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General introduction

At the heart of natural world, many organisms and systems have evolved towards the use of soft
structures. This is not a universal rule but there are many reasons for this adaptation. To just name
a few, soft solids offer flexibility, adaptability and sensory feedback. These properties actually rely
on two main features. First, biological tissues are mainly composed of water, and are thus assumed
to be nearly incompressible. Second, these media still remain solids due to their microstructure,
and they exhibit the remarkable ability to withstand substantial elastic deformations.

These unique properties are harnessed by living organisms, notably allowing them to achieve
locomotion1 ,2 but also enabling the whole morphogenetic chain to happen, through the ability
of shaping tissues, and leading to the development of organs and physiological functionalities3 ,4 .
Similarly, plants leverage this trait to adapt to varying environmental conditions5,6 ,7 . Also, their
mechanical behaviour plays a crucial role in various physiological processes8 . For instance, the
impact of the local stiffness of tissues during their development9, the stiffening of a tumor cell10 or
the non-linear softening of arteria11 are customary mechanisms still under investigation.

To mimic biological tissues, manufactured elastomers seem to be good candidates since they are
highly deformable and most of them are nearly incompressible. With recent scientific advances in
the fields of gels and polymers12 ,13 , such elastomers cover a wide range of mechanical properties
and can be molded into a wide variety of shapes. For example, in plastic surgery, silicone rubbers
have been adopted to reproduce the shapes and mechanical properties of breasts, lips or noses.
Nowadays, silicone elastomers seem to be promising materials to build artificial organs14,15, medical

1Josephson (1993): “Contraction dynamics and power output of skeletal muscle”
2Huffard et al. (2005): “Underwater bipedal locomotion by octopuses in disguise”
3Dervaux and Amar (2008): “Morphogenesis of growing soft tissues”
4Heisenberg and Bellaïche (2013): “Forces in tissue morphogenesis and patterning”
5Liang and Mahadevan (2011): “Growth, geometry, and mechanics of a blooming lily”
6Goriely (2017): The mathematics and mechanics of biological growth
7Moulia et al. (2021): “Fluctuations shape plants through proprioception”
8Levental et al. (2007): “Soft biological materials and their impact on cell function”
9Wozniak and Chen (2009): “Mechanotransduction in development: a growing role for contractility”

10Kumar and Weaver (2009): “Mechanics, malignancy, and metastasis: the force journey of a tumor cell”
11Kalita and Schaefer (2008): “Mechanical models of artery walls”
12Kaspar et al. (2021): “The rise of intelligent matter”
13Zhao et al. (2021): “Soft materials by design: unconventional polymer networks give extreme properties”
14Murray and Thomson (2011): “Synthetic, multi-layer, self-oscillating vocal fold model fabrication”
15Vannelli et al. (2015): “Dynamic heart phantom with functional mitral and aortic valves”
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devices16, soft robots17 and inflatable structures18, among others.

The evaluation of mechanical properties is of paramount importance and the propagation of
elastic waves allows to probe those properties deep inside the medium. For instance, in the human
body, ultrasonic waves are used to build medical images of the fœtus and of organs. Because
of their above-mentioned incompressible nature, longitudinal waves propagate a lot faster than
their transverse counterpart (VL ≫VT ). This specificity has enabled the development of transient
elastography19 which is now clinically used to provide valuable information about the stiffness of
tissues, and therefore on the presence and severity of diseases.

Although they permit to probe the material mechanics, elastic waves are by essence dynamical
objects. In fact, a consequence of the polymer chains’ ability to conform freely is that they re-
arrange with a characteristic relaxation time. As a result, the material constants are expected to
be frequency-dependent and complex-valued: these are the so-called viscoelastic properties of the
material, and inevitably concern biological tissues20,21.

Another main issue is that media of interest generally have finite dimensions. Thus, the presence
of interfaces in tissues usually induce guiding phenomena. The wave velocities at play may greatly
differ from VL or VT , and complex waveguiding phenomena may hamper the ability to retrieve the
material properties, notably in elastography.

Guided elastic waves are also naturally involved in physiological processes. At the cellular scale,
pressure pulses are observed in lipid monolayers22, and at the macroscopic scale the vocal cords are
the support of stationary waves23. Another compelling example is the sound transduction operated
by the inner ear of mammalians: the cochlear wave is a guided mechanical wave that travels along
the basilar membrane24.

Although guiding is a universal wave phenomenon, the case of elastic waves is particularly
fascinating: up to three different polarizations can couple at each reflection25 and at least two
distinct bulk wave velocities are involved. Even in a geometry as simple as a plate, elastic guided
waves present original properties. These waves have been extensively studied, especially for non-
destructive testing applications26.

We have just seen that elastic waves in soft solids are impacted by geometry and viscoelastic-
ity. Yet, as mentioned, soft media are highly deformable and the retrieved stiffness in elastography
appears to depend on applied stresses27 . This dependence is known as the acoustoelastic effect28

,29 and refers to the changes in elastic wave velocities with an initial stress. It is for instance at the
basis of string instruments (or the vocal cords), where the tension is finely tuned to adjust the pitch
of the musical instrument (or the produced sound fundamental frequency). The more deformable
the medium, the more significant this effect and this is why the case of soft media is of special interest.

16Smith et al. (2023): “Soft devices in neurological surgery”
17Marechal et al. (2021): “Toward a common framework and database of materials for soft robotics”
18Siéfert et al. (2019): “Bio-inspired pneumatic shape-morphing elastomers”
19Sandrin et al. (2003): “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis”
20Gennisson et al. (2010): “Viscoelastic and Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Super-

sonic Shear Imaging”
21Deffieux et al. (2015): “Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear

wave elastography”
22Griesbauer et al. (2012): “Propagation of 2D Pressure Pulses in Lipid Monolayers and Its Possible Implications for Biology”
23Hirano (1974): “Morphological structure of the vocal cord as a vibrator and its variations”
24Reichenbach and Hudspeth (2014): “The physics of hearing: fluid mechanics and the active process of the inner ear”
25Royer and Dieulesaint (1999): Elastic waves in solids I: Free and guided propagation
26Su et al. (2006): “Guided Lamb waves for identification of damage in composite structures: A review”
27Gennisson et al. (2007): “Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic

radiation force”
28Biot (1940): “The Influence of Initial Stress on Elastic Waves”
29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials



Section 5

In summary, the mechanics of soft solids, including guided elastic waves, depends on both fre-
quency and strain. As a consequence, capturing the dynamics of soft structures under significant
stress, a common occurrence in our daily environment (vocal cords, tendons, ligaments, muscles
and blood vessels), remains a challenge and will be the scope of this manuscript.

In Chapter 1, we recall the key principles of mechanics and linear elasticity in order to explain
the propagation of elastic waves. Then, we derive the equations governing the propagation of Lamb
waves and present the dispersion diagrams for guided elastic waves in soft plates and strips. Material
viscoelasticity is addressed through a semi-analytical method, aligning theoretical predictions with
experimental findings.

In Chapter 2, we add a second ingredient, the prestress, and compare our measurements in a
highly-deformed soft plate with the predictions derived using the acoustoelastic theory. This latter
aspect is enhanced by adding a viscoelastic contribution to the elasticity tensor, yielding complex-
valued wavenumbers and attenuation distances that accurately match experimental results.

In Chapter 3, we replace the stretched plate by a strip which supports more propagating modes.
After validating the acoustoelastic theory for this geometry, elastography experiments are also per-
formed in such strips. They evidence the limitations of this medical imaging technique: viscoelas-
ticity, guiding geometry, static deformations; and we also explain our approach to characterize both
viscoelastic and hyperelastic properties of biological tissues.

In Chapter 4, connections between soft materials and biological tissues are examined by studying
the cochlear wave. Modeling this membrane as a thin strip, the study explores how geometrical
gradients influence the local dispersion of this mode and how they enable frequency discrimination.

In Chapter 5, we use the stress as a time modulation tool for flexural waves in a strip. A space-
time interface is observed and characterized. Its interaction with flexural waves is then studied by
measuring the frequency and wavenumber changes at the interface.



Chapter 1
Fundamentals of guided elastic waves in soft

media

In this chapter, we present in detail the experimental and theoretical framework
required for the investigation of guided waves in soft waveguides. First, an ex-
perimental platform designed to track the in-plane displacement of a thin plate is
proposed. The corresponding theoretical background (Rayleigh-Lamb equation)
is uncovered. Then, an equivalence between Lamb modes and in-plane guided
waves in a thin strip is made and the strip configuration is investigated as well.
Unique wave features such as a backward mode, a zero group velocity point (ZGV)
and a Dirac cone in the k → 0 limit are reported. Finally, it is demonstrated how
rheology impacts such guided waves dispersion.

• Designing an experimental setup to observe in-plane motion in soft waveguides

• Theoretical introduction to linear elastodynamics and guided waves in a plate

• Experimental observation of fundamental modes and their dispersion in a plate

• Analogy between in-plane guided waves in a strip and Lamb modes in a plate

• Description of the Spectral Collocation Method used for numerical predictions

• Experimental dispersion curves of in-plane guided modes in a strip are obtained

• Revealing the elastomer rheology impact on guided waves properties

Objectives
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To begin with, we review the basic concepts of mechanics and linear elasticity. Then, we enter
the field of linear elastodynamics, taking into account the time variable in the equation of motion.
By looking for plane wave solutions, we calculate the velocities of elastic waves that propagate in
an infinite elastic medium, i.e. shear waves (transverse) and pressure waves (longitudinal). And we
finish these theoretical reminders by describing Lamb waves, where two parallel plane interfaces are
added. These new boundary conditions lead us to the Rayleigh-Lamb equation, and we draw the
dispersion diagram for guided elastic waves in a soft plate.

These theoretical considerations are then supported by experimental measurements, in which we
first take care to explain each stage of our experimental method and post-processing. In particular,
we demonstrate the simplicity and versatility of this method for measuring in-plane displacements
in such a plate, and their corresponding dispersion curves.

In the last part of this chapter, we introduce the thin strip geometry that will be used throughout
this PhD thesis. We detail the different families of modes that propagate in such a waveguide. We
notably show that the dispersion diagram of in-plane guided waves is analogous to that of a plate,
provided we adapt some parameters such as the longitudinal velocity. We discuss the richness of
these guided modes, but we also see that our theory still lacks an essential ingredient: the material
rheology. This notion is therefore introduced and we develop a semi-analytical method to obtain
dispersion curves. It enables fast calculations and fine-tuning of theoretical predictions with our
experimental results. Finally, we modify the boundary conditions to validate our approach and
highlight once again how the richness of these guided waves emerges.

The following is largely duplicated from a work published as Delory et al. (2022)30.

1 Theoretical Aspects
The propagation of elastic waves in isotropic solids is a well-documented topic. In this first sec-
tion, we quickly run through the basics of linear elasticity and Lamb waves but comprehensive
developments can be found in textbooks31,25.

1.1 Linear elasticity

The background of the linear elasticity theory is provided because it will serve as a foundation
for that of non-linear elasticity in Chapter 2. Linear elasticity theory is a branch of continuum
mechanics that describes the behaviour of solid materials under the influence of external forces and
the assumption of infinitesimal strain. It assumes that the material’s response is proportional to
the applied stresses. Let us discuss some of its main aspects and assumptions.

1.1.1 Configurations

Let Br, described by position X, be the reference configuration of the solid at rest, and B the
deformed configuration described by position x, as indicated in figure 1.1. Deformation in the
material is represented by the mapping χ : Br → B which takes points X in Br to points x in B
such that:

x = χ (X) , X ∈ Br. (1.1)
In the following, X and x have Cartesian coordinates Xi and xj , respectively with i, j ∈ {1, 2, 3}.
Let us define some quantities of interest. First, like the displacement:

u (X) = x − X. (1.2)

30Delory et al. (2022): “Soft elastomers: A playground for guided waves”
31Auld (1973): Acoustic Fields and Waves in Solids
25Royer and Dieulesaint (1999): Elastic waves in solids I: Free and guided propagation
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Figure 1.1: Reference and deformed configurations – Material particles are labelled by
the position vector X in Br and x in B. They are related through the deformation mapping χ.
(Reproduced from Destrade and Saccomandi (2007)29).

Distances in B are related to those in Br by the deformation gradient tensor F:

F = ∂x
∂X = ∇x = ∇u + 1 (1.3)

where ∇ is the gradient operator, and 1 is the second-order unit tensor. With these definitions, we
can introduce a strain tensor and a stress tensor.

1.1.2 Linearized stress and strain tensors

First, we choose how to quantify deformation in a solid. One has many options, but we stick to a
simple and natural one, given by the Green-Lagrange strain tensor:

E = 1
2
(
FT · F − 1

)
or E = 1

2
[
(∇u)T + ∇u + (∇u)T · ∇u

]
(1.4)

where "·" is the dot product. This strain tensor is obviously a non-linear function of displace-
ment u. By assuming infinitesimal deformations |u| ≪ 1, we define its linearized form known as
the infinitesimal strain tensor ϵ, which is symmetric ϵ = ϵT:

ϵ = 1
2
[
(∇u)T + ∇u

]
(1.5)

Similarly, we also need to make a choice to describe stresses in a solid. A natural choice for
incremental deformations is the Cauchy stress tensor σ but other stress tensors, introduced in
Chapter 2, could be selected as well. This stress tensor relates forces in the deformed configuration
to areas in the deformed configuration. At this point, only incremental deformations are considered
and there is no need to distinguish reference and deformed configurations. One should also note
that σ must be symmetric σ = σT to satisfy the balance of angular momentum.

1.1.3 A famous linear constitutive law: generalized Hooke’s law

At the heart of linear elasticity is Hooke’s law32 ,33 , which states that deformation in a material
is directly proportional to stresses applied to it, as long as the material remains within its elastic
limit, that is to say deformation remains infinitesimal. Mathematically, generalized Hooke’s law is
written as:

σ = C : ϵ (1.6)

32Hooke (1678): Lectures de potentia restitutiva, or of spring, explaining the power of springing bodies
33Landau et al. (1986): Theory of elasticity: volume 7
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Figure 1.2: Isotropic stiffness tensor – Representation of the fourth-order stiffness tensor as
a 3x3 matrix of 3x3 matrices. On the given example, the grey contoured yellow square is the value
of C1331 = µ, while black squares are given by λL + 2µ and orange triangles by λL.

where C is a fourth-order stiffness tensor and ":" is a double-dot product operation. C has 81
coefficients. They are not independent because of fundamental symmetries. First, the Cauchy
stress tensor is symmetric σ = σT, directly leading to Cjikl = Cijkl. Second, ϵ also being symmetric
implies that, if Cijlk ̸= Cijkl, then only the symmetric part (Cijkl + Cijlk)/2 ultimately appears in
the Cauchy stress tensor in equation (1.6) and the symmetry Cijlk = Cijkl can be assumed without
loss of generality. Finally, and this will be the object of further discussions with the introduction
of hyperelasticity in Chapter 2, the material is elastic and stresses can be derived from an elastic
potential energy33. This leads to a definition for the stiffness tensor where the symmetry Cklij = Cijkl

naturally appears. In the end, the stiffness tensor should satisfy the following major symmetries,
which reduce the number of independent components from 81 to 21:

Cjikl = Cijkl ; Cijlk = Cijkl and Cklij = Cijkl. (1.7)

As long as the symmetry Cijlk = Cijkl is satisfied, Hooke’s law may be rewritten σ = C : ϵ = C : ∇u.

1.1.4 Isotropic material

Assuming the material is isotropic, the number of independent components finally reduces from 21
to 2, namely the Lamé parameters, and the stiffness tensor rewrites:

Cijkl = λLδijδkl + µ (δikδjl + δilδkj) (1.8)

where δij is the kronecker delta (1 if i = j, 0 otherwise). To represent a fourth-order tensor, we
display a 3x3 matrix of 3x3 matrices as depicted in figure 1.2. Usually, major symmetries lead to
the so-called Voigt notation where the elasticity tensor can be represented as a 6x6 matrix. But
here, we prefer to represent the 81 coefficients. For now, the stiffness tensor is the simplest but this
representation will prove more useful later on. For historical reasons, people usually refer to the
Lamé constants λL and µ. However, note that any pair of parameters can be used to describe the
mechanical properties of an isotropic elastic solid. For example, it is also possible to use the Young
modulus E = µ(3λL+2µ)

λL+µ , the bulk modulus κ = λL + 2
3µ or the Poisson ratio ν = λL

2(λL+µ) . The case

33Landau et al. (1986): Theory of elasticity: volume 7
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of nearly incompressible media corresponds to the limit ν → 1
2 i.e. λL ≫ µ in terms of the Lamé

constants, or E → 3µ.

1.1.5 Equation of motion

When invoking the infinitesimal assumption, reference and deformed configurations can logically be
considered to be the same, so that u(X) simply identifies as u(x), and so that operators applied in
the reference or deformed configurations are similar. Also, the mass density ρ in both configurations
is considered the same. In the following of this chapter, only x coordinates are used.
By using an Eulerian point of view and applying Cauchy momentum equation, in absence of any
external forces, one has:

ρ
∂2u
∂t2

= ∇ · σ. (1.9)

Inserting Hooke’s law in this equation of motion leads to a wave equation:

∇ · [C : ∇u] = ρ
∂2u
∂t2

or Cjikl
∂2uk

∂xj∂xl
= ρ

∂2ui

∂t2
, (1.10)

And assuming the material is isotropic, the stiffness tensor C can be replaced to obtain:

ρ
∂2u
∂t2

= (λL + µ)∇∇ · u + µ∇ · ∇u (1.11)

At this stage, it’s noteworthy that the theory of linear elasticity is an idealization and has limitations.
It assumes small deformations, linear stress-strain relationships, and neglects factors like material
non-linearity or viscoelasticity. However, within these assumptions, linear elasticity still provides a
valuable theoretical framework to describe elastic waves in solids. To start with, we focus on plane
waves in an infinite media.

1.2 Bulk waves

In equation (1.11), the three components of the displacement field are coupled. In order to decouple
the equations, it is common to introduce the scalar potential ϕ and vector potential Ψ as:

u = ∇ϕ+ ∇ × Ψ

where × is a cross-product. The ∇ϕ component corresponds to an irrotational vector field while the
∇ × Ψ component is associated to a divergence free field, that is a deformation without any volume
change. These two potentials are independent and satisfy the following decoupled wave equations:

∂2ϕ

∂t2
− λL + 2µ

ρ
∆ϕ = 0 (1.12)

∂2Ψ
∂t2

− µ

ρ
∆Ψ = 0 (1.13)

These d’Alembert equations demonstrate the propagation of two different types of waves with
distinct polarizations and velocities. On one hand, equation (1.12) corresponds to a longitudinal
wave propagating at velocity VL =

√
(λL + 2µ)/ρ with a displacement parallel to the propagation

direction. On the other hand, equation (1.13) stands for transverse (or shear) waves propagating at
velocity VT =

√
µ/ρ with displacements perpendicular to the propagation direction.
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The special case of incompressible media – Throughout this manuscript, selected soft elas-
tomers are platinum-catalyzed silicone rubbers Smooth-On Ecoflex® with different shore hardness
between 00-05 and 00-50. Ecoflex is a nearly incompressible material that has been widely used
in academic in the last few years. To check its incompressibility, we measured VL at 3 MHz with
a pulse echo method in a bulk sample of our material Ecoflex® 00-30 and found VL = 1008 m/s
while VT is about 5 m/s (Young’s modulus of about 75 kPa). The high contrast between these two
velocities confirms its incompressible nature as:

ν = VL
2 − 2VT

2

2
(
VL

2 − VT
2
) = 0.4999 ∼ 1

2

Further investigations of Ecoflex will be performed later in this chapter and in this manuscript. For
now, those are the only two needed parameters to assess the behaviour of elastic guided waves in a
plate or in a strip.
Now that we have investigated plane waves in a bulk material and experimentally determined the
corresponding velocities VT and VL, let’s add boundary conditions to shape a plate and examine its
influence on the propagation of elastic waves.

1.3 Lamb waves

Before considering two parallel free planes, we first consider a single free interface.

1.3.1 Reflection at a free interface

Consider an incident plane wave with a wavevector in the (x1, x2)-plane, impinging on a medium
interface at x2 = 0 (Fig. 1.3a). As elastic waves have three polarizations, the reflection on the
interface may give rise to three different plane waves. The so-called shear horizontal (SH) wave,
with displacement along the x3 direction (u1 = u2 = 0), can only be generated as a reflection of a
shear horizontal wave as sketched in figure 1.3(a). On the contrary, longitudinal and shear vertical
waves with displacements in the plane (x1, x2) are coupled through reflections on the interface.
Adding a second interface parallel to the first one leads to complex waveguiding. As sketched in
figure 1.3(b), separation between SH waves and the two others remains valid in this configuration.
The next two sections describe the two families of modes that can propagate in a soft plate of
thickness 2h.

1.3.2 SH guided waves

The case of the shear-horizontal guided wave is relatively simple because its dispersion curves (i.e.
the evolution of the time-frequency as a function of the spatial-frequency, or wavenumber) map
those of well-known acoustic waveguides. Indeed, as all displacements occur in the x3-direction, the
problem becomes a scalar wave problem. Applying translational invariance in the x1-direction, one
seeks monochromatic solutions of the form:

u(x, ω) =

 0
0

u3(x2, ω)

 eikx1

Assuming that interfaces at x2 =±h are free to move, the stress component σ32 at these interfaces
vanishes:

σ32(x2 =±h) = µ
∂u3
∂x2

∣∣∣∣
x2=±h

= 0
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Figure 1.3: Reflection on a free interface and mode coupling – (a) Reflection of a shear
horizontal (SH) wave on an interface does not generate out-of-plane displacements while longitudinal
(L) and shear vertical (SV ) waves couple. (b) When multiple reflections occur, SH waves remain
independent while L and SV waves couple leading to a new family of modes: namely Lamb waves.

Solving wave equation (1.11) for shear waves together with these boundary conditions provides an
analytical form for guided shear horizontal waves inside the plate:

u3(x2, ω) = C cos
(
nπ

2h (x2 − h)
)

where C is a scalar constant. And the dispersion relation simply writes:

k2 =
( ω
VT

)2
−
(nπ

2h
)2

(1.14)

Such a dispersion relation (figure 1.4) exhibits a non-dispersive mode, denoted SH0, propagating
at all frequencies at VT , as well as dispersive propagating modes above their respective cut-off
frequencies fcn = nVT /4h. In an Ecoflex sample of thickness 3 mm, with a shear velocity around
5 m/s, the first cut-off frequency is at 833 Hz.

1.3.3 Lamb waves

Due to the coupling at each reflection, the cases of longitudinal waves and shear vertical waves
are more complicated. However, calculation steps to establish the dispersion relation and solutions
remain similar. It was initially introduced by Lamb a century ago34. Here, it is preferable to start
back from the scalar and vector potentials ϕ and Ψ. Applying some geometrical arguments, their
expressions can be simplified. First, the invariance by translation along x1 implies a dependence on
x1 of the form eikx1 . Second, component of displacement u3 is zero and other components should
not depend on x3. Third, x2 = 0 is a symmetry plane so solutions should either be symmetric
or anti-symmetric with respect to this plane. Considering all these simplifications and solving
equations (1.12) and (1.13), analytical formulations for potentials write25:{

ϕ(r, ω) = ϕ0 cos(px2+α)eikx1

Ψ(r, ω) = ψ3 sin(qx2+α)eikx1e3
(1.15)

34Lamb (1917): “On waves in an elastic plate”
25Royer and Dieulesaint (1999): Elastic waves in solids I: Free and guided propagation
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Figure 1.4: Theoretical dispersion curves of SH waves – The SH0 mode is non dispersive
with a velocity VT and its polarisation is mostly transverse, as expected. Higher modes are dispersive
and appear at cut-off frequencies corresponding to every multiple of VT

4h .

with p2 = (ω/VL)2 − k2 and q2 = (ω/VT )2 − k2. Symmetrical solutions correspond to α= 0 and
anti-symmetrical ones to α=π/2. From these potentials, displacements are now:

u(x, ω) =

u1(x2, ω)
u2(x2, ω)

0

 eikx1

with two non-zero components being:{
u1(x2, ω) = ikϕ0 cos(px2+α) + qψ3 cos(qx2+α)
u2(x2, ω) = −pϕ0 sin(px2+α) − ikψ3 sin(qx2+α) (1.16)

The dispersion relation of these modes is deduced from boundary conditions. Assuming free bound-
aries at both interfaces x2 =±h, stresses σ12 and σ22 must each cancel there, which implies:{

(k2 − q2)ϕ0 cos(ph+α) = 2ikqψ3 cos(qh+α)
(k2 − q2)ψ3 sin(qh+α) = 2ikpϕ0 sin(ph+α) (1.17)

Non-trivial solutions for ϕ0 and ψ3 are found when the determinant of this system vanishes. Under
these circumstances, u1 and u2 are described with a single scalar coefficient C as: u1(x2, ω) = qC

[
2k2

k2−q2 cos(qh+α) cos(px2+α) − cos(ph+α) cos(qx2+α)
]

u2(x2, ω) = ikC
[

2pq
k2−q2 cos(qh+α) sin(px2+α) + cos(ph+α) sin(qx2+α)

] (1.18)

And the dispersion relation, known as the Rayleigh-Lamb equation, is:

(k2−q2)2sin(qh+α) cos(ph+α)+4k2pq sin(ph+α) cos(qh+α) = 0 (1.19)

Unfortunately, the Rayleigh-Lamb equation (1.19) does not have general analytical solutions and
must be solved numerically. Many options are available to solve for this dispersion relation for the
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Figure 1.5: Theoretical dispersion curves of Lamb waves in a nearly incompressible
material – Dispersion curves of symmetric (red) and anti-symmetric (blue) Lamb modes. In the
low frequency range, the S0 mode is non dispersive with a velocity VP = 2VT its polarization is
mostly longitudinal. On the contrary, the A0 mode has a quadratic dispersion and mainly has an
out-of-plane displacement. Higher modes exhibit cut-off frequencies every multiple of VT

4h .

nearly-incompressible soft plate considered here. A Muller algorithm35 or a commercial software
such as Disperse36 can be used to find the roots of this equation. Similarly, a finite element software
can also be used such as COMSOL Multiphysics. Or alternatively, a spectral collocation method
(SCM) implemented in Matlab by Kiefer (2022)37 allows to find the dispersion curves of all
guided waves in a plate (including SH modes) given the appropriate stiffness tensor. This approach
was selected because it has shown great performance38 and because Daniel A. Kiefer joined the
laboratory as a post-doc at the end of my first PhD year, leading to fruitful interactions.
The dispersion curves displayed in figure 1.5 highlight families of symmetric and anti-symmetric
modes. Below the first cut-off frequency of VT /4h ≈ 833 Hz, only two modes exist: anti-symmetric
A0 and symmetric S0 modes. While A0 mode has a parabolic dispersion curve in the low frequency
limit, S0 mode is rather non-dispersive.

Displacements of these modes, given by equations (1.18), can also be simplified in the long
wavelength limit (kh → 0). On one side, taking the limit for the S0 mode gives:

u1(x2, ω) = −qC

ν
+ o(k)

u2(x2, ω) = i
qC

1 − ν
kx2 + o(k)

(1.20)

Displacement u1 is homogeneous across the plate and is far greater than displacement u2. In a sense,
in this low frequency limit and long wavelength approximation, S0 mode is seen as a longitudinal

35Muller (1956): “A method for solving algebraic equations using an automatic computer”
36Pavlakovic et al. (1997): “Disperse: A General Purpose Program for Creating Dispersion Curves”
37Kiefer (2022): GEW dispersion script
38Kiefer (2022): Elastodynamic quasi-guided waves for transit-time ultrasonic flow metering
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mode. Its phase velocity, known as the plate velocity, is given by:

VP = 2VT

√
1 −

(
VT

VL

)2
=
√

2
1 − ν

VT −−−→
ν→ 1

2

2VT (1.21)

The surprising feature is that, in the incompressible limit, the phase velocity of S0 simplifies to
VP = 2VT . It is thus independent of the longitudinal velocity VL despite its apparent longitudinal
polarization. This is all the more striking as VT happens to be several orders of magnitude smaller
than VL.

On the other side, for A0, one finds:{
u1(x2, ω) = −iC ′kx2 + o(k)
u2(x2, ω) = C ′ + o(k) (1.22)

where the new constant C ′ has been introduced without losing generality. Displacement u2 is
homogeneous across the thickness, and u1 is relatively negligible (kx2 → 0). This mode, generally
named flexural mode, is mostly a transverse vertical mode. It has a really unique property: its
dispersion is quadratic25 in the long wavelength limit (kh → 0) and reads:

ωA0 = VP√
3
k2h. (1.23)

In this section, we have explored the linear elasticity theory and described the main steps involved
in obtaining the Rayleigh-Lamb equation (1.19). We now present experimental results in a plate of
Ecoflex.

2 Experimental method
The soft plate preparation and experimental platform are described. Then, stroboscopic image
acquisition and post-processing operations are explained and the resulting wave-fields are discussed.

2.1 Sample preparation

As illustrated in figure 1.6, rubber is obtained by mixing a monomer (A) and its cross-linking agent
(B) in equal quantities. The liquid can be vacuumed for air bubbles removal. Next, the mix is
poured onto a homemade mould fabricated using plastic sheets and a laser cutter (Trotec Engraver
Speedy 100). The mould simply consists of a flat surface with rigid walls forming a 60-centimeter-
side square. A 3 mm-thick Ecoflex plate requires about 500 mL of each liquid. The mixture is then
left for curing at room temperature for several hours (usually overnight) until a translucent soft
material is obtained. Anticipating image processing operations, dark pigments are seeded during
the curing stage. A good contrast is obtained by using small black carbon powder from a local
art shop. The seeding operation can be performed after pouring half of the total volume (t= 10
minutes) and before pouring the other half (Fig. 1.6). In the end, one gets a single layer of pigment
located halfway through the plate. In this study, the grain density is approximately of one grain
per square millimeter.

2.2 Setup

The experiment consists in shaking the plate and imaging its in-plane motion. To this end, the
soft plate is clamped at its top and bottom extremities into a metallic structure (Fig. 1.7) which
dimensions can be adjusted in order to reduce static tension, except from gravity.

25Royer and Dieulesaint (1999): Elastic waves in solids I: Free and guided propagation



Section 2. Experimental method 17

t=0 t=5min t=10min t=2h t=6h

Figure 1.6: Ecoflex sample preparation – At time t = 0, the monomer and its cross-linking
agent are mixed in equal proportions and a first layer is poured in the sample mould. At t = 10 min,
the sample is sprinkled with black carbon grains dedicated to displacement tracking. At t = 2 hours,
a second layer is poured and cures for 6 hours until complete cross-linking.

The excitation is performed by a shaker (Tira Vib 51120), driven by an external arbitrary
wave generator (Keysight AWG 33220) which is itself connected to a power amplifier (Tira Analog
Amplifier BAA 500). Typical excitation frequencies span from 1 to 300 Hz. The shaker is connected
to a 30 cm long plastic line clip in the back of the soft plate (black line source in figure 1.7). Another
similar plastic line clip clamps the plate with magnets. Such a line clamp is designed to ensure the
generation of plane-like waves. The shaker and pinching clamp can be rotated to promote specific
polarization and propagation directions. The set-up essentially captures displacements parallel
to the (x1, x3)-plane. The motion is captured by a CCD camera (Basler acA4112-20um) with a
4112x3008-pixels sensor (Fig. 1.7). Note that it is necessary to use a global shutter: all pixels are
exposed simultaneously and capture a full snapshot of the scene. A 85-mm zoom lens mounted on
the camera and placed 3 m away from the object provides a clean field of view of roughly 30 cm
wide square. Narrow angle lenses drastically reduce optical distortions. Moreover, it is crucial to
carefully align the camera sensor plane with the plate to avoid any perspective correction. For an
optimal contrast, the system is back-lighted thanks to a wide LED panel placed behind the plate.

2.3 Monochromatic excitation and stroboscopy

Given the chosen region of interest, the maximum acquisition frame rate of the camera is roughly
130 Hz (highly dependent on the number of recorded lines). This means that Shannon’s criterion39

is not fulfilled for frequencies higher than 65 Hz. However, in the linear regime, there is no need for
a higher speed camera since the stroboscopic effect can be exploited. To that end, the acquisition
period of the camera Tcam is set slightly greater than the excitation period Texcitation, i.e. Tcam =
Texcitation + δt. Actually, we can set Tcam = nTexcitation + δt with n ∈ N so that the accumulated
phase shift 2πδt/Texcitation remains small. The final movie provides the illusion that the successive
snapshots belong to a single wave period (sketch on figure 1.8). We refer to this quantity as the
pseudo-period.

For the following post-processing steps, it is preferable to work with a given amount of images per
movie. The measurements are performed setting this quantity to N = 60 frames over one pseudo-
period. This means that the acquisition frame rate has to be determined for each different excitation
frequency. If the maximum frame rate of the camera is too low, one can always, as just mentioned,
reduce the sampling frequency by waiting for several excitation periods between successive camera
triggers. For example, at 100 Hz, an acquisition sampling rate of precisely 24.8963 Hz would yield
60 frames regularly spaced within one pseudo-period (the 61st should be the same as the first
image), and successive shots occur roughly every 4 periods. Note that the exposure time of the
camera should always remains much smaller than the excitation period. The image would be blurred
otherwise. Our measurements are performed with a typical exposure time of 150 µs. The image

39Shannon (1949): “Communication in the Presence of Noise”
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Figure 1.7: Experimental set-up using
a line source – A thin plate of Ecoflex with
dimensions 60 cm x 3 mm x 60 cm is held in
a vertical position. Vibrations are generated
by a shaker driven monochromatically. The
experiment is recorded using a CCD camera
located 3 m away from the plate.
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Figure 1.8: Principle of the strobo-
scopic imaging – As the recording fram-
erate is lower than the excitation frequency,
one full cycle is reconstructed from the mea-
surements, depicted by the red crosses, taken
over several cycles of excitation. The sam-
pling rate has to be precisely defined with
respect to the driving frequency.

quality is seriously hampered above approximately 300 Hz.
In addition to these N frames, a reference image should be captured as the sample is at rest for

image processing purposes.

2.4 Extraction of the complex displacement maps

Next, each of the N frames is compared to a reference thanks to an open source Digital Image Cor-
relation (DIC) algorithm40,41, implemented for Matlab, which provides instantaneous displacement
(Fig. 1.9). The correlation is computed on small image regions, called macropixels. Each macropixel
yields one displacement vector (u1, u3). By repeating the operation for all the macropixels of a single
frame, two displacement maps are obtained (Fig. 1.9e and f). The macropixel size is set manually.
It should be large enough to contain several seeds while remaining smaller than the wavelength.
Here, macropixels extending over 25 pixels × 25 pixels of the original image are chosen, i.e. a
size of 2.5 mm. Sometimes, the algorithm fails to find a realistic solution for a given macropixel.
In that case, one can always spatially interpolate missing information or apply spatial convolution
filter to smooth the displacement maps. Note that the DIC algorithm enables sub-pixel resolution.
For example, displacements down to 5 µm are measured when a single image pixel corresponds to
100 µm on the plate.

Knowing the displacement maps gives the opportunity to build a magnified version of the de-
formed image as in figure 1.9(c). This can be very useful for visualizing wave propagation. For

40Wildeman (2018): “Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop”
41Wildeman (2021): DICflow
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Figure 1.9: Principle of displacement extraction through Digital Image Correlation
(DIC) algorithm – (a) Example of a reference image. Black seeds provide a texture enabling DIC
analysis. Displacement components are computed for each position (crosses) by applying the DIC
algorithm over the shaded area. (b) As the shaker is turned on, the image is deformed. Displace-
ments are barely noticeable by eye (typically 10 µm). The DIC algorithm computes correlations
between the deformed and reference images. (c) Output of the DIC algorithm. A displacement
vector is computed for each macropixel. (d) This displacement is used to build a magnified (×50)
distorted image where displacements appear clearly. (e-f) Vertical (resp. horizontal) displacement
maps.

convenience, a separate colored representation of the two displacement components is preferred in
figure 1.9(e) and (f). At this stage, for a given excitation pulsation ω, a series of N displacement
matrices u(n)(x) are obtained, corresponding to times tn = nT/N , where n ∈ [0, N−1] refers to
the frame index. From this series, iωtn = 2iπn/N and the complex monochromatic displacement is
computed as follow, within one phase factor:

u(x, ω) = 1
N

N−1∑
n=0

u(n)(r)e
2inπ

N (1.24)

Data contained in 60 memory-consuming frames of thousands of pixels has been reduced to a single
complex matrix of a few hundreds points.

2.5 First observations

With the set-up in figure 1.7, field maps are acquired in an area of 17 cm × 2.4 cm below the line
source (dashed area in the same figure). Figure 1.10 gathers real parts of the extracted displacements
for an excitation frequency of 120 Hz. Three different vibration orientations (vertical, horizontal
and 45°) are investigated while the source (a 30-cm-wide clamp) is maintained horizontal. In the
left part of figure 1.10, for which the vibration is vertical, u3 cancels everywhere in the measured
area: the motion is purely vertical (x1-direction). Also, u1 exhibits a periodic pattern along the x1
direction and a flat profile along the x3 direction. This measurement corresponds to a plane wave-
like pattern (with a wavelength λ of roughly 10 cm) with both displacement and wavevector being
parallel to x1. The plate thus supports an in-plane guided elastic wave that appears as longitudinal.
This is the so-called S0 mode that we discussed earlier. Similarly, the horizontal excitation in x3-
direction of the clamp (middle column in figure 1.10) generates a plane wave-like propagation with a
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Figure 1.10: Measurement of in-plane waves in a soft plate – Displacement fields in both
vertical (u1) and horizontal (u3) directions measured for three excitation directions with a forcing
frequency f = 120 Hz. The source oscillates vertically (left), horizontally (middle) or at 45° (right)
as indicated by the white arrows. Magnitude of in-plane displacements are indicated by the colorbar.

polarization parallel to x3, that can be qualified as a transverse wave. Interestingly, its wavelength is
exactly half the wavelength of its longitudinal counterpart. This is actually not surprising because
the SH0 mode is indeed generated and we have already seen there is a factor of 2 between the
velocities, thus a factor of 2 between wavelengths. The versatility of this experimental platform is
highlighted in the right panel of figure 1.10. Instead of selectively exciting each type of plane wave,
a motion of the clamp along a 45° tilted direction excites simultaneously the two waves: with one
measurement several modes are retrieved.

Finally, a systematic extraction of the two aforementioned plane waves for frequencies rang-
ing from 50 to roughly 300 Hz is performed. For each frequency, the maps are averaged in the
x3-direction, meaning projected onto a plane wave. Then, the maximum of the spatial Fourier
transform along x1 provides the wavenumber k = 2π

λ (with λ the wavelength) of the mode. This
way, a dispersion diagram is constructed for two polarizations in figure 1.11. Both dispersion curves
appear to be straight lines passing through the origin. It corresponds to non-dispersive modes i.e.
propagating at a constant phase velocity. The factor 2 between the wavelengths here nicely appears
as a factor 2 between the slopes: the pseudo-longitudinal mode S0 travels twice faster (12 m/s) than
the transverse one SH0 (6 m/s). From here, we recover a transverse velocity VT = 6 m/s which
roughly match the value of 5 m/s initially given.

For the highest frequencies, the experimental points slightly move off the linear behaviour. As
will be discussed in section 3.6, the rheology of the polymer is the origin of both this deviation and
the mismatch between 5 and 6 m/s, which remains anecdotal at this stage.

Before adding lateral edges to shape a strip, let us discuss the flexural wave in such a soft plate.
In equation (1.22), the displacement of the flexural mode A0 is derived in the long wavelength limit
(k×2h ≪ 1). From this, it appears that the A0 mode is mainly out-of-plane, i.e. polarized along the
x2 axis. However, one can also see that, for k > 0, there is always an additional small displacement
along the direction of propagation x1. This being said, one can guess that our experimental setup
also enables the detection of this flexural mode. We rotate the shaker so that a plane wave polarized
along x2 and propagating along x1 is generated. By applying the same methods as before, the
displacement component u1 is extracted and the dispersion curve of this flexural wave is obtained
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Figure 1.11: Experimental dispersion
curves of in-plane modes in a 3-mm-
thick soft plate – A vertically polarized
(blue) and a horizontally polarized (green)
non dispersive modes are retrieved. The
vertically polarized mode propagates twice
faster than the horizontally polarized one.
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Figure 1.12: Experimental dispersion
curves of the flexural mode in a 3-mm-
thick soft plate – The quadratic behaviour
of A0, first anti-symmetric Lamb mode, or
flexural mode, in a plate is retrieved.

in figure 1.12.

3 From a plate to a strip
In this section, a different geometry is considered: a thin rectangular waveguide made of the same
nearly incompressible material. First, an analogy is made between this geometry and the previously
described plate geometry. Notably, the dispersion of in-plane modes propagating in this strip is
shown to be similar to that of Lamb waves propagating in an isotropic plate with a longitudinal
wave velocity being exactly twice the shear wave velocity. Then, experimental results, already
reported by Lanoy et al. (2020)42, are presented. The procedure used to separate modes in order
to obtain their profiles as well as their phase velocities is thoroughly described.

The theory of elastic modes propagating in rectangular waveguides is not straightforward. As
this geometry involves three coupled polarizations, obtaining the full dispersion diagram can be
challenging43. Thanks to the Rayleigh-Lamb approximation44,45, the problem drastically simplifies
as then, one deals with the in-plane modes of a strip with a large aspect ratio. This section addresses
this problem in the specific case of a soft solid.

42Lanoy et al. (2020): “Dirac cones and chiral selection of elastic waves in a soft strip”
43Krushynska and Meleshko (2011): “Normal waves in elastic bars of rectangular cross section”
44Cross and Lifshitz (2001): “Elastic wave transmission at an abrupt junction in a thin plate with application to heat

transport and vibrations in mesoscopic systems”
45Laurent et al. (2020): “In-plane backward and Zero-Group-Velocity guided modes in rigid and soft strips”
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Figure 1.13: Mode coupling in a strip – (a) Reflection of A0 on the edge only generates A0
while S0 and SH0 modes couple. (b) Multiple reflections lead to S0 and SH0 in-plane mode coupling
in a similar manner to shear and longitudinal waves couple in an infinite plate, as in figure 1.3.

3.1 Reflection at a free interface

As described in the previous section, only three modes propagate in a plate at low frequencies: the
first shear horizontal mode SH0 (Fig. 1.4) and the first symmetric S0 and anti-symmetric A0 Lamb
modes (Fig. 1.5). They have uniform profiles across the plate and can roughly be considered as
linearly polarized. In particular, S0 can be seen as a pseudo-longitudinal wave propagating at the
constant plate velocity VP . Besides, as shown in equation (1.16), for nearly incompressible materials
VP = 2VT . A0 mode is essentially polarized in x2-direction. As a consequence, it is unaffected by
a reflection on the strip edge, as shown in figure 1.13(a). On the contrary, SH0 and S0, which are
polarized in the (x1, x3)-plane, can couple at the edge. Adding a second edge enables to form a
strip of width 2h′ in figure 1.13(b). Before discussing this coupling between SH0 and S0 modes, let
us first discuss the easier case of guided flexural modes in a strip.

3.2 Flexural modes in a strip

In the same way that SH modes are guided between two parallel planes in a plate (Fig. 1.3),
flexural modes are guided independently in a strip of width 2h′. To obtain their dispersion curves
in figure 1.14, the procedure is similar to the one employed for figure 1.4 but using equation (1.23),
and simply reads:

ω = ωA0

√k2 +
(
nπ

2h′

)2
 = VP√

3

[
k2 +

(
nπ

2h′

)2
]
h. (1.25)

Dispersion curves of such modes are presented in figure 1.14. They have been obtained using
COMSOL Multiphysics. A cuboid with dimensions a = 0.1 mm, 2h = 2.7 mm, 2h′ = 40 mm
is considered with material parameters ρ = 1070 kg/m3, VT = 5.3 m/s and VL = 1000 m/s.
Floquet periodicity with wavenumber k is assumed between faces at x1 = 0 and x1 = a, i.e.
u (π/a, x2, x3) = u (0, x2, x3) eika. The resulting eigenvalue problem is solved to obtained frequencies
f (k) and the procedure is repeated for 0 ≤ k ≤ π/a. The quadratic dispersion of A0 in a plate
is clearly revealed in this dispersion diagram for two reasons. First, the branches themselves are
parabolic. Second, the cutoff frequencies are no longer equidistant but evolve as n2. Additionally,
we see two families of modes on this diagram, depending on their symmetry with respect to the
(x3 = 0)-plane. The first symmetrical flexural mode is actually identical to the A0 mode in a plate,
as indicated by equation (1.25), and thus appears as a plane wave polarized in the x2 direction.
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Figure 1.14: Flexural modes in a strip – Dimensions of this strip are 2h = 2.7 mm, 2h′ =
40 mm and VT = 5.3 m/s. The quadratic dispersion of A0 in a plate is clearly revealed. Two
families of modes exist, depending on their symmetry with respect to the (x3 = 0)-plane. The two
first modes are often referred to as the flexural (symmetric) and torsional (antisymmetric) modes
of the strip.

Table 1.1: Analogy between Lamb waves in a plate and in-plane guided waves in a thin strip

Guide dimension Longitudinal velocity Transverse velocity Symmetry plane
Plate Thickness 2h VL VT x2 = 0
Strip Width 2h′ V ′

L = VP V ′
T = VT x3 = 0

In addition, the first anti-symmetrical flexural mode corresponds to an upward displacement on
one of the strip’s lateral edges (e.g. x3 = −b/2) and an opposite displacement on the other edge
(x3 = +b/2). This is in fact a torsional wave and, almost unexpectedly, behaves in a manner similar
to the mode described above. Higher-order modes have additional nodes in their transverse profile
(along the x3 direction).
Now that we have discussed flexural waves, we describe the coupling of SH0 and S0 modes.

3.3 In-plane guided waves: analogy with Lamb waves

In a strip, the coupling of SH0 and S0 at both edges gives rise to complex in-plane guided modes. As
shown in the section III of reference44, this coupling is similar to the one of shear and compression
bulk waves in a plate. These observations enable to build an analogy between Lamb waves in a
plate and in-plane guided waves in a thin strip. In other words, the dispersion diagram for low
frequency in-plane guided waves in a strip is equivalent to the one for guided waves in a plate. In
the following descriptions, the symbol “ ′ ” will be added to the notations when dealing with the
strip configuration. The plate thickness 2h is replaced by the strip width 2h′, the longitudinal wave

44Cross and Lifshitz (2001): “Elastic wave transmission at an abrupt junction in a thin plate with application to heat
transport and vibrations in mesoscopic systems”
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Figure 1.15: Theoretical dispersion curves of in-plane modes in a soft strip – Dispersion
curves of symmetric (red and labeled S′) and anti-symmetric (blue, A′) modes without damping, in
a strip with dimensions 2h = 2.7 mm, 2h′ = 40 mm and transverse velocity VT = 5.3 m/s. The first
two modes are represented. Again, the polarization of the first symmetrical mode (S′

0) is mostly
longitudinal while the first anti-symmetrical one (A′

0) rather corresponds to a flexural motion but
in its width. From these curves, one can extract the bar velocity (mode S′

0 at low frequencies), and
can evidence a Zero Group Velocity point (S′

1) and a backward branch, as well as a Dirac cone with
a finite group velocity at k=0 and fc =VT /2h′.

propagating at VL is replaced by the linearly polarized in-plane wave S0 propagating at velocity VP

(that is V ′
L = VP ), and the SV wave propagating at VT is replaced by the transversely polarized

in-plane wave SH0 propagating at VT (that is V ′
T = VT ), as summarized in table 1.1.

This amounts to solving for Lamb waves in a material of equivalent Poisson’s ratio:

ν ′ = ν

1 + ν
(1.26)

where ν is the Poisson’s ratio of the strip material. In the mechanical computing community, this
is known as the plane-stress formulation which perfectly matches this idea of equivalence between
the strip and the plate that would be the plane-strain equivalent46.

For incompressible materials, the equivalent Poisson ratio is ν ′ = 1/3, and the knowledge of VT

is sufficient to obtain the full dispersion diagram of the in-plane guided waves in the low frequency
range. Like for Lamb waves, solutions are separated into two families of modes that are either
symmetrical S′ or anti-symmetrical A′ with respect to the (x3 = 0)-plane.

The dispersion curves of the in-plane modes propagating in a soft strip are thus obtained by
finding the roots of the Rayleigh-Lamb equation (1.19). Note that these solutions can also be
recovered using COMSOL Multiphysics. Solutions are displayed in figure 1.15 in normalized units.
Several interesting properties are highlighted in the following section.

46Ugural and Fenster (2003): Advanced strength and applied elasticity
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3.4 Dispersion relation: key physical features

As we have just described a method to compute dispersion curves of guided waves in a soft strip,
we can now explore some of its physical content. Many features of in-plane guided modes are
worth highlighting. We focus on in-plane modes, not only because we can observe them with our
experimental set-up, but also because the physics involved is particularly rich.

Bar velocity – The first symmetrical mode, denoted S′
0, is approximately non dispersive for

frequencies below the first cut-off frequency of ∼ 66 Hz. As with the first symmetric S0 Lamb
mode, S′

0 can be seen as longitudinally polarized since it corresponds to compression in the strip.
Its phase velocity can be calculated as a pseudo-plate velocity V ′

P , deduced from equation (1.21)
and has a remarkably simple formulation:

V ′
P =

√
2

1 − ν ′VT =
√

2(1 + ν)VT (1.27)

In the incompressible limit, it simplifies to V ′
P =

√
3VT . Interestingly, although polarized longitudi-

nally at low frequencies, the S′
0 velocity does not depend on the longitudinal velocity.

Furthermore, V ′
P also corresponds to the well known bar velocity, associated to the propagation

of compression waves along any bar or rod regardless of their cross-section. It can be obtained from
the following intuitive reasoning. As it corresponds to longitudinal compression-extension of the
waveguide, the relevant elastic modulus is the Young’s modulus E and the associated velocity is√
E/ρ. After injecting the expression E = 2 (1 + ν)µ, one immediately gets equation (1.27). For an

incompressible material, the Young’s modulus simplifies to E = 3µ and the bar velocity to
√

3VT .

A flexural wave, but in the width – In contrast, the first anti-symmetrical mode, denoted A′
0,

is highly dispersive in the low frequency regime. Actually, when we study its associated displacement
in figure 1.15, we see that it is a flexural motion, but along its width. Using the appropriate Poisson’s
ratio in equation (1.23) and h′ rather than h, it is straightforward to derive the dispersion of the
A′

0 mode in the low-frequency limit, as:

ωA′
0

= V ′
P√
3
k2h′ = VT k

2h′. (1.28)

When increasing the frequency, the wavelength becomes comparable to the strip width 2h′, while
still remaining very large compared to the thickness 2h, and the two modes A′

0 and S′
0 merge to

give rise to an edge mode propagating along the lateral edge of the strip.

Zero Group Velocity and Negative Phase Velocity – Similarly to Lamb modes, the second
symmetrical mode S′

1 has a remarkable behavior. Indeed, the corresponding branch exhibits a
local minimum for a finite wavenumber. At this specific location, the group velocity Vg = dω/dk
vanishes. This is the signature of a Zero Group Velocity (ZGV) point. For small wave numbers,
the S′

1 branch has a negative slope. This indicates that the group velocity is opposite to the phase
velocity. Causality imposes that the energy travels from the source to the receiver. As a consequence
the group velocity should always remain positive. In practice, the negative slope section cannot be
measured and experiments rather reveal its symmetric branch with respect to the k=0 axis. This
is discussed and displayed in the following sections.
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Dirac cones: finite group velocity at k → 0 – In the small wavenumber limit (k → 0),
branches usually presents a horizontal slope (for example the Lamb modes in the plate of figure 1.5)
and dispersion curves ω(k) are quadratic around their cut-off pulsations ωc. As shown by Mindlin
(2006)47, this expansion does not hold for Lamb modes when there is a coincidence between a shear
and a longitudinal cut-off frequency of the same symmetry. In these particular cases, the dispersion
law is linear in the limit k → 0 and approximates to the first order in k as:

ω(k) = ωc + Vgk + o(k) (1.29)

Such coincidences occur for symmetrical modes S2m+1 and S2n, when the bulk velocity ratio VL/VT

is equal to 2n/(2m+1), and for anti-symmetrical modes A2m+1 and A2n when VL/VT = (2m+1)/2n.
For example, recent experiments conducted in a cooled aluminum plate (VL/VT = 2) by Stobbe
and Murray (2017)48 illustrate this linear dispersion near k=0. For modes S1 and S2, linear slopes
of the ω(k) curve can be derived by developing equation (1.19) to the first order and were found47

to be Vg =±2VT /π.
The Lamb wave approximation for in-plane modes in a thin soft strip (i.e. ν ′ = 1/3) reveals a

coincidence frequency for symmetrical modes S′
1 and S′

2. As a result, these two modes cross linearly
at the normalized frequency 2fh′/VT = 1 in figure 1.15. This linear crossing is also referred to as a
Dirac cone49,50. While for ordinary cut-offs the displacement is either pure S0 or pure SH0, both
polarizations are involved when there is a coincidence.

3.5 Experimental measurements in a soft strip

Let us now experimentally assess the dispersion curves of in-plane guided waves in a soft strip. The
soft plate is replaced by a soft strip using a new mould. The final strip dimensions are 60 cm,
2h = 3 mm and 2h′ = 40 mm in x1, x2 and x3 directions respectively. The line source is replaced by
a point-like clamp, obtained by attaching a small magnet to the shaker and pinching the strip with
a second magnet. The source is slightly off-centered (x3 ̸= 0) and vibrates in the x1-direction. The
setup42 is reported in figure 1.16. Here again, the strip is shaken monochromatically for frequencies
ranging from 1 to 200 Hz. The camera captures the motion by following the stroboscopic sketch
pictured in figure 1.8. Finally, displacement components u1 and u3 are extracted by applying the
DIC algorithm. Examples of the obtained field maps at 110 Hz are represented in figure 1.17. The
wave pattern is quite different from the one obtained in the plate. This is due to the superposition of
several modes with different propagation constants and spatial profiles. Separating and identifying
them requires two additional post-processing steps schematized in figure 1.17. First, symmetrical
and anti-symmetrical parts are extracted by respectively summing or subtracting displacement maps
with their flipped counterpart in x3-direction. Concatenating these field maps yields two bigger
matrices u, in top of figure 1.17, one for each symmetry. Then, a Singular Value Decomposition
(SVD) is performed on each matrix. This amounts to the following matrix decomposition:

u = VΣW (1.30)

where V and W are unitary matrices providing displacement profiles along the x3 and x1 coordinates,
respectively, and Σ is a diagonal matrix providing singular values, i.e. the mode prominence in the
overall measurement. The i-th column of V is noted Vi, and the i-th line of W is noted Wi. As a
selection criterion, all modes associated with singular values of at least 10% of the maximum singular

47Mindlin (2006): An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
48Stobbe and Murray (2017): “Conical dispersion of Lamb waves in elastic plates”
47Mindlin (2006): An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
49Maznev (2014): “Dirac cone dispersion of acoustic waves in plates without phononic crystals”
50Huang et al. (2011): “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials”
42Lanoy et al. (2020): “Dirac cones and chiral selection of elastic waves in a soft strip”
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Figure 1.16: Experimental set-up using a point-like source – A thin strip (L = 60 cm,
2h′ = 40 mm, 2h = 3 mm) is held vertically. A shaker generates in-plane displacements propagating
in the strip.

Figure 1.17: Mode separation via Singular Value Decomposition (SVD) – At 110 Hz,
in-plane displacement components u1 and u3 (top left) are projected onto their symmetrical and
anti-symmetrical parts (top right). Data are then concatenated into a single complex matrix usym
(resp. uantisym) on which the SVD is directly applied. After extracting most significant modes
(singular values above a 10% threshold), we obtain one symmetrical (S′

0) and two anti-symmetrical
(A′

0 and A′
1) modes.
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Figure 1.18: Dispersion curves of in-plane modes in a free strip (2h′ = 39 mm) – Experi-
mental (squares) and theoretical (circles) dispersion curves with damping (the more transparent the
curve the more attenuated the mode). Dirac cone (linear crossing of the k=0 axis) and backward
modes (negative wavenumbers) are unambiguously evidenced, while the ZGV point has disappeared.
Predictions are also drawn by symmetry and corresponds to modes propagating in direction −e1.

value are considered as meaningful. The other ones are rejected. At 110 Hz (see figure 1.17), three
modes have a relevant contribution: two symmetrical modes and one anti-symmetrical. Other
selection criteria could be used, such as SVD entropy:

S =
⌈

−
∑

i

λi∑
j λj

ln
(

λi∑
j λj

)⌉

but it has not shown better peformance than a simple threshold so we stick to the first described
criterion. In any case, the selection criterion is often chosen low enough to ensure that all modes
are available at the end. Since W gives the displacement profile along the propagation direction
(x1), its Fourier transform yields the wavenumbers of the contributing modes.

These steps are repeated for all frequencies and dispersion curves are represented as symbols in
figure 1.18. As stated earlier, in experiments, one measures negative phase velocities rather than
negative group velocities. This is why the horizontal axis covers negative values.

3.6 Influence of rheology

Overall, the experimental dispersion curves in figure 1.18 relatively resemble theoretical ones in
figure 1.15 and most of the discussed key features are visible. Indeed, the bar velocity of the strip
(S′

0 mode at low frequency) matches the expected value of
√

3VT ∼ 10 m/s (where VT is deduced
from the SH0 velocity measurement presented in figure 1.10). At 150 Hz, S′

2 crosses the k=0 axis
with a linear slope: this is the Dirac cone. Note that, below the Dirac frequency, the measured
points have negative wavenumbers: this is a signature of negative phase velocities. The continuity
in the measured points naturally leads to label this backward branch S′

2b ("b" for backward). This
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Figure 1.19: Rheology of Ecoflex – Measurement of the complex shear modulus of Ecoflex 00-30
in the range 0.1 − 100 Hz with a conventional plane-plane rheometer (circles). Re(µ) is the storage
modulus of the rubber while Im(µ) is its loss modulus. Lines correspond to the values extracted
from the dispersion curves (see text and figure 1.18).

may appear in contradiction with the dispersion curves for a lossless material shown in figure 1.15
where the backward mode belongs to the S′

1 branch. However, when the complex wavenumbers are
displayed for Lamb modes 51, it clearly appears that the backward branch is connected to S′

2 mode
even when the cone does not exist47, thus this notation is adopted in several papers52,53,54,45.

However, there are two main differences between theory in figure 1.15 and experiment in fig-
ure 1.18. First, the Dirac cone should exactly be at fc = VT /2h′ but it does not match the value
deduced from the measured bar velocity nor the value deduced from the asymptotic behaviour at
high frequencies of A′

0 and S′
0. Second, and more surprisingly, the ZGV point is not visible in the

experiment. These two differences can be explained by examining the elastomer rheology that we
measured independently with a conventional rheometer (Anton-Paar MCR501) which operates in
the plate-plate configuration. To this end, a different sample of Ecoflex 00-30 is cured in the rheome-
ter itself. Both the real (storage modulus) and imaginary (loss modulus) parts of the measured shear
modulus for frequencies ranging from 0.1 to 100 Hz are displayed as symbols in figure 1.19. In such
a logarithmic scale, the loss modulus appears to vary linearly with a slope of almost 1/3, while the
storage modulus slowly increases. As the slope is not an integer, we opt for a fractional derivative
model. One of the simplest model which also satisfies the Kramers-Kronig relations is the fractional
derivative Kelvin-Voigt model55 ,56 ,57 , also suggested for Ecoflex by other works58 ,59 , which takes

51Mindlin and Medick (1959): “Extensional Vibrations of Elastic Plates”
47Mindlin (2006): An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
52Prada et al. (2005): “Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates”
53Philippe et al. (2015): “Focusing on plates: controlling guided waves using negative refraction”
54Gérardin et al. (2016): “Negative reflection of Lamb waves at a free edge: Tunable focusing and mimicking phase

conjugation”
45Laurent et al. (2020): “In-plane backward and Zero-Group-Velocity guided modes in rigid and soft strips”
55Meral et al. (2009): “Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources”
56Kearney et al. (2015): “Dynamic viscoelastic models of human skin using optical elastography”
57Rolley et al. (2019): “A flexible rheometer design to measure the visco-elastic response of soft solids over a wide range of

frequency”
58Yasar et al. (2013): “Wideband MR elastography for viscoelasticity model identification”
59Liu et al. (2014): “Ultra wideband (0.5–16 kHz) MR elastography for robust shear viscoelasticity model identification”
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the form:
µ(ω) = µ0

[
1 + (iωτ)n] (1.31)

The Kelvin-Voigt model is a commonly used viscoelastic model, and its fractional derivative coun-
terpart (iω)n with 0 < n < 1 originates from so-called memory effects, where no relaxation times
and Prony series decomposition are needed because the relaxation function is given by a power-law
decay as detailed in 60,61,62. This viscoelastic model tends to apply for soft solid mechanics63 and
is recommended to model the behaviour of soft tissues64.

At this stage, it is worth mentioning that the analogy presented in section 3.3 was initially built
in order to enable the derivation of those dispersion curves. However, it is difficult to implement
frequency-dependent parameters in either COMSOL Multiphysics, or in the Muller algorithm that
is used to find roots of the Rayleigh-Lamb equation.

As already mentioned earlier, with the arrival of Daniel A. Kiefer at the laboratory, we adapted
the Spectral Collocation Method (SCM) implemented in Matlab for plates37,38 to the geometry of a
rectangular waveguide. This is published in Delory et al. (2023)65 and detailed in Appendix A. As
it allows to use frequency-dependent parameters and because its implementation rapidly provides
accurate solutions for the waves of interest, we have used the SCM to perform parametric studies
all along this thesis.

So the frequency-dependent complex shear modulus, given by equation (1.31), is injected in
the stiffness tensor for the SCM. The latter is being run with several sets of parameters (µ0, τ, n)
until a satisfying agreement between theory and experiment is reached. The final set of parameters
is µ0 = 26 kPa, τ = 260 µs and n = 0.33. It corresponds fairly well to the measured rheology
(Fig. 1.19) but slightly overestimates Re(µ). This discrepancy can be attributed to temperature
changes or to differences between the two samples due to preparation or ageing.

Theoretical dispersion curves in figure 1.18 are calculated with these parameters. The imaginary
part of the wavenumber is rendered by transparency. The frequency dependence of Re(µ) induces
a frequency dependence of the velocity VT which allows to fit the entire S′

0, A′
0 and A′

1 branches.
Factoring viscoelasticity in also explains the lowered Dirac frequency. As for the absence of ZGV
points, it is solely due to the viscous damping. While for a lossless material, the S′

1 branch and
the symmetrical of S′

2b with respect to the k = 0 axis connect at the ZGV point, here, the losses
separate those two branches, as already evidenced in the work of Simonetti and Lowe (2005)66.

Fundamental aspects of this system and its properties have now been identified. We now examine
what happens if we impose a zero displacement at the lateral edges of the strip, i.e. we switch from
Neumann to Dirichlet boundary conditions.

3.7 Investigating Dirichlet boundary conditions

In this section, the experiment is modified in order to investigate the role of boundary conditions,
as shown in figure 1.20. In the Dirichlet configuration, the dispersion is simpler. In section 1.3.3,
the analytical Lamb problem is derived assuming free boundary conditions (Neumann configura-
tion). Here, the case of fixed boundaries (Dirichlet configuration) is investigated. In practice, these
conditions can be implemented by clamping the strip in a rigid frame as shown in figure 1.21.

60Mainardi (2010): Fractional Calculus and Waves in Linear Viscoelasticity
61Machado et al. (2011): “Recent history of fractional calculus”
62Meral et al. (2010): “Fractional calculus in viscoelasticity: An experimental study”
63Sharma et al. (2023): “Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography”
64Parker et al. (2019): “Towards a consensus on rheological models for elastography in soft tissues”
37Kiefer (2022): GEW dispersion script
38Kiefer (2022): Elastodynamic quasi-guided waves for transit-time ultrasonic flow metering
65Delory et al. (2023): “Guided elastic waves in stretched viscoelastic strip”
66Simonetti and Lowe (2005): “On the meaning of Lamb mode nonpropagating branches”



Section 3. From a plate to a strip 31

free edges

rigid frames

Dirichlet

boundary

conditions

Neumann

boundary

conditions

Figure 1.20: Boundary conditions – We
study the Neumann (free edges) and Dirich-
let (fixed edges) boundary conditions.
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Figure 1.21: Experimental set-up for
a fixed strip – A thin strip (L = 60 cm,
2h′ = 47 mm, 2h = 3 mm) is clamped at its
lateral edges and held vertically.

3.7.1 Theory

From a theoretical point of view, switching from Neumann to Dirichlet boundaries amounts to
replacing the zero strain condition in equations (1.17) by a zero displacement condition:{

ikϕ0 cos(p′h′+α) + qψ3 cos(qh′+α) = 0
−p′ϕ0 sin(p′h′+α) + ikψ3 sin(qh′+α) = 0 (1.32)

The equivalent Rayleigh-Lamb equation for rigid boundaries then writes:

k2 sin(qh′+α) cos(p′h′+α) + qp′ sin(p′h′+α) cos(qh′+α)=0 (1.33)

Dispersion curves can be obtained by searching the roots of this equation, or by implementing those
new boundary conditions in the SCM.

The analogy with Lamb waves is first used to obtain theoretical dispersion curves displayed
in figure 1.22. Compared to figure 1.15, one important feature is the absence of propagation at
low frequency (A′

0 and S′
0 have disappeared). Indeed, rigid walls imply that no static in-plane

deformation can be solution to the problem. However, cut-off modes (A′
1, S′

1, A′
2, etc..) still exist.

Note that the negative sloped branch, Dirac cone and ZGV exist for anti-symmetric modes rather
than symmetric ones.

The Dirac cone appears here for anti-symmetric modes at the same frequency fc =VT /2h as for
the Neumann configuration. And the Taylor expansion of p and q at this frequency can be derived
and substituted into the dispersion relation (1.33), leading to the same expression for the group
velocity Vg = ± 2

πVT .

3.7.2 Measurements in a clamped soft strip

The experiment is performed under the same conditions as before. The strip is held along its
edges between two steel plates, and the width is adjusted to avoid buckling or static tension. The
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Figure 1.22: Theoretical dispersion curves of in-plane modes in a clamped soft strip –
Dispersion curves of symmetric (red and labeled S′) and anti-symmetric (blue, A′) modes without
damping in a strip with dimensions 2h = 3 mm, 2h′ = 47 mm and transverse velocity VT = 6 m/s.
The polarization of the first symmetrical mode (S′

1) is mostly longitudinal while the first anti-
symmetrical one (A′

1) is mostly transverse (along x3). Note that these first two modes already
have a non-zero cut-off frequency. These curves evidence a Zero Group Velocity point (A′

1) and a
backward branch, as well as a Dirac cone with a finite group velocity at k=0 and fc =VT /2h′.

excitation clamp is again slightly off-centered and vibrates in the x1-direction from 50 to 200 Hz.
The image analysis allows to extract the experimental dispersion curves represented as symbols
in figure 1.23. The three modes expected in this frequency range are well detected and similar
observations as for the free strip can be made. First, data points around 130 Hz show a linear
crossing of the k=0 axis, which evidences the existence of a Dirac cone for anti-symmetric modes.
Second, points measured below this cut-off frequency correspond to negative wavenumbers, which
is the signature of a backward mode. Here again, the continuity of the points across the Dirac cone
logically leads to attribute the backward modes to the branch A′

2, unlike what is indicated for the
lossless medium theoretical curves represented in figure 1.22. We should not forget that k ↔ −k
symmetry exists, so the symmetrical branch backward modes in the k < 0 region actually joins
the A′

2 branch in the k > 0 region. This part of the curve is thus referred to as A′
2b. Just like

for the Neumann configuration, theory provides a convincing agreement provided that rheology is
taken into account. The value of Re(µ) has an effect on the asymptotic slopes, while the value
of Im(µ) again affects the Dirac frequency. In addition, the ZGV point is accurately defined only
when Im(µ) = 0. In this lossy material, two modes with almost opposite wavenumbers coexist,
which almost corresponds to a ZGV point. The absence of actual ZGV point is evidenced by the
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Figure 1.23: Dispersion curves of in-plane modes in the clamped strip (2h′ = 50.6 mm)
– Experimental (squares) and theoretical (circles) dispersion curves (the more transparent the more
attenuated). The A′

2 Dirac cone (linear crossing of the k=0 axis) and backward A′
2b modes (negative

wavenumbers) are unambiguously evidenced.

disconnection between branches A′
1 and the symmetric of A′

2b with respect to k = 0 axis, just as
in the Neumann configuration. This is a direct consequence of increasing losses near this point as
rendered by the theoretical points transparency.

4 Conclusion
In this chapter, we introduced the linear elasticity theory and briefly described elastic waves in
bulk media. We studied the coupling of the three existing polarizations when reflecting on a plane
interface, leading naturally to waves in a plate, consisting of two parallel plane interfaces. We first
described this problem analytically and obtained the Rayleigh-Lamb equation. Instead of using
usual root-finding algorithms, we showed that the resolution could be performed using a Spectral
Collocation Method (SCM), a numerical tool for calculating dispersion curves of guided elastic
waves in a plate (both SH and Lamb modes).

We then introduced a simple yet versatile experimental platform to generate and observe these
guided waves, which we could even call a "playground". In particular, we measured the three fun-
damental modes, i.e. SH0, S0 and A0, in Ecoflex, a commercial silicone elastomer. Soft elastomers
enable large displacements and slow propagation, which drastically facilitates the experimental pro-
cedure. We verified that the longitudinal plate velocity VP is indeed given by twice the transverse
velocity VT .

Next, we focused on the geometry studied in depth later in this PhD thesis: the so-called
strip geometry. An analogy with Lamb waves allowed us to obtain an approximate dispersion
diagram for in-plane guided waves, but once again SCM provided an accurate solution. This strip
geometry greatly enriches the physics at stake, and key features of the dispersion curves were
discussed. Namely, a Dirac cone appears as a direct consequence of the incompressibility nature of
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soft elastomers. Finally, still using this strip geometry, we demonstrated the importance of rheology
and its impact on cut-off frequencies, asymptotic slopes and the ZGV point disappearance. We
have also been able to apply all these methods to another configuration where the strip edges are
fixed, and consistent results were obtained.

One question that came up was: what influence could weight might have on the propagation
of these guided waves? We naturally wondered how these dispersion diagrams would change if the
elastomers were pulled before applying our experimental method. The following chapter indeed
investigates the effect of prestress on the velocities of SH0 and S0 modes in a plate. Then, in
chapter 3, we look at the full dispersion diagrams in prestressed strips with either free or fixed
edges.
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Appendix A: Solving the full 3D problem using a Spectral Colloca-
tion Method
We briefly recall the theory underlying elastic guided waves in a strip, going back to equation (1.10).
The infinite strip has a rectangular cross-section Ω in the (x2, x3)-plane, the thickness (respectively
the width) is given in direction x2 (resp. x3). We are interested in plane guided waves propagating
in the x1-direction, which lead to a wave field of the form:

u(k, x2, x3, ω) ei(kx1−ωt) . (1.34)

Here, our method to compute the dispersion curves with Matlab is based on a SCM. The mathemat-
ical background of the method is treated in References67,68. For a general overview on implementing
spectral collocation to compute guided waves in plates (one-dimensional cross-section) refer to Ref-
erence69. Lastly, a very concise derivation for anisotropic plates is presented in Reference70.

The computational method consists of three fundamental steps: (i) derive the boundary-value
problem that describes plane guided waves, (ii) replace differential operators by spectral differentia-
tion matrices to obtain a discrete approximation of the guided wave problem, and (iii) use standard
numerical methods to solve the resulting algebraic eigenvalue problem.

Step (i) consists of inserting equation (1.34) into the equation of motion (1.10). After re-
arranging the terms this yields (in symbolic tensor notation):[

(ik)2c11 + ik(c21 + c12)∂2 + ik(c31 + c13)∂3+

+c22∂
2
2 + (c32 + c23)∂3∂2 + c33∂

2
3 + ω2ρ1

]
· u = 0 on Ω , (1.35)

where we have defined the second order tensors cij := ei ·C ·ej with i, j ∈ {1, 2, 3}. A more detailed
derivation for a plate can be found in Kiefer et al. (2023)70.

Boundary conditions are needed in addition to equation (1.35). The strip is free (homogeneous
Neumann boundary condition) on the boundary ∂Ω. Writing en for the unit normal to the strip
cross-section, i.e. either e2 or e3, the homogeneous Neumann boundary condition reads:

en · C : ∇u = [ikcn1 + cn2∂2 + cn3∂3] · u = 0 on ∂ΩN . (1.36)

The equation of motion (1.35) together with the boundary condition in equation (1.36) constitute
the boundary-value problem that describes guided waves in the strip. Note that for a given value
of ω, it constitutes a quadratic differential eigenvalue problem with eigenvalue k and eigenfunction
u(x2, x3).

The discretization is performed in step (ii). To this end, the domain Ω = [0, h] × [0, b] is
discretized as suggested by Weideman and Reddy (2000)68 using Chebyshev spectral collocation.
The first and second order differentiation matrices D(10) and D(20) of size N × N along the x2-
coordinate are computed using DMSUITE68 . We proceed similarly for differentiation along the
x3-coordinate, yielding matrices D(01) and D(02) of size P × P . Next, the differentiation matrices

67Trefethen (2000): Spectral Methods in MATLAB
68Weideman and Reddy (2000): “A MATLAB Differentiation Matrix Suite”
69Adamou and Craster (2004): “Spectral methods for modelling guided waves in elastic media”
70Kiefer et al. (2023): “Computing zero-group-velocity points in anisotropic elastic waveguides: Globally and locally con-

vergent methods”
70Kiefer et al. (2023): “Computing zero-group-velocity points in anisotropic elastic waveguides: Globally and locally con-

vergent methods”
68Weideman and Reddy (2000): “A MATLAB Differentiation Matrix Suite”
68Weideman and Reddy (2000): “A MATLAB Differentiation Matrix Suite”
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in the (x2, x3)-plane are obtained as Kronecker productsA , denoted by "⊗", between the former
one-dimensional differentiation matrices. Concretely, this yields the matrices:

D23 = D(01) ⊗D(10) , D2 = IP ⊗D(10) , D22 = IP ⊗D(20) ,

D3 = D(01) ⊗ IN , D33 = D(02) ⊗ IN , Id = IP ⊗ IN , (1.37)

where IQ denotes the identity matrix of size Q×Q.
Next, partial derivatives in equations (1.35) and (1.36) are replaced by differentiation matrices

given in equation (1.37). When doing so, the multiplication of the differentiation matrices with
second order constitutive tensors cij needs to be interpreted again as Kronecker products. This
finally yields: [

(ik)2c11 ⊗ Id + ik(c21 + c12) ⊗D2 + ik(c31 + c13) ⊗D3+

+c22 ⊗D22 + (c32 + c23) ⊗D23 + c33 ⊗D33 + ω2ρ1 ⊗ Id
]
u = 0 , (1.38)

where u denotes the 3NP×1 vector of u1, u2, u3 displacements at the NP collocation points. Hence,
equation (1.38) represents a linear system of size 3NP × 3NP .

The discrete boundary conditions are obtained similarly and the Neumann boundary condition
from equation (1.36) becomes:

[ikcn1 ⊗ Id + cn2 ⊗D2 + cn3 ⊗D3]u = 0 . (1.39)

Lastly, the boundary conditions need to be incorporated into equation (1.38). This is done by
replacing the corresponding rows of (1.38) with the ones from (1.39), as appropriate. Denoting final
matrices with the mentioned replacements as L2, L1, L0 and M , this finally leads to:

[(ik)2L2 + ikL1 + L0 + ω2M ]u = 0 . (1.40)

The above represents an algebraic eigenvalue problem for the eigenpair (ω2, u) parameterized by
k, as is common in commercial software. Alternatively, it can be solved for the eigenpair (k, u) that
is parameterized in ω, which is particularly useful for frequency-dependent material parameters.
Choosing different values for ω and solving the quadratic eigenvalue problem with conventional
methods (e.g., polyeig in Matlab) yields the desired dispersion curves k(ω). Note that wavenum-
bers k are complex valued, while ω remains a real quantity. This is handled naturally by the
eigenvalue solver and presents no difficulty.

In order to test the implementation, we first consider a purely elastic and isotropic material.
In this case, we compute the propagating waves by prescribing real-valued k and computing the
eigenpair (ω2, u). Computations of the free strip in the range ω/2π < 300 Hz yield converged results
with N = 8 and P = 14 and compare well to solutions obtain with COMSOL Multiphysics, while
being much faster, as depicted in figure 1.24. As we are able to rapidly obtain accurate solutions for
the waves of interest, we have stuck to the very fast SCM to perform parametric studies all along
this thesis.

To switch to the configuration of a strip with fixed lateral edges, one should modify equa-
tion (1.36) in:

u = 0 on ∂ΩD . (1.41)

and the equation (1.39) in:
1 ⊗ Id u = 0 . (1.42)

A The Kronecker product A ⊗ B of the m × n-matrix A = [Aij ] with the p × q-matrix B yields the block matrix [AijB] of
size mp × nq.
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Figure 1.24: Comparison of the SCM with solutions obtained with COMSOL Multi-
physics — Numerically computed dispersion curves for in-plane guided waves in a soft elastic strip
of size h = 3 mm×b = 40 mm. Both the in-plane and out-of-plane solutions coincide for a free strip.

At this point, there is one remaining subtlety to clarify. By implementing these boundary con-
ditions, the collocation points located at the corner, e.g. with coordinates (x2 = ±h/2, x3 = ±b/2)
should satisfy both Neumann and Dirichlet boundary conditions. In practice, its numerical imple-
mentation is hard and we have decided to eliminate the Dirichlet degree of freedoms. However,
different solutions are still obtained depending on the parity of N . To obtain the right disper-
sion curves of in-plane (respectively out-of-plane) modes in the fixed strip, compared to COMSOL
results, one should consider N to be even (resp. odd).

Likewise, we saw that using the Lamb waves analogy in figure 1.22, the Dirac cone must exist for
anti-symmetric modes in a fixed strip. However, when we solve the 3D problem using the SCM (N
even) or COMSOL, the Dirac cone does not appear rigorously this time but there is instead a slight
mismatch between cutoff frequencies. At this stage, it is difficult to identify the actual origin of this
mismatch. Knowing that it does not appear in the case of a free strip, we can assume that this is
due to the combination of both the Neumann and Dirichlet boundary conditions. A slight phase
shift must occur when S0 and SH0 modes are reflected at the lateral edges, leading to a shift in
cut-off frequencies. However, we did not attempt to further understand the origin of this mismatch.
At the end, this is indeed smoothed by viscoelasticity as in figure 1.23 and further illustrated later
in figure 3.19 in chapter 3.



Chapter 2
Acoustoelastic effect in a soft plate

In this chapter, we study the propagation of guided elastic waves in a highly-
stretched Ecoflex plate. The plate is subjected to a nearly-uniaxial stress with
an elongation reaching 120% and we measure in-plane displacements of the shear
horizontal mode SH0 and plate mode S0 coexisting in the low frequency limit.
An induced anisotropy is observed and characterized by tracking the evolution
with stress of the phase velocities in the principal directions. Velocity changes
in a prestressed elastic medium are already well studied and referred to as the
acoustoelastic effect. It is based on a nonlinear elasticity framework which is
described and particular attention is given to the choice of tensors to be used.
Based on our experimental results, we evidence the limits of the acoustoelastic
theory to predict those phase velocities in a prestressed elastomer. Taking into
account the rheology, a fractional derivative viscoelastic part is added; and this
provides accurate predictions up to 80% elongation.

• In-plane guided waves are measured in a highly-stretched plate of Ecoflex

• Major symmetries are broken and the induced anisotropy is fully characterized

• Limits of the acoustoelastic theory are evidenced

• An experiment-driven fractional viscoelastic model is used to adapt the theory

• The visco-hyperelastic fractional model properly estimates complex wavenumbers up
to an elongation of 80%

Objectives
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In this chapter, we investigate, experimentally and theoretically, the propagation of guided
elastic wave in a highly elongated soft plate (elongation reaching 120%). Such high deformations are
commonly reached in tensile tests but rarely in experiments which involve wave propagation. First,
the stress-induced anisotropy is observed and quantified. We perform systematic measurements of
guided wave velocities along or transversely to the stress direction at different stretch ratios (1 ≤
λ1 ≤ 2.2). They reveal different behaviours for the two fundamental modes propagating in a plate
at low-frequency, that is to say the first shear horizontal mode SH0 and the first symmetric Lamb
mode, the so-called plate mode S0. Such changes in velocities in an elastic medium is referred to the
acoustoelastic effect28 ,71 . The description of this effect requires a non-linear elasticity framework
which is first described and particular attention is given to the choice of tensors. The theory here
relies on the use of an hyperelastic constitutive law where stress tensors are derived from a strain
energy density function W . Usual hyperelastic models are described, both in their compressible and
incompressible forms. Then hyperelasticity is combined with an incremental approach, also known
as a small-on-large analysis, leading to a wave equation for incremental displacements, provided an
equivalent elastic tensor is used. Then, each major symmetry is broken and the Voigt notation can
no longer be used. From this equivalent elasticity tensor, it is straightforward to derive predictions
for bulk wave velocities but a little more work needs to be done to obtain predictions for guided
waves velocities in a plate. Using the work of Rogerson and collaborators72,73,74, we are still able
to build analytical hyperelastic predictions for investigated velocities. Although, similarly to Li
et al. (2022)75 , we can recover the applied static stress in the plate, no hyperelastic model could
correctly describe the evolution of velocities as a function of elongation. To rightfully predict those
changes, we add a dissipative stress tensor to the hyperelastic stress tensor. The chosen viscoelastic
contribution is a fractional derivative term since we identified a fractional Kelvin-Voigt model in
chapter 1. From this new term, we compute how the equivalent elasticity tensor is modified. Now
that tensor components have a non-zero imaginary part, the obtained wavenumbers are complex-
valued and predictions for attenuation distances can also be constructed. In the end, this model not
only correctly predicts the changes in phase velocities, but also the attenuation distances of those
two modes. The following is largely duplicated from our work published in Delory et al. (2023)76.

1 First observations in a stretched plate
In this first section, we observe elastic waves propagating in a soft plate when it is highly deformed.
The experimental setup is recalled, as well as the measurement of the full in-plane displacement
field. Two guided modes are observed and identified in view of what was discussed in chapter 1.
Then, the setup is used to evaluate the anisotropy induced by the initial stress and demonstrate
how the different velocities depend on this prestress.

1.1 Experimental method

The experiment is similar to the one presented in figure 1.7 in chapter 1. The same 3 mm thick
plate made of Ecoflex is held vertically and clamped at its bottom and top edges to rigid bars, as
shown in figure 2.1(a). This configuration allows us to apply a static and large stretch in the plate,
as demonstrated in figure 2.1(b). At first, the plate is undeformed and in a natural configuration.

28Biot (1940): “The Influence of Initial Stress on Elastic Waves”
71Toupin and Bernstein (1961): “Sound Waves in Deformed Perfectly Elastic Materials. Acoustoelastic Effect”
72Rogerson and Fu (1995): “An asymptotic analysis of the dispersion relation of a pre-stressed incompressible elastic plate”
73Nolde et al. (2004): “Dispersion of Small Amplitude Waves in a Pre-Stressed, Compressible Elastic Plate”
74Rogerson and Prikazchikova (2009): “Generalisations of long wave theories for pre-stressed compressible elastic plates”
75Li et al. (2022): “Non-destructive mapping of stress and strain in soft thin films through sound waves”
76Delory et al. (2023): “Guided elastic waves in a highly-stretched soft plate”
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Figure 2.1: Experimental setup to measure velocities in a deformed plate– (a) A thin
plate of Ecoflex00-30, with dimensions 60 cm x 3 mm x 60 cm in directions x1, x2, x3, is held in
a vertical position and clamped to a frame on its top and bottom edges. Sinusoidal vibrations in
the (x1, x3)-plane are generated by a shaker and displacements are extracted using a CCD camera
located 3 m away from the plate. (b) Same experimental configuration but the frame is adjusted to
impose large deformations, reaching stretch ratio λ1 > 2 along the vertical axis.

After applying a nearly-uniaxial stress, the plate is in a deformed configuration characterized by
stretch ratios (λ1, λ2, λ3) in the three principal directions.

To observe wave propagation, we assume that the deformation under uniaxial stress is uniform
along the plate. We first need to evaluate the validity of this assumption. If the applied stress is
uniaxial, then stretch ratios equal

(
λ1, λ

−0.5
1 , λ−0.5

1

)
by symmetry and incompressibility.

However due to boundaries, this assumption does not hold. To quantify this discrepancy from
uniaxial tension, the same plate is stretched using a user-controlled static stress by adding weights to
the bottom clamp. Results are shown in figure 2.2 for the undeformed plate (λ1 = 1) and for a plate
submitted to a stress of 65 kPa resulting in a stretch ratio of λ = 1.75. Image processing enables us
to extract the displacement of a mesh of black dots so that stretch ratios are computed and displayed
in figure 2.2(a) and (b). We can see the effect of the edges on the λ3 map. Overall, the deformation
remains almost homogeneous and this will not be a problem in the following as the regions of interest
(black or white rectangles) are centered on the region of the plate where the deformation can be
considered homogeneous. However, by repeating this experiment, we tracked the evolution of λ1
and λ3. We found in figure 2.2(c) that a good fit corresponds to λ3 = λ−0.41

1 ̸= λ−0.5
1 , and we have

thus quantified the discrepancy with uniaxial tension. A last observation is this apparent vertical
gradient in λ1. It can be explained since the undeformed plate is not in its natural configuration,
but is submitted to its own weight. It is well known that, due to its own weight, deformation in the
upper part of the plate is higher than in the lower part. Actually, the bottom of the plate should
exactly be undeformed. Then, applying a constant static tension in the plate (by opposition to the
weight which is not a constant stress) induces a higher apparent stretch ratio in the bottom of the
plate since the upper part of the plate was already slightly deformed in the reference configuration
(as opposed to the natural configuration). This small contribution was not corrected here because
it is negligible in the region of interest given by white (or black) rectangles. More details about this
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Figure 2.2: Mapping the static deformation in the stretched plate – Displacements of
a mesh of black dots is extracted between the undeformed plate at rest and the deformed plate
submitted to a 65 kPa stress. Stretch ratios λ1 (a) and λ3 (b) are displayed. Due to boundaries,
the deformation is not homogeneous everywhere but is in the region of interest (black or white
rectangles). The gap to uniaxial tension is quantified by relating λ3 as a function of λ1 in (c).

static deformation can be found in Appendix A.
Regarding the wave generation, in both configurations, we use a point-like source made of two

magnets pinching the plate in its center and driven monochromatically with a shaker so that it
generates displacements in the (x1, x3)-plane. The source polarisation is changed by rotation of the
shaker. The excitation frequency ranges from 50 to 300 Hz. Again a 60-frame video is recorded and
DIC is applied to retrieve in-plane wave field components (u1, u3).

1.2 The initial stress induces anisotropy for elastic waves

An example of acquired frame is displayed in figure 2.3(a) for the undeformed plate. Typical dis-
placement maps obtained when vibrating the source at 200 Hz are also shown as a colour code.
Given a source vibrating in x1-direction (respectively x3), the displacement Re [u1(ω)] (respec-
tively Re [u3(ω)]) is displayed in figure 2.3(b) (respectively 2.3c). As a first observation one can
notice that a 90° source rotation involves a rotation of 90° of the displacement map. This demon-
strates that the material is isotropic at rest and no privileged direction exists in the undeformed
case. By carefully looking at the wave pattern along the two main directions one can notice the
existence of two distinct wavelengths, one being twice larger than the other. This effect is confirmed
by applying a spatial Fourier Transform on these wave-fields. After normalization and summation
in intensity of the two, the spatial spectrum of the measured waves evidences two concentric circles
in figure 2.3(d), revealing two isotropic guided modes, with radii again showing this factor of 2.

Given the theoretical framework detailed in chapter 1, only three modes can propagate in this
plate at this frequency: the first shear horizontal mode SH0 and the first two Lamb modes S0 and
A0. As already indicated in figures 1.11 and 1.12, SH0 and S0 are polarized in the (x1, x3)-plane
while A0 is a flexural mode and mainly polarized in x2-direction at this frequency. Given the source
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Figure 2.3: Experimental 2D displacement maps in an undeformed and a deformed
plate at 200 Hz – (a)-(e) Typical pictures obtained for the initial and the deformed plate. 4 red
dots are here to measure λ1 = 2.01 and λ3 = 0.74. (b)-(f) 2D map of the displacement u1 with
a source vibrating along x1. (c)-(g) 2D map of the displacement along u3 with a source vibrating
along x3. (d)-(h) Isofrequency contours for the initial and deformed plate. The spatial Fourier
transforms of the two previous maps are normalized, squared and summed.

polarization, A0 cannot be observed in this experiment and only SH0 and S0 are visible. Let us
recall that those 2 modes are nearly non-dispersive, and propagate respectively at VT and VP = 2VT

for an incompressible solid. The two circles are thus labeled accordingly in figure 2.3(d).
The same procedure is then repeated after applying a static load to the plate. The stretch

ratios in x1 and x3 directions are measured by manually tracking red diamonds displacements in
figure 2.3(e). Here, stretch ratios λ1 = 2.01 and λ3 = 0.74 are measured in the plate center.

Comparing field maps for two different vibrating directions in figure 2.3(f) and (g) now reveals
that the system is no longer invariant by rotation: the initial deformation leads to anisotropic
propagation. Again, this effect is nicely caught in the spatial Fourier domain of figure 2.3(h) where
circles are now replaced with ellipses. It appears that prestress does not affect similarly SH0 and
S0 since ellipses have different aspect ratios.

1.3 Static prestrain dependence of SH0 and S0 phase velocities

To systematically track the induced anisotropy, a new set of measurements is performed. The point
source is replaced by a line source to generate plane waves as done in chapter 1 and shown in
the left part of figure 2.4. Measurements are repeated for different frequencies and static stretch
ratio λ1. As displayed in figure 1.10, shaking the line source in the (x1, x3)-plane, with a 45°
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Figure 2.4: Experimental dispersion curves and phase velocities at 170 Hz in a
stretched plate – Measurement in the top part (respectively bottom part) are obtained for plane
waves propagating in x1-direction (resp. x3-direction). (a)-(c) Dispersion curves of waves propa-
gating in directions x1 and x3. The stretch ratio λ1 is given by the darkness, as represented on the
colorbar. (b)-(d) Phase velocities of SH0 and S0 at 170 Hz extracted and plotted as functions of λ1.

angle between displacement and propagation directions allows the combined observations of SH0
and S0 in one single experiment. Dispersion curves obtained for different stretch ratios λ1 are
plotted in figure 2.4(a) (resp. 2.4b) for plane waves propagating in x1-direction (resp. x3-direction).
The higher the stretch ratio, the darker the curves. The behaviour depends on the propagation
direction: while the slopes are increasing in the parallel direction (x1-direction), they barely vary
in the perpendicular direction (x3-direction). Note that at the frequency f ∼ 100 Hz, an accident
occurs due to a mechanical resonance of the clamp fixed to the shaker and holding the line source.
This small "anti-crossing" has no influence on the measured dispersion relation above 150 Hz. From
now on, phase velocities are extracted at an intermediate frequency of 170 Hz and plotted as a
function of the stretch ratio λ1 in figure 2.4(b) and (d) for parallel and perpendicular directions
(numerical values are available in Appendix C). The velocity of SH0 appears to vary linearly with
λ1 in the parallel direction, while the evolution is more complex for S0 mode. In addition, velocities
of both SH0 and S0 remain almost constant in the perpendicular direction.

In this section, the experimental setup has allowed the observation of SH0 and S0 in a soft plate
and the factor of 2 between their velocities. The phase velocities dependence with the stretch ratio
λ1 was observed by systematic measurements at different frequencies in a highly-stretched plate.
Those variations are also referred to as the acoustoelastic effect, which is detailed in the next section.
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2 Theoretical aspects underlying the acoustoelastic effect
The acoustoelastic effect is the change in velocities of elastic waves due to an initial stress. It
relies on non-linear elasticity since the initial stress usually induces large deformations compared
to incremental motions describing waves propagating in the material. In our experiment, the non-
linearity first appears as a non-linear geometrical effect but we will see that a mechanical non-
linearity must also be thought out by using a hyperelastic model. Numerous experimental and
theoretical works have been devoted to explaining this phenomenon, and its main characteristics
are recalled. More details can be found in the works of Ogden, Destrade and Saccomandi77,29,78 .
In order to understand the experimental observations made in the previous section, we apply the
acoustoelastic theory to guided waves in a plate. Firstly, the acoustoelastic effect is used to make
predictions for bulk waves. We demonstrate symmetry breaking in the equivalent elasticity tensor,
and that it is responsible for the induced anisotropy observed in figure 2.3 and 2.4. Secondly, phase
velocities of guided waves SH0 and S0 are derived using the acoustoelastic theory and compared to
experimental data.

2.1 Nonlinear elasticity

In chapter 1, basics of linear elasticity have been introduced using Hooke’s law, the most common
constitutive law in elastic solids. In this context, the Cauchy stress σ is linearly related to the
linearized strain tensor ϵ and a wave equation is obtained and recalled here using Einstein summation
notation:

Cjikl
∂2uk

∂Xj∂Xl
= ρ

∂2ui

∂t2
(2.1)

In the framework of non-linear elasticity, the strain tensor ϵ should be replaced by the Green-
Lagrange strain tensor:

E = 1
2
[
FT · F − 1

]
= 1

2
[
∇u + (∇us)T + (∇us)T · ∇us

] (2.2)

where us (X) = x − X is now the static displacement matching the initial deformation visible in
figure 2.1(b). See figure 1.1 in chapter 1 for the definitions of x and X coordinates. Before discussing
the choice for a stress tensor, we derive the Green-Lagrange strain tensor for a simple uniaxial case. If
no rotations are present in the static deformation, then stretch ratios (λ1, λ2, λ3) =

(
λ, λ−0.5, λ−0.5)

are simply the diagonal coefficients of the deformation gradient F. Inserting this into equation (2.2),
simply leads to:

Eij = λi
2 − 1
2 δij (2.3)

It should be noted that other strain tensors could also be adopted. Similarly, different stress
measures exist and one should ensure that the selected tensors are conjugate77,79.

A geometrical non-linearity is therefore evidenced in equation (2.2), but the mechanical non-
linearity must also be thought out. Typically, it is common to use a hyperelastic law for soft media
like elastomers. This constitutive law is detailed in the following part and basically relies on a strain
energy density function W .

77Ogden (1997): Non-Linear Elastic Deformations
29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials
78Saccomandi and Ogden (2004): Mechanics and Thermomechanics of Rubberlike Solids
77Ogden (1997): Non-Linear Elastic Deformations
79Mihai and Goriely (2017): “How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters

in isotropic finite elasticity”
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Figure 2.5: Experimental tensile test of Ecoflex – The Cauchy stress σ is plotted as a
function of the stretch ratio λ. Predictions using a linear (Hooke’s law, in black) and a nonlinear
(Mooney-Rivlin, in red) model.

But just before that, we can explore this non-linearity with a simple uniaxial tensile test. Using
an Instron instrument, we measure the force as a function of the stretch ratio λ on an Ecoflex
sample. Results of the tensile tests are shown in figure 2.5. The Cauchy stress σ is derived as the
measured force divided by the deformed cross-section area, and plotted as a function of the stretch
ratio λ. Hooke’s law is the linear prediction (black dashed line) and simply reads σ = E0 (λ− 1).
The Mooney-Rivlin prediction (red line) is explained later but we must first introduce the notion
of hyperelasticity. This term is justified since the slope increases with λ.

2.2 Hyperelastic constitutive law

The hyperelastic constitutive law relies on the use of a strain energy density function W which
contains all mechanical properties. From this energy function, the stress–strain relationship can be
derived. Depending on the selected strain tensor, the appropriate stress tensor should be consid-
ered. The following is largely inspired by the book of Ogden (1997)77 and works of Destrade and
Saccomandi29,80,81,78. The simplest equation writes:

P = ∂W

∂F or Pij = ∂W

∂Fij
(2.4)

where P is the first Piola–Kirchhoff stress tensor and relates forces in the present configurations with
areas in the reference configuration. This definition is widely used under the name of "engineering
stress", because it is typically what you get with a classical tensile test.

This simple case is in fact asymmetric and may not appear natural. For instance, it is also
possible to relate forces in the reference configuration with areas in the reference configuration, and
this is the second Piola–Kirchhoff stress tensor S,

S = ∂W

∂E or Sij = ∂W

∂Eij
(2.5)

77Ogden (1997): Non-Linear Elastic Deformations
29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials
80Destrade et al. (2010): “Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect”
81Destrade et al. (2012): “Large Acoustoelastic Effect”
78Saccomandi and Ogden (2004): Mechanics and Thermomechanics of Rubberlike Solids
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Here, S and E are conjugate. Note that the nominal stress tensor N = PT and F are also conjugate.
A couple of strain and stress tensors are said conjugate when the stress power density can be derived
as follows:

stress power density = Tr
(

S · ∂E
∂t

)
= Tr

(
N · ∂F

∂t

)
(2.6)

Finally, the Cauchy stress tensor σ relates forces in the deformed configuration with areas in the
deformed configuration. To write σ, one needs to perform the so-called push-forward operation of
the second Piola–Kirchhoff stress tensor S, that is to say:

σ = 1
J

F · S · FT = 1
J

F · ∂W
∂E · FT or σil = 1

J
Fij

∂W

∂Ejk
Flk (2.7)

with J = det (F) gives the relative change of volume in the material.

Isotropic solid – For an isotropic solid, W should be invariant under a permutation of the
stretch ratios (λ1, λ2, λ3) so that W must be a function of the principal invariants of the left (or
right) Cauchy-Green tensor B = F · FT:

I1 = Tr (B) = λ2
1 + λ2

2 + λ2
3

I2 = 1
2
(
Tr (B)2 − Tr

(
B2
))

= λ2
2λ

2
3 + λ2

1λ
2
3 + λ2

1λ
2
2

I3 = det (B) = λ2
1λ

2
2λ

2
3 = J2

(2.8)

When dealing with anisotropic material, additional invariants should be considered 82,83,84. For the
rest of this thesis, we will stick to isotropic solids. When considering this symmetry, it is possible
to rewrite principal Cauchy stress tensor components as:

σi = λi

J

∂W

∂λi
(2.9)

The incompressible approach – The literature is very rich when it deals with incompressible
hyperelastic models because most of the studied materials likely to be hyperelastic are also nearly
incompressible, such as rubbers and biological tissues85,86. Since there are no volume change in such
materials, J → 1. In that case of an incompressible hyperelastic model W (I1, I2), it is important
to keep the incompressibility condition in the stress tensor. This is achieved by using a Lagrange
multiplier p and by rewriting the Cauchy stress tensor as:

σ = −p1 + 1
J

F · ∂W
∂E · FT. (2.10)

The Lagrange multiplier is named p here since the term −p1 is similar to a hydrostatic pressure.
We now explore some hyperelastic models proposed in the literature.

2.3 Some examples of hyperelastic models

Before going deeper in the acoustoelastic effect, it is essential to describe some hyperelastic models.
Let us begin with incompressible models i.e. when J → 1 and W = Wincompressible (I1, I2).

82Balzani et al. (2006): “A polyconvex framework for soft biological tissues. Adjustment to experimental data”
83Peyraut et al. (2010): “A closed form solution for the uniaxial tension test of biological soft tissues”
84Mukherjee et al. (2022): “Representing the stress and strain energy of elastic solids with initial stress and transverse

texture anisotropy”
85Wex et al. (2015): “Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological

tissues: a review”
86Chagnon et al. (2015): “Hyperelastic Energy Densities for Soft Biological Tissues: A Review”
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Neo-Hookean – Knowing the strain energy density W is a function of invariants I1 and I2, the
simplest functions that come to mind are polynomial functions. First, we can write W as a linear
function of I1; this is the neo-Hookean model:

WNH = µ

2 (I1 − 3) . (2.11)

Here, the shear modulus µ naturally appears when comparing to isotropic Hooke’s law at infinites-
imal strains. Despite its obvious simplicity, this model has some physical meaning in view of
molecular chain statistics. Actually, in elastomers or rubber, the elasticity of the polymeric net-
work is mainly due to entropic changes during deformation, leading Treloar (2005)87 to write
W = 1

2nkBT (I1 − 3) with n the chain density, kB the Boltzmann constant and T the material
temperature.

Mooney-Rivlin – Given that W can also depend on the invariant I2, another idea is to write the
strain energy density as a sum of two terms linear in I1 and I2; this is the Mooney-Rivlin model88:

WMR = µ

2 [(1 − α) (I1 − 3) + α (I2 − 3)] . (2.12)

Again, the coefficients should match Hooke’s law at infinitesimal strains. The physical interpretation
of this model is not straightforward and is still a current issue in this research field89 . Note that
taking α = 0 brings us back the neo-Hookean model. Moreover, the Cauchy stress tensor from
equation (2.10) then simplifies:

σ = −p1 + µ
[
(1 − α)B − αB−1

]
(2.13)

Other polynomials models – Beyond models with linear functions of I1 and I2, it makes sense
to consider polynomial functions of I1 and I2; this is the generalized Rivlin model:

Wgeneralized Rivlin =
N∑

p,q=0
Cpq(I1 − 3)p (I2 − 3)q. (2.14)

where Cpq are material constants and p, q integers. Previous models in equations (2.11) and (2.12)
are special cases of this generalized model. In the following of this thesis, we stick to the two simple
neo-Hookean and Mooney-Rivlin hyperelastic models.

Additional models – Of course, it is possible to consider more complex functions of I1 and
I2, such as exponential (Fung (1993)90) or logarithmic (Gent (1958)91) functions of I1. Another
famous model, developed by Ogden, uses the modified invariants Iα = (λα

1 + λα
2 + λα

3 ) /α where
α ∈ IR∗. For a complete review about these hyperelastic models, see References92,93,79.

87Treloar (2005): The Physics of Rubber Elasticity
88Rivlin (1948): “Large elastic deformations of isotropic materials IV. Further developments of the general theory”
89Anssari-Benam et al. (2021): “On the central role of the invariant I2 in nonlinear elasticity”
90Fung (1993): Biomechanics
91Gent (1958): “On the relation between indentation hardness and Young’s modulus”
92Boyce and Arruda (2000): “Constitutive Models of Rubber Elasticity: A Review”
93Marckmann and Verron (2006): “Comparison of hyperelastic models for rubber-like materials”
79Mihai and Goriely (2017): “How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters

in isotropic finite elasticity”
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From incompressible to compressible hyperelastic models – As indicated above, those are
hyperelastic models to be used in the incompressible approach. However, as seen later in this work,
we found it is important to keep the compressible part directly in the strain energy density. We
thus need to write compressible versions of the neo-Hookean and Mooney-Rivlin models. There are
different ways to extend those incompressible models94 but the simplest is to write:

Wcompressible (I1, I2, J) = Wincompressible
(
Ī1, Ī2

)
+Wvol(J) (2.15)

with Ī1 = I1
J2/3 and Ī2 = I2

J4/3 . In fact, these invariants are normalized so that Ī3 = I3
J6/3 = 1.

Once again, a choice has to be made for the volumetric contribution. To keep it simple, we use a
quadratic function, that is to say:

Wvol(J) = κ

2 (J − 1)2 with κ = λL + 2
3µ, (2.16)

and the bulk modulus κ appears here to ensure Hooke’s law in the limit of infinitesimal strains.

Compressible neo-Hookean and Mooney-Rivlin – The two models of interest read:

WnH, compressible = µ

2

(
I1
J2/3 − 3

)
+ κ

2 (J − 1)2 (2.17)

WMR, compressible = µ

2

[
(1 − α)

(
I1
J2/3 − 3

)
+ α

(
I2
J4/3 − 3

)]
+ κ

2 (J − 1)2 . (2.18)

Note that the compressible form of the Mooney-Rivlin hyperelastic model is also called the Blatz-Ko
model95 . We have selected the strain tensor, stress tensor and compressible hyperelastic models.
We can now build predictions for tensile test curves by computing the Cauchy stress tensor as a
function of the stretch ratios. For example, for the Mooney-Rivlin model,

σ = E0
3

(
1 − α+ α

λ

)(
λ2 − 1

λ

)
and a fitting procedure provides E0 = 67 kPa and α = 0.15 in figure 2.5. It matches our tensile
tests up to λ = 2.

We are interested in the propagation of guided waves in a deformed material. To assess the
behaviour of those waves, we need to use an incremental approach, i.e. perform a small-on-large
analysis.

2.4 Incremental displacements

To describe waves in a prestressed body, the incremental approach described by Ogden and De-
strade77,29 is used. Once again, details are omitted but the main ideas are recalled. This approach
requires to introduce a new configuration named B′ whose coordinates are x′ (figure 1.1). We look
for the wave equation that governs the incremental displacement u′(x, t) = x′ − x. Here, an im-
portant feature is that u′ is a function of the coordinates in the deformed configuration x and not
of the initial one X as in equation (2.1). In view of this feature, a misleading starting point would
be to write utot = us + u′ where us is a large static displacement (the uniaxial deformation for
instance) since those functions depend on different coordinates. First, we define x′ = χ′ (X) where

94Pence and Gou (2015): “On compressible versions of the incompressible neo-Hookean material”
95Blatz and Ko (1962): “Application of Finite Elastic Theory to the Deformation of Rubbery Materials”
77Ogden (1997): Non-Linear Elastic Deformations
29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials
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χ′ is "close" to χ. For sake of simplicity, rather than writing the following using the strain tensor
E and the stress tensor σ, we use the deformation gradient F and the first Piola-Kirchhoff P. The
equation of motion reads:

∇X · P′ = ρr
∂2x′

∂t2
(2.19)

where P′ = ∂W

∂F′
(
F′) and F′ = ∇Xx′ and ρr is the mass density in the reference configuration.

Then, we introduce incremental deformation gradient and stress tensor:
Fincr = F′ − F

Pincr = P′ − P = ∂W

∂F′
(
F′)− ∂W

∂F (F)
(2.20)

And now, to describe waves that are infinitesimal strains superimposed on a much bigger static
deformation, we linearize Pincr to write:

Pincr = ∂2W

∂F∂F : Fincr (2.21)

where the term ∂2W

∂F∂F is a fourth-order tensor. And the equation of motion for u′ reads:

∂2W

∂Fji∂Fkl

∂2u′
k

∂Xj∂Xl
= ρr

∂2u′
i

∂t2
, (2.22)

the incremental displacement u′ being here rewritten as a function of X and not x. To write it in
the deformed configuration, with x coordinates, we need to perform a push-forward operation. It
gives the same wave equation as in (2.1) but with a different elasticity tensor C0:

C0
jikl

∂2u′
k

∂xj∂xl
= ρ

∂2u′
i

∂t2
(2.23)

By applying the chain rule to ∂2W

∂Fji∂Fkl
, we can express C0 in terms of the successive derivatives of

λi, rather than F, and this simplifies after the push-forward operation as:

C0
iijj = λiλj

J
Wij

C0
ijji = λ2

i

J

λiWi − λjWj

λ2
i − λ2

j

(i ̸= j, λi ̸= λj)

C0
ijji =

C0
iiii − C0

iijj + λiWi/J

2 (i ̸= j, λi = λj)

C0
ijij = λiλj

J

λjWi − λiWj

λ2
i − λ2

j

(i ̸= j, λi ̸= λj)

C0
ijij =

C0
iiii − C0

iijj − λiWi/J

2 (i ̸= j, λi = λj)

(2.24)

where Wi = ∂W

∂λi
and Wij = ∂2W

∂λi∂λj
.

Here, formulas are slightly different from the ones found in the books of Ogden (1997)77 or De-
strade and Saccomandi (2007)29 because the dot products convention is different. To go from
their definition to the one presented in this thesis, there is a simple permutation to accomplish for
the last 2 indices. In the end, the wave equation (2.23) to be solved is the same.

77Ogden (1997): Non-Linear Elastic Deformations
29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials
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Incompressible case – The equations for the elasticity tensor C0 remain valid using an incom-
pressible hyperelastic model but the equation of motion (2.23) is rewritten and longitudinal waves
are no longer solutions:

C0
jikl

∂2u′
l

∂xj∂xk
− ∂p′

∂xi
= ρ

∂2u′
i

∂t2
(2.25)

with p′ an incremental Lagrange multiplier.
In this part, we have introduced the basics of non-linear elasticity and hyperelasticity. In par-

ticular, we have detailed how to take into account the geometrical non-linearity i.e. using the strain
tensor E instead of ϵ, and also the mechanical non-linearity by using a hyperelastic constitutive law
based on a strain energy density function W . Finally, a wave equation for incremental displacements
is valid upon using a new elasticity tensor C0. In the following section, this tensor is computed in
order to get bulk wave velocities.

2.5 Bulk waves

The representation given in figure 1.2 is used to display the fourth-order tensor C0. In figure 2.6(a),
the isotropic elastic tensor Cijkl has 3 different coefficients: the two Lamé coefficients λL (orange)
and µ (yellow), and a third coefficient which depends on these two constants λL + 2µ (black).
Given the fact that a stress is applied along a particular direction in our experiments, one would be
tempted to consider a transverse isotropic material where x1 (the uniaxial tension direction) would
be the symmetry axis. The elasticity tensor for such an anisotropic medium remains as sparse as
the one of the isotropic material but now contains 6 distinct coefficients as depicted in figure 2.6(b).
Note that a transverse isotropic material respect the major symmetries.

We now consider a uniaxial tension for a nearly-incompressible material λ2 = λ3 = λ−0.5
1 . Using

the neo-Hookean hyperelastic model, Lamé constants are sufficient to describe the modified elasticity
tensor C0, as seen in the energy density W in equation (2.17). It contains 7 different coefficients
as shown in figure 2.6(c). Very interestingly, major symmetries are now broken: C0

ijkl ̸= C0
jikl,

C0
ijkl ̸= C0

ijlk and even C0
ijkl ̸= C0

klij . This may be surprising because we have seen in chapter 1 that
the stiffness tensor derives from a potential, as explained in equations (2.4) and (2.5). But in fact,
the push-forward operation breaks this symmetry. Therefore, Voigt notation is no longer valid and
no "usual" anisotropic model can be used. The Mooney-Rivlin model brings an additional constant
α and there are now 9 different coefficients in C0, as shown in figure 2.6(d).

From the knowledge of C0 and the propagation equation (2.23), bulk wave velocities for any
plane wave can be retrieved. Depending on the considered hyperelastic model, two transverse waves
may have degenerated velocities. The results are summed up in the bottom part of figure 2.6. The
linear isotropic, transverse isotropic and two hyperelastic models are considered. For each model,
bulk waves velocities propagating in the (x1, x3) plane are derived and the corresponding slownesses
are plotted for different values of λ1 below the corresponding elasticity tensor in figure 2.6. In the
undeformed case, circles indicate an isotropic media. The longitudinal velocity being very large
compared to the transverse one in a nearly-incompressible medium, longitudinal slowness curves
appear as centered single points.

In the transverse isotropic model, the shear wave propagating and polarized in the (x1, x3)-plane
(red) must remain isotropic because of the major symmetry C1331 = C3113, while the shear wave
polarized in x2-direction (blue) is anisotropic. In fact, this is exactly what the transverse isotropy
model is about: there is a symmetry axis (x1 here), and any shear wave that either propagates or
is polarized along this axis, propagates at the same velocity. Or, put another way, any plane that
contains this symmetry axis is an isotropy plane.

Taking into account the hyperelasticity, slowness curves become ellipses and shear waves are
degenerated for a neo-Hookean model. This degeneracy is explained by the fact that the neo-
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Figure 2.6: Elasticity tensors and slowness curves for various models assuming a uni-
axial tension – The elasticity tensor C0

ijkl is represented as a 3x3 matrix (i, j) of 3x3 matrices
(k, l), and the slowness curves of bulk waves propagating in the (x1, x3) plane are plotted: VT 1 in
red (respectively VT 2 in blue) is the velocity of the shear wave polarized in the (x1, x3) plane (resp.
along the x2 axis). An equal radial spacing of 0.02 s/m is applied. First, a linear isotropic model
(a,e) with λL = 1 GPa and µ = 46 kPa and a transversely isotropic solid (b,f) are considered. To
plot the slowness curves in (f), the following elastic constants are used: C44/C55 = 0.82, C55 = C66,
C11 = C22 and C23 = C12 (Voigt notation). Then, a neo-Hookean hyperelastic model (c,g) using
the same mechanical constants λL and µ predicts degenerated shear waves, while a Mooney-Rivlin
hyperelastic model (d,h) uses an additional constant α = 0.5. For each hyperelastic model, different
stretch ratios 1 ≤ λ1 ≤ 2 are considered.

Hookean model only takes into account geometric non-linearities but not mechanical non-linearities.
Note that the shear wave propagating and polarized in the (x1, x3)-plane is no longer isotropic. For
the Mooney-Rivlin model, transverse velocities are now distinct. In particular, the shear wave
polarized in the (x1, x3)-plane propagates slower in the perpendicular direction in a deformed plate,
as for the neo-Hookean model, while the shear wave polarized in the x3-direction propagates faster.

In this part, we derived bulk wave velocities in a material subjected to a uniaxial tension. In
our experiment, we assess the velocities of SH0 and S0, that are guided waves in a plate.

3 Guided elastic waves in a stretched plate
Combining wave equation (2.23) and boundary conditions leads to guided waves. To find their
dispersion curves, we can use the Spectral Collocation Method (SCM) developped in chapter 1,
as illustrated in figures 1.4 and 1.5. This method allows us to insert any elasticity tensor, even if
fundamental symmetries (Voigt notation) are broken. But before doing so, we present analytical
results from the work of Rogerson and collaborators72,73,74 both for compressible and incompressible
prestressed elastic plates.

72Rogerson and Fu (1995): “An asymptotic analysis of the dispersion relation of a pre-stressed incompressible elastic plate”
73Nolde et al. (2004): “Dispersion of Small Amplitude Waves in a Pre-Stressed, Compressible Elastic Plate”
74Rogerson and Prikazchikova (2009): “Generalisations of long wave theories for pre-stressed compressible elastic plates”
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3.1 Analytical predictions for SH0 and S0 velocities

Incompressible case – In equation (1.14), the velocity of SH0 is equal to the bulk shear velocity.
Here, it reads, for a propagation direction i and a polarization direction j (no summation),

ρVT,i
2 = C0

ijji = λ2
i

λiWi − λjWj

λ2
i − λ2

j

(2.26)

When the plate is subjected to a uniaxial stress in x1-direction, one should consider (i = 1, j = 3)
for the parallel velocity VT,∥, and (i = 3, j = 1) for the perpendicular one VT,⊥.

It is more complex to obtain the plate velocity and one should solve Lamb waves as discussed in
chapter 1. Rogerson and Fu (1995)72 obtained the S0 velocity analytically in the low-frequency
limit, also referred to as the plate velocity, for an incompressible elastic plate. It reads for propa-
gation direction i, as

ρVP,i
2 = C0

i22i + 3C0
2ii2 =

(
λ2

i + 3λ2
2
) λiWi − λ2W2

λ2
i − λ2

2
(2.27)

When the plate is subjected to a uniaxial stress in x1-direction, one should consider (i = 1) for the
parallel velocity VP,∥, and (i = 3) for the perpendicular one VP,⊥.
Let us apply equations (2.26) and (2.27) to a Mooney-Rivlin hyperelastic model where W is given
by equation (2.12), with λ1 = λ and λ2 = λ3 = λ−0.5 :

ρVT,∥
2 = µ

[
(1 − α)λ2 + αλ

]
ρVT,⊥

2 = µ

[1 − α

λ
+ α

λ2

]
ρVP,∥

2 = µ

(
1 − α+ α

λ

)(
λ2 + 3

λ

)
ρVP,⊥

2 = 4µ
(1 − α

λ
+ αλ

)
(2.28)

Compressible case – In the next chapter, we use the SCM, based on the equation for compress-
ible materials. As explained in chapter 1, we rather work with a compressible material by keeping
λL = 1 GPa as a material constant. If a compressible material is used, then the equations (2.17)
and (2.18) should be used instead. The derivation is similar for the SH0 velocity, and it reads for a
propagation direction i and a polarization direction j as

ρVT,i
2 = C0

ijji = λ2
i

J

λiWi − λjWj

λ2
i − λ2

j

(2.29)

To derive the plate velocity, it is again possible to use the work of Rogerson and collaborators73,74,
and it reads for propagation direction i, as

ρVP,i
2 = C0

iiii − C0
ii22

2
/C2222 (2.30)

Here we want to apply these formulas to a Mooney-Rivlin hyperelastic model, but an obvious
question is: how to take the incompressible limit to recover the results given in previous paragraph?
For the SH0 mode, the limit is straightforward and considering J → 1 provides the expressions in
equation (2.28). However, for S0, additional work needs to be done. In particular, the incompressible

72Rogerson and Fu (1995): “An asymptotic analysis of the dispersion relation of a pre-stressed incompressible elastic plate”
73Nolde et al. (2004): “Dispersion of Small Amplitude Waves in a Pre-Stressed, Compressible Elastic Plate”
74Rogerson and Prikazchikova (2009): “Generalisations of long wave theories for pre-stressed compressible elastic plates”
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Figure 2.7: Hyperelastic model predictions for SH0 and S0 velocities – Neo-Hookean
model predictions (dashed grey lines) and Mooney-Rivlin ones (dotted blue lines) are presented for
propagation in the parallel (a) or perpendicular (b) directions. Both models use the same shear
modulus µ = 46 kPa but the Mooney-Rivlin also involves an additional constant α = 0.32. (c)
Slowness curves are plotted for the Mooney-Rivlin model using previous fitting parameters.

limit consists in taking J → 1 but also λL → ∞ which is problematic when the term λL (J − 1)
appears. To solve it, we need another equation, namely the free boundary condition σ2 = 0. This
provides a non-zero value for λL (J − 1) so that J ̸= 1 indeed, even if the material is assumed
incompressible (J − 1) → 0 still. Then, this value of J is re-injected in previous expressions for
velocities by considering λ2 = J/ (λ1λ3). Actually, to solve numerically for Lamb dispersion curves
using the SCM, we systematically replace J and λ2 in the full elasticity tensor as explained above.

In this last theoretical part, guided waves in prestressed plates were solved to obtain analytical
hyperelastic predictions for SH0 and S0 velocities. In the following, we compare those predictions
with the quantitative measurements presented in figure 2.4(b) and (d). Here we should recall that
λ3 = λ−0.41

1 in our experiment (not exactly a uniaxial test as illustrated in figure 2.2).

3.2 Limitations of the classic acoustoelastic theory

Analytical hyperelastic predictions for SH0 and S0 velocities are superimposed on experimental
data in figure 2.7(a) and (b). Grey lines corresponds to neo-Hookean predictions while blue lines
correspond to Mooney-Rivlin ones. The transverse velocity in the undeformed plate, at λ1 = 1
directly provides µ = ρVT

2 = 46 kPa. No fitting is needed for the neo-Hookean model. However,
for the Mooney-Rivlin model, the coefficient α = 0.32 is obtained using a least-square procedure
involving the four velocities for 1 ≤ λ1 ≤ 1.8. For slowness curves in figure 2.7(c), the tensor of a
compressible Mooney-Rivlin model is first derived using Mathematica 96 and used as an input in the
SCM. Those slowness curves should be compared to experimental isofrequency contours displayed
in figure 2.3(d) and (h).

Although the parallel velocity of SH0 is almost rightfully modelled as a linear function of the
stretch ratio λ1, it appears that neither the neo-Hookean model nor the Mooney-Rivlin one can
predict the slope. Additionally, the greatest differences appear in the perpendicular direction.
Both models predict that the perpendicular velocity of SH0 decreases with λ1 while it remains
almost unchanged in the measurements. Following these observations, we tested various existing

96Wolfram Research (2021): Mathematica 12.2.0.0
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Figure 2.8: Applied static stress is measured with different methods – The observable
ρV 2

T,||−ρV
2

T,⊥ is plotted in orange symbols for different frequencies. It is compared to an independent
static measurement (magenta stars) similar to a tensile test. Two theoretical predictions assuming a
neo-Hookean model and a uniaxial tension are plotted in black (µ0 = 28 kPa) and grey (µ = 46 kPa)
dashed line.

hyperelastic models 80,93 , with unknown mechanical constants to be determined during the least-
square procedure, but none of them were able to capture both the parallel velocity slope and the
perpendicular velocity of SH0. In particular, raising the perpendicular velocity increases the slope
in the parallel direction too. A key point here is to use both directions to make comparisons. If
we restricted our attention to waves propagating only in the uniaxial direction, then good fittings
would be possible for various hyperelastic models like Mooney-Rivlin, Gent or Ogden. But in our
experiments, we have assessed propagation in both directions and thus highlighted the inadequacies
of the current acoustoelastic effect modelling.

3.3 A second evidence of the impact of rheology

Another limit of those hyperelastic predictions appears when comparing those dynamic results to
static measurements. In figure 2.8, the static stress in the plate is plotted as a function of λ1
(magenta stars) during a homemade tensile test. A static shear modulus µ0 = 28 kPa can be
deduced using the initial slope given by the Young modulus E = 3µ0. Assuming a neo-Hookean
model and a uniaxial tension, the principal stresses are σ1 = µ0

(
λ2

1 − 1/λ1
)
, σ2 = σ3 = 0 and σ1 is

plotted as a black dashed line in figure 2.8. This value is markedly different from the one used in
figure 2.7: µ = 46 kPa, which was fixed to match the transverse velocity in the undeformed plate.
This points out the frequency dependence of the shear modulus: µ(ω) ̸= µ0, which needs to be
taken into account. Once again, we come across proof of the importance of rheology when studying
these nearly-incompressible materials.
The static stress surprisingly can be estimated from dynamic experiments thanks to a model-

80Destrade et al. (2010): “Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect”
93Marckmann and Verron (2006): “Comparison of hyperelastic models for rubber-like materials”



56 Chapter 2. Acoustoelastic effect in a soft plate

independent observable, as explained by Li et al. (2022)75 and Zhang et al. (2023)97 . This
property is as follows:

ρVT,||
2 − ρVT,⊥

2 = σ1 − σ3 (2.31)

It’s not difficult to prove this equation, starting from equation (2.26), and using equation (2.9), one
can show

ρVT,||
2 − ρVT,⊥

2 = C0
1331 − C0

3113 = λ1W1 − λ3W3 = σ1 − σ3.

In figure 2.8, this quantity is plotted as a function of λ1 in various orange symbols for different
frequencies. The data points follow the static measurements and this implies very interesting ap-
plications: the static and local stress in a plate can be probed through dynamic perturbations75,97.
All the more remarkable, it seems to remain true for all the measured frequencies.
As just mentioned, the measured static shear modulus µ0 differs from ρVT

2 at all frequencies. This
observation highlights the frequency dependence of the shear modulus µ, as already discussed in
chapter 1. We recall the chosen viscoelastic model:

µ (ω) = µ0 [1 + (iωτ)n] (2.32)

with τ = 210 µs and n = 0.27. These parameters may slightly vary from a sample to another and
were adjusted as explained in the following section. Now that we have identified a missing ingredient
in the classic acoustoelastic effect, we explain how to incorporate it in the model.

3.4 The proposed nonlinear viscoelastic model

From the last observations, it appears that material rheological properties are essential in the
problem and must be taken into account. To do so, the constitutive law needs to be redesigned to
factor in both the rheology of the material when it is undeformed and its hyperelasticity when it is
deformed.

Following the work of Antman (2004)98 and Destrade et al. (2009)99 , the Cauchy stress
tensor is written as the sum of a static and a dynamic part, rather than an elastic and a dissipative
part. The static part is still given by the hyperelastic theory, and the dynamic part writes:

σdynamic = 2νD + β (B · D + D · B) (2.33)

where ν, β are material constants to be determined and D = 1/2
[
L + LT

]
with L = ∂F

∂t
· F−1.

The tensor D may look familiar as it is written in the same way as ϵ but with an extra time
derivative B .

To match the previously assessed viscoelastic model, recalled in equation (2.32), the time deriva-
tive in the tensor L should be replaced by a fractional derivative one. As in a recent theoretical
study 100, it becomes:

L = ∂nF
∂tn

· F−1. (2.34)

75Li et al. (2022): “Non-destructive mapping of stress and strain in soft thin films through sound waves”
97Zhang et al. (2023): “Noninvasive measurement of local stress inside soft materials with programmed shear waves”
75Li et al. (2022): “Non-destructive mapping of stress and strain in soft thin films through sound waves”
97Zhang et al. (2023): “Noninvasive measurement of local stress inside soft materials with programmed shear waves”
98Antman (2004): Nonlinear Problems of Elasticity
99Destrade et al. (2009): “Small amplitude waves and stability for a pre-stressed viscoelastic solid”

B By considering β = 0 and adding the incompressibility condition, i.e. a term −p1 in the Cauchy stress tensor, the classic
formula for stresses in a Newtonian fluid is recovered.

100Zhang et al. (2022): “Propagation and attenuation of Lamb waves in functionally graded fractional viscoelastic soft plates
with a pre-deformation”
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First, this definition is actually not objective101 . To overcome this issue, the tensor D should be
replaced by

D = 1
2F · ∂

nI − C−1

∂tn
· FT. (2.35)

Second, note that equation (2.33) is established for incompressible solids. However, by assuming
that the longitudinal (or extensional) viscosity is much lower compared to the usual shear viscosity
in this elastomer, then equation (2.33) should remain valid.

The extra term is derived in Appendix B, and it reads at a given frequency as

Cω
ijkl = C0

ijkl + (δikδjl + δilδkj)
(
ν + β

λ2
i + λ2

j

2

)
(iω)n (2.36)

This equation is an important result of this approach and is the only thing we need to build
predictions for the velocities of interest. In fact, this stiffness tensor contains all the information on
both the material and the prestress.

First, considering (ν, β) → 0, we recover hyperelastic predictions C0
ijkl. Second, in an undeformed

plate, (λi) → 1, the rheology described in equation (2.32) must be recovered, leading to ν+β=µ0τn.
This condition is satisfied rewriting β=β′µ0τn and ν=(1 − β′)µ0τn so there is only one remaining
unknown constant in this fractional viscous part β′. Of course, if the material rheology is unknown,
one can still use constants (ν, β).

From this, it is straightforward to derive SH0 and S0 velocities using Cω
ijkl instead of C0

ijkl. Note
that this change does not involve any additional symmetry-breaking or the appearance of formerly
null terms. However, material constants now include an imaginary part so we should specify that
measured velocities are indeed phase velocities. Doing so leads to predictions depicted in figure 2.9.
Compared to hyperelastic predictions in figure 2.7, both the parallel and perpendicular velocities of
SH0 are now well captured. The same remark holds for S0 velocities.

Now that a dissipative part has been added in the stress tensor, one can also build predictions
for attenuation distances L. Displacement maps are studied more thoroughly and a linear regression
of log |u(ω)| allowed a measurement of attenuation distances L that are comparable to the total
propagation distance.

The fitting of complex wavenumbers k = ω
V − iL−1 for 1 ≤ λ1 ≤ 1.8 provides α = 0.29 and

β′ = 0.29. Here, phase velocities have a greater weight than attenuation distances in the least-
square loss function since Re [k] > Im [k]. Moreover, slowness curves plotted in figure 2.9(e) are
from now on similar to the experimental isofrequency contours presented in figure 2.3(d) and (h).
Those corrections were possible thanks to the viscoelastic part in the Cauchy stress tensor, and
particularly the frequency-dependence of the new elasticity tensor Cω

ijkl, obtained with the fractional
derivative model. Once again, we have highlighted the importance of rheology in these experiments.

We have also checked that the static stress prediction is still in agreement with experimental
data presented in figure 2.8. Regardless of the distance between experimental data for L and its
predictions, it is important to note that the attenuation distance of SH0 in the parallel direction
(orange curve in figure 2.9(c)) is multiplied by almost 4 when the stretch ratio is multiplied by 2.
This originates from the combination of a geometrical scaling and velocity increase. Said differently,
the SH0 wave propagates much further in the stretching direction as if it is less sensitive to viscosity.

One should also remark that phase velocities curves in figure 2.9(a) and (b) are no longer well
captured for a stretch ratio λ ≥ 1.8. In fact, a Mooney-Rivlin model remains a weakly non-linear
hyperelastic model. When performing static measurements such as tensile tests, it is common to
use other hyperelastic models. Here, it is our choice to avoid adding new material constants in the
Cauchy stress tensor especially since the dynamic part in equation (2.33) could also become more

101Berjamin and Destrade (2023): Models of fractional viscous stresses for incompressible materials
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Figure 2.9: Visco-hyperelastic Mooney-Rivlin model predictions for all experimental
data at 170 Hz – Experimental measurements of SH0 and S0 phase velocities V are plotted for
the parallel (a) and perpendicular (b) directions. Measurements of attenuation distances L are also
added in (c) and (d). The fitting of complex wavenumbers in both directions for 1 ≤ λ1 ≤ 1.8
provides α = 0.29 and β′ = 0.29. Slowness curves (e) and static stress (f) are plotted using previous
fitting parameters.

complex and would be written:

σdynamic = 2νD + β (B · D + D · B) + γ
(
B2 · D + D · B2

)
+ . . . (2.37)

Finally, one practical question remains. By considering the complex-evaluated elasticity tensor
Cω

ijkl, equation (2.31) is no longer exactly true and there is a mismatch between the quantity
ρVT,||

2 − ρVT,⊥
2 and the applied static stress. However, knowing that Re [k] > Im [k] and in view of

the experiments presented in figure 2.8, this quantity still remains a good estimation of the applied

stress. For an exact solution, we suggest to use ρ ω
2

k2
T,||

−ρ ω2

k2
T,⊥

where k = ω

V
− iL−1 are the measured

complex wavenumbers, but attenuation distances are still difficult to measure experimentally.

4 Conclusion
In this chapter, we performed an experiment in a highly-stretched plate and observed induced
anisotropy for two fundamental guided modes SH0 and S0 with in-plane polarization. To quan-
tify this anisotropy, we repeated the experiment for several applied prestresses and monitored the
evolution of their velocities. This change in velocities is actually well known and is named the
acoustoelastic effect. We then explained this effect by first introducing the framework of nonlinear
elasticity. In nearly-incompressible materials such as the one used in this thesis, it is common to
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use a hyperelastic constitutive law, which relies on the use of a strain energy density function W .
By combining this constitutive law with an incremental approach, we were able to obtain the main
results of the acoustoelastic effect, notably the derivation of an equivalent fourth-order elasticity
tensor C0. In such a tensor, the usual symmetries allowing Voigt notation are broken and none
of the usual anisotropic elasticity tensors were able to explain the induced anisotropy. From here,
analytical predictions of velocities at play where constructed. In fact, these predictions could not
fully explain our experimental observations and they evidence the limit of the classical acoustoe-
lastic theory for soft elastomers. We demonstrated that no hyperelastic model can rightfully fit
those experimental data. So, we had to push our thinking further, and material rheology once again
emerged as the solution for fully explaining the behavior of such materials.

We took viscoelasticity into account by rewriting the Cauchy tensor and thus the equivalent
elasticity tensor. A fractional viscoelastic model identified from previous rheological measurements
leads us to propose additional terms including fractional derivative. Finally, with only 2 fitting
parameters, we were able to construct accurate predictions up to an elongation of 80% for all phase
velocities and attenuation distances. In the same time, static stress measurements confirm that
it can approximately be estimated using the material-independent quantity in equation (2.31). A
generalization of this method is accessible to other rheological models by adjusting the viscous stress
tensor. In the same way, these measurements are of practical interest for rheological characterization
of soft materials since this method captures the influence of applied stresses on measured viscoelastic
properties. Finally, our framework bridges the gap between elastic wave physics and rheology, but
also paves the way for robust quantitative elastography. This will be thoroughly discussed in the
next chapter, as well as the influence of prestress on dispersion curves of guided waves in a strip.
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Appendix A: Static deformation in the plate
The same plate is stretched using a user-controlled static stress by roping weights to the bottom
clamp. Here the results are shown for the undeformed plate (λ1 = 1) and for a plate submitted
to a stress of 65 kPa resulting in a stretch ratio of λ = 1.75, in figure 2.10. Some basic image
processing allowed us to extract the displacement of a mesh of black dots, and the deformation
gradient F = 1 + ∇u is computed in the deformed plate. In figure 2.10(a) (resp. 2.10b), the first
(resp. second) element of the diagonal F11 (resp. F33) is plotted. If an uniaxial tension is assumed,
then F should be homogeneous and diagonal with (λ1, λ2, λ3) =

(
λ1, λ

−0.5
1 , λ−0.5

1

)
on its diagonal.

However due to boundaries, this assumption does not hold and F is not diagonal. To quantify this
gap to uniaxial tension, we have also plotted the angle atan (F13/F11) describing the proper rotation
tensor in the polar decomposition of F in the right part of figure 2.10. When this angle is null,
deformation is purely stretching. Here we rather observe that boundaries, especially corners, induce
some deformations that are not purely stretching, because the top and bottom clamps are fixing
the plate width to its initial length. However, because of symmetries of this static tension, F turns
out to be almost diagonal in some regions of the plate as centered axis x1 = 0 and x3 = 0, where
the angle tends to zero. Those are the regions, white (or black) rectangles in figure 2.10, where
we have chosen to study in-plane guided waves and where we have measured stretch ratios λ1 and
λ3 = λ−0.41

1 . A last observation is this apparent vertical gradient in F11. It can be explained since
the undeformed plate is not in its natural configuration, but is submitted to its own weight. It is
well known that, due to its own weight, deformation in the upper part of the plate will be higher
than in the lower part. Actually, the bottom of the plate should exactly be undeformed. Then,
applying a constant static tension in the plate (by opposition to the weight which is not a constant
stress) induces a higher apparent stretch ratio in the bottom of the plate since the upper part of
the plate was already slightly deformed in the reference configuration (as opposed to the natural
configuration). This small contribution was not corrected here because it is negligible in the region
of interest given by white (or black) rectangles.

Appendix B: Method to derive the additional dynamic term in the
equivalent stiffness tensor Cω

ijkl

For this demonstration, we use the notation from Refs.29 ,99 . Assuming a small monochromatic
displacement superimposed on a large static one, the coordinates are written in the perturbed
configuration B′:

x′
1 = λ1X1 + u1(X1, X2, X3, ω) = x1 + u′

1(x1, x2, x3, ω)
x′

2 = λ2X2 + u2(X1, X2, X3, ω) = x2 + u′
2(x1, x2, x3, ω)

x′
3 = λ3X3 + u3(X1, X2, X3, ω) = x3 + u′

3(x1, x2, x3, ω)

Let’s derive the deformation gradient:

Fij = ∂x′
i

∂Xj
= λiδij + ∂ui

∂Xj
= λiδij + λj

∂u′
i

∂xj
(2.38)

Other essential tensors such as the inverse of the deformation gradient F−1, the usual symmetrical
part of the spatial velocity gradient D or the left Cauchy-Green tensor B are then derived and

29Destrade and Saccomandi (2007): Waves in Nonlinear Pre-Stressed Materials
99Destrade et al. (2009): “Small amplitude waves and stability for a pre-stressed viscoelastic solid”
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Figure 2.10: Mapping the static deformation in the stretched plate – Displacements of
a mesh of black dots is extracted between the undeformed plate at rest (top) and the deformed
plate submitted to a 65 kPa stress (bottom). Diagonal terms of F are stretch ratios λ1 (left) and
λ3 (center). Due to boundaries, the angle of rotation (right) is not null everywhere. The region of
interest are given by white (or black) rectangles.

approximated to the first order in u:[
F−1

]
ij

= δij

λi
− 1
λi

∂u′
i

∂xj

2Dij = (∂u
′
i

∂xj
+
∂u′

j

∂xi
)(iω)n

Bij = λ2
i δij + λ2

i

∂u′
j

∂xi
+ λ2

j

∂u′
i

∂xj

with (iω)n appearing because of the fractional derivative. Using these expressions, the new dynamic
contribution can be rewritten:

[σdynamic]ij = 1
2
∂u′

i

∂xj
+
∂u′

j

∂xi

(
ν + β

λ2
i + λ2

j

2

)
(iω)n. (2.39)

Using the equation of motion

C0
jikl

∂2u′
l

∂xj∂xk
+
∂ [σdynamic]ij

∂xj
= ρ

∂2u′
i

∂t2
, (2.40)

leads to the use of an equivalent elasticity tensor:

Cω
jikl = C0

jikl + (δikδjl + δilδjk)
(
ν + β

λ2
i + λ2

j

2

)
(iω)n. (2.41)
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Finally, let’s notice that the additional term is invariant under the permutation of the two first
indices. And, to be consistent with our numerical approach (SCM), one still needs to permute the
two last indices but the extra term does not change indeed.

Appendix C: Experimental phase velocities and attenuation dis-
tances of SH0 and S0 at 170 Hz, used in fitting procedures

Table 2.1: Phase velocities V (m/s) and attenuation distances L (cm) of SH0 and S0 modes in
parallel and perpendicular directions as functions of the stretch ratio λ1 at 170 Hz.

λ1 VT,∥ VT,⊥ VP,∥ VP,⊥ LT,∥ LT,⊥ LP,∥ LP,⊥

1 6.83 6.72 13.64 13.52 8.69 7.26 13.99 12.85
1.123 7.23 6.46 13.45 13.27 9.68 13.42 12.88 12.42
1.196 7.44 6.36 13.40 13.23 10.95 5.25 10.40 8.94
1.301 7.90 6.27 13.41 13.10 13.53 6.88 11.11 10.53
1.435 8.41 6.22 13.35 13.03 13.36 6.58 12.66 9.85
1.539 9.01 6.22 13.94 12.98 16.59 5.55 10.85 10.33
1.673 9.34 6.23 14.07 13.10 17.89 5.24 16.41 10.48
1.737 10.02 6.30 14.92 13.15 20.26 4.80 17.71 7.87
1.825 10.39 6.27 15.31 13.10 24.24 5.02 19.01 10.38
1.881 10.86 6.38 16.02 13.24 27.92 5.08 21.52 9.09
2.008 11.68 6.45 17.36 13.32 36.03 9.83 26.16 10.10
2.109 12.24 6.53 18.19 13.60 36.13 5.54 37.51 9.43
2.199 12.77 6.61 19.69 13.80 40.78 4.38 41.76 9.87



Chapter 3
Elastography in a deformed viscoelastic strip

In the previous chapters, we first described the physics of guided elastic waves in
a soft strip, and we then developed a material model that takes into account both
the viscoelastic and prestress effects. In this chapter, we measure, predict and
understand how the behavior of guided elastic waves in a strip are modified when
it is subjected to large initial deformations. Notably, we discuss the effectiveness
of widely used 1D models to describe our observations. Then, in a second step, we
study this strip using elastography with a commercial ultrasound system. Elas-
tography is a medical imaging technique commonly used to map the elasticity of
biological tissues. We highlight the limits of this technique due to waveguiding,
viscoelasticity and prestress. We fully explain our measurements and we believe
that our method will pave the way for robust quantitative elastography of elon-
gated tissues.

• Dispersion curves are measured in a strip subjected to a uniaxial stress

• Near-perfect predictions are built combining SCM with the equivalent stiffness tensor

• Simple 1D models provide a good understanding of the fundamental modes velocities

• Elastography experiments provide a wide range of values from 2 to 6 m/s

• Dispersion curves of the generated shear waves are obtained with a spatio-temporal
Fourier transform and well explained

Objectives



64 Chapter 3. Elastography in a deformed viscoelastic strip

Contents
1 Guided elastic waves in a stretched free strip . . . . . . . . . . . . . . . . . . . . . . . . 66

1.1 Dispersion curves for a free strip subjected to a uniaxial tension . . . . . . . . . . . . . . . 66
1.1.1 Experimental measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.1.2 Polarization as a determining criterion . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.1.3 Discussion about the Dirac cone in a free strip . . . . . . . . . . . . . . . . . . . . 69

1.2 Discussion around the physics of beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.2.1 The Young modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.2.2 Compressional mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.2.3 Flexural mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.2.4 Limits of one-dimensional models . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.3 Validating the approach by studying the case of a strip with fixed edges . . . . . . . . . . . 75
2 Introduction to elastography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.1 What is elastography? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2 Current limitations in quantitative elastography . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Elastography experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Waveguiding and dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Stretching and acoustoelastic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Section 65

The study of guided elastic waves in plates made of soft material is motivated by the similar-
ities that these materials share with biological tissues, and because elastic waves enable a better
understanding and description of their dynamics. Indeed, elastic waves are guided in plate ge-
ometries at different scales in the human body. Just to give a few examples, they propagate in
the myocardium102 and biofilms103 , and on a smaller scale, pressure pulses are observed in lipid
monolayers22.

Elastic waves are also guided in other geometries in the human body. For instance, they propa-
gate in artery walls104,105,106 but are also stationary in vocal cords23. One of the most important
geometry is the strip, which can be found widely, from the Achilles’ tendon in the foot107 to the
basilar membrane in the inner ear108,24 where the sound transduction occurs. This last example is
discussed in Chapter 4 where we fully describe the cochlear wave, a guided mechanical wave that
travels along this basilar membrane.

As mentioned previously, soft materials are highly deformable and each of the examples cited
above are media that are often subjected to prestress, which modifies their dynamics. For instance,
to produce sounds, we adjust the tension of our vocal cords in order to control the resulting pitch.

In light of Chapter 2 on the effect of prestress on elastic guided waves in a plate, we can already
understand the dynamics of many of the cited examples. The strip is a geometry that is of particular
interest, and we naturally wonder how prestress could affect guided elastic waves there.

Additionally, in chapters 1 and 2, we have often pointed out the impact that this work could
have in elastography, without really explaining what this technique is about, and without proving
it either.

In this chapter, we first measure the dispersion curves of in-plane guided elastic waves in a free
strip subjected to a uniaxial tension. To build predictions, we use our semi-analytical method,
based on the implementation of the equivalent stiffness tensor Cω (see Chapter 2) in the Spectral
Collocation Method (see Chapter 1). The resulting predictions are compared with our experimental
measurements and found to match almost perfectly without using any fitting procedure. By zooming
in on the fundamental modes A′

0 and S′
0, we note two completely different behaviours. We show

that when the strip is deformed, their behaviour can be predicted using 1D models and that their
polarization is a key factor in understanding the impact of prestress. The approach is also validated
in the case of a strip with fixed lateral edges submitted to a planar tension, and we discuss in greater
depth how the Dirac cone evolves with stretching.

In the second part of this chapter, we use elastography to probe velocities in a strip. The
elastography technique is first introduced, along with its relevance to clinical applications. We then
show that this medical imaging method is not always quantitative and discuss these limitations in
detail. By applying large deformations to the viscoelastic strip in different orientations, we measure
a wide range of phase velocities. Firstly, the generated shear waves are fully explained. Then,
using our semi-analytical method, we build predictions for their dispersion curves. Finally, we are
also able to capture the change of velocities with the prestress. Our work thus tackles the main

102Nenadic et al. (2011): “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties
of viscoelastic solids”

103Liou et al. (2019): “Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave
propagation using optical coherence elastography”

22Griesbauer et al. (2012): “Propagation of 2D Pressure Pulses in Lipid Monolayers and Its Possible Implications for Biology”
104Couade et al. (2010): “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging”
105Astaneh et al. (2017): “Arterial waveguide model for shear wave elastography: implementation and in vitro validation”
106Maksuti et al. (2017): “Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite

element study”
23Hirano (1974): “Morphological structure of the vocal cord as a vibrator and its variations”

107Brum et al. (2014): “In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion
analysis”

108Robles and Ruggero (2001): “Mechanics of the mammalian cochlea”
24Reichenbach and Hudspeth (2014): “The physics of hearing: fluid mechanics and the active process of the inner ear”
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Figure 3.1: Experimental setup to measure elastic guided waves in deformed strips –
(a) A thin strip of Ecoflex00-30, with dimensions 60 cm x 3 mm x 4 cm in directions x1, x2, x3, is held
in a vertical position and clamped to a frame on its top and bottom edges. Sinusoidal vibrations in
the (x1, x3)-plane are generated by a shaker and displacements are extracted using a CCD camera
located 3 m away from the plate. (b,c) The frame is adjusted to impose large deformations in a
strip with free (respectively fixed) lateral edges, reaching stretch ratio λ1 > 2 (resp. λ3 > 2) along
the vertical (resp. horizontal) axis.

limitations, and we hope that our method will be a step towards quantitative elastography.
The following is largely duplicated from our works published as Delory et al. (2023)65 and

Delory et al. (2023)109.

1 Guided elastic waves in a stretched free strip
Going back to the strip geometry, we use the experimental setup and method described in figure 2.1
and replace the plate with a strip. It is recalled here in figure 3.1(a). The free strip is submitted to
a uniaxial tension (λ1, λ2, λ3) =

(
λ, λ−0.5, λ−0.5) in figure 3.1(b), and the fixed strip is submitted to

a plane-strain tension (λ1, λ2, λ3) =
(
1, λ−1, λ

)
in figure 3.1(c). Note that the fixed strip indeed has

free top and bottom edges leading to a deviation from this planar tension configuration (λ1, λ2, λ3) =(
λ−0.08, λ−0.92, λ

)
in the measured portion.

1.1 Dispersion curves for a free strip subjected to a uniaxial tension

Let us first focus on the configuration with a free strip and present our experimental results for this
configuration.

1.1.1 Experimental measurements

At each frequency, the total in-plane displacement field is decomposed using a singular value algo-
rithm as illustrated previously in figure 1.17 and shown again here in figure 3.2(a). This procedure
has already been explained in Chapter 1. At 200 Hz in an undeformed free strip, five in-plane guided

65Delory et al. (2023): “Guided elastic waves in stretched viscoelastic strip”
109Delory et al. (2023): “Exploring the limits to quantitative elastography: supersonic shear imaging in stretched soft strips”
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Figure 3.2: Field decomposition at 200 Hz – The experimental in-plane total displacement
field at 200 Hz is decomposed in eigenmodes with a singular value decomposition algorithm. A′

0 is
referred to as the flexural mode, while the S′

0 mode to as the compressional mode.

modes coexist with different symmetries, shapes and wavenumbers (or wavelengths). Applying a
spatial Fourier transform enables the extraction of their wavenumbers, and thus their dispersion
curves.

To build predictions for such dispersion curves, we implement the equivalent stiffness tensor Cω

in the Spectral Collocation Method (SCM). This equivalent stiffness tensor is derived in Chapter 2
and brings together all the mechanical properties of the material, including viscoelasticity, and the
prestress features, namely the stretch ratios (λ1, λ2, λ3).

All the experimental and numerical results are compiled in the dispersion diagram of figure 3.3,
which showcases the experimental points (top row) and the corresponding numerical outcomes (bot-
tom row). These were acquired from the same soft strip subjected to varying degrees of longitudinal
static stretching, ranging from λ = 1 (depicted in dark blue) to λ = 1.8 (depicted in yellow), and
encompassing frequencies up to 250 Hz. For enhanced clarity, symmetric and anti-symmetric modes
are presented in separate diagrams and are labeled S′

n and A′
n as in figure 1.18.

As one can notice, the theory effectively captures our experimental observations. No fitting
procedure was performed since all the mechanical parameters are known thanks to the experiment
carried out on the plate made of the same elastomer (see Chapter 2). It is noteworthy that the SCM
provides the dispersion curves of out-of plane strip modes presented in figure 1.25. This method also
provides all evanescent modes, so that some solutions have been discarded and the transparency
encodes for the imaginary part of the wavenumbers.

First, slopes (i.e. group velocity) globally increase and it seems that cut-off frequencies have
also increased. This is not clearly visible for the A′

1 mode since it is difficult to define properly
a cut-off frequency in a viscoelastic solid where the transition between an evanescent mode and
a propagating one is smoothed by the intrinsic losses in the material. This remark also holds for
the zero-group velocity point that should exist in such a strip but without losses66. More detailed
information about the effect of viscoelasticity on this ZGV point are presented in Appendix A.
The off-centered polarized source vibrates along x1, and the input energy in the S′

1 mode remains
very low such that its dispersion curve is barely visible. Besides that, our semi-analytical approach
markedly fits the full dispersion curves, for all the modes, across several hundreds of Hz, and for
stretch ratio up to λ = 1.8.

66Simonetti and Lowe (2005): “On the meaning of Lamb mode nonpropagating branches”
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Figure 3.3: Dispersion in a soft strip subjected to a uniaxial stress – The deformation gra-
dient F and the geometry are recalled for a free strip subjected to a uniaxial tension. Experimental
dispersion curves of antisymmetric and symmetric modes in the elongated strip for several values
of the stretch ratio 1 ≤ λ ≤ 1.8 are shown in the top line. The theoretical predictions (bottom line)
are obtained using the SCM (see text).

1.1.2 Polarization as a determining criterion

Of particular interest is the uneven impact of longitudinal stretching on these branches. S′
0 is a

compressional mode below 100 Hz (see figure 1.15 in Chapter 1) and seems nearly immune to it,
a characteristic shared with A′

1. Conversely, the other modes, like the flexural mode A′
0, exhibit

greater sensitivity to stretching, notably in their slopes but also, in the case of S′
1 and S′

2, in their
cut-off frequencies.

A striking result is the bifurcation in the behaviour of S′
0. Note how the branches spread

out above 100 Hz. This feature provides a valuable hint towards understanding the governing
mechanism. Indeed, at low frequencies S′

0 is essentially polarized in the longitudinal direction,
which is why it is commonly called the compressional mode. However, its dominant polarization
switches as the frequency increases. On the displacement map acquired at 200 Hz, displayed in
figure 3.2(a), S′

0 indeed appears essentially polarized in the transverse direction. This is because
when the frequency is increased, the wavelength becomes comparable to the strip width. When the
wavelength is small enough, the wave no longer feels the width of the strip and behaves like an edge
wave propagating along the lateral edge of the strip.

This bifurcation strongly suggests that polarization is a determining criterion. This conclusion
is further supported by the fact that, on the one hand, both A′

0 and S′
2 are essentially polarized

in the transverse direction (as depicted in figure 3.2) and turn out to be significantly influenced by
the degree of stretching. On the other hand, A′

1 is characterized by longitudinal polarization and
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Figure 3.4: Role of the polarization for a free strip – Theoretical dispersion curves for the
free strip subjected to a uniaxial tension. The color indicates the dominant polarization (yellow =
transverse, red = longitudinal).

proves resilient to stretching. To support this hypothesis, we display again the theoretical dispersion
curves but with a colormap rendering their polarization.

Practically, the SCM is used to solve equation (1.40) at a fixed angular frequency ω to obtain the
eigenpair (k,u). By studying u, one can discriminate the in-plane eigenmodes (from their out-of-
plane counterparts) and their corresponding symmetry. One can also study their main polarization
by evaluating mean values of |u1|2 and |u3|2 over the cross-section and compute the inverse tangent
of the ratio

∫
|u1|2/

∫
|u3|2. Then, it is possible to quantify whether a given mode is mostly polarized

in the direction x1 (longitudinal in red) or in the direction x3 (transverse in yellow).
The first obvious observation is on the polarization of the S′

0 mode for a free strip. For low
frequencies, it appears red and all curves are superimposed. When increasing the frequency, the
branch gradually becomes orange, then yellow. It indicates the gradual change from a pure longi-
tudinal polarization to a more mixed polarization. Interestingly, the stretching starts to affect the
dispersion diagram when the polarization becomes more transverse to the stretching direction. In
contrast, the A′

0 mode in a free strip is highly dependent on the applied stress, especially for low
frequencies where curves are yellow (transverse i.e. in-plane flexion in the strip width). Similar
qualitative observations can be made for the other modes. The redder the curves, the closer they
remain, so the less effect the prestress has. Conversely, the yellower they are, the greater the impact
of prestress.

1.1.3 Discussion about the Dirac cone in a free strip

Finally, let us take a close look at the S′
1 and S′

2 branches in figure 3.3. We see that their two
cut-off frequencies coincide. This results in a degenerate crossing at k = 0: the so-called Dirac cone
already assessed in Chapter 1. The mixed polarization of these modes close to the Dirac cone nicely
appears as orange curves in figure 3.4. When there is no coincidence, the mode is either purely
longitudinal or purely transverse on the k = 0 axis, so this mixed polarization is a typical feature
of the Dirac cone.

Here, we observe that this cone is robust to extensional stress, since it remains orange with
an increasing prestress. Our measurements also demonstrate that the crossing frequency can be
controlled by adjusting the amount of static stretch.

In an undeformed strip, such a crossing appears because of the coincidence of the two cut-off
frequencies f = 2VT

2b = VP

2b . In the case of a strip subjected to uniaxial tension, we know how these
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Figure 3.5: Cut-off frequencies – Evolution of the ratio VP,⊥/2VT,⊥ with the applied deforma-
tion in the case of a uniaxial stress.

velocities evolve with the stretch ratio (see Chapter 2). More specifically, we need to know how the
velocities evolve in the x3 direction, and to derive the ratio VP /2VT . If this ratio equals 1, then
cut-off frequencies perfectly coincide. This ratio is plotted as a function of λ in figure 3.5.

Our method allows us to obtain complex valued wavenumbers, and by also plotting their imag-
inary part, one can notice that this linear crossing is in fact two straight lines passing each other
side by side with non-zero imaginary parts. Details about the effect of viscoelasticity on this Dirac
cone are presented in Appendix A.

By increasing the stretch ratio, cut-off frequencies do not strictly coincide. In a purely elastic
material, one expects the Dirac cone to be broken (see Appendix A). Actually, in viscoelastic media,
the branches still pass each other side by side but with an increasing imaginary part, and the Dirac
cone is still present. We remember that, strictly speaking, there is no linear crossing of theses curves
in the complex plane, but there is one when the solutions are projected onto the real wavenumber
axis.

In the end, small discrepancies with theoretical predictions are visible around this Dirac cone
because it is experimentally hard to assess the behaviour at the k = 0 axis, especially when the
imaginary part of the wavenumber starts to outweigh its real part. Discrepancies also appear at the
highest stretch ratio λ = 1.8 because the material model is no longer valid up to this stretch ratio
value. In a plate in Chapter 2, we have seen that the SH0 and S0 phase velocities are not captured
at such high deformations.

Let us now take a look at the two fundamental modes A′
0 and S′

0. In the low-frequency limit,
their wavenumbers k tend to zero i.e. their wavelengths become very large compared with the
strip width and thickness. This naturally raises the question of whether their behaviour can be
understood from one-dimensional models.

1.2 Discussion around the physics of beams

This strip is similar in many aspects to a beam, wire or string. Flexural waves in these objects
have been extensively studied. To name just a few applications, these waves propagate in power
transmission lines, railway rails, bridges, musical instruments and so on. In particular, it can be
very useful to know how these flexural waves are modified when such structures are loaded. And
reciprocally, these modifications being understood, these waves can be used to probe prestresses in
these structures. It may therefore be entirely relevant to link our measurements in a strip to these
1D models, so that we can export our understanding of the 3D theory to these applied cases.
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Usually, such 1D models require the use of geometrical parameters and of the Young modulus
E. A number of questions naturally arise. What is the Young modulus to be considered when the
strip is deformed? And just as important, what is it when the deformation is dynamic, i.e. elastic
waves propagating at ω?

1.2.1 The Young modulus

As already demonstrated in figure 2.5 in Chapter 2, the static response of the material deviates
from the simple Hookean model when carrying out a simple tensile test and a Mooney-Rivlin is
needed. The principal component of the Cauchy stress tensor along x1, for such a Mooney-Rivlin
solid subjected to a uniaxial tension, reads:

σ = E0
3

(
1 − α+ α

λ

)(
λ2 − 1

λ

)
(3.1)

with E0 the static Young modulus and α a dimensionless Mooney-Rivlin parameter. As visible on
the curve σ (λ) previously presented in figure 2.5, the slope increases with λ, leading us to think
that one should derive an effective elongation-dependent Young modulus. However, the desired
equivalent Young modulus is not simply the derivative of the Cauchy stress tensor σ with respect
to the stretch ratio λ, but rather that of the first Piola–Kirchhoff stress tensor P110, also introduced
in Chapter 2. In our case, one simply has P = σ/λ for its principal component along x1. This
amounts to considering the deformed material as Hookean with the following elongation-dependent
Young modulus:

E(λ, ω = 0) = E0
3

[
(1 − α)

(
1 + 2

λ3

)
+ 3α
λ4

]
(3.2)

Note that this expression is only valid in the static regime (ω = 0).
When increasing the frequency, one should use the fractional Kelvin-Voigt model, as justified in

chapters 1 and 2:
E(λ = 1, ω) = E0 [1 + (iωτ)n] . (3.3)

This time, this expression is valid in the absence of external deformation (λ = 1).
In summary, the Young modulus depends on both frequency and strain, which are usually

examined separately. However, drawing conclusions about E for any couple of parameters (λ, ω) is
not straightforward due to their interdependence. So far, there has been no unified framework to
account for both simultaneously. For now, we just assume their independence, and write:

E(λ, ω) = E(λ, ω = 0) [1 + (iωτ)n] . (3.4)

Now that we have proposed an expression of this Young modulus, we can study the compressional
mode and flexural mode. To illustrate the behaviour of these modes at low frequencies, we plot
their phase velocities in figure 3.6 for frequencies ranging from 0 to 100 Hz and for stretch ratio λ
ranging from 1 to 1.8.

1.2.2 Compressional mode

As mentioned in Chapter 1, we should take a close look at the S′
0 mode. We see in figure 3.4 that

its polarization is mainly longitudinal, which naturally recalls the compressional mode propagating
in a beam.

110Zhao and Chang (2021): “Elastic wave velocities in finitely pre-stretched soft fibers”
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Figure 3.6: Velocities of fundamental modes in a stretched free strip – Left: profiles of
the displacements at 50 Hz for λ = 1 (blue frame) and λ = 1.8 (yellow frame). Dashed lines indicate
the wavelength. Middle: Phase velocity for static elongations varying from λ = 1 (blue) to λ = 1.8
(yellow). Measured points are compared with theoretical predictions (lines). Right: Same as in the
middle, but theoretical predictions are built using 1D models.

Anyone studying this system, in civil engineering for instance, would write the equation govern-
ing the compressional dynamics (see for instance equation (25.1) in reference33):

E
∂2u1
∂x12 − ρ

∂2u1
∂t2

= 0, (3.5)

Estimating the phase velocity from the static Young modulus E0 leads to a velocity of V 0
c =√

E0/ρ = 8 m/s (indicated by a red dashed line in figure 3.6) which significantly underestimates
the observations. In addition, this approach assumes a constant velocity i.e. a non-dispersive
propagation, which is not accurate here.

A better estimation can be obtained by replacing the Young modulus with that of equation (3.3)
to arrive at

Vc(λ = 1, ω) =
[
Re
(√

ρ

E(λ = 1, ω)

)]−1

= V 0
c

Re
[
(1 + (iωτ)n)−1/2

] (3.6)

Because we take into account the rheology, this amounts to a frequency-dependent phase velocity.
At 50 Hz, this expression yields a velocity of roughly 10 m/s, in much better agreement with our

33Landau et al. (1986): Theory of elasticity: volume 7
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measurements. Also, this velocity slowly grows in power law with frequency, partly explaining the
observed dispersion.

Regarding the dependence on elongation, our experiments indicate that Vc is almost independent
of λ, as already observed in figure 3.3. To capture this effect accurately, it is necessary to incorporate
the hyperelastic prediction for the Young modulus from equation (3.2). However, this alone is
not enough since wave equation (3.5) is written with undeformed coordinates and a push-forward
operation is required to obtain the correct Young modulus. This operation is described in Chapter 2
and amounts to transitioning from a Lagrangian (material coordinates) to an Eulerian (laboratory
coordinates) description. In the present simple uniaxial configuration, it corresponds110 to replacing
the Young modulus in equation (3.2) by λ2E. Overall, the compressional velocity is

Vc(λ, ω) =
[
Re
(√

ρ

λ2E(λ, ω)

)]−1

(3.7)

These predictions, plotted in the right part of figure 3.6, are quite good since they give the right
trends, such as the evolution with frequency below 50 Hz, but also the evolution with stretch ratio.
Overall, equation (3.7) effectively captures the small variations observed in the experimental points
of figure 3.6, using simple physical arguments.

However, they are not as accurate as the 3D theoretical predictions. At λ = 1 the velocity starts
decreasing for frequencies higher than 50 Hz, which is not supported by this approach. In fact,
the wavelength becomes comparable to the strip width, and the one-dimensional model inevitably
fails. At this point, the full 3D model is needed to understand the velocity of this mode at higher
frequencies. Actually, this is the edge mode previously mentioned and highlighted by the change of
polarization of S′

0 in figure 3.4.

1.2.3 Flexural mode

In a beam, flexural modes are the most studied. Here, we need to distinguish between the two types
of bending that exist in a rectangular cross-section beam. Generally speaking, it’s the bending in
the thickness h (the smallest dimension) that is studied. But instead we have been looking at the
bending in the width b ≫ h (the large dimension). Actually, the type of bending is not important.
We will see that, for wavelengths large compared with (h, b), the applied tension controls identically
their dispersion.

Unlike the compression dynamics, flexural dynamics displays a remarkable sensitivity to the
application of a static stress. At 10 Hz, our measurements indicate that the velocity goes from
2 m/s at λ = 1 up to 7 m/s at λ = 1.8. Interestingly, the static stress triggers a bifurcation in the
dispersion behaviour. For instance, as illustrated in figure 3.6, when λ ≈ 1 (dark blue symbols),
the flexural wave is highly dispersive. Its velocity grows from 0 m/s in the quasi-static limit to
around 5 m/s at 100 Hz. In contrast, for λ = 1.8, the velocity becomes nearly independent of
frequency i.e. the propagation is non-dispersive. This is characteristic of the transition from a
flexural beam regime to a string-like regime, governed by the tension in the material. This was
employed by Li et al. (2022)75 to map stresses in thin films since this bifurcation also appears for
the first anti-symmetric mode propagating in a plate.

This effect can be captured by getting back to the simple Euler-Bernoulli model 111:

EI

A

∂4u3
∂x14 − σ

∂2u3
∂x12 + ρ

∂2u3
∂t2

= 0, (3.8)

110Zhao and Chang (2021): “Elastic wave velocities in finitely pre-stretched soft fibers”
75Li et al. (2022): “Non-destructive mapping of stress and strain in soft thin films through sound waves”

111Doyle (1989): Wave propagation in structures
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with σ the applied tension, A = bh the strip cross-sectional area and I = hb3/12 the second
moment of area. Note that this moment corresponds to the bending in the plane (e1, e3), i.e. in
the width, and is necessarily different from the one classically studied with bending in the thickness
(Iclassical = bh3/12). Assuming a propagative solution with wavenumber k, one obtains the following
dispersion relation:

2EI
A

k2 = −σ ±

√
σ2 + 4EI

A
ρω2. (3.9)

From this expression, it is possible to identify a non-dimensional parameter γ = Aσ2/4ρEIω2

which measures the competition between tension and bending, and evidences the existence of the
two aforementioned regimes. When the strip is not stretched, σ = 0 and γ cancels. The phase
velocity of flexural waves reads

Vf (λ = 1, ω) =
√
ω

[
EI

ρA

] 1
4
. (3.10)

The
√
ω dependence is the signature of a strongly dispersive regime, depicted by the dark blue line in

figure 3.6. It corresponds to the quadratic dispersion of the A′
0 mode, described in equation (1.28).

Obviously, this velocity should saturate at some point; otherwise these waves would become infinitely
fast. This highlights a limitation of the Euler-Bernoulli model, which becomes invalid at higher
frequencies because it assumes that the displacement should remain purely transverse. This is all
the more apparent in figure 3.6, where the dark blue line of the 1D model rapidly deviates from
experimental measurements as frequency increases. Besides, just like in the previous section, the
question arises of which expression one should consider regarding the Young modulus E. Similarly,
including the complex rheology of equation (3.3) yields to a more quantitative expression of the
velocity.

As the tension σ is increased with λ varying from 1.1 to 1.8, the non-dimensional parameter γ
grows from 0.1 to 8, and a change of the strip behavior is reached. Now, the flexion is completely
governed by the tension, and the velocity simply writes:

Vf (λ, ω) =
√
σ/ρ (3.11)

This dispersion is intimately linked with the wave speed in a string112, which is given by
√

T
ρL

with
T the tension in the string, and ρL its linear density. In such a string, the wave is actually a flexural
wave, and T = σ×A with A the deformed cross-section area, and ρL = ρ×A. The velocity of this
wave in a string finally rewrites

√
σ
ρ . This expression reflects the relatively non-dispersive dynamics

observed in the low-frequency regime, but above all it reflects the increase of the velocity with λ in
the limit ω → 0.

Finally, if we are not in one of these two regimes (γ = 0 or γ ≫ 1), then we need to calculate
the phase velocity Vf (λ, ω) starting from equation (3.9) replacing σ and E using equation (3.1)
and (3.4). Predictions are then plotted in figure 3.6. Our conclusions are the same when we solve
the problem outside asymptotic regimes. Predictions are quite good in the string-like regime at low
frequencies, but quickly fail with an increasing frequency.

1.2.4 Limits of one-dimensional models

These 1D models provides an efficient picture of the strip behaviour in the low frequency regime.
When the frequency increases, the wavelength decreases and they inevitably fail because these 1D
models of flexion and compression do not take into account the finite size of the strip. Lastly, they

112Melde (1860): “Ueber die Erregung stehender Wellen eines fadenförmigen Körpers”
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do not offer the possibility to clearly evidence the respective roles of rheology and stretching, which
happens to be crucial here.

Finally, let’s take a look at this interdependence. In Chapter 2, we build a Cauchy stress tensor
with an additional dynamic term:

σdynamic = µ0τ
n [2 (1 − β′)D + β′ (B · D + D · B)

]
(3.12)

It features a dependence on both λ (in tensor B) and ω (in tensor D), and underscores the in-
terdependence between these two variables. In fact, variable separation would be possible only if
the second coefficient β′ canceled. Instead, for our elastomer, a value of β′ = 0.29 was determined
in Chapter 2. To the best of our knowledge, this interdependence is not physically explained yet,
but simply originates from a general representation98,99. It remains to be established whether this
independence is a strong assumption or not.

To validate our 3D theory, we imagine another configuration where the strip has fixed lateral
edges and is subjected to a planar tension, quite different from the uniaxial tension we have just
studied.

1.3 Validating the approach by studying the case of a strip with fixed edges

This alternative configuration, wherein a soft strip is clamped at its lateral edges, also supports
the existence of a Dirac cone (see figure 1.22) and fundamental modes are no longer solutions (the
clamping process suppresses rigid body motions). By adjusting the distance between the clamps,
we are able to induce a transverse stretch as illustrated in figure 3.1(c) and 3.7. Indeed, it allows to
implement other boundary conditions and predeformation (transverse tension), and thus to validate
our approach.

Measured dispersion curves are presented in figure 3.7. Once again, the theory effectively renders
the experimental data. While the slopes remain nearly unchanged, cut-off frequencies decrease with
λ, which is quite different from the case of the free strip in figure 3.3. It is still experimentally
difficult to measure the Dirac cone for the A′

2 branch in a deformed strip, as noticeable in figure 3.7.
Globally, note that all tendencies are covered anyway by our semi-analytical method and small

discrepancies mainly appear at high stretch ratios, as in the case of the free strip. In this config-
uration, which corresponds to a planar stress, we obtain that the first and second non-zero cut-off
frequencies gradually diverge as the stretching increases, as pictured by the dashed line in figure 3.8.
As a result, we anticipate a clear disruption of the Dirac cone, contrary to what we discussed about
the free strip. The linear crossing, which is its signature, occurs in the initial state (blue symbols),
but splits in two separate branches as λ increases (yellow symbols). This trend is apparent in the
experimental curve and becomes more evident in the theoretical plots. Again, more details are pre-
sented in Appendix A about this Dirac cone in a fixed strip. Notably, the influence of viscoelasticity
and prestress are discussed.

Again, we display the theoretical dispersion curves of in-plane guided elastic waves in fixed strip,
but with a colormap rendering their polarization. Results are shown in figure 3.9. As aforemen-
tioned, cut-off frequencies become sufficiently different (see figure 3.8) so that the cone splits into
two parts. The mixed polarization (orange) for the undeformed case gives rise to two different
branches with clear orthogonal polarizations (yellow and red) for stretched cases.

One should again keep in mind that the wavenumber is complex and its imaginary part is omitted
in this representation. See Appendix A to learn more about such a representation. One can notably
see in Appendix A that a small loop exists in the imaginary plane and makes the transition between

98Antman (2004): Nonlinear Problems of Elasticity
99Destrade et al. (2009): “Small amplitude waves and stability for a pre-stressed viscoelastic solid”
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Figure 3.7: Dispersion in a fixed strip subjected to a transverse stress – The deformation
gradient F and the geometry are recalled for a fixed strip subjected to a transverse and planar stress.
Experimental dispersion curves of antisymmetric and symmetric modes in the elongated strip for
several values of the stretch ratio 1 ≤ λ ≤ 1.8 are shown in the top line. The theoretical predictions
(bottom line) are obtained using SCM (see text).

Figure 3.8: Cut-off frequencies – Evolution of the ratio VP,⊥/2VT,⊥ with the applied deforma-
tion in the case of a transverse and planar tension.
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Figure 3.9: Role of the polarization for a fixed strip – Theoretical dispersion curves for the
fixed strip subjected to a planar stress. The color indicates the dominant polarization (yellow =
transverse, red = longitudinal).

the two modes at different cut-off frequencies. This loop increases in size as stretching is increased,
confirming that the cone is indeed broken.

This configuration provides a demonstration that the three-dimensional model can readily be
extended to various sets of boundary conditions and to different kinds of static deformations. Also,
this illustrates how the application of an external static stretch serves as a mean to tailor the
dispersion, and consequently, enables the tuning of the overall strip dynamics.

2 Introduction to elastography
We now have a good understanding of how prestress affects the dynamics of a soft strip, and we
know that this is an important and common geometry in the human body. To study the elasticity
and dynamics of these biological tissues, it is now common to use elastography, which measures the
speed of elastic waves in the medium of interest. However, in view of what we have just discussed,
we are entitled to wonder which velocities are measured using this technique. So, in the second part
of this chapter, we will carry out measurements in a similar soft strip, and try to understand the
measured velocities. But first, we describe the elastography.

2.1 What is elastography?

Elastography refers to a non-invasive medical imaging technique used to map the elasticity of tissues.
To measure their elasticity, physicians have not always used elastography but rather a technique
called palpation. The Ebers Papyrus (1500 BC) is the oldest medical writing mentioning palpation,
notably methods of abdominal palpation to probe for the presence of abdominal masses. Since
then, it has been used by several civilizations at different times, as illustrated in figure 3.10. This
technique consists of manually deforming the tissue of interest, and analyzing the amount of force
needed. The mechanical behavior of the tissue is therefore statically probed, in much the same way
as a modern indentation test.

The four methods of clinical observation are inspection, palpation, auscultation and percus-
sion113. Elastography is a contemporary equivalent of palpation and provides information on me-
chanical properties of tissues by measuring their deformation when subjected to external mechanical
forces, such as compression or shear waves. This technique is particularly useful in the field of di-

113Avicenna (1025): The Canon of Medicine
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(a) (b) (c)

Figure 3.10: Palpation – Some illustrations of the palpation as a medical technique to statically
probe the mechanical properties of tissues, at different times. (a) From ”Doctor Murai Kinzan’s
teachings (alias Genshinkan, 1733-1815)” in Collection W. Michel (Fukuoka, Japon). (b) Liver hand
palpation from Sandrin et al. (2011)135 . (c) From ”L’importance de la palpation abdominale et
des fascias au cœur de la formation techniques manuelles” in Formation Pole Thérapeutes.

agnostic imaging, as it can provide valuable information about the presence and severity of diseases
such as liver fibrosis114,19,115,21,116, breast lesions117,118,119,120, prostate cancer121, thyroid nodules122

, heart problems123,124,125,126,127, tendinopathies128,129,130 and other musculoskeletal disorders131,132
,133,134.

Elastography exploits either ultrasound imaging, magnetic resonance imaging (MRI) or optical
coherence tomography (OCT) to record a movie from which the displacement can be extracted. For
each imaging technique, several methods exist to measure the stiffness136.

Ultrasound elastography – Ultrasound imaging, also known as sonography, is a non-invasive
medical imaging technique using high-frequency pressure waves (propagating at the longitudinal
velocity VL in solids) to create real-time detailed images of the internal structures of the body.
During an ultrasound exam, a transducer (or ultrasound probe array) emits sound waves that

114Sandrin et al. (2002): “Shear modulus imaging with 2-D transient elastography”
19Sandrin et al. (2003): “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis”

115Asbach et al. (2010): “Viscoelasticity-based Staging of Hepatic Fibrosis with Multifrequency MR Elastography”
21Deffieux et al. (2015): “Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear

wave elastography”
116Kennedy et al. (2018): “Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions”
117Bercoff et al. (2003): “In vivo breast tumor detection using transient elastography”
118Sinkus et al. (2005): “Viscoelastic shear properties of in vivo breast lesions measured by MR elastography”
119Barr and Zhang (2012): “Effects of Precompression on Elasticity Imaging of the Breast”
120Barr (2019): “Future of breast elastography”
121Correas et al. (2013): “Ultrasound elastography of the prostate: State of the art”
122Cantisani et al. (2015): “Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation”
123Elgeti and Sack (2014): “Magnetic Resonance Elastography of the Heart”
124Sinkus (2014): “Elasticity of the Heart, Problems and Potentials”
125Hansen et al. (2015): “Shear wave elastography for lipid content detection in transverse arterial cross-sections”
126Khan et al. (2018): “Cardiovascular magnetic resonance elastography: A review”
127Pruijssen et al. (2020): “Vascular Shear Wave Elastography in Atherosclerotic Arteries: A Systematic Review”
128Prado-Costa et al. (2018): “Ultrasound elastography: compression elastography and shear-wave elastography in the

assessment of tendon injury”
129Farron et al. (2009): “Measurement of Tendon Strain During Muscle Twitch Contractions Using Ultrasound Elastography”
130Mifsud et al. (2023): “Elastography in the assessment of the Achilles tendon: a systematic review of measurement proper-

ties”
131Winn et al. (2016): “Sonoelastography in the musculoskeletal system: Current role and future directions”
132Paluch et al. (2016): “Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System”
133Taljanovic et al. (2017): “Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications”
134Davis et al. (2019): “Clinical utilization of shear wave elastography in the musculoskeletal system”
136Ormachea and Parker (2020): “Elastography imaging: the 30 year perspective”
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bounce off organs and tissues, and the returning echoes are captured and processed to generate
images.

This imaging technique, used in this work, finds many clinical applications and is the most
widespread as a basis for elastography137 ,138 ,139 . There is a wide choice of different methods for
deforming the medium. This can be done statically or dynamically, locally or globally, directly using
ultrasound or with any other physical object. In particular, acoustic radiation force methods have
proved particularly effective to probe elasticity in real-time and in-depth, as detailed by Doherty
et al. (2013)140. In figure 3.11, different types of ultrasound elastography using an acoustic radiation
force to deform the tissue of interest are presented.

In this work, we use supersonic shear imaging (SSI), a technique that originated in our laboratory
almost 20 years ago141,142. SSI is an ultrasound shear-elastography method where shear waves are
generated using an acoustic radiation force140 . This acoustic radiation force, also referred to as a
push, is repeated at different depths in the tissue at a velocity which is greater than the generated
shear waves. This first justifies the supersonic feature, and second allows the generation of plane
shear waves in the tissue to be imaged. In this work, the AixplorerTM system is used. It is not
the most recent commercialized system but it supports a "research" mode which allows access to
the raw data acquired by the ultrasound probe array. The induced displacement is assessed and
the propagation velocity of plane shear waves VT is measured. In an incompressible material, it is
well known that the Young modulus can be deduced from this velocity using the simple relation
E = 3ρVT

2.
Before discussing this simple hypothesis, let us first briefly describe other ways to realize elas-

tography experiments.

Optical Coherence Elastography – During the last decade, great progress has also been made
in optical coherence elastography (OCE) as detailed in the recent reviews143,144, and find noteworthy
applications in ophthalmology145,146. It is based on Optical Coherence Tomography (OCT), which
is a non-invasive medical imaging technique that uses light waves to create high-resolution, cross-
sectional images of transparent biological tissues. It roughly works by measuring the reflections of a
light beam, and using the time delay of these reflections to create micrometer-scale images of tissue
structures. It can approximately be described as the optical equivalent to medical ultrasound. Then,
to probe the elasticity of these tissues, an external mechanical force is applied and the deformation
is extracted by comparing images. A schematic drawing of a typical optical setup is represented in
figure 3.12(a). There, it is a Spectral Domain OCT where a source with a wide frequency spectrum
is used in order to simultaneously generate images at different depths. But many other optical setup
exist, as well as many ways to apply an external mechanical force. Each combination is chosen based
on the typical size and timescale studied, as illustrated in figure 3.12(a)

137Gennisson et al. (2013): “Ultrasound elastography: principles and techniques”
138Shiina (2014): “Ultrasound elastography: Development of novel technologies and standardization”
139Sigrist et al. (2017): “Ultrasound Elastography: Review of Techniques and Clinical Applications”
140Doherty et al. (2013): “Acoustic radiation force elasticity imaging in diagnostic ultrasound”
141Bercoff et al. (2004): “Supersonic shear imaging: a new technique for soft tissue elasticity mapping”
142Deffieux (2008): “Palpation par force de radiation ultrasonore et échographie ultrarapide : Applications à la caractérisation

tissulaire in vivo”
140Doherty et al. (2013): “Acoustic radiation force elasticity imaging in diagnostic ultrasound”
143Zvietcovich and Larin (2022): “Wave-based optical coherence elastography: the 10-year perspective”
144Leartprapun and Adie (2023): “Recent advances in optical elastography and emerging opportunities in the basic sciences

and translational medicine [Invited]”
145Kirby et al. (2017): “Optical coherence elastography in ophthalmology”
146Lan et al. (2023): “In vivo corneal elastography: A topical review of challenges and opportunities”
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Figure 3.11: Ultrasound Elastography – Different types of ultrasound elastography using an
acoustic radiation force to deform the tissue under study.
Adapted from Doherty et al. (2013)140.
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(a)

(b)

Spectral Domain - OCT

Figure 3.12: Optical Coherence Elastography (OCE) – (a) Typical experimental setup for
the Spectral Domain Optical Coherence Tomography imaging technique, with an additional external
mechanical excitation. (b) Range of techniques used in OCE to map elasticity of biological tissues.
Adapted from Zvietcovich and Larin (2022)143 and from Leartprapun and Adie (2023)144.

Magnetic Resonance Elastography – Similarly, magnetic resonance elastography (MRE) has
proved its worth 147,148 and likewise finds clinical applications in large tissues136 such as breast118

, heart 123,126,149 and brain150. It is much less common since Magnetic Resonance Imaging (MRI)
instruments are rarer, more expensive and the image acquisition time is important. Just like UE or
OCE, MRE involves the application of mechanical vibrations to the body, and MRI technology to
capture images of how these vibrations deform tissues.

147Low et al. (2016): “General review of magnetic resonance elastography”
148Sack (2023): “Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging”
136Ormachea and Parker (2020): “Elastography imaging: the 30 year perspective”
118Sinkus et al. (2005): “Viscoelastic shear properties of in vivo breast lesions measured by MR elastography”
123Elgeti and Sack (2014): “Magnetic Resonance Elastography of the Heart”
126Khan et al. (2018): “Cardiovascular magnetic resonance elastography: A review”
149Marlevi et al. (2020): “Combined spatiotemporal and frequency-dependent shear wave elastography enables detection of

vulnerable carotid plaques as validated by MRI”
150Hiscox et al. (2016): “Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical

applications”
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2.2 Current limitations in quantitative elastography

Let us return to the hypothesis that states the Young modulus verify E = 3ρVT
2, with VT the

measured velocity and ρ the material density, which is assumed to be 1000 kg/m3 in practice. Ac-
tually, this equation only holds under certain strong assumptions that are rarely valid, thus limiting
the robustness of quantitative elastography. These limitations can be attributed to four different
causes. First, the viscoelasticity of a tissue lead to frequency-dependent mechanical parameters,
including the deduced Young modulus124,151,147,150,116. Second, tissues like muscles are inherently
anisotropic and VT strongly depend on the propagation direction128,130. Third, most tissues have
boundaries and act as waveguides for shear waves, leading to strong dispersion145,126,152,153. Last,
surrounding fluids or other external factors may apply a prestress in the tissue of interest, again
leading to changes in the measured velocity123,125,122,154,120.

Besides, it is common that biological tissues combine several of the above-mentioned aspects as
highlighted in several reviews involving different imaging modalities139,155,136,156,157,134,143,144,146.
These limits have been known for some time and are still the subject of active research.

Viscoelasticity is the most tackled issue115,20,58,107,21,158,159,63 and the waveguiding geometry is
also widely studied, in particular for clinical applications involving arterial and myocardium walls104

124Sinkus (2014): “Elasticity of the Heart, Problems and Potentials”
151Kennedy et al. (2014): “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”
147Low et al. (2016): “General review of magnetic resonance elastography”
150Hiscox et al. (2016): “Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical

applications”
116Kennedy et al. (2018): “Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions”
128Prado-Costa et al. (2018): “Ultrasound elastography: compression elastography and shear-wave elastography in the

assessment of tendon injury”
130Mifsud et al. (2023): “Elastography in the assessment of the Achilles tendon: a systematic review of measurement proper-

ties”
145Kirby et al. (2017): “Optical coherence elastography in ophthalmology”
126Khan et al. (2018): “Cardiovascular magnetic resonance elastography: A review”
152Pelivanov et al. (2019): “Does group velocity always reflect elastic modulus in shear wave elastography?”
153Ramier et al. (2019): “Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical

coherence elastography”
123Elgeti and Sack (2014): “Magnetic Resonance Elastography of the Heart”
125Hansen et al. (2015): “Shear wave elastography for lipid content detection in transverse arterial cross-sections”
122Cantisani et al. (2015): “Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation”
154Li et al. (2017): “Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography

of thin-walled soft materials”
120Barr (2019): “Future of breast elastography”
139Sigrist et al. (2017): “Ultrasound Elastography: Review of Techniques and Clinical Applications”
155Bilston (2018): “Soft tissue rheology and its implications for elastography: Challenges and opportunities”
136Ormachea and Parker (2020): “Elastography imaging: the 30 year perspective”
156Caenen et al. (2022): “Assessing cardiac stiffness using ultrasound shear wave elastography”
157Crutison et al. (2022): “The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography”
134Davis et al. (2019): “Clinical utilization of shear wave elastography in the musculoskeletal system”
143Zvietcovich and Larin (2022): “Wave-based optical coherence elastography: the 10-year perspective”
144Leartprapun and Adie (2023): “Recent advances in optical elastography and emerging opportunities in the basic sciences

and translational medicine [Invited]”
146Lan et al. (2023): “In vivo corneal elastography: A topical review of challenges and opportunities”
115Asbach et al. (2010): “Viscoelasticity-based Staging of Hepatic Fibrosis with Multifrequency MR Elastography”

20Gennisson et al. (2010): “Viscoelastic and Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Super-
sonic Shear Imaging”

58Yasar et al. (2013): “Wideband MR elastography for viscoelasticity model identification”
107Brum et al. (2014): “In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion

analysis”
21Deffieux et al. (2015): “Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear

wave elastography”
158Zampini et al. (2021): “Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and

low magnetic field intensity”
159Jugé et al. (2023): “Ex vivo bovine liver nonlinear viscoelastic properties: MR elastography and rheological measurements”

63Sharma et al. (2023): “Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography”
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,160,105,106,161,156. Additionally, several works focus on guided waves in a viscoelastic medium102,162.
However, the influence of prestress is still not very well understood. As can be guessed at this

point, the retrieved stiffness depends on applied stresses163,27,157, since elastic wave velocities change
with prestress. It is also worth mentioning recent experimental works by Zhang et al. (2023)97 ,
who use a customized ultrasound sequence focusing consecutive pushes along a horizontal line (in
addition to vertical in SSI) to map stresses in a prestressed soft material by measuring changes
in velocities along two directions. While the geometry, anisotropy and prestress are treated, the
viscoelasticity is not accounted for.

A comprehensive review by Li and Cao (2017)164 describes theoretically each of these aforemen-
tioned limits and how they arise in elastography. A particularly interesting aspect is the treatment
of acoustoelasticity in intrinsically anisotropic media.

Here, using a simple silicone strip immersed in water and simple ultrasound sequence, we suggest
solutions to overcome the issues raised by viscoelasticity, waveguide geometry and prestress. Some
anisotropy is naturally considered since prestress leads to extrinsic anisotropy for the propagation
of shear waves in soft media, as shown in Chapter 2.

3 Elastography experiments
Given the former chapters on guided elastic waves in a strip, we now well understand the role of
geometry, viscoelasticity and prestress. Earlier in this chapter, we saw that SCM allows us to quan-
titatively predict the dispersion curves of guided waves in such a strip. Then it is straightforward
to compare elastography measurements with theoretical predictions.

Elastography experiments are first described, and by applying large deformations to the vis-
coelastic strip in different orientations, we obtain a wide range of phase velocities. Firstly, the
generated shear waves are fully explained. Then, we build predictions for their dispersion curves.
Finally, we also capture the change of velocities with stretching. Our work thus tackles the main
above-mentioned limitations, and we hope that our method is a step towards quantitative elastog-
raphy.

3.1 Experimental setup

A simple silicone strip, really similar to the one studied earlier in this chapter, is positioned in
a water tank and used as a waveguide for the elastic waves. We then place an ultrasound probe
over the strip and look at the velocity map returned by the AixplorerTM ultrasound system. The
experimental setup is illustrated in figure 3.13.

Here, we prepared a strip with thickness h = 2.7 mm, width b = 4 cm and length L0 = 60 cm.
This time, it is made of Ecoflex-0020 which is softer than Ecoflex-0030 previously used. Whatever

104Couade et al. (2010): “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging”
160Caenen et al. (2015): “A versatile and experimentally validated finite element model to assess the accuracy of shear wave

elastography in a bounded viscoelastic medium”
105Astaneh et al. (2017): “Arterial waveguide model for shear wave elastography: implementation and in vitro validation”
106Maksuti et al. (2017): “Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite

element study”
161Marais et al. (2019): “Arterial Stiffness Assessment by Shear Wave Elastography and Ultrafast Pulse Wave Imaging:

Comparison with Reference Techniques in Normotensives and Hypertensives”
156Caenen et al. (2022): “Assessing cardiac stiffness using ultrasound shear wave elastography”
102Nenadic et al. (2011): “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties

of viscoelastic solids”
162Thu-Mai Nguyen et al. (2011): “Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using

shear wave spectroscopy: Theoretical framework and in vitro experimental validation”
163Catheline et al. (2003): “Measurement of elastic nonlinearity of soft solid with transient elastography”

27Gennisson et al. (2007): “Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic
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Figure 3.13: Elastic waves are guided in two different orientations — Using the Super-
sonic Shear Imaging technique, shear waves are generated in an Ecoflex-0020 strip in two different
orientations. In the plate orientation (respectively strip), the imaging plane (x1, x3) cuts the strip
along its thickness (a) (resp. along its width (c)). Typical results from the AixplorerTM are shown
in (b) (resp. (d)) for an undeformed strip. The B-mode image is represented with a grayscale while
the map of velocities is rendered using a colormap. The results for a stretched strip are in the
corresponding inset.

the Ecoflex series (0005 to 0050), silicone is often used to prepare phantoms for ultrasonic imaging
since it is soft just enough to mimic biological tissues (Young modulus of ∼ 50 kPa) and is preferred
to agar gels for practical reasons (e.g. it doesn’t age). As seen in Chapter 2, its properties are well
known, both statically thanks to tensile tests (figure 2.5), and dynamically thanks to rheological
measurements (figure 1.19).

Elastography experiments are performed using an Aixplorer Multiwave ultrasound system and a
curved array XC6-1 transducer from Supersonic Imaging. A default SSI ultrasound sequence is used
with 5 push lines, each composed of 4 push depths. After each push line, the transducer switches to
the imaging mode (framerate of 1,750 frames per second) to follow in real-time the generated shear
wave141,142.

The strip can be placed and studied in two different orientations as described in figure 3.13.
In both cases, the transducer array is parallel to the strip axis x1 and each push line generates
a displacement along x3. In the plate (respectively strip) orientation depicted in figure 3.13(a)
(resp. 3.13(c)), the imaging plane cuts the strip along its thickness (resp. width), as seen in the

radiation force”
157Crutison et al. (2022): “The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography”

97Zhang et al. (2023): “Noninvasive measurement of local stress inside soft materials with programmed shear waves”
164Li and Cao (2017): “Mechanics of ultrasound elastography”
141Bercoff et al. (2004): “Supersonic shear imaging: a new technique for soft tissue elasticity mapping”
142Deffieux (2008): “Palpation par force de radiation ultrasonore et échographie ultrarapide : Applications à la caractérisation

tissulaire in vivo”
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grayscale B-mode image in figure 3.13(b) (resp. 3.13(d)) and an out-of-plane (resp. in-plane) dis-
placement is generated.

At this point, we may already guess which type of waves and which velocity is going to be
measured, but here we are taking a more naive approach and trying to imagine that we do not
really know the sample a priori.

Turning on the shear wave velocity measurement, the scanner provides the velocity of the mea-
sured shear waves within the strip. They are displayed as a color code in figure 3.13(b) and (d).
Surprisingly, the measured velocities in these are different. In the plate orientation, a velocity of
∼ 3 m/s is measured, while in the strip, it is a velocity of ≲ 5 m/s. Also, none of these two values
correspond to the bulk shear velocity of the same elastomer that would be around 5.3 m/s. This
comes from the fact that the strip acts as a waveguide and not as the bulk material. This is a first
illustration of the fact that the velocity alone might no be a sufficient parameter to retrieve the
stiffness of the considered material.

Now, the very same sample is submitted to a uniaxial stress along its length with an elongation
of ∼ 65%. The shear wave measurements are repeated in the two orientations. The measured
velocities are shown as insets in figure 3.13(b) and (d). Both of them have increased to reach
∼ 4 m/s (respectively 6.5 m/s) for the plate (resp. strip) orientation. This is a second illustration
of the limitation in the quantitativeness of elastography.

As a summary of this part, shear wave elastography measurements with a commercial scanner
have given 4 different shear velocities for the same sample under different experimental conditions
(orientation and initial stress). This is confusing for a medical application that was developed
for bringing quantitative stiffness measurements. From a physics point of view, waveguiding and
acoustoelasticity are the key ingredients to explain these deviations, and the objective of the next
parts is to extract the material parameters out of these measurements.

3.2 Waveguiding and dispersion

Experiment – Let us first take a closer look at the measured displacements to extract the disper-
sion curves of the observed waves. This is the so-called shear-wave spectroscopy technique165 that
allows to capture the frequency dependence of wave velocities. Then, comparing them to our pre-
dictions, we are able to identify these waves, to plot their dispersion curves and, equally important,
to understand how they are generated.

Again, the two orientations are investigated, but we now use the AixplorerTM in research mode.
Basically, it allows to extract the full beamformed sequence of images after the line of shear pushes
is realized. The displacement field u3 (x1, x3, t) is obtained by taking the phase of the correlation
between 2 consecutive complex IQ images. Each sequence of images is acquired 5 times and the
results are averaged in order to improve the signal-to-noise ratio.

For the plate orientation, the displacement is homogeneous along the thickness (direction x3) so
that we average it along the thickness and a mean displacement map u3 (x1, t) is obtained for each
push line. The result for the push in the middle of the scanned area is represented in figure 3.14(a).

For the strip orientation, the post-processing is slightly different since the displacement is not
homogeneous anymore along x3. There are several reasons for explaining this effect. In fact, the
longitudinal velocity used for imaging was taken equal to those of water, that is to say 1480 m/s,
but sound propagates at around 1000 m/s in our material. This implies two additional difficulties.
Firstly, the x3 = ct axis is properly computed between the transducer and the first strip edge at
x3 = −b/2, but in the strip, this axis is wrongly estimated and the beamforming procedure is
biased. This is indeed clear in figure 3.13(d) where the second edge (at x3 = +b/2) appears curved
at the bottom of the B-mode image. Secondly, the push focusing must also be degraded when going

165Deffieux et al. (2009): “Shear Wave Spectroscopy for In Vivo Quantification of Human Soft Tissues Visco-Elasticity”
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Figure 3.14: Spectroscopy shear-wave elastography in both orientations — For a given
push, a displacement field is obtained and averaged over 4 or 5 consecutive acquisitions in the plate
orientation (a) or in the strip orientation (c). The 2D spatio-temporal Fourier transform is applied
to get the dispersion curves of guided elastic waves in the plate orientation (b) and in the strip
orientation (d). They are summed over 5 different push locations.

deeper in the strip. In conclusion, only the top strip edge displacement can be studied in an unbiased
manner. The spatio-temporal displacement map corresponding to this top edge displacement is thus
represented in figure 3.14(c).

Both these maps evidence a localized displacement at the central position at time t = 0 (top line)
which then travels symmetrically toward the left and right directions with increasing time t. The
first comment when comparing the two spatio-temporal displacement maps is relatively obvious: the
two orientations give different results. And, as a confirmation of the previously measured velocity,
the shear wave reaches earlier the edges of the scanned area in the strip orientation compared
to the plate one. A more trained observer can also discern additional phenomena. In the strip
orientation, the wave follows a line as a signature of a non-dispersive propagation. Whereas in the
plate orientation a more quadratic behaviour is observed. This dispersive behaviour can also be
revealed by looking at the differences in the shape of the wavepacket for early times compared to
the late ones; for example short wavelengths seem to travel faster than the long ones which have
not reached the left edge of the presented image. As a last observation from these maps, we notice
the existence of echoes at the abscissa of the push at respectively 8 ms and 13 ms for the plate and
strip orientations.

Despite providing more insights on the discrepancy between these two orientations, we are still
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in the observation stage and can only conclude that these two shear waves behave differently. More
concretely, for an imaging application, we cannot yet retrieve the material elastic parameters.

In order to evidence the waveguiding phenomenon within the strip at the origin of these obser-
vations, we propose to extract some dispersion curves. By applying a spatial and temporal Fourier
transform on the displacement maps, a frequency versus wavenumber map of the same data can be
obtained. The magnitudes of such a representation are presented in figure 3.14(b) and (d). For the
sake of completeness, because we performed several pushes at different positions along the x1 axis,
the presented maps are actually the summation of the normalized maps obtained for each of these
5 realizations. Therefore the presented results are not local but correspond to an average over the
entire scanned area.

Again, the two maps exhibit different behaviours. Perhaps the most obvious is the shape of
these curves. While the strip orientation gives a linear dispersion curve, the plate orientation rather
provides a convex one. In accordance to observations in figure 3.14(a) and (b), this is another
way of evidencing the dispersive nature of the propagation in this orientation: phase velocities are
frequency dependent. Next, intensities are not equally distributed with the frequency in the two
maps. In the plate orientation, intensities are high in the low-frequency range and fades rapidly
as frequency increases, almost disappearing around 300 Hz. On the contrary, energy is found at
higher frequencies in the strip orientation, with a maximal intensity around 150 Hz (putting aside
the zero-frequency spot). Lastly, we also notice some spots for multiple frequencies on the k = 0
axis, in both orientations. These spots reflect the above mentioned echoes. Indeed, in a waveguide,
those back-and-forth usually materialize as cut-off frequencies in the full dispersion diagram.

Theoretical predictions – To have a better insight on the propagation at play, we compare these
results with theoretical predictions. To that end, let us use COMSOL Multiphysics to search for the
dispersion curves of guided elastic waves in a strip immersed in water. We wish we could use the
SCM but it does not yet allow the implementation of a fluid-coupling interface. A strip of thickness
h = 2.7 mm and width b = 4 cm is considered with a density of 1.07 g/cm3, a longitudinal velocity
of 1000 m/s and a transverse velocity of 5.31 m/s. The relevant dispersion curves corresponding to
the two orientations are presented in figure 3.15. In-plane (resp. out-of-plane) guided modes are
represented in the k < 0 (resp. k > 0) region. They are very similar to those we saw in Chapter 1 in
figure 1.14 and 1.15, but present some differences because of the coupling with water. This coupling
is further discussed in Chapter 4. In the meantime, we provide a comparison in appendix B.

In the plate orientation, the dispersion curve that corresponds to the experimental one is dis-
played as a thick red line in figure 3.15. Its convex behaviour is a well known observation for a
bending mode, and indeed, the mode displacements shown as insets for two different frequencies
reveal such a flexural motion of the strip. This is in total agreement with the SSI scenario envi-
sioned previously where the strip was pushed down and a flexural motion was imposed. Note that
the effect of the strip’s width begins to be felt since the displacement profile becomes progressively
inhomogeneous around 100 Hz.

Alternatively, the pushes in the strip orientation generates in-plane displacements in the strip.
Many modes can propagate in such a strip and comparing the theoretical dispersion curves with
the experimental one, as well as their displacement profiles, we deduce that the generated mode is
the first anti-symmetrical mode, or a combination of the first anti-symmetrical mode and the first
symmetrical mode. The dispersion curve of this mode is plotted as a thick blue line in figure 3.15
with negative wavenumbers.

Again, the displacement profile of this mode at 10 and 300 Hz is compatible with an excitation
at the top end of the strip. At 10 Hz, this mode is in fact dispersive since it is really similar to
a bending of the strip, but this time in its width. This is the mode we referred to earlier in this
chapter as A′

0, the fundamental flexural mode, not to be confused with the flexural mode observed
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Figure 3.15: Simplified dispersion diagram for a strip in water — A purely elastic strip
is considered with thickness h = 2.7 mm, width b = 4 cm and transverse velocity VT = 5.31 m/s.
Two dispersion curves from COMSOL are plotted, for the first out-of-plane (or flexural) mode for
positive wavenumbers, and the first antisymmetric (with respect to the strip axis) in-plane mode
for negative wavenumbers. Other dispersion curves are also plotted in thin lines and are there to
recall that other modes exist, and to give the value of their cut-off frequency. Displacements u3 are
displayed for both modes at 10 Hz. The flexural mode is also displayed at 100 Hz where the effect
of lateral boundaries begins to show, while the in-plane mode is displayed at 300 Hz where it has
been summed with its symmetric counterpart to emphasize its edge wave nature. The strip axis is
not to scale.

in the plate orientation, which corresponds to a flexural motion in the thickness. When increasing
the frequency, the wavelength decreases and most of the mode’s energy is now confined to the edge.
Catching that most of the energy is present at frequencies greater than 100 Hz in the experiment, it
is most likely an edge wave that propagates along the strip edge, with a fast amplitude decay along
x3 axis.

Regarding the echoes observed in figure 3.14(a) and (c) at x1 = 0 and corresponding spots on
the k = 0 axis in figure 3.14(b) and (d), such a simulation permits to attribute them to the cut-off
frequencies of higher order modes. In fact, there is a last subtlety to mention. The first cut-off
frequency in the in-plane mode diagram does not appear in figure 3.14(d). It corresponds to a shear
wave propagating back-and-forth in the x3 direction. However, the displacement generated is itself in
the x3 direction, so no such shear wave can be generated in our experiment. In contrast, the second
cut-off frequency corresponds to a wave of longitudinal appearance (the S0 mode propagating at
VP in a plate) and is generated precisely because it corresponds to a displacement and propagation
in the x3 direction.

Finally, there is one more aspect of the problem that needs to be addressed: the viscoelasticity.
This has an effect on the dispersion curves shown in figure 3.15. Theoretically, the edge mode is not
dispersive. However, by extracting the experimental phase velocity Vϕ of this mode, we obtain 4 m/s
at 150 Hz and 4.8 m/s at 300 Hz. There is of course small dispersion intrinsic to this mode, but
the difference also originates from the viscoelasticity of the medium, i.e. its frequency dependent
material properties. Here, we know it can be implemented using equation (3.3).

A difficulty then naturally arises, as COMSOL Multiphysics does not allow the use of frequency-
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dependent parameters, so we can no longer search for dispersion curves using this method. To
overcome this, we need to distinguish between the two orientations and solve two different problems.
For the plate orientation, the dispersion of the first flexural mode in a strip is almost identical to
the one in a plate (see Appendix B for details). This is easy to understand given equation (1.25) for
n = 0. So we can solve the simpler problem of a plate immersed in water to calculate the dispersion
of the first anti-symmetric mode. In fact, a SCM can also be used to calculate the dispersion curves
of guided elastic waves in a plate, and unlike the case of the strip, the coupling with water can be
added166. For the strip orientation, the problem is not easily solvable since a similar method for a
strip immersed in water is not yet available. So we would like to use our method for a free strip
i.e. not immersed in water. In such scenario which neglects the presence of water, the dispersion
curves are slightly modified.

In order to quantify the error, we performed COMSOL simulations comparing the dispersion
curves with/without water in the dispersive case (see Appendix B). The velocity is decreased bya
factor of 1.15 when the coupling of water is added. Later we will thus increase wavenumbers by a
factor of 1.15 for emulating the presence of water when computing the solutions in the absence of
water. Note that this factor also appears when modelling surface waves at the interface between an
incompressible elastic media and air or water145,152,143:

Vair/solid interface/Vwater/solid interface = VRayleigh/VScholte = 1.13. (3.13)

These two methods are used to build predictions for the phase velocities of the two modes of
interest. Viscoelasticity is not a problem, but rather an asset that we can take advantage of, as it
also seems possible to perform an inverse problem and recover the complex shear modulus µ (ω)
from the measurements. Please note that this is a priori not straightforward since the dispersion
also originates from the waveguiding, especially for the flexural mode in the plate orientation, but
this can still be overcome using the previously described methods.

In summary, this theoretical part has permitted to evidence the two guided modes that are ex-
cited in the plate and strip orientations. Their dispersion curves can be predicted for all frequencies.
Overall, these results exhibit both the effect of the guiding geometry and the frequency dependence
of the parameters. The measured phase velocity Vϕ at 150 or 300 Hz would lead to different values
for the Young modulus E = 3ρVϕ

2, as indicated in figure 3.16(c). But thanks to our theoretical
modelling we can actually predict the right dispersion and recover better material characterization
than by considering a bulk propagation.

3.3 Stretching and acoustoelastic effect

Knowing the nature of the generated waves and their dispersion curves, we now focus on the effect of
a stretching of the strip. Here, we aim at showing that one can predict the shear wave propagation
by knowing the material parameters, or reciprocally, measuring the same tissue under different loads
provides more data and better characterization of the material.

Experiment – The idea is now to deform the strip before measuring the propagation of shear
guided waves. Experimentally, we impose a new length to the strip by stretching its two extremities
in the x1 direction. The deformation is characterized in terms of the stretch ratios along the
principal directions (λ1, λ2, λ3). Assuming an incompressible material and a uniaxial elongation
along x1, we again have λ2 = λ3 = 1/

√
λ1. The same research mode on the ultrasound scanner is

166Kiefer et al. (2019): “Calculating the full leaky Lamb wave spectrum with exact fluid interaction”
145Kirby et al. (2017): “Optical coherence elastography in ophthalmology”
152Pelivanov et al. (2019): “Does group velocity always reflect elastic modulus in shear wave elastography?”
143Zvietcovich and Larin (2022): “Wave-based optical coherence elastography: the 10-year perspective”
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Figure 3.16: Comparison of the measured dispersion curves for various stretch ratios
— For each stretch ratio, wavenumbers are extracted from the dispersion curve at certain frequen-
cies and plotted as circles for the plate orientation (a) and squares for the strip orientation (b).
Predictions are added with a full line and match both the dependence in frequency and stretching.
Additionally, by looking for an appropriate Young modulus E, one should compute the quantity
3ρVϕ

2. The multiple values, obtained with a single sample, range from 15 to 105 kPa.

used for tracking the shear wave propagation, and the experiment is repeated for several values of
λ1 ranging from 1 (undeformed) to 1.67 (insets of figure 3.13(b) and (d)). For each stretch ratio
and each orientation of the strip, the spatio-temporal displacement maps are extracted again by
correlation between two consecutive images. The spatio-temporal Fourier transform is applied to
obtain the frequency versus wavenumber representation of the same data. Eventually, the maximum
for each frequency is detected in order to draw a line plot of the extracted dispersion relation.

The results of all the treated experiments are condensed as symbols in figure 3.16(a) and for the
plate orientation and 3.16(b) for the strip orientation. The color coding stands for the stretch ratio
λ1. The dark blue points correspond to the same data as in the previous section and in figure 3.14.
Frequencies above 300 Hz are discarded since there is almost no signal above in the plate orientation
and the same for frequencies below 50 Hz in the strip orientation.

In both scenarii, applying a static stress tends to increase the slopes of dispersion curves: the
higher the stretching, the higher the frequency for a given wavenumber. Said differently, the velocity
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of the wave guided along the stretched direction is increased. This is in agreement with our previous
measurements in figure 3.3.

To better assess this evolution, the phase velocities Vϕ are extracted at 150 and 300 Hz and
the quantity 3ρVϕ

2, homogeneous to a Young modulus, is plotted (symbols) as a function of the
stretch ratio in figure 3.16(c). This plot now evidences a linear growth of the velocity with the
stretch ratio, and the growths are similar for the two orientations. But the main point that comes
out of this figure is that a large range of velocities are obtained for the same experimental sample.
The standard technique that consists in defining the Young modulus directly from the measured
velocity would lead to values varying from 15 to 105 kPa. One would easily recognize that it is not
satisfying for a quantitative modality.

But because these observations make physical sense, the idea would be to take advantage of all
these measurements to better characterize the medium under investigation. The corollary question
is: are we able to quantitatively predict those curves?

Theory – On top of all the guiding phenomena discussed previously, one needs to incorporate
the stretching to the theoretical model. This has already been done earlier in this chapter. The
model developed in Chapter 2, and the resulting equivalent stiffness tensor, are reemployed. For the
theoretical predictions presented in figure 3.16 the same tricks as in the previous section were used,
i.e. solving the problem of a plate immersed in water to get the dispersion curve of the first flexural
wave in a strip; and increasing wavenumbers by a factor of 1.15 to get the edge wave dispersion.

For all the predictions, we considered a strip of Ecoflex-0020, of thickness h = 2.7 mm and width
b = 4 cm. We use rheological parameters µ0 = 15 kPa, τ = 1000 µs and n = 0.33; and hyperelastic
parameters α = 0.29 and β′ = 0.29. These parameters are chosen after manual adjustment of the
dispersion curves by fixing the values for α and β′ since they were already assessed for a plate made
of this material and also showed good predictions in a strip. Note that the values are different from
those used in figure 3.3 and 3.7, because the material is not Ecoflex-0030 but 0020.

Comparison – For the plate (respectively strip) orientation, predictions are depicted as full lines
in figure 3.16(a) (resp. (b)) and thick dotted (resp. thin dashed) lines in figure 3.16(c). We can
see that the predictions provided by our approach are very satisfactory in figure 3.16(a) and (b).
Similarly, the increase in velocities with elongation are also well understood, whether in the plate or
strip orientation, at an intermediate frequency of 150 Hz or at a higher frequency of 300 Hz. Just
as surprisingly, their slopes are just as well predictable.

In the end, we see that with a simple strip, the elasticity of the medium can be quantified
using Young moduli ranging from 15 to 105 kPa. This is a very wide range of values, and these
experiments clearly highlight the limits to quantitativeness in elastography. But more importantly,
we are able to fully explain this broad field of values.

Based on these few measurements, we can imagine the implementation of an inverse problem
that would enable to probe both the rheological and hyperelastic parameters of the material under
study. To go even further, ultrasound images can be used to monitor the evolution of the geometric
parameters (h, b) with the prestress. These measurements should be carried out in conjunction
with the evolution of cut-off frequencies, which also provide direct information on these geometric
parameters.

Some differences still persist in figure 3.16. Firstly, and most obviously, this is because the exact
problem is not solved in either orientations, errors in figure 3.16(b) are probably mainly due to
the oversimplified modeling using the 1.15 factor. Secondly, errors can also be attributed to the
non-linear material model since it has only been validated for Ecoflex-0030 and not for 0020, and
also because the involved hyperelastic model remains a weakly non-linear elasticity model.
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4 Conclusion
In this chapter, we first investigated the in-plane dynamics of stretched soft strips by monitoring
the propagation of elastic waves within the strips. Our experiments, supported by a semi-analytical
model, reveal that static stretching strongly impacts the dynamics of the strip. Interestingly, we
observe that certain vibration modes seem nearly immune to the external stretching, while others
display a high sensitivity. We find that this sensitivity is essentially governed by the displacement’s
polarization.

Everything can be well explained by incorporating both the rheology and the hyperelastic con-
stitutive law of the material. Our method indeed solves the full 3D waveguiding phenomenon,
but simple 1D models also improve the understanding of the effect of stretching on the in-plane
compression and flexion of the strip.

Then, because in biological tissues and organic matter, flexible structures under tension play a
pivotal role, we performed ultrasound elastography experiments to showcase their current limits for
quantitative evaluation of stretched organs.

The influence of frequency, geometry and static deformation in elastography are thus captured
using a single material and a simple experimental method. We show that neglecting these effects
may lead to a wide range of incorrect Young moduli and provide solutions to the understanding of
generated guided waves in SSI. The procedure used in this chapter can be adapted to other material
models, including anisotropic ones, but also to any geometry with a rectangular cross-section. A
generalization to other guiding geometry should also be performed. Besides, the inverse problem
should be tackled in order to estimate both the hyperelastic and viscoelastic properties from the
measured dispersion curves.
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Appendix A: The effect of viscoelasticity and prestress on the Dirac
cone and on the ZGV in free and fixed strips
Free strip – To better understand the effect of prestress on the Dirac cone in a free strip, we
display in figure 3.17 the dispersion curves for in-plane guided elastic waves in 3 dimensions, i.e.
with coordinates (Re (k) , Im (k) , ω). First, we consider the strip to be purely elastic. In practice,
we calculate the equivalent stiffness tensor Cω and use only its real part for the SCM calculation.
Again, symmetrical and anti-symmetrical modes are found with respect to the (e1, e3) plane. Of
particular interest is to notice the saddle shape of the ZGV point. Below this point frequency, two
evanescent modes exist, with a non-zero real part, and merge to give two propagative modes for
higher frequencies. The Dirac cone is found in the Im (k) = 0 plane.

We first look at the effect of viscoelasticity on these two unique physical features, zooming in on
their region of existence at the bottom of figure 3.17. Three curves are found depending on the input
tensor in the SCM: elastic Re (Cω), partially viscoelastic Re (Cω)+ i Im (Cω) /10 or viscoelastic Cω.
On the left of figure 3.17 is the zoom on the Dirac cone. As expected, adding viscoelasticity globally
increases the imaginary part of wavenumber solutions, including those around the Dirac cone, but
does not significantly change their real parts. The Dirac cone is no longer two crossing lines but
rather two straight lines with non-zero imaginary parts, as visible in the top view. The greater the
viscoelasticity, the further the straight lines cross. For each branch, when decreasing the frequency,
the branch needs to join the ZGV branch and its (absolute) imaginary part thus increases. Note
that its imaginary part is not too important and this is why we could assess it experimentally in
figure 3.3. Additionally, one can see that adding viscoelasticity also modifies the behaviour of the
ZGV point. Actually, even a slight viscoelastic part makes it disappear, as visible on the right part
of figure 3.17. Branches do not longer merge but avoid each other and this time, the real part is
quite impacted. This also explains why it is so hard to measure it in figure 3.3: its imaginary part
quickly increases when decreasing the frequency below the ZGV point frequency.

Globally, viscoelasticity breaks degeneracies in the dispersion diagram, whether it is a Dirac cone
(linear crossing) or a ZGV point (saddle shape). The influence of prestress should also be thought
out. To avoid overloading the display in figure 3.18, We zoom in on the Dirac cone, for several
stretch ratio values (1 ≤ λ ≤ 1.8) indicated by the colorbar, for both a purely elastic material and
a viscoelastic one.

When considering a uniaxial stress in a free strip, cut-off frequencies almost coincide, as in-
dicated in figure 3.5. It appears quite convincingly in the left part of figure 3.18, where small
purely imaginary loops appear between the two cut-off frequencies, since they are no longer strictly
equal for λ > 1. Note that these loops remains very small, with a maximum imaginary part of
10 rad/m, compared to the imaginary part of branches around the Dirac cone in a viscoelastic ma-
terial (20 rad/m in the top view of figure 3.17). As a result, when adding viscoelasticity, the induced
additional imaginary contribution remain quite low and it seems that branches simply avoid each
other a little more and that the Dirac cone still exist for 1 ≤ λ ≤ 1.8. In fact, its imaginary part
increases anyway, which is why it becomes difficult to measure it when the stretch ratio increases.

Fixed strip – Let us focus on the Dirac cone in a fixed strip. Here, we do not plot the full 3D
dispersion diagram but directly zoom in on the Dirac cone and the ZGV in figure 3.19 for λ = 1
in a purely elastic material and a viscoelastic one. We recover what we have already seen at the
end of Chapter 1. In the case of a fixed strip, given predictions in figure 3.8 for λ = 1 and given
the analogy with Lamb’s waves, one predicts a coincidence in cut-off frequencies, and thus the
existence of a Dirac cone. The only expected difference is the symmetry of the modes at the origin
of this Dirac cone. In the case of the free strip, these are symmetrical modes, whereas in the case
of the fixed strip, they are anti-symmetrical ones. However, when solving the full 3D problem, it
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Figure 3.17: Effect of viscoelasticity on Dirac cone and ZGV in a free strip — Dispersion
curves are represented in 3D with complex-valued wavenumbers (rad/m). Full dispersion curves of
a purely elastic material are plotted (top). The Dirac cone (left) and ZGV (right) are degeneracies
and are zoomed in to reveal the effect of the viscoelasticity.
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Figure 3.18: Effect of prestress on the Dirac cone in a free strip — We zoom in on the
Dirac cone to reveal the mismatch in cut-off frequencies in a purely elastic material (left) with an
increasing stretch ratio. On the contrary, in a viscoelastic material (right), the linear crossing still
appears but branches are further apart in the top view.
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Figure 3.19: Effect of viscoelasticity on Dirac cone and ZGV in a fixed strip — Dispersion
curves are represented in 3D with complex-valued wavenumbers (rad/m). The Dirac cone (left) and
ZGV (right) are degeneracies and are zoomed in to reveal the effect of the viscoelasticity. The Dirac
cone does not exist in a purely elastic material for λ = 1, but appears to exist in a viscoelastic
material.

appears that, despite the coincidence in cut-off frequencies, the Dirac cone does not exist in a purely
elastic material for λ = 1 and a small imaginary loop indeed exists, as illustrated in the left part
of figure 3.19. When taking the viscoelasticity into account, this small imaginary loop is smoothed
out and the Dirac cone appears again. This is particularly visible in the top view. For the ZGV
point, the conclusions are the same as in the case of a free strip.

Again, the influence of prestress should also be thought out. We zoom in on the Dirac cone,
for several stretch ratio values (1 ≤ λ ≤ 1.8) indicated by the colorbar, for both a purely elastic
material and a viscoelastic one in figure 3.20.

When considering a planar tension in a fixed strip, cut-off frequencies gradually diverges when
increasing the stretch ratio, as indicated in figure 3.8. It appears quite convincingly in the left part
of figure 3.20, where the small initial imaginary loop for λ = 1 quickly expands to reveal frequency
gaps of several tens of Hz. As a result, when adding viscoelasticity, even though the imaginary part
of these branches were initially important for λ = 1, they still significantly rise in the top view in
the right part of figure 3.20. The large frequency gap actually reveals when simply looking at the
real part of these branches. This explains why the Dirac cone is measured experimentally only for
very low stretch ratios.
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Figure 3.20: Effect of prestress on the Dirac cone in a fixed strip — We zoom in on the
Dirac cone to reveal the increasing mismatch in cut-off frequencies with the stretch ratio in both a
purely elastic material (left) and a viscoelastic material (right). Contrary to the case of a free strip,
the linear crossing does not appear when only plotting its real part.

Appendix B: The influence of water on the dispersion curves of
guided elastic waves in a free strip
We solve for the full dispersion diagram of a soft strip using eigenfrequency analysis from COMSOL
finite-element software (figure 3.21). The strip has the same dimensions as previously, thickness
h = 2.7 mm and width b = 4 cm. But it is not easy to take into account both the 3D geometry,
the viscoelasticity and the prestress. In particular, when taking into account the viscoelasticity and
the prestress using an equivalent elasticity tensor as described in Chapter 2, it becomes hard to
implement adequate boundary conditions, and to solve for wavenumber k and not frequency. This
leads us to perform simulations using a simple homogeneous, isotropic and purely elastic material
with a transverse velocity VT = 5.31 m/s.

In figure 3.21, dispersion curves of a strip in air or immersed in water are compared. The
coupling with water has a significant effect on flexural modes that displace an additional quantity
of water, adding inertia and lowering the dispersion curves (more details in Chapter 4). On the
other side, the effect is less important on the in-plane guided modes but still remain important.
Notably, the edge wave velocity is decreased by a factor of 1.15 for such a material.

Lastly, the dispersion curves of elastic guided waves in a plate are added. By looking at the first
flexural mode that can propagate in a plate (black full line on the right part of figure 3.21), one
notices that it coincides with the first flexural mode that can propagate in a strip. This remark is
important because it allows us to only derive the plate problem when studying the generated wave
in the plate orientation, but is not surprising in view of equation (1.25).

The coincidence of these two curves is not obvious. Indeed, for a strip in air, the curves do not
overlap, and the flexural mode in a plate in air is above the one in a strip in air, by a factor of
2/

√
3. But when the plate or the strip is in water, then the dispersion curves are very similar. In

fact, if we zoomed in to the very low frequencies, we would notice a gap between the two curves,
but this is not measurable in our experiments.
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Chapter 4
Understanding the passive cochlear tonotopy

In the cochlea, the organ responsible for the sense of hearing, a guided wave is
supported by the strip-shaped basilar membrane. The cochlear wave is remarkable
because its amplitude reaches a maximum at a position that depends on frequency;
this is the so-called tonotopy. In this chapter, we study this tonotopy, alternating
between finite element simulations and experiments with a fixed soft strip in a
macroscopic model of the cochlea. We start from the problem of a plate immersed
in water, right up to the complete waveguide found in the cochlea. We show that
the group velocity of the fundamental mode of this waveguide indeed reaches a
minimum at a characteristic frequency. This frequency decreases along the basilar
membrane and depends on the local cross section of the membrane. The evolution
of this local dispersion provides an explanation of the passive cochlear tonotopy,
solely based on the physics of elastic waves in a strip. We perform a width gradient
and a thickness gradient and show that they enable the observation of amplitude
maxima at frequency-dependent positions. Finally, we discuss future experiments
with this cochlea model, including the implementation of active elastomers.

• We provide an explanation for the passive cochlear tonotopy, starting from an im-
mersed plate to the full waveguide

• The group velocity of the fundamental mode reaches a minimum at a characteristic
frequency that depends on the waveguide cross-section

• A macroscopic model of the cochlea is built and measurements are performed either
with a width or a thickness gradient

• Future research will focus in particular on the implementation of active polymers

Objectives
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1 Introduction
As mentioned before, soft elastomers share similarities with biological tissues. We have just de-
scribed elastography experiments classically used to quantify the elasticity of tissues. In this chap-
ter, we turn to another example on a smaller scale: the cochlea. This organ, present in humans
but also in almost all animals, is responsible for the sense of hearing. This cochlea includes a soft
strip-shaped membrane, a geometry that we have now mastered.

In this chapter, the presented modeling, simulation and experimental work were carried out
jointly with two interns, Sacha Grenier and Samuel Croquette, during this PhD thesis.

1.1 The human ear

First, we start by giving a general overview of the full human ear. It is illustrated in figure 4.1. Its
many functions can be divided into three parts, which are briefly described below.

Outer ear
The outer ear mainly consists of the auricle, ear canal and tympanic membrane (or eardrum). Sound
waves are guided through the ear canal. The shape and length of the ear canal do contribute to a
small sound amplification (in the frequency range of human speech). Additionally, auricles slightly
alter sound waves and they help in sound localisation. When sound reaches the end of the canal,
it causes the vibrations of the eardrum. This is a highly stretched membrane, i.e an organ of the
human body that is subject to large prestresses, as described in the previous chapter, and it lies
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between the outer ear and middle ear.

Middle ear
The middle ear is made of three very small ossicles: the malleus (or hammer), the incus (or anvil),
and the stapes (or stirrup) which is the smallest bone in the body. When sound waves reach the
eardrum, air pressure variations make the eardrum move back and forth, and the ossicles transmit
this vibration to the oval window of the inner ear. Its role is to ensure an impedance matching
between vibrations in the air and in the water in the inner ear, using different lever actions and
area ratio. Without the middle ear, less than 1% of the sound pressure would get to the inner ear.

Inner ear
Finally, the inner ear has two very different functions, which are carried out by two different parts.
Firstly, the vestibule organ is composed of three semicircular ducts. These semicircular canals are
positioned at angles between each other that ensure dynamic balance of the body. Secondly, the
snail-shaped organ in figure 4.1 is the cochlea and is responsible for the sense of hearing. In practice,
it performs the so-called mechano-electrical transduction108 ,169 . Let us take a closer look at how
the cochlea works.

1.2 The cochlea

We uncoil the cochlear duct to identify its main compartments. The total curvilinear length of a
human cochlea is around 30 mm, from the base (oval window) to the apex (center of the snail-shape).
An enlargement on this organ is shown in figure 4.2.

Global structure
There are three main compartments, surrounded by a bony structure (osseous spiral lamina). Two
of them are water-filled: the scala vestibuli and scala tympani. While these canals meet at the
apex, the scala vestibuli is connected to the oval window (or stapes) and the scala tympani to the
round window (see figure 4.1). Sandwiched between these two compartments, the organ of Corti
rests on the basilar membrane. This basilar membrane is strip-shaped and the object of study of
this chapter.

The Reissner’s membrane also separates the scala vestibuli and the scala media. But its dis-
placement does not serve a mechanical function24 . That’s why we forget about this membrane
afterwards. However, it has another very important role in chemical processes, acting as a diffusion
barrier for ions and enabling the organ of Corti to function properly.

When the stapes pushes the oval window, an overpressure is generated, water pushes on the
basilar membrane and makes it bend. This deforms the organ of Corti, as explained next. But it
also works the other way around: once the basilar membrane is deflected, it creates an overpressure
on one side, and an underpressure on the other side. The basilar membrane deformation is thus
intimately related to water pressure in both compartments. Moreover, the elasticity of the basilar
membrane always pulls it back to its initial position.

Organ of Corti
The organ of Corti is detailed in figure 4.2. It is supported by the basilar membrane and is composed
of a variety of cells170. Its function is to perform the mechano-electrical transduction i.e. to convert
information carried by the mechanical deformation into an electrical signal, or action potentials.

108Robles and Ruggero (2001): “Mechanics of the mammalian cochlea”
169Martin (2014): “Physical principles of hearing”

24Reichenbach and Hudspeth (2014): “The physics of hearing: fluid mechanics and the active process of the inner ear”
170Lim (1986): “Functional structure of the organ of Corti: a review”
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Table 4.1: Typical dimensions of the basilar membrane, the Scala Tympani (ST) and the Scala
Vestibuli (SV) in a human cochlea.

width (µm) thickness (µm) ST diameter (mm) SV diameter (mm)
Base 100 75 1.2 1.1
Apex 500 25 0.6 0.7

Another membrane, quite different from the basilar membrane, is also attached to the osseous
spiral lamina: the tectorial membrane. It rests on hair cells in the organ of Corti.

Second, hair cells are sensory cells which are connected to nerve fibers: they are central elements
to the mechano-electrical transduction. In fact, the tectorial membrane rests on stereocilia, a specific
part of the hair cell. The deflection of the stereocilia opens mechanically gated ion channels that
allow potassium and calcium (positive ions) to enter the cell169. The release of neurotransmitters
at the basal end of the cell finally occurs after other undetailed steps.

There are two types of hair cells: inner (IHC) and outer (OHC). Although they look very
similar, they have different functions. While IHCs send a nerve signal which is then interpreted
by the brain, OHCs are not directly responsible for the sense of hearing but rather act as a local
acoustic amplifier thanks to their electromotility171,172,173,174,175. In this process, they increase the
basilar and tectorial membranes displacements and therefore increase stereocilia deflection in the
inner hair cells.

This electromotility is fascinating, but it is not the subject of this work. Instead, we focus on
the behavior of elastic waves in the basilar membrane. Just as interestingly, similar hair cells are
also found in the above-mentioned vestibular ducts and are responsible for the sense of balance.

Let us sum up how information travel through the ear. First, sound arrives in the form of
pressure waves in the air. Then pressure waves are transformed into mechanical waves as the
eardrum causes the ossicles to vibrate. These mechanical waves cause the oval window to vibrate,
generating pressure waves again, but in water. These pressure waves are then coupled to elastic
waves in the basilar membrane. These deflect IHC sterocilia in the organ of Corti, which generate
an electrical signal that is finally interpreted by the brain.

The basilar membrane
Let us come back on the properties of the basilar membrane. For now, we have only considered
a cross-section of the cochlea, but its properties actually vary from base to apex. An uncoiled
representation of a simplified cochlea is presented in figure 4.3. In particular, one can notice how its
width increases when progressing towards the apex. On the contrary, although not visible in this
figure, its thickness decreases.

Many works are devoted to the imaging of the cochlea to access how its geometry evolves from
the base to the apex176,177,178. Some orders of magnitude for its dimensions are given in Table 4.1.
A remarkable characteristic is the evolution of the aspect ratio. The basilar membrane actually
resembles a squared-shaped beam at the base, and a wide slender strip at the apex. One can
already guess it behaves very differently at both locations.

169Martin (2014): “Physical principles of hearing”
171Ryan and Dallos (1975): “Effect of absence of cochlear outer hair cells on behavioural auditory threshold”
172Ashmore (1987): “A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier.”
173Ulfendahl and Flock (1998): “Outer Hair Cells Provide Active Tuning in the Organ of Corti”
174Ashmore (2008): “Cochlear Outer Hair Cell Motility”
175Dallos (2008): “Cochlear amplification, outer hair cells and prestin”
176Rau et al. (2006): “Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays”
177Verbist et al. (2010): “Consensus panel on a cochlear coordinate system applicable in histological, physiological and

radiological studies of the human cochlea”
178Rask-Andersen et al. (2012): “Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation”
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Figure 4.3: Uncoiled cochlea – The snail-
shaped cochlear duct is uncoiled and a simplified
basilar membrane is represented.
Adapted from the Nobel Prize Lecture of Georg
von Békésy in 1961.
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Figure 4.4: Tonotopy – The vibration of
the basilar membrane reaches a maximum
at a position depending on the input sound
frequency. Low-frequency sounds propagate
long distances towards the apex, while high
frequencies rather remain close to the base.
Adapted from Martin (2014).

1.3 The tonotopy map

The cochlea is full of different gradients. We mentioned in Table 4.1 the most noticeable ones, but
there surely are other gradients of mechanical properties of the Organ of Corti. These gradients are
at the heart of tonotopy.

In fact, Evolution has selected these gradients because they serve a purpose: to discriminate
input frequencies. For now, we just described how sound was reaching the cochlea and how electric
signals were created. But the cochlea is made in such a way that a given frequency f will particularly
deflect a given position x along the basilar membrane. Therefore, IHCs at this position x generate
nerve impulses sent to the brain, which interprets these signals as a sign of the presence of f in the
input sound. The basilar membrane acts as an acoustic spectrometer with a spatial discrimination
of frequencies along the basilar membrane: this is what we call the tonotopy map. It is illustrated
in figure 4.4.

High frequencies are not able to travel far and their corresponding positions are located near the
base. On the contrary, low frequencies are able to reach the apex. In the light of these observations,
the obvious question is: what is the link between the frequency f and the positions x where the
deflection is maximum ?

Greenwood (1990)179 reported several observations for the cochlear frequency-position map-
ping in different species and found a logarithmic distribution was a good matching, as presented
in figure 4.5. From this distribution, we deduce that the higher the frequencies, the closer the

179Greenwood (1990): “A cochlear frequency-position function for several species—29 years later”
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Figure 4.5: Tonotopy from Greenwood
– For each frequency, the position of localisa-
tion along the cochlea is plotted and a model
provides the full lines.
Adapted from Greenwood (1990).
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Figure 4.6: Recent measurements for
tonotopy – The frequency is plot as a func-
tion of the position along the cochlea, which
is itself coded by the angle of the coiled
cochlear duct, for ten samples.
Adapted from Helpard et al. (2021).

corresponding positions. With recent technical progress in imaging180,181,182,183, it is now easier to
make these type of measurements, and to measure patient-specific tonotopic maps. See an example
in figure 4.6.

1.4 Modelling the cochlea

The original approach by Helmholtz
A theory initially introduced by Helmholtz185 suggested that different regions of the basilar mem-
brane act as resonators for tones of different frequency. More precisely, he modeled the basilar
membrane as a series of strings whose natural frequencies are distributed over a wide frequency
range, omitting water coupling. These strings are narrower and more tensed at the base (near the
oval window) but wider and more flexible at the apex.

This theory persisted for almost a century before Békésy used more modern techniques to mea-
sure the vibrations of the basilar membrane in the cochlea of several mammals.

The Nobel Prize of Georg von Békésy in 1961
Békésy was awarded the Nobel Prize in Physiology or Medicine in 1961 “for his discoveries of the
physical mechanism of stimulation within the cochlea”. He developed innovative techniques to study
the mechanical responses of the cochlea186, such as the traveling wave theory187.

This theory sets up a traveling wave along the basilar membrane, which always progresses from
the base to the apex. The basilar membrane is assumed isotropic and to have neither longitudinal
or transverse tension in the resting state. Its mains results are that the amplitude of this traveling

180Elfarnawany et al. (2017): “Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea”
181Li et al. (2021): “Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast

imaging”
182Schurzig et al. (2021): “A cochlear scaling model for accurate anatomy evaluation and frequency allocation in cochlear

implantation”
183Breitsprecher et al. (2022): “CT imaging-based approaches to cochlear duct length estimation—a human temporal bone

study”
185Helmholtz (1868): “Die Mechanik der Gehörknöchelchen und des Trommelfells”
186Békésy (1960): Experiments in Hearing
187Békésy (1956): “Current Status of Theories of Hearing”
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wave reaches a maximum at a position that depends on the incident sound frequency, and that the
wavelength shortens during propagation, particularly at this position. One of the systems he used
for these demonstrations was that of pendulums coupled together.

A brief overview of the existing mathematical models
In the wake of these measurements by Békésy, there was a huge interest in trying to model math-
ematically the mechanics of the basilar membrane and the travelling wave. There are too many
models to list here, and we simply provide a brief overview.

The simplest approach is to build a 1D model of a uniform beam in a viscous fluid by considering
equation 3.8 and adding an external viscous force. Complexity can be added by taking a 2D model
of a membrane in a fluid-filled channel. Starting from this 2D model, there has also been a lot of
interest in models in which the cochlea acts as a transmission line that filters different frequencies
and relies on the representation of the cochlea as a series of interconnected resonators188,189. Such
models are also referred to as port-Hamiltonian systems. Finally, full 3D models of the cochlea
were considered, like box-models, with a solid separating two fluid-filled chambers, and adding
geometry gradients190,191,192. To avoid excessive computational costs in finite-element simulations,
the Wentzel-Kramers-Brillouin (WKB) method was used193 ,194 . This method is based on the
assumption that the properties of the medium vary very slowly with position compared to phase of
the traveling wave.

Numerous experiments were then carried out to provide a better understanding of the active
phenomena taking place in the cochlea. Thus, new models195 ,196 were developed to factor these
properties in. Once again, there are several approaches to successfully model and predict the ex-
perimental measurements. To name just two, the active system can be described using, at each
position, oscillators that operate at their critical point197 ,198 ,169 . The other approach consists in
considering the electromotility of OHC199 ,200 ,174 ,201 as mentioned above. Recently, some efforts
have been made to review the advances in cochlea modeling202 ,24 and range from simple passive
models to complete models that take the active properties of cochlea into account.

We are not biologists, but we have acquired some expertise in guided waves in membranes and
strip, as shown in the first chapters of this thesis. Our idea is to find out if we can add something
to the many fluid mechanics models that already exist. In the rest of this chapter, we focus on
the deformation of the basilar membrane, a clamped strip separating two water compartments. We
study the vibrations of such a strip when it is in air, in water, and then when it separates two
water-filled chambers, as in the cochlea.

188Zweig et al. (1976): “The cochlear compromise”
189Neely (1981): “Finite difference solution of a two-dimensional mathematical model of the cochlea”
190Inselberg (1978): “Cochlear Dynamics: The Evolution of a Mathematical Model”
191De Boer (1981): “Short waves in three-dimensional cochlea models: Solution for a ‘block’ model”
192Vetešník and Nobili (2006): “The approximate scaling law of the cochlea box model”
193Steele and Taber (1979): “Comparison of WKB calculations and experimental results for three-dimensional cochlear

models”
194Lim and Steele (2002): “A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method”
195Lighthill (1991): “Biomechanics of Hearing Sensitivity”
196Allen and Neely (1992): “Micromechanical Models of the Cochlea”
197Duke and Jülicher (2003): “Active Traveling Wave in the Cochlea”
198Hudspeth et al. (2010): “A Critique of the Critical Cochlea: Hopf—a Bifurcation—Is Better Than None”
169Martin (2014): “Physical principles of hearing”
199Kolston and Ashmore (1996): “Finite element micromechanical modeling of the cochlea in three dimensions”
200Nobili et al. (1998): “How well do we understand the cochlea?”
174Ashmore (2008): “Cochlear Outer Hair Cell Motility”
201Ni and Elliott (2018): “Modelling three-dimensional cochlear micromechanics within the guinea pig organ of Corti”
202Olson et al. (2012): “Von Békésy and cochlear mechanics”

24Reichenbach and Hudspeth (2014): “The physics of hearing: fluid mechanics and the active process of the inner ear”
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Figure 4.7: Theoretical dispersion
curves of A0 in an immersed plate –
Assuming a purely elastic plate of thickness
h = 2.7 mm, density 1.07 g/cm3, longitudi-
nal velocity 1000 m/s and transverse velocity
5.31 m/s, we plot the dispersion curve of the
A0 mode which is mainly flexural. The plate
is either free (dashed lines) or immersed in
water (full lines) with density 1 g/cm3 and
sound wave velocity 1500 m/s.
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Figure 4.8: Experimental dispersion
curves of A0 in an immersed plate – Us-
ing a line source, we generate flexural plane
waves in a plate Ecoflex-0030 with thickness
h = 3.7 mm. The plate is either free (empty
dots) or immersed in water (filled dots). To
predict these dispersion curves, one should
take into account the deformation due to the
weight of the plate itself (∼5% for the free
plate), as well as the viscoelasticity.

2 A progressive understanding
A simplified cochlear waveguide, without coiling or active properties, is still quite complex. We first
consider a much simpler system: an elastic plate immersed in water. In chapter 1, we discussed
guided elastic waves in a free plate and found that three fundamental modes exist in the low
frequency regime (much lower compared to the first cut-off frequency). We measured the dispersion
curves of these three modes, shown in figure 1.11 and 1.12. While in-plane modes SH0 and S0 have
been widely studied and discussed in the course of this thesis, this is less the case for out-of-plane
modes. However, the basilar membrane displacements are a priori mainly out-of-plane. So, we
should focus on the first anti-symmetric mode A0 whose displacements are mostly out-of-plane.

2.1 Flexural waves in a fluid-loaded plate

In chapter 3, we study such a flexural wave using the ultrasound elastography technique. We
compare the theoretical dispersion curve of this flexural wave in a free plate and in a plate immersed
in water that are presented in figure 4.7. Because there is a certain quantity of fluid to move when
bending an elastic plate immersed in water, the dispersion curve is lowered. Let us derive the low
frequency dispersion of the A0 mode in a nearly-incompressible free plate25 of thickness h. For
anti-symmetrical modes, one has the Rayleigh-Lamb equation, as described in equation (1.19) in
chapter 1, and it reads:

(k2−q2)2 tan
(
ph

2

)
+ 4k2pq tan

(
qh

2

)
= 0 with p =

√
ω2

V 2
L

− k2, and q =
√
ω2

V 2
T

− k2. (4.1)

25Royer and Dieulesaint (1999): Elastic waves in solids I: Free and guided propagation
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Assuming ph ≪ 1 and qh ≪ 1, one should perform a limited expansion to order 3 of the tangent
functions, to finally obtain the dispersion relation associated to an incompressible material:

ω = VT√
3
k2h. (4.2)

Similarly, it is also possible to rewrite the Rayleigh-Lamb equation when the plate is immersed in
a fluid203,164 of density ρw and speed of sound cw:

(k2−q2)2 tan
(
p
h

2

)
+ 4k2pq tan

(
q
h

2

)
+ i

ρw

ρ

ω4

V 4
T

p

r
= 0 with r =

√
ω2

c2
w

− k2. (4.3)

Following similar steps, we obtain the dispersion of the flexural wave propagating in a fluid-loaded
plate:

ω = VT√
3

k5/2h3/2√
kh+ 2ρw

ρ

∼
kh≪1

VT√
3

√
ρ

2ρw
k5/2h3/2 (4.4)

Interestingly, the sound velocity in water does not appear here. In fact, all that is needed is for the
sound velocity in the fluid to be very large compared to that of the flexural wave, which led us to
consider r2 ∼−k2 in our previous calculation.

On the contrary, the fluid density plays a fairly important role. For a fluid like air, ρw should be
replaced by ρa ≪ ρ and equation (4.4) indeed simplifies into equation (4.2). But a heavy fluid, like
water, greatly increases the inertia of the system, and therefore leads to a lowering of the dispersion
curve. Here, densities are similar ρw ∼ ρ, so that the coupling with water is in fact manifested by
a factor

√
kh/2. Please note that all these comments hold in the low frequency regime, where the

wavelength is much larger than the thickness.
The dispersion curve of the flexural mode in a free plate was measured in chapter 1. Using the

same experimental method, we do similar measurements on a plate immersed in a water tank with
transparent walls. The obtained dispersion curve is plotted in figure 4.8.

Predictions are not straightforward since two factors need to be taken into account. First, when
the plate is not immersed in water, it is deformed under its own weight which is not the case when
immersed in water since the densities are similar and the plate almost floats. The second factor is
the material viscoelasticity. As already discussed several times in this thesis, rather than finding
the roots of equation (4.3), we can use the SCM for an immersed plate166, in combination with the
equivalent elasticity tensor Cω. Doing so leads to predictions plotted in figure 4.8 where we have
considered an elongation of 5% in the free plate due to its own weight. This once again confirms
the effectiveness of our material model coupled with the SCM. Note that, again, the velocity of this
flexural mode becomes non-zero as soon as a prestress is applied. This can be seen in figure 4.8
where the dashed gray curve exhibits a linear behavior at low frequencies.

One detail remains to be clarified here. Equation (4.4) assumes that the plate is immersed in
an infinite quantity of water. However, the water tank used in the experiment is finite (obviously)
and we know this has an effect on the dispersion of the flexural wave in a plate. Following the work
of Schulkes et al. (1987)204, equation (4.4) is modified to

ω = VT√
3

k5/2h3/2√
kh+ 2ρw

ρ coth (kH)
∼

kh≪1

VT√
3

√
ρ

2ρw
tanh (kH) k5/2h3/2, (4.5)

203Osborne and Hart (1945): “Transmission, Reflection, and Guiding of an Exponential Pulse by a Steel Plate in Water. I.
Theory”

164Li and Cao (2017): “Mechanics of ultrasound elastography”
166Kiefer et al. (2019): “Calculating the full leaky Lamb wave spectrum with exact fluid interaction”
204Schulkes et al. (1987): “Waves due to a steadily moving source on a floating ice plate. Part 2”
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Figure 4.9: Influence of the water height on the plate flexural mode dispersion –
By using COMSOL Multiphysics, we solve for the eigenvalue problem of an immersed plate of
thickness h = 4 mm with varying water domain sizes 2H from 1 cm (blue) to 20 cm (yellow), with
rigid boundary conditions. The evolution of frequencies at 100 rad/m are compared with theory in
the inset.

with H the height of water immersing the plate (and 2H being the total height of the water domain).
We want to check this equation with COMSOL because the SCM assumes an infinite water

domain and does not provide the corresponding predictions. Results for a purely elastic plate, of
thickness h = 4 mm and transverse velocity VT = 6 m/s, are shown in figure 4.9. First, a schematic
diagram of the problem is recalled. Upper and lower walls are assumed to be rigid, and we apply
periodic Floquet-Bloch conditions between the two normal faces indicated by the wave vector k.
Continuity is imposed between right and left faces to ensure the propagation of plane waves in the
normal direction. Then, dispersion curves are displayed for various values of the water domain
size 2H, ranging from 1 cm (blue) to 20 cm (yellow). To check the validity of equation (4.5), we
plot the obtained frequencies at k = 100 rad/m as a function of 2H. Theoretical predictions for
ω2H/ω2H=1 cm are also added in this inset and fits perfectly the results from COMSOL simulations.
We note that for 2H = 10 cm, the dispersion becomes nearly constant with the water domain size.
This is the so-called deep-water regime, well known in the water waves community, where the value
of H becomes irrelevant, as long as it is much larger than the wavelength. In our experiment, the
water tank has a size of 2H = 30 cm, and everything actually occurs as if the flexural wave sees an
infinite water domain.

Now that we understand properly the propagation of this flexural wave in a water-loaded plate,
let us investigate the propagation of flexural modes in a water-loaded soft strip.

2.2 Flexural waves in a fluid-loaded strip with fixed edges

As explained in chapter 1, the flexural mode does not couple (or very weakly) to the other funda-
mental modes (S0 and SH0), and are therefore guided independently up to the first cut-off frequency
in a plate of same thickness. Here, we present the dispersion curves for guided waves in a fixed
strip in figure 4.10. In the (k > 0) (respectively k < 0) region are presented the out-of-plane (resp.
in-plane) guided waves, both for a strip in air (dashed lines) and in water (full lines).

The SCM does not allow (yet) to build predictions for a waveguide with a rectangular cross-
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Figure 4.10: Full dispersion curves for an immersed strip with fixed edges – Calculations
are made with a strip of dimensions 60 cm × 2.7 mm × 4 cm with fixed edges, either free or water-
loaded. The cross-section is represented and PML are here to mimic an infinite water domain in
the x3 direction. Dispersion curves are obtained using COMSOL Multiphysics (2H = 30 cm and
B = 1 m) and modes are separated upon their main polarisation and symmetry.

section immersed in water. So, to have these theoretical predictions, COMSOL is used again. In
practice, we extrude a cross-section to obtain a small thickness and apply periodic Floquet-Bloch
conditions between the two faces, as in the case of the immersed plate. A schematic diagram is given
in figure 4.10. As discussed previously in figure 4.9, we considered 2H = 30 cm for the height of
water. For the transverse direction, we replace the continuity by a water domain of a certain width
2B coupled to Perfectly Matched Layers (PML) which are often used to mimic infinite environments.
These PML attenuate the wave over a short distance, avoiding any reflection.

We recover the fact that in-plane guided waves are not really impacted by the presence of water.
Their movement only sets in motion a thin layer of water (called boundary layer) of thickness 10 to
100 µm. In contrast, out-of-plane guided modes are significantly affected by the presence of water,
just like the flexural mode in a plate, as explained above in figure 4.7.

Again, their typical power-law behaviour is recovered and cut-off frequencies are no longer
evenly spaced. Moreover, their values are largely impacted by the presence of water. A zoom on
the theoretical dispersion curve of the first flexural mode around its cut-off frequency is presented
in figure 4.11. It has a really simple and intuitive displacement. Its transverse profile is roughly
that of a string attached at both (lateral) ends.

Again, adding the water coupling significantly lowered the dispersion curve, thus the cut-off
frequency, since the mode’s inertia has increased. This cut-off frequency is an important feature
since it means that no propagation is allowed at lower frequencies. Besides, one should note that
the group velocity, i.e. the slope of the dispersion curve, is null at the cut-off frequency and remains
quite low at higher frequencies: ∼1 m/s at 15 Hz. This remark will prove useful in the next section.

Let us now explore experimentally the dispersion curve of this mode in an Ecoflex strip. Results
are presented in figure 4.12, for a strip in air (grey) or in water (black). Observations are coherent
with previous discussions, as the coupling with water actually lowered the dispersion curve. To be
more consistent, we add predictions for this strip of width b = 18 mm and thickness h = 4 mm.
These predictions are correct but not fully accurate. In previous chapters, viscoelasticity was the
key element to consider to fully describe the dispersion of guided waves in such soft media.Thus we
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Figure 4.12: Experimental dispersion
curve of the flexural mode in an im-
mersed fixed strip – A point source gener-
ates out-of-plane displacement in an Ecoflex
strip, with dimensions h = 4 mm, b = 18 mm
when the water tank is empty (in air), and
filled (in water).

believe that better predictions are possible by implementing the rheology of the material in these
simulations. Moreover, there is also a slight possibility that the strip was initially deformed (with
a stretch ratio 1 ≤ λ ≤ 1.05), but neither this prestress nor the rheology can simply be taken into
account in the COMSOL software.

Additionally, we have just seen in the previous chapter that, in a lossless medium, a cutoff-
frequency mode has a purely imaginary wavenumber below a certain frequency, that switches to a
purely real wavenumber at this frequency. But in a medium with intrinsic losses, the transition is
not abrupt and is smoothed, with wavenumbers having both non-zero real and imaginary parts, as
illustrated in figure 3.19. Once again, we find this aspect in experimental measurements where non-
zero wavelengths are measured below the theoretical cut-off frequencies (50 Hz in air, and 120 Hz in
water). Note that these points indeed correspond to highly attenuated waves, that only propagate
over short distances.

Last but not least, we examine the pressure distribution in water with COMSOL. While ana-
lytically challenging, we can still discuss its evolution in the x2 direction in the water domain. The
transverse velocities in such soft media are of the order of 5 m/s, that is to say much lower compared
to the pressure wave velocity in water cw = 1500 m/s. Thus, no pressure wave can propagate in
water with the pair (ω, k) and pressure waves must decay exponentially in the x2 direction. Here,
the decay length is generally given by the 1/|r| = cw/fc at the cut-off frequency fc and is of the order
of 30 m at 50 Hz. This remark points out the difficulties encountered when trying to implement
PML with COMSOL, as the PML thickness should be of the order of 10 m but the studied system
is of dimensions 1 cm×1 mm. In practice, we chose the width of the water domain B and the PML
size to be around 1 m.

Measurements were carried out in a water tank with width B = 80 cm. This raises the question
of how the predictions change when PMLs are removed while retaining this value for B. Moreover,
we might also wonder: how does this dispersion curve evolves when B is reduced, in the same way
as we did for the height of water 2H in the case of the plate in figure 4.9? Results are shown in
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Figure 4.13: Influence of the water domain width on the flexural mode dispersion – By
using COMSOL Multiphysics, we solve for the eigenvalue problem of an immersed strip of thickness
h = 4 mm and width b = 18 mm with varying water domain widths B from 10 cm (blue) to 100 cm
(yellow). A zoom in around the cut-off frequency is added in the inset.

figure 4.13.
We see that the dispersion of this mode is only slightly affected by the size of the water do-

main, including its cut-off frequency. The discussion on the evolution of this cut-off frequency with
geometric parameters (h, b) is done later.

In the end, one may argue that considering an infinite water domain is indeed irrelevant in our
problem since it is not the case in the cochlear waveguide. In particular, the two water compart-
ments (top and bottom in figure 4.13) are connected in our simulations. However, in the cochlea,
compartments are isolated and only join at the apex. So we move on to this waveguide, and start
by studying it without any gradient at all.

2.3 The full waveguide

Additional boundary conditions are implemented as illustrated in the schematic diagram in fig-
ure 4.14(a). The soft strip is the same as before, assumed fixed at its lateral edges in x3 = ±b/2.
The water compartments have finite sizes and are isolated.

The full dispersion curves of guided waves in this system are obtained using COMSOL by only
keeping the top and bottom water domains, and are plotted in figure 4.14(b). A zoom is also
performed on the first flexural mode dispersion, and is compared to the case where compartments
are connected in figure 4.14(c).

The dispersion curves are indeed similar except for the symmetric out-of-plane modes (red lines
in the (k > 0) region), i.e. the flexural waves, and in particular in the low frequency regime.
This time, there is no cut-off frequency and the fundamental flexural wave propagates even below
50 Hz. In many cases, the existence of a cut-off frequency implies the absence of solution in the
static regime (zero frequency). For instance, for a fixed strip in air, it appears because a rigid body
motion is forbidden by the boundary conditions. This time, applying a static overpressure in one
water compartment statically deforms the strip along its entire length, leading the cut-off frequency
to disappear.

Here we have modelled the coupling between an elastic waveguide (a clamped soft strip) and two
acoustic waveguides (water compartments), making this system a particularly complex environment
to study. Pressure waves propagate at approximately 1500 m/s in water, while the flexural wave
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Figure 4.14: Theoretical dispersion curves with two isolated water compartments –
(a) The same fixed strip of thickness h = 2.7 mm and width b = 40 mm is immersed in water and
the top and bottom water compartments are now isolated. The cross-section is represented. (b)
Dispersion curves are obtained using COMSOL Multiphysics (2H = 20 cm and B = 10 cm) and
modes are separated upon their main polarisation and symmetry with respect to x1 = 0 axis. (c)
Zoom in around the first cut-off frequency. Curves are compared to the case where top and bottom
compartments are connected (dashed lines in (a,b) and red lines in (c,d)). (d) Their group velocities
Vg(f) are plotted as well.

propagates at 1-2 m/s in the strip. Remarkably in such a complex waveguide, in the low frequency
regime the guided wave is weakly dispersive with a velocity of around 30 m/s. This value is between
the shear wave velocity in the strip and the sound velocity in water, confirming the importance of
the waveguide coupling.

Many questions naturally arise, particularly about the nature and strength of this coupling.
Just as important, one may also wonder about the influence of geometrical parameters (b, h). Last
but not least, we will obviously be asking what influence the size of the water compartments (B,H)
has on this coupling, and in particular on the wave velocity below the cut-off frequency.

2.4 An explanation to passive cochlear tonotopy

Before answering all these questions, one should notice that the group velocity reaches a minimum
at a characteristic frequency fc ∼ 50 Hz in figure 4.14(d). It is also compared to the case where
water compartments are connected.

As expected when a cut-off frequency fcut-off exists, the group velocity is minimal and equals zero
at this frequency. However, when water compartments are isolated, the cut-off frequency disappears
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Figure 4.15: Effect of the water domain size B on the group velocity – The dispersion
of the fundamental flexural mode, in a strip of thickness h = 4 mm and width b = 18 mm, with
connected water compartments is recalled for comparison (red dashed line) and its group velocity
is plotted as well. Compartments are then isolated and their dispersion are computed for different
values of the water compartment size 2H = B ranging from 4 to 20 cm.

but the group velocity reaches a minimum at a characteristic frequency fc ≳ fcut-off. Again, of
particular interest are the high values of the group velocity Vg for f < fcut-off where the propagation
was previously not possible. Overall, the dispersion of this mode can be roughly simplified into two
distinct parts. At frequencies f < fc, the wave is weakly dispersive and propagates at high speed.
For f > fc, the wave is quite dispersive and propagates very slowly with an almost constant group
velocity.

We now understand that it was unimportant to study the effect of geometrical parameters (b, h)
on the cut-off frequency fcut-off. Instead, we now study the characteristic frequency fc. There are
several gradients of properties along the cochlea, but we will only study the simplest ones, as shown
in table 4.1. For the sake of simplicity, we can assume ST and SV to have rectangular cross-sections
with B = 2H and to be the same size, i.e. top and bottom compartments are identical. We can
then compute the dispersion of the fundamental mode for several values of (b, h) and B.

Effect of the water compartment size B – The effect of the size B of the water compartments
is shown in figure 4.15, with the dispersion curve f(k) and the Vg(f) plots. The conclusion is quite
straightforward since only one feature is modified, that is the coupling strength. The larger the
water compartments, the more they dictate the physics of this mode in the low frequency regime,
i.e. the closer the initial group velocity, and the phase velocity, tends towards the sound velocity in
water and diverges from the transverse velocity in the material. In fact, in the limit where the water
compartments become large enough to become infinite, the acoustic waveguides would disappear
and we should recover the physics of an immersed fixed strip in water, as indicated by the dashed
red line where water compartments are connected and of size 2H = B = 10 cm.

As we do not have any theory to model the coupling between the acoustic and elastic waveguides,
it is difficult to add predictions about the evolution of this group velocity with B. In addition, we
could also ask what the effects of B or H are independently. Is it rather the value of the cross-
sectional area that comes into play, or its shape? These questions have not been answered here, but
it is clearly a research topic for the future.
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Figure 4.16: Effect of the strip width b on the group velocity – The dispersion of the
fundamental flexural mode, in a strip of thickness h = 4 mm and width b = 18 mm, is recalled
when water up and bottom compartments are connected (red dashed lines) and its group velocities
is plotted as well. Compartments are then isolated and are of size 2H = B = 10 cm. A- Dispersion
curves are then computed for different values of the strip width b ranging from 5 to 40 mm. A
zoom in is performed to reveal the large strip width behavior. B- Same for the group velocity.
C- The characteristic frequency fc is extracted and plotted as a function of the strip width b. A
logarithmic scale is added in the inset. D- Similarly, the group velocity at low frequency is also
plotted. E- Noting their behaviors are quite similar, we also plot this group velocity as a function
of the previously assessed characteristic frequency fc.

Effect of the strip width b and thickness h – In the cochlea, the width of the basilar membrane
increases from the base to the apex. We can compute the dispersion curves of the same fundamental
mode for increasing values of the strip width b, and the results are shown in figure 4.16A. Here, the
dispersion curve is completely modified when changing the strip width b. When increasing b (from
blue to yellow), frequencies are largely decreased, including the cut-off frequency that would exist
for a similar system with connected compartments, but also the characteristic frequency fc that
minimizes the group velocity. Additionally, the initial slope must follow this decrease in frequency
and that is why the group velocity at low frequency largely decreases when increasing the value
of b, as indicated in figure 4.16B. To better visualize this effect, we extract the group velocity for
f → 0 Hz, as well as fc, and plot them as a function of the strip width b in figure 4.16C and D.

These two features seem to be quite similar and this is why we plot the extracted group velocity as
a function of the characteristic frequency fc, in figure 4.16E. We note that a strong correlation exists
between these two values, meaning the dispersion curves could be superimposed by normalizing each
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Figure 4.17: Effect of the strip thickness h on the group velocity – Same as previous figure
with varying thickness values h ranging from 0.5 to 10 mm.

by their corresponding characteristic frequency.
Before commenting further these changes, we can perform a similar study with varying strip

thickness h, and results are presented in figure 4.17. When the strip thickness h increases, both the
characteristic frequency fc and the group velocity Vg increase. Similarly to the case where the strip
width b is varied, the two features of interest are highly correlated in figure 4.17E.

Now may be the adequate time to talk about the observed dependence of fc with the width b and
the thickness h. However, it has already been said that we are currently unable to provide a model
for this coupling of the two waveguides. Nevertheless, we note that this characteristic frequency
fc is often quite close to the cut-off frequency fcut-off that would exist in the same system if the
two water compartments were connected. This raises the question of whether we can understand
how fcut-off evolves with the parameters (b, h) of the strip. By using equation (4.4), one may guess
fcut-off by evaluating the function ω(k) for the plate wavenumber k = π/b, resulting in the following
equation:

fcut-off ∝ VT b
−5/2h3/2 (4.6)

This predicts a power-law behavior for fcut-off, and likewise the function fc(b, h), with both b and
h. So, to check the accuracy of this equation, we plot fc(b) in the inset of figure 4.16C and fc(h)
in 4.17C with logarithmic scales. Plotting them in this way does not produce straight lines, which
means they don’t actually follow power laws. We also add triangles to give an indication about the
predicted slopes for these curves. Predictions in equation (4.6) work well for small thickness h, or
large width b. Equation (4.4) is valid in the low frequency regime of a plate i.e. for plate wavenum-
bers kh ≪ 1. Here, we evaluate ω(k) for k = π/b, meaning equation (4.6) holds when h ≪ b, or
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Figure 4.18: Experience of the cochlear wave in the basilar membrane – (a) A strip
with a varying width from 1 to 3 cm is considered. For two frequencies 25 and 75 Hz, we plot the
evolution of the group velocity and of the wavenumber as functions of the positions. (b,c) Local
dispersion curves and group velocities for each position.

when the studied strip has an important aspect ratio. And in both figures 4.16C and 4.17C, the
approximation in equation (4.6) typically works when h is small, or when b is large.

The experience of the cochlear wave along the basilar membrane – Now that we have
seen how the parameters vary with the water compartment size B, the strip width b and thickness h,
we can understand how the local wave dispersion evolves with position along the basilar membrane.
At the cochlear base, b is the smallest, h is the largest and B is also the largest. On the contrary,
at the cochlear apex, b is the largest, h the smallest and B also the smallest. As a result, the
characteristic frequency fc is the highest at the base and the lowest at the apex, and similarly the
group velocity of this wave is the highest at the base and the lowest at the apex. For an intermediate
position, the characteristic frequency is also intermediate, meaning that some frequencies are still
propagating very fast, while others have been slowed down. To illustrate the experience of a sound
at frequency f , we use an example where we study two waves at frequencies 25 and 75 Hz in a strip
with a width gradient (from 1 to 3 cm), as indicated in figure 4.18(a). Each position corresponds
to a width b, and therefore a local dispersion as displayed in figure 4.18(b) and (c). As a result, we
can plot the evolution of the wavenumber k and the group velocity Vg as a function of the wave’s
position along the strip.

We retrace the passage of a sound of frequency f = 25 Hz in the cochlea. At the base, f <
fc = 154 Hz and the wave propagates really fast. But there is more because the wavenumber is also
really small, i.e. the wavelength is really large. Progressively when propagating along the cochlea,
fc decreases, leading the group velocity (full red line) to progressively decrease, and the wavenumber
(red dashed line) to increase. At some point, the wave reaches a position where f = fc = 25 Hz.
At this position, the initial wave finds itself slowing down enormously. From this, one expects
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Figure 4.19: Our macroscopic model of the cochlea – (a) Diagram of the full macroscopic
model. (b) A cross-section view of the macroscopic model, with geometrical parameters b ∼ 1 cm,
h ∼ 1 mm, H = 5 cm and B = 10 cm.

that the wave amplitude increases at this position. Likewise, the wavenumber rises sharply and
the wavelength drops suddenly. Once the wave has passed through this position, it arrives in a
portion of the strip where f > fc, so it propagates very slowly with a wavelength that continues
to decrease. In practice, the medium has intrinsic losses and the wave is attenuated after having
stopped. Clearly, a sound at a different frequency will not slow down at the same position. Namely,
for a sound at a higher frequency like 75 Hz (black lines), the amplitude rises at a position closer
to the base (remember that fc is maximal at the base).

To conclude, the amplitude of a sound will suddenly increase as it propagates through the
cochlea, at a position that depends on its frequency. We have just found a physical explanation,
based on the physics of elastic waves in a soft strip, for the tonotopy observed in the cochlea of
many mammals, including humans.

We have seen what we expected in simulations, and we have clearly understood where the
tonotopy phenomenon comes from. In particular, we have seen that the gradient with the greatest
effect is that of width b, since fc(b) varies more rapidly than fc(h). Now let’s explore this mode
experimentally.

3 Experimental implementation

3.1 The macroscopic model

To obtain a macroscopic model of the cochlea in the laboratory, we first build a rectangular box
that does not leak. Then, we insert a strip which divides the box into two compartments. One of
the most important point in this step is to make sure that the two compartments are not connected,
except at the apex. Otherwise, the waveguide behaves in a completely different manner, as pointed
out in figure 4.14. A schematic of this macroscopic model is displayed in figure 4.19. The box is
entirely built with PMMA, a transparent engineering thermoplastic. Two circular holes are left on
one side of the box. They are covered with silicone (Ecoflex) membranes to mimic the presence of
the oval and round windows in the cochlea. Then, the strip is set in this plastic box. Actually, it
is prepared with a width larger than b, but is fixed in a way that only the central part, of width b,
can move. This clamping process is quite delicate because if we tighten the strip too much, then
it swells and can even buckle. But if we do not clamp it enough, then the strip can move as the
elastic wave passes, something which we absolutely want to avoid.

As in the cochlea, the wave is generated by the oval window using a shaker attached to it.
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There remains one last subtlety before showing the first results. In previous chapters, we made in-
plane wave measurements, where the displacement was mostly in the plane imaged by the camera
(up-down and left-right). But here, the main displacement of the fundamental guided mode in
this system mostly has an out-of-plane displacement (front-back), as illustrated in figure 4.14. Our
method is therefore unable to measure out-of-plane displacements. However, as already mentioned
when measuring the A0 mode in a plate (figure 1.12 in chapter 1), flexural modes have not only
an out-of-plane displacement component, but also in-plane components, which are weaker. By
generating large enough amplitudes in our system, we can make sure that in-plane components of
this mode are measurable.

We then install a strip of width b and thickness h fixed in the box and we measure the dispersion
relation of the guided mode.

3.2 Results without gradient

The results are displayed in figure 4.20. First, the diagram of the fixed strip, made of Ecoflex-
0030, is recalled and its geometrical parameters are given. Then, a typical acquired image is
shown in 4.20(b), as well as the displacement maps at 45 Hz. By exciting a pressure wave in the
fluid, we have succeeded in generating displacements in the strip. By performing a Singular Value
Decomposition for each frequency, as detailed in figure 1.17, followed by a spatial Fourier transform,
we extract the dispersion diagram of this mode in figure 4.20(c). The two regimes are clearly visible.
Above fc ∼ 35 Hz, the dispersion is rather flat with a low group velocity. For lower frequencies, we
are able to measure the propagation of a wave, contrary to what was observed for an immersed fixed
strip in figure 4.12. Additionally, the theoretical prediction fits well with the measurements, except
for the initial slope. However, one should remember that at these low frequencies, the corresponding
wavenumbers are close to the limit of resolution (given by the length of the measured displacement
maps), and that the rheology was omitted in this theoretical predictions. Here, a transverse velocity
of 6 m/s is assumed but we know that this velocity goes down when decreasing the frequency, thus
giving a simple explanation of why the measured curve is indeed below the theoretical prediction.

Lastly, notice there is always a peak at k ∼ 10 rad/m for frequencies ranging from 20 to 60 Hz.
This is in fact an artifact coming from the SVD.

Now that we have been able to probe this dispersion curve, we replace the current fixed strip of
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Figure 4.21: Experimental tonotopic map of our cochlear waveguide with a width
gradient – (a) Diagram of the full macroscopic model with geometrical parameters values. (b)
Typical displacements for different times, at 44 Hz or 28 Hz. (c) For each frequency, the wave
envelope is extracted and plot as a function of the position along the waveguide. Theoretical
predictions for the characteristic frequency fc are added.

constant width b and thickness h by another one where the width gradually increases.

3.3 Results with a linear width-gradient

Here, we follow the same procedure as before, but using a cochlear waveguide with a width gradient.
Close to the oval window, the width is set at 6 mm and at the other side of the box, it has increased
and the width is set at 18 mm. Results are shown in figure 4.21. Again, the diagram of the
macroscopic model is recalled. Then, typical displacement maps are processed and the first singular
vector is computed and displayed in figure 4.21B at different times.

On these curves, we see that the amplitude is not constant with the position. It first increases
around a certain position, and then decreases. This is expected from all the considerations depicted
in figure 4.18, and this is also why the wavelength is greater near the source (or the base) before
gradually decreasing along the strip.

By plotting these displacements for two different frequencies, we see that the higher the frequency
is, the closer to the base the amplitude rise. To better characterize this link between the excitation
frequency and the position of maximum amplitude, we trace the envelope of the wave (red line
in 4.21B) |u(ω, x)| in figure 4.21C. Again, high frequency tones reach a maximum close to the
source, while low frequencies propagate all along the waveguide before the amplitude rises. To
predict these positions, we compute the local dispersion for each position, and then derive its
characteristic frequency, plotted as a thick black line in figure 4.21C. Note that the zero-position
corresponds to a distance of ∼ 10 cm from the source (i.e. the base). Thus, the width varies from
8.2 mm at 0 cm, to 18 mm at 44 cm.

The predictions give a correct trend. At each position, the frequency that stops propagating is
always slightly overestimated with fc. To explain this, we go back to the curves shown in figure 4.16.
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Figure 4.22: Experimental tonotopic map of our cochlear waveguide with a thickness
gradient – (a) Diagram of the full macroscopic model with geometrical parameters values. (b)
Typical displacements for different times, at 70 Hz or 50 Hz. (c) For each frequency, the wave
envelope is extracted and plot as a function of the position along the waveguide. Theoretical
predictions for the characteristic frequency fc are added.

The frequency fc is in fact the frequency that minimize the group velocity, but it is already very
low for smaller frequencies. We deduce that fc is the maximum value of frequencies that stop at a
given position. This is why the black curve appears above the line formed by the maxima. Once
again, the rheology of the material surely plays an important role in determining precisely these
positions where the amplitude reaches its maximum. In the end, decreasing the width b by a factor
of 2 implies the localisation of frequencies varying by a factor of 4.

As seen in simulations in previous section, the thickness also has a great effect on the charac-
teristic frequency fc. Let us implement such a thickness gradient.

3.4 Results with a linear thickness-gradient

Here, we again follow the same procedure using a cochlear waveguide with a thickness gradient. The
thickness varies from 1 mm close to the round window, to 4 mm at the apex. Results are shown in
figure 4.22. Similarly, the diagram of the macroscopic model is recalled and the first singular vector
is plotted at different times in figure 4.22B.

Observations are quite similar to the case of the width gradient except that the amplitude rise
and the wavelength decrease are not as clear as in figure 4.21B. Still, the wave slows down when
reaching the position corresponding its frequency. For each frequency, the wave envelope is extracted
and plotted as a function of the position. The image is less contrasted than with a width gradient
since amplitude rises are less clear, meaning less significant. However, there is, at each frequency,
a position where the wave stops, which is a sign of a significant decrease of the group velocity.
High frequencies are still stopped near the base, while low frequencies propagate further. We even
note that for frequencies close to ∼ 40 Hz, the wave reaches the end of the waveguide without any
amplitude increase. This is more likely because the lowest fc in this waveguide is about 40 Hz. To
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check this assumption, we again plot theoretical predictions for the characteristic frequency with
the position as a thick black line. The thickness varies from 3.4 mm at 0 cm to 1 mm at 44 cm.
The shape is quite different this time, and the curvature is in the other direction. Keep in mind
that this experiment is at a preliminary stage, which is why the frequency resolution is low, and
the curves presented in figure 4.21B are noisy. There is still a lot of work to be done before we can
draw any clear conclusions. In the end, the thickness gradient does not have as much effect as a
width gradient, but it does contributes to tonotopy.

4 Conclusion
We implemented both a width gradient and a thickness gradient, and we observed wave localisation
at frequency-dependent positions. We explained the link between frequency and position but there
is still a lot more to do. For instance, we mentioned and explained the role of the water compartment
size in figure 4.15. While it does not seem to have a great effect on the characteristic frequency,
an increase in B induces a significant increase in the group velocity at low frequency. This was not
discussed but it could have an impact in the increase in amplitude we experimentally observed.

The next step will be to combine the width and the thickness gradient simultaneously. But, in
fact, there are many other things to study in this macroscopic model of the cochlea. For instance,
understanding more precisely the velocity distribution in the water compartments could lead to
breakthroughs of capital importance in medicine with applications in drug delivery205,206,207,208,209

. For that study, we imagine that techniques such as Particle Image Velocimetry (PIV) to probe
water flows along the waveguide would be useful.

Last but not least, as briefly discussed in this chapter’s introduction, the cochlea is a living
organ with active properties crucial to the sense of hearing210 . These active properties greatly
increase our sensitivity. Thus, one may think of a way to make our sample active. Actually, there is
some ongoing research about soft piezoelectric materials where an electric field is able to modulate
the elastic properties of the material. Other electroactive samples already exist and we have even
prepared one during this PhD thesis but so far, the experiments have not been fruitful. Another
way to make elastomers active is to use iron particles, which are fixed in the elastomeric matrix
and make the sample sensitive to magnetic fields; they are said to be magneto-active. Again, there
is quite a rich literature on the subject for static modulations, but progress remains slow and is
therefore rarely implemented experimentally.

Whether or not we succeed in creating these active materials to improve our macroscopic model
of the cochlea, this work is still very promising for other applications. Such a waveguide is capable
of separating very different frequencies over relatively short distances. Remember that a sound
at 50 Hz has a wavelength of 30 m in water. By coupling our waveguide to a multitude of more
efficient absorbers, but with a reduced bandwidth, we can create a highly efficient absorbing system
over a very wide frequency band. This could prove particularly interesting for water ultrasonics
applications.

This brings us to the end of this chapter, motivated by the need to better understand the
cochlear tonotopy, the key phenomenon for the sense of hearing. The next chapter has nothing to
do with this motivation, but digs a little deeper into the physics of guided waves in strips. Rather
than using an electric or magnetic field to actively modulate the properties of the material, we
induce a modulation by a varying axial stress.

205Anderson et al. (2019): “Local Delivery of Therapeutics to the Inner Ear: The State of the Science”
206Mittal et al. (2019): “Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities”
207Rybak et al. (2019): “Local Drug Delivery for Prevention of Hearing Loss”
208Hao and Li (2019): “Inner ear drug delivery: Recent advances, challenges, and perspective”
209Szeto et al. (2020): “Inner ear delivery: Challenges and opportunities”
210Ashmore et al. (2010): “The remarkable cochlear amplifier”



Chapter 5
A space-time interface in a soft strip

When the deformation is static, the behaviour of fundamental modes in a highly-
deformed soft strip is well understood. In particular, flexural modes are highly
dependent on predeformation and their velocities, in the low-frequency regime, are
given by the applied stress. In this chapter, we propose a novel experimental setup
to apply an increasing stress in the soft strip to enable a time modulation for these
fundamental modes. Surprisingly, the induced deformation does not grow linearly
as expected, but propagates as a step function. Once this step has been passed,
the strip not only is deformed, but also translates at a constant speed. After
properly characterizing this phenomenon, we understood that we could use it as a
space-time interface. We therefore observed the passage of flexural waves through
this space-time interface and measured frequency and wavenumber changes. The
case of a superluminal interface is also investigated, promising very interesting
observations in terms of wave manipulation. Finally, we speculate that this work
will enable the observation of exotic phenomena and analogies with astrophysics
in the future.

• An experimental setup is introduced to allow for time modulation of flexural waves

• A deformation wavefront is observed, leading to a deformed and moving strip

• The travelling wave separates 2 media and corresponds to a space-time interface

• Frequency and wavenumber jumps are measured for flexural waves crossing the in-
terface, or being caught up by it

• Other wave manipulations are theoretically explored

Objectives
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1 An original idea: the expanding media

1.1 Reminder about guided waves in a strip with free edge

Throughout this thesis, we have studied guided elastic waves in strips and here, we provide a
quick summary. First, let us start by sketching out the problem, as illustrated in figure 5.1. The
propagation axis is still set as x1 while the thickness h = 3 mm and width b = 4 cm are again
along x2 and x3. Free boundary conditions are also considered everywhere. The equation of motion
and the material model are unchanged (see chapters 2 and 3). The dispersion curves in such a
strip are computed using the Spectral Collocation Method (SCM), and are displayed in figure 5.1.
Guided waves are split into two families depending on their polarization (either in-plane or out-of-
plane), and each family is again split into two families depending on their symmetry with respect
to the (x3 = 0)-plane. Three fundamental modes coexist. The first flexural mode (bending in the
(x1, x2)-plane) and the first two in-plane guided waves S′

0 (compression) and A′
0 (bending in the

(x1, x3)-plane) which are symmetrical and anti-symmetrical with respect to the (x3 = 0)-plane,
respectively. Their asymptotic dispersions are given in chapter 3, as well as their displacement
profiles that are recalled in figure 5.1.

1.2 The effect of prestress on the fundamental modes

In chapter 3, we investigated the effect of a static prestress on the guided waves in a strip and
we recall here, the results obtained for the fundamental modes. The zero-frequency limit for the
velocities of the fundamental modes reads ρV 2 = σ for flexural waves, and ρV 2 = Ẽ for the
compression mode S′

0, Ẽ being the equivalent Young modulus given by Zhao and Chang (2021)110

and detailed in equation (3.2) when the viscoelasticity is omitted.
Results are shown in figure 5.2. First, dispersion curves are plotted for frequencies ranging from

0 to 200 Hz for λ = 1 or 2. Thin light colored lines corresponds to the undeformed strip (λ = 1). On
the other side, thick dark colored lines corresponds to the deformed strip (λ = 2). To compare these
results with analytical predictions described previously, phase velocities are computed at 10 Hz

110Zhao and Chang (2021): “Elastic wave velocities in finitely pre-stretched soft fibers”
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Figure 5.2: The effect of prestress on fundamental modes – The strip of dimensions
60 cm × 3 mm × 4 cm with free boundary conditions, is submitted to a uniaxial tension. (a)
Dispersion curves (given by the SCM) are plotted for an undeformed (thin light lines) and a deformed
strip with (λ = 2) (thick dark lines). (b) Phase velocities are computed at 10 Hz and compared to
analytical predictions.

(low frequency) and plotted as a function of the stretch ratio. These analytical predictions perfectly
depict the evolution of flexural mode velocities with the applied tension. Differences may appear
at low stretch ratios because flexural modes have non-zero velocities at the considered frequency of
10 Hz, which by definition does not correspond to the zero-frequency limit. Overall, differences in
phase velocities are huge and doubling the stretch ratio leads to quadrupling the velocities of the
flexural modes. The combination of the equivalent elasticity tensor Cω together with the equivalent
Young’s modulus formula110 provides an exact prediction for the velocity of the compression mode,
still in the low frequency regime. This equivalent elasticity tensor (derived from our material model)
is once again the key item to understand wave propagation in a prestressed strip. In the following,
we stick to our visco-hyperelastic model combined with the SCM so that we can work at higher
frequencies and not suffer too much from the zero-frequency limit from these analytical predictions.

So far, we mainly focused on the effect of a static prestress on guided waves. We saw that the
applied stress can have a significant effect on the velocities of flexural waves. We now wonder what
happens if this large prestress varies in time.

1.3 Creating a time-varying medium

For a long time, we have been using media with spatial variations to manipulate waves. A waveg-
uide geometry is an example of this type of medium, where spatial interfaces not only force the
propagation of a wave in one direction, but also greatly enrich the physics involved.

Time-varying media are less common but have recently been used to control waves in optics or
electromagnetism. What is special about these environments is that, unlike spatial structures, they
no longer conserve the frequency ω. They first appeared in the 1970s with theoretical works from
Felsen and Whitman (1970)211 and Fante (1971)212 and quickly found applications in plasma
physics213 . Theoretical work did not stop here, and everything that was known about spatial

110Zhao and Chang (2021): “Elastic wave velocities in finitely pre-stretched soft fibers”
211Felsen and Whitman (1970): “Wave propagation in time-varying media”
212Fante (1971): “Transmission of electromagnetic waves into time-varying media”
213Kalluri (2010): Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer, 2nd Edition
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modulations was used as an inspiration to study time-varying media, such as interactions with one
or more time interfaces214,215. With this motivation, interest has also grown in time crystals, which
can be seen as periodic temporal modulation of the wave velocity216,217,218,219,220,221.

This notion quickly conquered the field of metamaterials222 , where time t appeared as a new
degree of freedom to dramatically increase the possible wave manipulations223,224. An exhaustive
state of the art on these applications is beyond the scope of this chapter but recent reviews can be
found in Galiffi et al. (2022)225 or Pacheco-Peña et al. (2022)226. The concept of time-varying
media has also been exported to other fields than optics and electromagnetics, such as quantum
physics227, underwater acoustics228, acoustics229, elasticity230 or water waves231,232.

From the above reminders, we know that a prestress results in a significant increase in the
velocity of flexural waves, so it is a great way to control the wave. The idea here is to generate
a flexural wave in an undeformed strip, let it propagate a few centimeters, and then apply an
increasing uniaxial stress in the strip, so that a wave packet would propagate in a time-varying
strip.

If we ever manage to create this kind of time-varying media, we should be able to perform
huge frequency conversions. Additional questions logically arise, such as: What happens when
you increase the uniaxial stress quickly or slowly compared to the initial wave velocity? What
happens the other way around if you start with a prestressed strip that you let go back to its initial
undeformed shape, i.e. in a medium that shrinks over time?

1.4 Space and time interfaces

Before detailing the experiment, we compare the interactions of a wave with a space or a time
interface.

Crossing a space interface The case of a wave crossing a space interface is well-known but
notations need to be introduced. We consider a 1D problem with space coordinates x1. A system
with a space interface in x1 = 0 is assumed time-invariant: the material properties are not changing
in time. This invariance directly leads to the conservation of the angular frequency ω, accordingly
to Noether’s theorem. Rather than writing general relations for the evolution of wavenumbers in
such a system, we can graphically represent them for a given mode (A′

0 for example) in figure 5.3(a).
Knowing that the angular frequency ω is conserved, and that the pair (k, ω) must remain on the
corresponding dispersion curves, the crossing of a space interface induces a conversion represented
by the horizontal black arrow. Space interface is now well understood so we consider its time
counterpart.

Crossing a time interface Space and time are essentially symmetric in the framework of prop-
agative waves, via the phase ϕ = k1x1 − ωt. In this last expression, we see that x1 and t play
interchangeable functions. When the system is varying in space and invariant in time, the angular
frequency ω is conserved. Similarly, when the system is varying in time and invariant in space, the
wavenumber k1 is conserved. Using this property, it is possible to guess how the conversion is made

214Mendonça and Shukla (2002): “Time Refraction and Time Reflection: Two Basic Concepts”
215Mendonça et al. (2003): “Temporal beam splitter and temporal interference”
216Else et al. (2016): “Floquet Time Crystals”
217Choi et al. (2017): “Observation of discrete time-crystalline order in a disordered dipolar many-body system”
218Zhang et al. (2017): “Observation of a discrete time crystal”
219Milton and Mattei (2017): “Field patterns: a new mathematical object”
220Sacha and Zakrzewski (2017): “Time crystals: a review”
221Apffel et al. (2022): “Experimental Implementation of Wave Propagation in Disordered Time-Varying Media”
222Ramaccia et al. (2021): “Temporal multilayer structures for designing higher-order transfer functions using time-varying
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Figure 5.3: Crossing a space or a time interface – Assuming a non-dispersive propagation
in media 1 and 2, the crossing of a space (a) or a time (b) interface are illustrated by horizontal
(∆ω = 0) or vertical (∆k = 0) jumps from a dispersion curve to another.

i.e. with a vertical black arrow, as represented in figure 5.3. When the wave of interest is non-
dispersive, the velocity change does not depend on the interface but the pairs (k, ω) after conversion
are different. In a dispersive medium, the velocities after conversion depend on the nature of the
interface. For example, Apffel and Fort (2022)232 used successive space and time interfaces to
achieve large frequency conversions of water waves.

2 Dynamic stretching of the strip

2.1 Experimental setup

Contrary to experiments carried out in chapters 2 and 3, we need a way to automatically control the
strip deformation. To do so, we modified the experimental setup presented in figure 1.16 and the
new one is introduced in figure 5.4. A motor is used to drive and control the pulling of an initially
loosen rope, at a velocity Vpulling. A three-phase asynchronous motor with an integrated variable
speed drive (Varmeca VMA31M) is used, in combination with an homemade electronic assembly.
This electronic assembly is made of an Arduino board (Circuit Playground Express, Adafruit),
power relays and a digital potentiometer. Its many functions are: controlling the motor rotation
speed using the digital potentiometer and integrated variable speed drive, controlling the direction
of rotation, switching on and off the motor using a power relay. Last but not least, motion detectors
are also created by facing a red LED with a simple photodiode. The photodiode signal is monitored

metamaterials”
223Huang and Zhou (2019): “A time-varying mass metamaterial for non-reciprocal wave propagation”
224Engheta (2021): “Metamaterials with high degrees of freedom: space, time, and more”
225Galiffi et al. (2022): “Photonics of time-varying media”
226Pacheco-Peña et al. (2022): “Time-varying electromagnetic media: opinion”
227Dodonov et al. (1993): “Quantum phenomena in nonstationary media”
228Josso et al. (2010): “Time-varying wideband underwater acoustic channel estimation for OFDM communications”
229Wang et al. (2015): “Acoustic asymmetric transmission based on time-dependent dynamical scattering”
230Nassar et al. (2020): “Nonreciprocity in acoustic and elastic materials”
231d’Hardemare et al. (2020): “Probing Floquet modes in a time periodic system with time defects using Faraday instability”
232Apffel and Fort (2022): “Frequency Conversion Cascade by Crossing Multiple Space and Time Interfaces”
232Apffel and Fort (2022): “Frequency Conversion Cascade by Crossing Multiple Space and Time Interfaces”
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Figure 5.4: Experimental setup to study guided waves in a time-varying strip – The
setup is improved to allow for an automatic control of the prestress in the strip. (a) The combination
of the motor and a spool pulls the rope at a given linear pulling velocity Vpulling. Triggering is handled
via a photodiode-based motion detector "start photodiode". (b) Example of acquired frames using
this setup. The bottom of the strip is pulled at a constant velocity Vpulling, indicated by the red
arrow.

by the board and triggers both the camera and the signal generator supplying the shaker, i.e. the
wave packet emission.

Let us go through the different steps of this experimental method. The rope is initially loose
since the motor needs some time before reaching its final rotating speed, see Appendix A for more
details. Then, the motor is switched on, the rope wraps around the spool and when it is no longer
loose, it pulls on the bottom of the strip at a constant velocity Vpulling. At this time, the wave
packet is emitted and the recording begins. The stroboscopy, initially implemented to overcome the
camera limited acquisition framerate, is no longer possible. However, by largely reducing the field
of view to a few lines (around 50), 255 frames are recorded at a frame rate of 1000 Hz, enabling
good tracking of the strip. Furthermore, a 25-mm lens is used to get a large distance along x1, as
you can see in figure 5.4(b). In a fraction of a second, the strip length doubles and the bottom of
the strip reaches the "stop photodiode". At this point, the signal suddenly changes and the board
switches off the motor.

2.2 Post-processing

Once the recording stopped, the first step of the post-processing is to use an enhanced version of
the DIC that we called the iterative Digital Image Correlation (iDIC). The objective is to gather
the displacement u1 in a single matrix u1(X0

1 , t) (same for u3). However, it is not possible to use the
first image as a reference of the whole movie since images are then too different and classical DIC
fails. Therefore, we apply the DIC between successive images, as is often done in Particle Image
Velocity algorithms.
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First, we apply the DIC to the first two images to get the displacement u
(
X0

1 , X
0
3 , t0

)
, where

X0
1 = X1(t0), X0

3 = X3(t0) are the in-plane coordinates in the undeformed strip. Then, the DIC
is applied to the second and third images. A new displacement is obtained u (X1(t1), X3(t1), t1)
where (X1(t1), X3(t1)) ̸=

(
X0

1 , X
0
3
)

since the DIC uses a new reference image and thus creates a new
grid at t1, which is different from the first one. To find back u

(
X0

1 , X
0
3 , t1

)
, we deform the initial

grid
(
X0

1 , X
0
2
)

using the previous displacement: X0
1 + u1

(
X0

1 , X
0
3 , t0

)
, X0

3 + u3
(
X0

1 , X
0
3 , t0

)
and we

interpolate the newly obtained displacement u (X1(t1), X3(t1), t1) on this deformed grid. Doing so
gives u

(
X0

1 , X
0
3 , t1

)
which is the displacement between times t0 and t1 expressed in the reference

configuration using in-plane coordinates of the undeformed strip. To have the displacement between
the first and third images, one should compute u

(
X0

1 , X
0
3 , t0

)
+ u

(
X0

1 , X
0
3 , t1

)
.

At step i+ 1, u (X1(ti), X3(ti), ti) is obtained and interpolated on the deformed grid of the previous
iteration: 

X0
1 +

i−1∑
k=0

u1
(
X0

1 , X
0
3 , tk

)

X0
3 +

i−1∑
k=0

u3
(
X0

1 , X
0
3 , tk

) (5.1)

and the displacement at each time ti is expressed in the reference coordinates
(
X0

1 , X
0
3
)
:

utot
1
(
X0

1 , X
0
3 , ti

)
=

i−1∑
k=0

u1
(
X0

1 , X
0
3 , tk

)

utot
3
(
X0

1 , X
0
3 , ti

)
=

i−1∑
k=0

u3
(
X0

1 , X
0
3 , tk

) (5.2)

In practice, as we apply a uniaxial stress, we have reduced the number of lines (X3 direction) such
that the displacement u is only measured as a function of X0

1 , but displacement u3 is still measured.
Finally, two maps representing the displacement along the strip axis utot

1
(
X0

1 , ti
)

and transversely
to it utot

3
(
X0

1 , ti
)

are obtained.

2.3 Evidence of a transition wave

We can display maps as a function of the reference coordinate X0
1 and time t, but we can also display

them as a function of the deformed coordinate X0
1 + utot

1
(
X0

1 , t
)

and time t. Both are performed
and discussed in the following.

We first study the evolution of utot
1 in space and time. We plot successive frames of the recorded

movie in figure 5.5. It clearly appears that the bottom edge goes down with a constant velocity
Vpulling = 2.05 m/s. The displacement utot

1 is extracted, and the contours of the corresponding
colored surface are plotted using deformed coordinates. These contours help visualize these maps:
the closer the lines, the higher the changes. The first blue line starting at (t = 0 ms, x = 50 cm)
corresponds to points that have just started moving.

Then, for each time, we compute the gradient of utot
1 with respect to undeformed coordinates

X0
1 giving us the local stretch ratio:

λ1 = 1 + ∂utot
1

∂X0
1
.

Again, we plot the stretch ratio using deformed coordinates.
Contrary to the naive belief that the pulling will create a uniform stretching in the strip, this map

exhibits a very different behavior. The deformation is neither homogeneous in space, nor increasing
linearly with time. Instead, a wavefront separating an undeformed (λ1 = 1) and a stretched portion
of the strip travels from the bottom to the top at early times. This is visible in the displacement
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Figure 5.5: First observation of the transition wave – The displacement utot
1 is extracted

from the recorded movie. The stretch ratio λ1 and the particle velocity v1 are plotted using deformed
coordinates. To help visualize these maps, contours of these colored surfaces are also plotted. Red
arrows represent the observed deformation wavefront.

map, where the blue line goes up. The wave actually carries information about the deformation
taking place at the bottom of the strip. A given area remains at rest until the wave reaches it, and
only then does it deform. This is known as a transition wave. Note that a reflection occurs at the
top edge (not visible on acquired frames), but we will come back on this point in the last section of
this chapter.

This transition wave is all the more remarkable on the contours drawn in the bottom of figure 5.5,
and its propagation is indicated by red arrows. The question then arises: what is the nature of this
wave and what governs its velocity? A rough estimate is 10 m/s, and this value should ring a bell
because it is approximately the S′

0 velocity.
To get a more precise value, the stretch ratio map is saturated as presented in figure 5.6(a) and

we now want to extract the slope of this blue-yellow interface. At each deformed coordinate x1,
we look for the time when the stretch ratio exceeds a given threshold (1.02 for example). Thus,
space-time coordinates (x1, t) of this blue-yellow interface are extracted and plotted in figure 5.6(b).
The slope of the linear regression gives the interface velocity Vinterface = 9.77 m/s. This information
propagates along x1 and the related deformation is mainly in this same direction, leading us to the
conclusion that this transition wave is in fact the compression mode propagating in a strip, namely
the S′

0 mode discussed in chapter 3.
These first observations lead us to the conclusion that our initial idea of a time-varying medium

was indeed naive. Fortunately, this transition wave will prove to be very promising for enriched
physics.

2.4 Characterizing the post-transition medium

To sum up, when pulling the strip edge, the bottom end starts being deformed and this deformation
propagates as a transition wave, carrying information that we want to characterize. To start, we
look into the value of the stretch ratio once the wave has travelled.

A simple derivation consists in considering a small portion [X;X + dX] of the strip. At time t0,
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Figure 5.6: Extraction of the transition wave velocity – (a) The stretch ratio map is
saturated so that every value above a given threshold of λ1 = 1.02 appears yellow (and blue for
values below). Red arrows still represent the deformation wavefront. (b) Space-time coordinates
(x1, t) of the interface are plotted and a transition wave velocity of 9.77 m/s is measured.

the transition wave arrives at coordinate X + dX (given the representation in figure 5.4b), and at
t0 + dt, it went up and reached the coordinate X. Using the transition wave velocity Vinterface, it is
easy to derive dt = dX

Vinterface
. During this time, the material at coordinate X has not moved since

the information has not arrived yet, but the material at X + dX has moved at a velocity Vpulling.
Thus, at time t+ dt, the new material length is dX + Vpullingdt. Replacing dt, one gets the stretch
ratio:

λ1 = 1 + Vpulling
Vinterface

(5.3)

Although we were surprised to see this transition wave, it has in fact already been observed and
studied in a rubber band233 or a slinky234. Equation (5.3) is consistent with these works.

Let’s check that this relationship holds for other acquisitions with various Vpulling. Results
are shown in figure 5.7, where we added the prediction using equation (5.3) and the value for
Vinterface = 7.9 m/s. The agreement with the prediction is quite good as long as the interface speed
is set to 7.9 m/s which is a little different from 9.77 m/s measured in figure 5.6. The nature of
this transition wave is not in question, but it would seem that equation (5.3) is too simplistic. To
improve this model, and as seen many times along this thesis, it would certainly be necessary to
take into account the viscoelasticity of the material, but it is complex to deal with a fractional time
derivative when it is not in a harmonic regime.

There is another physical component. The material is not only deformed after the transition
wave passed by, but it also gains a drift velocity. This is particularly noticeable when plotting the
particle velocity v1 = ∂u1

∂t
as a function of the deformed coordinate x1 in figure 5.5. According to

figure 5.5, once deformed, the material has a velocity of 2.2 m/s, which is in good agreement with
the pulling velocity of the bottom edge at 2.05 m/s. Using equation (5.3), a stretch of ratio of 1.22
should be obtained, and this is confirmed by the contour plot in figure 5.5.

To sum up, by pulling the bottom strip edge at a constant velocity Vpulling, a transition wave is
emitted in the material and carries both the information about deformation in the material, but also
the acquired velocity. This transition wave separates two media. Above, the material is undeformed
and static. Below, the material is uniformly stretched and moving at a constant speed. Against

233Vermorel et al. (2006): “Rubber band recoil”
234Cross and Wheatland (2012): “Modeling a falling slinky”
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Figure 5.7: Stretch ratio as a function of the particle velocity – For each experiment, both
the stretch ratio and particle velocity are extracted just after the transition wave has passed. A
prediction using equation (5.3) and Vinterface = 7.9 m/s is added.

the odds, we have created a moving interface. Thus, we expect great effect for flexural waves when
crossing this interface, as will be seen in figure 5.8.

3 Elastic waves in a space-time-varying medium

3.1 Dispersion curves for each medium

We need to adapt what we have seen in figure 5.2 for fundamental modes in a strip which is not
only deformed but also moving at a constant speed. We can certainly neglect relativistic effects and
apply a simple additive law for phase velocities. This can be implemented in two ways depending
on the choice to either change frequencies or wavenumbers in the dispersion diagram:

ω′ = ω + Vpullingk or k′ =
ω
k

ω
k + Vpulling

k (5.4)

The choice seems arbitrary and we decide to change wavenumbers. Using equation (5.3) and (5.4),
one can plot the dispersion curves for flexural waves in a strip which is both deformed and moving
at a constant velocity, presented in figure 5.8. Just like for figure 5.2, we plot the dispersion curves
of flexural modes in a stationary undeformed strip (thin light lines), in a stationary deformed strip
(light dashed lines) and also in a deformed strip (λ1 = 1.3) moving at a constant speed Vpulling =
Vinterface (λ1 − 1) (thick dark lines). However, it is noteworthy that the symmetry k1 ↔ −k1 is now
lost and this is why we plot branches for propagation in x1 and −x1 directions. Waves in a moving
medium are not so common in optics or electromagnetism and are often associated with theoretical
difficulties due to relativistic effects. Nevertheless, properties for waves in these media can be very
interesting and have been exploited for the last two decades or so in the water wave community to
build fascinating analogies with cosmological objects and phenomena235,236,237,238,239,240. We will

235Rousseaux et al. (2008): “Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking
effect?”

236Barceló et al. (2011): “Analogue Gravity”
237Faccio et al. (2013): Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment
238Peloquin et al. (2016): “Analog wormholes and black hole laser effects in hydrodynamics”
239Das et al. (2018): “Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity”
240Euvé et al. (2020): “Scattering of Co-Current Surface Waves on an Analogue Black Hole”
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Figure 5.8: Dispersion curves are modified in a moving deformed strip – A strip of
dimensions 60 cm × 3 mm × 4 cm with free boundary conditions, is deformed and moving at a
constant velocity Vpulling = Vinterface (λ1 − 1) where Vinterface = 10 m/s is approximated. Dispersion
curves of the flexural wave along the thickness (a) and along the width (b) are plotted for a stationary
undeformed (thin light lines), stationary deformed (thin dashed lines) and a moving deformed strip
with (λ = 1.3, Vpulling = 3 m/s) (thick dark lines). The symmetry k1 ↔ −k1 is now broken.

come back on this point at the very end of this chapter.

3.2 Crossing a space-time interface

In a previous section, we mentioned the advantages of working with time-varying media. Here,
we go even further, because the properties change not only over time, but also in space. In fact,
when the community realised that time metamaterials could be produced, enormous interest quickly
arose in space-time metamaterials, where a classic metamaterial also sees its properties vary in time,
making 4D modulation possible241,242,224,243,244. From then on, there was a lot of theoretical work
on the subject, but experiments were rarer. Thus we realised that our experiment could serve as
an analogue for visualising and studying this physics. The simplest modulation is probably the
interface. In fact, this is also what other physicists have decided to start with245,242. Note that it
was already a center of interest 50 years ago246,247. It seems that the literature on these questions
is still fairly sparse, and it is currently quite difficult to bring together the communities that have
studied a moving interface, even though it seems to be appearing in several areas of physics. There
is probably still work to be done on this point.

To finish this thesis, we first describe the main features of such a space-time interface, but
we do not discuss the transmission and reflection coefficients of such moving interfaces. Then, we
implement it experimentally in two possible configurations. The wave and interface either propagate
in opposite directions or in the same direction.

241Huidobro et al. (2019): “Fresnel drag in space–time-modulated metamaterials”
242Caloz and Deck-Leger (2020): “Spacetime Metamaterials - Part I: General Concepts”
224Engheta (2021): “Metamaterials with high degrees of freedom: space, time, and more”
243Chen et al. (2021): “Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials”
244Wen et al. (2022): “Unidirectional amplification with acoustic non-Hermitian space-time varying metamaterial”
245Gaafar et al. (2019): “Front-induced transitions”
242Caloz and Deck-Leger (2020): “Spacetime Metamaterials - Part I: General Concepts”
246Lampe et al. (1978): “Interaction of electromagnetic waves with a moving ionization front”
247Tsai and Auld (1967): “Wave Interactions with Moving Boundaries”
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Figure 5.9: Crossing a space-time interface – Using dispersion curves of the in-plane flexural
mode A′

0 in figure 5.8, the crossing of a moving interface is illustrated by a tilted (∆ω/∆k =
−Vinterface) jump from a dispersion curve to another. Depending on the interface propagation
direction, different conversions are expected.

Crossing a moving interface The frequency or wavenumber conversions presented in figure 5.3
should be adapted when considering a moving interface, i.e. a space-time interface. In that case,
there are no space or time invariance anymore, so that neither the angular frequency ω nor the
wavenumber k1 are conserved. The conversion can no longer be represented by a horizontal or
vertical black arrow, but rather a tilted one. By ensuring the phase continuity at the interface,
elementary derivations provide:

∆ω
∆k = Vinterface (5.5)

or −Vinterface if the wave and interface propagate in opposite directions.
Let’s take a look at limit cases. When Vinterface → 0, the interface is not moving (space interface),
and equation (5.5) provides ∆ω = 0 which is consistent with figure 5.3(a). When Vinterface → ∞,
the interface propagates much faster compared to the wave of interest. In that case, the medium
sees a very fast variation in time which looks the same for all points in the medium, it is a time
interface. Equation (5.5) then provides ∆k = 0. This is again consistent with figure 5.3(b).

Now that we have discussed these limit cases, let’s represent the conversion in figure 5.9. As in
the first experiment, the interface and the wave are propagating in opposite directions so that we
need to consider −Vinterface in equation (5.5).

3.3 Frequency and wavenumbers shift when meeting in opposite directions

The two media being fully characterized, we generate a flexural wave. To get started, we select the
A′

0 mode because its measurement is fairly easy when using the u3 displacement component.

Raw displacement maps The in-plane flexural mode A′
0 is generated by the shaker at the top

edge of the strip (x1 = 0) and propagates toward the bottom of the strip (k1 > 0). The generated
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Figure 5.10: Experimental observation of a flexural wave crossing the moving interface
– (a,c) The space-time diagram of the transverse displacement is plot with (c) or without (a) pulling.
Contours representing the stretch ratio are extracted in (c) and then added in (a) to facilitate the red
area positions. (b,d) 2D Fourier transforms are performed in red areas, and predictions are added
in (b) for an undeformed strip and (d) for a deformed strip λ1 = 1.27 moving at Vpulling = 2.18 m/s.

wave packet is an Hann function composed of 4 cycles at 70 Hz. To visualize the effect of this
moving interface, we compare the propagation of the A′

0 mode both in the case of an undeformed
strip and in the case of the moving interface.

To offer more versatility in the wave packet emission, we also install a mechanical delay. The
updated experimental setup is used to get the full space-time displacements maps, displayed in
figure 5.10(a) and (c). Looking at stretch ratio contours in figure 5.10(a) and repeated in 5.10(c),
one can notice a 50 ms mechanical delay with this updated setup. Moreover, this improvement was
also accompanied by a user-defined 10 ms electronic delay in the wave packet emission. This delay
allows the wave to cross the interface and arrive in a medium with a given stretch ratio λ1 = 1.27
and velocity Vpulling = 2.18 m/s. The generated wave packet crosses the moving interface around
the point (t = 90 ms, x1 = 30 cm). We clearly see the velocity, given by the slope in figure 5.10(c),
changes abruptly at this point.

Although the time and space invariance are broken in this system, the 2D Fourier Transform
still provides valuable information about the spectral content of the A′

0 mode both before and after
crossing the moving interface. To select the appropriate signal, this Fourier transform is applied to
the red region, which is also used to average stretch ratios and particle velocities to get λ1 = 1.27 and
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Figure 5.11: Experimental results for frequency and wavenumber jumps – The frequency
and wavenumber of the A′

0 mode are measured after the interface and compared to the case without
interface. Changes in frequency and wavenumbers are confronted to theoretical predictions from
equation (5.5) with Vinterface = 9.5 m/s.

Vpulling = 2.18 m/s. Results are shown in figure 5.10(b) and (d). We can see that (k, f) coordinates
of the main spot are different: the frequency increased while the wavenumber decreased.

Before discussing those variations, and because we can probe with a certain accuracy both the
stretch ratio and particle velocity, we add theoretical predictions for the dispersion curves (blue
lines). Please note that, in this experiment, the strip is initially stretched by 15%. This small
amount of prestress keeps the strip aligned and avoids unwanted movements when the motor starts
pulling. Main spots are indeed centered on the theoretical predictions curves, confirming that we
have properly characterized the two media of interest. We now come back on the quantification of
frequency and wavenumber changes.

Repeating this experiment for different frequencies and pulling velocities To check the
validity of these measurements, we repeat them by varying the pulling velocity from 1.5 to 3.5 m/s
and the initial wave packet frequency. It is difficult to make these measurements at low frequency
because the wave packet temporal spread becomes too important and the whole wave packet does
not necessarily experience the same thing. On the other hand, at high frequencies, the shaker is
limited and the attenuation is very high. For these reasons, we stick to frequencies ranging from 60
to 130 Hz. On the whole, the trend is quite good, but observed variations do not follow theoretical
predictions well, as can be seen in figure 5.11. To explain this, we can put forward some hypotheses.
Firstly, the attenuation due to viscoelasticity leads to a measurement bias, which we compensated
for as best we could, but it leads us to perform the 2D Fourier transform in small regions (red areas in
figure 5.10) which result in wide spots. Secondly, there are some uncertainties in our measurements.
For example, the deformed coordinate x1 is deduced from the measured displacement u1, and errors
in this displacement pile up over the iterative DIC.

Theoretically, this was not discussed but one could expect a wave reflection on such a moving
interface242. Here, no reflection is visible in figure 5.10. Similar observations were done by Apffel
and Fort (2022)232 who did not see any reflection for water waves encountering a time interface and

242Caloz and Deck-Leger (2020): “Spacetime Metamaterials - Part I: General Concepts”
232Apffel and Fort (2022): “Frequency Conversion Cascade by Crossing Multiple Space and Time Interfaces”
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Figure 5.12: Observation of a superluminal interface – The space-time diagram of the
transverse displacement is plot with (right) or without (left) pulling. Contours representing the
stretch ratio are extracted when there is an interface (right), and superimposed on both diagrams.
An indication of the period and wavelength are given by red lines (left) and should be compared to
black lines (right).

assumed it originates from the inherent impedance matching when using water waves. We believe a
similar assumption can be made in our case since the very definition of impedance for the A′

0 mode
(and more generally elastic guided waves) could not be found in the literature.

3.4 A superluminal interface catches up the wave

We have already demonstrated that the interface propagates faster, Vinterface ∼ 10 m/s, than the
A′

0 mode, ω/k ∼ 5 m/s. One could thus wonder what happens when the interface catches up with
the wave, i.e. when the interface and wave propagate in the same direction. This superluminal
case was studied by Caloz and Deck-Leger (2020)242 for optics who took relativistic effects into
account. Here, such effects can be neglected and predictions are much easier to implement.

Before explaining how to update the current experimental setup, we build these predictions in
the (k < 0) region in figure 5.9. The interface still propagates from the bottom edge of the strip
towards the top, but the wave is emitted in direction −x1 and that is why we consider negative
wavenumbers. The lowest medium is a stationary undeformed strip and the upper one is a deformed
one moving opposite to the propagation direction. The equivalent conversion is again plotted as a
tilted black arrow.

In figure 5.8 and figure 5.11, frequencies and wavelengths increased once the wave crossed the
moving interface. However, in this configuration, while the wavelength are still expected to increase,
frequencies should decrease.

Experimental demonstration We employ the same experimental setup but we lower the shaker
to generate the wave packet near the strip bottom edge. Typical displacements maps are presented
in figure 5.12. On the left part, there is no pulling; while on the right part, the motor is pulling at
∼1.5 m/s. This time, the change in slope is not very clear, but it can still be seen at the point with
coordinates (t = 100ms, x = 30cm). What is more visible is the increase in both the wavelength
and the time period, i.e. a decrease in both the wavenumber k and frequency ω. To understand the
very small velocity change, we plot the dispersion curves as in figure 5.8, but with Vpulling = 1.5 m/s
and λ = 1.16. A slight decrease in phase velocities (20%) is expected. This is indeed a measurable

242Caloz and Deck-Leger (2020): “Spacetime Metamaterials - Part I: General Concepts”
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Figure 5.13: Freezing the wave by increasing Vpulling – Dispersion curves of the A′
0 mode

propagating along −x1 are plotted for different pulling velocities Vpulling i.e. stretch ratios. Again,
the interface is assumed to propagate along −x1 and the black arrow represents the conversion when
the wave crosses the moving interface. Here, a pulling velocity Vpulling ∼ 9 m/s allows freezing the
wave.

difference, but as we can see in figure 5.12, it’s difficult to clearly define a region where the wave has
fully crossed the interface. Quickly, both the wave and the interface have reached the top edge of
the strip. Another limit also comes from the temporal spreading of the interface. It is quite smooth
and spread over 25 ms, which is larger than the wave time period. For the moment, we have not
modeled the shape of this moving interface, but it is clearly something we will be working on in the
near future.

3.5 To go beyond

Even though the results obtained in this configuration are not completely satisfying because of the
aforementioned limits, there is room for improvement and fascinating ideas. This last part is here
to introduce them and explain why we have not been able to implement them yet.

Freezing the wave Despite the fact that velocity changes are not very important in our experi-
ments (figure 5.10), an intriguing idea comes up when we see figures 5.8 and 5.9. Is there a way to
pull faster on the strip so that the branch of the A′

0 (or A0) mode reaches or goes below the ω = 0
axis ?

By carefully choosing the pulling velocity Vpulling, there should be a way to obtain a wave packet
with ω = 0 after crossing the interface. Let’s still assume that λ1 and Vpulling are related by equa-
tion (5.3). Dispersion curves of the A′

0 mode for different stretch ratios 1 ≤ λ1 ≤ 2 are displayed in
figure 5.13. The light green curve, at Vpulling ∼ 9 m/s, reaches the ω = 0 axis. The phase velocity
then also goes to zero so the phase does not propagate anymore. The wave is thus frozen. Just as
interesting, when the curve goes below the ω = 0 axis, the phase velocity switches from positive to
negative meaning the phase now propagates along x1, in opposite direction compared to the initial
wave. This is a so-called time-reversal operation. While it was already predicted for the reflection
on a well chosen superluminal interface242, this time-reversal operation appears here in transmission.

242Caloz and Deck-Leger (2020): “Spacetime Metamaterials - Part I: General Concepts”
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We have tested this experiment by pushing the motor and our experimental facilities at their
best and a velocity Vpulling of around 9 m/s was reached. Although we manage to measure a speed of
around 9 m/s, we obtain a stretch ratio of 2.4, which is strangely no longer given by equation (5.3).
This reveals an obstacle for two reasons. First, the higher the stretch ratio, the higher the pulling
velocity needs to be to time-reverse the initial wave, and we are experimentally limited to this value
of around 9 m/s. Second, at such a high stretch ratio, we know that our material model fails, as
detailed at the end of chapter 2, in figure 2.9.
To achieve the above-mentioned regime, a redesign of the experimental set-up is probably needed,
along with a smarter choice for the material and geometrical parameters.

Last but not least, a zero-group velocity point appears in a moving strip because of the flexural
wave quadratic dispersion. We have already mentioned such points earlier in this thesis. A zero-
group velocity mode is characterized by a wave packet energy that does not propagate i.e. remains
located where it was generated. We can also notice that its phase velocity is also non-zero and posi-
tive, meaning that the phase actually propagates along x1 but the envelope does not. Interestingly,
in this configuration, the wave packet would indeed propagate until it crosses the moving interface.
By carefully setting initial delays, it is thus possible to stop the energy at a precise location, which
could be valuable for future applications.

Allowing the strip to shrink For now, we have only increase the deformation in the strip by
pulling on it. We can imagine a whole range of other measurements in which a wave (such as
the A′

0 mode) is emitted in a stationary deformed strip, which is then allowed to retract. In this
configuration, an interface again propagates along −x1, but the information is different. Before the
interface passes, the strip is stationary and deformed, but after it passes, the strip is undeformed
and moving with a constant velocity along −x1. The initial deformation λ1 also sets the retracting
velocity:

Vretracting =
(

1 − 1
λinitial

1

)
VS′

0

(
λinitial

1
)

(5.6)

With this simple idea, let’s display a similar graphical representation of frequency and wavenumber
conversions when crossing the interface. The conversion is represented in figure 5.14(a), where
k1 < 0 corresponds to a wave emitted from the bottom, i.e. a superluminal configuration. When
the interface velocity Vinterface is close to the wave velocity ω/k (thin line), great changes in frequency
and wavenumber are expected, as noticeable in the superluminal case in figure 5.14.
Moreover, we can increase the initial stretch ratio, and thus the value for Vretracting, and plot
corresponding dispersion curves in figure 5.14(b). When Vretracting becomes large, around 6 m/s, it
is possible to freeze a wave emitted from the top. Nevertheless, this is different from the freezing
discussed in the previous paragraph since it was in the superluminal case. In fact, we could have
guessed this value of around 6 m/s since it is approximately the A′

0 phase velocity in an undeformed
strip.

Playing with the multiple passages of the transition wave There is one feature we have
left out for the moment: the multiple passes of the transition wave. We have clearly seen in
figure 5.5 that the moving interface is reflected at the top edge. This reflection occurs since this
top edge is fixed and a new information must propagate, about its zero moving velocity and larger
deformation. The information propagates again in the form of a transition wave, but in a medium
that is already deformed and moving at constant speed. This reflected wave also propagates faster.
So, on the second pass, the material reaches a stationary but further deformed state, as observed
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Figure 5.14: Moving interface in a retracting strip – (a) Dispersion curves of the A′
0 mode

are plotted either for a stationary and initially deformed λ1 = 1.3 strip, either for an undeformed
λ1 = 1 and moving at constant velocity Vretracting in direction −x1. (b) Similar plot as in (a) but for
various starting stretch ratios, and thus retracting velocities Vretracting. Frequency and wavenumber
conversions are represented using arrows, and one should note that the interface velocity slightly
depends on the initial stretch ratio (see figure 5.2).

experimentally in figure 5.5. Using equation (5.3), we can determine the new stretch ratio:

λ1 = λpre
1

(
1 + Vpulling

VS′
0
(λ1 = λpre

1 )

)
with λpre

1 = 1 + Vpulling
VS′

0
(λ1 = 1) (5.7)

We can of course repeat this reasoning to understand what happens during the third pass, etc...
Using this same reasoning, the stretch ratio is determined and presented in equation (5.7) and

the solid no longer moves. We imagine the strip is long enough to enable multiple crossing of the
moving interface, being reflected at the edges. The first medium is a stationary undeformed strip
(λ1 = 1, V = 0). The second one is deformed and moving at constant velocity (λ1 = λfirst pass

1 , V =
Vpulling). The third one is more deformed and stationary (λ1 = λsecond pass

1 , V = 0). The fourth one is
even more deformed and moving at constant velocity (λ1 = λthird pass

1 , V = Vpulling). Let’s display in
figure 5.15 the different dispersion curves for a wave emitted at the top edge, and the corresponding
conversions when crossing the moving interface multiple times. Globally, a wavenumber cascade is
observed but not a frequency one. This makes sense because the strip is progressively stretched with
the passes of the interface while the strip velocity does not increase but alternates between Vpulling
and 0 m/s. No frequency cascade could be efficiently implemented with such a configuration.

A double interface transition wave Inspired from the work of Bacot et al. (2016)248 , who
used an acceleration pulse as a time mirror for water waves, we could perform a deformation
pulse by pulling the strip for a few milliseconds before stopping it. In that case, a first interface is
generated and separates a static undeformed and a moving deformed strip. Then, a second interface
is generated as well and separates the moving deformed strip and a static deformed strip. We may
wonder whether it is really any different from what we have seen above with the multiple passages in
previous paragraph. Actually, it is different because the interfaces propagate in the same direction
here. And what happens is pretty straightforward, since there is an equivalent moving interface

248Bacot et al. (2016): “Time reversal and holography with spacetime transformations”
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Figure 5.15: Crossing the moving interface multiple times – Dispersion curves of the A′
0

mode are plotted for different media. Frequency and wavenumber conversions are represented using
arrows, and one should note that the interface velocity depends (slightly) on the initial stretch ratio
(see figure 5.2) but also on the solid velocity.

separating a static undeformed strip and a static deformed strip, so that previous methods still
work but with adequate dispersion curves.

Accelerated modulation Going back to the original idea, we started with an experimental set-
up that induced a velocity Vpulling that increases over time as a result of the free fall of a weight. In
fact, this is a situation where the speed is not constant, but the acceleration is constant. This has
recently been studied for electromagnetic waves249 . What we can now conjecture is that in such
a situation, a wave would cross a continuum of space-time interfaces. This time, the conversion
illustrated in figure 5.9 by a black arrow would no longer be a straight line but a curve. This
is because, at each "elementary" crossing, the interface velocity Vinterface (still in the laboratory
reference frame) decreases as a result of velocity additivity, and because the material moves in the
opposite direction.

Building analogies with other fields of physics Everything that has been discussed in this
last section is possible because the media is moving. There are some works devoted to the handling
of water waves propagating at the surface of water flows. These works are particularly interesting
because a full analogy with black hole physics is presented and applied to understand and explore
difficult-to-assess physics238, such as Hawking’s radiation235,239. Such waves are then a great way
to implement analogies with another field of physics236 ,237 . Similarly, other recent works were
devoted to use optics as a guideline to explore fancy aspects of using space interfaces with water

249Bahrami et al. (2023): “Electrodynamics of Accelerated-Modulation Space-Time Metamaterials”
238Peloquin et al. (2016): “Analog wormholes and black hole laser effects in hydrodynamics”
235Rousseaux et al. (2008): “Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking

effect?”
239Das et al. (2018): “Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity”
236Barceló et al. (2011): “Analogue Gravity”
237Faccio et al. (2013): Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment
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waves250. Initially investigated by Catheline et al. (2022)251, elastic membranes are also a great
experimental platform to explore exotic phenomena. Here, we believe that a soft strip could also be
used as a playground, since it allows metric deformation and measurements in both the reference
and deformed configurations.

250Mouet et al. (2023): “Comprehensive refractive manipulation of water waves using electrostriction”
251Catheline et al. (2022): “Gravitational lens effect of membrane waves”
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Figure 5.16: Calibration of the motor speed and rope length to loosen – A lateral
camera is used to record a movie of the early moments of the rotating motor. The unrolled length
and velocity of the rope are deduced for different values of wiper i.e. the variable controlling the
motor speed (min= 0, max= 127).

Appendix A
A calibration is needed for the amount of rope to loosen and the motor speed. A lateral camera is
used to record a movie of the early moments of the rotating motor. The electronic assembly uses a
wiper variable, controlling the digital potentiometer value, thus the rotation speed, 0 ≤ wiper ≤
127. The length of unrolled rope is first plotted in figure 5.16(a) for different values of wiper.
Every curve starts the same way and reaches a linear behaviour after a few seconds. When it
does, the length is measured and the slope, giving the pulling velocity, is derived. The results are
shown in figure 5.16(b) for two values of the spool radius. To get a given velocity, we first deduce
the corresponding wiper value and then read the length of rope to loosen. Generally, if the same
velocity can be achieved using a higher radius, this is set up to reduce the length of rope to loosen.

Mechanical delay – That consists in the same "start photodiode" motion detector system but
is placed where the rope is loosen. A small rope loop is placed and slightly trapped in a plastic
cylinder. At one entry, the rope loop comes in. At the other entry, the rope loop slightly sticks out
and is positioned between the LED and the photodiode. When the motor has pulled all the rest of
the rope, it starts pulling on this loop. At this point, the photodiode signal changes and the trigger
signal is sent. However, the bottom edge of the strip has not yet been pulled, as there is still a
length of rope to be pulled (roughly twice the cylinder size), and this corresponds to a mechanical
delay. By adjusting the position of the motion detector system, one can tune the delay. Now that
we achieved to add this delay, we can adjust the electronic delay on the wave packet emission as
well.



Conclusion and Perspectives

In the course of this thesis, we have fully described guided waves in soft solids. We began with
a reminder of Lamb’s problem and first measurements in a plate. We then obtained dispersion
diagrams for in-plane waves in a soft strip, which we were able to explain quantitatively, provided
we took the material viscoelasticity into account.

We then subjected these soft materials to large static deformations. The acoustoelastic theory
which predicts how wave velocities change with the applied stress was introduced. In our case, we
developed a material model combing acoustoelastic theory and material viscoelasticity, including a
fractional time derivative, and it has enabled correct theoretical predictions in a stretched plate.

Once done, we were able to validate our model by following dispersion curves in a free or clamped
strip, and compared them with the predictions from SCM, our semi-analytical method.

This thesis, based on experimental measurements, led to a better understanding of the acous-
toelastic effect for soft solids. To go further, note that a generalization of our method to compute
the velocities of guided waves in plates and strips is accessible to other hyperelastic (e.g. Gent),
and rheological models (e.g. generalized Maxwell) by adjusting the stress tensor. Then, a general-
ization to other guiding geometry (e.g. cylinders, tubes) can also be performed. Even intrinsically
anisotropic media can be investigated by using appropriate constitutive laws and invariants.

Then, in our material model, the constitutive law contains a term that depends jointly on fre-
quency and prestress. To the best of our knowledge, this interdependence of variables is rarely dis-
cussed in the literature. A systematic analysis of several different materials (silicone, polyurethane,
hydrogels, food, etc...) could help guiding current micromechanics research.

Next, we applied our understanding of elastic guided waves in a strip directly to the problem of
elastography. Waveguiding, viscoelasticity and prestress are well-known challenges to the reliability
and quantitativity of this medical imaging technique.

Using elastography experiments, we presented a method to measure and predict dispersion
curves in a viscoelastic medium, with a waveguiding geometry and possibly prestress. This paves
the way for robust quantitative elastography. The next step is the implementation of an inverse
problem based on the measurement of these dispersion curves to enable the characterization of both
the hyperelastic and viscoelastic properties of biological tissues. Moreover, we saw in Chapter 2
that stress can be probed in the medium using a material-independent quantity. This would apply
particularly well to measurements in the musculoskeletal system.

Our initial motivation being the similarities between soft solids and biological tissues, we then
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discussed the case of the basilar membrane in the cochlea which supports the cochlear wave. We
succeeded in reproducing such a wave with a macroscopic model, and provided an understanding
of the spatial discrimination of frequencies observed in the cochlea.

From there, the pressure distribution in the water compartments is still to be assessed, as well as
multiple gradients. A last topic that could be discussed is the shape of the cochlear wave amplitude.
We can probably derive a model for this amplitude using only the local dispersion of the basilar
membrane.

Finally, we used prestress as a modulation tool to create time-varying media. A space-time
interface was observed and exploited to achieve frequency and wavenumber jumps. Even if mea-
surements in the case of a superluminal interface are not yet completely satisfactory, we have already
imagined all the possible wave manipulations with such an experimental platform.

The thesis not only provides a way for harnessing guided elastic waves in dynamic environments,
but it also opens opportunities for building analogies with astrophysics for future exploration.

Thus, this thesis has opened up a number of horizons, and we can think of more global perspec-
tives, still centered around guided waves in soft solids, but with new systems.

One of the original objective of this thesis was to have a modulable medium. We have seen
that prestress can be used to modulate the speed of elastic waves, but we can also concive using
other materials such as electro-active or magneto-active polymers. From there, such materials could
be coupled with gradients as described above for the cochlea. This would enable the investigation
of local feedback loops in such a system, as well as new time and space modulations during the
propagation of guided waves.

We have also seen on several occasions (elastography, cochlea) that coupling with a fluid has
significant impacts. Here the fluid remained static. By adding flows, non-reciprocal effects should
appear, that are particularly interesting for wave manipulation. On top of that, this additional
phenomenon directly applies to the case of the artery.

Finally, only homogeneous media were considered here, and microstructuring the strip, which
is easy to mold, would undoubtedly bring new amazing effects. Periodic and/or bistable designs
are not only interesting for wave physics, but microstructuring should provide links with biological
tissues which are generally multi-scale.
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MOTS CLÉS

Ondes élastiques guidées, milieux mous, viscoélasticité, acoustoélasticité, onde cochléaire, interface spatio-
temporelle

RÉSUMÉ

Cette thèse de doctorat explore les ondes élastiques guidées dans les matériaux mous, en particulier les élastomères
synthétiques comme l’Ecoflex qui imitent les propriétés des tissus humains. Elle vise à comprendre l’impact de la pré-
contrainte sur les ondes guidées et ses implications plus large dans les processus physiologiques. Cette thèse couvre
la mécanique, la vitesse des ondes élastiques et les diagrammes de dispersion dans des plaques et rubans mous. La
rhéologie des matériaux est implémentée à l’aide d’une méthode semi-analytique, permettant d’aligner les prédictions
théoriques sur les résultats expérimentaux. La théorie acoustoélastique et la viscoélasticité sont combinées pour quan-
tifier l’anisotropie induite dans une plaque fortement étirée et les courbes de dispersion des ondes guidées "in-plane"
dans des rubans déformés. L’application en élastographie par ondes de cisaillement est étudiée pour améliorer la ro-
bustesse de cette technique d’imagerie médicale, en particulier pour les tissus allongés. Cette thèse permet d’établir un
lien entre les matériaux mous et les tissus biologiques en examinant notamment les vibrations de la membrane basilaire
dans la cochlée. En modélisant cette membrane comme un ruban fin, nous expliquons la discrimination de fréquence,
i.e. la tonotopie, en évaluant la dispersion locale le long de la membrane. Dans le dernier chapitre, une interface spatio-
temporelle est créée en appliquant une contrainte axiale croissante dans le temps, conduisant à des sauts de fréquence
et de nombre d’ondes pour l’onde de flexion qui la rencontre. Cette recherche a donc des applications dans la manip-
ulation des ondes. En résumé, cette thèse de doctorat se penche sur la propagation d’ondes élastiques guidées dans
les matériaux mous, couvrant la théorie, les expériences et les applications pratiques dans divers domaines tels que
l’imagerie médicale et la biologie.

ABSTRACT

This PhD thesis explores guided elastic waves in soft materials, particularly synthetic elastomers like Ecoflex that mimic
human tissue properties. It aims to understand the impact of prestress on guided waves and its broader implications in
physiological processes. The thesis covers mechanics, elastic wave velocities, and dispersion diagrams in soft plates
and strips. Material rheology is addressed through a semi-analytical method, aligning theoretical predictions with ex-
perimental findings. The acoustoelastic effect and viscoelasticity are combined to quantify the induced anisotropy in a
highly-stretched plate and the dispersion curves of in-plane guided waves in prestressed strips. The application of shear
wave elastography is explored to improve medical imaging, especially for elongated tissues. The thesis further estab-
lishes connections between soft materials and biological tissues by examining the vibrations of the basilar membrane in
the cochlea. Modeling this membrane as a thin strip, this thesis explains the frequency discrimination, i.e. the tonotopy,
by evaluating the local dispersion along the strip. In the last chapter, a space-time interface is created by applying an
increasing axial stress, leading to frequency and wavenumber changes for the flexural wave that crosses it. This research
has applications in wave manipulation. In summary, this PhD thesis delves into guided elastic wave propagation in soft
materials, covering theory, experiments, and practical applications in diverse fields such as medical imaging and biology.

KEYWORDS

Guided elastic waves, soft solids, viscoelasticity, acoustoelastic, cochlear wave, space-time interface
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