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3 Résumé

Résumé
Les modèles d’écoulement potentiel non-linéaire ont été largement utilisés pour diverses appli-
cations, notamment la propagation d’ondes non-linéaires et dispersives à différentes profondeurs
d’eau, la modélisation de la transformation des vagues sur des pentes abruptes, l’étude des inter-
actions non-linéaires des vagues avec des structures fixes et flottantes et la simulation des vagues
qui se retournent (utilisant une formulation Lagrangienne), entre autres applications.

De plus, ces modèles ont été appliqués pour simuler des phénomènes spécifiques qui ne pour-
raient pas être pris en compte dans les hypothèses d’écoulement irrotationnel et non visqueux,
tels que le frottement du fond dans les eaux peu profondes, les effets visqueux et le déferlement
des vagues. Ces dernières années, il y a eu un intérêt croissant dans la compréhension des vagues
déferlantes, en particulier dans le contexte de conditions de vagues extrêmes. Cette étude se con-
centre sur le développement d’un modèle paramétré de déferlement de vagues dans les modèles
d’écoulement potentiel non linéaire, en mettant l’accent particulièrement sur un modèle basé sur
la physique enlever du phénomène et en garantissant une applicabilité plus large en minimisant
le nombre de paramètres de calibration.

Tout d’abord, les vagues déferlantes 2D (i.e., à crête longue) sont explorées. Unmodèle paramétré
de détection et de dissipation de déferlement est présenté pour des ondes déferlantes 2D à pro-
fondeur limitée. Le modèle intègre un critère universel de début de déferlement et un nouveau
modèle de dissipation. Le modèle proposé est validé avec des vagues régulières et irrégulières
déferlantes, y compris des déferlantes glissantes et plongeantes sur des barres et des pentes sub-
mergées. Un autre modèle paramétré de déferlement est proposé pour les ondes déferlantes à
cambrure limitée en 2D, utilisant le même paramètre d’initiation de déferlement que le modèle
précédent, ainsi qu’un modèle de dissipation de la littérature, basé sur le paquet d’ondes d’entrée.
Ce modèle est ensuite validé à l’aide d’expériences en laboratoire avec des ondes déferlantes fo-
calisées.

Enfin, le modèle proposé de dissipation 2D à profondeur limitée est étendu aux ondes déferlantes
3D à profondeur limitée. Cette extension nécessite de diviser les fronts d’onde en subdivisions
plus petites jusqu’à un certain degré, où les conditions d’onde peuvent être supposées constantes
sur toute la longueur de chaque subdivision. Par conséquent, ces subdivisions individuelles sont
traitées comme des ondes 2D à crête longue. Le modèle proposé est validé avec des vagues défer-
lantes glissantes et plongeantes sur une barre submergée 3D et un bosse elliptique focalisant,
dans le but prospectif d’appliquer les modèles d’écoulement potentiel non-linéaire pour la sim-
ulation des vagues déferlantes sur des sites offshore.

Mots-clé:

L’écoulement potentiel non linéaire; Début de déferlement des vagues; Dissipation de défer-
lement des vagues; Vague déferlante à profondeur limitée; Vague déferlante à cambrure limitée.
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5 Abstract

Abstract
Fully nonlinear potential flow models (FNPF) have been extensively employed for diverse appli-
cations, including the propagation of nonlinear and dispersive waves in varying water depths,
modeling wave runup over steep slopes, investigating nonlinear wave interactions with fixed and
floating structures, and simulating overturning waves (using a Lagrangian formulation), among
other applications.

Additionally, FNPF models have been applied to simulate specific phenomena that might not
be accounted for under the irrotational and inviscid flow assumptions, such as bottom friction
in shallow water, viscous effects, and wave breaking. In recent years, there has been growing
interest in understanding breaking waves, particularly in extreme wave conditions. This study
focuses on the development of a parameterized wave breaking model for FNPF models, with a
specific emphasis on basing the model on the underlying physics of the phenomenon and ensur-
ing broader applicability by using minimal calibration parameters.

Firstly, 2D (i.e., long-crested) breaking waves are explored. A parameterized breaking detection
and dissipation model is presented for 2D depth-limited breaking waves. The model incorpo-
rates a universal breaking onset criterion and a newly derived dissipation strength model. The
proposed model is validated with regular and irregular breaking waves, including spilling and
plunging breakers over submerged bars and slopes. Another parameterized breaking model is
proposed for 2D steepness-limited breaking waves, utilizing the same onset parameter as the
previous model, with a dissipation strength model from the literature, based on the input wave
packet. This model is then validated using laboratory experiments of focused breaking waves.

Finally, the proposed 2D depth-limited dissipation model is extended to 3D depth-limited break-
ing waves. This extension involves dividing wavefronts into smaller subdivisions, where wave
conditions can be assumed constant across the span of each subdivision. Consequently, these
individual subdivisions are treated as 2D long-crested waves. The proposed model is validated
with spilling and plunging breaking waves over a 3D submerged bar and an elliptical shoal, with
the prospective aim of applying FNPF models for the simulation of breaking waves at offshore
locations.

Keywords:

Fully non-linear potential flow; Breaking onset; Breaking dissipation; Depth-limited breaking;
Steepness-limited breaking.
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Chapter 1

Introduction

Le déferlement des vagues est un phénomène dissipatif complexe crucial pour com-
prendre les courants côtiers qui entraînent le transport des sédiments et les charges de
claquement sur les structures offshore. Il s’agit donc d’un phénomène d’une très grande
importance, et qui n’est pas encore bien compris. Plusieurs études expérimentales ont été
menées pour comprendre ce phénomène. Il est possible de simuler des vagues déferlantes
dans les modèles Navier-Stokes, cependant, nous sommes actuellement limités à de pe-
tits domaines spatiaux et temporels en raison des coûts de calcul et des erreurs. Avec
un besoin toujours croissant de comprendre l’évolution des états de la mer irréguliers à
l’échelle d’un site offshore avec les effets du déferlement des vagues, nous avons besoin
de modèles simplifiés numériquement avec lesquels nous pouvons atteindre ces objec-
tifs. Nous examinons ici le contexte de cette étude, les modèles simplifiées développées
au fil des ans, suivis de l’état de l’art de la compréhension des vagues déferlantes à
partir des observations expérimentales ainsi que des modèles de haute fidélité et de la
manière dont ces informations sont utilisées pour simuler explicitement le déferlement
des vagues. Enfin, l’organisation du reste du manuscrit est présentée.

21
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1.1 Context

In recent years, the European Union (EU) has set ambitious goals to become carbon-free within
the next few decades, leading to significant growth in the renewable energy sector (IEA, Net Zero
by 2050 2021; IEA, Renewables 2022). With the presence of vast coastlines and large regions cov-
ered with water, offshore wind energy has gained major interest, particularly with floating and
fixed wind turbines (IEA, Offshore Wind Outlook 2019), as compared to the other existing sectors
such as solar energy. Consequently, extensive research has been conducted over the past decade
to better understand the irregular evolution of sea states around these structures, for example,
the work in Filipot et al. 2018, where extreme sea states are captured with a focus on their wave
breaking properties to help in refining the design conditions for Marine Renewable Energy Con-
verters. Funded by Energy4Climate (E4C), an organization that focuses on research for achieving
a clean energy transition, this thesis is aimed at improving and developing numerical models that
could be used to simulate and study these site-scale sea states.

There exist many Navier-Stokes models of water waves (e.g., Liu et al. 1999; Dalrymple & Rogers
2006; Higuera et al. 2013) with Direct Numerical Simulation (DNS) (e.g., Moin & Mahesh 1998;
Deike et al. 2016; De Vita et al. 2018), or Large Eddy Simulation (LES) models, where one can
include the effect of eddies through turbulence modeling (e.g., Deardorff 1970; Lubin & Glock-
ner 2015), which can simulate fully nonlinear and dispersive waves with bathymetric effects,
breaking waves, and wave structure interactions.

Nevertheless, the computational resources required for these models limit their applicability to
small domains. For instance, an intercomparison study conducted by Vyzikas et al. 2020 reveals
that the computational cost of running OpenFOAM, a RANSmodel, is approximately three orders
of magnitude higher than that of SWASH (Simulating WAves till SHore; Zijlema et al. 2011), a
nonlinear shallow water wave model, and the computational cost of SWASH is approximately
one order of magnitude higher than that of HOS-NWT (High Order Spectral - Numerical Wave
Tank; Ducrozet et al. 2012), a potential flow (irrotational and inviscid) model.

A simplified model implies certain assumptions about the physics of the flow. In general, more
assumptions lead to a simpler model, which in turn leads to faster calculations and vice versa.
Therefore, a choice has to be made with respect to the extent of physics to be modeled and the
computational costs. The type of waves that are of interest for designing offshore wind turbines
are the extreme ones (most energetic) that are large, steep, and highly nonlinear, as they carry
a large amount of energy with them that could potentially damage or destroy these deployed
structures. Thus, the model of interest should avoid making any assumptions about the non-
linearity or dispersion of the waves. Among the computationally efficient ones that respect these
assumptions are fully nonlinear potential flow (FNPF) models, which are therefore used for this
study.

FNPF models consider the flow to be irrotational and inviscid, and in the presence of breaking
waves, are limited up to the instant the free surface becomes vertical (those with an Eulerian
frame of reference), or in some models (those with a Lagrangian frame of reference) up to when



23 Chapter 1. Introduction

the overturning wave hits the free surface (Fig. 1.1). However, through parameterized modeling,
several numerical techniques have been developed in the past few decades to model breaking
waves in numerically simplified models, such as FNPF. The parameterized modeling of breaking
waves generally requires identifying the instant wave breaking dissipation begins, themagnitude
of dissipation applied to a determined region, and the duration this dissipation would continue.
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Figure 1.1: A wave at the moment the overturning jet hits the free surface. The yellow line
represents simulation results from the Numerical wave tank (NWT, described in Chapter 2), a
fully nonlinear potential flow model. The experimental data are from Lili Kimmoun.

Some breaking waves, for example, the less violent ones in which the breaking event is seen as
white foam rolling down on the front face of the wave (e.g., spilling breaking waves), have been
shown to resemble another analytically studied dissipative mechanism, a hydraulic jump (Svend-
sen et al. 1978; Stive 1984), which makes them easier to model. However, a general understanding
of breaking waves is still a field of active research. Therefore, most of the attempts made in the
previous few decades to model breaking waves in numerically simple models have been defined
for specific types of breaking waves and often have test case-dependent parameters that require
calibration (Kennedy et al. 2000; Guignard & Grilli 2001; Papoutsellis et al. 2019; Simon et al.
2019). Therefore, there is a need to obtain a general wave breaking model that can be applied to
irregular sea states where one might expect any type of breaking waves.
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1.2 Basics of wave motion

A progressive monochromatic wave in depth d is defined by its time period (T ), wave height (H),
wavelength (L), and wave celerity (c) (Fig. 1.2). Under linear assumptions, i.e., H/d ≪ 1, and
H/L≪ 1, the free surface elevation can be written as η = A cos θ, with θ(x, t) = kx− ωt+ φ

whereA = H/2, is the wave amplitude, k, the wave number, ω, the wave angular frequency, and
φ, the phase. A wave can also be characterized by its horizontal and vertical velocities (u,w).
For describing waves, instead of the above ratios (H/d and H/L), often the quantities ϵ = kA,
termed as the nonlinearity parameter, and µ = kd, termed as the dispersion parameter are used.

Under the linear assumptions, the quantities ω and k can be related to each other with the linear
dispersion relation (Dean & Dalrymple 1991),

ω2 = gk tanh(kd) (1.1)

where ω = 2π/T = 2πf and k = 2π/L. The phase speed (c = ω/k), or celerity, can also
be defined as the rate of change of displacement of a crest in time. In shallow water depth (i.e.,
d/L < 1/20), the Eq. 1.1 reduces to c =

√
gd and in deep water conditions (i.e., d/L > 1/2) to

c = gT/2π.

x
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Figure 1.2: General characteristics of a progressive 2D (x, z) monochromatic wave with wave-
length, L, wave height,H , period, T , phase speed, c, and horizontal and vertical particle veloci-
ties, u, w, respectively.

An irregular sea state cannot be represented by a single monochromatic wave. It is instead taken
to be a superposition of many such waves of different frequency and amplitude. Therefore, sea
states are often described by either a discrete spectrum, Si,

Si =
A2

i

2∆f
(1.2)

whereAi is the amplitude of the ith frequency component (ωi) and∆f is the frequency interval,
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Figure 1.3: (a) A qualitative JONSWAP energy density spectrum. (b) a time series of irregular
waves from a JONSWAP spectrum.

or a continuous energy density spectrum S. Typically, S can be described by certain characteris-
tics, including a dominant frequency (fp), the width of the peak (narrow or wide), and parameters
such as the peak enhancement factor that influences the height of the peak. One commonly used
description of wave spectra is the JONSWAP (JOint North Sea WAve Project; Hasselmann et al.
1973) spectrum (Fig. 1.3 (a)), given by,

S(ω) =
αg2

ω5
exp

[
−5

4

(ωp

ω

)4
]
γr, (1.3)

with r = exp
[
− (ω−ωp)2

2σ2ω2
p

]
, where α is σ are non-dimensional parameters, γ is a peak enhance-

ment factor, g is the acceleration due to gravity, and ωp is a peak frequency. The individual wave
properties of the ith component, Ai, ωi, and ki are then determined from these spectra based on
the desired frequency interval and superposed to get the free surface elevation as,

η(x, t) =

N∑

i

Ai cos(kix− ωit+ φi) (1.4)

with φi, the phase angle can either be random or a prescribed value. An example of such a free
surface as a function of time is shown in Fig. 1.3 (b).

To illustrate nonlinear effects (i.e., when ϵ is finite), several perturbation approaches (assuming
the solution depends on the small quantity, ϵ), were developed, e.g., Stokes waves (Stokes 1847).
The 2nd order free surface elevation for regular waves is given by,

η(x, t) = A

{
cos θ + kA

3− σ2

4σ3
cos 2θ

}
+O

(
(kA)3

)
(1.5)

with σ = tanh kd. This expansion, however, is non-converging in very shallow conditions.
Alternate approximate theories in shallowwater for solitary (Boussinesq 1872) and cnoidal waves
(Korteweg & De Vries 1895) were developed, which were generalized in Dingemans 1997 as the
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approximate solution for wave elevation,

η(x, t) = η2 +H cn2
(

2K(m)
x− c t

λ

)
(1.6)

whereH is the wave height, λ is the wavelength, c is the phase speed, η2 is the trough elevation,
cn is one of the Jacobi elliptic functions, and K(m) is the complete elliptic integral of the first
kind with parameterm (for more details refer to Dean & Dalrymple 1991). The parameterm = 0

gives a sinusoid,m between 0 and 1 gives a cnoidal wave and at the limit,m = 1 gives a solitary
wave. Cnoidal waves have sharp and steep crests with flat and wide troughs relative to sinusoidal
waves that have symmetric crests and troughs. At the limit of infinite wavelength, a cnoidal wave
becomes a solitary wave.

With the advent of computers, numerical modeling became a practical tool for understanding
and studying fluid flow problems. Among the early uses was in calculating stream function
waves, obtained by solving a potential flow problem in constant depth such that the stream
function vector field, ψ(x, z) satisfies ∂xψ = −w and ∂zψ = u, where (u,w) are the horizontal
and vertical velocities, respectively (Dean 1965), which could also be applied for cases with a
steady current. With the advances in computational powers and modern numerical methods,
complex phenomenons such as wave overturning were simulated (Longuet-Higgins & Cokelet
1976). Another big step was in simulating wave propagation over a slope followed by runup
(e.g., Kennedy et al. 2000). This was done in models that limit the degrees of wave non-linearity
(ϵ) and dispersion (µ). For example, in shallow water, where nonlinearity and bottom effects
dominate, and dispersive effects are insignificant, models based on the Nonlinear ShallowWater
equations, which assume a uniform velocity over depth were derived (Stelling & Zijlema 2003).
In intermediate water depth, where both non-linearity and dispersion are important, Boussinesq-
type models are used (Kirby 2016, Nwogu 1996).

One of the most significant developments from Euler formulations (irrotational and inviscid) of
the fluid flow is the Fully Nonlinear Potential Flow model (FNPF), which is derived either from
Zakharov 1968 or Longuet-Higgins & Cokelet 1976 (e.g., Dold & Peregrine 1985; West et al. 1987;
Grilli et al. 1989; Newman & Lee 2002; Ducrozet et al. 2007; Fochesato et al. 2007; Bingham
& Zhang 2007; Belibassakis & Athanassoulis 2011; Nimmala et al. 2013; Yates & Benoit 2015;
Ducrozet et al. 2017). These models do not make any assumptions on nonlinearity or disper-
sion, taking into account variable bathymetry, and are valid up to the breaking onset (a detailed
summary of FNPF models is given in Chapter 2).

Finally, there are Navier-Stokes models (e.g., two-fluid models such as Guignard et al. 2001;
Abadie et al. 2010; Derakhti et al. 2016; and LES such as Harris & Grilli 2014) that can simu-
late the complete physics. However, the computational time required to apply Navier-Stokes
models restricts their use to small domains and short temporal scales.



27 Chapter 1. Introduction

1.3 FNPF models

This thesis makes use of two FNPF models that have been developed and/or utilized at the Labo-
ratoire d’Hydraulique Saint-Venant (LHSV) in the past decade. A brief overview of their develop-
ment and applications at LHSV is presented in the following subsections (a description of these
models is provided in Chapter 2).

1.3.1 Misthyc

Based on Zakharov 1968 and the spectral approach of Tian & Sato 2008, the Misthyc model in
2D was developed by Yates & Benoit 2012 and Benoit et al. 2013. Yates & Benoit 2015 studied
the convergence properties, model propagation errors, and CPU time to find optimal numerical
model parameters (CFL number and resolution in the vertical). This model was later extended to
3D with an unstructured discretization (scattered nodes) in the horizontal plane with the hori-
zontal derivatives estimated using the RBF-FD (Radial Basis Function - Finite Difference) method
in Raoult 2016. A new version of the 3D Misthyc model called Whispers-3D is utilized in study-
ing wave bottom interactions (Zhang & Benoit 2021) and in comparing wave breaking modeling
with several other models of low to high computational complexity (Benoit et al. 2023). In this
study, only the 2D Misthyc model is used.

1.3.2 NWT

The Boundary Element Method NWT was developed in 2D in Grilli et al. 1989, and 3D in Grilli
et al. 2001, based on the approach of Longuet-Higgins & Cokelet 1976. The 3Dmodel was used in
the works of Guerber 2011 and was later extended to solve large-scale wave-structure interaction
problems for surface-piercing bodies, for engineering applications, by reformulating the NWT to
use cubic B-splines and accelerating the BEM solution with a parallelized Fast Multipole Method
(FMM) based on ExaFMM at LHSV by Kuznetsov et al. 2018 and Harris et al. 2022. Applications
of this model for wave structure interactions are shown in Harris et al. 2016, Dombre 2015, and
Dombre et al. 2019. Landesman 2022 coupled the NWT to a Volume Of Fluid (VOF) model with
the NWT limited to non-breaking waves. In this study, the 2D model of Grilli et al. 1989 and the
3D model of Harris et al. 2022 are used.

1.4 The physics of wave breaking

Wave breaking is a phenomenon of large interest as it is responsible for the transfer of energy
from the atmosphere through waves to the ocean surface, it helps exchange gases from the at-
mosphere and the large force of breaking wave impacts is important to consider for the safety of
offshore structures. This dissipative phenomenon is observed when wave crests become unstable
thus transforming to turbulent kinetic energy. Based on driving physics, long-crested breaking
waves have been broadly classified into depth-limited (manifested by shoaling) and steepness-
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limited (manifested by focusing energy at a particular point). The waves breaking over a slope
are also classified into three types. The first type is known as spilling, which occurs over a gentle
slope. In spilling breakers, the waves are observed as white foam spilling down the front face of
the wave. The second type is plunging breakers, which occur over a steeper slope. In plunging
breakers, the waves form a distinctive jet that overturns on the front face of the wave. The third
type is surging breakers, which occur over a very steep slope. Surging breakers are characterized
by the waves surging forward and breaking forcefully on a steep slope, and this kind of breaking
typically occurs directly at the waterline (Fig. 1.4). These are quantitatively also classified by the
Iribarren number,

ξ0 =
tan α√
H0/L0

(1.7)

where α is the beach slope,H0 is the offshore wave height and L0 is the deep-water wavelength.
The breaker types are classified as spilling for ξ0 < 0.5, plunging for 0.5 < ξ0 < 3.3 and surging
for ξ0 > 3.3 (Battjes 1974).

Figure 1.4: Types of breaking waves over a slope (source: Hayes 1985).

Early attempts were made by Stokes 1880 to propose a theoretical limit for wave steepness by
considering that waves break if the particle velocity at the crest exceeds the phase speed. In
terms of the geometric parameters, this corresponded to waves with the angle between two lines
tangent to the surface profile at thewave crest of 120◦ (Fig. 1.5). In deepwater, Michell 1893 found
that in deepwater, this criterion corresponds to a wave steepness of kA = 0.44. In shallowwater,
McCowan 1894 formulated the breaking wave height, Hb = 0.78db where db denotes the depth
at breaking. Consistent with this, more general shallow water results have had bounds for the



29 Chapter 1. Introduction

ratio of wave height to water depth (κ = H/d) observed to be in [0.7, 1.2] (Battjes 1974, Dean &
Dalrymple 1991, Mei 1989). Others have considered vertical acceleration as a breaking criterion,
for example, Taylor 1953 show both theoretically and experimentally that a standing wave of
maximum amplitude has the vertical acceleration at the crest equal to −g.

H
120

o

λ

k = 2π/λ

A = H/2

Figure 1.5: Limiting Stokes wave in deep water.

Over the past half a century, researchers have been working to understand this phenomenon
(e.g., Svendsen et al. 1978; Stive 1984; Phillips 1985) and to predict its behavior (i.e., the loads
exerted, wave height decay, probability of occurrence, etc.) from experimental observations as
well as higher-fidelity wave model simulations.

1.4.1 Experimental interpretation

Experimental interpretations are derived from either field studies conducted in natural environ-
ments or laboratory experiments conducted in controlled test facilities. In field studies, a specific
region of interest is selected in which several instruments are deployed to collect data, for ex-
ample, sensors to record wave elevations. Laboratory studies are generally carried out in a wave
flume (for 2D effects) or a wave tank (for 3D effects). An example laboratory wave flume is
shown in Fig. 1.6. The setup includes a flap-type wavemaker designed to generate waves. Flap-
type wavemakers are commonly employed for generating deep to intermediate water waves, as
the motion of the flap closely mimics that of fluid particles. In contrast, piston-type wavemakers
are typically used for generating shallow water waves, as the motion of the piston better resem-
bles the behavior of fluid particles in such conditions. The wave flume here has a constant depth
bottom but can have any desired bathymetry.

With several theoretical predictions of wave heights at the breaking onset, researchers then at-
tempted to predict the evolution of wave heights caused by wave breaking. In the surf zone with
mild slopes where breaking waves are generated by shoaling due to a decrease in water depth,
Svendsen et al. 1978 suggested that in the inner breaking region i.e., the region extending from the
location of breaking onset up to where the run-up starts, resembles a moving bore or a hydraulic
jump, whose characteristics are locally controlled by the depth and bed slope. They compared
the energy dissipated by a mild spilling breaking wave from the experiments in a wave flume
with a 1/34.25 bottom slope to a wave height decay model formulated from the conservation
of energy principle, with the magnitude of the dissipation rate of an equivalent hydraulic jump.
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Figure 1.6: The wave flume at Ecole Centrale Marseille, with a flat bottom and flap-type wave-
maker. Source: Lili Kimmoun

They found the ratio of energy dissipation from the breaking wave and that of the hydraulic
jump to be between 1.4 to 1.6 for the bed slope of 1/34.25. Stive 1984 later obtained a similar
ratio for a few different bed slopes (ranging from 1/20 to 1/80). Basco & Svendsen 1984 made an
attempt to develop a semi-empirical distribution for surf zone energy dissipation by introducing
a momentum flux correction coefficient α.

In deep water, several studies have been done to understand the onset of breaking waves, or
in other words, the probability of occurrence of breaking waves, given the wave conditions.
Phillips 1985 proposed a distribution Λ(c), the length of breaking fronts with velocities in the
range (c, c+ dc) per unit surface area, such that its first moment,

∫
cΛ(c)dc, gives the number

of breaking waves passing a given point and the fifth moment,
∫
c5Λ(c)dc, is related to the

energy lost due to wave breaking. Romero et al. 2012 extended this approach to establish a semi-
empirical relation for the spectral dependence of the energy dissipation to propose a model for
the spectral dependence of the breaking strength parameter (b, defined such that the total wave
breaking energy dissipated, ϵ = bρc5/g). Rapp & Melville 1990 carried out deep-water wave
breaking experiments to further understand its kinematics and energy dissipation by showing the
quantitative importance of the breaking process in wave modeling, in mixing, and in transferring
horizontal momentum. Banner & Peregrine 1993 explain the various field measurements that can
be carried out to capture breaking waves in deep water. In recent years, a unified criterion to
distinguish breaking from non-breaking crests was proposed by looking at the ratio of horizontal
crest velocity to phase speed,B = u/c of a crest. WhenB exceeds a certain threshold, waves will
ultimately break. Due to the difference in scaling, several threshold ratios have been suggested
(e.g., Grue & Jensen 2012, B = 0.45; Barthelemy et al. 2018, B = 0.85). A few exceptions to
the threshold given by Barthelemy et al. 2018 are reported in Hasan et al. 2019 (the existence of
non-breaking crests at intermediate depth with B ∈ [0.9 − 0.92]), and Scolan & Etienne 2023
(the existence of non-breaking crests for a focused intermediate depth breaker and for a dam
breaking flow leading to soliton with B ∈ [0.9− 1]).

Duncan 1981 and Duncan 1983 conducted a series of experiments of steady breaking waves in-
duced by fully submerged towed 2D symmetric hydrofoils, and quantified for these cases, the
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non-dimensional breaking strength parameter, b. Cointe 1987 derived amathematicalmodel from
these steady spilling breaker observations, and then also extended it to account for unsteady ef-
fects. Banner & Peirson 2007 determined this breaking strength for deep-water breaking waves
to be strongly correlated to a growth rate parameter at the onset (1/ωc D(Ek2)/Dt, where ωc

is the initial mean carrier wave frequency and Ek2, a non-dimensional variable reflecting the
depth-integrated local total energy density (E) and local wavenumber (k) behavior). This work
of parameterization motivated several researchers (e.g., Derakhti, Banner & Kirby 2018; Mostert
& Deike 2020) to determine this breaking strength with respect to other wave parameters that
could be calculated from the input waves or at the onset of breaking, specifically from Navier-
Stokes models.

1.4.2 Higher-fidelity model interpretation

In recent years, several studies have been done to understand breaking waves through higher-
fidelity models (e.g., Navier-Stokes LES; DNS), and possibly relate the initiation of breaking and
the magnitude of energy dissipated to local quantities of the input wave or at the onset, a sub-
ject of great interest for simplified numerical models. Iafrati 2009 looked at the role of breaking
intensity on free surface dynamics, air entrainment, energy dissipation, the vertical transfer of
momentum, and vorticity. Iafrati 2011 reported the evolution of instantaneous energy dissipa-
tion and breaking strength from spilling and plunging breaking. Derakhti, Banner & Kirby 2018
provided an empirical prediction of the breaking strength (b) for deep and intermediate breaking
waves by looking at the time rate of change of the ratio of horizontal speed to phase speed at the
onset. Mostert & Deike 2020 related energy dissipation from breaking to the local wave height,
depth, and beach slope for shoaling and breaking solitary waves on beaches.

1.5 Parameterized wave breaking modeling

With the existing knowledge of breaking waves, several attempts have been made to implement
their effects in numerically simplified models that are unable to model breaking waves explicitly,
due to the assumptions made in deriving them (e.g., Guignard & Grilli 2001; Kennedy et al. 2000;
Papoutsellis et al. 2019; Simon et al. 2019). A parameterized wave breaking model is composed
of three steps. First, the onset, or the instant in time at which waves break, is identified, then the
amount of energy to be dissipated is estimated, and finally, a termination criterion to cease this
dissipation.

Wave breaking onset parameters are classified as geometric, relating to the shape of the wave;
kinematic, relating to the velocity at the crests; and dynamic, relating to the energy at the crest.
A geometric criterion, wave crest front slope threshold was first used by Schäffer et al. 1993 and
later Guignard & Grilli 2001, which was calibrated for weak spilling breakers. Among kinematic
criteria, a threshold for the time rate of change of free surface elevation was used in Kennedy
et al. 2000; Papoutsellis et al. 2019; and Simon et al. 2019, who calibrated it to specific cases. In
recent years, a unified onset criterion was introduced by Barthelemy et al. 2018 for deep water
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and then Derakhti et al. 2020 for all relative depths, a threshold in the ratio of the horizontal
velocity of a particle to phase speed of a crest, thus not requiring to calibrate it for individual
cases. Among the dynamic criterion is the wave Froude number threshold from Okamoto &
Basco 2006 separating breaking and non-breaking regimes. The onset parameter is often used at
a lower threshold as a termination criterion which must be calibrated for individual test cases,
due to insufficient knowledge. A comparison of different onset and termination criteria is done
in Simon et al. 2019, which shows various optimal calibration parameters with respect to a few
dissipation models and onset criteria for a few test cases.

To model breaking dissipation, Nwogu 1996 extended their Boussinesq model to include the ef-
fects of wave breaking in the surf zone by coupling the mass and momentum equations with a
one-equationmodel for the temporal and spatial evolution of the turbulent kinetic energy. Tonelli
& Petti 2009 formulated a hybrid method consisting of suppressing the dispersive terms in break-
ing regions and treating breaking waves as shocks by switching from Boussinesq formulation to
a nonlinear shallow water equation. This model is compared with the one from Nwogu 1996 in
Kazolea & Ricchiuto 2018. Tian et al. 2010, 2012 describe an eddy viscosity model, parameterized
in the kinematic and the dynamic free surface boundary conditions, for deep water breaking,
with the magnitude of the eddy viscosity dependent on the wave height, wavelength, and wave
period defined at breaking onset. This model is also later used in the high-order spectral model of
Seiffert & Ducrozet 2018. Viviano et al. 2015 extended their Boussinesq-type model to include the
effects of vorticity due to wave breaking for spilling breakers by assuming an analogy between
these breakers and hydraulic jumps.

A brief review of reduced-form dissipation models applied to nonlinear Schrodinger equations in
deep water is done in Liu et al. 2023, suggesting the addition of a global kinematic breaking onset
criterion instead of turning on dissipation when the wave group narrows and possible extensions
of spectral dissipation in irregular seas.

Kennedy et al. 2000 demonstrated the use of an eddy viscosity model in which the dissipation
term due to wave breaking is added to themomentum equations of their Boussinesqmodel, based
on the tangential velocity at the free surface. This dissipation term is modeled as a damping
pressure added to the dynamic free surface boundary condition in Papoutsellis et al. 2019 and
Simon et al. 2019 as,

∂xP =
1

d+ η
∂xF (1.8)

where P is damping pressure divided by density, with F = −∆(d + η)(∂tη)
2, d is the water

depth, η is the free surface elevation, ∆ = δ2B with δ controlling the magnitude of dissipation,
which they determined by numerical tests as equal to 1.2 andB is a smooth function varying from
0 to 1 in time and space to prevent instabilities. The suffixes denote the respective derivative.
A comparison of the dissipation models based on a hydraulic jump damping pressure and an
eddy viscosity model is done in Papoutsellis et al. 2019 and Simon et al. 2019 concluding that
the hydraulic jump analogy works better for spilling breakers and the eddy viscosity model for
plunging breakers.

Due to the lack of a more general understanding of spilling and plunging breakers, and the dif-
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ferences in the physical breaking processes/mechanism, these two types of wave breaking are
often treated separately. The magnitude of energy dissipated frommild spilling breakers is some-
times taken to be proportional to that of an equivalent hydraulic jump, with the proportionality
constant determined from experimental observations (Svendsen et al. 1978). This energy can be
modeled as an absorbing pressure on the free surface around the breaking crest, such that this
pressure times the normal velocity integrated over the breaking region gives the instantaneous
power to be dissipated (Guignard & Grilli 2001; Papoutsellis et al. 2019; Simon et al. 2019), with
the breaking region centered around a crest.

1.6 Manuscript Overview

Chapter 2 discusses the 2D unified depth-limited wave breaking detection and dissipation model
developed during the thesis. This model is then validated with several regular and irregular cases.
This chapter is an article published in Coastal Engineering: Mohanlal et al. 2023.

Chapter 3 discusses the 2D steepness-limited wave breaking dissipation model. This model is
used to validate focused breaking tests conducted by Lili Kimmoun at Ecole Centrale Marseille
(ECM) and was presented at the 37th International Conference on Coastal Engineering.

Chapter 4 discusses the 3D wave breaking model developed during the thesis. This model is
an extension of the 2D depth-limited dissipation model presented in Chapter 2. It is described
and validated with several regular breaking experiments. This work was presented at two con-
ferences, the 38th International Workshop on Water Waves and Floating Bodies and the 5th
B’WAVES workshop, and is currently being prepared to be submitted as a journal article.

Chapter 5 summarises the main findings of this thesis, the applicability of the proposed models,
their limitations, and perspectives for future work.

Finally, the appendices include all the abstracts submitted to conferences during this thesis and
the test matrix of the focused breaking waves conducted by Lili Kimmoun at ECM.
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Chapter 2

Unified depth-limited wave breaking
model
by S. Mohanlal, J. Harris, M. Yates, and S. Grilli
Coastal Engineering 183:104316, 2023
DOI: 10.1016/j.coastaleng.2023.104316

Une nouvelle méthode est proposée pour simuler la dissipation d’énergie résultant
d’un déferlement de vague en profondeur limitée, en combinaison avec un critère de
début de déferlement universel, dans des modèles bidimensionnels (2D) d’écoulement
potentiel non linéaire (FNPF). La méthode introduit un paramètre non dimensionnel
d’intensité du déferlement. Deux modèles 2D-FNPF différents sont utilisés, qui résolvent
l’équation de Laplace, l’un par développements polynomiaux de Chebyshev, l’autre par
une méthode d’élément de frontière. Dans ces modèles, l’imminence du déferlement est
détecté en temps réel à l’aide d’un critère universel de début de déferlement proposé dans
des travaux antérieurs, basé sur le rapport de la vitesse horizontale des particules à la
crête u, par rapport à la vitesse de crête c, B = u/c > 0.85. Pour ces vagues, l’énergie
est dissipée localement par l’introduction d’une pression de surface absorbante qui est
calibrée par analogie à un ressaut hydraulique inversé. Cette approche est d’abord
validée pour des vagues périodiques qui deviennent des déferlantes glissantes sur des
plages à pente constante et des barres, pour lesquels les résultats s’avèrent en bon accord
avec les données expérimentales. En reformulant ce modèle de dissipation du défer-
lement en termes d’intensité du déferlement non-dimensionnelle, l’analogue avec un
ressaut hydraulique fournit des résultats similaires à ceux d’un modèle d’intensité du
déferlement constante et donne également un bon accord pour des vagues périodiques
qui deviennent des déferlantes plongeantes. La même approche est ensuite appliquée
aux vagues irrégulières propageant sur une barre submergée, et s’avère en bon accord
avec les données expérimentales pour la hauteur des vagues, l’asymétrie et le kurtosis.
Les travaux futurs étendront ce modèle de déferlement 2D aux cas de vagues défer-
lantes tridimensionnelles (3D), simulées dans des modèles 3D-FNPF existants, dans des
conditions d’eau peu profonde ou profonde.

35
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Abstract

A new method is proposed for simulating the energy dissipation resulting from depth-limited
wave breaking, in combination with a universal breaking onset criterion, in two-dimensional
(2D) fully nonlinear potential flow (FNPF) models, based on a non-dimensional breaking strength
parameter. Two different 2D-FNPF models are used, which solve the Laplace equation based on
Chebyshev polynomial expansions or a boundary element method. In these models, impending
breaking waves are detected in real time using a universal breaking onset criterion proposed
in earlier work, based on the ratio of the horizontal particle velocity at the crest u, relative to
the crest velocity c, B = u/c > 0.85. For these waves, wave energy is dissipated locally with
an absorbing surface pressure that is calibrated using an inverted hydraulic jump analogy. This
approach is first validated for periodic spilling breakers over plane beaches and bars, for which
results are shown to be in good agreement with experimental data. Recasting this breaking
dissipation model in terms of a non-dimensional breaking strength, the hydraulic jump analog
is shown to provide results similar to those of a constant breaking strength model, and to yield
good agreement for periodic plunging breakers as well. The same approach is then applied to
irregular waves shoaling over a submerged bar, and is shown to agree well with experimental
data for the wave height, asymmetry, skewness, and kurtosis. Future work will extend this 2D
breaker model to cases of three-dimensional (3D) breaking waves, simulated in existing 3D-FNPF
models, in shallow or deep water conditions.

2.1 Introduction

Once generated by wind, ocean waves evolve with complex kinematics and dynamics, as a result
of nonlinear and dispersive effects, bathymetric variability, and dissipation from wave break-
ing and bottom friction, to name a few. Accurate simulations of this evolution are crucial for
predicting phase-resolved surface wave properties in complex sea states, which govern wave in-
teractions with fixed and floating objects, including offshore renewable energy systems, and surf
zone parameters that drive nearshore currents and sediment processes, whose understanding
and prediction are key to coastal management decisions.

Wave processes in complex sea states have already been simulated to some extent, based on equa-
tions representing the complete physics (i.e., derived from Navier-Stokes equations for single or
multiple fluids). However, such simulations are highly computationally intensive and, hence, lim-
ited to small spatial and temporal scales. In contrast, operational models have been developed
based on equations that simplify the wave physics, but nevertheless can simulate realistically
many ocean wave processes over large areas and for long time periods. In such models, which
are usually restricted to a specific wave regime (e.g., shallow or deep water conditions, small am-
plitude waves), important processes missing from the equations are parameterized in an ad-hoc
manner, often on the basis of semi-empirical terms (e.g., breaking or bottom friction dissipation,
the presence of structures). In this category are the standard phase-averaged wind wave models
that are based on a spectral representation of the wave energy as a function of frequency and
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direction (e.g., STWAVE, Smith et al. 2001; TOMAWAC, Benoit et al. 1997; WAVEWATCH III,
Tolman 2009).

However, in many engineering applications, phase-resolved wave properties are required in real
time. Thus, there is a need for models in which the wave elevation and kinematics are predicted
over space and time, and in which the complex physics resulting from wave nonlinearity and
fluid interactions with structures and the seafloor can be accurately represented. Examples of
problems requiring the use of such models include ship or ocean energy system seakeeping and
motion control/optimization, coastal wave runup, and the prediction of extreme wave loads on
ocean structures.

Phase-resolvedmodels takemany forms, depending on their domain of application. Oceanwaves
are often classified by the the depth d to wavelength L ratio. In deep water, for d ≳ L/2, where
nonlinearity is usually weak but dispersive effects are important, one might apply models based
on the linear mild-slope equation (MSE), such as REFDIF (Kirby & Dalrymple 1983). In shallow
water, for d ≲ L/20, where nonlinearity and bottom effects dominate, and dispersive effects
become less significant, models based on the Nonlinear Shallow Water (NSW) equations, which
assume a uniform velocity over depth, could be an optimal choice (e.g., Stelling & Zijlema 2003;
Zijlema & Stelling 2008). Lastly, in intermediate water depth, where both wave nonlinearity and
dispersion are important, Boussinesq-typemodels (Kirby 2016) that feature both nonlinearity and
dispersion to some extent, based on specifying a cutoff on higher-order terms representing these
processes, are preferred provided that the horizontal velocity varies only moderately with depth
such that it can be described by a polynomial approximation (e.g., Madsen& Schäffer 1998; Agnon
et al. 1999; Madsen et al. 2002; Kennedy et al. 2000) and fully nonlinear Serre-Green-Naghdi-type
models (e.g., Wei et al. 1995; Cienfuegos et al. 2006; Bonneton, Chazel, Lannes, Marche & Tissier
2011; Shi et al. 2012; and Zhao et al. 2014). Boussinesq-type models are typically developed based
on a perturbation expansion of the Fully Nonlinear Potential flow (FNPF) equations (Kirby 2016),
with wave breaking, bottom friction, and horizontal vorticity effects represented by terms added
to the equations to parameterize these physical processes (Kazolea & Ricchiuto 2018, Kennedy
et al. 2000, Shi et al. 2012). These models have proved accurate in simulating laboratory exper-
iments in which waves are generated in deep to intermediate water conditions and propagate
into shallow water.

Models that directly solve the FNPF equations (e.g., Dold & Peregrine 1985; Dommermuth & Yue
1987; Grilli et al. 1989, Grilli & Subramanya 1996; Grilli et al. 2001; Bingham & Zhang 2007; Be-
libassakis &Athanassoulis 2011; Yates & Benoit 2015; Ducrozet et al. 2017) aremore computation-
ally demanding than MSE, NSW, or Boussinesq-type models, but can accurately simulate waves
in all water depth regimes up to wave breaking, since no assumptions are made about the wave
nonlinearity or dispersion. FNPF models assume the flow is irrotational and, hence, are governed
by Laplace’s equation for the velocity potential, which makes them more computationally effi-
cient than full Navier-Stokes (NS) models. Among FNPFmodels, those based on the Higher-order
Spectral (HOS) method (Dommermuth & Yue 1987) are notably very efficient, but can typically
only be applied to waves propagating in constant depth and up to a certain wave height, unless
a modified form of the models is used, which makes them less efficient (Ducrozet et al. 2017).
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FNPF models (except HOS-based models that require spatial periodicity) can also simulate wave
interactions with structures and wave shoaling over an arbitrary bathymetry (e.g., slopes and/or
bars), up to and into breaking/overturning (e.g., Grilli et al. 2004, Grilli, Subramanya, Svendsen
& Veeramony 1994, Grilli, Losada & Martin 1994, Grilli et al. 1997, 1998; Grilli & Horrillo 1999;
Guyenne & Grilli 2006; Fochesato et al. 2007; Pomeau et al. 2008). However, FNPF models be-
come unstable when waves begin to break and overturn, unless this process can be prevented by
artificially specifying the dissipation of wave energy caused by breaking (e.g., Guignard & Grilli
2001; Grilli, Horrillo & Guignard 2020 for a review).

As noted before, many NS models of wave breaking have been developed, using various nu-
merical schemes and methods, including two-fluid models that represent the air and water (e.g.,
Guignard et al. 2001; Lachaume et al. 2003; Abadie et al. 2010; Banari et al. 2014; Derakhti et al.
2016), which can accurately simulate wave breaking either in direct NS simulations or based on
standard turbulence models such as Large Eddy Simulation (LES; e.g., Harris & Grilli 2014). How-
ever, the spatial resolution (and hence computational time) required to apply NSmodels currently
restricts their use to small spatial and temporal scales and thus often to academic or idealized
problems. Therefore, considering the large range of engineering applications involving strongly
nonlinear and breaking waves, it is highly desirable to extend FNPF models to adequately model
breaking waves and their related energy dissipation.

Earlier work has simulated the energy dissipation resulting from breaking waves in FNPFmodels
(e.g., Grilli, Horrillo & Guignard 2020, Guignard & Grilli 2001, Papoutsellis et al. 2019, Seiffert &
Ducrozet 2018, Seiffert et al. 2017, Simon et al. 2019), but here a more general and accurate way
of both detecting breaking onset in any conditions (i.e., wave types, bathymetry, and breaker
types), including for nonlinear irregular wave trains, and simulating the corresponding energy
dissipation in a more realistic manner are proposed. The present paper only describes two-
dimensional (2D) models featuring 2D breaking waves, and the extension to three-dimensions
(3D) will be presented in future work.

FNPF models use fully nonlinear kinematic and dynamic boundary conditions that are typically
derived based on the formulations of Zakharov (1968) or Longuet-Higgins & Cokelet (1976). With
the Eulerian framework of Zakharov (1968), the free surface elevation is assumed single-valued,
and thus waves can be modeled only until the instant that the free surface becomes vertical (e.g.,
Dommermuth & Yue 1987; Craig & Sulem 1993, Bingham & Zhang 2007; Yates & Benoit 2015,
Belibassakis & Athanassoulis 2011). In models that follow the Eulerian-Lagrangian framework
of Longuet-Higgins & Cokelet (1976), the free surface can be multivalued (e.g., for plunging
breakers) and hence accurately simulated (in comparison to experiments) until the breaker jet
impacts the free surface (e.g., in 2D, Dold & Peregrine 1985; Grilli et al. 2004, 1989, Grilli &
Subramanya 1996, Grilli et al. 1997, 1998; or, in 3D, Guyenne & Grilli 2006; Fochesato et al. 2007).

In the present study, two 2D-FNPF models are modified and used to demonstrate the application
of a novel combination of breaking onset/termination criteria and a breakermodel: (i) an Eulerian
model based on a finite difference approach, Misthyc (Yates & Benoit 2015), and (ii) an Eulerian-
Lagrangian model based on a boundary element approach, first proposed by Grilli et al. (1989),
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hereafter referred to as the “numerical wave tank” (NWT). Although the latter model can simu-
late all the cases presented here, some wave propagation cases can be simulated more efficiently
by one of the models. For instance, Misthyc, similar to other models of this type (e.g., Dommer-
muth & Yue 1987; Bingham & Zhang 2007; Engsig-Karup et al. 2009; Ducrozet et al. 2017) that
only apply to single-valued free surfaces, may be faster for larger domain sizes. In contrast, the
higher-order Boundary Element Method (BEM) used in the NWT can simulate the exact geome-
try of a moving wavemaker, or complex bottom geometries, as well as multivalued free surfaces.
Both types of models are equally able to simulate accurately highly nonlinear and dispersive
waves propagating over arbitrary bathymetries. In both models, when waves are detected to
approach breaking, an energy dissipation is explicitly specified to prevent wave breaking (e.g.,
instability or overturning) from occurring, which would interrupt the simulations. This is done
by first identifying where and when in the computational domain impending breaking waves
occur, using a breaking onset criterion, then applying a physically realistic energy dissipation onto
these waves, commensurate with their parameters, and finally defining where and when this
dissipation should cease to be applied, using a breaking termination criterion.

Wave breaking onset (or impending breaking) refers to the location in space and moment in time
where and when some properties of an individual wave reach values indicating that the wave
will soon begin to break and dissipate some of its energy through turbulence and viscosity. In a
NS model of breaking waves, this process is included in the model equations and typically oc-
curs automatically in the simulations. In models with reduced physics, such as FNPF, explicit
breaking criteria must be defined to detect impending wave breaking. Wave breaking criteria
usually depend on local wave properties such as the crest kinematics, steepness, surface slope,
or curvature reaching a specified threshold value. Since the physics of wave breaking varies from
deep to shallow water, until recently, different breaking criteria have been proposed to simulate
different wave breaking regimes. In deep water, wave breaking is usually attributed to exceed-
ing a critical wave steepness, and is referred to as steepness-limited breaking. In shallow water,
wave breaking is usually induced by bathymetric effects, occurring during the shoaling process
as waves propagate into shallow water, and is referred to as depth-limited breaking. In the latter
case, the type of wave breaking (e.g. spilling or plunging) and the energy dissipation intensity de-
pend on the incident wave train and wave shoaling process (e.g. bottom slope). Spilling breaking
generally occurs over mild slopes, plunging breaking over steeper slopes, and surging breaking
over very steep slopes (see, e.g., Grilli et al. 1997 for solitary wave shoaling). Accordingly, many
different definitions and criteria have been proposed for estimating breaking onset, and they can
be broadly classified (Derakhti et al. 2020) as geometric (e.g., Schäffer et al. 1993), kinematic (e.g.,
Wei et al. 1995; Kurnia & van Groesen 2014), or dynamic (e.g., Barthelemy et al. 2018) criteria.
For depth-limited breaking, the geometric and kinematic criteria are often used (Grilli, Horrillo
& Guignard 2020, Grilli et al. 1997, Papoutsellis et al. 2019, Simon et al. 2019), but they require an
empirical constant that is case-specific and depends on the bathymetry and incident wave con-
ditions. Barthelemy et al. (2018) and Derakhti et al. (2020) recently showed that there appears to
be a universal breaking onset criterion for an evolving crest in the form of the ratio of the hori-
zontal particle velocity at the crest to the wave (or crest) celerity, B = u/c reaching a threshold
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value Bth = 0.85. This criterion indicates that, when the wave crest reaches this Bth value, the
wave will inevitably evolve towards breaking, although it does not necessarily start breaking at
the threshold. Seiffert et al. (2017) and Seiffert & Ducrozet (2018) recently used this criterion in
a HOS model, coupled with an energy dissipation model based on an eddy viscosity, and they
demonstrated the accuracy of this criterion for focused wave trains breaking over a flat bottom
in intermediate water depths with comparisons to laboratory experiments. This breaking onset
criterion based on B is used in the present work.

Energy dissipation resulting from wave breaking is complex and not yet fully understood, thus
simulating it in reduced-physics models, including those based on FNPF, has often relied on
analogies with well-known dissipative phenomena, such as a hydraulic jump (HJ; e.g., Guignard
& Grilli 2001). For example, a weak spilling breaker dissipates energy as white water rolls on the
front face of the wave and, by moving in a frame of reference at the wave speed, this process
resembles a bore or a HJ. Svendsen et al. (1978) and Stive (1984) compared the energy dissipated
by a spilling breakerwith that of a bore and estimated an empirical constant, µ ≃ 1.5, quantifying
the ratio of energy dissipated by the breaking wave to that of an equivalent HJ. This analogy has
been successfully used to simulate spilling breaking wave dissipation in FNPF models (Grilli,
Horrillo & Guignard 2020, Papoutsellis et al. 2019, Simon et al. 2019); it will also be applied in the
present work. Although the HJ analog approach should be less accurate for plunging breakers,
because breaking is more violent and the overturning surface no longer resembles a hydraulic
jump, it appears adequate in most cases. However, to simulate long-term irregular sea states,
where both spilling and plunging wave breaking occurs, it is necessary to develop a breaker
model that does not rely on test case dependent empirical constants.

Over the past few decades, many advances have been made in parameterizing wave breaking
dissipation. Duncan (1983) conducted a series of experiments on steady breaking waves induced
by fully submerged towed 2D hydrofoils, and quantified for these cases the non-dimensional
breaking strength parameter b (the wave breaking energy normalized by the fifth power of the
wave celerity). Similarly, Phillips (1985), formulated spectral breaking strength as a function of
wave speed using b in deep water for irregular wind-generated waves in the ocean. Based on
laboratory experiments, Romero et al. (2012) followed up on this idea for deep water focused
breaking waves, defining an empirical curve for b as a function of the maximum surface slope of
the focusing wave packet. Derakhti, Banner & Kirby (2018) proposed an empirical relationship
for parameterizing the breaking strength b as a function of the time rate of change dB/dt of
the breaking onset parameter (Barthelemy et al. 2018) at breaking onset B = Bth, for deep or
intermediate water 2D/3D focused waves. In this approach, by estimating the onset kinematics,
the total energy dissipation of the resulting focused breaking can also be estimated.

To utilize this new criteria in FNPFmodels, a universal breaking parameterization extending from
shallow to deep water conditions is needed, and the instantaneous energy dissipation needs to be
specified explicitly. The objectives of the current study are thus to propose a universal breaking
parameterization for FNPF models, with a particular focus in depth-limited breaking waves.

The paper is organized as follows. The formulations of the two FNPF models used are briefly
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described in Section 2.2. The breaking onset/termination criteria and the breaking dissipation
models are described in Section 2.3, including the hydraulic jump model and a newer dynamic
model proposed by Derakhti, Kirby Jr, Banner, Grilli & Thomson (2018). Applications of both
models are presented in Section 2.4 for several regular and irregular depth-limited breaking wave
cases. Finally, the results are discussed and conclusions drawn in Sections 2.5 and 2.6.

2.2 FNPF models

FNPF models compute the irrotational motion of an incompressible and inviscid fluid, for which
the fluid velocity u is represented by a scalar potential ϕ, with u = ∇ϕ. For such flows, mass
conservation becomes the Laplace equation for the potential,

∇2ϕ = 0 (2.1)

in the fluid domain Ω of boundary Γ.

For two-dimensional (2D) transient free surface flows in a vertical plane (x, z), with a single-
valued free surface elevation η(x, t), the kinematic and dynamic free surface boundary conditions
are,

∂η

∂t
=
∂ϕ

∂z
− ∂η

∂x

∂ϕ

∂x
(2.2)

∂ϕ

∂t
= −gη − 1

2
|∇ϕ|2 − pa

ρ
, (2.3)

on the boundary Γf and where g denotes the gravitational acceleration, ρ is the fluid density,
and pa is the free surface (atmospheric) pressure.

For typical 2D wave propagation problems, the fluid domain has an impermeable bottom bound-
ary where a no-flow, Neumann bottom boundary condition is specified as,

u · n =
∂ϕ

∂n
= 0 (2.4)

on the boundary Γb, where n denotes the outward unit normal vector to the boundary. Typi-
cal conditions at the lateral boundaries of the 2D domain will be periodicity, a wave maker for
generating waves, or an absorbing beach for dissipating waves. The details of these boundary
conditions are provided in Section 2.4 for each specific application.

In the following subsections, the equations are briefly presented, and the numerical methods
are summarized for the two existing FNPF models that use different versions of the free surface
boundary conditions and different numerical methods for solving Laplace’s Equation (Eq. 2.1).
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2.2.1 Misthyc

The Misthyc FNPF model, developed by Yates & Benoit (2015), solves Laplace’s Equation (Eq. 2.1)
by mapping the potential ϕ(x, z, t) onto a boundary fitted vertical coordinate s ∈ [−1, 1] and
using a spectral approach to express ϕ(x, s, t) as a linear combination of Chebyshev polynomials
(following Tian & Sato 2008). At each time step, ϕ(x, s, t) is calculated by solving a system of
Nx(NT + 1) linear equations, where Nx is the number of free surface nodes in the horizontal
direction x andNT is themaximumorder of the Chebyshev polynomials (hereNT = 7, following
Yates & Benoit 2015).

Assuming single-valued free surface elevations η(x, t), the free surface boundary condition
Eqs. (2.2-2.3) are expressed following Zakharov (1968) as,

∂η

∂t
= w̃

{
1 +

(
∂η

∂x

)2}
− ∂η

∂x

∂ϕ̃

∂x
(2.5)

∂ϕ̃

∂t
= −gη − 1

2

(
∂ϕ̃

∂x

)2

+
1

2
w̃2

{
1 +

(
∂η

∂x

)2}
− pa

ρ
, (2.6)

where ϕ̃(x, t) = ϕ(x, z = η, t) and w̃(x, t) = w(x, z = η, t) = ∂sϕ(x, s, t)|s=1 are the ve-
locity potential and the vertical velocity on the free surface Γf , respectively (where subscripts
indicate partial derivatives). Note that Eqs. (2.5-2.6) can be transformed to express a relationship
between η and ϕ̃ in the form of a so-called Dirichlet-Neumann (DtN) operator (Craig & Sulem
1993). Following Bingham & Zhang (2007), Yates & Benoit (2015) formulated the DtN problem
corresponding to these equations.

Assuming known η(x, t) and ϕ̃(x, t) values on Γf (t), once w̃(x, t) is computed from the solution
of Laplace’s equation, these quantities are advanced to time t +∆t by integrating Eqs. (2.5-2.6)
with an explicit fourth-order Runge-Kutta scheme.

With the assumption of single-valued free surface in the Misthyc model, the resolution along
the vertical for spectral approximation becomes undefined when the free surface becomes ver-
tical, causing the model to numerically break down. To prevent this situation from occurring,
impending wave breaking is detected using a breaking onset criterion, and a local damping is
specified in the dynamic free surface boundary condition using an absorbing pressure pa cali-
brated to simulate the wave breaking dissipation (Grilli, Horrillo & Guignard 2020, Guignard &
Grilli 2001, Papoutsellis et al. 2019, Simon et al. 2019). Finally, waves are generated and absorbed
at each end of the fluid domain by specifying relaxation zones that extend horizontally for∼ 3L,
where L is the dominant wavelength. Details are provided for specific cases in Section 2.4.

2.2.2 Numerical Wave Tank (NWT)

Longuet-Higgins & Cokelet (1976) first proposed a 2D-FNPF model to simulate overturning
waves in a periodic domain with constant depth, until the instant the breaker jet impinges the
free surface. The model solved Laplace’s Eq. (2.1) at each time t, based on a complex potential
Boundary Integral Equation (BIE) formulation (in a conformally mapped space) and integrated
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the kinematic and dynamic free surface boundary conditions Eqs. (2.2-2.3), expressed in a mixed
Eulerian-Lagrangian frame of reference,

Dr
Dt

=
∂r
∂t

+ (u · ∇)r = u = ∇ϕ (2.7)

Dϕ

Dt
= −gz + 1

2
|∇ϕ|2 − pa

ρ
, (2.8)

by way of a predictor-corrector scheme, where r denotes the position vector on the free surface
Γf . Dold & Peregrine (1985) later proposed a more accurate time integration scheme for this
model, based on an explicit Taylor series expansion of both r and ϕ on the free surface, which
requires computing the successive material derivatives of Eqs. (2.7-2.8) and solving additional
Laplace’s equations for the corresponding time derivatives of the potential, up to a desired order.
However, their model was still expressed in a conformally mapped domain and limited to space-
periodic waves propagating in constant depth.

The 2D-FNPF model of Grilli & Svendsen (1990b), Grilli & Horrillo (1997), Grilli et al. (1989),
Grilli & Subramanya (1994, 1996) used here is based on the same approach, but is formulated in
the physical space, which allows for modeling wavemakers or other types of exact generation of
fully nonlinear waves, such as from streamfunction wave theory, an absorbing beach at the far
end of the domain, and an arbitrary bottom bathymetry. Laplace’s Eq. (2.1) is solved based on a
BIE derived from Green’s second identity,

α(xi)ϕ(xi) =

∫

Γ

{
∂ϕ

∂n
(x)G(x− xi)− ϕ(x)

∂G

∂n
(x− xi)

}
dΓ, (2.9)

where ϕ is the velocity potential on the boundary Γ, α is the interior angle made by the boundary
at point xi and G(x,xi) = −(1/2π) ln ri is the 2D free space Green’s function (with ri =

|x − xi|). In the model, this equation is discretized by various types of higher-order boundary
elements and both regular and singular, as well as quasi-singular (occurring when two parts of
the boundary are close to each other, e.g., in the tip of breaker jets) integrals are computed by
very accurate methods (Grilli & Subramanya 1994, 1996). Additionally, extended compatibility
conditions of the solution on both sides of the boundary are specified at corners in the domain
(e.g., between a wave maker and the free surface, Grilli & Svendsen 1990b, Grilli & Subramanya
1996).

Assuming known η(x, t) and ϕ(x, t) values on Γf (t), once ∂nϕ is computed from the solution
of Eq. (2.9), these quantities are advanced to time t + ∆t, by integrating Eqs. (2.7-2.8), as in
Dold & Peregrine (1985), based on explicit Taylor series expansions of both r and ϕ, limited
here to second-order, hence requiring to solve an additional Laplace’s equation for ∂tϕ. This is
done using a similar BIE to Eq. (2.9) in the same discretized computational domain, for a modest
additional computational effort.

To generate waves, the NWT can simulate the motion of a flap or piston wavemaker, or the
generation of numerically exact streamfunction waves on a lateral boundary (Grilli & Horrillo
1997). For wave absorption, an absorbing beach can be specified at the far end of the domain,
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combining an absorbing free surface pressure for high-frequency waves and an absorbing lateral
piston wavemaker for low-frequency waves (Grilli & Horrillo 1997).

2.3 Wave breaking model

Wave breaking in a FNPF model requires three steps: (i) a breaking onset criterion, which allows
identifying where on the free surface and when a wave has reached a threshold beyond which
breaking is inevitable, and indicating where on the free surface and when the application of an
energy absorption in the model should start; (ii) based on wave parameters, a method to quantify
the energy dissipation rate that should be specified in themodel to dampwaves that are identified
to be breaking in (i); and (iii) a breaking termination criterion, which indicates where on the free
surface and when the application of the energy dissipation should end.

2.3.1 Breaking onset criterion

As discussed in the introduction, in this work, breaking onset is detected based on the universal
criterion proposed by Barthelemy et al. (2018) for deep and intermediate water depth breaking,
and validated by Derakhti et al. (2020) for shallow water breaking of any type (i.e., spilling,
plunging, or surging). These studies showed, for a wide variety of conditions leading to breaking
such as energy focusing or effects of bathymetry, that a steepening wave whose ratio of the
horizontal particle velocity at the crest u to the wave (or crest) celerity c, notedB = u/c, exceeds
the threshold value Bth = 0.85, will eventually break; and waves for which B < Bth will not
break. It should be emphasized that wave breaking does not start at this threshold, but later on
when B ≃ 1. Instead, the B criterion predicts where and when a wave crest passes a point of
no return, beyond which it will eventually break. Derakhti et al. (2020) showed that, in shallow
water, this occurs about 0.2T in average after breaking onset, where T is the mean wave period
in the sea state. In the FNPF models, it takes time for the absorbing pressure that is used to damp
impending breaking waves (see next subsection) to extract enough energy from the wave crest
to prevent breaking. Therefore, the energy dissipation in the models is applied when a wave
reaches the threshold B = Bth.

One challenging aspect of applying this dynamic breaking criterion is that it is local and requires
first that all wave crests be identified and tracked at all times over the entire free surface Γf , and
second that the crest celerity, c = dxc/dt is computed accurately (where xc(t) denotes a given
wave crest location as a function of time). Accordingly, in themodels, similar to Guignard &Grilli
(2001), Grilli, Horrillo & Guignard (2020), and Stansell & MacFarlane (2002), the instantaneous
celerity c(t) of individual tracked wave crests is computed by fitting a moving polynomial to
xc(t) over a time interval [t−n∆t, t] (where n denotes the number of time steps involved in the
curve fit), and taking the time derivative analytically in the polynomial. Details of the numerical
method used to compute c are provided in Appendix 1.
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2.3.2 Breaking dissipation

2.3.2.1 Absorbing surface pressure

For waves that have been identified as evolving to breaking by the breaking onset criterion,
the energy dissipation is specified, as in earlier work (Grilli & Horrillo 1997, Grilli, Horrillo &
Guignard 2020, Guignard & Grilli 2001, Papoutsellis et al. 2019), using an absorbing (or damping)
surface pressure pa in the dynamic free surface boundary condition, Eq. (2.6) or (2.8) for the
Misthyc and NWTmodels, respectively. This pressure is applied spatially across part of the back
and front of the breakingwave crest, and it is defined as being proportional to the normal velocity
of water particles at the free surface (Fig. 2.1),

pa(x, t) = νa(t)S(x)
∂ϕ

∂n
(x, t) ∀x ∈ (xl, xr) (2.10)

where S(x) is a non-dimensional shape function (defined below) and νa(t) is an absorption func-
tion, with the dimension of ρ c (i.e., units of kg m−2 s−1), defined such that the rate of work
produced by the pressure against the wave motion, pa ∂nϕ, integrated over the selected segment
of the breaking wave surface, matches an expected rate of energy dissipation per unit length of
crest, Πb for the wave, as will be described in the following subsection.

For single valued surface elevations Eq. (2.10) yields,

νa(t) =
Πb∫ xr

xl
S(x)(∂nϕ)2

√
1 + (∂xη)2dx

. (2.11)

in which the square root is the Jacobian, dΓ/dx.

The limits of integration in Eq. (2.11) are defined across each breaking wave crest, with (xl, xr)

located near the troughs located behind and ahead of the breaking wave crest, respectively, such
that |∂nϕ| < ε |∂nϕ|max, where ε ≪ 1 (here ε = 10−4). As shown in Fig. 2.1, S(x) is a smooth
function that varies from 0 to 1 over the breaking region, with a ramp to ensure smooth tran-
sitions of pa between zero in non-breaking regions and its calculated value in breaking regions
(Grilli, Horrillo & Guignard 2020, Guignard & Grilli 2001, Papoutsellis et al. 2019),

S(x) =





0, x ≤ xl

cos
(
π
2

x−xl1
xl−xl1

)
, xl ≤ x ≤ xl1

1, xl1 ≤ x ≤ xr1

cos
(
π
2

x−xr1
xr−xr1

)
, xr1 ≤ x ≤ xr

0, x ≥ xr

(2.12)

where xl1 = xl + α(xr − xl) and xr1 = xr − α(xr − xl), α = 0.1.
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Figure 2.1: (top) Geometric parameters used to calculate the HJ dissipation, and (bottom) the
shape function S(x)

2.3.2.2 Rate of energy dissipation

Two different parameterizations of the rate of energy dissipation in breaking waves, Πb, will be
considered in this work. The first one, based on the hydraulic jump analogy introduced in earlier
work (Grilli, Horrillo & Guignard 2020, Guignard & Grilli 2001, Papoutsellis et al. 2019), will be
the default method used in both models, and the second one, based on the time rate of change of
the breaking onset criterion, recently proposed by Derakhti, Kirby Jr, Banner, Grilli & Thomson
(2018), will be used for comparison.

Hydraulic jump analogy: In earlier work, Guignard & Grilli (2001), Papoutsellis et al. (2019), and
Grilli, Horrillo & Guignard (2020) parameterized Πb based on the classical energy dissipation of
an hydraulic jump (HJ), i.e.,

Πh = ρgc d
H3

4hcht
with Πb = µΠh, (2.13)

where c is the wave phase speed (or crest celerity), d the undisturbed water depth below the point
of maximum front slope,H the wave height (measured trough to crest), hc the total depth below
wave crest, and ht the total depth belowwave trough (Fig. 2.1). As shown in Svendsen et al. (1978)
and Stive (1984), the equation for Πh can be obtained easily from a control volume approach
by deriving equations for mass, momentum, and energy conservation assuming periodic waves
with a uniform velocity over depth, hydrostatic pressure, and negligible bottom friction. Based
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on laboratory experiments for spilling breakers propagating over mild slopes, Svendsen et al.
(1978) proposed that µ = 1.5.

Note, for symmetric linear waves breaking over mild slopes,H = 2a, with a the wave amplitude,
c ≃ cℓ =

√
gd, ht ≃ d− a and hc ≃ d+ a, and Eq. (2.13) transforms into,

Πb = µ

(
ϵ

b

)
2F 3

1− F 2
(2.14)

with ϵ = bρg−1c5, (2.15)

where F = ga/c2ℓ is the wave Froude number (Kirby 1998), which for long breaking waves in
shallow water reduces to F ≃ a/d, ϵ is the breaking energy dissipation rate per unit of wave
crest width proposed by Duncan (1981, 1983), based on measurements of steady spilling breakers
in deep-water, and b is a non-dimensional breaking strength parameter that was parameterized
as a function of the hydrofoil characteristics and submergence depth used in these experiments.
To obtain Πb = ϵ requires that b ≃ 2µF 3 in Eq. (2.14), assuming F 2 ≪ 1. Based on Svendsen’s
parameterization, for small F , the HJ breaking strength parameter can thus be expressed as
b ≃ 2µF 3 = 3F 3.

Making various scaling arguments of the turbulent energy dissipation for unsteady breakers in
deep or intermediate water, Drazen et al. (2008) showed that b ∝ F 2.5, while more recently,
using different scaling arguments, Mostert & Deike (2020) proposed that b ∝ F 3.5 for unsteady
shallow water breakers. Thus, the above formulation of b falls in between these independent
results, without any clear guidance on which result is most realistic. Note that, consistent with
the analysis of Drazen et al. (2008), Romero et al. (2012) and Derakhti, Kirby Jr, Banner, Grilli
& Thomson (2018) assumed that b ∝ F 2.5. It is outside the scope of this paper to attempt to
reconcile these conflicting results, which will be the object of other studies (Derakhti et al. 2022).

The default parameterization of energy dissipation in both FNPF models used in the present
applications will thus be based on Eq. (2.13), with µ = 1.5. It should be noted that, similar
to the breaking onset criterion used to detect impending breaking in the models, computing
Πh requires identifying individual wave crests and troughs and accurately computing the crest
celerity. The same method used to compute the onset criterion is thus used to compute the
parameters required for estimating the wave energy dissipation.

Parameterization based on time rate of breaking onset criterion: By performing numerical sim-
ulations of focused waves, Romero et al. (2012) and Derakhti et al. (2016) extended Duncan’s
parameterization of the rate of energy dissipation ϵ to intermediate water, steepness-limited,
plunging breaking waves and irregular wave trains. Following the introduction of the breaking
onset criterion based on B by Barthelemy et al. (2018), Derakhti, Banner & Kirby (2018) ob-
served in their NS simulations of focused wave trains, that the slope of B(t) at breaking onset
was correlated with the average breaking power dissipated in the model, from breaking onset
to termination, ⟨ϵ⟩, or the corresponding breaking strength b obtained from Eq. (2.15). On this
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basis, they proposed a new parameterization of the breaking strength parameter,

b =
g⟨ϵ⟩
ρc5lb

= 0.034 (γ − 0.30)2.5 (2.16)

γ = Tb
dB

dt

∣∣∣∣
B=Bth

(2.17)

computed based on wave crest parameters at breaking onset and a breaking wave period, Tb =
Lb/clb, estimated based on, clb =

√
g tanh(kbd)/kb, with kb = 2π/Lb, the linear wave celerity

at breaking in arbitrary depth, and Lb a relevant breaking wave length calculated based on the
method proposed by Derakhti et al. 2020. Specifically, the width of the breaking crest is taken as
twice the distance between two zero-crossing points, except in cases where, particularly for long
waves, this does not describe well the breaking region. In this case, an equivalent zero-crossing
distance is computed (cf., Fig. A2 in Derakhti et al. 2020), here with amanual computation instead
of a skew Gaussian due to the simpler geometry of a BEM result compared to their Navier-Stokes
solver. In some of the applications in Section 2.4, bwill be computedwith Eq. (2.17) and compared
to results based on the HJ analog. To do so, the time rate of change of B at the threshold will
be calculated by applying a linear fit to the B values computed in the interval [0.82, 0.85] (In the
NWT, the nodes are regridded every few time steps (Grilli & Subramanya 1996), thus the time
variation of B at the crest may exhibit sawtooth oscillations when the wave becomes very steep
asB approaches the threshold value. In this case, regridding is turned off whenB ≈ [0.7, 0.85].)
Note that b, which quantifies the average energy dissipation rate during a breaking event based on
γ, computed at breaking onset, is not the time average of b(t), which quantifies the instantaneous
energy dissipation rate based on instantaneous wave parameters.

As discussed before, Derakhti et al. (2020) showed that theB criterion also applies to shallowwa-
ter breakingwaves and, hence, is universal. Calculating the energy dissipation rate in their model
for shallowwater breaking waves, Derakhti, Kirby Jr, Banner, Grilli & Thomson (2018) confirmed
the parameterization of b in Eq. (2.17) for γ < 1.11, with the breaking strength parameter reach-
ing an upper bound bmax = 0.02 for larger γ values, although this parameterization, particularly
for large γ, was revised by Derakhti et al. (2022).

GivenΠb = ϵ, the second parameterization of energy dissipation considered in both FNPFmodels
in the present applications will be based on the expression of ϵ in Eq. (2.15), with b obtained from
Eq. (2.17) for γ ≤ 1.3, and b = bmax for γ ≥ 1.3. As before, most wave crest parameters required
to compute Πb are similar to those used to compute B and are already available in the models.

2.3.3 Breaking termination criterion

Breaking termination is also an important factor to extract accurately the appropriate amount
of energy from breaking waves in the models. However, unlike in actual waves, as would for
instance be simulated in a NS-VOF model (Derakhti et al. 2020), the value of B does not grow
much beyond or remain above Bth in the FNPF model once dissipation is applied and a different
method is required to detect breaking termination. To be consistent with the onset criterion, the



49 Chapter 2. Unified depth-limited wave breaking model

Figure 2.2: Evolution of B = u/c in simulations with the Misthyc model as a function of non-
dimensional time t∗ = (t−tb)/Tb (tb denotes the time of breaking onset whenB = Bth = 0.85),
for periodic: (i) plunging breaking waves propagating over a bar, from Beji & Battjes (1993)
(BB-regular, red); (ii) spilling breaking waves propagating over a plane slope, from Hansen &
Svendsen (1979) (HS, magenta); and shoaling and spilling breaking waves propagating over a
plane slope, from Ting & Kirby (1994) (TK, green).

termination criterion is based on B reaching a value Boff that is lower than the onset threshold,
and needs to be calibrated based on benchmark data. For the applications considered here, the
optimal Boff value appeared to be problem dependent. Specific values and their implications are
discussed in the section 2.4.2.

2.4 Applications

2.4.1 Comparison of the two formulations of breaking dissipation

Before presenting detailed applications using the same breaking onset/termination criteria, it is
of interest to analyze and compare values of B and dB/dt computed near and at the breaking
onset for various cases, as well as the breaking strength parameter b and/or dissipation rate
Πb resulting from the two parameterizations of the rate of energy dissipation discussed before.
These are the experimentally validated depth-limited HJ spilling breaker model (Grilli, Horrillo
& Guignard 2020), whose energy dissipation rate is given by Eq. (2.13) and for which b can readily
be obtained based on the expression of ϵ in Eq. (2.15), assumingΠb = ϵ, and the newer dissipation
rate based on dB/dt and γ (Derakhti, Kirby Jr, Banner, Grilli & Thomson 2018), with b given by
Eq. (2.17).

In the following, breakingwave parameters calculated based on the HJ breakingmodel, withMis-
thyc and the NWT, are compared by simulating laboratory experiments of: (i) periodic shoaling
and plunging breaking waves propagating over a bar, from Beji & Battjes (1993) (BB-regular); (ii)
periodic shoaling and spilling breaking waves propagating over a plane slope, from Hansen &
Svendsen (1979) (HS); and (iii) periodic shoaling and spilling breaking waves propagating over a
plane slope from Ting & Kirby (1994) (TK). The details of the set-up and numerical parameters
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for these simulations are described in the following subsections. Note, the HJ dissipation model
and corresponding Πb values were previously experimentally validated using the NWT model
for the HS test cases by Grilli, Horrillo & Guignard (2020), and using the Misthyc model for the
regular and irregular BB cases by Simon et al. (2019), and with another FNPFmodel called HCMT,
for the regular wave TK and BB cases by Papoutsellis et al. (2019).

In each test case, the HJ breaking dissipation model is used, and the parameter b is calculated
using the expression of ϵ in Eq. (2.15), based on the average power dissipated in themodel over the
breaking onset/termination range, ϵ = ⟨Πb⟩, through the application of the absorbing pressure
pa based on Eqs. (2.10-2.12), with the instantaneous Πb(t) given by Eq. (2.13). For the second
parameterization of dissipation, the corresponding b values are found using Eq. (2.17), based on
the wave parameters computed at breaking onset.

Fig. 2.2 shows the evolution ofB computed leading up to wave breaking with the Misthyc model
as a function of the non-dimensional time t∗ = (t−tb)/Tb, where tb is the time of breaking onset
over the region of interest for calculating dB/dt. Consistent with Derakhti, Banner & Kirby
(2018), Derakhti, Kirby Jr, Banner, Grilli & Thomson (2018), of the three test cases shown, the
plunging breaker case (BB-regular) has the fastest rate of change of B at the threshold, whereas
the spilling breaker cases (HS and TK) show slower changes in B. The calculation of dB/dt
was found to be sensitive to the interval over which it is calculated, as well as to the spatial
and temporal resolution of the simulation. Fig. 2.2 (right) shows the linear fit applied to B in the
interval [0.82, 0.85], used to compute dB/dt and, for this interval for the HS case, Table 2.1 shows
the sensitivity of the dB/dt and γ values calculated for different spatial and temporal grids.

Fig. 2.3 shows the average b values computed in each test case using the HJ model as a function
of γ, compared to the values predicted by the second parameterization based on γ (Eq. 2.17).
Average values of b computed over the breaking region using the HJ dissipation range within
[0.02, 0.08], and corresponding γ vary within [0.6, 2.5]. These results are in moderate agreement
with those of the Derakhti, Banner & Kirby (2018), Derakhti, Kirby Jr, Banner, Grilli & Thomson
(2018) parameterization, when γ ∈ [1, 2]. Some differences between these two parameteriza-
tions of b are to be expected since even the Derakhti, Banner & Kirby (2018), Derakhti, Kirby Jr,
Banner, Grilli & Thomson (2018) parameterization is only a curve fit, with significant spread of
individual values. Recall also that the breaking strength shown here is based on an average en-
ergy dissipation rate, ⟨ϵ⟩, which will have a different value depending on the duration of active
breaking, which in both models could be adjusted without affecting significantly the resultant
wave characteristics. Finally, in this paper potential flow is assumed, while wave breaking trans-
fers energy to non-potential components of the flow (e.g., vorticity) that may not be dissipated
and would appear as an over-prediction of the energy dissipation.

Based on the b values simulated in these applications, an instantaneous dissipation rate Πb = ϵ

defined with the expression of ϵ in Eq. (2.15), based on a constant breaking strength b = 0.05,
was also tested. Since the wave celerity used in the definition of ϵ is a function of space and time,
c(x, t), this parameterization also provides a time-varying dissipation rate. For instance, for
the BB-regular case, Fig. 2.4 shows that this constant breaking strength yields an instantaneous
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Model ∆x (m) ∆t (s) dB
dt |B=Bth

(s−1) γ

Misthyc 0.020 0.008 0.974 0.788
Misthyc 0.028 0.007 0.885 0.726
NWT 0.031 0.008 1.00 0.774
NWT 0.041 0.010 1.075 0.791

Table 2.1: Sensitivity of γ computed with Eq. (2.17) for different spatial and temporal resolutions,
for the Hansen & Svendsen (1979) (HS) case.
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Figure 2.3: Average breaking strength b computed for the HJ parameterization, as a function of
γ for depth-limited breaking waves simulated in Misthyc including: (filled circles) regular wave
cases, magenta: HS, green: TK and red: BB; (hollow circles) BB-irregular cases. For comparison,
the empirical parmaterization from Eq. 2.17 proposed by Derakhti, Banner & Kirby (2018), is
indicated with a solid line. The dashed line shows the constant strength average breaking value
b = 0.05 used in the Mis-005 parameterization.

dissipation rate that agrees well with that calculated using Eq. (2.13) for the HJ parameteriza-
tion. Therefore, for the BB-regular case, the constant strength approach would likely be accurate
enough, and Fig. 2.3 shows that for the wider range of cases that will be considered hereafter,
the average b value computed in the model in each case is on the same order as b = 0.05.

2.4.2 Experimental validations

In this subsection, the results of numerical simulations with one or both FNPF models, using the
energy dissipation rate of the HJ model, the constant breaking strength b = 0.05, or both, are
compared with laboratory experiments performed for five standard benchmark cases. The five
test cases are the periodic spilling breaker experiments over a plane slope of Hansen & Svendsen
(1979), and Ting & Kirby (1994), the regular and irregular plunging breakers over a bar of Beji
& Battjes (1993), and the irregular breaking waves over a bar of Adytia et al. (2018). In the
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Figure 2.4: Comparison of the instantaneous energy dissipation rate Πb(t) calculated for the
plunging BB-regular case in the Misthyc model using: (blue) the HJ analogy Eq. (2.13), or (red)
the Mis-b005 Eq. (2.15) parameterization with b = 0.05.

models, fully nonlinear periodic waves are generated based on streamfunction wave theory in
the generation zone for Misthyc (Benoit et al. 2002), and using an exact wavemaking (particle
curtain) boundary (Grilli & Horrillo 1997) for the NWT. Irregular waves are simulated in the
model using a flap wave maker boundary (e.g., Grilli & Horrillo 1997).

The model discretizations in space and time are specified such that the Courant number, CFL ≈
1.0 in Misthyc (as suggested by Yates & Benoit 2015) and CFL ≈ 0.45 in the NWT (found to be
optimal by Grilli & Subramanya 1996). Using the optimal CFL number for each model, a refined
spatial discretization is specified in each case to ensure high numerical accuracy (see Grilli &
Subramanya 1996 for guidance). Fig. 2.5 shows examples of the instantaneous free surface eleva-
tion computed for the HS test case for a range of spatial discretizations after simulations reach
a quasi-steady state in the models. These are defined based on the initial spatial discretization
on the free surface ∆x, where L/∆x = 35, 50, or 70, and L is the incident wave length. The
simulation results show that free surface elevations are nearly identical in deeper water for both
models over the range of tested discretizations. Small differences can only be seen in shallower
depths, particularly near the wave crests. Based on these results, in all the simulations discussed
hereafter, the spatial discretization was prescribed such that L/∆x > 50 (note, for irregular
waves, L denotes the dominant wavelength). Table 2.2 summarizes the spatio-temporal param-
eters used in the simulations with the Misthyc and NWT models for the five benchmark cases
detailed in the following sections.

2.4.2.1 Periodic spilling breakers on a slope - Hansen & Svendsen (1979)

Hansen & Svendsen (1979) (referred to as HS) performed experiments for periodic waves shoal-
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Test case ∆x (m) ∆t (s) Domain Tmax

Misthyc NWT Misthyc NWT length (m) (s)

HS 0.019 0.031 0.008 0.008 22.7 25
TK 0.019 0.055 0.008 0.013 29.7 32

BB-regular 0.014 0.048 0.01 0.015 34.4 35
BB-irregular 0.02 - 0.01 - 30 600

AH 0.02 - 0.01 - 60 500

Table 2.2: Numerical parameters used in the simulations with the Misthyc and NWT models for
the five experimental benchmark test cases.

Figure 2.5: Sensitivity of the simulation results to the spatial discretization for the HS test case
using the NWT (blue dashed, L/∆x = 35, and blue solid, L/∆x = 50) and Misthyc (solid red
with L/∆x = 70) model.
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ing and spilling breaking waves propagating over a mild slope. The wave tank had a constant
initial depth of h0 = 0.36 m, from the wavemaker up to x = 14.78 m, the toe of the 1/34.26
slope. Regular waves with an initial height H0 = 0.095 m, period T = 1 s, and incident wave-
length L0 = 1.43 m were generated at the wavemaker (note, these waves were generated in
intermediate waver conditions, with h0/L0 = 0.252). This benchmark was simulated with both
Misthyc and the NWT, using the energy dissipation rates from the HJ andMis-b005 or NWT-b005
models, respectively (see Table 2.2 for the numerical parameters used). Since wave runup was
not considered in either model, an absorbing beach was modeled for x ≥ 25.5 m with a deep-
ening bathymetry (for x ∈ [25.5, 27] to induce deshoaling, which aids the absorption of waves)
followed by constant depth in the absorption zone (see Fig. 2.6a and Fig. 1 in Grilli, Horrillo &
Guignard 2020 for details). In these experiments, the breakers reach the shoreline, so Boff = 0

is used as the breaking termination criterion. Preliminary tests with larger values appeared to
cause wave reformation that was not observed in the experiments. In the numerical models,
breaking onset with B = Bth = 0.85 occurs at xb ≃ 22.2 m, as compared to xb ≃ 22.5 m
in the experiments. The model results were averaged over 5 successive wave periods after the
simulations reached a quasi-steady state.

Fig. 2.6b shows (in both the experiments and all numerical simulations) the wave celerity normal-
ized by the deep water linear celerity c0 = gT/(2π) gradually decreases in the shoaling region.
In general, the simulation results agree well with the experimental measurements, but less so in
breaking region (x > xb; where experimental data is very noisy) due to unsteady variations in
calculations of the derivative of the wave crest displacement. For x < xb, c/c0 is slightly larger
than in experiments, which is consistent with the results of Grilli, Horrillo & Guignard (2020).
Fig. 2.6c shows the wave height normalized by H0 gradually increases over the shoaling region
then rapidly decreases beyond breaking onset and, in all cases, the simulation results agree well
with experimental measurements.

Considering the two parameterizations of energy dissipation in Misthyc, the simulation results
show only small differences throughout the simulations, and these differences, as well as those
with the NWT results, mostly occur at the far end of the tank for x > 23.5 m. The differences
likely result from the different numerical methods and discretizations, as well as the regridding
used in the NWT, where the Eulerian-Lagrangian approach causes grid points to cluster around
the breaking crests. To limit this clustering, regridding is periodically calculated in the model
using cubic shape functions (Grilli & Subramanya 1996), whichmay slightly affect the application
of the breaker model around the breaking crests.

Note, when using the NWT with the HJ model and a geometric breaking criterion (front slope
βmax = 37o) for this case, Grilli, Horrillo & Guignard (2020) predicted breaking onset slightly
sooner at xb = 21.75 m and, as a consequence, had lower H/H0 values at x = 22.5 m relative
to both the present simulations and the experimental data.
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Figure 2.6: (a) Bathymetry of the Hansen & Svendsen (1979) (HS) experimental set-up for pe-
riodic shoaling and spilling breaking waves, where the shaded cyan region indicates the wave
crest location from the onset of wave breaking (note an absorbing beach is specified in themodels
for x ≥ 25.5 m). Spatial evolution of the (b) wave celerity, and (c) wave height in the experi-
mental data (circles), Misthyc using the HJ model (dashed red line), Mis-b005 (solid red line) and
NWT-b005 (solid blue line), averaged over 5 successive wave periods after a quasi-steady state is
reached.
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Figure 2.7: Setup for Ting & Kirby (1994) laboratory experiments of periodic spilling breakers
propagating over a 1/35 slope, with black arrows showing the locations of the 12 wave gauges.
The cyan shading indicates the simulated wave breaking region, from onset to termination. The
gray shading indicates the beach absorption zone.

2.4.2.2 Periodic spilling breakers on a slope - Ting & Kirby (1994)

Experiments of shoaling and spilling breaking waves propagating over a plane 1/35 slope, similar
to those by HS in the previous section, were performed by Ting & Kirby (1994) (referred to as
TK). Periodic waves of height H0 = 0.125 m, period T = 2.0 s, and wavelength L0 = 3.85 m,
were generated by a piston wavemaker and propagated in a tank of constant depth h0 = 0.4 m
to x = 3.85m, the toe of the slope. Similar to the previous test case, in the models, an absorbing
beach was specified for x > 15.5 m, starting in a water depth h = 0.067 m and gradually
deepening to h = 0.29 m at x = 18 m. As in the previous case, Boff = 0. Fig. 2.7 shows the
experimental setup along with the the locations of the 12 wave gauges that measured the free
surface position.

For this test case, the models detected the onset of wave breaking at xb ≃ 10.0m, with hb = 0.21

m and Hb = 0.178 m, which agrees well with the experimental values, xbe = 10.25 m, hbe =

0.196 m, and Hbe = 0.162 m. Fig. 2.8 shows a 4-second window of the measured and simulated
free surface elevation at 12 wave gauges after a quasi-steady state was achieved. The free surface
elevations computed with Misthyc and the NWT for x < xb are in close agreement with each
other, and are nearly identical the experimental measurements. Note, using a kinematic onset
criterion (γi

√
gh), Papoutsellis et al. (2019) reported breaking onset at x = 9.7m, which led to an

underestimation of the crest andwave height at gauge x = 10.25m, whereas, using theB = 0.85

criterion, bothmodels predict more accurately the wave elevation at this gauge. Beyond breaking
(for x > xb), results fromMisthyc using theHJmodel agree reasonablywell with the experiments
at all subsequent gauges, whereas using Mis-b005 yields similar results until x = 12.35 m, but
increasingly large differences in the crest area for shallower gauges. In contrast, the results of
NWT-b005 yield surface elevations in better agreement with those predicted by Misthyc with
the HJ energy dissipation model.
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Figure 2.8: Comparison of the temporal evolution of the free surface position measured at the
gauge locations from Ting & Kirby (1994) for regular spilling waves (circles) with simulations
using Misthyc with the HJ model (dashed red line), Mis-b005 (solid red line), and NWT-b005
(solid blue line).
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2.4.2.3 Periodic plunging breakers over a bar - Beji & Battjes (1993)

Beji & Battjes (1993), among others, performed laboratory experiments for periodic waves prop-
agating over a trapezoidal bar (referred to here as BB-regular). Some of the generated incident
waves were sufficiently steep to break over the bar as plunging breakers. Fig. 2.9 shows the set-
up of the computational domain used in the models to simulate BB’s experiments, with arrows
indicating the locations of the wave gauge, where time series of the free surface elevation were
measured in experiments. Waves were generated at x = 0 in the constant depth region with
h0 = 0.4 m, shoaled over the bar with a mild 1/20 offshore slope, and then broke over the crest
of the bar where h = 0.1 m, before the water depth increased again over the 1/10 onshore slope
of the bar.

The target periodic wave characteristics in these experiments were a height H0 = 0.054 m,
period T = 2.5 s, and wavelength L0 = 4.8 m in the region of constant depth. However, in the
wave gauge measurements, the actual wave height was H0 ≃ 0.042 m at the toe of the slope,
which was thus used as the wave height in the simulations. Simulations were performed with
Misthyc and the NWT using b = 0.05 and, in both models, breaking onset occurred at xb ≃ 12.2

m, as compared to between 12 and 13 m in experiments. The breaking termination was specified
atBoff = 0.3 in the models, which occurs before the water depth increases shoreward and causes
wave deshoaling (end of cyan shaded region in Fig. 2.9).

Fig. 2.10, compares the measured time series of free surface elevations to those computed in the
models. They agree well in the shoaling region, for 6 < x < 12 m, and in the breaking region,
for 12 < x < 14 m. Larger differences start occurring for x > 14 m, but wave breaking on top
of the bar and deshoaling for 14 < x < 17m are simulated well overall. Differences between the
results of both models are small, except for higher harmonics generated on top of and beyond the
bar, which Misthyc does not capture as well as the NWT. This may be due to the limited number
of vertical layers (NT ), or the difference in timestep used.

The effect of the breaking termination criterion value was tested in the Misthyc model in the
range Boff = 0.2 to 0.35. Fig. 2.11 shows the simulated and measured spatial variation of the
significant wave height Hs throughout the domain. The results show that, in the zone after
wave breaking (for x > 14 m), using Boff = 0.20 leads to underpredicting Hs, whereas using
Boff = 0.35 leads to overpredicting it. Using Boff = 0.30 or even 0.25, allows reproducing well
Hs measured in the experiments after the bar. Thus,Boff = 0.30was selected for all cases shown
here involving submerged bars (where waves deshoal).

2.4.2.4 Irregular plunging breakers over a bar - Beji & Battjes (1993)

Using the same submerged bar, water depth, and set of wave gauges (see Fig. 2.9), Beji & Battjes
(1993) also tested cases with irregular incident wave trains generated at the wavemaker based
on a JONSWAP spectrum with significant wave height Hs = 0.049 m and peak spectral period
Tp = 1/fp = 2.5 s (referred to as BB-irregular). In the simulations, performed here using only
Misthyc with b = 0.05, incident waves are specified as a linear superposition of periodic waves
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Figure 2.9: Set-up of the computational domains in the simulations of the Beji & Battjes (1993)
experiments for periodic waves shoaling and plunging breaking over a bar (BB). Arrows indicate
the locations of wave gauges in the experiments and simulations. Wave breaking occurs in the
models in the cyan shaded region, from onset to termination, and the gray shaded region indi-
cates the absorbing beach. Note, the free surface shown is of BB-regular.
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Figure 2.10: Comparison of the temporal evolution of the free surface at the gauge locations from
the Beji & Battjes (1993) test case for regular plunging waves (circles) with Mis-b005 (red solid
line) and NWT-b005 (blue solid line).
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Figure 2.11: Spatial evolution of the significant wave height Hs for the BB-regular experiments
(circles) and simulations with the Mis-b005 model using different breaking termination criteria
Boff =: (red) 0.2, (blue) 0.25, (green) 0.30, and (yellow) 0.35.

in the frequency range [0.25fp, 5fp], obtained from an FFT of the experimental free surface
elevation measurements at the wave gauge located at x = 6m. Once again, Boff = 0.30 is used
in the model.

The simulation is run for 600 s or 240 peak periods, and breaking of the steepest waves were
observed over the bar crest, as in the experiments where they were plunging breakers. To com-
pare the simulated and experimental results, several wave statistics are computed based on the
time series of free surface elevations at the wave gauges. These quantities are the significant
wave height (Hs), the asymmetry (As), a measure of left-right differences in a wave, the skew-
ness (Sk), a measure of deviation in crest-trough shape, and the kurtosis (Ku), a measure of the
tailedness of a distribution relative to the normal distribution, defined as follows

Hs = 4σ1/2 (2.18)
As = ⟨H(η − ⟨η⟩)3⟩/σ3/2 (2.19)
Sk = ⟨(η − ⟨η⟩)3⟩/σ3/2 (2.20)
Ku = ⟨(η − ⟨η⟩)4⟩/σ2 − 3 (2.21)

where σ = ⟨(η − ⟨η⟩)2⟩ is the free surface variance, ⟨ ⟩ the time averaging operator, i.e, ⟨f⟩ =
1

tf−ti

∫ tf
ti
f(t)dt, and H, the Hilbert transform. For example, a linear Gaussian sea state would

have As = 0, Sk = 0, andKu = 0.

Fig. 2.12 shows that there is a good agreement between the simulated and measured wave statis-
tics for all wave characteristics. More specifically, Fig. 2.12a shows thatHs increases up to the on-
set of wave breaking atx ≃ 12m, then decreases during breaking over the bar crest (12 < x < 14

m), and remains roughly constant for x > 14 m. Fig. 2.12b shows that wave asymmetry is max-
imum at breaking onset (x ≃ 12 m) and decreases during wave breaking. Finally, Figs. 2.12c,d
shows that the skewness and kurtosis, which quantify the wave nonlinearity, gradually increase
during shoaling and breaking, and then decrease during deshoaling, after the bar. Both of these
statistics agree better with the experiments than the results reported by Simon et al. (2019), who
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Figure 2.12: Spatial evolution of wave statistics computed from the experiments (circles) and sim-
ulations with Mis-b005 (solid line) for the irregular wave case of Beji & Battjes (1993) (JONSWAP
spectrum withHs = 0.049m and Tp = 2.5 s). Waves break over the bar in the model and in the
experiments (plunging breakers).
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Figure 2.13: Set-up for simulations with Misthyc of Adytia et al. (2018) experiments for irregular
waves propagating over a bar (Hs = 0.2 m and Tp = 2.5 s), with arrows showing the location
of the 15 wave gauges. The cyan shading shows the breaking region from onset to termination,
and the gray shading indicates the absorbing beach region.

also simulated this test case using Misthyc with the HJ dissipation and an eddy viscosity model
(Kurnia & van Groesen 2014) in combination with several breaking onset criteria that were not
based on B.

2.4.2.5 Irregular waves breaking over a bar - Adytia et al. (2018)

Adytia et al. (2018) also performed experiments with irregular waves propagating and breaking
over a submerged bar with a different geometry than BB’s (referred to as AH). Irregular incident
waves were generated with Hs = 0.2 m and Tp = 2.5 s, in a constant depth h0 = 0.615 m.
Fig. 2.13 shows the Misthyc model set-up, with the bar having a 1/20 offshore slope with the toe
located at x = 23.65 m and extending up to x = 31.98 m, followed by a constant depth crest
with h = 0.2 m, to x = 41 m. Time series of the free surface elevation were measured at 15
wave gauges, with the locations indicated with arrows in Fig. 2.13. As in the BB-irregular test
case, the free surface elevation measured at the gauge located at x = 11.5 m is used to calculate
the incident waves conditions for the simulation (based on a FFT).

The simulation is run for 500 s or 200 peak periods, and breaking onset occurs at xb ∈ [30, 32]

m. The same wave statistics as in the previous application are computed here based on experi-
mental measurements and simulations with the Misthyc model, using b = 0.05. These are shown
in Fig. 2.14 where, overall, there is a good agreement between the experiments and simulations.
Fig. 2.14a shows thatHs gradually increases over the offshore slope of the bar until wave break-
ing begins over the bar crest, then decreases in the breaking region (30 < x < 35m), and finally
remains constant for x > 35 m to the end of the bar crest. A similar trend is observed in asym-
metry as in the BB-irregular test case in Fig. 2.14b: an increase up to the onset of breaking, a
decrease in the breaking region, and a roughly constant value afterwards. Although the varia-
tion of skewness and kurtosis are reproduced better in the breaking region compared to Simon
et al. (2019), some differences are seen in the post-breaking region (see Figs. 2.14c,d).
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Figure 2.14: Spatial evolution ofwave statistics computed based on results of experiments (circles)
and simulations with Mis-b005 (solid line) for the irregular wave case of Adytia et al. (2018)
(Hs = 0.2 m and Tp = 2.5 s); waves break over the bar in the model and in the experiments.
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2.5 Discussion

In the previous section, the results of simulations using one or both FNPF models with the newly
proposed breaking onset/termination and dissipation parameterizationswere presented, for stan-
dard experimental benchmarks from the literature (referred to as HS, BB, TK and AH) featuring
regular or irregular waves propagating and breaking over several mild beach slopes and bars. In
each case, the type of breaking (spilling-S or plunging-P) was reported in the experiments, as
well as the measured breaking index value κbe = (Hb/hb)e for some cases. Overall, the simula-
tion results agreed well with the experimental data, confirming that the breaking onset criterion
(B = 0.85) proposed by Barthelemy et al. (2018) is accurate, and wave elevation and kinematics
at breaking onset and during breaking are accurately simulated in themodels using the absorbing
pressure and the proposed parameterizations of the energy dissipation rate.

Table 2.3 summarizes, for the periodic wave cases reported in the HS, BB-regular and TK stud-
ies, the incident wave and bathymetric parameters specified in the models and experiments:
(H0, T ), offshore slope S, and wave characteristics simulated at breaking onset (Tb, cb, κb). Note
the breaking period used in the definition of γ, Tb < T is based on the breaking crest geom-
etry, following Derakhti et al. (2020). In addition to the test cases described in detail in Sec-
tion 2.4.2, additional simulations were performed for periodic wave cases from two more studies
by Narayanan & McCalpin (1997) (NM) and Blenkinsopp & Chaplin (2007) (BC), whose param-
eters and results are also summarized in Table 2.3. For each case, the Table also lists the value
of Battjes’ surf similarity parameter (or Iribarren number), ξ0 = S/

√
H0/L0, where L0 is the

incident wavelength in deep water, L0 = gT 2/(2π) (Battjes 1974). Battjes showed that peri-
odic waves shoaling over a plane slope break as spilling breakers for ξ0 ≤ 0.5 and as plunging
breakers for 0.5 < ξ0 ≤ 3.3. In all of the experiments reported in Table 2.3, waves broke either
as spilling or plunging breakers, except in one case (c: S/P-BC) where both were observed. In
most cases, the ξ0 value is consistent with the observed type of wave breaking, despite some
of these experiments being performed over a bar and not just a plane slope. Consistent with
Battjes’s work and predictions based on the surf similarity parameter for periodic depth-limited
breakers, the models predicted a breaking index κb ∈ [0.7, 1.2] for the tests considered here. In
the next section, the dependence of the breaking strength b predicted using the HJ model on the
instantaneous κ ≃ 2F values in the breaking area is examined.

2.5.1 HJ model breaking strength

For the HJ model, the instantaneous breaking strength parameter b can be computed in each
case using Eq. (2.13) and expression of ϵ in Eq. (2.15), assuming Πb = ϵ. As shown in Eq. (2.14),
assuming small amplitude waves (i.e., a small F ) yields b ≃ 2µF 3 with F = ga/c2ℓ ≃ a/d and
cℓ ≃

√
gd in shallow water. Since waves tend to not be symmetric about the mean water level,

this equation underestimates the product hcht in Eq. (2.13), and therefore overestimates the non-
dimensional breaking strength compared to using the complete formula. Therefore, the value
predicted this way represents an upper bound, i.e., bmax = 2µF 3. Now, noting that in Eq. (2.13)
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Label Name H0 (cm) T (s) slope S Tb (s) clb (m/s) κb κbe γ ξ0

a M-S-HS 9.50 1.0 1/34.26 0.78 1.03 0.73 0.78 0.77 0.118
b M-S-TK 12.50 2.0 1/35 1.33 1.26 0.81 0.82 0.80 0.202
c N-S/P-BC 10.05 1.0 1/10 0.75 1.06 0.69 0.87 1.01 0.394
d N-S-NM 12.00 2.0 1/34.66 1.23 1.31 0.84 - 1.12 0.208
e N-P-NM 12.00 5.0 1/34.66 1.54 1.24 1.09 - 1.54 0.520
f M-S-BB 4.40 2.5 1/20 0.82 0.89 0.79 - 1.30 0.744
g N-P-TK 12.80 5.0 1/35 1.71 1.27 1.09 1.21 1.65 0.499
h N-P-BC2 9.72 1.42 1/10 1.04 1.07 0.95 0.91 1.43 0.569
i M-P-BB 5.40 2.5 1/20 0.99 0.92 0.92 - 2.47 0.672
j N-P-BC1 7.82 2.0 1/10 1.64 1.04 1.17 0.84 1.52 0.894

Table 2.3: Periodic wave breaking test cases and their parameters. Each test case name has 3
parts: (1) the model used, M-Misthyc, N-NWT; (2) type of breaking reported in experiments,
S-Spilling, P-Plunging; and (3) the experiment: (slope) HS-Hansen & Svendsen (1979), TK-Ting
& Kirby (1994), NM-Narayanan & McCalpin (1997) and BC-Blenkinsopp & Chaplin (2007), and
(bar) BB-Beji & Battjes (1993).

we always have, hcht < (d+2a)2 = (1+2F )2d2, replacing the latter value in the equation yields
a lower bound of the breaking strength, i.e., bmin = bmax/(1 + 2F )2. As the energy dissipates
during the breaking process, the relative depths under the crest and trough, hc and ht, change,
and therefore the exact value of b will vary, roughly bounded by these approximations, until the
breaking termination criterion is met.

Fig. 2.15 shows the breaking strength b computed with the Misthyc model, using the HJ param-
eterization, as a function of κ(t) = H/d ≃ 2F , for the HS, TK, and BB-regular periodic wave
experiments, as well as its approximate lower and upper bounds, bmin = (µ/4)κ3/(1 + κ)2 and
bmax = (µ/4)κ3, respectively. Breaking onset is at the right side of the figure, where the largest
values of b, κ and F occur and, moving to the left of the figure, the waves propagate through
the breaking region as a function of time, with breaking termination occurring near the bottom
left. The model results for b are in the range [0.01, 0.1] and fall mostly within its previously
defined lower and upper bounds, estimated based on F values. As expected, at breaking onset,
κb = Hb/hb is in the range [0.7, 1.2] (Table 2.3).

These observations, as well as the good agreement between the simulations and experimental
observations for a variety of benchmark cases, confirm the relevance of modeling the energy
dissipation rate for depth-induced breaking waves as analogous to that of a hydraulic jump (or
bore), with a single calibration constant µ = 1.5 (Svendsen et al. 1978 and Stive 1984; Eq. (2.13)).
Furthermore, unlike in earlier studies that used a variety of case specific breaking criteria and
related energy dissipation rates, good agreement with all experiments reported here for spilling
and plunging breaker cases was achieved using universal breaking onset and termination cri-
teria based on B and a dissipation rate based on the HJ analogy. Fig. 2.15 also shows that the
time-averaged breaking strength, based on all simulated cases, is b ≃ 0.05, as tested in several
simulations in Section 2.4.2. And although the actual b value differs substantially from this av-
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Figure 2.15: Evolution of the instantaneous breaking strength b calculated with the HJ model
during breaking simulations with Misthyc for the (Table 2.3): (a) HS (solid magenta), (b) TK (solid
green), and (i) BB-regular (solid red) periodic spilling/plunging breaking wave experiments, as
a function of κ = H/d. The dashed blue curves represent the lower (bmin) and upper (bmax)
bounds estimated for b, and the horizontal dash-dotted black line is b = 0.05.

erage near breaking onset and termination, as seen in earlier results, there were no significant
differences in the results obtained with a constant b = 0.05 or varying b value throughout break-
ing within the accuracy/variability of most experiments, and both approaches agreed similarly
with the experiments for the 5 considered benchmark cases.

2.5.2 Breaking onset kinematics

Fig. 2.16 shows the time evolution of the B value up to breaking onset (B = 0.85), as computed
in simulations of the 10 experimental cases listed in Table 2.3. As expected from the parame-
terization of b as an increasing function of γ ∝ dB/dt, defined in Eq. (2.17) (Fig. 2.3), dB/dt
is observed to be larger at breaking onset for plunging breakers than for the spilling breakers.
This observation appears to be independent from the type of bathymetry that caused waves to
break. For instance, BB and TK conducted S and P breaker experiments on barred and sloped
bathymetries, respectively, and dB/dt is larger for P than for S breakers in all cases. Blenkin-
sopp & Chaplin (2007) conducted three types of experiments, for strongly P (BC1), P (BC2), and
S/P (BC) breakers and, among these, dB/dt is largest for BC1 and lowest for BC, as would be
expected.

For the cases shown in Table 2.3, the S breakers, with ξ0 < 0.7 have γ < 1.3 and the P breakers,
have ξ0 > 0.5 and γ > 1.4. Hence, consistent with the value of dB/dt at breaking onset, γ values
may also distinguish S from P breakers. However, a more accurate estimation of this threshold
γ value should be based on a larger number of test cases.
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∆x (m) ∆t (s) (tf − tb)/T ϵb =
∫ tf
tb

Πbdt (m
4/s2)

0.0385 0.02 0.58 0.049
0.0385 0.01 0.70 0.0491
0.0256 0.013 0.68 0.050
0.0192 0.01 0.67 0.0476
0.0154 0.008 0.55 0.0439
0.0128 0.006 0.56 0.0437

Table 2.4: Sensitivity of the breaking model to the discretisation for the TK test case using the
Misthyc model. Here, tf − tb is the duration of breaking, T , the time period, and ϵb the total
energy dissipated per unit length of a quasi-steady breaking crest.

The computation of breaking onsetB is sensitive to small changes in u and c. Thus, a high-order
interpolation scheme was used to track wave crests, but errors may still appear as a function of
the discretization, which may delay or advance the onset of breaking, thus affecting the energy
dissipation. These effects were evaluated by simulating the TK test case with six increasingly
refined grids listed in Table 2.4. For the time duration of breaking, results yield a standard de-
viation of 0.062T , where T = 2 s, and for the resulting total energy dissipated per unit length
of the breaking crest (ϵb), the standard deviation is 0.0025m4/s2, that is, less than 0.05ϵb. In
both cases, the observed values for the two finer discretizations are nearly constant, indicating
convergence.

2.5.3 Breaking termination conditions

For waves breaking on a plane beach (such that depth always decreases as waves propagate
into shallower water), as described in Svendsen et al. (1978), from breaking onset shoreward, the
breaking dissipation can occur up until waves run up the dry upper slope. However, the FNPF
setup used here does not model wave run-up or bottom friction, which becomes significant near
the shoreline. Using a similar model set-up, simulations in previous work on plane beaches did
not use a breaking termination criterion. For example, in Fig. 9a from Grilli, Horrillo & Guignard
(2020), the wave height decreases from the onset up to the shallowest depth. For the cases on a
plane slope, this is also seen in Fig. 10 of Simon et al. (2019), where the same variation in Hs is
observed. Finally, Papoutsellis et al. (2019) also mention that for the spilling breaker case of Ting
& Kirby (1994), they terminate breaking inside the sponge layer.

In contrast, for waves breaking over a bar, which is followed by deshoaling over the shoreward
slope of the bar, a breaking termination criterionBoff = 0.30was used in all of the present appli-
cations. As shown in Fig. 2.11, this value appears to be optimal for reproducing the experimental
results. Waves breaking on a bar may terminate breaking over the crest or on the shoreward
slope of the bar. Here, the choice of termination criterion is important since the wave evolution
depends strongly on it.

To the authors’ knowledge, a universal breaking termination criterion does not exist. Alternative
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Figure 2.16: Evolution of B = u/c as a function of non-dimensional time t∗ = (t − tb)/Tb,
referred to the time of breaking onset, up to breaking onset (B = 0.85; horizontal dashed line),
computed for a wave crest evolving over sloping bathymetries in the experimental test cases
listed in Table 2.3. Red lines for P-cases and blue lines for S-cases have larger and smaller values
of dB/dt at breaking onset, respectively.

ideas have been tested, such as a termination criterion based on the slope of the free-surface (e.g.,
Simon et al. 2019). Another possibility is a time-based criterion. Derakhti, Banner & Kirby (2018)
noted that the active breaking period τ ≈ 0.75Tb, and so this could also be tested in future
applications.

2.6 Conclusions

A unified method of modeling depth-limited wave breaking dissipation in FNPF models was
demonstrated, building on the work of Guignard & Grilli (2001) and Grilli, Horrillo & Guignard
(2020), who proposed making the energy dissipation rate analogous to that of a hydraulic jump.
Two different FNPF models were applied here: Misthyc (Yates & Benoit 2015) and a BEM-NWT
(Grilli et al. 1989, Grilli & Subramanya 1996). The detection of breaking onset in the models
was based on the universal criterion B = u/c = 0.85, first proposed by Barthelemy et al.
(2018) for deep and intermediate water cases, and validated by Derakhti et al. (2020) in shallow
water. Similar to earlier work such as Grilli, Horrillo & Guignard (2020) or Simon et al. (2019), we
show that simulation results based on this approach agree well with experimental measurements
for a variety of standard shallow water breaking cases from the literature, for both regular and
irregular wave trains and different bathymetries.

Using the hydraulic jump (HJ) analogy originally proposed by Svendsen et al. (1978) and Stive
(1984) for spilling breakers, the non-dimensional breaking strength b, is found in most cases,
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including both spilling or plunging breakers, to have a fairly narrow range of variation centered
on 0.05. However, consistent with the recent parameterization of b proposed by Derakhti, Banner
& Kirby (2018), Derakhti, Kirby Jr, Banner, Grilli & Thomson (2018), proportional to dB/dt at
the onset, the instantaneous value of b resulting from the HJ analogy is much larger at breaking
onset, and then decreases throughout the breaking region. Recalling that the HJ dissipation rate
is related to the relative wave height κ, or wave Froude number F , with κ = H/d ≃ 2F in
shallow water and for the depth-limited breaking waves tested here, κb ∈ [0.7, 1.2], consistent
with Battjes’ predictions based on the surf similarity parameter (Battjes 1974). This implies that
for waves in this parameter range, b would always have a similar order of magnitude. With this
rationale, simulations of spilling and plunging depth-limited breaking waves were performed
using a constant breaking strength b = 0.05. The simulated results using a constant b or the HJ
model with a time-varying b agreed similarly with the experimental measurements, within the
range of experimental uncertainty. Although in very complex cases there may be waves in an
irregular wave train requiring larger or smaller b values, the constant b value provides results
with a similar level of uncertainty or accuracy as the HJ model.

There are some weaknesses in this current approach that must be resolved in order to obtain
a fully general method. While concentrating on the wave breaking criterion and dissipation
rate, the breaking termination criterion has not yet been thoroughly investigated, which should
be a point for further research. For the cases shown here, wave breaking on a slope were not
terminated until the shallowest depth in themodel domain (or the absorbing beach)were reached,
whereas wave breaking on a bar was terminated at a valueBoff = 0.30, which was found to yield
results in good agreement with experiments. Since the energy dissipation rateΠb = ϵ of breaking
waves depends on the fifth power of wave celerity, when this parameterization is used in the
constant strength model, an accurate tracking of wave crest locations as a function of time xc(t)
and the calculation of the time derivative dxc/dt = c are important for accurate simulations.
With the method used here to compute c (see Appendix), some spurious oscillations are still
observed when taking the derivative of the crest position, which results in small oscillations of
Πb = ϵ and thus wave heights in the breaking region. Another issue is the accurate real-time
identification of wave crests/troughs in irregular sea-states. In situations where small breaking
waves ride on top of larger waves, the estimation of the spatial extent of dissipation could be
misinterpreted, which could cause instabilities.

By using a breaking dissipation rate Πb = ϵ proportional to a constant b, instead of using the
HJ analogy, the need to compute the local geometric characteristics of waves required in the HJ
dissipation Eq. (2.13) is eliminated (e.g., water depth under the trough, etc.), and the dissipation
can simply be related to the crest kinematics. This simpler formulation clearly will yield its
greatest advantages when applying the model in three-dimensions, where the identification of
local wave parameters, even the crest location, is challenging. Derakhti, Kirby Jr, Banner, Grilli
& Thomson (2018) also showed that a constant b might be expected in shallow water based on
results of a Navier-Stokes model. The present modeling approach with the constant strength b
and dissipation rateΠb = ϵ parameterization could be generalized to intermediate or deep water
cases, by using the b(γ) breaking strength model proposed by Derakhti, Banner & Kirby (2018),
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who found that the value of b in deep or intermediate water (which is clearly not constant) could
be related to the kinematics of the wave as well, specifically to dB/dt and a relevant breaking
period Tb at breaking onset. Some additional work may be required, however, to implement the
deep-water parameterization, as b obtained from a 3D finite volume NS solver, in which energy
is dissipated within the domain volume, may not have the same distribution or effect in a FNPF
model, where the energy dissipation is applied to the surface and only acts on the potential part
of the flow.

In considering the kinematics of the shallow water breaking waves simulated here, the value of
γ appears to provide a parameter to distinguish spilling and plunging breakers, with a threshold
value around 1.3 − 1.4. For waves shoaling on a plane slope, this may be loosely related to
Battjes’ surf similarity parameter and may be of interest for applications beyond the scope of
those envisioned here, such as of identifying breaker types from existing models that are unable
to simulate the breaking process.

Appendix 1: Calculation of wave crest kinematics

The instantaneous location of wave crests is first roughly estimated on the 2D-FNPF models’
free surface, by finding local maxima. (The crests with wave height, H < 0.05d, where d is the
depth at the wavemaker, are discarded, as these are mostly flat and the calculation of c gets very
noisy.) Then, four model points surrounding each wave crest location are identified with eleva-
tion, particle velocity, and location (ηi, ui, xi) (i = 1, 2, 3, 4) and mapped to a local coordinate
ξ ∈ [−1, 1]. Cubic shape functions (Eq. 2.22) are used to interpolate η(ξ) between these points.

N1(ξ) =
1

16
(1− ξ)(9ξ2 − 1)

N2(ξ) =
9

16
(1− ξ2)(1− 3ξ)

N3(ξ) =
9

16
(1− ξ2)(1 + 3ξ)

N4(ξ) =
1

16
(1 + ξ)(9ξ2 − 1)

(2.22)

The wave crest location is then estimated based on the ξc value at which dη/dξ = 0 (Fig. 4.1).
Therefore, the horizontal location of a local crest in the global coordinate is calculated as

xc = x1N1(ξc) + x2N2(ξc) + x3N3(ξc) + x4N4(ξc), (2.23)

and the horizontal particle velocity at the crest, u as

u = u1N1(ξc) + u2N2(ξc) + u3N3(ξc) + u4N4(ξc). (2.24)

Prior to calculating c, xc(t) is smoothed by second-order exponential smoothing (Guthrie 2020),
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Figure 2.17: Sketch showing the calculation of a local wave crest location between discretization
points on the simulated free surface.

described as follows, denoting Xt
c as the smoothed horizontal crest location at time t = 0,

X0
c = x0c

s0 = x1c − x0c
(2.25)

For t > 0,
Xt

c = αxtc + (1− α)(Xt−1
c + st−1)

st = β(Xt
c −Xt−1

c ) + (1− β)st−1,
(2.26)

where (α, β) based on some preliminary tests are taken as (0.05, 0.01).

Wave celerity of a crest at a time t, c(t) is then calculated by a linear fit to the smoothed data in
the interval [Xt−n

c , ..., Xt
c], such that n∆t < 0.04T , where ∆t is the discretization in time and

T is a representative wave period. In the test cases presented this study, n = 8. The location of a
crestXt

c at the previous time i.e,Xt−1
c is determined by comparing all the crests at (t−1)th time

step to that ofXt
c such thatXt

c −Xt−1
c < m∆x, wherem ∈ [10, 20] and∆x, the discretization

in space (Note,∆x and∆t in the test cases here are chosen such that a crest horizontally does not
advance more than a few ∆x). This gets challenging for irregular test cases when small waves
are present on top of longer waves, for the cases seen here, ∆x and m are small enough such
that crests are correctly tracked. To compute γ, the discrete values ofB = u/c at the crest, when
in the range [0.82, 0.85], are then linearly fit to obtain dB/dt|B=Bth

.
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Chapter 3

Steepness-limited wave breaking
model

Le déferlement des vagues à cambrure limitée est simulé dans un modèle d’écoulement
potentiel non linéaire et validé avec des données des essais en laboratoire. Le début de
déferlement est basé sur le rapport de la vitesse horizontale des particules à la crête u,
par rapport à la vitesse de phase c, B = u/c > 0.85. Un modèle de dissipation de
déferlement, dans lequel le paramètre d’intensité du déferlement non-dimensionnel est
prédit sur la base de la cambrure des vagues linéaires, est utilisé. Un nouveau modèle
de dissipation variable en fonction du temps est testée, et le critère de fin de déferlement
est étudié.

73
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3.1 Introduction

In deep-water conditions, where wave propagation is not influenced by bathymetric effects, the
phenomenon of wave shoaling does not exist. The manifestation of breaking waves in shallow
conditions, as observed in Chapter 2, was attributed to this phenomenon. Unlike in shallow wa-
ter where wave celerity is primarily governed by the water depth (c =

√
gd), in deep water, the

wave celerity is primarily governed by its wave period (or frequency), given by c = g/(2πf). In
deep-water seas, irregular waves are generally observed, which can be described as a superposi-
tion of monochromatic waves of different frequencies and wave heights. Therefore, there exist
some sea states where several of these monochromatic waves positively superimpose (addition of
amplitudes of the individual waves) reaching larger wave heights, which may eventually become
unstable and break.

In laboratory conditions, deep-water breaking events are often studied by generating a chirped
wave packet (focused waves). A chirped wave packet, meaning a group of waves of different
frequencies, is generated by a wavemaker, in an order such that high-frequency waves (lower
phase speed) are generated first, followed by low-frequency (higher phase speed) waves. The
intention is for the faster waves to eventually catch up with the slower waves, resulting in a
positive combination of the individual wave amplitudes. This superposition in space and time is
controlled by the phase angle of the individual input waves.

In this Chapter, a dissipation model designed for steepness-limited breaking waves is presented.
The breaking onset is based on the criterion B = 0.85, as in the depth-limited wave break-
ing model (Chapter 2). The proposed dissipation model is based on determining the breaking
strength (b) with respect to the input maximum linear wave steepness (S) proposed by Romero
et al. 2012, who obtained this empirical relation by examining several focused breaking waves.
A termination criterion is calibrated based on the free surface comparisons from NWT and ex-
periments. The proposed dissipation model is validated with the experimental data collected by
Lili Kimmoun from a wave flume at the Ecole Centrale Marseille (ECM).

3.2 Experimental setup

The wave flume at ECM (Fig. 1.6) has a constant water depth of h = 0.667 m. In contrast to
the conventional flap-type wavemaker, where the axis of rotation is fixed at the bottom, the
wave flume at ECM employs a unique configuration with the axis of rotation positioned 0.4 m

below the bottom of the wave flume (see Fig. 3.1 for a detailed schematic of the flap), and a wall
at x = 12.535 m. Focused waves are generated by the wavemaker based on a discrete Ricker
spectrum, (which corresponds to a modified second derivative of the Gaussian function, as the
exponent,m < 2) of 212 components given by,

s(ω) = H
√
Te−ωmT [1− a(ωmT − 1)], a =

1

ωm
p T − 2

(3.1)
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where ωp = 2π/Tp is the peak angular frequency, H is a design wave height, and m and T are
spectral design parameters. This spectrum is also used in the works of Kimmoun et al. 2010,
Lubin et al. 2019, and Steer et al. 2021. From this spectrum, the angular displacement of the flap
is calculated as,

θ(t) =
∑

j

s(ωj)

C(ωj)
sin(ωjt− kjxf )dω (3.2)

where xf is the focusing distance from the wavemaker, kj is the wave number calculated from
the linear dispersion relation, ωj = gkj tanh(kjd), andC(ω) is the linear transfer function given
by Kimmoun et al. 2010,

C(ω) =
2 sinh(kd)

kd+ sinh(kd) cosh(kd)

(
sinh(kd) +

1− cosh(kd)

k(d+ l)

)
(3.3)

where l is the distance between the axis of rotation and the actual bottom. A Ricker spectrum
and its corresponding angular displacement are shown in Fig. 3.2.

Figure 3.1: Schematic of the flap at the wave flume at ECM (Source: Lili Kimmoun).

To record the experimental data, 6 resistive and 3 capacitive gauges are placed in the flume
(shown qualitatively in Fig. 3.3, and tabulated in Table 3.1) with a sampling frequency of 300Hz.
Particle Image Velocimetry (PIV) (see Kimmoun & Branger 2007) and videos of the breaking
waves are also recorded.

3.3 Implementations in the numerical model

Due to the need to model the unique kind of wavemaker described in the previous section, the
NWT is utilized in this study, as it can model any type of wavemaker motion, by knowing its
geometry and kinematics. However, it is also possible to use the Misthyc model in this study
in an approximate way by first determining all the wave components from the angular motion
of the flap and the transfer function (Eq. 3.3), and then linearly superposing these components
over a short distance from free surface close to the wavemaker (called the generation zone) or
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Figure 3.2: A Ricker spectrum (left) and the resulting angular displacement (right) of the flap
wavemaker with spectral parameters,H = 0.2593m, T = 0.2285,m = 1.42, ωp = 2.61 rad/s,
and xf = 7.5 m. Note, in the experiments, for t > 42 s, i.e., the point after which the angular
displacement is constant, a sinusoidal ramp in time is prescribed to bring the angular displace-
ment to 0.

No Distance from wavemaker (m) Type

1 1.21 Resistive
2 5.91 Resistive
3 6.81 Resistive
4 8.03 Resistive
5 8.51 Resistive
6 8.83 Capacitive
7 9.62 Capacitive
8 10.30 Resistive
9 11.32 Capacitive

Table 3.1: Wave gauge location and type in the ECM wave flume (represented by arrows in
Fig. 3.3).

by imposing the fluid motion on the vertical boundary as a Dirichlet or Neumann boundary
condition.

3.3.1 Modeling the flap wavemaker

A flap as a wavemaker boundary is modeled in the NWT as described by Grilli & Horrillo 1997.
The boundary value for the solution of ∇2ϕ = 0, ∂ϕ

∂n and for the solution of ∇2ϕt = 0 (solved
to get the 2nd order term in the Taylor expansion, for time marching), ∂2ϕ

∂t∂n , are calculated as
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Figure 3.3: A schematic of the numerical wave flume for the focused wave breaking experiments,
with a zoomed view of the wavemaker and the focusing region at the top. The arrows on the top
of the flume indicate the wave gauge locations (values are given in Table 3.1). A wall is located
at the right end of the tank.

follows,

∂ϕ

∂n
= rg

∂θ

∂t
(3.4)

∂2ϕ

∂t∂n
= rg

∂2θ

∂2t
+
∂θ

∂t

[
rg
∂2θ

∂2s
− ∂θ

∂s

]
(3.5)

where n, s are the normal and the tangential directions respectively and rg is the distance be-
tween wavemaker nodes and the axis of rotation. The time derivatives of angular displacement
are analytically calculated from Eq. 3.2. In Fig. 3.3, an arc (gray bump) connecting the flat bot-
tom and the flap is also seen. This curved Section is considered an impermeable wall, where
the normal derivative of the potential, ∂ϕ

∂n , is set to zero. To prevent node clustering or stretch-
ing, the nodes along this curved arc are regridded equidistantly at each time step, as in Grilli &
Subramanya 1996.

3.3.2 Wave breaking model

The construction of the wave breaking model follows a similar approach as described in Sec-
tion 2.3. The wave breaking onset is based on the criterionB = u/c = 0.85, and the termination
criterion is calibrated by comparing the free surface elevations measured in the experiments and
simulated in the NWT. The notable difference with the depth-limited dissipation model, is in the
determination of the breaking strength, b. This modification arises from the consideration that
the former method relies on the wave height and water depth ratios, which are not applicable to
deep water waves.

Romero et al. 2012 proposed empirical curves for predicting the breaking strength as a function of
the maximum input linear wave steepness, S =

∑
i aiki, where ai is the wave amplitude and ki,
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the wave number of the ith component of a focused wave by studying a large set of experimental
observations. Two curve fits, one with power 5/2 and the other with power 3 (Fig. 3.4) were
chosen to be consistent with the inertial scaling and measurements of Drazen et al. 2008. Their
proposed breaking strength (bS) is calculated here by,

bS = 0.4(S − 0.08)5/2 (3.6)

For the range of S of the test cases see here, the difference in bS with the other formula is
less than 5%. This breaking strength is utilized to calculate a damping pressure accounting
for wave breaking in the vicinity of the breaking crest, as detailed in Section 2.3.2.1, using the
same approach as for depth-limited waves. The specific criteria for terminating wave breaking
is discussed in Section 3.4, following the same approach as in Chapter 2.

Figure 3.4: Laboratory observations of the dissipation strength b as a function of the predicted
maximum linear wave steepness S of the focusing wave (Source: Romero et al. 2012)

3.4 Results

For a Ricker spectrum with parameters T = 0.2285, m = 1.42, Tp = 2.4 s, three cases with
H = 0.2377 m and xf = 7.8 m (denoted as F1), H = 0.2485 m and xf = 7.5 m (denoted
as F2), and H = 0.2593 m and xf = 7.8 m (denoted as F3) are simulated. The numerical
domain runs for 0 ≤ x ≤ 12.535 m, with ∆x = 0.01 m, ∆t = 0.01 s up to the instant of
the maximum angular displacement of the flap, and then ∆t = 0.003 s is imposed, to ensure
numerical stability close to the wavemaker. At the wall at the right end of the wave flume,
the absorbing piston is turned off, and the absorbing beach co-efficient is set to zero, to have
a reflecting wall to reproduce the experimental setup (for more information on the absorbing
piston and absorbing beach implemented, see Grilli & Horrillo 1997).
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Figure 3.5: Free surface comparison from the experiments and NWT with breaking pressure
turned off at an overturning instant (B > 0.85) with input conditions, H = 0.2593 m, xf =
7.8m (left) and H = 0.2485m, xf = 7.5m (right)

Fig. 3.5 presents a comparison between the experimental and NWT free surface profiles at two
instances of overturning for the test cases F3 (left) and F2 (right). The qualitative comparison
reveals satisfactory agreement between the two. From a numerical perspective, it is crucial to
start wave breaking dissipation prior to free surface overturning, as applying dissipation after
this point can lead to numerical instabilities. Thus, it is anticipated that the dissipation in the
numerical model should commence before the free surface starts to overturn. From Fig. 3.6,
the free surface elevation for the three cases (F1, F2, F3) at the moment of breaking onset is
observed, indicated byB = 0.85. In all three cases, this moment corresponds to the point where
the free surface becomes nearly vertical. Hence, this criterion serves as a reliable predictor of
breaking onset.

In Fig. 3.7, a comparison is presented between the time series of free surface elevation at the
9 wave gauge locations obtained from the experiments and the NWT for the test case F1. At
x = 1.21m, the gauge close to the wavemaker, the input unfocused chirped wave group is seen
for t < 18 s. The wave elevation is then 0 up to t = 25 s, as the flap is almost stationary at
this time. Free surface elevations are seen for t > 25 s due to the reflected waves propagating
from the right wall. At the gauges x = 5.91 m and x = 6.81 m a partially focused wave (for
t < 20 s) is observed, becoming completely focused (with maximum wave elevation) around
the gauge at x = 8.03 m. The breaking onset was observed at x = 7.78 m, and the dissipation
continued until x = 8.60, for a termination criterion of Boff = 0.4 (optimal value, discussed in
the following paragraph). Overall good agreement is seen with the experiments for the wave
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Figure 3.6: The free surface elevation at the instant of breaking onset (B = 0.85) for three test
cases with different input conditions.

elevations close to the wavemaker, the reflecting wall, and in the breaking region (the gauge at
x = 9.62 m).

Boff η2 (cm2)

F1 F2 F3

Measured 26.04 38.21 45.87

0.10 19.54 32.54 34.71
0.20 23.21 34.39 40.71
0.30 25.54 36.33 44.21
0.40 27.04 37.28 45.41
0.50 27.79 36.98 47.04

Table 3.2: Quantitative comparison of η2 of the breaking crest from the NWT with different Boff
and experiments.

To determine the optimal termination criterion, the three test cases, F1, F2, and F3, were run
with different termination thresholds, Boff = 0.1, 0.2, 0.3, 0.4, 0.5. With Boff = 0.1 the
dissipation is applied for a longer duration as compared to Boff = 0.5. The breaking crest at the
termination in all these cases was seen before the gauge at x = 9.62 m. Therefore, the wave
elevations passing through the gauge at x = 9.62m are dependent on how long the dissipation
lasted (therefore, the dissipation energy). This information is utilized to compare the free surface
elevation at this location with the experiments to see which criterion minimizes the errors. To
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Figure 3.7: Time series comparison of the free surface elevation from the experiments (dashed
line) and the NWT (solid line) at the 9 wave gauge locations for the test case F1 (H = 0.2377m,
xf = 7.8 m). Wave breaking crest seen at x ∈ [7.78, 8.60] m, and t ∈ [19.85, 20.36] s as
modeled with the initiation and termination criteria.

determine the optimal magnitude of Boff, a quantity is calculated as follows,

η2 =
1

Tp

∫ t+Tp

t
η2dt (3.7)

where η is the elevation at the gauge at x = 9.62 m, Tp is the peak period (here, always 2.4 s)
and t is the instant the breaking wave crest reaches this gauge. This quantity is calculated for 5
different Boff values and tabulated in Table 3.2, along with the experimental measurements. For
Boff = 0.1, a larger amount of energy is dissipated relative to Boff = 0.5, leading to a relatively
larger decrease in free surface elevation caused by the application of wave breaking, leading to
smaller η2. From Table 3.2, Boff = 0.4 is chosen to provide a more accurate prediction compared
to the experimental results.
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Figure 3.8: Comparison of the free surface elevation for the test case F1 at two gauges (at x =
6.81 m and x = 8.03 m) from the experiments (dashed lines) and the NWT (solid lines) with
different breaking strengths, with bS , the value predicted by Romero et al. 2012.

The empirical breaking strength, as proposed by Romero et al. 2012, was obtained through a
curve fitting process using experimental data points. Fig. 3.4 illustrates the distribution of this
data, where it can be observed that there is noticeable variability (note that the y-axis is presented
in a logarithmic scale). Therefore, the sensitivity of the dissipation strength b is investigated,
considering values within the same order of magnitude as the prediction from Romero et al. 2012
(Eq. 3.6). In Fig. 3.8, a comparison of the free surface elevation at the gauge at x = 6.81m with
the experiments and NWT with different breaking strengths for the test case, F1 is seen. For
this case, with b < bS/2, the damping pressure is insufficient to prevent the overturning of the
free surface. When b > 2bS , the application of the damping pressure becomes abrupt, resulting
in oscillations on the free surface.

Fig. 3.9 displays the plot of the instantaneous power dissipation resulting from wave break-
ing. This variation is proportional to c(t)5, where c(t) is the instantaneous phase speed (Πb =

bc(t)5/g). Qualitatively the dissipation is seen to be larger around the onset of wave breaking
and gradually decreases until the termination. This pattern of variation is similar to what has
been observed in the study by Iafrati 2011.
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Figure 3.9: The evolution of the instantaneous breaking strength with t∗ = (t − tb)/Tp, where
tb is the time instant of the breaking onset in the NWT for three breaking strengths (bS is the
value predicted by Romero et al. 2012).

3.5 Conclusions and perspectives

A parameterized method to model steepness-limited breaking waves based on the universal
breaking onset criterion proposed by Barthelemy et al. 2018 and Derakhti et al. 2020 is presented.
The breaking strength is determined using the empirical curve provided by Romero et al. 2012,
which estimates the breaking strength based on the maximum linear wave steepness (S) of the
input waves. From this breaking strength, an instantaneous power to be dissipated is calculated
that is proportional to c(t)5. This power is then modeled as a damping pressure acting across
the breaking crest (Section 2.3.2.1). The proposed model is validated with the wave flume ex-
periments conducted at Ecole Centrale Marseille, by Lili Kimmoun. These experiments involve
the generation of focused breaking waves using a Ricker spectrum of varying maximum wave
height and focusing distance.

The NWT is seen to accurately model overturning waves until the overturning jet hits the free
surface, a fully reflecting wall, and the desired type of wavemaker motion. The criterion B =

0.85 seems like an appropriate criterion for the onset of breaking waves, as it corresponds to the
moment when the free surface becomes nearly vertical. In the NWT, regriding is necessary to
redistribute nodes equidistant from each other, as the nodes cluster at the crest as they steepen
(Grilli & Subramanya 1996). In the breaking test cases shown here, the frequency of regriding
was chosen such that the waves overturned by setting b = 0 (i.e., zero energy dissipation). This
is to ensure that the breaking model is unaffected by regriding.

An alternative approach to determine the breaking strength for deep-water, focused breaking
cases could be the use of the empirical curve proposed by Derakhti, Banner & Kirby 2018 with
high-fidelity model simulation data. This empirical curve predicts the breaking strength based
on the time rate of change ofB at the onset, non-dimensionalized with a period calculated at the
onset (γ, for the definition, see Eq. 2.17). Unlike the method employed in this study, this approach
only requires knowledge of wave kinematics at the onset to predict the breaking strength. This
is very useful when determining the input wave conditions are complicated, for example, when
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looking at irregular waves. An attempt was made to implement this approach but was unsuccess-
ful as the computation of γ was found to be very sensitive to the discretization. In the calculation
of γ from a Navier-Stokes model, as in Derakhti, Banner & Kirby 2018, the discretization in time
is orders of magnitude smaller than that used in the NWT. Therefore, it is not practical to em-
ploy such a fine level of discretization solely for the purpose of computing γ. There is an attempt
being made currently to have accurate calculations of γ at a typical resolution of potential flow
models in Ducrozet et al. 2023.

There are areas for improvement in order to develop a more comprehensive model for steepness-
limited breaking waves. The current termination criterion is calibrated based on specific cases,
and further investigation using a wide range of scenarios is required to establish general con-
clusions. Additionally, the time variation of the instantaneous power dissipation should be com-
pared with experimental data or validated using Navier-Stokes models to assess the general va-
lidity and applicability of the proposed variation. These questions need to be addressed to have
a unified steepness-limited dissipation model.



Chapter 4

3D extension of the 2D unified
depth-limited breaking model
by S. Mohanlal, J. Harris, M. Yates, and S. Grilli
(Article in preparation)

Nous introduisons une nouvelle méthode pour simuler la dissipation d’énergie ré-
sultant du déferlement des vagues à profondeur limitée dans unmodèle tridimensionnel
(3D) d’écoulement potentiel non linéaire. La méthode combine un critère universel de
début de déferlement avec la simulation de la dissipation d’énergie induite par le défer-
lement, en utilisant un paramètre d’intensité du déferlement non-dimensionnel. Le
modèle 3D-FNPF utilisé dans cette recherche résout l’équation de Laplace à l’aide d’une
équation intégrale aux limites basée sur la deuxième identité de Green. La détection
du déferlement imminent d’une vague est réalise avec un critère universel de début de
déferlement basé sur la ratio de la vitesse horizontale des particules à la crête à la vitesse
de la phase de la crête. La parametrisation de la dissipation des ondes par déferlement
s’effectue en trois étapes. Tout d’abord, d’intensité du déferlement par dissipation non-
dimensionnelle est calculée sur la base d’un précédent modèle unifié 2D de dissipation
à profondeur limitée. Deuxièmement, la puissance instantanée à dissiper est calculée
fonction de l’intensité de déferlement et la vitesse de phase et prend la forme d’une
pression d’amortissement sur la crête de la vague déferlante. Le processus de dissipa-
tion est arrêté par un critère calibré par une comparaison des simulations de la position
de la surface libre avec des données expérimentales de la littérature. Le modèle proposé
est appliqué à des vagues régulières avec du déferlement glissant et plongeant sur une
barre submergée 3D et une bosse elliptique focalisante. Des travaux futurs étendront
ce modèle aux vagues déferlantes 3D irrégulières.
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Abstract

Extending an earlier two-dimensional (2D) implementation, a novel method is introduced for
both detecting the onset of wave breaking and simulating the resulting energy dissipation in
limited water depth, in a three-dimensional (3D) fully nonlinear potential flow (FNPF) model.
Breaking onset is identified using a universal criterion, based on the ratio of the horizontal par-
ticle velocity at the crest to the crest phase velocity. The breaking-induced energy dissipation
is based on the non-dimensional breaking strength parameter and is implemented in the model
as an absorbing surface pressure. The 3D-FNPF solves Laplace’s equation using a higher-order
boundary element method based on Green’s second identity and marches the solution forward
in time. The implementation of wave dissipation due to breaking is carried out in three steps:
(i) a non-dimensional breaking strength parameter is calculated based on a previous 2D unified
depth-limited dissipation model; (ii) the instantaneous power to be dissipated is computed using
this parameter and energy dissipation is modeled as a damping pressure specified in a region
around the breaking crest; and (iii) the dissipation process of each breaking wave is terminated
using a criterion calibrated through a comparison of the free surface elevation with experimental
data from the literature. The new 3D model is experimentally validated for regular spilling and
plunging breaking waves propagating over a 3D submerged bar and an elliptical shoal. Future
work will extend this model to irregular 3D breaking waves.

4.1 Introduction

With the recent surge of activity in the offshore energy sector and in the design and construction
of large fixed or floating ocean structures exposed to stormwaves in intermediate or even shallow
water, there is an increasing need for a better understanding of sea state evolution at large spatial
and temporal scales and wave-structure interactions at small scales. It is crucial to accurately
estimate the kinematics and dynamics of sea states to respond to the specific requirements of a
range of applications in this domain, in particular, for the design of structures exposed to breaking
waves. Filipot et al. 2018, for instance, presented measurements of the characteristics of breaking
waves impacting a lighthouse in extreme sea states, to help optimize design conditions for marine
renewable energy converters.

Due to the computational complexity of performing Large Eddy Simulation (LES) (Deardorff
1970, Lubin et al. 2011, 2006) or, Direct Numerical Simulation of the Navier-Stokes (NS) equa-
tions (Lubin et al. 2003, Moin & Mahesh 1998), numerical models used to simulate ocean
waves typically make simplifying assumptions of the physics, for specific flow properties or
regimes, for example by assuming inviscid flow. Additionally, wave models are often classi-
fied by on their representation of the free surface boundary conditions and dimensionality,
into (i) two-dimensional (2D) horizontal, depth-averaged, such as weakly or fully nonlinear
Boussinesq/Serre–Green–Naghdi (Bonneton, Barthélemy, Chazel, Cienfuegos, Lannes, Marche
& Tissier 2011, Kirby 2016,Wei et al. 1995); or (ii) 2D vertical or three-dimensional (3D) fully non-
linear potential flow (FNPF) models, such as based on a Higher-Order Spectral (HOS; Ducrozet
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et al. 2007, 2017, West et al. 1987 ) or a Boundary Integral Equation method (BIE; Dold & Pere-
grine 1985, Fochesato et al. 2007, Grilli et al. 2001, 1989, Guyenne & Grilli 2006, Newman &
Lee 2002, Nimmala et al. 2013). For practical applications to nearshore wave propagation, most
recent models of the first type (Kazolea & Ricchiuto 2018, Kennedy et al. 2000, Shi et al. 2011)
thus use semi-empirical dissipation terms to represent the effects of bottom friction and wave
breaking, the latter triggered using a breaking criterion (see, for a large scale practical appli-
cation Grilli, Westcott, Grilli, Spaulding, Shi & Kirby 2020). Although there were some early
attempts to proceed similarly with models of the second type (Grilli et al. 2003, Guignard &
Grilli 2001), significant work has recently been focused on extending the range of applications of
FNPF/HOS models beyond their physical limits, by including parameterized modeling of wave
breaking dissipation (Ducrozet et al. 2017, Mohanlal et al. 2023, Papoutsellis et al. 2019, Seiffert
& Ducrozet 2018, Seiffert et al. 2017, Simon et al. 2019, Wang et al. 2022).

In all of these models, the wave breaking parameterization follows a general approach. It be-
gins with defining the onset of wave breaking, followed by estimating the magnitude of energy
to be dissipated, and concludes with a termination criterion. Regarding breaking onset, many
different criteria have been proposed, often limited to specific depth (e.g., shallow, intermediate,
or deep water) regimes (see, for a review Derakhti et al. 2020), for instance, based on a maxi-
mum breaking index (Grilli et al. 1997), wave slope (Guignard & Grilli 2001, Simon et al. 2019),
or steepness (Miche 1944). More recently, Barthelemy et al. 2018 and Derakhti, Banner & Kirby
2018 have shown that a universal onset criterion for wave breaking in deep or intermediate wa-
ter can be defined as the ratio of the horizontal particle velocity u to the phase speed c of a
crest, reaching B = u/c = Bth = 0.85, Derakhti et al. 2020 further showed that the same
criterion applies to shallow water breaking. This universal criterion was shown to be robust
for simulating 2D spilling and plunging breaking waves in 2D-HOS (Seiffert & Ducrozet 2018,
Seiffert et al. 2017) and 2D-FNPF (Mohanlal et al. 2023) simulations. Note, Hasan et al. 2019
performed HOS simulations of focused breaking waves in intermediate water and reported that
some non-breaking crests were found with B ∈ [0.9 − 0.92]. However, their model was not
strictly fully-nonlinear due to the limited HOS expansion (withM = 5) that may not represent
u at the crest as accurately as in the Eulerian-Lagrangian FNPF or NS models used to develop the
B criterion (Barthelemy et al. 2018, Derakhti, Banner & Kirby 2018, Derakhti et al. 2020).

Early parameterizations proposed for the wave breaking energy dissipation rate were based on
experimental measurements for spilling wave breakers over mild slopes (Stive 1984, Svendsen
et al. 1978), which were idealized as “inverted hydraulic jumps”. This dissipation rate was used to
successfully simulate spilling breakers in 2D-FNPFmodels by using a calibrated absorbing surface
pressure (Grilli, Horrillo & Guignard 2020, Guignard & Grilli 2001, Papoutsellis et al. 2019, Simon
et al. 2019). Kennedy et al. 2000 proposed a parameterization of the energy dissipation based on
the eddy viscosity for depth-integrated models, which was then extended to simulate breaking
waves in 2D-FNPF models (Papoutsellis et al. 2019, Simon et al. 2019).

Finally, Derakhti, Banner & Kirby 2018 developed a parameterization of the energy dissipation
for deep and intermediate water steepness-limited breaking waves by performing simulations
with a NS model (Derakhti et al. 2016), and, more recently, they extended this parameterization
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to shallowwater breaking (Barthelemy et al. 2018, Derakhti et al. 2023, Derakhti, Kirby Jr, Banner,
Grilli & Thomson 2018, Derakhti et al. 2022).

The 3D implementation of this parameterization presents some practical difficulties and, hence,
has received less attention in current research, although there have been some earlier attempts
(Mivehchi 2018, Mivehchi et al. 2017). The identification of wave crests and the accurate compu-
tation of their phase speed by direct tracking in 2D horizontal wave fields is complicated (e.g.,
when small waves travel on large ones or due to discretization errors), except when simplifying
assumptions are introduced, such as using the linear dispersion relation and applying a Hilbert
transform (Hasan et al. 2019, Mivehchi 2018, Papoutsellis et al. 2019, Stansell &MacFarlane 2002).
Additionally, except for the universal empirical parameterization proposed by Derakhti, Ban-
ner & Kirby 2018 based on high-fidelity NS simulations, there is currently a lack of simple, but
physics-based, models to estimate the rate of energy dissipation in 3D breaking waves (e.g., de-
rived from experimental measurements or theoretical formulations) given the kinematics prior
to breaking onset. In recent depth-integrated 3D models (Shi et al. 2011), the dissipation in 3D
breaking waves was represented by detecting breaking onset when the ratio of free surface ele-
vation to water depth exceeded 0.8, then using a TVD (Total Variation Diminishing) algorithm
and switching the Boussinesq equations to the Nonlinear ShallowWater Equations. Earlier work
showed that the resulting numerical dissipation is a reasonable approximation of the wave break-
ing dissipation (Tonelli & Petti 2009, 2010); however, this assumes that broken waves behave like
a moving hydraulic jump (or bore) and, hence, is really only applicable to shallow water break-
ing. A similar dissipation model is used in Judge et al. 2019. Another non-physical but ad-hoc
approach is used in OceanWave3D (Pierella et al. 2021) to prevent instabilities caused by im-
pending breaking waves by applying a filter to smooth the free surface. While this method is
numerically very simple and efficient, it lacks physical justification.

Another difficulty in using the B criterion, as already pointed out in 2D-FNPF simulations (Mo-
hanlal et al. 2023), is that the applied absorbing pressure has to be terminated after a certain
duration that, in principle, should represent the duration of each wave breaking event. Although
some ad-hoc criteria (e.g., Papoutsellis et al. 2019, Simon et al. 2019) have been proposed for
simple 2D breaking, at present, there is a lack of sufficient knowledge of the duration of wave
breaking events, particularly in 3D, to define accurately a termination criterion (e.g., based on
wave kinematic properties, similar to the onset criterion). Mohanlal et al. 2023 used the param-
eter B to both initiate (B > 0.85; following Barthelemy et al. 2018, Derakhti et al. 2020) and
terminate (Boff) the application of wave breaking dissipation using the absorbing pressure, and
for their test cases, the optimal termination criterion was Boff = 0.3 for a bar and Boff = 0 for a
beach slope. Another potential criterion, based on the wave breaking duration τ , was proposed
by Derakhti, Banner & Kirby 2018. Based on simulations using an LES model (in this case applied
to focused wave trains), they estimated τ = 0.75Tb, where Tb is the wave period calculated at
breaking onset.

Building on past work, this study focuses on implementing a general parameterized wave-
breaking model applicable to depth-limited wave breaking detection and dissipation in an ex-
isting 3D-FNPF model (Harris et al. 2022). Following the approach used in 2D (Mohanlal et al.
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2023), breaking onset is determined using the universal B-criterion (Derakhti et al. 2020), in
which the wave phase speed is now computed by tracking the movement of 3D wave crests in
both space and time. Breaking termination is qualitatively calibrated for each test case to best
match experimental data at selected measurement points (as done in 2D; Mohanlal et al. 2023).
The computation of the dissipation strength and instantaneous power dissipated is based on a
3D extension of the method described in Mohanlal et al. 2023, which is based on the ratio of wave
height to water depth of the braking waves. The proposed model is validated using experimental
measurements of both spilling and plunging breaking waves propagating over a 3D submerged
bar (Kamath et al. 2022) and an elliptical shoal (Vincent & Briggs 1989).

4.2 Numerical wave tank

The model used and extended in this study is referred to as a 3D Numerical Wave Tank (NWT)
based on FNPF theory, following the formulation initially proposed by Grilli et al. 2001 and re-
cently reformulated and extended by Harris et al. 2022. The model simulates irrotational and
inviscid flows that are described by a scalar potential ϕ, such that the velocity u = ∇ϕ (where
bold letters signify a vector of 3 components along the x, y, and z directions). With this formu-
lation, the conservation of mass is expressed by Laplace’s equation governing the potential,

∇2ϕ = 0 (4.1)

in the fluid domain Ω with boundary Γ.

In the NWT, Eq. 4.1 is transformed into a BIE expressed on the domain boundary (Γ), which is
discretized at a set of collocation points xi (i = 1, ..., NΓ),

α(xi)ϕ(xi) =

∫

Γ

{
∂ϕ

∂n
(x)G(x− xi)− ϕ(x)

∂G

∂n
(x− xi)

}
dΓ, (4.2)

with α, the interior solid angle (in steradians) made by the boundary at xi, n the outwards
normal vector to the boundary at point x, andG the 3D free space Green’s function,G(x−xi) =
1/(4πri), in which the distance ri = |x− xi|.
The kinematic and dynamic free surface boundary conditions are expressed in a semi-Lagrangian
frame of reference, for which the (single-valued) free surface nodes are fixed in the horizontal
directions as follows (Harris et al. 2022),

δη

δt
=
∂ϕ

∂z
− ∂ϕ

∂x

∂η

∂x
− ∂ϕ

∂y

∂η

∂y
(4.3)

δϕ

δt
= −gη − 1

2
|∇ϕ|2 + ∂η

∂t

∂ϕ

∂z
− Pb

ρ
(4.4)

where η is the vertical position of the free surface, Pb is an absorbing surface pressure that is non-
zero for breaking waves, and ρ is the water density. A third-order Runge-Kutta explicit scheme
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is used to integrate Eq. 4.3 and 4.4 in time as follows (Harris et al. 2022),

f (1) = f (n) +∆t(δtf
(n))

f (2) =
3

4
f (n) +

1

4
(f (1)∆t(δtf

(1)))

f (n+1) =
1

3
f (n) +

2

3
(f (2)∆t(δtf

(2)))

(4.5)

where f denotes η or ϕ, and ∆t is the time step. The discretization is space and time is kept
constant throughout the simulation. Similar to the 2D-NWT of Grilli & Horrillo 1997, regular
stream function waves are generated in the NWT at a wavemaker boundary and dissipated in
an absorbing beach at the far end of the domain. Due to instabilities seen at the wavemaker and
free surface intersection for the test cases considered here, a ramp in space of absorbing pressure
from Harris et al. 2022 is applied for one wavelength of the free surface from the wavemaker
boundary with the reference velocity equal to the instantaneous stream function wave vertical
velocity.

In its most recent implementation (Harris et al. 2022), the 3D-BIE model incorporates a paral-
lelized solver based on a FastMultipoleMethod (FMM). Thismethod solves efficiently the Laplace
equation at each time step, with a computational complexity of O(N1.2

Γ ), which is significantly
lower than that of the optimized iterative solver used in earlier versions of the NWT, which had
a computational complexity of O(N2

Γ) (Grilli et al. 2001, Guyenne & Grilli 2006). The more ad-
vantageous computational complexity of the FMM solver is achieved by using faster, polynomial
approximations of Green’s function, where the number of terms decreases with distance based
on a cost/accuracy criterion. Note that a less efficient, scalar, FMM implementation of Grilli et al.
2001 model had been proposed by Fochesato & Dias 2006 (see also, Fochesato et al. 2007, Grilli
et al. 2010.

In this work, however, the classic (but parallelized) Laplace equation solver is used to avoid poten-
tial truncation errors resulting from using the FMM, which could affect the predicted kinematics
near the wave crest and thus the breaking dissipation. This will enable focusing on evaluating
the wave breaking parameterization in the model. Once the latter is validated, the complete
3D-FMM-BIE solver could be used in future, larger-scale, applications to increase computational
efficiency.

4.3 Wave breaking model

In shallow or intermediate water depth, wave breaking can result from bathymetry-induced
shoaling (Grilli, Horrillo & Guignard 2020, Mohanlal et al. 2023, Papoutsellis et al. 2019, Simon
et al. 2019) and/or directional/frequency wave focusing (Fochesato et al. 2007), leading to a high
energy concentration in wave crests at the time of breaking onset (Boettger et al. 2023). Hence,
at least initially, wave breaking dissipation is centered around the crests where it is largest. For
spilling breakers, this is true throughout the breaking event.
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Therefore, as a first step towards implementing wave breaking onset and dissipation in the 3D-
NWT, it is necessary to identify the crests within a given wave field and to track them accurately
in time in order to calculate their phase speed c (i.e., as the time derivative of the crest displace-
ment), which is required both for calculating theB = u/c criterion and the dissipated power. For
the former, the horizontal particle velocity u at the crest must also be computed instantaneously.
Then the energy dissipation caused bywave breakingmust be estimated for eachwavefront/crest
identified to be breaking.

The details of the implementation of the wave breaking model in the 3D-FNPF-NWT are given
in the following subsections.

4.3.1 Identification of wave crests

In the 2D-FNPF-NWT of Mohanlal et al. 2023, wave crest locations were found by identifying
nodes on the free surface with a vertical elevation higher than that of the nodes in the x-direction,
the primary direction of propagation, and then fitting cubic polynomials to elements around
these nodes and determining the maximum more precisely. Each wave crest time history is then
tracked by assuming that the crests move less than ∆x (discretization in space) in consecutive
time steps. The wave phase speed was then computed as the time derivative of the crest trajec-
tories.

In the 3D-FNPF-NWT, this method is generalized to find the local maxima of bi-cubic local surface
units that subdivide the typically curved wavefronts. The surface units represent the wavefronts
as piecewise-linear segments over which the wave conditions are assumed to be quasi-2D in
the direction orthogonal to each segment (Fig. 4.1 (b)). Surface units are defined over the entire
free surface Cartesian grid, with dimensions 3∆x by 3∆y in the x and y directions, respectively;
these dimensionswere found to be small enough to assume that wavefronts are linear within each
surface unit. At each time step, the surface units relevant to the breaker model are identified (in
short- or long-crested wave fields) as those traversed by a wavefront, meaning that they have at
least one peak (maximum) in the primary direction of propagation (here, x).

At time step t, nt linear wavefront segments, or crest units, denoted by Lt
C (C = 1, ..., nt), are

identified in corresponding 4 by 4 node surface units. Crest units are computed in surface units in
a curvilinear coordinate system (ξ, χ), as follows (Fig. 4.1): (i) a local interpolation of the surface
elevation, η(ξ, χ), is defined based on bi-cubic shape functions; (ii) the wavefront is defined as
the locus of points (xtCk, ytCk) (k = 1, ..., e) that satisfy ∂η(ξ, χ)/∂ξ = 0, within the intervals
χ ∈ [−1, 1] (in practice, to assess these properties, 11 uniformly spaced points are taken along χ
in any given surface unit; see example in Fig. 4.1b); any quantity desired at points (xtCk, ytCk), such
as elevation η or particle velocity u, is calculated from the bi-cubic shape functions evaluated
at these points and the nodal values of the quantity in the corresponding surface unit; (iii) the
various crest units identified at a given time are connected to their nearest neighbor to define
completewavefronts. Fig. 4.2 shows an example of assembledwavefrontswithin a completewave
field, where surface units are represented by dashed rectangles and their corresponding crest
units by discrete line segments of dotted points. Appendix 1 provides details on the identification
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Figure 4.1: (a) Surface unit, with 4 by 4 nodes used to define bi-cubic shape functions in local
curvilinear coordinates (ξ, χ). (b) Crest unit (discrete dotted line segment) of length δ identified
in global coordinates within a surface unit (nodes denoted by stars), as a set of points (xtCk, ytCk).
The color scale represents the free surface elevation.

of surface units and crest units.

4.3.2 Wave particle velocity and celerity along wavefronts

The horizontal particle velocity and phase speed used to estimate the B = u/c criterion are
calculated for each crest unit at the mean location (defined by e points) as,

u =

√(
∂ϕ

∂x
(xC t, yC t)

)2

+

(
∂ϕ

∂y
(xC t, yC t)

)2

(4.6)

and,

c =

√(
dxC t

dt

)2

+

(
dyC t

dt

)2

(4.7)

respectively, with,

xC t =
1

e

e∑

k=1

xtCk and yC t =
1

e

e∑

k=1

ytCk (4.8)

To calculate the time derivatives in Eq. 4.8, the movement of crest units must be tracked in time.
First, for each crest unit, a line perpendicular to it is constructed, written as y = mx + β,
with the slope m, and the y-intercept, β, and passing through its mean location (xC t, yC t). To
determine where a crest unit Lt−1

l from time step t − 1 moved to at the time step t, firstly,
all crest units at time step t (Lt

C) that satisfy |ylt−1 − yC t|/∆x < n, where n = 2.8 (a value
slightly less than the approximate span length of a crest unit, 3) are found. Lastly, the closest
neighboring crest unit from this list is determined such that the distance between their mean
locations (

√
(xC t − xl

t−1)2 + (yC t − yl
t−1)2) is minimum. Prior to calculating the phase speed

using the time derivatives (i.e., Eq. 4.7), to treat sawtooth oscillations, an exponential smoothing
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Figure 4.2: Free surface elevation (in color) showingwavefronts/crests (in yellow tones) of regular
waves propagating over a submerged bar (note, the scales in x and y are different). Surface units
are denoted by dashed rectangles were identified using Algorithm 1 and their corresponding
crest unit as a set of points (xtCk, ytCk)marking the discrete linear wavefront are denoted by dots.

is applied on both xC t(t) and yC t(t), as detailed in Mohanlal et al. 2023.

Wave crests reaching breaking onset are identified with the universal criterion B = 0.85 (Der-
akhti et al. 2020).

4.3.3 Rate of energy dissipation and energy absorption in the model

The standard parameterization of the power dissipated per unit of crest length (W/m), or rate of
energy dissipation in breaking waves (J/(m.s)) is,

Πb(t) = b
ρc5

g
(4.9)

where b is a non-dimensional breaking strength parameter. Thus, for each crest unit identified
to be breaking at time t in the 3D-NWT, Eq. 4.9 is used to specify the instantaneous power to be
dissipated.

To estimate the parameter b, Derakhti, Banner & Kirby 2018 ran a series of NS simulations of
breaking waves in deep and intermediate water depth, proposing that on average over the break-
ing event, b = 0.034 (γ − 0.30)2.5, where γ = Tb

dB
dt when B = 0.85, and the breaking wave

period, Tb = Lb/clb, with clb the linear wave celerity at breaking and Lb a relevant breaking
wavelength. In this formulation, dB

dt represents the rate at which the breaking onset threshold
is reached, which they found was higher for plunging breakers than for spilling breakers, as ex-
pected. For shallow water waves, however, Derakhti et al. 2023, Derakhti, Kirby Jr, Banner, Grilli
& Thomson 2018, Derakhti et al. 2022 found that, for γ > 1.3, b reached a nearly constant value
(b ≃ 0.034).
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Mohanlal et al. 2023 used a 2D-NWT to simulate 2D shallowwater, depth-limited breaking waves
(dissipating energy with a hydraulic jump analogy) and compared their results with experiments
for a range of regular and irregular wave cases, reached a conclusion consistent with these find-
ings. They found that waves with a wave height nearly equal to the local water depth at the onset
of breaking, H/d ≈ 1, would dissipate with b ≈ 0.1. This dissipation resulted in the decay of
the wave height across the surfzone, until the termination of breaking occurred for H/d ≈ 0.4

with b ≈ 0.01. Supplementing their simulations with earlier findings in Battjes 1974, Dean &
Dalrymple 1991, Mei 1989 that depth-limited breaking waves at the onset haveH/d ∈ [0.7, 1.2],
Mohanlal et al. 2023 concluded that on average for depth-limited breaking waves, b should be on
the same order of magnitude. With this rationale, the value b = 0.05 was selected, and simula-
tions of several depth-limited wave breaking test cases were compared with experiments from
breaking onset up to termination, showing that this provided satisfactory results. With a con-
stant b value, the estimation of the power dissipated in breaking waves is simplified and becomes
independent of the wave parameters, which are challenging to estimate for irregular waves, par-
ticularly in 3D (except for the instantaneous wave celerity c(t)) which can be obtained in the 3D
model as detailed above (Eq. 4.7). Therefore, in the applications of the 3D model presented here-
after, which all fall within the same shallow water breaking regime, a constant value of b = 0.05

is used.

In the 3D-FNPF model, the instantaneous power to be dissipated, once estimated, is used to
calibrate the absorbing surface pressure (as in Grilli, Horrillo & Guignard 2020, Guignard & Grilli
2001), extended here to a 2D surface around the breaking crest, as follows,

Pb(x, y, t) = ν(t)
∂ϕ

∂n
(x, y, t) ∀(x, y) ∈ Γb (4.10)

where ν(t) is an absorbing function defined such that the rate of work produced by the pressure
against the wave motion, Pb ∂nϕ, integrated over the breaking wave surface, is equal to the
instantaneous rate of energy dissipation (dissipated power) across the span δ of the crest unit,
Πb δ.

ν(t) =
Πb(t) δ∫ ∫

Γb
(∂nϕ)2

√
1 + (∂xη)2 + (∂yη)2dx dy

. (4.11)

The breaking region Γb of a crest unit is determined as follows: (i) the end points of the crest unit
of a breaking crest are identified (points (xtC1, ytC1) and (xtCe, y

t
Ce), e.g., Fig. 4.3), and from these

points, the normal directions on either end of the wavefront are computed (n1 and n2; with
n1 = −n2, e.g., Fig. 4.3); (ii) moving along the x-direction from (xtC1, y

t
C1) by an interval of ∆x

and from (xtCe, y
t
Ce) by an interval of −∆x, nodes with y value closest to normals are identified,

this is repeated until nodes that satisfy |∂nϕ| < ε |∂nϕ|max, where ε ≪ 1 (here ε = 10−2) are
obtained, denoted by points a and b (e.g., Fig. 4.3); and (iii) the nodes inside the rectangle formed
by the two opposite vertices a and b cover the breaking region, Γb of the respective crest unit,
over which the absorbing pressure defined in Eqs. 4.10 and 4.11 is applied. For instance, for a
sinusoidal crest, as ϵ→ 0, the breaking region becomes the entire region between the preceding
and the following trough. For the discretization chosen here, the extent of the breaking region is
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Figure 4.3: Calculation of the breaking area Γb in the 3D model, for a surface unit (rectangle with
dashed lines) identified as breaking, with a crest unit marked by dotted points. The region Γb of
the free surface identified for applying the damping pressure Pb (Eqs. 4.10 and 4.11) is defined
as the region enclosed by the dashed-line rectangle. The color scale corresponds to the normal
particle velocity at the free surface.

not very sensitive to ϵ. Fig. 4.4 shows an example of the breaking regions identified in a simulated
wave field corresponding to the regular breaking test case of Vincent & Briggs 1989 for periodic
waves propagating over a semi-elliptical shoal. This dissipation model was found to be unstable
for linearly-interpolated BEM elements, hence cubic B-spline elements are used to discretize the
boundary (Harris et al. 2022).

4.3.4 Termination of breaking event

For each identified wave breaking event, the energy dissipation is interrupted in the model using
a breaking termination criterion. Unlike the onset criterion, however, there is not yet a known
universal termination criterion. Following Mohanlal et al. 2023 for 2D breakers, the parameter
B is used here to specify a termination threshold Boff, which is calibrated for each test case pre-
sented in this study. Additionally, for comparison, the breaking duration proposed by Derakhti,
Banner & Kirby 2018 is also reported for these specific cases.

4.4 Results

In the following, the 3D-FNPF-NWT using the new breaking onset and dissipation model is val-
idated with measurements from two sets of laboratory experiments performed for regular long-
crested waves propagating over a 3D submerged bar or a semi-elliptical shoal. In all cases, the
simulated time series of the free surface elevation are compared with the experimental measure-
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Figure 4.4: Example of the breaking regions identified at arbitrary time t for the simulated wave
field corresponding to the regular breaking test case of Vincent & Briggs 1989 for periodic waves
propagating over a semi-elliptical shoal (shown at the bottom in the figure), with the wavemaker
located at x = 0. The color scale indicates the magnitude of the instantaneous energy dissipated
per unit area, Pbϕn, in the breaking regions.

ments acquired using wave gauges.

4.4.1 Regular wave propagation over a 3D submerged bar

Kamath et al. 2022, Roy 2018 studied the lateral energy transfer across the wavefront occurring
in periodic waves propagating over a submerged bar with a side slope. They performed 18 ex-
periments in a 18.3m long, 1.237mwide, and 1.2m tall tank equipped with a flap wavemaker at
one extremity, for non-breaking and breaking periodic waves propagating over a 3D submerged
bar with 1 : 6.933 front and back slopes, and a 1 : 0.963 lateral slope on one side (Fig. 4.5),
for 3 water depths (0.52, 0.55, and 0.58 m) and a range of wave heights (0.019-0.1 m) and periods
(1.21-3.93 s). In each experiment, free surface elevation time series were measured at 20 locations
as shown in Fig. 4.5.

In this application, three experimentswere simulated, all with a depth at thewavemakerh = 0.58

m (C series), for: (C1) non-breaking waves of heightH = 0.031m and period T = 2.869 s; (C4)
spilling breaking waves withH = 0.052m and T = 1.817 s; and (C6) plunging breaking waves
with H = 0.095 m and T = 1.282 s (see Table 4.1). For these test cases, the 3D-NWT had
dimensions: 0 ≤ x ≤ 20 m (with the toe of the bar located at x = 3.459 m) and 0 ≤ y ≤ 1.237

m, and was discretized with ∆x = ∆y = 0.0515 m, which yielded, L/∆x ≈ 120, 75, and
50 (where L is the wavelength at the wavemaker) for the non-breaking, spilling breaking, and
plunging breaking cases, respectively. Additionally, the vertical and temporal resolution were
∆z = 0.096m and∆t = 0.01 s, respectively. An absorbing beach was specified at the far end of
the NWT, at 12.5m≤ x ≤ 20m (≈ 1.5L, 2L and 3L for test casesC1,C4, andC6, respectively).

Non-breaking case C1: Fig. 4.7 compares simulated and measured time series of free surface
elevation for caseC1 at three selected wave gauge locations (#1, #17, and #20), for 5 wave periods
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Figure 4.5: Bathymetry and location of the 20 wave gauges in the simulations and experiments
of Kamath et al. 2022 (note: for gauges #9-#12, the array was moved to measure the waves before
they became unstable during breaking events, such that column (i) was used for test cases C1
and C6, and column (ii) for C4). The flap wavemaker is located at x = 0. Polygons enclose
the approximate region where breaking crests were identified in the NWT simulations, from
breaking onset up to termination, for C4 (dotted) C6 (dashed)

Test case H T S ∆x = ∆y Absorbing beach
(m) (s) (m) L/∆x

C1 (Non-breaking) 0.031 2.869 0.011 0.0515 120
C4 (spilling) 0.052 1.817 0.029 0.0515 75
C6 (plunging) 0.095 1.282 0.074 0.0515 50

Table 4.1: Test cases of Kamath et al. 2022 simulated using the 3D-FNPF-NWT: Wave parameters
and NWT spatial discretization and absorbing beach length. In all cases, the still water depth
was h = 0.58 m.
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Figure 4.6: Evolution of the breaking onset criterion B, as a function of t∗ = (t− tO)/Tb, where
tO is the instant of breaking of the crest unit located at yC = 1.16m for the spilling breaking test
case C4. The dashed rectangle encloses the breaking crest units.
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Figure 4.7: Propagation of periodic waves over a 3D bar for the non-breaking test case, C1 (Ka-
math et al. 2022). Time series of the free surface at selected gauge locations in (dashed red line)
experiments; and (solid blue line) NWT simulations.
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Figure 4.8: Propagation of periodic waves over a 3D bar for the spilling-breaking test case, C4
(Kamath et al. 2022). Time series of the free surface at 3 selected gauges for the experiments
(dashed line) and the 3D-NWT simulations (solid line).

after reaching quasi-steady state in the NWT. Regular periodic incident waves (#1) propagate in
constant depth up to x = 3.459 m, then shoal along the bar front slope (for y > 0.417 m),
growing steeper and increasingly more asymmetric. In the shallowest region over the bar (#17),
the wave height reaches a maximum that is about twice the incident wave height. The same
regular waves also propagate along the lateral slope (for y < 0.417 m) but they are less steep
(#20) than the waves over the bar crest since the water is deeper. A maximum value of the
breaking onset criterion B ≈ 0.22 was computed in these simulations, which is significantly
below the threshold and hence the breaking dissipation was never activated, in agreement with
the experiments where breaking was not observed.

Overall, in the results of Fig. 4.7, considering the small amplitude of waves and experimental
errors, good agreement is observed between the simulated and experimental results. Note that
in Fig. 5 of Kamath et al. 2022, they also compared their simulations using REEF3D with the
experimental results for this case and, their results show similar agreement with the experiments
as the results obtained here with the 3D-NWT.

Spilling breaker case C4: In Case C4, the incident wave steepness (H/L) increases to 0.029,
and spilling breaking was observed at the crest of the bar in the experiments. From Fig. 4.6, the
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Figure 4.9: Propagation of periodic waves over a 3D bar for the spilling-breaking test case, C4
(Kamath et al. 2022). Time series of the free surface at 3 selected gauges for the experiments
(dashed line) and NWT simulations with the breaking model deactivated (i.e., b = 0; solid green),
and activated (i.e, b = 0.05) with Boff = 0.3 (solid blue) and Boff = 0.4 (solid red).
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temporal evolution ofB in the NWT domain shows that it remains constant in the uniform depth
region and starts increasing as the waves shoal up the bar. Breaking onset occurs at x = 7.3 m,
after the third array of wave gauges, as observed in the experiments, and y > 1.08 m, over the
shallowest part of the submerged bar. Once wave breaking is initiated, the absorbing pressure
Pb is applied in the NWT, and B gradually decreases until the breaking termination criterion
Boff = 0.3 is met. For the non-breaking crests (i.e., y < 1.08 m; see Fig. 4.6), B reaches a
maximum B ≈ [0.3, 0.8]), then remains roughly constant and lower than Bth over the top of
the bar (6.46 ≤ x ≤ 8.9 m), before decreasing again over the back slope of the bar (x > 8.9 m).

After reaching a quasi-steady state in the NWT, a comparison of the simulated andmeasured time
series of the free surface elevation for 5 wave periods shows overall good agreement (Fig. 4.8, at 6
selected wave gauge locations (#1, #9, #13, #15, #17, and #20). In the simulations, wave breaking
onset occurs at gauge #9, at x = 7.4 m and y > 1.08 m and continues up to just before gauge
#17 (x ≈ 8.86 m) (see Fig. 4.5). As in case C1, incident regular waves (#1) shoal up over the bar,
resulting in steeper and more asymmetric waves over the top of the bar (#9, #13, #17), with less
steep waves close to the lateral slope (#15). Nonlinear waves that propagate laterally from the
top of the bar to the side slope release their bound higher-order harmonics, causing additional
shorter-period oscillations (#20), which are mostly reproduced in the simulations, even if small
differences are noticeable in the wave amplitudes. Overall, good agreement is observed between
the simulated and measured free surface elevations, in particular in the area with breaking waves
(e.g., gauges #13, #17), with a slight difference in the wave amplitudes for gauges that are farther
downstream (e.g., #20). This may be a sign that wave reflection in the physical tank was larger
than in the NWT, where long absorbing beaches (2L for case C4) were used in the simulations
without attempting to calibrate their length using the observations. Note that, although they
did not show the results for the case C4, Kamath et al. 2022 compared their simulations using
REEF3D with the experimental results for a different spilling-breaking case (C3 in Fig. 7 of their
paper) and, when accounting for the scale of their figure, a similar agreement is achieved with
the 3D-NWT.

To test the sensitivity of the simulation results to the breaking termination criteria Boff, along
with Boff = 0.3, an additional simulation was run with Boff = 0.4 (Fig. 4.9). Comparing the
time series of the free surface elevation at gauges #13 and #17 with the experimental data, a
similar agreement was obtained using either Boff value. For this test case, in the NWT, choosing
Boff = 0.3 yields a breaking duration, tb = 0.85 s. For comparison, the breaking duration
parameter proposed by Derakhti, Banner & Kirby 2018, τ , with Tb (see for definition Derakhti,
Banner & Kirby 2018) was calculated at breaking onset at y = 1.237 m. For test case C4, this
yields τ = 1.26 s, which is longer than the duration estimated in the 3D-NWT. Fig. 4.9 also shows
results for the same case and gauges, when the wave breaking model is deactivated (b = 0) i.e.,
having an absorbing pressure Pb = 0. In this case, the wave crest elevations are over-predicted
by about 30% compared to the experiments.

Plunging breaker case C6: In test case C6, the incident wave steepness increased to 0.074, and
plunging breaking was observed in the experiments. After a quasi-steady state is reached in the
NWT, a comparison of approximately 4 wave periods of the simulated and measured time series
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of the free surface elevation at 6 selected wave gauge locations shows only small differences
(Fig. 4.10). Breaking onset occurs just after the gauges #9, #10, and #11 (x ≈ 6.6 m and y > 0.49

m; see Fig. 4.5), in agreement with the observations of the experiment that breaking occurred
after the third array of wave gauges, and continues until slightly beyond gauge #17 (x ≈ 9.3 m)
(see, Fig. 4.5). As in case C4, Boff = 0.3 is taken here which yields a duration of wave breaking
of tb = 2.23 s. From the free surface elevation at the onset at y = 1.237 m, the breaking wave
period Tb = 1.03 s, or τ = 0.77 s. Thus, for this plunging breaking test case, the wave breaking
duration proposed by Derakhti, Banner & Kirby 2018 estimates a shorter breaking duration than
using the Boff threshold. As in the previous test cases, regular incident waves shoal and break
on top of the bar, but since the incident waves are steeper, wave breaking occurs more violently
in experiments, as plunging breakers. The comparison of the NWT results with the experiments
is good for the first couple of wave periods and then larger differences appear, especially at the
gauges closer to the walls, as seen in the previous test case. Overall, the agreement stays quite
reasonable. Note again that, although they did not show the results of caseC6, Kamath et al. 2022
compared their simulations using REEF3D with the experimental results for a similar plunging-
breaking case (C5 in Fig. 9 of their paper) and, when accounting for the scale of their figure,
similar agreement is achieved with the 3D-NWT. Both models show larger differences with the
experimental measurements at downstream gauges, in particular closer to walls. As with the
previous test case, this might be due to the presence of wave reflections in the physical wave
tank, and the difference in the input wave generationmethod employed in the physical wave tank
compared to the numerically precise stream function wave generation utilized in simulations.

To evaluate how well the experimental wave shape and nonlinear features are reproduced in the
simulations, the significant wave heightHs and skewness Sk are computed from the free surface
elevation time series as follows,

Hs = 4σ (4.12)
Sk = ⟨(η − ⟨η⟩)3⟩/σ3 (4.13)

where σ2 = ⟨(η−⟨η⟩)2⟩ is the free surface variance and ⟨ ⟩ denotes the time averaging operator,
applied over a selected time interval. The spatial distribution of Hs and Sk is computed for
a duration of 5 wave periods for this test case (Fig. 4.11). Over the top of the bar and prior
to breaking, the waves are expected to be highly asymmetric, with near vertical front faces. A
decrease inHs and Sk is observed in the breaking region from the onset (x = 6.6mand y > 0.49

m) up to termination (x = 9.3 m) due to the energy absorption that attenuates the waves.

Fig. 4.12a and b show the evolution ofHs andSk for the spilling (C4) and plunging (C6) breaking
cases, respectively, along line y = 0.822 m, which passes through gauges #2, #6, #10, #14

and#18. Hs and Sk increase up to breaking onset, as waves shoal on the front slope of the bar
and decrease during breaking over the bar. Overall, satisfactory agreement is observed between
the simulated and measured wave statistics at the five wave gauges. Additional experimental
measurements are needed to analyze further the differences in the simulations and experiments,
in particular to validate the presence of oscillations in wave height and skewness after x = 10m
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Figure 4.10: Propagation of periodic waves over a 3D bar for the plunging-breaking test case,
C6 (Kamath et al. 2022). Time series of the free surface at selected gauges for the experiments
(dashed line) and NWT simulations (solid line).
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Figure 4.11: Propagation of periodic waves over a 3D bar for the plunging-breaking test case, C6
(Kamath et al. 2022). Spatial distribution of Hs and Sk computed from simulation results for a
duration of 4 wave periods after a steady state is reached. The two quantities are plotted along
the dashed line in Fig. 4.12 (b). Absorbing beach is present for x ≥ 12.5m.
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Figure 4.12: Propagation of periodic waves over a 3D bar for test cases (Kamath et al. 2022) : (a)
C4 spilling breaking; and (b) C6 plunging breaking. Comparison of the spatial evolution of Hs

and Sk along line y = 0.822 m in the NWT (solid line) and in the experiments (circles). Note:
results in (b) correspond to Fig. 4.11. Absorbing beach is present for x ≥ 12.5m.

in case C4 (Fig. 4.12a) and the location of the local maxima in skewness for case C6 (Fig. 4.12b).
Additional measurements after wave breaking are also needed to evaluate more quantitatively
the optimal value of Boff.

Finally, Fig. 4.13 shows a quantitative comparison of the NWT results with the experimental
measurements, for all the gauges, for the non-breaking, spilling, and plunging-breaking test cases
C1,C4, andC6, respectively. Overall, a satisfactory agreement is observedwith the experiments,
except for a few gauges downstream and close to the walls for reasons explained in the previous
spilling breaking test case.

4.4.2 Regular waves propagating over an elliptical shoal

Vincent & Briggs 1989 conducted a series of 17 experiments with monochromatic and irregular
waves, both non-breaking and breaking propagating over an elliptical shoal, in a 35 m wide and
29m longwave tank (see Fig. 4.14). Here, a regular breakingwave test case is simulated in the 3D-
NWT, for which long-crested waves were generated in the x direction, in a depth of h = 45.72

cm, with H = 13.5 cm and T = 1.3 s (test case M3). For waves generated perpendicular to the
wavemaker, both the shoal geometry and the wave field are symmetric about y = 13.72m. Thus,
half of the physical domain is represented in the NWT (numerical domain) for computational
efficiency (see Fig. 4.14). Nine wave gauges measured the free surface position along Transect 4,
which is located 3.05 m after the shoal, parallel to the wavemaker. The NWT is discretized with
∆x = ∆y = 0.1259m, which yieldsL/∆x ≈ 20 (whereL is the wavelength at the wavemaker),
∆z = 0.076m, and∆t = 0.021 s. The domain extends from 0 ≤ x ≤ 17.5m and 0 ≤ y ≤ 13.72

m, with the center of the shoal located at x = 6.39 m and y = 13.72 m. An absorbing beach is
specified for 15.0m ≤ x ≤ 17.5 m (≈ L in length).
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Figure 4.13: Relative difference of simulated wave statistics, Hs and Sk calculated for the test
cases C1 (non-breaking), C4 (spilling breaking), and C6 (plunging breaking) from Kamath et al.
2022 with respect to the experiments and the bathymetric contour.
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Figure 4.16: Spatial evolution ofHs (averaged over 4 quasi-steadywave periods) from simulations
with Boff = 0.05 (a) and Boff = 0.3 (b). The relative error from the two normalized with H0 is
shown in (c). The semi-ellipse represents the toe of the shoal and the solid line, the measurement
location of the wave gauge array in the experiments. The region enclosed by black dashed lines
indicates approximately where breaking wave breaking crests were identified in the NWT.

In the simulations, as in the experiments, the regular waves shoal and break over the top of the
elliptical shoal, and the wave breaking dissipation continues after the shoal (see black dashed line
in Fig. 4.14). A comparison of the significant wave height normalized by the incident wave height
at the wavemaker Hs/H0 (calculated over 4 quasi-steady wave periods) shows good agreement
for a range of termination criteria (Fig. 4.15), as long as the value of Boff is not too large.

Using the same termination criterion Boff = 0.3 as for the breaking cases of Kamath et al. 2022,
Fig. 4.15 shows that the wave height is significantly overpredicted along the shoal axis (at y =

13.72m). Thus, three additional termination criteria were tested, withBoff = 0.05, 0.075, and 0.1.
Choosing a smaller value,Boff = 0.05 to 0.1, prolongs the duration of breaking and dissipation in
the NWT, resulting in better agreement with the experiments. Fig. 4.16 shows spatial evolution
of HS from the NWT with Boff = 0.05 and 0.3 and the percentage difference between the two.

With Boff = 0.05, 0.075, 0.1, and 0.3, the duration of wave breaking is respectively, tb =

4.01 s, 3.34 s, 3.27 s, 2.52 s. From the free surface elevation at breaking onset, at y = 13.72

m, Tb = 0.99 s, which yields τ = 0.74 s, which is much shorter than the breaking duration used
in the NWT.
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H/d (onset) H/d (termination)

C4 (spilling) 0.89 0.50
C6 (plunging) 0.98 0.62
Elliptical shoal 0.85 - 0.93 0.20

Table 4.2: The ratio of wave height to water depth (H/d), computed at breaking onset and ter-
mination for the breaking test cases considered in this study, usingBoff = 0.3 for the submerged
bar and Boff = 0.05 for the semi-elliptical shoal cases.

4.5 Conclusions and perspectives

Extending earlier 2Dwork, a novel parameterized method is proposed to model 3D depth-limited
breaking wave onset and dissipation in an existing 3D-FNPF BEM numerical wave tank (NWT)
(Harris et al. 2022). With this method, incident wavefronts are identified by splitting them into
smaller patches whose physical properties are assumed to be approximately constant across
their span, which enables considering these individual patches of wavefronts as locally 2D long-
crestedwaves evolving towards breaking. The depth-limitedwave breaking dissipation approach
validated in a 2D-FNPF model by Mohanlal et al. 2023 is then used to model these piecewise 2D-
approximated waves in the 3D-NWT.

The proposedmodel for parameterized 3D depth-limitedwave breaking detection and dissipation
is implemented in three steps: (i) detection of breaking onset using the universal criterion B =

u/c = 0.85, originally proposed by Barthelemy et al. 2018 for deep and intermediate water cases
and later validated by Derakhti et al. 2020 in shallow water conditions; (ii) calculation of the
energy dissipation using an absorbing surface pressure, based on the assumption that depth-
limited breaking waves are typically in a specific range of wave height to water depth ratios and
instantaneous non-dimensional breaking strengths; and (iii) use of the parameter B to specify
a termination criterion, which is calibrated in each specific test case. In this respect, Table 4.2
compares the wave height to depth ratios at breaking onset and termination, computed for all
the breaking test cases examined in this study, using Boff = 0.3 for the submerged bar and
Boff = 0.05 for the semi-elliptical shoal cases. The observed values of H/d mostly fall within
the range ≈ [0.3, 1.0], suggested in Mohanlal et al. 2023 for the applicability of the constant
non-dimensional breaking strength parameter, b = 0.05.

The algorithm proposed in this study is tailored for Cartesian and quadrilateral (BEM) elements.
Nevertheless, it has the potential to be adapted to other types of elements by modifying the defi-
nition of a crest unit accordingly. A robust boundary discretization method is critical to represent
accurately the boundary of the numerical domain in the Boundary Element Method (BEM) used
here to solve Laplace’s equation, interpolating field variables, and calculating tangential deriva-
tives along the boundary, as these are key to the accurate BEM solution and in the time updating
algorithm.

In the NWT simulations, by employing higher-order, cubic B-splines (Harris et al. 2022), the
model was found to be stable near and beyond breaking onset, even using a coarse mesh. For
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simulations longer than several periods of breaking waves, however, the model became unstable,
with the presence of high-frequency short waves that grew into sawtooth instabilities. This
could be attributed to both a discretization that is too coarse, and also to the lack of a smoothing
function in the model, to smooth variations in the absorbing pressure between the breaking and
non-breaking regions. Such smoothing was found to be necessary to perform long simulations
in 2D-FNPF-NWT (Mohanlal et al. 2023), and it should be straightforward to implement in the
3D-NWT in future work.

The proposed model is intended to approximate as closely as possible, within the limits of FNPF
theory, the physics of breaking waves, in particular the energy dissipation and wave height de-
cay resulting from breaking. In this work, this was achieved with physically-motivated choices
of both the onset parameter and the dissipation model. Although the latter, with the choice of
b = 0.05 results from earlier 2D work that was validated with experiments (Mohanlal et al.
2023), the value of the termination criterion, upon which the duration of wave breaking tb and
the application of the absorbing pressure depends, still requires numerical calibration for each
bathymetry considered here. If no calibration is possible, from the few 2D (from Mohanlal et al.
2023) and 3D wave breaking experimental test cases simulated, Boff ∈ [0, 0.3] should be reason-
able for a range wave conditions and bottom bathymetries (e.g., constant slope, submerged bar,
elliptical shoal). However, future work should investigate further the moment of termination of
breaking (or duration of breaking) as a function of wave parameters, with the aim of exploring the
possibility of establishing a universal criterion for termination based on geometric, kinematic, or
dynamic wave properties. Additional experimental measurements may be necessary to facilitate
this analysis, with a particular focus on measurements downstream of wave breaking.

The grid resolution in this study was limited by the computational costs associated with the 3D-
FNPF model, despite its recent improvement in efficiency (Harris et al. 2022). Several techniques
have been developed to enhance the computational efficiency of FNPF models, often at the cost
of sacrificing some of the accuracy. These techniques include using simplified Laplacian solvers
or adopting weakly nonlinear free surface boundary conditions. For instance, the use of a Fast
Multipole Method (FMM) as demonstrated in Harris et al. 2022 enables the faster solution of the
Laplacian solver. By utilizing the test cases presented here as benchmarks, the dependence of the
breakingmodel on computationally faster FNPFmodels can be investigated. This explorationwill
enable applying the breaking model to irregular waves in larger spatial domains over longer time
periods.
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Appendix 1: Identification of surface and crest units

To identify a crest unit i.e., a portion of wavefront represented by a discrete line segment, the
set of points shown in Fig. 4.17 are examined. Here, the wave elevation is assumed to be zero at
black points and one at a few hollow circles. Using Algorithm 1, j = 1 and i = 2 initially, and
a peak is identified at j = 1 and i = 9. Then the quadrilateral element R8 is identified in the
surface unit, as well as its neighbors. SinceR8 has only 3 neighbors (R7, R,R5), the if statements
are exited. Continuing to j = 2 and i = 8, the element R and its neighbors are identified, which
in this case areR1, ..., R8. This set of elements (R,R1, ..., R8) and their nodes represent the first
surface unit where a crest unit is identified. Proceeding to j = 3 and i = 7, the element R1 is
identified. However, since some of its neighbors are already included in a previous surface unit
(in this case, the surface unit with elements R,R1, ..., R8), it is not considered to be a separate
surface unit. This algorithm is followed until i = 9 and j = 9. As a result, three surface units
are obtained, as shown in Fig. 4.17 with the symbols R, S, and T .
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Figure 4.17: Example application of the surface unit identification Algorithm 1 to a set of Carte-
sian nodes in (x, y), with free surface elevation 0 (solid circles) and 1 (hollow circles). The rect-
angles with solid lines represent the elements chosen for peak detection, and the rectangles with
dotted lines represent their neighboring elements.

Crest units are then calculated by first performing a local bi-cubic interpolation of the surface
elevation η within a given 4 by 4 node surface unit, defined in a curvilinear coordinate system
(ξ, χ) (Fig. 4.1), based on cubic polynomial shape functions. With µ ∈ [−1, 1] denoting either ξ
or χ, the latter are standard and defined to satisfy the property: Np(µp) = 1 for µp = [−1, −
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1/3, 1/3, 1] and Np(µq) = 0 for p ̸= q (p, q = 1, ..., 4).

Accordingly, the shape functions and their first derivative are,

N1(µ) =
1

16
(1− µ)(9µ2 − 1) ; N ′

1(µ) =
1

16
(−27µ2 + 18µ+ 1)

N2(µ) =
9

16
(1− µ2)(1− 3µ) ; N ′

2(µ) =
1

16
(9µ2 − 2µ− 3)

N3(µ) =
9

16
(1− µ2)(1 + 3µ) ; N ′

3(µ) =
1

16
(−9µ2 − 2µ+ 3)

N4(µ) =
1

16
(1 + µ)(9µ2 − 1) ; N ′

4(µ) =
1

16
(27µ2 + 18µ− 1)

(4.14)

and,

η(ξ, χ) =

16∑

i=1

Np(ξ)Nq(χ) ηi (4.15)

where p = 1 + (i − 1) mod 4 (with mod denoting the modulo operator), q = ⌈i/4⌉ and ηi
denotes the surface elevations at nodes i arranged as shown in Fig. 4.1a.

In the local coordinate system, the crest unit/wavefront is defined as the locus of points (ξCk, χCk)

(k = 1, ..., e) that satisfy,

∂η

∂ξ
(ξ, χ) =

16∑

i=1

N ′
p(ξCk)Nq(χCk) ηi = 0 (4.16)

where the prime symbols denote the first derivative. In each surface unit, these equations are
evaluated over 11 points along χ for χ ∈ [−1, 1] (this choice of number of points results from
a trade-off between accuracy and computational time). In other words, the points (ξCk, χCk)

represent locations where the spatial gradient of the free surface becomes zero in a horizontal
direction, indicating the presence of peaks at the free surface. A typical wavefront/crest unit is
shown in Fig. 4.1b, and an example of wavefronts assembled at arbitrary time t in a completewave
field is shown in Fig. 4.2. The algorithm implemented to determine surface units and calculate
their crest units is summarized in Algorithm 1.
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Algorithm 1 The algorithm used to obtain crest units
Create an empty list of crest units Lt

for j = 1 to m-1 do ▷ m, the number of nodes along y
for i = 2 to n-1 do ▷ n, the number of nodes along x

if η(i− 1, j) < η(i, j) > η(i+ 1, j) then ▷ is peak?
Find element R with η(i, j) as the bottom-left node elevation
if R has 8 neighbor elements not considered in Lt then

Identify the 16 nodes of this surface unit
Arrange the nodes as shown in Fig. 4.1 (a)
Do Bi-cubic fit from Eqs. 4.14
Obtain the set of points (ξCk, χCk) using Eqs. 4.16
Add the new crest unit to the list Lt

end if
end if

end for
end for
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Chapter 5

Conclusions and perspectives

L’objectif de cette thèse etait de faire progresser les modèles numériques existants util-
isés pour simuler les états de la mer à l’échelle d’un parc éolien, en simulant avec pré-
cision les vagues déferlantes dans des modèles de type potentiel. Cette thèse présente
une modélisation générale et relativement simple de la détection et de la dissipation du
déferlement des vagues, à profondeur et à cambrure limitées, y compris les déferlantes
déversantes et plongeantes, à la fois en 2D et en 3D. Le modèle proposé est validé par
rapport à plusieurs expériences de déferlement de vagues de la littérature. Le critère
de terminaison du modèle de déferlement est reconnu comme un aspect qui n’a pas
été examiné en profondeur, et une piste potentielle pour son amélioration est proposée.
Quelques idées initialement prévues pour être incluses dans cette thèse mais qui n’ont
pas été pleinement explorées en raison de contraintes de temps sont examinées et dis-
cutées.

115



Chapter 5. Conclusions and perspectives 116

5.1 Summary

The rapid expansion of the renewable energy sector in Europe, driven by ambitious targets set
by the European Union (EU), to achieve carbon neutrality in the coming decades, has led to an
increased focus on offshore wind energy. This particular sector, which involves both floating and
fixed wind turbines, has gained considerable attention due to the abundance of coastal areas and
vast water-covered regions across Europe. Consequently, extensive research has been conducted
to gain a deeper understanding of the evolution of sea states. The objective of this thesis was to
advance the existing numerical models used for simulating site-scale sea states associated with
offshore wind energy, by accurately simulating breaking waves in numerically simple models (in
this study the FNPF models).

Based on driving physics, breaking waves can be classified into two main categories, namely
depth-limited waves, which occur due to shoaling, and steepness-limited waves, which result
from the concentration of energy at a specific point. In both cases, a parameterizedwave breaking
model consists of three essential steps. Firstly, the onset of wave breaking, which is the moment
when waves are deemed to start breaking, is identified. Next, the amount of energy that needs
to be dissipated is calculated. Lastly, a termination criterion is applied to determine when to stop
the dissipation process.

In this study, the onset of wave breaking is determined by a universal criterion proposed by
Barthelemy et al. 2018 and Derakhti et al. 2020, which states that a crest with a ratio of horizontal
particle velocity, denoted as u, to crest velocity, denoted as c, exceeding a critical value of B =

u/c = 0.85, will break. The study of 2D depth-limited breaking waves demonstrated that this
criterion accurately predicted the onset of breaking, closelymatching the results of spilling (white
foam spilling down the front face of the wave) and plunging (overturning jet on the front face
of the wave) breaker experiments reported in the literature. Additionally, for steepness-limited
breaking waves, the free surface elevation at the moment of breaking onset corresponded to the
instant when the free surface becomes nearly vertical. This is important as starting to apply
dissipation after this point can lead to numerical instabilities. Therefore, this criterion serves as
a reliable predictor of breaking onset, providing valuable insights into wave behavior.

The dissipation from wave breaking is performed in two steps. First, the non-dimensional break-
ing strength parameter (b) is computed, which determines the instantaneous power to be dis-
sipated. Secondly, this power is modeled as an absorbing pressure acting across the breaking
crest, following the approach described in Guignard & Grilli 2001. In the case of depth-limited
breaking, a new model for dissipation strength is proposed. For steepness-limited dissipation,
the dissipation strength predicted in Romero et al. 2012, which is a function of the maximum
linear wave steepness, is employed.

For 2D depth-limited breaking waves, the non-dimensional breaking strength (b) was determined
using the hydraulic jump (HJ) analogy initially introduced by Hansen & Svendsen 1979 and Stive
1984 for spilling breakers. It was observed that the value of b exhibited a relatively narrow range,
centered around 0.05, for various types of breaking, including spilling and plunging breakers.
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Furthermore, the ratio of wave height to water depth, κ, at the breaking onset was found to
fall within the range of [0.7, 1.2], consistent with the findings of Battjes 1974; Dean & Dalrym-
ple 1991; Mei 1989 for depth-limited breaking waves in general. By analytically demonstrating
that the instantaneous value/magnitude of b predominantly lies within this narrow range un-
der shallow water and mild slope assumptions, a proposition that b maintains a similar order of
magnitude for depth-limited breakers in general, is made. Based on this reasoning, simulations
of spilling and plunging depth-limited breaking waves were conducted using a constant break-
ing strength of b = 0.05. The simulation results obtained using this constant value for b showed
good agreement with experimental measurements, falling within the range of experimental un-
certainty.

The proposed 2D unified model for depth-limited breaking dissipation is further extended to 3D
depth-limited breaking waves. This extension involves dividing 3D long or short-crested waves
into smaller sections of wavefronts, where the physical characteristics remain relatively constant
in the spanwise (along-crest) direction. This approach allows us to treat these individual patches
of wavefronts as 2D long-crested waves. This approach is tested for laboratory experiments from
the literature of spilling and plunging breaking waves over a 3D submerged bar and an elliptical
shoal. Good results are obtained in comparison with the experiments.

A flowchart briefly describing the parameterized wave breaking model proposed in this study is
as follows,

Identify a crest

Is B > 0.85∗
Is termination
criterion met

Is H
d > κ∗∗t

Depth-limited dis-
sipation (Ch. 2, 4)

Steepness-limited
dissipation (Ch. 3) ∗∗∗

Find crest
at the next
time step

1

1

Stop dissipation

yes no

yes

no
yes

∗ Barthelemy et al. 2018; Derakhti et al. 2020
∗∗ κt ∈ [0.4− 0.7], a threshold set by studying κ at the breaking termination, in Chapter 2
∗∗∗ assuming that the input linear wave steepness is known or can be estimated

5.2 Perspectives

It is crucial to respect the potential flow validity throughout the domain for the test case that
is aimed to be studied, with the exception of regions where breaking waves occur, which are
addressed by the developed parameterized models presented here. However, there are instances
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where the flow leading to breaking waves may not strictly adhere to the potential flow regime.
For instance, in the case of flow over a step, as modeled in the 2D NWT by Grilli et al. 1992,
slight overprediction of wave heights was observed. This discrepancy can be attributed to energy
dissipation resulting from flow separation over the step and vorticity observed in the experiments
which is not accounted for in theNWT.Hence, it is necessary to employ an appropriate numerical
model that encompasses the full physics of the specific test case under consideration. Among
such phenomena of interest for coastal applications include the modeling of runup and breaking
waves in the presence of currents.

The breaking strength (b) for steepness-limited breaking waves is determined based on the input
maximum linear wave steepness using the empirical curve proposed by Romero et al. 2012. This
approach is suitable for simulating laboratory test cases where the input conditions are known,
as demonstrated in Chapter 3. However, when dealing with irregular sea conditions, it becomes
impractical to determine b using this method. Therefore, alternative empirical laws are needed to
estimate b, such as the one proposed by Derakhti, Banner & Kirby 2018, who provide an empirical
curve for b with respect to the wave conditions at the onset of breaking.

For the cases in Chapter 2, for depth-limited breaking waves, the parameter γ (representing
an intensity of breaking onset) seemed to be larger for plunging breakers relative to spilling
breakers, with the separation threshold of γ ∈ [1.3− 1.4]. However, to establish a general value
to be used, a broader range of test cases needs to be explored in further research.

In all the tested cases, the termination of wave breaking was determined by comparing simulated
and measured free surface elevation as a function of the parameter,B. For breaking waves over a
bar, the optimal value ofBoff was found to be 0.3. On a slope, the breaking dissipation continued
until the end of the slope. In the case of focused waves, the optimal value of Boff was 0.4. It is
evident that the criterion B cannot be universally applied as a termination criterion. To explore
the possibility of establishing a universal termination criterion based on geometric, kinematic, or
dynamic wave properties, one may investigate the wave conditions at the moment of breaking
termination for all the calibrated cases in this study.

The thesis aimed to develop a modeling approach for simulating breaking waves for offshore
applications at site-scale domains. In the case of two-dimensional scenarios, two irregular sea
states on larger domains, such as a domain size of 60 m for simulating the test case of Adytia
et al. 2018, were examined. However, for three-dimensional cases, the analysis was limited to
regular breaking test cases simulated over a short time period. This constraint was attributed to
the time-consuming nature of the NWT. Therefore, to study irregular breaking waves in large
domains, a more efficient wave model is necessary. This could involve either enhancing the
performance of the 3D NWT or considering a relatively simpler model that can provide faster
results.
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5.2.1 Periodic breaking waves with runup

In experiments involving periodic waves breaking over a sloping beach (e.g., Hansen & Svendsen
1979; Ting & Kirby 1994), as the waves approach the shore, they undergo shoaling, causing them
to break on the sloping beach. This breaking action continues as the water depth gets more
and more shallow. Eventually, a phenomenon known as runup takes place. Runup refers to the
process where the waves rush up the beach, resulting in a rise in water level above the level of
still water.

However, as seen in Chapter 2 for the test cases of Hansen & Svendsen 1979 and Ting & Kirby
1994, once the water depth reaches a certain shallow threshold, the simulated bathymetry transi-
tions into deeper depths and eventually levels off at a constant depth where waves are absorbed.
This approach is adopted as experimental measurements of surface elevation beyond this thresh-
old shallow depth are not available. Thus the modeling of wave runup is not necessary in this
context.

The modeling of runup for solitary waves on steep slopes has been addressed in the work of
Grilli & Svendsen 1990a. Here an attempt was made to extend this modeling approach to incor-
porate runup for periodic breaking waves on relatively gentler slopes in the NWT. The tip of the
free surface and the bottom of these cases make very sharp angles that can lead to numerical
instabilities. To overcome this issue, a new method was implemented to distribute nodes near
the intersection of the free surface and bottom. At each time step, the spatial distribution of
nodes close to these intersections followed a geometric progression, with the smallest distance
occurring near the tip of the intersection, as shown in Fig. 5.1.

Fig. 5.2 shows the free surface and the bottom for the Hansen & Svendsen 1979 breaking test
case, for four different time instants, each two wave periods apart. The model is stable for a few
wave periods, however, as the runup distance keeps increasing, the model becomes unstable due
to the sharp corner at the free surface and the bottom intersection (Fig. 5.2, bottom-right). It is
challenging to determine precisely when the breaking dissipation process becomes less domi-
nant and the influence of bottom friction (which is not included in the FNPF models used here)
becomes more significant. Also, the wave crests become very coarse close to the tip and the iden-
tification of crests and troughs here gets complicated. Therefore, an approach could be to decide
on a critical depth or depth-to-wavelength ratio, after which it is assumed that the dissipation is
dominated by the bottom friction and model this dissipation for the entire free surface from this
point up to the tip.
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Figure 5.1: A close-up of the periodic wave breaking test case of Hansen & Svendsen 1979 at the
runup. Circles indicate the position of nodes.
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Figure 5.2: The periodic wave breaking test case of Hansen & Svendsen 1979, with runup for four
different time instants.

5.2.2 3DWaveBI

One of the objectives of this thesis set in the beginning was to conduct experiments involving
regular and irregular waves breaking on a scaled-down (1/40) model of a dune, with and without
the presence of a fixed monopile. The chosen bathymetry represents a simplified dune profile,
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consisting of a gentle upslope, a region of constant depth, and a relatively steep downslope. Two
different upslope ratios, namely 1/25 and 1/12 (Fig. 5.3), were selected for this investigation. The
height of the dune, measured from the base of the downslope to the shallowest depth was 0.5m.
A monopile was installed at the shallowest depth (the black circle in Fig. 5.3). The water depths at
the wavemaker were to be taken as 0.8m and 0.7m for performing various regular and irregular
(JONSWAP) test cases. The constructed bathymetry of this dune is shown in Fig. 5.4.

The planned measurements comprised recording free surface elevations at 18 gauge locations,
capturing videos of the wave field using a high-resolution overhead camera (12 MP) to identify
regions with breaking waves, employing a side view camera with a high acquisition frequency
to observe the wave shape upon impact on the monopile, and recording forces of breaking waves
imparted on the monopile at a high frequency (1 kHz).

Upon construction of the bathymetry, two interns, Arthur Guidel and Gabriel Dreysse, recorded
a data set for the first run for an irregular JONSWAP spectrum for a few minutes. From the
following day until the present moment, a problem encountered with the wavemaker is being
resolved, rendering it impossible to proceed with any additional experiments. As a result, the
experiments remain indefinitely postponed.
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Figure 5.3: Schematic of the bathymetry at Chatou used in the NWT with the black circle repre-
senting the location of the monopile, wavemaker at x = 0.

On the numerical side of this objective, a periodic test case was run in the NWT to understand
and get a first estimation of where breaking regionsmight be seen in thewave tank. A sufficiently
large wave was selected, ensuring that it would break on the dune. In Fig. 5.5, the bathymetry in
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Chatou along with a wave field from the periodic wave at an instant of breaking is shown. Three
crest units near the top of the bar were identified as breaking, and the corresponding region
where a damping pressure due to breaking is applied is visualized using a colormap indicating
the quantity Pbϕn (integrated over the breaking region gives the total energy dissipated), where
Pb represents the damping pressure accounting for wave breaking, and ϕn is the normal velocity.
Qualitatively, the identified breaking region from simulation (Fig. 5.5) appears to be similar to
the one observed in an experimental test shown in Fig. 5.6 (note: the input conditions are not the
same for the two cases).

Figure 5.4: The constructed bathymetry as part of 3DWaveBI, in the wave tank at Chatou. Wave-
maker paddles can be seen at the bottom of the picture.
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Figure 5.5: 3DWaveBI bathymetry (wavemaker at x = 0) with a wavefield from a periodic wave
breaking on the bar (with an Iribarren number, ξ0 = 0.25, for a 1/25 slope, corresponding to a
spilling type breaker) from the NWT results. The colored quantity is Pbϕn (units in m3s3), where
Pb is the damping pressure accounting for wave breaking and ϕn is the normal velocity.

5.2.3 Detection of breaking waves

For the planned wave breaking experiments, it was necessary to develop a method to identify the
breaking regions in the wave tank. Typically, this would involve detecting the brightest pixels.
However, in the facility at Chatou, there were additional bright pixels scattered around due to
the presence of bright spotlights on the ceiling (as shown in Fig. 5.6, left). Therefore, a more
accurate method was desired to precisely identify the breaking regions.

For this purpose, a set of kernels was designed such that the original images convoluted with
these kernels would result in an image that would identify bright spots as only the ones from
breaking waves. The first kernel is a 2D normal distribution kernel (Fig. 5.7) of size l (in this case
l = 50). This operation will lower the magnitude of pixels present in areas where small patches
of bright pixels are present. This diffusion will be relatively lower at regions where a cluster of
bright pixels is present (i.e., the regions with breaking waves). This image is further convoluted
by a series of four edge detection kernels (since an edge detection kernel is direction dependent).
For detecting vertical edges from the left to the right of an image, this kernel is, with ϵ = 0.1,



1 0 −1

1 ϵ −1

1 0 −1


 .
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For vertical edges from the right to the left, this kernel is,


−1 0 1

−1 ϵ 1

−1 0 1


 .

Similarly, for detecting horizontal edges from the top to the bottom of an image, this kernel is,



1 1 1

0 ϵ 0

−1 −1 −1


 .

For horizontal edges from the left to the right, this kernel is,


−1 −1 −1

0 ϵ 0

1 1 1


 .

Fig. 5.6, middle, is obtained after the total of 5 convolutions (convoluted one after the other), and
scaling the pixels such that the brightest ones remaining are equal to 255. Finally, a threshold
(pth) is set (in this case pth = 250) above which the pixels are denoted as breaking regions (yellow
pixels in Fig. 5.6, right). The calibrated parameters utilized in this study were determined using
an initial set of test images. While these parameters could be further optimized by analyzing a
larger data set, it should be noted that this method is specifically designed for the problem at
hand (bright pixels scattered around due to the presence of bright light spots on the ceiling) and
may not be applicable to other types of cases. For a more general approach, one could consider
analyzing the images in time.

Figure 5.6: Left: an overhead picture of a wavefield (wavemaker located at the bottom of the
images). Middle: the final convoluted image. Right: the initial picture with breaking region
identified as the yellow colored pixels.
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Figure 5.7: A 2D normal distribution kernel with 50 × 50 elements. The sum of all the weights
is equal to 1.

5.3 Closing remarks

This thesis introduced a parameterized wave breaking model that is based on the known physics
of wave breaking, including the breaking onset and dissipation. This model is validated for a
range of 2D test cases with variable bathymetries without requiring any calibration, except for
the termination criterion. Additionally, a straightforward numerical implementation method is
presented to extend the model to 3D, and is validated with experiments from the literature. The
accurate calculation of the phase speed forms the foundation of this model, used for both the
accurate identification of onset and the magnitude of energy dissipation.
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Depth-limited wave breaking dissipation in a
potential flow code
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Abstract:
Simulation of waves beyond the breaking point in a fully non-linear potential flow model (e.g.
Raoult et al. [1]) is considered with a semi-empirical dissipation term that requires correctly
determining the breaking onset and estimating the energy dissipation rate. A kinematic breaking
criterion, similar to those found recently to be practical for arbitrary water depth (e.g. Derakthi
et al. [2]), is applied here. The criterion is based on */�, the ratio of the free surface water
velocity to the wave phase speed. To estimate the wave breaking strength in shallow water,
previous work by Svendsen et al. [3] that continues to be used and developed (e.g. Grilli et
al. [4]), has shown that a hydraulic jump model can provide a reliable approach for spilling
shallow water breakers. Alternatively, Derakthi et al. [5] proposed a parameterization for the
breaking strength in deep and intermediate water depending on the rate of change of*/�. Here,
a range of depth-limited wave breaking cases for regular and irregular waves are considered and
validated with experimental measurements, and values for the rate of change of */� and the
breaking strength are calculated for shallow water cases. Current work includes exploring if
and how these different parameterizations may be combined to develop a unified approach to be
applied in fully nonlinear potential flow models.
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Résumé

Une représentation précise de la propagation de vagues en trois dimensions en zone
maritime et côtière reste un défi ouvert du fait de plusieurs verrous scientifiques et tech-
niques à lever. Avec le développement des énergies en mer, et en particulier l’éolien offshore
(ou les convertisseurs d’énergie de vagues), un intérêt croissant est porté à l’estimation
des efforts de vagues sur les structures. De plus, pour valider les modèles de propagation
de vagues et des interactions vague-structure (e.g., [2, 3]), il existe une manque d’obser-
vations précises du champ 3D de vagues (e.g., hauteurs et statistiques du déferlement) et
de leurs impacts (efforts) sur des structures [1].

Ce projet est centré sur des travaux de recherche pour développer, améliorer et valider
des nouvelles approches de modélisation numérique capable de simuler précisément et
efficacement la propagation d’un champs de vagues jusqu’aux structures et ensuite les
efforts d’ordre élevé de ces vagues sur des structures. Deux axes de travail sont en cours,
consacrés au développement et à l’extension d’un modèle 3D complètement non-linéaire
et dispersif de propagation de vagues et à la réalisation des essais en laboratoire pour de
fournir des données de validation des modèles numériques.

Les essais en laboratoire ont pour objectif d’étudier la transformation des vagues sur
une bathymétrie variable incluant les effets de dissipation d’énergie liée au déferlement,

1



Figure 1 – Schéma 2D des paramètres d’une vague déferlante [3] (gauche) ; timestack
des images d’une vague déferlante avec l’identification de la mousse générée (zones bleues)
et d’une deuxième crête de vague (ligne jaune) avant déferlement (centre) ; et schéma 3D
de la dune et de la position de la structure sur la dune (droite).

les statistiques de déferlement et les efforts des vagues (non-déferlantes et déferlantes)
sur une structure en profondeur d’eau faible et intermédiaire. Une bathymétrie variable
représentant une forme de “dune” schématique (Fig. 1) a été construite. Dans le cas des
essais avec la présence d’un une structure, un monopile cylindrique, représentative d’un
éolien fixe, est positionnée à la crête de la dune (Fig. 1).

Les statistiques de déferlement de vagues sont estimées à partir du traitement des
images obtenues avec une caméra de haute résolution (12 MP) installée au dessus du
bassin, avec un champs de vue d’environ 10 m par 8 m. Les conditions de vagues (Hs,
T ) dans le bassin sont mesurées avec une vingtaine de sondes résistives. Une balance
d’effort, installée à intérieur de la structure, mesure les efforts de vagues à haute fréquence
(1000Hz) afin d’observer la variabilité en fonction de la phase de la vague, et notamment
pour capturer les effets du “slamming”. En parallèle, une deuxième caméra avec une haute
fréquence d’acquisition, enregistre une vue de la surface libre à la crête de la dune (e.g.
Fig. 1), incluant le monopile dans le cas des essais avec la structure afin de caractériser
le type de déferlement.

L’objectif final est de proposer un système de modélisation utilisable pour des applica-
tions réelles. Nous allons présenter à la conférence les résultats préliminaires des analyses
des essais en laboratoire, et en parallèle, les résultats des simulations numériques.

Les auteurs tiennent à remercier l’équipe du POMPHY au LNHE d’EDF R&D et aux
financeurs (Energy4Climate, EDF Renouvelables).
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INTRODUCTION 
Steepness-limited wave breaking is simulated in a fully 
nonlinear potential flow model and validated with 
laboratory data. Breaking onset is based on the ratio of 
horizontal particle velocity at the crest, relative to the crest 
velocity reaching a threshold value. A breaking dissipation 
model, where the non-dimensional breaking strength 
parameter is predicted based on the linear wave 
steepness is used. A new time-dependent dissipation is 
tested, and the breaking termination criterion is studied. 
 
NUMERICAL MODEL 
Fully non-linear potential flow model (FNPF) assumes the 
fluid flow to be irrotational and inviscid, therefore the 
Laplacian of the velocity potential equal to zero. These 
models are computationally more efficient than the Navier-
stokes models, but dissipation processes have to be 
explicitly modelled - for example, in situations when 
breaking waves are present. The FNPF model used here 
solves this Laplacian equation based on a boundary 
integral equation derived from Green’s second identity, 
and time-integration of the free surface kinematic and 

dynamic boundary condition with a 2𝑛𝑑 order Taylor series 
expansion (Grilli et al., 1989). 
 
EXPERIMENTAL SETUP 
The test facility is a wave flume at a constant depth of ℎ =
0.667 𝑚, where a flap wavemaker hinged 0.4 𝑚 below the 

actual bottom is located at 𝑥 = 0, and a wall at 𝑥 =
12.535 𝑚 (Fig. 1). Focused waves are generated by the 
wavemaker based on a Ricker spectrum given by, 
 

𝑠(𝜔) = 𝐻√𝑇𝑒−𝜔𝑚𝑇[1 − 𝑎(𝜔𝑚𝑇 − 1)]                                    (1) 
 
   with 𝑎 = 1/(𝜔𝑝

𝑚𝑇 − 2), where  𝜔𝑝 is the peak angular 

frequency, 𝐻 is a design wave height,  𝑚 and 𝑇 are 
spectral design parameters. The corresponding first-order 
transfer function is used to obtain the wavemaker 
kinematics (angular displacement, velocity and 
acceleration) in time. These kinematics are used as 
boundary conditions in the NWT (Grilli et al., 1997). 

 
Figure 1: Experimental setup showing the flap wavemaker on 
the left and a wall on the right and a typical free surface 
elevation at the breaking onset. The arrows on the top 
indicates the location of gauges (Note: axis not equal). 

BREAKING DISSIPATION 
Implementing wave breaking in a fully nonlinear potential 
flow model is carried out in three steps. First, an onset, the 
instant at which wave breaking starts, is identified. We use 
the recently proposed universal criterion, i.e., an evolving 
crest whose ratio of horizontal particle velocity at the crest 
𝑢, relative to the crest velocity 𝑐, 𝐵 =  𝑢/𝑐 exceeds 0.85, 
has not yet, but will break (Barthelemy et al., 2018). 
Derakhti et al. (2020) showed that this criterion applies well 
to arbitrary wavetrains in all ranges of water depth, 
including shallow water. Second, the magnitude of the 
energy dissipated is determined. This is done in two steps, 
the non-dimensional breaking strength parameter 𝑏 
(defined such that wave energy dissipation rate per unit 

length of the breaking crest, 𝜀 = 𝑏𝜌𝑔−1𝑐5) is determined, 
which is used to obtain an instantaneous power to be 
dissipated. This power is then modelled by applying a 
damping pressure across the breaking wave free surface 
(Grilli et al., 2020; Papoutsellis et al. 2019). Lastly, a 
breaking termination criterion is specified to cease this 
dissipation. 

 
Figure 2: Free surface time series measurements at 5 gauges 
(dashed: experiment and solid: NWT) for a test case with  𝑇𝑝 =

2.4 𝑠, 𝐻 = 0.2593 𝑚, 𝑇 = 0.2285 and 𝑚 = 1.42 . Onset is 
identified at 𝑥 =  8.05 𝑚 and 𝑡 =  19.83 𝑠. 



Boff η̿(cm2) 

Measured 110.1 

0.1 83.3 

0.2 97.7 

0.3 106.1 

0.4 109.7 

0.5 112.9 

 
Table 1: Sensitivity of 𝐵𝑜𝑓𝑓 to the breaking dissipation.  

�̿�  = ∫ 𝜂2𝑑𝑡
𝑡+𝑇𝑝 

𝑡
 where 𝜂 is the elevation at 𝑥 = 9.62 𝑚. 𝑇𝑝 is 

the peak period and 𝑡 is the instant the breaking wave crest 
reaches this gauge. 

 
RESULTS 
In the test cases under study, focused waves are 
generated that break in the domain and are reflected back 
from the wall. Free surface time series are measured at 9 
gauges for a series of test cases with different wave 
steepness and focusing distances (𝑥𝑓). Several videos 

and snapshots of the breaking waves are captured. Fig. 2 
shows free surface measurements at 5 gauges of a test 
case with 𝑥𝑓 = 7.8 𝑚. This test case corresponds to a 

linear wave steepness, S = ∑ 𝑎𝑖𝑘𝑖𝑖 =  0.45, where 𝑎𝑖 is the 

wave amplitude and 𝑘𝑖, the wave number of the 𝑖𝑡ℎ 
component, with 𝑇𝑝 = 2.4 𝑠, 𝐻 = 0.2593 𝑚, 𝑇 = 0.2285 

and 𝑚 = 1.42. At the breaking onset has 𝑑/𝐿𝑏 = 0.1618 

and 𝐻𝑏/𝐿𝑏 = 0.0656, thus characterising the breaker as an 

intermediate one, where 𝑑 is the water depth, 𝐿𝑏 is the 
wavelength measured as twice the distance between two 
zero-crossing points and 𝐻𝑏 is the crest to trough height.   
  Testing different values of the dissipation strength, we 
see that the empirical prediction of Romero et al. (2012) 
for breaking strength based on linear wave steepness is 
reasonable, with b ≈  0.033, and is used to model the 
resulting breaking wave dissipation. The instantaneous 
power is then dissipated as in Mohanlal et al. (in 
revisions). 
  The breaking termination criterion, 𝐵𝑜𝑓𝑓 = 0.4 is used, 

after testing a variety of values (see Table 1). Results 
show a very close agreement achieved between 
numerical simulations (NWT) and measurements, 
including close to the onset (Fig. 3) (at 𝑥 =  8.03 𝑚) and 

beyond breaking (at 𝑥 =  11.32 𝑚).  
 
CONCLUSION 
From the results, we see that the NWT is able to simulate 
non-linear waves accurately until the onset. Then, with the 
onset criterion 𝐵 = 0.85, that determines a wave that is 
about to break, is seen to be an instant when the free 
surface is close to being vertical. The dissipation strength 
for steepness-limited breaking waves, predicted by their 
linear wave steepness (Romero et al. 2012), then models 
the resulting breaking wave to reasonable accuracy. This 
prediction however is determined by a narrow spread of 
data. Therefore, a quantitative study will be shown at the 
conference, showing the sensitivity in simulation results 
on b. A similar study will be done on the sensitivity of the 
breaking termination criterion. 

 
 
Figure 3: Free surface elevation at the onset, of NWT results 
for the case of Fig. 2 (yellow) compared with the experimental 
figure at an overturning instant. 
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Once generated by wind, ocean waves evolve, with complex kinematics and dynamics, as a result of
nonlinear and dispersive effects, the effects of bathymetry, and dissipation from wave breaking and bottom
friction, to name a few. Accurate simulations of this evolution are crucial for predicting phase-resolved
surface wave properties in complex sea states, which govern wave interactions with fixed and floating
objects, including offshore renewable energy systems, and surf zone parameters that drive nearshore
currents and sediment processes, whose understanding and prediction are key to coastal management
decisions.

Due to the computational complexity of modeling these phenomena over large domains in Navier–
Stokes models, researchers rely on using simpler models and explicitly introduce the desired effects, e.g.,
the addition of a dissipative term in the Euler equations. Our work is concentrated on using the existing
knowledge of breaking waves to mimic its effects in simpler models such as potential flow.

Extensive research has been done on understanding the many aspects of wave breaking (e.g., Dun-
can [1], Stive [2], Banner and Peregrine [3], Barthelemy et al. [4], Derakhti et al. [5]). This knowledge is
used extensively to model breaking waves in 2D, in specific conditions (e.g, Simon et al. [7], Papoutsellis
et al. [6], Grilli et al. [8]). We propose a unified method for modeling 2D depth-limited breaking waves,
which is also being currently extended to 3D waves.
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HIGHLIGHTS
A new method of modeling 3D depth-limited breaking waves is proposed and implemented in
a fully non-linear potential flow model based on the boundary element method. The method
is implemented in three steps: (1) identification of breaking onset using the kinematic B
criterion; (2) application of damping pressure in the dynamic free surface condition, function
of crest kinematics; and (3) a breaking termination criterion to stop this dissipation. A
validation case for a numerical experiment set-up is presented.

1 INTRODUCTION
The study of breaking waves is crucial to establish engineering wave properties in complex sea
states, which govern, among other things, wave interaction with fixed and floating structures.
Extensive research has being done on understanding the many aspects of this phenomenon
(e.g., Duncan [1], Stive [2], Banner and Peregrine [3], Barthelemy et al. [4], Derakhti et
al. [5], Derakhti et al. [6]). Due to the computational complexity of modeling breaking waves
over large domains in Navier–Stokes models, researchers still rely on using simpler models
in which the effects of breaking waves are explicitly introduced. This was done in 2D with a
variety of advanced models and methods, e.g., by Guignard and Grilli [7], Kennedy et al. [8],
Simon et al. [9], Papoutsellis et al. [10], and Mohanlal et al. [11]. In 3D, however, numerical
techniques have mostly been simpler and limited to preventing numerical instabilities in the
model when wave breaking occurs (e.g., Pierella et al. [12], Ghadirian et al. [13]). Here, we
propose a new method for modeling 3D depth-limited breaking waves, which is an extension
of our earlier work in 2D (Mohanlal et al. [11]).

2 FULLY NON LINEAR POTENTIAL FLOW (FNPF) MODEL
The considered FNPF model assumes the fluid flow to be inviscid and irrotational such that
the flow velocity can be written as V = ∇ϕ, where ϕ is a velocity potential, such that
∇2ϕ = 0. We use the model of Harris et al. [14], in which, as in Grilli et al. [15], Laplace’s
equation is solved as a boundary integral equation, discretized with a higher-order BEM,

α(xi)ϕ(xi) =

∫

Γ

{
∂ϕ

∂n
(x)G(x− xi)− ϕ(x)

∂G

∂n
(x− xi)

}
dΓ, (1)

where Γ is the boundary, α is the interior solid angle at the boundary at point xi, and
G(x,xi) = 1/(4πri) is the 3D free space Green’s function (with ri = |x− xi|).

3 WAVE BREAKING MODEL
To demonstrate the breaking model, a simple 3D submerged bar (Fig. 1a) is considered,



with an incident solitary wave of relative height H/h = 0.7 (as in Antuono et al. [16]). Wave
breaking is modeled in three steps: (1) wave crests reaching breaking onset are identified
with the universal criterion that an evolving crest, whose ratio of horizontal particle velocity
at the crest, u, to crest velocity, c, exceeds a critical value, B = u/c = 0.85, will always break;
and otherwise it will not (e.g., Derakhti et al. [6]); (2) an absorbing pressure is applied to
breaking crest regions [7, 17]; (3) absorption is terminated when Boff = 0.3, as in Mohanlal
et al. [11], who found this to be optimal for 2D wave breaking on submerged bars, based on
a few test cases.

To detect breaking crests in a general way, local maxima are first found (Fig. 1a,b), then,
the surrounding 16 BEM nodes are fitted with a bi-cubic fit (see Fig. 1b; Grilli et al. [15])
in which a wave crest line segment is calculated (Fig. 1c), defined by a length (δ), mean
position (xc, yc), and horizontal flow velocity at the surface, u =

√
u2
x + u2

y at this mean
position, slope, and intercept. These crest segments are tracked in time by assuming that,
for a small time step, they move approximately in the local normal direction. Phase speed
along each crest segment is finally calculated as c =

√
(dxc/dt)2 + (dyc/dt))2, which yields

B = u/c. Fig. 2 shows positions and B values of detected crests, up to breaking onset.

Figure 1: (a) Solitary wave propagating over 3D submerged bar (h = 1 m; depth near the
wavemaker); dots indicate BEM nodes. (b) Close-up top view of the free surface nodes
around the crest, with solid rectangles indicating the selected elements for further analysis.
Nodes selected around an element for crest detection are marked as stars. (c) Bi-cubic fit
on 16 nodes around selected element, with detected crest shown as black line.

The energy dissipation in breaking crests is then determined as: (1) the non-dimensional
breaking strength parameter b (defined such that wave energy dissipation rate per unit
length of the breaking crest, ϵ = bρg−1c5) is determined following Mohanlal et al. [11]; and
(2) b = 0.05 is used to calculate the instantaneous power dissipated per unit length of crest
Πb, modeled as the work over one time step of a damping pressure Pb specified in the dynamic



Figure 2: Left: Solitary wave crests (xc, yc) at six times t∗ = (t − tb)/
√
gh, with breaking

onset at tb; color scale is B = u/c; bottom contours shown as black lines (in meter). Right:
B vs t∗ for all crests, up to breaking onset (B = 0.85); color scale is |yc| (m).
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Figure 3: Left: a plot of the free surface at the breaking onset time tb. Right: the damping
pressure (Pb/ρ) applied on a section of the free surface. Note: for stability in more general
cases, this should be smoothed between breaking and non breaking regions, not shown here.

free surface condition around the breaking wave crests (Grilli et al. [17]), with Pb(x, y, t) =
ν(t)ϕn(x, y, t), where the absorbing function is ν(t) = Πbδ/(

∫
x

∫
y
ϕ2
n

√
1 + η2x + η2ydxdy), ϕn is

the normal surface velocity. Fig. 3 shows computed surface and pressure at breaking onset
time tb.

4 SUMMARY
A method of modeling depth-limited breaking waves in a 3D FNPF-BEM model is demon-
strated. The approach is easily extendable to other evolving wave crests, for regular waves
or more realistic sea-states, as was done in earlier 2D work [11]. Numerical developments
are in preparation for comparisons with existing experimental data from the literature, e.g.,
the free surface elevation post-breaking, and identification of wave breaking regions.
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Simulating breaking waves in Navier-Stokes models is computationally intensive, 

motivating researchers in the past and present, to develop efficient numerical methods. 

Generally, these methods are calibrated for specific cases since they are based on assumptions 

that do not consider the complete physics of breaking waves. We have developed a method 

of modelling 3D depth-limited breaking waves, based on our recent work proposing a unified 

2D depth-limited wave breaking model (Mohanlal et al.) in the boundary element method, 

fully non-linear potential model of Grilli et al. 2001; Harris et al. 2022.  The proposed wave 

breaking model consists of (1) a universal breaking onset criterion from Barthelemy et al. 2018 

and Derakhti et al. 2020, i.e., an evolving crest, whose ratio of horizontal particle velocity at 

the crest, 𝑢, to crest velocity, 𝑐, exceeding a critical value, 𝐵 = 𝑢 𝑐⁄ = 0.85, will always break; 

(2) the energy dissipation in breaking crests that is determined by a non-dimensional breaking 

strength parameter 𝑏 (defined such that wave energy dissipation rate per unit length of the 

breaking crest, 𝜀 = 𝑏𝜌𝑔−1𝑐5 ) following Mohanlal et al., which is then modeled as an 

absorbing pressure on the free surface; (3) a termination criterion based on 𝐵 to stop this 

dissipation. At the workshop, we will present the most recent results, including validation of 

the wave breaking model in comparison to the laboratory measurements of regular wave 

propagation over 3D submerged bar of Kamath et al. 2022. 
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Appendix G. Input conditions of all the focused breaking tests conducted by Lili Kimmoun in ECM148

Test d (cm) H (m) xf (m) Remarks dx (cm/px) SL (px)

8 66.7 0.2377 8 no camera 0.03188 -
9 66.7 0.2377 7.8 camera, lens 28mm 0.03188 920
10 66.7 0.2377 7.6 - 0.03188 920
11 66.7 0.2377 7.3 - 0.03188 920
12 66.7 0.2485 7.4 - 0.03188 920
13 66.7 0.2485 7.2 - 0.03188 920
14 66.7 0.2485 7.2 camera centered vertically on the crest 0.03188 1915
15 66.7 0.2485 7.2 the laser sheet is moved left 0.03021 1915
16 66.7 0.2485 7.5 - 0.03021 1915
17 66.7 0.2593 7.5 - 0.03021 1915
18 66.7 0.2593 7.2 - 0.03021 1915
19 66.7 0.2593 7.8 - 0.03021 1915
20 66.7 0.2593 7.5 same position of the camera, lens 50mm 0.016445 2480
21 66.7 0.2593 7.2 over-exposed 0.016445 2480
22 66.7 0.2593 7.2 diaphragm is adjusted 0.016445 2480
23 66.7 0.2593 7.8 - 0.016445 2480

Table G.1: Test 2021: T = 0.2285,m = 1.42, Tp = 2.4 s
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