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Résumé & Abstract
Résumé
Les suspensions colloidales, le couplage entre
l’environnement, la structure microscopique et la
rhéologie sont étudiées dans ce manuscrit. Ce travail
utilisera majoritairement un point de vue théorique
mais fera intervenir aussi des approches expérimentales
et numériques. Caractérisées par des agrégats de
particules formés grâce à un potentiel d’interaction
attractif, ces suspensions peuvent être soumises à
une sollicitation externe sous forme d’ultrasons, de
cisaillement ou tout autre forme mécanique. Les
agrégats répondent à cette sollicitation en adaptant leur
microstructure, notamment en taille.

Par ailleurs, cette même microstructure est la brique
élémentaire transmettant les efforts de part et d’autre
d’un gel colloidal, ce qui peut se traduire par des lois
d’échelles entre la microstructure et la rhéologie macro-
scopique.

Par conséquent, on observe un couplage fort entre
l’échelle macroscopique, composée de l’environnement
extérieur et la réponse rhéologique, et l’échelle micro-
scopique, avec la structure microscopique s’adaptant et
influençant l’échelle précédente. C’est ainsi qu’il est
possible de construire un outil d’application industriel
incorporant cette description physique afin de prédire
les effets d’une sollicitation externe sur un matériau la
vérifiant.

Mots clés : Suspension colloïdale, Rhéologie, Aggré-
gats fractales

Abstract
Colloidal suspensions, the coupling between environ-
ment, microscopic structure and rheology are studied
in this manuscript. This work will mainly use a theo-
retical point of view but will also involve experimental
and numerical approaches. Characterized by aggregates
of particles formed thanks to to an attractive interaction
potential, these suspensions can be subjected to an ex-
ternal solicitation in the form of ultrasound, shear or any
other mechanical form. The aggregates respond to this
solicitation by adapting their microstructure, especially
in size.

Moreover, this same microstructure is the elementary
brick transmitting the efforts on both sides of a colloidal
gel, which can be recovered by laws of scale between
the microstructure and the macroscopic rheology.

Therefore, we observe a strong coupling between the
macroscopic scale, composed of the external environ-
ment and the rheological response, and the microscopic
scale, with the microscopic structure adapting and in-
fluencing the previous scale. It is thus possible to build
an industrial application tool incorporating this physical
description in order to predict the effects of an external
stress on a material verifying it.

Keywords : Colloidal suspension, Rheology, Fractal
clusters
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Notations
α Exponent of transition between the strong-link and

the weak-link regime
Ad Adhesion number

a Particle size
β = 1/kBT

Bm Bingham number
cp Heat capacity per unit mass
δ Distance of interaction between particles

D,D Fractal dimension
De Deborah number
d, d Chemical dimension or dimension of the elastic

back-bone
dim Dimension of the Euclidean space

dα
dtα Fractionnal derivative with α ∈ [0, 1]

d
dt Material derivative
ε Linear strain tensor
ε̇ Strain rate tensor
ϵ Exponent of transition between stretching and

bending
E Elastic/Young modulus
E Energy functional in the aggregation-

disaggregation processes
e Green-Lagrange strain tensor
e Internal energy per unit mass

erf Error function
ϕ Volume fraction
F Deformation gradient
F Fragmentation kernel or point force
F Fourier transform
f Probability density function with different types of

variables
Γ Gamma function
γ 1D Shear strain

γNL Limit of linearity strain
γy Yield strain
γ̇ 1D Shear strain rate

G∗,G′,G′′ Complex, Storage and Loss moduli respec-
tively

η Dynamic viscosity
I Identity tensor
I Scattering intensity

J = det (F) Local volume variation of the transforma-
tion

J∗, J′, J′′ Complex, storage and loss compliances re-
spectively

κ Bulk or volume viscosity
K Aggregation kernel
k Number of particles in a cluster or wave number

kB Boltzmann constant

λ Thermal conductivity or first Lamé coefficient
L = ∇u Velocity gradient

L Macroscopic system size
ℓ Cluster size
µ Second Lamé coefficient

Mn Mason number
ν Kinematic viscosity

N Nominal stress tensor
n Power index of strain rate

nk Number of cluster with k particles inside
Ω System considered, subset of R3

ω Pulsation
ψ Stream function
P First Piola-Kirchhoff stress tensor

Pe Peclet number
p Thermodynamic pressure
q Wave vector number
q Heat flux vector
ρ Density
R Rotation tensor in the polar decomposition of the

deformation gradient
Re Reynolds number

r Distance from the origin
r0 Particle size
σ Cauchy Stress tensor
σy Yield stress
S Second Piola-Kirchhoff stress tensor
s Entropy per unit mass
Θ Heaviside function
τ Time constant
θ Polar angle
T Temperature

Ta Taylor number
t Time
υ Vorticity vector
U Depth of the interparticle potential
U Right stretch tensor
u Velocity or displacement

Wi Weissenberg number
Ξ Grand canonical partition function
ξ Cluster size
x Space variable
·T Transpose of a tensor/matrix
∝ Proportional to
≈ Approximately equals to
∼ Equivalent to, in a certain limit
: Double contracted tensor product
⊗ Tensor product
× Vector product
tr Trace of a tensor
a Text originally written for the manuscript
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Chapter 1
General introduction

This PhD work is focused on issues related to
the nuclear industry ; in this chapter, a brief
overview of the industry is given and the def-
inition of the problems to solve is proposed
: to work on the flow of radioactive sludges
and the methods to implement processes like
geological storage.

Objectives

Ce travail de doctorat porte sur des ques-
tions liées à l’industrie nucléaire ; dans ce
chapitre, un bref aperçu de l’industrie est
donné et la définition des problèmes à ré-
soudre est proposée : travailler sur le flux des
boues radioactives et les méthodes pour met-
tre en œuvre des processus tels que le stock-
age géologique.

Objectifs

Contents
1.1 Context . . . . . . . . . . . . . . . . . 1
1.2 State of the art [Bouthier, ] . . . . . . . 4

1.2.1 Abstract of the section . . . . 4
1.2.2 Content of the section . . . . 4
1.2.3 Generalities about rheological

model . . . . . . . . . . . . . 4
1.2.4 How clusters influence the

rheology . . . . . . . . . . . 11
1.2.5 How the clusters are influ-

enced externally . . . . . . . 20
1.2.6 About dimensionality . . . . . 24
1.2.7 Open remaining questions . . 26

1.3 Problematic . . . . . . . . . . . . . . 27
1.4 Contents . . . . . . . . . . . . . . . . 27

Due to the subsequent amount of content coming
directly from already published or work in progress
papers, each part of the text originally created for this
manuscript solely will be colored as in this paragraph.
Hence, the reader will be aware of what is coming
only from the manuscript and what is already found
in the published papers in the context of this PhD.

1.1 Context

France produced, in 2022, 62.7% of its electric-
ity through nuclear power plants[RTE, 2023]. They
cover a large part of the country: their distribution is
displayed on figure 1.1. Nuclear energy has several
advantages like the amount of energy produced per
unit mass of fuel, the low carbon footprint compared
to fossil fuels and the industrial environment created
by such technology. There are also some drawbacks
or point of attention like the safety and the security of
the installations, the dependance on certain producers
of uranium and the waste management.

Precisely, the processing of radioactive waste is
an important part of the whole nuclear cycle to en-
sure safety, efficiency and clean energy production.
In France, radioactive waste are treated in factory in
La Hague or in CEA Marcoule. Figure 1.2 shows
the main locations of radioactive materials and ware-
housing and geological storage sites for radioactive
waste. In these installations, the radioactive waste un-
dergo several chemical and physical treatments in or-
der to separate the reusable combustible which will be
transported to nuclear power-plants to be consumed
and the actual radioactive waste which need to be
warehoused or geologically stored. The latter waste
come out of the factory in the form of "sludge", in
the sense of a suspension of solids in an aqueous so-
lution. These sludges aim to concentrate the radioac-
tive waste and the precipitates coming from the treat-
ment process of liquid effluents. These sludges are

1



1.1. Context1

Figure 1.1: Map of the nuclear power plants in France
in 2019. Extracted from [RTE, 2023]

rather viscous materials due to the chemical compo-
sition produced by the treatments in the factory of
La Hague or in CEA Marcoule. To give a broader
perspective of nuclear industry, waste which will be
geologically stored will be managed by the Cigeo
project. The latter project aims to store the waste
produced from the beginning of French nuclear indus-
try to year 2150 approximately when current power-
plants will be totally dismantled and to avoid future
generations to take care of burdens brought by the
previous ones. The nuclear waste are split into two
axes, according to their main characteristics, defined
by Andra, the National Agency for the management
of radioactive waste: the intensity of the activity and
waste lifetime (see table 1.1). To give some orders
of magnitude, High Activity-Long Life waste, which
are the most dangerous waste to manage, represent 2
olympic swimming pools in volume with more than
95% of the radioactivity but account for 2.5‰ of the
volume of all radioactive waste which have been pro-
duced from the beginning. This whole project started
in 1991 with the Bataille law mentionning three so-
lutions to study: transmutation, geological storage
and long time warehousing. The site was then cho-
sen in 1998 in Meuse/Haute-Marne. In 2005-2006,
the first public debate occurred and French Parlia-
ment chose to geologically store High Activity and
Medium Activity-Long Life waste with a reversibility
of the storage during 100 years. The Cigeo project, In-
dustrial Centre for geological storage, was presented
in 2012 after some studies. A second public debate
about Cigeo in 2013 gave rise to the modalities law
of Cigeo in 2016. From 2016 and 2018, the Nuclear
Safety Authority studied the project to finally con-
clude with a favourable opinion. In 2022, the Public
utility declaration and the National interest operation
were created.

Coming back to the topic of this PhD, in order to
ensure the most relevant warehousing environment, it
may be interesting to transport the sludges from one
container to another. Nevertheless, the sludges are
too viscous or rheologically complex to allow regular
pumps to do the transportation. It is then necessary to
find a method to allow pumping them.

Recent studies like [Gibaud, 2020a; Dagès, 2021]
demonstrated that the use of ultrasound may have
an influence on the behaviour of a suspension, more
specifically its rheology. These studies showed that
applying an external solicitation on certain suspen-
sions may create a decrease of the storage modulus
which helps the material to flow.

Hence, the basis of this PhD is to focus on a the-
oretical and numerical framework in order to under-
stand how applying an external solicitation on these
sludges may help to pump. The understanding may
also allow to predict the conditions needed to make
the sludges flow without meeting some dangerous
boundaries like a violent increase in temperature, due
to the dissipation in such viscous materials, or an
enormous amount of energy needed for the operation.

2
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1.2. State of the art [Bouthier, ]1
Radioactive period

Very short lifetime Short lifetime Long lifetime

Activity

Very low activity
(< 100Bq/g)

Very short lifetime
waste managed by
radioactive
decreasing

Very low activity waste warehoused in
surface (Industrial center for gathering,

warehousing and storage)
Low activity

(> 100Bq/g and
< 1MBq/g)

Low and Medium
short lifetime
warehoused at the
surface in the
warehouse center in
Aube and Manche

Low activity long
lifetime geologically
stored at low depth

understudy
Medium activity
(> 1MBq/g and
< 1GBq/g)

Medium activity
long lifetime deeply
geologically stored

in Cigeo project
High activity
(> 1GBq/g)

Not applicable High activity deeply geologically stored in
Cigeo project

Table 1.1: Waste management matrix according to Andra. Extracted from [ANDRA, 2023].

1.2 State of the art [Bouthier, ]

To give a more accurate view of the scientific
background, I will describe in the following section
the state of the art for rheology and structural analysis
of colloidal suspensions.

1.2.1 Abstract of the section
The coupling between the microstructure and the exter-
nal environment has been of great interest in recent rhe-
ological or mechanical studies. It can be tackled through
phenomenological approaches, or trying to disentangle
the reciprocal relationships between the components of
the system. In this article, we present, after a brief
overview of different rheological model, how micro-
scopic structure influences the rheology, then, how mi-
crostucture is constrained by the external environment.
The range of applications is humongous and should in-
vite many others to study the strong coupling in indus-
trial fields and numerical simulations.

1.2.2 Content of the section
Some generalities about rheology will be tackled in sec-
tion 1.2.3. Then, a particular focus will be taken to
understand the influence of microscopic structures like
clusters of particles on the rheology in section 1.2.41.
Afterwards, in section 1.2.5, the reciprocal dependence
of cluster of particles according to external solicita-
tion will be addressed2. Furthermore, some additional
insights about dimensionality will be studied in sec-

1This will be the basis of my published work in [Bouthier, 2022;
Dagès, 2022; Bouthier, 2023b] and developed in chapter 3

2This will be the basis of my published work in [Dagès, 2022;
Bouthier, 2023a] and developed in chapter 2

tion 1.2.6. Finally, in section 1.2.7, some conclusions
will be drawn.

1.2.3 Generalities about rheological model
1.2.3.1 Linear models

The word "rheology" comes from the greek ῥέωλόγία

which means literally "the study of the flow". It is a
field at the boundaries of mechanics and physics be-
cause it is needed by continuum mechanics to solve the
flow problems and rely mainly on physical argument to
build properly the laws. Taking the angle of continuum
mechanics, the equations of motions relate classically
density, displacement or velocity and stresses (see [Lan-
dau, 1959; Landau, 1987; Barber, 2004]). To be more
precise, in the Eulerian framework in the deformed con-
figuration, the equations are according to [Bird, 2002;
Bergman, 2011; Bhatti, 1987]

∂ρ

∂t
+ div (ρu) = 0 (1.1)

∂ρu
∂t
+ div (ρu ⊗ u) = div (σ) + ρb (1.2)

σ = σT (1.3)
∂ρe
∂t
+ div (ρeu) = σ : ∇u − div (q) + R (1.4)

with ρ the density, u the velocity, σ the Cauchy stress
tensor, b the body forces, e the internal energy per unit
mass, R the radiation per unit volume, q the heat flux
vector, : the double contracted product and the differen-
tial operators are in the deformed configuration. Then,
in the Lagrangian framework, the equations are

ρJ = ρ0 (1.5)

4
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ρ0
∂2x
∂t2 = DIV (N) + ρ0b (1.6)

FN = NT FT (1.7)

ρ0
∂e
∂t
= N :

∂F
∂t
− DIV (q) + R (1.8)

with ρ0 the density in the reference configuration, N the
nominal stress tensor (see the discussion below), x the
position vector, F the deformation gradient, J = det (F)
and the differential operators are in the reference con-
figuration. To give some clarifications, equations (1.1)
and (1.5) come from the conservation of mass, equa-
tions (1.2) and (1.6) comes from the conservation of
linear momentum, equations (1.3) and (1.7) comes
from the conservation of angular momentum and equa-
tions (1.4) and (1.8) comes from the conservation of
energy, respectively in the Eulerian framework and the
Lagrangian framework. The conservation equations be-
tween those quantities are incomplete to properly solve
the problem. Therefore, new equations are proposed
to relate, most of the time, the stresses with displace-
ments and/or velocities. The pictures given here may
be simplistic but other parameters may play a role like
temperature, electromagnetism, chemistry or radiation.
The most simple relations that can be found between
stresses and displacements or velocities are proportional
ones namely linear elastic and newtonian viscous. Pre-
cisely, for a Cauchy stress tensorσ, a linear strain tensor
ε, a linear strain rate tensor ε̇, one can write

σ = λtr (ε) I + 2µε (1.9)

σ = −pI + κtr (ε̇) I + 2η
(
ε̇ −

1
3

tr (ε̇) I
)

(1.10)

with p the thermodynamic pressure, λ, µ, κ and η, the
first Lamé coefficient, the second Lamé coefficient, the
volume viscosity and the dynamic viscosity respectively
(see [Landau, 1959; Landau, 1987]). These simple lin-
ear relations allow to recover respectively the Navier
equations and the Navier-Stokes equations. Even if
these partial derivatives equations may have a certain
difficulty of resolution for complex geometry or non-
linear properties, they may not represent truly the be-
haviour of the system.

1.2.3.2 Non-linear and sophisticated models

One of the first refinement that can exist is to cre-
ate a yielded system. Precisely, in solid mechanics,
the concept of plasticity, highlighted in [Tresca, 1864;
Mises, 1913; Halphen, 1975], introduces a critical stress
point (or yield stress) σy above which the behaviour
changes. The elastic-perfectly plastic material follows
for instance the law

σ = min
(
Eε, σy

)
(1.11)

Figure 1.3: Usual rheological elements used to build
rheological laws. From left to right, there are a spring
of constant E, a dashpot of viscosity η and a friction el-
ement of yield stress σy

with E the Young modulus of the material. A similar
example exists in fluid mechanics with the [Bingham,
1922] fluid reading

σ = σy + ηε̇. (1.12)

A remark to be noticed is that, in the following part of
this manuscript, the pressure p will not appear due to
the fact we are considering mostly the non conservative
stress contribution in shear. Hence, the pressure con-
tribution should appear when resolving a complete 3D
problem but will be omitted in the case of one dimen-
sional shear only problems. From these simple models,
others were proposed (see table 1.2). As a general com-
ment, most of the following models are built as combi-
nation of elements presented in figure 1.3 either in par-
allel or in series, like in an electrical circuit. Keeping
the similarity with electricity, electrical tension is sim-
ilar to the strain and the electrical current is similar to
the stress. Therefore, elements in series will share the
same stress and add the several strains, as if tensions are
summed while having the same current, and elements
in parallel will share the same strain and add the sev-
eral stresses, as if currents are summed while having the
same tension. The elements presented in figure 1.3 are
classical elements in the sense that most of usual mod-
els are built from these basic elements and refined non-
linear elements are modification starting from the previ-
ous ones.

In [Ostwald, 1925], the newtonian behavior is mod-
ified by a power-law index which characterises shear-
thinning fluid if it is below unity, newtonian behaviour if
it is equal to unity and shear-thickening fluid [Madraki,
2017] if it is above unity. In [Herschel, 1926a], the same
power-law behaviour is kept but using a yielding crite-
rion as in [Bingham, 1922]. These models describe very
well particle suspensions, like carbon black particle sus-
pensions, where the particle volume fraction is low, or
chlorine ions flow with blood cells[Mullineux, 2008].
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Reference 1D Rheological law

[Landau, 1959] σ = Eε
[Landau, 1987] σ = ηε̇

[Mises, 1913; Tresca, 1864; Halphen,
1975]

σ = min
(
Eε, σy

)
[Bingham, 1922] σ = σy + ηε̇
[Ostwald, 1925] σ = Kε̇n

[Herschel, 1926a] σ = σy + Kε̇n

[Goodeve, 1938; Larson, 2019] σ = σy (λ) + η (λ) ε̇
[Papanastasiou, 1987] σ = σy

(
1 − e−mε̇

)
+ ηε̇

Carreau [Macosko, 1994]
σ

ε̇
= η∞ + (η0 − η∞)

(
1 + (λε̇)2

) n−1
2

[Einstein, 1911]
σ

ηε̇
= 1 +

5
2
ϕ

[Krieger, 1959; Krieger, 1972]
σ

ηε̇
=

(
1 −

ϕ

ϕm

)−[η]
[Maxwell, 1867] σ + τσ̇ = ηε̇
[Kelvin, 1890; Voigt, 1890] σ = Eε + ηε̇

Fractional Kelvin-Voigt [Jaishankar, 2012;
Jaishankar, 2014]

σ = U
dαε
dtα
+ V

dβε
dtβ

[Saramito, 2009]
σ̇

E
+max

(
0,
|σ| − σy

K |σ|n

) 1
n

σ = ε̇

[Saramito, 2007]
σ̇

E
+max

(
0,
|σ| − σy

η |σ|

)
σ = ε̇

Casson [Bonn, 2017]
√
σ =

√
σy +

√
ηε̇

[Caggioni, 2020] σ = σy + σy

√
ε̇

ε̇c
+ ηε̇

[Snabre, 1996] σ
(
1 −

(
σ0

σ

)m)2
= ηε̇

1 − ϕ(
1 − ϕ/ϕ∗0

)2

(
1 −

ϕ

1 − ϕ

(
σ∗

σ

)m)

Table 1.2: Compilation of various rheological models expressed in one dimension with their sources.

In [Kelvin, 1890; Voigt, 1890; Maxwell, 1867], some
classical viscoelastic models are presented to represent
various phenomologies depending on the experimental
data like frequency sweep, shear start-up or creep. In
[Zhang, 2021], prestresses can modify the elasticity of
amorphous materials (see also [Nampoothiri, 2020]). In
[Bonacci, 2022; Pantina, 2005], yield stress aging is in-
vestigated in attractive colloidal suspension. In [Larson,
2019; Mewis, 2009], a review of thixotropy is carried
out in order to distinguish it from other phenomena, giv-
ing some model fluid examples, some phenomenology
and how to model these type of fluids. In [Benzi, 2016;
Benzi, 2021a; Benzi, 2021b], there is the use of the flu-
idity, which can be compared to the inverse of the vis-
cosity, following a partial differential equation involving
a cooperativity length and a steady-state solution. This
is a coarse-graining model which helps to capture Soft
Glassy Material behaviour as described and modelled in
[Sollich, 1997; Sollich, 1998; Fielding, 2020; Divoux,
2013]. The Soft Glassy Material model covers a lot of
cases and particularly certain particle suspensions. The

latter papers used a local partial differential equation in-
volving the probability to find element in a certain en-
ergy depth at a certain time. This model helps to under-
stand some mesoscopic phenomena when integrated at
bigger scale. It can also be extended in tensorial form.

In [Saramito, 2007; Saramito, 2009; Ozenda, 2018],
viscoelastoplastic rheological laws are considered in-
volving phenomenological parameters starting from a
thermodynamical framework to extend some famous
forms (i.e. [Bingham, 1922] and [Herschel, 1926a])
into tensorial form. Precisely, as shown in figure 1.4,
several elements illustrated in figure 1.3 have been used
both in parallel and in series to tackle some more re-
alistic materials. Following the description of the au-
thor, such model construction allows to mimic the be-
haviour of human blood or liquid foams. In this case,
the classical yield stress fluid presented by [Bingham,
1922] is supplemented by an elastic contribution which
affects the behaviour before yielding. The author inves-
tigated the response of such materials in uniaxial elon-
gation, in simple shear flow and in periodic shear flow
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Figure 1.4: Elastoviscoplastic model proposed by
[Saramito, 2007] to account for multiple physical
processes in some materials taking a thermodynamic
framework approach

to emphasize the type of response expected which can
agree with some experimental data. An additional value
of [Saramito, 2007; Saramito, 2009; Ozenda, 2018] is
the use of the generalised standard materials framework
[Halphen, 1975] which uses a free energy function and
a potential of dissipation to derive the analytical form
of the rheological law in one dimension and in tensor
form. Therefore, the partition of energy is directly ex-
plicit and quick estimate can be made relating storage
and dissipation.

To continue the different perspectives, in [Griffith,
1921; Irwin, 1957; Creton, 2016; Webber, 2007;
Ducrot, 2014], rupture can be added to the models start-
ing from linear elasticity, incorporating plasticity and
investigating toughness of some soft materials. This
rupture can be tuned by mixing two different networks
[Gong, 2003; Gong, 2010] to increase the toughness.
In [Papanastasiou, 1987], the [Bingham, 1922] model
is modified to avoid the divergence of viscosity when
strain rate tends to zero. The finite limit of such model
helps for numerical implementation for simulations.
With all these models, one can capture specific complex
phenomena on real materials.

Regarding the effect of particle volume fraction on
viscosity, in [Einstein, 1911], the effective viscosity of a
suspension of solid particles with a certain volume frac-
tion is linearly increased compared to the solvent vis-
cosity. In [Krieger, 1972; Krieger, 1959; Brinkman,
1952], the same approach of suspension of solid par-
ticles is taken but increasing the particle volume frac-
tion. The proximity of the particle volume fraction from

the jamming point modifies the effective viscosity in this
analytical-phenomenological law.

If some comments are drawn about the specific
topic of radioactive sludges in this manuscript, the
particle volume fraction usually encountered is be-
tween 7% to 14%. Hence, it is possible to discuss
which kind of the previous models may be interesting
to consider. However, as what will be seen afterwards,
the interaction between the particles is not purely hy-
drodynamic which imposes to complement previous
models with some additional characteristics to com-
pletely deal with the complexity of the sludges.

In [Jaishankar, 2012; Jaishankar, 2014; Geri, 2017],
the classical viscoelastic model presented in [Kelvin,
1890; Voigt, 1890; Maxwell, 1867] are modified incor-
porating fractional derivatives. These fractional deriva-
tives, as described in [Schiessel, 1993; Schiessel, 1995b;
Schiessel, 2000], are non local time integrals which help
to capture some non-trivial frequency sweep measure-
ments, such as displaying power-law behaviour which
are not purely elastic or purely viscous, and avoids a
high number of parameters. There exists multiple types
of derivatives such as, for all α ∈ R and a function f on
an interval [a, b], the Riemann-Liouville derivative with
upper and lower variants [Herrmann, 2018],

DURL
α f (t) =

d⌈α⌉

dt⌈α⌉

(
1

Γ (⌈α⌉ − α)

∫ t

a
(t − τ)⌈α⌉−α−1 f (τ) dτ

)
(1.13)

DLRL
α f (t) =

d⌈α⌉

dt⌈α⌉

(
1

Γ (⌈α⌉ − α)

∫ b

t
(τ − t)⌈α⌉−α−1 f (τ) dτ

)
(1.14)

with ⌈α⌉ the smallest integer greater than α, the Caputo
derivative[Caputo, 1967],

DC
α f (t) =

1
Γ (⌈α⌉ − α)

∫ t

a
(t − τ)⌈α⌉−α−1 d⌈α⌉ f

dt⌈α⌉
(τ) dτ

(1.15)
the Caputo-Fabrizio derivative [Caputo, 2015],

DCF
α f (t) =

1
1 − α

∫ t

a

d f
dt

exp
(
−α

t − τ
1 − α

)
dτ (1.16)

for α ∈ ]0, 1], the Atangana-Baleanu derivatives [Algah-
tani, 2016; Atangana, 2016]

DABRL
α f (t) =

AB (α)
1 − α

d
dt

(∫ t

a
f (τ) Eα

(
−α

(t − τ)α

1 − α

)
dτ

)
(1.17)

DABC
α f (t) =

AB (α)
1 − α

∫ t

a

d f
dt

(τ) Eα

(
−α

(t − τ)α

1 − α

)
dτ

(1.18)

with Eα the Mittag-Leffler function or the Riez deriva-
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tive [Ding, 2015; Bayın, 2016],

DR
α f (t) = F −1 (ω 7→ −ωαF (s 7→ f (s))) (t) . (1.19)

Each definition has its advantages and drawbacks due
to the quality of the smoothness of the function f . It
is clear that depending on the type of data measured or
processed, it will be more or less difficult to handle the
different derivatives of f like in equation (1.15) or to de-
rive afterwards as in equations (1.13), (1.14) and (1.17).
The numerical implementation of fractional derivative
may not be trivial but some directions and helpful paths
are presented in [Tavares, 2016; Pooseh, 2012; Atan-
gana, 2017]. The same kind of framework may be con-
sidered in [Vilensky, 2012; Kelly, 2009] in the case of
sound absorption, which extends discrete models into
continuum ones, to reproduce some specific measure-
ments in biological tissues.

About fractional models, they can be used to repre-
sent a continuum of time scales in a material which can
be approximated through a hierarchical structure of rhe-
ological elements. For instance, using figure 1.5 and
[Schiessel, 1995a; Schiessel, 1993], let consider a hi-
erarchical structure of springs having spring constants
(En)n∈N and dashpots having viscosities (ηn)n∈N. In the
case of infinite ladder, the viscoelastic modulus can be
calculated to give

G∗

E0
=

+∞

K
n=1

an

1
(1.20)

∀n ∈ N∗, an =


1 if n = 1

E(n−2)/2

iη(n−2)/2ω
if n even

E(n−1)/2

iη(n−3)/2ω
if n > 1 odd

(1.21)

with K the Carl Friedrich Gauss notation for continued
fractions3 and ω the pulsation. If for all n ∈ N, En = E
and ηn = η, it can be demonstrated according to [Schies-
sel, 1995a] that

G∗ =
iηω
2


√

4E
iηω
+ 1 − 1

 (1.22)

which leads with ηω/E → 0 to G∗ ∼
ηω/E→0

√
iηωE. Be-

3The Carl Friedrich Gauss notation is used to describe concisely a
continued fraction with two sequences (an)n∈N∗ and (bn)n∈N∗ writing

+∞

K
n=1

an

bn
=

a1

b1 +
a2

b2 +
a3

b3 +
. . .

Figure 1.5: Ladder arrangements used to model scaling
behaviours. According to the physical regime, the box B
represents (a) a Maxwell element (pregel), (b) an infinite
ladder (critical gel), and (c) a spring (postgel). Extracted
from [Schiessel, 1995a]

sides, if for n ∈ N∗,

iη0ωan

E0
=



1 if n = 1
1 − α if n = 2
n − 2α

4 (n − 1)
if n > 2 even

n + 2α − 3
4 (n − 2)

if n > 1 odd

(1.23)

with α ∈ [0, 1], it can be demonstrated according to
[Schiessel, 1993] that

G∗

E0
=

1 + E0

iη0ω

(
1 +

E0

iη0ω

)α−1−1

(1.24)

which leads to G∗/E0 ∼
η0ω/E0→0

(iη0ω/E0)α when

η0ω/E0 → 0. Therefore, both cases demonstrate that
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Figure 1.6: General curves of shear stress vs shear rate:
(1) Newtonian; (2) shear thinning; (3) shear thicken-
ing; (4), (5) materials with yield stress. Extracted from
[Mewis, 2012].

an infinite spectrum of time scale may bring power-law
relationships in the frequency sweeps which can be
easily approximated through fractional derivatives. A
question remains about how to relate the exponent
with realistic characteristics of materials. I am not
a powerful defender of fractional derivatives used in
rheological model but I acknowledge the easiness of
use of such tools. Waiting for a convincing explanation
does not force to forbid these tools to properly study
and compare some phenomenologies.

In [Beris, 1994], another thermodynamical frame-
work compared to [Halphen, 1975] is proposed using
Poisson brackets and helps to considered rheological
laws as general as possible. The reader is invited to
take a look in [Macosko, 1994; Bonn, 2017; Mahbubul,
2012; Sugimoto, 2019; Fardin, 2012; Cloitre, 2017a;
Cloitre, 2017b; Gibaud, 2020b; Coussot, 2010; Tanner,
2018; Bertram, 2021] to have a broader perspective of
rheological law existing in the literature. Different flow-
ing regimes are presented on figure 1.6 to capture all the
existing behaviour.

1.2.3.3 Extension to tensor forms

As a general comment, all the previous laws, except a
few of them, were originally designed in one dimen-
sion. The extension to two and three dimensions can be
more or less straightforward. For example, in [Maxwell,
1867], there is a derivative of the stress. In order to ex-
tend to higher dimension, a simple partial time deriva-
tive ∂t is not sufficient. Even a total derivative dt =

∂t + ∇ (·) u with u the velocity is not complete. Objec-
tive derivative must be used and are rather diverse. First

of all, the use of Cauchy stress tensor, Kirchhoff stress
tensors or other forms must be considered because, de-
pending on the type of transformation happening in the
system, referring to the current or the reference config-
uration for one or both sides is a relevant question to
address. Precisely, the different stresses measure are the
Cauchy stress tensor σ, the Kirchhoff stress tensor τ,
the Nominal stress tensor N, the first Piola-Kirchhoff
stress tensor P, the second Piola-Kirchhoff stress tensor
S and the Biot stress tensor T which are related to each
other according to table 1.3. According to [Wikipedia
contributors, 2022a; Landau, 1959], the Cauchy stress
is a measure of the force acting on an element of area
in the deformed configuration, the first Piola–Kirchhoff
stress tensor relates forces in the deformed configuration
with areas in the reference configuration and the second
Piola–Kirchhoff stress tensor relates forces in the refer-
ence configuration to areas in the reference configura-
tion. To give an example, in simple shear ε in the xy
plane, one gets

F = I + εex ⊗ ey (1.25)

S = σ − ε

2σxy − εσyy σyy σyz

σyy 0 0
σyz 0 0

 (1.26)

2e = ε
(
ex ⊗ ey + ey ⊗ ex

)
+ ε2ey ⊗ ey (1.27)

with e the Green-Lagrange strain tensor. Therefore,
knowing that S and e are energy conjuguate, it is rel-
evant to measure some stresses σ in the current configu-
ration, bring them back into the reference configuration
with S and relate e and S according to the time deriva-
tive, a potential yielding, ... Then, following [Gurtin,
2010], it is possible to identify the Truesdell rate

σ̊ =
∂σ

∂t
− Lσ − σLT + tr (L)σ (1.28)

where L = ∂t FF−1 is the velocity gradient with F the
displacement gradient, ·T the transpose of a tensor and
tr the trace of a tensor. There is also the Green-Naghdi
rate

□
σ =

∂σ

∂t
+ σΩ −Ωσ (1.29)

with Ω = ∂t RRT and R the orthogonal rotation tensor
in the polar decomposition of the displacement gradient
F = RU with RT = R−1 and U is symmetric, positive
definite, right stretch. Moreover, there are the Zaremba-
Jaumann rate

△
σ =

∂σ

∂t
+ σW −Wσ (1.30)
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Equation for σ τ P N S T

σ= σ J−1τ J−1 PFT J−1NT FT J−1FSFT J−1RTFT

τ= Jσ τ PFT NT FT FSFT RTFT

P= JσF−T τF−T P NT FS RT
N= JF−1σ F−1τ PT N SFT TT RT

S= JF−1σF−T F−1τF−T F−1 P F−1NT S U−1T
T= JRTσF−T RTτF−T RT P RT NT US T

Table 1.3: Conversion formulae between the Cauchy stress tensor σ, the Kirchhoff stress tensor τ, the Nominal
stress tensor N, the first Piol-Kirchhoff stress tensor P, the second Piola-Kirchhoff stress tensor S and the Biot
stress tensor T. F = RU is the displacement gradient with RT = R−1 and U is symmetric, positive definite, right
stretch and J = det (F). Extracted from [Wikipedia contributors, 2022a] and inspired from [Landau, 1959].

Figure 1.7: Predictions from Truesdell, Green-Naghdi
and Jaumann objective stress rates under simple shear
test of a hypoelastic material with constant elastic mod-
uli. The ratio of the shear stress to the displacement
is plotted as a function of time. The same moduli are
used with the three objective stress rates. Extracted from
[Wikipedia contributors, 2022b] and inspired from [Di-
enes, 1979]

.

with W =
(
L − LT

)
/2 the skew part of the velocity gra-

dient, the Oldroyd stress rate

▽
σ =

∂σ

∂t
− Lσ − σLT , (1.31)

which is the most used model in fluid rheology, and the
convective stress rate

⋄
σ =

∂σ

∂t
+ Lσ + σLT . (1.32)

Different results of an applied shear as a function of
time with the same rheological parameters but with dif-
ferent objective stress rates are presented in figure 1.7.
It is then blatant to properly design the objective stress

rate and the rheological parameters to reproduce prop-
erly the observed phenomenology. In the same discus-
sion the consideration of Lagrangian or Eulerian frame-
work is a crucial topic when the deformation becomes
large. In small deformation, both frameworks are identi-
cal but deviates formally from each other while describ-
ing the same phenomena. For example, the linear strain
rate tensor in Eulerian framework is defined as

ε̇ =
1
2

(
∇u + ∇uT

)
(1.33)

and in the Lagrangian framework as

ε̇ =
1
2

(
∂F
∂t

F−1 + F−T ∂FT

∂t

)
. (1.34)

It is relevant to recall that, in general, to extend dif-
ferential forms for the stress tensor in 3D can be very
delicate. Indeed, there is no clear extension of equa-
tions (1.13) to (1.19) in 3D when we consider the stress
tensor. How can we properly account for objectivity
with a time integro-differential operator which also has
an impact in space due to the transformation of coordi-
nates?

The previous paragraph may seem out of the scope
of this chapter but these notions seem to be the next
step that would be tackled in the future. Indeed, ac-
cording to the analysis of the current knowledge in the
field, there may be two main outcomes. On the one
hand future studies will rely on simple microscopic in-
gredients of mechanical scaling like those presented in
section 1.2.4.2 and should investigate macroscopic het-
erogeneities and anisotropies in three dimensions. In
this case, how to properly extend microlocal laws with a
3D scaling should imply to think about the mechanical
bases of dynamic quantities in the relevant framework.
Hence, paying attention to the possible discrepancies in
the formalism is very important. On the other hand, the
other perspective is to build a more robust microscopic
approach with probabilistic approach which helps to ac-
count for variations in real systems. Nevertheless, this
second path may be more difficult to conduct.
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1.2.3.4 Some experimental techniques

The experimental techniques to assess parameters
present in rheological laws are diverse [Peuvrel-Disdier,
2012]. Due to continuum mechanics, investigating ma-
terial properties without being overwhelmed by geomet-
rical effects or non-linearities can be a hard task. There-
fore, considering simple geometries creating only one
desired effect is an absolute need. For instance in usual
rheological experiments, the flow is produced with a low
Reynolds number in order to avoid any inertial effects
and, maybe, some time dependence due to inertia. With-
out being exhaustive, turbulence effects as described
in [Boussinesq, 1868] may create secondary flows and
perturb the measurement, instabilities like in [Drazin,
1970] will produce diverging energies which can be
dangerous for the machines, phase separation as in [An-
dreotti, 2013; Nedderman, 1992] can not help to isolate
one specific characteristic among others or other phe-
nomena described in [Johnson, 2016] which are detri-
mental effects and need to be avoided. In the case of ra-
dioactive sludges, due to the presence of several phases,
the opportunity to create heterogeneous flows is rather
important and may cause difficulties to measure prop-
erly rheological quantities, that is why phase separa-
tion is one of the biggest issues to prevent. Thus, some
simple geometries like Taylor-Couette flow or Poiseuille
flow are used due to their analytical solution, their sim-
ple velocity profiles and their low boundary effects to
avoid too much complexities [Çengel, 2006; Tennekes,
1972; Berker, 1936; Berker, 1963]. When looking at
equations (1.9) and (1.10), it is straightforward to dis-
entangle the volume effects from the shear effects, as
illustrated by the deviatoric part of the tensors. Hence, a
common assessment of the rheology of certain materials
is done through shear measurements. Particularly, oscil-
latory shear measurements with a certain amplitude and
a fixed frequency allow to extract the viscoelastic mod-
ulus G∗ or the viscoelastic compliance J∗, depending on
the controlled variable, strain ε or stress σ respectively,
through

G∗ =
F (σ)
F (ε)

(1.35)

J∗ =
F (ε)
F (σ)

(1.36)

with F the Fourier transform of the variable, see
[Macosko, 1994; Rehage, 1988]. These two previ-
ous quantities can be analysed at different amplitudes
of controlled variables (namely strain-sweep or stress-
sweep respectively) and different frequencies (namely
frequency sweep). It is common to separate the real
part and the imaginary part to represent respectively
the elastic behaviour of the material and the dissipa-
tive behaviour of the material, respectively. Optimal

techniques as presented in [Geri, 2018; Bouzid, 2018b],
namely Optimally Windowed Chirps, may help to re-
duce the time to compute the whole spectrum of fre-
quency sweep. The computations of the previous quan-
tities are mainly done using the first harmonic of the
numerical Fourier transform estimation. Some recent
methods may also allow to compute a time-resolved
viscoelastic modulus through the Sequence of Physi-
cal Processes in [Rogers, 2017; Donley, 2019; Rogers,
2011; Rogers, 2012b; Rogers, 2012a]. This framework
is based on the Frenet-Serret apparatus to compute local
partial derivatives and may be extended to time-resolved
viscoelastic compliances. An interesting question for
oscillatory shear measurements is that some people are
investigating the previous quantities even at large am-
plitudes, i.e. outside of the non-linear regime of cer-
tain materials, without taking into account some poten-
tial non-linear geometrical effects. Some future works
analysing the deviation of linear rheology at large am-
plitude, in Large Amplitude Oscillation Strain (LAOS)
for instance, may be relevant.

When looking at the physical construction of cer-
tain rheological laws in suspensions of particles, authors
may try extrapolate microscopic properties and struc-
tures to the macroscopic level to recover the rheological
values measured experimentally. The influence of the
microscopic structures on the rheology will be tackled
in the next section.

1.2.4 How clusters influence the rheology
1.2.4.1 Construction of the clusters

The types of systems in the colloidal gels class can have
particles ranging from nanometer size to micrometer
size, and a characteristic time scale ranging from few
picoseconds to milliseconds. The different families of
suspension of particles can be tackled through a phase
diagram as presented in [Sciortino, 2002; Trappe, 2001].
For instance, referring to figure 1.8, the phase diagram
often represents the state of suspension of particles, at
least, in a temperature-particle volume fraction plane.
The temperature can also be compared to the strength
of the interaction potential between particles because
there is generally a proportional relationship between
those two quantities [Gibaud, 2020a; Varga, 2019]. At
high volume fraction close to the jamming point, it is
possible to find different types of glasses [Schoenholz,
2016; Hwang, 2016; Biroli, 2018] or granular mate-
rials [Bassett, 2015; Guazzelli, 2018; Hanotin, 2012;
Hanotin, 2015]. Depending on the strength of the in-
teraction potential, it can be either a repulsive material
with a rather homogeneous microstructure or an attrac-
tive material with a more heterogeneous microstructure
[Prasad, 2003; Joshi, 2014]. The microstructure and
rheology of concentrated suspensions were addressed
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Figure 1.8: Temperature versus volume fraction phase
diagram. The glass lines separate the ’liquid’ regions,
where particles are able to diffuse, from the ’glass’ re-
gions. The vertical black dashed line represents the
hard-sphere glass line. In the case of short-range attrac-
tive colloids, the re-entrant (non-monotonic) shape of
the glass line (solid red and blue lines) creates a pocket
of liquid states that are stabilized by the short-range at-
traction. The location of the theoretical glass–glass tran-
sition line (thick blue line) and the proposed connec-
tion between the gel-line (at low volume fractions) and
the attractive glass line (solid blue line) are also indi-
cated. Equilibrium (and metastable) lines between gas,
liquid and solid phases — which in the case of attrac-
tive colloids are significantly different from the case of
long-range attractions — are not shown. Extracted from
[Sciortino, 2002].

by [Blanc, 2011; Blanc, 2013]. When the volume frac-
tion is very low, there are also two cases depending
on the interaction potential: a more repulsive interac-
tion potential will just lead to a more fluid-like material,
whereas a more attractive potential can bring a gel. The
different phase separation were tackled in [Furukawa,
1985; Lu, 2008]. There exist also other types of materi-
als with non-brownian suspensions [Lobry, 2019], fric-
tional suspensions [Tapia, 2019] and colloidal suspen-
sions. The latter category will be our main focus in this
paper. Due to the attractive interaction potential and the
low particle volume fraction, the microscopic structure
is more heterogeneous and sparse than any other ma-
terials but keeps its consistency to create soft-solid/fluid
materials. To give some orders of magnitude, the typical
particle volume fraction encountered in colloidal gels is
of few percents and the typical attractive potential en-
ergy scale is around tens of kBT with kB the Boltzmann
constant and T the temperature.

In a suspension of particles with a certain volume
fraction, if the particles are only repulsive as in granular
media [Bassett, 2015; Guazzelli, 2018; Hanotin, 2012;
Hanotin, 2015] some classical laws such as [Einstein,
1911; Krieger, 1959; Krieger, 1972] exist to account
for the impact of the particles on the overall rheology.
Hard-spheres in general have been of great interest to
account for rheological laws coming from colloidal dis-
persions [Ven, 1977]. Some polydispersity may be con-
sidered to modify the viscosity law [Mwasame, 2016].
The particles can be rather diverse in terms of materi-
als like alumina [Nguyen, 2011; Waite, 2001; Schilde,
2011; Sauter, 2008; Mahbubul, 2014] , polystyrene
[Okubo, 1995], silica [Mondragon, 2012] or titania
[Fazio, 2008]. When the particles interact between each
other with an attractive potential, they tend to form some
bigger sets which can be called clusters, flocs or ag-
gregates depending on the terminology (see figure 1.9)
[Lattuada, 2003]. This attractive interaction may be
pure Van der Waals attraction like in [Visser, 1972;
Hartley, 1985; Klimchitskaya, 2000; Yuan, 2016], Der-
jaguin, Landau, Verwey and Overbeek interaction like
in [Gibaud, 2020a; Dagès, 2021] or capillary attraction
like in [Vassileva, 2005; Rahman, 2019; He, 2015; See-
mann, 2011; Herminghaus, 2000]. These clusters may
have different structures from dense to sparse [Weitz,
1984; Weitz, 1985; Knoll, 2018].

The sparse clusters may have a fractal structure as de-
scribed in [Mandelbrot, 1983]. Fractal structures are
self-similar structures which are usual in percolation
theory [Broadbent, 1957] and related to critical expo-
nents [Grassberger, 1985; Grassberger, 1992b; Grass-
berger, 1992a]. A usual description of a fractal structure
is considering elements of size a aggregated in a clus-
ter; if the window size of the analysis is l, the number
of elements N in this window is N ∝ (l/a)D with D
the exponent called the fractal dimension [Deng, 2010;
Wang, 2013; Xu, 2014; Zhou, 2012]. Varying the win-
dow size allows to measure the fractal dimension, which
is a technique used in a box counting algorithm [Pani-
grahy, 2019; Zhang, 1996]. As illustrated in [Kantor,
1984a; Kantor, 1984b], the fractal structures are some-
times studied for conductivity problems as well as me-
chanical problems.

The self-similar structure may be recognized easily
through scattering experiment as reviewed in [Sorensen,
2001; Lin, 1989; Zhou, 1991; Galvan-Miyoshi, 2008].
Scattering experiments allows also to capture some sedi-
mentation velocity as in [Xue, 1992], the chord distribu-
tion of a network as in [Levitz, 1992] or to characterise
blood cells [Monchy, 2016; Monchy, 2018; Frances-
chini, 2011; Franceschini, 2012; Franceschini, 2010].
The identification of cluster’s characteristic features like
its size or its fractal dimension may be done by fitting
some model to the scattering intensity spectrum like
in [Hammouda, 2010; Burns, 1997; Beaucage, 1995;
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Beaucage, 1996] with

I (q) = A
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−
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)
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B (D)
(qℓ)D erf
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√
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Γ

(D
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)
(1.38)

with A a fitting parameter, ℓ the size of the cluster, q the
norm of the wave vector, D the fractal dimension, erf the
error function and Γ the Gamma function. Other scatter-
ing papers may be read like [Burns, 1997; Zhang, 1996;
Teixeira, 1988; Freltoft, 1986; Wagner, 1990; Monchy,
2016; Monchy, 2018]. In the case of the colloidal sus-
pensions studied in this PhD, the X-Ray scattering ex-
periments are properly suited to capture the cluster sizes
between 1nm and 1µm. The typical behaviour of the
scattered intensity as a function of the wave vector num-
ber for a fractal object is represented on figure 1.10,
highlighting the start of the decreasing trend for the clus-
ter size, the power-law decrease with a slope equals to
the opposite of the fractal dimension and the final cut-
off due to the particle size with a slope equals to -4 in
the Porod regime limit.

The construction of the clusters may be tackled
through the percolation theory. To recall the basis of this
framework, a lattice of dimension dim has a linear size
n with one element on each point of the lattice. There
is an imposed probability p that two neighbouring el-
ements of the lattice connect between each other. We
are then interested in the smallest probability pc where
it is possible to create a connected path from one side
of the network to the other. One of the first investi-
gation was done by [Flory, 1941; Stockmayer, 1944]
about the percolation of polymers. An extension called
random cluster model [Fortuin, 1972] tried to unify the
Ising model, the Potts model and the percolation theory.
These models are also closely related to graph theories
as described in the Albert-Barabási model [Barabási,
1999; Barabási, 2003; Albert, 2002], the scale free net-
work [Pastor-Satorras, 2001], the force-chain structure
[Giusti, 2016], the Erdös-Rényi model [Erdös, 1959] or
the Bianconi-Barabási model [Bianconi, 2001a; Bian-
coni, 2001b].

The construction of the clusters may be also done
with other methods. A first example is the coagulation
equations [Banasiak, 2020a; Banasiak, 2020b]. In these
equations, there exists a probability density function f
depending on the number of elements x ∈ R+ of the
cluster and time t ∈ R+. The variation of the probabil-
ity density function f is determined by an aggregation
rate given by an aggregation kernel K (x, y) which gives
the probability rate that a cluster of number of elements
x and a cluster of number of elements y aggregate to-
gether. The coagulation equation is a balance equation

usually written as follows

∂ f
∂t

(x, t) =
1
2

∫ x

0
K (x − y, y) f (y, t) f (x − y, t) dy

− f (x, t)
∫ +∞

0
K (x, y) f (y, t) dy (1.39)

The continuum form has been considered above but a
discrete version of the previous equation may also be
written. Several solutions have been analytically found
for K (x, y) = 1, K (x, y) = x + y and K (x, y) = xy for
example in [Wattis, 2006]. More complex kernels exist
as discussed in [Kryven, 2014] like

K (x, y) =

√
πkBT

2

√
1

m (x)
+

1
m (y)

(d (x) + d (y))2

(1.40)

K (x, y) =
2kBT

3η

(
x

1
D1 + y

1
D2

) (
x−

1
D1 + y−

1
D2

)
(1.41)

K (x, y) =
2kBT (xy)γ

3Wη

(
x

1
D1 + y

1
D2

) (
x−

1
D1 + y−

1
D2

)
(1.42)

with kB the Boltzmann constant, T the temperature,
m (x) the mass of the cluster of number of elements x,
d (x) the diameter of the cluster of number of elements
x, η the viscosity of the solvent, Di for i ∈ {1, 2} the
fractal dimension of the clusters i, W the Fuchs stabil-
ity ratio, γ a fitting parameter. Equation (1.40) is the
free-molecular kernel which describes collisions in a
dilute gas-phase system, equation (1.41) is the kernel
which describes the diffusion-limited aggregation (i.e.
DLCA), that can be influenced by sedimentation and
buoyancy [Wu, 2003], and equation (1.42) is the kernel
which describes the reaction-limited aggregation (i.e.
RLCA) which can be driven by shear [Zaccone, 2010].
The interest of such modelling is to capture the evolu-
tion kinetics for the aggregation of certain systems and
the overall distribution of sizes. Indeed, most of cluster
populations display polydispersity with a certain range
of significant sizes. However, in the scattering mod-
els or in the micromechanical models, this polydisper-
sity is omitted to simplify the calculations. As demon-
strated by the previous coagulation framework, every-
thing relies on probabilities, hence the different analyti-
cal approaches should take into account this perspective
to properly analyse and interpret the data. The coagu-
lation framework may be extended to the coagulation-
fragmentation case, also known as the population bal-
ance model [Puisto, 2012; Lattuada, 2016], where a
fragmentation kernel is introduced to represent the dis-
aggregation of clusters due to external solicitation (shear
flow, thermal fluctuations, ...) (see section 1.2.5.2) [Ba-
nasiak, 2020a; Banasiak, 2020b; Sorensen, 1987]. The
different coagulation-fragmentation processes are illus-
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(a) Transmission elec-
tron micrograph of part
of a colloidal ZrO2 floc.
Extracted from [Shih,
1990]

(b) Qualitative views of the gel microstructure before (left), during (middle), and after
application of ultrasound (right) as inferred from USAXS data. The yellow circle highlights
a carbon black particle of effective diameter 300 nm (scale bar). Extracted from [Gibaud,
2020a]

Figure 1.9: Construction of clusters

trated on figure 1.11 with the different phenomena and
the expression of the different terms in the equation.

Another probabilistic framework exists and is based
on the kinetic of particles: the Boltzmann equation. Pre-
cisely, in phase space of time t, space x, velocity u,
number of elements n, there exists a probability density
function f following

∂ f
∂t
+ u ·

∂ f
∂x
+

F
m (n)

·
∂ f
∂u
+ N

∂ f
∂n
= J ( f ) (1.43)

where F is the force applied on clusters at location x
with a velocity u at time t with a number of elements
n, m (n) the mass of a cluster of number of elements
n, N = dn/dt the rate of change in the number of el-
ements and J the collision integral which represents
the direct interaction between the clusters. Such frame-
work is generally described in [Alexeev, 2004; Stad-
nichuk, 2015; Tine, 2011] and is applied on the case
of droplets and bubbles for combustion and jets. For in-
stance, [Eggers, 2008] studied the physics of liquid jets,
[Marmottant, 2004] investigated the spray formation,
[Williams, 1985] studied the combustion theory, [Pratsi-
nis, 1998] investigated the flame aerosol synthesis of
ceramic powders and [Delichatsios, 1976] studied the
effect of coalescence on the average drop size in Liquid-
liquid dispersions. Besides the relative complexity of
such modelling, some simple solutions may be found in
[Williams, 1985] and some simplifications of the colli-
sion integralJ may be proposed as in [Bhatnagar, 1954]
to have a closed formulation of the Boltzmann equation.
For instance, on figure 1.12, the droplet size distribution
is showed as an evolution of the different parameters of
the coalescence model: the general increase of the av-
erage size and the distribution spreading is visible when
the parameter

(
1 + t j

)
/s j is increased. Also, the Boltz-

mann equation allows to recover general conservation
equations of continuum mechanics taking the various
moments of the distribution according to each variable

[De Groot, 2013] which is called the Chapman-Enksog
expansion. Therefore, solving the Boltzmann equation
gives the system general insights if properly modelled.
The numerical framework in the Boltzmann equation is
the lattice Boltzmann technique which is described in
[Jiang, 2020; Cheng, 2010; Yu, 2009]

The aggregation of the clusters may also be tackled
by Monte-Carlo Simulation as in [Suarez, 2018; Maso-
ero, 2014; García Daza, 2022]. Other tools may exist
[Swope, 1982].

All these descriptions and models are great tools to
understand how clusters are formed. The scattering ex-
periments model are perfect to quickly capture some rel-
evant quantities. There can be some critics on the fact
that, sometimes, due to the lack of data on a broad range,
it is possible to fit several models and to deduce differ-
ent types of structures afterwards. Indeed, that is the
risk but, like other experimental studies, the objective is
to draw conclusions from samples and use the principle
of induction. It may seem frustrating but it is through
the multiplication and the validation of such studies that
a common shared knowledge can be built.

About the theoretical tools to describe the particles
kinematic of aggregation and disaggregation, the per-
colation theory, the coagulation equations or the Boltz-
mann equations try to use an abstract framework to ra-
tionalise to the simplest ingredients these really complex
phenomena. The percolation theory, even if seducing
with simple probabilistic argument, may seem a little bit
disconnected from physical aspects like potentials of in-
teraction as the two latter deal with. Nevertheless, these
two latter are complex to solve analytically or even nu-
merically which does not help to manage them easily
even with some ideal materials. Potential users are sug-
gested to understand the underlying physical problem
first before digging deep in these frameworks due to the
intrinsic complexities on which they rely. It may be dan-
gerous to focus only on these models which can bring,
in the end, not easily explainable outcomes.
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Figure 1.10: Generic depiction of scattering from a mass
fractal aggregate of radius R with a fractal dimension
Dm made up of spherical, smooth surfaced monomers of
radius a. Upper curve is for point particles, second curve
is for spherical particles, lowest curve is the product of
these. Extracted from [Sorensen, 2001]

1.2.4.2 Clusters and rheology

Once all the previous parameters are identified, some
authors tried to relate these microscopic structures to
rheological properties. This is a general microscopic
to macroscopic approach that is used for various types
of fluid systems. For example, in [Palierne, 1990], the
dynamic viscoelastic modulus of mixtures of polymers
is given according to the dynamic viscoelastic modu-
lus of the matrix, the surface tension between the two
phases and the radius of the droplets, or, in [Shah, 2003],
the viscoelasticy of the flocculated gels is investigated.
Some of the founding paper of these approaches are
[Kantor, 1984a; Kantor, 1984b]. They consider the frac-
tal cluster as mechanical structures which can undergo
a certain force or bending moment. These papers were
followed by a series of models relating the storage mod-
ulus to the particle volume fraction through an expo-
nent depending on the fractal dimension, the dimension
of the euclidean space and the chemical dimension (see
[Herrmann, 1984; Herrmann, 1988]). The starting point
is presented by [Shih, 1990] where the relationships are

G′ ∝ ϕµ (1.44)

γy ∝ ϕ
ζ (1.45)

µ =
1

dim−D

dim+d strong-link regime
dim−2 weak-link regime

(1.46)

ζ =
1

dim−D

−1 − d strong-link regime
1 weak-link regime

(1.47)

with G′ the storage modulus, γy the limit of linearity
strain, ϕ the particle volume fraction, D the fractal di-
mension, dim the dimension of the euclidean space and
d the dimension of the elastic back-bone. The typical
microstructure used for the construction of the rheolog-
ical properties is illustrated on figure 1.13 with a cer-
tain cluster size composed by particles of a certain size.
The reasoning of such demonstrations is to find scal-
ing relations from microscopic mechanical properties to
the macroscopic scale. The up-scaling study is carried
out with the consideration of springs in series and/or
in parallel assuming some distorted path of mechanical
stress bearing chain and crystalline-like packing of the
clusters in the systems to create the percolated network.
The strong-link regime and the weak-link regime, see
figure 1.13, refer to two types of mechanical structure
where, respectively, the inside of the clusters is weaker
than the links between the clusters thus the internal dis-
torted path should appear. Or, the inside of the clus-
ters is stronger than the links between the clusters thus
only the connection between the clusters dominates the
elastic rheology [Shih, 1990; Wu, 2001]. The common
assumptions of all these models is that the particle vol-
ume fraction ϕ is related to the cluster size ℓ, the par-
ticle size a and the fractal dimension D of the clusters
through ϕ = (ℓ/a)D−dim. This assumption comes from
the fact that the effective volume fraction of the clusters
in the system is computed and the number of clusters in
the system is decomposed by the number of particles di-
vided by the number of particles for each cluster which
is equal to (ℓ/a)D due to the fractal nature of the clusters.
Hence, the effective volume fraction ϕeff of the clusters
in the system is expressed as

ϕeff = ϕ
ℓdim

adim

(
ℓ

a

)−D

(1.48)

with ϕ the particle volume fraction, ℓdim the volume of
the clusters, adim the volume of the particles and (ℓ/a)−D

the inverse of the number of particles per cluster. Fi-
nally, assuming that the fractal clusters fill the space
as a spanning network this effective volume fraction is
equal to unity and the previous relationship is recov-
ered. Another common assumptions of these papers is
that the scaling between the macroscopic stiffness K and
the microscopic stiffness of an element of a nework k
is K = (L/ℓ)dim−2 k with L the size of the network, ℓ
the size of the element and dim the dimension of the
network. As sketched on figure 1.14, in a crystalline
network of dimension dim solicited according one spe-
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Figure 1.11: Dynamics of aggregation and breakage for discretised population balance, adapted from [Biggs, 2002;
Jeldres, 2018]

Figure 1.12: The ratio of the number flux of droplets
of kind j to its value at x = 0 as a function of the di-
mensionless distance z j for various values of

(
t j + 1

)
/s j.

Extracted from [Williams, 1985]
Figure 1.13: Schematic structure of a colloidal gel. The
circles indicate fractal clusters of size ξ. The regions
between the flocs are regarded as links. Extracted from
[Shih, 1990]
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cific direction for stretching, along this axis, the springs
are summed in series thus the effective stiffness of each
chain is the inverse of the sum of the inverse of each el-
ement stiffness k, which corresponds to the inner sum of
each case on figure 1.14 and is equal to kℓ/L. On the
other axis, the chains are not aligned to the deformation
thus not playing a role. Finally, to get the overall macro-
scopic stiffness, one needs to sum all the chains aligned
to the axis of the deformation which are parallel to each
other. There is the same amount of chains in parallel in
each direction than the amount of element in each chain,
that is to say L/ℓ. Hence, there are dim−1 directions
to sum the stiffnesses of parallel chains, which boils
down to K = (L/ℓ)dim−2 k. Usual results plotting the
storage modulus and the linearity limit strain as a func-
tion of the particle volume fraction are presented on fig-
ure 1.15, which is also used most of the times to measure
the fractal dimension and/or the dimension of the elastic
back-bone. A limit of this hypothesis is highlighted in
[Gravelle, 2021; Tang, 2008; Bouthier, 2022] where the
clusters may not be space-filling as in a crystal but may
show some holes and/or heterogeneous distribution in
the percolated system. Addressing this issue may help
to reconcile theoretical models with experimental and
numerical data. Some refinements were proposed by
[Mellema, 2002; Kim, 2018; Kim, 2020] to take into
account the difference between stretching and bending,
by [Wu, 2001] to take into account the bridging be-
tween the strong-link regime and the weak-link one, by
[Potanin, 1995; Rooij, 1993] to recover also the viscous
behaviour of the gel, by [Marangoni, 2000; Roldughin,
2003; Tang, 2006] to get the multiplicative factor in the
proportional relation, by [Tang, 2008; Gravelle, 2021]
using a heterogeneous stress distribution in the system,
by [Bouthier, 2022]4 to extend to a double fractal struc-
ture or multiple levels fractal structures or, by [Dagès,
2022] to take into account the interpenetration of clus-
ters. A summary of main existing models with their
exponent is reported in table 1.4 to help the reader to
navigate amongst those models. A deeper discussion is
proposed by [Mewis, 2012; Wagner, 2021]. Other ar-
ticles prefered to consider the elasticity arising from a
critical phenomenon related to percolation as in [Stauf-
fer, 2003].

There exist other types of models like proposed by
[Genovese, 2012; Møller, 2008] that modified the model
from [Krieger, 1972; Krieger, 1959] to take into account
the effective volume fraction of clusters into a suspen-
sion, the one proposed by [Gisler, 1999] to predict strain
hardening from fractal clusters, the concept proposed by
[Whitaker, 2019] to consider locally glassy clusters.

During years, the experimental measurements of both
the rheology and the microscopic structure were diffi-
cult to carry on. Nevertheless, some recent paper like

4We will come back to this topic in section 3.3

[Gibaud, 2020a; Dagès, 2021; Richards, 2017; Hipp,
2021; Wang, 2022] for carbon-black particle suspen-
sions, [Keshavarz, 2021] for aluminosilicate gels, [Ben
Messaoud, 2020; Patel, 2022] for hydrogels, [Räntzsch,
2019] for polymers or [Kádár, 2021] for liquid crys-
tals tried to carry both measurement simultaneously and
may begin to discover disagreement in the previous the-
ories.

Other insights of the same problem have been tackled
through numerical experiments. For instance, part of the
literature used molecular dynamics, modelling coarse
grained suspension of particles, starting from the model
in [Colombo, 2013] assuming the boundary conditions
described in [Lees, 1972]. This model has been stud-
ied according to different conditions with load curves
in [Colombo, 2014b], a variation of the volume frac-
tion [Bouzid, 2018a], assessing efficiently the frequency
sweep with a fractional model in [Bouzid, 2018b], ap-
plying thermal fluctuations in [Bouzid, 2017], cov-
ering the whole range of parameters in [Bantawa,
2021b; Bantawa, 2021a], tuning the preparation proto-
col in [Colombo, 2014a], having multiple components
in [Ferreiro-Córdova, 2020; Vereroudakis, 2020; Var-
rato, 2012], studying the non affine rearrangements in
[Mosayebi, 2014], and at last, investigating disease mu-
tation [Feng, 2018]. Another part of the literature is us-
ing a probabilistic mesoscopic model like proposed by
[Sollich, 1997; Sollich, 1998; Hébraud, 1998]. A sim-
plified refinement of this model is proposed by [Field-
ing, 2020] and derivation around this model exists in
[Bocquet, 2009; Mansard, 2011]. In general,soft gels
modelling has been addressed in [Bouzid, 2019; Del
Gado, 2021; Allen, 2017; Chandler, 1987; Giordano,
2006; Frenkel, 2002; Press, 2007].

Orientation of the microstructure may also play a role
in the rheological response of certain materials as pre-
sented in [MacKintosh, 1991; Lubensky, 1993; Broed-
ersz, 2011] or in [Shivers, 2020; Picu, 2011; van Dillen,
2008; Vernerey, 2021] with fibers. Some papers also
used beam network models [Hosseini, 2021] to investi-
gate fracture with a hierarchichal microstructure.

After having looked at how microstructures influence
the rheology, the reciprocal influence of external solici-
tation on the microstructure is tackled.

To summarise, the relationship between the clusters
and the rheology has been addressed multiple times in
the literature and in History. The most famous mod-
els, which are some of the simplest ones, are based on
geometric arguments to scale microscopic mechanical
properties to the macroscopic scale in terms of rheo-
logical quantities. Even if these demonstrations rely on
questionable assumptions, it seems there is no satisfy-
ing couter-offer in terms of simplicity and applicability
in experiments. The other models rely on complex cal-
culations which need, most of the times, numerical sim-
ulations to properly handle the results and compare it to
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Figure 1.14: Sketch to explain the scaling relationship between the macroscopic stiffness K and the microscopic
stiffness k for a network of size L with an element size l and a dimension dim. The arrows represent the stretch-
ing/compressing direction.

Source Condition Exponent for G′ Exponent for γy Exponent for σy

[Shih, 1990] Weak-link regime dim−2 1 dim−1
[Shih, 1990] Strong-link regime dim+d −1 − d dim−1

[Mellema, 2002] Transition between
bending and stretch-
ing

dim−2 + 2ϵ + d −2ϵ − d + 1 dim−1

[Wu, 2001] Transition between
strong-link and
weak-link regime

dim−2 + α (2 + d) −α (2 + d) + 1 dim−1

[Bouthier, 2022] Transition between
all the regimes

dim−2 + α (2ϵ + d) −α (2ϵ + d) + 1 dim−1

Table 1.4: Comparison of models relating the storage modulus G′, the limit of linearity strain γy and the yield
stress σy. The exponents reported in the table are the exponent of the ϕ

1
dim−D = ℓ/a with ϕ the particle volume

fraction, dim the dimension of the euclidean space, D the fractal dimension, ℓ the size of the cluster and a the
particle size. Here above, ϵ ∈ [0, 1] with ϵ = 0 corresponds to the stretching regime and ϵ = 1 corresponds to the
bending regime, then, α ∈ [0, 1] with α = 0 corresponds to the weak-link regime and α = 1 corresponds to the
strong-link regime. Adapted from [Bouthier, 2022].
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(a) Storage modulus in the linear region as a
function of Catapal particle concentration at
pH = 5.5.

(b) Storage modulus in the linear region as a function of the Dispal
particle concentration at electrolyte concentration 0.244mol.

(c) Limit of linearity as a function of Catapal
particle concentration at pH = 5.5.

(d) Limit of linearity as a function of Dispal particle concentration at
electrolyte concentration 0.244mol.

Figure 1.15: Storage modulus and limit of linearity strain as a function of the particle volume fraction for Catapal
and Dispal particles. Extracted from [Shih, 1990]
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experiments. In short, the geometrical models are the
least worse models to try to understand the scaling of
microscopic properties to the macroscopic scale.

1.2.5 How the clusters are influenced ex-
ternally

1.2.5.1 Generalities about clusters under stress

The evolution of microstructures under external solici-
tation is at the core of modern rheology to predict con-
sistently the behaviour of a system. Several experimen-
tal works have demonstrated this influence. For exam-
ple, [Gibaud, 2020a; Dagès, 2021] showed that applying
ultrasound on carbon-black particle suspensions may
change the microstructure (fault, clusters, ...), [Hengl,
2014] applied ultrasound on colloidal suspension for fil-
tration, [Sehgal, 2019; Lin, 2016] applied ultrasound on
shear thickening fluids to tune them, [Koumakis, 2015]
used shear to tune the colloidal gel, [Nguyen, 2011;
Mondragon, 2012] showed that applying ultrasound on
a silica suspension may change the size of the clusters
of particles, [Mohraz, 2005; Selomulya, 2001; Selo-
mulya, 2002; Massaro, 2020; Lorenzo, 2022] disag-
gregated fractal gels in shear flow and [Schilde, 2011;
Sauter, 2008] demonstrated that the amount of energy
provided to a system may decrease the size of the clus-
ters. Parallel studies even exist with collision cascades
involving fractal analysis in [Wallace, 2017]. To have
more general insights about the aggregation of particles
in fractal structures, the reader is invited to read [Berka,
2005] where Kaolinite aggregates are studied for their
aggregation kinetics and their final structure, [Waite,
2001] where almunina particles are studied, [Lin, 1989;
Lin, 1990b; Lin, 1990a] where universal behaviour of
diffusion-limited aggregated forming fractal clusters are
presented, [Wu, 2013] where variation of the fractal di-
mension according to the particle size is investigated,
[Carpineti, 1990] where aggregation of polysterene is
studied, [Tirado-Miranda, 1999] where finite binding
energies are investigated to study the growth mecha-
nism of fractal structures, [Jungblut, 2019] where diffu-
sion limited aggregation and reaction limited aggrega-
tion are considered, [Meakin, 1992] where aggregation
kinetics is studied, [Gauer, 2009] where surface prop-
erties and their effect on coalescence and aggregation
kinetics of elastomer colloids is investigated, [Sztucki,
2007] where soot particles produced by flames aggre-
gate in somewhat fractal clusters, [Kim, 2004] where
soot fractal superaggregates in laminar diffusion falmes
seem to rely on a universal phenomenon, [Hurd, 1988]
where silica aggregates grow in fractal structures un-
der a flame, [Carpineti, 1992] where a spinodal-type
fractal aggregation is reported, [Kusters, 1991] where
particles aggregate under turbulence effects, [Hoekstra,
2003] where a two-dimensional suspension aggregate

anisotropically and reversibly due to the effect of a flow
and [Hoekstra, 2005] where a sticky spheres dispersion
forms a microstructure induced by shear flow.

To give some comments about the previous para-
graph, aggregation of particles is rather universal in the
sense that it occurs in many different conditions with
various types of materials. Trying to find an abstract
universal framework can be a key to properly catch rel-
evant phenomena which can then be applied on several
cases like the radioactive sludges of this manuscript.

Also, several papers studied the aggregation of par-
ticles on an interface. For instance, [Kralchevsky,
2001b] studied how an undulated contact line of par-
ticles with a fluid interface may give some insights
about the relationship between capillarity and rheology,
[Kralchevsky, 2001a] investigated the construction of
layers of colloid particles through capillary interaction,
[Kralchevsky, 2001c] reviewed the particles at fluid in-
terfaces with their mutual interaction, [Vassileva, 2005]
calculated the forces between spherical particles float-
ing at a liquid-liquid interface, [Knoll, 2018] studied the
modifications of crystallisation by particles aggregation
and the hierarchical order, [Vella, 2005] investigated the
"Cheerios" effect comparing buoyancy effect with cap-
illary interaction, [Madivala, 2009] studied ellipsoidal
particles and their self-assembly at interfaces, [Danov,
2010] studied theoretically the capillary forces between
particles at an interface and [Dalbe, 2011] investigated
the aggregation of frictional particles through capillary
interactions.

As before, the universality of aggregation of parti-
cles is a key aspect that invites us to understand further
the global relationships that can be extracted to manage
other situations where similar conditions are met.

These aggregated structures may be interestingly dis-
aggregated in a 2D geometry. For example, [Barman,
2016] looked at the link between microstructure, cap-
illarity and interfacial viscoelasticity, [Krzysko, 2020]
studied the correlation between particles interaction and
particles shape in shear induced aggregation and frag-
mentation and [Bossler, 2018] used interfacial rheology
and confocal microscopy to characterises fractal capil-
lary structures. Ramified structures can be identified in
[Okubo, 1995]. Some general thoughts about colloidal
suspensions in out-of-equilibrium system are presented
in [Aranson, 2013]. Some direct visualizations of frac-
tal clusters are proposed by [Masschaele, 2009; Villa,
2018; Stamou, 2000]. For example, the aggregation
of particles in fractal clusters is reported on figure 1.16
where the ramified structures grow with time.

The goal of the previous paragraph is to highlight the
universality of the approach. The range of energies cov-
ers from few units of kBT in the case of colloidal suspen-
sions to approximately 0.1µJ in the case of capillary in-
teractions. It covers many types of systems which shows
the interest to focus on this field. In the case of the ra-
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dioactive sludges, there is aggregation due to a chemical
potential between the particles coming from the chemi-
cal composition of the liquid effluents. This aggregation
process gives rise to a certain size population distribu-
tion in the material which can be influenced according
to external solicitation. The investigation of the predom-
inant microscopic behaviour in the constitution of such
material is a key to comfortably predict its evolution ac-
cording to certain conditions.

1.2.5.2 Attempts to model the coupling between ag-
gregation and disaggregation

Several papers have tried to bring an understanding of
this influence of the macroscopic conditions on the mi-
crostructures. One fundamental article in the field is
[Wessel, 1992]. It proposed a relationship between the
cluster size and the shear rate applied to the suspension
of particles. Other papers like [Snabre, 1996; Barnes,
1999] proposed some phenomenological relations be-
tween the cluster’s size and an external shear rate or
shear stress. Following a review in [Kimbonguila Ma-
nounou, 2014], it has been proposed to understand the
equilibrium size of clusters through a balance between
disaggregating forces and aggregating forces. Precisely,
the consideration of the adhesion number like in [Ruan,
2020; Ruan, 2021; Yao, 2021] or the Mason number in
[Jamali, 2020; Jamali, 2019a; Varga, 2019] may bring
a power law relationship between the size of the cluster
and one of these dimensionless number. An example of
relationship is given by

ℓ

a
= Adm (1.49)

with ℓ the size of the clusters, a the size of the particles,
Ad = U/σaδ2 the adhesion number which weights the
relative importance of the attractive forces Ua/δ2 to the
disaggregating forces σa2 and m ∈ [0.2, 0.8] the expo-
nent. The competition between attractive forces and dis-
aggregating forces is reported on figure 1.17 where start-
ing from an unknown initial distribution of size, the dif-
ferent clusters tend to change theirs to get closer to the
most stable size emphasising an equilibrium between
aggregating forces and disaggregating forces5. This ap-
proach can actually be extended to other previous ar-
ticles which demonstrated this power law relationship.
For instance, from an experimental perspective, [Hunter,
1980] studied the flow behavior of colloidal sols, [Son-
ntag, 1986; Sonntag, 1987a; Sonntag, 1987b] investi-
gated the structure and the breakup of flocs subjected
to fluid stresses, [Brakalov, 1987] studied the connec-
tion between the orthokinetic coagulation capture effi-
ciency and the maximum size of the aggregates, [Torres,
1991a] investigated the structure and the coagulation of

5We will come back to that topic in section 2.2

polysterene colloids under shear, [Torres, 1991b] simu-
lated the coagulation under viscous flows and [Harshe,
2011] studied the breakage and the restructuring of open
and dense aggregates. Then, from a theoretical perspec-
tive, [Potanin, 1991] studied the mechanism of aggrega-
tion of suspensions in shear flows and [Potanin, 1992]
investigated the aggregation of colloids. Also, from a
numerical perspective, [Potanin, 1996] simulated a frac-
tal model to consolidate weak aggregates in colloidal
suspensions, [Higashitani, 1998] simulated in two di-
mensions the breakup process of aggregates in shear
and elongational flow, [Higashitani, 2001] studied the
breakup of large aggregates in viscous flow and [Eg-
gersdorfer, 2010] investigated the fragmentation and the
restructuring of soft aggregates under shear. [Zaccone,
2009a; Xie, 2010] even proposed a mixed approach with
experiments and theory to break dense colloidal aggre-
gates under hydrodynamic stress giving an expression
for m of the form

m =
2

(dim−D)
(
2 (ζ + 1) + (dim−D)−1

) (1.50)

where ζ ≈ 3.8 is the exponent relating the mean co-
ordination number to the particle volume fraction in
[Alexander, 1998]. Also, [Conchúir, 2013] proposed a
similar approach for flow-induced breakup of biomolec-
ular and colloidal aggregates proposing the following
form for the exponent m

m =
1

D − 2.06491D − 0.0180344 (3 − D)−1 + 4.98585
.

(1.51)
The relationship above may be tackled through the ad-
hesion of particles as decribed in [Marshall, 2014] for
the general adhesion of particles with or without inter-
action, in [Barthel, 2008] for the adhesive elastic con-
stants of the JKR model and others, in [Krijt, 2014] to
compute the rolling friction of adhesive microspheres
and in [Gilbert, 2021] where contacts in rheology are
studied. Other papers tried investigating clusters under
shear flow like [Saxena, 2022] in numerical simulation
or [Varga, 2019] in experiments with numerical simu-
lations. An example of results is given in figure 1.18
where the cluster size under certain shear flows is esti-
mated according to the adhesion number and highlights
the power-law relationship. Moreover, table 1.5 displays
the different exponents of the power-law relationship ex-
isting in the literature depending on the fractal dimen-
sion. There is no clear explanation of the values of ex-
ponents depending on the experimental conditions but
they fall in the same range.

This power law relationship can also be extracted
from different arguments than mechanical balance. For
instance, some papers initiated by [Sorensen, 1987] pro-
posed the use of a coagulation-fragmentation equation

21



1.2. State of the art [Bouthier, ]1

Figure 1.16: Microscopy images showing six steps to complete network percolation of a colloidal network. Snap-
shot (a) corresponds to the initial crystal structure, just after adding the salt. Images (b)–(e) correspond to the
fractal regime, where cluster-cluster aggregation dominates. Snapshot (f) shows the structure when the first perco-
lating backbone was formed. Notice the presence of small aggregates and single particles coexisting with a large
structure. The overall surface coverage is approximately 0.1; the time scales refer to the time after the addition of
salt and surfactant. Extracted from [Masschaele, 2009]
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Figure 1.17: Sketch of the disaggregation and reaggre-
gation processes under a uniform external stress σ. The
numbers represent different sizes of aggregates with dif-
ferent levels of energy. The aggregates are disaggre-
gating and reaggregating according to the stress solic-
itation. Transition from state 1 to states 2 and 3 cor-
responds to a “fragile” rupture, while transition from
state 1 to state 4 is an “erosion” process. Extracted from
[Bouthier, 2023a].

to find the equilibrium size. The relation is formulated
as follows

f (t, x) =
1

s2 (t)
φ

(
x

s (t)

)
(1.52)

lim
t→+∞

s (t) =
(
N

A
B

) 1
χ+2−λ

(1.53)

A =
x

R2
+

xyφ (x)φ (y) K (x, y) dxdy (1.54)

B =
x

R2
+

xyφ (x + y) F (x, y) dxdy (1.55)

with f the probability distribution function depending
on time t and on size x, s the average size of the
clusters s (t) =

∫
R+

x2 f (t, x) dx, φ a function on R+
verifying

∫
R+

xφ (x) dx = N the number of particles,
K the aggregation kernel with a homegeneity coeffi-
cient λ and F the disaggregation kernel with a homo-
geneity coefficient χ. As a reminder, a homogene-
ity coefficient θ ∈ R of a function H verifies for all
(x, y, z) ∈ R3

+, H (zx, zy) = zθH (x, y). Even if other pa-
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Reference m D Type of study

[Hunter, 1980] 0.37-0.47 1.8 E
[Sonntag, 1986; Sonntag,
1987a; Sonntag, 1987b]

0.35 2.2 E

[Brakalov, 1987] 0.58 1.8 E
[Torres, 1991a; Torres, 1991b] 0.50 1.8 E+N
[Harshe, 2011] 0.35 1.7 E+N
[Potanin, 1991; Potanin, 1992] 0.23-0.49 1.8 T
[Wessel, 1992] 0.33 1.8 T
[Potanin, 1996] 0.38-0.56 1.8-2.6 N
[Higashitani, 1998] - 1.8 N
[Eggersdorfer, 2010] 0.35 1.8 N
[Kimbonguila Manounou,
2014]

0.34 1.8 N

[Zaccone, 2009a] 0.52 2.7 T+E
[Conchúir, 2013] 0.49 2.7 T+E
[Xie, 2010] 2.4 0.31 T+N

[Higashitani, 2001]

2.47 0.38 N
2.44 0.40 N
2.48 0.35 N
2.46 0.38 N
2.45 0.39 N
2.43 0.43 N
1.74 0.42 N
2.31 0.38 N

[Ruan, 2020]

0.25 2.48 N
0.25 2.49 N
0.25 2.49 N
0.25 2.47 N
0.27 2.47 N
0.27 2.54 N
0.26 2.53 N
0.26 2.54 N
0.23 2.53 N
0.25 2.52 N
0.27 2.54 N
0.26 2.53 N
0.23 2.55 N
0.25 2.57 N
0.26 2.53 N
0.23 2.57 N
0.25 2.58 N
0.27 2.52 N
0.25 2.57 N
0.23 2.58 N
0.25 2.57 N
0.27 2.54 N
0.25 2.55 N
0.22 2.63 N
0.30 2.28 N
0.29 2.38 N
0.29 2.43 N
0.28 2.51 N
0.27 2.36 N
0.27 2.38 N
0.26 2.43 N
0.28 2.37 N
0.28 2.41 N
0.28 2.40 N
0.26 2.43 N
0.28 2.54 N
0.26 2.49 N
0.27 2.47 N
0.28 2.58 N
0.26 2.48 N
0.27 2.44 N
0.26 2.46 N
0.28 2.49 N
0.25 2.65 N
0.26 2.57 N
0.25 2.52 N
0.36 1.76 N
0.25 2.60 N
0.25 2.71 N
0.24 2.64 N
0.26 2.66 N
0.24 2.72 N

Table 1.5: Comparison of scaling laws exponent m with
previous studies. "E" means experimental, "N" means
numerical and "T" means theoretical. Adapted from
[Kimbonguila Manounou, 2014; Bouthier, 2023a]

(a) Taylor-Green Vortex.

(b) Simple shear flow.

Figure 1.18: Gyration radius of agglomerate at the
quasi-steady state as functions of the particle adhesion
parameter Adp for two different types of flows. Ex-
tracted from [Ruan, 2020]

pers tackled the issue of physical impact of this kind
equation like [Spicer, 1996] with the steady-state parti-
cle size distribution, [Barthelmes, 2003] with the viscos-
ity and the particle size distribution under shear-induced
coagulation-fragmentation or [Pratsinis, 1998] in the
case of flame aerosol of ceramic powders, the recent
studies of this kind of model are rather mathematical in
the sense of the existence and/or the uniqueness of the
solution according to different conditions (type of ag-
gregation, type of disaggregation, initial conditions, ...).
Perfect examples of this kind of study are [Banasiak,
2020a; Banasiak, 2020b] with theoretical considerations
with semi-groups framework, [Fornari, 2020] with the
nucleation of prion-like neurodegenerative proteins in
the brain, [Stadnichuk, 2015] with numerical methods
to find the steady-state solution of the equation, [Mor-
bidelli, ] in a form of a course of the study of aggrega-
tion kinetics and [Wattis, 2006] with general solutions of
coagulation-fragmentation equations with simple math-
ematical form kernels. The construction of this model
input functions may come from physical arguments like
in [Zaccone, 2009b] in the case of shear-induced reac-
tion limited aggregation in brownian particles suspen-
sions, in [Blandin, 2005] in the case of salicylic acid for
their agglomeration, in [Rotstein, 2015] trying to build
phenomenlogical model for aggregation and fragmenta-
tion processes, in [Thomas, 1999] reviewing the floc-
culation modelling or [Jarvis, 2005] reviewing the floc
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strength and breakage, but sometimes lack a bit of phys-
ical meaning and satisfy mostly simple forms with easi-
ness of resolution.

1.2.6 About dimensionality
Following the theorem proposed by [Buckingham,
1914; Buckingham, 1915b; Buckingham, 1915a], the
use of dimensionless relationships is an objective of
simplifications. It brings most of the times, simpler re-
lationships that emphasizes reciprocal dependence be-
tween certain variables or parameters. In general, di-
mensionless numbers are built as a ratio of two quanti-
ties which should be weighted against each other in or-
der to decide whether they are comparable or one is neg-
ligeable/dominant compared to the other. Here is below
a list of famous dimensionless numbers used to describe
relationships between variables. The description of each
dimensionless number is arbitrary in the choice of the
quantities compared to each other. The interested reader
is invited to apply a particular attention when reporting
each number into her/his context.

• The Bingham number Bm is defined as

Bm =
σyL
ηu

(1.56)

with σy the yield stress, L a characteristic length
scale, η the dynamic viscosity and u the flow speed.
The Bingham number is the ratio of yield stress to
the viscous stress. A study of a relative viscosity
depending on the Bingham number is presented in
figure 1.21.

• The Deborah number De is defined as

De =
tc
tp

(1.57)

with tc the relaxation time and tp the time of ob-
servation or of the process. The Deborah number
is defined as the ratio of the time it takes for a ma-
terial to adjust to applied stresses or deformations,
and the characteristic time scale of an experiment
or a computer simulation probing the response of
the material. A study of channel flows proposed a
phase diagram involving the Deborah number and
is reported in figure 1.22.

• The Mason number Mn is defined as

Mn =
σaδ2

U
=
ηε̇aδ2

U
(1.58)

with σ = ηε̇ the shear stress, a the size of the par-
ticle, δ the distance of interaction of the interaction
potential between the particles, U the depth of the
interaction potential well between the particles. It

(a) Particle volume fraction 4.2% with the the JKR model

(b) Particle volume fraction 2.4% with the the JKR model

(c) Particle volume fraction 4.2% with the DMT model

Figure 1.19: Agglomeration regime maps. Phase dia-
gram allustrating the observed cases as a function of
the Reynolds number Re and the adhesion number Ad
at different solid volume fractions and different models.
Extracted from [Qian, 2022].
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Figure 1.20: Flow curves predicted for a range of tem-
peratures T across the mode-coupling critical tempera-
ture Tc; ϵ = Tc − T is the distance to the critical tem-
perature, and the shear rate is rescaled by a microscopic
time unit τ to form a Péclet number Pe0 = γ̇τ. The inset
shows the discontinuous emergence of the yield stress at
Tc. Extracted from [Fuchs, 2003]

Figure 1.21: Relative steady shear viscosity as a func-
tion of the Weissenberg number We = Wi for an upper
convective derivative with no additional solvent viscos-
ity for different Bingham numbers Bi = Bm. Extracted
from [Saramito, 2007]

(a)

(b)

Figure 1.22: Rheological phase diagram in (De, b)-
space for rectilinear, (a) wall-driven shear flow with
oblate anchoring walls and (b) pressure-driven flow with
oblate anchoring walls, N = 5.35, and βs = 0.01. Re-
gions in (De, b)-space are marked by which states are
stable solutions. The possible states are logrolling (L),
composite (C), tumbling (T), wagging (W), and flow-
aligning (F). In regions where logrolling and inplane so-
lutions are both stable, the initial state determines which
state is obtained. The phase diagram is constructed
through individual simulations, so error bars estimate
the possible range for transition values. Extracted from
[Green, 2009].
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Figure 1.23: Nusselt number Nuω as a function of the
Taylor number Ta for various a. A universal scaling
Nuω ∝ Ta0.38 is revealed. Extracted from [Gils, 2011].

is also possible to consider the inverse of the Ma-
son number which is called the adhesion number
Ad = Mn−1. The Mason number is the ratio of
the hydrodynamic force over the attractive force of
the interaction potential. A study of aggregation
and disaggregation of clusters under flow proposed
a phase diagram involving the adhesion number
and is reported on figure 1.19. Precisely, in [Qian,
2022], a numerical study of aggregation and disag-
gregation is carried out mapping a phase diagram
in terms of the Reynolds number and the Adhesion
number. This phase diagram shows a broad vari-
ety of cluster aggregations which clearly empha-
size the fact that phenomena can be tackled from
the angle of dimensionless number which charac-
terises accurately certain conditions and helps to
distinguish between various intricate variables.

• The Péclet numbre Pe is defined as

Pe =
uL
D

(1.59)

with u the flow speed, L a charateristic length scale
and D a diffusion coefficient (momentum, temper-
ature, species, ...). The Péclet number is defined to
be the ratio of the rate of advection of a physical
quantity by the flow to the rate of diffusion of the
same quantity driven by an appropriate gradient. A
study of flow curves for different temperatures pro-
posed an evolution according to the Péclet number
and is reported on figure 1.20.

• The Reynolds number Re is defined as

Re =
ρuL
η
=

uL
ν

(1.60)

with ρ the density of the fluid, u the flow speed, L
a characteristic length scale, η the dynamic viscos-
ity and ν the kinematic viscosity. The Reynolds
number is the ratio of inertial forces to viscous
forces and is fundamental in the description of the
drag force on a sphere [Stokes, 1901], the bound-
ary layer profile [Prandtl, 1904; Blasius, 1907] or
the pressure loss in pipes [Colebrook, 1937]. A
study of aggregation and disaggregation of clusters
under flow proposed a phase diagram involving the
Reynolds number and is reported on figure 1.19.

• The Taylor number Ta is defined as

Ta =
ρ2Ω2R1 (R2 − R1)3

η2 =
Ω2R1 (R2 − R1)3

ν2

(1.61)
with Ω the angular velocity between two concen-
tric cylinders with an internal radius R1 and an ex-
ternal radius R2, a density ρ, a dynamic viscosity
η and a kinematic viscosity ν. The Taylor num-
ber is the ratio of the inertial forces over the vis-
cous forces. It is particularly relevant in a Taylor-
Couette flow in rheometers to avoid turbulence be-
low Tac = 1700 [Andereck, 1986]. A study of
momentum transport in a Taylor-Couette flow pro-
posed an evolution of the Nusselt number as a func-
tion of the Taylor number and is reported on fig-
ure 1.23.

• The Weissenberg number Wi is defined as

Wi = λε̇ (1.62)

with λ a relaxation time and ε̇ the shear strain
rate. The Weissenberg number compares the elas-
tic forces to the viscous forces. A study of a relative
viscosity depending on the Weissenberg number is
presented in figure 1.21.

1.2.7 Open remaining questions
From this state of the art, there is a certain number of
questions that remain to be answered. A non exhaustive
list may be :

• How is it possible to consider a heterogeneous dis-
tribution of clusters in a system to overcome the
crystalline structure described in figure 1.14? Is it
possible with this change of structure to account for
dissipative effects in terms of viscosity, loss modu-
lus or plastic events?

• How sizes polydispersity of sizes may be inte-
grated in the different models (scattering, rheology,
...) to take into account the spread of the distribu-
tions?
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• How a macroscopic-microscopic strong coupling
may be closed to properly study the interdepen-
dence of rheology and the microstructure?

1.3 Problematic

If we come back to the industrial problem, it is
possible to formulate a problematic such as: "what
are the main ingredients allowing to understand and
predict the fluidification of certain materials under an
external solicitation?". However, as it will be de-
scribed afterwards, there is a broader perspective for
this manuscript which tackles the previous issues but
also a better understanding of certain phenomena in
materials. Hence, the following problematic is pro-
posed:

How microscopic structure, macroscopic
behaviour and macroscopic environment
are coupled in the case of suspension of
particles to be able to influence one with
the other?

1.4 Contents

After having presented the state of the art in chap-
ter 1, the macroscopic influence of the macro envi-
ronment on the microscopic structure will be investi-
gated in chapter 2. Afterwards, in chapter 3, the influ-
ence of the microscopic structure on the rheological
laws will be presented. Then, the industrial applica-
tion of the macroscopic-microscopic coupling on the
case of sludges under ultrasound is presented in chap-
ter 4. Finally, some conclusions and perspectives will
be drawn in chapter 5.
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2Chapter 2
From the macroenvironment to the
microscopic structure

The objectives of this chapter are the in-
vestigation of the macroscopic influence
of external solicitations on the microstruc-
ture, the theorization of an aggregation-
disaggregation process and the interpenetra-
tion of clusters.

Objectives

Les objectifs de ce chapitre sont l’étude de
l’influence macroscopique des sollicitations
externes sur la microstructure, la théorisation
d’un processus d’agrégation-désagrégation
et l’interpénétration des clusters.

Objectifs
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2.1 Introduction

As discussed in the previous chapter, the macro-
scopic environment can have an influence on the mi-
croscopic structure of certain materials. To give a
parallel with fluid mechanics, in [Kolmogorov, 1991]
with an incompressible viscous fluid, an external so-
licitation is produced by a velocity which can be char-
acterized by the macroscopic Reynolds number Re.
Due to the viscosity, eddies and turbulent structures
are created to divide the energy and dissipate it at the
end. The inertial range over which the transmission
of energy is conserved before reaching the dissipa-
tive level or the most stable size of eddies, namely
the Kolmogorov scale, obeys scaling laws that allows
to give an estimate of it. Using notations that will be
useful in the following part of the chapter, the Kol-
mogorov scale is given by ℓ/L ∝ Re−3/4 with L the
macroscopic size of an object creating the turbulent
structures. This characteristic length is a fundamental
parameter to consider because it gives order of mag-
nitude of length scales covered by the studied fluid
flow. Also, when trying to run numerical simulation,
this scale gives the maximum size of a mesh element
necessary to reproduce all the turbulent scales in a Di-
rect Numerical Simulation (DNS). Conversely, if the
mesh size is bigger than this length scale, either some
turbulent phenomena are omitted in the calculation
or an additional model for the sub-mesh size turbu-
lent structures is needed like Large Eddy Simulations
(LES).

The idea of scaling laws is according to me the
quickest ways to have quantitative estimates of certain
variables/phenomena. The power-laws are the most
usual form of this scaling laws due to the theorem in
[Buckingham, 1914; Buckingham, 1915b; Bucking-
ham, 1915a] but can take other types of form. Hence,
trying to catch the main ingredients that characterise a
phenomenon is the main focus of the present chapter
that will try to propose some general ideas about how
an external solicitation can be transmitted throughout
a structure and have an effect on a microscopic struc-
ture such as the size of clusters of particles that com-
pose the colloidal gels. More precisely, if the parallel
with turbulence is drawn to the end, in the same way
there is a scaling between the characteristic size of the
turbulent structure due to the external solicitation of
the flow, there is, in the colloidal suspension, a scal-
ing between the microscopic colloidal structures and
the external solicitation of stresses or flow. We will
describe more accurately this similarity in this chap-
ter as well.

2.2 Aggregation-disaggregation
phenomena [Bouthier, 2023a]

The goal of the present section is to propose very
general theoretical arguments to predict the steady-
state size ℓ of colloidal aggregates submitted to an ex-
ternal solicitation. This section has been published in
[Bouthier, 2023a].

2.2.1 Abstract of the section
Aggregation and disaggregation of clusters of attractive
particles under flow are studied from numerical and the-
oretical points of view. Two-dimensional molecular dy-
namics simulations of both Couette and Poiseuille flows
highlight the growth of the average steady-state clus-
ter size as a power law of the adhesion number, a di-
mensionless number that quantifies the ratio of attrac-
tive forces to shear stress. Such a power-law scaling re-
sults from the competition between aggregation and dis-
aggregation processes, as already reported in the litera-
ture. Here we rationalize this behavior through a model
based on an energy function, which minimization yields
the power-law exponent in terms of the cluster fractal
dimension, in good agreement with the present simula-
tions and with previous works.

2.2.2 Content of the section
Starting from dimensional analysis, we show in sec-
tion 2.2.3 that the competition between cluster aggre-
gation and disaggregation can be captured through the
minimization of an energy function. In section 2.2.4,
we then provide evidence for the existence of an en-
ergy minimum in simple numerical simulations. We
proceed to detail an analytical model in section 2.2.5,
which yields a power-law for ℓ as a function of the ad-
hesion number, a dimensionless number that quantifies
the ratio of attractive forces to shear stress. Finally, this
model is compared to the coagulation-fragmentation ap-
proach and to previous experimental and numerical find-
ings in section 2.2.6. Conclusions and open questions
are drawn in section 2.2.7.

2.2.3 General framework
Before describing the general approach based on a
grand-canonical free energy, we start with simple di-
mensional arguments to justify that the competition be-
tween cluster aggregation led by attractive forces and
disaggregation driven by shear forces depends on a sin-
gle dimensionless group, namely the adhesion number
Ad, once the attraction range is fixed. As discussed in
Refs. [Kimbonguila Manounou, 2014; Marshall, 2014],
attractive forces may be estimated by Ua/δ2, with U
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the depth of the interaction potential between two parti-
cles, a the particle radius, and δ the range of interaction,
which can be taken as the center-to-center distance be-
tween two particles at equilibrium or as the width of the
potential well. Disaggregating forces, on the other hand,
may be estimated by σa2, with σ the external stress ex-
erted on the clusters. One chooses here, as a distinction
from the literature, to consider the stress rather than the
shear rate because (i) whenever the shear rate is involved
in similar definitions, it appears as multiplied by the sol-
vent viscosity, therefore as a shear stress, and (ii) one is
convinced that stress drives the disaggregation, like in
plasticity or fracture [Mises, 1913; Griffith, 1921; Irwin,
1957; Creton, 2016], rather than a kinematic quantity.
Following Ref. [Marshall, 2014], the adhesion number
is defined as the ratio of attractive forces to disaggregat-
ing forces:

Ad =
U

σaδ2 . (2.1)

The condition Ad ≪ 1 implies that hydrodynamic
forces dominate, while Ad ≫ 1 indicates that attractive
forces are predominant. It is important to note that the
choice of this adhesion number contains some degree
of arbitrariness. Indeed, other similar dimensionless
groups may be built more generally by replacing aδ2

by aαδ3−α, with α ∈ [0, 3], in equation (2.1). The pre-
cise choice depends on whether one considers energies
(α = 0), forces (α = 1), or stiffnesses (α = 2), i.e., en-
ergies per unit surface, or energies per unit volume (α =
3). Finally, according to the Vaschy-Buckingham the-
orem [Buckingham, 1914; Buckingham, 1915b; Buck-
ingham, 1915a], any characteristic length that depends
on U, σ, a, and δ, such as the maximum cluster size ℓ,
may be expressed as ℓ/a = F (Ad, δ/a). Therefore, a
combination of both Ad and δ/a is expected. Also note
that the adhesion number simply corresponds to the in-
verse of the “Mason number,” Mn = σa2δ/U, a dimen-
sionless group popular in the rheology community that
quantifies the ratio of shearing forces to attractive forces
[Varga, 2019; Jamali, 2020; Nabizadeh, 2021].

Another dimensionless group exists in [Xie, 2010]
and is called the Breakage Number Br. It has approxi-
mately the same definition as the Mason number with
α = 3, that is to say, Br = σa3/U.

In order to describe the competition between aggrega-
tion and disaggregation, we consider a grand-canonical
ensemble with a population of clusters of mass k ∈ N∗

associated to a number of clusters nk. Each cluster of
mass k has an associated energy E (k), which we seek
to determine. The number of primary particles is not
fixed and is related, for each cluster mass k, to a chem-
ical potential αk/β with β = 1/(kBT ), kB the Boltzmann
constant, and T the temperature. Note that the use of
a canonical ensemble may seem more appropriate for a
problem with a fixed number of particles. However, the
calculation of the canonical partition function leads to

the use of the complete Bell polynomials, where each
variable is e−βE(k). Inverting the relation is not straight-
forward, so that computing the distribution of clusters
of mass k is very cumbersome within a canonical frame-
work. Here, thanks to the grand-canonical formulation,
E (k), as well as the energy nkE (k) associated to all clus-
ters of mass k, may be computed rather easily. The
grand canonical partition function reads:

Ξ =
∑

(nk)k∈N∗∈N
N∗

exp

−∑
k∈N∗

(βnkE (k) − nkkαk)

 (2.2)

=
∏
k∈N∗

(
1 − e−βE(k)+kαk

)−1
. (2.3)

The convergence of the series in equation (2.2) is guar-
anteed if αkk < βE (k) for all k ∈ N∗. Moreover, it
follows from equation (2.2) that the distribution of each
level population nk is a geometric distribution with a pa-
rameter e−βE(k)+kαk . Since the average number of parti-
cles ⟨N⟩ is related to the average population (⟨nk⟩)k∈N∗

of clusters of mass k through ⟨N⟩ =
∑

k∈N∗ k ⟨nk⟩, one
may compute the average number of clusters of mass k
and the standard deviation through:

⟨nk⟩ = −
1
k
∂ lnΞ
∂αk

=
(
eβE(k)−αkk − 1

)−1
, (2.4)

∆nk =
1
k

√
∂2 lnΞ
∂α2

k

=
√
⟨nk⟩ (1 + ⟨nk⟩) (2.5)

=
1
2

csch
(
βE (k) − αkk

2

)
, (2.6)

which boils down to the Bose-Einstein statistics.
To give an illustration of the Bose-Einstein Statis-

tics in equations (2.4) to (2.6), in figure 2.1, there is
the representations of the average and the standard
deviation as a function of the dimensionless energy
βE (k) − αkk and the probability distribution function
for different values of e−βE(k)+kαk . It may help the
reader to understand the type of probability distribu-
tion.

In practice, in an experiment or a simulation, a ini-
tial sample of (nk)k∈N∗ is chosen, which evolves in time
according to external conditions. It is clear from the
above expressions that the (nk)k∈N∗ should end up being
centered around the averages (⟨nk⟩)k∈N∗ with a disper-
sion (∆nk)k∈N∗ . Therefore, a higher number of clusters
of mass k also brings a higher dispersion around this
value. Since numerical simulations yield a probability
distribution function f (k) for the number of cluster of
mass k , which is assumed to be equal to the average
distribution ⟨nk⟩, i.e., f (k) = ⟨nk⟩, one can find the av-
erage potential energy of the clusters and the standard
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Figure 2.1: Illustrations of the Bose-Einstein statistics

deviation respectively through:

βE (k) − αkk = ln
(
1 +

1
f (k)

)
(2.7)

∆ (βE (k) − αkk) = ( f (k) (1 + f (k)))−
1
2 (2.8)

= 2 sinh
(
βE (k) − αkk

2

)
(2.9)

> βE (k) − αkk . (2.10)

This whole description relies on classical statisti-
cal mechanics which is valid for systems at thermo-
dynamic equilibrium. In spite of this, the equilibrium
concepts are applied here to systems that are out of
thermodynamic equilibrium. It is a point of caution
that was necessary to mention.

2.2.4 Numerical simulation
2.2.4.1 Numerical scheme and analysis

To get some insight of the competition between aggre-
gation and disaggregation processes, we turn to sim-
ple molecular dynamics simulations of two-dimensional
Couette and Poiseuille flows based on the LAMMPS li-
brary [Thompson, 2022]. We use reduced units, where
the unit size is given by the particle radius. The simu-
lation box is of size L × h with periodic boundary con-
ditions along the x direction and solid boundaries along
the y direction located at y = 0 and y = h. The length
of the box L is fixed to L = 620, and the width h is
either 103 or 206, much larger than the particle size.
Each boundary is constituted of one layer of particles
of unit size which positions are fixed and that interact
with bulk particles through a repulsive Yukawa poten-
tial ws(r) = 100e−r/r, with r the distance between two
particles and a cut-off distance r = 5 to save compu-
tation time. This choice of a purely repulsive potential
leads to some depletion of the particles at the walls but
allows us to avoid irreversible aggregation on the walls
and to focus on bulk aggregation-disaggregation pro-
cesses. Finally, the interaction potential between two
particles in the bulk is a classical 12-6 Lennard-Jones
potential w(r) = 4

(
r−12 − r−6

)
with a cut-off distance

r = 40, again to save computation time.
First, the system is initialised with a particle surface

fraction of ϕ = 0.12. Using a canonical formulation, the
temperature is fixed at T = 0.01. The time step is taken
as ∆t = 0.01, which is small enough to account realis-
tically for temporal variations while keeping the com-
putation time reasonably low. Particles are distributed
over a square lattice, and their initial velocities are cho-
sen according to a Maxwell distribution for the given
temperature. The system is then let to evolve for a dura-
tion 5, 000 time units in order to create the initial cluster
distribution. More precisely, the equation of motion for
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each particle i ∈ ⟦1,N⟧, with N the total number of par-
ticle, is

d2ri

dt2 = −
∂W

∂ri

((
r j

)
j∈⟦1,N⟧

)
+ Bi (2.11)

W

((
r j

)
j∈⟦1,N⟧

)
=

N∑
k=1

N∑
j=k+1

w
(∣∣∣rk − r j

∣∣∣) (2.12)

w (r) = 4
(
r−12 − r−6

)
, (2.13)

with ri the position of particle i and Bi a Brownian white
noise for particle i.

In a second step, a drag force Fi = C
(
u − dri

dt

)
is

applied on each particle i ∈ ⟦1,N⟧, with C = 1 the
drag coefficient 1, u = Vy/hex for the 2D Couette flow
or u = 4V (1 − y/h) y/hex for the 2D Poiseuille flow,
where V is the maximum flow velocity. Here, a micro-
canonical formulation is used and the time step is set
to ∆t = 0.001. The simulation is run for a duration of
1, 000 time units. The equation of motion for each par-
ticle i thus reads:

d2ri

dt2 = −
∂W

∂ri

((
r j

)
j∈⟦1,N⟧

)
+ F (ri) ex (2.14)

F (ri) = C
(
−

dri

dt
· ex+ (2.15)

V
ri · ey

h

1 2D Couette flow
4
(
1 − ri·ey

h

)
2D Poiseuille flow

 .
(2.16)

The parameters investigated in the present work
are (V, h) ∈ {0.1, 0.3, 1, 3, 10, 30, 100} × {103, 206}.
The values of the adhesion number are then Ad ∈
{1, 2, 3, 6, 10, 20, 34, 68, 103, 206, 344, 688, 1032, 2065}.
The numerical scheme used here is a Velocity Verlet
algorithm [Swope, 1982]. The computations output are
(i) the position of the particles at each time step, and
(ii) the clusters to which the particles belong based on a
connected-component algorithm [Pearce, 2005] with a
distance threshold of 1.4, consistently with the literature
[Colombo, 2013; Colombo, 2014b; Colombo, 2014a].
Moreover, we checked that for thresholds ranging
from 1.1 to 2.0, the distribution of neighbours does
not change, so that the results are not sensitive to the
specific choice of threshold. The size of cluster number
I is quantified according to the following estimates:

• the radius of gyration RI
g given by

RI
g =

√
1
|P (I)|

∑
k∈P(I)

∥∥∥rk − r
∥∥∥2
, (2.17)

1Additional simulations were carried out with various values of C
and the main results remained similar in the sense that the time unit
has been rescaled according to the value of C.

r =
1
|P (I)|

∑
k∈P(I)

rk, (2.18)

with rk the position of the particles in the cluster,
P (I) the set of particles in cluster I and |P (I)| the
number of particles in cluster I.

• the Feret radii in the x and y directions given by(
maxk∈P(I) rk · e

)
/2 −

(
mink∈P(I) rk · e

)
/2 with e the

unit vector in the x and y directions respectively.

• the half maximum chord length given by
max(k,l)∈P(I)2 ∥rk − rl∥ /2.

In order to infer statistical estimations, each size dis-
tribution is further weighted by the number of particles
in each cluster. Such weighting is needed because the
number of clusters is not constant. Therefore, because
the total number of particles is constant, weighting by
the mass of each cluster allows one to recover the num-
ber of particles when integrating over the whole distri-
bution. Finally, thanks to the reduced units, U/aδ2 = 1
and the shear stress is σ = CV/h = V/h here due
to C = 1 so that the adhesion number simply reads
Ad = h/V . Note that, due to the specific choice of inter-
action potentials, to the absence of thermal motion and
hydrodynamic interactions and to the amount of parti-
cles which might be slightly low regarding statistics, the
present simulations remain very crude. Thus, their aim
is rather to offer a generic view of the evolution of par-
ticulate clusters under flow that supports our theoretical
approach, than to provide a detailed, realistic picture of
the interplay between flow and colloidal interactions at
the particle scale.

2.2.4.2 Simulation results

Figure 2.2 shows typical particle distributions com-
puted after the preparation step prior to shearing [fig-
ure 2.2(a)], and after application of shear in the Cou-
ette geometry [figure 2.2(b)], in spite of some depletion
at the walls. It appears clearly that the system starts
from a space-spanning ramified structure and evolves
toward dense, isolated clusters under shear. Moreover,
as shown in figure 2.2(c), the different estimates for the
cluster size yield consistent values. In the following,
for the sake of simplicity, we shall focus only on the
weighted average of the radius of gyration to estimate
the cluster size ℓ.

Following the general framework introduced in sec-
tion 2.2.3, we compute the distribution of the cluster
mass and the dimensionless energy βE (k) − αkk based
on equation (2.7). Figure 2.3 shows this energy func-
tional plotted against the mass k of particles within a
cluster for adhesion numbers ranging from 1 to about
2, 000. More specifically, from our simulations, we
extract a probability density function of the steady-

33



2.2. Aggregation-disaggregation phenomena [Bouthier, 2023a]

2

Figure 2.2: Simulated particle distributions for V = 10, h = 206, and C = 1 after the preparation step prior
to shearing (a) and at after shearing in the Couette geometry (b). Rendering using Ovito [Stukowski, 2010]. (c)
Cluster detection and various estimates of the cluster size as defined in the text for the top right particle distribution.

Figure 2.3: Energy functional βE (k)−αkk computed from equation (2.7) as a function of the number k of particles
in a cluster for (left) Couette flow and (right) Poiseuille flow. Colors correspond to the adhesion number Ad as
indicated in the legend. Results obtained from simulations performed with h = 103 or h = 206.
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state cluster population in terms of sizes. This prob-
ability density function is directly imported into equa-
tion (2.7) as f (k), which yields the dimensionless en-
ergy βE (k) − αkk. Focusing on one particular curve,
when the probability density function goes to 0, the di-
mensionless energy goes to infinity, which shows that
these states are impossible to access. Also, when the
probability density function is maximum, the dimen-
sionless energy is minimum because the most probable
size minimises the global energy functional. Look-
ing at the small- and large-mass limits, it appears that
limk→0+ βE (k) − αkk = limk→+∞ βE (k) − αkk = +∞,
which indicates that extreme masses are not accessi-
ble to the system. Second, in all cases, there exists
a global minimum of the energy functional that shifts
towards larger values of k as the adhesion number Ad
is increased. As expected intuitively, this suggests that
the average cluster mass increases with Ad. Moreover,
the steeper slope ∂ln(k) (βE (k) − αkk) of the energy func-
tional on the right side of the global minimum than on
the left side indicates that the system reaches the energy
minimum more easily when starting from large masses
than from small masses. This confirms the intuition that
disaggregation processes are much brutal than aggrega-
tion processes. Third, while the value of the global min-
imum energy does not show any clear trend with Ad,
there may exist several local minima in βE (k) − αkk.
This means that several metastable states may occur.
These states may disappear when increasing the simu-
lation duration or the system size, including also exper-
imentally. Still, this shows that a rather polydisperse
population of clusters may be found, at least transiently.
This may also be related to the dispersion in the energy
minimum illustrated previously.

An interesting feature that can be commented on
is the possible bimodality of the distribution of cluster
size which can be reproduced in the energy functional
graph in figure 2.3, notably at high Adhesion number
values. It may be relevant to compare this bimodal-
ity with the bimodality observed in [Lattuada, 2016].
Nevertheless, the bimodality may not be of the same
nature. More precisely, the bimodality in [Lattuada,
2016] is due to the remaining presence of monomers,
or individual particles, in the simulation with a rela-
tively high proportion compared to the clusters. In our
case, there is a little bump around individual particles
but the biggest bimodality appears around clusters of
significant size. Thus, the bimodality is just the co-
existence of two types of cluster size but on a larger
scale of simulation, it may be expected to have only
one mode.

Figure 2.4(a) and figure 2.4(b) respectively show
the “equilibrium mass” kmin of the clusters cor-
responding to the energy minimum, i.e., kmin =

arg mink∈R+ (βE (k) − αkk), and the cluster size ℓ/a taken
as the weighted average of their radius of gyration plot-

ted against the adhesion number Ad. For both observ-
ables, a power-law regime is identified over almost two
decades in adhesion numbers. The exponents inferred
from power-law fits for Ad ∈ [2, 200] are reported in ta-
ble 2.1. For Ad ≳ 100, a saturation is observed in kmin
together with large variations, for both the Couette and
Poiseuille flows. This behavior is most probably linked
to finite-size effects as the average cluster size becomes
comparable or larger than the system width h. Consis-
tently with figure 2.4(a), the cluster size ℓ increases as
a power-law of Ad [figure 2.4(b)]. There, although the
data for ℓ do not show such a strong saturation as for
kmin, significant deviations from power-law behavior are
still observed for Ad ≳ 100.

Moreover, the exponents for the dependence of ℓ with
Ad seem to depend significantly on the geometry, with
values 0.35 and 0.57 for the Couette flow and 0.27 and
0.48 for the Poiseuille flow, respectively for h = 103 and
h = 206 (see table 2.1). Similarly, the corresponding
exponents for kmin, namely 0.4 and 0.9 for Couette flow,
and 0.5 and 1.0 for Poiseuille flow, also differ for the
two values of h. At this stage, the reason for such an in-
fluence of h in the simple two-dimensional simulations
remains unclear, and future work should focus on more
realistic interaction potentials and three-dimensional ge-
ometries.

Still, it is interesting to note that ℓ/a and kmin are not
expected to have the same power-law behavior with the
adhesion number because of their intrinsic relationship.
More specifically, considering the framework of frac-
tal clusters, the number of particles in a cluster k is re-
lated to the geometrical size l through k = (l/a)D with
D the fractal dimension. In the two-dimensional case,
D should fall into the range [1, 2]. Figure 2.4(c) shows
that ℓ/a ∝ k1/2

min, which is compatible with a fractal di-
mension D ≃ 2, i.e., with almost dense aggregates in
two dimensions geometries. The fact that very compact
aggregates are obtained in the simulations is confirmed
visually by looking at figure 2.2(b). Another confirma-
tion comes from the ratio of the exponent for kmin and
that for ℓ/a in table 2.1, which is also found to be close
to 2 (except for the Couette flow with h = 103 but the
scatter of the kmin data in this latter case makes it diffi-
cult to conclude).

2.2.5 Proposition of model
2.2.5.1 Description of the disaggregation and reag-

gregation processes

The precise internal structure of the aggregates is re-
ally complex, and depends upon many different param-
eters including the volume fraction, the nature of the in-
terparticle forces and of the solvent, temperature, and
chemical environment. Hence, we shall consider the
aggregates as a continuum without further internal de-
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Figure 2.4: (a) Mass kmin of the clusters corresponding to the energy minimum and (b) cluster size ℓ defined as the
weighted average of the radius of gyration of the clusters, as a function of the adhesion number Ad for Couette
flow (•) and Poiseuille flow (□) and for two different width h = 103 (blue) and h = 206 (orange). Solid and dotted
lines correspond to the best power-law fits respectively for the Couette and the Poiseuille flow, and computed over
Ad ∈ [2, 200]. (c) Cluster size ℓ as a function of the equilibrium mass kmin. The black solid line corresponds to
ℓ ∝ k1/2

min. Same symbols and colors as in (a) and (b).

Geometry h Variable Exponent Prefactor

Couette 103 ℓ/a 0.346 ± 0.009 6.1 ± 0.2
Couette 103 kmin 0.4 ± 0.4 400 ± 700
Couette 206 ℓ/a 0.57 ± 0.03 3.5 ± 0.4
Couette 206 kmin 0.9 ± 0.1 60 ± 30

Poiseuille 103 ℓ/a 0.271 ± 0.007 6.1 ± 0.2
Poiseuille 103 kmin 0.5 ± 0.1 170 ± 70
Poiseuille 206 ℓ/a 0.48 ± 0.03 3.9 ± 0.5
Poiseuille 206 kmin 1.0 ± 0.1 40 ± 20

Table 2.1: Exponents and prefactors of the power-law fits in figure 2.4 for the different geometries, widths, and
sizes ℓ and kmin.

tails. We consider a suspension of particles of size
a that interact through an attractive potential so that
they gather into aggregates as sketched in figure 2.5.
Following a statistical approach as in Refs. [Banasiak,
2020a; Banasiak, 2020b; Golse, 2005; Alexeev, 2004;
Stadnichuk, 2015], we assume that there exists a dis-
tribution f (t, l, a,U, δ, σ) giving the population of ag-
gregates of size l at time t made of particles of size a
interacting through a pair potential U over a distance
δ under a stress solicitation σ. Such a distribution may
be computed through a coagulation-fragmentation equa-
tion as in Refs. [Banasiak, 2020a; Banasiak, 2020b;
Stadnichuk, 2015]. Yet, this approach requires to iden-
tify coagulation kernels and fragmentation coefficients,
which involves much effort for theoretical and/or nu-
merical validation. Without ignoring the power of such
tools, we aim at a simpler approach through the present
statistical approach.

We start by imposing the conservation of the total

number of particles N, which reads:

N =
∫ +∞

0
n
(

l
a

)
f (t, l, a,U, δ, σ) dl = constant ,

(2.19)
where n (l/a) denotes the number of particles per cluster
of relative size l/a. The average size of the aggregates
is thus given by:

l (t, a,U, δ, σ) =
a
N

∫ +∞

0
n
(

l
a

)
l
a

f (t, l, a,U, δ, σ) dl .

(2.20)
From a statistical point of view, and assuming that the
aggregates are submitted to a uniform external stress σ
far from any boundary, aggregates should evolve from
one state to another as sketched in figure 2.5. If the
stress is sufficiently large to break some initial aggregate
(state 1), a disaggregation occurs either due to “frag-
ile” rupture into two pieces of similar sizes (bottom part
of figure 2.5, state 4) or due to “erosion,” where small
pieces detach from the initial aggregate (top part of fig-
ure 2.5, states 2 and 3). If the larger pieces can still
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Figure 2.5: Sketch of the disaggregation and reaggregation processes under a uniform external stress σ. The
numbers represent different sizes of aggregates with different levels of energy. The aggregates are disaggregating
and reaggregating according to the stress solicitation. Transition from state 1 to states 2 and 3 corresponds to a
"fragile" rupture, while transition from state 1 to state 4 is an "erosion" process.

be broken down (states 2 and 4), the process contin-
ues. However, if the pieces become too small (state
3), the interparticle attraction dominates and reaggre-
gation occurs. In the process, the aggregates progres-
sively decrease their global energy, until a minimum is
reached at long times t → +∞. Therefore, the steady
state (state 5) eventually corresponds to the optimum of
all possible sizes, which results from a dynamical equi-
librium between disaggregation and reaggregation pro-
cesses. More formally, when a steady state is reached,
the average aggregate size ℓ is given by

ℓ (a,U, δ, σ) = lim
t→+∞

l (t, a,U, δ, σ) . (2.21)

In practice, since t remains finite, we note that the longer
the final time, the smaller the spread of the distribu-
tion around the steady-state size. An additional com-
ment is that, keeping the previous set of variables for
the distribution f , an equivalent form using the Vaschy-
Buckingham theorem [Buckingham, 1914; Bucking-
ham, 1915b; Buckingham, 1915a] is found by replacing
f (t, l, a,U, δ, σ) dl with f̃ (l/a,Ad, δ/a) d (l/a), where t
can be discarded based on unit independence. Time be-
comes relevant, however, when the viscosity η of the
suspending liquid or any other time-related quantity is
considered.

2.2.5.2 Analytical formulation of the model

Let us consider a suspension of particles of diameter a
gathered in aggregates. The bond between each parti-
cle involves an energy U and an interparticle distance
of separation δ. The system is submitted to a uniform
stress σ. One aims at estimating the steady-state size of
stable aggregates ℓ as a function of a, U, δ, and σ. Fol-
lowing Eggersdorfer et al. [Eggersdorfer, 2010], for a
dense aggregate of size l, the applied mechanical energy
per unit area is σl. However, aggregates are not com-
pletely dense and one should more generally account
for their fractal nature. As already introduced above in
section 2.2.4.2, the number of particles in an aggregate
of size l is proportional to (l/a)D with D the fractal di-
mension of the clusters. Each particle in the aggregates
contributes to the overall energy per unit surface. As
if they were in parallel, the mechanical energy per unit
surface should be weighted by the number of particles
in an aggregate because there is fluid flowing inside the
aggregates, which interferes with each particle. Hence,
on the one hand, the mechanical energy per unit of ef-
fective surface of the aggregate M (l) is proportional to
σa (l/a)D+1. On the other hand, if one isolates an aggre-
gate of size l, the energy per unit surface liberated due to
broken bonds E is E (l) = Uδ−2, which is independent
of the size l [Marshall, 2014]. Indeed, considering an
intermolecular potential w (d), with d the intermolecu-
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lar distance, one can compute the interparticle potential
per unit area through:

W (d) = 2πϱ2

+∞∫
d

+∞∫
y

+∞∫
0

rw
( √

r2 + z2
)

drdzdy , (2.22)

where ϱ is the molecular density inside a particle. Defin-
ing δ as the distance that satisfies W ′ (δ) = 0, or equiv-
alently δ = arg mind∈R∗+ W (d) — taking some usual ex-
amples leads to δ ≈ arg mind∈R∗+ w (d) —, and the en-
ergy U = δ2W (δ), E (l) = Uδ−2 indeed corresponds
to the energy per unit surface liberated due to broken
bonds. This energy is independent of the size of the ag-
gregate because one may assume that, on the boundary
of the aggregate, the number of particles per unit surface
does not depend on l and is only related to the structure,
which is assumed to be fixed in steady state. Finally, the
steady-state size ℓ corresponds to the size for which the
mechanical energy balances that due to broken bonds,
i.e., M (ℓ) = E (ℓ), which leads to:

ℓ

a
=

( U
σaδ2

) 1
1+D

= Ad
1

1+D . (2.23)

The same result can be obtained by minimizing the to-
tal energy E (l) = l2 (M (l) − E (l)). Another way to
consider this concept is to relate it to Eggersdorfer et
al. [Eggersdorfer, 2010]. Indeed, on the one hand, if
a stress σ is applied on a cluster of size l with (l/a)D

particles of size a, one may assume that the stress is
shared in parallel on all particles, which gives a force
Fmin = σa2. On the other hand, if the stress is focused
on one single particle, there is a force Fmax = σl2. Tak-
ing the geometrical average of these two extremes leads
to Favg =

√
FminFmax = σla. This average force should

be summed over the whole chain with (l/a)D elements,
which reads Ftot = σla (l/a)D = σa2 (l/a)1+D. Fi-
nally, the bearable force between two particles is Ua/δ2.
Therefore, the link breaks when σa2 (ℓ/a)1+D = Ua/δ2,
leading to ℓ/a = Ad

1
1+D as in equation (2.23). Equa-

tion (2.23) also agrees with equation (2.21) through
the Vaschy-Buckingham theorem [Buckingham, 1914;
Buckingham, 1915b; Buckingham, 1915a]. Indeed,

equation (2.21) may be rewritten as:

ℓ

a
= G

(
Ad,

δ

a

)
. (2.24)

Adding that U/δ2 provides all the information about the
interaction potential, one has ∂δ/aG = 0 and thus

ℓ

a
= G (Ad) , (2.25)

consistently with equation (2.23). Note that this model
may show some limitations especially in the case of very
loose aggregates, e.g. fibers or linear chains of adhesive

spheres of length l, for which the hydrodynamic stress
grows as l3 due to the transmission of stresses by lubri-
cation forces. This would bring an evolution of the hy-
drodynamic energy as l5, or of the hydrodynamic force
as l4, which are, to our knowledge, not reported in the
literature.

2.2.6 Discussion

In this section, we discuss the theoretical approach and
numerical results in light of the literature. We start
by comparing the model with the classical coagulation-
fragmentation approach. Then, the power-law scaling
predicted for the cluster size, ℓ ∝ Ad1/(1+D), is con-
fronted to the present simulations and to previous ex-
perimental results.

2.2.6.1 Comparison with a coagulation-
fragmentation model

The model proposed above in section 2.2.5 may be
compared to the coagulation-fragmentation approach
introduced in the literature more than thirty years
ago [Sorensen, 1987] and subsequently enriched
over the years, e.g., through the population balance
models [Banasiak, 2020a; Banasiak, 2020b; Lat-
tuada, 2016; Puisto, 2012]. In such an approach, the
probability density function f of clusters of size x
at time t obeys the following dynamical equation:

∂ f
∂t

(t, x, •) =
1
2

∫ x

0
K (y, x − y, •) f (t, y, •) f (t, x − y, •) dy −

1
2

∫ x

0
F (y, x − y, •) f (t, x, •) dy

−

∫ +∞

0
K (x, y, •) f (t, x, •) f (t, y, •) dy +

∫ +∞

0
F (x, y, •) f (t, x + y, •) dy , (2.26)

with • = (a,U, δ, σ), K the aggregation kernel, and F
the fragmentation kernel. Considering the long-term be-
haviour, it can be shown that f takes the general form

[Banasiak, 2020a; Banasiak, 2020b; Sorensen, 1987]:

f (t, x, •) =
1

s2 (t, •)
φ

(
x

s (t, •)
, •

)
, (2.27)
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where s and φ are two functions that depend
only on time and size respectively, and such that∫
R+

xφ (x, •) dx = N, the fixed total number of parti-
cles. The function s corresponds to the average mass of
the clusters according to the distribution f . It can be re-
lated to a size through the cluster fractal dimension D by
s ∝ lD. Then, integrating the previous expression over
the size as in equation (2.20), one computes the steady-
state average size as:

l (t, •) = as
1
D (t, •) , (2.28)

with

lim
t→+∞

s (t, •) =
(
N

A (•)
B (•)

) 1
α+2−λ

(2.29)

A (•) =
x

R2
+

xyφ (x, •)φ (y, •) K (x, y, •) dxdy

(2.30)

B (•) =
x

R2
+

xyφ (x + y, •) F (x, y, •) dxdy ,

(2.31)

where λ and α are the respective homogeneity coeffi-
cients of K and F2, assuming α+ 2 > λ. It follows from
equations (2.21), (2.28) and (2.29) that

ℓ

a
=

(
N

A (•)
B (•)

) 1
D(α+2−λ)

. (2.32)

Finally, identifying with equation (2.23), one gets

U
σaδ2 =

(
N

A (•)
B (•)

) 1+D
D(α+2−λ)

. (2.33)

Most of the physical quantities appear as multiplica-
tive factors, in the sense that, for example, the coagula-
tion kernel K is usually built with a factor U/ηwith η the
viscosity of the fluid and no other dependence on phys-
ical quantities besides the variables x and y. Therefore,
the ratio NA (•) /B (•) can be considered as the prod-
uct of a dimensionless number built in a similar manner
as the adhesion number and another factor that depends
only on the shape of respective kernels without involv-
ing any additional physical parameter. Therefore, in or-
der to keep equation (2.33) true in general, one should
impose that the exponent is 1, which leads to

1 = D (α + 1 − λ) . (2.34)

This is an important result which, to our knowledge,
has not been reported in the literature before. Indeed,
equation (2.34) allows one to relate the first mechani-
cal approach to population balance models, where the

2The homegeneity coefficients are defined as K (ξx, ξy) =

ξλK (x, y) and F (ξx, ξy) = ξαF (x, y) for all (x, y, ξ) ∈ R3
+.

homogeneity coefficients may seem disconnected from
physical and measurable quantities. This result also em-
phasizes the fact that the adhesion number is a correct
measure of the relative importance of aggregation ver-
sus disaggregation.

We note that aggregation kernels are pretty well cov-
ered, either in terms of theoretical solutions [Banasiak,
2020a; Banasiak, 2020b; Wattis, 2006; Spicer, 1996]
with simple sums or products, or in terms of a phys-
ical construction, e.g., based on collisions, thermal
fluctuations, and diffusion [Kryven, 2014; Barthelmes,
2003]. Fragmentation kernels, however, are more
poorly controlled, in the sense that some theoretical so-
lutions impose some strong conditions on these kernels
without much physical justification [Banasiak, 2020a;
Banasiak, 2020b; Lattuada, 2016; Puisto, 2012], so
that the expressions of the fragmentation kernels re-
main mostly empirical or semi-empirical [Delichatsios,
1976; Kusters, 1991]. Therefore, although the use
of coagulation-fragmentation equations is well estab-
lished, relating some of the main terms to physical phe-
nomena, such as the interaction potential and the flow
stresses, is an important step yet to be fully achieved.

2.2.6.2 Comparison with simulations and experi-
ments

Relating the model proposed in section 2.2.5 to the sim-
ulations of section 2.2.4, we expect the exponents in ta-
ble 2.1 to be linked to the fractal dimension respectively
by 1/ (1 + D) for the steady-state size ℓ, and D/ (1 + D)
for the equilibrium mass kmin. The broad variability of
the exponents does not allow to properly extract a fractal
dimension from the simulations. Nevertheless, as dis-
cussed above in section 2.2.4.2, the shear-induced clus-
ters are almost dense, so that we may assume a fractal
dimension D close to 2. Such a compactness most prob-
ably results from the specific interaction potential, i.e.
a 12-6 Lennard-Jones potential, which is a central-force
potential and is likely to lead to clusters with droplet-
like shapes. We note that D = 2 would be consistent
with the exponent β = (1 + D)−1 = 1/3 expected for
ℓ as a function of Ad, at least in the smaller geometry,
since table 2.1 reports exponents of 0.35 and 0.27 for
h = 103.

Moreover, the results may be compared to the recent
three-dimensional simulations under simple shear flow
by [Ruan, 2020], which also report rather dense shear-
induced clusters at steady state. Focusing both on the
cluster size and on the average number of particles in
a cluster as in the present work, the authors extract the
cluster fractal dimension D and show that ℓ/a scales as
a power-law of the shear stress. The exponents β for
ℓ reported in [Ruan, 2020] are replotted as a function
of D as blue circles in figure 2.6 and show good agree-
ment with the prediction β = (1 + D)−1. Note that this is
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also consistent with the empirical expression proposed
in [Ruan, 2020], namely β = S/(S + ⟨D⟩), where ⟨D⟩
denotes the average cluster fractal dimension, and the
fitting parameter S is found to be close to 1.

Additionally, it can be interesting to compare with
[Conchúir, 2013; Zaccone, 2009a]. Indeed, in these
papers, a theoretical framework is described for the
breakup of fractal aggregate to get, for instance, the
maximum stable aggregate size. The power-law expo-
nent β is a function of the fractal dimension through

β =
1

D − 2.06491D − 0.0180344 (3 − D)−1 + 4.98585
(2.35)

or

β =
2

(dim−D)
(
2 (ζ + 1) + (dim−D)−1

) (2.36)

with ζ ≈ 3.8 the exponent relating the mean coor-
dination number to the particle volume fraction in
[Alexander, 1998]. These expressions are somewhat
similar to the exponent in equation (2.23). The power-
law relationship is recovered but with a different ana-
lytical approach based on rates of aggregation and dis-
aggregation and on calculations of coordination num-
bers. Also, there are very close results with [Xie,
2010] where it is easily comparable with figure 2.4.

On the experimental side, a number of works have
reported results assessing the size of aggregates under
the application of a mechanical stress. However, only a
handful of papers explicitly state the values of the var-
ious parameters a, U, σ, δ, and D. Table 2.2 and fig-
ure 2.6 gather a selection of such previous works. First,
table 2.2 shows that equation (2.23) predicts a typical
cluster size ℓth which is of the same order as the ex-
perimental size ℓexp. All the parameters fall into com-
monly known ranges and justify that the previous ap-
proach may be a good proxy to evaluate the most stable
cluster size. Second, figure 2.6 probes the sensitivity of
ℓ/a with the adhesion number Ad by plotting the power-
law exponent β in ℓ/a = Adβ as a function of D. Except
for a few points that lie far from the average estima-
tion, most exponents are gathered along the prediction
of equation (2.23), consistently with the numerical re-
sults of [Ruan, 2020], which provides strong support for
the approach described in section 2.2.5.

Finally, figure 2.7 provides a sensitivity study of
the value of ℓ upon the different parameters of equa-
tion (2.23) based on table 2.2. It is clear that the most
critical parameters are D and δ as expected from equa-
tion (2.23). Therefore, particular attention must be con-
sidered to assess accurately these parameters. Yet, when
one of these two parameters are unknown, the model can
be used to estimate D or δ with good accuracy based on
measurements of ℓ.
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Figure 2.6: Power-law exponent β in ℓ/a = Adβ as a
function of the fractal dimension D of the aggregates
extracted from [Ruan, 2020; Hunter, 1980; Sonntag,
1986; Sonntag, 1987a; Sonntag, 1987b; Brakalov,
1987; Torres, 1991a; Torres, 1991b; Harshe, 2011;
Potanin, 1991; Potanin, 1992; Potanin, 1996; Wes-
sel, 1992; Higashitani, 1998; Higashitani, 2001; Eg-
gersdorfer, 2010; Kimbonguila Manounou, 2014; Za-
ccone, 2009a; Conchúir, 2013; Xie, 2010] (•) and
compared to the model prediction β = (1 + D)−1 (blue
solid line).

2.2.7 Summary of the contribution

The contribution of this work comes from the uni-
versal approach rationalised by a dimensionless num-
ber and an energy functional to describe aggregation
and disaggregation processes. More precisely, the ad-
hesion number weighs the balance between aggregat-
ing forces originating from the interaction potential
and disaggregating forces coming from an external so-
licitation with a stress. This balance of forces allows
to define an equilibrium size or mass which can be
calculated through a scaling equation and can be ap-
proached through an energy potential with non equi-
librium configurations. To our knowledge, this has
never been performed in the literature.
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Source [Gibaud, 2020a;
Gibaud, 2020b;
Dagès, 2021;
Varga, 2019]

[Nguyen, 2011;
Klimchitskaya,
2000; Visser,
1972; Waite,
2001]

ℓexp (nm) 500 60
a (nm) 150 6.5
U/kBT 20 60
σ (MPa) 0.1 2
δ

(
Å
)

7 2
D 2.6 1.88

ℓth (nm) 300 55

Table 2.2: Experimental parameters and measurements
of the aggregate size from the literature. ℓexp is the di-
rect measurement of the aggregate size, while ℓth is the
aggregate size estimated using equation (2.23) based on
the parameters defined in the text and reported in the
references of the first column.
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Figure 2.7: Sensitivity study of ℓ predicted by equa-
tion (2.23) upon relative variations of the different con-
trol parameters around the values listed in the first line
of table 2.2 except for the fractal dimension, which is
varied from 1 to 3.

2.3 Interpenetration of clusters of
carbon-black particles [Dagès,
2022]

After having presented the competition between
aggregation and disaggregation processes in a rather
universal framework, we propose to focus on a par-
ticular case: the carbon-black particle suspension.
The following section has been published in [Dagès,
2022]. This section comes from a study done using as
entry data measurements by, notably, Noémie Dagès
and Thomas Gibaud in Ecole Normale Supérieur de
Lyon. My contribution lies in the construction of the
model and some exploitation of experimental data.
Most of the following section presents the experimen-
tal protocol and data which will be useful for the mod-
els described in chapter 3.

2.3.1 Abstract of the section
Colloidal gels are out-of-equilibrium soft solids com-
posed of attractive Brownian particles that form a space-
spanning network at low volume fractions. The elas-
tic properties of these systems result from the network
microstructure, which is very sensitive to shear history.
Here, we take advantage of such sensitivity to tune the
viscoelastic properties of a colloidal gel made of carbon
black nanoparticles. Starting from a fluidized state at an
applied shear rate γ̇0, we use an abrupt flow cessation to
trigger a liquid-to-solid transition. We observe that the
resulting gel is all the more elastic when the shear rate γ̇0
is low and that the viscoelastic spectra can be mapped on
a master curve. Moreover, coupling rheometry to small
angle X-ray scattering allows us to show that the gel mi-
crostructure is different from gels solely formed by ther-
mal agitation where only two length scales are observed:
the dimension of the colloidal and the dimension of the
fractal aggregates. Competition between shear and ther-
mal energy leads to gels with three characteristic length
scales. Such gels structure in a percolated network of
fractal clusters that interpenetrate each other. Experi-
ments on gels prepared with various shear histories re-
veal that cluster interpenetration increases with decreas-
ing values of the shear rate γ̇0 applied before flow ces-
sation. These observations strongly suggest that cluster
interpenetration drives the gel elasticity.

2.3.2 Introduction
In practice, gels of carbon black nanoparticles were cho-
sen which can be tuned using shear history [Ovarlez,
2013; Helal, 2016; Dagès, 2021]. Here the gelation
pathway of these gels is influenced as follows: starting
from a fluidized state under an applied shear rate γ̇0,
an abrupt flow cessation triggers a liquid-to-solid tran-
sition. Varying the shear rate intensity γ̇0 allows us to
generate gels whose viscoelastic properties spans over a
decade in stress units. Specifically, lower shear intensi-
ties yield more elastic gels upon flow cessation, while
the viscoelastic spectrum for different γ̇0 shows a robust
frequency dependence that can be rescaled onto a mas-
ter curve. Using rheometry coupled to small angle X-
ray scattering (SAXS), we further show that the gel mi-
crostructure is composed of clusters of size ξc and frac-
tal dimension d f separated by a cluster center to center
distance ξs. Those structural parameters depend on γ̇0.
More importantly, we show that ξs < ξc meaning that
adjacent clusters interpenetrate each others. The degree
of interpenetration defined by the ratio ξc/ξs decreases
for increasing values of γ̇0. The degree of interpenetra-
tion is crucial, as it controls the gel elasticity and cap-
tures the impact of γ̇0 on the gel viscoelastic properties,
as confirmed by a fractal scaling model.

The outline of the section is as follows. The car-
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bon black gels as well as our experimental toolbox are
introduced in section 2.3.3. Second, in section 2.3.4,
the experimental results are presented. How shear his-
tory allows tuning the gel viscoelastic properties will be
showed, which can be rescaled onto a master curve. The
fact that the gel structures itself in fractal clusters that
interpenetrate each other is established. Third, in sec-
tion 2.3.5, after dismissing a superposition principle to
account for the scaling of the viscoelastic properties of
the gel, a fractal scaling model establishing a direct link
between the gel microstructure and the gel network elas-
ticity as a function of the shear rate intensity γ̇0 applied
before flow cessation is derived.

2.3.3 Materials and methods
2.3.3.1 Carbon black dispersions

Carbon black (CB) particles are fractal carbonated col-
loids that result from the partial combustion of hydro-
carbon oils [Lahaye, 1994; Xi, 2006; Sztucki, 2007].
These particles are widely used in the industry for me-
chanical reinforcement or to enhance the electrical con-
ductivity of plastic and rubber materials [Wang, 2018].
Among the large variety of carbon black particles [Herd,
1992; Martinez, 2017; Dagès, 2021; Richards, 2017;
Hipp, 2021], Vulcan PF particles (Cabot, density dcb =

2.26±0.03) were chosen. The density of Vulcan PF par-
ticles is dcb = 2.26 ± 0.03 and their radius of gyration is
estimated to rg = 35 nm with a 20% polydispersity, and
their fractal dimension to d f 0 = 2.9 (see Appendix ap-
pendix A.1 for details).

When dispersed in mineral oil (RTM17 Mineral Oil
Rotational Viscometer Standard, Paragon Scientific,
viscosity η = 354 mPa.s at T = 20◦C, density dbck =

0.871), CB particles are weakly attractive. The depth
U of the interparticle potential depends on the type of
CB particles, the solvent, and the presence of dispersant,
and falls typically in the range U ∼ 10−30kBT [Trappe,
2007; Prasad, 2003]. At a working weight concentra-
tion in CB particles of cw = 4 %, the particles aggregate
to form a gel, i.e., a space-spanning network, which be-
haves as a viscoelastic soft solid. Indeed, at rest, the
elastic modulus G′ dominates the viscous modulus G′′

in the limit of low frequencies, whereas the sample dis-
plays a solid-to-liquid transition beyond a critical strain
γy ∼ 10 %. Moreover, under steady shear, the flow curve
that links the shear stress σ to the shear rate γ̇ is well fit-
ted by the Herschel-Bulkley model, σ = σy +Kγ̇n [Her-
schel, 1926b], with a dynamical yield stressσy = 4.5 Pa,
a consistency index K = 1.0 Pa.s1/0.83, and a fluidity in-
dex n = 0.83 (see figure A.2 in appendix A.2).

2.3.3.2 Rheology

In the present work, a rheometer is used both to measure
the mechanical properties of CB gels and to shape up

Initialization 

∆𝑡 = 60 s  
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𝑓 = 1 Hz  

∆𝑡 = 360 s  
𝛾 = 0.1 %  

𝛾 = 1000 s−1  𝛾 = 𝛾 0  

∆𝑡0 ~ 20 to 200 s  
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Figure 2.8: Experimental protocol: schematic of the
flow cessation and characterization sequences.

their microstructure. Experiments are carried-out with
two stress-controlled rheometers: (i) a MCR301 (Anton
Paar) equipped with a rough cone (radius 40 mm, an-
gle 1◦) and a smooth bottom plate both made of steel,
and (ii) a Haake RS6000 (Thermo Scientific) equipped
with a Couette geometry composed of concentric poly-
carbonate cylinders (inner diameter 20 mm, outer diam-
eter 22 mm, and height 40 mm) for rheo-SAXS experi-
ments. Both apparatuses give identical results provided
that the shear rate does not exceed 500 s−1 in the Couette
geometry due to the Taylor-Couette instability [Fardin,
2014].

2.3.3.3 Small angle X-ray scattering

The microstructural properties of the carbon black dis-
persion were investigated using rheo-SAXS measure-
ments carried out on the ID02 beamline at the Euro-
pean Synchrotron Radiation Facility (ESRF, Grenoble,
France) [Narayanan, 2022]. The incident X-ray beam
of wavelength 0.1 nm is collimated to a vertical size
of 50 µm and a horizontal size of 100 µm. The 2D
scattering patterns were measured using an Eiger2 4M
pixel array detector and the subsequent data reduction
procedure is described elsewhere [Panine, 2003]. The
scattering intensity I(q) is obtained by subtracting the
two-dimensional scattering patterns of the carbon black
gel and the mineral oil. The resulting scattering inten-
sity presented in this article always remained isotropic
(see figure A.8 in appendix A.7). Therefore, the nor-
malized intensity pattern is radially averaged to obtain
one dimensional I(q). Note that measurements were
performed in both radial and tangential configurations,
and they turn out to be equivalent due to the isotropy of
the gel microstructure.
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Figure 2.9: Flow cessation sequence performed with
different values of the shear rate γ̇0 in a cw = 4 % car-
bon black dispersions. The sequence is composed of
two steps: a quench in shear rate from 1000 s−1 to γ̇0
yielding a stress response σ(t) pictured in (a), followed
by a complete flow cessation which results in (b) the re-
laxation of |γ̇|(t) when imposing σ = 0 Pa. In (a) and (b)
colors encode the value of γ̇0 ranging from 1500 (black)
to 0.1 s−1 (yellow), see legend in (b).

2.3.3.4 Rheological protocol

The protocol is applied and sketched in figure 2.8, which
is divided in two sequences: a flow cessation sequence
to shape up the gel properties followed by a sequence of
characterization of the gel mechanical properties inher-
ited from the flow cessation protocol.

In practice, the flow cessation protocol is divided into
three steps. First, a rejuvenation step is carried out dur-
ing which the sample is sheared at γ̇ = 1000 s−1 for
∆t = 60 s to erase any shear history that would influ-
ence the gel mechanical properties later on. Second, the
shear intensity is modified by imposing a quench from
γ̇ = 1000 s−1 to a constant shear rate γ̇0 ∈ [0.1, 1500] s−1

for a duration ∆t0 ∈ [20, 200] s. figure 2.9(a) shows
the stress response σ(t) of the CB gel resulting from
quenches to various values of γ̇0. For high shear rates
γ̇0, a duration of ∆t0 = 20 s is sufficient to reach a steady
state. However, for γ̇0 < 10 s−1, γ̇0 must be imposed
for longer durations, as σ increases significantly, before

reaching a maximum and then slowly decreases. The
increase of σ at short time scales corresponds to a tran-
sient regime necessary for the system to adapt to the new
shear rate γ̇0 [Dullaert, 2005] (see also appendix A.2).
The slow decrease at longer time scales might be due to
some slippage of the dispersion at the walls of the shear
cell [Meeker, 2004]. Third, a flow cessation is applied
by imposing σ = 0 Pa for 30 s, while recording the
shear-rate response γ̇(t) as displayed in figure 2.9(b). γ̇
is observed to decrease to values beneath 10−3 s−1 within
a few seconds indicating that the rotor is immobile and
that flow cessation is complete. At short time scales,
the shear rate decreases exponentially as expected for
a simple, viscous fluid. At intermediate timescales,
γ̇ drops faster than exponentially and displays oscilla-
tions typical of the viscoelastic ringing observed in soft
solids during creep tests [Zölzer, 1993; Baravian, 1998;
Ewoldt, 2007; Benmouffok-Benbelkacem, 2010]. This
indicates that gels reforms within a few seconds.

Finally, the characterization sequence following flow
cessation consists in three steps. First, the system is
let to rest for 360 s, while measuring the elastic G′ and
viscous G′′ modulus using oscillations of small ampli-
tude γ = 0.1 % at a frequency f = 1 Hz. As shown
in the appendix A.4 figure A.3, the viscoelastic mod-
uli of the dispersion rapidly reach a regime where ag-
ing is weak. Second a frequency sweep is performed
at γ = 0.3 % with 10 points per decade for frequencies
f ranging from 0.02 to 20 Hz. To gain some insights
on the gel microstructure during these two sequences,
the entire protocol was carried out in the rheo-SAXS
setup for four distinct shear intensity γ̇0. The scattered
intensity I(q) of the gel obtained after flow cessation is
discussed in the next section.

Based on reference [Radhakrishnan, 2017], we esti-
mate that through out the rheological protocol the gel
is homogeneously sheared and does not display shear
banding. Indeed shear banding may appear in carbon
black suspensions. When going from large to low value
of the shear rate, shear banding only happens below a
critical shear rate of γ̇S B. γ̇S B is easily identifiable on the
flow curve by a drop of the shear stress σ at low shear
rates. From figure A.2 we determine γ̇S B ∼ 0.1 s−1.
This value justifies carrying out preshear of intensity γ̇0
no lower than 0.1 s−1 to garantie the homogeneity of the
flow profile in the rheometer.

2.3.4 Results
2.3.4.1 Impact of the shear rate γ̇0 on the gel linear

viscoelastic spectrum

We first focus on the impact of γ̇0 on the linear vis-
coelastic properties of the gel formed upon flow cessa-
tion (see “Frequency sweep" in the characterization se-
quence sketched in figure 2.8). The gel frequency spec-
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Figure 2.10: (a) Elastic G′ and viscous modulus G′′ vs. the frequency f in a cw = 4 % carbon black dispersions.
The color codes for the shear rate intensity γ̇0 applied before flow cessation. (b) Normalized viscoelastic spectrum:
G′/Gc and G′′/Gc vs. the normalized frequency f / fc, where Gc and fc denote respectively the modulus and the
frequency at which G′ = G′′ in (a). The blue curves correspond to a Kelvin-Voigt model (see appendix A.5).
The grey curves correspond to the master curves obtained for G′ (solid line) and G′′ (dashed line) by rescaling
viscoelastic spectra of CB dispersions in oil for various volume fractions [data extracted from [Trappe, 2000]].
Inset: Gc vs. fc. The red dotted line is the best linear fit of the data: Gc = 14.5 fc. (c) Evolution of Gc (top) and fc
(bottom) vs. γ̇0. The red line is the best fit of the data using equation (3.1) and the structural information reported
in figure 2.12. The best fit is obtained with a single adjustable parameter, namely the prefactor GCB = 9 Pa.

trum is reported in figure 2.10(a) for various values of
the shear rate intensity γ̇0 spanning over four decades.
Overall, we observe that low γ̇0 produce more elastic
gels. More precisely, whatever the shear rate intensity
γ̇0, the elastic and viscous moduli are increasing func-
tions of the frequency and cross at a frequency fc that
shifts towards larger values for decreasing γ̇0. More-
over, in the limit of low frequencies, all spectra show
a plateau in elasticity with G′ > G′′, which confirms
the solid-like behavior of the sample, regardless of the
shear rate intensity applied prior to flow cessation. The
shape of the viscoelastic spectrum is robust, and ap-
pears merely shifted, which prompts us to construct a
master curve from the data in figure 2.10(a). By nor-
malizing each spectra by the coordinate ( fc, Gc) defined
by the crossover of G′ and G′′, we obtain the master
curve reported in figure 2.10(b). This scaling behavior
is also clearly visible in the tan(δ)= G′′/G′ representa-
tion. Since G′ and G′′ are scaled by the same factor,
building a master curve with tan(δ) from different γ̇0
only requires to scale the frequency axis as shown in
figure A.4. The asymptotic behavior of the master curve
corresponds to a Kelvin-Voigt model (see appendix A.5)
displayed as blue lines in figure 2.10(b). At low frequen-
cies, i.e., f ≪ fc, the elastic modulus G′ tends towards
a plateau value much larger than G′′, which is the hall-
mark of a solid-like behavior at rest. At high frequen-
cies, i.e., f ≫ fc, the viscous modulus G′′ dominates
and increases linearly with the frequency and the sol-

vent viscosity η, such that G′′ = 2πη f . In this range of
frequencies, the variations of G′′ correspond to the vis-
cous dissipation due to the thermal fluctuations of the
gel network in the background solvent. We note that the
master curve can be fully fitted by a fractional Kelvin-
Voigt model (see appendix A.5). Such a master curve is
strongly reminiscent of that obtained on fractal gels by
varying the particle volume fraction, and the interparti-
cle potential [Trappe, 2000; Prasad, 2003; Won, 2005].
In contrast, here, the master curve is generated by vary-
ing the shear history on a sample of fixed composition.
Yet, rescaled data extracted from [Trappe, 2000] and ob-
tained with different CB particles suspended in another
solvent [see gray curves in figure 2.10(b)], fall remark-
ably well on our master curve. This suggests that var-
ious shear histories allows generating gels, whose mi-
crostructure shares some similarity with that generated
by varying the colloid volume fraction.

The high sensitivity of CB gels to shear history is
encoded in the dependence of the locus of G′ and G′′

crossing point ( fc, Gc) with γ̇0. As shown in fig-
ure 2.10(c), both fc and Gc decrease by almost two or-
ders of magnitude when increasing γ̇0 from 0.1 s−1 to
1500 s−1. Such influence of shear history is not ob-
vious, for it shows a trend similar to that observed in
boehmite gels [Sudreau, 2022] and silica sphere and
rods gels [Das, 2022] but opposite to that reported in
depletion gels, where a strong shear yields a more ho-
mogeneous and more elastic structure upon flow cessa-
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(a) (b) 

Figure 2.11: (a) Evolution of Gc as a function of the weight concentration in carbon black particles cw for various
shear rates applied prior to flow cessation: γ̇0 = 0.1 s−1 (circle), 2 s−1 (diamond), 100 s−1 (triangle) and 1500 s−1

(square). Red lines are the best power-law fit of the data Gc = (cw/C1)α. Both α and C1 depend on γ̇0. (b) α and
C1 vs. the shear rate γ̇0. Red lines are the best logarithmic fit of the data: α = log10(γ̇0/Γ̇1) with Γ̇1=10−3.9 s−1 and
C1 = C2 log10(γ̇0/Γ̇2) with C2 = 0.7 % and Γ̇2 = 0.015 s−1. Dotted lines are the best power law fits. (c) Evolution
of Gc as function of the dimensionless concentration and shear rate.

tion [Koumakis, 2015].

2.3.4.2 Influence of the carbon black weight con-
centration

The rescaling and the master curve introduced in sec-
tion 2.3.4.1 are robust to changes in the CB weight con-
centration, from cw = 2 to 8 %. For instance, the
viscoelastic spectrum of a cw = 2% carbon black dis-
persion obtained with various shear rate γ̇0 applied be-
fore flow cessation can be rescaled on the same master
curve as that displayed in figure 2.10(b) (see figure A.6
in appendix A.6). Moreover, for a fixed shear inten-
sity γ̇0, the modulus Gc increases as a power law of cw,
cw = (cw/C1)α with a concentration C1 and an exponent
α that depends on γ̇0 [figure 2.11(b)]. While a power-
law increase of the gel elasticity for increasing particle
weight concentration or volume fraction is classically
reported in colloidal gels with an exponent α ranging
between 2 and 4.5 depending on the range of the inter-
particle potential and the nature of the particles [Buscall,
1988; Trappe, 2001; Prasad, 2003], the sensitivity of α
to shear history is a key result of the present study. Here,
in figure 2.11(b), we show that α increases for increas-
ing shear rate intensity applied before flow cessation,
varying between α ≃ 3 for γ̇0 = 0.1 s−1 to surprisingly
high values, i.e. α ≃ 7 for γ̇0 = 1500 s−1. Finally, in
figure 2.11(c), we show that Gc follows a master curve
driven by a dimensionless concentration and shear rate
intensity. Although this dependence remains empirical,
this master curve highlights the fact that there are many
ways to obtain gels with identical Gc. For instance to

get Gc ≃ 3 Pa one can either prepare a gel at (cw = 4 %,
γ̇0 = 1500 s−1), (cw = 3 %, γ̇0 = 100 s−1) or (cw = 2 %,
γ̇0 = 2 s−1).

To connect these results to the gel microstructure,
one can be tempted to combine the power-law expo-
nent α with the scaling theories developed for fractal
gels [Shih, 1990], in order to estimate the cluster fractal
dimension d f . The theory developed in the context of
Brownian aggregation distinguishes between two types
of network, depending on the relative value of the elas-
tic constant of the inter-cluster links to that of the clus-
ter. In the case of weak links α = 1/(3 − d f ), which
yields 2.6 < d f < 2.9, whereas in the case of strong
links, α = (3 + x)/(3 − d f ) with x < d f the fractal di-
mension of the gel backbone, and 1.5 < d f < 2.5 (see
figure A.7 in appendix A.6). These values motivate an
experimental characterization of the gel microstructure,
and especially of the cluster fractal dimension to test the
relevance of such scaling theories.

2.3.4.3 Microstructure of the gel as function of the
shear γ̇0 applied before flow cessation

To better understand the interplay between shear history
and the gel microstructural properties, we perform rheo-
SAXS experiments using the protocol sketched in fig-
ure 2.8. The scattering intensity I(q) measured 360 s
after flow cessation protocol for four different shear rate
intensities γ̇0 prior to flow cessation is reported in fig-
ure 2.12(a), as a function of the wave number q. In all
four cases, the scattered intensity I(q) presents similar
features. First, I(q) is isotropic, i.e., tangential and ra-
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Figure 2.12: Structure of the gel obtained after flow cessation. The scattering intensity I(q) is measured 360 s
after the end of the flow cessation test for different preshear γ̇0 in carbon black dispersions at cw = 4 %. (a) The
thick lines represent the evolution of I(q) (top) and I.qd f (bottom) as a function of the wave vector q. Color codes
from pink to black for γ̇0=0.1, 2, 20 and 100 s−1. The dotted line is the form factor obtained at cw = 0.1%. Red
lines are fit to the experimental data by a two-level Beaucage model composed of the CB particles of radius r0
and clusters of size ξc with fractal dimension d f , modified by an intercluster structure factor that accounts for the
center-to-center distance ξs between the clusters. The scattering intensity I(q) and I.qd f are translated along the
y-axis for better readability. (b) Evolution of the fit parameters ξc (green diamond), ξs (pink star), ξc/ξs (circle) and
d f (square) as a function of γ̇0. For the four fits, we obtained radius of gyration r0 = 28.5 nm. (c) Schematic of the
clusters evolution as the preshear γ̇0 decreases between the top and bottom panels.

dial measurements are equivalent (see figure A.8 in ap-
pendix A.7). Therefore, the gel displays an isotropic
structure at all length scaled probed by SAXS, which
is why we only report the azimuthally averaged I(q).
Second, I(q) presents three characteristic bumps around
0.04, 0.01 and 0.002 nm−1 characteristic of three length
scales. This structure is atypical. Indeed, in gels driven
solely by thermal agitation, I(q) classically displays
only two characteristic length scales: the particle size r0
and the cluster size ξc separated by a power-law regime,
and the exponent of which is related to the cluster fractal
dimension [Courtens, 1987].

Here, we attribute the high-q bump to the CB parti-
cles of size r0, the low-q bump to clusters of size ξc and
fractal dimension d f , and the bump at intermediate q
to the structural distance ξs between the centers of two
adjacent clusters. Those bumps appears more clearly
in the Kratky-like representation I.qd f reported in fig-
ure 2.12(a). In the Kratky-like representation we used
the d f displayed in figure 2.12(b).

A description of the gel microstructure based on three
characteristic length scales is implemented in a modi-
fied two-level Beaucage model. In short, the two-level
Beaucage model [Beaucage, 1995; Beaucage, 1996] ac-
counts for the scattering of clusters of size ξc and frac-
tal dimension d f composed of particles of size r0. To

account for the increase of scattering at ξs, we have
multiplied the cluster scattering intensity term in the
Beaucage model by an ad-hoc inter-cluster structure fac-
tor (see appendix A.7 for more details). This modified
Beaucage model provides an excellent fit to the exper-
imental data obtained for different shear histories [fig-
ure 2.12(a)]. Moreover, since the gel weight concentra-
tion is identical in the four measurements, the fit param-
eters r0, ξc, d f and ξs should obey mass conservation.
In practice, such a constraint can be expressed at the
scale of the unit cell of the gel network, i.e., the mini-
mum structural repeating unit necessary to construct the
gel structure defined by the correlation length ξs. The
number of particles N = (ξc/r0)d f in a unit cell corre-
sponds to the number of particles in the cluster of size
ξc and fractal dimension d f . Based on the values of the
fit parameters obtained from adjusting the modified two-
level Beaucage model to the SAXS data, we check that,
indeed, ρ = (ξc/r0)d f /ξ3

s remains constant across the
four measurements with ρ = 7250 ± 230 particles/µm3.
This value is also in agreement with the carbon black
weight concentration cw = 4 % (see figure A.10 in ap-
pendix A.7), which confirms that our analysis of the
scattering data is self-consistent.

Figure 2.12(b) shows the dependence of the fit param-
eters ξc, ξs, and d f with the shear rate intensity γ̇0 ap-
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plied before flow cessation. A gel prepared with a lower
shear intensity shows a larger and looser microstructure
since ξc increases and d f decreases for decreasing γ̇0.
Considering the evolution of only those two parameters
suggests a decrease of the gel elasticity for decreasing
values of γ̇0, in stark contrast with our observations.
However, ξc and d f are not the only parameters, and
the correlation length ξs, which corresponds to the clus-
ter to cluster center distance, plays an important role.
In particular, ξs is smaller than the cluster size ξc, indi-
cating that the clusters interpenetrate each other. Such
cluster interpenetration has recently been suggested in
carbon black gels to interpret step down shear rate rhe-
ology experiments [Wang, 2022]. In our case, for lower
shear rate intensity γ̇0 prior to flow cessation, the ra-
tio ξc/ξs increases, i.e., the clusters become more inter-
penetrated, accounting for the reinforcement of the gel
elasticity. We therefore hypothesize that the gel elas-
ticity is related to the cluster interpenetration, increas-
ing the elasticity of the gel network as compared to the
case where clusters would be packed in a random close-
packing configuration [figure 2.12(c)].

2.3.5 Discussion
We have used mechanical shear to explore various con-
figurations of carbon black gels. Starting from a flu-
idized state under an applied shear rate γ̇0, we use an
abrupt flow cessation to trigger a liquid-to-solid transi-
tion. Varying γ̇0 allows us to tune the gel viscoelastic
properties, whose spectrum can be mapped on a single
master curve asymptotically defined at low frequencies
by the elasticity of the gel network G∞ and at high fre-
quencies by the viscosity η of the background solvent.
Coupling rheometry and SAXS, we have shown that the
gel microstructure is composed of fractal clusters that
interpenetrate each other, and the degree of interpenetra-
tion appears to be a key parameter contributing to the gel
elasticity. We have validated this hypothesis developing
an interpenetration ϕ-power law model that account for
the decrease of elasticity as γ̇0 increases.

2.3.5.1 Is the scaling behavior of the viscoelastic
spectrum a consequence of an underlying
superposition principle?

In light of the scaling behavior of the viscoelastic
spectrum, it is tempting to interpret the master curve
obtained by varying γ̇0 as the result of some shear-
frequency superposition principle. Superposition prin-
ciples in soft matter mechanics rely on the idea that
dynamical processes in soft materials can be accessed
equivalently using time or frequency and another well-
chosen variable. For example, time-temperature super-
position in polymer melts [Van Gurp, 1998] relies on the
acceleration of all activated processes at high tempera-

tures, enabling probing of longer effective time scales
at high temperatures. In other words, the average re-
laxation time of the material changes with temperature
without affecting the shape of its viscoelastic spectrum.

This is not what we observe here, for the rescal-
ing of the viscoelastic spectrum requires a shift along
the frequency axis and a shift along the viscoelas-
tic moduli. Such behavior has, however, been ob-
served in different systems and still attributed to a su-
perposition principle such as in colloidal low-methoxyl
pectin [Huang, 2021] in the context of gelling time/re-
laxation time superposition, protein condensates [Jaw-
erth, 2020] in the context of aging Maxwell fluids, in
triblock copolymer solutions [Krishnan, 2010] in the
context of time-composition superposition, and in soft
colloidal glasses [Wen, 2015; Wen, 2014] in the con-
text of time-concentration superposition. In the case of
carbon black gels subject to various shear rate inten-
sities before flow cessation, the viscoelastic spectrum
scaling is attributed to deep structural changes, such as
the cluster fractal dimension d f (the gel does not have
self-similar structures) rather than changes in the dy-
namics. Such results rule out a superposition principle.
In other words, it is possible to form carbon black gels
with the same value of the elastic plateau G∞ using dif-
ferent gels structures through shear history and concen-
tration as shown in figure 2.11(c).

2.3.5.2 Physical origin of the gel structure

The multiple metastable gels formed following vari-
ous shear preparations belong to the category of fractal
gels. This is probably why our results do not match the
trends observed in [Koumakis, 2015] which belong to
gels formed through arrested phase separation. We find
clusters of fractal dimension d f ∈ [2.3, 2.5] larger than
the prediction from diffusion-limited cluster aggregation
DLCA where d f ∼ 1.8 [Weitz, 1984] or reaction-limited
cluster aggregation RLCA where d f ∼ 2.1 [Schaefer,
1984] but smaller than the value obtained for sheared
fractal aggregates where d f ∼ 2.6 [Wessel, 1992].

In our system, the Brownian time τB = R36πη/kBT ∈
[0.07; 1600] s is set by the diffusion of particles of size R
ranging from the CB dimension r0 = 35 nm to the clus-
ter size ξc ∼ 1 µm. τB compares to the time necessary
for flow cessation to take place τ f c < 4 s (figure 2.9)
supporting again the fact that aggregation and flow ces-
sation are coupled.

The interplay between flow and structure in gels has
been tackled mainly in the flow regime [Hipp, 2021;
Nabizadeh, 2021] but has not been formalized to model
multiple metastable gel states induced by a shear pro-
tocol. This is an important challenge in the pursue of
memory materials [Keim, 2019] which aim to encode,
access, and erase signatures of past history in the state
of a system.

47



2.4. Conclusion

2

The flow cessation protocol inducing the sol-gel tran-
sition could be addressed qualitatively through the use
the Mason number Mn [Varga, 2018; Jamali, 2020],
which is here in the range

[
3.5 × 10−4, 5.2

]
, and agrees

rather well with the values in [Jamali, 2019a; Ja-
mali, 2020], or the adhesion number Ad [Eggersdorfer,
2010; Marshall, 2014; Kimbonguila Manounou, 2014],
which is here in the range

[
3.6, 5.5 × 104

]
weighting

the relative importance of adhesion forces compared
to shear forces and quantitatively using coagulation-
fragmentation equation [Banasiak, 2020a; Stadnichuk,
2015; Sorensen, 1987] which embrace the competition
between different aggregation mechanism and fragmen-
tation through shear or collisions.

Finally, we suggest another way to apprehend the
multiple metastable gels formed through flow cessation.
Indeed, carbon black gels as many other systems dis-
play delayed yielding [Gibaud, 2010; Sprakel, 2011;
Grenard, 2014], i.e., when pushed at a constant shear
stress σ, the gel initially at rest will start flowing on time
scales that decrease exponentially with increasing value
of σ. Our results prompt us to revisit delayed yielding
phenomena and answer the following questions: How
does gel prepared through flow cessation impact the
delayed yielding mechanism? Is delayed yielding still
characterized by an Arrhenius law? If so, is the energy
barrier necessary to flow in the delayed yielding exper-
iment related to the energy barrier to form the gel state
induced by flow cessation?

2.3.6 Summary of the contribution

We have demonstrated that carbon-black particles
suspensions may be modified from the microscopic
structure point of view and from a rheological point of
view. How the microscopic structure evolves accord-
ing to the preshear protocol is a direct consequence of
the previous more general framework. The data cor-
rectly fit microstructure model to follow the evolution
of it under external solicitation. We will see in the
next chapter how there is a feedback from the micro-
scopic structure to the rheology of the system.

2.4 Conclusion
In this whole chapter, we have investigated how

the macroscopic environment may influence the mi-
croscopic structure of a gel. Starting from the
competition between aggregation and disaggregation
processes, we have rationalized the balance with
an overall energy functional which should be min-
imise to reach the equilibrium size coming from the
macroscopic solicitation and the microscopic adhe-
sion forces. A similar framework has been considered
in the case of carbon-black particles where the micro-

scopic structure was caught through SAXS measure-
ments under specific rheological conditions. In the
case of pre-sheared gel studied at rest or studied dur-
ing flow, the competition of forces highlights an equi-
librium which tends to grow when the macroscopic
solicitation decreases. We have thus emphasized that
this is a universal phenomenon which needs further
research to properly be quantified according to macro-
scopic and microscopic conditions.
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Chapter 3
From the microscopic structure to the
rheology

This chapter is dedicated to the construction
of rheological laws, that come directly from
materials microstructures. Regarding sus-
pensions, we will precisely talk about how
multiple fractal structures and clusters inter-
penetration leads to specific rheological be-
haviours.

Objectives

Ce chapitre est consacré à la construction
de lois rhéologiques, qui proviennent di-
rectement des microstructures des matéri-
aux. En ce qui concerne les suspen-
sions, nous parlerons précisément de la
façon dont les multiples structures fractales
et l’interpénétration des clusters conduisent
à des comportements rhéologiques spéci-
fiques.

Objectifs
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3.1 Introduction

After having studied how an external solicitation
of the macroscopic environment can modify the mi-
croscopic structure of a material in the previous chap-
ter, I will present here how a given microscopic struc-
ture can bring certain rheological behaviours. As be-
fore, scaling laws are crucial in this kind of reasoning
and are based on arrangements of simple rheological
elements such as springs in parallel or in series. The
difficulty relies on the need to find the proper relevant
length scale and form factor used to extrapolate mi-
croscopic interactions towards the macroscopic scale.

Hence, two different microstructure models cre-
ated from known structure in the literature are pre-
sented: namely the interpenetration of clusters and the
multiple fractal model. These models will be derived
theoretically before trying to apply them on experi-
mental data and to compare their performances.

3.2 Interpenetration of clusters
[Dagès, 2022]

My contribution in this section relies on the com-
plete construction of the model, the demonstration of
the formulas and discussions comparing what exists in
the literature. Hence, this model has to be put in per-
spective with the experimental results of section 2.3.

3.2.1 Abstract of this section
Our results, which are in stark contrast to previous lit-
erature, where gel elasticity was either linked to cluster
connectivity or to bending modes, highlight a novel lo-
cal parameter controlling the macroscopic viscoelastic
properties of colloidal gels

3.2.2 A structure based model to account
for gel elasticity

There are numerous models accounting for the elas-
tic properties of fractal gels derived from microscopic
considerations, namely the ϕ-power law models, es-
pecially in the context of diffusion-limited cluster ag-
gregation (DLCA) and reaction-limited cluster aggre-
gation (RLCA) [Wessel, 1992; Shih, 1990; Kantor,
1984a; Kantor, 1984b; Mewis, 2012; Marangoni, 2000;
Gravelle, 2021; Roldughin, 2003; Mellema, 2002; Wu,
2001]. However, these models do not take into consid-
eration the case where shear history interferes with the
gelation pathway activated by thermal energy. There-
fore, unsurprisingly, such models cannot capture our
observations (see figure A.7 in appendix A.7)1. These

1In short, figure A.7 recalls that the fractal dimension d f estimated
from SAXS measurements are not compatible with both the weak-link

models notably predict that the cluster size ξc is set by
its fractal dimension d f , the particle volume fraction ϕ
and the particle size r0 in stark contrast with our ob-
servations where the shear applied prior to flow cessa-
tion appears as an additional key parameter that act on
the gel structure. Moreover, in these models, the elas-
tic properties of colloidal gels are either connected to
the local bending cost of the particle network, or to the
cluster connectivity. However, to the best of our knowl-
edge, none of these approaches accounts for an overlap,
or equivalently for an interpenetration, of two neighbor-
ing clusters.

Here, we introduce the interpenetration ϕ-power law
model. This model is an implementation of the ϕ-power
law models proposed in [Shih, 1990; Mellema, 2002;
Wu, 2001]. In practice, we assume that the gel is com-
posed of particles of size r0 that form clusters of size ξc

and fractal dimension d f separated by a center-to-center
distance ξs. If ξs > ξc, the clusters are independent and
the dispersion is a fluid. However, if ξs < ξc, clusters in-
terpenetrate each other and form a gel. We have mostly
replaced the factor from the ϕ-power law models that
accounts for the elasticity of two adjacent clusters by
an elongation elasticity due to the interpenetration. We
assumed a decomposition of the microscopic stiffnesses
in three contributions as springs in series, namely the
intra-cluster, the intermicroscopic and the interpenetra-
tion, respectively. We additionally assumed that the in-
terpenetration stiffness is negligible at the microscopic
scale, thus dominates the macroscopic rheological be-
haviour. The gel elastic modulus G′∞ at low frequencies
is calculated in section 3.2.3 and yields the following
expression:

G′ =
U

r0δ2︸︷︷︸
GCB

1
2

(
ξc

r0

)d f
(
1 +

ξs

2ξc

) d f
3
(
1 −

ξs

ξc

) 2d f
3

︸                                     ︷︷                                     ︸
gInterp

×

ϕ

(
ξs

r0

)2 (
ξc

r0

)−d f

︸             ︷︷             ︸
gNet

(3.1)

This expression displays an elasticity that follow the hi-
erarchical structural properties of the gel. GCB is the
elasticity arising from colloid-colloid interactions where
U and δ are respectively the depth and the range of the
carbon black attraction. gInterp corresponds to the scal-
ing that accounts for the cluster-cluster interpenetration
and gNet is the scaling attributed to the network formed
by the clusters at the macroscopic scale.

To test the relevance of interpenetration ϕ-power law
model, we report in figure 2.10(c) the best fit of Gc as a
function of γ̇0 using equation (3.1) with the values of the
structural parameters inferred from figure 2.12(b), the

regime and the strong-link regime as presented in [Shih, 1990].
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fact that G′∞ = 0.3Gc (see section 3.2.3), and the sole
adjustable parameter GCB = 9Pa. The model correctly
captures the decrease of the elasticity of the gel network
as γ̇0 increases. However, taking U = 10 kBT and δ =
0.2r0 we obtain GCB ∼ 2000 Pa a value much larger
that the fit value: the model fails to capture the absolute
value of the gel elasticity.

The interpenetration ϕ-power law model thus shows
that cluster interpenetration accounts for the scaling of
the mechanical properties of the gels and allows to ratio-
nalize the counter-intuitive observation that lower shear
rate intensities before flow cessation yield stronger gels.
Such results raise open questions, which are listed be-
low.

3.2.3 The interpenetration ϕ-power law
model, a model of the gel elasticity
based on scaling arguments

We assume that the gel is composed of particles of size
r0 that form clusters of size ξc and fractal dimension d f

separated by a center to center distance ξs. If ξs > ξc,
the clusters are independent and the dispersion is a fluid.
However, if ξs < ξc, clusters interpenetrate each other
and form a gel. To model the elastic constant of the gel
network, we follow the demonstrations of the ϕ-power
law models proposed in [Shih, 1990; Mellema, 2002;
Wu, 2001] which allows to write

G′∞ =
K
L

(3.2)

K =
(

L
ξs

)dim−2

Keff (3.3)

ϕ =
Npr3

0

L3 =

(
r0

ξs

)3 (
ξc

r0

)d f (ξs

L

)3−dim

(3.4)

with G′∞ the linear storage modulus, ϕ the particle vol-
ume fraction, K the macroscopic stiffness of the gel,
L the macroscopic size, Keff the elementary effective
stiffness of clusters and dim the dimension of the net-
work which can be equal to the dimension of the eu-
clidean space. These ϕ-power law models are based
on building the relationship between a microscopic stiff-
ness due to the interaction potential between the colloids
and a macroscopic scale through different extrapolation
by mean of scaling laws. Then, to demonstrate our in-
terpenetration ϕ-power law model, we assume that Keff
may be written

1
Keff
=

1
Kc
+

1
Kext
+

1
Ki

(3.5)

with Kc, Kext and Ki the elastic stiffness related to the
inside of the cluster, the intermicroscopic links (see
Ref[Wu, 2001]) and the interpenetration of the cluster,
respectively. These different stiffnesses are considered

Figure 3.1: Sketch of the contributions to the gel elas-
ticity associated with the gel hierarchical structure.

as spring in series as sketched on figure 3.1 and as com-
monly assumed in the literature [Wu, 2001].

Let us now quantify Ki. Ki is assumed to be propor-
tional to the number of contact Ni between interpene-
trating clusters: Ki = Niki, where ki is a reference in-
terpenetration stiffness. The last expression comes from
the fact that we assumed that the contacts in the inter-
penetration zone are parallel springs: this justifies the
additivity of the stiffnesses. This point has never been
highlighted in the literature and is part of our proposi-
tion for the interpenetration ϕ-power law model. Also,
the reference interpenetration stiffness ki is a hard point
in the model. Indeed, referring ourselves to [Kantor,
1984a; Kantor, 1984b], there may be a competition be-
tween elongation stiffness and bending stiffness. With-
out any true experimental insights about the interpene-
tration zone, it is hard to disentangle the contribution of
each and we will assume that it is directly related to the
depth of the interaction potential U and the distance of
interaction δ through ki = U/δ2. Due to the fractal na-

ture of the clusters, there are Ni =
(
6Vi/πr3

0

) d f
3 particles

inside the intersection volume Vi between two clusters.
Geometrically assimilating clusters to spheres leads to
an intersection volume [Polyanin, 2007; Kern, 1967, p.
97]

Vi =
π

12
ξ3

c

(
2 +

ξs

ξc

) (
1 −

ξs

ξc

)2

1{ξs<ξc}. (3.6)

We assume that each particle brought by each cluster in
Vi forms a contact adding rigidity to the whole system.
Therefore, the numbers of contact is roughly Ni. Putting
together the last expressions, we get

Ki =
U

2δ2

(
ξc

r0

)d f
(
1 +

ξs

2ξc

) d f
3
(
1 −

ξs

ξc

) 2d f
3

1{ξs<ξc}. (3.7)

Let us now compare Ki with Kc and Kext. There are
different ways to consider that Ki ≪ min (Kc,Kext). To
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simplify the comparison, following [Wu, 2001], we will
write

1
Kc
+

1
Kext
=

1
Kc

(
Kc

Kext

)α
(3.8)

with α ∈ [0, 1] allowing to make a transition between
the weak-link and the strong-link regime. A first way
to compare Ki with Kc (Kext/Kc)α is to say that the sys-
tem is in the regime ξc/ξs ≳ 1. Thus, one can re-write
equation (3.7) as

Ki ∝
ξc/ξs≳1

U
2δ2

(
1 −

ξs

ξc

) 2d f
3

(3.9)

telling us that Ki depends strongly on the distance
of ξc/ξs from unity. Therefore, Ki is negligible when
ξc/ξs ≳ 1 compared to Kc (Kext/Kc)α and equation (3.5),
we get Keff ≈ Ki.

The other way to consider the system is, following
previous approaches in [Kantor, 1984a; Kantor, 1984b;
Shih, 1990; Wu, 2001; Mellema, 2002; Wessel, 1992],
estimating Kc (Kext/Kc)α ∝ ξ−µs with µ ∈ [1, 5] function
of the fractal dimension d f , the dimension of the elas-
tic backbone and the regime of strong-link or weak-link
because ξs is similar to a cluster size with contact. Re-
calling that (ξc/r0)d f ∝ ξ3

s , one gets in this case

Ki

Kc

(
Kc

Kext

)α
∝ ξ

3+µ
s

(
1 +

ξs

2ξc

) d f
3
(
1 −

ξs

ξc

) 2d f
3

. (3.10)

Assuming that ξs does not vary much,
Ki/Kc (Kc/Kext)α is governed by the values of

ξc/ξs 7→ (1 + ξs/(2ξc))
d f
3 (1 − ξs/ξc)

2d f
3 on [1.2, 1.8].

Referring to figure 3.2, Ki/Kc (Kc/Kext)α is be-
tween 0.1 and 0.3. Therefore, one can assume that
Ki ≪ Kc (Kext/Kc)α, at least for the first values, and
following equation (3.5), we get K ≈ Ki.

Generally, the closer Ki is getting to Kc (Kext/Kc)α,
the more difficult it is to consider that only one phe-
nomenon prevails. If one wants to completely under-
stand the balance between the different contributions,
one needs to model both phenomena and their coupling.
This is not the goal of this model which tries to give
some orders of magnitude without exhaustively model-
ing the system.

This final expression of the interpenetration ϕ-power
law model is then, assuming that 1/Ki dominate,

G′ =
U

r0δ2︸︷︷︸
GCB

1
2

(
ξc

r0

)d f
(
1 +

ξs

2ξc

) d f
3
(
1 −

ξs

ξc

) 2d f
3

︸                                     ︷︷                                     ︸
gInterp

×

ϕ

(
ξs

r0

)2 (
ξc

r0

)−d f

︸             ︷︷             ︸
gNet

(3.11)

expliciting that GCB corresponds to the elasticity arising
from colloid-colloid interaction with U and δ respec-
tively the depth and the range of the attraction, gInterp is
the elementary scaling for elasticity to account for in-
terpenetration and may be changed according to [Shih,
1990] and gNet is the network contribution from the el-
ement of elasticity to the macroscopic scale. The di-
mension of the network dim is not required in the final
expression due to the contribution of the effective vol-
ume fraction through the particle volume fraction and
the fractal dimension related to ξs.

The difference with the usual ϕ-power law model
[Shih, 1990] relies on the fact that Ki = Niki for
our interpenetration ϕ-power law model and Ki =

(ξs/r0)−2−x ki with x the chemical dimension or the di-
mension of the elastic backbone for the usual ϕ-power
law model [Shih, 1990]. If we assume dim = 3, it is pos-
sible to find a weak-link like regime [Shih, 1990] with

G′∞ ∝ ϕ
1

3−d f .
To summarize the approach and the assumptions:

• Mosts of the ingredients come from the previous ϕ-
power law models building elasticity from micro-
scopic quantities [Shih, 1990; Wu, 2001; Mellema,
2002]. The scaling between the macroscopic stiff-
ness and the effective microscopic stiffness is con-
served, the colloid-colloid interaction is conserved
without expliciting the relations with bending or
elongation, and the construction of the effective mi-
croscopic stiffness as spring in series is conserved
as well.

• We assumed the predominance in the behaviour of
Ki instead of the other stiffenesses, at least at the
beginning of the interpenetration. As discussed
above, the more pronounced the interpenetration,
the more questionable this hypothesis is. In a fully
interpenetrated case, the contribution of each phe-
nomenon may be of the same order of magnitude
and the previous demonstration does not hold any-
more. The derivation of an exhaustive model al-
lowing the transition from one case to the other will
be out of the scope of this paper. However, we en-
courage future research to dig into this model to
make it complete and exhaustive against the litera-
ture and the present results.

3.2.4 Summary of the contribution

We have created a model of elasticity based on
scaling arguments and considering the interpenetra-
tion of clusters as the microscopic structure. It is di-
rectly an extension of previous models in the litera-
ture.

I acknowledge the novelty and the originality of
such approaches compared to the literature. How-
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Figure 3.2: Evolution of ξc/ξs 7→ (1 + ξs/(2ξc))
d f
3 (1 − ξs/ξc)

2d f
3 for different values of d f on [1.2, 1.8]

ever, I am not totally convinced about this type of
microstructure in a global 3D material. I do not see
properly how the interpenetration can span all the di-
rections with such complex arrangements. As what
will be discussed in section 3.4, the cluster of cluster
model developped in section 3.3 seems much more
convincing to me.

3.3 Multiple fractal [Bouthier,
2022]

3.3.1 Abstract of this section
Colloidal suspensions and the relation between their
rheology and their microstructure are investigated. The
literature showed great evidence of the relation be-
tween rheological quantities, cluster geometry and par-
ticle volume fraction, ignoring the influence of cluster
size. We propose to extend previous models using a
new double fractal structure which allows, first, to re-
cover the well-known models in the case of percolated
system and, second, to capture the influence of cluster
size. This new model emphasizes the necessity of such
a structure to account for recent experimental results.
Then, the model is compared with data coming from the
literature and shows close agreement.

3.3.2 Content of this section
The goal of this section is an attempt to describe a new
model of suspension to get rheological quantities as well
as recovering well-known models. This section tries to

Figure 3.3: Sketch of the double fractal structure trans-
mitting stresses in the system, inside the clusters and
between the particles

propose extensions of the previous models, assuming a
double fractal structure and to invite other research to
investigate, maybe, this opportunity. Therefore, first, the
description of the model is presented in section 3.3.3.
Afterwards, the results are showed, discussed according
to the literature in section 3.3.4, and some conclusions
are drawn in section 3.3.5.

3.3.3 Theoretical approach
To build the storage modulus of a colloidal suspension,
let us consider a percolated system of macroscopic size
L (see figure 3.3) in an Euclidean space of dimension
dim. The gel is composed of particles of size a with a
volume fraction ϕ aggregated in clusters of size ℓ with
an interaction potential U and a distance of interaction
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δ (see Refs. [Marshall, 2014; Kimbonguila Manounou,
2014; Eggersdorfer, 2010]). The size of the cluster ℓ
can be determined by multiple factors (volume fraction,
interaction potential, external solicitation, ...). Some
models demonstrate this kind of relationship [Sorensen,
1987; Ruan, 2020; Kimbonguila Manounou, 2014] but
one will consider this size here as a variable. Then, com-
pared to previous models [Shih, 1990; Mellema, 2002;
Marangoni, 2000; Wu, 2001], this size is not assumed
to follow ϕ (ℓ/a)dim−D = 1 (D being the fractal dimen-
sion). Indeed, in this paper, one assumes the existence of
a double fractal structure in the system, each one having
two parameters, as depicted on figure 3.3. This assump-
tion, discussed in the rest of the paper, is crucial and
arises from both the existence of size of clusters ℓ and
of the percolated elasticity: the coexistence of both lat-
ter ones implies the former assumption. The first struc-
ture relates the particles and the clusters, having a frac-
tal dimension D and a chemical dimension or shortest
path dimension d. d is also the dimension of the elastic
backbone and is between 1.1 and 1.4 [Herrmann, 1984;
Grassberger, 1992b]. The second structure is between
the clusters and the macroscopic system, having a frac-
tal dimension D and a chemical dimension d. For now,
there are no more assumptions about the value of (D, d)
respectively to (D, d). The assumption of double struc-
ture is related to the fact that, in a percolated system,
the clusters are gathered in a somewhat structure which
covers the whole system: to be able to handle elastic
deformation, the volume is spanned with a network of
clusters which are themselves composed of particles that
span space. Indeed, this assumption is typically sup-
ported by small angle scattering measurements [Gibaud,
2020a; Dagès, 2021; Weitz, 1984; Weitz, 1985]. If this
double structure would not exist, the identification of a
cluster size would not show any difference between the
sup-cluster and the sub-cluster structure, then would not
allow to identify properly a size ℓ. In other words, the
double fractal structure is required to identify a cluster
size. If this structure was regular such as a generalized
cubic network, then we would have (D, d) = (dim, 1).
However one leaves the possibility to have a more com-
plex structure above the clusters. This will impact the
capacity of the gel to change its storage modulus ac-
cording to the microscopic structure.

Our expression of the storage modulus G′ follows
the reasoning proposed in Refs. [Shih, 1990; Mellema,
2002; Marangoni, 2000; Wu, 2001] in which assump-
tions of springs in series in a fractal structure are made.
Therefore, it is necessary to know the macroscopic stiff-
ness K of the system, which reads, as a first approach
G′ = K/Ldim−2+2ϵα, where ϵ ∈ [0, 1] (considering the
range between pure stretching ϵ = 0 and pure bending
ϵ = 1) and α ∈ [0, 1] (considering the range between
strong-link regime α = 1 and weak-link regime α = 0
[Shih, 1990; Mellema, 2002; Marangoni, 2000; Wu,

2001])2. The power dim−2 + 2ϵα for the macroscopic
size L is an attempt to take into account the different
regimes proposed in the previous models in the literature
and modify the dimensions of K from a linear spring to
a torsion spring. Then K is linked to the stiffness of
each cluster kc as if the clusters were in series, which
brings K = kc (ℓ/L)dα. The distinction between strong-
link and weak-link regime is blatant because, in the for-
mer case, all clusters of size ℓ are contributing to the
global stiffness, whereas, for the latter, only the extreme
clusters are playing a role, thus only one cluster appears.
Furthermore, the stiffness kc is related to the stiffness
between the particles kp having a similar behaviour of
springs in series, which leads to kc = kpa2ϵα (a/ℓ)dα.
The power dα is directly related to the difference be-
tween strong-link and weak-link regimes, where either
all the particles contribute in the series or only the par-
ticles at the boundary. Also, the factor a2ϵα relates the
particle interaction stiffness to more general movement
from stretching to bending through curved paths. Fi-
nally, the stiffness of each particle bond kp is linked to
the interaction potential with kp = Uδ−2. It is then pos-
sible to assemble the previous assumptions to get

G =
a2ϵα

Ldim−2+2ϵα

(
ℓ

L

)dα (a
ℓ

)dα U
δ2 (3.12)

Moreover, because of the system fractal structure, one
has ϕeff = ϕ (ℓ/a)dim−D = (ℓ/L)dim−D. This finally
brings, replacing the macroscopic size L with the par-
ticle volume fraction ϕ,

G′ =
U

aδ2 ϕ
dim−1+ f (d)

dim−D

(
ℓ

a

) dim−D
dim−D (dim−1+ f (d))−dim+1− f (d)

(3.13)
with f (x) = α (2ϵ + x) − 1.

A first comment for this equation is that assuming a
percolated system with ϕeff ≈ 1, one recovers the known
behaviour G′ ∝ ϕ

dim−1+ f (d)
dim−D [Mellema, 2002; Marangoni,

2000; Shih, 1990; Wu, 2001]. Another comment is that
if D = dim there is no opportunity for the system to let
the clusters influence the rheology: thus this assumption
of D , dim is absolutely necessary. This becomes rel-
evant when one considers a generalized cubic network
system where there is no particular reason for the net-
work to break under a change of structure. Also, if D
would be equal to dim, L would not have any influence
on the rheology which is definitely not true, consider-
ing that the assembly of clusters is bringing the over-
all stiffness of the system: a higher or lower number of
clusters may bring differences in the macroscopic stiff-
ness. About the function f , depending on the values of

2In the case of weak-link regime, the values of ϵ, d and d are use-
less due to the irrelevance of information of these values on internal
elastic backbone.
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α ∈ [0, 1], ϵ ∈ [0, 1], d ∈ [1.1, 1.4] and d ∈ [1.1, 1.4], it
is varying between -1 and 2.4 approximately.

This approach can also be extended to express the
linearity limit of strain γNL. For instance, using the
same approach shown in [Shih, 1990; Mellema, 2002;
Marangoni, 2000; Wu, 2001], one assumes that σy =

G′γNL should not depend on d, d, ϵ and α because it is
intrinsic and depends mainly on the pair interaction po-
tential. Also, following previous approaches with their
set of hypothesis, σy ∝ ℓ

1−dim and σy ∝ ϕ
dim−1
dim−D . Finally,

this reads

γNL =
δ

a
ϕ
− f (d)

dim−D

(
ℓ

a

)− dim−D
dim−D f (d)+ f (d)

. (3.14)

Assuming again a percolated system with ϕeff ≈ 1,
one recovers γNL ∝ ϕ

− f (d)
dim−D [Mellema, 2002; Marangoni,

2000; Shih, 1990; Wu, 2001]. Hence, the yield stress σy

may be obtain thanks to equations (3.13) and (3.14) to
get

σy =
U

a2δ
ϕ

dim−1
dim−D

(
ℓ

a

) (dim−1)(D−D)
dim−D

(3.15)

which brings the well-known behaviour σy ∝ ϕ
dim−1
dim−D

in a percolated system with ϕeff ≈ 1 [Mellema, 2002;
Marangoni, 2000; Shih, 1990; Wu, 2001]. It is clear
from equation (3.15) that if D = D, there is no more in-
fluence of the size of clusters ℓ on the yield stress. More
generally, from equations (3.13) to (3.15), if (D, d) =
(D, d) as a classical percolated system, the size of the
clusters ℓ will not have any influence on rheology.

This consequence can be interpreted as a critical phe-
nomenon because it is necessary to have a difference
between (D, d) and (D, d). Heterogeneity in the dou-
ble fractal structure leads to fragility and to the possi-
bility of breakage. Also, depending on the values of
(D, d, α, ϵ,D, d), it is clear that the evolution of G′ and
σy according to ϕ is always increasing, the evolution of
γNL according to ϕ may be either increasing or decreas-
ing, and the evolution of G′, γNL and σy according to
ℓ/a may be either increasing or decreasing. Thus, this
model allows a variety of systems with different phe-
nomenologies, depending on the real behaviour of the
material.

A comparison of the different models present in the
literature is given in table 3.1. It is then blatant that
each previous model is an application of the here above
model specifying certain values for α and ϵ.

Convincingly, a sensitivity study can be carried lead-
ing to figure 3.4. The most critical parameters in this
study are then ϕ, D, ϵ, D and δ as suggested by equa-
tions (3.13) to (3.15). Experimental measurements of
these parameters are then of particular interest and needs
to bring accurate values.

One can also try to identify the intensity spectrum of
such a system which can be directly inferred through
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Figure 3.4: Sensitivity study of G′, γNL and σy from
top to bottom respectively, according to equations (3.13)
to (3.15) following the relative variation of the parame-
ters around the value given in table 3.2. The conditions
(d, d) ∈ [1.1, 1.4]2, (D,D) ∈ ]2, 3[2, ϵ ∈ [0, 1], α ∈ [0, 1]
and dim = 3 have been implemented.
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Source Condition
ln

(
aδ2G′

U

)
ln

(
ϕ

1
dim−D

) ln
(aγNL

δ

)
ln

(
ϕ

1
dim−D

) ln
(

a2δσy

U

)
ln

(
ϕ

1
dim−D

)
[Shih, 1990] Weak-link regime α = 0 dim−2 1 dim−1
[Shih, 1990] Strong-link regime α = 1, ϵ = 1 dim+d −1 − d dim−1

[Mellema, 2002] Transition between bending and
stretching α = 1

dim−2 + 2ϵ + d −2ϵ − d + 1 dim−1

[Wu, 2001] Transition between strong-link and
weak-link regime ϵ = 1

dim−2 + α (2 + d) −α (2 + d) + 1 dim−1

Table 3.1: Comparison of the different models of the literature relating rheological quantities to microstructure.

One can note that ϕ =
(
ℓ
a

)D−dim
in all these models.

[Gibaud, 2020a; Dagès, 2021; Sorensen, 2001; Ham-
mouda, 2010]

I (q) = Aℓ

exp
(
−

q2ℓ2

3

)
+

B (D)
(qℓ)D

exp
(
−

q2a2

3

)
erf

(
qℓ
√

6

)3D
+ Aa

exp
(
−

q2a2

3

)
+

B (D)
(qa)D erf

(
qa
√

6

)3D (3.16)

with

B (∆) = ∆
(

3∆2

(2 + ∆) (1 + ∆)

) ∆
2

Γ

(
∆

2

)
, (3.17)

Aa and Aℓ being empirical constants to fit, q the
wave vector norm, erf the error function and Γ the
Gamma function. The Guinier regime at low values
of q[Sorensen, 2001] is recovered with the exponen-
tial terms in equation (3.16) and the other terms with
erf

(
x/
√

6
)3
/x ∼

x→0
x2 (2/3π)3/2. The fractal slope is

recovered with the fast decaying exponential, the limit
value of the error function towards infinity and the
power law decrease involving the fractal dimension.
One thing to note to properly identify the intensity spec-
tra is that the range investigated

[
qmin, qmax

]
and the sys-

tem should verify aqmax > 2π, ℓ ? 50a, 50qminℓ > 2π
which leads to qmax/qmin > 2, 500 which is rather large
in terms of orders of magnitude. Few methods, particu-
larly scattering techniques, and physical systems allow
to reach such a broad range for the wave vector. One
example of spectrum is given on figure 3.5 where it is
easy to identify a with the rupture of slope on the right,
ℓ with the rupture of slope on the left, D with the power
law slope on the right and D with the power law slope
on the left.

A development of the model for multiple levels may
be proposed. Indeed, the previous model can be ex-
tended to n ∈ N \ {0, 1} number of steps depending on
the type of the considered system. The more steps, the
larger the quantity of parameter to identify. Therefore,

the construction may be interesting but should either re-
main seldom due to the broad variability of parameters
or, be supported by microstructural measurements like
scattering experiments.

As a snapshot, giving a set (ℓi,Di, di)i∈⟦1,n⟧ of sizes,
fractal dimension and chemical dimension, n ∈ N\{0, 1},
ℓ0 = a, ℓn = L, equations (3.13) to (3.15) read respec-
tively

G′ =
U

aδ2 ϕ
dim−1

dim

n∏
i=1

(
ℓi−1

ℓi

) f (di)+Di
dim−1

dim

(3.18)

γNL =
δ

a

n∏
i=1

(
ℓi−1

ℓi

)− f (di)

(3.19)

σy =
U

a2δ
ϕ

dim−1
dim

n∏
i=1

(
ℓi−1

ℓi

)Di
dim−1

dim

(3.20)

ϕ =
( a

L

)dim n∏
i=1

(
ℓi−1

ℓi

)−Di

. (3.21)

In order to recover an expression similar to the previous
ones in terms of the volume fraction, one needs to in-
tegrate partial volume fractions taking into account the
volume fraction into a cluster of a certain size. Con-
sidering these previous expressions, one can extend to a
continuum of length scales with two functions ℓ 7→ d (ℓ)
and ℓ 7→ D (ℓ) for the chemical dimension and the frac-
tal dimension respectively to get

G′ =
U

aδ2 ϕ
dim−1

dim × (3.22)

exp
(
−

∫ L

a

1
ℓ

(
f (d (ℓ)) +

dim−1
dim

D (ℓ)
)

dℓ
)
(3.23)

γNL =
δ

a
exp

(∫ L

a

f (d (ℓ))
ℓ

dℓ
)

(3.24)

σy =
U

a2δ
ϕ

dim−1
dim exp

(
−

dim−1
dim

∫ L

a

D (ℓ)
ℓ

dℓ
)

(3.25)
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Source [Gibaud, 2020a; Dagès, 2021]

G′exp (kPa) 1.2
γ

exp
NL (%) 1
σ

exp
y (Pa) 12

G′th (kPa) 0.96
γth

NL (%) 0.34
σth

y (Pa) 3.4

ϕ (%) 20
a (nm) 150
U (kT ) 20
ℓ (nm) 500
δ (Å) 3
D 2.6
d 1.1
D 2.61
d 1.1
ϵ 0.05
α 0.95
dim 3

Table 3.2: Results and parameters to assess the rheolog-
ical properties in [Gibaud, 2020a; Dagès, 2021]. G′exp,
γ

exp
NL are the direct measurements of the storage mod-

ulus at strain γ → 0 and the limit strain of linearity of
the carbon black particle suspension, respectively. Also,
σ

exp
y = G′expγ

exp
NL . Then, G′th, γth

NL and σth
y are the es-

timated storage modulus according to equation (3.13),
the limit strain of linearity according to equation (3.14)
and the yield stress according to equation (3.15), respec-
tively, with the other parameters.

ϕ = exp
(∫ L

a

D (ℓ)
ℓ

dℓ
) ( a

L

)dim
. (3.26)

With these expressions, it is straightforward to recover
the model with one fractal structure or two fractal struc-
tures taking constant functions or two-step constant
functions respectively over [a, L].

This kind of continuum multifractal structure can
be found, for example, in [Foderà, 2013]. In this pa-
per, the aggregation of protein in Amyloid superstruc-
tures creates a continuous evolution of the fractal di-
mension from D = 3 below l = 10nm to D = 1.5
for l ≥ 1µm. Hence, with this kind of data, it is pos-
sible to fit the evolution of the fractal dimension, use
the fit in the expressions above to get the rheological
parameters and compare with experimental data.

3.3.4 Comparing with the literature
One can look at the assessment of the storage modulus,
the linear limit of strain and the yield stress according to
literature results. Using equations (3.13) to (3.15) and
table 3.2, the values of d and d have been assumed close
to the lower boundaries of their range (i.e. [1.1, 1.4]),
D has been chosen close to D, but remaining higher to
have an increase of the storage modulus G′ according
to ℓ/a, and ϕ is chosen according to the structure of the
carbon black fractal particles. The theoretical value of
storage modulus is G′th = 0.96kPa which is close to the
experimental value G′exp = 1.2kPa. Also, the theoretical
value of the limit of linearity strain γth

NL = 0.34% is also
close to the experimental value γexp

NL = 1%. Finally, the
theoretical value of the yield stress σth

y = 3.4Pa is close
to the experimental value σexp

y = 12Pa too.

3.3.5 Summary of the contribution

We have proposed a new model following previ-
ous demonstrations in the literature assuming a double
fractal structure. This is an interesting contribution to
relate complex microstructure to rheological quanti-
ties.

As discussed already in section 3.2.4, I am more
convinced by a multiple fractal approach or a clus-
ter of cluster approach than an interpenetrating clus-
ter approach. This uses the same ingredients and
does not display any trivial difficulty to build the mi-
croscopic structure besides the fact the fact there are
more than two levels now. This demonstration is also
a good stepping stone for anyone who wants to dig
further in this topic due to the universal summary of
the literature as cases of applications of the previous
model, which will be also shown in section 3.4. Im-
provements in experimental measurements with cer-
tain types of material will complement greatly these
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3

theoretical perspectives.

3.4 Three length scales colloidal
gels: the clusters of clus-
ters versus the interpenetrating
clusters approach [Bouthier,
2023b]

In this section, we will compare the two previ-
ous models: interpenetration of clusters and clusters
of clusters models. This section has been published in
[Bouthier, 2023b].

3.4.1 Abstract of this section
Typically, in quiescent conditions, attractive colloids at
low volume fractions form fractal gels structured into
two length scales: the colloidal and the fractal cluster
scales. However, when flow interferes with the gela-
tion of colloidal fractal gels, it may display three distinct
length scales [Dagès, 2022]. Following those recent ex-
perimental investigations, we derive two models that ac-
count for the structure and the rheological properties of
such atypical colloidal gels. The gel elasticity is inferred
from scaling arguments, and the structure is translated
into scattering intensities following the global scatter-
ing functions approach proposed by Beaucage and, typi-
cally, measured in small-angle x-ray scattering (SAXS).
In both models, we consider that the colloids condensate
into fractal clusters. In the clusters of clusters model, the
clusters form superagregates that then build the gel net-
work. In the interpenetrating clusters model, the clus-
ters interpenetrate one another to form the gel network.
Those two models are then used to analyze rheo-SAXS
experiments carried out on carbon black gels formed
through flow cessation.

3.4.2 Content of this section
In section 3.4.3, we first present the measured mechani-
cal and structural properties of a three length scales car-
bon black gels obtained from flow cessations [Dagès,
2022]. We then discuss the implications of such re-
sults at a fundamental level and in terms of applications
to motivate the models developed in the next section.
In section 3.4.4, we present the structure of two mod-
els that display three distinct length scales: the clus-
ters of clusters model which describes gels structured
in a network of superaggregates formed by clusters of
particles [Bouthier, 2022] and the interpenetration of
clusters model which describes gels formed by a net-
work of interpenetrating clusters of particles [Dagès,
2022]. We then fit the small angle X-ray scattering data

(SAXS) presented in section 3.4.3 with both models us-
ing a global scattering functions approach proposed by
Beaucage. In section 3.4.5, we derive the mechanical
properties of the clusters of clusters model and the in-
terpenetration of clusters model previously introduced.
The derivation of such mechanical models is greatly in-
spired by the ϕ-power law models initially built to de-
scribe classical colloidal gels with two distinct length
scales, typically obtained in the DLCA or the RLCA
context. The derivation yields an analytical expression
of the gel elastic modulus. This is the main result of this
paper. This analytical expression combined with the as-
sessment of the gel structure obtained by SAXS allows
us to fit the gel elasticity G′ as function of the gel length
scales, cluster fractal dimension, volume fraction, col-
loidal interactions, etc... The results of the fits indicate
that the three length scale carbon black gels obtained
through flow cessations [Dagès, 2022] can be fitted by
both models. We however identity two general trends:
the gel elasticity originates from stretching bonds at all
length scales and the gel structure becomes denser as the
gel characteristic length scales increase.

3.4.3 Three length scales carbon black gels
resulting from flow cessations

Carbon black particles are fractal carbonated colloids
that result from the partial combustion of hydrocarbon
oils [Lahaye, 1994; Xi, 2006; Sztucki, 2007]. These
particles are widely used in the industry for mechanical
reinforcement or to enhance the electrical conductivity
of plastic and rubber materials [Wang, 2018]. Dispersed
in oil, the carbon black particles are attractive and form
gels at low volume fractions [Trappe, 2000]. Such gels
present peculiar rheological properties [Gibaud, 2020b]
including rheopexy [Ovarlez, 2013; Helal, 2016; Hipp,
2019], delayed yielding [Gibaud, 2010; Grenard, 2014],
fatigue [Gibaud, 2016; Perge, 2014] and rheo-acoustic
properties [Gibaud, 2020a; Dagès, 2021]. Here, we are
interested in revisiting carbon black gels resulting from
flow cessations [Dagès, 2022]. The flow cessation pro-
tocol were carried out in carbon black dispersion (Vul-
can PF) at c = 4 %w (ϕ = 1.58 %) in mineral oil
and is described in [Dagès, 2022]. In brief, the pro-
tocol consists in (i) a rejuvenation step at a strain rate
γ̇ = 1000 s−1 during 60 s, (ii) a preshear step at γ̇ = γ̇0
during 20 to 200 s, (iii) a flow cessation induced by
σ = 0 Pa for 30 s, (iv) a rest period of 360 s during
which the viscoelastic moduli are monitored and finally
(v) a frequency sweep or a SAXS measurement. The
gel mechanical and structural properties (figure 3.6) as
measured in step (v) of the protocol depend on the value
of γ̇0, the shear rate carried out before flow cessation.

Figure 3.6(a) displays the evolution of the elastic
modulus G′∞ of the gel measured during a frequency
sweep experiment in the low frequencies domain as a
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Figure 3.6: Carbon black gels properties resulting from
flow cessation. (a) Evolution of the gel elasticity G′∞ (•)
as a function of γ̇0 the shear rate intensity before flow
cessation. the blue line represents the fits (a) through (d)
listed in table 3.3. The fits are indistinguishable. (b) Gel
scattered intensity I (q) as a function of the wave vector
number q. The colors from light orange to black corre-
spond to a decreasing γ̇0. The black dots correspond to
the experimental form factor of the carbon black parti-
cles and the blue solid line is the fit of this form factor.
I(q) resulting from γ̇0 = 0.1 s−1 is on absolute scale.
The rest of the data is translated along the y-axis for bet-
ter readability. (c) Kratky representation, I (q) q2 versus
q, of the data shown in (b). The arrows point to the
three bumps at q0, q1 and q2, associated respectively to
the length scales a, ξ1 and ξ2. The green lines corre-
spond to the two level modified Beaucage model (equa-
tion (3.35)) and the red dash lines correspond to three
level beaucage model (equation (3.30)). Experimental
data are extracted from [Dagès, 2022].

function of γ̇0 the shear intensity before flow cessation.
The gel becomes stronger as γ̇0 decreases: its elasticity
can be tuned by a factor 50, from ∼ 1 Pa at high γ̇0 to
∼ 50 Pa at low γ̇0.

The structural properties of the gel as a function of γ̇0
are determined based on SAXS experiments. The scat-
tered intensities I(q) as a function of the wave number q
are displayed in figure 3.6(b). The I(q) are isotropic in
the q-range tested. I(q) show the usual decreasing trend
due to the proportional relationship of the intensity with
the number of scatterers in volume defined by the lenth-
scale 1/q. More precisely, the intensity roughly decay
as 1/q2 which is expected for fractal gels. We therefore
turn to the Kratky representation in figure 3.6(c) and dis-
plays Iq2 versus q. In this representation, a structure of
fractal dimension 2 at all length scales is an horizontal
line. Any deviation from this flat line are highlighted
by the Kratky representation. We observe three bumps
at low, intermediate and high q related to three length
scale. Those bumps are particularly visible in the Kratky
representation in figure 3.6(c). The high-q bump at q0 is
related to the radius a of the carbon black particles and
the two other peaks at intermediate-q (q1) and low-q (q2)
correspond to two additional length scales ξ1 and ξ2 re-
spectively. This structure is atypical. Indeed, in gels
driven solely by thermal agitation, I(q) classically dis-
plays only two characteristic length scales: the particle
size a and the cluster size ξ separated by a power-law
regime, the exponent of which is related to the cluster
fractal dimension [Courtens, 1987].

Those rheology and SAXS results have strong impli-
cations. On the application level, such an interplay be-
tween shear and gelation is involved in numerous indus-
trial processes, and especially in additive manufactur-
ing where shear coupled with 3D printing allows tun-
ing the microstructure and the properties of the printed
materials [Raney, 2018]. On a fundamental level, as al-
ready well discussed in the literature, shear may inter-
fere with the gelation pathway of particulate colloidal
gels and lead to multiple metastable gels with proper-
ties, microstructure [Koumakis, 2015; Das, 2022], con-
nectivity [Helal, 2016] or yield stress [Ovarlez, 2013]
that depend on the flow cessation protocol. Experiments
displayed in figure 3.6 are ideal for exploring the inter-
play between microstructure and mechanics: as the gel
originates from the same dispersion, the colloid volume
fraction and interactions remain unchanged, while vari-
ations in the gel mechanical properties only result from
microstructural changes.

In [Dagès, 2022], the three length scales were inter-
preted using the interpenetration cluster model in the
weak-link regime assuming an homogeneous network.
This analysis, as mentioned in [Dagès, 2022], has how-
ever some serious drawbacks that we intend to address
in this paper. First, there is a discrepancy between the
local particle density ρ obtained from the SAXS analy-
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Figure 3.7: Sketch of the gel hierarchical structures. ϕ-power law models which model the gel elasticity G′ are
based at the particle scale on the colloid-colloidal interactions, at the meso scale on the aggregated structures and
at the macroscopic scale on the network topology. The structural length ξs defined at the aggregation scale sets
the coarse grain scale for the network scale. In the cluster ϕ-power law model ξs = ξ, in the clusters of clusters
ϕ-power law model ξs = ξ2 and in the interpenetration of clusters ϕ-power law model ξs = ξ1.

sis and the average density ρ̄ obtained from the carbon
black concentration: ρ > ρ̄. Second, using the interpen-
etration model in the weak-link regime for an homoge-
neous network, the elasticity resulting from the carbon
black inter particle interaction Gcc is underestimated by
orders of magnitudes. This suggests that the network is
heterogeneous. Finally, the SAXS data can also be in-
terpreted differently, in clusters of clusters [Kim, 2004;
Sztucki, 2007] rather than in interpenetrated clusters.
In the next section, as it is currently lacking in the lit-
erature, we develop three-length-scales gel rheological
models to address the above problems and to establish a
quantitative relation between the structure and the elas-
ticity of carbon black gels resulting from flow cessation.

3.4.4 Structure of the gels
We construct two three-length-scales gel models to fit
the data presented in the previous section. The clusters
of clusters ϕ-power law model describes gels structured
in a network of superaggregates formed by clusters of
particles. The interpenetration of clusters ϕ-power law

model describes gels formed by a network of interpen-
etrating clusters of particles. The models structure are
sketched in figure 3.7. In this section, we first present
the model from a structural perspective then we fit and
discuss the SAXS data.

3.4.4.1 Structural models

In the clusters of clusters ϕ-power law model [Bouthier,
2022], we consider that colloidal particles of radius a
assemble into clusters of dimension ξ1 and fractal di-
mension d1 which themselves aggregates into super-
aggregates of dimension ξ2 and fractal dimension d2 to
form the gel network as sketched in the figure 3.7. In
figure 3.6(c), the high-q peak at q0 corresponds to the
carbon black particles of radius a, the intermediate-q
peak corresponds to the cluster size ξ1 and the low-q
peak corresponds to the super-aggregates of size ξ2. The
fractal dimensions d1 and d2 are related to the slope of
the scattering intensity I(q) measured between the peaks
(q0, q1) and (q1, q2) respectively.

The intensity spectrum I(q) may then be fitted
by a three-level Beaucage model[Beaucage, 1995;
Beaucage, 1996; Hammouda, 2010] through
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I3LB (q) = I2 (q) + I1 (q) + Ia (q) , (3.27)
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Ia (q) = G0 exp
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The three-level Beaucage model sums the scattering
contribution I2(q) of the superaggregates of size ξ2 and
fractal dimension d2, the contribution I1(q) of the clus-
ters of size ξ1 and fractal dimension d1 and the con-
tribution Ia(q) of the constituent colloidal particles of
size a and fractal dimension d0. The terms multiplied
by (Gi)i=0,1,2 correspond to the approximation of the
Guinier regime when the wave vector number tends to-
wards 0 which vanishes when the wave vector number
goes above the inverse length scale designated by each
level a, ξ1 or ξ2. The terms multiplied by (Bi)i=0,1,2 cor-
respond to the approximation of fractal behaviour with
a power-law scaling in q when its values are above the
designated length scale and vanishing values relatively
to the Guinier regime when q tends to 0 with the combi-
nation of the error function and the power-law in q. The
exponential terms associated with the terms multiplied
by B1 and B2 are here to make the contribution vanish
when the smaller length scale level is reached.

In the interpenetration of clusters ϕ-power, we con-
sider that colloidal particles of radius a assemble into
clusters of size ξ2 and fractal dimension d2. The clusters
of size ξ2 interpenetrate one another, such that their cen-
ter to center distance ξ1 is smaller than ξ2, to form a net-
work as sketched in the figure 3.7. In figure 3.6(c), the
high-q peak at q0 corresponds to the carbon black parti-
cles of radius a. The intermediate-q peak is a structural
peak and corresponds to ξ1 the center to center distance
between two adjacent clusters. The low-q peak corre-
sponds to the cluster of size ξ2 and fractal dimension
d2. The fractal dimensions d2 is related to the slope of
the scattering intensity I(q) measured between the peaks
(q0, q2).

The intensity spectrum I(q) may then be fitted by a
modified two level Beaucage model [Beaucage, 1995;
Beaucage, 1996; Keshavarz, 2021] through

IM2LB (q) = I2 (q) S 1 (q) + Ia (q) (3.31)

with
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The two-level Beaucage model sums the scattering
contribution I2(q) of the clusters of size ξ2 and fractal di-
mension d2 and the contribution Ia(q) of the constituent
colloidal particles of size a. To account for the clusters
interpenetration, the cluster intensity I2(q) is multiplied
by an ad-hoc inter-cluster structure factor S 1(q) leading
to an increase of scattering at intermediate q. S 1(q) is
function that peaks at q1 = 2π/ξ1 to a maximum value
1+C1/2 and that converges to 1 away from q1 = 2π/ξ1.
Such a choice of S 1(q) is simple but not completely sat-
isfactory as it fails in the thermodynamic limit. Indeed,
S 1(q → 0) = 1 whereas it should be proportional to the
isothermal compressibility.

In the beaucage models, the length scales a, ξ1 and ξ2
reflect a high order moment of the aggregate log-normal
size distribution in the Beaucage functions and are in-
dicative of the higher limit of the size distribution of the
aggregates [Kammler, 2005; Beaucage, 2012].

3.4.4.2 Discussion about the gel structure

We now fit the SAXS data shown in figure 3.6(b-c) using
the structural models for the clusters of cluster model
(equation (3.30)) and the interpenetration cluster model
(equation (3.35)). As shown in figure 3.6(c), the scatter-
ing intensities are nicely fitted using both models. The
fits are carried out in log-scale on data re-sampled with
20 points per decade.

Let us first discuss the fit results obtained using the
cluster interpenetration model. In figure 3.8a, as γ̇0 in-
creases, we observe that the gel is composed of clusters
which size ξ2 decreases while becoming denser (d2 ↗)
and less interpenetrated (ξ2/ξ1 ↘). As the flow cessa-
tion gels are obtained from the same carbon black dis-
persion, the density of carbon black particles should be
conserved. There are two ways to calculate this density.
Based on the carbon black volume fraction, the average
density is ρ̄ = ϕ/a3 ≃ 900 µm−3. Based on the SAXS
data, assuming an homogeneous network, we can mea-
sure the local particle density ρ. The unit cell of the net-
work is defined by the structural length ξ1. This unit cell
of volume ξ3

1 contains one cluster with (ξ2/a)d2 particles
so that ρ = (ξ2/a)d2 /ξ3

1 . In figure 3.8a, we measure
ρ ≃ 7200 µm−3 a value larger than ρ̄.
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(a) (b) 

Figure 3.8: Parameters of the scattering models result-
ing from fitting the scattering intensity I(q) in figure 3.6,
(a) using the cluster interpenetration approach (equa-
tion (3.35), green symbols) and (b) using the clusters
of the clusters approach (equation (3.30), red symbols).
From top to bottom: ξ1 (♦), ξ2 (⋆), ξ1/ξ2 (+), d1 (•),
d2 (■) and ρ (×) as a function of the applied shear rate
γ̇0 before flow cessation. The carbon black radius a is
constant in all the fits and equal to a = 27 nm.

In figure 3.8b, we display the fit results based on
the clusters of clusters model. As γ̇0 increases, we
observe that the gel is composed of supperaggregates
which become smaller (ξ2 ↘) and denser (d2 ↗) while
the clusters that compose them become larger (ξ1 ↗)
and looser (d1 ↘). Again we can compare ρ and ρ̄.
The unit cell of the network is defined by the struc-
tural length ξ2. In the volume ξ3

2 , there is exactly one
superaggregate composed of (ξ2/ξ1)d2 clusters them-
selves composed of (ξ1/a)d1 particles. Hence, we get
ρ = (ξ2/ξ1)d2 (ξ1/a)d1 /ξ3

2 . We measure ρ ≃ 2500 µm−3

a value again larger than ρ̄.
Both approach verify that ρ remains constant

throughout the γ̇0 series (figure 3.8). This infers that our
approach is self-consistent. However, the value of ρ cal-
culated with the structure parameters is way larger com-
pared to the one calculated based on the volume fraction
of the carbon black particles, ρ̄ ≃ 900 µm−3. This dis-
crepancy between the two ways of calculating the den-
sity suggests that the gel network is heterogeneous. We
dismiss shear banding as discussed in [Dagès, 2022] and
fractures which would lead to a strong enhanced scat-
tering and a Porod regime at low q [Dagès, 2021]. We
vouch for a fractal network. This remains hypothetical
as the hallmark of this fractal network is not measurable

in the SAXS experiments. Indeed, this network frac-
tal dimension should appear in I(q) in the very low q-
regime for q2 < 2π/ξ2 ∼ 0.002 nm−1. As the lowest q in
the SAXS experiment is 0.001 nm−1, we cannot probe
the existence of D nor measure its value.

When the network is not homogeneous, ρ > ρ̄. As-
suming the gel network is fractal, is there a way to de-
termine D from ρ̄ and ρ? This would greatly help as
the measure of D is not accessible in the SAXS exper-
iment. To tackle the issue of the local density of parti-
cles, Ref.[Tang, 2008; Gravelle, 2021] used an hetero-
geneous mass distribution which has an impact on the
rheological properties as derived by [Shih, 1990; Wu,
2001; Mellema, 2002]. More precisely, the authors used
the probablity of an inter-cluster bond at any location
in a cluster chain to become stress-carrying given the
condition that all other bonds are not stress-carrying as
a constant. This assumption gives rise to an exponen-
tial probability distribution in terms of the number of
inter-cluster bonds in a small unit of volume. This ap-
proach reads a final expression of the storage modulus
as a power law of the particle volume fraction multiplied
by

(
1 − exp

(
−kϕb

))β
with (k, b, β) some constants of the

material. In the limit of low volume fraction, the usual
power law in ϕ is recovered but the multiplicative factor
allows a deviation from the power law at higher vol-
ume fraction. Even if we do not consider this approach
for the rheological data, the perspective of a heteroge-
neous distribution of particles as in a fractal structure
is a promising way to account for structural and rheo-
logical discrepancies. It is expected then that the local
density ρ can be related to the average density ρ̄ through
the influence of the fractal dimension but it remains a
challenge out of the scope of this paper.

3.4.5 Modelling gels elasticity
In this section, we first describe the common basis to
derive the elastic modulus from the clusters of clusters
ϕ-power law model and the interpenetration of clusters
ϕ-power law model. We then derive an analytical ex-
pression of the elastic modulus for each model. Finally,
using this analytical expressions together with the struc-
ture parameters displayed in figure 3.8, we fit the rheol-
ogy data presented in figure 3.6(a) and discuss the rhe-
ology fit parameters.

3.4.5.1 Common basis for both models

Both the clusters of clusters ϕ-power law model and the
interpenetration of clusters ϕ-power law model belong
to the class of ϕ-power law models which aim to provide
an analytical expression to fit the gel storage modulus
G′∞ as shown in figure 3.6(a). The derivation of such
models follows a top down approach. The macroscopic
storage modulus G′ is a priori related to the macro-
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scopic stiffness K of the system of size L [Mellema,
2002] by:

G′ =
K

L1+2ϵα . (3.36)

The nature of K is solely defined by dimension analy-
sis. Depending on the value of the exponent of L, K
is a stretching stiffness (L1) or a bending stiffness (L3).
The exponent ϵ [Mellema, 2002] allows one to have
a mix of both stiffness as it varies from ϵ = 0 (pure
stretching) to ϵ = 1 (pure bending). The exponent α
indicates the proportion of the weak-link to strong-link
regime [Wu, 2001]. In the weak-link limit where the
inside of the clusters is stiffer than the connection be-
tween the clusters, α = 0. In the strong-link limit where
the inside of the cluster is less stiff than the connection
between the clusters, α = 1. The origin of the previ-
ous expression is purely dimensional trying to relate the
macroscopic stiffness to the macroscopic storage mod-
ulus with precisely defined dimensions. The previous
exponents are coming from mixed approaches taking
into account multiple types of phenomena. The extreme
values of the exponents isolate the different cases de-
pending on the type of interaction between the clusters
(bending, stretching, dominated by the links, dominated
by the internal stiffness of the clusters).

The expression of K is model dependent and is condi-
tioned at the macroscopic scale by the network topology,
at intermediate scale by the nature of the aggregates and
their interactions and at the particle scale by the colloid-
colloidal interactions as shown by figure 3.7. Indeed, the
gel elasticity can be decomposed a posteriori in [Shih,
1990; Wu, 2001; Mellema, 2002; Bouthier, 2022]

G′ = GccS aggS netS MBS (3.37)

where Gcc is the elasticity resulting from the colloid-
colloid interaction potentialU, S agg is the scaling com-
ing from the aggregation scale, S net is the scaling con-
tribution from the network scale and S MBS is the scal-
ing coming from the macroscopic influence of bending
or stretching. This model is hierarchical. The different
factors come from the iterative demonstration procedure
and the identification of the different contribution in the
final formulas. The construction of the storage modu-
lus directly expressing the different factors is impossi-
ble and needs the following demonstrations. However,
we will emphasize these contributions in the final for-
mulas of each model. The radius of the colloid a sets
the colloidal scale, the structural dimension ξs set the
scale at the aggregation level and serves as the coarse
grain unit to construct the network. In our case, com-
pared to the clusters ϕ-power law models [Shih, 1990;
Wu, 2001; Mellema, 2002], we have kept the colloidal
scale unchanged and modified the aggregation and the
network scale.

At the colloidal scale, the elasticity Gcc is set by the

characteristics of the attractive interaction potential U,
namely its depth U and its range δ. This leads, in the
case of monodisperse colloidal spheres, to a storage
modulus [Shih, 1990; Wu, 2001; Bouthier, 2022]

Gcc =
U
δ2a

. (3.38)

Typically, U is few tens of kBT , with kB the Boltzman
constant and T the temperature, and δ a few percent
of the colloid radius a. Gcc is the only term in equa-
tion (3.37) that has the dimensionnality of a shear mod-
ulus and therefore it sets the amplitude scale of the gel
elasticity G′.

At the macroscopic scale, the network topology is de-
terminant and two options are possible. Either the ag-
gregates of structural length ξs fill the space in a close
packing configuration or they form a fractal structure of
upper limit the size of the sample L and a fractal dimen-
sion D. In the case of the fractal network, it is possible
to distinguish the weak-link regime and the strong-link
regime [Shih, 1990; Wu, 2001]. On one hand, in the
weak-link regime, the connections between the clusters
are weaker than the clusters themselves thus they domi-
nate at the larger scale due to the assumption of springs
in series. Therefore, the contribution of the network is

S net = 1. (3.39)

On the other hand, in the strong-link regime, the in-
side clusters cohesion is weaker than the links between
clusters, hence it dominates at the larger scale. It is
then relevant to introduce the dimension D (also com-
monly named chemical dimension) of the elastic back-
bone of the network which is typically in the range
[1, 1.5] [Grassberger, 1985; Grassberger, 1992b; Grass-
berger, 1992a] and accounts for the network path that
sustain the network stress. The contribution of the net-
work is then

S net =

(
ξs

L

)D
. (3.40)

Both previous equations (3.39) and (3.40) may be uni-
fied,

S net =

(
ξs

L

)Dα
. (3.41)

The exponent α then indicates the weak-link and strong-
link proportion, α ∈ [0, 1][Wu, 2001].

In the close packing case, rather than adopting a
random close packing structure, one assumes a cubic
crystal structure to simplify calculations [Shih, 1990;
Mellema, 2002; Wu, 2001]. The local elastic entities
of the network are organised in a crystal structure with
springs in parallel and in series. Assuming that all dis-
tances are equal to ξs, there are (L/ξs)dim−1 springs in
parallel, with dim the dimension of the euclidean space,
themselves composed by L/ξs springs in series. Sum-
ming the stiffnesses or the inverse of the stiffnesses for
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the springs in parallel or in series respectively, this reads
to the factor

S net =

(
L
ξs

)dim−2

. (3.42)

Finally, the macroscopic influence of bending or stretch-
ing S MBS is characterised by a dimensionless factor to
the exponent 1 + 2ϵα as expressed in equation (3.36).
This factor will be expressed thoroughly in the follow-
ing sections of the paper.

For reference, in the clusters ϕ-power law
model [Shih, 1990], hypothesising an homogeneous
network, the gel elasticity is

G′

Gcc
=


(
ξs

a

)2−dim

= ϕ
dim−2
dim−d weak-link regime(

ξs

a

)−d−dim

= ϕ
dim+d
dim−d strong-link regime

(3.43)
In this model the structural length is the cluster size ξs =

ξ and ϕ is the particle volume fraction. d and d represent
respectively the fractal dimension of the cluster and the
dimension of the cluster back-bone.

3.4.5.2 Clusters of clusters ϕ-power law model

In the clusters of clusters ϕ-power law model [Bouthier,
2022], we consider that colloidal particles of radius
a assemble into clusters of dimension ξ1 and fractal
dimension d1 which themselves aggregate into super-
aggregates of dimension ξ2 and fractal dimension d2
to form the gel network as sketched in the figure 3.7.
We note respectively d1 and d2 the dimension of elastic
back-bone of cluster and super-aggregates 3. At the ag-
gregation scale, the structural length scale used to built
the network is ξs = ξ2. The macroscopic stiffness K is
related to the superaggregate local elasticity Ksa through
the close packing assumption bringing

K =
(

L
ξ2

)dim−2

Ksa = S netKsa. (3.44)

Moreover, the superaggregates local elasticity Ksa is re-
lated to the cluster local elasticity Kc through the elastic
back-bone scaling of the flocs which reads

Ksa =

(
ξ1

ξ2

)d2α
Kc, (3.45)

with α ∈ [0, 1] the proportion of weak-link regime (α =
0) and strong-link regime (α = 1) according to [Wu,
2001]. Furthermore, the cluster local elasticity is related
to the local particle elasticity Kp with the elastic back-

3For details about chemical dimension or dimension of elastic
back-bone, [Grassberger, 1985; Grassberger, 1992b; Grassberger,
1992a] give some useful insights.

bone scaling of the cluster which brings

Kc =

(
a
ξ1

)d1α
a2ϵαKp. (3.46)

Hence, the aggregation level contribution is

S agg =

(
ξ1

ξ2

)d2α (
a
ξ1

)d1α
. (3.47)

Finally, the local particle elasticity Kp is expressed by

Kp =
U
δ2 . (3.48)

All the geometrical quantities may be related to the par-
ticle volume fraction through

ϕ =
(
ξ2

L

)3−dim (
ξ1

ξ2

)3−d2
(

a
ξ1

)3−d1

. (3.49)

Putting equation (3.36)-equation (3.49) together reads

G′ =
U

aδ2 ϕ
1+ 2ϵα

3−dim

(
ξ1

ξ2

)d2α−2+d2+
d2−dim
3−dim 2ϵα

×

(
a
ξ1

)d1α−2+d1+
d1−dim
3−dim 2ϵα

(3.50)

and can be rewritten G′/Gcc = S aggS netS MBS with

S net =

ϕ− 1
3−dim

(
ξ1

ξ2

) 3−d2
3−dim

(
a
ξ1

) 3−d1
3−dim


dim−2

, (3.51)

S MBS =

ϕ− 1
3−dim

(
ξ1

ξ2

) 6−d2−dim
3−dim

(
a
ξ1

) 6−d1−dim
3−dim


−1−2ϵα

, (3.52)

S agg =

(
ξ1

ξ2

)d2α (
a
ξ1

)d1α
. (3.53)

When looking at equations (3.50) and (3.53), there
are some variables where the exponent has a denom-
inator equals to 3 − dim. This difficulty is actually
present in most of the demonstrations in the literature
[Shih, 1990; Wu, 2001; Mellema, 2002] but is omit-
ted considering proportional relationship between the
relevant variables, the particle volume fraction and the
microstructure variables. For example, in Eq. (10) in
[Shih, 1990], there is the influence of the macroscopic
size L in the macroscopic stiffness and the particle vol-
ume fraction, the cluster size and the macroscopic size
are related between each other. Hence, we know the
existence of this difficulty which is consistent with the
approach described usually in the literature.

To avoid this difficulty, one can decide to impose ϵ =
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0 to be in the stretching regime and to get

G′ =
U

aδ2 ϕ

(
ξ1

ξ2

)d2α−2+d2
(

a
ξ1

)d1α−2+d1

, (3.54)

which can be simplified in the weak-link regime (α = 0)
to

G′ =
U

aδ2 ϕ

(
ξ1

ξ2

)d2−2 (
a
ξ1

)d1−2

. (3.55)

Another possibility of the model is to change the ho-
mogeneous network into heterogeneous fractal network.
In this case, equations (3.44) and (3.49) are replaced re-
spectively by

S net =

(
ξ2

L

)Dα
(3.56)

ϕ =
(
ξ2

L

)3−D (
ξ1

ξ2

)3−d2
(

a
ξ1

)3−d1

(3.57)

with D the network fractal dimension and D the dimen-
sion of the elastic back-bone. Equation (3.50) is then
replaced by

G′ =
U

aδ2 ϕ
Dα+1+2ϵα

3−D

(
ξ2

ξ1

)(3−d2) Dα+1+2ϵα
3−D −d2α−1−2ϵα

×(
ξ1

a

)(3−d1) Dα+1+2ϵα
3−D −d1α−1−2ϵα

(3.58)

which can be rewritten G′/Gcc = S aggS netS MBS with

S net =

ϕ (
ξ2

ξ1

)3−d2 (
ξ1

a

)3−d1

Dα

3−D

, (3.59)

S MBS =


ϕ (

ξ2

ξ1

)3−d2 (
ξ1

a

)3−d1


1
3−D (

ξ2

ξ1

)−1 (
ξ1

a

)−1


1+2ϵα

,

(3.60)

S agg =

(
ξ2

ξ1

)−d2α (
ξ1

a

)−d1α
. (3.61)

3.4.5.3 Interpenetration of clusters ϕ-power law
model

In the Interpenetration of clusters ϕ-power law model,
the size a still corresponds to the particle size but the
size ξ1 corresponds to the center-to-center distance be-
tween the clusters composed of particles of size a and
the size ξ2 corresponds to the cluster size and fractal
dimension d2, as sketched on figure 3.7. The struc-
ture length scale ξs for the network is now ξs = ξ1.
The macroscopic gel linear storage modulus G′ is again
given by equation (3.36). To simplify the calculations,
we dismissed the bending contributions so that K is a
purely stretching linear elastic stiffness (ϵ = 0). Adopt-

ing a close packing configuration for the network leads
to

S net =

(
L
ξ1

)dim−2

. (3.62)

The mass conservation can then be written

ϕ =

(
a
ξ1

)3 (
ξ2

a

)d2 (
ξ1

L

)3−dim

. (3.63)

For the aggregation level, we decompose the elementary
effective stiffness of the clusters as in [Wu, 2001] with

1
Keff
=

1
Kc
+

1
Kext
+

1
Ki

(3.64)

with Kc, Kext and Ki the elastic stiffness related to the in-
side of the cluster, the intermicroscopic links (see [Wu,
2001]) and the interpenetration of the cluster, respec-
tively.

Let us now quantify Ki. Ki is assumed to be propor-
tional to the number of contact Ni between interpene-
trating clusters: Ki = Niki, where ki is a reference in-
terpenetration stiffness. The last expression comes from
the fact we assumed that the contacts in the interpenetra-
tion zone are parallel springs: this justifies the additivity
of the stiffnesses. We assume that the reference inter-
penetration stiffness ki is directly related to the depth of
the interaction potential U and the distance of interac-
tion δ through ki = U/δ2. Due to the fractal nature of

the clusters, there are Ni =
(
6Vi/πa3

) d2
3 particles inside

the intersection volume Vi between two clusters. Ge-
ometrically assimilating clusters to spheres leads to an
intersection volume [Polyanin, 2007; Kern, 1967, p. 97]

Vi =
π

12
ξ3

2

(
2 +

ξ1

ξ2

) (
1 −

ξ1

ξ2

)2

1{ξ1<ξ2}. (3.65)

We assume that each particle brought by each cluster in
Vi form a contact adding rigidity to the whole system.
Putting together the last expressions, we get

Ki =
U

2δ2

(
ξ2

a

)d2
(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

1{ξ1<ξ2}.

(3.66)
Let us now compare Ki with Kc and Kext. There

are different ways to consider that Ki ≪ min (Kc,Kext).
To simplify the comparison, following [Wu, 2001], we
write

1
Kc
+

1
Kext
=

1
Kc

(
Kc

Kext

)α
(3.67)

with α ∈ [0, 1] allowing to make a continuous transition
between the weak-link and the strong-link regime. A
first way to compare Ki with Kc (Kext/Kc)α is to say that
the system is in the regime ξ2/ξ1 ≳ 1. Thus, one can
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re-write equation (3.66) as

Ki ∝
ξ2/ξ1≳1

U
2δ2

(
1 −

ξ1

ξ2

) 2d2
3

. (3.68)

Ki depends strongly on the distance of ξ2/ξ1 from unity.
Therefore, Ki is negligible when ξ2/ξ1 ≳ 1 compared to
Kc (Kext/Kc)α and, in equation (3.64), we get Keff ≈ Ki.

The other way to consider the system is, following
previous approaches in [Kantor, 1984a; Kantor, 1984b;
Shih, 1990; Wu, 2001; Mellema, 2002; Wessel, 1992],
estimating Kc (Kext/Kc)α ∝ ξ−µ1 with µ ∈ [1, 5] function
of the fractal dimension D, the dimension of the elastic
back-bone and the regime of strong-link or weak-link
because ξ1 is similar to a cluster size with contact. Re-
calling that (ξ2/a)d2 ∝ ξ3

1 , one gets in this case

Ki

Kc

(
Kc

Kext

)α
∝ ξ

3+µ
1

(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

. (3.69)

Assuming that ξ1 does not vary much,
Ki/Kc (Kc/Kext)α is governed by the values of
ξ2/ξ1 7→ (1 + ξ1/(2ξ2))

d2
3 (1 − ξ1/ξ2)

2d2
3 on [1.2, 1.8].

Ki/Kc (Kc/Kext)α is, according to Dagès et al. [Dagès,
2022], between 0.1 and 0.3. Therefore, one can assume
that Ki ≪ Kc (Kext/Kc)α, at least for the first values, and
following equation (3.64), we get Keff ≈ Ki.

Generally, as Ki is getting closer to Kc (Kext/Kc)α, it
becomes difficult to consider that only one phenomenon
prevails. If one wants to completely understand the bal-
ance between the different contributions, one needs to
model both phenomena and their coupling. This is not
the goal of this model which tries to give some orders of
magnitude without exhaustively modeling the system.

This final expression of the interpenetration ϕ-power
law model is then

G′ =
U

2aδ2

(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

ϕ
(
ξ1

a

)2

(3.70)

which can be rewritten G′/Gcc = S aggS netS MBS with

S net =

(
ϕ
(
ξ1

a

)3 (
ξ2

a

)−d2
) 2−dim

3−dim

, (3.71)

S MBS =
a
ξ1

(
ϕ
(
ξ1

a

)3 (
ξ2

a

)−d2
) 1

3−dim

, (3.72)

S agg =
1
2

(
ξ2

a

)d2
(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

. (3.73)

The dimension of the network dim is not required in
the final expression due to the contribution of the effec-
tive volume fraction through the particle volume frac-
tion and the fractal dimension related to ξ1.

If we now replace the homogeneous network by a het-

erogeneous network of fractal dimension D and back-
bone dimension D, equations (3.62) and (3.63) become
respectively

S net =

(
ξ1

L

)Dα
(3.74)

ϕ =

(
a
ξ1

)3 (
ξ2

a

)d2 (
ξ1

L

)3−D

. (3.75)

The storage modulus is then

G′ = ϕ
1+Dα
3−D

U
2aδ2

(
ξ1

a

) 3Dα+D
3−D

(
ξ2

a

)d2
2−D−Dα

3−D

×(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

(3.76)

which can be rewritten G′/Gcc = S aggS netS MBS with

S net =

(
ϕ
(
ξ1

a

)3 (
ξ2

a

)−d2
) Dα

3−D

, (3.77)

S MBS =

(
ξ1

a

)−1 (
ϕ
(
ξ1

a

)3 (
ξ2

a

)−d2
) 1

3−D

, (3.78)

S agg =
1
2

(
ξ2

a

)d2
(
1 +

ξ1

2ξ2

) d2
3
(
1 −

ξ1

ξ2

) 2d2
3

. (3.79)

In conclusion of this section 3.4.4, contrary to the
classical ϕ−power law model in equation (3.43), we ob-
serve that the scaling of the gel elasticity not only de-
pends on ϕ but also the ratios between the length scales
of the gel.

3.4.5.4 Discussion of the gel elasticity

Next, we turn to the elastic properties of the carbon
black gels obtained through the flow cessation protocol.
Figure 3.6 displays the evolution of the elastic modulus
G′∞ of the gel measured during a frequency sweep ex-
periment in the low frequencies domain as a function of
γ̇0. The gel becomes weaker as γ̇0 increases.

Fitting G′∞ with the ϕ-power law models is complex
given the number of parameters in the equations. The
fit is underdetermined: there are more parameters than
available data to fit. To remain relevant, we constrain
the fit parameters. First, we set ξ1, d1, ξ2 and d2 to
the values of the SAXS models as shown in figure 3.8.
Second, we set the elasticity scale Gcc and take the
value from the simulations by Varga et al. [Varga, 2019]:
Gcc = 6×107 Pa with U = 30 kBT and δ = 0.01a. Third,
based on the SAXS analysis, we only consider the mod-
els with a fractal gel network. This hypothesis is indeed
verified as all models in the homogeneous network limit
fail to fit G′∞ with the constrain Gcc = 6×107 Pa. Fourth,
we choose to constrain the fit to explore the parameter
space and decide to study limiting cases: the weak-link
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Figure 3.9: Evolution of the gel network fractal dimen-
sion D as a function of γ̇0 for the models (a) through
(d) which parameters are listed in table 3.3. The fractal
dimension d1 and d2 from figure 3.8 are also plotted for
comparison. The green data is related to the interpene-
trating cluster models whereas the red data is related to
the cluster of clusters model.

limit α = 0 (model (a) and (c)) and the strong-link limit
α = 1 in the stretching limit ϵ = 0 (model (b) and (d)) or
the bending limit ϵ = 1 (model (e)). Again to simplify
the model, when α , 0, we constrained the dimensions
of the elastic back-bones to D = d1 = d2 = 1.25, an in-
termediate value between its extremes 1 and 1.5 [Grass-
berger, 1985; Grassberger, 1992b; Grassberger, 1992a].
Finally, we note, that, if D ≃ d2, there is no contrast
in the scattering intensity I(q) between the aggregate of
fractal dimension d2 and the gel network of fractal di-
mension D. Therefore, one must have d2 , D. With
those constrains, the only fitting parameter is D. Model
(e) fails to fit the data whereas models (a) to (d) success-
fully fit G∞ as shown in figure 3.6. The fit parameters
are listed in table 3.3 and D as a function of γ̇0 is plotted
in figure 3.9.

The models (a) through (d) are not discriminatory.
In the weak link limit, models (a) and (c) yield a very
high value of D, and the gel network is almost homoge-
neous. In the strong link limit, models (b) and (d) yield a
weaker value of D, around 2.6. In all cases, the models
show a hierarchical organisation of the fractal dimen-
sions, D > d2 > d1 or D > d2 if d1 does not exist as
in the cluster interpenetration model. It is known [Zac-
cone, 2009c; Conchuir, 2014; Ruan, 2020; Varga, 2019;
Jamali, 2019a; Jacquin, 2018; Jamali, 2020; Jamali,
2019b] that clusters under shear tend to become denser.
A usual understanding of the phenomenon is that the
competition between attractive forces due to the interac-
tion potential and disaggregating forces due to shear im-
pose the clusters size and fractal dimension. It is usually
assumed that the cluster grows with decreasing shear

rate and it is assumed but rarely measured that the clus-
ter fractal dimension is constant [Wessel, 1992; Kim-
bonguila Manounou, 2014; Eggersdorfer, 2010]. In tur-
bulent flows of non-Brownian particles it is consistently
measured that the clusters become larger and looser as
the shear rate decreases [Spicer, 1998; Bubakova, 2013].
However there is no clear understanding of this trend.
Measurements presented in figure 3.6 shows that, in the
case of carbon black dispersions, the picture is much
more complex and involves hierarchical structures with
varying fractal dimensions. Moreover, the clusters are
not isolated but form a space spanning network. As-
suming that the structure during flow is very similar to
one after flow cessation, the question is then, how does
the flow before flow cessation propagate from large to
small length scales?

In turbulence [Kolmogorov, 1991], the energy cas-
cades from the large to the small scales. Loss in energy
only occurs at the small scales due to viscous dissipa-
tion. Hence, the largest structure in the system, here the
network of dimension L sees directly the imposed shear
flow which sets its fractal dimension D. For the aggre-
gation level, the shear flows perceived by the interme-
diate clusters is diminished by the surrounding higher
levels organisation. The intermediate structures have
then less constraints to build up their structure which
allows lower fractal dimension or less dense structures.
To give some quantitative arguments, in the turbulent
energy cascade [Kolmogorov, 1991], the rate of dissipa-
tion of energy e, which is also the rate of energy brought
by the larger scales to the smaller scales, is independent
of the length scale and considered constant after being
set up by the macroscopic flow. Assessing the values of
the rate of dissipation in our system, there is no inertia
and only purely viscous dissipation. Hence, the rate of
energy dissipation per unit volume is

e =
η

2
∥∇u∥2 ≈

ηu2

h2 (3.80)

with η the dynamic viscosity, u the velocity and h a cer-
tain length scale over which the velocity varies. It is
necessary to estimate the velocity u and the length scale
h. Using the Darcy law framework, the porosity of the
gel is given by 1 − ϕeff (l) with ϕeff the effective vol-
ume fraction of particles-cluster-superaggregates for a
certain window size l. The effective volume fraction ϕeff
increases with l, tends to ϕwhen l = 0, 1 when l = L, the
network size. ϕeff also depends on the particle volume
fraction ϕ, the different typical length scales ξi and the
fractal dimensions di and D. However, the global trend
of the function ϕeff is sufficient. Assuming that a fixed
flow rate per unit area Q is fixed and in order to recover
the fluid volume, the velocity and the length scale are
given by Q/u = (h/l)3 = 1 − ϕeff (l). Therefore, the rate
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3

Model α ϵ Gcc (Pa) d1 = d2 = D D Fit?

Interpenetration of clusters ϕ-power law model, equation (3.76)
Parameters ξ1, ξ2 and d2 are set by the experiments, figure 3.8(a)
(a) 0 - 6 × 107 - 2.84 yes
(b) 1 - 6 × 107 1.25 2.64 yes

Clusters of clusters ϕ-power law model, equation (3.58)
Parameters ξ1, d1, ξ2 and d2 are set by the experiments, figure 3.8(b)

(c) 0 - 6 × 107 - 2.91 yes
(d) 1 0 6 × 107 1.25 figure 3.9 yes
(e) 1 1 6 × 107 1.25 - no

Table 3.3: Parameters of the models that fit G′∞ in figure 3.6. α and ϵ define the models. We set Gcc = 6 × 107 Pa
as in [Varga, 2019]. ξ1, d1, ξ2 and d2 are determined by the experiments (figure 3.8). D, d1, d2 are kept constant to
1.25. D is the free fit parameter. Its values as a function of γ̇0 are displayed in figure 3.9. Model (e) could not fit
the data for any D value.

of energy dissipation per unit volume is given by

e ≈
ηQ
l2

(1 − ϕeff (l))−
8
3 . (3.81)

To conclude the demonstration, in our case e decreases
when l decreases from L to a as opposed to the turbulent
case where e is constant. Thus, the energy is not con-
tinuously distributed among all the length scales from
L to a but there is a decrease of the amount of energy
brought to the smaller scales which ends up to decrease
the constraints on the intermediate structures and allows
for looser structures. If we pursue such reasoning it is
possible to find then a decreasing density of the mate-
rial, in terms of fractal dimension for example, from the
largest scale to the lowest scale. This continuum briefly
presented in [Bouthier, 2022] can find an experimental
demonstration here.

This demonstration support two hypothesis, (i) the ef-
fective flow rate decreases as it propagates from large
to small scale structures and (ii) the fractal dimension
adopted by the structure decreases as the flow rate de-
creases. We therefore expect that the fractal dimension
diminish as we go to lower length scales: D > d2 > d1
as inferred by the data and the fits.

Following the fit results, the models (a-e) show that
the carbon black gel elasticity comes from stretching
the bonds at all length scales and that bending can be
dismissed (ϵ = 0). Bending is prevalent in gels forming
strands such as arrested phase separation gels [Gibaud,
2013] but also in fractal colloidal gels with a fractal di-
mension d ∼ 2 where long thin chains of colloid come
into play [Pantina, 2006; Dinsmore, 2006]. In the car-
bon black gels formed through flow cessation, its fractal
structure is very dense, especially at large length scales,
and seems to prevent bending from contributing signifi-
cantly to the gel elasticity.

The derivation of the three length scales rheological

models opens future work directions. First, revisiting
the classical ϕ-power law model [Shih, 1990] which is
widely used in the literature, we have pointed out an
issue which has been eluded up to now: the elasticity
goes as ϕ

1
3−dim and therefore diverges when the euclidean

space dimension is equal to dim = 3 (equations (3.53)
and (3.73)). We have shown that this problem can be
avoided when taking into account a fractal gel network
(equations (3.61) and (3.79)) or having ϵ = 0 (equa-
tion (3.54)). Nevertheless this issue remains to be solved
in future work. Second, we have developed an approach
allowing to go continuously from the weak link to the
strong link regime and from the stretching to the bend-
ing limit. Those hypothesises based solely on scaling ar-
guments (equation (3.36)) would benefit from in-depth
numerical simulation or theoretical investigation. Fi-
nally, we hope that the case of three length scales col-
loidal gels is not specific to carbon black gels and that
our model can be confronted in the future to other ex-
perimental systems.

3.4.6 Summary of the contribution

We have compared the two models with experi-
mental data coming from carbon-black particles sus-
pensions. We have highlighted the common points
and the divergences between the two models while
expliciting some difficulties originally present in this
kind of scaling arguments. We have opened the door
for some future reflections about complex models
supported by complex microstructural data.
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3.5 Conclusion

We have demonstrated how the microscopic struc-
ture may influence the rheology through different
scaling models namely the interpenetration of clus-
ters model and the clusters of clusters model. As al-
ready discussed, I may have a preference for the latter
one which is closer to the historical models and does
use additional arguments to be built. It allows also to
extend to multiple levels with more than three length
scales which is not possible with the former model.
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Chapter 4
Application of ultrasound on materials

This chapter aims for the application of the
macroscopic-microscopic coupling on an in-
dustrial case : the mixing of radioactive
sludges under ultrasound.

Objectives

Ce chapitre vise à appliquer le couplage
macroscopique-microscopique à un cas in-
dustriel : le mélange de boues radioactives
sous ultrasons.

Objectifs
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4.1 Introduction

After having investigated the coupling between
the macroscopic environment and the microscopic
structure, it is interesting to come back to the initial
problem related to the CEA "sludges". In this chapter,
some insights will be presented about easy estimates
of predictable effects when ultrasound are applied.

4.2 Analytical description

4.2.1 Derivation of the solution
As a general thought, the problem of a medium

where ultrasound are applied can be tackled through
a half space medium R2 × R+ with a point force in a
specific direction which can be assumed to be the z-
axis at the origin [Selvadurai, 2001; Itou, 2020; Kim,
1991]. Considering the equation of motion, we get in
an incompressible medium

div (u) = 0 (4.1)

ρ
du
dt
= div (σ) (4.2)

with u the velocity, ρ the density and σ the Cauchy
stress tensor. The assumption of incompressibility is
due to the fact that the media considered are mainly
soft aqueous suspensions. Therefore, the shear mod-
ulus is negligible compared to the bulk modulus.
Hence, because we are interested in the evolution of
the deformation induced by the ultrasound in the vis-
coelastic skeleton, the compressive waves in the sol-
vent will be ignored. The expression of the stress ten-
sor is composed of a viscoelastic component which
may have a complex nature and the pressure compo-
nent. Assuming small perturbations, the equations be-
come linear and read, using the ·′ notation,

div
(
u′

)
= 0 (4.3)
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4

ρ
∂u′

∂t
= div

(
σ′

)
. (4.4)

Assuming a periodic solution with pulsation ω, it is
possible to express linearly the stress tensor in terms
of the strain tensor with a complex modulus G which
spans the range between completely elastic and com-
pletely viscous behaviours depending on the local
conditions writing, with the · notation,

div
(
v
)
= 0 (4.5)

div
(
G

(
∇v + ∇v

T
))
+ ρω2v = grad (p) (4.6)

with v the displacement and p the amplitude of the
pressure. A strong coupling will need a coupled prob-
lem resolution between the displacement and the rhe-
ological law. It can be possible to remove the pres-
sure in the stress tensor applying the curl operator
to the previous equations and get, with the vorticity
υ = curl

(
v
)
,

div
(
v
)
= 0 (4.7)

ρω2υ − grad (G) × curl (υ) + div (G∇υ) = 0. (4.8)

Because it is impossible to solve analytically, we will
consider G as a constant and will make the value vary
in the complex plane. In the case of the point force
problem, the displacement field can be reduced to a
2D field in spherical coordinates with a symmetry of
revolution. It is then straightforward to invoke the
Stokes stream function ψ in the case of an incompress-
ible medium defined as

v =
1

r2 sin (θ)
∂ψ

∂θ
er −

1
r sin (θ)

∂ψ

∂r
eθ (4.9)

with the zenith direction in the point force direction.
The conservation of mass is then automatically satis-
fied. The vorticity has then only one component. It
can be demonstrated afterwards that

Dψ = −
1

r sin (θ)

(
∂2ψ

∂r2 +
sin (θ)

r2

∂

∂θ

(
1

sin (θ)
∂ψ

∂θ

))
= υ (4.10)

Finally, replacing equation (4.10) in equation (4.8)
with a constant G leads to a simplified equation

0 = ADψ (4.11)

Dψ = −
1

r sin (θ)

(
∂2ψ

∂r2 +
sin (θ)

r2

∂

∂θ

(
1

sin (θ)
∂ψ

∂θ

))
(4.12)

Ag =
1
r2

∂

∂θ

(
1

sin (θ)
∂

∂θ
(sin (θ) g)

)
+ (4.13)

1
r
∂2

∂r2 (rg) + k2g (4.14)

with r the distance from the origin and the angle θ
from the direction of the point force and k2 = ρω2/G
the square of the wavevector number. Calling the in-
tensity of the point force F, the problem can be solved
to get

ψ =
F

8πρω
2 sin2 (θ)

r

(
(1 + ikr) e−ikr − 1

)
. (4.15)

4.2.2 Discussion about the solution

Some discussions are needed on this solution.
First, assuming that the pulsation ω tends to 0, the so-
lution reaches the static form presented in [Selvadurai,
2001; Itou, 2020] which is

ψ =
Fω
8πG

sin2 (θ) r. (4.16)

The static solution gives that the stresses are propor-
tional to r−2 with a typical length scale

√
F/G. How-

ever, the dynamical solution gives a typical length
scale

Lc =

√
G
ρω2 (4.17)

which is independent of the intensity of ultrasound ap-
plied. Assuming that G spans from E the pure elastic
modulus to iηω the pure viscous modulus using the
table 4.1 values which were obtained with rheologi-
cal measurements at 1Hz, we find dynamical length
scales between 1 µm and 10 µm which are well be-
low what can be expected in an industrial application.
Some critics can be drawn from the values in table 4.1
because these values are taken from rheological ex-
periments at 1Hz. It is well known [Sollich, 1997;
Sollich, 1998; Dagès, 2022] that rheological proper-
ties depend on the frequency domain. A usual exam-
ple of this is a linear Maxwell fluid [Maxwell, 1867]
which is viscous at low frequencies and elastic at high
frequencies.

Nevertheless, the general conclusion of such
model is that assuming a strong coupling between the
microstructure and the macroscopic environment may
lead to a coupled rheological law which affects the
values of the complex modulus. Assuming that the
complex modulus depends on the norm of the stress
tensor with a purely elastic behaviour at low stress
values and a pure viscous behaviour at high stress val-
ues with a certain threshold to indicate the transition,
there will be around the point force a zone of influ-
ence whose size depends on the rheological param-
eter and the intensity of ultrasound: more powerful
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Variable Value

U 1.5µm
E 1kPa
η 25mPa.s

ω/2π 50kHz
ρ 1kg/L
b 3cm
σc 30Pa
cp 4185 J/K/kg

Table 4.1: Orders of magnitude for the rheological pa-
rameters to evaluate typical length scales. U is the
amplitude of displacement imposed by the ultrasound
and b is the width of the transducer used to produce
the ultrasound.

ultrasound will lead to a larger zone of influence and
higher values of rheological properties will lead to a
larger zone due to a better transmission of the sound
wave. Then, inside the zone of influence, the mate-
rial is globally viscous, whereas, outside the zone, the
material is globally elastic. This is due to the fact that
the ultrasound source creates a zone of high values
of stress (diverging in the case of a point force, finite
in the case of a spread surface of action [Itou, 2020])
which tends to fluidify locally the material without af-
fecting the material far from the source.

To give more details about the movement in the
material, the streamlines of equation (4.15) are repre-
sented on figure 4.1. Only the dimensionless real part
is represented because this will be the actual move-
ment in permanent regime. It is interesting to recall
that the streamlines are the lines where the velocity
is aligned at each point of this line. The intensity
or the norm of the velocity is coloured along these
lines. Starting from the left, the material is purely
elastic without any dissipation. Therefore, the trans-
verse wave is transmitted in the medium without any
problem. The particles are moving along the stream-
lines in a periodic motion depending on the portion of
cycle in the time period. On the right, the material is
purely viscous, there is no transmission of the waves
which are only dissipated. There is a concentration
of the velocity near the application point of the force.
Also, because there is no elasticity, thus no speed of
sound, the whole system is moving in block with, by
conservation of mass, a decrease of the velocity far
from the source. In the middle, there is a mix of both
behaviours where there is a kind of wave transmission
with two or three oscillations but the amplitude of the
displacement is quickly dissipated far from the source.
If we want to consider the strongly coupled case, this
will be a mix of all these solutions. Indeed, near the

application point of the ultrasound, the stresses will
be really high, inducing a viscous behaviour, hence,
close to the source, the solution will start as a purely
viscous material moving as a block. When the am-
plitude of the stresses will go down as the distance in-
creases from the source, there will be a transition from
the viscous material to an elastic material. Therefore,
far from the source, the oscillation of displacement
will start again but with a much lower amplitude due
to the initial dissipation in the viscous core near the
source. The continuous transition from purely viscous
to purely elastic will draw a zone of influence with a
given radius depending on the stress threshold σc, the
elastic modulus E, the viscosity η, the intensity of the
ultrasound F, the density ρ and the pulsation ω.

4.3 Numerical case
Starting from the previous analytical study, it is

possible to emphasize that the width of the applica-
tion of the ultrasound b ≈ 3 cm is much larger than
the wavelength or the size of the zone of influence
which is between 1 µm and 10 µm. Hence from the
point of view of the simulations, monitoring the evo-
lution of the displacement in the material can be re-
duced to a one dimension problem where the displace-
ment is imposed at x = 0. Therefore, it is possible
to write a differential equation for the displacement
u =

(
ux, uy, uz

)
. Knowing that everything depends

only on the direction x of the application of ultrasound
and the displacement is divergence free, ux = 0. Also,
as discussed in the previous chapters and the present
one, it can be interesting to consider that the rheology
is tuned by the intensity of the stress. Hence, keep-
ing our resolution in the linear regime, it is possible
to propose a viscoelastic modulus G which depends
directly on the norm of the stress tensor σ. Due to the
fact that we want to mimic the fluidisation of radioac-
tive sludges which are initially elastic, it is straight-
forward to assume an elastic behaviour at very low
stress intensity and a viscous behaviour at very high
stress intensity. More precisely, the viscoelastic mod-
ulus G will evolve from a linear elastic modulus E at
low values of stress to a linear viscous modulus iηω at
high values of stress. The transition between the two
regime may be designated by a yield stress σc which
depends on the material. To be more explicit and illus-
trate this description, considering the complex plane,
going from low stress values to high stress values, the
viscoelastic modulus will evolve from the x-axis at a
value E to the y-axis at a value iηω with a phase an-
gle of π/4 when σ = σc. This whole description is
shown on figure 4.2. It can also be summarised by the
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Figure 4.1: Streamlines oriented by the direction of
the displacement and colored according to the dimen-
sionless norm of the displacement 8π

√
G/ρG |u| /ω2F

in the xy plane assuming that the point force is in the
x direction and applied at the origin (0, 0). The xy
plane is actually a radial plane containing the force
vector due to symmetry of revolution. The space units
are taken as the wavelength. To compare with equa-
tion (4.15), r2 = x2+y2 and tan (θ) = y/x. From top to
bottom, ratio of the loss modulus G′′ over the storage
modulus G′ increases from 10−6 to 106.
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Figure 4.2: Evolution of the viscoelastic modulus G in
the complex plane as a function of the stress intensity
σ. The big red dot (•) is a reference point with σ =
σc.

following equation

G =
(
E + iηω

σ

σc

) 1 + (
σ

σc

)2−1/2

(4.18)

which respects exactly the evolution of figure 4.2.

If one wants now to express σ, it is actually de-
pending directly on dxuy and dxuz through

σ = |G|

√∣∣∣∣∣∣duy

dx

∣∣∣∣∣∣2 +
∣∣∣∣∣duz

dx

∣∣∣∣∣2. (4.19)

This is then the proof of the strong coupling happen-
ing in this kind of material because both sides of equa-
tion (4.18) depends on G through equation (4.19).
Putting everything together, the equations of motion
in one dimension are then reading

dX
dx
=

1
G


0 0 1 0
0 0 0 1

−ρω2G 0 0 0
0 −ρω2G 0 0

 X (4.20)

G =

E + iηω

√
|X3|

2 + |X4|
2

σc

 (1 + |X3|
2 + |X4|

2

σ2
c

)−1/2

(4.21)

X =
(
uy, uz,G

duy

dx
,G

duz

dx

)
= (Xi)i∈⟦1,4⟧ . (4.22)

Imposing uy (0) = 1µm, uz (0) = limx→+∞ uy (x) =
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Figure 4.3: Evolution of the real part of displacement
uy as a function of the distance x from the application
point of ultrasound.

limx→+∞ uz (x) = 0 and the values of table 4.1 brings
figure 4.3 for uy and uz = 0. It is blatant that the dis-
placement at x = 0 is approximately totally dissipated
before x = 50 µm which corresponds approximately
to the size of the zone of influence because it corre-
sponds to five times the wavelength as illustrated on
figure 4.1. After x = 50µm, the material is globally
elastic and propagates without dissipating the wave.
The previous zone of influence is then recovered here.

The length of 50 µm may seem ridiculously low
when considering the industrial scale of radioactive
waste which can be estimated around 1 m correspond-
ing to the size of a barrel. Also, there is the fact that
temperature may increase in the sludges under the ul-
trasound solicitation, which is not taken into account
in the previous approach. Maybe it helps to increase
the length of influence but, in reality, the tempera-
ture tends to increase the loss of energy locally which
implies a more abrupt decrease of the ultrasound in
the material and will decrease the length of influence
or, in the spirit of equation (4.17), the viscosity tends
to decrease with the temperature and thus makes the
length of influence decrease.

Nevertheless, there may be an interesting per-
spective because the current approach is completely
instantaneous, taking that the material is instanta-
neously adapting itself to the external solicitation:
there is no delay involved. It may be interesting to
think about a kinetic of adaptation, recalling the previ-
ous analysis on aggregation and disaggregation. Pre-
cisely, it is obvious that breaking microscopic struc-
ture is much faster than rebuilding it due to flow or
thermal motion. In this case, even if only a layer of
50 µm thick is fluidized, this gives the opportunity
for the ultrasound device to dig into the material and

progress layer by layer. If the reaggregation process
is slow compared to the motion of the device, a much
bigger zone may be covered and allow the fluidifica-
tion of an industrial scale portion of the material. It
may be interesting to give an order of magnitude of
the thermally dissipated energy in terms of evolution
of temperature per unit time. Using the heat equation,
the rate of temperature per unit time ∆T/∆t is given
by

∆T
∆t
=
ηω2

ρcp
ε2 (4.23)

with ε the strain due to the ultrasound. To estimate
this strain, we can consider that it is equal to the am-
plitude of the deformation U divided by the length of
influence 5Lc = 5

√
η/ρω. Hence, we obtain

∆T
∆t
=

U2ω3

25cp
= 0.67K/s (4.24)

with the values of table 4.1. It is interesting to note in
equation (4.24) that there is no dependence of the rate
of temperature increase on the rheological character-
istics: only the characteristics of the wave and the heat
capacity are needed. Furthermore, there may be two
time scales to consider in this problem: the first one
related to the disaggregation process and the other one
for the aggregation process. As a first assumption, we
can consider the former as equal to zero to stick to
the instantaneous model above and use only one time
scale τ for aggregation. A first approach may be to
rewrite equation (4.21) as

τ
∂G
∂t
Θ

(
−
∂ |X3|

2 + |X4|
2

∂t

)
+G =E + iηω

√
|X3|

2 + |X4|
2

σc

 (1 + |X3|
2 + |X4|

2

σ2
c

)−1/2

(4.25)

with Θ the Heaviside function. This equation con-
siders that at each macroscopic time step, the mate-
rial has a complex viscoelastic modulus due to the
short time scale of the ultrasound : there is immediate
adaptation of the material in the permanent oscillat-
ing regime. The only time dependence is due to the
aggregation process of the microscopic structure.

4.4 Describing the phenomenology
on radioactive sludges

Following the brief prediction developed in the
previous paragraphs, it can be interesting to describe
the phenomenology that may happen in the real con-
text of radioactive sludges. Using figure 4.4, one can
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apply some external solicitation like powerful ultra-
sound on a certain orange area on the left of figure 4.4.
In the same trend as the point force resolution, in a
first approximation, it can be considered that this sur-
face of solicitation is a sum over the same surface of
similar point forces which add their effects on the sys-
tem. As before, these effects create a volume of influ-
ence sketched with a blue disk on figure 4.4. This
volume of influence has a radius Rc which is roughly
given by equation (4.17). The volume of influence
size depends then, in a first approximation, only on
the material characteristics and not the intensity of the
solicitation. This volume of influence cuts the sys-
tem in different zones each having its own rheologi-
cal behaviour. For instance, inside this volume close
to the source and as illustrated in figures 4.1 to 4.3,
there will be a local fluidization of the material. Using
also chapters 2 and 3, this fluidization comes from the
strong coupling between the microstructure, the rhe-
ology and the external stress, in the sense that the high
external stress will tend to disaggregate locally the
clusters, which then induce an overall lower transmis-
sion of stresses, creating a softer and more fluid rheol-
ogy. If we continue to get further from the source, due
to the more fluid like material behind, there will be a
strong dissipation of the source input energy. Hence,
the overall stress intensity will decrease as illustrated
on figures 4.1 and 4.3 and, referring again to chap-
ters 2 and 3, the equilibrium size of the clusters will
grow compared to those closer to the source ; the sys-
tem rheology will then become more solid like than
fluid like. Finally, on the other end of the system in
figure 4.4, far from the source on the right, continuing
the decrease of the stress intensity by the dissipation,
the system reaches a quasi purely elastic behaviour
due to the fact that the stress intensity is so low that
it does not change the initial configuration of the mi-
crostructure and the rheology of the material coupled
to it. Therefore, far from the source, the material re-
mains approximately unaffected by the solicitation, as
the localization of the fluidization may predict.

The whole previous reasoning has been given in
a semi-infinite medium as described in the beginning
of the chapter. If the dimensions of the macroscopic
system compared to the volume of influence or solic-
itation zone are much larger, then this approximation
holds. In the case of a more confined configuration,
some adaptations need to be done but the overall prin-
ciple remains in the sense that there will be a localisa-
tion of the fluidization when boundaries are far from
the source or in the whole system with some detri-
mental effects on the experimental material (echoing,
vibration, rupture, ...) if an exceeding amount of en-
ergy is not evacuated.

Figure 4.4: Description of the potential fluidisation
process happening in the radioactive sludges

4.5 Conclusion

We have studied the application of ultrasound on
materials through an analytical solution with a point
force and a one dimension simulation taking into
account the macroscopic-microscopic coupling. We
have highlighted the existence of two regimes with
a transition zone in between : a fluid-like behaviour,
close to the source where the dissipation of energy is
dominant, and an elastic-like behaviour, far from the
source, which allows to transmit the ultrasound wave.
For the purpose of the study, in order to fluidize a sys-
tem through ultrasound, we identified a zone of in-
fluence which is the zone where the solicitation has
a direct impact relatively to the goal searched. The
characteristics of this zone depends strongly on the
characteristics of the wave but not necessarily its am-
plitude. Hence, to understand properly the behaviour
of the material is a key to predict its behaviour under
an ultrasound solicitation.
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Chapter 5
General conclusion and perspectives

5.1 Conclusion of the study

Several insights regarding the general case of
macroscopic-microscopic couplings in suspensions
of particles and, in particular, the case of sludges
of radioactive waste have been presented in this
manuscript.

Indeed, in chapter 1, a review of the existing liter-
ature started the manuscript relating models and phe-
nomena, bridging the gap between macroscopic so-
licitations and rheological laws, and changes of mi-
croscopic structure. The overall framework of contin-
uum mechanics has been detailed to precisely focus
on the perspective of rheology bringing step by step
more complexity. It was an opportunity to assess the
assess the wide range of possibilities but also to point
out some discussions about the selection of rheologi-
cal models and their relevance in different conditions
(large deformations, three dimensions, ...). Looking
at the microstructure of certain materials and clus-
ters more specifically, their influence on the rheology
has been highlighted. Addressing their construction,
it has helped to build up the scaling laws from the
microscopic interactions to the macroscopic rheology.
The reverse path was considered too to analyse clus-
ters under external solicitation. A variety of phenom-
ena has been unveiled to described the interaction and
some analytical descriptions of the quantitative rela-
tionship between them were listed and discussed. A
final discussion related to dimensional analysis was
reported to help researcher to tackle complex prob-
lems reducing the amount of variability. This relevant
tools allowed to open the remaining questions in the
field of colloidal suspensions and the understanding
of the interplay between the microscopic structure,
the rheology and the environment. Lots of models
and approaches are available which rely on different
kinds of arguments: mechanical, physical, geometri-
cal or probabilistic. Assuming a certain amount of

hypothesis, these models allow the prediction of sev-
eral phenomena both qualitatively and quantitatively.
The specific case of colloidal suspensions is actually
a very rich and broad topic of physics.

Then, in chapter 2, the influence of the macro-
scopic environment on the microscopic structure was
addressed. Specifically, a description of the compe-
tition between aggregation and disaggregation phe-
nomena was proposed. The equilibrium between ag-
gregating forces and disaggregating forces was pic-
tured through an energy functional whose minimum
depends on the relative importance of these two forces
in a form of a power-law relationship consistent with
the literature. This concept was illustrated afterwards
with the interpenetration of clusters and the clusters
of clusters structures in carbon black particle sus-
pensions. Through the coupling of structural mea-
surement with scattering experiments and rheologi-
cal measurements, the evolution of the microscopic
structure displaying more than the two standard sizes
was in contradiction with historical frameworks but
allowed to investigate the effect of external shear on
clusters structure. The overall conclusion of this is the
selection by the macroscopic variables of a certain mi-
croscopic size of clusters in order to better represent
real systems. There is an equilibrium between aggre-
gation forces, due to the interaction potential between
the particles, and disaggregation forces, due to an ex-
ternal solicitation like flow, ultrasound, ...

Besides, in chapter 3, the influence of the micro-
scopic structure on a rheological response was tack-
led. Continuing with the interpenetrating clusters
or the clusters of clusters concepts, rheological laws
have been derived starting from models available in
the literature. The former models were based on scal-
ing arguments from the microscopic interactions be-
tween the particles and the macroscopic scale. Re-
considering their set of hypothesis and adding some
new ingredients like a distance of interpenetration, an

77



5.2. Perspectives

5

additional cluster size or a fractal filling of the space
for the gel network, they have been extended to ac-
count for the new available experimental data which
presented some discrepancies compared to classical
approaches. These extensions have a common basis
that unifies them and allows to recover all the previous
models developed in historical papers. These newly
written models have been compared to the literature to
demonstrate their relevance in recent studies and ap-
plied on carbon black particle suspensions at rest and
under flow. Due to their tunable structure through ex-
ternal shear solicitation showed in chapter 2, the rhe-
ology of carbon black particle suspensions evolves ac-
cordingly and arises from different microscopic con-
tributions as detailed in chapter 3. This coupling al-
lowed additionally to open paths for the study of hi-
erarchy of structures in the sense of a variation of
density from larger scales to smaller scales due to an
eventual shielding effect of larger scales towards the
lower scales.

Finally, in chapter 4, after having investigated the
reciprocal relationship between the macroscopic en-
vironment, the rheology and the microscopic struc-
ture, an industrial application is tackled. An analyt-
ical description of a solution mimicking the actual in-
dustrial setup brings some insights about relevant or-
ders of magnitudes. Then, implementing a coupled
numerical case in one dimension allows to have more
insights about the evolution of such problem with a
strong coupling. The idea of zone of influence is rel-
evant in both cases saying that only a local portion
of the material will be fluidized and some movements
are needed by the material or the external solicitation
to propagate the fluidification on a larger portion of
the material. The overall description of this chapter
is in a linear regime hypothesis to capture the trigger-
ing of fluidification. If someone wants to completely
predict the behaviour of the material, some more com-
plex frameworks will be needed to catch large defor-
mations, maybe turbulence, time evolution or other
more complex effects. Moreover, the simplified ge-
ometry of a semi-infinite medium is an interesting but
rather poor description of an actual industrial system
which needs heavier tools to decently solve the actual
problem.

A remarkable feature of this study is the broad
range of concepts from fundamental physics to ap-
plied physics. Indeed, the starting point of the re-
search was the need for the CEA to manage their ra-
dioactive sludges which are complex fluids coming
from the treatment process of radioactive waste. The
conditioning of radioactive waste is a key aspect in
the nuclear industry to ensure safety and a durable use
of radioactive materials to produce electricity for in-
stance. Hence, we pulled back the framework to a

smaller amount of ingredients to understand what is
the source of the problem that needs to be overcome.
This is the general attitude taken by scientists, engi-
neers or researchers to capture the roots of a problem
and create solutions or tools which are suitable to the
precise case. From this perspective, it was a good op-
portunity to tackle some theoretical models and their
assumptions. Papers published decades ago were cru-
cial sources of information to understand the current
mindsets of state of the art scientists and, simulta-
neously, critical points displaying weaknesses or, at
least, discrepancies. Working on these old framework
and trying to supplement them with the latest ingredi-
ents developed or discussed currently helped to bring
an interesting contribution to the colloidal suspension
community. This path in fundamental physics brought
us then to some ideal applications with carbon-black
particle suspensions submitted to several conditions
and circumstances. There was the use of several ex-
perimental techniques as rheometry and small angle
X-Ray scattering. Even if this manuscript is gener-
ally related to theory and modelling, these cases of
applications were an essential aspect of the construc-
tion of this work in the sense that the theoretical ar-
guments were built and strengthened via the interac-
tion with experiments and experimentalists’ critics.
Finally, after some work on model materials, the in-
dustrial application with applied physics was consid-
ered in order to predict some phenomena happening
from the few ingredients we started with. Indeed,
the complete resolution of the industrial problem was
not achieved. However, the remarkable gathering of
knowledge from numerous people has created an in-
teresting contribution which may be useful for future
investigations on the same topic or in a somewhat dif-
ferent context. Therefore, a whole spectrum has been
covered in one project from fundamental science to
applied science.

5.2 Perspectives

The outcomes of this study lead to broader investi-
gations in the future. For instance, from a fundamen-
tal point of view, there is an opening for future works
regarding usual models that have not been reconsid-
ered for years. Due to new experimental techniques
like Large Amplitude Oscillating Strain (LAOS), it is
now interesting to build some theoretical approaches
to account for the new descriptions encountered dur-
ing this research. Investigations similar to the one de-
scribed in appendix B.1 can be very interesting to pur-
sue in order to take into account large deformations.
Furthermore, as a general comment about rheology
but in particular in the case of colloidal suspension,
considering non isotropic systems where three dimen-
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sional effects may play a role and a proper tensor ex-
tension should be considered. For example, seminal
papers like [Halphen, 1975; Saramito, 2007] where
the generalised standard materials approach was de-
veloped were an excellent extension of non linear
rheological laws from one dimension to tensor form
through the use of energy and dissipation potentials.
In the same spirit, it may be clever to summarise the
scaling laws from the microscopic structure to the rhe-
ology to one ingredient which can be used to extend
easily to three dimensions tensor forms. Besides, an
issue which has never been addressed yet due to its
subsequent complexity is the scaling laws for the vis-
cous contribution. More precisely, in [Shih, 1990;
Mellema, 2002; Wu, 2001], all the construction has
been done to extrapolate the microscopic particle pair
interaction to the macroscopic elasticity. From a the-
oretical point of view, the only source of dissipation
in this framework is the viscous solvent. Hence, how
is it possible to extrapolate the local viscous dissipa-
tion of a particle to the macroscopic scale of the gel
to get, for example, an expression for the loss moduli
G′′ can be a huge achievement to complete the mod-
elling. In general, there may be two ways of sophis-
tication of all the current work: either a more precise
and robust description of the microscopic interactions
and structure is developed to scale more precisely the
rheological laws, or, a generalised 3D form of all the
previous laws with thermodynamic roots is produced
to bridge completely the gap between theory and ex-
periments. This affirmation can be complemented by
the fact that assumptions should be addressed in or-
der to understand the limits of the current models and
propose new frameworks of understanding.

To give an inspiring perspective, remaining in the
field of suspensions but in biological gels, [Storm,
2005] succeeded to demonstrate a universal behaviour
through the use of very simple ingredients of bending
rods. This type of master curve is very admirable due
to its simplicity in the conception and in the commu-
nication. This should be perhaps one of the goals for
future investigations in order to gather all knowledge
on colloidal suspensions. In our case for instance,
in figure 2.11(c), there was the opportunity to com-
pare on the same level the particle volume fraction
and the shear rate in the sense that the storage mod-
ulus is a direct competition between the amount of
particle, with their relative strength of interaction, and
the strength of the external shear applied. As already
mentioned, the work presented in [Halphen, 1975] is
substantially inspiring due to its purity and the gener-
alisation of lots of existing behaviours, materials and
systems. Another paper that has helped a lot and is
still very relevant in the approach is [Kolmogorov,
1991]. The description of turbulence was detailed for

the first time in this paper and launched a huge part
of fluid mechanics. The simplicity of the arguments
and the demonstration, as enhanced hopefully in this
manuscript, is a key feature to understand a really
complex problem. The line of descent which arose
after the publication continued on the same perspec-
tive making it progressively very robust and a source
of creation of new tools like numerical modelling of
turbulence such as Reynolds Average Navier-Stokes
(RANS), Large Eddy Simulation (LES) or other nu-
merous simulation tools. Precisely, turbulence still
remains, like complex fluids, a difficult problems to
solve. Nevertheless, some crucial landmarks were
set like [Kolmogorov, 1991] and opened a wide paths
helping many scientists to dig further those issues.

On a more practical point of view, this PhD is an
ignition of a larger project involving an experimental
approach, hoping that the present work will help to
interpret the future results of both experimental study
and the industrial process, and an industrial applica-
tion for CEA radioactive waste management. It is
one of the most important aspects of the nuclear in-
dustry, and the source of the most frequent critics.
How to ensure the safety of the population and of na-
ture while warehousing or storing geologically the ra-
dioactive waste is a big challenge. It is not certain
if nuclear power should remain a main source of en-
ergy in France, however, the already produced waste
should be managed properly.
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Appendix A
Interpenetration of clusters for chapter 2 and
according to [Dagès, 2022]

This chapter is a compilation of useful de-
tails and data presented in chapter 2.

Objectives

Ce chapitre est une compilation de détails et
de données utiles présentés dans chapter 2.

Objectifs

Contents
A.1 Carbon black particles . . . . . . . . . 83
A.2 Flow properties of Carbon black gels . 84
A.3 Evolution of the viscoelastic moduli
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A.4 tan (δ) representation of the viscoelastic

spectrum . . . . . . . . . . . . . . . . 85
A.5 Model for the normalized viscoelastic

spectrum of carbon black gels . . . . . 85
A.6 Influence of the concentration cw . . . 86
A.7 Analysis of the rheo-SAXS data . . . . 87

A.1 Carbon black particles
Figure A.1 shows the scattering intensity vs. wave vec-
tor q for a dilute dispersion of CB particles (Vulcan PF,
Cabot). Individual CB particle are fractal-like particles
composed of fused nanoparticles of carbon [Martinez,
2017; Sztucki, 2007], which motivates the use of a mass
fractal model [Teixeira, 1988] to fit I(q). The fit yields a
radius of gyration rg = 35 nm with 20% polydispersity
and a fractal dimension d f 0 = 2.9. Density measure-
ments of CB powder were performed by helium pyc-
nometer (AccuPyc II 1340, Micromeritics). Before the
measurements, the powder was dried in an oven at 80◦C
during 72 hours (2 % in weight was lost). Two sets of
measurements were done with 5 measurements in a row
for the first sample (m = 0.8619 g) and 10 measure-
ments in a row for the second sample (m = 0.779 g).
The samples were poured in a 10 cm3 aluminum ves-
sel. We obtained a density of the carbon black particles
dcb = 2.26 ± 0.03.
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A

Preshear 

∆𝑡 = 60 s  

Rest 
𝑓 = 1 Hz  

∆𝑡 = 360 s  
𝛾 = 0.1 %  

𝛾 = 1000 s−1  𝛾 = 𝛾 0  

∆𝑡0 ~ 20 to 200 s  

𝜎 = 0 Pa 
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Frequency sweep 

𝑓 = 20 → 0.02 Hz  

𝛾 = 0.3 %  

Strain sweep 

𝑓 = 0.5 Hz  

𝛾 = 0.005 → 500%  

Shear-rate quench 
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𝛾 = 0 s−1  

30 s 

or 

Flow cessation 

Characterization 

Figure A.1: Scattering intensity I vs. scattering wave
number q of dilute dispersion of carbon black Vulcan PF
nanoparticles in the RTM17 mineral oil (cw = 0.01 %).
The red line is a mass fractal fit of such a form factor
using a fractal dimension d f 0 = 2.9 and a Schulz particle
radius distribution P(r) centered on a radius of gyration
rg = 35 nm (dashed line) with a polydispersity of 20 %
as shown in the inset.

A.2 Flow properties of Carbon
black gels

Figure A.2 reports the flow curve σ(γ̇) of a cw = 4%w
CB dispersion obtained by a decreasing ramp of shear
rate. The flow curve is fitted with a Herschel-Bulkley
model, σ = σy + Kγ̇n, and yields a dynamical yield
stress σy = 4.5 Pa, a fluidity index n = 0.83, and a
consistency index K = 1.0 Pa.s1/0.83.

In figure A.2, we also show flow curve extracted from
the preshear at γ̇0. We observe that those flow curve are
not stationary. This is mostly due to the fact that the
dispersion needs time to adapt from the jump in shear
from 1000 s−1 to γ̇0.

10-2 10-1 100 101 102 103
10-2

10-1

100

101

102

103

Figure A.2: Flow curve of the carbon black dispersion at
cw = 4%w showing the evolution of the measured stress
σ as a function of the imposed shear rate γ̇. γ̇ is ramped
down then up between 1500 s−1 to 0.015 s−1 with 10
points per decades at a rate of one point every 1 s. The
red line is an Herschel-Bulkley fit. Unstationnary flow
curve extracted from the preashear at γ̇0 in figure 2.9b
at t = 1 s (×), at the maximum of σ (+) and at the end
of the protocol (∗).

A.3 Evolution of the viscoelastic
moduli during rest

During the rest period that follows the flow cessation
protocol, we measured the viscoelastic moduli of the
dispersion in its linear regime, figure A.3. For high γ̇0
the gel reach within ∼ 100 s a regime where aging be-
comes very slow. For low γ̇0 this slow aging regime is
reached within a few seconds.
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Figure A.3: Evolution of the viscoelastic moduli during
the rest just after the flow cessation protocol. The vis-
coelastic moduli G′ (line) and G′′ (dash) are measured
during 360 s at an oscillation amplitude of γ = 0.1 %
and a frequency of f = 1 Hz.

A.4 tan (δ) representation of the
viscoelastic spectrum

Alternatively, the viscoelastic spectrums plotted in fig-
ure 2.10a may be represented by tan (δ) = G′′/G′ as a
function of the frequency f , figure A.4a. In this rep-
resentation, tan (δ) > 1 indicates that dissipation dom-
inates the rheological behavior whereas tan (δ) < 1 in-
dicates a solid-like behavior at the corresponding fre-
quency. In figure 2.10b, the viscoelastic spectrum is
rescaled according to the coordinate ( fc,Gc). In the
tan (δ) representation as G′ and G′′ are rescaled by the
same factor Gc only the frequency axis needs to be
rescaled. Doing so the tan (δ) measured for different γ̇0
scale on a master curve as displayed in figure A.4b.
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Figure A.4: tan(δ) representation of the viscoelastic
spectrum measured in figure 2.10a-b. (a) tan (δ) as a
function of the frequency f . (b) tan (δ) as a function of
the normalized frequency f / fc.

A.5 Model for the normalized vis-
coelastic spectrum of carbon
black gels

The master curve reported in figure 2.12 is fitted us-
ing a Kelvin-Voigt model and a fractional Kelvin-
Voigt model [Schiessel, 1995b], as illustrated in fig-
ure A.5. The fractional Kelvin-Voigt model consists
of two springpots in parallel, defined by their quasi-
properties (V, E) and their dimensionless exponents (α,
β). Each springpot can be understood as a mechanical
element having intermediate properties between that of
a spring when its exponent is 0 and a dashpot when its
exponent is 1. The resolution of the fractional Kelvin-
Voigt model leads to{ G′ = E f β cos(βπ/2) + V f α cos(απ/2)

G′′ = E f β sin(βπ/2) + V f α sin(απ/2) . (A.1)

In the limit where α = 1 and β = 0 we recover the clas-
sical Kelvin-Voigt model, which is defined by a dashpot
of viscosity η in parallel with a spring of elasticity G∞.{ G′ = E = G∞

G′′ = V f = 2πη f (A.2)

As shown in figure A.5 the fractional model fits rela-
tively well the normalized viscoelastic spectrum of car-
bon black gels in mineral oil using (V/Gc = 0.56,
α = 0.91) and (E/Gc = 1.09, β = 0.11). Its classi-
cal counterpart can only capture the asymptotic behav-
ior of the viscoelastic spectrum, i.e., the network elas-
ticity G∞ = G′( f ≪ fc) and the background viscosity
η = G′′( f ≫ fc)/(2π f ). We note that G∞ = 0.3Gc.
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Figure A.5: Model of the normalized viscoelastic spec-
trum. Evolution of the normalized elastic G′/Gc (grey
line) and viscous G′′/Gc (dashed grey line) moduli as a
function of the frequency f / fc, extracted from [Trappe,
2000]. ( fc, Gc) are the coordinates of the crossover be-
tween G′ and G′′. The Kelvin-Voigt model is pictured
in blue and the fractional Kelvin-Voigt model in red.

A.6 Influence of the concentration
cw

Following the protocol displayed in figure 2.8 we test
the influence of the concentration for cw = 2, 3, 6 and
8 % in addition to cw = 4 %. Such concentration se-
ries are presented in figure A.6 for γ̇0 = 1500 s−1. We
observe that high concentrations shift the viscoelastic
spectrum to higher elasticities. The cross over point
is not always reachable within the frequency window.
We scale the viscoelastic spectrum G′,G′′ on the master
curve displayed in Fig. figure 2.10b to determine ( fc,Gc)
and plot the results in figure 2.11.
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Kelvin Voigt model 

(a) (b) 

Figure A.6: Evolution of the viscoelastic spectrum for
different gel concentration cw at γ̇0 = 1500 s−1. (a)
G′ (line) and G′′ (dash) as a function of f . The con-
centration is varied from cw = 2 (blue) to 8% (green).
(b) Rescaled viscoelastic spectrum. The grey curves are
taken from [Trappe, 2000] and corresponds to the mas-
ter curve obtained by scaling a concentration series of
carbon black dipersion in oil.
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Figure A.7: Fractal dimension d f as a function of the
shear step γ̇0. Measurements of d f extracted from the
SAXS fits in figure 2.12 (square) and evaluated from
figure 2.11 using the weak link model (circle) and the
strong link model (diamond) from [Shih, 1990]. The
fractal dimension x of the gel backbone has been var-
ied from x=1.5 (light blue) to x=2.5 (dark blue) in the
strong link model.
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A.7 Analysis of the rheo-SAXS
data

The CB gel scattered intensities Irad(q) and Itan(q) are
respectively measured in the radial and the tangential
configuration. In the radial configuration, the X-ray
beam probes the microstructure in the flow-vorticity
plane, while in the tangential configuration, the X-
ray beam probes the sample along velocity gradient-
vorticity plane as sketched in figure A.8. After the rest
step in the protocol from figure 2.8, the radial and tan-
gential scattered intensities are compared. More pre-
cisely the radial scattering Irad is decomposed in its per-
pendicular Irad⊥ and parallel Irad∥ components. In fig-
ure A.8, we observe that Itan = Irad⊥ = Irad∥. The scatter-
ing intensity is isotropic and equal in all configurations.
For better statistics, we focus on the tangential signal
and radially average its 2D spectrum. In the paper, we
note I(q) = Itan(q).

The intensity scattered by the carbon black is fitted in
log scale using a modified Beaucage model [Beaucage,
1995; Beaucage, 1996; Keshavarz, 2021], figure A.9:
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G1 exp

−q2r2
1

3

 + B1 exp
−q2r2

2

3

 q∗p1
1

︸                                               ︷︷                                               ︸
Beaucage, Cluster level, I1

.

1 +C0

( q
qs

)2

+

(
qs

q

)2−1︸                             ︷︷                             ︸
Inter-Cluster structure, S 1

+

G2 exp
−q2r2

2

3

 + B2q∗p2
2

︸                             ︷︷                             ︸
Beaucage, CB particle level, I2

,

with q∗i=1,2 = qerf
(

qri
√

6

)−3

. (A.3)

In equation (A.3), I2(q) refers to scattering due to
the CB particle of size r0 = r2 and fractal dimension
d f 0 = −p2. The scattering due to the clusters of size

X-Ray beam,  
Radial  

configuration 

X-Ray beam,  
tangential  

configuration 

rotor 

stator 

gap 

Figure A.8: Comparison of the scattering intensity be-
tween the tangential Itan (green) and radial Irad⊥ (cyan)
Irad∥ (magenta) configuration.
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104

106

Figure A.9: Decomposition of the modified Beaucage
model as written in equation (A.3). Scattering intensity
I(q) as a function of q: experimental data (black), I2
(pink), I1 + I2 (cyan), I1.S 1 + I2 (red).
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Figure A.10: Density of particles per unit cell ρ as the
function of the step shear γ̇0. ρ is calculated from the
values r0, ξc, d f and ξs obtained fitting the scattering
intensity I(q) plotted in figure 2.12a with equation (A.3).
The dash line is the average.

ξc = r1 and fractal dimension d f = −p1 is contained
in the term I1(q). The modification of the two level
Beaucage model consists in introducing an inter clus-
ter structure factor S 1(q) that accounts for the center-to-
center distance between adjacent clusters, ξs = 2π/qs.
S 1(q) is a function that peaks at qs to a maximum value
S 1(qs) = 1+C0/2 and that converges to 1 away from qs.

This fit is constrained by mass conservation. Indeed,
as the multi-stable gels result from the same carbon
black dispersion, all the gels have the exact same av-
erage number of particles at the macroscopic scale and
in their unit cell. The unit cell is the minimum struc-
tural repeating unit necessary to construct the gel. In
our case, the gel network unit cell is defined by the struc-
tural length ξs. The number of particles N = (ξc/r0)d f

in a unit cell corresponds to the number of particles in
the cluster of size ξc and fractal dimension d f . This

gives a particle density ρ = (ξc/r0)d f

ξ3
s

= cste. This
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A.7. Analysis of the rheo-SAXS data

A

constrain is well verified based on parameters obtained
by fitting the SAXS data. As shown in figure A.10,
ρ = 7250±230 particles/µm3 is constant within a margin
of error of 3%. Moreover, ρ can be related to the parti-
cle concentration cw provided a good knowledge of the
background oil density dbck = 0.871 (T = 20 ◦C), the in-
dividual carbon black particle density dcb = 2.26 ± 0.03
(T = 20 ◦C) and the volume of a carbon black particle
vcb. The carbon black density ρ in the gel is then

ρ =
ϕ

vcb
, (A.4)

ϕ = cw

(
cw +

dcb

dbck
(1 − cw)

)−1

. (A.5)

As it is hard to measure vcb given the particle fractal
nature, vcb was evaluated from ρ. Using vcb = 4/3πr3

ρ we
obtain rρ = 8.1 nm a value lower than the radius of gy-
ration of 35 nm extracted from the form factor measured
in SAXS (figure A.1). This value is a bit smaller because
the CB particles are fractal and polydisperse. Moreover,
SAXS measurements tend to overestimate the particle
size distribution as SAXS is more sensitive to larger par-
ticles. Finally, we might overestimate ρ as we assumed
that the clusters pack the space homogeneously. Despite
the fact that rρ is a bit small, we find ρ = cste which tells
us that the model is self-consistent.
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Appendix B
Other tools to develop and perspectives for
future work

This chapter is a compilation of previous
works that are not completed yet but can be
interesting to convey the broad perspective I
worked on during my PhD and useful tool
for this topic.

Objectives

Ce chapitre est une compilation de travaux
antérieurs qui ne sont pas encore achevés
mais qui peuvent être intéressants pour trans-
mettre la large perspective sur laquelle j’ai
travaillé au cours de mon doctorat et con-
stituer un outil utile pour ce sujet.

Objectifs

Contents
B.1 Extension of Sequence of Physical

Processes relating the second Piola-
Kirchhoff stress tensor to the Green-
Lagrange strain tensor . . . . . . . . . 89
B.1.1 Derivation of the extension . . 89
B.1.2 Application . . . . . . . . . . 91

B.2 Multi-phase problem : Level-Set methods 95
B.2.1 Abstract . . . . . . . . . . . . 95
B.2.2 Introduction . . . . . . . . . . 95
B.2.3 Level-Set methods . . . . . . 95
B.2.4 Other relevant tools for the

Level-Set method . . . . . . . 96
B.2.5 Application cases . . . . . . . 97

B.3 Use of the canonical framework for the
aggregation-disaggregation formulation 97

B.1 Extension of Sequence of Phys-
ical Processes relating the sec-
ond Piola-Kirchhoff stress ten-
sor to the Green-Lagrange
strain tensor

B.1.1 Derivation of the extension
To recall the usual sequence of Physical Processes pre-
sented in [Rogers, 2017; Donley, 2019; Rogers, 2011;
Rogers, 2012b; Rogers, 2012a], via the Frénet-Serret
apparatus, it is possible to find a transient viscoelastic
modulus Gt relating the shear stress σ to the shear strain
ε and the shear strain rate ε̇. The whole demonstration
relies on the fact that there is a linear relationship in the
frequency domain between the stress tensor σ and the
strain tensor ε of the form σ = Cε with C a fourth order
tensor gathering the material properties. Acknowledg-
ing the power of such tools, it is relevant to question the
validity of these last assumptions. For instance, when
increasing the amplitude of the oscillation of the shear
strain, rheological non-linearities may appear as well as
geometrical non-linearities. Then, it may be interest-
ing to decorrelate both previous effects to study only the
rheological non-linearities. Such a framework exists in
continuum mechanics and is related to hyperelastic ma-
terials. Precisely, the Cauchy stress tensor σ and the lin-
ear strain tensor ε are properly defined in the deformed
configuration of a material. When the latter undergoes
large deformation, the deformed configuration becomes
pretty different from the reference configuration. There-
fore, it is possible to create two quantities that are de-
fined in the reference configuration and allow to connect
stresses and deformations: namely, the second Piola-
Kirchhoff stress tensor S and the Green-Lagrange strain
tensor e. To recall the construction of such quantities,
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B.1. Extension of Sequence of Physical Processes relating the second Piola-Kirchhoff stress tensor to the
Green-Lagrange strain tensor

B

the transformation from the reference configuration to
the deformed configuration is determined by the defor-
mation gradient of the displacement F. Using some dif-
ferential transformation of distances, areas and volumes,
the deformations from the reference configuration are
properly measured by the Green-Lagrange strain tensor
defined by

e =
1
2

(
FT F − I

)
(B.1)

with ·T the transpose of a tensor and I the identity ten-
sor. Simultaneously, the forces in the deformed configu-
ration acting on areas in the deformed configuration are
given by the Cauchy stress tensor σ and can be pulled
back to forces in the reference configuration acting on
areas in the reference configuration through the second
Piola-Kirchhoff stress tensor S defined by

S = JF−1σF−T (B.2)

with J = det (F). In the case of small deformation, J ≈
1, F ≈ I + ∇u with u the displacement thus the Green-
Lagrange strain tensor e is equal to the usual linear strain
tensor ε and the second Piola-Kirchhoff stress tensor S
is equal to the usual Cauchy stress tensor σ. However,
in the case of large transformations, the Green-Lagrange
strain tensor and the second Piola-Kirchhoff stress ten-
sor account for rotations and large deformations. Relat-
ing ourselves to the hyperelastic materials framework,
it can be demonstrated that the second Piola-Kirchhoff
stress tensor and the Green-Lagrange strain tensor are
energy conjuguates meaning that a rheological law in-
volving an expression of S as a function of e or its
derivatives is objective and properly defined. In addi-
tion, it can be demonstrated[Le Tallec, 2019] that the
mechanical energy per unit volume in the reference con-
figuration due to the material is equal to S : ė with : the
double contracted product and ˙(·) for the time derivative.
Therefore, in the Fourier domain, it is straightforward
to consider, as a first approach, that it exists a complex
fourth order tensor H reading S = He.

Now with these previous remarks, it is possible to ex-
tend the usual Sequence of Physical Processes method.
In this framework, an imposed oscillatory shear strain
ε = ε0 sin (ωt) with ε0 the shear strain amplitude and ω
the pulsation drives the deformation of the material. As-
suming that the shear strain is imposed in the xy plane
in cartesian coordinates and using the definition of the
deformation gradient F and equations (B.1) and (B.2),
one gets

F = I + εex ⊗ ey (B.3)

S = σ − ε

2σxy − εσyy σyy σyz

σyy 0 0
σyz 0 0

 (B.4)

2e = ε
(
ex ⊗ ey + ey ⊗ ex

)
+ ε2ey ⊗ ey. (B.5)

Hence, while in the usual Sequence of Physical Pro-
cesses, one can write σ = G′ε+G′′ε̇/ω with ε̇ the shear
strain rate, here one gets

S = G′ε +G′′
ε̇

ω
+ H′ε2 + H′′

2εε̇
ω

(B.6)

with S any components of S and G′,G′′,H′,H′′ the var-
ious moduli of the rheological law which are going to be
extended in instantaneous values. To build these instan-
taneous values, instead of considering a three dimen-
sions space with a position vector x = (ε, ε̇/ω, σ), lets
consider a position vector x =

(
ε, ε̇/ω, ε2, 2ε̇ε/ω, S

)
and lets try to build a Frénet-Serret apparatus on this
five dimensions space. Following the Gram-Schmidth
procedure for the vector family

(
d j

t x
)

j∈⟦1,5⟧
, we define a

family (ei)i∈⟦1,5⟧ of orthonormal vectors constructing the
local instantaneous coordinate system following, for all
j ∈ ⟦2, 4⟧,

e1 =
dx
dt

∥∥∥∥∥dx
dt

∥∥∥∥∥−1

(B.7)

e j =
d jx
dt j −

j−1∑
i=1

(
d jx
dt j · ei

)
ei (B.8)

e j =
e j∥∥∥e j

∥∥∥ (B.9)

e5 = e1 × e2 × e3 × e4. (B.10)

Following the demonstration in [Rogers, 2017; Donley,
2019], one can find at the end

G′t
G′′t
H′t
H′′t

 = − 1
eS

5


eε5

eε̇/ω5
eε

2

5
e2εε̇/ω

5

 (B.11)

with ei
5 where i ∈

{
ε, ε̇/ω, ε2, 2ε̇ε/ω, S

}
is the com-

ponent on the axis i in the 5 dimensions space of
the vector e5. If someone wants to completely write
the expressions of G′,G′′,H′,H′′ as a function of(
ε, ε̇/ω, ε2, 2ε̇ε/ω

)
, one gets by conservation of the gen-

erated vector spaces in the Gram-Schmidt process,

e5 =
dx
dt
×

d2x
dt2 ×

d3x
dt3 ×

d4x
dt4 (B.12)

Using the dot notation for the time derivatives, one gets

DG′t = −

∣∣∣∣∣∣∣∣∣∣∣
ẋ2 ẋ3 ẋ4 ẋ5
ẍ2 ẍ3 ẍ4 ẍ5...
x 2

...
x 3

...
x 4

...
x 5....

x 2
....
x 3

....
x 4

....
x 5

∣∣∣∣∣∣∣∣∣∣∣ (B.13)
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DG′′t =

∣∣∣∣∣∣∣∣∣∣∣
ẋ1 ẋ3 ẋ4 ẋ5
ẍ1 ẍ3 ẍ4 ẍ5...
x 1

...
x 3

...
x 4

...
x 5....

x 1
....
x 3

....
x 4

....
x 5

∣∣∣∣∣∣∣∣∣∣∣ (B.14)

DH′t = −

∣∣∣∣∣∣∣∣∣∣∣
ẋ1 ẋ2 ẋ4 ẋ5
ẍ1 ẍ2 ẍ4 ẍ5...
x 1

...
x 2

...
x 4

...
x 5....

x 1
....
x 2

....
x 4

....
x 5

∣∣∣∣∣∣∣∣∣∣∣ (B.15)

DH′′t =

∣∣∣∣∣∣∣∣∣∣∣
ẋ1 ẋ2 ẋ3 ẋ5
ẍ1 ẍ2 ẍ3 ẍ5...
x 1

...
x 2

...
x 3

...
x 5....

x 1
....
x 2

....
x 3

....
x 5

∣∣∣∣∣∣∣∣∣∣∣ (B.16)

D =

∣∣∣∣∣∣∣∣∣∣∣
ẋ1 ẋ2 ẋ3 ẋ4
ẍ1 ẍ2 ẍ3 ẍ4...
x 1

...
x 2

...
x 3

...
x 4....

x 1
....
x 2

....
x 3

....
x 4

∣∣∣∣∣∣∣∣∣∣∣ . (B.17)

It is interesting to note that the whole derivation above
is also valid in a stress controlled framework where we
replace the position vector x =

(
ε, ε̇/ω, ε2, 2ε̇ε/ω, S

)
by x =

(
S xy, Ṡ xy/ω, S xx, Ṡ xx/ω, ϑ

)
with ϑ ∈

{
ε, ε2

}
to

get the equivalent of compliances J′t , J′′t in large trans-
formations that we can call J′t , J′′t , K′t and K′′t .

B.1.2 Application
B.1.2.1 Maxwell model

Let us consider a Maxwell model

S + λṠ = 2ηė. (B.18)

The equations are then

S xx + λṠ xx = 0, (B.19)
S xy + λṠ xy = ηε̇, (B.20)
S xz + λṠ xz = 0, (B.21)
S yy + λṠ yy = 2ηε̇ε, (B.22)
S yz + λṠ yz = 0, (B.23)
S zz + λṠ zz = 0. (B.24)

Assuming that S (0) = 0, one solves to get S zz = S xz =

S yz = S xx = 0 and

S yy (t) = 2
η

λ
e−t/λ

∫ t

0
es/λε̇ (s) ε (s) ds, (B.25)

S xy (t) =
η

λ
e−t/λ

∫ t

0
es/λε̇ (s) ds. (B.26)

If one assumes additionally that for all t ∈ R+, ε (t) =
ε0 sin (ωt) with ω a certain pulsation, one gets

S yy (t) = ηωε2
0

sin (2ωt) − 2λω cos (2ωt) + 2λωe−t/λ

1 + (2λω)2 ,

(B.27)

S xy (t) = ηωε0
λω sin (ωt) + cos (ωt) − e−t/λ

1 + (λω)2 . (B.28)

What can be interesting is to look at the permanent os-
cillatory regime when t → +∞, which reads

S yy (t) = ηωε2
0

sin (2ωt) − 2λω cos (2ωt)
1 + (2λω)2 , (B.29)

S xy (t) = ηωε0
λω sin (ωt) + cos (ωt)

1 + (λω)2 . (B.30)

It is blatant that S yy ∝ ε2
0 and S xy ∝ ε0, thus, when

ε0 → 0, S yy will become negligible compared to S xy,
which is the usual case with small oscillatory shear
knowing also that, in this limit, σxy ≈ S xy. Analysing
equations (B.29) and (B.30), we recover the usual so-
lution for the shear component S xy replacing S by σ in
equation (B.18), however, there is an axial component
S yy which oscillates with a double frequency 2ω com-
pared to the original strain oscillation.

Now if we come back to the Cauchy stress tensor, one
gets

σ = S + ε

2S xy + εS yy S yy S yz

S yy 0 0
S yz 0 0

 (B.31)

which gives, components by components,

σxx = 2εS xy + ε
2S yy, (B.32)

σxy = S xy + εS yy, (B.33)
σyy = S yy, (B.34)
σxz = σyz = σzz = 0. (B.35)

Replacing now with equations (B.29) and (B.30) and
doing some trigonometric calculations, one obtains

σxx (t) = ηωε2
0

(
cxx

0 + cxx
2 cos (2ωt) + sxx

2 sin (2ωt)+

(B.36)

+cxx
4 cos (4ωt) + sxx

4 sin (4ωt)
)
, (B.37)

cxx
0 =

λω

2

 2
1 + (λω)2 +

ε2
0

1 + (2λω)2

 , (B.38)

cxx
2 = −λω

 1
1 + (λω)2 +

ε2
0

1 + (2λω)2

 , (B.39)

sxx
2 =

1
2

 2
1 + (λω)2 +

ε2
0

1 + (2λω)2

 , (B.40)

cxx
4 =

λωε2
0

2
1

1 + (2λω)2 , (B.41)

sxx
4 = −

ε2
0

4
1

1 + (2λω)2 , (B.42)

σxy (t) = ηωε0

(
cxy

1 cos (ωt) + sxy
1 sin (ωt)+ (B.43)
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+cxy
3 cos (3ωt) + sxy

3 sin (3ωt)
)
, (B.44)

cxy
1 =

1
1 + (λω)2 +

ε0

2
1

1 + (2λω)2 , (B.45)

sxy
1 = λω

(
1

1 + (λω)2 +
ε0

1 + (2λω)2

)
, (B.46)

cxy
3 = −

ε0

2
1

1 + (2λω)2 , (B.47)

sxy
3 = −

λωε0

1 + (2λω)2 , (B.48)

σyy (t) = ηωε2
0

sin (2ωt) − 2λω cos (2ωt)
1 + (2λω)2 . (B.49)

What is really interesting from the equations above
is that, in the Cauchy stress tensor, there are non zero
σxy and σyy components but also the σxx component.
Also, the σyy component remains identical to S yy, with
the double frequency osccilation, but σxy has two har-
monics, the first and the third, andσxx has three harmon-
ics, the zeroth, the second and the fourth. The non-zero
average of σxx is equal to

lim
T→+∞

1
T

∫ T

0
σxx (t) dt =

ηλω2ε2
0

2

 2
1 + (λω)2 +

ε2
0

1 + (2λω)2

 . (B.50)

It is now possible to compare the usual Sequence of
Physical Process with the extended version presented
here. In the usual Sequence of Physical Process, the
transient moduli are calculated through

G′t

(
σxy

)
= −

ε̈σ̈xy −
...
ε σ̇xy

ε̇
...
ε − ε̈2 , (B.51)

G′′t

(
σxy

)
= −ω

σ̇xyε̈ − σ̈xyε̇

ε̇
...
ε − ε̈2 . (B.52)

Using the expressions above in the limit ε0 → 0, one
obtains

G′t

(
σxy

)
= ηω

λω

1 + (λω)2 , (B.53)

G′′t

(
σxy

)
=

ηω

1 + (λω)2 (B.54)

as a usual linear Maxwell model with the variables σ
and ε̇. Using the new extended version with the second
Piola-Kirchhoff tensor, it is possible to obtain with the
previous notations

D =

∣∣∣∣∣∣∣∣∣∣∣
ẋ1 ẋ2 ẋ3 ẋ4
ẍ1 ẍ2 ẍ3 ẍ4...
x 1

...
x 2

...
x 3

...
x 4....

x 1
....
x 2

....
x 3

....
x 4

∣∣∣∣∣∣∣∣∣∣∣ = 18ε6
0ω

10 (B.55)

then doing the calculations for S xy brings

G′t
(
S xy

)
= ηω

λω

1 + (λω)2 , (B.56)

G′′t
(
S xy

)
=

ηω

1 + (λω)2 , (B.57)

H′t
(
S xy

)
= 0, (B.58)

H′′t
(
S xy

)
= 0, (B.59)

and for S yy brings

G′t
(
S yy

)
= 0, (B.60)

G′′t
(
S yy

)
= 0, (B.61)

H′t
(
S yy

)
= ηω

4λω
1 + (2λω)2 , (B.62)

H′′t
(
S yy

)
=

2ηω
1 + (2λω)2 . (B.63)

Hence, we find transient moduli both in the shear di-
rection xy and in the axial direction xx with very inter-
esting relationships like

H′t
(
S yy

)
H′′t

(
S yy

) = 2
G′t

(
S xy

)
G′′t

(
S xy

) = 2λω. (B.64)

Another interesting feature which may be highlighted
is the fact that, due to construction with equation (B.6)
and looking at equations (B.29), (B.30), (B.56), (B.57),
(B.62) and (B.63), each component of S is a linear com-
bination of ε, ε̇/ω, ε2 and 2ε̇ε/ωwith the transient mod-
uli G′t , G′′t , H′t and H′′t as factors.

It is now possible to find the last moduli for σxx, σxy

andσyy. The easiest one isσyy thanks to equation (B.34)
thus

G′t
(
σyy

)
= 0, (B.65)

G′′t
(
σyy

)
= 0, (B.66)

H′t
(
σyy

)
= ηω

4λω
1 + (2λω)2 , (B.67)

H′′t
(
σyy

)
=

2ηω
1 + (2λω)2 . (B.68)

For σxx and σxy, the fourth and the third harmonics,
respectively, are disturbing a quick calculations so the
overall framework should be applied. In the case of σxx,
one gets

G′t (σxx) = 8ηω
(
cxx

4 (3 sin (5ωt) − 5 sin (3ωt))+
(B.69)

+sxx
4 (5 cos (3ωt) − 3 cos (5ωt))

)
(B.70)

G′′t (σxx) = 8ηω
(
cxx

4 (3 cos (5ωt) + 5 cos (3ωt))+
(B.71)
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+sxx
4 (5 sin (3ωt) + 3 sin (5ωt))

)
(B.72)

H′t (σxx) = 2ηω
(
cxx

2 + (B.73)

+5cxx
4 (cos (6ωt) + 3 cos (2ωt))+ (B.74)

+5sxx
4 (sin (6ωt) + 3 sin (2ωt))

)
(B.75)

H′′t (σxx) = 2ηω
(
sxx

2 + (B.76)

+5cxx
4 (sin (6ωt) − 3 sin (2ωt))+ (B.77)

+5sxx
4 (− cos (6ωt) + 3 cos (2ωt))

)
(B.78)

and for σxy, one obtains

G′t
(
σxy

)
= ηω

(
sxy

1 + (B.79)

+5cxy
3 (2 sin (2ωt) − sin (4ωt)) (B.80)

+5sxy
3 (cos (4ωt) − 2 cos (2ωt))

)
(B.81)

G′′t
(
σxy

)
= ηω

(
cxy

1 + (B.82)

−5cxy
3 (2 cos (2ωt) + cos (4ωt)) (B.83)

−5sxy
3 (sin (4ωt) + 2 sin (2ωt))

)
(B.84)

H′t
(
σxy

)
= 2ηω

(
cxy

3 (5 cos (ωt) + cos (5ωt))+ (B.85)

+sxy
3 (5 sin (ωt) + sin (5ωt))

)
(B.86)

H′′t
(
σxy

)
= 2ηω

(
cxy

3 (−5 sin (ωt) + sin (5ωt))+
(B.87)

+sxy
3 (5 cos (ωt) − cos (5ωt))

)
(B.88)

With the previous equations, it can be interesting
to compare the usual Sequence of Physical Processes
with the present extended version. Thus, using equa-
tions (B.53) and (B.54) and the average values accord-
ing to time of equations (B.79) to (B.84), one obtains〈

G′t
(
σxy

)〉
− G′t

(
σxy

)
= ηωε0

λω

1 + (2λω)2 (B.89)〈
G′′t

(
σxy

)〉
− G′′t

(
σxy

)
=
ηωε0

2
1

1 + (2λω)2 . (B.90)

To give more clarity of understanding, it is possible to
plot the variations of these moduli according to different
parameters. Noting that the moduli of S xy, S yy and σyy

are constant according to time, the figure B.1 illustrates
the frequency plot of those moduli. We recognise easily
the usual behaviour of the linear Maxwell model for S xy

but the contribution on S yy or σyy is of the same order
of magnitude when ε0 is of the order of unity or higher.
Also, the time scales are a bit different and shows an
earlier shift in the trends.

Now if we look at the expressions for σxx and σxy, we
see that there are non zero contribution of each compo-
nent. Normally, one would expect only the σxy compo-
nent to play a role but here, due to the increase of the
strain amplitude ε0, additional contributions appear. It
is possible to recover the usual linear Maxwell model

expressed in terms of the Cauchy stress tensor σ when
ε0 → 0. However, at high strain amplitude, there are
variations in time of the various transient moduli. So
here is the actual novelty of this approach because, with
the steady-state approach, one would only find the aver-
age values over time. Now, one can find some more in-
tricate evolutions to properly understand the behaviour
of the materials. To give some illustrations to those
equations, there are displayed on figure B.2 the time
evolution of the various transient moduli of σxx and σxy

with the parameters ε0 = λω = 1. To give another per-
spective, the figure B.3 gives the Cole-Cole plot, i.e. the
viscous transient moduli as a function of the elastic tran-
sient moduli, with the same set of parameters. An inter-
esting thing when looking at figure B.3 is that, focus-
ing on the black line for Gt

(
σxy

)
, which is usually ob-

served in experiments with the 3 peaks, there exist some
portion of the cycle where either or both G′t

(
σxy

)
and

G′′t
(
σxy

)
are negative. This is interpreted sometimes as

sign of elastic recoil or negative dissipation. However,
this example demonstrates that even for a model where
the rheological parameters are properly defined without
any doubts on the thermodynamic, there is some strange
behaviour happening which may lead to consider some
odd interpretations. In this case, a simple geometrical
transformation of the Cauchy stress tensor σ into the
second Piola-Kirrchhof stress tensor S leads to a rhe-
ological analysis which is much simpler due to the fact
that the newly obtained moduli will be constant and cor-
responding exactly to a linear Maxwell fluid. All these
remarks are just a warning for people who are looking
for a characterisation and an identification of their mate-
rials: some processing may be needed on experimental
data to analyse properly the rheological behaviour get-
ting rid of useless complications.

We can carry out the overall analysis as in [Rogers,
2017; Donley, 2019; Rogers, 2011; Rogers, 2012b;
Rogers, 2012a] but we leave the rest of the comparison
to the reader.

In general, what is interesting is that when ε0 ≫ 1,
the main stress components are σxx first due to the pro-
portionality to ε4

0, then S yy, σxy and σyy with the pro-
portionality to ε2

0 and finally, the shear components S xy

which is linear in ε0.
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Figure B.1: Evolution of the transient moduli of S xy, S yy and σyy and the average according to time of transient
moduli of σxx and σxy, all divided by η/λ as a function λω with ε0 = 1.
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Figure B.3: Evolution of the viscous moduli of σxy and
σxx divided by η/λ as a function of the elastic moduli
divided by η/λ imposing λω = ε0 = 1. The purple
dotted line corresponds to the first bisector y = x.

B.2 Multi-phase problem : Level-
Set methods

B.2.1 Abstract
Level-set methods have been used widely in the com-
munity to run multiphase simulations in continuum me-
chanics. It allows a smooth transition between differ-
ent media which qualifies as a relevant tool in numerical
simulation. The initial transport equation used for the
level-set function is simple but needs, to abide by its def-
inition, some regularization techniques. The corrections
used in the literature are various with the Hamilton-
Jacobi equation, the use of filtered level-set function
with linear, sinusoidal, logistic or convolution filters, or
the re-initialization of the transport equation according
to these filters. In this section, we have reviewed the dif-
ferent recent techniques used in the literature to run per-
forming numerical simulations using level-set methods,
assessed for each of them the advantages and the draw-
backs, and compared some of the methods on standard
numerical cases. In addition of this overview, we pro-
pose to share with the community some complementary
tools like anisotropic mesh adaptation and other robust
methods that increase substantially the quality of numer-
ical simulations. These tools may help anyone who tries
to model multiphase systems using level-set methods.

B.2.2 Introduction
Multiphase flows are ubiquitous in continuum mechan-
ics, from natural fields like climate [Stranne, 2016;
Stumpf, 2000] or biology [Abolhasani, 2016] or in-
dustrial applications like oil [Kolev, 2012], nuclear hy-
draulics [Kolev, 2015], melting [He, 2020; Buliński,

2018] or coating [Yin, 2016]. Due to the very high com-
plexity of such calculations, analytical tools are rapidly
overwhelmed and numerical simulations are needed to
account for phenomena observed in experiments. Sev-
eral numerical methods exist to handle multiple phases
in numerical flow simulation. The use Lagrangian tech-
niques for very low volume fraction phases may be in-
teresting [Yin, 2016]. For equivalent volume fraction
phases, Eulerian methods are used such as the Volume
of Fluid [van Sint Annaland, 2005; Xie, 2016], the Front
Tracking Method [Sint Annaland, 2006; Hua, 2007;
Hua, 2008], the Lattice Boltzmann Method [Cheng,
2010; Yu, 2009; Amaya-Bower, 2010; Yu, 2011], the
Smoothed Particle Hydrodynamics [Szewc, 2013; Gre-
nier, 2013; Zhang, 2015], the Phase Field method
[Khanwale, 2020] and the Level-Set method [Croce,
2010; Bahbah, 2019; Quezada de Luna, 2020].

B.2.3 Level-Set methods
B.2.3.1 Classical Level-set method

We will focus in this section on the Level-Set method
which has had lots of improvement in the recent years.
Let consider, for sake of simplicity, a system in a space
Ω ⊂ Rd where d ∈ {2, 3} with two phases 1 and 2 occu-
pying respectively the spaces Ω1 and Ω2. The extension
to more than two phases is possible but the details are
left to the reader. The boundary between Ω1 and Ω2 is
called Γ and we note that Ω = Ω1 ⊔ Ω2. The starting
point of the Level-Set method, according to [Marioni,
2017; Bahbah, 2020], is the use of a scalar function α,
called the Level-Set function, defined by

α : Ω 7−→ R

x 7−→


α (x) > 0 if x ∈ Ω1

0 if x ∈ Γ
α (x) < 0 if x ∈ Ω2

(B.91)

The interest of such a function is that it is possible to use
a scaling function H : R 7→ [0, 1] to define

β = β2 + H (α) (β1 − β2) (B.92)

for any property β of the fluid like density ρ, viscos-
ity, elasticity, specific heat capacity or the inverse of
the thermal conductivity. Because of this definition, the
Level-Set function verifies ∥grad (α)∥ = 1 which is true
for any signed distance function. Also, due to its def-
inition stating the boundaries between Ω1 and Ω2, the
Level-Set function should be transported by the fluid
which brings

dα
dt
=
∂α

∂t
+ u · grad (α) = 0 (B.93)
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with u the velocity of the fluid. This is the classical
Level-Set method which brings an additional transport
equation to solve. Nevertheless, there is a direct imple-
mentation of such transport equations in the codes. For
instance, looking at the mass conservation equation

dρ
dt
+ ρdiv (u) = 0. (B.94)

Using equation (B.92) with constant densities ρ1 and ρ2
with two incompressible media, we find

dρ
dt
=

dH
dα

(ρ1 − ρ2)
dα
dt
= 0 (B.95)

thanks to equation (B.93). Therefore, reconsidering the
mass conservation equation (B.94), it leads to

div (u) = 0 (B.96)

which is exactly the same equation as in one phase in-
compressible flow. Therefore, the classical Level-Set
method is directly achievable once a single phase con-
tinuum mechanics code is implemented.

B.2.3.2 Re-initialized Level-Set method

The equations ∥grad (α)∥ = 1 and dtα = 0 are incom-
patible in the sense that the transport equation does not
keep the former equation valid. In order, to correct this
problem, it is possible to re-initialize the transport equa-
tion equation (B.93) using a Hamilton-Jacobi equation
(see [Sussman, 1994]) as follows

dα
dt
+ sgn (∥grad (α)∥ − 1) = 0 (B.97)

with sgn = 2Θ − 1 the sign function. This equation will
allow to help to preserve the signed distance function
property of the Level-Set function.

B.2.3.3 Re-initialized filtered Level-Set method

Due to sharp gradients of the Level-Set function, trying
to design a smoother level-set function can be a relevant
improvement. The filter consists in finding an odd func-
tion γ : R 7→ R such as the variation between positive
values and negative values is smooth and the limit val-
ues at ±∞ are bounded. Several examples exist in the
literature (see [Marioni, 2017; Bahbah, 2019]) like

γ (α) = A

sgn (α) |α| ≥ ε
1
2

(
πα
ε
+ sin

(
πα
ε

))
|α| < ε

(B.98)

with A and ε positive numbers assigning the limits at
±∞ and the sharpness of the variation around 0 respec-
tively, or

γ (α) = tanh
(
α

ε

)
(B.99)

with ε the sharpness of the variation around 0. The goal
of the filter function γ is to be as close as possible to
an infinitely derivable function C∞. If we want to re-
place α by γ ◦ α in the calculation, it is necessary to
change the transport equation equation (B.97) accord-
ing to the new filtered Level-Set function. An advantage
of equation (B.99) over equation (B.98) is that, in equa-
tion (B.99), it is possible to express analytically α as a
function of γ or, more formally, to find γ−1. However,
in equation (B.98), the expression of γ−1 is not trivial
due to the lack of injectivity. Therefore, when someone
wants to implement the filter in equation (B.98), there is
a need to solve additional equations in order to express
properly α and γ ◦ α. To be specific, the filtered re-
initialized transport equation for the filtered Level-Set
function equation (B.99) is

∂γ

∂t
+ (u + λU) · grad (γ) =

sgn (γ) λ
ε

(
1 − γ2

)
(B.100)

with λ a constant helping the re-initialisation and U =
grad (γ) / ∥grad (γ)∥ the re-initialisation velocity. In
general, the filtered re-initialised transport equation for
the filtered Level-Set function can be written

∂γ

∂t
+ (u + λU) · grad (γ) = sgn (γ) λ

dγ
dα

(B.101)

which can then be integrated in the mass conservation
equation equation (B.94) using equation (B.92) to bring

div (u) = λ
d ln (ρ)

dγ
(γ)

(
U · grad (γ) − sgn (γ)

dγ
dα

)
.

(B.102)

B.2.4 Other relevant tools for the Level-
Set method

After having presented the different existing Level-Set
methods with their characteristics, it is interesting to
complement the discussion with additional tools which
help the calculation to be improved. More specifically,
one of the first tools is the use of anisotropic adapta-
tive mesh. Based on [Coupez, 2011; Coupez, 2013],
the method uses an edge-based error estimation cou-
pled with a gradient recovery procedure which allows
to adapt the mesh where needed, for example, where the
gradients are very important like the gradient of the (fil-
tered) Level-Set function at the boundary between Ω1
and Ω2.

Another additional tool is parallel computing which
helps to handle complexities brought jointly by the
Navier-Stokes equation (RANS model [Singhal, 2018;
Alhulaifi, 2012], Reynolds Stress Model [Yin, 2016],
Direct Numerical Simulation [Raoelison, 2020] or Vari-
ationnal Multi-Scale [Hachem, 2010]), the anisotropic
mesh adaptation and the re-initialised filtered Level-Set
method (or more generally the multiphase flow). The
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parallel computing consists in (i) partitioning the initial
mesh, (ii) reading the mesh and solving the equations,
(iii) adapting the mesh after the calculations, (iv) updat-
ing the solution on the new mesh created over multi-
ple cores, (v) repartitionning the mesh to start the cycle
over.

Then, an additional tool can be the density scaled
continuum surface force model following [Yokoi, 2014;
Yokoi, 2016; Yamamoto, 2017]. Indeed, this method
allows to introduce a surface force similar to a surface
tension due to capillarity which is using a density-scaled
function to create the transition between the two phases.
This additional tool improves the quality of the simula-
tion and particularly the accuracy of the boundary be-
tween the two phases.

B.2.5 Application cases
B.2.5.1 Case 1 : Kelvin-Helmholtz instability

Following [Drazin, 1970], the case of Kelvin-Helmholtz
instability can be described as follows. The compu-
tational domain can be either a 2D box or a 3D box.
Let assume that the direction of the flow is x, the nor-
mal direction of the interface between the two fluid is z
and that it may exist a third component y if a 3D box
is considered. On the boundary x = 0, one assumes
that, for z > 0, there is a velocity U2 in the x direc-
tion with a density ρ2 and, for z < 0, there is a velocity
U1 in the x direction with a density ρ1. We assume the
existence of the gravity g in the opposite direction of
z and the interfacial tension between the two fluids is
σ. The interface ζ between the two fluids is initially at
ζ (x, y, t = 0) = 0. Assuming a perfect incompressible
fluid with a potential flow ϕ and keeping only the lin-
ear terms in the equations, we get the following solution
according to [Drazin, 1970]

ϕ = −sgn (z) A
s + iα (U1 + Θ (z) (U2 − U1))√

α2 + β2
(B.103)

exp
(
st + i (αx + βy) − |z|

√
α2 + β2

)
(B.104)

ζ = A exp (st + i (αx + βy)) (B.105)

s = −
iα (ρ1U1 + ρ2U2)

ρ1 + ρ2
(B.106)

±

α2ρ1ρ2 (U1 − U2)2

(ρ1 + ρ2)2 −
g (ρ1 − ρ2)

√
α2 + β2

ρ1 + ρ2
+

(B.107)

−

(
α2 + β2

) 3
2 σ

ρ1 + ρ2


1
2

(B.108)

with α and β the wave numbers in the x and y direc-
tion respectively, sgn the sign function, Θ the Heaviside

function and A a constant. The most pronounced ampli-
tude are in the plane y = 0, which justifies the possibility
to limit ourselves to 2D geometries. The solution is then
reduced to

ϕ = −sgn (z) A
s + iα (U1 + Θ (z) (U2 − U1))

α
(B.109)

exp (st + iαx − |z|α) (B.110)
ζ = A exp (st + iαx) (B.111)

s = −
iα (ρ1U1 + ρ2U2)

ρ1 + ρ2
(B.112)

±

√
α2ρ1ρ2 (U1 − U2)2

(ρ1 + ρ2)2 −
g (ρ1 − ρ2)α
ρ1 + ρ2

−
α3σ

ρ1 + ρ2

(B.113)

The interesting fact with the case is that depending on
the combination of (ρ1,U1, ρ2,U2, g, σ, α), there may be
either an unstable behaviour or a stable one. Precisely,
the stability of the solution depends on the sign of

αρ1ρ2 (U1 − U2)2

(ρ1 + ρ2)2 −
g (ρ1 − ρ2)
ρ1 + ρ2

−
α2σ

ρ1 + ρ2
(B.114)

for all α > 0. Therefore, it depends on the sign of

∆ = ρ2
1ρ

2
2 (U1 − U2)4 − 4g (ρ1 + ρ2)2 (ρ1 − ρ2)σ

(B.115)
if σ , 0 or is conditionally unstable otherwise or if g =
σ = 0, the system is unconditionally unstable. If ∆ < 0,
the square root of s is pure imaginary and it is stable. If
∆ ≥ 0, there may exist some values of α for which the
system is unstable.

We will investigate and describe the instability ac-
cording to these parameters.

B.2.5.2 Case 2 : Rayleigh-Taylor instability

The Rayleigh-Taylor instability happens in a 2D box or
3D box as for the Kelvin-Helmholtz instability. The
same initial setup is proposed but there is no imposed
velocity, we assume ρ2 > ρ1 and σ = 0. There is an
instability of the interface under gravity which can be
expressed by

ζ = A exp
(
iαx + t

√
ρ2 − ρ1

ρ1 + ρ2
gα

)
(B.116)

B.3 Use of the canonical frame-
work for the aggregation-
disaggregation formulation

An idea that may be interesting to pursue, in the spirit of
chapter 2 and [Bouthier, 2023a], is to use the canonical
framework to get results like equation (2.7) instead of
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using the grand canonical framework. For instance a
first step is, with the same assumptions of additivity of
energy and N ∈ N∗ the number of particles, we obtain
as partition function

Z =
1

N!
BN

((
e−βE(k)

)
k∈⟦1,N⟧

)
(B.117)

BN

(
(xk)k∈⟦1,N⟧

)
= N!

∑
(ik)k∈⟦1,N⟧∈N

N∑N
k=1 kik=N

N∏
k=1

xik
k

ik! (k!)ik
(B.118)

with BN the complete Bell polynomial used to calcu-
late the number of ways to partition a set of N elements.
If we note for all k ∈ N∗, nk the random variable ac-
counting the number of cluster of size k, one can find
the joint probability for all (ik)k∈⟦1,N⟧ ∈ N

N such that∑N
k=1 kik = N,

P

 N⋂
k=1

(nk = ik)

 = 1
Z

N∏
k=1

e−βikE(k)

ik! (k!)ik
(B.119)

or equals 0 if
∑N

k=1 kik , N. Hence, it is possible to find
an average distribution of each random variable writing
for all k ∈ N∗

⟨nk⟩ =

N∑
ik=1

ikP (nk = ik) (B.120)

P (nk = ik) =
∑

(i j) j∈⟦1,N⟧\{k}∈N
N−1∑N

j=1 ji j=N

P

 N⋂
j=1

(
n j = i j

) (B.121)

There are then N equations relating two sets of N vari-
ables : (⟨nk⟩)k∈⟦1,N⟧ and (βE (k))k∈⟦1,N⟧. Therefore, it is
possible to extract the expression of the latter in terms
of the former theoretically thanks to equations (B.117)
to (B.121). Nevertheless, it is practically impossible to
express the solution analytically. It is thus necessary to
use numerical resolution tools such as inverse-problem
resolution. For example, it may be interesting to write
n = (⟨nk⟩)k∈⟦1,N⟧ and E = (βE (k))k∈⟦1,N⟧ for the un-
known variable and f = ( f (k))k∈⟦1,N⟧ for the experimen-
tal sample ; it is then possible to minimize the following
function

J (X) = ∥n (X) − f∥2 (B.122)

∥Y∥2 =
N∑

k=1

y2
k (B.123)

to find
E = arg min

X∈RN
J (X) . (B.124)

In addition, we consider large systems with N ≥ 104.
It may then be interesting to know the asymptotic be-
haviour of the previous relations when N tends towards

+∞. The difficult part of the problem is to know the
asymptotic behaviour of the complete Bell polynomial
BN at large N due to the multiple variables involved. To
give an order of magnitude, for a given k ∈ N∗, we se-
lect only the family of N such as N = pk with p ∈ N∗

tending to +∞ and assume a configuration where only
the clusters of size k may exist. In this case, one obtains
using the Stirling approximation

BN =
(pk)!xp

p! (k!)p ∼
p→+∞

√
k
(( p

e

)k−1 kk

k!
x
)p

=
p→+∞

O
(
NN

)
(B.125)

which gives with N = 104 a coefficient in the order of
1040,000 with 40,000 zeros.

To pursue the reasoning, it may be interesting to con-
sider a modified partition function

Z =
1

N!
BN

((
e−βkE(k)

)
k∈⟦1,N⟧

)
(B.126)

which is equal to the actual partition function Z when
all the variables (βk)k∈⟦1,N⟧ are all equal to β. Thanks
to this function, we can write for all k ∈ ⟦1,N⟧, ∂βkZ

in two different ways. On the one hand, thanks to the
properties of the Bell polynomials, for all k ∈ ⟦1,N⟧

∂Z

∂βk
= −
E (k) e−βkE(k)

N!

(
N
k

)
BN−k

((
e−β jE( j)

)
j∈⟦1,N−k⟧

)
(B.127)

On the other hand, for all k ∈ ⟦1,N⟧

∂Z

∂βk
=

∑
(i j) j∈⟦1,N⟧∈N

N∑N
j=1 ji j=N

−E (k) ik
N∏

j=1

e−β ji jE( j)

i j! ( j!)i j
(B.128)

=
∑

(i j) j∈⟦1,N⟧∈N
N∑N

j=1 ji j=N

−E (k) ikZP

 N⋂
j=1

(
n j = i j

) (B.129)

= −E (k)Z⟨nk⟩ (B.130)

thanks to equations (B.119) to (B.121) assuming that
for all j ∈ ⟦1,N⟧, β j = β. Therefore, using equa-
tions (B.127) and (B.130), it is possible to demonstrate
that for all k ∈ ⟦1,N⟧

⟨nk⟩ = e−βE(k)
BN−k

((
e−βE( j)

)
j∈⟦1,N−k⟧

)
BN

((
e−βE( j))

j∈⟦1,N⟧

) (
N
k

)
(B.131)

and then, using the previous equation for k = N, for all
k ∈ ⟦1,N⟧

⟨nk⟩ = ⟨nN⟩ eβ(E(N)−E(k))BN−k

((
e−βE( j)

)
j∈⟦1,N−k⟧

) (N
k

)
(B.132)

To simplify the calculation, it may be interesting to as-
sume that E (N) = 0 due to the fact it is an energy po-
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tential defined with an arbitrary constant, and to define
for all k ∈ ⟦1,N⟧,

zk =
⟨nN−k⟩

⟨nN⟩

(
N
k

)−1

(B.133)

to read in the end, for all k ∈ ⟦0,N − 1⟧,

zk = e−βE(N−k)Bk

((
e−βE( j)

)
j∈⟦1,k⟧

)
(B.134)

which is a concise way to write the problem. Neverthe-
less, trying to solve by hand the previous problem for
N = 3 or N = 4, it is blatant that the resolution needs
to find roots of polynomials with a maximum degree N,
which is analytically impossible for large values of N
like 10,000. There is hence an absolute need of numeri-
cal approximation to solve the previous problem.
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Appendix C
Testing latest artificial intelligence tools

The goal of the chapter is to experiment an
artificial intelligence tool on the content of
this manuscript to assess the quality of the
former.

Objectives

Le but de ce chapitre est d’expérimenter un
outil d’intelligence artificielle sur le contenu
de ce manuscrit afin d’en évaluer la qualité.

Objectifs

Contents
C.1 Introduction . . . . . . . . . . . . . . 101
C.2 Questions about chapter 1 . . . . . . . 101
C.3 Questions about chapter 2 . . . . . . . 105
C.4 Questions about chapter 3 . . . . . . . 107
C.5 Conclusion . . . . . . . . . . . . . . . 110

C.1 Introduction

From a pure curiosity point of view and to assess
the quality of trendy tools, I propose to ask an ar-
tificial intelligence tool specific questions about the
topic of this manuscript and to criticise the quality of
the answer using the content presented here. For in-
stance, I use ChatGPT (Chat Generative Pre-trained
Transformer)a, the artificial intelligence tool created
by the company OpenAI, which is used by more than
100 million users (figures from February 2023). As a
reminder, it is an algorithmic tool to generate texts
based on language and links found in the training
dataset. Being in the news because of its massive
use, its usefulness but also its detraction notably in
academic and professional circles, it seemed interest-
ing to us to criticize what an algorithm could think,
through its learning, of the tools that we proposed.

To help the reader to follow the reasoning, we
have splitted the text in three different groups :

ahttps://chat.openai.com/

The questions will be showed in a red box

The answers will be showed in a green box

The analysis will be showed in a blue box

C.2 Questions about chapter 1

The content of the discussion is available at this
link : https://chat.openai.com/share/4b00db
e7-f5fe-4417-a131-b4a981ca91a3
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Question 1. (Asked on 5 May 2023 at 9am) Give
me a state of the art of knowledge about micro-
scopic and macroscopic coupling in mechanics in
colloidal suspension.

Answer 1. Colloidal suspensions are mixtures of
particles ranging in size from nanometers to mi-
crometers, dispersed in a solvent. The behavior of
colloidal suspensions is influenced by both micro-
scopic and macroscopic factors, and understand-
ing the coupling between these factors is crucial
for predicting and controlling their mechanical
properties.

At the microscopic level, the behavior of in-
dividual particles in colloidal suspensions is in-
fluenced by Brownian motion, electrostatic inter-
actions, van der Waals forces, and steric effects.
These interactions determine the particle’s mo-
tion and orientation, as well as its interactions
with neighboring particles. The resulting mi-
crostructure of the suspension strongly affects its
mechanical properties.

At the macroscopic level, the mechanical be-
havior of colloidal suspensions is characterized
by its rheology, or flow properties. The rheol-
ogy of colloidal suspensions is influenced by the
microstructure of the suspension, as well as ex-
ternal factors such as temperature, pressure, and
shear rate. Understanding the coupling between
microstructure and rheology is crucial for predict-
ing the behavior of colloidal suspensions under
various conditions.

Recent advances in experimental and theo-
retical techniques have greatly enhanced our un-
derstanding of the coupling between microscopic
and macroscopic factors in colloidal suspensions.
For example, high-resolution imaging techniques
such as confocal microscopy and electron mi-
croscopy can provide detailed information about
the microstructure of suspensions. Computa-
tional methods such as molecular dynamics sim-
ulations and coarse-grained models can be used
to simulate the behavior of suspensions at the mi-
croscopic level and predict their rheological prop-
erties.

Overall, the state of the art in the study of mi-
croscopic and macroscopic coupling in mechan-
ics in colloidal suspensions involves a multidis-
ciplinary approach, combining experimental, the-
oretical, and computational techniques to gain a
comprehensive understanding of the complex be-
havior of these systems.

Analysis 1. The introduction is rather hollow but
does not use false declaration. The second para-
graph is perfectly true about forces and interac-
tions but lack a bit of details. For the third para-
graph, there is clearly a lack of details except the
fact that some factors have an influence. The
fourth paragraph is pretty accurate about exper-
imental and numerical methods even if I miss
some examples or other methods to compare. The
last paragraph is a poor conclusion without an
added value.

Question 2. Give me references for this state of
the art

Answer 2. a Here are some references that pro-
vide an overview of the state of the art in the study
of microscopic and macroscopic coupling in me-
chanics in colloidal suspensions:

• K. S. Schweizer and J. G. Curro, "Rheologi-
cal and structural properties of concentrated
colloidal suspensions," Annual Review of
Physical Chemistry, vol. 59, pp. 219-243,
2008.

• M. Laurati, "Mechanics of colloidal suspen-
sions: From microstructure to rheology,"
Journal of Physics: Condensed Matter, vol.
27, no. 10, p. 103102, 2015.

• S. U. Egelhaaf, "Mechanical properties of
colloidal suspensions," Current Opinion in
Colloid & Interface Science, vol. 8, no. 1,
pp. 34-40, 2003.

• P. R. Chaikin and T. C. Lubensky, Principles
of Condensed Matter Physics, Cambridge
University Press, 2000. [Chaikin, 1995]

• R. G. Larson, The Structure and Rheology
of Complex Fluids, Oxford University Press,
1999. [Larson, 1999]

• J. Mewis and N. J. Wagner, Colloidal Sus-
pension Rheology, Cambridge University
Press, 2012. [Mewis, 2012]

• W. B. Russel, D. A. Saville, and W. R.
Schowalter, Colloidal Dispersions, Cam-
bridge University Press, 1989. [Russel,
1989]

These references cover a range of topics re-
lated to the study of colloidal suspensions, in-
cluding microstructure, rheology, mechanics, and
computational modeling.
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Answer 2 (continued)
aThe hyperlink BibTEX bibliographic references were

added by me to have a proper reference in the bibliography.

Analysis 2. The list seems authentic and relevant
but some interesting things can be analysed :

• The first and the third references do not exist
at all.

• The second reference does not exist as it is
but the reference without the title and the au-
thor exists under [Huber, 2015] which is a
completely different article in terms of au-
thors and topic.

• The fourth reference exists but is slightly
wrong.

• The sixth, the seventh and the eight are cor-
rect.

• The fifth exists but does not really treat col-
loidal suspensions.

Hence, except books, it is not possible to rely on
this artificial intelligence tool to get a proper list
of reference.

Question 3. (Asked on 5 May 2023 at 12pm)
Write a state of the art of rheological models giv-
ing equations and references for each

Answer 3. a Rheological models are used to de-
scribe the relationship between the deformation
and stress in materials, including liquids, poly-
mers, and complex fluids. Here’s a state of the
art of some rheological models, along with their
equations and references:

Newtonian fluid model: The simplest and
most common rheological model is the Newto-
nian fluid model, which assumes that the viscos-
ity of a fluid is constant and does not depend on
the shear rate or stress. The relationship between
shear stress and shear rate is given by:

σ = ηγ̇ (C.1)

where σ is the shear stress, γ̇ is the shear rate,
and η is the viscosity. This model is often used to
describe low-viscosity fluids such as water or air.

Reference: R. B. Bird, R. C. Armstrong, and
O. Hassager, Dynamics of Polymeric Liquids,
Volume 1: Fluid Mechanics, John Wiley & Sons,
1987. [Bird, 1987]

Power-law fluid model: Many fluids, par-

Answer 3 (continued)
ticularly non-Newtonian fluids, exhibit shear-
thinning or shear-thickening behavior, where the
viscosity changes with the shear rate. The power-
law fluid model describes this behavior using the
following relationship:

σ = Kγ̇n (C.2)

where K is a constant, n is the flow behavior in-
dex, and γ̇ is the shear rate. This model is often
used to describe materials such as paints, slurries,
and food products.

Reference: H. A. Barnes, J. F. Hutton, and K.
Walters, An Introduction to Rheology, Elsevier,
1989.[Barnes, 1993]

Herschel-Bulkley fluid model: The Herschel-
Bulkley model extends the power-law model by
including a yield stress, below which the mate-
rial does not flow. The relationship between shear
stress and shear rate is given by:

σ = τ0 + Kγ̇n (C.3)

where τ0 is the yield stress. This model is often
used to describe materials such as drilling fluids,
muds, and concrete.

Reference: R. L. Tanner and F. N. Catchmark,
"Herschel-Bulkley flow in drilling fluids," Soci-
ety of Petroleum Engineers Journal, vol. 7, no. 3,
pp. 253-264, 1967.

Maxwell fluid model: The Maxwell fluid
model describes viscoelastic materials, which ex-
hibit both viscous and elastic behavior. The
model consists of a dashpot and spring in series,
and the relationship between stress and strain is
given by:

σ = µε + η
dε
dt

(C.4)

where µ is the viscosity, η is the elastic modu-
lus, ε is the strain, and dtε is the strain rate. This
model is often used to describe materials such as
polymers and biological fluids.

Reference: R. B. Bird, R. C. Armstrong, and
O. Hassager, Dynamics of Polymeric Liquids,
Volume 2: Kinetic Theory, John Wiley & Sons,
1987.[Bird, 1987]

Generalized Maxwell fluid model: The gen-
eralized Maxwell model extends the Maxwell
model by including multiple dashpots and springs
in series. The relationship between stress and
strain is given by:

σ = µε +
∑

i

(
ηi

dε
dt

)
i

(C.5)
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Answer 3 (continued)
0here µ is the viscosity, ηi is the elastic modu-
lus of the i-th spring, and dtεi is the strain rate of
the i-th dashpot. This model is often used to de-
scribe complex fluids such as emulsions and sus-
pensions.

Reference: E. W. Merrill and R. G. Larson,
"Constitutive equations for polymer melts and
concentrated solutions," Journal of Rheology, vol.
41, no

aThe hyperlink BibTEX bibliographic references were
added by me to have a proper reference in the bibliography.

Analysis 3. Starting with the Newtonian fluid
model in equation (C.1), it is indeed one of the
simplest model to list so it deserves to be the first
in the state of the art. The relationship is dis-
played and described correctly while giving rel-
evant examples. The reference exists properly.

For the power-law fluid in equation (C.2), it
is also a relevant sequel following the Newto-
nian fluid model. The relationship is displayed,
described and illustrated with examples properly.
I regret that the various behaviours like shear-
thinning and shear-thickening were not related to
the flow index n. The reference exists also and is
relevant.

For the Herschel-Bulkley fluid model in equa-
tion (C.3), the description, the relationship and
the examples are reported correctly. Nevertheless,
as before, the reference, because it is an article,
does not exist.

The Maxwell fluid model given in equa-
tion (C.4) shows a big confusion. Indeed, the
actual Maxwell fluid model exists and exhibits a
spring and a dashpot in series but does not ex-
press the relationship as in equation (C.4). Equa-
tion (C.4) is the relationship for the Kelvin-Voigt
model [Kelvin, 1890; Voigt, 1890] with a spring
and a dashpot in parallel. The actual relationship
for the Maxwell model is

σ

η
+

1
µ

dσ
dt
=

dε
dt
. (C.6)

Even if the source is correct, the restitution is
wrong.

The Generalized Maxwell model in equa-
tion (C.5) is consequently wrong due to the previ-
ous comments and the source is substantially non
existing.

Question 4. (Asked on 5 May 2023 at 12pm) Do
the same for rheological models more related to
colloidal suspensions

Answer 4. Sure, here’s a state of the art of some
rheological models that are more related to col-
loidal suspensions, along with their equations and
references:

1. Dynamic Yield Stress Fluid Model:

The dynamic yield stress fluid model is
used to describe the rheological proper-
ties of complex fluids, including colloidal
suspensions, which exhibit a yield stress.
The model describes the stress response of
the suspension using a Herschel-Bulkley-
like equation with the addition of a time-
dependent term:

σ = τy + Kγ̇n + η0
d
dt

(
γ̇

γ̇0

)m

(C.7)

where σ is the shear stress, τy is the yield
stress, K is a consistency index, γ̇ is the
shear rate, n is the flow behavior index, η0 is
a time constant, and γ̇0 is a reference shear
rate. The parameter m is related to the mag-
nitude of the time-dependent term.

Reference: A. Fall, Y. Zou, and J. M.
Chaikin, "Direct measurement of the yield
stress in a colloidal glass," Physical Review
Letters, vol. 98, no. 11, p. 118301, 2007.

2. Soft Glassy Rheology Model:

The soft glassy rheology model is used to de-
scribe the nonlinear viscoelastic behavior of
complex fluids, including colloidal suspen-
sions. The model assumes that the suspen-
sion is composed of soft particles that inter-
act through a repulsive potential. The rela-
tionship between the stress and strain rate is
given by:

σ = G∞γ +
G0

(1 + τ0γ̇)n (C.8)

where σ is the shear stress, γ is the strain
rate, G∞ is the high-frequency modulus, G0
is the low-frequency modulus, τ0 is a time
constant, and n is a nonlinear exponent.

Reference: S. H. Lee and S. R. Nagel, "Rhe-
ology of soft materials," Annual Review of
Condensed Matter Physics, vol. 1, no. 1, pp.
347-369, 2010.

3. Colloid Gel Model:

The colloid gel model is used to describe
the gelation behavior of colloidal suspen-
sions. The model assumes that the suspen-
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Answer 4 (continued)
sion consists of colloidal particles that inter-
act through a repulsive potential, leading to
the formation of a gel network. The relation-
ship between the stress and strain is given
by:

G(t) = G0

(
1 −

ϕ(t)
ϕc

)2

(C.9)

where G(t) is the time-dependent elastic
modulus, G0 is the initial elastic modulus,
ϕ(t) is the volume fraction of the gel, and ϕc

is the critical volume fraction at which the
gel forms.

Reference: P. Sollich, "Rheological consti-
tutive equation for a model of soft glassy ma-
terials," Physical Review E, vol. 58, no. 6,
pp. 738-759, 1998.

Analysis 4. This question is more technical but
is interesting to assess.

1. I was not able to properly find the Dynamic
Yield Stress Fluid Model. I cannot tell if
this is an actual model and if the mathemat-
ical expression in equation (C.7). The in-
teresting thing is that the description of the
equation (C.7) is clear and complete with the
Herschel-Bulkley model [Herschel, 1926a;
Herschel, 1926b] and the complement. As
usual, the source does not exist.

2. The Soft Glassy Rheology model exists and
is well described in [Sollich, 1997; Sollich,
1998] but is not associated to the descrip-
tion and the equation (C.8). The model in
equation (C.8) may actually exist but is to-
tally unrelated with the Soft Glassy Rheol-
ogy Model. The citation is, as usual for arti-
cles, not existing in the literature.

3. The Colloid Gel Model may exist but the
formulation of equation (C.9) is not linked
to this model as well as the reference of
[Sollich, 1998] which is actually linked to
the previous Soft Glassy Rheology Model.
Hence each information independently may
be interesting but their relationship is not rel-
evant.

In conclusion of this analysis, the artificial intelli-
gence tool ChatGPT may be very interesting for
having a first approach, but does not allow a com-
prehensive perspective of this field and, maybe,
other fields in general.

C.3 Questions about chapter 2

The content of the discussion is available at this
link : https://chat.openai.com/share/f02eae
5e-75cd-4744-b72e-32739bac2b78

Question 5. (Asked 12 April 2023 at 4pm) In the
context of colloidal suspension, can you give the
relationship between the adhesion number and the
Mason number ?

Answer 5. The adhesion number and the Mason
number are both dimensionless quantities used to
characterize colloidal suspensions. The adhesion
number (Ad) is a measure of the tendency of par-
ticles in a suspension to adhere to a surface, while
the Mason number (Ma) is a measure of the de-
gree of agitation or turbulence in the suspension.

The relationship between Ad and Ma depends
on the specific characteristics of the suspension,
but in general, a higher Ad corresponds to a
higher likelihood of particle adhesion to surfaces,
while a higher Ma corresponds to a greater de-
gree of mixing and dispersion of the particles in
the suspension.

In some cases, a higher Ad may lead to parti-
cle accumulation near surfaces, which can reduce
the effective Mason number and increase the like-
lihood of particle agglomeration or settling. In
other cases, a higher Ma may help to prevent par-
ticle adhesion by keeping the particles in suspen-
sion and preventing them from settling or accu-
mulating near surfaces.

In summary, while there is no simple formula
to relate Ad and Ma, they are both important
factors that can affect the behavior of colloidal
suspensions and should be carefully considered
when designing and analyzing colloidal systems.

It is true that the adhesion number and the
Mason number are two dimensionless quantities.
The fact that the adhesion number is the measure
of the tendency of the particle to adhere to a sur-
face is partly true because, here, it is more about
the adhesion between the particles. However, the
Mason number is not a measure of the degree of
agitation or turbulence in a suspension because,
normally, (i) there is no turbulence in such rhe-
ological applications and (ii) the agitation is di-
rectly related to the potential of interaction n the
sense that the depth of the potential well is usually
expressed in terms of thermal agitation.

It is true that the adhesion number and the
Mason number are two dimensionless quantities.
The fact that the adhesion number is the measure
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Answer 5 (continued)
of the tendency of the particle to adhere to a sur-
face is partly true because, here, it is more about
the adhesion between the particles. However, the
Mason number is not a measure of the degree of
agitation or turbulence in a suspension because,
normally, (i) there is no turbulence in such rhe-
ological applications and (ii) the agitation is di-
rectly related to the potential of interaction n the
sense that the depth of the potential well is usually
expressed in terms of thermal agitation.

Analysis 5. It is true that the adhesion number
and the Mason number are two dimensionless
quantities. The fact that the adhesion number is
the measure of the particle tendency to adhere to
a surface is partly true because, here, it is more
about the adhesion between the particles. How-
ever, the Mason number is not a measure of the
degree of agitation or turbulence in a suspension
because, normally, (i) there is no turbulence in
such rheological applications and (ii) the agitation
is directly related to the potential of interaction n
the sense that the depth of the potential well is
usually expressed in terms of thermal agitation.

The second paragraph is partly true but there
is no clear relationship expressed.

The third paragraph described roughly the
good phenomenology even if we are not inter-
ested in surfaces in general.

We were expecting to write Ad Ma = 1 which
is not the explicit answer received.

Question 6. (Asked on 12 April 2023 at 5pm)
Can you write a mathematical relationship be-
tween Ad and Ma ?

Answer 6. There is no single, universal mathe-
matical relationship between Ad and Ma that ap-
plies to all colloidal suspensions, as the specific
relationship depends on the physical and chem-
ical properties of the particles and the fluid in
which they are suspended.

However, for some specific systems, empiri-
cal relationships have been proposed to relate Ad
and Ma. One example is the following equation
proposed by Mason and Malinauskas for spheri-
cal particles:

Ad =
4πηaσg

3 (1 − ϕ) kBT
(C.10)

Ma =
ρa3ω2

ηD
(C.11)

Answer 6 (continued)
where η is the viscosity of the fluid, a is the par-
ticle radius, σg is the surface energy of the parti-
cles, ϕ is the volume fraction of the particles, kB is
the Boltzmann constant, T is the temperature, ρ is
the density of the fluid, ω is the angular velocity
of the agitation, and D is the diffusion coefficient
of the particles.

This equation can be used to explore the rela-
tionship between Ad and Ma for specific colloidal
systems, but it should be noted that it is only ap-
plicable to spherical particles and does not take
into account other factors that can affect the be-
havior of colloidal suspensions, such as particle
shape, charge, and interactions with the surround-
ing fluid.

Analysis 6. If we analyse equations (C.10)
and (C.11), we see that Ad has the unit of
kg.m−2.s−1 and Ma has the unit of m−1 which
are not dimensionless and contradicts the previ-
ous answer defining these two numbers.

Question 7. (Asked on 12 April 2023 at 6pm)
Can you prove mathematically that Ad =

4πηaσg/3 (1 − ϕ) kBT ?

Answer 7. The derivation of the equation Ad =
4πηaσg/3 (1 − ϕ) kBT for the adhesion number
involves several steps and assumptions based on
the DLVO theory. Here, I will provide a brief out-
line of the derivation, but please note that this is a
simplified summary and some of the details have
been omitted for brevity.

Consider two spherical particles of radius a,
separated by a distance h, in a fluid of viscosity
η and at a temperature T. The van der Waals in-
teraction energy between the particles can be ex-
pressed as:

Evdw = −
A

12πh2 (C.12)

where A is the Hamaker constant, which depends
on the material properties of the particles and the
surrounding medium.

The total interaction energy between the par-
ticles can be expressed as the sum of the van der
Waals energy and the repulsive electrostatic en-
ergy:

Etotal = Evdw + Eelectrostatic (C.13)

The electrostatic energy can be approximated
by the DLVO potential:

106



C

Appendix C. Testing latest artificial intelligence tools

Answer 7 (continued)

Eelectrostatic =
keZ2e2

h exp (κa)
(C.14)

where ke is the Coulomb constant, Z is the zeta
potential of the particles, e is the elementary
charge, κ is the Debye-Hückel screening param-
eter, and a is the particle radius.

The adhesion number Ad is defined as the ra-
tio of the van der Waals interaction energy to the
thermal energy (kBT ):

Ad = −
Evdw

kBT
(C.15)

Substituting the expression for Evdw and sim-
plifying, we obtain:

Ad =
4πηaσg

3 (1 − ϕ) kBT
(C.16)

where σg is the surface energy of the particles,
defined as:

σg =
9Aa
16π

(C.17)

The derivation of this equation involves sev-
eral assumptions and simplifications, and the re-
sulting equation is only applicable under cer-
tain conditions and for certain types of particles.
However, it provides a useful approximation for
the adhesion number and can be used to estimate
the tendency of particles to adhere to surfaces in
colloidal suspensions.

Analysis 7. Looking at the expression of the ad-
hesion number in equation (C.10) may ring com-
paring to previous studies we have shown. Nev-
ertheless, the factor 1−ϕ at the denominator does
not seem right regardless of the context. When we
ask the artificial intelligence to demonstrate this
expression, we find that the transition between
equations (C.15) and (C.16) is completely wrong
because ϕ and η did not play any role in the pre-
vious assumptions, π disappeared in the Van der
Waals energy expression, h2 = a2 moved to the
numerator and 12 became 4/3. Nevertheless, we
can acknowledge that the DLVO theory is prop-
erly described with the Van der Waals and the
electrostatic contribution taking into account the
Debye length.

I think that this is an interesting argument to
consider carefully some properties declared by ar-
tificial intelligence tools.

C.4 Questions about chapter 3

The content of the discussion is available at this
link : https://chat.openai.com/share/7d7a17
67-d5b5-4b24-8de4-43192f178c84

Question 8. (Asked on 1 May 2023 at 6pm) In
the context of colloidal suspensions, can you give
me mathematical scaling laws relating the storage
elastic modulus to the particle volume fraction ?

Answer 8. Yes, there are several mathematical
scaling laws that relate the storage elastic mod-
ulus (G′) of colloidal suspensions to the particle
volume fraction (ϕ). Here are some of the most
commonly used:

1. Einstein’s equation: This is a classical result
that relates the viscosity of a dilute suspen-
sion to the size and number density of the
suspended particles. By assuming that the
particles are small compared to the suspen-
sion volume, and that they move randomly
and independently of one another, Einstein
derived the following equation:

G′ =
kBTϕ
6πηa

(C.18)

where kB is the Boltzmann constant, T is the
absolute temperature, η is the viscosity of
the suspending medium, a is the radius of
the suspended particles, and ϕ is the volume
fraction of particles. This equation assumes
that the suspension is dilute and that the par-
ticles are non-interacting, so it is only valid
for very low ϕ.

2. Scaling law for attractive suspensions:
When particles are attracted to one another,
they can form clusters or aggregates that af-
fect the rheological properties of the suspen-
sion. In this case, the storage modulus can
be related to the particle volume fraction by
the following scaling law:

G′ ∼ ϕn (C.19)

where n is a power law exponent that de-
pends on the strength and range of the in-
terparticle attraction. For weakly attractive
or short-range interactions, n is typically
around 2. For strongly attractive or long-
range interactions, n can be as high as 4.

3. Jamming transition: At high particle volume
fractions, colloidal suspensions can undergo
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Answer 8 (continued)
a jamming transition, where the particles be-
come tightly packed and the system transi-
tions from a liquid-like to a solid-like state.
Near the jamming point, the storage modu-
lus can be related to the distance from the
critical volume fraction (ϕc) by the follow-
ing scaling law:

G′ ∼ |ϕ − ϕc|
a (C.20)

where a is a critical exponent that character-
izes the behavior of the system near the jam-
ming point. The value of a depends on the
details of the interparticle interactions, but it
is typically between 0.5 and 1.5.

These scaling laws are useful for understand-
ing the behavior of colloidal suspensions as a
function of particle volume fraction, and can help
predict their rheological properties in different
regimes. However, it’s important to keep in mind
that these laws are based on simplifying assump-
tions and may not be exact for all systems.

Analysis 8. If I start step by step to analyse the
answer there are some valid statements and some
wrong declarations :

1. About equation (C.18), this looks very simi-
lar to the Stokes-Einstein relationship at low
Reynolds number with Brownian particles.
However, it is only resemblance due to the
fact that the right side of equation (C.18) has
the unit kg.m−1.s−2 where as the left side has
the unit m2.s−1. The correct Stokes-Einstein
relationship is

D =
kBT
6πηa

(C.21)

with D the diffusion coefficient of the parti-
cles.

2. About equation (C.19), this one is really
close to what is studied in this manuscript
and actually rather valid so I will dig further
about this notion in the next question.

3. About equation (C.20), this relationship is
also relatively true in the sense that close
to the jamming point most of the interesting
quantities depends on a power-law relation-
ship between the quantity and the distance of
the variable of control from the value of this
variable at the critical point, in this case the
particle volume fraction. I cannot comment

Analysis 8 (continued)
on the value of the exponent because it is not
the focus of this manuscript but it seems rea-
sonable to me.

I agree also with the concluding remarks on the
fact that it helps for predictions but rely on simpli-
fying assumptions that should be well understood
before applying blindly.

Question 9. (Asked 1 May 2023 at 7pm) On
which parameters n depends ? Give an analyti-
cal expression of this dependence

Answer 9. The power law exponent n in the scal-
ing law for attractive suspensions, G′ ∼ ϕn, de-
pends on the strength and range of the interparti-
cle attraction. There is no general analytical ex-
pression for n that holds for all types of interpar-
ticle interactions, but for some specific cases, it is
possible to derive an expression for n.

For example, in the case of hard-sphere-like
repulsions and short-range attractions, the expo-
nent n can be expressed analytically as:

n = 2 +
9π
16

(
σ

a

)2
(1 − ϵ)−2 (C.22)

where σ is the diameter of the particles, a is the
range of the attraction, ϵ is the depth of the at-
traction potential in units of kBT , and kBT is the
thermal energy. This expression is derived from
a perturbative expansion of the pair distribution
function of the particles, and it assumes that the
attractions are weak compared to the repulsions.

For other types of interactions, such as elec-
trostatic repulsions or van der Waals attractions,
the exponent n may have a different functional
form, and an analytical expression may not be
available. In general, the value of n can be de-
termined empirically from rheological measure-
ments of the suspension as a function of particle
volume fraction.

Analysis 9. In comparison with the content ex-
posed in chapter 3, there is no dependence on
the exponent n on the fractal dimension of aggre-
gates. I was not able to find the analytical expres-
sion of equation (C.22) thus I cannot assess the
quality of the expression nor the relevance in the
case of a hard-sphere suspension.

Question 10. (Asked on 1 May 2023 at 7pm)Is
there a dependence of n on the fractal dimension?
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Appendix C. Testing latest artificial intelligence tools

Question 10 (continued)
If yes, give the mathematical expression

Answer 10. Yes, in the case of attractive suspen-
sions where the particles form fractal aggregates,
the power law exponent n can depend on the frac-
tal dimension of the aggregates. The fractal di-
mension (D f ) is a measure of how much space
the aggregates fill up, and it can be related to the
particle volume fraction by the following scaling
law:

ϕ ∼ R−D f (C.23)

where R is the characteristic radius of the aggre-
gates.

The relationship between the fractal dimen-
sion and the power law exponent n depends on the
details of the interparticle interactions, and there
is no general expression that holds for all cases.
However, for some specific types of interactions,
it is possible to derive an expression for n in terms
of D f .

For example, in the case of diffusion-limited
cluster aggregation (DLCA) where the aggregates
form by random sticking of particles, the expo-
nent n can be related to the fractal dimension by
the following expression:

n =
D f + 1

3
(C.24)

This expression assumes that the interparti-
cle attraction is short-ranged and that the aggre-
gates are large compared to the particle size. For
other types of interactions or aggregate formation
mechanisms, the relationship between n and D f

may be different.

Analysis 10. The relationship of equation (C.23)
is wrong because the usual assumption of mod-
els relating rheological quantities to microscopic
structure [Shih, 1990; Wu, 2001; Mellema, 2002]
is, with the same notations,

ϕ ∝ RD f−dim. (C.25)

Hence, it is totally misleading even if the spirit
is the same. Also, I have tried to overcome the
previous assumption in chapter 3. About equa-
tion (C.24), from all the usual models, there is
no dependence of the numerator of the exponent
n on the fractal dimension D f but on the chemi-
cal dimension d instead. The denominator should
also show a difference between dim and D f as re-
ported in [Bouthier, 2022]. Finally, the Diffusion
Limited Cluster Aggregation does not have any

Analysis 10 (continued)
impact on the mechanics: it has an impact on the
value of the fractal dimension D f but not on the
relationship between the storage modulus G′ and
the particle volume fraction.

Question 11. (Asked on 6 June 2023 at 11am)
Can you demonstrate n =

(
D f + 1

)
/3 ?

Answer 11. Certainly! I can demonstrate the
relationship between the power law exponent n
and the fractal dimension D f for diffusion-limited
cluster aggregation (DLCA).

In DLCA, particles randomly move in space,
and when they come into contact, they stick to-
gether to form aggregates. The aggregates grow
through the random sticking of particles, resulting
in a fractal structure. The fractal dimension D f

characterizes the space-filling properties of these
aggregates.

To relate the fractal dimension to the power
law exponent, we start with the assumption that
the storage modulus G′ scales with the particle
volume fraction ϕ according to the power law:

G′ ∼ ϕn (C.26)

Next, we use the scaling relation between the
particle volume fraction and the aggregate size R:

ϕ ∼ R−D f (C.27)

Taking the logarithm of both sides, we have:

ln (ϕ) ∼ −D f ln (R) (C.28)

Now, let’s differentiate both sides of the equa-
tion with respect to ln (R) (keeping in mind that
ln (R) is related to the fractal dimension):

d ln (ϕ)
d ln (R)

= −D f (C.29)

Next, we differentiate the power law relation
G′ ∼ ϕn with respect to ln (R):

d ln (G′)
d ln (R)

= n (C.30)

Now, we can substitute the expression for
dln(R) ln (ϕ) into the equation above:

d ln (G′)
d ln (R)

= −D f (C.31)
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Answer 11 (continued)
This gives us:

n = −D f (C.32)

Finally, we rearrange the equation to get n in
terms of D f :

n =
D f + 1

3
(C.33)

This demonstrates the relationship between
the power law exponent n and the fractal dimen-
sion D f for diffusion-limited cluster aggregation
(DLCA).

It’s important to note that this relationship
holds specifically for DLCA, and for other types
of interactions or aggregate formation mecha-
nisms, the relationship between n and D f may be
different.

Analysis 11. I think that no further comments are
needed for both assumptions and demonstration.

C.5 Conclusion

To summarise this chapter, we have shown that on
our specific topic some general information may have
been caught by the artificial intelligence but some
basic contradictions undermined the answers which
gives in the end a very poor quality results. The crit-
ical mind is then absolutely necessary to filter the in-
formation. We are not criticising all the efforts made
to build such an artificial intelligence tools but we
clearly warn the reader that, even if it might be useful
to introduce a topic, a sound expertise is still needed
to properly catch the right information.
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MOTS CLÉS

Suspension colloïdale, Rhéologie, Aggrégats fractales

RÉSUMÉ

Les suspensions colloidales, le couplage entre l’environnement, la structure microscopique et la rhéologie sont étudiées
dans ce manuscrit. Ce travail utilisera majoritairement un point de vue théorique mais fera intervenir aussi des approches
expérimentales et numériques. Caractérisées par des agrégats de particules formés grâce à un potentiel d’interaction
attractif, ces suspensions peuvent être soumises à une sollicitation externe sous forme d’ultrasons, de cisaillement ou
tout autre forme mécanique. Les agrégats répondent à cette sollicitation en adaptant leur microstructure, notamment en
taille.
Par ailleurs, cette même microstructure est la brique élémentaire transmettant les efforts de part et d’autre d’un gel
colloidal, ce qui peut se traduire par des lois d’échelles entre la microstructure et la rhéologie macroscopique.
Par conséquent, on observe un couplage fort entre l’échelle macroscopique, composée de l’environnement extérieur et la
réponse rhéologique, et l’échelle microscopique, avec la structure microscopique s’adaptant et influençant l’échelle précé-
dente. C’est ainsi qu’il est possible de construire un outil d’application industriel incorporant cette description physique
afin de prédire les effets d’une sollicitation externe sur un matériau la vérifiant.

ABSTRACT

Colloidal suspensions, the coupling between environment, microscopic structure and rheology are studied in this
manuscript. This work will mainly use a theoretical point of view but will also involve experimental and numerical ap-
proaches. Characterized by aggregates of particles formed thanks to to an attractive interaction potential, these suspen-
sions can be subjected to an external solicitation in the form of ultrasound, shear or any other mechanical form. The
aggregates respond to this solicitation by adapting their microstructure, especially in size.
Moreover, this same microstructure is the elementary brick transmitting the efforts on both sides of a colloidal gel, which
can be recovered by laws of scale between the microstructure and the macroscopic rheology.
Therefore, we observe a strong coupling between the macroscopic scale, composed of the external environment and the
rheological response, and the microscopic scale, with the microscopic structure adapting and influencing the previous
scale. It is thus possible to build an industrial application tool incorporating this physical description in order to predict the
effects of an external stress on a material verifying it.

KEYWORDS

Colloidal suspension, Rheology, Fractal clusters
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