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Résumé :  Introduction 

 

Chapitre 1 présente une introduction aux procédés de fabrication basés sur 

l'électromagnétisme, tels que le chauffage par induction, la mise en forme par impulsion 

magnétique et le brassage électromagnétique. De plus, nous abordons les phénomènes 

physiques sous-jacents associés à ces procédés, en mettant l'accent sur des effets importants tels 

que l'effet de profondeur de peau, l'effet de proximité et l'influence des champs magnétiques 

sur les propriétés des matériaux. 

En outre, nous étudions le comportement des matériaux ferromagnétiques et 

paramagnétiques en relation avec la température de Curie. 

Finalement, nous discutons également de l'importance de l'utilisation de remaillages 

automatiques sur les modèles d'éléments finis, en mettant particulièrement en évidence les 

avantages de l'utilisation de maillages adaptés en fonction de l'anisotropie du phénomène étudié.
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1 Introduction 

Electromagnetic processing of materials (EPM) cover an ever-increasing range of 

processes.  Beyond being more environment-friendly, they offer many other advantages, such 

as rapid heat-up and production start-up speed, minimal material waste and high energy transfer 

efficiency. They include, among others, induction heating (IH) or induction hardening 

processes, magnetic pulse forming processes (MPF), electromagnetic stirring processes (EMS). 

However, their design needs to rely on accurate and efficient computational models as 

these processes involve multi-physics couplings of several phenomena – among which the 

continuous interaction of electromagnetic wave scattering with heat transfer, mechanical 

deformation or fluid flows, etc. Finite element method (FEM) has been very successful due to 

the flexibility it offers to model complex geometries and integrate different physical phenomena 

with each other. Therefore, the main objective is to make these tools more accurate, efficient, 

reliable, and ergonomic for use in industrial contexts. 

One of the main challenges is to automatize the mesh generation and adaptation. If a fine 

triangulation is considered, a large number of elements is obtained, and the computation will 

require a significant amount of memory and CPU time. To overcome this situation, mesh 

adaptation methods consist of locating the areas where the numerical solution is not sufficiently 

accurate and proposing local refinements, while increasing the mesh size in the areas where the 

solution does not need to be sufficiently accurate. The result is a more accurate and less costly 

numerical solution. 

The research techniques and results developed in this work will be introduced in the 

induction module of Forge® software. It is a finite element-based tool in which the 

electromagnetic model  was the result of several PhD works; we can mention among other the 

work of  Cardinaux D [1] dealing  with induction heat treatment process of stamped sheets, 

subsequently the work Alves J [2] dealing with extension to magnetic pulse forming 

processes and the work of Marioni L [3] who pursued the electromagnetic-CFD coupling in 

casting processes, precisely to the modelling of electromagatic stirring. Following previous 

work on modelling electromagnetic coupled manufacturing processes, this thesis aims to 

develop a mesh adaptation procedure that can be used in a general way for each of these 

processes.  

This section provides an overview of electromagnetically based processes and the 

physical phenomena involved. 

 

1.1 Electromagnetic based industrial process 

Electromagnetic processing of materials (EPM) has gained popularity in recent decades, 

opening the way to a large family of industrial technologies due to its many advantages. These 

processes are often more energy efficient than purely thermo-mechanical processing methods. 
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They offer many advantages, including rapid heat-up and production start-up speed, minimal 

material waste and high energy transfer efficiency. Among the most popular we can mention 

induction heating (IH) [4], [5] which is nowadays one of the most widely used, allows heat 

treatment of difficult shapes, which is a major problem in standard processes, as well as surface 

hardening or preheating of metal parts before forming, stamping or bending. Magnetic Pulse 

Forming/Crimping/Welding [6](MPF), is one of the most industrially used high-speed 

processes. As the large magnetic forces induce a specific mechanical behaviour of the material 

and are applied without any mechanical contact, it allows the creation of complex parts with 

fine details an increased surface characteristics; it is also possible to join diverse materials that 

cannot normally be joined by classical welding, allowing the creation of high-quality joints 

between dissimilar materials, reducing to almost zero the elastic spring-back [7]. 

Electromagnetic Stirring (EMS) [8], which is a well-known method to improve the quality of 

casted products, is used in continuous casting of metals to remove inclusions and gas bubbles, 

in order to especially avoid dendrite pre-growth to homogenise the composition and 

temperature of the melt, and thus refine the microstructure.  

The following implemented electromagnetic processes to be modelled and discussed here 

therefore include: 

• Induction heating [1] 

• Magnetic pulse forming [2] 

• Electromagnetic stirring [3] 

 

1.1.1 Induction heating 

Induction heating is a powerful and efficient non-contact heating process that is widely 

used in various industrial processes. The process occurs when an alternating voltage is applied 

to an induction coil, such as a solenoid multiturn coil, it generates an alternating current in the 

coil circuit. This current creates a time-varying magnetic field around the coil, which has the 

same frequency as the coil current. This magnetic field induces eddy currents in any conductive 

material placed within or near the coil. These eddy currents flow in the opposite direction to the 

coil current, but at the same frequency. As a result, they generate heat through the Joule effect. 

This phenomenon is displayed in Fig. 1.1. 

 

Fig. 1.1 Induction phenomenon 
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It's important to note that the direction and magnitude of eddy currents depend on the 

material's electrical conductivity, magnetic permeability, and geometry. Hence, the design of 

the induction coil and the choice of operating parameters are critical factors in optimizing the 

heating process. 

One of the key advantages of induction heating is its high efficiency, as it heats only the 

material being processed and not the surrounding environment. This leads to reduced energy 

waste and cost savings. Moreover, induction heating allows for precise temperature control, 

which is critical in industrial applications where accurate heating is necessary to achieve the 

desired results. For example, by allowing precise control of temperature evolution in parts at 

specific locations; this can enable, for instance, in heat treatment processes, to control the grain 

size according to the required final properties (as a prescribed hardness at the surface). It can 

also heat materials at very fast rates, which increases productivity and reduces processing times. 

Additionally, induction heating is a clean process that does not produce any emissions, making 

it an environmentally friendly heating method. 

Induction heating has a wide range of industrial applications, including metal 

processing, heat treatment, semiconductor manufacturing, and medical device manufacturing. 

In metal processing, induction heating is commonly used for forging, hardening, annealing, and 

brazing applications. Forging involves heating metal billets to a malleable state, allowing them 

to be shaped into a variety of forms. Hardening is used to create a hard, wear-resistant surface 

on a metal part. Annealing is used to soften metal and improve its ductility. Brazing is used to 

join two metal parts together using a filler material that melts at a lower temperature than the 

base metal. In heat treatment, induction heating is used to enhance the properties of various 

materials, such as hardness, ductility, and strength. It is also used in semiconductor 

manufacturing to create thin films of material, and in food processing for cooking and 

sterilization applications. Additionally, induction heating is used in the manufacturing of 

medical devices such as catheters and stents. 

 

   
 

   
 

  
   Fig. 1.2 Some induction heating industrial applications. 
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1.1.2 Magnetic pulse forming 

Magnetic pulse forming (MPF) is a metalworking process that uses a high-energy 

magnetic field to shape metal parts. In this process, a high-voltage electrical pulse is applied to 

a coil, which generates a magnetic field that rapidly deforms a metal workpiece, enabling the 

creation of complex parts with fine details while preserving surface integrity.  

The MPF process involves the following steps: 

• A metal workpiece is placed between two flat dies, which are aligned with the desired 

shape of the finished part. 

• A coil is wrapped around the dies and the workpiece, and a high-voltage electrical pulse 

is applied to the coil. 

• The electrical pulse generates a magnetic field that rapidly compresses the workpiece, 

causing it to conform to the shape of the dies. 

• The dies are then removed, and the finished part is removed from the workpiece. 

The scheme of how a common MPF application works is displayed in Fig. 1.3 

 

 

Fig. 1.3 MPF scheme: coil (dark blue), magnetic field pressure (green arrows), workpiece (grey) 

and the die (dark red). 

 

In addition to its applications in shaping processes in MPF, the technique can also be 

used for joining different materials that are typically challenging to weld using conventional 

methods. This opens up possibilities for creating high-quality joints between dissimilar 

materials while minimizing elastic spring-back. Various variants of this technique exist, 

including interference-fit joints, which rely on elastic-plastic bracing, form-fit joints, which 

involve the formation of an undercut, and metallic bonding, which utilizes a microstructural 

joining mechanism. And another one, referred as electromagnetic pulse welding, utilizes 

electromagnetic pulses to achieve the joining process. 



Chapter 1: Introduction 
 

13 

 

 

Fig. 1.4 Joining mechanism for electromagnetic pulse joining and examples [9]. 

 

The MPF process offers several advantages over other metalworking processes, 

including: 

• High forming speeds: MPF can form parts at very high speeds, which reduces cycle 

times and increases productivity. 

• High precision: MPF can form parts with high precision and accuracy, making it ideal 

for applications that require tight tolerances. 

• Material savings: MPF can form parts using less material than other metal working 

processes, which can result in material cost savings. 

• Flexibility: MPF can be used to form a wide range of materials, including metals, 

plastics, and composites (under the condition of using a metallic flyer such as an 

aluminium ring to transform the magnetic energy into kinetic energy.). 

 

The MPF process is commonly used in the automotive, aerospace, and electronics 

industries for forming complex parts with high precision and accuracy. Some specific 

applications of MPF include forming metal casings for electronic devices, forming complex 

engine components for the automotive industry, and forming intricate parts for aerospace 

applications. 

 

1.1.3 Electromagnetic Stirring 

Electromagnetic Stirring (EMS) [8] is a powerful process used in the manufacturing of 

metallic materials to enhance mixing and homogenization of the melt during casting, 

solidification, and/or subsequent heat treatments. The process involves applying an alternating 
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current (AC) to an electromagnet, which generates a magnetic field that interacts with the 

electrically conductive melt. 

During the EMS process, the magnetic field induces an electromagnetic force that 

causes the melt to circulate and mix, resulting in a more homogeneous and refined 

microstructure. It consists of using the time-varying electromagnetic field to control the fluid 

flow between the liquid steel and the stirrer without any physical contact. This process is used 

to disrupt the molten metal’s fluid flow by means of the Lorentz force provided by a linear 

induction motor allowing a more homogeneous solidification, avoiding premature growth of 

dendrites during the casting process and resulting in a better quality of the final ingot. The 

strength and direction of the electromagnetic force can be finely controlled by adjusting the 

frequency, amplitude, and orientation of the magnetic field. This allows for precise tuning of 

the stirring effect, resulting in greater control over the final properties of the material.  Fig. 1.5 

shows a scheme presented by Zhang et al. [10] for a typical configuration of an EMS process.  

 

 

Fig. 1.5 EMS scheme [10]: magnetic field (red arrows), Lorentz force (blue arrows), dendrites: 

fraction of columnar phase (𝑓𝑐) and equiaxed phase (𝑓𝑒) 

 

EMS has several advantages in metal processing, including: 

• Improved homogenization: EMS can significantly improve the homogeneity and 

refinement of metallic materials, leading to improved properties and performance. 

• Reduced segregation: EMS can help reduce the formation of segregation in castings, 

which can improve the quality and consistency of the final product. 

• Reduced porosity: EMS can also reduce the formation of porosity in castings, which 

can improve the strength and ductility of the material. 

• Increased yield: The improved homogeneity and reduced segregation and porosity 

achieved with EMS can increase the yield of the manufacturing process, resulting in 

cost savings. 

EMS is widely used in the casting and solidification of metals, including aluminium, 

copper, and steel. It is also used in the production of semi-solid metal alloys and in the 
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processing of metallic powders. Some specific applications of EMS include the production of 

high-performance aluminium alloy components for aerospace and automotive applications, as 

well as the production of high-quality steel billets for forging and rolling. 

 

 

1.2 Physical phenomena 

Most electromagnetic-coupled processes deal with time-varying electrical loadings 

(harmonic or pulsed). As a time-dependent current runs through the coils, a time-varying 

electromagnetic field is induced in the surrounding domain. This electromagnetic field 

generates eddy currents in the conductive work piece. These currents dissipate heat through the 

Joule effect and produce Lorentz forces, thus allowing the workpiece to be heated and 

deformed.  

These processes represent an interplay of multi-physics phenomena, involving 

electromagnetic, heat transfer, metallurgical and circuit analysis. This interaction is highly non-

linear due to the dependence of the physical properties of the material on magnetic field 

strength, temperature and microstructure. 

There are several electromagnetic phenomena that cause non-uniform current distribution. 

These are responsible for the temperature gradients experienced by parts during 

electromagnetic-based processes. This is associated, among other things, with: 

• Skin effect  

• Proximity effect  

• Ring effect  

 

1.2.1 Electromagnetic properties of materials  

Electromagnetic properties refer to the way materials interact with electromagnetic 

waves. Electromagnetic waves are a combination of electric and magnetic fields propagating 

through space. When electromagnetic waves interact with materials, they can be absorbed, 

reflected, transmitted or refracted. This depends on their electromagnetic properties, which can 

be described by a number of different parameters.  Understanding these properties is important 

for a wide range of applications, such as the design of electronic devices or the development of 

new materials for energy storage and transmission.  

Some important electromagnetic properties of materials are: 

 

1.2.1.1 Relative Permittivity 

This parameter, also known as the dielectric constant, describes the ability of a material 

to store electric charge. Materials with a high dielectric constant are good insulators, while those 

with a low dielectric constant are good conductors. In fact, it is a measure of how easily a 
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material can be polarized by an electric field. It is defined as the ratio of the electric flux density 

to the electric field strength. This parameter is important in the design of capacitors and other 

electrical components that rely on storing electric charge. 

 

1.2.1.2 Magnetic Permeability  

Magnetic permeability refers to the ability of a material to become magnetized when it 

is placed in a magnetic field. It is defined as the ratio of the magnetic flux density to the 

magnetic field strength. This parameter is important in the design of electrical and electronic 

devices such as transformers, inductors, and electromagnets. 

 μ =  B/H (1.1) 

 

The magnetic permeability depends on the temperature, as well as on the magnetic field 

itself. This material non-linearity is due to the physical characteristics of the material and can 

be studied through the magnetization law. The magnetization law is a fundamental relationship 

that links the magnetic field strength (H), the magnetization (M) of the material, and the 

resulting magnetic field density (B). This law can be expressed as  

 B = 𝜇0H + M (1.2) 

 

Where 𝜇0 represents the magnetic permeability of vacuum with a constant value of 

4πx10−7H/m, and M represents the magnetic dipole moment per unit volume, which 

characterizes the material's magnetization. 

The magnetization of the material is influenced by the magnetic susceptibility 𝜒, which 

is a dimensionless quantity that describes the degree to which a material can be magnetized. It 

is a measure of the material's ability to develop a magnetic moment in response to an applied 

magnetic field. the magnetization can then be expressed as  

 M = 𝜇0𝜒H (1.3) 

 

By substituting this expression into the magnetization law, the following expression is 

found: 

 B = μ0(1 + χ)H (1.4) 

 

We can introduce the concept of relative magnetic permeability 

 μ𝑟 = 1 + 𝜒 (1.5) 

 

 Which characterizes the magnetic behaviour of the material. The value and evolution 

of the relative magnetic permeability depend on the specific physics of the material. Different 

classes of materials exhibit varying behaviours when subjected to an external magnetic field, 

and the most common classes are ferromagnetic and paramagnetic materials. 
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Ferromagnetic materials exhibit a strong magnetic moment and have a high magnetic 

permeability due to the alignment of the magnetic moments of their atoms in the same direction; 

the induced structured subdomains are called magnetic domains or Weiss domains. In the 

absence of an external magnetic field, these magnetic moments domains are randomly oriented, 

resulting in no net magnetization. However, when exposed to an external magnetic field, the 

magnetic moments of the atoms align with the field, leading to a net magnetization of the 

material. This magnetization remains even after the external magnetic field is removed due to 

the presence of domains within the material where the magnetic moments remain aligned. 

However, above a certain temperature known as the Curie temperature, the thermal energy in 

the material is sufficient to overcome the magnetic interactions between the atoms, causing the 

domains to break up and the material to lose its magnetization. 

Paramagnetic materials have a weak magnetic moment and exhibit a magnetic 

permeability that is slightly higher than that of vacuum. This magnetic moment arises from the 

presence of unpaired electrons in their atomic structure, which generate a small magnetic field. 

When an external magnetic field is applied, these magnetic moments align themselves in the 

same direction as the field, resulting in a net magnetization of the material. However, when the 

external magnetic field is removed, the magnetization disappears. Unlike ferromagnetic 

materials, the Curie temperature does not significantly affect the magnetic properties of 

paramagnetic materials.  

Fig. 1.6 Magnetic moments of a ferromagnetic material (right) and a paramagnetic 

material (left)Fig. 1.6 and Fig. 1.7 show the magnetic moments and the magnetization curve 

respectively of ferromagnetic and paramagnetic materials. 

 

  
Fig. 1.6 Magnetic moments of a ferromagnetic material (right) and a paramagnetic material 

(left) 

 

 

Fig. 1.7  Magnetization curve of ferromagnetic and paramagnetic materials 
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1.2.1.3 Electrical Conductivity 

Electrical conductivity refers to the ability of a material to conduct an electric current 

and is determined by the ease with which electrons can move through the material in response 

to an applied electric field. Materials with high electrical conductivity are considered good 

conductors, while those with low electrical conductivity are good insulators. 

Normally, the electrical conductivity of most materials decreases with increasing 

temperature. This is due to the increased thermal motion of the atoms and electrons in the 

material, which makes it more difficult for electrons to move freely. At low temperatures, 

electrons are usually in their lowest energy state, or ground state, which means that they are 

tightly bound to the atoms of the material and move more slowly. 

As the temperature increases, the thermal energy of the electrons also increases, causing 

them to move faster and collide with other electrons, impurities and defects in the material. 

These collisions increase the material's resistance to current flow, leading to a decrease in 

electrical conductivity and an increase in electrical resistivity. 

The relationship between electrical conductivity and resistivity can be expressed 

mathematically by the formula: 

 σ = 1/ρ (1.6) 

 

where 𝜎 represents electrical conductivity and 𝜌 represents electrical resistivity. The 

formula indicates that as the resistivity of a material increases, its conductivity decreases. 

 

1.2.2 Skin effect  

The skin effect is a phenomenon which occurs in conductors carrying alternating 

currents (AC). At high frequencies, the current tends to flow near the surface, rather than 

through the entire cross-section. This happens due to the interaction between the AC magnetic 

field and the electrical conductivity. The magnetic field induces an opposing electric field, 

which causes the current to be pushed towards the surface, where the magnetic field is strongest. 

Consequently, the effective cross-sectional area available for current flow is reduced, leading 

to an increase in the equivalent resistance of the conductor. 

The skin depth is a measure of how deep the current penetrates into the conductor. At a 

distance of one skin depth (y = δ) from the surface, the current density drops to about 37% of 

its surface value, while the power density decreases to about 14% of its surface value. This 

means that the majority of the current (63%) and power (86%) is concentrated within a surface 

layer with a thickness equal to the skin depth, this can be seen in Fig. 1.8 
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Fig. 1.8 Skin effect in a circular cross-sectional area. 

 

Which is determined by the square root of the ratio between the electrical resistivity, 

frequency of the AC current, and magnetic permeability of the material. 

 

𝛿(𝑓) = √
2𝜌

2𝜋𝑓𝜇𝑟𝜇0
 (1.7) 

 

Where 𝑓 represents the signal frequency, 𝜌 the material electrical resistivity and 𝜇 the 

magnetic permeability (index 0 stands for void absolute permeability and 𝑟 the material’s 

relative value). The skin effect can be used in heat treatment processes to selectively heat the 

surface layer of a metal part, thus enabling induction surface hardening. 

In induction surface hardening, a high-frequency alternating current is passed through a 

coil, generating a magnetic field. The metal part is then placed inside the coil, and the magnetic 

field induces eddy currents on the surface of the part due to the skin effect. These eddy currents 

generate heat, which causes the surface layer of the part to reach a high temperature. The depth 

of the heated layer is determined by the frequency of the AC and the electrical resistivity of the 

material as expressed in (1.7). Higher frequencies and higher resistivity materials result in a 

shallower skin depth, which can be useful for selectively heating only the surface layer. Once 

the surface layer reaches the desired temperature, the part is quickly quenched to harden the 

surface layer. The core of the part remains relatively unaffected by the heat treatment, which 

can result in a part with a hard and wear-resistant surface layer and a tough and ductile core. 

However, it is important to note that the skin effect in ferromagnetic materials like 

carbon steel is also influenced by the magnetic permeability of the material, which can change 

with temperature. Below the Curie temperature, carbon steel is ferromagnetic, and its magnetic 

permeability is high, which can reduce the depth of the eddy currents and the amount of heat 

generated by the skin effect. Above the Curie temperature, carbon steel becomes paramagnetic, 

and its magnetic permeability decreases, which can increase the depth of the eddy currents and 

the amount of heat generated by the skin effect (see Fig. 1.9) 
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Fig. 1.9 Skin depth behaviour in ferromagnetic materials 

 

1.2.3 Proximity effect 

In the skin effect definition, it was assumed that a conductor stands alone and that there 

are no other current-carrying conductors in the surrounding area. In this case the induced current 

flows uniformly on the surface as show in (Fig. 1.10(a)). In practical applications, conductors 

and cables rarely stand alone, with other current-carrying conductors often in close proximity. 

The proximity effect is a phenomenon that occurs when alternating currents flow through two 

or more conductors. It results in a non-uniform distribution of current, increasing the effective 

resistance of each conductor. 

This effect is more pronounced at higher frequencies, where the skin effect also becomes 

significant. Both effects can lead to a significant increase in the effective resistance of the 

conductors, affecting the design and operation of electrical systems. 

The proximity effect occurs due that magnetic fields generated by the currents in one 

conductor induce eddy currents in nearby conductors, which produce their own magnetic fields. 

These fields interact with the original magnetic fields and create a non-uniform distribution of 

current. Current tends to concentrate near the surface of the conductors closest to each other or 

on their opposite side, leading to an increase in effective resistance. 

The proximity effect is influenced by several factors, including the distance between 

conductors, the frequency of the current, and the relative orientation of the conductors. The 

closer the conductors are to each other, the more pronounced the proximity effect becomes, 

causing the current distribution to become more non-uniform. When the currents in the 

conductors flow in opposite directions, the magnetic fields induced for both conductors 

reinforce each other, leading to a stronger proximity effect. This results in a concentration of 

the current near the surface of the conductors closest to each other (Fig. 1.10(b)). On the other 

hand, when the currents flow in the same direction, the magnetic fields tend to cancel each other 

out, reducing the magnitude of the proximity effect. In this case, the current is concentrated in 

the opposite sides of the conductors (Fig. 1.10(c)).  
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(a) (b) (c) 

 

 
Fig. 1.10 Magnetic field (blue) and current density (orange) distributions in circular cross-

sectional area displaying: (a) stand-alone conductor and the proximity effect when the currents 

are flowing: (b) in the opposite directions and (c) in the same direction (right) 

 

1.2.4 Ring effect 

The focus was previously on current density distribution in straight conductors. 

However, when a cylinder with a current-carrying bar is bent into a ring, the current distribution 

is affected. The magnetic flux lines concentrate inside the ring, leading to an increase in 

magnetic flux density. Consequently, the majority of the current flows in the thin internal 

surface layer of the ring, where the path of least impedance exists. This phenomenon is referred 

to as the ring effect, and it is similar to the proximity effect because currents flowing on the 

internal surfaces of opposite sides of the ring's circumference are oriented in opposite directions 

and attract each other. 

Fig. 1.11 illustrates the electromagnetic ring effect, which causes current to concentrate 

on the inside surface of an induction coil. It's worth noting that this effect isn't restricted to 

single-turn inductors and can also be observed in multiturn coils. 

 

 

Fig. 1.11 Ring effect in a cylindrical conductor  
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The ring effect can have a significant impact on heating and process efficiency, either 

positively or negatively. When performing conventional induction heating with a solid cylinder 

workpiece inside a solenoid induction coil, the ring effect plays a positive role. It works in 

conjunction with the skin and proximity effects to concentrate the coil current on the internal 

surface of the coil, leading to improved coil-to-workpiece electromagnetic coupling and an 

increase in coil efficiency. 

 

 

1.3 Numerical modelling and automatic remeshing for industrial 

applications 

Numerical modelling is essential for understanding and optimizing Electromagnetic-

coupled manufacturing processes (EMP) due to several reasons: 

• Predicting process outcomes: EMP involves the interaction of multiple physical 

phenomena, making it a complex process. Computational modelling can simulate the 

EMP process and predict the outcomes, including the shape and dimensions of the 

formed part. This enables engineers and scientists to optimize the process parameters 

and achieve the desired outcomes. 

• Designing and optimizing equipment: The design of EMP equipment, such as the 

capacitor bank and coil, can have a significant impact on the process outcomes. 

Simulation can optimize the design of the equipment and ensure that it is capable of 

delivering the required magnetic field and electrical current. 

• Understanding the underlying physics: EMP involves several physical phenomena, 

including electromagnetic induction, Joule heating, heat transfer, and plastic 

deformation. Numerical modelling can help understand the underlying physics and 

identify the key parameters affecting the process outcomes. 

• Reducing experimentation cost and time: EMP experiments can be time-consuming and 

expensive. Computer-aided analysis can reduce the number of experiments required to 

optimize the process parameters and identify optimal operating conditions, thereby 

reducing experimentation costs and time. 

 

Finite element analysis (FEA) is a widely used numerical method for solving complex 

problems in engineering and science. To perform a successful FEA, it is essential to consider 

the following points: 

• Problem definition: Define the problem and objectives of the analysis by specifying the 

system's geometry, material properties, boundary conditions, and loads. 

• Mesh generation: Generate a suitable finite element mesh that accurately represents the 

geometry and captures the system's relevant physical behaviour.  

• Element type and properties: Select appropriate finite element types and material 

properties that accurately describe the system's physical behaviour, taking into account 

the problem's geometry, material properties, and loading conditions. 
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• Solver selection: Choose an appropriate solver based on the problem's complexity and 

required level of accuracy. The solver should be capable of handling the analysis type 

and have sufficient computational resources to complete the analysis efficiently. 

• Results interpretation: Analyse the results to understand the system's behaviour and 

identify areas for improvement. This involves analysing the results for trends, patterns, 

and anomalies and validating them against experimental data or analytical solutions. 

 

Mesh adaptation is a crucial step in finite element analysis that plays a key role in 

improving the accuracy and efficiency of the solution. The quality of the finite element analysis 

results is highly dependent on the mesh used. A coarse mesh can be unfit to provide insight into 

important smaller-scale details and result in an inaccurate solution, while a fine mesh can 

increase the computational cost of the analysis to an unmanageable level. Therefore, mesh 

adaptation helps to find a balance between accuracy and computational efficiency. 

Mesh adaptation can be carried out by refining or coarsening the existing mesh or by 

generating a completely new mesh. One of the methods to achieve mesh adaptation is to take 

into account the anisotropy of the analysed field. Anisotropy refers to the directional 

dependence of physical properties such as electrical conductivity, thermal conductivity and 

mechanical properties. Anisotropy can significantly affect the accuracy of finite element results, 

especially when the solution varies significantly in certain directions. Therefore, to ensure 

accuracy, it is essential to adapt the mesh according to the anisotropy of the analysed field. 

Mesh adaptation based on anisotropy consists in refining or coarsening the mesh in 

specific directions to better capture the behaviour of the solution. For example, regions with 

rapid changes in the solution or strong gradients require a finer mesh to accurately capture the 

solution behaviour, while smoother regions may be modelled using a coarser mesh. By adapting 

the mesh according to the anisotropy of the analysed field, FEA can accurately capture the 

behaviour of the system, leading to more reliable results. 

The importance of mesh adaptation as a function of anisotropy can be demonstrated with 

an example. When analysing eddy currents induced in a part, the current density near the surface 

due to the skin effect can be underestimated if the mesh used in the FEA is not adapted to the 

anisotropy of the physical phenomenon. By adapting the mesh according to the anisotropy, FEA 

can accurately capture the behaviour of the system, leading to more reliable results. This, in 

turn, can help optimise system design and operation, resulting in improved performance and 

reduced costs. 
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Résumé :  Modélisation numérique multiphysique. 

 

Ce chapitre se concentre sur la modélisation et la résolution des problèmes 

électromagnétiques couplés à d'autres phénomènes physiques tels que le transfert de chaleur, la 

mécanique des solides et la mécanique des fluides. 

En premier lieu, nous aborderons le transfert de chaleur, qui est associé aux phénomènes 

électromagnétiques dans des applications pratiques telles que le chauffage par induction. 

Ensuite, nous étudierons la mécanique des solides, qui est couplée à des applications telles que 

la mise en forme par impulsion magnétique. Enfin, nous aborderons la mécanique des fluides, 

qui est utilisée pour modéliser le brassage électromagnétique. 

Pour approfondir la résolution numérique du modèle électromagnétique, une attention 

particulière sera accordée à la formulation potentielle et à sa résolution variationnelle. Nous 

discuterons également de l'utilisation courante des éléments d'arêtes dans les méthodes 

numériques pour les problèmes électromagnétiques. 

En dernier lieu, nous explorerons le schéma de couplage multiphysique et examinerons 

les stratégies de résolution utilisées dans le domaine de la forge pour gérer le transport et le 

parallélisme. 
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2 Multiphysics computational modelling 

2.1 Multiphysics model 

Modelling multiphysics electromagnetic coupled processes involves integrating various 

physical models, each representing a different aspect of the phenomenon. These models are 

typically based on partial differential equations (PDEs) and rely on the coupling of:  

• Electromagnetism: This aspect deals with the behavior of electromagnetic fields, 

governed by Maxwell's equations, which describe how electric and magnetic fields 

interact and propagate.  

• Heat transfer: It focuses on the flow of thermal energy within the system. It considers 

thermal conductivity and temperature gradients to describe how heat is transferred 

through materials. 

• Solid/fluid mechanics: These models are used to understand the mechanical behaviour 

of solid and fluids under the influence of electromagnetic forces, as in Magnetic Pulse 

Forming and Electromagnetic Stirring respectively.  

These models are interconnected, as physical processes don't occur in isolation but influence 

each other. The coupling occurs through:  

• General Conservation Laws: These laws describe fundamental principles such as the 

conservation of mass, energy, momentum, and charge. They ensure that the physical 

quantities involved remain conserved across system. 

• Constitutive Models: These models incorporate material properties and characteristics 

into the equations.  

In the following sections, these models will be presented for the various physical problems 

involved. 

 

2.1.1 Electromagnetic problem 

In this section, we introduce the fundamental equations that describe electromagnetic 

phenomena. 

 

2.1.1.1 Maxwell equations  

Models describing the propagation of electromagnetic waves, which capture the spatial 

and temporal evolution of electric and magnetic fields, are grounded in the Maxwell equations: 

 

Faraday’s Induction Law ∇⃗⃗ × �⃗� = −∂𝑡�⃗�  (2.1) 
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Ampere’s Law ∇⃗⃗ × H⃗⃗ = J + ∂tD⃗⃗  (2.2) 

Gauss’s Law �⃗� ∙ �⃗⃗� = 𝜌  (2.3) 

Gauss’s Law for the magnetic field �⃗� ∙ �⃗� = 0  (2.4) 

 

Where:  E: electric field intensity 

D: electric flux density  

H: magnetic field intensity 

B: magnetic flux density 

J: electric current density  

ρ: electric charge density  

 In this system of equations, the relations (2.1) and (2.2) express the interaction between 

the electric(�⃗� , �⃗⃗� ) and magnetic(�⃗� , �⃗⃗� ) fields. In many electromagnetic-based materials 

processes, typically occurring at low to medium frequencies (< 1MHz), the current 

displacements density term 𝜕𝑡�⃗⃗�  can be neglected, leading to a quasi-steady state approximation. 

Under these conditions, Maxwell equations can be re-written as follows: 

 �⃗� × �⃗� = −𝜕𝑡�⃗�  (2.5) 

 �⃗� × �⃗⃗� = 𝐽  (2.6) 

 �⃗� ∙ �⃗� = 0 (2.7) 

 

From the Ampere’s law expression, the current density conservation is derived: 

 �⃗� ∙ 𝐽 = 0 (2.8) 

 

2.1.1.2 Constitutive laws  

 The Maxwell equations presented earlier provide an essential foundation, encompassing 

only the fields and their sources. Similar to solid mechanics, constitutive relations that describe 

the electromagnetic properties of various materials at a macroscopic level need to be 

incorporated. These relationships are detailed below: 

 

 Electrical permittivity (𝜀): 

 �⃗⃗� = 𝜀0𝜀𝑟�⃗�  (2.9) 

 

Here, 𝜀0 denotes the void’s electric permittivity and 𝜀𝑟 the relative electric permittivity. 

 Magnetic permeability (μ): 
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 �⃗� = 𝜇0𝜇𝑟(‖�⃗⃗� ‖, 𝑇)�⃗⃗�  (2.10) 

 

 Where 𝜇0 denotes the void’s magnetic permeability and 𝜇𝑟 the relative magnetic 

permeability, which can be a function of magnetic field strength (�⃗⃗� ) and temperature (𝑇). 

 Electrical conductivity (Ohm’s law): 

 𝐽 = σ(T)�⃗�  (2.11) 

 

 The parameter σ(T) is the electrical conductivity, indicating the proportionality between 

current density (𝐽 ) and electric field (�⃗� ), and it can depend on temperature (𝑇). 

 

2.1.2 Heat transfer problem 

In electromagnetic-based industrial processes, particularly in induction heating, a 

significant coupling occurs between electromagnetism and heat transfer. The thermal problem 

at hand is unsteady. It is governed by the heat transfer equation, completed by boundary 

conditions applying on both free and contact surfaces. 

 

2.1.2.1 Energy conservation  

The first law of thermodynamics defines the rate of change of internal thermal energy 

of a system (Ω) as the sum of two factors: the net energy flow across its boundaries (Γ) and the 

heat generated internally. This fundamental principle of thermal energy conservation is 

expressed through the following global balance equation: 

 
∫ 𝜌

𝜕𝑒

𝜕𝑡
𝑑𝑉

Ω

= −∫𝑞 ∙ �̂� 𝑑𝑆
Γ

+ ∫𝑓𝑑𝑉
Ω

 (2.12) 

 

Here, 𝜌 represents the mass density, 𝑒 denotes the specific internal energy, 𝑞  the heat 

flux vector, �̂� the outward normal vector and 𝑓 the rate of heat production per unit volume. By 

applying the divergence theorem to the surface integral involving the heat flux, the global form 

of the thermal energy is rewritten as: 

 
∫ 𝜌

𝜕𝑒

𝜕𝑡
𝑑𝑉

Ω

= −∫ ∇⃗⃗ ∙ 𝑞  𝑑𝑉
Ω

+ ∫𝑓𝑑𝑉
Ω

 (2.13) 

 

 Subsequently, assuming the continuity of the above expression and recognizing that 

this equality holds not only for the entire system Ω, but also for each individual subdomain, the 

following PDE is obtained: 
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𝜌

𝜕𝑒

𝜕𝑡
+ ∇⃗⃗ ∙ 𝑞 = 𝑓         𝑖𝑛 Ω (2.14) 

 

2.1.2.2 Constitutive laws 

For a wide range of materials and temperatures, it can be assumed that the specific 

thermal energy is linearly related to temperature (T), leading to the following expression: 

 𝜕𝑒

𝜕𝑡
= C

𝜕𝑇

𝜕𝑡
 (2.15) 

 

 Here, C represents the specific heat capacity. 

 Similarly, as heat naturally flows from areas of high temperature to low temperature, a 

linear relationship between these quantities was established by Fourier: 

 𝑞 = −𝑘(𝑇)∇⃗⃗ 𝑇 (2.16) 

 

Where 𝑘(𝑇) is the thermal conductivity, which can vary with temperature. This 

temperature-dependent relationship introduces non-linearity into the problem. 

The rate of heat production, denoted as 𝑓, is expressed in electromagnetic material 

processing modelling as the sum of two components: 

 𝑓 = �̇�𝑒 + �̇�𝑚 (2.17) 

 

Where �̇�𝑒 represents the volumetric heat source generated by the Joule heating effect 

phenomenon, expressed as: 

 �̇�𝑒 = 𝐽 ∙ �⃗�  (2.18) 

 

And �̇�𝑚 is the mechanical heat term resulting from the transformation of dissipated 

mechanical work into heat, expressed as:  

 �̇�𝑚 = 𝜀̇: 𝜎 (2.19) 

 

Here, 𝜀̇  and 𝜎 represent the strain rate tensor and the stress tensor, respectively. 

The heat source term can thus be expressed as: 

 𝑓 = 𝐽 ∙ �⃗� + 𝜀̇: 𝜎 (2.20) 
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2.1.2.3 Heat transfer equation  

The heat transfer equation, which allows us to calculate the temperature within 

conductive components, is expressed as follows: 

 𝜌C
𝜕𝑇

𝜕𝑡
− ∇⃗⃗ ∙ (𝑘∇⃗⃗ 𝑇) = 𝐽 ∙ �⃗� + 𝜀̇: 𝜎    in  Ω (2.21) 

 

2.1.2.4 Boundary conditions 

The various boundary conditions that apply to heat transfer are summarized in Fig. 2.1 

 

 

 
 

 
 

Boundaries Resistive contact 
Convection and 

radiation 

Fig. 2.1 Boundary conditions for heat transfer problem. After Alves [2] 

In this context, the boundary conditions can be defined as follows: 

1. Temperature is set to a prescribed value: 

 𝑇 = 𝑇𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑      𝑜𝑛  Γ1 (2.22) 

 

2. Heat flux is set to a prescribed value: 

 −𝑘∇⃗⃗ 𝑇 ∙ �̂� = 𝜙𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑      𝑜𝑛  Γ2 (2.23) 

 

3. Convection and Radiation: pure convection and radiation are modelled using a 

single convection coefficient ℎ, which is expressed as:  

ℎ = ℎ𝑐𝑣 + ℎ𝑟 

Where ℎ𝑐𝑣 is related to external condition (such as air or any fluid) and ℎ𝑟 is 

approximated by: 

ℎ𝑟 ≈ 𝜀𝑟𝜎𝑟(𝑇 + 𝑇𝑒𝑥𝑡)(𝑇
2 + 𝑇𝑒𝑥𝑡

2 ) 

Where 𝜀𝑟 is the surface emissivity coefficient and 𝜎𝑟 = 5.67𝑥10−8[𝑊𝑚−2𝐾]    

is the Stefan-Boltzman constant. Then, expressed as: 

 −𝑘∇⃗⃗ 𝑇 ∙ �̂� = ℎ(𝑇 − 𝑇𝑒𝑥𝑡)       𝑜𝑛  Γ4 (2.24) 
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4. Heat exchange between two solids is controlled by a resistive surface contact.  An 

equivalent convection coefficient for surface conduction ℎ𝑐𝑑 is employed to deal 

with this situation. This coefficient considers the conductivity of both bodies as well 

as the surface rugosity, which can trap air between them. 

 

2.1.3 Solid Mechanics problem 

In solid mechanics, we consider the mechanical behaviour of materials at a macroscopic 

scale. Here, materials are assumed to be continuous and homogeneous, allowing us to describe 

them using the principles of mass and momentum conservation. These fundamental equations 

require further refinement through appropriate initial and boundary conditions, as well as the 

incorporation of constitutive laws that describe the specific mechanical properties of the 

material. This section provides a brief introduction to solid mechanics problem; for more detail, 

refer to APPENDIX 7.1 

 

2.1.3.1 Mass conservation 

In solid mechanics, the conservation of mass is expressed as follows:  

 𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑣 ) = 0 (2.25) 

 

Here, 𝜌 represents the density of matter at any point of 𝛺 and 𝑣  is the material’s velocity 

field. Two specific scenarios arise: 

1) Steady State Case: In this scenario, nothing changes over time, implying that the 

partial derivative with respect to time is zero. Equation (2.25) simplifies to: 

 ∇⃗⃗ ∙ (𝜌𝑣 ) = 0 (2.26) 

 

2) Incompressible Material: When the material’s density remains constant throughout 

the domain Ω, it is considered incompressible. Equation (2.25) can then be rewritten 

as: 

 ∇⃗⃗ ∙ 𝑣 = 0 (2.27) 

  

2.1.3.2 Linear momentum conservation 

The velocity vector 𝑣  featured in the mass conservation equation can be determined 

through the principle of momentum conservation. Momentum variations primarily arise from 

volume and contact forces acting upon a body. The equation governing momentum 

conservation is given by: 
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 𝜕

𝜕𝑡
(𝜌𝑣 ) + 𝑣 ∙ ∇⃗⃗ (𝜌𝑣 ) = ∇⃗⃗ ∙ 𝑆 − ∇⃗⃗ 𝑝 + 𝜌�⃗�  (2.28) 

 

Here, the expression of momentum density (𝜌𝑣 ) is introduced. In the context of 

electromagnetic-based industrial processes, the term �⃗�  represents the Lorentz force, which 

establishes the coupling between the electromagnetic and mechanical model. Additionally,  𝑆 

and 𝑝 are introduced: 

 Hydrostatic pressure: 𝑝 =  −
1

3
𝑇𝑟 (𝜎) (2.29) 

 Deviatoric component: 𝑆 = 𝜎 + 𝑝𝐼                   (2.30) 

 

2.1.3.3 Angular momentum conservation 

For the conservation of angular momentum in a continuum medium, it's a fundamental 

requirement that the Cauchy stress tensor must be symmetric, as expressed by: 

 𝜎𝑖𝑗 = 𝜎𝑗𝑖 (2.31) 

 

Nevertheless, there are specific scenarios where the stress tensor can potentially be 

asymmetric, one of them is when the material interacts with magnetic fields. This asymmetry 

arises due to the way the stress field depends on the electromagnetic field. 

 

Given the Lorentz force acting on a distribution of charges: 

 

 𝑓 = 𝜌𝑒�⃗� + 𝐽 × �⃗�  (2.32) 

 

Then, this force can be further expressed as: 

 
𝑓 = (�⃗� ∙ �⃗⃗� )�⃗� + (�⃗� × �⃗⃗� −

𝜕�⃗⃗� 

𝜕𝑡
) × �⃗�  

(2.33) 

 
𝑓 = (�⃗� ∙ �⃗⃗� )�⃗� − �⃗� × �⃗� × �⃗⃗� −

𝜕�⃗⃗� 

𝜕𝑡
× �⃗�  

 
𝑓 = (�⃗� ∙ �⃗⃗� )�⃗� − �⃗⃗� × �⃗� × �⃗� − �⃗� × �⃗� × �⃗⃗� −

𝜕

𝜕𝑡
(�⃗⃗� × �⃗� ) 

 
𝑓 = (�⃗� ∙ �⃗⃗� )�⃗� − �⃗⃗� × �⃗� × �⃗� + (�⃗� ∙ �⃗� )�⃗⃗� − �⃗� × �⃗� × �⃗⃗� −

𝜕

𝜕𝑡
(�⃗⃗� × �⃗� ) 

 
𝑓 = �⃗� ∙ [�⃗⃗� ⨂�⃗� −

1

2
(�⃗⃗� ∙ �⃗� )𝐼 + �⃗� ⨂�⃗� −

1

2
(�⃗� ∙ �⃗� )𝐼] −

𝜕

𝜕𝑡
(�⃗⃗� × �⃗� ) 

 
𝑓 = �⃗� ∙ 𝜎 −

𝜕𝑆 

𝜕𝑡
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Where σ represents the electromagnetic induced stress tensor and S⃗  is the Poynting 

vector. The symmetry of σ is conditioned to  D⃗⃗ ||E⃗⃗  and B⃗⃗ ||H⃗⃗ . It is demonstrated in [11] that an 

asymmetric case can take place if the microscopic magnetic dipoles in the material do not  align 

with the macroscopic field, which will induce a torque per unit volume. This situation might 

arise if certain interactions prevent the dipoles from aligning with the field. However, it is 

generally reasonable to assume aligned dipoles[2] 

  

2.1.4 Fluids Mechanics problem 

Describing the motion of a Newtonian fluid within a domain Ω over a time period [0; T] 

employs a similar approach to that used in solid mechanics. The fluid motion must satisfy the 

principle of momentum and mass conservation, along with a Newtonian constitutive law that 

establishes a linear relationship between stress and strain rates tensors based on the fluid 

viscosity. This section provides a brief introduction to fluid mechanics; for more detail, refer to 

APPENDIX 7.2 

 

2.1.4.1 Mass continuity equation 

The equation governing mass conservation within a domain is expressed as: 

 𝜕𝜌

𝜕𝑡
− 𝑣 ∙ ∇⃗⃗ 𝜌 + 𝜌∇⃗⃗ ∙ 𝑣 = 𝑠1 (2.34) 

 

Here, 𝜌 represents fluid mass density, 𝑣  is the velocity field, and 𝑠1 is the source term. 

Assuming constant mass density across the domain simplifies the mass continuity equation to: 

 𝜌∇⃗⃗ ∙ 𝑣 = 𝑠1 (2.35) 

 

 Finally, in the absence of a mass source, the expression for fluid incompressibility 

becomes:  

 �⃗� ∙ 𝑣 = 0 (2.36) 

 

2.1.4.2 Momentum conservation  

The conservation of momentum in fluid mechanics is described by: 

 
𝜌 (

𝜕𝑣 

𝜕𝑡
+ �⃗� ∙ �⃗� 𝑣  ) = �⃗� ∙ 𝜎 + 𝑓  (2.37) 

 

In this equation, 𝜎 is the Cauchy stress tensor, and 𝑓  represents an external volumetric 

force.  
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2.2 Electromagnetic model 

The modeling of electromagnetic problems is grounded in Maxwell's equations, 

supplemented by the electromagnetic constitutive laws of materials. Let's review Maxwell's 

equations: 

Faraday’s Induction Law ∇⃗⃗ × E⃗⃗ = −∂tB⃗⃗  (2.38) 

Ampere’s Law ∇⃗⃗ × H⃗⃗ = J + ∂tD⃗⃗  (2.39) 

Gauss’s Law ∇⃗⃗ ∙ D⃗⃗ = ρ  (2.40) 

Gauss’s Law for the magnetic field ∇⃗⃗ ∙ B⃗⃗ = 0  (2.41) 

 

2.2.1 Potential formulation  

Solving Maxwell's equations can be accomplished either by directly dealing with the 

magnetic and electric fields (resulting in a complex system of equations involving six 

unknowns) or by expressing these fields in terms of potentials: one scalar and one vector. We 

introduce two potential formulations: the electric (𝐴 − 𝜙) formulation and the the magnetic 

(𝑇 − Ω) formulation ([12],[13]). 

 

2.2.1.1 (𝑨 − 𝝓) formulation  

The 𝐴 − 𝜙 formulation stems from the divergence-free nature of the magnetic flux 

density �⃗� , expressed in (2.41).  This allows us to express the magnetic flux as the curl of a 

magnetic vector potential 𝐴 , such that: 

 B⃗⃗ = ∇⃗⃗ × A⃗⃗  (2.42) 

 

By substituting this expression for �⃗�  into Faraday’s induction law (2.38), we derive: 

 
∇⃗⃗ × E⃗⃗ = −

𝜕

𝜕𝑡
(∇⃗⃗ × A⃗⃗ ) (2.43) 

 

Applying the associative property of the differential operator �⃗�  in (2.43), this expression 

can be rewritten as: 

 
∇⃗⃗ × (E⃗⃗ +

𝜕A⃗⃗ 

𝜕𝑡
) = 0 (2.44) 

 

This results in a new form of Faraday’s law [14]: 

 
E⃗⃗ = −(

𝜕A⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ϕ) (2.45) 
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The current density is naturally calculated by substituting equation (2.45) into Ohm’s 

law (2.11): 

 
J = −σ(

𝜕A⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ϕ) (2.46) 

 

Similarly, the electric flux density can be expressed in terms of electric permittivity and 

the potential formulation as:   

 
D⃗⃗ = −𝜀0𝜀𝑟 (

𝜕A⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ϕ) (2.47) 

 

 Finally, using the expressions (2.10), (2.42) and (2.45) and substituting each term into 

Ampere’s law (2.2), the following expression is found: 

 

∇⃗⃗ × (
1

𝜇0𝜇𝑟
∇⃗⃗ × A⃗ ) =

𝜕

𝜕𝑡
(−𝜀0𝜀𝑟 (

𝜕�⃗� 

𝜕𝑡
+ ∇⃗⃗ ϕ)) − 𝜎(

𝜕A⃗ 

𝜕𝑡
+ ∇⃗⃗ ϕ) (2.48) 

 

Reordering this, it yields to the A − ϕ potential formulation of electromagnetism: 

 

𝜀0𝜀𝑟

𝜕2A⃗ 

𝜕𝑡2
+ 𝜎

𝜕�⃗� 

𝜕𝑡
+

1

𝜇
0

(∇⃗ ×
1

𝜇
𝑟

∇⃗ × A⃗ ) + 𝜀0𝜀𝑟

𝜕(∇⃗⃗ ϕ)

𝜕𝑡
+ σ∇⃗ 𝜙 = 0 (2.49) 

 

In the same manner, using the current density conservation (2.8), the gradient of the 

electric scalar potential is calculated as: 

 
∇⃗⃗ ⋅ σ (

𝜕A⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ϕ) = 0 (2.50) 

 

2.2.1.1.1 The gauge condition 

To ensure the uniqueness of the potential vector 𝐴 , which is not guaranteed by the 

previous equations, a gauge condition must be prescribed. One classical condition is the 

Coulomb gauge: 

 ∇⃗⃗ ∙ A⃗⃗ = 0 (2.51) 

 

By imposing the Coulomb gauge on (2.50) and assuming a constant electric 

conductivity in a finite domain, along with commutability of ∇⃗⃗  and 
𝜕

𝜕𝑡
 operators, we obtain: 



Chapter 2: Multiphysics computational modelling 
 

38 

 

 ∇⃗⃗ ⋅ σ(∇⃗⃗ ϕ) = 0 (2.52) 

 

2.2.1.2 𝑻 − 𝛀 formulation  

Similarly to the (A − ϕ) formulation, the 𝑇 − Ω formulation also derives from the 

Maxwell equations (2.38) and (2.39) combined with the constitutive laws (2.10) and (2.11). For 

the sake of simplicity, we employ the quasi-steady state approximation to introduce this 

formulation. In 𝑇 − Ω formulation, we use current density conservation (2.8) to define an 

electric vector potential �⃗� , given by:  

 J = ∇⃗⃗ × T⃗⃗  (2.53) 

 

Substituting expression (2.53) into Ampere’s law (2.6), we obtain: 

 ∇⃗⃗ × H⃗⃗ = ∇⃗⃗ × T⃗⃗  (2.54) 

 

Applying the associative property of the differential operator ∇⃗⃗  in (2.54), this can be 

rewritten as: 

 ∇⃗⃗ × (H⃗⃗ − T⃗⃗ ) = 0 (2.55) 

 

This leads to the expression: 

 H⃗⃗ = T⃗⃗ − ∇⃗⃗ Ω (2.56) 

 

Finally,  by using equations (2.10), (2.11), (2.53) and (2.56) and substituting them into 

Faraday’s Induction law (2.38), the following expression is found: 

 
∇⃗⃗ × σ(∇⃗⃗ × T⃗⃗ ) = −

𝜕

𝜕𝑡
𝜇0𝜇𝑟(T⃗⃗ − ∇⃗⃗ Ω) (2.57) 

 

Reordering (2.57) yields to the T − Ω potential formulation for electromagnetism: 

 
𝜇0𝜇𝑟

𝜕T⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ × σ(∇⃗⃗ × T⃗⃗ ) + 𝜇0𝜇𝑟 ∇⃗⃗ Ω = 0 (2.58) 

 

The magnetic scalar potential Ω is calculated from the Gauss law of induction, also 

known as the magnetic induction (2.41): 

 ∇⃗⃗ ∙ 𝜇0𝜇𝑟(T⃗⃗ − ∇⃗⃗ Ω) = 0 (2.59) 
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2.2.1.2.1 The gauge condition 

As in the 𝐴 − 𝜑 formulation, to ensure the uniqueness of the potential vector �⃗⃗� , a gauge 

condition must be specified. For this purpose, the Coulomb gauge is employed: 

 ∇⃗⃗ ∙ T⃗⃗ = 0 (2.60) 

 

2.2.2 Boundary conditions 

In cases where a global finite element approach is employed to tackle the 

electromagnetic problem, situations such as the one depicted in Fig. 2.2 arise. In this scenario, 

the domain Ω encompasses various components, including inductors (Ω𝐼), workpieces (Ω𝑝), 

and the surrounding air (Ω𝑎). 

 

Fig. 2.2 Boundaries for a global electromagnetic case. Ω𝑝 is the work piece, Ω𝑖 is the inductor, 

Ω represent whole domain (air surroundings + work piece + inductors). 𝛤𝑖𝑛𝑝
𝐼   and 𝛤𝑜𝑢𝑡

𝐼  represent 

the electrical input and output connections of the inductor. After Biro et al. [14] 

There are two types of boundary conditions [14] that are applied to the magnetic field 

intensity �⃗⃗�  and the magnetic flux density �⃗�  on the boundaries Γ𝐻 and Γ𝐵 respectively. 

 H⃗⃗ × �⃗� = 0⃗ ⟹ μ−1 ∇⃗⃗ × A⃗⃗ × �̂� = 0,  on   Γ𝐻 (2.61) 

 

 �⃗� ∙ �̂� = 0 ⟹ �̂� ∙ ∇⃗⃗ × A⃗⃗ = 0,  on   Γ𝐵 (2.62) 

 

 The tangential component of the magnetic field is set to zero on Γ𝐻 and the normal 

component of the magnetic flux is set to zero on Γ𝐵. These boundary conditions are expressed 

in terms of the vector potential 𝐴: 

 �⃗� × μ−1∇⃗⃗ × A⃑⃗⃗ = 0      on   Γ𝐻 (2.63) 

 

 A⃗⃗ × �⃗� = 0                on   Γ𝐵 (2.64) 

 

 Additionally, the input and output conditions on the inductor are given as follows: 
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 𝜙 = 0,  on   Γ𝑜𝑢𝑡
𝐼  (2.65) 

 

 𝜙 = 𝑉(𝑡),  on   Γ𝑖𝑛𝑝
𝐼  (2.66) 

 

 Finally, the initial boundary condition is given on the magnetic vector potential 𝐴 : 

 𝐴 (𝑥 , 0) = 0    and   
𝜕

𝜕𝑡
𝐴 (𝑥 , 0) = 0,  𝑥 ∈ Ω (2.67) 

 

2.2.3 Edge elements 

In classical finite element analysis, degrees of freedom are typically defined at the nodes 

for most finite elements, and internal values are derived by interpolating nodal values. However, 

these conventional elements present several issues when applied to electromagnetic problems. 

As highlighted in [15], they can produce non-physical or spurious solutions. This issue stems 

from the fact that nodal elements enforce continuity on the normal components of vector fields. 

This continuity is well-suited for handling divergence or gradient operators. However, 

electromagnetic equations primarily rely on the curl operator, which requires continuity only 

on the tangential components and permits discontinuity on the normal components, in 

opposition of the divergence or gradient operators. To address these challenges, a different 

approach for solving of electromagnetic problems using finite element has been developed. This 

approach involves using vector basis or vector elements that assign degrees of freedom to the 

edges rather than to the nodes of the element. These specialized elements are referred to as 

"edge elements" and were introduced by Nédélec ([16],[17]). 

 

 
Fig. 2.3 Nedelec elements (2D and 3D) 

 

To construct the edge basis functions in Nédélec elements, we first define nodal basis 

functions. For a 3D tetrahedral element, as illustrated in Fig. 2.3, the basis functions are defined 

as:  

 𝜙(𝑡, 𝑥 ) = ∑𝜙𝑛(𝑡)𝜑𝑛(𝑥 )

𝑛

 (2.68) 
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For this element, the basis functions 𝜑𝑛(�⃑�) are represented by a linear (P1) interpolation 

function of the coordinates: 

 𝜑1(𝑥 ) = 1 − 𝑥 − 𝑦 − 𝑧 ; 𝜑2(𝑥 ) = 𝑥 ; 𝜑3(𝑥 ) = 𝑦 ; 𝜑4(𝑥 ) = z (2.69) 

 

Similarly, a vector field expressed on the edges is defined as: 

 A⃗⃗ (𝑡, 𝑥 ) = ∑𝑎𝑒(𝑡)ψ⃗⃗ 𝑒(𝑥 )

𝑒

 (2.70) 

 

Here, 𝑎𝑒 = ∫ 𝐴 ⋅ �̂�
𝑒

 represents the mean value of the integral of 𝐴  along the edge 𝑒, and 

�̂� denotes a vector tangent to the edge. The vector base functions ψ⃗⃗ 𝑒(𝑥) are computed from the 

nodal basis functions using the convention provided in [15].  

 ψ⃗⃗ 𝑒(𝑥 ) = 𝜑𝑖(𝑥 )∇⃗⃗ 𝜑𝑗(𝑥 ) − 𝜑𝑗(𝑥 )∇⃗⃗ 𝜑𝑖(𝑥 ) (2.71) 

 

In this type of element, tangential components conserve continuity, and their 

constructions on a 3D tetrahedral element (6 edges) are given by: 

 ψ⃗⃗ 1(𝑥 ) = 𝜑1(𝑥 )∇⃗⃗ 𝜑2(𝑥 ) − 𝜑2(𝑥 )∇⃗⃗ 𝜑1(𝑥 ) 

(2.72) 

 ψ⃗⃗ 2(𝑥 ) = 𝜑2(𝑥 )∇⃗⃗ 𝜑3(𝑥 ) − 𝜑3(𝑥 )∇⃗⃗ 𝜑2(𝑥 ) 

 ψ⃗⃗ 3(𝑥 ) = 𝜑3(𝑥 )∇⃗⃗ 𝜑1(𝑥 ) − 𝜑1(𝑥 )∇⃗⃗ 𝜑3(𝑥 ) 

 ψ⃗⃗ 4(𝑥 ) = 𝜑1(𝑥 )∇⃗⃗ 𝜑4(𝑥 ) − 𝜑4(𝑥 )∇⃗⃗ 𝜑1(𝑥 ) 

 ψ⃗⃗ 5(𝑥 ) = 𝜑2(𝑥 )∇⃗⃗ 𝜑4(𝑥 ) − 𝜑4(𝑥 )∇⃗⃗ 𝜑2(𝑥 ) 

 ψ⃗⃗ 6(𝑥 ) = 𝜑3(𝑥 )∇⃗⃗ 𝜑4(𝑥 ) − 𝜑4(𝑥 )∇⃗⃗ 𝜑3(𝑥 ) 

 

The 2D representation of these edge vector basis functions is show in Fig. 2.4. 

 

ψ⃗⃗ 1(𝑥 ) ψ⃗⃗ 2(𝑥 ) ψ⃗⃗ 3(𝑥 ) 

   
Fig. 2.4 Edge base functions in 2D for 𝑃1 triangular element. 

The Nedelec element the notable advantage of inherently ensuring the Coulomb gauge. 

For a detailed proof, refer to APPENDIX 7.3 
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 ∇⃗⃗ ∙ A⃗⃗ = 0 (2.73) 

  

The curl of the edges basis functions ψ⃗⃗ 𝑒(𝑥 ) is computed numerically as: 

 ∇⃗⃗ × ψ⃗⃗ 𝑒(𝑥 ) = 2∇⃗⃗ 𝜑𝑖(𝑥 ) × ∇⃗⃗ 𝜑𝑗(𝑥 ) (2.74) 

 

 

2.2.4 Weak formulation 

Maxwell equations can be solved analytically for simple geometries and constant 

material properties. However, when dealing with complex system, analytical solutions become 

unattainable. Therefore, numerical approximation methods are essential for soling these 

equations over a discretized domain.  

The most widely used method for this purpose is the finite element method, which was 

initially developed and applied extensively for structural analysis and has since found extensive 

application in other fields, including electromagnetic [15]. This method begins with the 

establishment of a weak formulation of the problem.  

The first step involves defining functional spaces for gradient, divergence, and curl 

operators [18]. Let’s assume that the domain Ω is closed and convex. The Sobolev spaces are 

mathematical vector spaces that form the foundation of finite element analysis for solving 

partial differential equations. These spaces characterize the regularity of the solution function 

(vector or scalar) and its derivative up to a certain order. They also define scalar product and 

norms for these functions and their derivatives.  

Consider 𝐿2 and 𝐋2 as the scalar and vector function spaces, respectively, which 

represents square-integrable functions over the domain Ω. In these spaces, a scalar inner 

product between two functions is defined as: 

 
∫𝑢 ∙ 𝑣
Ω

 𝑑Ω    with    𝑢 ∈ 𝐿2     𝑒𝑡    𝑣 ∈ 𝐿2 (2.75) 

 

 
∫𝒖 ∙ 𝒗
Ω

 𝑑Ω   with    𝒖 ∈ 𝑳2     𝑒𝑡    𝒗 ∈ 𝑳2 (2.76) 

  

The set of ℋ1 Sobolev spaces for scalar functions in the domain Ω, for which the 

gradient belongs to 𝐿2, is given by: 

 ℋ1(Ω) = {𝑢 ∈ 𝐿2(Ω); ∇⃗⃗ 𝑢 ∈ 𝑳2(Ω)} (2.77) 

 The ℋ𝑐𝑢𝑟𝑙 Space for vector functions with square-integrable curl is given by: 

 ℋ𝑐𝑢𝑟𝑙(Ω) = {𝒖 ∈ 𝑳2(Ω); ∇⃗⃗ × 𝒖 ∈ 𝑳2(Ω)} (2.78) 
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 The ℋ𝑑𝑖𝑣 Space for vector functions with square-integrable divergence is given by: 

 ℋ𝑑𝑖𝑣(Ω) = {𝒖 ∈ 𝑳2(Ω); ∇⃗⃗ ∙ 𝒖 ∈ 𝐿2(Ω)} (2.79) 

  

The finite element method employs an internal approximation method (Galerkin), where 

the discretised solution is obtained by using a discretised version of the function space from the 

weak formulation. More specifically, the discretised function space is constructed using specific 

polynomial functions that go from 1 to 0 at the degrees of freedom associated with the finite 

element mesh.   

 After defining these spaces and considering the electromagnetic system given by the 

(𝐴 − 𝜙) formulation: 

 
𝜀0𝜀𝑟

𝜕2𝐴 

𝜕𝑡2
+ 𝜎

𝜕𝐴 

𝜕𝑡
+

1

𝜇0
(∇⃗⃗ ×

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ) + 𝜀0𝜀𝑟

𝜕(∇⃗⃗ ϕ)

𝜕𝑡
+ σ∇⃗⃗ 𝜙 = 0 (2.80) 

 

 ∇⃗⃗ ⋅ σ(∇⃗⃗ ϕ) = 0 (2.81) 

 

where 𝐴  and 𝜙 are unknown variables, we can define the discretised quantities of the 

fields as 𝐴 ℎ ∈ ℋℎ
𝑐𝑢𝑟𝑙 and ϕh ∈ ℋℎ

𝑑𝑖𝑣. Then, the problem becomes: 

 Find  𝐴 h ∈  ℋh
curl and ϕh  ∈  ℋℎ

div, such that: 

𝜀0𝜀𝑟

𝜕2A⃗⃗ ℎ
𝜕𝑡2

+ 𝜎
𝜕A⃗⃗ ℎ

𝜕𝑡
+

1

𝜇0
(∇⃗⃗ ×

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ) + 𝜀0𝜀𝑟

𝜕(∇⃗⃗ ϕh )

𝜕𝑡
+ σ∇⃗⃗ ϕh = 0 (2.82) 

 

 ∇⃗⃗ ⋅ σ(∇⃗⃗ ϕh) = 0 (2.83) 

 

For all ψ⃗⃗ 𝑒 ∈ ℋℎ
𝑐𝑢𝑟𝑙 and 𝜑𝑛 ∈ ℋℎ

𝑑𝑖𝑣 the above expression yield: 

〈ψ⃗⃗ 𝑒 , 𝜀0𝜀𝑟

𝜕2A⃗⃗ ℎ
𝜕𝑡2

+ 𝜎
𝜕A⃗⃗ ℎ
𝜕𝑡

+
1

𝜇0
(∇⃗⃗ ×

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ) + 𝜀0𝜀𝑟

𝜕(∇⃗⃗ ϕh )

𝜕𝑡
+ σ∇⃗⃗ ϕh 〉 = 0 (2.84) 

 

 〈𝜑𝑛, ∇⃗⃗ ⋅ σ(∇⃗⃗ ϕh)〉 = 0 (2.85) 

 

Then, by applying the first Green’s vector theorem, we can simplify the double curl 

expression as follows:  

〈ψ⃗⃗ 𝑒 ,
1

𝜇0
∇⃗⃗ ×

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ〉 =

1

𝜇0

〈∇⃗⃗ × ψ⃗⃗ 𝑒 ,
1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ〉 −

1

𝜇0
∫ ψ⃗⃗ 𝑒 ∙ (

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ × �̂�) 𝑑𝑆

Γ

 (2.86) 
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 Similarly, we apply the same principle to the electrical potential term: 

 
〈𝜑𝑛, ∇⃗⃗ ⋅ σ(∇⃗⃗ ϕh)〉 = 〈∇⃗⃗ 𝜑𝑛, σ(∇⃗⃗ ϕh)〉 − ∫𝜑𝑛(σ�̂� ∙ ∇⃗⃗ ϕh)𝑑𝑆

Γ

 (2.87) 

 

Using these transformations, the electromagnetic system can be rewritten as: 

〈ψ⃗⃗ 𝑒 , 𝜀0𝜀𝑟

𝜕2A⃗⃗ ℎ
𝜕𝑡2

〉 + 〈ψ⃗⃗ 𝑒 , 𝜎
𝜕A⃗⃗ ℎ
𝜕𝑡

〉 +
1

𝜇0

〈∇⃗⃗ × ψ⃗⃗ 𝑒 ,
1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ〉 −

1

𝜇0
∫ ψ⃗⃗ 𝑒 ∙ (

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ × �̂�)𝑑𝑆

Γ

+ 〈ψ⃗⃗ 𝑒 , 𝜀0𝜀𝑟

𝜕(∇⃗⃗ ϕh)

𝜕𝑡
〉 + 〈ψ⃗⃗ 𝑒 ,σ∇⃗⃗ ϕh〉 = 0 

(2.88) 

 

 
〈∇⃗⃗ 𝜑𝑛, σ(∇⃗⃗ ϕh)〉 − ∫𝜑𝑛(σ�̂� ∙ ∇⃗⃗ ϕh)𝑑𝑆

Γ

= 0 (2.89) 

  

To solve this problem, we make the following assumptions: 

• The electric potential is defined based on the input and output potential conditions, as 

specified in equations (2.65) and (2.66) 

• Electric flow is exclusively allowed on surfaces associated with Γ𝑖𝑛𝑝
𝐼  and Γ𝑜𝑢𝑡

𝐼  . This 

restriction is expressed mathematically as: 

 
∫𝜑𝑛(σ�̂� ∙ ∇⃗⃗ ϕh)𝑑𝑆
Γ

= 0 (2.90) 

 

• The boundary condition expressed in (2.61) is the only employed to permit the outward 

flow of the magnetic field: 

 1

𝜇0
∫ ψ⃗⃗ 𝑒 ∙ (

1

𝜇𝑟
∇⃗⃗ × A⃗⃗ ℎ × �̂�) 𝑑𝑆

Γ

= 0 (2.91) 

 

By considering these assumptions, the electromagnetic system is reformulated as 

follows: 

〈ψ⃗⃗ e, ε0εr

∂2A⃗⃗ h
𝜕𝑡2

〉 + 〈ψ⃗⃗ e, σ
∂A⃗⃗ h
𝜕𝑡

〉 +
1

μ0

〈∇⃗⃗ × ψ⃗⃗ e,
1

μr
∇⃗⃗ × A⃗⃗ h〉 + 〈ψ⃗⃗ e, ε0εr

∂(∇⃗⃗ ϕh)

𝜕𝑡
〉

+ 〈ψ⃗⃗ e,σ∇⃗⃗ ϕh〉 = 0 

(2.92) 

 

 〈∇⃗⃗ φn, σ(∇⃗⃗ ϕh)〉 = 0 (2.93) 
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The expression (2.92) constitutes the general electromagnetic equation employed in this 

work. Where ψ⃗⃗ 𝑒 and 𝜑𝑛 are the basis functions of the problem, and equation (2.93) defines the 

electric potential equation within the coil domain. 

 

2.2.5 Discretised formulation 

The weak formulations of the electromagnetic system and the electric potential, as given 

in equations (2.92) and (2.93) are discretized using the approximation defined in equations 

(2.94) and (2.95): 

 𝜙(𝑡, 𝑥 ) ≈ 𝜙ℎ(𝑡, 𝑥 ) = ∑ 𝜙𝑛(𝑡)𝜑𝑛(𝑥 )

𝑛

 (2.94) 

 

 𝐴 (𝑡, 𝑥 ) ≈ 𝐴 ℎ(𝑡, 𝑥 ) = ∑𝑎𝑒(𝑡)ψ⃗⃗ 𝑒(𝑥 )

𝑒

 (2.95) 

The discretized equations for the magnetic and electric potentials can be obtained as 

follows.  

〈ψ⃗⃗ e, ε0εrψ⃗⃗ e〉
∂2{ae}

𝜕𝑡2
+ 〈ψ⃗⃗ e, σψ⃗⃗ e〉

∂{ae}

𝜕𝑡
+

1

μ0

〈∇⃗⃗ × ψ⃗⃗ e,
1

μr
∇⃗⃗ × ψ⃗⃗ e〉 {ae}

+ 〈ψ⃗⃗ e, ε0εr∇⃗⃗ φn〉
∂{ϕn}

𝜕𝑡
+ 〈ψ⃗⃗ e,σ∇⃗⃗ φn〉{ϕn} = 0 

(2.96) 

 

 〈∇⃗⃗ φn, σ∇⃗⃗ φn〉{ϕn} = 0 (2.97) 

 

2.2.6 Boundary element method (BEM) 

The Boundary Element Method (BEM) is a numerical technique employed to solve 

partial differential equations (PDEs) and integral equations. Unlike the Finite Element Method 

(FEM) that discretizes the entire domain, BEM specifically focuses on discretizing only the 

boundaries of the problem domain. It operates on the principle that the solution to a PDE can 

be expressed as an integral over the domain's boundary. By dividing the boundary into elements 

and approximating the solution using basis functions, the integral equation can be effectively 

solved through numerical methods. 

One notable advantage of BEM is its ability to reduce the dimensionality of the problem 

by eliminating the need to discretize the entire domain. This reduction brings significant 

computational savings. BEM is particularly well-suited for problems featuring homogeneous 

boundary conditions or when the solution is primarily concentrated on the boundary. 

This approach is often used in electromagnetic problems to perform the coupling 

between the different conductive part avoiding meshing the space in-between (usually air) 

whilst the other domains are represented using FEM [19]. Although not meshing the air space 
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simplifies the tracking of solid body movements, it also introduces complexities in the 

numerical resolution of the electromagnetic problem. One key consideration is that the BEM 

generates fully connected matrices, which can make them more challenging to solve [20], 

despite having a smaller number of degrees of freedom. Additionally, managing these matrices 

becomes even more complicated in parallel computations. Furthermore, the BEM approach can 

pose difficulties when dealing with symmetry planes. 

 

2.2.7 Fully immersed finite elements approach 

The Immersed Finite Element Method (IFEM) is a numerical technique employed in 

electromagnetic modeling [21] and is currently used in our simulations.  

The IFEM approach involves discretizing the computational domain using a single 

computational mesh that encompasses the entire domain, including conductive parts, inductors, 

and the air domain. This computational mesh serves as a framework for solving the 

electromagnetic problem as a unified system. Rather than using separate meshes for each 

component. The immersed parts, such as conductive parts or inductors, are identified within the 

computational mesh using their specific material properties. 

By solving the entire system as a whole, a sparse symmetric linear system of equations 

is obtained. This system can be efficiently solved using various Krylov subspace solvers such 

as PCCG, GMRES, and others. The equations governing electromagnetic fields are solved on 

the whole mesh, while any discontinuities in material properties or magnetic fields at domain 

interfaces are naturally handled, as demonstrated in [22] and [23]. Moreover, the IFEM 

approach enables the consideration of solid body movements, including displacements and 

deformations, as well as adaptative mesh refinement, as described in [24],[25] and [26]. Fig. 

2.5 shows a typical induction heating configuration in IFEM. 

 

  
Fig. 2.5  domain simulated: Workpiece-Inductor-Surrounding air 

 

Workpiece 

Inductor 

air 
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2.2.8 Time integration 

2.2.8.1 Electromagnetic resolution 

  In electromagnetic computations, there are two common approaches to handling the 

time-dependency of solutions. The first numerical approach employs a harmonic approximation 

to solve the electromagnetic problem in the frequency domain, which implies transforming all 

fields into complex-valued representations. This method is suitable for problems involving a 

single perfectly harmonic sinusoidal signal or a finite summation of harmonic signals with 

constant material properties, as it does not incur any loss of accuracy ([27],[28],[29],[30]). 

However, from a physical standpoint, its main drawback lies in the fact that the entire system 

responds with the same pulsation. Consequently, this approach is not well-suited for scenarios 

involving magnetic materials. It remains valid for linear magnetic materials and loses accuracy 

when dealing with non-linear magnetic materials [31], where the electromagnetic field solution 

can exhibit non-sinusoidal time evolution due to additional harmonics.  Moreover, from a 

numerical standpoint, solving the complex valued problem can be challenging, given that the 

resulting matrix has a very large sparsity pattern.  

 

 The second approach involves a direct time resolution of the Maxwell equations. In this 

method, any arbitrary input signal is discretised performed discretising the input current signal 

over time steps by breaking down the input current signal into time steps. 

 

  Marioni et al. [30] conducted a comparative analysis of these approaches, specifically 

examining the computational time required for each. The study revealed that the conditioning 

of the harmonic problem can significantly impact computational costs. Showing that the time 

required to solve the harmonic problem alone exceeds the time needed to solve multiple 

increments in the time approach. Additionally, a time resolution offers some others advantages, 

especially when dealing with non-linear materials and electromagnetic field distortions [32]. 

The ability to use arbitrary input signals overcomes the limitations of the harmonic problem, 

enabling the proper simulation of multi-frequency signals.  As a result, the model used in this 

work is discretized over the time domain. 

 

  We can now proceed by starting from the discretised equations (2.96) and (2.97) and 

defining each individual term as a function of the material properties: 

 Μ(ε) = ε0〈ψ⃗⃗ e, εrψ⃗⃗ e〉 (2.98) 

 

 C(σ) = 〈ψ⃗⃗ e, σψ⃗⃗ e〉 (2.99) 

 

 
K(μ) =

1

μ0

〈∇⃗⃗ × ψ⃗⃗ e,
1

μr
∇⃗⃗ × ψ⃗⃗ e〉 (2.100) 

 

 F(ε) = 〈ψ⃗⃗ e, ε0εr∇⃗⃗ φn〉 (2.101) 

 

 𝑄(σ) = 〈ψ⃗⃗ e,σ∇⃗⃗ φn〉 (2.102) 
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 G(σ) = 〈∇⃗⃗ φn, σ∇⃗⃗ φn〉 (2.103) 

 

  The discretized formulation is reformulated as:  

 
Μ(ε)

∂2{ae}

𝜕𝑡2
+ C(σ)

∂{ae}

𝜕𝑡
+ K(μ){ae} + F(ε)

∂{ϕn}

𝜕𝑡
+ 𝑄(σ){ϕn} = 0 (2.104) 

 

 G(σ){ϕn} = 0 (2.105) 

 

  As the electric conductivity depends solely on temperature, the electric potential ϕ 

calculation is independent of the magnetic vector potential 𝐴 . Therefore, the solution of the 

system (2.104) - (2.105), is computed in a decoupled manner: 

 

1. First, the electric potential is solved only within the inductor domain: 

 

  

{

G(σ){ϕn} = 0        𝑖𝑛 Ω𝐼
h

ϕ𝑖 = 𝑉                 𝑜𝑛 Γ𝑖𝑛𝑝
𝐼

ϕ𝑖 = 0                 𝑜𝑛 Γ𝑜𝑢𝑡
𝐼

 (2.106) 

 

2. Then, the magnetic potential is solved throughout the entire domain, using the electric 

potential as the source term. By reorganizing expression (2.104) and shifting the source 

term to the left-hand side of the equation: 

 

 

{Μ(ε)
∂2{ae}

𝜕𝑡2
+ C(σ)

∂{ae}

𝜕𝑡
+ K(μ){ae} = −F(ε)

∂{ϕn}

𝜕𝑡
− 𝑄(σ){ϕn}      𝑖𝑛 Ωh 

𝑎𝑖 = 0                                                                                                                     𝑜𝑛 ΓB

 (2.107) 

 

  Typically, most electromagnetic material processes occur at low to medium frequencies 

(< 1MHz), thus enabling to neglect the current displacements density term 𝜕𝑡�⃗⃗�  (quasi-steady 

state approximation). Then, for this purpose, the discretised equation can be rewritten as: 

 

 

{C(σ)
∂{ae}

∂t
+ K(μ){ae} = −𝑄(σ){ϕn}      𝑖𝑛 Ωh 

𝑎𝑖 = 0                                                                𝑜𝑛 ΓB

 (2.108) 

 

 

2.2.8.2 Time integration schema  

  One of the key aspects in modelling evolution problems is the proper discretisation of 

time dependence. To maintain accuracy and stability and minimize the divergence between the 

numerical approximation and the “real” solution, it's essential to use a robust time integration 

method. This work employs a family of second-order time integration schemes, previously 

introduced for the thermal problems and later extended to electromagnetic problems, as 
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described in equation (2.109). A detailed description can be found in [33],[34]. Here, a brief 

overview of the method is provided. 

  The system of ordinary differential equations is given as: 

 C
𝜕X

𝜕𝑡
+ KX = Q (2.109) 

  It is required to compute 𝑋 at a future time 𝑡𝑛+1 assuming all state and input fields are 

known at the current time 𝑡𝑛 and a past time 𝑡𝑛−1, where 𝑡𝑛+1 > 𝑡𝑛 > 𝑡𝑛−1, ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 

and ∆𝑡0 = 𝑡𝑛 − 𝑡𝑛−1 are the current and previous time steps. An asynchronous time concept is 

also introduced, as depicted in Fig. 2.6. 

 

Fig. 2.6 Discretization of time in the asynchronous time-integration approach 

  The discretization and equilibrium are established at a virtual time as follows: 

 𝑡∗ = α1𝑡𝑛−1 + α2𝑡𝑛 + α3𝑡𝑛+1
𝑎 ;   α1 + α2 + α3 = 1 (2.110) 

 𝑋∗ = α1𝑋𝑛−1 + α2𝑋𝑛 + α3𝑋𝑛+1
𝑎  (2.111) 

 𝐶
𝜕𝑋

𝜕𝑡
= (1 − 𝛾)

𝑋𝑛 − 𝑋𝑛−1

 ∆𝑡0
+ 𝛾

𝑋𝑛+1
𝑎 − 𝑋𝑛

∆𝑡𝑎
 (2.112) 

 𝐶∗
𝜕𝑋∗

𝜕𝑡
+ 𝐾∗𝑋∗ = 𝑄∗ (2.113) 

  The linear system is assembled as: 

[𝐶∗ +
𝛼3

𝛾
∆𝑡𝑎𝐾∗] 𝑋∗ =

𝛼3

𝛾
∆𝑡𝑎𝑄∗ + 𝐶∗ [(𝛼2 +

∆𝑡𝑎
∆𝑡0

(𝛾 − 1)
𝛼3

𝛾
+ 𝛼3) 𝑋𝑛 + (𝛼1 −

∆𝑡𝑎
∆𝑡0

(𝛾 − 1)
𝛼3

𝛾
)𝑋𝑛 − 1] (2.114) 

  The actual solution at 𝑡𝑛+1 is re-interpolated: 

 𝑋𝑛+1 =
∆𝑡

𝛼3∆𝑡𝑎
𝑋∗ + (1 − (1 +

𝛼2

𝛼3
)

∆𝑡

∆𝑡𝑎
)𝑋𝑛 −

𝛼1

𝛼3

∆𝑡

∆𝑡𝑎
𝑋𝑛−1 (2.115) 

  For practical purposes, ∆ta = ∆t is used, meaning there are four numerical parameters 

to define the integration scheme. The method is considered: 

• unconditionally stable if 
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 𝛾 ≥
1

2
; 𝛼1 >

1

2
(1 − 𝛾) (2.116) 

• and consistent if 

 𝛼2 = 1 − 𝛼1 + (
1

2
− 𝛼1)

∆𝑡𝑎
∆𝑡

−
𝛾

2
(1 +

∆𝑡𝑎
∆𝑡

) (2.117) 

 𝛼3 = (𝛼1 −
1

2
)
∆𝑡𝑎
∆𝑡

+
𝛾

2
(1 +

∆𝑡𝑎
∆𝑡

) (2.118) 

  In order to satisfy both conditions, there are only two free numerical parameters from 

where to choose α1 and γ. Otherwise, the consistency condition can be violated, as it is the case 

for the classical Euler implicit method (Table 2.1). 

Table 2.1  

List of some known time-integration schemes that can be derived from the proposed method. 

Name 𝜸 𝜶𝟏 𝜶𝟐 𝜶𝟑 

Euler Implicit 1 0 0 1 

Crank-Nicholson 1 0 1/2 1/2 

Dupont-Implicit 3/2 0 0 1 

Lees 1/2 1/3 1/3 1/3 

 

 

2.3 Multiphysics coupling  

In most electromagnetic coupled processes, the electromagnetic force plays a significant 

role as the driving force. As a result, most coupling procedures typically initiate by solving the 

electromagnetic equation as a primary step before coupling it to other physics. 

 

2.3.1 Characteristic times involved 

The time scales of electromagnetic phenomena can significantly differ from those of other 

physics involved in various applications. For instance, in Induction Heating (IH), the 

electromagnetic period can range from 10−2s to the  10−6s, covering frequencies from 100Hz 

and 1MHz, while heat diffusion occurs on a much large scale, typically in seconds [1]. In 

Magnetic Pulse Forming (MPF), shock-wave mechanics operate at nanosecond (10−9𝑠) 

timescales during impact conditions, whereas the electromagnetic wave problem remains in the 

microsecond (10−6𝑠) range [35]. In Electromagnetic Stirring (EMS), the frequencies typically 

range around a few Hertz (from 2Hz to 10Hz), meaning the electromagnetic problem operates 

on a timescale of about 0.1 seconds, while vorticity issues in fluid flow can occur at orders of 

magnitude ranging from 10−3𝑠 to several seconds.[3] 

In order to accuracy model these processes and properly couple the physics involved, 

considerations regarding the characteristic time scales have to be taken into account. Two main 

cases can be identified, which are explained in detail in Fig. 2.7. 
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a) 

 
b) 

 
Fig. 2.7 Coupling schemes: a) periodic coupling and b) incremental coupling. EM: 

electromagnetics and TD: thermo-dynamics 

 

On one hand, the periodic scheme shown in Fig. 2.7.a considers two main factors when 

solving the coupled problem: 

• The temperature remains constant during the electromagnetic period. 

• The Joule heating effect phenomenon and the Lorentz force are averaged over the 

electromagnetic period. 

The electromagnetic model is solved periodically using this scheme. The 

electromagnetic period is divided into time steps, and at each time step, the electromagnetic 

equation (2.96) is solved using the time integration scheme introduced in section 2.2.8. 

Computation continues until convergence is achieved over the period. This approach is used to 

solve the induction heating problem. 

On the other hand, the incremental scheme allows for direct coupling of the physics 

after solving a time increment computation of the electromagnetic solver. This scheme is 

employed in simulating the magnetic pulse forming process, which enables taking into account 

the characteristic time scale of the phenomenon. 

For EMS, the choice of scheme depends on the relative time scales of the EM force and 

the turnover time of the turbulent structure. If the period of the EM force is of the same order 

of magnitude as the turnover time, the transient part will affect the turbulence structure, and an 

incremental coupling shall be used. Conversely, if the time scale of the EM force is smaller 

than the turbulence time scale, only the average part of the force will affect the flow, and a 

periodic coupling scheme is employed. 
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   The power density dissipated through Joule effect and Lorentz force are crucial 

quantities utilized in the coupling process. In the electromagnetic model, these quantities can 

be calculated as follows: The power resulting from Joule effect is determined using the 

equation: 

 �̇�𝑒 = �⃗� ∙ 𝐽  (2.119) 

 

For the periodic scheme, a time average over the period needs to be calculated. This can 

be computed at each point within the domain by: 

 
�̇�𝑒 = 

1

𝑡𝑝 − 𝑡0
∫ �⃗� ∙ 𝐽  𝑑𝑡

𝑡𝑝

𝑡0

 (2.120) 

 

Where 𝑡𝑝 represents the period of the electromagnetic wave.  Lorentz force is computed 

using the equation: 

 F⃗ L = 𝜌𝑒(E⃗⃗ + v⃗ × B⃗⃗ ) (2.121) 

 

Where 𝜌𝑒 represents a distribution of charges. Then, the time average at each point 

within the domain is given by: 

 
F⃗ L =

1

𝑡𝑝 − 𝑡0
∫ 𝜌𝑒(E⃗⃗ + v⃗ × B⃗⃗ ) 𝑑𝑡

𝑡𝑝

𝑡0

 (2.122) 

. 

 

2.3.2 Coupling scheme 

The Multiphysics coupled integration scheme is illustrated in Fig. 2.8, depicting the 

flow of information between the solvers. In this scheme, the EM solver provides the source 

term for the Solid/Fluid mechanics solver. This source term can be either the power dissipated 

due to Joule effect or the Lorentz force. Conversely, the EM solver receives input from the 

Solid/Fluid mechanics solver, which includes temperature data for updating material properties 

and the new coordinates of the pieces for updating shape and position. 
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Fig. 2.8 Coupling scheme of the Multiphysics problem. 

 

The temperature plays a key role in terms of material property variations. In fact, 

magnetic properties of materials often exhibit temperature-dependent behaviour. This 

dependence can lead significant changes in the electromagnetic characteristics of material, such 

as transitioning from ferromagnetic to paramagnetic states at the Curie temperature. 

Additionally, the phases motion, such as free surface fluctuation or phase change, can also exert 

an influence on electromagnetic properties, resulting in substantial variations within regions 

undergoing phase/material changes. After each coupling with the solid/fluid mechanics model, 

the material properties are recalculated for input into the electromagnetic model. 

Considering the strong influence of temperature, a coupling criterion is established 

based on differences in material properties concerning temperature. This criterion is applied to 

the solid/fluid mechanics model, triggering a re-launch of the EM simulation when necessary. 
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2.4  R-adaptation  

R-adaptation involves adjusting the positions of the nodes within the mesh while 

preserving the same topology, meaning that no new mesh is generated; rather, only the nodes 

positions are altered. This approach is suitable for scenarios involving minor deformations, such 

as thermal expansion or small parts displacements. However, the problem arises when the 

change is large enough to create a distortion of the mesh elements. In such case, the creation of 

a new mesh becomes necessary. A common methodology after r-adaptation is to evaluate the 

quality of the element, and if the quality falls below a predefined threshold, a new mesh will be 

generated. Fig. 2.9 illustrated the r-adaptation principle, where a displacement is performed in 

the ring, impacting only the coordinates of the nodes.  

 

 

Fig. 2.9 R-adaptation principle [2] 

 

 In electromagnetic modelling, when employing a fully immersed finite element 

approach, the surrounding air must follow the motion applied to the components. 

 

 

2.5 Field transport procedure in electromagnetic modelling 

Field transport is a fundamental step in finite element simulations facing large 

deformations and hence use remeshing steps. In the current electromagnetic solver 

implementation, it is used in two different scenarios: 

1) Remeshing of the AM mesh to recover the information of the previous mesh: 

a. Magnetic vector potential 𝐴  or electric scalar potential 𝜙 from previous time 

steps. 

b. Other fields such as Magnetic field �⃗⃗� , magnetic flux density �⃗�  or electric 

current density 𝐽  
2) Coupling step with thermo-mechanics (since different meshes are used for each 

physics) to recover: 

a. Temperature 

b. Displacement 

c. Velocity 
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2.5.1 Transport strategies  

In finite element methods, when a geometry undergoes topological modifications, it 

becomes necessary to transfer the information from the old mesh to the new mesh. This process 

is accomplished through a transport strategy, which is determined based on the type of field 

being considered and its geometric representation. Fig. 2.10 illustrates the different types of 

fields available in our finite element library.  

 

Element 𝑃0 Element 𝑃1 Node 𝑃1 Edges  𝑃1 

    
Fig. 2.10 Type of fields in the library  

 

As displayed in Fig. 2.10 fields can be represented in different ways.  They can be stored 

as elementwise values (𝑃0) at the barycentre of each element or as linear valued (𝑃1) at Gauss 

integration points, nodes and edges. For the fields stored in the gauss points and nodes, the 

transportation of these fields from one mesh to another follows a basic strategy, as depicted in 

Fig. 2.11. When transporting a 𝑃1 field from the original mesh to a target mesh, a linear 

interpolation is employed.  On the other hand, in the case of 𝑃0 fields, the value of the closest 

element in the target mesh is assigned to the corresponding element in the original mesh. 

 

 

Fig. 2.11 Basic transport method 

 

In the electromagnetic formulation, are computed using edge elements, which presents 

a challenge when it comes to transporting these values between meshes. This is due to the fact 

that a single edge in the original mesh may traverse multiple elements in the target mesh. To 

address this, a mapping procedure is employed, as illustrated in Fig. 2.12. The procedure 

involves three steps: 

• Transformation from edges to integration points: Initially, the edge values are 

transformed to the corresponding integration points on the elements. 

• Transport from the old mesh to the new mesh: The values are then transported from 

the original mesh to the target mesh, using a linear interpolation method. 
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• Transformation from integration points to edges: Finally, the transported values are 

mapped back from the integration points to the edges in the target mesh. 

 

 

Fig. 2.12 Edges field transport procedure.  

 

In order to perform the last step of the procedure described above, a minimisation 

problem is solved, involving the field at the integration points in both the target and original 

mesh. Let A⃗⃗ ∗(x⃗ ) represent the field in the new mesh and A⃗⃗ (x⃗ ) the field in the old mesh. The 

minimisation problem is then expressed as: 

 min‖A⃗⃗ ∗(x⃗ ) − A⃗⃗ (x⃗ )‖
2
 (2.123) 

 

The solution is obtained through the following steps: 

 

2.5.1.1 Transformation from edges to integration points. 

This first step involves using the edge basis functions, denoted as ψ⃗⃗ 𝑒(𝑥 ), which were 

defined in section 2.2.3. Let 𝑎𝑒 represent the value of the field at the edge 𝑒 and A⃗⃗ (𝑥 ) the value 

at any point inside the element in the original mesh. The values at the Gauss integration points 

can be then computed as follows: 

 A⃗⃗ (𝑥 ) = ∑𝑎𝑒ψ⃗⃗ 𝑒(𝑥 )

𝑒

 (2.124) 

 

2.5.1.2 Transport from the old mesh to the new mesh. 

The second step involves localizing the integration point of the target element on the 

original mesh. Once the element in the original mesh is identified, the field in the target element, 

denoted as 𝐴 ∗(𝑥 ), can be computed using the following expression: 

 A⃗⃗ ∗(𝑥 )  = ∑𝜔𝑔A⃗⃗ (𝑥 )𝑔

𝑔

 
(2.125) 

 

Where 𝜔𝑔 represents the weights associated with the integration point of the element in 

the original mesh. The weights depend on the relative coordinates of the point being calculated 

in the target element. 
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2.5.1.3 Transformation from integration points to edges. 

The field in the target mesh can be represented by its respective values at the edge of 

the element using equation (2.124). 

 A⃗⃗ ∗(𝑥 ) = ∑𝑎𝑗
∗ψ𝑗

∗

𝑗

    (2.126) 

 

Where (𝑗) represent the index of the edge in the element. The minimisation problem is 

then solved projecting it onto the basis function of the target mesh, resulting in the following 

expression: 

 〈∑𝑎𝑗
∗𝜓𝑗

∗

𝑗

− A⃗⃗ ∗(𝑥 ), 𝜓𝑘
∗ 〉 = 0 (2.127) 

 

By reordering this expression, the following linear system is obtained: 

 ∑〈𝜓𝑗
∗, 𝜓𝑘

∗〉𝑎𝑗
∗

𝑗

= 〈A⃗⃗ (𝑥 ), 𝜓𝑘
∗ 〉 (2.128) 

 

Solving this linear system allows us to find the values on each edge of the mesh. 

 

 

2.6 Parallel paradigm  

The parallel paradigm used in Forge® is based on the Single Program Multiple Data 

(SPMD), where the same program runs on different data. This means that for a mesh partition 

as shown in Fig. 2.13, each processor executes a separate full version of the code. At the same 

time, information can be shared between processors with specific synchronization operations. 

In this parallel architecture, the nodes and edges of the element are shared between several 

processors, while the volumetric element only belongs to a single partition. This can be clearly 

seen in Fig. 2.13, where the colours represent the different partitions of the mesh. For more 

information, see [2] and [36] 

 

 
  

Fig. 2.13 Mesh partitioning in Forge® 
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Résumé :  Estimateurs d’erreur a posteriori pour la modélisation 

électromagnétique. 

 

Ce chapitre se concentre sur le premier pas de l'adaptation de maillage en éléments finis, 

qui consiste à développer des estimateurs d'erreurs permettant d'identifier les zones à adapter 

dans le domaine discrétisé. 

Tout d'abord, une bibliographie des estimateurs d'erreur a posteriori implémentés dans 

la modélisation électromagnétique est présentée. Ensuite, un estimateur d'erreur basé sur la 

méthode variationnelle de Galerkin est développé. À partir de cet estimateur, des estimateurs 

additionnels sont également développés en se basant sur le comportement physique du 

phénomène électromagnétique : 

• Dérivation de la densité de courant 

• Vérification de la loi de Faraday 

• Vérification de la loi d'Ampère 

• Et enfin, un estimateur basé sur un principe fondamental de conservation du 

calcul.  

De plus, une normalisation est conçue pour comparer les différences entre les estimateurs. 

Une validation de l'estimateur par recouvrement est effectuée en résolvant un cas 

analytique et en comparant l'erreur exacte de la solution numérique avec l'estimateur d'erreur. 

Finalement, les estimateurs sont testés sur des cas purement électromagnétiques ainsi que sur 

des cas d'application industrielle. 
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3 Error estimators 

3.1 Introduction  

Electromagnetic material processing frequently involves parts with complex geometries 

and materials with non-linear magnetic properties Effectively modelling these processes can be 

computationally intensive, demanding significant CPU time and resources Furthermore, 

computer models often lack error information for the final results. Consequently, the 

development of error estimators capable of handling complex geometries and multiphysics 

interactions is of utmost importance. These estimators can provide users with information on 

the accuracy as well as enable to reach a good compromise between the resources available and 

the accuracy aimed at. This chapter aims at going beyond some of the restrictions commonly 

found in the error estimators, such as simplified geometries and harmonic approximation. 

Instead, they will be suited to the fully immersed computational model developed here, enabling 

remeshing in both the air domain and the involved conducting materials.  

 

 

3.2 Electromagnetic-coupled processes modelling 

 Continuous improvement of processing units (CPUs/GPUs) and availability of HPC 

infrastructures, computational models are expected to become more realistic and accurate. 

However, this comes at the price of increasingly complex models. In order to reduce the 

concept-to-production time by improving the engineering design phase, one of the key 

challenges and opportunities for improvement of numerical methods is to automatize mesh 

generation and adaptation. Before addressing automatic remeshing, it is required to tackle the 

error estimation problem for the electromagnetic simulation as from here it will be possible to 

build the required tools for automatic remeshing. It means that regions with larger than average 

error estimation will be refined and regions less affected by numerical error will enable 

coarsening of the mesh to optimize accuracy as well as computational time. Therefore, this 

chapter will focus on the development of a posteriori error estimators, with an especial focus 

on electromagnetic fields accuracy. 

 

 

3.3 Finite elements and a posteriori error estimators  

Powerful modern computers and efficient numerical procedures now make it possible to 

transform any physical phenomenon into engineering simulations to predict real situations. 

However, even with the best mathematical models, computational results always contain 

numerical errors. These errors give the information about the accuracy of the solution obtained 
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with the numerical procedure. For this reason, a mathematical theory for the estimation and 

quantification of error in numerical simulation is so important. In fact, in finite element method 

knowledge of the error, its magnitude and its distribution provide the initial basis of adaptive 

control of the simulation. This adaptative procedure can range from changing the discretization 

mesh or the choice of the algorithm to improving computation efficiency. 

Numerical error in FEM computation has been a major source of research since the 

beginning of computer simulations of physical phenomena. In finite element methods, partial 

differential equations involved in mathematical models are first transformed from local 

equations of physical phenomena into a global weak formulation, and then discretized in space 

by means of Galerkin method. Nonetheless, the discretisation procedure induces an intrinsic 

loss of accuracy, and is thus one of the sources for numerical errors. All the information 

contained in these complex models cannot be accurately captured by the discretization process 

alone. Consequently, it becomes imperative to estimate, control, and minimize numerical 

errors, as it enables a first level of uncertainty quantification.  

During the numerical simulation of a physical problem, several sources of error can be 

distinguished, which cause the obtained solution to differ from the exact solution of the studied 

problem. The main sources of error are: 

• Choice of the mathematical model: which may neglect any particular physical 

phenomena. 

• Spatial discretization of the problem: Intrinsic in finite element method, which 

depends on the mesh size. 

• Numerical resolution: numerical integration errors related to the choice of the 

integration scheme, rounding error, etc. 

• Time discretisation: choice of time step and integration methods. 

In this section, we shall focus on the space discretization error, which can be defined as: 

 𝜖 = 𝑢 − 𝑢ℎ (3.1) 

 

 Where 𝑢 represents the exact solution, and 𝑢ℎ is the solution computed with the finite 

element approach. To provide a more comprehensive evaluation, a norm is used to measure the 

difference of those two functions. Then, for any square-integrable function 𝑢 or 𝑢ℎ defined on 

a domain Ω, the 𝐿2 − 𝑛𝑜𝑟𝑚 is defined as: 

 
‖𝑢‖𝐿2(Ω) = (∫ |𝑢|2𝑑𝑉

Ω

)

1/2

 (3.2) 

 

 This enables to express the error within an a 𝐿2 − norm as: 

 𝜖 = ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) (3.3) 
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 This spatial discretization error is directly related to the convergence of the finite 

element method. Indeed, different works colleted on Babuska and Aziz [37] give as a result the 

following expression: 

 ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≤ 𝐶 inf
𝑣ℎ∈𝑉ℎ

‖𝑢 − 𝑣ℎ‖𝐿2(Ω) (3.4) 

 

Here, 𝑣ℎ is a variational function within the aproximation space 𝑉ℎ, and C is a constant 

that remains independent of 𝑉ℎ. Under the condition of sufficient regularity on the solution 𝑢, 

it becomes possible to define an upper-bound on rigth-side of the expression (3.4) as follows: 

 ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≤ 𝐶ℎ𝑝‖𝑢′‖𝐿2(Ω) (3.5) 

 

Here, 𝑝 = 𝑘 + 1 − 𝑚 > 0  is the rate of convergence, were k represents the order of the 

finite element basis fuctions, 𝑚 stands for the order of the highest direvative of the solution 

(𝑚 = 0 in the 𝐿2 − 𝑛𝑜𝑟𝑚), ℎ denotes the discretised element size, and 𝐶 a positive constant 

independent of both the solution 𝑢 and ℎ. This estimate implies that if the size of the element ℎ 

approaches zero, the error, 𝜖, itself also decreases towards zero. This forms the basis of h-

adaptive procedures. Aditionally, this estimate also highlights the p-adaptative procedure, 

which asserts that as the degree of the interpolation functions increases, the rate of convergence, 

𝑝, accelerates. By rearranging expression (3.5), substituting the error, and applying logarithmic 

properties, the following expression is obtained: 

 log(𝜖) = 𝑝log(ℎ) + log(𝐶) (3.6) 

 

This expression leads graphically to a staight line on a “log(𝜖) 𝑣𝑠 log(ℎ)” graph, with the 

slope of the line equal to the rate of convergence (𝑝).  

In order to use an error estimator in a mesh adaptation procedure, it must be reliable and 

efficient [38]. Reliability is defined as: 

 𝜖 ≤ 𝐶η (3.7) 

 

 Here, the global estimator (𝜂), calculated within the entire domain, provide an upper 

bound for the error (𝜖). This implies that the global error estimator is always larger than the 

exact global error. Therefore, if the global estimator decreases, the error also decreases. This 

guarantees that the error remains under control based on the estimator's information. The 

efficiency is being defined by  

 η𝑇 ≤ 𝐶𝜖𝑃 (3.8) 

  

In this definition, the local estimator (η𝑇), evaluated at mesh element T, offers a lower 

bound for the local error (𝜖𝑃)bevaluated in the neighbourhood of T. This signifies that locally, 

the error estimator is consistently smaller than the exact error. Consequently, when the local 
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estimator is larger in certain elements, it indicates that the exact error is also larger in the 

vicinity.  This capability enables the identification of regions with larger error, and thus to carry 

out adaptive refinement; in both cases C is a positive constant only dependent on the problem 

intrinsic data (such as material properties and domain geometry) and remains independent of 

mesh discretisation.  

 The global estimator can be obtained using:  

 𝜂 = (∑η𝑇
2)

1
2⁄

 (3.9) 

  

The quality of an estimator is often judged using global (3.10) or local (3.11) scalars: 

 𝜃 =
𝜂

‖𝜖‖
 (3.10) 

 𝜃𝑝 =
𝜂𝑇

‖𝜖‖𝑝
 (3.11) 

 

In order to address the problem of computing numerical errors, two main approaches for 

error estimation are found in the literature: a priori and a posteriori.  

 

3.3.1 A priori error estimators 

A priori error estimators rely on exact solution. As shown in expression (3.5), the upper-

bound of the error is controlled by 𝑢 and not 𝑢ℎ. 

Their numerical computation may involve extrapolate solutions obtained on sequences of 

progressively finer meshes (varying the element size) or on sequences of meshes with shape 

functions of increasing order (degrees of interpolation functions). The, a comparison of these 

solutions can provide an indication of the error, where the expression in (3.5) can be used to 

study the convergence of the solution.  

 

3.3.2 A posteriori error estimates 

A posterioir error estimators, on the other hand, are based on a postprocessing of the 

numerical solution. The interest in a posteriori error estimation for finite element methods in 

boundary values problems began with the pioneering work of Babuška and Rheinboldt [39]. A 

posteriori error estimations techniques were developed to approximate the error in energy or an 

energy norm on each finite element. This idea laid the basis for adaptive meshing procedures 

designed to control and minimize the error. A posteriori error estimation for the electromagnetic 

simulation is directly applied to the solutions contained in 𝐻𝑐𝑢𝑟𝑙 and is based on edge (Nédélec) 
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elements. I has been investigated by several researchers, leading to various types of estimators 

that can be classified into three main categories: 

• Residual based estimators, which include both implicit [40] and explicit([41],[42],[43])1 

approaches 

• Equilibrated estimators [44], [45],[46]. 

• Recovery-based estimators [47]. 

 

3.3.2.1 Residual-based estimators 

Residual-based estimators are widely employed and involve calculating the residual of 

the weak formulation locally. These estimators were initially introduced by Babuška and 

Rheinboldt [48] and have been further developed by several authors ([49],[50],[51]) for elliptic 

problems. They have since been extended to other types of equations, including those found in 

various electromagnetic problems, as detailed in [52]. In the modelling of electromagnetic 

problems using a harmonic approach, Creusé et al. introduced a residual-based estimator [53] 

for the 𝐴 − 𝜙 formulation and other one [54] for the 𝑇 − Ω formulation. Later, Roberta T. [55] 

extended these works to a temporal 𝐴 − 𝜙 formulation. The residual method is grounded in the 

solution of a well-posed variational formulation, where the core concept being to establish a 

connection between the error norm and the residual norm of the weak formulation being solved. 

The main limitation of this method is its lack of generalisability. In other words, meaning that 

if conditions slightly change, the local problem often needs to be reformulated, making it less 

versatile in handling varying scenarios. 

 

3.3.2.2 Equilibrated estimators 

Equilibrated estimators are designed to compute the discontinuity jump between two 

elements or element patches. In the context of electromagnetic modelling, these estimators are 

particularly valuable for verifying conditions like the divergence-free current (�⃗� ∙ 𝐽 = 0) or the 

divergence-free of the magnetic flux (�⃗� ∙ �⃗� = 0). Several works have explored the equilibrated 

method; in the case of edge elements some equilibration techniques have been developed and 

documented in [44],[45],[46]. However, these methods often rely on restrictive assumptions, 

such as the necessity of piecewise magnetic permeability, which limits their applicability in 

modelling ferromagnetic materials. Moreover, their computational cost can be relatively high, 

making them less suitable for efficiently modelling complex industrial electromagnetic material 

processes. 

 

3.3.2.3 Recovery-based estimators 

Recovery estimators are based on constructing a higher interpolation order field 

compared to the one calculated from FEM. This technique involves post-processing the 

 
1 By explicit it is meant that the chosen formulation enables posing the problem such that the variable to be computed does not depend on 

itself (neither its current state (time) nor its neighbouring values (spatial distribution)). 
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approximation solution 𝑢ℎ, to generate a more enriched representation of its gradient 𝐺(𝑢ℎ). 

This approach for a posteriori estimators was introduced by Ainsworth and Craig[56]. Among 

the recovery methods, one of the most popular is the Superconvergent Patch Recovery (SPR) 

method, which has been documented in ([56][57],[58],[59]). In the finite element method, using 

basis functions of degree p leads to errors in the derivative of order O(ℎ𝑝). The SPR method is 

based on the superconvergent property of the Gauss quadrature points, as elaborated in section 

4.3 of [38]. These superconvergent points allow for the recovery of the solution’s gradient with 

a higher-order approximation, leading for errors to the order 𝑂(ℎ𝑝+1). Applications of this 

method to electromagnetic fields, particularly in addressing H(𝑐𝑢𝑟𝑙) problem, have been 

documented in [60]. Due to its versatility and demonstrated effectiveness across various 

problem domains, this type of estimator has been selected for use in this work. 

 

3.3.2.4 Error based on dual problem 

Another field of research has explored estimators based on the dual problem technique. 

This technique delves into the two potential formulations (𝐴 − 𝜙) and (𝑇 − Ω).  

The 𝐴 − 𝜙 formulation revolves around the magnetic flux density �⃗� 𝐴,𝜙 and the electric 

field �⃗� 𝐴,𝜙. In contrast, the 𝑇 − Ω formulation is centered on the magnetic field �⃗⃗� 𝑇,Ω and the 

current density 𝐽 𝑇,Ω. Since these fields do not completely satisfy the discretized constitutive 

laws, it becomes possible to define a local error estimator for each mesh element. This estimator 

is based on the errors for the constitutive laws governing both magnetic and electric fields. First, 

an estimator based on the magnetic field (𝜂𝑚𝑎𝑔𝑛) is formulated as: 

 
𝜂𝑚𝑎𝑔𝑛 = ‖�⃗⃗� 𝑇,Ω −

1

𝜇
�⃗� 𝐴,𝜙‖

𝐿2(𝑛𝑜𝑟𝑚)

 (3.12) 

 

Similarly, an estimator based on the electric fields is defined as: 

 𝜂𝑒𝑙𝑒𝑐 = ‖𝐽 𝑇,Ω − σ�⃗� 𝐴,𝜙‖
𝐿2(𝑛𝑜𝑟𝑚)

 (3.13) 

 

It is important to note that 𝜂𝑒𝑙𝑒𝑐 is only defined within the conductive domain. Finally, 

the dual error estimator is computed as: 

 
𝜂𝑑𝑢𝑎𝑙 = (𝜂𝑚𝑎𝑔𝑛

2 + 𝜂𝑒𝑙𝑒𝑐
2 )

1
2 (3.14) 

  

While this method offers high accuracy, it often comes with a significant computational 

cost. Despite various strategies employed to mitigate this computational cost, as exemplified in 

[61], [62], [55], which aim to avoid solving the two formulations simultaneously, the 

computation cost remains high.  
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3.4 Recovery based – Galerkin method 

As observed earlier, numerous papers have addressed the subject of a posteriori error 

estimation for finite element computations. However, many of the examples provided involve 

simple geometries, which facilitates the validation of these estimators. Nevertheless, extending 

these estimators to cases involving complex geometries can result in substantial demands on 

CPU time and computational resources. Therefore, the objective here is to introduce a recovery-

based technique that combines computational efficiency with the capability to handle 

industrially complex scenarios. 

 

3.4.1 Superconvergent Patch Recovery vs Galerkin-based Recovery for building a 

smoothed solution 

 Recovery-based techniques rely on the determination of a smoothed solution. Several 

strategies can be found in literature for constructing the enriched or smoothed solution; here 

again, it is important when constructing the smoothed solution to consider robustness and ability 

to deal with to geometrically complex configurations, such as the ones found in industrial 

processes, as well as the use of fast and efficient methods.  

 Two approaches are briefly compared in this section to guide the choice of the 

implemented strategy and summarised in Table 3.1. The first strategy is the classical 

implementation of the SPR approach which consists in constructing arbitrary p-order 

polynomials valid for the neighbourhood of each mesh node using a Least Squares Method 

locally. The interpolation order 𝑝 of this new polynomial should be at least one order higher 

than the original interpolation degree of the field at neighbouring Gauss points. The second 

strategy is the Galerkin recovery or residual minimization recovery, which follows the same 

objective, but the order of interpolation is constrained by the interpolation degree of the FE 

mesh used to represent the original field since it is built using the same mesh than the one 

required for solving the original PDE.  

Table 3.1 Comparison of SPR and Galerkin recovery  

(note on figure: green points mean “active” node during iteration, red points mean “unactive” 

node during iteration) 

SPR Galerkin Recovery 
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𝑓𝑖(�⃑�) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧 𝑓𝑖(�⃑�) = ∑𝜑𝑗𝑓𝑗
𝑗

 

N local linear systems on the polynomial’s 

coefficients per node 

1 single global sparse linear system on the 

field values 

Degree of interpolation can be locally 

adjusted as a function of number of 

neighboring elements 

Degree of interpolation is fixed by elements 

formulation 

Corner nodes (isolated) have ill-conditioned 

systems 

All nodes are simultaneously connected, 

and the system is always inversible 

 

3.4.1.1 On the interpolation enrichment potential 

 As mentioned before, the SPR approach enables building polynomials of arbitrary 

interpolation degrees. The choice is constrained by the number of coefficients resulting from 

the conjunction of the topological dimension and the interpolation degree 𝑝. The number of 

coefficients will set the size of the local linear systems, ex: for a 1st degree polynomial 4 

coefficients are required in 3D for a scalar field, which requires building 4 orthogonally 

independent linear systems. To guarantee the orthogonality, the node needs to be surrounded 

by, at least, 4 gauss integration points that do not superpose but also are not perfectly aligned. 

For sufficiently large FE meshes this limitation can be overcome by using not only the first 

layer of elements connected to a node but also by incrementing the next layers of elements.  

 In the Galerkin recovery approach, the unknowns are the values of the enriched field at 

the nodes instead of the coefficients of the polynomial and the orthogonality is enforced during 

the construction of the interpolation functions of each node. This implies that the number of 

unknows is greatly reduced and that a solution to the linear system should always exist 

(provided elements are not degenerate or inverted). 

 

3.4.1.2 On the geometrical pathologies and convergence risks 

 Since in the SPR approach, each node is treated (in principle) individually, many 

unforeseen geometrical pathologies can appear for arbitrary complex meshes. Fig. 3.1 displays 

two main kinds of pathologies. They are associated with exterior nodes for which the Least 

Square matrix will result in an ill-posed problem because they do not have enough neighbors 

to guarantee orthogonality. One way to overcome this issue is by solving the enrichment in two 

steps [63]: 1. Compute only interior nodes which have well posed matrices. 2. Carry out an 

iterative penalized fixed-point resolution on the exterior nodes and include the neighboring 

nodes as reference points. Some authors also propose the use of phantom elements by mirroring 

elements on the surface. Such approaches are highly prone to stumble on difficult-to-handle 

pathologies. 
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Fig. 3.1 Problematic nodal configurations in typical SPR approaches requiring particular 

algorithmic treatments: Corner nodes & surface nodes. 

 

3.4.1.3 On solver implementation 

 By solving all unknowns simultaneously with a well- conditioned linear matrix obtained 

by the variational approach, the Galerkin recovery procedure clearly is an extremely robust 

option. The well-posed nature of the matrix comes from the fact that only the identity operator 

is involved in the residual equation (no presence of derivative operators). 

 Another key aspect is that the matrix has the same sparsity pattern as the matrix required 

for the original PDE, which means that the same allocated memory space can be used. Since 

the matrix is symmetric and positive defined a PCCG Krylov solver with Jacobi preconditioning 

is sufficient for optimal resolution of the linear system. 

 

3.4.2 Estimator based on a recovered smooth vector field 

 In the finite element method as in any other numerical procedure, the quantification of 

the gap between the exact solution and the numerical one needs to be measured and controlled. 

If the accuracy condition is not reached, it should be able to provide a way to get a new 

sufficiently enriched solution, using a procedure as economical and efficient as possible. A 

large number of papers have demonstrated that when using a higher order accuracy enriched 

solution, the estimated error converges towards zero as the mesh size decreases. A recovery-

based a posteriori error estimator is proposed here, which satisfies the above-mentioned 

conditions. This estimator computes the gap in terms of regularity between the original and the 

recovered solution.  

 Implementation: The error estimator relies on a smooth recovery method, involving the 

construction of a smoothed field [56] based on an already known field. In order to construct the 

smoothed field for determining the numerical solution error, the Galerkin or residual 

minimization method have been implemented. This approach ensures stability  by framing it as 

a conservation problem (seas detailed in chapter 4 of [2]). Let X⃗⃗ P0
 be the field obtained from 

the finite element analysis and X⃗⃗ P1
 the recovered or smoothed field, the method consists in 

solving the following global minimization problem: 

 min‖X⃗⃗ P1
− X⃗⃗ P0

‖
L2(Ω)

2
 (3.15) 
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 Now, let’s �⃑⃗� be the interpolation function on the edges. Expressing the field in a discrete 

form becomes: 

 X⃗⃗ P1
= ∑xP1 j

ψ⃑⃗⃗j

j

      ∀j = 1,2, … ,6 (3.16) 

 

 As 𝑋 𝑃1
 is the unknown, the minimisation problem is solved by projecting 𝑋 𝑃1

− 𝑋 𝑃0
 

onto the basis functions of the edge mesh, leading to: 

〈(∑xP1 j
ψ⃑⃗⃗j

j

− X⃗⃗ P0
) , ψ⃑⃗⃗k〉 = 0   ∀k = 1,2, … ,6 (3.17) 

 

 ∑〈ψ⃑⃗⃗j, ψ⃑⃗⃗k〉xP1j
j

= 〈X⃗⃗ P0
, ψ⃑⃗⃗k〉 (3.18) 

  

This results in the linear system: 

 Ax = b (3.19) 

 

 The field calculated by system (3.19) is represented by its line integrals along the edges 

of the elements (∫𝑋 ∙ 𝑡 ). To compare it with the initial field stored at the Gauss integration 

points (X⃗⃗ P0
(xG)), a transformation is performed using the following expression: 

 X⃗⃗ P1
(xg) = ∑ (x⃗ P1i

 ψ⃑⃗⃗i)

edges

i=1

 (3.20) 

 

 This linear field has one order of interpolation higher than the initial field. The magnetic 

field (H⃗⃗ ) is applied in this approach. By comparing the smoothed 𝑃1 field to the 𝑃0 solution, the 

error can be calculated as: 

 𝜖H = ‖H⃗⃗ P1
− H⃗⃗ P0

‖
𝐿2(Ω)

 (3.21) 

 

 

3.5 Physics-specific estimators alternatives 

Additional error estimators have been explored, primarily focusing on assessing the 

accuracy of certain Maxwell equations by comparing fields with different orders of 

interpolation, specifically 𝑃1 and 𝑃0.  To construct these estimators, the recovered magnetic 

field computed in section 3.4.2 is used. Bellow, we list and define these estimators: 
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3.5.1 Estimator based on the derived current density 

Current density can be computed using Ampere’s law (2.6). Since the smoothed 

magnetic field (�⃗⃗� 𝑃1
) is a linear, it does not vanish under the application of a curl operator. Thus, 

taking advantage of this property, a electric current density is derived as follows: 

 J P0
= ∇⃗⃗ × H⃗⃗ P1

  (3.22) 

 

Here, 𝐽 𝑃0
 is element-wise constant. The estimator is then defined as the difference with 

the linear current density obtained from the finite element analysis (𝐽 𝑃1
). Consequently, the error 

between these two quantities can be calculated as:  

 𝜖𝐽 = ‖J P1
− J P0

‖
L2(Ω)

 (3.23) 

 

3.5.2 Estimator based on the verification of Faraday’s Induction Law 

 Faraday’s law of induction (2.5) is a fundamental principle in electromagnetics, and 

validating it provides crucial insights into the accuracy of the numerical model. To achieve this, 

the first a posteriori estimator, grounded in the underlying physic, aims to confirm Faraday’s 

law. 

 Implementation: This estimator’s objective is to verify the Faraday’s Induction law 

(2.5), which necessitates the curl of the electric field plus the time derivative of the magnetic 

flux density to vanish or approach zero: 

 ‖∇⃗⃗ × E⃗⃗ P1
+ ∂𝑡B⃗⃗ P1

‖
L2(Ω)

= 0 (3.24) 

  

 To verify this expression within a single element, the electric field resulting from the 

finite element analysis, which is linear over the element is used. Additionally, the time-

derivative of the magnetic flux density is computed from the recovery procedure (3.20). Since 

these values are directly stored at the Gauss integration points, the error in the element is 

computed as: 

 𝜖𝐸 = ‖∇⃗⃗ × E⃗⃗ P1
+ 𝜕𝑡B⃗⃗ P1

‖
L2(Ω)

 (3.25) 

 

3.5.3 Estimator based on the verification of Ampere’s Law 

 A second a posteriori error based in the underlying physics has been developed. This 

estimator aims to verify Ampere’s law (2.6), one of the fundamental laws of electromagnetics.  

 Implementation: To assess the verification of Ampere’s law (2.6), the objective is to 

calculate the difference between the magnetic circulation and the current density, aiming for 

this difference to be as close to zero as possible: 
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 ∇⃗⃗ × H⃗⃗ P1
− J P1

= 0 (3.26) 

  

To evaluate expression (3.26) for a single element, the Stokes theorem is applied, which 

relates the surface integral of the curl of a vector field to the line integral of the same vector 

field over its boundary. Expressing the magnetic field �⃗⃗�  within this theorem results in: 

 ∮H⃗⃗ P1
∙ 𝑑𝛤 

𝛤

= ∬(∇⃗⃗ × H⃗⃗ P1
) ∙ �̂�𝑑𝑆 

𝑆

 (3.27) 

  

In order to define the Ampere’s law-based estimator it's essential to establish the flux 

directions on each face of the element and determine the circulation direction. The circulation 

direction is chosen to be counter-clockwise on each face, ensuring that the normal vector �̂� 

points out of the element, as illustrated in Fig. 3.2. 

 

 

Fig. 3.2 Magnetic circulation across the element’s face. 

 

 The estimator is computed separately for each face of the tetrahedron. For each face, we 

compute the line integral of the recovered magnetic field (3.20) and subtract the surface integral 

of the current density passing through the face. Consequently, the error estimator for each face 

is defined as: 

 𝜖𝐹 = ∮ H⃗⃗ P1
∙ 𝑑𝑙 

𝜕𝐹

− ∬J P1
∙ �̂�𝑑𝑆 

𝐹

 (3.28) 

  

 The line integral along the face is calculated numerically by summing the computed 

magnetic field at the edges, as shown in the following expression: 

 ∮ H⃗⃗ P1
∙ 𝑑𝑙 

𝜕𝐹

= ∑ H⃗⃗ P1
∙ 𝑙 

𝑒𝑑𝑔𝑒𝑠

𝑒=1

 (3.29) 
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To compute the current density passing through the face in three-dimensional finite 

element modelling, it is necessary to interpolate the current density values from the tetrahedron 

element to its triangular faces. Therefore, the flux is determined by computing the current 

density at the integration points of the triangular face (𝑝𝑡𝑠𝑓) using the integration points of the 

element (𝑝𝑡𝑠𝑣). Thus, the flux through a face is calculated as: 

 ∬J P1
∙ �̂�𝑑𝑆 

𝐹

= ∑ ω𝑖 (∑ ω𝑘J k

𝑝𝑡𝑠𝑣

𝑘=1

) ∙ �̂�𝑑𝑆

𝑝𝑡𝑠𝑓

𝑖=1

 (3.30) 

  

Where ω𝑖 represents the weight at each integration point. To maintain consistency, the 

normal vector is considered to be pointing out from each face of the tetrahedron. The face 

integration points and the normal vector (�⃗� ) are depicted in Fig. 3.3 

 

 

Fig. 3.3 Flux direction from the element’s face and face integration points. 

 Finally, to calculate the error over the entire tetrahedron, we compute the mean error 

within the element as follows: 

 𝜖𝐸
𝑚𝑒𝑎𝑛 =

1

𝑆𝐸
∑ 𝜖𝐹𝑆𝐹 

𝑓𝑎𝑐𝑒𝑠

𝐹=1

 (3.31) 

 

Where 𝑆 represents the surface of each face. 

 

3.5.4 Estimator based on fundamental conservation principle 

A final estimator is developed to validate the fundamental calculus principle of the 

divergence of curl, which simply states that the divergence of the curl of any vector field is 

always zero: 

 ∇ ∙ (∇ × X⃗⃗ ) = 0 (3.32) 
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 Implementation: To test equation (3.32), a linear interpolation field (𝑃1) is required. In 

this way, the recovered magnetic field (3.20) is used. To construct this estimator, the Stokes 

theorem is applied, which states: 

 ∬(∇⃗⃗ × H⃗⃗ P1
) ∙ �̂�𝑑𝑆 

𝑆

= ∮H⃗⃗ P1
∙ 𝑑𝑙 

𝐶

 (3.33) 

  

 As shown the Fig. 3.2, the right-hand side of (3.33) can be evaluated on each face of the 

element. The contribution of each face 𝐹 is added up, thus the integral on the tetrahedron will 

be closed, implying: 

 ∯(∇⃗⃗ × H⃗⃗ P1
) ∙ �̂�𝑑𝑆 

𝑆

= ∑ ∑ H⃗⃗ P1
∙ 𝑙 

𝑒𝑑𝑔𝑒𝑠

𝑒=1

𝑓𝑎𝑐𝑒𝑠

𝐹=1

 (3.34) 

  

In this sense, the divergence theorem is applied to the curl operator. Then, the same left-

hand side term is found as in (3.34): 

 ∭ (∇⃗⃗ ∙ (∇⃗⃗ × H⃗⃗ P1
)) 𝑑𝑉

𝐸

= ∯(∇⃗⃗ × H⃗⃗ P1
) ∙ �̂�𝑑𝑆 

𝑆

 (3.35) 

 

 Finally, expression (3.32) is validated through:  

 ∭ (∇⃗⃗ ∙ (∇⃗⃗ × H⃗⃗ P1
)) 𝑑𝑉

𝐸

= ∑ ∑ H⃗⃗ P1
∙ 𝑙 

𝑒𝑑𝑔𝑒𝑠

𝑒=1

𝑓𝑎𝑐𝑒𝑠

𝐹=1

 (3.36) 

 

Table 3.2 A posteriori error estimators proposed. 

Estimator Expression Principle 

Based-recovery 

field 
𝜖𝐻 = ‖�⃗⃗� 𝑃1

− �⃗⃗� 𝑃0
‖

L2(Ω)
 

A higher order 

interpolation field 

Derived from 

Ampere’s law 
𝜖𝐽 = ‖𝐽 𝑃1

− 𝐽 𝑃0
‖

L2(Ω)
 𝐽 = �⃗� × �⃗⃗�  

Faraday’s 

Induction law 
𝜖𝐸 = ‖∇⃗⃗ × �⃗� 𝑃1

+ 𝜕𝑡�⃗� 𝑃1
‖

L2(Ω)
 ∇⃗⃗ × �⃗� + 𝜕𝑡�⃗� = 0 

Ampere’s law 𝜖𝐸 =
1

𝑆𝐸
∑ (∮ �⃗⃗� 𝑃1

∙ 𝑑𝑙 
𝜕𝐹

− ∬𝐽 𝑃1
∙ �̂�𝑑𝑆 

𝐹

) 𝑆𝐹

𝑓𝑎𝑐𝑒𝑠

𝐹=1

 �⃗� × �⃗⃗� − 𝐽 = 0 

Fundamental 

conservation 

principle 

𝜖𝐸 = ∑ ∑ �⃗⃗� 𝑃1
∙ 𝑙 

𝑒𝑑𝑔𝑒𝑠

𝑒=1

𝑓𝑎𝑐𝑒𝑠

𝐹=1

 ∇ ∙ (∇ × �⃗⃗� ) = 0 
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3.6 Analysing, scaling, and normalizing estimator results 

The results obtained from the previous estimators are often not immediately usable or 

comparable. This is primarily due to the presence of noise in the results, which can obscure the 

essential information provided by the estimators, particularly in complex industrial models. 

Additionally, the estimators described in the previous section have different physical scales, 

making direct comparisons challenging. Hence, the need for normalize the results. 

 The oscillatory and discontinuous nature of electromagnetic fields necessitates an 

appropriate choice of normalization scheme for the error. This scheme be versatile enough to 

enable comparisons across diverse physical quantities. To address this, a scale-agnostic 

normalization methodology has been developed to properly quantify the error. This 

methodology is based on extracting some measure of “noise” from the numerically computed 

fields. Let 𝑆 represent as a signal proxy for any given field, and a measure of energy contained 

in this signal is given by: 

 𝐸𝑆 = ∫ 𝑆2𝑑𝑡
𝑡𝑓

𝑡0

 (3.37) 

  

As discussed in section 3.4.2, the error estimator calculated a smoothed field based on 

the original field solution. For the sake of simplicity, let’s denote the smoothed solution as (𝑆̅). 

Similar to (3.37), the energy of the smoothed signal can be computed as: 

 𝐸𝑆̅ = ∫ 𝑆̅2𝑑𝑡
𝑡𝑓

𝑡0

 (3.38) 

  

 Now, consider S as a simple sinusoidal signal with some noise, as shown in Fig. 3.4(a), 

and 𝑆̅ as the smoothed version, as in Fig. 3.4(b). The respective energies are illustrated in Fig. 

3.4(c) and (d). 

However, it is not only important to measure the energy gap between both signals but 

also to establish a reference of the error, thereby creating an appropriate normalization for the 

estimators.  To address this, a noise energy normalization approach is proposed. The main idea 

is to minimize the energy contained in the noise (𝐸𝑁𝑆), which is represented by the energy 

integral difference between both signals: 

 𝐸𝑁𝑆 = ∫ (𝑆 − 𝑆̅)2𝑑𝑡
𝑡𝑓

𝑡0

 (3.39) 

  

In this context, the reference is defined as the accumulation of the total energy contained 

in the noise, as depicted in the Fig. 3.5.a (coral color). Consequently, the local error is 

interpreted as a fraction of the noise energy, as illustrated in Fig. 3.5.b. In other words, larger 

local error will manifest as peaks, as shown in the zoomed-in section of Fig. 3.5.a 
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a) b) 

 
 

c) d) 

  

Fig. 3.4 1D analogy; Energy of the signal: a) original signal 𝑆. b) Smoothed signal 𝑆̅. c) 𝑆 

energy. D) 𝑆̅ energy. 

  

 Therefore, the error normalization of any X field within the Ω domain is calculated using 

the following expression: 

 ‖𝜖𝑋‖2 =
(X − X̅)2

∑ (X − X̅)2
Ω

 (3.40) 

                      a) b) 

 
 

Fig. 3.5 Total energy, total noise energy and noise fraction contained in the signal. a) Schematic 

representation of the noise energy normalisation. b) Error fraction. 
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3.7 Validation and analysis on semi-analytical cases 

All the estimators presented in previous section have been integrated into the 

computational model FORGE® within the electromagnetic module.  

 

3.7.1 Validation by comparison with an analytical solution  

This section is dedicated to the numerical validation of the recovery-based error 

estimator. In the initial phase, validation is conducted using an analytical test case. The scenario 

involves an infinitely long cylindrical wire with diameter of ∅𝐶 = 1𝑚𝑚, which is subjected to 

a sinusoidal time-dependent current, denoted as I(t). This current flows through the wire, 

inducing a time-varying magnetic field. To analyse the generated magnetic field and evaluate 

the accuracy of the error estimator, we positioned a ring at a distance L = 19.5𝑚𝑚 from the 

wire. This ring has an external diameter ∅𝑅 = 5𝑚𝑚 and an internal diameter ∅𝑟 = 4mm. The 

analytical case is illustrated in Fig. 3.6. 

 

Fig. 3.6 Schematic representation of the analytical test case  

 The analytical solution in cylindrical coordinates for this system is described by: 

 
H⃗⃗ 𝑎𝑛(𝑟) =

√2𝐼𝑅𝑀𝑆 𝑠𝑖𝑛(𝜔𝑡)

2𝜋𝑟𝑖
�̂� (3.41) 

 

It is important to note that this solution provides an approximates as it does not account 

for the reverse effect caused to eddy currents induced within the ring. An analytical error can 

now be computed using the 𝐿2𝑛𝑜𝑟𝑚, similar to the estimator defined in (3.21): 

 𝜖𝑎𝑛 = ‖�⃗⃗� 𝑎𝑛 − �⃗⃗� 𝑃0
‖

L2(Ω)
 (3.42) 

 

Convergence with mesh size 

 To initiate the validation of the error estimator defined in (3.21), a mesh sensitivity 

analysis is performed. Por this purpose, we employed a range of decreasing mesh sizes (ℎ) as 

illustrated in Fig. 3.7. 
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1.0 0.75 0.50 0.40 0.30 0.20 

 

Fig. 3.7 Mesh sensitivity analysis (dimensions in mm) 

  

As a result, a comparison was made between the analytical error (3.42) and the error 

estimator (3.21). The results, presented in Fig. 3.8, reveal that both the error and the estimator 

exhibit similar convergence behaviour as the mesh size decreases. This demonstrates that the 

utilization of the recovery-based error (3.21) offers a reliable approximation of the error 

discretization within a finite element procedure. 

 

1.0 0.75 0.50 0.40 0.30 0.20  

Analytical error 

 

 

Numerical error estimator 

 

Fig. 3.8 Analytical and numerical error 

 

3.7.2 Convergence rate analysis 

 To gain a more detailed understanding of the estimator's quality, we conducted a 

simplified case study. Fig. 3.9 illustrates the workpiece, coil, and the symmetry employed. For 

the sake of simplicity, we defined an isotropic mesh in which the mesh size uniformly decreases 

across the entire domain, ranging from 8 𝑡𝑜 1 𝑚𝑚. 
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a) b) c) 

 
Fig. 3.9 a) Workpiece and inductor. B) dimensions in mm and c) current representation in the 

axisymmetric part (only 30°). 

 

a) b) c) 

   
d) e) 

  
Fig. 3.10 Log-Log plot of the convergence of the estimators based on: a) recovery of magnetic 

field, b) current conservation, c) the verification of Ampere’s law, d) the verification of 

Faraday’s Induction law and e) fundamental calculus principles. 

 

Fig. 3.10 displayed the convergence rates for each estimator defined in sections 3.4 and 

3.5. The global error results are presented in a log 𝑣𝑠 log plot as a function of the mesh size (ℎ). 

According to (3.6), the slope of the straight line directly indicates the convergence rate. It is 

noteworthy that the recovery-based estimator and the one based on the fundamental calculus 

principle exhibit a convergence rate close to unity, while the current density derivation exhibits 

the lowest convergence rate. On the other hand, the estimators based on the verification of the 
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Maxwell equations have the highest convergence rates, with a rate of 1.99 for Faraday's law 

and 2.34 for Ampere's law. 

 

3.7.3 Application to the TEAM7 benchmark case 

In order to test the local a posteriori error estimators, a benchmark case has been selected 

from the TEAM (Testing electromagnetic analysis methods) problems. TEAM represents an 

international working group dedicated to comparing electromagnetic analysis computer codes. 

Specifically, we focused on case number 7 [64], which is designed to evaluate the 

electromagnetic induction phenomenon.  This problem entails a thick aluminium plate with a 

hole positioned off-centre and unsymmetrically within a non-uniform magnetic field. The field 

is generated by a sinusoidally varying exciting current. The problem setup is shown in Fig. 3.11. 

 

 

Fig. 3.11 TEAM 7 Benchmark case. 

 

To evaluate the performance of the a posteriori error estimator proposed in section 3.4.2, 

it's important to assess how it behaves on the benchmark case. For this purpose, we computed 

the magnetic field using the quasi-steady state electromagnetic model presented in section 2.2. 

The magnitude and vector field distribution are depicted in Fig. 3.12 and Fig. 3.13, respectively. 

This information will help us gauge the estimator ability to identify areas with significant 

changes in the field, essentially where the field gradient is most pronounced. 

 

Inductor 

Part 
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Fig. 3.12 Distribution of magnetic field magnitude on the plate (in A/m) 

 

 

 

Fig. 3.13 Distribution of magnetic field vectors on the plate (in A/m) 

 

3.7.3.1.1 Convergence with mesh size 

 According to finite element discretization principle, as established in (3.5), numerical 

errors should decrease as the mesh size becomes smaller. To evaluate the convergence of each 

estimator developed in sections 3.4 and 3.5, a mesh sensitivity analysis is performed on the 

benchmark case. The test was meshed uniformly with element size of 20, 15, 10, 8 and 6 mm, 

and the results are only shown within the workpiece. To facilitate comprehension, each 

calculated error result is indicated next to its respective mesh. The error estimators results of 

are presented individually as follows: 

1. Galerkin’s recovery-based estimator in Fig. 3.14. 

2. Current density derivation-based estimator in Fig. 3.15. 

3. Faraday’s law verification-based estimator in Fig. 3.16. 

4. Ampere’s law verification-based estimator in Fig. 3.17. 

5. Fundamental conservation principle-based estimator in Fig. 3.18. 
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10 mm  
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6mm 

  

 

Fig. 3.14 Error distribution on the plate – Recovery technique on the magnetic field 
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Fig. 3.15 Error distribution on the plate – Current density derivation 
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Fig. 3.16 Error distribution on the plate – Faraday law 
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Fig. 3.17 Error distribution on the plate – Ampere Law 



Chapter 3: Error estimators 
 

87 

 

Structured 

mesh size 
             Mesh Error estimator 

20 mm 

  

 

15 mm 

  

 

10 mm  

  

 

8 mm 

  

 

6 mm 

  

 

Fig. 3.18 Error distribution on the plate – fundamental conservation principle 
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Overall, the error analysis for each estimator reveals higher errors in the coarser mesh, 

which consistently decrease as the meshes become finer. This observed trend signifies a 

satisfactory convergence of the estimators with mesh refinement. Furthermore, it is worth 

nothing that in each case, the estimator effectively identifies areas with higher solution 

gradients, as evident when comparing the results displayed alongside the magnetic field shown 

in Fig. 3.12 and Fig. 3.13. 

However, it's essential to recognize that while all the previously presented approaches 

demonstrate convergence concerning mesh size in terms of relative error reduction, they exhibit 

significantly different error distribution patterns. These distinctions will have a profound impact 

on adaptive remeshing procedures built upon them. A clear division can be observed between 

the first three estimators and the last two, despite the latter demonstrating the highest 

convergence rates in previous analyses. These estimators exhibit notably sparse error patterns. 

This distinction arises because the latter two estimators are designed to capture local behaviours 

at the element level. This localization can be counterproductive when addressing continuity 

issues or situations where the field's gradient undergoes abrupt changes. In contrast, the first 

three estimators exhibit a more consistent behaviour due to their utilization of the recovery 

approach, which effectively leverages the mesh's capacity to capture gradient evolution in the 

fields. 

 

3.7.3.1.2 Comparison of computational times 

As elaborated in the definition of the recovery-based estimator, it involves solving a 

linear system represented as A𝑥 = 𝑏. Solving such systems can often be computationally 

demanding. The primary objective here is to create an estimator that is efficient enough to 

enhance the computational process, without introducing a system that's equivalent in 

complexity to the main finite element system. To evaluate this efficiency, a comparison 

between these two linear systems is conducted, assessing how costly the error estimator is in 

contrast to the computation expense of FEM.  

 Table 3.3 presents the comparation of computation times and number of iterations 

required for finite element analysis and the recovery procedure. It becomes evident that the 

recovery-based procedure is notably efficient in terms of computational time when compared 

with the FEM resolution.  

Table 3.3 Linear system resolution. Comparation between fem and recovery method 

Mesh size 

(mm) 

FEM Recovery 

Iterations 

number 

Time 

(sec) 

Iterations 

number 

Time 

(sec) 

20 194 2.985 24 0.375 

15 209 3.890 29 0.531 

10 222 4.470 30 0.625 

8 239 5.938 29 0.797 

6 254 9.672 26 1.110 

4 305 23.890 29 2.375 
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3.7.3.1.3 Considering magnetic permeability variation due to the magnetic field and 

time-averaging estimator. 

 Magnetic permeability is mainly temperature-dependent, with ferromagnetic materials 

transitioning to paramagnetic states above a critical temperature, known as the Curie 

temperature. Additionally, it can vary with the magnetic field strength in ferromagnetic 

materials. Using a full-time integration approach instead of the harmonic one offers an 

advantage in addressing the ferromagnetic properties of materials. Magnetic permeability can 

be precisely defined as the derivative of the magnetic flux density concerning to the total 

magnetic field intensity ([31], [65]): 

 μ =
𝜕|�⃗� |

𝜕|�⃗⃗� |
 (3.43) 

  

Frohlich-Kenelly ([66], [67], [68]) introduced a model for magnetic permeability as 

follows: 

 μ(|�⃗⃗� |, 𝑇) = μ0 (1 +
α

μ0(β + |�⃗⃗� |)
−

α|�⃗⃗� |

μ0(β + |�⃗⃗� |)
2) (3.44) 

 

 Here, 𝛼 and 𝛽 are two constant coefficients. In this section, we examinate the 

performance of the recovery-based error estimator under uniform and vaying magnetic 

permeability conditions. A convergence analysis is conducted using the TEAM 7 benchmark 

case. Notably, most estimators studied in the literature are formulated in the frequency domain, 

while our model is discretized in the time domain. To deal with that, an average of time is 

computed to observe the estimator’s behaviour.   

 𝐸𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥) =

1

𝑇
∫ |𝐸𝑒(𝑥, 𝑡)|2

𝑇

0

𝑑𝑡 (3.45) 

  

Similar to previous cases, a mesh sensitivity analysis is performed on a modified version 

of the TEAM7 benchmark case to analyse how the estimator, based on the recovery of magnetic 

field, deals with variations in magnetic permeability. Three simulations were performed with 

varying workpiece magnetic permeabilities: constant 𝜇𝑟 = 1 (uniform case), 𝜇𝑟 = 100 

(domain-wise uniform) and H-dependent 𝜇𝑟(�⃗⃗� )  (non-harmonic case) are compared. The 

results, shown in Fig. 3.19, indicates a favourable convergence of error as the mesh size 

decreases for each case. By examining the error distribution within the plate, we observe the 

necessity for finer meshes when the workpiece material exhibits variable magnetic 

permeability. It must be noted that, this evaluation does not have extra impact in computation 

cost. These results underscore the efficiency of the error estimator in dealing with variable 

properties of materials in electromagnetic modelling, a crucial aspect in simulating industrial 

manufacturing processes.  
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Fig. 3.19 Error distribution in the plate – magnetic permeability 
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3.7.4 Heat treatment case 

As mentioned earlier, the primary objective of this study is to enable dealing with 

complex geometrical configurations encountered in practical industrial processes. 

Consequently, we chose to examinate a heat treatment case involving a crankpin ([1],[69]) to 

analyse the capability and effectiveness of our estimator in providing error estimates. Fig. 3.20 

illustrates the crankpin and inductor setup. 

 

 

Fig. 3.20 Crankpin (in green) and inductor (in dark red) 

 

 The magnitude of the magnetic field at the end of the electric signal period is displayed 

in Fig. 3.21, providing insight into its distribution across the crankpin. 

 

 

 

Fig. 3.21 Magnetic field magnitude (in 𝐴/𝑚) at the end of the electromagnetic period. 

 

Fig. 3.22 illustrates how the error estimate behaves throughout the electromagnetic 

period, with 135° and 315° representing time points equivalent to the root meant square (RMS) 

of the electrical signal over a period, and 360° marking the end of the period. When comparing 

the magnetic field and the error estimate at 360°, it becomes evident that the estimator 

effectively tracks the field's variation. Furthermore, the estimator correctly tracks the skin 

effect, accurately adapting to the complex geometry and the distribution of current circulation, 
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especially in regions affected by the nearby inductors, as displayed in Fig. 3.23. These regions 

may be candidates for future mesh size adaptation. 

 

135° 315° 360°  

   

 

   

 

Fig. 3.22 Error distribution at different time steps of the sinusoidal signal 

 

 

  

 

Fig. 3.23 Error distribution on the surface and a cutting plane at the end of the electromagnetic 

period (360°). 

   

 The simulation was executed on a single processor and in parallel using 16 processors, 

following a SPMD paradigm. Table 3.4 provides insights into the computational time required 

for the estimator in comparison to the solver's time for solving the entire finite element system. 

Remarkably, the estimator's computation time is notably lower, accounting for just 14.5% of 

the total time on a single processor and 10% in parallel. 
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Table 3.4 CPU Time for linear systems resolution [sec] 

Processors FEM Recovery method 

1 240 35 

16 43.25 4.5 

 

3.7.5 Magnetic pulse forming case 

The magnetic pulse forming (MPF) technology or electromagnetic forming (EMF) 

consists in deforming metallic components through the application of an intense 

electromagnetic pulse. This process enters in the category of high-speed forming processes due 

to the range of strain rates that are usually attained, tipically ranging from 103𝑠−1 to 104𝑠−1. 

Fig. 3.24 illustrates a typical setup for this process, featering a coil and workpiece. In this setup,  

the plate has a diameter of 70 𝑚𝑚 and a thickness of 1 𝑚𝑚, while the inductor has a diametor 

of 2 𝑚𝑚. The process utilizes a pulsed discharge signal with a natural frequency of 162kHz. 

The primary objective of this case study is to evaluate how the estimator performs under the 

parameters applied. Notably, the magnetic field in this case is highly concentrated within a 

small area, as depicted in Fig. 3.25, which is shaped by the inductor's geometry. The aim is to 

assess how the estimator behaves in such complex configurations and at higher frequencies than 

those typically used in conventional induction heating processes. 

 

 

 

Fig. 3.24 Magnetic pulse forming case. 

 

 

 

Fig. 3.25 Magnetic field distribution in 𝐴/𝑚. 
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 A convergence analysis has been conducted by progressively decreasing the mesh size 

across the workpiece. The mesh is uniformly defined with element sizes of 5 mm, 3 mm, and 1 

mm. For better understanding, in Fig. 3.26, each mesh is visually represented alongside the 

corresponding error estimator calculated for that mesh. 

 

Mesh Error estimator  

  

 

  

 

  

 

Fig. 3.26 Mesh and associated error distribution. 

 

 As illustrated in  Fig. 3.26, the estimator effectively captures the magnetic field’s 

variations, underscoring its capacity to handle intricate and complex field distributions. 
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3.7.6 Electromagnetic stirring case 

The electromagnetic stirring process is widely used in the materials forming industry. It 

consists of using the time-varying electromagnetic field to manipulate the fluid flow within the 

liquid steel and the stirrer without any physical contact. This technique employs the Lorentz 

force, similarly to a linear induction motor, to disrupt the fluid flow of molten metal. This 

disruption leads to a more uniform solidification, preventing the premature growth of dendrites 

during the casting process and ultimately resulting in a higher quality final ingot. To evaluate 

the error estimator’s performance in this process, a laboratory-scale stirring application of 

Galinstan melt in a plexiglass mould [70] have been selected. Unlike magnetic pulse forming, 

this process operates at lowers frequencies, 2Hz in this case. The geometry of the melt and the 

inductor are depicted in Fig. 3.27. The melt geometry has a diameter of 62 𝑚𝑚 and a height of 

70 𝑚𝑚, while the inductor has a diameter of 8 𝑚𝑚. The distribution of the magnetic field 

across the inductor, the air, and the melt, is shown in Fig. 3.28. 

 

 

 
 

Fig. 3.27 Electromagnetic stirring case. Left: set-up immersed in the air. Right: scheme of the 

case proposed on [70]. 

 

 

 

Fig. 3.28 Magnetic field distribution in 𝐴/𝑚. 

 

Inductor 

Container 

Melt 

Sensor 

Lorentz force 

distribution 



Chapter 3: Error estimators 
 

96 

 

A convergence analysis is carried out by systematically reducing the mesh size on the 

melt portion. The mesh size uniformly decreases on the melt section with the same element 

size: 3mm, 2mm, and 1mm, while the mesh size on the inductor and air remains constant. Fig. 

3.29 visually presents each mesh configuration alongside its corresponding error estimator. 

 

Mesh Error estimator  

  
 

  
 

  
 

Fig. 3.29 Mesh and associated error distribution 

 

 Comparing the magnetic field distribution depicted in Fig. 3.28 with the error estimation 

presented in Fig. 3.29, it is evident that the estimator adeptly track the magnetic field gradient. 

Noticeably, larger errors occur in regions with more substantial magnetic field variation. 

Additionally, as the mesh size decreases, a clear convergence trend emerges, with the error 

diminishing significantly in the melt region. This performance underscores the estimator's 

capacity to accurately monitor errors in processes that employ lower frequencies, as 

exemplified in this stirring application. 
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3.8 Conclusions 

In this chapter, several a posteriori error estimators for the modelling of electromagnetic 

processing of materials have been presented. Those estimators have been applied to a fully 

immersed finite element approach, working in conjunction with a full-time integration of the 

Maxwell equations. These estimators have been applied to the electromagnetic fields governing 

the induction phenomenon, such as the magnetic field and eddy current. 

 First, a recovery-based estimator has been developed using the Galerkin method, in order 

to construct a magnetic field with a higher interpolation order. This estimator has been validated 

by comparing it with the exact error in an analytical case.  

Subsequently, two estimators based on the verification of fundamental principles of the 

electromagnetic induction phenomenon were developed: one grounded in Ampere's law and the 

other in Faraday's Induction law. 

  Additionally, two other estimators were also proposed. In the first, the recovered magnetic 

field was employed to compute a derived current density, which was then compared with the 

current density originally computed by the FEM. In the second, a procedure for assessing mesh 

accuracy was developed. It hinged on the verification of a fundamental vector calculus rule: the 

divergence of a curl must be zero. This estimator can be applied to any field, although the results 

were only shown in the magnetic field.  

Following the development of these estimators each was subjected to rigorous testing on 

the TEAM7 benchmark case, focusing on a constant magnetic permeability. Furthermore, the 

performance of the recovery-based estimator when dealing with a space-dependent magnetic 

permeability have also been tested. This underscored its efficiency in handling the nonlinearity 

of material properties coefficients.  

To further evaluate the capabilities of recovery-based, various industrial-like scenarios 

were explored. Firstly, a heat treatment case involving a complex crankpin geometry showcased 

the estimator's ability to handle intricate geometries. Secondly, we investigated a typical 

magnetic pulse forming case, pushing the estimator's limits with higher frequencies. Lastly, we 

delved into an electromagnetic stirring case, mirroring real-world industrial processes. 

In conclusion, numerical results have solidified the theoretical foundations of our 

estimators. They have exhibited commendable convergence rates with the mesh. Despite the 

current density-based estimator's relatively lower order of convergence, its local convergence 

aligns well with the other estimators. Conversely, the estimator relying on the validation of 

Ampere's law and the one rooted in fundamental vector calculus principles exhibit sparse error 

patterns. This characteristic renders them less suitable for deployment in an adaptive remeshing 

procedure. We have successfully implemented these estimators in the commercial software 

FORGE® & THERCAST®, providing a robust foundation for future research. These 

estimators will be instrumental in conducting adaptive remeshing, advancing the field of 

electromagnetic material processing modelling. 
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Résumé :  Adaptation automatique de maillage pour la modélisation 

électromagnétique. 

 

Ce chapitre se concentre sur la construction des métriques, une étape essentielle de 

l'adaptation de maillage en éléments finis. Ces métriques ont pour objectif de capturer le 

phénomène électromagnétique et servent d'entrée au mailleur pour la construction du maillage 

adaptatif. 

Dans un premier temps, une bibliographie des adaptations de maillage implémentées 

dans la modélisation électromagnétique est présentée. Ensuite, deux métriques sont définies : 

• La première est basée sur le calcul de la Hessian d'un champ scalaire. 

• La deuxième est basée sur le calcul du Jacobien d'un champ vectoriel. 

La capacité des deux métriques à capturer l'anisotropie des champs est évaluée à l'aide 

d'exemples concrets. Ensuite, des comparaisons des deux métriques avec des maillages 

isotropiques sont réalisées, ainsi que des applications aux cas industriels tels que le chauffage 

par induction, la mise en forme par impulsion magnétique et le brassage électromagnétique. 

Finalement, une comparaison entre les deux métriques est également effectuée. 
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4 Mesh adaptation 

Electromagnetic material processing often involves parts with complex geometries and 

materials with non-linear magnetic behaviour. Efficient modelling of these processes can often 

be highly demanding in terms of CPU time and resources. Anisotropic mesh adaptation allows 

capturing the behaviour of complex physical phenomena, as well as improving the accuracy of 

the numerical solution. Appropriate control of the algorithm ensures a prescribed accuracy with 

a reduced number of degrees of freedom. The main purpose of this chapter is to construct a 

metric tensor to carry on an anisotropic mesh adaptation procedure dealing with the 

electromagnetic phenomenon. This approach will be implemented within our fully immersed 

computational, thus, allowing for adaptive remeshing across the entire domain. 

 

 

4.1 Introduction 

4.1.1 Electromagnetic-coupled processes and modelling 

 The continuous improvement of computational processing units (CPUs/GPUs) and the 

availability of high-performance computing (HPC) infrastructures enables computational 

models to become increasingly realistic and accurate – thus dealing to an increased numerical 

complexity. In order to reduce the time from concept to production by improving the 

engineering design stage, one of the main challenges and opportunities for improving numerical 

methods is to automatize the generation and adaptation of meshes. In the finite element method, 

the computational domain is divided into a finite number of elements on which the system of 

partial differential equations describing the physical phenomena is discretised. To achieve an 

accurate numerical solution, elements must comply with a minimum geometrical quality 

criterion in order to limit the influence of round-off errors, intrinsic to finite precision 

arithmetic. Moreover, a very fine discretization results in a large number of elements leading to 

a large memory and CPU time requirements. To overcome this situation, mesh adaptation 

methods have been developed. These methods involve identifying regions where the numerical 

solution is not sufficiently accurate and proposing local refinements, as well as de-refinements 

enabling efficiently reallocation of computational resources elsewhere in the domain. 

 

4.1.2 Metric based anisotropic mesh adaptation - basic principles 

 The relationship between mesh generation and achieving a suitable numerical solution 

has been a significant research topic in the engineering community for many years The primary 

goal is to attain a high level of accuracy in the numerical solution while minimizing the number 

of degrees of freedom in the mesh.  
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Anisotropic mesh adaptation is a valuable tool widely employed in mesh generation to 

optimize the numerical solution. It enables to adapt the size, shape and orientation of elements 

in order to achieve a specific accuracy of the solution while improving the computational 

performance. Anisotropic mesh adaptation aims to create an optimal mesh of the computational 

domain, ensuring that the error of the solution of the considered problem is uniformly 

distributed throughout the entire domain. 

The main requirement of this approach is the correct calculation of the metric, typically 

based on some error estimate. It is worth mentioning that error estimators based on local error 

problems can be inaccurate in producing anisotropic meshes [71]. In fact, these estimators 

usually do not contain enough information about the direction of the solution, which is global 

in nature. Additionally, their accuracy and efficiency can be sensitive to the aspect ratio of the 

elements, which can be large for anisotropic meshes. Therefore, it is desirable to define an error 

estimate using a globally defined error problem. Several methods have been published on the 

use of a posteriori error estimators to control anisotropic mesh adaptation. Among them we can 

mention: Huang et al. [72] developed and compared a hierarchical error estimator with a 

recovery-based method. Cao et al. [73] calculated some scalar monitoring functions to use 

adaptive mesh motion from interpolation errors and a posteriori error estimates. Apel et al. [74] 

used the gradients of some a posteriori error estimates for calculating anisotropic meshes. 

Agouzal et al. [75] calculated a metric tensor from edge-based error estimates. 

 One approach employed for constructing the metric tensor field to generate adaptive 

meshes involves computing the Hessian of an exact solution of a scalar field. However, finding 

an exact solution is in most cases impossible, numerical methods must be used to construct it 

from the finite element solution. One of the most commonly used methods is based on recovery 

strategies. In fact, these strategies are quite attractive since they are not tied to a particular 

numerical scheme or to a specific application and can be applied to a wide range of PDEs, 

providing high-dimensional information of the solution [76][77]. Most of these recovery 

techniques, often utilizing discrete least squares or integral formulation, compute nodal values 

based on the gradients over neighbouring elements. Other recovery techniques include simple 

weighted average methods [78] and minimization problems [79]. Lipnikov and Vassilevski [80] 

conducted a comparative analysis of these methods, assessing three of them, a variational 

method [81] and two projection methods [82][83]. Their findings indicated that the variational 

method is less expensive and offers the most accurate interpolation solution as well as the most 

robust behavior on a larger scale of norms compared to the other methods. Additionally,  

Agouzal and Vassilevski introduced another variation method for the Hessian recovery in [84]. 

 In electromagnetic modelling, research into adaptive remeshing remains relatively 

underexplored, we can mention the work of Grosges et al, primarily focusing in 2D and 3D for 

simple geometries in the calculation of high electromagnetic field gradients [85]–[87].  In this 

chapter, we develop an adaptive remeshing procedure for finite element methods, based on 

Hessian or Jacobian recovery strategies, which enables dealing with complex geometries for 

electromagnetically coupled material processing applications.  
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4.2 Anisotropic mesh adaptation 

Anisotropic mesh generation is based on defining a discrete metric tensor at each node, 

enabling precise control of size, shape and orientation of mesh elements. This metric tensor is 

defined as a symmetric positive-definite square matrix. In simple terms, a metric is used to 

measure locally space, in a different way from the classical identity tensor. 

 

4.2.1 Metric based methods 

Among the various strategies for mesh adaptation, metric-based mesh adaptation stands 

out as the most widely employed approach for achieving anisotropic mesh generation. Its main 

feature lies in the construction of a metric tensor, which contains the necessary information for 

guiding the generation of anisotropic meshes. In order to generate such meshes, domain the 

desired sizes and directions of the final mesh elements is determined at each point of the 

domain. To accomplish this, a tensor field mist be established at each point of the domain, 

allowing to evaluate the lengths and angles within the mesh. Anisotropic mesh adaptation, 

based on metric fields, requires the construction of several quantities, These includes an error 

estimator for controlling mesh size, as well as normalizing the metric, alongside values 

describing the deformation or distortion of the non-Euclidean manifold resulting from the action 

of existing physical fields. 

. 

4.2.1.1 Metric tensor 

The fundamental concept behind a metric-based mesh generator is to create a unit mesh 

within a prescribed metric space. The key to generate a unit mesh lies in defining a unit element. 

Specifically, an element K is considered a unit element when each of its edges have a length 

equal to the unity within the metric ℳ.  

 𝑙ℳ(𝑒𝑖) = 1  , ∀𝑖 = 1,2,⋯𝑛 (4.1) 

 

Where 𝑛 is the number of edges. In 2D, 𝑛 = 2  for a triangle, and in 3D, 𝑛 = 6 for 

tetrahedron. 

The metric tensor ℳ is defined as a symmetric positive-definite square matrix: 

• Symmetry  

〈𝑢,ℳ𝑣〉 = 〈𝑣,ℳ𝑢〉 ; ∀(𝑢, 𝑣)  ∈  ℝ3 × ℝ3 

• Positive  

〈𝑢,ℳ𝑢〉 ≥ 0 ; ∀𝑢 ∈  ℝ3 

• Definite  

〈𝑢,ℳ𝑢〉 = 0 ⇒ 𝑢 = 0 ; ∀𝑢 ∈  ℝ3 

 

The scalar product in a metric space conforming to a metric ℳ can be defined as:  
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 〈𝑥, 𝑥〉 = 𝑥𝑇ℳ𝑥 (4.2) 

  

And its corresponding norm can be defined as follows:  

 ‖𝑥‖ℳ = √𝑥𝑇ℳ𝑥 (4.3) 

 

 It is worth mentioning that the geometric representation of ℳ in ℝ3 is an ellipsoid, as 

illustrated in Fig. 4.1. The ellipsoid’s axes align with the eigenvectors ℛ, and its size given by 

the eigenvalues Λ by ℎi = λi
−1/2

. 

In order to define a desired mesh size in a specific direction, the metric tensor needs to 

be construct. The primary purpose of the metric ℳ is to establish a mapping between a 

Euclidian space and a metric space, and vice versa. In this context, the scalar product in the 

Euclidian space is defined as: 

 〈𝑥, 𝑥〉 = 𝑥𝑇𝑥 (4.4) 

 

 And the associated Euclidean norm is given by  

 ‖𝑥‖ = √𝑥𝑇𝑥 (4.5) 

 

In order to comprehend how the metric ℳ works, Fig. 4.1 outlines its underlying 

principle.  

a) b) c) 

 
Fig. 4.1 Metric principle: transformation steps from a Euclidean space to a metric space 

 

Fig. 4.1.a shows a Euclidean space represented by an ellipse, in 2D, with principal 

directions 𝑒 1 and 𝑒 2 and respective sizes ℎ1 and ℎ2. These principal directions are assumed to 

be perpendicular to each other. To map from this Euclidean space to the metric space depicted 

in Fig. 4.1.c, a transformation is performed. This transformation typically involves a 

combination of a rotation matrix ℛ and a scaling matrix Λ. Initially, the rotation matrix ℛ 

modifies the direction of 𝑒 1 and 𝑒 2 to align with the principal axes of a transformed space shown 
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in Fig. 4.1.b. Subsequently, the scaling matrix Λ is applied to resize the axes to the unit lengths, 

as shows in Fig. 4.1.c. The matrix Λ is diagonal with coefficients equal to: 

 Λ = diag(λi);     λi = 1/ℎ𝑖   (4.6) 

 

Having established the framework for space transformation, we can now define a vector 

𝑥 within the interior of the ellipse of Fig. 4.1.a, then its corresponding vector in the metric space 

𝑥ℳ is prescribed by: 

 𝑥ℳ = Λℛ𝑥 (4.7) 

 

 Once this transformation is accomplished, the length of the vector 𝑥ℳ can be computed 

using equation (4.5): 

 
𝑙𝑥ℳ

= √𝑥ℳ
𝑇 𝑥ℳ  (4.8) 

 

Substituting the transformation of 𝑥ℳ into equation (4.8), we get: 

 𝑙𝑥ℳ
= √𝑥𝑇ℛTΛTΛℛ𝑥 (4.9) 

 

Since the scaling matrix Λ is diagonal, the above expression can be represented as: 

 𝑙𝑥ℳ
= √𝑥𝑇ℛTΛ2ℛ𝑥 (4.10) 

 

The metric ℳ is then defined as: 

 ℳ = 𝑅Λ𝑅𝑇 (4.11) 

 

 Here, λi = 1/ℎ𝑖
2. In ℝ3, ℳ is typically represented as a 3𝑥3 matrix:  

 𝑅 = 〈𝑒 1, 𝑒 2, 𝑒 3〉 (4.12) 

 

And  

 

𝛬 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (4.13) 

  

Where 𝑒 1, 𝑒 2, 𝑒 3 are the eigenvectors, and 𝜆1, 𝜆2, 𝜆3 the eigenvalues of ℳ.   
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4.2.1.2 Evaluation of first and second order derivatives  

 To determinate the metric field, a Galerkin recovery or residual minimization recovery 

procedure is employed. The metric tensor allows the measurement of distances or similarities 

between objects in a given space., then providing essential information for adapting the mesh 

according to a predefined field. This chapter explores two distinct methods for calculating the 

metric tensor. The first method involves deriving a Hessian field from a scalar field, 

commencing with any field norm. On the other hand, the second method calculates the metric 

as the Jacobian of a vector field. Both approaches are detailed hereafter. 

 

4.2.1.2.1 Hessian from a scalar field (𝐇𝐞𝐬𝐬(‖�⃗⃗� ‖)) 

One approach to measuring the anisotropy and mesh size of a given function 𝑢 is 

through the calculation of its Hessian. The Hessian is a square matrix of second-order partial 

derivatives of a scalar-valued function, which measures the local curvature of a function with 

many variables. This concept was postulated by Alauzet [88], who proposed an estimator for 

interpolation error from which a metric based on the Hessian of the function 𝑢 naturally appears. 

The linear interpolate of the function 𝑢, denoted as Πℎ𝑢(𝑥), used to construct the error estimator 

is given by: 

 
Πℎ𝑢(𝑥) = ∑𝑢(𝑝𝑖)𝜑𝑖(𝑥)

𝑛

𝑖=1

 (4.14) 

 

Here, 𝜑 is the nodal shape function, and 𝑛 represents the number of vertices or degrees 

of freedom of the element, By definition: 

 Πℎ𝑢(𝑝𝑖) = 𝑢(𝑝𝑖) (4.15) 

 

Let’s define a tetrahedral element K with its four vertices are represented by  [𝑎, 𝑏, 𝑐, 𝑑]  

and its six edges by 𝑒𝑗 with [𝑗 = 1,⋯ ,6]. Assuming that 𝑢 is a twice-differentiable function, 

we aim to bound the interpolation error as: 

 𝜖 = 𝑢 − Πℎ𝑢 (4.16) 

 

A Taylor expansion is used to compute the error estimator at a vertex, e.g. “a”, with 

respect to any internal point of the tetrahedron K. This leads to the expression: 

(𝑢 − 𝛱ℎ𝑢)(𝑎) = (𝑢 − 𝛱ℎ𝑢)(𝑥) + 〈𝑎𝑥, ∇⃗⃗ (𝑢 − 𝛱ℎ𝑢)(𝑥)〉

+ 1/2〈𝑎𝑥, ∇⃗⃗ 2(𝑢 − 𝛱ℎ𝑢)(𝑥)𝑎𝑥〉 
(4.17) 
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Where ∇⃗⃗  represents the gradient operator and ∇⃗⃗ 2t is the Laplacian, which by definition 

is the Hessian (Hess) of the interpolation error. Assuming that the maximal error occurs at 

point 𝑥, the gradient vanishes at this point: 

 ∇⃗⃗ (𝑢 − 𝛱ℎ𝑢)(𝑥) = 0 (4.18) 

 

Then, using the definition of linear interpolate (4.15), we have: 

 (𝑢 − 𝛱ℎ𝑢)(𝑎) = 0 (4.19) 

 

Now, the expression (4.17) can be rewritten as: 

 (𝑢 − 𝛱ℎ𝑢)(𝑥) = |〈𝑎𝑥, Hess(𝑢 − 𝛱ℎ𝑢)(𝑥)𝑎𝑥〉|  (4.20) 

 

This implies that the error at any point 𝑥 of 𝐾 is directly related to the Hessian: 

 |𝜖(𝑥)| = |〈𝑎𝑥, Hess(𝑢 − 𝛱ℎ𝑢)(𝑥)𝑎𝑥〉|  (4.21) 

 

 By using the metric space norm defined in (4.2), it becomes evident that the Hessian 

can be considerate a metric: 

 ‖𝜖(𝑥)‖2 = (𝑎𝑥)𝑇Hess(𝑢 − 𝛱ℎ𝑢)(𝑥)(𝑎𝑥) (4.22) 

 

Now, the question arises: how do we compute the Hessian? Similar to the calculation 

of the a posteriori error estimator, a recovery-based procedure is developed to construct the 

Hessian field. This procedure is based on the Galerkin minimisation problem and involves the 

following steps: 

Let XP0
be a scalar continuous field, computed by recovery from the error estimator or 

any field norm ‖X‖. A recovered field XP1
at the nodes is calculated through a global 

minimization problem as: 

 〈φ, XP1
− XP0

〉 = 0     ∀ φ ∈ V (4.23) 

 

 Here, φ is the nodal basis function. Then, a discontinuous gradient vector field ∇⃗⃗ (X)P0
 

is calculated at the Gauss points using the finite element definition: 

 

∇⃗⃗ (X)P0
= ∑ ∇⃗⃗ φiXP1 i

nodes

i=1

 (4.24) 

 

 In order to construct the Hessian field, the above procedure is repeated. First, a 

continuous gradient field by recovery G⃗⃗ P1
 is computed by recovery from ∇⃗⃗ (X)P0

 at the nodes 

as: 
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 〈φ, G⃗⃗  P1
− ∇⃗⃗ (X)P0

〉 = 0    ∀ φ ∈ V (4.25) 

 

Using (4.24) again, the discontinuous Hessian tensor field Hess̿̿ ̿̿ ̿̿
𝑃0

 is computed at the 

Gauss points: 

 

Hess̿̿ ̿̿ ̿̿
𝑃0

= ∑ ∇⃗⃗ φiG⃗⃗  P1 i

nodes

i=1

 (4.26) 

  

Finally, the recovery method is employed to compute the continuous Hessian tensor field 

Hess̿̿ ̿̿ ̿̿
𝑃1

 at every node within the mesh. 

 〈φ, Hess̿̿ ̿̿ ̿̿
𝑃1

− Hess̿̿ ̿̿ ̿̿
𝑃0

〉 = 0    ∀ φ ∈ V (4.27) 

 

4.2.1.2.1.1 Hessian symmetrisation  

The resulting tensor obtained above is typically not positive definite. To address this 

issue, both symmetry and positive definiteness need to be enforced. Two methods of 

symmetrisation have been tested. The first one involves taking the average between the tensor 

and its transpose, (since the purpose of this section is to symmetrize a tensor, the letter T will 

be used to represent them), represented here as T̿1: 

 
T̿1 =

1

2
(T̿i

T + T̿i) (4.28) 

 

While this naïve approach is rather straightforward to implement and computationally 

cheap, it does not guarantee positive definiteness. Therefore, a second approach that ensures 

both requirements can be achieved using the conjugate product:  

 T̿2 = T̿i
TT̿i (4.29) 

 

Once the symmetrisation methods are applied, the resulting tensor in equation from 

equation (4.29) requires further processing, thus the eigenvectors and eigenvalues are calculated 

as follows: 

 R̿, Λ̿ = eig(Hess(‖𝑥 ‖)) (4.30) 

 

The metric M̿ is then deduced from the eigenvalues and eigenvectors, particularly since 

the Hessian tensor is square in this case:  

 M̿ = R̿Λ̿R̿𝑇 with  Λ̿ = diag(λi
1 2⁄

) (4.31) 

 



Chapter 4: Mesh adaptation 
 

109 

 

 On the other hand, the metric symmetrisation calculated with (4.28) requires no further 

modification. In both cases, it leads to a metric that is proportional to the inverse of the square 

of the mesh size: 

 
M̿ ∝

1

h2
 (4.32) 

 

4.2.1.2.2 Jacobian from a vector field (J(�⃗⃗� )) 

In our approach to construct an appropriate metric for capturing the anisotropic 

behaviour of electromagnetic fields, we begin by utilizing the Jacobian for a multivariable 

vector-valued function. This Jacobian is computed as the transpose of its gradient. When a 

function at a point is differentiable, the Jacobian matrix describes the local stretching and 

rotation imposed by the function near that point. The Jacobian of a vector field is expressed as: 

 

𝐽(�⃗� ) = ∇⃗⃗ 𝑇�⃗� =

[
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2

𝜕𝑢1

𝜕𝑥3

𝜕𝑢2

𝜕𝑥1

𝜕𝑢2

𝜕𝑥2

𝜕𝑢2

𝜕𝑥3

𝜕𝑢3

𝜕𝑥1

𝜕𝑢3

𝜕𝑥2

𝜕𝑢3

𝜕𝑥3]
 
 
 
 
 
 

 (4.33) 

 

In the case of a differentiable vector function “𝑢” at a point 𝑥 0, the Jacobian matrix 

(J(𝑢)) provides the best linear approximation of “𝑢” near the point 𝑥0. This can be represented 

through the Taylor expansion of 𝑢, as follows: 

 𝑢(𝑥 ) = 𝑢(𝑥 0) + ∇⃗⃗ (u(𝑥 0))(𝑥 − 𝑥 0) + 𝑂(||𝑥 − 𝑥 0||) (4.34) 

 

Rearranging the above expression: 

 𝑢(𝑥 ) − 𝑢(𝑥 0) = ∇⃗⃗ (𝑢(𝑥 0))(𝑥 − 𝑥 0) + 𝑂(||𝑥 − 𝑥 0||) (4.35) 

 

Here, we define an error term for the approximation of 𝑥 : 

 𝜖(𝑥 ) =  𝑢(𝑥 ) − 𝑢(𝑥 0) (4.36) 

 

The norm of this error can be expressed as a dot product: 

 ||𝜖(𝑥 )||
2

= 〈𝜖(𝑥 ), 𝜖(𝑥 )〉 (4.37) 

  

Substituting the value: 

 ||𝜖(𝑥 )||
2

= (∇⃗⃗ (𝑢(𝑥 0))(𝑥 − 𝑥 0) ∙ ∇⃗⃗ (𝑢(𝑥 0))(𝑥 − 𝑥 0)) (4.38) 
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The above expression can be reordered as follows: 

 ||𝜖(𝑥 )||
2

= (𝑥 − 𝑥 0)
𝑇 ∇⃗⃗ 𝑇(𝑢(𝑥 0))∇⃗⃗ (𝑢(𝑥 0))(𝑥 − 𝑥 0) (4.39) 

 

From this, a metric tensor is defined as: 

 �̅̅� = ∇⃗⃗ 𝑇(𝑢(𝑥 0))∇⃗⃗ (𝑢(𝑥 0)) (4.40) 

 

Then, the expression can be rewritten as: 

 ||𝜖(𝑥 )||
2

= (𝑥 − 𝑥 0)
𝑇�̅̅�(𝑥 − 𝑥 0) (4.41) 

 

In this case, the procedure applied is also based on a recovery procedure. However, this 

procedure is only applied once to access the gradient (second-order tensor) of the vector field 

X⃗⃗ .  Since the gradient of any vector field is represented as a matrix, the transpose of this matrix 

is used as the Jacobian of any vector field to compute the metric tensor.  

Let X⃗⃗ 𝑃0
 be an elementwise vector field. Then, a recovered continuous vector field 𝑋 𝑃1

 

at the element nodes can be computed by recovery as follows: 

 〈φ, X⃗⃗ P1
− X⃗⃗ P0

〉 = 0 (4.42) 

 

 Then, a discontinuous gradient field ∇⃗⃗ (X⃗⃗ )
P0

at the Gauss points from 𝑋 𝑃1
 is calculated 

using the finite element definition: 

 

∇⃗⃗ (X⃗⃗ )
P0

= ∑ ∇⃗⃗ φiX⃗⃗ P1i

nodes

i=1

 (4.43) 

 

 Since ∇⃗⃗ (X⃗⃗ )
P0

 is inherently a tensor field, the recovery procedure is again employed to 

calculate the continuous Jacobian tensor field 𝐽�̿�1
 from ∇⃗⃗ (X⃗⃗ )

P0
at each node of the mesh: 

 〈φ, 𝐽�̿�1
− ∇⃗⃗ X⃗⃗ P0

〉 = 0 (4.44) 

 

 Once the Jacobian is calculated, equation (4.40) is employed to build the metric:  

 �̅̅� = 𝐽�̿�1

𝑇 𝐽�̿�1
 (4.45) 

 

The metric approximated using the Jacobian is a square tensor of the first derivatives. 

Expression (4.45) directly ensures the symmetry and positive definiteness of the metric, 

avoiding the need for further tensor treatment. The eigenvectors and eigenvalues are computed 

from the Jacobian using: 
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 R̿, Λ̿ = eig(�̅̅�) (4.46) 

 

Then, to compute the metric M̿, no linearization is required: 

 M̿ = R̿Λ̿R̿𝑇 with  Λ̿ = diag(λi) (4.47) 

 

Therefore, as in the case of the Hess(‖x‖) method, this approach also leads to the same 

proportionality between the metric and the mesh size: 

 
M̿ ∝

1

h2
 (4.48) 

 

4.2.1.3 Metric normalisation 

As defined in equation (4.1) the unit element requires that each of its edges has a length 

equal to unity. In order to achieve this a normalisation of the metric is required. Using the 

definition of the dot product, the computed error on an element with edge (𝑒 ) can be expressed 

as: 

 𝜖 = 〈𝑒 ,ℳ𝑒  〉 (4.49) 

 

Thus, a metric providing a unit length is defined as: 

 
ℳ̅̅ =

M̿

𝜖
 (4.50) 

 

 The expression in equation (4.49) can be rewritten as: 

 〈𝑒 , ℳ̅̅𝑒  〉 = 1 (4.51) 

 

 Therefore, the metric ℳ̅̅ enables the construction of a unit mesh with edge lengths equal 

to 1: 

 
𝑙ℳ(𝑒𝑖) = √〈𝑒 𝑖, ℳ̅̅𝑒 i 〉 = 1 (4.52) 

 

 This allows for equidistribution of the error over the new mesh. 

  As illustrated in Fig. 4.1, the scaling step of the transformation is determined by the 

eigenvalue matrix. In fact, the eigenvalues enable to relate the required mesh size (ℎ) along the 

eigenvector’s directions and the error estimator by using the proportionality ratio. 

 
𝜆𝑖 =

1

ℎ𝑖
2 (4.53) 
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 In order to prevent non-usable metric specifications, such as infinite mesh sizes in an 

element, caused for instance, by highly single-directional fields, the eigenvalues are rescaled 

by applying an error tolerance (𝜖0) computed from equation (3.21), as defined in equation 

(4.50), and bounding the minimal (ℎ𝑚𝑖𝑛 ) and maximal (ℎ𝑚𝑎𝑥) mesh size values: 

 
�̃�𝑖 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (

𝜆𝑖

𝜖0
,

1

ℎ𝑚𝑎𝑥
2

) ,
1

ℎ𝑚𝑖𝑛
2 ) (4.54) 

 

 In the case of anisotropy loss due to normalization, the ratio between the eigenvalues 

are stored as: 

 
𝑟12 =

𝜆1

𝜆2
 (4.55) 

 
𝑟13 =

𝜆1

𝜆3
 (4.56) 

 

 Then, once the normalization defined by equation (4.54) has been applied, the 

eigenvalues are checked to see if their values are the same (�̃�1 = �̃�2 = �̃�3), in which case, the 

eigenvalues are again rescaled according to equations (4.55) and (4.56). This enables 

maintaining the anisotropy of the solution while ensuring a reasonable mesh size. 

 Finally, the metric is deduced as: 

 ℳ̿i = R̿𝑖Λ̿𝑖R̿𝑖
𝑇 (4.57) 

 

For the sake of simplicity, the double-bar notation for second-order tensors will not be 

used for the final metric ℳ. 

 

4.2.2 Algorithms proposed 

 The procedures for computing the metric tensor are summarized on the next following 

algorithms: 

Table 4.1  Metric computed from a scalar field 

Steps  Description 

‖X‖L2(Ω) : 
Compute scalar discrete field norm (P0) from a 

postprocessed vector field 

X : 
Compute scalar continuous field (P1) by recovery on 

‖X‖L2(Ω) 

∇⃗⃗ (X) : 
Compute discontinuous gradient vector field (P0) by 

gradient computation of X 

G⃗⃗  : 
Compute continuous gradient vector field (P1) by recovery 

on ∇⃗⃗ (X) 
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∇⃗⃗ (G⃗⃗ ) : 
Compute discontinuous hessian tensor field (P0) by 

gradient computation of G⃗⃗  

𝐻𝑒𝑠𝑠̿̿ ̿̿ ̿̿ ̿ : 
Compute continuous hessian tensor Field (P1) by recovery 

on ∇⃗⃗ (G⃗⃗ ) 

M̿ : 
Transform the Hessian into a symmetric positive-definite 

matrix 

ℳ(‖𝑥‖) : Normalize the eigenvalues to construct the metric tensor 

 

Table 4.2 Metric computed from a vector field. 

Steps  Description  

X⃗⃗  : Vector discrete field (P0)  

∇⃗⃗ (X⃗⃗ ) : 
Compute discontinuous hessian tensor field (P0) by 

gradient computation of X⃗⃗  

𝐽 ̿ : 
Compute continuous Jacobian tensor Field (𝑃1) by 

recovery on ∇⃗⃗ (X⃗⃗ ) 

M̿ : 
Transforming the Jacobian into a symmetric positive-

definite matrix 

ℳ(𝑥) : Normalize the eigenvalues to construct the metric tensor 

 

 

4.3 Anisotropy Capturing Comparison 

This section compares the metric calculated from a Hessian field (ℳ(‖𝑥‖) and the metric 

calculated from a Jacobian matrix ℳ(𝑥) of a vector field 𝑥 .  

Initially, the symmetrisation procedure for the Hessian is tested, followed by an 

examination of their ability to capture the anisotropy. To demonstrate this, a simple case is 

proposed, which is depicted in Fig. 4.2, where the workpiece and the inductor are represented 

as thin plates. 

 

Fig. 4.2. Workpiece (green), Inductor (red) and air (grey) 
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4.3.1 Symmetrisation procedure  

 To begin, a comparison is made between the two symmetrisation procedures in order to 

properly construct the metric ℳ(‖x‖). Since a metric tensor can be represented as ellipsoid in 

3D space, where the principal axes are given by their eigenvectors and their length by the 

eigenvalues [89], Knowing this, and applying a current density as show in Fig. 4.3, we can 

expect well-ordered ellipsoids in the same direction. Fig. 4.3 shows the ellipsoids of the metric 

tensor ℳ(‖𝑥‖) constructed using the magnetic field (�⃗⃗� ) for both symmetrisation procedure 

defined in (4.28) and (4.29).  

(a) (b) 

  

  

Fig. 4.3 Ellipsoid metric representation on symmetrisation procedure: a) �̿�1 and b) �̿�2 

 

(a) (b)  

  

 

  
 

Fig. 4.4 Mesh and error resulting from symmetrisation procedure: a) �̿�1 and b) �̿�2 
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For each one of the symmetrisation procedures T̿1 and T̿2 displayed in Fig. 4.3a and Fig. 

4.3b respectively, the behaviour found is quite different. It can be seen that, although the T̿1 

procedure predicts a globally consistent anisotropy behaviour, the ellipsoid distribution does 

not seem to capture the direction properly. Furthermore, it appears to completely rotate the 

principal axes in the air between the workpiece and inductor by 90°. It also drastically changes 

the direction of the axes of the ellipsoid on the surface of the workpiece. In contrast, the metric 

symmetrized by the T̿2 procedure predicts a more uniform behaviour. In fact, the ellipsoids 

point uniformly in the same direction. Therefore, the T̿2 procedure shows to be more suitable 

for capturing the anisotropy of the direction of the fields.  

Fig. 4.4 shows the resulting meshes after computing the metric tensors from the original 

isotropic mesh, in Fig. 4.2, as well as their respective error estimator distribution over the 

domain. As predicted by the ellipsoid analysis, the highest element density is located over the 

inductor region, the workpiece close to the inductor, and the air in between, for both metrics. 

However, the mesh created from the T̿1 procedure shows a change of orientation in the elements 

between the inductor and the workpiece, as predicted by the ellipsoids and a larger error 

compared to T̿2. Therefore, it is evident that procedure T̿2 enables to generate a better suited 

mesh distribution, since it leads to a further decrease of the error for roughly the same number 

of degrees of freedom. 

In conclusion, following the results shown in Fig. 4.3 and Fig. 4.4, the T̿2 procedure 

appears to be the most suitable. In fact, the positive-definite symmetric matrix found here 

maintains more accurately the direction of the anisotropy, thus it will be used from here onwards 

to generate the adaptative mesh. 

 

4.3.2 Anisotropic behaviour 

 Once the appropriated symmetrisation procedure has been chosen, a second test is 

performed with both metrics. The anisotropy behaviour is then studied to determine which 

metric captures the physical phenomenon more accurately. The metric is symmetrized using 

(4.29), and as in the previous test, the ellipsoid is used to understand how each metric captures 

anisotropy. For this purpose, the magnetic field (�⃗⃗� ) is used to calculate both metrics. Then, the 

characteristic ellipsoids of ℳ(‖�⃗⃗� ‖) and ℳ(�⃗⃗� ) are shown in Fig. 4.5. 

Fig. 4.5 illustrates a remarkable difference regarding the anisotropy. Although both 

metrics point uniformly in the same direction, the shape of the ellipsoid varies, indicating a 

higher anisotropy in the ℳ(�⃗⃗� ) metric. In order to compare the performance of these metrics, 

the adaptation is performed for both cases. The resulting meshes are displayed in Fig. 4.6a for 

ℳ(‖�⃗⃗� ‖) and Fig. 4.6b for ℳ(�⃗⃗� ). Upon examining the results from these meshes, it becomes 

evident that the metric calculated from a vector field, ℳ(�⃗⃗� ), is better suited to capture the 

sharp anisotropy of the field. Wherein contrast, ℳ(‖�⃗⃗� ‖) also exhibits anisotropic behaviour 

but to a lesser extent.  
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(a) (b) 

  

  

Fig. 4.5 Ellipsoid metric representation: (a): ℳ(‖�⃗⃗� ‖) and (b): ℳ(�⃗⃗� ) 

 

(a) (b) 

  

Fig. 4.6 Mesh resulting from (a): ℳ(‖�⃗⃗� ‖) and (b): ℳ(�⃗⃗� ) 

 

 The previous example was a quasi 2D case of an unidirectional field. In order to assess 

both metrics in a more intricate 3D scenario, an axisymmetric induction heating case is 

examined, as depicted in Fig. 4.7. 

 

Fig. 4.7  Axisymmetric induction heating case, workpiece in blue and inductor in dark-red. 
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 To further evaluate the metrics, a similar comparison to the previous case is performed 

in the axisymmetric induction case. By comparing the ellipsoids representing each metric, the 

anisotropic behaviour contained in the metric before meshing is clearly seen. These results are 

shown in Fig. 4.8 and Fig. 4.9 for ℳ(‖�⃗⃗� ‖) and ℳ(�⃗⃗� ) respectively. 

 

 

 

Fig. 4.8 Metric tensor from a scalar field (ℳ(‖�⃗⃗� ‖)) 

 

 

 

Fig. 4.9 Metric tensor from a vector field (ℳ(�⃗⃗� )) 

  

According to the ellipsoids displayed in Fig. 4.8 and Fig. 4.9, it can be noted that the 

behaviour captured by ℳ(�⃗⃗� ) exhibits a significantly higher anisotropy compared to  ℳ(‖�⃗⃗� ‖). 

The ellipsoids of ℳ(‖�⃗⃗� ‖) leads to be nearly spherical shapes, indicative of a more classical 

isotropic behaviour.  

In order to provide a clearer illustration of this distinction, both metrics are employed 

to drive the remeshing procedure, resulting in the meshes depicted in Fig. 4.10. 
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(a) (b) 

  

Fig. 4.10  (a):  ℳ(‖�⃗⃗� ‖) and (b): ℳ(�⃗⃗� )  mesh results 

 

 Fig. 4.10a and Fig. 4.10b display the meshes generated using ℳ(‖�⃗⃗� ‖) and ℳ(�⃗⃗� ) 

respectively. In the same way, as seen in the results with the representative ellipsoids, 

ℳ(�⃗⃗� ) exhibits a higher degree of anisotropic behaviour. While ℳ(‖�⃗⃗� ‖) specifies where the 

mesh needs to be refined or de-refined, its anisotropy is somewhat reduced. 

The results presented in this section lead to the conclusion that the symmetrisation 

procedure involving the conjugate product (4.29) not only symmetrizes and positively defines 

the tensor but also does not distort the principal direction of anisotropy. Furthermore, although 

metrics computed as the Hessian of a scalar field have been more extensively studied in the 

literature, the metric computed from the Jacobian of a vector field appears to better capture the 

anisotropy of physical phenomena. In this regard, the ℳ(�⃗⃗� )  procedure will be retained and 

applied to several cases in the next section and results compared with the ones obtained with  

ℳ(‖�⃗⃗� ‖). 

 

 

4.4 Application to electromagnetic processing of materials 

 In this section, the capabilities of the metrics are explored through a series of 

electromagnetic coupled processes. Firstly, the intrinsic anisotropy of the electromagnetic 

phenomena is highlighted, underscoring the advantage of anisotropic mesh adaptation. In the 

same lines, a benchmark case is used to compare isotropic and anisotropic. Subsequently, the 

metric’s ability to handle automatically with the electromagnetic skin effect is tested. Finally, 

three industrial cases are presented: an induction heating application for a heat treatment in a 

wheel bearing piece, a magnetic pulse forming application in a circular sheet and an 

electromagnetic stirring application with a more complex geometry.  

For most cases, the magnetic field (�⃗⃗� ) to construct and compare the proposed metrics 

is used. However, the skin effect test is analysed with the electrical field (�⃗� ) with the purpose 

to demonstrate the versality of both approaches. 
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4.4.1 Intrinsic anisotropy 

In full immersion finite element analysis for solving electromagnetic problem, 

achieving uniform accuracy across the entire mesh, using a uniform mesh, is unnecessary and 

computational wasteful. This scenario is commonly encountered in isotropic configurations. 

Therefore, a more efficient approach involves employing adaptive anisotropic remeshing 

techniques.  

Anisotropic remeshing allows for different regions of the mesh to have varying levels 

of detail. In regions where electromagnetic fields change abruptly, finer elements are deployed, 

while regions with minimal field gradients can be discretized using larger elements. This 

anisotropic structure plays a key role in tracking the behaviour of electromagnetic fields. In 

scenarios where electromagnetic fields exhibit complete single-directional, a straightforward 

strategy is to employ larger elements aligned with the field’s direction. This strategy will reduce 

the number of elements within the mesh while preserving a good accuracy. 

Consider the example in Fig. 4.11, which depicts a cylindrical inductor and a workpiece, 

along with the magnetic field lines for clarity of the phenomenon. By observing the magnetic 

field lines, it is possible to observe common electromagnetic features that introduce anisotropy, 

such as the skin and proximity effects. The skin effect causes the field to concentrate near the 

surface of the cylindrical part, while the proximity effect results in a larger field in the vicinity 

of the inductor. 

 
 

Fig. 4.11: Left: inductor and workpiece, diameter of 5 mm and length of 20mm for both cases. 

Right: magnetic field lines shown at the beginning of the sine wave. 

 

Efficient mesh adaptation is achieved by refining regions where electromagnetic field 

variations are significant and allowing elements to grow in areas with lower gradients. It is 

important to note that choosing an isotropic mesh structure would results in exponential growth 

in the number of elements as the cylinder length increase. To illustrate this, we conducted 

experiments with both isotropic and anisotropic meshing, aiming to maintain the same level of 

error in both cases. The ℳ(�⃗⃗� ) metric has been used to capture the anisotropic behaviour of the 

magnetic field. Fig. 4.12 displays both the isotropic and the anisotropic generated mesh, where 

the isotropic mesh required 405000 degrees of freedom to achieve the desired accuracy, the 

anisotropic mesh only needs 140000 to achieve the same level of accuracy. It is worth 

mentioning that the anisotropic mesh created using the ℳ(�⃗⃗� ) successful captured the 

electromagnetic phenomenon described above.  

Inductor 

Piece 
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Fig. 4.12: Left: isotropic mesh. Right: anisotropic mesh. 

 

We conducted tests with both meshes to assess the convergence of the finite element 

solution. In solving the linear system for the electromagnetic problem, we employed the 

conjugate gradient method along with the Jacobi preconditioner. Table 4.3 presents the degrees 

of freedom, the CPU time and the number of iterations required to solve the linear system. 

 

Table 4.3 isotropic vs anisotropic mesh 

Mesh Elements CPU elapsed Iterations 

Isotropic 405000 3s 421ms 167 

Anisotropic 140000 2s 140ms 302 

  

Notably, there is an increase in the number of iterations needed for the linear system’s 

solution. This increase may be attributed to the matrix’s poor conditioning, which can occur 

due to the presence of flat elements in anisotropic configurations. 

Hence, in this case, it can be concluded that the anisotropic structure significantly 

optimizes computational resources, reducing by nearly 3, and enhancing computation speed by 

40%. 

 

4.4.2 Isotropic vs Anisotropic performance comparison (model size/error 

distribution/etc) 

 In order to evaluate and compare the effectiveness of the developed metric tensor in this 

study with an isotropic mesh adaptation procedure, a benchmark case has been chosen. This 

benchmark case belongs to the TEAM (Testing electromagnetic analysis methods) problems, 

which represents an open international working group aiming at comparing electromagnetic 

analysis computer codes. Specifically, case number 7 [64], which is a pure electromagnetic 

case, focuses on the induction phenomenon, has been selected for analysis. This case involves 

a thick aluminium plate with an off-centre hole, positioned asymmetrically within a non-

uniform magnetic field generated by a sinusoidal current source. This case is shown in Fig. 4.13 
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Fig. 4.13 Team 7 benchmark case. 

 

 Fig. 4.14 illustrates the mesh and error estimator in the comparison between isotropic 

and anisotropic mesh adaptation, along with the initial mesh used. In each case the minimal and 

maximal mesh sizes, denoted as ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥, have been defined as the same. Since the fully 

immersed finite element approach is employed for spatial discretization, the entire domain is 

adapted, and different minimal and maximal mesh sizes values are assigned for different regions 

(workpiece, inductor, and air) within the domain. The simulation uses a frequency of 50Hz and 

a current of 2742. 

Upon examining Fig. 4.14 and referring to Table 4.4, it becomes evident that while the 

isotropic approach succeeds in capturing the underlying physical phenomena, it necessitates 

nearly twice the number of degrees of freedom as the anisotropic approach. It is worth noting 

that the anisotropic approach adequately captures the physical phenomena and manages to 

distribute the error across the workpiece, even including several elements within the plate 

thickness. The error is evenly distributed in both metric approaches, however the metric ℳ(�⃗⃗� ) 

achieves a better compromise between the error and number of degrees of freedom required. 

 

Table 4.4  Mesh size and error estimator 

Mesh Initial Isotropic ℳ(‖H⃗⃗ ‖) ℳ(H⃗⃗ ) 

Nodes 4033 30273 19845 15673 

elements 22889 165340 113648 89426 

Error [%] 10.12𝑥10−4 3.4𝑥10−4 3.7𝑥10−4 4.2𝑥10−4 

 

 

 

 

 

 

Inductor 

Part 
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Mesh Error  

Initial  

  

 

Isotropic  

  

 

Anisotropic ℳ(‖�⃗⃗� ‖)  

  

 

Anisotropic ℳ(�⃗⃗� )  

  

 

Fig. 4.14  Isotropic vs Anisotropic, mesh and error distribution results 
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4.4.3 Skin effect case 

 The metric tensors developed in this chapter are assumed to be adaptable to a wide range 

of physical phenomena. As previously explained, the skin-depth phenomenon is a significant 

factor contributing to anisotropy in electromagnetic problems. To illustrate this, we present a 

straightforward case in Fig. 4.7. The main idea here is to vary the frequency parameter to 

achieve different skin depths, calculated using the relation (1.7). Frequencies of 350, 1000 and 

550 Hz were employed to obtain skin depths of 12𝑚𝑚, 7𝑚𝑚, and 3𝑚𝑚, respectively.  Having 

prior knowledge of the skin depth allows us to assess whether the metric can capture this 

phenomenon and generate a new mesh to address it. In this case, only the metric calculated 

from the Jacobian is used, using the electric field (�⃗� ). The results for the three different skin-

depths are depicted in  Fig. 4.15. It is worth mentioning that the radius of the workpiece is 

15mm. 

𝛿 = 12 𝑚𝑚 

 

 

𝛿 = 7 𝑚𝑚 

 

 

𝛿 = 3 𝑚𝑚 

 

 

Fig. 4.15 Skin effect meshes after adaptation. 
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𝛿 = 12 𝑚𝑚 

  
𝛿 = 7 𝑚𝑚 

  
𝛿 = 3 𝑚𝑚 

  
Fig. 4.16 mesh size evolution regarding the electric field and error estimator 

 

Fig. 4.15 displays the generated meshes for each skin depth parameter. It is evident that 

the metric is able to adequately track this phenomenon, resulting in a higher density of elements 

within the skin depth region and de-refining where it is no longer necessary. Furthermore, Fig. 

4.16 illustrates the evolution of the mesh size along the horizontal axis with respect to the 

electric field and the error estimator. These results demonstrate a strong correlation between 

the fields. Specifically, as the electric field gradient increases, the error estimator also increases, 

and the metric ℳ(�⃗� ) naturally responds to these changes by reducing the mesh size to provide 

a more accurate representation of the field. 
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4.4.4 Industrial processes  

4.4.4.1 Induction heating application 

 The metric is put to the test in an induction heat treatment scenario involving a wheel 

bearing. In this setup, two inductors are strategically positioned in the heat treatment zone, and 

current concentrators are applied to each inductor to direct the magnetic field towards the part. 

Due to the symmetrical nature of the wheel bearing, only a section of the geometry is simulated. 

At first glance, it's expected that the metric tensor will attempt to adapt the mesh in 

regions between the part and the inductors, where the magnetic field exerts a significant 

influence. Additionally, it should capture the specific behaviour introduced by the 

concentrators.  The wheel bearing is shown in Fig. 4.17, and the results of a comparison of 

experiments and simulation data for prediction of during induction hardening are in Fig. 4.18. 

Here, the region with the most pronounced treatment influence is clearly visible [90]. 

 

  
Fig. 4.17 Wheel bearing case. 

 

 

 Fig. 4.18  Comparison of microstructure predicted by FEM with experimental data [90]. 

 

For this heat treatment simulation, a frequency of 13020 Hz used. The results for this 

case are presented in Fig. 4.19. At first sight, it reveals that both metrics effectively track the 

predicted electromagnetic behaviour. They achieve this by appropriately refining the mesh on 
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the bearing while coarsening it on the rest of the part. Additionally, they successfully capture 

the functionality of the concentrators and reduces the error on the adapted meshes. Interestingly, 

although the metric ℳ(‖�⃗⃗� ‖) appears to yield a mesh with lower error compared to ℳ(�⃗⃗� ), it 

is important to note the latter requires fewer degrees of freedom, as illustrated in Table 4.5 

 

Table 4.5 Mesh size and error estimator 

Mesh Initial ℳ(‖H⃗⃗ ‖) ℳ(H⃗⃗ ) 

Nodes 9303 41476 33252 

elements 42670 205843 159722 

Error [%] 4.15𝑥10−5 1.38𝑥10−5 1.8𝑥10−5 

 

 

Initial mesh ℳ(‖�⃗⃗� ‖) ℳ(�⃗⃗� )  

   

 

   

 

Fig. 4.19 Induction heating case: mesh and error distribution results. 
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4.4.4.2 Magnetic Pulse forming application. 

The magnetic pulse forming (MPF) technology or electromagnetic forming (EMF) 

consists in deforming metallic components through the application of an intense 

electromagnetic pulse. This process enters in the category of high-speed forming processes due 

of the range of strain rates that are usually attained, ranging from 103𝑠−1 to 104𝑠−1. A typical 

coil and workpiece set-up of this process is shown in Fig. 4.20.  

The objective of this case is to assess whether the metric tensor is able to effectively 

capture the magnetic field induced by the circular coil at a high frequency, and how it adapts 

the mesh accordingly. For this simulation, a pulsed discharge signal with a natural frequency 

of 162kHz is employed. 

 

 

 

Fig. 4.20 Magnetic pulse forming case. 

 

Fig. 4.21 presents a comparison of the meshes and error distribution for both metrics, 

along with the initial mesh. Similar to previous case, both metrics are able to accurately capture 

the physical phenomenon. Notably, ℳ(‖�⃗⃗� ‖) achieves a smaller final error distribution 

compared to ℳ(�⃗⃗� ). However, it is important to highlight the substantial difference between in 

the number of degrees of freedom, as indicated in Table 4.6. Here, ℳ(�⃗⃗� ) requires fewer 

degrees of freedom to attain a mesh with an acceptable reduction in the error. 

 

Table 4.6 Mesh size and error estimator 

Mesh Initial ℳ(‖H⃗⃗ ‖) ℳ(H⃗⃗ ) 

Nodes 67805 79735 54292 

elements 438928 465389 309727 

Error [%] 1.7𝑥10−7 0.9𝑥10−7 1.0𝑥10−7 

 

 

 

 



Chapter 4: Mesh adaptation 
 

128 

 

Mesh Error  

Initial  

  

 

ℳ(‖�⃗⃗� ‖)  

  

 

ℳ(�⃗⃗� )  

  

 

Fig. 4.21 Magnetic pulse forming mesh and error distribution results.  
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4.4.4.3 Electromagnetic Stirring application 

 So far, metrics have been used to govern the anisotropic meshing procedure using 

simple geometries. To evaluate its performance in more complex geometries, the 

electromagnetic stirring process was selected. This process, extensively employed in the 

materials forming industry, employs a time-varying electromagnetic field to control the fluid 

flow within the liquid steel without any physical contact. This process is used to disrupt the 

molten metal’s fluid flow using Lorentz forces, which induce a linear induction motor allowing 

a more homogeneous solidification, avoiding premature growth of dendrites during the casting 

process and resulting in a better quality of the final ingot. The geometry used to simulate this 

process encompasses a steel bar with six inductors supported by a core, as depicted in Fig. 4.22. 

 

 
 

Fig. 4.22 Electromagnetic stirring case 

  

 This process operates at a low frequency, specifically 2Hz in this simulation. Fig. 4.23 

displays the results for the electromagnetic stirring case. This case serves as an appropriate test 

to evaluate the performance of the metrics when dealing with complex geometries. Similar to 

previous cases, the meshes and error distribution are shown to facilitate a comprehensive 

comparation between the two proposed metrics. It is evident that the anisotropy is more 

pronounced in the mesh generated using the metric ℳ(�⃗⃗� ), particularly on the workpiece. This 

leads to a mesh with fewer degrees of freedom, as indicated in Table 4.7. It is worth mentioning 

that this time the metric ℳ(�⃗⃗� ), with fewer number of elements compared to ℳ(‖�⃗⃗� ‖) achieves 

a better distribution of the error across the entire domain. 

 

Table 4.7 Mesh size and error estimator 

Mesh Initial ℳ(‖H⃗⃗ ‖) ℳ(H⃗⃗ ) 

Nodes 32669 223097 183749 

elements 183749 1291863 964964 

Error [%] 15.7𝑥10−3 5.6𝑥10−3 6.5𝑥10−3 
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Mesh Error  

Initial  

  
 

ℳ(‖𝑥‖)  

  
 

ℳ(𝑥)  

  
 

Fig. 4.23  Electromagnetic stirring mesh and error distribution results  

 

4.4.5 Magnetic and electric fields duality 

In the electromagnetic phenomena, a duality exists between the magnetic and the 

electric fields. The classical Maxwell equations, which govern these fields, reveal this duality 

in this manner: 

 
E⃗⃗ =

1

𝜎
∇⃗⃗ × H⃗⃗  (4.58) 

 

 
−

1

𝜇
 
𝜕�⃗⃗� 

𝜕𝑡
= ∇⃗⃗ × E⃗⃗  (4.59) 

 

The equations can be represented by emphasizing the relationship between the curls of 

both fields: 

 E⃗⃗ ≈ ∇⃗⃗ × H⃗⃗  (4.60) 
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 H⃗⃗ ≈ ∇⃗⃗ × E⃗⃗  (4.61) 

  

The metrics proposed in this chapter offers the flexibility to work with either field. A 

comparison of the resulting meshes generated by the Jacobian-based metric applied to �⃗⃗�  and �⃗�  

vividly illustrates the duality between these fields, as shown in Fig. 4.24. In fact, in some cases 

constructing the metric for one field automatically adapts the mesh to follow the other field. 

Fig. 4.24a presents the mesh constructed from the electric field �⃗�  alongside the magnitude of 

the magnetic field and its vectors fields. While Fig. 4.24b showcases the mesh constructed from 

the magnetic field �⃗⃗�  along with the magnitude of the electric field and its vector fields. In both 

cases, it is evident that the mesh is accurately adapted to the characteristics of their dual field. 

 

Fig. 4.24 Duality between the magnetic field (�⃗⃗� ) and electric field (�⃗� ). a) Metric constructed 

with �⃗� , results of �⃗⃗� , b) Metric constructed with �⃗⃗� , results of �⃗�   

 

Mesh Field Vector Field 

a)   

   

b)   
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4.5 Relation between the Hessian and the Jacobian 

Building upon the previously defined relationship between the Hessian and the error 

estimator (4.21). We propose a connection between the Hessian et Jacobian. Under the 

assumption of a square norm of a twice-differentiable function, the Hessian can be expressed 

as follows, using Einstein notation: 

 𝐻𝑒𝑠𝑠(‖𝑥𝑘‖
2) = (𝑥𝑘𝑥𝑘),𝑖𝑗  (4.62) 

 

 The first-order derivative can be derived as: 

 (∇(‖𝑥𝑘‖
2))𝑗 = 2𝑥𝑘𝑥𝑘,𝑗 (4.63) 

  

For the second-order derivative, we have: 

 1

2
(𝐻𝑒𝑠𝑠(‖𝑥𝑘‖

2))𝑖𝑗 = 𝑥𝑘,𝑖𝑥𝑘,𝑗 + 𝑥𝑘𝑥𝑘,𝑗𝑖 (4.64) 

 

Reordering the first term on the right-hand side: 

 1

2
(𝐻𝑒𝑠𝑠(‖𝑥𝑘‖

2))𝑖𝑗 = (𝑥𝑖,𝑘)
𝑇
𝑥𝑘,𝑗 + 𝑥𝑘𝑥𝑘,𝑗𝑖 (4.65) 

 

Notably, the metric proposed based on the Jacobian appears on the right-hand side of 

this expression ℳ(𝑥) 

 ℳ(𝑥)𝑖𝑗 = (𝑥𝑖,𝑘)
𝑇
𝑥𝑘,𝑗 (4.66) 

 

 Recalling the metric based on the Hessian of a scalar field: 

 ℳ(‖𝑥‖)𝑖𝑗 = (𝐻𝑒𝑠𝑠(‖𝑥𝑘‖
2))𝑖𝑗 (4.67) 

 

In this chapter, we have numerically evaluated both metrics, enabling us to assess the 

third term as: 

 ℳ̌𝑖𝑗 = 𝑥𝑘𝑥𝑘,𝑗𝑖 (4.68) 

 

Finally, this term is calculated as: 

 
ℳ̌𝑖𝑗 =

1

2
ℳ(‖𝑥‖)𝑖𝑗 − ℳ(𝑥)𝑖𝑗 (4.69) 

 

In order to evaluate this additional term, the TEAM7 benchmark have been selected, 

where all the three metrics are calculated, and the Frobenius’s norm is applied to compare them. 

The magnetic field is employed to construct and compare the metrics.  
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To begin, let’s first visualize the magnetic field distribution and its respective error 

estimator on the plate. 

 

Magnetic Field  Error estimator  

 

 

 

 

Fig. 4.25 Magnetic field and error distribution on the workpiece 

 

Next, we present the Frobenius norm of each of the metrics. 

 

ℳ(‖�⃗⃗� ‖) ℳ(�⃗⃗� ) ℳ̌𝑖𝑗  

   

 

Fig. 4.26 Frobenius norm: left: Hessian, centre: Jacobian and right: Difference 

 

Clearly, the metric calculated from the Jacobian, denoted as ℳ(�⃗⃗� ), more effectively 

captures the magnetic field’s variation and, consequently, the error distribution. Conversely, 

ℳ(‖�⃗⃗� ‖) appears to oversmooth the error, leading to a loss of information regarding the field’s 

variation. 
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4.6 Conclusions 

In this chapter, we have explored various strategies for constructing a metric tensor to 

effectively address electromagnetic phenomena. We began by introducing two methods for 

symmetrizing the Hessian-based tensor field. Among these, the conjugate product method 

emerged as the most suitable approach, ensuring both symmetry and positive definiteness of 

the tensor while preserving the direction of anisotropy contained in the metric. 

Next, we showed that the metric field can be obtained as the Hessian of a scalar field or 

as the Jacobian of a vector field. Both procedures employ a recovery-based approach, in 

conjunction with gradient operators. The metrics have been tested in different configurations, 

from comparison with an isotropic mesh procedure, to evaluating their ability to capture the 

skin effect phenomenon. In all cases, the metrics demonstrated being sufficiently accurate to 

guarantee a level of refinement where is necessary.  

Then, they were applied in industrial applications, specifically in induction heating, 

magnetic pulse forming, and electromagnetic stirring processes. The results indicated that these 

strategies effectively accommodated the underlying physics involved in each of these process, 

allowing good mesh distribution and error reduction. 

This work has shown the potential of the Jacobian-based metric for carry out a mesh 

adaptation procedure. This approach appears to better capture field’s anisotropy while keeping 

a good balance between error reduction and the number of degrees of freedom. Furthermore, it 

also provides an additional alternative to deal with the average anisotropy of a vector field. 

Traditionally, this would involve handling the anisotropy of each component individually by 

computing a metric for each component and then carry out a metric intersection procedure. 

Such procedures are not only computationally expensive but also dependent on the order in 

which the intersections are performed. 

This development has been exclusively focused on the electromagnetic model, Leaving 

for the future the perspective of extending these developments to other physics, such as the 

solid mechanics or fluid mechanics, and their implementation within FORGE® and 

THERCAST®, respectively.  
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Résumé :  Application multiphysique entièrement couplée  

 

Ce chapitre se concentre sur les applications complétement couplées. Tout d'abord, la 

procédure de couplage actuelle est introduite, ainsi que la nouvelle procédure proposée. Ensuite, 

une métrique géométrique, capable de reproduire le même maillage d’un setup donné, est 

développée dans le but d'aider à remplacer la procédure actuelle. 

Des tests de performance sont réalisés afin de mesurer l'effet du changement de stratégie 

de remaillage. Finalement, des cas industriels sont étudiés pour évaluer notre développement 

sur des situations plus complexes, utilisant le logiciel Forge®. 
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5 Fully coupled multi-physical implementation 

5.1 Coupling procedure  

This section aims to explain the existing coupling procedure used in the fully coupled 

Electromagnetic - Solid/Fluid Mechanics simulation in Forge®. Furthermore, a novel coupling 

procedure is proposed as a replacement for the current approach. 

 

5.1.1 Current procedure 

The procedure being currently used incorporates a remeshing capability in the 

Solid/Fluid Mechanics solver during the coupling simulation, enabling adaptive meshing if 

necessary. However, the Electromagnetic solver lacks this feature, resulting in a complete 

remeshing of the entire domain whenever mesh modifications are required. Furthermore, this 

remeshing process is carried out by an external mesher (CM2), which operates sequentially. 

This sequential execution induced a bottleneck in parallel computer architectures, as the entire 

domain needs to be assembled on a single processor to perform the meshing procedure and 

partition again to continue the simulation. The algorithm for the multi-physics implementation 

is illustrated in Fig. 5.1 

 

Fig. 5.1 Current algorithm 
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5.1.2 Proposed procedure 

The primary objective of this procedure is to eliminate the dependency on the external 

CM2 mesher. To achieve this, a new algorithm is proposed, wherein the CM2 mesher is 

substituted with an internal remeshing procedure. This internal remeshing enables the final step 

to have complete control over the entire simulation within the solver, offering various 

advantages such as a more efficient use of parallel architectures, thereby eliminating time and 

resource waste associated with the external sequential mesher. The algorithm outlining the new 

strategy is illustrated in Fig. 5.2 

 

Fig. 5.2 New algorithm 
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The proposed procedure offers the ability of mesh adaptation either after coupling with 

another physics or during the simulation itself, guided by the error analysis as illustrated in Fig. 

5.2. The adaptation block encompasses a metric calculation step, integrating the metrics 

outlined in Chapter 0, to drive the remeshing process. Subsequently, the fields are transported 

from the old mesh to the new adapted mesh.  

To address the removal of the external mesher (CM2), after coupling with another 

physics a novel metric has been developed. The fundamental concept revolves around 

recreating the identical mesh structure at each coupling step, which serves as the initial mesh 

for the electromagnetic solver. This is achieved through the development of a geometric metric, 

proposed by Thierry Coupez [91]. The calculation of the metric follows the procedure outlined 

below: 

 

5.1.3 Geometrical metric 

Considering the metric characteristics discussed in Chapter 0, it is possible to associate 

a unit metric field with any given mesh. Specifically, this metric is assigned to the element that 

must have an edge length equal to one. Let’s define the edge vector, denoted as 𝑒 𝑖𝑗, formed by 

nodes 𝑖 and 𝑗. Additionally, let 𝕄𝑖𝑗 represent the transformation matrix that converts 𝑒 𝑖𝑗into a 

vector of unit length: 

 ‖𝕄𝑖𝑗𝑒 𝑖𝑗‖ = 1 (5.1) 

 

  Then the unit length is calculated as: 

 〈𝕄𝑖𝑗𝑒 𝑖𝑗 ,𝕄𝑖𝑗𝑒 𝑖𝑗〉 = 1 (5.2) 

 

This is expression can be rewritten as: 

 〈𝕄𝑖𝑗
T 𝕄𝑖𝑗𝑒 𝑖𝑗, 𝑒 𝑖𝑗〉 = 1 (5.3) 

 

When the metric can be defined as: 

 ℳ̅̅  = 𝕄𝑖𝑗
T 𝕄𝑖𝑗 (5.4) 

 

Then, the expression (5.3) can be rewritten as: 

 〈𝑒 𝑖𝑗 , ℳ̅̅𝑒 𝑖𝑗〉 = 1 (5.5) 

 

Founding the same definition as in the Chapter 0 to calculate the unit length of the edges: 

 
𝑙ℳ(𝑒 𝑖𝑗) = √〈𝑒 𝑖𝑗, ℳ̅̅𝑒 𝑖𝑗 〉 = 1 (5.6) 
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The strategy consists of building the metric field at each node of the mesh taking a path 

of edges surrounding the node.  In order to do this, the expression (5.5) is summed up over the 

edges: 

 ∑ 〈𝑒 𝑖𝑗, ℳ̅̅𝑖𝑒 𝑖𝑗〉

𝑗∈Γ(𝑖)

= ∑ 1

𝑗∈Γ(𝑖)

 
(5.7) 

 

This expression can be rewritten as: 

 

ℳ̅̅𝑖 ∶ ( ∑ 〈𝑒 𝑖𝑗 ⊗ 𝑒 𝑖𝑗〉

𝑗∈Γ(𝑖)

) = |Γ(𝑖)| (5.8) 

 

Here, |Γ(𝑖)| is the set of edges sharing the node 𝑖. The metric at the node 𝑖 (ℳ̅̅𝑖) can 

then be expressed as: 

 

ℳ̅̅𝑖 =
1

𝑑
(

1

|Γ(𝑖)|
∑ 〈𝑒 𝑖𝑗 ⊗ 𝑒 𝑖𝑗〉

𝑗∈Γ(𝑖)

)

−1

 (5.9) 

 

Where d represents the dimension of the space.  

 

 

5.2 Performance test  

After eliminating the external mesher (CM2), two performance tests to evaluate the 

procedure's performance and efficiency have been done. The primary objective of these tests is 

to determine the extent to which the time could be reduced by transitioning to an internal 

remesher.  

 

5.2.1 Simple induction case 

The geometric metric, denoted as ℳ̅̅𝑖, is employed to regenerate a new mesh that closely 

resembles the original mesh. This metric plays a crucial role in eliminating the need for the 

external mesher (CM2) by restoring the previous mesh prior to coupling and constructing a new 

mesh based on the old one. By implementing this procedure, a comparison can be made between 

the current and the proposed procedures. To facilitate this comparison, a simple induction 

heating case is presented as an example (see Fig. 5.3). 

The test is carried out comparing the schemes illustrated in Fig. 5.1 and  Fig. 5.2. 
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Fig. 5.3 Axisymmetric case: Workpiece and inductor in dark red. 

 

The case depicted in Fig. 5.3 is an axisymmetric induction case, in which the workpiece 

is surrounded by an inductor; the mesh consists of a system with 150k degrees of freedom. To 

evaluate the performance, tests are conducted for each scheme using 1, 2, 4, 8, and 10 

processors. The results are measured in terms of time and can be summarized as follows: 

 

Current procedure: The process involves the Electromagnetic solver (EM), 

Thermomechanical solver (TM), External mesher (CM2), and Partitioning (P) for solver 

initialization and parallel distribution. 

 

Proposed procedure: The process includes the Electromagnetic solver (EM), 

Thermomechanical solver (TM), and Internal mesher (MTC). 

 

The time required for each procedure is recorded and analysed for the different 

processor configurations. 

  
Fig. 5.4 Comparison between the two procedures. Left: current procedure. Right: proposed 

procedure. 
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The remeshing procedure is deliberately executed at each coupling step between the 

thermomechanical (TM) and electromagnetic (EM) solvers throughout the simulation. It also 

ensures that the same mesh is generated for both the external mesher (CM2) and the internal 

mesher (MTC). By adopting this methodology, it becomes easier to accurately compare the 

performance of the simulation between the two procedures. 

By using the external mesher, it is apparent that the time dedicated to remeshing remains 

constant or even increases when comparing a parallel run with a single processor. This clearly 

indicates the bottleneck associated with the current procedure. Furthermore, it is evident that 

the remeshing process in the simulation demands more computational resources compared to 

the thermomechanical calculation, while also taking approximately 50% of the time of the 

electromagnetic simulation. In contrast, the proposed internal remesher (MTC) effectively 

utilizes the capabilities of a parallel architecture. The results obtained from this approach 

demonstrate that the use of additional processors significantly reduces the computational time 

required for remeshing, removing the bottleneck of the current procedure. 

Fig. 5.5 and Table 5.1 illustrate the total time taken by each simulation. It is important 

to note that the overall computational time is heavily influenced by the duration of the new 

mesh construction. When employing CM2, the calculation time remains unchanged for 4, 8, 

and 10 processors. Conversely, with the implementation of MTC, the computation time 

decreases as the number of processors increases. 

 

 

Table 5.1 CPU time 

# Proc CM2 MTC 

1 32 28 

2 19 14 

4 16 12 

8 16 10 

10 15 9 

Time in minutes 

Fig. 5.5 Total time spent on each procedure. 

 

The absence of the external mesher has brought significant stabilization. Table 5.2 

illustrates the number of linear iterations required to achieve convergence for both procedures, 

and the maximum temperature in the workpiece. A notable disparity is observed in the 

electromagnetic solver, when CM2 is used, resulting in a variation of the number of iterations. 

On the other hand, employing MTC ensures a stable linear solver, with the exact same number 

of iterations needed for convergence. Additionally, the proposed procedure maintains a nearly 

invariant maximum temperature. This new approach enhances the stability of the linear system 

solver. 

 

 



Chapter 5: Fully coupled multi-physical implementation 
 

144 

 

Table 5.2 Comparison between the two procedures: Linear solver iterations and maximum 

temperature in the workpiece 

# Processors 

Thermomechanical 

solver 

Electromagnetic 

solver 

Temperature 

(°C) 

CM2 MTC CM2 MTC CM2 MTC 

1 250 251 320 320 1259.34 1264.34 

2 250 251 320 320 1259.46 1264.43 

4 255 251 480 320 1278.11 1264.46 

8 251 251 640 320 1262.16 1264.39 

10 253 251 560 320 1273.11 1264.48 

 

5.2.2 A more complex induction case 

In order to evaluate the real CPU time impact on a more realistic application, a more 

complex case is performed. As observed in the previous test, changing the remeshing procedure 

within the software can have a significant effect on CPU time. This becomes even more crucial 

when dealing with a large number of degrees of freedom. Thus, the following induction heating 

case is presented, as an illustrative example. 

 

 

 
Fig. 5.6 Induction heating case: workpiece in dark red, inductor in grey and air in light green 

  

Fig. 5.6 illustrates a typical industrial induction heating scenario, where a cylinder is 

heated by a spiral inductor. The corresponding mesh for this case comprises approximately 4 

million degrees of freedom, making it a significantly large case to evaluate the difference 

between using an external and internal mesher. 

Similarly, to the previous case, the remeshing procedure is applied after each coupling 

between the thermomechanical and electromagnetic solvers. In addition, the computation time 

for each solver is calculated individually, providing a detailed breakdown of the time spent in 

the simulation. For this particular case, the simulations are conducted using 1, 4, 8, and 16 

processors. The time for each step of the simulation is labelled as follows: 

Workpiece 

Inductor 

air 
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Current procedure: The process involves the Electromagnetic solver (EM), 

Thermomechanical solver (TM), External mesher (CM2), and Partitioning (P) for solver 

initialization and parallel distribution. 

Proposed procedure: The process includes the Electromagnetic solver (EM), 

Thermomechanical solver (TM), and Internal mesher (MTC). 

 The results for each step of the simulation are presented in Fig. 5.7. 

  
Fig. 5.7 Comparison between the two procedures. Left: current procedure. Right: proposed 

procedure. 

 

The presented results clearly indicate that the computational resources are more 

significantly impacted as the number of degrees of freedom in the calculation increases, due to 

the influence of the external mesh. As depicted in Fig. 5.7, the time spent solely on remeshing 

is greater than the time spent on the simulation itself, particularly when using more processors 

in the simulation. The current remeshing procedure appears to take about the same amount of 

time in each parallel configuration, nullifying the benefits of parallel architecture. Contrarily, 

the internal mesher overcomes this issue, resulting in a more affordable time spent on remeshing 

compared to other steps of the simulation. Consequently, the computational time of the 

calculation is considerably reduced. 

Fig. 5.8 and Table 5.3 illustrate the cumulative time for each simulation, indicating 

noticeable time gains as the number of processors in the simulation increases. There is a 

reduction of 9% for one processor, while for 16 processors, the time reduction reaches 43%. 

 

Table 5.3 CPU time 

# Proc CM2 MTC 

1 27h00 24h40 

4 10h30 8h30 

8 8h00 5h15 

16 7h00 4h00 

Time in hours 

Fig. 5.8 Total time spent on each procedure. 
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5.3 Industrial applications  

5.3.1 Wheel bearing Induction heating 

In this study, we investigate the induction hardening process used in the manufacturing 

of a wheel bearing [90]. To perform this treatment two inductors and field concentrators are 

used. They are strategically placed in the area where heat treatment is required to create a 

concentrated magnetic field towards the part. To optimize the computational efficiency, we 

have considered the geometry’s axial symmetry and only simulated a portion of it as can be 

seen in the Fig. 5.9 

  
Fig. 5.9 Wheel bearing and symmetry (green: wheel bearing, yellow: concentrators, dark red: 

inductor) 

 

In order to effectively adapt the mesh to the electromagnetic phenomenon being 

simulated, we have chosen to focus on the magnetic field distribution throughout the simulation. 

This is reflected in Fig. 5.10 which illustrates the magnetic field behaviour over the part. By 

considering this information, we can automate the remeshing so that it effectively captures the 

critical areas of the simulation while minimizing computational cost and reducing CPU time. 

 

  

 

Fig. 5.10 Magnetic field distribution over the wheel bearing 
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The automatic remeshing procedure using the anisotropic metric tensor, based on 

Jacobian approximation, introduced in Chapter 0, is expected to adapt the mesh size according 

to the regions where the magnetic field acts strongly, including the regions influenced by the 

current concentrators. The simulation results will provide insights into the temperature 

distribution within the part during the induction heating process, enabling us to optimize the 

process for improved efficiency and reduced cost.  

The distribution of the initial mesh can be observed in Fig. 5.11, where each part is 

highlighted for easy visualization of the mesh distribution across the geometries and the 

surrounding air. 

          

Fig. 5.11 Mesh distribution of the geometries and the surrounding air. 

 

The new mesh is computed using the metric tensor obtained from the anisotropic mesh 

adaptation procedure. As expected, the adapted mesh distribution is shown in Fig. 5.12; the 

mesh is refined around the critical areas between the part and the inductors where the magnetic 

field acts strongly; the surrounding air is also adapted in accordance with the magnetic field. 

This demonstrates the effectiveness of the proposed automatic remeshing procedure in adapting 

the mesh size to accurately capture the electromagnetic phenomena. 

 

 

Fig. 5.12 Adapted mesh distribution of the geometries and the surrounding air. 



Chapter 5: Fully coupled multi-physical implementation 
 

148 

 

The performance of the initial and adapted meshes were compared to quantify the error 

and CPU time required for a complete simulation of the hardening process. The initial mesh 

had 100k degrees of freedom, while the adapted mesh had only 26k degrees of freedom. 

Resulting in a significant reduction in computational cost.  It is worth noting that the adapted 

mesh had a lower error over the simulation than the initial one, as shown in Fig. 5.13. 

 

Fig. 5.13 Error estimator comparison over two electromagnetic periods 

 

The CPU time required for the adapted mesh was only 6 minutes, whereas it took 25 

minutes for the initial mesh. This substantial reduction in CPU time demonstrates the efficiency 

of the adapted mesh in the electromagnetic solution, which is approximately four times less 

computationally expensive. 

Finally, in order to compare the temperature distribution on the initial and adapted mesh, 

we have focused on the temperature at the end of the simulation. Fig. 5.14 illustrates the 

temperature distribution for both cases, where it is evident that both meshes have a similar 

temperature profile. The results demonstrate that the proposed anisotropic mesh adaptation 

procedure can significantly reduce computational cost while maintaining high accuracy in 

electromagnetic simulations. 

 

(a) (b)  

  

 

Fig. 5.14 Temperature (°C) distribution on the part: (a) adapted mesh, (b) initial mesh. 
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5.3.2 Magnetic Pulse Forming 

To validate the effectiveness of our approach within the context of Magnetic Pulse 

Forming (MPF), a ring expansion case has been selected. Originally proposed in [92] for 

plasticity characterization under high-speed loading, this case has later been modified in [93], 

transitioning from a circular to a square cross-section of the rings. The configuration involves 

two coaxial copper rings, as illustrated in Fig. 5.15, with the exterior ring (green) serving as the 

workpiece, and the internal ring representing the inductor (dark red). This choice of case allows 

us to thoroughly evaluate the performance of our coupled simulation method. 

 

 
 

Fig. 5.15 Ring and symmetry used to perform the simulation (dark red: inductor, green: 

workpiece). 

 

The MPF machine is directly connected to the inductor, acting as the power source that 

delivers the electric load necessary to generate the pulse. This pulse is responsible for deforming 

the external ring, resulting in its expansion. The machine parameters, including key variables 

such as voltage, capacitance, resistance, and inductance, are detailed in Table 5.4. Additionally, 

Table 5.5 provides specific information regarding the geometry of the parts involved in the ring 

expansion process. 

 

Table 5.4 Machine parameter  Table 5.5 Geometry dimensions 

Parameters  Geometry 

𝑉0[𝑉𝑜𝑙𝑡𝑠] 5000  Inductor radius [mm] 14 

𝐶𝑚[μ𝐹] 126  Inductor cross-section [mm] 1 

𝑅𝑚[𝑚Ω] 48  Ring radius [mm] 16 

𝐿𝑚[𝑛𝐻] 115.7  Ring cross-section [mm] 1 

 

Fig. 5.16 illustrates the mesh configuration for the inductor, ring, and surrounding air in 

the setup. An isotropic structured mesh has been employed to ensure an accurate representation 

of the geometries. 
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Fig. 5.16 Initial mesh in the set-up 

 

Magnetic field and current density are computed, based on the mesh configuration 

presented above, and depicted in Fig. 5.17. The figure displays both the magnitude and vector 

representation of the fields. Observing the magnetic field and current density distribution we 

can notice the symmetric behaviour within the inductor, and a higher magnitude on the side of 

the part adjacent to the inductor. This phenomenon is attributed to the proximity effect of the 

electromagnetic phenomena. This information on the field distribution serves as a guide for 

adapting the mesh, in order to minimize the number of degrees of freedom while maintaining 

the accuracy of the solution. 

 

 

 

 

 

Fig. 5.17 Magnetic field [𝐴/𝑚] and Current density [𝐴/𝑚2] distribution over the inductor and 

workpiece 

The mesh adaptation procedure introduced in Chapter 0 is employed to dynamically 

adjust the mesh based on the behaviour of the magnetic field. In accordance with the duality 

effect explained in the section 4.4.5 the mesh will adapt to follow the anisotropy of the electric 

field, which is similar to the current density in conductive parts. The metric is calculated using 

the Jacobian procedure, which enables to reduce the number of degrees of freedom and to 

accurately capture the electromagnetic phenomena. By utilizing this approach, we can 

effectively optimize the mesh to accurately represent the field variation throughout the 

simulation domain. Fig. 5.18 depicts the adapted mesh, providing the representation of the 

inductor, ring and surrounding air.  
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Fig. 5.18 Mesh after adaptation 

 

The mesh adaptation procedure effectively refines and adjusts the mesh to closely 

capture the intricate electromagnetic phenomenon. Notably, the conductive parts exhibit 

adaptation in accordance with the anisotropy of the current density, as it was expected. 

Additionally, the surrounding air domain seems to follow the behaviour of the magnetic field.  

The MPF simulation involves a coupled computation at each time step, where the 

electromagnetic solving step is followed by the thermomechanical solving step, and iteration 

between the two solvers until the simulation is finished. Additionally, as the ring expands, it 

necessitates mesh modifications to accurately capture the evolving parts. To effectively manage 

this, the following methodology was implemented: 

1) Initially, the mesh is adapted based on the anisotropy of the field, as explained earlier, 

ensuring an optimal representation of the electromagnetic phenomenon. 

2) At each coupling, an r-adaptation procedure is applied to dynamically move the mesh 

in accordance with the displacement of the parts, ensuring a consistent mesh alignment. 

3) A mesh quality test is performed to determine if a remeshing procedure is required, 

ensuring the mesh maintains its integrity and accuracy throughout the simulation. 

4) To avoid an unnecessary increase in element count, the surrounding air is only adapted 

periodically, finding a balance between accuracy and computational efficiency. 

This methodology ensures that the mesh adapts precisely to the evolving physical 

phenomenon. 

 

 

Before air adaptation After air adaptation 

First air remeshing  
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Second air remeshing 

  
Last air remeshing 

  
Fig. 5.19 air adaptation during the simulation 

 

The fourth point of the methodology is exemplified through the results obtained during 

the simulation. Fig. 5.19 shows the meshes where only the surrounding air is periodically 

adapted, presenting the mesh before and after the air adaptation process. Upon observation, it 

is evident that prior to adaptation, the elements in the air region appear elongated. However, 

the subsequent remeshing procedure effectively addresses this issue while simultaneously 

reducing the number of degrees of freedom. Fig. 5.19 demonstrates three stages of the 

simulation: the initial air remeshing, followed by the second and final adaptations. 

A comparison is made between the meshes depicted in Fig. 5.16 and Fig. 5.18 to 

evaluate the behaviour of the adapted mesh in relation to a fully isotropic mesh. The initial 

mesh (Fig. 5.16) consists of a total of 329399 DoF, while the adapted mesh reduces the DoF to 

137749. Fig. 5.20 illustrates the global error estimator of the magnetic field throughout the 

simulation, clearly demonstrating that the non-adapted mesh exhibits significantly larger error 

compared to the adapted mesh. Therefore, the adapted mesh achieves a fine balance between 

accurately representing the physical phenomenon and minimizing use of computational 

resources. 
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Fig. 5.20 Error estimator comparison 

 

Following the simulation, the time required in the electromagnetic solver is significantly 

reduced by 46% when comparing the non-adapted mesh with the adapted one. The non-adapted 

mesh took approximately 37 minutes, while the adapted mesh reduced the time to 20 minutes. 

Furthermore, the temperature distribution over the ring, depicted in Fig. 5.21, demonstrates a 

good agreement at the end of the simulation. It is also seen that  the adapted mesh employed in 

the electromagnetic solver effectively captures the temperature evolution. 

 

  

 

Fig. 5.21 Temperature (°C) distribution of the ring 
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5.4 Conclusions        

This chapter was dedicated to the fully coupled multi-physics simulation of 

electromagnetic-based industrial processes. We provided an overview of the current coupling 

scheme used in Forge® and proposed modifications to implement the developed mesh 

adaptation procedure. First, a geometric metric capable of recreating a mesh was developed, 

eliminating the need for an external mesher (CM2). 

Once the coupling was fully implemented, we conducted performance tests. The first 

case involved a simple induction heating scenario, where we showcased the primary advantages 

of transitioning from an external mesher to the internal mesher (MTC). The second case was 

more industrially relevant and demonstrated a significant reduction in computational time using 

the proposed procedure. 

Furthermore, we simulated two industrial cases. The first case involved an induction 

hardening process applied to a wheel bearing. The results demonstrated not only a considerable 

reduction in numerical errors, CPU time, and memory usage but also the preservation of 

accuracy when adapting the mesh according to the underlying physical phenomenon. 

The second case was a magnetic pulse forming test using a ring expansion scenario. As 

the workpiece was in motion, we explained the procedure to track the movement on the piece. 

In this case as well, the procedure showed a substantial reduction in numerical errors and 

computational resources, along with a well-fitted mesh adaptation based on temperature. 
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Chapter 6 

           Conclusions and perspectives 

6 Conclusions 

 The main goal of this Ph.D. research was to achieve efficient and accurate modelling of 

electromagnetic-based processes by developing automated anisotropic meshing procedures in 

conjunction with error estimators. The key focus was on adapting the mesh effectively based 

on the underlying physical phenomena, ensuring robustness in dealing with complex industrial 

processes. To achieve this, we implemented these methods in the commercial software Forge® 

and Thercast® and testing them on complex industrial cases. 

The motivation behind this work stems from the significant time investment required 

by the electromagnetic solver during the coupling simulation with heat transfer, solid or fluid 

mechanics solvers. It has been observed that the remeshing phase for the electromagnetic solver 

often consumes more time than the actual simulation, particularly in the case of complex 

geometries. 

To address this challenge, we identified two key focal points that required attention. 

The first involved the development of an error estimator. This component needs to meet 

several criteria, including its ability to effectively identify and quantify the errors in the solution. 

The estimator has to be versatile enough to adapt to the varying characteristics of the 

electromagnetic phenomena. Furthermore, it needed to possess a general applicability, enabling 

its implementation for various electromagnetic quantities. Lastly, it is crucial for the estimator 

to be computationally efficient, minimizing the required computational time for its 

implementation. 

The second point entailed the development of a metric tensor. This component played 

a pivotal role in capturing the electromagnetic phenomena accurately. Its purpose is to track the 

anisotropy exhibited by the electromagnetic phenomena, thereby guiding the mesh adaptation 

process. By effectively utilizing the information provided by the metric tensor, the mesh can be 

dynamically adjusted in order to align with the evolving characteristics of the electromagnetic 

simulation. 

Since this work focuses on the simulation of electromagnetic-based processes. We 

provide in Chapter 1 an introduction to the main processes which include Induction Heating, 

Magnetic Pulse Forming, and Electromagnetic Stirring. Furthermore, we explain the underlying 

physical phenomena associated with these processes, emphasizing important effects such as the 

skin depth effect, proximity effect, and the influence of magnetic fields on material properties. 



Chapter 6: Conclusions and perspectives. 
 

157 

 

Additionally, we have discussed the behaviour of ferromagnetic and paramagnetic 

materials in relation to the Curie temperature. 

 Chapter 2 has explored the Multiphysics numerical model, encompassing 

electromagnetic, heat transfer, solids, and fluid mechanics problems. The primary focus of this 

chapter is to analyse the electromagnetic phenomena, thus emphasizing their significance for 

this work. An explanation of the finite element approach used here was provided, covering 

essential aspects such as the 𝐴 − 𝜙 potential formulation, its variational resolution, vector edge 

elements, and the employed time integration scheme. Additionally, the coupling procedure is 

highlighted to show the overall simulation framework. 

Chapter 3 focused on addressing the first requirements for constructing an adaptive 

mesh adaptation procedure, which involves the error estimator development. A literature review 

has been conducted, with specific emphasis on electromagnetic modelling and various existing 

methods. In order to meet the specified criteria, an error estimator based on the recovery 

approach, specifically the variational Galerkin approach, was selected. This method offered 

distinct advantages over other recovery-based methods, as it uses a global linear system 

resolution. Consequently, the recovered field is directly computed as an unknown of the linear 

system, eliminating the need for case-specific developments and ensuring robustness. 

Additionally, alternative estimators were developed in this chapter, aiming to verify physical 

phenomena such as the Ampere and Faraday equations. Validation tests were performed, 

encompassing a range of scenarios from purely electromagnetic cases to representative 

industrial processes, to evaluate the performance of the estimators. 

Chapter 4 was the cornerstone of this work, focusing on the development of the metric 

tensor. The numerical determination of the tensor was discussed, and two distinct metrics were 

proposed. The first metric was a commonly used tensor in adaptive procedures, constructed 

based on the Hessian of the studied scalar field. This tensor was based on the computation of 

the second derivatives of a scalar field. The second method involved the development of a 

metric based on the Jacobian, which was directly computed from first derivative of a vector 

field. These methods were thoroughly tested across various scenarios to evaluate their ability 

to capture the anisotropy of electromagnetic phenomena and reduction of the error in the 

solution. Additionally, industrial cases involving Induction Heating, Magnetic Pulse Forming, 

and Electromagnetic Stirring were simulated to assess the performance of the metrics in these 

specific applications. The results reveal that the metric based on the Jacobian captures more 

effectively the anisotropy of the phenomena, leading to a reduction in the number of degrees of 

freedom for almost the same reduction in error. This can be attributed to the utilization of linear 

basis functions, where an approximation of the second order derivative of the vector field 

solution may mask the anisotropy and then the neglected term may contain the lost anisotropy, 

whereas the first derivative provides a better means of tracking it. For more details see 

Appendix 7.4. 

Chapter 5 focused on the implementation of the automatic mesh procedure within a fully 

coupled simulation. The chapter started by comparing the current strategy used in the 

commercial software Forge® with our new strategy. Performance tests were conducted on two 

induction heating cases: a simple case with 150k degrees of freedom and a more complex case 
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with around 4 million of degrees of freedom. Our procedure has demonstrated a significant 

improvement in CPU time compared to the existing strategy. The second part of the chapter 

was dedicated to industrial processes. The first industrial case involved the induction heating 

of a wheel bearing, where our methodology successfully reduces solution errors while 

simultaneously reducing CPU time. And the second case examined an expansion ring, yielding 

promising results.  

 

 

 

Perspectives 

The direct numerical model for electromagnetic computations has now been greatly 

enhanced. Several extensions of this work can be foreseen. 

One extension can deal with expansion of the applicability of the method to a broader 

range of scenarios, including heating and hardening processes with moving parts close to the 

inductors; efficient interaction of remeshing with part motion should be investigated. 

Our methods have been tested on linear elements. Another extension could deal with 

the investigation of the behaviour of the error estimator and the remeshing procedure with 

higher-order elements. 

As these developments have been carried out for the benefit of Multiphysics 

computations it would be required to study the impact of the electromagnetic mesh adaptation 

on the accuracy of the thermo-mechanical computations. Furthermore, as the core of the metric 

computation strategy has been done in an agnostic manner with respect to the physical fields it 

would greatly benefit to transfer the methodology back into the remeshing procedures currently 

implemented for the standard mechanical solvers in FORGE® and THERCAST®. 
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7 Appendices  

7.1 Solid mechanics problem  

7.1.1 Mass conservation                                                      

Considering a domain Ω, the mass inside of it is defined by 

 
𝑚 = ∫𝜌(𝑥 , 𝑡)𝑑Ω

Ω

 (7.1) 

 

Where 𝜌 is the density of matter at any point of Ω. Then, assuming no diffusion, nor 

production of mass.  The mass variation can be expressed by 

 𝑑𝑚

𝑑𝑡
=

𝑑

𝑑𝑡
∫𝜌𝑑𝑉
Ω

= ∫
𝜕𝜌

𝜕𝑡
𝑑𝑉

Ω

 (7.2) 

 

The transfer of the time derivative to the inside of the integral causes no problems as 

the volume of the domain Ω is fixed. Then, the time derivative inside becomes a partial 

derivative (𝜕/𝜕𝑡), since 𝜌 is a variable of position and time.  

Following the above assumptions, the mass variation inside of the domain must be due 

to transfer of mass across their faces. Which is described as the mass flux of a transported 

material. It is defined as the product of the density by the material velocity field 𝑣 . The quantity 

of material going out through each face (Γ) of  Ω is given by the normal component (�̂�) of Γ, 

multiplied by the corresponding area, that is: 

 
∫

𝜕𝜌

𝜕𝑡
𝑑𝑉

Ω

= ∫𝜌𝑣 ∙ �̂�
Γ

𝑑𝑆 (7.3) 

 

Applying the divergence theorem at the rhs of the above equation, the mass flux can be 

expressed as integral of volume and the mass conservation equation is then expressed as: 

 
∫

𝜕𝜌

𝜕𝑡
𝑑𝑉

Ω

= ∫ ∇⃗⃗ ∙ (𝜌𝑣 )𝑑Ω
Ω

 (7.4) 

 

Then, assuming the continuity of the above expression and using the fact that this 

equality is true not only in the whole system Ω, but also for its very single subdomain, the 

following PDE is obtained: 

 𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑣 ) = 0 (7.5) 

Finally, two particular situations can occur: 
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In the first, is the stationary case (steady state), which meant that nothing changes over 

time. This implies that the partial derivative with respect to time is zero. Then, the equation 

(7.5) becomes: 

 ∇⃗⃗ ∙ (𝜌𝑣 ) = 0 (7.6) 

 

In the second situation implies a material density constant in the Ω. In this case the 

material is said to be incompressible. Then, (7.5(7.5)can be rewritten as: 

 ∇⃗⃗ ∙ 𝑣 = 0 (7.7) 

 

7.1.2 Linear momentum conservation 

The velocity 𝑣  that appears in the equation of mass conservation can be determined from 

the conservation of momentum. Mostly the variations of this momentum are due volume forces 

and contact forces acting in a body. Then, the total forces are given by 

 
𝑓(𝑡) = ∫𝜌�⃗�  𝑑𝑉

Ω

+ ∫𝑡  𝑑𝑆
Γ

 (7.8) 

 

The force 𝑡  is the contact force on the Γ and it is exerted by the neighboring elements. 

This force is decomposed into normal and tangential components, being the first the tensile 

stress and the second the shear stress. Generalizing, it can be measured in a surface defined by 

the normal �̂�, and it is given in term of the Cauchy stress tensor as: 

 𝑡 = 𝜎 ∙ �̂� (7.9) 

 

Using the divergence theorem, the Cauchy stress tensor can be expressed in a volume 

integral as: 

 
∫ 𝜎 ∙ �̂� 𝑑𝑆
Γ

= ∫ ∇⃗⃗ ∙ 𝜎 𝑑𝑉
Ω

 (7.10) 

 

 Here, the momentum density (𝜌𝑣 ) is introduced. In the general expression of 

conservation of momentum, in addition to the variation of momentum being equal to the sum 

of the external forces. The flux of momentum entering or leaving of the domain must also be 

considered. In other words, the velocity transports not only mass but also the momentum itself. 

That is expressed as 

 
∫ 𝜌𝑣 (𝑣 ∙ �̂�)𝑑𝑆 = ∫ ∇⃗⃗ ∙ ((𝜌𝑣 )𝑣 )𝑑𝑉

ΩΓ

 (7.11) 

Finally, the general expression of the momentum conservation can be written as 
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∫

𝜕

𝜕𝑡
(𝜌𝑣 )𝑑𝑉

Ω

+ ∫ ∇⃗⃗ ∙ ((𝜌𝑣 )𝑣 )𝑑𝑉
Ω

= ∫𝜌�⃗�  𝑑𝑉
Ω

+ ∫ ∇⃗⃗ ∙ 𝜎 𝑑𝑉
Ω

 (7.12) 

 

Again, assuming the continuity of the above expression and using the fact that this 

equality is true not only in the whole system Ω, but also for its very single subdomain. The 

momentum conservation is given by 

 𝜕

𝜕𝑡
(𝜌𝑣 ) + ∇⃗⃗ ∙ ((𝜌𝑣 )𝑣 ) = 𝜌�⃗� + ∇⃗⃗ ∙ 𝜎 (7.13) 

 

Using the rules for partial derivation from vector calculus, the left-size term cans also 

be written: 

 𝜕

𝜕𝑡
(𝜌𝑣 ) + ∇⃗⃗ ∙ ((𝜌𝑣 )𝑣 ) = 𝑣 (

𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑣 )) + 𝜌 (

𝜕𝑣 

𝜕𝑡
+ 𝑣 ∙ ∇⃗⃗ 𝑣 ) (7.14) 

 

From the conservation of mass (7.5), the first term in parenthesis is equal to zero. 

Therefore, the conservation of momentum is rewritten as  

 
𝜌 (

𝜕𝑣 

𝜕𝑡
+ 𝑣 ∙ ∇⃗⃗ 𝑣 ) = 𝜌�⃗� + ∇⃗⃗ ∙ 𝜎 (7.15) 

 

The stress tensor is normally decomposed into a deviatoric and a hydrostatic component, 

which are defined by 

 Hydrostatic pressure: 𝑝 =  −
1

3
𝑇𝑟 (𝜎) (7.16) 

 Deviatoric component: 𝑆 = 𝜎 + 𝑝𝐼                   (7.17) 

 

After this modification, momentum conservation is given by 

 𝜕

𝜕𝑡
(𝜌𝑣 ) + 𝑣 ∙ ∇⃗⃗ (𝜌𝑣 ) = ∇⃗⃗ ∙ 𝑆 − ∇⃗⃗ 𝑝 + 𝜌�⃗�  (7.18) 

 

The term �⃗�  in electromagnetic based industrial processes represents the Lorenz force, 

which is the coupling term with the electromagnetic model. 

 

7.1.3 Angular momentum conservation 

Conservation of angular momentum for a continuum requires that the Cauchy stress 

must be symmetric, then  



Appendix 
 

164 

 

 𝜎𝑖𝑗 = 𝜎𝑗𝑖 (7.19) 

 

Taking the variations of this momentum are only due to the sum of external forces, 

(7.13) can be written as  

 
∫

𝜕

𝜕𝑡
(𝜌𝑣 )𝑑𝑉

Ω

= ∫𝜌�⃗�  𝑑𝑉
Ω

+ ∫ ∇⃗⃗ ∙ 𝜎 𝑑𝑉
Ω

 (7.20) 

 

 The balance of angular momentum for the domain Ω is defined by 

 
∫ 𝑥 ×

𝜕

𝜕𝑡
(𝜌𝑣 )𝑑𝑉

Ω

= ∫𝑥 × 𝜌�⃗�  𝑑𝑉
Ω

+ ∫ 𝑥 × ∇⃗⃗ ∙ 𝜎 𝑑𝑉
Ω

 (7.21) 

 

 Writing the above expression in index notation 

 𝜕

𝜕𝑡
∫ 𝜀𝑖𝑗𝑘𝑥𝑗𝑣𝑘𝜌𝑑𝑉
Ω

= ∫𝜀𝑖𝑗𝑘𝑥𝑗𝑏𝑘𝜌 𝑑𝑉
Ω

+
𝜕

𝜕𝑥𝑚
∫𝜀𝑖𝑗𝑘𝑥𝑗𝜎𝑚𝑘𝑑𝑉
Ω

 (7.22) 

 

 𝜕

𝜕𝑡
∫ 𝜀𝑖𝑗𝑘𝑥𝑗𝑣𝑘𝜌𝑑𝑉
Ω

= ∫𝜀𝑖𝑗𝑘𝑥𝑗𝑏𝑘𝜌 𝑑𝑉
Ω

+ ∫ 𝜀𝑖𝑗𝑘 (𝛿𝑗𝑚𝜎𝑚𝑘 + 𝑥𝑗

𝜕𝜎𝑚𝑘

𝜕𝑥𝑚
) 𝑑𝑉

Ω

 (7.23) 

 

 Reordering the comment terms 

 
∫𝜀𝑖𝑗𝑘𝛿𝑗𝑚𝜎𝑚𝑘𝑑𝑉
Ω

= −∫ 𝜀𝑖𝑗𝑘𝑥𝑗 (
𝜕𝜎𝑚𝑘

𝜕𝑥𝑚
+ 𝑏𝑘𝜌 −

𝜕𝑣𝑘𝜌

𝜕𝑡
) 𝑑𝑉

Ω

 (7.24) 

 

The integral on the right-hand side of this expression is zero, because the stresses must 

satisfy the linear momentum balance equation.  Since this holds for any volume Ω.  

 𝜀𝑖𝑗𝑘𝛿𝑗𝑚𝜎𝑚𝑘 = 0 

(7.25) 

 𝜀𝑖𝑗𝑘𝜎𝑗𝑘 = 0 

 𝜀𝑖𝑚𝑛𝜀𝑖𝑗𝑘𝜎𝑗𝑘 = 0 

 (𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑘𝑚𝛿𝑛𝑗)𝜎𝑗𝑘 = 0 

 𝜎𝑚𝑛 − 𝜎𝑛𝑚 = 0 

 𝜎𝑚𝑛 = 𝜎𝑛𝑚 

 

Which proves the stress tensor symmetric. 
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7.1.4 Constitutive laws 

In order to take into account the mechanical behaviour of materials, constitutive laws 

are traduced to relate the stress tensor to the strain tensor. 

 𝜎 = 𝐸𝜀 (7.26) 

 

Forge® uses a formulation based on strain rates rather than directly on the strain. The 

linear superposition of the strain is used; this means that each individual term is added to 

compute the total deformation. 

 𝜀̇ = 𝜀̇𝑒𝑙 + 𝜀̇𝑣𝑝 + 𝜀̇𝑡ℎ (7.27) 

 

Where 𝜀̇𝑒𝑙, 𝜀̇𝑣𝑝 and 𝜀̇𝑡ℎ are the elastic, viscoelastic and thermal strain rate tensors 

respectively. They can be computed as  

 𝜀̇𝑒𝑙 = 𝐷−1𝜎
∇

 (7.28) 

 
𝜀̇𝑣𝑝 =

3

2

𝜀 ̇

𝜎 
𝑆 (7.29) 

 𝜀̇𝑡ℎ = 𝛼�̇�𝐼 (7.30) 

 

 Where 𝐷 is the stiffness fourth order tensor, 𝜎
∇

 is a time derivative for the stress tensor, 

𝜀 ̇ and 𝜎  are the Von Mises equivalent strain rate and stress respectively, 𝛼 is the thermal 

expansion coefficient and �̇� the temperature rate of change.  

 The Von Mises equivalent strain rate and stress are defined as 

 

𝜀̅̇ = √
2

3
𝜀̇: 𝜀̇ (7.31) 

 

 

𝜎 = √
3

2
𝑆: 𝑆 (7.32) 

 

Those quantities are linked to the material properties as 

 

7.1.4.1 Elasticity:  

The stress tensor is related to the strain using the Hooke’s law 
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𝜀𝑒𝑙 =

1 + 𝜈

𝐸
𝜎 −

𝜈

𝐸
𝑡𝑟 (𝜎) 𝐼 (7.33) 

 

The strain rate tensor is computed taking the time derivatives of the strain tensor, then 

it takes the form 

 
𝜀̇𝑒𝑙 =

1 + 𝜈

𝐸
𝜎
∇

−
𝜈

𝐸
𝑡𝑟 (𝜎

∇
) 𝐼 (7.34) 

 

Where 𝜈 and 𝐸 are the Poisson’s coefficient and the elastic modulus respectively. 

 

7.1.4.2 Compressibility: 

The bulk modulus (𝜅) defines the resistance of a material on uniform compression.  

 
𝜅 = 𝜌

𝑑𝑝

𝑑𝜌
 (7.35) 

 

Where 𝑝 is the pressure in a differential volume element. In compressible materials, the 

compressibility is defined as 

 
∇⃗⃗ ∙ 𝑣 = −

1

𝜅
�̇� (7.36) 

 

In the particular case of isotropic elasticity, it is defined as 

 
∇⃗⃗ ∙ 𝑣 = −

3(1 − 2𝜈)

𝐸
�̇� (7.37) 

 

Therefore, the bulk modulus can be expressed in term of the material properties as  

  
𝜅 =

𝐸

3(1 − 2𝜈)
 (7.38) 

 

For incompressible materials the Poisson’s coefficient 𝜈 = 0.5. which complies with 

(7.8) (∇⃗⃗ ∙ 𝑣 = 0). 

 

7.1.4.3 Plasticity: 

The essential characteristic of the deformation in elastic materials is its reversibility: 

when the loads is released, the material returns to its initial conditions. On other hand, when the 

stress applied exceeds the flow stress (𝜎0) irreversible plastic deformation appears; it means 

that the return to its original condition does not occur when the load is released, and a plastic 
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strain is created. The evolution of the flow stress depends on the plastic strain (𝜀𝑝𝑙) experienced 

by the material and can be described by a strain-hardening function 𝜎0(𝜀
𝑝𝑙).  

Given a stress tensor 𝜎 at a point in the material, it is necessary to decide if the state of 

the stress corresponds to the elastic domain or the plastic domain. Several criteria have been 

created to define this, between them it can be mentioned: the plasticity criterion for the multi 

axial case, Tresca’s, Von Mises, etc; for more information see chapter 6 of [94]. 

In the EMF process, deformation occurs under high strain rates, around 103𝑠−1 to 

104𝑠−1. For this reason, an adequate description of the stress under these conditions is required. 

Several authors have developed various plastic models taking into account high strain rates. On 

can mention: 

Johnson-Cook model 

 
𝜎𝑦 = (𝐴 + 𝐵𝜀𝑝𝑙

𝑛
) [1 + 𝐶 𝑙𝑜𝑔 (

�̇�

�̇�0

)] [1 − (
𝑇 − 𝑇0

𝑇𝑚 − 𝑇0
)
𝑚

] (7.39) 

 

Where 𝜎𝑦is the Yield stress, 𝜀𝑝𝑙
𝑛

 the equivalent plastic strain, �̇� the strain rate, T the 

temperature and A, B, C, n and m are empirical material parameters.  

 

Hollomon model  

 𝜎𝑦 = 𝜎0𝜀𝑝𝑙
𝑛

 (7.40) 

 

 Takatsu model 

 
𝜎𝑦 = 𝐾1𝜀𝑝𝑙

𝑛1
+ 𝐾2𝜀𝑝𝑙

𝑛2
ln (

�̇�

�̇�0

) (7.41) 

 

 

7.2 Fluids Mechanics problem 

A Newtonian fluid motion in a domain Ω and a time period [0; T] can be described as 

in solid mechanics problem. Where the fluid behaviour satisfies conservation of momentum 

and mass of the system: 

 𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑣 ) = 𝑠1 (7.42) 

 

 𝜕

𝜕𝑡
(𝜌𝑣 ) + ∇⃗⃗ ∙ ((𝜌𝑣 )𝑣 ) = 𝑠2 (7.43) 
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Where 𝜌 is the fluid mass density, 𝑠1 and 𝑠2 are the source values for the mass and 

momentum conservation respectively. The fields velocity 𝑣 (𝑥 , 𝑡) and pressure 𝑝(𝑥 , 𝑡) describe 

the motion. 

 

7.2.1 Mass continuity equation 

The equation (7.43), representing the mass conservation inside a domain, can be rewrite 

as 

 𝜕𝜌

𝜕𝑡
− 𝑣 ∙ ∇⃗⃗ 𝜌 + 𝜌∇⃗⃗ ∙ 𝑣 = 𝑠1 (7.44) 

 

 Where the derivative of the fluid mass density is related to the compressibility of the 

fluid. A fluid is incompressible if the condition is satisfied. 

 ℳ =
𝑣

𝑐
< 0.3  (7.45) 

 

 Where ℳ is the Mach number and 𝑐 the speed of sound in the domain. This speed is 

deduced from the material’s compressibility at isentropic (the entropy of the system studied 

remains constant) conditions 𝛽𝑠. 

 

𝑐 = √
1

𝜌𝛽𝑠
  (7.46) 

 

 Having this in consideration, then assuming constant mass density over the domain, 

expression (7.45) is rewritten as follows. 

 𝜌∇⃗⃗ ∙ 𝑣 = 𝑠1 (7.47) 

 

 Finally, assuming no mass source, the incompressible expression for the fluid becomes.  

 �⃗� ∙ 𝑣 = 0 (7.48) 

 

7.2.2 Momentum conservation  

Let develop the equation (7.43) as follows: 

 
𝑣 

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑣 

𝜕𝑡
+ 𝜌𝑣 ∙ �⃗� 𝑣 + 𝜌𝑣 �⃗� ∙ 𝑣 = 𝑠2 (7.49) 

 

Equation (7.46) can be re-ordered in the form: 
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𝑣 (

𝜕𝜌

𝜕𝑡
+ �⃗� ∙ (𝜌𝑣 )) + 𝜌 (

𝜕𝑣 

𝜕𝑡
+ �⃗� ∙ �⃗� 𝑣  ) = 𝑠2 (7.50) 

 

For the definition of mass conservation (7.42) , the equation (7.50) becomes.  

 
𝜌 (

𝜕𝑣 

𝜕𝑡
+ �⃗� ∙ �⃗� 𝑣   ) = 𝑠1 (7.51) 

 

 Where the source term 𝑠1 can be defined for Newtonian fluids as follows. 

 s1 = �⃗� ∙ 𝜎 + 𝑓  (7.52) 

 

 Where 𝜎 is the Cauchy stress tensor and 𝑓  an external volumetric force. Taking the 

source term in consideration, the momentum conservation equation is expressed as 

 
𝜌 (

𝜕𝑣 

𝜕𝑡
+ �⃗� ∙ �⃗� 𝑣  ) = �⃗� ∙ 𝜎 + 𝑓  (7.53) 

 

7.2.3 Constitutive laws 

The constitutive equation of a Newtonian fluid is written based on the following 

considerations. 

• The fluid obeys the laws of statics. 

• The fluid behaviour is independent of the reference frame as well as of the 

observer. 

• The stress tensor is a function of the strain rate tensor. 

• The fluid is an isotropic medium, that is, independent of coordinate system axes 

orientation. 

Following these assumptions, the stress tensor can be expressed by. 

 𝜎 = 2𝜇𝜀̇(𝑣 ) − 𝑝𝐼 (7.54) 

 

 Where 𝜇 is the fluid dynamic viscosity, 𝑝 is the pressure, 𝐼 the identity tensor, and the 

strain rate tensor is defined as: 

 
𝜀̇(𝑣 ) =

1

2
(�⃗� 𝑣 + (�⃗� 𝑣 )

𝑇
) (7.55) 

 

 Substituting the stress tensor found into the momentum conservation equation.  
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𝜌 (

𝜕𝑣 

𝜕𝑡
+ 𝑣 ∙ �⃗� 𝑣  ) = ∇⃗⃗ ∙ (2𝜇𝜀̇(𝑣 ) − 𝑝𝐼) + 𝑓  (7.56) 

 

 Rearranging the above expression and leaving only the source term in the right-hand 

measure size, the momentum conservation equation becomes 

 
𝜌 (

𝜕𝑣 

𝜕𝑡
+ �⃗� ∙ �⃗� 𝑣  ) − 2𝜇�⃗� ∙ (𝜀̇(𝑣 )) + �⃗� 𝑝 = 𝑓  (7.57) 

 

 As in solid mechanics, the source term 𝑓  is the coupling term with the electromagnetic 

model. 

 

 

7.3 Edge element – Coulomb gauge demonstration 

The Nedelec element has the advantage of implicitly guaranteeing the Coulomb gauge 

 ∇⃗⃗ ∙ A⃗⃗ = 0 (7.58) 

 

It can be demonstrated by using the definition of the vector field in the edge basis 

functions (2.70) and substituting 𝐴  in the Coulomb gauge (2.73)  

 ∇⃗⃗ ∙ ∑ae(t)ψ⃗⃗ 𝑒(x⃗ )

e

= 0 (7.59) 

 

 By rearranging the terms of the equation, one arrives at 

 ∑𝑎𝑒(𝑡)∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 )

𝑒

= 0 (7.60) 

 

Note that by solving only the divergence of the basis function ψ⃗⃗ 𝑒(�⃗� ) it is possible to 

demonstrate the Coulomb gauge 

∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = ∇⃗⃗ ∙ (𝜑𝑖(𝑥 )∇⃗⃗ 𝜑𝑗(𝑥 ) − 𝜑𝑗(𝑥 )∇⃗⃗ 𝜑𝑖(𝑥 )) 

(7.61)  

∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = ∇⃗⃗ ∙ (𝜑𝑖(𝑥 )∇⃗⃗ 𝜑𝑗(𝑥 )) − ∇⃗⃗ ∙ (𝜑𝑗(𝑥 )∇⃗⃗ 𝜑𝑖(𝑥 )) 

∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = 𝜑𝑖(𝑥 )∇⃗⃗ ∙ ∇⃗⃗ 𝜑𝑗(𝑥 )  + ∇⃗⃗ 𝜑𝑗(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑖(𝑥 )  − 𝜑𝑗(𝑥 )∇⃗⃗ ∙ ∇⃗⃗ 𝜑𝑖(𝑥 ) − ∇𝜑𝑖(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑗 

∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = [∇⃗⃗ 𝜑𝑗(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑖(𝑥 ) − ∇⃗⃗ 𝜑𝑖(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑗] + [𝜑𝑖(𝑥 )∇⃗⃗ ∙ ∇⃗⃗ 𝜑𝑗(𝑥 ) − 𝜑𝑗(𝑥 )∇⃗⃗ ∙ ∇⃗⃗ 𝜑𝑖(𝑥 )] 

∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = [∇⃗⃗ 𝜑𝑗(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑖(𝑥 ) − ∇⃗⃗ 𝜑𝑖(𝑥 ) ∙ ∇⃗⃗ 𝜑𝑗] + [𝜑𝑖(𝑥 )∇
2𝜑𝑗(𝑥 ) − 𝜑𝑗(𝑥 )∇

2𝜑𝑖(𝑥 )] 
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The first rhs term of the last expression is equal to zero and the second one is null due 

to the use of 𝑃1 linear elements. Then, it is seen that the Coulomb gauge is naturally implicitly 

on the Nedelec elements. 

 ∇⃗⃗ ∙ ψ⃗⃗ 𝑒(𝑥 ) = 0 (7.62) 

 

 

7.4 Hessian – Jacobian analytical and numerical test 

In this section, a comparative analysis of two approaches introduced in Chapter 0 is 

performed. The main objective is to gain a deeper understanding of the intermediate steps 

involved in the calculation of the metric. Specifically, it aims to examine how the Hessian 

approach may diffuse the anisotropy of the field and identify any potential loss of information. 

To achieve this, a simple test case involving a single element - a perfect tetrahedron with an 

edge length of unity - is proposed. This test case will allow to explore and evaluate the nature 

of the results of the Hessian and Jacobian obtained in Section 4.5 

 

Fig. 7.1 Perfect tetrahedron. 

 The node coordinates are defined by  

𝑛1 = (0,0,0) 𝑛2 = (1,0,0) 𝑛3 = (0,1,0) 𝑛4 = (0,0,1) 

 

 The Gauss integration points are then defined on the tetrahedron shown in Fig. 7.1 as 

follows: 

𝑎 = 0.25 ∗ (1 −
1

√5
) = 0.1382 

𝑏 = 1 − 3 ∗ 𝑎 = 0.5854 

𝑥𝑔1 = (𝑎, 𝑎, 𝑎) 𝑥𝑔2 = (𝑎, 𝑎, 𝑏) 𝑥𝑔3 = (𝑎, 𝑏, 𝑎) 𝑥𝑔4 = (𝑏, 𝑎, 𝑎) 

 

In order to investigate the nature of the results found in this chapter, the numerical 

calculation for the Hessian and the Jacobian is carried out in detail in this section. First, let’s 

define the Galerkin recovery procedure, which is used to go from constant fields at the Gauss 

points to linear wise fields at the nodes. 
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Let’s denote the nodes by the character 𝑖 and the Gauss integration point by 𝑥𝑔 and 

define a scalar function 𝑓(𝑥𝑔) evaluated at the Gauss points. The recovery approach consists 

of solving the following linear system: 

 〈𝑓 − 𝑓(𝑥𝑔), 𝜑〉 = 0 (7.63) 

 

Where 𝜑 represents the nodal basis function. The field 𝑓 is then expressed by 

 

𝑓 = ∑𝑓𝑖

4

𝑖=1

𝜑𝑖 (7.64) 

 

Introducing the above expression into the equation (7.63) and shifting 𝑓(𝑥𝑔) to the 

right-hand side, it results in:  

 
∑〈𝜑𝑖, 𝜑𝑗

〉

4

𝑖=1

𝑓
𝑖
= 〈𝑓(𝑥𝑔), 𝜑𝑗

〉 (7.65) 

 

On the left-hand side a matrix of mass is defined with nodal basis functions of the 

element 

 

𝑚𝑖𝑗 = ∑〈𝜑𝑖, 𝜑𝑗〉

4

𝑖=1

 (7.66) 

 

The matrix of mass is inversible and constant over the element, then the expression 

(7.65) can be rewritten as  

 𝑓𝑖 = 𝑚𝑖𝑗
−1〈𝑓(𝑥𝑔), 𝜑𝑗〉 (7.67) 

 

Let’s construct this matrix in the tetrahedral element by: 

 

𝑚𝑖𝑗 =

[
 
 
 
〈𝜑1, 𝜑1〉 〈𝜑2, 𝜑1〉

〈𝜑1, 𝜑2〉 〈𝜑2, 𝜑2〉

〈𝜑1, 𝜑3〉 〈𝜑2, 𝜑3〉

〈𝜑1, 𝜑4〉 〈𝜑2, 𝜑4〉

〈𝜑3, 𝜑1〉 〈𝜑4, 𝜑1〉

〈𝜑3, 𝜑2〉 〈𝜑4, 𝜑2〉

〈𝜑3, 𝜑3〉 〈𝜑4, 𝜑3〉

〈𝜑3, 𝜑4〉 〈𝜑4, 𝜑4〉]
 
 
 
 (7.68) 

 

The components of the matrix are integrals which can be expressed as: 

 
⟨𝜑𝑖, 𝜑𝑗⟩ = ∫𝜑𝑖𝜑𝑗𝑑𝑉

𝐾

 (7.69) 

 

And solved numerically by: 
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⟨𝜑𝑖, 𝜑𝑗⟩ = ∑ 𝜑𝑖(𝑥𝑔)𝜑𝑗(𝑥𝑔)𝑤𝑔

4

𝑔=1

 

 Then, calculating each of the components, the matrix of mass is given by: 

 

𝑚𝑖𝑗 = [

0.01667 0.00833
0.00833 0.01667

0.00833 0.00833
0.00833 0.00833

0.00833 0.00833
0.00833 0.00833

0.01667 0.00833
0.00833 0.01667

] (7.70) 

 

 And therefore, its inverse: 

 

𝑚𝑖𝑗
−1 = [

96 −24
−24 96

−24 −24
−24 −24

−24 −24
−24 −24

96 −24
−24 96

] (7.71) 

 

Finally, the vector on the right-hand side is expressed as: 

 〈𝑓(𝑥𝑔), 𝜑𝑗
〉 = ∫ 𝑓(𝑥𝑔)𝜑𝑗𝑑𝑉

𝐾
 (7.72) 

 

The integral is then calculated numerically at each node as follows: 

 
〈𝑓(𝑥𝑔), 𝜑𝑗

〉 = ∑ 𝑓(𝑥𝑔)𝜑𝑗(𝑥𝑔)𝑤𝑔

4

𝑔=1

 (7.73) 

 

Since the Galerkin recovery procedure is defined, let’s calculate the Hessian and the 

Jacobian.  

First, let’s define a vector field function: 

 𝑓 = 〈𝑧4, 0,0〉 (7.74) 

 

Which norm is equal to: 

 ‖𝑓 ‖ = 𝑧4 (7.75) 

 

7.4.1 Numerical solution 

7.4.1.1 Hessian 

The Hessian tensor is commonly calculated as the second derivative of the norm of a 

function 𝑓  defined at the integration points. 

From the norm of 𝑓  (7.75) evaluated at the Gauss points 𝑓(𝑥𝑔), the steps to calculate 

the Hessian are explained as follows: 
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𝑓(𝑥𝑔1) = 0.0003647 𝑓(𝑥𝑔2) = 0.1174467  𝑓(𝑥𝑔3) = 0.0003647 𝑓(𝑥𝑔4) = 0.0003647 

 

I. Galerkin recovery procedure: 

The expression in (7.67) is used to build the function 𝑓𝑖 at the nodes: 

 𝑓𝑖 = 𝑚𝑖𝑗
−1〈𝑓(𝑥𝑔), 𝜑𝑗〉 (7.76) 

 

 The vector on the right-hand side given by the expression (7.73) is equal to: 

 

〈𝑓(𝑥𝑔), 𝜑𝑗
〉 = (

0.0006894
0.0006894
0.0006894
0.0028711

) (7.77) 

 

 Substituting the result in (7.77) into (7.76), the recovered field at the nodes is equal to: 

 

𝑓𝑖 = (

−0.035815
−0.035815
−0.035815
0.225988

) (7.78) 

 

II. Gradient computation: 

The gradient at the Gauss points is given by: 

 

∇⃗⃗ (𝑓(𝑥𝑔)) = ∑∇⃗⃗ 𝜑𝑖𝑓𝑖

4

𝑖=1

 (7.79) 

 

The Gradient is constant over the tetrahedron, therefore: 

 ∇⃗⃗ (𝑓(𝑥𝑔)) = ∇⃗⃗ (𝑓(𝑥𝑔1)) = ∇⃗⃗ (𝑓(𝑥𝑔2)) = ∇⃗⃗ (𝑓(𝑥𝑔3)) = ∇⃗⃗ (𝑓(𝑥𝑔4)) (7.80) 

 

Then, the result of the gradient at each Gauss point is: 

 
∇⃗⃗ (𝑓(𝑥𝑔)) = (

−1.388𝑥10−17

−2.082𝑥10−17

0.261803

) (7.81) 

 

III. Galerkin recovery procedure: 

The recovery procedure is carried out once again to construct the gradient at the nodes ∇⃗⃗ (𝑓𝑖), 

As the gradient is a vectorial field, the linear system is solved three times once for each 

component. Then applying the expression in (7.67): 

 ∇⃗⃗ (𝑓𝑖) = 𝑚𝑖𝑗
−1 〈∇⃗⃗ (𝑓(𝑥𝑔)) , 𝜑𝑗〉 (7.82) 
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The vector on the right-hand side given by the expression (7.73) is equal to: 

 
〈∇⃗⃗ (𝑓(𝑥𝑔)) , 𝜑𝑗

〉 = (
−5.782𝑥10 − 19
−5.782𝑥10 − 19

0.010908
) (7.83) 

 

Substituting the result in (7.83) into (7.82), the recovered field at the nodes is equal to: 

 
∇⃗⃗ (𝑓𝑖) = (

−1.388𝑥10−17

−2.082𝑥10−17

0.261803

) (7.84) 

 

It should be noted that the results are the same for all nodes, so the result is only given 

for one node. 

 

IV. Gradient computation: 

Having the gradient at the nodes, the Hessian is calculated by applying the gradient operator 

as follows: 

 

�̿� (𝑓(𝑥𝑔)) = ∑∇⃗⃗ 𝜑𝑖 ∇⃗⃗ (𝑓𝑖)

4

𝑖=1

 (7.85) 

 

The result at each Gauss point is equal to: 

 
�̿� (𝑓(𝑥𝑔)) = [

−7.70𝑥10−33 −1.54𝑥10−33 1.08𝑥10−32

9.24𝑥10−33 1.54𝑥10−32 1.54𝑥10−32

−5.55𝑥10−17 −5.55𝑥10−17 −5.55𝑥10−17

] (7.86) 

 

V. Galerkin recovery procedure: 

As the mesher needs an input at the nodes, the recovery procedure is applied again. Then 

applying the expression in (7.67): 

 �̿�(𝑓𝑖) = 𝑚𝑖𝑗
−1 〈�̿� (𝑓(𝑥𝑔)) , 𝜑𝑗〉 (7.87) 

 

The vector on the right-hand side given by the expression (7.73) is equal to: 
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〈�̿� (𝑓(𝑥𝑔)) , 𝜑𝑗
〉 =

(

 
 
 
 
 
 
 
 

−3.21𝑥10−34

−6.42𝑥10−35

4.49𝑥10−34

3.85𝑥10−34

6.42𝑥10−34

6.42𝑥10−34

−2.31𝑥10−18

−2.31𝑥10−18

−2.31𝑥10−18)

 
 
 
 
 
 
 
 

 (7.88) 

 

Finally, the Hessian tensor at each node is equal to  

 
�̿�(𝑓𝑖) = [

−7.70𝑥10−33 −1.54𝑥10−33 1.07𝑥10−32

9.24𝑥10−33 1.54𝑥10−32 1.54𝑥10−32

−5.55𝑥10−17 −5.55𝑥10−17 −5.55𝑥10−17

] (7.89) 

 

7.4.1.2 Jacobian 

The Jacobian matrix is calculated as the first derivative of a vector function. In this case, 

the function 𝑓  (7.74) is evaluated at each Gauss point, given the following values: 

𝑓 (𝑥𝑔1) = (
0.0003647

0
0

) 𝑓 (𝑥𝑔2) = (
0.117447

0
0

) 𝑓 (𝑥𝑔3) = (
0.0003647

0
0

) 𝑓 (𝑥𝑔4) = (
0.0003647

0
0

) 

 

I. Galerkin recovery procedure: 

The recovery approach is used here to construct a vector field at the nodes from 𝑓 (𝑥𝑔). 

Then applying the expression in (7.67): 

 𝑓 𝑖 = 𝑚𝑖𝑗
−1〈𝑓 (𝑥𝑔), 𝜑𝑗〉 (7.90) 

 

The vector on the right-hand side given by the expression (7.73) is equal to: 

 𝐵𝑗
⃗⃗  ⃗ = 〈𝑓 (𝑥𝑔), 𝜑𝑗〉 (7.91) 

 

�⃗� 1 = (
0.0006894

0
0

) �⃗� 2 = (
0.0006894

0
0

) �⃗� 3 = (
0.0006894

0
0

) �⃗� 4 = (
0.002871

0
0

) 

 

Substituting the result of (7.91) into (7.90), the recovered field at the nodes is equal to: 

𝑓 1 = (
−0.03589

0
0

) ; 𝑓 2 = (
−0.03589

0
0

) ; 𝑓 3 = (
−0.03589

0
0

) ; 𝑓 4 = (
0.2260

0
0

) (7.92) 
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II. Gradient computation: 

The Jacobian matrix is calculated as the gradient of the vector field at the nodes: 

 

𝐽(̿𝑥𝑔) = ∑∇⃗⃗ 𝜑𝑖𝑓 𝑖

4

𝑖=1

 (7.93) 

 

Since the Jacobian is constant in the tetrahedron, only one Gauss point is shown. 

 
𝐽(̿𝑥𝑔) = [

−2.77𝑥10−17 −1.39𝑥10−17 0.2618
0 0 0
0 0 0

] (7.94) 

 

III. Galerkin recovery procedure: 

As it is necessary to define the Jacobian at the nodes as input to the mesher, the recovery 

procedure is applied again. Then applying the expression in (7.67): 

 𝐽�̿� = 𝑚𝑖𝑗
−1〈𝐽(̿𝑥𝑔), 𝜑𝑗〉 (7.95) 

 

The vector on the right-hand side given by the expression (7.73) is equal to: 

 

〈�̿�(𝑥𝑔), 𝜑𝑗
〉 =

(

 
 
 
 
 
 

−5.78𝑥10−19

−8.67𝑥10−19

0.010908
0
0
0
0
0
0 )

 
 
 
 
 
 

 (7.96) 

 

Finally, the Jacobian matrix at the nodes is equal to: 

 
𝐽�̿� = [

−1.39𝑥10−17 −2.08𝑥10−17 0.2618
0 0 0
0 0 0

] (7.97) 

 

IV. Metric construction 

To construct the metric based on the Jacobian, it is necessary to multiply it by its transpose 

matrix. 

 𝐽 ̿ = 𝐽�̿�
𝑇𝐽�̿� (7.98) 

 

Then the Jacobian tensor is equal to: 
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𝐽 ̿ = [

1.92𝑥10−34 2.89𝑥10−34 −3.63𝑥10−18

2.89𝑥10−34 4.33𝑥10−34 −5.45𝑥10−18

−3.63𝑥10−18 −5.45𝑥10−18 0.06854

] (7.99) 

 

Let’s eliminate some components as their values are numerical noise, so the Jacobian can 

be rewritten as: 

 
𝐽 ̿ = [

0 0 0
0 0 0
0 0 0.06854

] (7.100) 

 

7.4.2 Analytical solution 

7.4.2.1 Hessian  

The Hessian is defined as the second derivative of a scalar field. We can then express it 

in matrix form as: 

 

�̿�(𝑓) =

[
 
 
 
 
 
 
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑧

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦2

𝜕2𝑓

𝜕𝑦𝜕𝑧

𝜕2𝑓

𝜕𝑧𝜕𝑥

𝜕2𝑓

𝜕𝑧𝜕𝑥

𝜕2𝑓

𝜕𝑧2 ]
 
 
 
 
 
 

 (7.101) 

 

Then, using the norm of 𝑓  defined in (7.75) the analytical Hessian of 𝑓  is equal to: 

 
�̿�(𝑓) = ⌈

0 0 0
0 0 0
0 0 12𝑧2

⌉ (7.102) 

 

Evaluating the above result at each integration point, it results in: 

𝐻(𝑓1) = ⌈
0 0 0
0 0 0
0 0 0.229

⌉ 𝐻(𝑓2) = ⌈
0 0 0
0 0 0
0 0 4.112

⌉ 𝐻(𝑓3) = ⌈
0 0 0
0 0 0
0 0 0.229

⌉ �̿�(𝑓4) = ⌈
0 0 0
0 0 0
0 0 0.229

⌉ 

 

Finally, calculating the value at the barycenter of the element by the mean of the 

analytical Hessian over the tetrahedron it arrives at: 

 
�̿�(𝑓1) = ⌈

0 0 0
0 0 0
0 0 1.19975

⌉ (7.103) 

 

7.4.2.2 Jacobian 

The Jacobian is defined as the derivative of a vector field 𝑓 . We can then express it in 

matrix form as: 
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𝐽(̿𝑓 ) = �⃗� 𝑇𝑓 
 
=

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑧

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑧 ]

 
 
 
 
 
 

 (7.104) 

 

Then, using the function 𝑓  defined in (7.74), the analytical Jacobian is equal to 

 
𝐽(̿𝑓 ) = �⃗� 𝑇𝑓 

 
= [

0 0 4𝑧3

0 0 0
0 0 0

] (7.105) 

 

The metric based on the Jacobian must be multiplied by its transpose, which leads to: 

 𝐽 ̿ = 𝐽(̿𝑓 )
𝑇
𝐽(̿𝑓 ) (7.106) 

 

Finally, the analytical expression for the Jacobian tensor is given by: 

 
J̿ = [

0 0 0
0 0 0
0 0 16z6

] (7.107) 

 

Evaluating the above expression at each integration point, it results in: 

𝐽1̿ = ⌈
0 0 0
0 0 0
0 0 0.000111

⌉ 𝐽2̿ = ⌈
0 0 0
0 0 0
0 0 0.6439

⌉ 𝐽3̿ = ⌈
0 0 0
0 0 0
0 0 0.000111

⌉ 𝐽4̿ = ⌈
0 0 0
0 0 0
0 0 0.000111

⌉ 

 

Finally, calculating the value at the barycenter of the element by the mean of the 

analytical Jacobian over the tetrahedron it arrives at: 

 
𝐽1̿ = ⌈

0 0 0
0 0 0
0 0 0.1611

⌉ (7.108) 

 

7.4.3 Analytical vs numerical solution 

Table 7.1. presents a comparison of the analytical and numerical tensor solutions. It can 

be seen that the numerical Jacobian procedure successfully captures the anisotropy present in 

the analytical solution, while the Hessian approach falls short in in following the anisotropy 

adequately. However, when considering the order of magnitudes in the components, the 

numerical Hessian does attempt to maintain the anisotropy to some extent but does not fully 

recover it. This may be attributed to the use of linear basis functions in our approximation, 

which offer a good approximation when only one derivative is involved, as seen in the Jacobian 

case. However, the information is lost when calculating a second derivative, as in in the case of 

the Hessian. 
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Table 7.1 Comparison between analytical and numerical  

Method Analytical Numerical 

Hessian ⌈
0 0 0
0 0 0
0 0 1.19975

⌉ [
−7.70𝑥10−33 −1.54𝑥10−33 1.07𝑥10−32

9.24𝑥10−33 1.54𝑥10−32 1.54𝑥10−32

−5.55𝑥10−17 −5.55𝑥10−17 −5.55𝑥10−17

] 

Jacobian ⌈
0 0 0
0 0 0
0 0 0.1611

⌉ [
0 0 0
0 0 0
0 0 0.06854

] 
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ABSTRACT 

     Electromagnetic-coupled manufacturing processes involve strong multiphysics couplings between 

electromagnetism and other physical fields. Their design and optimisation are quite complex and relies 

heavily on efficient computational models. However, these models are often highly demanding in terms of 

resources; reducing CPU time while preserving a specified accuracy of numerical results is one of the main 

challenges. 

     The purpose of this PhD work is thus to address this challenge by developing automated anisotropic 

meshing procedures in conjunction with specific error estimators for the electromagnetic computations. This 

work has been carried out in several stages. 

    The first stage is the development of a robust error estimator – able to effectively identify and quantify the 

errors of the numerical solution in the case of complex industrial models. 

    The second stage deals with adaptive anisotropic remeshing and the development of a novel framework to 

compute the metric tensor, which needs to enable capturing the inherently anisotropic behaviour of the 

electromagnetic phenomena. 

    The third and last stage deals with modelling of complex industrial cases, based on the implementation of 

the developed methods in the Forge® & Thercast® software enabling multiphysical couplings with the 

thermodynamical phenomena. 

MOTS CLÉS 

Procédés de fabrication utilisant l’électromagnétisme, méthode des éléments finis, estimateurs d'erreur, 

adaptation de maillage. 

RÉSUMÉ 

    Les procédés de fabrication utilisant l’électromagnétisme impliquent de forts couplages multiphysiques 

entre l'électromagnétisme et d'autres champs physiques. Leur conception et leur optimisation sont donc assez 

complexes et reposent largement sur des modèles numériques efficaces. Cependant, ces modèles nécessitent 

souvent de très importantes ressources informatiques ; réduire le temps de calcul tout en garantissant un 

niveau de précision donné des résultats numériques est donc l'un des principaux défis. 

    L'objectif de ce travail de doctorat est donc de relever ce défi en développant des procédures de maillage 

anisotrope automatisées en lien avec des estimateurs d'erreur spécifiques pour les calculs électromagnétiques. 

Ce travail a été réalisé en plusieurs étapes. 

    La première étape est le développement d'un estimateur d'erreur robuste - capable d'identifier et de 

quantifier efficacement les erreurs de la solution numérique dans le cas de modèles industriels complexes. 

    La deuxième étape concerne le remaillage anisotrope adaptatif et le développement d'un nouveau cadre 

pour calculer le tenseur métrique, qui doit être capable de capturer l'anisotropie inhérente aux phénomènes 

électromagnétiques. 

    La troisième et dernière étape concerne la modélisation de cas industriels complexes, basée sur une 

implémentation des méthodes développées dans les logiciels Forge® & Thercast®, permettant des couplages 

multiphysiques avec les phénomènes thermodynamiques.  
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