standard PGD manner, like in [54,55].

The aim of this work is computing such a time multiscale representation when dealing
with cyclic elasto-plasticity, where the non-linear term depends on the past history,
that is

Lnl(u
(l−1)(x , t)) = N (u(l−1)(x , s); s ≤ t), (3.2.6)

where N denotes a nonlinear operator.

Problem statement

As a reference problem1, the quasi-static elasto-plastic equations (under small defor-
mations) are considered. To this purpose, let us introduce the body B, occupying the
spatial region Ω ⊂ Rd, with d = 2, 3, whose boundary is denoted as Γ = ∂Ω. The body
is subject to a cyclic loading f = f (x , t) applied over the time interval I = (0, Tf ), as
sketched in figure 3.1.

The variable to be determined are the displacement field u(x , t) and the stress field
σ(x , t), with (x , t) ∈ Ω× I, fulfilling

∇ · σ = f in Ω× I

u = uD on ΓD × I

σ · n = f N on ΓN × I

u = u0 in Ω× {0}

(3.2.7)

1Multi-dimensional functions up to second-order tensors will be denoted with bold italic letters.
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Ω
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Figure 3.1: Mechanical problem under study.

where f = f (x , t) is a prescribed history of body forces, ΓD = ∂ΩD and ΓN = ∂ΩN

are the Dirichlet and Neumann regions of the boundary Γ = ΓD ∪̇ ΓN (where the
symbol ∪̇ denotes a disjoint union) and n is the outward unit normal vector to ΓN .
As usual, u0 is the initial condition, uD is a prescribed displacement on ΓD and f N

is a prescribed traction (per unit deformed area) on ΓN .

Moreover, u and σ verify the elasto-plastic constitutive relation:

σ = C : (ε(u)− εp(u)) (3.2.8)

with C the fourth-order stiffness tensor, ε = ∇su the total strain tensor (∇s(•) being
the symmetric gradient operator), εp the plastic strain tensor and : referring to the
tensor product twice contracted.

Global equilibrium weak form

The weak formulation of the quasi-static problem (3.2.7), under small deformations
hypotheses, is easily retrieved from the local form of the equilibrium [126,153,154].

As first, let us denote with V the space of regular enough and kinematically admissible
displacement fields (i.e., ensuring the imposed displacement on the region ΓD):

V = {u ∈ H1(Ω;Rd) : u(γ, t) = uD(γ, t), (γ, t) ∈ ΓD × I}. (3.2.9)

Similarly, let V0 be the space of test functions, satisfying null Dirichlet condition on
ΓD, that is

V0 = H1
0,ΓD

(Ω;Rd) = {v ∈ H1(Ω;Rd) : v(γ) = 0 , γ ∈ ΓD}. (3.2.10)

With these definitions made, the weak formulation of problem (3.2.7) reads as follows:
find u(t) ∈ V verifying∫

Ω
[σ(t) : ε(v)− f (t) · v ]dx −

∫
ΓN

f N (t) · vdγ = 0, (3.2.11)

∀t ∈ I and ∀v ∈ V0.

By using equation (3.2.8) and reordering the terms, equation (3.2.11) becomes:∫
Ω
ε(v) : C : ε(u)dx −

∫
Ω
ε(v) : C : εp(u)dx =

∫
Ω
f (t) · vdx +

∫
ΓN

f N (t) · vdγ,

(3.2.12)
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or, equivalently,
k(u(t), v)− fp(u(t), v) = fext(v ; t), (3.2.13)

after having introduced the bilinear and linear forms
k(u , v) =

∫
Ω
ε(v) : C : ε(u)dx

fext(v ; t) =

∫
Ω
f (t) · vdx +

∫
ΓN

f N (t) · vdγ,
(3.2.14)

as well as the nonlinear term accounting for the plastic strain

fp(u , v) =

∫
Ω
ε(v) : C : εp(u)dx . (3.2.15)

Let us recall that evaluation of fp(u(t), v) in equation (3.2.13) requires the knowledge
of εp(u(t)), which depends on the assumed plasticity model [126,153,154].

Plasticity model

Here a standard von Mises (J2) plasticity, whose yield surface is defined by

Φ(σ(t), εp(t)) =
√
3J2 − σy,t = 0, (3.2.16)

where J2 = J2(t) denotes the second deviatoric invariant

J2 = J2(s) =
1

2
s : s, s = σ − 1

3
tr(σ)I (3.2.17)

and σy,t is the uniaxial yield stress, which evolves through a suitable strain-hardening
curve. The details of this evaluation are given below.

Making the assumption of isotropic hardening, at any state of hardening, the evolution
of the yield surface (3.2.16) corresponds to a uniform (isotropic) expansion of the initial
one. This is obtained assuming σy,t being a function of the accumulated (or effective)
plastic strain

ε̄pt =

∫ t

0

√
2

3
ε̇p : ε̇pds. (3.2.18)

In particular, assuming linear hardening, σy,t is given by

σy,t = σy,0 +Hε̄pt , (3.2.19)

where σy,0 is the initial yield stress and H is the (constant) hardening modulus.

Additionally, a standard associative plastic flow rule is considered, meaning that the
plastic strain rate is a tensor normal to the yield surface in the stress space, that is

ε̇p = λ̇N , N :=
∂Φ

∂σ
=

√
3

2

s

∥s∥
. (3.2.20)

Following usual notations, in equation (3.2.20), λ̇ denotes the unknown plastic multi-
plier. Specifically, when considering an associative hardening rule, it holds [126]

˙̄εp =

√
2

3
∥ε̇p∥ = λ̇. (3.2.21)
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3.2.2 Material and methods

In most finite element based approaches, the equilibrium (3.2.13) is restored incremen-
tally [126, 153]. This corresponds to a global loop, where the nonlinearity due to fp

is tackled either explicitly or implicitly. However, nonlinear problems such as (3.2.13)
have also been successfully addressed using non-incremental strategies in time, as sug-
gested by the LATIN and PGD literature [56,155–158]. In this work, the PGD-based
procedure is adopted, expressing the solution in the low-rank separated form

um(x , t) =
m∑
k=1

U x
k (x )U

t
k(t), (3.2.22)

and computed directly in the whole space-time domain, by means of an iterative
strategy. In equation (3.2.22), m denotes the rank of the solution, also known as
number of PGD modes.

As usual in computational plasticity, the integration of the constitutive equations
corresponds to a local loop, usually referred as state-updating procedure [126, 153].
Indeed, the plasticity model reduces to differential constitutive equations which may be
solved numerically by means of an Euler scheme (explicit or implicit). Here, an implicit
algorithm based on the elastic predictor/return-mapping procedure is adopted, where
the resulting nonlinear equation (for the incremental plastic multiplier) is tackled by
a Newton-Raphson scheme.

Let us start by describing the multi-time separation in subsection 3.2.2 before intro-
ducing the linearization strategy and the space-time separation in subsection 3.2.2.

Multi-time separation

Following the same strategy of [54–56], the computation of the PGD time modes
{U t

k(t)}mk=1 in (3.2.22) can be addressed via a multi-time separated representation
(MT-PGD).

In particular, the PGD solution of the linearized problem (the index of the nonlinear
iteration is suppressed for notational simplicity) may be approximated via a space-
microtime-macrotime separated representation [54,55]

um(x , t) =
m∑
k=1

U x
k (x )U

t
k(t) ≈

M∑
k=1

U x
k (x )U

τ
k (τ)U

T
k (T ), (3.2.23)

or imposing the multi-time decomposition for the computation of the time function
(micro/macro time sub-modes) [55,56]

um(x , t) =
m∑
k=1

U x
k (x )U

t
k(t) ≈

m∑
k=1

U x
k (x )

mk∑
j=1

U τ
k,j(τ)U

T
k,j(T ), (3.2.24)

where two new independent time coordinates τ (microtime, or fast time) and T (macro-
time, or slow time) to be introduced. Moreover, in equation (3.2.23) the new number
of modes is denoted as M (in general, M > m), while in equation (3.2.24) the number
of modes involved in the space-time separation is still m and mk denotes the number
of time sub-modes required to approximate the single-scale function for the current
global mode k.
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Remark 3.1. As discussed in [54–56], if the single-scale function U t
k(t) exhibits a mul-

tiscale behaviour and a wise choice of the macro-partitions is done (e.g., respecting
typical patterns of the function such as the ones coming from a periodic behaviour),
only a few sub-modes mk are enough to have a good approximation (3.2.24). Since
the primary goal of this work is to investigate multiscale patterns inside PGD time
functions, using representation (3.2.24) is enough.

The procedure starts by taking into account the following (macro) decomposition of
the time interval I:

0 = T0 < T1 < · · · < TNT−1 < TNT
= Tf (3.2.25)

and, for each 1 ≤ l ≤ NT , assuming the following (micro) decomposition of the interval
[Tl−1, Tl):

Tl−1 = τ0(Tl) < τ1(Tl) < · · · < τNτ−1(Tl) < τNτ (Tl) = Tl. (3.2.26)

Observing that, for each 1 ≤ l ≤ NT − 1, it holds

τNτ (Tl) = Tl = τ0(Tl+1), (3.2.27)

one can express t ∈ [0, Tf ) as

t =

NT∑
l=1

1[Tl−1,Tl)(t) =

NT∑
l=1

Nτ∑
s=1

1[τs−1(Tl),τs(Tl))(t), (3.2.28)

where

1[a,b)(t) =

{
1 if a ≤ t < b,

0 otherwise.
(3.2.29)

In general, a function of space and time u(x , t) can finally be written as

u(x , t) =

NT∑
l=1

1[Tl−1,Tl)(t)u(x , t) =

NT∑
l=1

Nτ∑
s=1

1[τs−1(Tl),τs(Tl))(t)u(x , t), (3.2.30)

where the two expressions 1[Tl−1,Tl)(t)u(x , t) and 1[τs−1(Tl),τs(Tl))(t)u(x , t) represent u
by using slow (macro) and fast (micro) time, respectively.

Now, fixing x ∈ Ω a multi-time discretization scheme is defined by

1[τs−1(Tl),τs(Tl))(t)u(x , t) ≈ u(x , τs−1(Tl)) ∈ Rk, (3.2.31)

for 1 ≤ l ≤ NT , 1 ≤ s ≤ Nτ and k = 2, 3.

As a final remark, the slow and fast decompositions of the time axis furnish a matrix
representation t = (ts,l)

s=Nτ ,l=NT

s=1,l=1 ∈ RNτ×NT of the time t, through

ts,l := τs−1(Tl). (3.2.32)

Linearization and space-time separation

Following a standard Galerkin approach, the approximation of u(t) satisfying (3.2.13)
is sought in the finite dimensional subspace of V defined as

V h =

{
uh ∈ V s.t. uh(x , t) =

Nx∑
i=1

u i(t)ϕi(x ), (x , t) ∈ Ω× I

}
(3.2.33)
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where {ϕi}Nx
i=1 is the set of suitably chosen shape functions in space and {u i(t)}Nx

i=1

the corresponding unknown temporal coefficients. Similarly, let us denote with V h
0

the Galerkin approximation space of V0.

Within the semi-discrete counterpart of (3.2.13), one looks for uh ∈ V h such that,
∀t ∈ I and ∀vh ∈ V h

0 ,

k(uh(t), vh)− fp(uh(t), vh) = fext(vh; t). (3.2.34)

To tackle the nonlinearity of the problem, the first step consists in computing an
approximation of the elastic solution verifying2, ∀t ∈ I

k(u (0)(t), vh) = fext(vh; t), (3.2.35)

whose algebraic counterpart is straightforwardly obtained as

Ku(0)(t) = f ext(t), (3.2.36)

where Kij = k(ϕi, ϕj) and fexti (t) = fext(ϕi; t), for i, j = 1, . . . , Nx .

At this point, a temporal discretization of the interval I is introduced. This is based
on considering Nt uniform times ti, such that ti+1 − ti = ∆t > 0, for i = 1, . . . , Nt.

Equation (3.2.36) can then be rewritten in a tensorial formalism over the whole space-
time domain [54], looking for U(0) ∈ RNx×Nt such that

(K⊗ INt) : U
(0) = Fext (3.2.37)

where INt ∈ RNt×Nt denotes the identity matrix in time and Fext ∈ RNx×Nt collects the
time evaluations of the right-hand-side in (3.2.36), that is f ext(ti) ∈ RNx , i = 1, . . . , Nt.

Problem (3.2.37) can be treated directly by means of the PGD algorithm, which seeks
a low-rank separated approximation of U(0) as

U(0) ≈ U
(0)

m(0) =
m(0)∑
k=1

U
(0),x
k ⊗U

(0),t
k , (3.2.38)

where m(0) is the number of PGD modes. For the PGD assembly and solution of
space-time separated problem, the reader may refer to [54] and references therein.

Since U
(0)

m(0) is a low-rank approximation of u (0)(t), ∀t ∈ I. An approximation of the
elastic solution u (0)(t), ∀t ∈ I all history-dependent variables may be updated from
ε(0) = ∇su (0). In particular, the update of εp,(0) allows to freeze the nonlinear term
in equation (3.2.13) and start an iterative process where each iteration l ≥ 1 consists
of two steps:

1. (state-updating) The update of εp,(l−1) = εp(u (l−1)) via the elastic
predictor/return-mapping procedure. This consists of a set of nonlinear eval-
uations which can be written as

εp,(l−1) = N (ε(l−1), ε̄pTf
), (3.2.39)

where N represents the nonlinear operator depending on the total strain tensor
and on the effective plastic strain up to the final time Tf .

2For the sake of notational simplicity, the subscript h related to the Galerkin approximation is
suppressed.
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2. (linearized equilibrium) The solution of the linearized problem

k(u (l)(t), vh) = fext(vh; t) + fp(u (l−1)(t), vh), (3.2.40)

looking for the space-time separated approximation

U(l) ≈ U
(l)

m(l) =
m(l)∑
k=1

U
(l),x
k ⊗U

(l),t
k (3.2.41)

of the corresponding tensorial problem

(K⊗ INt) : U
(l) = Fext + Fp,(l−1) (3.2.42)

with Fp,(l−1) ∈ RNx×Nt accounting for the plastic contributions.

The linearization loop stops when two successive approximations become close enough
under a suitable distance. This means that, given a small enough δ > 0

el =

∥∥U(l) −U(l−1)
∥∥
F∥∥U(l−1)

∥∥
F

< δ, (3.2.43)

where ∥•∥F denotes, for instance, the standard Frobenius norm.

Denoting with L the iteration satisfying the convergence criterion (3.2.43), the final
PGD approximation of the nonlinear problem (3.2.13) is U(L), that is the approxima-
tion (3.2.22) has rank m = m(L).

The overall solving procedure is summarized in the flowchart in figure 3.2.

Figure 3.2: PGD-based solving scheme for elasto-plasticity.
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Remark 3.2. The assembly of the stiffness matrix K is a classic finite element based one
and the evaluation of right-hand-side Fp,(l−1) follows a standard plasticity integration
algorithm (elastic predictor/return-mapping procedure). Both these computations can
be performed using any computational mechanics software. The overall procedure is
thus weakly-intrusive, since it only requires the externalization of the linearization
loop and the usage of the space-time PGD solver after the assembly.

When accounting for the multi-time decomposition introduced in subsection 3.2.2, as
widely discussed in [54], the usual single-scale time grid {ti}Nt

i=0, with Nt = NTNτ

becomes a matrix of dimension RNT×Nτ recovered by the tensor product of two newly
introduced micro and macro grids. Letting {τ0s }

Nτ
s=0 the micro-grid defined along the

first macro interval [T0, T1), it suffices to multiply it tensorially by the macro-dofs
{Tl}NT−1

l=0 to recover all the degrees of freedom in time, that is {Tl}NT−1
l=0 ⊗ {τ0s }

Nτ
s=0.

Within the PGD assembly (3.2.37), when considering time multiscale approximations,
the time operator is exactly recovered as INt = INT

⊗ INτ (when considering PDEs
involving time derivatives, exact tensorial decompositions of the related time operators
have been discussed in [54]).

In this multiscale formalism, a discrete function of time ht ∈ RNT×Nτ is now expressed
as

ht ≈
mk∑
j=1

hT
j ⊗ hτ

j , (3.2.44)

and, particularly, the PGD approximation (3.2.41) is replaced by its MT-PGD coun-
terpart

U(l) ≈ U
(l)

m(l) =
m(l)∑
k=1

U
(l),x
i ⊗

mk∑
j=1

U
(l),T
k,j ⊗U

(l),τ
k,j . (3.2.45)

This straightforwardly entails a reduced time multiscale representation of the total
strain

εm(x , t) =
m∑
k=1

εxk (x )ε
t
k(t) ≈

m∑
k=1

εxk (x )

mk∑
j=1

ετk,j(τ)ε
T
k,j(T ). (3.2.46)

Remark 3.3. In approximation (3.2.45), each product U
(l),T
k,j ⊗ U

(l),τ
k,j is not granted

to be continuous by construction. The tensor product is, indeed, replicating the
microscale patterns U(l),τ

k,j along the macroscale. However, the continuity of the multi-
time approximation of U(l) is ensured by adding a sufficient number of modes mk.

Remark 3.4. As observed in [54], the usage of multi-time representations guarantees
reduced storage requirements since Nt function evaluations are reconstructed combin-
ing NT and Nτ evaluations of the macro and micro functions. Moreover, as usual
in PGD methods, the size of independent systems to be solved in the alternating
direction strategy (ADS) is smaller when employing the time separation, implying
computational savings.

Remark 3.5. It shall be noticed that, so far, the computational gains entailed by the
usage of the MT-PGD are the ones discussed in [54, 56] for linear problems. Indeed,
the nonlinearity the step 1 (state-updating) requires a standard integration over Nt

steps because of the history-dependency. In other terms, so far, the MT-PGD is not
exploited for the evaluation of the elastoplastic constitutive relation. In the work-
flow in figure 3.2, the PGD solver blocks are replaced by the MT-PGD ones. The
computational effectiveness is being addressed in some works in progress, where the
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time-multiscale representation is exploited for an efficient evaluation of the nonlinear
term.

3.2.3 Results and discussion

In this section, two examples in cyclic elasto-plasticity are considered, varying the
geometry of the specimen B and the imposed loading uD.

The problems are solved numerically via the PGD space-time constructor and special
care is paid to the PGD time modes and their multi-time characterization (MT-PGD).

The equations correspond to a slight simplification of (3.2.7):
∇ · σ = 0 in Ω× I

u = uD on ΓD × I

σ · n = 0 on ΓN × I

u = 0 in Ω× {0}

(3.2.47)

with Ω ⊂ R2 and uD = (uD(t), 0), that is a uniaxial load-unload tensile test. The
boundary ΓD corresponds to the left and right sides of the specimen, while ΓN to the
upper and lower sides.

Moreover, 2D plane strain is considered, meaning that the Hooke’s law (3.2.8) simpli-
fies to σ11σ22

σ12

 =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 ε11
ε22
2ε12

. (3.2.48)

All the numerical values of model and material parameters are specified in the sub-
sections below.

Dog-bone shaped specimen

A uniaxial load-unload tensile test over a 2D dog-bone shaped steel specimen under
monoperiodic cyclic loading is here considered. The loading consists in a Dirichlet
datum uD(t) having constant amplitude applied to both sides of the specimen.

The material has a Young’s modulus E = 210 GPa and a Poisson’s ratio ν = 0.3. The
assumed plasticity law (3.2.19) is characterized by an initial yield stress σy,0 = 205
MPa and a linear hardening coefficient H = 2 GPa. To ensure small deformations, the
imposed constant amplitude displacement has a maximum amplitude umax

D = 0.125
mm and the load rate is fixed at vl = 0.025 mm/s following the standard of quasi-static
testing. A single cycle (load-unload-load) time has duration T1 = 4umax

D /vl = 20 s.

Figure 3.3 shows the two-dimensional discretized geometry and the imposed displace-
ment having 10 cycles. The spatial mesh consists of Ne = 500 quadrilateral elements
and Nx = 561 mesh nodes. The time interval is divided in Nt = 800 times.

Figure 3.4 gives the magnitude of the displacement field and the isotropic hardening
function computed at the final time Tf = 200 s.

Figure 3.5 shows the comparison of the PGD results with a classical FE-based in-
cremental algorithm (considering implicit integration of plasticity based on return-
mapping) computed at the center of the specimen (x0, y0) = (0, 0).
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Figure 3.3: Discretized geometry (left) and imposed displacement (right).

Figure 3.4: Displacement field (left) and isotropic hardening (right) at final time Tf .

Figure 3.5: Stress-displacement curve (left) and hysteresis loop (right) in (0, 0). Red line:
FE, black dashed line: PGD.

Figure 3.6: First four normalized PGD modes.

The first four normalized modes in space and time of the PGD approximation (3.2.22)
are shown in figure 3.6.
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Focusing on the time modes, one can observe that U t
1 corresponds to the elastic re-

sponse, while subsequent modes exhibit similar evolution, characterized by (a) a tran-
sient zone at the beginning, (b) a pattern stabilization towards an almost-periodic
(cyclic) behavior, (c) a slow decay of the signals amplitude. This behaviour can be
easily characterized by the MT-PGD approximation (3.2.24):

um(x , t) =
m∑
k=1

U x
k (x )U

t
k(t) ≈

m∑
k=1

U x
k (x )

mk∑
j=1

U τ
k,j(τ)U

T
k,j(T ). (3.2.49)

This is achieved through a macro-discretization based on NT equispaced macro-times,
while the micro-scale consists of Nτ equispaced micro-times. For instance, if a single
cycle is defined from the sequence loading-unloading-loading, the macro-discretization
could consists (as later commented out, without losing generality) of a coarse mesh
having a macro timestep ∆T covering a whole cycle. The micro-discretization corre-
sponds to a fine mesh along the cycle, as illustrated in figure 3.7.

Figure 3.7: Microscale and macroscale time discretization.

The advantage of considering such a decomposition is evident when increasing the
number of cycles. For instance, figure 3.8 is the counterpart of the time modes of
figure 3.6 when imposing the same loading over 60 cycles.

Figure 3.8: PGD time modes {U t
k(t)}4k=1 with 60 cycles.

When employing the MT-PGD, each one of the signals in figure 3.8 is approximated
in terms of micro-macro submodes. For instance, the top of figure 3.9 shows the
second mode U t

2(t) computed via the PGD algorithm and by its multi-time counterpart
MT-PGD (black dashed and blue lines superposed as shown in the zoomed figure).
The images at bottom show the micro-time modes {U τ

2,j(τ)}4j=1 and macro-time ones
{UT

2,j(T )}4j=1, respectively.



Time 55

Figure 3.9: First four micro-macro modes of the multi-time decomposition of U t
2.

As shown in figure 3.9, the micro-macro characterization is strongly physically con-
sistent with the previously highlighted evolution of the time response. Indeed, the
microscale functions capture the almost-periodicity of the function, through cyclic
highly nonlinear patterns exhibiting fast dynamics. On the contrary, the dynamics
is really slow along the macroscale, whose functions present an initial transitorial
behavior, followed by a smooth evolution.

Let us briefly comment about the choice of macropartitions (i.e., the choice of ∆T ) in
the definition of the macroscale. As formerly discussed in [54], the tensorial decompo-
sition beyond the multi-time strategy makes this choice completely arbitrary, however
results may be affected. As observed in [54], if the choice is not physically meaning-
ful, the convergence of the multiscale approximation may be exacerbated (more time
submodes might be required to achieve convergence).

In order to achieve optimal convergence, a first concern is thus establishing a physically
consistent decomposition of the time domain. For instance, referring to figure 3.7, a
wise solution could be choosing ∆T = ktC , with k ∈ N+, meaning that ∆T is a
multiple of the external excitation period. Afterwards, the choice of k may be driven
by both physical and computational reasons. On the one hand, it may depend on
what one aims at capturing along the fast scale (for instance, k = 1 corresponds to
a full cycle response). On the other hand, the separated problems arising within the
submodes computation are scaling with Nτ and NT for the micro and macro scales,
respectively. LettingN be the number of cycles, one gets NT = N/k andNτ = Nt/NT ,
therefore the choice of k affects their complexities.

Plate with edge crack

A second application case concerns a 2D plate of the same material, having an edge
crack in the upper part, represented by the red segment in the left-side of figure 3.10.
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Moreover, we consider a displacement imposed over 40 cycles with a given slope (no
more centered in zero), as shows the right-side of figure 3.10. The spatial mesh consists
of Ne = 400 quadrilateral elements and Nx = 451 nodes. The time interval is divided
in Nt = 3200 times. A single cycle (load-unload-load) time has duration T1 = 30 s,
meaning that the final time is Tf = 1200 s.

Figure 3.10: Discretized geometry (left) and imposed displacement (right).

Figure 3.11 gives the magnitude of the displacement field and the isotropic hardening
function computed at the final time Tf = 1200 s.

Figure 3.11: Displacement field (left) and isotropic hardening (right) at final time Tf .

Figure 3.12 shows the comparison of the PGD results with a classical FE-based in-
cremental algorithm (considering implicit integration of plasticity based on return-
mapping) computed at the center of the specimen (x0, y0) = (0, 0).

Figure 3.12: Stress-displacement curve (left) and hysteresis loop (right) in (0, 0). Red line:
FE, black dashed line: PGD.
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The first four normalized modes in space and time of the PGD approximation (3.2.22)
are shown in figure 3.13.

Figure 3.13: First four normalized PGD modes.

The time modes in figure 3.13 clearly exhibit a multiscale behavior, easily recognized
when employing the MT-PGD. As for the previous example, the number of macrodofs
corresponds to the number of cycles NT = 40, while the microscale has Nτ = 80
times spanning the first macro-interval (in high-cycle analyses, a larger ∆T could
be preferred to reduce the complexity of the macroscale problem). The multi-time
decomposition of the second PGD time mode U t

2 is illustrated in figure 3.14.

Figure 3.14: First four micro-macro modes of the multi-time decomposition of U t
2.

As observed from figure 3.9, also in figure 3.14 one can observe that the repeating
patterns are identified by the microscale modes, while their stabilization is slower and
retrieved through the macroscale modes, which track the almost linear trend at large
scale.
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3.2.4 Conclusions

As an extension of [54], this study successfully accomplished the computation of time-
separated solutions in the nonlinear setting of cyclic elasto-plasticity.

Within the PGD-based time multiscale procedure, the time response is computed
along two separated time scales, the micro and the macro one. Such scales are defined
as newly independent coordinates, while the full scale is recovered via their tensor
product. The study shows physically consistent results for the elasto-plastic response
under cyclic loading. Indeed, delegating a whole cycle to the microscale, highly non-
linear patterns are observed over the fast scale, while a smooth and slow evolution is
captured by the macroscale. This makes the macroscale characterization particularly
attractive for long-time horizon analyses, such as aging and fatigue [159].

In [56], authors propose an efficient algorithm to optimally decompose complex sig-
nals (involving many frequencies) in a fast and slow scale. Prior to the multi-time
approximation, the algorithm from [56] may be applied to the external excitation of
the problem at hand. In such a way, an optimal decomposition of the time axis may be
established apriori (i.e., the best value of the macroscale step size ∆T is determined),
guaranteeing the optimal convergence of the multi-time PGD procedure. Works in
progress are dealing with this topic.

For what concerns the nonlinear character of the problem, the linearization procedure
is based on solving over the full space/time domain the elastic problem and enforcing
the plastic contribution to the right-hand-side. The integration of plasticity is per-
formed through the elastic predictor/return-mapping algorithm [126, 153]. This can
be viewed as a nonlinear operator N acting on the total strain tensor and on the
effective plastic strain up to the final time Tf , that is

εp,(l−1) = N (ε(l−1), ε̄pTf
). (3.2.50)

Specifically, the evaluation of (3.2.50) requires the reconstruction over the whole past
history since

ε̄pt =

∫ t

0

√
2

3
ε̇p : ε̇pds. (3.2.51)

In this sense, so far, the proposed methodology shares the usual drawbacks of stan-
dard techniques in computational plasticity since the integration of plasticity does not
benefit from the multi-time format of the time scheme.

In section 3.3 we focus on this matter. In particular, we exploit the multiscale rep-
resentation to build an efficient data-driven model of the elasto-plastic constitutive
relation. This would allow real-time evaluations of (3.2.50), enabling the direct simu-
lation of inelasticity also in long-term scenarios, such as high-cycle fatigue.

As a final comment, the method benefits of the usual advantages entailed by PGD-
based procedures. For instance, model parameters and loading conditions can
be treated as problem extra-coordinates, enabling the fast computation of multi-
parametric solutions [160–162]. Moreover, the further time separation guarantees,
when solving the linearized problem, the same operational and memory savings dis-
cussed in [54].
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3.3 Multi-time based learning of history-
dependent nonlinear behaviors

3.3.1 Theoretical and numerical framework

By denoting with L(•) a generic nonlinear differential operator involving the space
derivatives, the addressed quasi-static problem can be written as

L(u(x , t)) = f(x , t), (3.3.1)

where the time dependence is associated to the cyclic loading f(x , t). The nonlinear
operator L is decomposed additively into a linear and a nonlinear part, as L = Ll+Lnl.
If the superscript (l) tracks the nonlinear iteration, problem (3.3.1) can be linearized
as

Ll(u
(l)(x , t)) = f(x , t)− Lnl(u

(l−1)(x , t)), (3.3.2)

whose solution may be computed in the multi-time form [56]

u(l)(x , t) ≈ u(l)(x , τ, T ) =
∑
k

Ux
k (x )

∑
j

U τ
k,j(τ)U

T
k,j(T ). (3.3.3)

where τ denotes the time microscale variable and T the macroscale one (this has been
widely discussed in section 3.2).

This task is computationally cheap using the standard PGD constructor [30,155,163–
165], even when considering parameters [161, 162, 166, 167], and becomes even faster
when making use of multi-time separated representations in equation (3.3.2), that is

f(x , t) ≈
∑
j

F x
j (x )F

τ
j (τ)F

T
j (T ), Lnl(u

(l−1)(x , t)) ≈
∑
j

Lx
j (x )L

τ
j (τ)L

T
j (T ). (3.3.4)

Such expressions may be obtained, among other possibilities, via the higher-order
SVD (HOSVD) [168,169] or the PGD [163].

However, as pointed out in section 3.2, the calculation of Lnl(u
(l−1)(x , t)) becomes a

tricky issue when
Lnl(u

(l−1)(x , t)) = N (u(l−1)(x , s); s ≤ t) (3.3.5)

where N denotes a nonlinear operator. According to (3.3.5), the nonlinearity is local in
space but history-dependent in time, as encountered in elasto-plastic behaviors in solid
mechanics. For instance, keeping the same notation of section 3.2 where hardening
plasticity is considered, a nonlinear operator N acts on the total strain tensor and on
the effective plastic strain up to the final time Tf , that is

εp,(l−1) = N (ε(l−1), ε̄pTf
). (3.3.6)

Specifically, the evaluation of (3.3.6) requires the reconstruction over the whole past
history since

ε̄pt =

∫ t

0

√
2

3
ε̇p : ε̇pds. (3.3.7)

Thus, the construction of the right-hand side entails two main difficulties common
to all standard discretization techniques: (i) because of the behavior locality, the
nonlinear term must be evaluated at each location x used for discretizing equation
(3.3.2); (ii) the nonlinear term must be evaluated along the whole (long) time interval
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with the resolution enforced by the fastest physics, that is τ . These requirements
of course compromise the solution of problems defined over large time intervals I =
(0, Tf ).

Here below we shortly recall the theoretical and numerical aspects of the analyzed
problem, already introduced in 3.2.

Problem statement

The reference problem is the same treated in section 3.2, consisting of an elasto-plastic
structure occupying the spatial region Ω and subject to a cyclic loading f = f (x , t)
applied over the time interval I = (0, Tf ). The unknowns are the displacement field
u(x , t) and the stress field σ(x , t), with (x , t) ∈ Ω× I, satisfying

∇ · σ = f in Ω× I

u = uD on ∂ΩD × I

σ · n = f N on ∂ΩN × I

u = u0 in Ω× {0}.

(3.3.8)

Using standard notations, u0 is the initial condition, uD is a prescribed displacement
on ∂ΩD and f N is a prescribed traction (per unit deformed area) on ∂ΩN .

Moreover, u and σ verify the elasto-plastic constitutive relation

σ = C : (ε− εp) (3.3.9)

with C the fourth-order stiffness tensor, ε = ∇su the total strain tensor (∇s(•) being
the symmetric gradient operator), εp the plastic strain tensor and : referring to the
tensor product twice contracted.

Plasticity model

The yield surface is defined by a standard von Mises (J2) plasticity as

Φ(σ(t), εp(t)) =
√
3J2 − σy,t = 0, (3.3.10)

where J2 = J2(t) denotes the second deviatoric invariant

J2 = J2(s) =
1

2
s : s, s = σ − 1

3
tr(σ)I (3.3.11)

and σy,t is the uniaxial yield stress, which evolves through a suitable strain-hardening
curve. The details of this evaluation are given below.

Making the assumption of isotropic hardening, at any state of hardening entails σy,t
being a function of the effective plastic strain

ε̄pt =

∫ t

0

√
2

3
ε̇p : ε̇pds. (3.3.12)

In particular, among many other possibilities [126,153], a Voce-type nonlinear isotropic
hardening can be assumed

σy,t = σy,0 +Hε̄pt + (σ∞ − σ0)(1− exp−δε̄pt ), (3.3.13)
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where σy,0 is the reference yield stress, H is the Voce’s linear hardening modulus, σ∞
is the limit stress parameter, and δ is the Voce hardening parameter.

Additionally, a standard associative plastic flow rule is considered, meaning that the
plastic strain rate is a tensor normal to the yield surface in the stress space, that is

ε̇p = λ̇N , N :=
∂Φ

∂σ
=

√
3

2

s

∥s∥
. (3.3.14)

Following usual notations, in equation (3.3.14), λ̇ denotes the unknown plastic multi-
plier. Specifically, when considering an associative hardening rule, it holds [126]

˙̄εp =

√
2

3
∥ε̇p∥ = λ̇. (3.3.15)

Weak formulation

Before switching to the numerical framework, problem (3.3.8) is recast in its weak
form. To this purpose, let V be the space of regular enough and kinematically admis-
sible displacement fields

V = {u ∈ H1(Ω;Rd) : u(γ, t) = uD(γ, t), (γ, t) ∈ ΓD × I} (3.3.16)

and let V0 be the space of test functions, satisfying null Dirichlet condition on ΓD,

V0 = H1
0,ΓD

(Ω;Rd) = {v ∈ H1(Ω;Rd) : v(γ) = 0 , γ ∈ ΓD}. (3.3.17)

One can define (see section 3.2) the following bilinear and linear forms
k(u , v) =

∫
Ω
ε(v) : C : ε(u)dx

fext(v ; t) =

∫
Ω
f (t) · vdx +

∫
∂ΩN

f N (t) · vdγ,
(3.3.18)

and the nonlinear term accounting for the plastic strain

fp(u , v) =

∫
Ω
ε(v) : C : εp(u)dx . (3.3.19)

At this point, the weak formulation consists of seeking u(t) ∈ V verifying

k(u(t), v)− fp(u(t), v) = fext(v ; t), (3.3.20)

∀t ∈ I and ∀v ∈ V0.

Numerical approximation

The numerical approximation of u(t) satisfying (3.3.20) is sought in the Galerkin
approximation space defined as

V h =

{
uh ∈ V s.t. uh(x , t) =

Nx∑
i=1

u i(t)ϕi(x ), (x , t) ∈ Ω× I

}
(3.3.21)
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where {ϕi}Nx
i=1 is the set of suitably chosen shape functions in space and {u i(t)}Nx

i=1

the corresponding unknown temporal coefficients. Similarly, let us denote with V h
0

the approximation space of V0.

Equation (3.3.20) is rewritten in its semi-discrete counterpart, where one looks for
uh ∈ V h such that, ∀t ∈ I and ∀vh ∈ V h

0 ,

k(uh(t), vh)− fp(uh(t), vh) = fext(vh; t). (3.3.22)

The nonlinear problem (3.3.22) is solved in a non-incremental manner exploiting the
PGD. The procedure is based on a global space-time iterative solver, where the first
step consists of neglecting the plastic contribution (nonlinear term) and computing
the so-called elastic mode. This means finding u (0)(t) such that, ∀t ∈ I,

k(u (0)(t), vh) = fext(vh; t), (3.3.23)

whose algebraic counterpart reads

Ku(0)(t) = f ext(t), (3.3.24)

where Kij = k(ϕi, ϕj) and fexti (t) = fext(ϕi; t), for i, j = 1, . . . , Nx .

Now, the temporal interval I is then discretized in Nt uniform times ti, such that
ti+1 − ti = ∆t > 0, for i = 1, . . . , Nt, and equation (3.3.24) recast in a tensorial
formalism over the whole space-time domain [54]. In this context, one seeks U(0) ∈
RNx×Nt such that

(K⊗ INt) : U
(0) = Fext (3.3.25)

where INt ∈ RNt×Nt denotes the identity matrix in time and Fext ∈ RNx×Nt collects the
time evaluations of the right-hand-side in (3.3.24), that is f ext(ti) ∈ RNx , i = 1, . . . , Nt.

The solution U(0) of problem (3.3.25) can be computed using the PGD method [54],
which expresses U(0) in the separated form

U(0) ≈ U
(0)

m(0) =

m(0)∑
k=1

U
(0),x
k ⊗U

(0),t
k , (3.3.26)

where m(0) is the rank of the approximation (number of modes).

Once the approximation of u (0)(t), ∀t ∈ I, is known, all history-dependent variables
are updated from ε(0) = ∇su (0) and a linearization scheme is set-up. This consists of
the following two steps:

1. (state-updating) The integration of plasticity via an implicit algorithm (elastic
predictor/return-mapping procedure) [126,153], which can be summarized as

εp,(l−1) = N (ε(l−1), ε̄pTf
), (3.3.27)

where N is a nonlinear operator depending on the total strain tensor and on the
effective plastic strain up to the final time Tf .

2. (linearized equilibrium) The solution of the linearized problem

k(u (l)(t), vh) = fext(vh; t) + fp(u (l−1)(t), vh), (3.3.28)
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which is expressed in a tensorial form

(K⊗ INt) : U
(l) = Fext + Fp,(l−1) (3.3.29)

and whose solution is computed by means of the usual PGD solver as

U(l) ≈ U
(l)

m(l) =

m(l)∑
k=1

U
(l),x
k ⊗U

(l),t
k . (3.3.30)

Notice that, with respect to (3.3.25), in problem (3.3.29), the updated nonlinear
contribution Fp,(l−1) ∈ RNx×Nt appears to the right-hand-side.

The procedure stops when the successive enrichment error is small enough with respect
to a given tolerance δ > 0, that is

el =

∥∥U(l) −U(l−1)
∥∥
F∥∥U(l−1)

∥∥
F

< δ, (3.3.31)

where ∥•∥F denotes, for instance, the standard Frobenius norm.

Denoting with L the iteration satisfying the convergence criterion (3.3.31), the final
PGD approximation of the nonlinear problem (3.3.20) is U(L), having rank m = m(L).

The overall solving procedure is recalled in figure 3.15.

Figure 3.15: PGD solving scheme for elasto-plasticity.

The present section focuses on the red box in figure 3.15, which means the evaluation
of the nonlinear constitutive relations. Indeed, when addressing a high-number of
cycles, this step becomes unfeasible, due to memory and computational issues. Here,
rhe novel contribution stands in proposing a data-driven modeling of the nonlinear
relations with the aim of accelerating such step. Moreover, its originality comes from
the usage of a time multiscale characterization to build efficiently such model, as
detailed in subsection 3.3.2.
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3.3.2 Multiscale-based data-driven modeling

Let us suppose that the nonlinear evaluation (3.3.27) can be performed up to K ≪ N
cycles. This allows to compute the nonlinear terms εp,(l−1) over the space-time domain
Ω× IK , with IK = (0, TK ], where TK denotes the endpoint of the K-th loading cycle.
Denoting with TN the endpoint of the N -th loading cycle, the aim of the data-driven
modeling is to forecast the nonlinear term over Î = (TK , TN ] without additional
computational costs3.

Exploiting the multi-time PGD constructor [54, 56], the suggested strategy starts by
decomposing the space-time evolution of εp,(l−1) in slow and fast time dynamics, via
the separated approximation

εp,(l−1) ≈
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T ). (3.3.32)

In approximation (3.3.32), a generic function of the microscale Ψτ
k(τ) exhibits a com-

plex highly nonlinear behaviour due to the plasticity occuring over the short scale. On
the contrary, a function ΨT

k (T ) of the macroscale is characterized by a really smooth
evolution, enabling the accurate and efficient prediction of the long-term evolution.
The macrotime predictions are then inserted into a predictor-corrector workflow, as
illustrated by the scheme4 in figure 3.16.

Figure 3.16: Workflow of the time-multiscale based data-driven approach.

The workflow consists of five main blocks: (a) performing the nonlinear evaluations
up to TK and computing its multi-time approximation; (b) forecasting the macrotime
evolution; (c) predicting the nonlinear response up to TN using the macrotime fore-
cast; (d) correcting the prediction integrating the nonlinear relations in a few spatial
locations; (e) considering the predicted-corrected nonlinear evolution to assemble the
linearized problem up to TN .

As a matter of fact, the time-multiscale decomposition provides a characterization of
the history-dependent nonlinear behavior, greatly simplifying the machine learning-
based forecasting task, which would otherwise be very difficult and expensive to com-

3Similarly, the hat •̂ notation will be reserved for the predicted quantities over Î.
4In the scheme the superscript (l − 1) has been dropped for notational simplicity.
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pute if left to a full data-based time integrator. In this sense, the procedure can be
interpreted in the framework of physics-based machine learning approaches [170].

The following sections explain in detail the predictor-corrector scheme, corresponding
to the steps (c) and (d).

Predictor

The predictor is built separately for each macrotime mode v = ΨT
k (T ), k = 1, . . . ,m

(scalar-valued function), whose corresponding snapshot (time series) can be written
as v = (v1, . . . , vNT

) ∈ RNT . The number of data points coincides with the number of
macrodofs NT and the sampling interval is the macro time step ∆T .

Exploiting only the macro functions has several computational advantages. A few of
them are listed here below.

1. The size of the analyzed snapshots is reduced. If Nτ is the number of dofs along
the microscale and NT the number of dofs along the macro one, the length of the
time signals reduces from Nt = NTNτ encountered in classical time marching
schemes to NT .

2. The smooth behavior along the macroscale entails further compression of the
snapshots, guaranteeing more memory savings. Indeed,

(a) the macro modes may be well characterized by means of a few shape pa-
rameters p allowing highly-accurate reconstructions (e.g., low-order poly-
nomials) of the signal over all the steps NT ;

(b) a resampling of the macro modes based on N ′
T ≪ NT steps will not loose

accuracy in the approximation, since all the high frequencies are tracked
by the micro modes.

3. Forecasting along the macroscale is a much easier task for any time integra-
tor, since all the patterns and highly nonlinear evolution are delegated to the
microscale modes.

Among many other possibilities [85,171–174], this work adopts the higher-order DMD
for the time series forecasting. The dynamic mode decomposition (DMD) [175] is a well
known snapshots-based technique allowing to extract relevant patterns in nonlinear
dynamics, closely related to the Koopman theory [176–178]. The higher-order DMD
(HODMD) is an extension of the former, which considers time-lagged snapshots [179,
180]. This technique is particularly attractive for the purposes of this work due to its
ability of allowing rich extrapolations involving nonzero decaying rates [179].

The algorithm beyond the HODMD is also called DMD-d algorithm, since it considers
d-lagged elements. For d ≥ 1 fixed hyper-parameter, this means that the following
higher-order Koopman assumption is made [179]

vj+d ≈ c1vj + c2vj+1 + · · ·+ cdvj+d−1, (3.3.33)

which is rewritten in terms of standard Koopman assumption as

ṽj+1 ≈ R̃ṽj , (3.3.34)
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involving enlarged snapshots and (unknown) Koopman matrix

ṽj =


vj
vj+1

...
vj+d−2

vj+d−1

 ∈ Rd, R̃ =


0 1 0 · · · 0 0

0 0 1
. . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 1 0
c1 c2 c3 · · · cd−1 cd

 ∈ Rd×d, (3.3.35)

with 1 ≤ j ≤ NT − d.

All the implementation details of the HODMD are given in section A.3.

Once the HODMD-based models for the macroscale modes {ΨT
k (T )}mk=1 are trained,

they give the predictions {Ψ̂T
k (T )}mk=1 over Î. Re-using the microscale and spatial

modes from (3.3.32), the nonlinear response is predicted over Î as

ε̂p,l−1(x , t)1Î(t) =
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ̂

T
k (T ). (3.3.36)

This is schematically illustrated in figure 3.17, where ψ denotes the nonlinear response
εp,l−1 particularized in a spatial location.

Figure 3.17: Macrotime forecast and response prediction through the microtime patters.

Remark 3.3.1. As discussed in section 3.2, the response ψ(x , t) = εp,(l−1) may exhibit
an initial transient behaviour (i.e., micro-scale patterns evolving in time). Practi-
cally, this acerbates the micro-macro separated representation (3.3.32), requiring more
modes to describe the transient zone. To avoid these additional modes, prior the multi-
time approximation of ψ(x , t), one should determine a time instant TK > Ti > 0 from
which the response can be assumed stabilized in terms of microscale patterns.

Such time Ti is efficiently determined, for instance, using the gappy-POD [181–183],
whose continuous approximation of ψ(x , t) can be written as (all details are given in
appendix A.2.1)

ψ(x , t) ≈ ψGPOD(x , t) =
m̄∑
k=1

w̄k(x )ᾱk(t), (3.3.37)

with m̄ denoting the number of gappy-POD modes, while w̄k(x ) and ᾱk(t) are the
space and time functions, respectively [56]. The time modes ᾱk(t) allow to quickly
identify an approximation of the threshold Ti.
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As soon as Ti is computed, approximation (3.3.32) is replaced by (3.3.38)

ψ(x , t)1(Ti,TK)(t) ≈
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T ), (3.3.38)

where 1I(t) denotes the indicator function of the set I.

Afterwards, a data-driven model on the macroscale modes is trained, following the
procedure detailed in section 3.3.2, where the higher-order DMD is considered. The
stabilized response and its multiscale decomposition is, for instance, illustrated in
figure 3.18.

Figure 3.18: Transient zone and stabilized response.

Corrector

The quality of the prediction (3.3.36) should be compared with a full integration of
the plasticity up to TN , that is

εp = N (ε, ε̄pTN
). (3.3.39)

However, as already discussed, evaluations in (3.3.39) are unfeasible when TN ≫ TK
and when too many spatial nodes Nx are considered. Let us assume that this
task, however, can be performed locally for a few reference spatial locations xr =
{x r

1, . . . ,x
r
J}, with 1 < J < Nx , like in sparse-sampling-based approaches (the loca-

tions can, for instance, be selected as the ones having the highest accumulated plastic
strain ε̄pTK

).

In this sparse framework, instead of considering (3.3.39), the correction of ε̂p,(l−1) is
based on employing its reduced counterpart over the set xr, which can be denoted as

εpxr
= Nxr(ε, ε̄

p
TN

). (3.3.40)
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The predictor (3.3.36) is corrected updating the macro modes by solving the following
minimization problem:

min
{∆ΨT

k }mk=1

∥∥∥∥∥
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)

(
Ψ̂T

k (T ) + ∆ΨT
k (T )

)
− εp(x , t)

∥∥∥∥∥
Ωr×Î

, (3.3.41)

where ∥•∥Ωr×Î =
∫
Î

∫
Ωr

•dxdt denotes a norm suitably defined over the reduced spatial
domain Ωr and the temporal prediction interval Î.
Problem (3.3.41) can be recast in a weighted residual form, after having introduced
suitable test functions {ΦT

k }mk=1, by

∫
Ωr×Î

(
m∑

k=1

Ψx
k(x )Ψ

τ
k(τ)Φ

T
k (T )

)(
m∑
l=1

Ψx
l (x )Ψ

τ
l (τ)∆ΨT

l (T )− ê(x , t)

)
dxdt = 0, (3.3.42)

where ê(x , t) simply corresponds to the prediction error function, which can be ex-
pressed into a time-separated form after having rearranged εp(x , t) as εp(x , τ, T ):

ê(x , τ, T ) =
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ̂

T
k (T )− ψ(x , τ, T ). (3.3.43)

The following integrals can be defined, for all k, l = 1, . . . ,m,

akl =

(∫
Ωr

Ψx
k (x )Ψ

x
l (x )dx

)(∫
Iτ

Ψτ
k(τ)Ψ

τ
l (τ)dτ

)
(3.3.44)

and

bk(T ) =

∫
Iτ

(∫
Ωr

Ψx
k (x )ê(x , τ, T )dx

)
Ψτ

k(τ)dτ. (3.3.45)

With these definitions made, equation (3.3.42) can be rewritten as∫
ÎT

m∑
k=1

ΦT
k (T )

m∑
l=1

∆ΨT
l (T )akldT =

∫
ÎT

m∑
k=1

ΦT
k (T )bk(T )dT. (3.3.46)

At this point, problem (3.3.46) can be easily solved using finite elements in time,
among other possibilities.

In the above definitions, the time intervals Iτ and ÎT are the ones associated to the
micro and macro scales, respectively. In particular, the one related to the macroscale
keeps the hat notation since it concerns the forecasting interval.

Enrichment

Once the optimal macrotime correction modes
{
∆ΨT

k (T )
}m
k=1

satisfying (3.3.46) have
been determined, a global enrichment step can be performed. This consists in adding
ulterior modes m⋆−m−1 to enrich the PGD approximation, solving the minimization
problem

min
{Ψx

k,Ψ
τ
k ,Ψ

T
k }m⋆

k=m+1

∥∥∥∥∥
m⋆∑

k=m+1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T )− êupdate(x , τ, T )

∥∥∥∥∥
Ωr×Î

, (3.3.47)
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where

êupdate(x , τ, T ) = εp(x , τ, T )−
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)

(
Ψ̂T

k (T ) + ∆ΨT
k (T )

)
. (3.3.48)

The minimization problem can be rewritten in the following weighted residual form∫
Ωr×Î

m⋆∑
k=m+1

Φk(x , τ, T )

(
m⋆∑

k=m+1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T )− êupdate(x , τ, T )

)
= 0. (3.3.49)

In problem (3.3.49) the following test function has been introduced

Φk(x , τ, T ) = Φx
k (x )Ψ

τ
k(τ)Ψ

T
k (T )+Ψx

k (x )Φ
τ
k(τ)Ψ

T
k (T )+Ψx

k (x )Ψ
τ
k(τ)Φ

T
k (T ), (3.3.50)

where Φx
k ,Φ

τ
k and ΦT

k are three independent test functions, for the space, micro time
and macrotime problems, respectively. Finally, the solution of (3.3.49) is obtained by
means of a fixed-point alternating direction strategy, as usual in PGD-based proce-
dures [155,163].

The corrected (optimal) predictor, after the update-enrichment procedure is then de-
fined as

ε̂p,⋆(x , t) =
m∑

k=1

Ψx
k(x )Ψ

τ
k(τ)

(
Ψ̂T

k (T ) + ∆ΨT
k (T )

)
︸ ︷︷ ︸

update

+

m⋆∑
k=m+1

Ψx
k(x )Ψ

τ
k(τ)Ψ

T
k (T )︸ ︷︷ ︸

enrichment

. (3.3.51)

Remark 3.3.2. Let us add a remark concerning the computation of the spatial func-
tions Ψx

k (x ) over the whole domain Ω. Indeed, the minimization problem (3.3.47)
is defined only over the reduced domain Ωr involving the reference spatial locations
xr = {x r

1, . . . ,x
r
J}, with 1 < J < Nx . Therefore, the gappy-POD spatial bases of the

approximation (3.3.37) are used to reconstruct the functions on Ω. Let us recall the
gappy-POD approximation (3.3.37)

ψ(x , t) ≈ ψGPOD(x , t) =
m̄∑
k=1

w̄k(x )λ̄k(t). (3.3.52)

The spatial basis is collected in the matrix

W̄ =
(
w̄1| · · · |w̄m̄

)
∈ RNx×m̄, (3.3.53)

where the column vectors w̄k are the discretized counterpart of the spatial modes
w̄k(x ).

The reduced counterpart of (3.3.53) over Ωr can be denoted as W̄r ∈ RJ×m̄ and is
obtained by selecting the lines corresponding to the locations in xr.

Given a PGD spatial mode Ψx
k (x ), for k = 1, . . . ,m, known over the reduced domain

Ωr, it can be written in vector form as ψx
k ∈ RJ×1. Its reconstruction on Ω via

gappy-POD is simply obtained as

ψx ,GPOD
k = W̄αk, (3.3.54)

where the vector of coefficients αk is obtained solving the usual minimization problem

min
αk∈Rm̄×1

∥∥W̄rαk −ψx
k

∥∥
2
, (3.3.55)

with ∥•∥2 denoting the standard Euclidean norm.
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Summary of the solving scheme

The overall solving procedure is summarized in the flowchart in figure 3.19.

When t ∈ (0, TK ], the algorithm consists of computing the quasi-static elasto-plastic
response, using the PGD-based approach proposed in section 3.2.

When, t ∈ (TK , TN ], a snapshot of the plastic strain tensor εp1(0,TK ](t) is exploited
to build a data-driven forecasting model of the nonlinear constitutive relations. The
prediction ε̂p1(TK ,TN ](t) is, then, corrected by means of a sparse selection of reference
spatial locations xr. Once the corrected (optimal) prediction ε̂p,⋆1(TK ,TN ](t) is avail-
able, the linearized problem is assembled up to TN and, finally, efficiently solved via
the MT-PGD.

Figure 3.19: Data-driven MT-PGD solving scheme for elasto-plasticity.

Here below a brief recap of the computational and memory savings is given. For the
sake of simplicity, the discussion considers the macroscale tracking all the cycles and
the microscale evolving within a single cycle.

An incremental finite element based simulation considering NC
t increments for single

cycle and subject to N cycles (thus NC
t N increments) would require an asymptotic

complexity scaling as O(NxN
C
t N), where Nx is the number of spatial mesh points.

The proposed procedure requires, a complexity of O(NxN
C
t K), with K ≪ N the num-

ber of training cycles, followed by a constant negligible complexity of the HODMD-
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based predictor. Afterwards, the simulation extension to N cycles requires (a) the
correction of the predictor based on the full-history integration over the reduced set
of locations xr = {x r

1, . . . ,x
r
J}, with J ≪ Nx , having complexity O(JNC

t N), (b) the
solution of the linearized problem employing the time multiscale PGD, with a com-
plexity of O(N +NC

t +Nx ). This implies interesting computational gains observing
the ratio O(JNC

t N)+O(N+NC
t +Nx )

O(NxNC
t N)

, with J ≪ Nx .

It is worth noticing the advantages in terms of storage requirements in the final lin-
earized problem. A usual time marching scheme requires the storage of time functions
discretized in NC

t N points (where NC
t can be really high when a small step is re-

quired). Contrarily, when employing the multi-time PGD, the functions are stored as
NC

t and N points, for the microscale and macroscale, respectively. Moreover, thanks
to their slow evolution, the macro functions can be reconstructed only by means of a
few coefficients p. In this case, in terms of storage one gets the ratio p+NC

t

NC
t N

≈ 1
N , which

basically scales with the macrotime scale dimension, as already discussed in [54].

3.3.3 Results and discussion

This section presents the numerical results over two different examples, chosen ac-
cording to common benchmark tests in cyclic fatigue testing, which are mostly lim-
ited to simple two-dimensional specimen considering uniaxial loading [184–187]. For
the validation of the PGD-based nonlinear solver in three-dimensional cases, we re-
fer to [156], which shows the effectiveness of the method in the context of nonlinear
elasto-viscoplastic behaviours encountered in polycrystalline aggregates under cyclic
loading.

Dog-bone shaped specimen

For the sake of consistency with section 3.2, the first numerical example consists also
of a uniaxial load-unload tensile test over a dog-bone shaped steel specimen. The
loading in a Dirichlet datum uD(t) having constant amplitude applied to both sides
of the specimen.

The imposed displacement has a maximum amplitude umax
D = 0.125 mm and a single

cycle (load-unload-load) time has duration T1 = 4umax
D /vl = 20 s, where vl = 0.025

mm/s is the load rate ensuring a quasi-statics simulation.

The material parameters are set according to table 3.1.

Young’s modulus E = 210 GPa
Poisson’s coefficient ν = 0.3
Linear isotropic hardening parameters
Reference yield stress σy,0 = 205 MPa
Voce’s linear hardening modulus H = 2 GPa

Table 3.1: Material parameters for steel dog-bone shaped specimen.

Figure 3.20 shows the two-dimensional discretized geometry, consisting of Ne = 500
quadrilateral elements and Nx = 561 mesh nodes. The cyclic loading is also shown
in figure 3.20. The simulation is performed using the algorithms from section 3.2 up
to K = 500 cycles. The simulation is then extended in almost real-time to N = 1500
cycles using the data-driven modeling of the nonlinear term. Let us denote with TK
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and TN the ending times of the cycles K and N , respectively. The time intervals IK =

(0, TK ] and IN = (TK , TN ] are both discretized in equispaced N
(K)
t = N

(N)
t = 4 · 105

time instants.

Figure 3.20: Discretized geometry (left) and imposed displacement (right).

Figure 3.21 gives the magnitude of the displacement field and the isotropic hardening
function computed at the time TK = 104 s.

Figure 3.21: Displacement field (left) and isotropic hardening (right) at Tf = TK .

The plastic strain tensor history εp1IK (t) is here used to build the data-driven model
as described in Section 3.3.2. The related snapshot is defined as

Ψ =
(
ψ1| · · · |ψ

N
(K)
t

)
∈ R3Nx×N

(K)
t (3.3.56)

where ψj is a column vector containing the numerical approximations of εp(x , tj) in
all the Nx spatial mesh points, for j = 1, . . . , N

(K)
t . The column vectors account for

the concatenation of the three components εp = (εp11, ε
p
12, ε

p
22) for the two-dimensional

case here analyzed.

Figure 3.21 gives the magnitude of the plastic strain computed at final time TK .

Figure 3.22: Components of the plastic strain tensor εp = (εp11, ε
p
12, ε

p
22) at Tf = TK .
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To quickly illustrate the time evolution of εp(x , t), a POD-based reduced representa-
tion [7, 27] of the snapshot (3.3.56) can be considered, being the approximation

εp(x , t) ≈ εp,POD(x , t) =
m∑
k=1

wx
k (x )α

t
k(t), (3.3.57)

where the functions wx
k (x ) and αt

k(t), k = 1, . . . ,m are the space and time modes.

For instance, figure 3.23 depicts the first four POD time functions over the first 50
cycles. Even though the functions exhibit a decay towards 0, the highly nonlinear
patterns (at the cycle level) make difficult the construction of a prediction model able
to track accurately the fast scale. The forecasting task is clearly simplified when

Figure 3.23: First four normalized POD time modes of εp,POD(x , t).

considering the multi-time PGD approximation (3.3.32)

εp(x , t) ≈ εp,MT-PGD(x , τ, T ) =
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T ). (3.3.58)

In fact, figure 3.24 shows the micro time and macro time functions, Ψτ
k(τ) and ΨT

k (T ),
respectively. The spatial modes Ψx

k (x ) are shown in figure 3.25.

Even if the total number of retained modes is m = 6, only the first three modes were
shown for the sake of conciseness.

Figure 3.24: First three normalized MT-PGD time modes of εp,MT-PGD(x , t).
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Figure 3.25: First three normalized MT-PGD space modes of εp,MT-PGD(x , t).

Figure 3.26: HODMD-based prediction of the macrotime modes of εp,MT-PGD(x , t).

The HODMD-based extensions of the macrotime functions are shown in figure 3.26
and used to predict the nonlinear response via (3.3.36) (the lag factor in the HODMD
training was fixed to d = 40).

Letting ∥•∥Ω×Î

∫
Î

∫
Ω •dxdt, the prediction error can be measured as

ϵ̂ =
∥ε̂p(x , t)− εp(x , t)∥Ω×Î

∥εp(x , t)∥Ω×Î

, (3.3.59)

and amounts to ϵ̂ = 0.2146. This discrepancy is recovered through the correction step.

For a better understanding of the forecasting results, let us consider the time response
ψ(t) = εp11(x c, t) in the center of the specimen x c = (0, 0). In figure (3.27), the
reference response, the predicted signal ψ̂ and the predicted-corrected one ψ̂⋆ are
plotted in blue, red and green colors, respectively. Particularly, the loss of amplitude
and the slightly inaccurate patterns of the predictor ψ̂ are recovered by its corrected
counterpart ψ̂⋆.

In this case, 8 elements (more could be selected if needed) are enough to reduce
the error to ϵ̂⋆ = 0.01. The elements have been selected as those having maximum
effective plastic strain ε̄pTK

, avoiding redundant information dues to symmetry. The
selected elements are plotted in red over the mesh in the upper left corner of figure
3.27, while the measurement point is the blue location x c. The same procedure
applies when changing the imposed displacement. For instance, one can consider a
linearly increasing average, as depicted in figure 3.28. Here, he red line represents
the average, whose slope is umax

D /Tf [m/s]. Figure 3.29 shows the HODMD-based
extension of the macrotime modes and the reconstructed signal at the center of the
specimen x c = (0, 0), whose evolving patterns are accurately captured. Also in this
case the corrector step utilizes the same elements as before.
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Figure 3.27: Reference solution –blue line– compared with the predicted response ψ̂(t) –red
line– and with the predicted-corrected one ψ̂⋆(t) –green line–, in the spatial
location x c = (0, 0).

Figure 3.28: Cyclic displacement with linearly increasing average.

Figure 3.29: HODMD-based modes prediction of the macrotime modes (left) and reference
solution –blue line– compared with the predicted-corrected response ψ̂⋆(t) –
green line–, in the spatial location x c = (0, 0) (right).

In terms of computational time gains, the performed tests show that the data-driven
based evaluation of the nonlinear term (red versus green box in figure 3.19) has a
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speed-up factor of 2.3, approximately. Moreover, the overall solver time comparisons
(Figure 3.15 versus figure 3.19) shows a speed-up of 2.9, approximately. The addi-
tional gain around 0.6 comes from the separated space-microtime-macrotime format
of the predicted right-hand-side. Indeed, as discussed in the introduction, the PGD
solver assembly becomes faster when all the terms in the equation have separated
representations.

Plate with hole

The second numerical example consists of the plate shown in figure 3.30 (left), having
a circular hole of radius 1.5 cm. The mesh consists of Ne = 400 quadrilateral elements
and Nx = 440 mesh nodes.

The imposed displacement, temporal discretization and choice of IK and IN are the
same as in the previous example.

Figure 3.30: Discretized geometry (left) and imposed displacement (right).

The material parameters are set according to table 3.2.

Young’s modulus E = 210 GPa
Poisson’s coefficient ν = 0.3
Nonlinear isotropic hardening Voce’s parameters
Reference yield stress σy,0 = 152 MPa
Limit stress parameter σ∞ = 550 MPa
Voce’s linear hardening modulus H = 0.05 GPa
Voce hardening parameter δ = 3.5

Table 3.2: Material parameters for steel plate with hole.

Figure 3.31 gives the magnitude of the displacement field and the isotropic hardening
function computed at the time TK = 104 s.

Figure 3.32 gives the magnitude of the plastic strain computed at final time TK .

For the sake of comparison with the previous example, to quickly illustrate the time
evolution of εp(x , t), figure 3.33 reports the POD time functions extracted over the
first 50 cycles. One can observe that, with respect to figure 3.23, here the evolution has
a slower decay towards 0, which is ascribed to the nonlinear hardening law parameters.
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Figure 3.31: Displacement field (left) and isotropic hardening (right) at Tf = TK .

Figure 3.32: Components of the plastic strain tensor εp = (εp11, ε
p
12, ε

p
22) at Tf = TK .

Figure 3.33: First four normalized POD time modes of εp,POD(x , t).

When performing the MT-PGD decomposition of the plastic strain tensor history
εp1IK (t) a higher number of modes m = 8 is retained. The first three modes are
plotted in figures 3.34 and 3.35.

The HODMD-based extensions of the macrotime functions give consistent results also
in this case, as shown in figure 3.36 (the lag factor in the HODMD training was fixed
to d = 40).

The time response ψ(t) = εp11(x c, t) is compared in the location x c = (0, 0.015) (inter-
nal hole). As shown in figure 3.37, also in this case the wrong patterns and inaccurate
amplitude of the predictor ψ̂ are recovered by its corrected counterpart ψ̂⋆. The se-
lected correction elements are plotted in red over the mesh in the upper left corner of
figure 3.37, while the measurement point is the blue location x c. In this case, 10 ele-
ments are used to reduce the error to ϵ̂⋆ = 0.01. Here, the elements have been selected
sparsely over the domain since the points exhibiting maximum effective strain in this
case would coincide with the points of major physical interest around the internal
circle.
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Figure 3.34: First three normalized MT-PGD time modes of εp,MT-PGD(x , t).

Figure 3.35: First three normalized MT-PGD space modes of εp,MT-PGD(x , t).

Figure 3.36: HODMD-based prediction of the macrotime modes of εp,MT-PGD(x , t).

Discussion about hyper-parameters

The method includes some hyper-parameters, whose choice may be problem-
dependent and may require specific optimization studies.

As common to all data-driven approaches, a first choice concerns the splitting of the
time domain in training and predicting intervals IK = (0, TK ] and IN = (TK , TN ].
Indeed, this is mostly driven by two factors: (a) the multi-time decomposition shall
exist and involve a rather small number of modes m, and (b) the extracted macro-time
dynamics {ΨT

k (T )}mk=1 shall be learnable by the chosen integrator (HODMD-based in
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Figure 3.37: Reference solution –blue line– compared with the predicted response ψ̂(t) –red
line– and with the predicted-corrected one ψ̂⋆(t) –green line–, in the spatial
location x c = (0, 0.015).

this case).

For what concerns point (a), the micro-macro separated representation can be acer-
bated by an initial transient behaviour of the system response. In fact, this causes
micro-scale patterns evolving in time and a high number of modes may be required
to describe this zone. One option to overcome this issue is defining the training in-
terval with respect to a lower bound 0 < Ti < TK from which the patterns can be
considered stabilized, at a given user-defined tolerance. A pattern stabilization de-
tection algorithm can be defined, for instance, analyzing the POD time modes of the
snapshot.

Point (b) may depend on the macrotime evolution and on the HODMD algorithm
specifics. For instance, its accuracy may depend on the tuning of the lag factor
d [179,180].

Another hyper-parameter is the location and number of elements xr = {x r
1, . . . ,x

r
J}

chosen in the correction step. This choice may be driven by similar approaches
developed within the context of hyper-reduction and sample-based methodologies
[183,188,189].

3.3.4 Conclusions

This work aims at reducing the computational complexity of numerical simulations
in cyclic loading analyses, in particular when history-dependent nonlinear behaviors
are considered. To this purpose, a novel time multiscale based data-driven modeling
of the nonlinearity is proposed. The procedure makes use of multi-time PGD-based
representations to separate the fast (micro) and slow (macro) time dynamics.

The first step consists in collecting the plastic strain history (and other nonlinear
variables evolution, eventually) up to a given number of training cycles. Afterwards,
the multi-time PGD is used to decompose the time evolution in a multiscale manner,
enabling the definition of a time integrator for the macrotime functions. Among other
possible choices [171], the higher-order DMD is here used for the forecasting. Once
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the predictor of the nonlinear term is established, it is corrected by a few high-fidelity
integrations of the plasticity up to the desired final time. The linearized problem is
then solved efficiently using again the multi-time PGD.

The performed numerical tests have shown that the data-driven based solver (Figure
3.19) has a significant speed-up with respect to the classic one (Figure 3.15). Given
the algorithm scalability, the computational time and storage gains are further notice-
able when more cycles, larger domains and finer meshes are considered, making the
procedure attractive in the context of fatigue analyses.

Current research is dealing with variable amplitude loading analyses [190], complex
loading scenarios as encountered in seismic engineering [56] and with the integration
of damage modeling. Moreover, studies are being conducted to investigate the optimal
selection of the sampling points within the corrector step.

3.4 Conclusions

As an extension of the work presented in [54], this study successfully computed time-
separated solutions within the nonlinear framework of cyclic elasto-plasticity.

In the PGD-based time multiscale procedure, the time response is calculated along
two distinct time scales: the micro and the macro scales. These scales are treated
as independent coordinates, and the full scale was reconstructed through their tensor
product. The study demonstrated physically consistent results for the elasto-plastic
response under cyclic loading. Specifically, when assigning an entire cycle to the mi-
croscale, highly nonlinear patterns emerged on the fast scale, while a smooth and slow
evolution was captured by the macroscale. This rendered the macroscale characteriza-
tion particularly suitable for analyses with extended time horizons, such as aging and
fatigue [159]. A novel data-driven modeling approach exploiting such time multiscale
representation has then been proposed.

The process involved collecting the plastic strain history and building a multi-time
representation based on the PGD, followed by a forecasting of the macrotime functions.
The predictor for the nonlinear term was corrected through high-fidelity integrations
of plasticity, and the linearized problem was efficiently solved using multi-time PGD.

Numerical tests showed a significant speed-up in the data-driven solver (Figure 3.19)
compared to the conventional one (Figure 3.15). The scalability of the algorithm
resulted in notable computational time and storage savings, making it attractive for
fatigue analyses.

Future research will also focus on variable amplitude loading analyses, complex loading
scenarios in seismic engineering, and the integration of damage modeling. Addition-
ally, efforts will be devoted in optimizing the selection of sampling points within the
corrector step.
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Abstract

In many engineering applications and large-scale systems, building accurate parametric sur-
rogates can be a complex and computational demanding task. This is mainly due to two
reasons: (a) the high dimension of the parametric space; (b) the computational complexity of
the full-system simulation (which may require multi-physics coupling and stringent require-
ments on the arising meshes). A typical example is encountered in automotive engineering if
one is interested in optimizing many components of the body-in-white.

In this chapter, we propose and investigate a novel approach based on a parametric domain-
decomposition. The spatial domain is decomposed in non-overlapping parametric macroele-
ments, characterized by material and geometrical parameters. The original parametric prob-
lem is recast in terms of subproblems, tackled independently by means of the proper gen-
eralized decomposition (PGD) assuming parametrized interface conditions. The parametric
response of the system is obtained assembling the macroelements’ responses ensuring the fields
continuity at the interfaces.

The chief advantage of the proposed procedure is the non-intrusiveness which makes it com-
patible with usual meta-modelling approaches. Any preferred technique can be employed to
build the parametric sub-solution and, eventually, the parametric modeling of the interfaces
skeleton. The method is validated over academic use-cases and its industrial application is a
work-in-progress.
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4.1 Introduction

Within the framework of reduced-order models (ROMs), numerous intrusive and non-
intrusive techniques have been developed to solve parametrized partial differential
equations (pPDEs), for a large variety of engineering applications [191–193].

Common techniques are the snapshots-based parametric ROMs (pROMs), which rely
on an offline stage where the parametric space is explored computing high-fidelity
solutions of the PDE for sampled combinations of parameters values, called sampling
points. This stage basically consists of exploring the so-called solution manifold for
extracting a reduced approximation basis.

Within the context of the reduced basis method (RBM) [194–197], the online stage
consists of projecting the solution of the full-order model (FOM) over the previously
extracted reduced basis and solving the reduced problem.

Other approaches proceed by directly interpolating among the sampled snapshots,
extracted orthogonal bases or subspaces [198–202]. This accelerates and simplifies
the procedure, at the expense of loosing accuracy since no reduced problem is solved
during the online stage. In fact, in many cases, to ensure robustness with respect to
parameters variations, the interpolation must be performed on the solution manifold
[203–206]. Otherwise, recent studies suggest new interpolation strategies, such as
parametric optimal transport [207].

Another family of approaches is the one coming from the proper generalized decom-
position (PGD) [29, 34], where a pPDE is solved accounting for the parameters as
extra-coordinates, additionally to usual space and time variables. The offline stage,
in this context, consists of solving a high-dimensional problem exploiting the separa-
tion of variables and defining a fixed-point based iterative algorithm. Recent studies
combine the PGD-based parametric solver with NURBS-based geometrical descrip-
tions, allowing to solve efficiently geometrically parametrized PDEs [58, 59]. As a
main disadvantage, due to its intrusiveness, the PGD procedure often requires ad hoc
implementations which can be difficult in case of large-scale problems or in industrial
settings.

All the previously mentioned works share common issues when dealing with large and
complex systems, where a single simulation can be excessively expensive computation-
ally. Here, the curse of parameter dimensionality is encountered since such systems
often exhibit a high number of parameters, compromising a rich exploration of the
parametric space.

To overcome, or at least alleviate, such drawbacks, localized model reduction methods
have been proposed, where standard model reduction is combined with multiscale
(MS) or domain decomposition (DD) techniques [192, 208]. The primary concept
of localized model reduction is the decomposition of the computational domain in
modules and the definition of local reduced models, which are coupled across interfaces.

A first example is the usage of finite element tearing and interconnecting (FETI)
[209–211], where the computational domain is divided into smaller subdomains or
substructures, and then interconnected using interface degrees of freedom. The com-
patibility is enforced efficiently regardless of the differences in meshing strategies,
making the method suitable for large-scale structures composed of multiple compo-
nents or materials.
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In the context of RBM, one can refer to [212–214], where authors target many-
parameter thermo-mechanical analyses over repeated components systems. Moreover,
in [215], the static condensation reduced basis method has recently been applied to
efficiently model parametric wind turbines. The method has also been applied in [216]
to model general cellular structures. In [217,218], several ROMs based on the proper
orthogonal decomposition (POD) have been proposed for fluid-dynamics and neutron
diffusion problems. Other studies successfully combine domain partitioning strategies
with projection-based ROMs and hyper-reduction approaches in nonlinear and chaotic
fluid-dynamics settings [219–222].

Recent works suggest nonlinear manifold ROMs based on modules modeling via
neural-networks, sparse autoencoders and hyper-reduction [223]. Also in the frame-
work of physics-informed neural networks, domain decomposition is introduced to
tackle large-scale problems [224].

In some works, the interface coupling benefits of standard algorithms developed in
the literature of DD. For instance, in [225] the Schwarz alternating method is used to
enable ROM-FOM and ROM-ROM coupling in nonlinear solid mechanics. Similarly,
in [226] the one-shot overlapping Schwarz approach is applied to component-based
MOR of steady nonlinear PDEs. In [227, 228] the transmission problem along the
interface is formulated in terms of a Lagrange multiplier representing the interface
flux and solved through a dual Schur complement.

In the context of the proper generalized decomposition, subdomain approaches have
been proposed in [70–72, 229]. In [229] a multi-patch NURBS-PGD approach has
been developed with the aim of enabling or simplifying the PGD solution of problems
defined over complex domains. In [70], the Arlequin method constructs local PGD
solutions and uses Lagrange multipliers in overlapping regions to connect the local
surrogates. A non-overlapping Dirichlet–Dirichlet method is instead used in [71],
where the local surrogates are computed in the offline phase, while an interface problem
is solved online to ensure the coupling. In [72], a DD-PGD framework is introduced
for linear elliptic PDEs, utilizing an overlapping Schwarz algorithm to connect local
surrogate models exhibiting parametric Dirichlet boundary conditions.

In this work, a general component-based pMOR framework (valuable for intrusive and
non-intrusive surrogates) is presented. This is based on decomposing the spatial region
in non-overlapping parametric patches. Single-patch parametric solutions are built
exploiting, without loss of generality, the NURBS-PGD technique (other surrogate
modeling choices could be done over a patch, also snapshots-based such as PODI and
sPGD [199–201]), accounting additionally for parametric boundary conditions, as well
as other parameters related to loading or physics. The full-system parametric solution
is then built ensuring the equilibrium of patches across the interfaces.

The chapter is structured as follows. Section 4.2 describes all the steps of the proposed
procedure: (1) definition of the interfaces skeleton; (2) identification of local model
parameters; (3) identification od transmission conditions; (4) construction of local
ROM; (5) imposition of the interface skeleton equilibrium. Section 4.3 shows applica-
tions two benchmark problems. The first example concerns a steady state conduction
problem. The second example deals with the mechanical state of a thin elastic plate.
Section 4.3 gives conclusive remarks and perspectives.
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4.2 Materials and methods

Let us consider a parametric problem P (i.e., a pPDE) defined over the physical
space Ω ⊂ Rd, with d = 2, 3, and involving Np parameters collected in the vector p.
Moreover, problem P is equipped of suitable boundary conditions on the boundary of
the domain ∂Ω.

Let us suppose that Ω ⊂ R2 (the physical coordinates are denoted with x = (x1, x2))
is decomposable in a number of non-overlapping parametric parts, called modules or
macroelements (each part may have its own model and/or geometric parameters).
In the illustration in figure 4.1, without loss of generality, three parts have been
considered. This means that Ω is expressed as Ω =

⋃3
i=1Ωi and the modules intersect

only on their interface, that means Ωi ∩ Ωj = γi or Ωi ∩ Ωj = ∅ based on whether
or not the modules are contiguous, as illustrated in figure 4.1. For instance, for the
illustrated example, only two interfaces γ1 and γ2 exist.

Figure 4.1: Modularisation of the parametric problem P defined on domain Ω and parameter
vector p into a set of some pre-solved sub-problems Pi defined on Ωi considering
parameter vector pi.

The initial problem P involving Np parameters is recast in terms of three subproblems
Pi defined over the modules Ωi and involving Np,i < Np parameters, respectively.

Many possible methods have been discussed in the introduction to solve the parametric
sub-problems. In this work, the NURBS-PGD approach [59] will be adopted. This
mostly consists of two steps: (a) a NURBS-based geometry mapping from Ω to the
reference square Ω̄ (the reference coordinates are denoted with ξ = (ξ1, ξ2)) and (b)
the PGD-based computation of a parametric solution uhi (ξ,pi) (and, consequently,
uhi (x,pi)) related to the local problem Pi, characterized by the parameters collected
into the vector pi. The two steps are schematically summarized in figure 4.2 and will
be explained in detail in subsection 4.2.1.

Figure 4.2: Using the NURBS-PGD technique to map the parametric modules (sub-
problems) into a regular (hyper-cubic) computational space and then solving
it.



Parameters 85

A less direct task is the reconstruction of the parametric solution uh(x,p) of P starting
from the local parametric solutions uhi (x,pi) of Pi. Indeed, the parametric solutions on
the different modules Ωi must be assembled across the internal interfaces to reconstruct
the response over the whole domain Ω.

The modules Ωi have internal boundaries defined from the common interfaces as Γ1 =
γ1, Γ2 = γ1 ∪ γ2 and Γ3 = γ2, respectively. Each subproblem Pi inherits from P the
equations and the imposed boundary conditions over ∂Ω\Γi. Moreover, each Pi needs
to be equipped of suitable interface conditions (or transmission conditions) over Γi in
order to satisfy the global problem P.

In the parametric context, the interface conditions must be taken into account within
the parametric sub-models. Indeed, the global solution is obtained by the particular-
ization of local solutions at parameters’ values, followed by the interfaces equilibrium.
To tackle this point, the PGD has the chief advantage to solve BVPs with paramet-
ric boundary conditions, treating them as problem extra-coordinates. Following this
rationale, the local parametric solutions will be expressed as uhi (x,pi,αi), where the
vector αi accounts for the boundary conditions imposed over the patch Ωi, namely
the interface conditions.

As an additional remark, in case of modules sharing topology and parameters, a single
parametric sub-model is built and replicated in the assembly of the full system. For
instance, as shown in figure 4.3, the module Ω′′ can be obtained from Ω′ defining local
frames and opportune translations, rotations and reflections. This is what occurs,
for instance, in the case of Ω1 and Ω3, which are modeled through a single reference
module.

Figure 4.3: Two modules sharing topology and parameters.

All the details about the parametric modularization and assembly proposed in this
work will be given in subsection 4.2.2.

4.2.1 NURBS-based geometry mapping and PGD-based
parametric solutions

Denoting with p a finite-dimensional vector of parameters (these can be
model/material parameters pm and/or geometrical parameters pg), the abstract dis-
crete weak formulation of a generic pPDE over the domain Ω(pg) reads:

Find uhp ∈ Uh
p such that ap(uhp, v

h) = ℓp(v
h) ∀vh ∈ Uh

p , (4.2.1)

with Uh
p abstract discrete functional space and ap(·, ·), ℓp(·) parametrized bilinear and

linear forms, respectively.
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The parametric problem (4.2.1) can be efficiently solved by means of the PGD, where
a unique computation is conducted in high-dimension treating the parameters as extra
coordinates.

Our recent works investigate the usage of parametric NURBS-based geometry descrip-
tions with the PGD framework [59]. In this context, a mapping from the reference
square domain Ω̄ (the reference coordinates are denoted with ξ) to the physical do-
main Ω(pg) (the physical coordinates are denoted with x) is exploited to define the
parameter-dependent PDE over the fixed domain Ω̄:

Fpg : Ω̄ → Ω(pg)

ξ 7−→ x = Fpg(ξ) =
n∑

i=1

m∑
j=1

Rpq
ij (ξ)Bij(p

g),
(4.2.2)

where B refers to the control points (the vertices of the so-called control net) in the
physical domain and Rpq

ij (ξ, η) denote the bivariate NURBS basis functions in 2D
domains whose expressions are detailed in appendix B.1.

In particular, the dependency of the domain upon the parameters pg is expressed
through the control points of the NURBS surface describing the domain. A schematic
representation of domain geometry and the control net is shown in figure 4.4. In this
figure, the control net that defines the NURBS object is shown using dash lines and
the control points are shown using solid dots. Moreover, the domain is parametrized
through one of its control points. Changing the value of p, the related shapes Ωx(p)
are generated, as shown in the right-side of figure 4.4.

Figure 4.4: Physical domain parametrized by one of its control points (white dot) and several
shapes obtained by moving its location.

Once the mapping (4.2.2) is introduced, the weak formulation (4.2.1) can be mapped
back to the fixed domain Ω̄:

Find ūhp ∈ Ūh such that āp(ūhp, v̄
h) = ℓ̄p(v̄

h) ∀v̄h ∈ Ūh, (4.2.3)

where quantities ·̄ have opportunely been mapped into the reference domain.
Remark 4.2.1. Notice that when mapping the differential operators from the physi-
cal domain to the reference one, to obtain problem 4.2.3, one must account for the
Jacobian of the transformation (4.2.2). This aspect is discussed in appendix B.2.

At this point, the dependency on problem parameters p = (pm,pg) is separated from
the one on space variables ξ. Formulation (4.2.3) is integrated over the parametric
domain Ωp and rewritten in a tensorial formalism:

Find ūh ∈ Ūh ⊗ L2(Ωp) such that Ā(ūh, v̄h) = L̄(v̄h) ∀v̄h ∈ Ūh, (4.2.4)
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where
Ā(ūh, v̄h) =

∫
Ωp

āp(ū
h, v̄h)dp, L̄(v̄h) =

∫
Ωp

ℓ̄p(v̄
h)dp.

The solution ūhp is sought into the low-rank separated form

ūh(ξ,p) ≈ ūhm(ξ,p) =
m∑
i=1

ψ̄h
i (ξ)Gi(p), (4.2.5)

where m ∈ N∗ denotes the PGD rank (number of modes), ψ̄h
i ∈ Ūh the physical space

modes and Gi(p) ∈ L2(Ωp) the parametric modes.
Remark 4.2.2. Comparing the NURBS-based geometry mapping (4.2.2) and the PGD-
based solution (4.2.5), it becomes clear the interest of the NURBS-PGD technique.
Indeed, as one can observe from (4.2.2), the contribution of the geometric parameters
pg is, by definition, separated from the one of the reference space coordinates ξ. Such
separation is exactly the same enforced in the PGD solution 4.2.5.

Moreover, the separability of the reference domain Ω̄ and of the parametric space Ωp
can be exploited to achieve a fully separated representation of the solution ūh(ξ,p).

Considering p = (p1, . . . , pNp) the vector gathering the parametric extra-coordinates,
the parameter-separated PGD solution reads:

ūh(ξ,p) ≈ ūhm(ξ,p) =
m∑
i=1

ψ̄h
i (ξ)

Np∏
l=1

Gi,l(pl). (4.2.6)

Following the same rationale, the corresponding discrete functional spaces is decom-
posed as L2(Ωp) =

⊗Np

l=1 L
2(Ωpl), leading to a slightly modified variant of the weak

formulation (4.2.4).

The solution expressed in (4.2.6) is computed by means of an iterative algorithm which
alternates among the different axes ξi and pi, leading to a sequence of one-dimensional
separated problems. Given the reduced computational cost, really fine grids can be
used over such axes, allowing to obtain rich solutions also in case of high-dimensional
parametric spaces.

For instance, figure 4.5 shows the separated structure of the PGD computational
domain, in the case of 3 parameters, that is Np = 3. The extension of the
mapped physical space Ωξ by the geometry parameter space Ωp is a five dimen-
sional computational space Ω ⊂ R5. Therefore, any point ϑ ∈ Ω is defined as
ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5) = (ξ1, ξ2, p1, p2, p3).

Problem (4.2.4) is therefore solved in the computational domain Ω and the PGD
solution can thus be particularized for any choice of the shape parameters defining
Ωp. Let us consider, for instance, the parametric domain illustrated in figure 4.4,
whose shape depends on the location of the white dot (parameter p). Solving a
generic BVP over this domain in the sense of problem (4.2.4), the obtained solution
can be evaluated in real time for any possible value of the parameter p, as shown in
figure 4.6.

4.2.2 Multi-parametric modularization

Let us consider the general case of a parametric problem P rewritten in terms of P
parametric subproblems Pp.

The methodology can be summarized with the following steps:
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Figure 4.5: PGD computational domain after separation of space and parameters.

Figure 4.6: Example of PGD solution over a parametrized geometry.

1. define the interfaces skeleton by modules decomposition;

2. identify the model parameters of each module;

3. assume a reduced model of the transmission conditions (Neumann or Dirichlet);

4. find a parametric solution for each module, including the interface conditions
and the model/geometrical parameters;

5. find the parameters ensuring compatibility among the parts sharing the interface.

These steps will be explained in detail in the subsections here below.

Interfaces skeleton The domain Ω is decomposed in P non-overlapping mod-
ules Ωp and in S internal interfaces γs, s = 1, . . . , S, linking the different components
and characterizing the structure skeleton Γ. This is sketched in figure 4.7.

Let us denote with Sp the set of indices associated with the internal interfaces char-
acterizing Ωp. This means that ∂Ωp = Γp ∪

⋃
s∈Sp

γs, where Γp = ∂Ω ∩ ∂Ωp is the
external part of the boundary.

Moreover, let Vs the set of indices of modules sharing the interface γs. That is, if
γs = ∂Ωl∩∂Ωm then Vs = {l,m}. Without loss of generality, this is sketched in figure
4.8 considering modules as squares. However, as explained previously, any complex
shape can be mapped into the square using single-patch or multi-patch NURBS.
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Figure 4.7: Large structure composed by P parts linked by S interfaces.

Figure 4.8: Two parts sharing the same interface γs.

Single part parameters Each part composing the entire structure has its
own parameters, collected into the vector pp. Figure 4.9 shows how the structure is
decomposed into independent parametric components.

Figure 4.9: Parametric sub-components.

Reduced skeleton kinematics The parametric single-part response uhp is
the parametric solution of the problem Pp equipped of suitable boundary conditions
imposed over ∂Ωp, this means uhp(x,pp, u|∂Ωp).

Let us suppose that such boundary condition over ∂Ωp can be characterized through
a set of coefficients (parameters) αs. Then, for a fixed choice of parameters p, the
solution of problem P can be obtained evaluating the solutions of the subproblems
Ps satisfying some compatibility conditions among the parameters αs at the internal
interfaces.

In this framework, coefficients αs represent a reduced model of the interface behav-
ior depending on the chosen parametrization for the boundary conditions. For in-
stance, let us suppose that R coefficients are enough to have a good parametrization,
αs = (α1

s, . . . , α
R
s ). Consequently, the interface field in the whole skeleton Γ can be

represented by the weights associated with all the interfaces, yielding the reduced
model Λ = (α1, . . . ,αS) ∈ RR×S .
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Remark 4.2.3. The parametrization of the interface conditions increases the dimen-
sionality of the local parametric problem, introducing new dimensions related to the
coefficients, representing a limit of the procedure if many parameters are needed.
In [72], the issue is faced splitting the local problem (exploiting the linearity) into a
family of subproblems involving sufficiently small sets of active boundary parameters.

This is illustrated in figure 4.10.

Figure 4.10: Parametric sub-components with parametrized boundary condition.

Remark 4.1. Such reduced model of the interface can also be physics-informed. In
this sense, a few high-fidelity solutions of the entire problem could be simulated for
a series of loading conditions. From each of these simulations the field at the struc-
ture skeleton can be extracted. Let us denote with ui|γs = (ui, vi, wi)|γs the dis-
placement coming from the i-th high-fidelity simulation, extracted at the interface
γs. A reduced kinematic can be constructed by applying the POD at the inter-
face γs. The weights associated with the first R modes are grouped into the vector
αs = (α1

s, . . . , α
R
s ). Consequently, the displacement in the whole skeleton Γ can be

represented by the weights associated with all the interfaces, yielding the reduced
model Λ = (α1, . . . ,αS) ∈ RR×S .

Part reduced model: parametric transfer function Each sub-
problem Pp can be solved using the NURBS-PGD method accounting for parameters
pp and for the reduced skeleton kinematics Λ as additional coordinates. In particular,
the parametric transfer function of each part involves thus the internal parameters pp
and the coefficients parametrizing the kinematics at its boundaries, that is αs with
s ∈ Sp.

The parametric transfer function allows then the computation of the related thermo-
mechanical fields, like the temperature/displacement contour

u|p = u|p(pp,αs), ∀s ∈ Sp. (4.2.7)

In particular, the fluxes/forces at the interface γs characterizing the part Pp can be
extracted

F |ps = F |ps(pp,αs), ∀s ∈ Sp.

Enforcing the interface equilibrium The skeleton kinematics u|Γ is uni-
vocally determined by its reduced representation Λ. For a new choice of parameters
pp, the compatibility of interface fields must be enforced to determine the correct
kinematics Λ⋆. This amounts to minimize a given cost function C|Γ which depends
upon the problem at hand.
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In structural mechanics, an example of cost function C|Γ can be the sum of forces (and
momentums if needed) at all the interfaces γs (in a thermal problem, this can be the
equilibrium of fluxes), that is

S∑
s=1

C|γs =
S∑

s=1

∑
p∈Vs

F |ps =
S∑

s=1

∑
p∈Vs

F |ps(pp,αs).

For instance, considering two parts Pl and Pm sharing the interface γs, this stage con-
sists of determining the coefficients α⋆ minimizing the cost function C at the interface
γs. This is illustrated in figure 4.11.

Figure 4.11: Compatibility of interface between two parts.

Iterative scheme For an arbitrary choice of the skeleton kinematics Λ0 =
(α0

1, . . . ,α
0
S), certainly the equilibrium is not satisfied at all the interfaces γs. Thus,

we assume the existence of at least one interface violating the equilibrium, e.g. γs∑
p∈Vs

F|ps(pp,Λ0) ̸= 0. (4.2.8)

In what follows the unbalanced forces at each interface will be noted Rs,

Rs =
∑
p∈Vs

F|ps(pp,Λ0), ∀s = 1, . . . , S. (4.2.9)

In order to equilibrate the system one should modify the skeleton kinematics, Λ0+∆Λ
(that is, α0

s + ∆αs, ∀s = 1, . . . , S), in order to satisfy the equilibrium everywhere,
we should enforce ∑

p∈Vs

F|ps(pp,Λ0 +∆Λ) = 0, ∀s = 1, . . . , S (4.2.10)

with

F|ps(pp,Λ0 +∆Λ) ≈ F|ps(pp,Λ0) +
∂F|ps(pp,Λ)

∂Λ

∣∣∣∣
Λ0

∆Λ, (4.2.11)

leading to the Newton-Raphson iterate∑
p∈Vs

∂F|ps(pp,Λ)

∂Λ

∣∣∣∣
Λ0

∆Λ = −Rs, (4.2.12)

that can be assembled in a linear system
M11(p11) M11(p12) · · · M1S(p1S)
M21(p21) M21(p22) · · · M2S(p2S)

...
...

. . .
...

MS1(pS1) MS1(pS2) · · · MSS(pSS)




∆α1

∆α2

...
∆αS

 = −


R1

R2

...
RS

, (4.2.13)
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where Mij contains the contributions of interface γj on interface γi, and consequently
the parameters pij involved are the ones related to the part that involves interfaces
γi and γj , with Mij = 0 if no part contains both interfaces γi and γj .

Remark 4.2. System (4.2.13) only involves few hundred of equations and consequently
can be solved extremely fast. However, in case of many interfaces, its assembly requires
the evaluation of the cost function and computation of the gradient (with respect to
the parameters), in an iterative setting. Thus, if solved online, the real-time response
in some scenarios could be compromised (this is the case for any optimization in high
dimension).

A valuable route consists of solving thousands of times (offline) the system (4.2.13) for
a diversity of choices of parameters p1, . . . ,pP , for computing the associated kinemat-
ics Λ(p1, . . . ,pP ). For that purpose powerful regression techniques could be employed,
e.g. neural networks-based deep learning.

Another valuable route could be representing the different values of Λk, related to the
parameter choice pk

1, . . . ,p
k
P , to check its intrinsic dimensionality, by employing for

example manifold learning (such as the kPCA [230] or LLE [231], for instance) or even
auto-encoders. The main interest of such a reduction is the possibility of employing
standard regressions, such as the sPGD [199,200].

Remark 4.3. The methodology requires to increase the number of parameters since
the boundary conditions of single patches are parametric. However, this does not
face the curse of dimensionality contrarily to full-structure based modeling. Indeed,
considering a structure composed by P parts each one involving Np parameters, the
total number of parameters in the problem is PNp. Le us split the full problem in
P subproblems involving Np parameters each and R additional parameters for the
interface conditions. Then, the total number of parameters in each local problem is
Np +R. Even in the case in which Np +R is comparable with PNp, the methodology
is convenient since all local models are all built in parallel over simple geometries. In
target applications involving many parts and many parameters parameters by parts
Np +R≪ PNp and R≪ Np ensuring the good scalability of the algorithm.

4.2.3 Computational work-flow for online real-time simu-
lations

The global proposed workflow consists of:

1. offline stage:

(a) structure decomposition in a number of modules and determination of the
interfaces;

(b) creation of a reduced model of the interface conditions: this can be achieved
via an a priori parametrization; otherwise, one can compute some high-
fidelity solutions of P for some parameters’ combinations and determine
the principal modes on the skeleton composed by the interfaces;

(c) construction of the parametric solutions for each problem Pp, for p =
1, . . . , P (this step is performed efficiently in parallel);

2. online stage:

(a) choosing the model parameters p1, . . . ,pP ;
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(b) use the part parametric transfer function (4.2.7), u|p = u|p(pp,αs) for each
module;

(c) find the interface parameters ensuring the global equilibrium of modules.

4.3 Results and discussion

4.3.1 Steady state heat conduction

A first example is a design problem in 2D steady state conduction. The domain is
a curved corner L-shaped geometry having 6 shape parameters p = (p1, . . . , p6), as
illustrated in figure 4.12. Moreover the inlet and outlet fluxes q1 and q2 are parametric
and described by 3 coefficients, that is βin = (β1, β2, β3) and βout = (β4, β5, β6),
respectively. Null flux and fixed temperature are considered as boundary conditions
for the outer and inner wall, respectively. Denoting with β = (βin,βout) the vector
collecting the parameters related to the boundary conditions, the sought parametric
solution has 12 parameters and can be written as u(x, y,p,β).

Figure 4.12: Steady state conduction problem set-up.

The problem is decomposed in three parametric sub-problems Pi defined over Ωi,
for i = 1, . . . , 3, having the corresponding geometrical parameters pi. Moreover, the
internal interfaces γ1 and γ2 are treated considering a parametric flux profile still
described with 3 parameters, as shown in figure 4.13. For instance, the interface
condition between the domain Ωi and Ωj is an imposed flux depending upon the
parameters αij = (αij

1 , α
ij
2 , α

ij
3 ).

Since problems P1 and P3 exhibit exactly the same parameters’ dependency, they can
be reduced to a single parametric problem P̃ as shown in figure 4.14, where both inlet
and outlet fluxes are parametric. The angle φk represents the rotation of the domain
to be considered for the assembly within the global system.

Letting p̃ = (p̃1, p̃2, p̃3) the geometrical parameters and β̃ the ones related to the
parametric flux, the sought solution of P̃ is ũ(x, y, p̃, β̃) with 9 parameters. The
solution ui of Pi, for i = {1, 3}, is simply the particularization of ũ at the correct



94 4.3 Results and discussion

Figure 4.13: Parametric patches decomposition.

parameters values, that is ui = ũ(x, y,pi,βi), where{
p1 = (a1, c1, b1),

β1 = (βin,α12),
and

{
p3 = (a3, b3, c3),

β3 = (α23,βout).

In the same way, the solution of problem P2 has 2 geometrical parameters p2 = (a2, b2)
and 6 parameters for the inlet and outlet fluxes, that is α12 and α23, respectively.

Figure 4.14: Reference sub-problem for P1 and P3.

The three parametric sub-solutions finally read
u1(x, y,p1,β

in,α12),

u2(x, y,p2,α
12,α23),

u3(x, y,p3,α
23,βout),

(4.3.1)

and the global solution u(x, y,p,β) is obtained by assembly. To this purpose, one
must ensure the geometric constraint fixing a1 = b2 = c3 = p4 and, for a given choice
of parameters, minimize the temperature jumps at the interface, by solving

min
α12,α23

(∥u1 − u2∥2,γ1 + ∥u2 − u3∥2,γ2), (4.3.2)
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where ∥·∥2,γi denotes the Euclidean norm at the interface γi.

In this example, the geometrical parameters are chosen varying in [1, 3] while all the
coefficients of flux profiles have range [−100, 100]. The metamodels ũ (i.e., u1 and u3)
and u2 are computed in parallel, employing the NURBS-PGD method. Each direction
(space and parameters ones) is discretized in 51 nodes, yielding a total number of DOFs
of 5111 and 5110 for P̃ and P2, respectively. This is possible thanks to the usage of
PGD-based separated representations. A simple hill climbing algorithm is employed
for the minimization step.

Figure 4.15 shows 12 snapshots of the sub-solutions for different combinations of the
parameters. This can be seen as a catalog of patches which can suitably be assembled
to evaluate several designs of the curved L-shape geometry of figure 4.12, as shown in
figure 4.16.

Figure 4.15: 12 snapshots of parametric sub-solutions.

Figure 4.16: 6 snapshots of the assembled parametric solution.
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4.3.2 First order plate deformation

Let us consider a thin elastic plate composed of two parts with different geometric and
material properties, as shown in figure 4.17. The plate is clumped along the bottom
edge (homogeneous Dirichlet boundary condition), while along the left and right edges
a distributed out-of-plane loading is applied. The upper edge has a traction-free
boundary condition (homogeneous Neumann). The mechanical problem P has 17
geometric and model parameters resumed in table, with also the corresponding ranges
4.1.

Figure 4.17: Plate problem set-up.

Length Thickness Young Modulus Poisson Ratio Force
a1, b1, c1, a2, c2 h1, h2 E1, E2 ν1, ν2 β1, . . . , β6

[0.1, 0.3] [0.001, 0.01] [100, 300] · 109 0.2, 0.4 [−1,−1] · 104

Table 4.1: Problem parameters and ranges.

Each out-of-plane force Fz,i, for i = 1, 2 is assumed depending upon 3 coefficients βi.
The two plates share the interface γ1 whose length is determined by the parameter c1.

The plate is modeled through the first order Kirchhoff theory, which expresses the
displacement field in terms of the middle plane kinematic variables w, θx and θy,

u(x, y, z) = zθy(x, y)

v(x, y, z) = −zθx(x, y)
w(x, y, z) = w(x, y)

(4.3.3)

where θx and θy are the angles defining the rotation of the normal vector to the middle
surface and w is the vertical displacement (deflection).

Following the same procedure, problem P can be split in two sub-problems which can
be reduced to the same parametric macro-element Ω̃, as resumed in figure 4.18.

In this way, the original problem is reduced to a single problem P̃ having 12 parame-
ters, and the two particularized sub-solutions can be written as{

u1(x, y, z,p1,β1,α
12),

u2(x, y, z,p2,α
12,β2),

(4.3.4)

where pi = (ai, bi, ci, hi, Ei, νi) for i = {1, 2}.
Finally, the assembly is performed imposing the geometrical constraint c1 = b2 = c3
and the minimization of the displacement jump at the interface, that is

min
α12

∥u1 − u2∥2,γ1 , (4.3.5)
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Figure 4.18: From modules to a reference parametric patch.

where ∥·∥2,γ1 denotes the Euclidean norm at the interface γ1.

For instance, figure 4.19 shows the assembled solution when choosing the following
parameters values{

p1 = (0.3, 0.15, 0.2, 0.01, 100 · 109, 0.3), β1 = (7 · 103, 7 · 103, 7 · 103),
p2 = (0.2, 0.2, 0.25, 0.01, 200 · 109, 0.3), β2 = (0,−7 · 103,−7 · 103).

(4.3.6)

Figure 4.19: Plate bending from different isometric views.
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4.4 Conclusions

In the presented work, a new methodology has been introduced for the construction
of parametric surrogates within the context of high-dimensional problems. The foun-
dation of this approach lies in the strategic decomposition of the domain into non-
overlapping parametric modules. The most appealing feature of the method is the
simultaneous treatment of these modules, akin to the principles of parallel computing,
enhancing efficiency and computational speed.

The segmentation of the domain facilitates the independent handling of each para-
metric module, and subsequently, accelerates the development of sub-solutions. Af-
terwards, an assembly process is necessary to describe the parts interactions within
the global system. This is performed via a minimization technique that ensures com-
patibility at the interfaces of the distinct parts. Notably, the local surrogates are built
via the NURBS-PGD approach. Although the NURBS-PGD method is chosen for its
efficacy in addressing parametric design problems, it is important to underscore that
alternative procedures could be seamlessly integrated based on specific requirements
and preferences (non-intrusive character of the procedure).

One of the most compelling attributes of this methodology lies in the replicability of
individual component models. This feature proves to be invaluable for expediting the
design process and facilitating prompt performance evaluations. The broader appli-
cability of this technique extends to diverse industrial and large-scale applications, a
focal point of our ongoing research line. Emphasis is particularly placed on refining
the minimization step, whose role is pivotal in ensuring a real-time response.



Conclusions

This thesis has explored important issues encountered in the field of simulation-based
engineering for specific industrial applications. It takes a distinct approach by indi-
vidually addressing the challenges posed by space, time, and parameters.

In the spatial domain, the primary concern revolves around effectively incorporating
three-dimensional effects within degenerate domains, particularly in the context of
plates and shells like structures.

In the time domain, the difficulties are mostly related to the complexities of perform-
ing accurate fine-scale numerical simulations for exceptionally prolonged phenomena,
within the context of cyclic elastic-plastic fatigue simulations.

Regarding parameters, the focus stands in the construction of parametric meta-models
for large multi-component structures and domains, as can be the case for a full-vehicle
parametric modeling.

All the different topics have been addressed through separated representations within
the framework of the proper generalized decomposition (PGD). In particular, the
plate-like domain (3D) is separated in an in-plane (2D) and out-of-plane (1D) one. The
time domain is decomposed in a multi-time manner, via two independent variables,
the macro-time (slow time) and the micro-time (fast time). The parametric multi-
component latlatstructure is separated in multiple parametric subdomains.

An important requirement in the development of new proposed solutions is favoring
their integration in commercial solvers with minimal intrusiveness, which constitutes
the main achievement of this thesis. To this purpose, all the procedures exploit some
pre-existing features of the commercial codes and enhance them through external
plug-ins.

The newly developed enhanced-shell formulation for the space makes use of a slightly
modified version of the currently accessible assembly of standard shell formulations,
while improving the out-of-plane kinematics through the use of an externally trained
machine learning framework.

In cyclic fatigue simulations, a forecasting framework is built for the macroscale evo-
lution and the microscale response can be recomputed within the industrial solver.

A multi-component parametric structure can be decomposed in sub-components for
which the parametric model can be built via already available tools.

Although the proposed solutions have been tested over benchmark cases, they open
valuable perspective in industrial contexts, which are being addressed as a work in
progress with ESI Group.
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A
Implementation aspects of PGD,
G-POD and HODMD

A.1 Tensor-based PGD methods

Here we shortly recall the PGD algorithm in a general tensor framework [31, 32, 35].
The solution of a multidimensional problem is built as a sum of tensor products
of functions defined in some sub-spaces with moderate dimension (1, 2 or 3), thus
providing a general separable representation form. In particular, the authors make
use of the best rank-1 approximation property of tensors of order 3 or higher [232]
(in [233], it has been proved that tensors of order 3 or higher can fail to have best rank-
n approximation) to propose an iterative method based on the so-called projection-
enrichment technique [31].

Let Ω be a multidimensional domain involving several coordinates xi (not necessarily
one-dimensional), which can coincide, for instance, with spatial coordinates, time,
model or geometric parameters. We consider the weak formulation of a linear problem:

Find ψ ∈ V (Ω) s.t.
a(ψ(x1, . . . , xd), ψ

∗(x1, . . . , xd)) = b(ψ∗(x1, . . . , xd)) ∀ψ∗ ∈ V (Ω),
(A.1.1)

with V (Ω) an adequate function space ensuring the well-posedness of such a formula-
tion.

We assume that, after a discretization of problem (A.1.1), we are lead to solve the
linear system:

tψ∗Aψ = tψ∗B, (A.1.2)

where the operator on the left-hand side and the right-hand side member are expressed
in a separated form as

A =

NA∑
k=1

Ak
1 ⊗Ak

2 ⊗ · · · ⊗Ak
d, B =

NB∑
k=1

bk
1 ⊗bk

2 ⊗ · · · ⊗ bk
d . (A.1.3)
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The approximated PGD solution ψ is sought in the discrete separated form

ψ =

NF∑
j=1

αj f
j
1⊗ f j2⊗ . . .⊗ f jd, (A.1.4)

and an analogous representation is adopted for the test function ψ∗, being

ψ∗ = f i1⊗ f i2⊗ . . .⊗ f id,

with i = 1, . . . , NF .

Solution ψ is built-up by using a projection-enrichment iterative scheme [31]. In
particular, it will be assumed that the global convergence is attained when the error
estimator ε = ∥Aψ−B∥2 is small enough, where ∥·∥2 denotes the standard Frobenius
norm of a tensor of order d.

The projection stage consists of finding the set of coefficients αj in (A.1.4) verifying
the relations

NF∑
j=1

Hijαj = Ji ∀i = 1, . . . , NF (A.1.5)

where

Hij =

NA∑
k=1

(
t
f i1A

k
1 f

j
1

)
·
(
t
f i2A

k
2 f

j
2

)
· . . . ·

(
t
f idA

k
d f

j
d

)
,

Ji =

NB∑
k=1

(
t
f i1 b

k
1

)
·
(
t
f i2 b

k
2

)
· . . . ·

(
t
f id b

k
d

)
.

The enrichment stage includes new candidates for enriching the reduced separated
approximation basis, so that ψ can be updated as

ψ =

NF∑
j=1

αj f
j
1⊗ f j2⊗ · · · ⊗ f jd︸ ︷︷ ︸

=:ψf

+ r1⊗ r2⊗ · · · ⊗ rd︸ ︷︷ ︸
=:ψr

, (A.1.6)

and (A.1.2) is replaced by the system
tψ∗Aψr+

tψ∗Aψf =
tψ∗B. (A.1.7)

In particular, within a fixed point alternating direction algorithm, at each iteration
we look for the computation of a single discrete function, rj , all the other components
of ψr being assumed known, and after setting ψ∗ to r1⊗ · · · rj−1⊗ r∗j ⊗ rj+1 · · · ⊗ rd.
This strategy leads to solve the linear system

Krj +v = ṽ, (A.1.8)

where

K =

NA∑
k=1

(
Ak

j

d∏
h=1
h̸=j

trhA
k
h rh

)
,

v =

NF∑
i=1

NA∑
k=1

(
αiA

k
j f

i
j

d∏
h=1
h̸=j

trhA
k
h f

i
h

)
, ṽ =

NB∑
k=1

(
bk
j

d∏
h=1
h̸=j

trh b
k
h

)
.
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For the explicit computations leading to system (A.1.8), we refer the interested reader
to [31], whereas a convergence analysis for this greedy rank-1 update algorithm can
be found in [232].
Remark A.1.1. The projection in (A.1.5) does not represent the only possible choice
when defining ψ. Alternatively, one could use a standard greedy-based enrichment
[32, 232]. The aim of the projection is to regularize the solution, thus getting rid of
possible spurious modes yielded by an enrichment procedure and, consequently, to
enhance the global convergence. Indeed, since modes are normalized, coefficients αj

in (A.1.5) can be intended as a truncation error since they express the importance of
the different enrichment terms. This allows us to stop the enrichment procedure when
not significant modes occur, thus limiting the inclusion of noisy information.
Remark A.1.2. As discussed in [31], the convergence of the fixed point strategy charac-
terizing the enrichment step is guaranteed for symmetric discrete operators. Actually,
numerical tests performed with non symmetric discrete operators (e.g., with hyperbolic
operators) exhibit some difficulties in the convergence of the fixed point procedure as
well as a loss of optimality in terms of number of function products to be computed.
For this reason, all the problems analyzed in this work are suitably rewritten in order
to deal with a symmetric operator. In general, the new problem to be solved reads:

tψ∗ tAAψ = tψ∗ tAB,

and the associated projection stage becomes

NF∑
j=1

HS
ijαj = JS

i ∀i = 1, . . . , NF

where

HS
ij =

NA∑
k′=1

NA∑
k=1

(
t
f i1

tAk′
1 Ak

1 f
j
1

)
·
(
t
f i2

tAk′
2 Ak

2 f
j
2

)
· . . . ·

(
t
f id

tAk′
d Ak

d f
j
d

)
,

JS
i =

NA∑
k′=1

NB∑
k=1

(
t
f i1

tAk′
1 bk

1

)
·
(
t
f i2

tAk′
2 bk

2

)
· . . . ·

(
t
f id

tAk′
d bk

d

)
.

Analogously, system (A.1.7) will be replaced by the new one
tψ∗ tAAψr+

tψ∗ tAAψf =
tψ∗ tAB,

so that system (A.1.8) takes the form

KS rj +vS = ṽS ,

with

KS =

NA∑
k′=1

NA∑
k=1

(
tAk′

j Ak
j

d∏
h=1
h̸=j

trh
tAk′

h Ak
h rh

)
,

vS =

NF∑
i=1

NA∑
k′=1

NA∑
k=1

(
αi

tAk′
j Ak

j f
i
j

d∏
h=1
h̸=j

trh
tAk′

h Ak
h f

i
h

)
,

ṽS =

NA∑
k′=1

NB∑
k=1

(
tAk′

j bk
j

d∏
h=1
h̸=j

trh
tAk′

h bk
h

)
.
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A.2 POD and Gappy-POD

A.2.1 POD

This section shortly revisits the main concept of the proper orthogonal decomposition
(POD) [27] before introducing its gappy counterpart in section A.2.2.

Let us consider a full snapshot of ψ(x , t) defined as

Ψ =
(
ψ1| · · · |ψNt

)
∈ RNx×Nt (A.2.1)

where ψj is a column vector containing the numerical approximations of ψ(x , tj) in
all the Nx spatial mesh points, for j = 1, . . . , Nt.

The POD looks for the low-rank separated approximation

Ψ ≈ WΛ (A.2.2)

where

W =
(
w1| · · · |wm

)
∈ RNx×m, Λ =

λ
T
1
...
λTm

 ∈ Rm×Nt . (A.2.3)

Such decomposition is obtained computing the eigenvectors associated to the m high-
est eigenvalues of the correlation matrix C = ΨTΨ ∈ RNt×Nt , accounting for the
orthonormality condition ΛTΛ = I. Once the temporal basis Λ is available, the
spatial one is obtained by projection of the snapshots, as W = ΨΛT.

Remark A.1. If the correlation matrix is defined as CT ∈ RNx×Nx , its eigenvectors
constitute the spatial orthonormal basis W. Afterwards, the temporal one is obtained
by projection in the same manner.

In a continuous framework, this procedure furnishes the approximation

ψ(x , t) ≈ ψPOD(x , t) =
m∑
k=1

wk(x )λk(t), (A.2.4)

where the functions wk(x ) and λk(t) are the space and time modes expressed through
the corresponding bases W and Λ.

A.2.2 Gappy-POD

The gappy-POD [181, 182] follows the same strategy described in section A.2.1, but
instead of extracting the reduced basis from the full snapshot (A.2.1), it considers
only a gappy (incomplete) snapshot:

Ψ̄ =
(
ψ̄1| · · · |ψ̄N̄t

)
∈ RNx×N̄t , (A.2.5)

where the quantities denoted with •̄ are related to a subset of equispaced time instants
{t̄1, . . . , t̄N̄t

} ⊂ {t1, . . . , tNt}.

This starts by considering the (gappy) correlation matrix C̄g = Ψ̄TΨ̄ ∈ RN̄t×N̄t and
by solving the eigenvalue problem to compute the (gappy) temporal orthonormal basis
Λ̄g ∈ Rm×N̄t . Then, the spatial functions are computed as W̄ = Ψ̄Λ̄g

T ∈ RNx×m̄. It



Implementation aspects of PGD, G-POD and HODMD 105

shall be noticed that the basis W̄ is defined over all the degrees of freedom, and for
this reason we drop the subscript g, which tracks the quantities defined on incomplete
sets.

Once W̄ is available, an approximation of the temporal functions Λ̄ is recovered
solving

min
Λ̄∈Rm̄×Nt

∥∥W̄Λ̄−Ψ
∥∥
2
, (A.2.6)

whose least-square solution reads Λ̄ = (W̄TW̄)−1W̄TΨ ∈ Rm×Nt . In this way the
gappy data in time Λ̄g can been approximated over all Nt time steps.

Equivalently to (A.2.4), the Gappy-POD continuous approximation can be written as

ψ(x , t) ≈ ψGPOD(x , t) =
m̄∑
k=1

w̄k(x )λ̄k(t). (A.2.7)

Once the approximation (A.2.7) is computed, the time modes allow to study quickly
the transient behaviour. This consists in determining a threshold Ti such that, for
t > Ti the functions ψ(x , t) clearly exhibit a multiscale behaviour.

At this point, a fully separated space-macrotime-microtime PGD approximation can
be efficiently computed [54,55], that is

ψ(x , t)1(Ti,TK)(t) ≈
m∑
k=1

Ψx
k (x )Ψ

τ
k(τ)Ψ

T
k (T ). (A.2.8)

where 1I(t) denotes the indicator function of the set I.

Remark A.2. It shall be noticed that often ψ(x , t) is a vector-valued function, having
D > 1 components (ψ(d)(x , t))Dd=1. In this case, one could assemble D by-component
snapshots Ψ(d) ∈ RNx×Nt or a unique snapshot Ψ ∈ RDNx×Nt , where the column
vectors account for the concatenation of those components. For instance, this happens
when the quantity of interest is the plastic strain tensor, which, in a two-dimensional
spatial domain, has the three components εp = (εpxx, ε

p
yy, ε

p
xy).

A.3 HODMD

The DMD-d algorithm basically consists of applying the classical DMD(-1) to enlarged
snapshots, following several steps [171,179,180]:

1. Snapshots enlargement. Equation (3.3.33) can be rewritten in terms of stan-
dard Koopman assumption

ṽj+1 ≈ R̃ṽj , (A.3.1)

involving enlarged snapshots and (unknown) Koopman matrix

ṽj =


vj
vj+1

...
vj+d−2

vj+d−1

 ∈ Rd, R̃ =


0 1 0 · · · 0 0

0 0 1
. . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 1 0
c1 c2 c3 · · · cd−1 cd

 ∈ Rd×d, (A.3.2)

with 1 ≤ j ≤ K − d.
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The algorithm considers the DMD(-1) to the modified snapshot matrix

ṼK−d+1
1 =

(
ṽ1| · · · |ṽK−d+1

)
∈ Rd×(K−d+1), (A.3.3)

where each column ṽj is defined as in equation (A.3.2). The subscript and the
superscript notation simply tracks the first and the last value of index j.

Actually this can be seen as superimposed DMD in a sliding window including
d time-steps.

2. Snapshots reduction. As usual in the DMD, from the snapshot matrix
(A.3.3), a truncated SVD of rank r ≤ min{d,K − d + 1} = d is performed,
giving

ṼK−d+1
1 ≈ UrV̂

K−d+1
1 (A.3.4)

where

V̂K−d+1
1 = ΣrT

T
r =

(
v̂1| · · · |v̂K−d+1

)
∈ Rr×(K−d+1) (A.3.5)

with Σr ∈ Rr×r, Ur ∈ Rd×r, Tr ∈ R(K−d+1)×r the usual matrices outcome of
a reduced SVD. The relation between the enlarged snapshots and the enlarged-
reduced ones is simply given by the projection matrix as

ṽj = Urv̂j , v̂j = UT
r ṽj . (A.3.6)

At this point, pre-multiplying the Koopman assumption equation (A.3.1) by
UT

r , since UT
r Ur = Ir by orthogonality, we obtain

v̂j+1 ≈ R̂v̂j , (A.3.7)

where R̂ = UT
r R̃Ur is the enlarged-reduced snapshot matrix.

Remark A.3. It shall be noticed that in [179, 180] two reduction steps were
performed since the procedure was applied to a vector-valued time series, while
we are only interested in sequences of scalars.

3. DMD modes computation. This step consists in determining an approxi-
mation of the enlarged-reduced Koopman matrix R̂. Relation (A.3.7) can be
written in terms of enlarged-reduced matrix snapshots as

V̂K−d+1
2 ≈ R̂V̂K−d

1 (A.3.8)

At this point the HODMD expansion is obtained by applying the classic DMD
algorithm to equation (A.3.8). This consists in applying the standard SVD to
the matrix V̂K−d

1 ∈ Rr×(K−d):

V̂K−d
1 = ÛΣ̂T̂T (A.3.9)

with Σ̂ ∈ Rr×r, Û ∈ Rr×r, T̂ ∈ R(K−d+1)×r the usual matrices outcome of a
standard SVD, verifying ÛTÛ = ÛÛT = Ir, T̂TT̂ = Ir and Σ̂ is non-singular.

Now, (A.3.9) is inserted in equation (A.3.8) to obtain

V̂K−d+1
2 ≈ R̂ÛΣ̂T̂T, (A.3.10)

which is simply post-multiplied by T̂Σ̂−1ÛT to obtain an approximation of the
enlarged-reduced Koopman matrix

R̂ ≈ V̂K−d+1
2 T̂Σ̂−1ÛT. (A.3.11)
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Once R̂ is approximated, equation (A.3.7) is solved via the expansion

v̂j ≈ v̂DMD
j =

r∑
m=1

amq̂mµ
j−1
m (A.3.12)

with j = 1, . . . ,K. In this expression (q̂m, µm) are the couples eigenvector-
eigenvalue of R̂.

Moreover, (A.3.12) may be rewritten as an exponential expansion in terms of
frequencies ωm and growth rates δm

v̂j ≈ v̂DMD
j =

r∑
m=1

amq̂me
(δm+ωmi)(j−1)∆T (A.3.13)

where
δm + ωmi =

1

∆T
logµm (A.3.14)

Of course, the DMD expansion for the enlarged snapshots is obtained pre-
multiplying (A.3.13) by Ur:

ṽj ≈ ṽDMD
j =

r∑
m=1

amq̃me
(δm+ωmi)(j−1)∆T (A.3.15)

where q̃m = Urq̂m.

4. DMD amplitudes computation. The computation of the amplitudes am is
done in the usual manner of the DMD procedure and, for the sake of brevity,
we refer to [179], whose notation was followed in the whole section.





B
Implementation aspects of the
NURBS-PGD method

B.1 NURBS-based geometry description

A local bijection is constructed through NURBS as follows

F : Ωξ → Ωx

ξ 7−→ x = F (ξ) =
n∑

i=1

m∑
j=1

Rpq
ij (ξ)Bij ,

(B.1.1)

which represents a one to one relation that maps any point ξ in the computational
domain Ωξ to a point x in physical domain Ωx.

In Eq. (B.1.1), B refers to the control points (the vertices of the so-called control net)
in the physical domain and Rpq

ij (ξ, η) denote the bivariate NURBS basis functions in
2D domains. Such functions can be obtained using tensor product of univariate basis
functions, as follows

Rpq
ij (ξ) =

Nip(ξ)Njq(η)wij∑n
α=1

∑m
β=1Nαp(ξ)Nβq(η)wαβ

. (B.1.2)

In the above equation wij denotes the geometry related weight of the combination and
subscripts p and q denote the order of B-splines in directions ξ and η, respectively.
Nap(ξ) is the univariate B-spline basis function of order p in the a-th knot span
ξ ∈ [ξa, ξa+1]. The following recursive equations can be used to compute the univariate
B-spline basis function Nap(ξ) [234]

Na0(ξ) =

{
1 ξa ≤ ξ < ξa+1

0 otherwise
, for p = 0 (B.1.3)

Nap(ξ) =
ξ − ξa

ξa+p − ξa
Na(p−1) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
N(a+1)(p−1) , for p > 0. (B.1.4)
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To define a set of n B-spline functions of order p in a univariate parametric space
ξ ∈ [0, 1], the knot vector κξ is defined as follows.

κξ = [ξ1, ξ2, . . . , ξn+p+1]
T . (B.1.5)

Same holds for the knot vector κη applying in the coordinates η read

κη = [η1, η2, . . . , ηm+q+1]
T , (B.1.6)

being m the number of basis functions of order q in the direction η.

A proper choice of the knot vectors allows obtaining rich behavior of the basis functions
and enough flexibility to describe complex geometries.

Now, using the notation (x, y) ≡ (x1, x2) and (ξ, η) ≡ (ξ1, ξ2), for facilitating the
mapping description compactness, the terms involved in the transformation of the
differential operator from Ωx to Ωξ read

∂x

∂ξa
=

n∑
i=1

m∑
j=1

∂Rpq
ij (ξ)

∂ξa
Bij , a, b = 1, 2. (B.1.7)

B.2 Separation of space: separated approximate
representation –SAR–

One of the most appealing features of the PGD is the reduction of a high dimensional
problem to a series of problems defined in lower dimensional spaces [235, 236]. Since
the PGD exploits separation of variables, to maximize the accuracy of the method it
is preferable to work in separable domains.

The NURBS-based geometric mapping presented in subsection B.1 allows to map a
non-regular geometry Ωx into the separable computational domain Ωξ, via mapping
(B.1.1). However, one needs also to map the differential problem Px from the physical
domain Ωx accounting for the Jacobian of the transformation B.1.1, that is (B.1.7):[

∂(·)/∂x
∂(·)/∂y

]
= h

[
∂(·)/∂ξ
∂(·)/∂η

]
, (B.2.1)

where h is the inverse of the Jacobian tensor, J .

Once the mapping (4.2.2) is introduced, Px can be mapped back to the fixed domain
Ω̄ ≡ Ωξ, leading to problem Pξ.
Even if the computational domain Ωξ is fully separable by construction, the differential
operators are not, because of the fact that shape functions involved in the geometry
mapping are not separated. Indeed, the geometric mapping given in Eq. (B.1.1)
and its derivatives in Eq. (B.1.7) leads to a non-separable mapping in the sense of
the PGD technique, compromising the effectiveness of the PGD solver. To overcome
this difficulty, a separated approximate representation (SAR) of the Jacobian of the
transformation [58].

To briefly illustrate the SAR, let us consider a generic function g(x) defined in the
physical domain Ωx and its counterpart, g(ξ), in the computational domain Ωξ. A
separated approximate representation of g(ξ) in the computational domain Ωξ reads
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g(ξ) ≈
NG∑
i=1

ND∏
j=1

MT
j (ξj)Gji, (B.2.2)

where, Mj(ξj) is the vector of approximation functions in term of j-th coordinate
direction and Gji is the vector of coefficients of the i-th mode in the j-th coordinate
direction. ND is the total number of problem dimensions to be separated (i.e., 2 in
this example) and NG is the number of modes which are used to represent the sepa-
rated representation of function g(ξ). Generally, any type of approximation functions
Mj(ξj) could be used to approximate the modes in each direction but the piecewise
linear Lagrange interpolation functions (which are common in the FEM) are used here
for simplicity. More details on the procedure for calculating the unknown coefficients
vector Gji can be found in [58,229,235].

Thus, the SAR proceeds by enforcing in a weak form the equality g(ξ) = g(x(ξ)) in
Ωξ, with g(ξ) expressed in the separated form (B.2.2), following the procedure deeply
addressed in our former works [58,235], to finally obtain the coefficients Gji.

The construction of a separated representation of the coordinates mapping x(ξ) is
obtained as follows: {

x(ξ) =
∑NX

i=1

∏ND
j=1M

T
j Xji,

y(ξ) =
∑NY

i=1

∏ND
j=1M

T
j Yji.

(B.2.3)

where, NX and NY are the number of modes required to reach the desired level of
accuracy in the SAR of x(ξ) and y(ξ), respectively. Using the same rationale, we
can derive the SAR of Jacobian determinant, |J(ξ)|, and the all 4 elements of the
transformation derivatives tensor, h(ξ), as follows:

|J | =
NJ∑
i=1

ND∏
j=1

MT
j Jji, (B.2.4)

and

hab(ξ) =

N
Hab∑
i=1

ND∏
j=1

MT
j H

ab
ji , a, b = 1, 2. (B.2.5)

More details regarding separated geometry mapping and its performance in parametric
solution of field problems are given in [58].
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Novel separated representations
for challenging industrial
applications: space, time and
parameters

Abstract

Every transient problem in continuum mechanics is characterized by three variables:
space, time and parameters. The space defines the physical domain, enabling the
definition of diverse systems. The time captures dynamic processes, allowing for tran-
sient behavior analysis. The parameters control system and modeling characteristics.
Together, these elements drive the accuracy and relevance of computational science,
making them essential for understanding and predicting real-world phenomena.

The complexity arising from managing space, time, and parameters in numerical simu-
lations can be particularly challenging in some scenarios. This is the case, for instance,
when dealing with thin structures, small time steps combined with long time intervals,
and a high number of parameters over large domains.

The numerical simulation of three-dimensional models in thin geometries presents im-
portant challenges since maintaining the mesh granularity proportional to the thick-
ness dimension requires an impractical number of elements for the entire structure.
This issue is currently encountered in automotive industry when considering vehicle
crash simulations, where most of the components are thin structures.

When time multiscale behaviours occur, standard discretization techniques are con-
straint to mesh up to the finest scale to predict accurately the response of the system.
This results in a prohibitive computational when the phenomena must be observed
over a long duration. This occurs, for instance, in material science when dealing with
fatigue damage assessments and cyclic visco-elasto-plastic fatigue problems.

A large number of parameters increases the dimensionality of the parameter space
exponentially, making its exploration computationally intensive. The data generated
from numerous simulations can be difficult to manage and advanced meta-modeling
techniques are required. This typically happens in optimal design problems of multi-
component parametric structures.

To address these challenges, it is essential to strike a balance between accuracy and
computational efficiency, requiring ad-hoc advanced developments. In this thesis the
three challenges are separately addressed via novel separation-based techniques.
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Nouvelles représentations
séparées pour des applications
industrielles complexes : espace,
temps et paramètres

Résumé

Chaque problème transitoire en mécanique des milieux continus est caractérisé par
trois variables : l’espace, le temps et les paramètres. L’espace définit le domaine phy-
sique, permettant la description de divers systèmes. Le temps capture les processus
dynamiques, autorisant l’analyse des comportements transitoires. Les paramètres in-
fluent sur les caractéristiques des systèmes et de la modélisation. Ensemble, ces élé-
ments influent sur l’exactitude et la pertinence de la science computationnelle, les
rendant essentiels pour la compréhension et la prédiction des phénomènes réels.

La gestion de l’espace, du temps et des paramètres dans les simulations numériques
est particulièrement impactée dans certains scenarios. Cela est le cas, par exemple,
lorsqu’il s’agit de structures minces, de petits pas de temps combinés à de longs inter-
valles, et d’un grand nombre de paramètres sur de vastes domaines.

La simulation numérique de modèles tridimensionnels dans des géométries minces
présente d’importants défis, car maintenir la granularité du maillage proportionnelle
à la dimension de l’épaisseur nécessite un nombre impraticable d’éléments pour toute
la structure. Cela survient souvent dans l’industrie automobile lors de simulations de
crash, où la plupart des composants sont des structures minces.

Lorsque des comportements multiscales dans le temps surviennent, les techniques de
discrétisation standard sont contraintes de mailler jusqu’à l’échelle la plus fine pour
prédire avec précision la réponse du système. Cela entraîne un coût computationnel
prohibitif lorsque les phénomènes sont observés sur une longue durée, comme c’est le
cas en science des matériaux lors de l’évaluation des endommagements par fatigue.

Un grand nombre de paramètres augmente de manière exponentielle la dimension de
l’espace paramètrique, limitant son exploration. Les données générées par de nom-
breuses simulations peuvent être difficiles à gérer et des techniques avancées de méta-
modélisation sont nécessaires. Cela se produit généralement dans des problèmes de
conception optimale de structures paramétriques à plusieurs composants.

Pour relever ces défis, il est essentiel de trouver un équilibre entre la précision et
l’efficacité computationnelle, nécessitant des développements avancés. Dans cette thèse,
les trois défis sont abordés via des nouvelles techniques basées sur les représentations
séparéés.
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