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Résumé

Ce travail de thèse est dédié à l’étude des statistiques du nombre et corrélations en impul-
sion dans des gaz de Bose sur réseaux interagissants. Le modèle de Bose-Hubbard est simulé
en chargeant des condensats de Bose-Einstein (BEC) d’atomes d’Hélium-4 métastables dans un
réseau optique tridimensionnel (3D). Ce modèle présente une transition de phase quantique
d’un superfluide à un isolant de Mott induite par des fluctuations quantiques provoquées par
l’interaction. L’objectif de ce travail est de comprendre le rôle de ces fluctuations quantiques en
analysant leurs signatures dans l’espace des impulsions. Le schéma de détection original uti-
lisé à cette fin fournit la distribution d’impulsion résolue à l’échelle de l’atome unique en 3D.
À partir de ces jeux de données composés de milliers d’atomes individuels, les statistiques du
nombre d’occupation de différents sous-volumes de l’espace des impulsions fournissent des
informations sur les propriétés de corrélation ou de cohérence du gaz de Bose interagissant.
À impulsions proches, ces probabilités d’occupation permettent l’identification de statistiques
d’état pur sous-jacentes dans le cas d’états many-body classiques tels que les superfluides en
réseau et les isolants de Mott. Dans le régime faiblement interagissant, des corrélations bien
établies entre les paires d’atomes à impulsions opposées sont observées. De plus, on constate
que ces corrélations entre paires diminuent en faveur de corrélations plus complexes entre plus
de deux particules lorsque les interactions sont augmentées. Une observation directe de corré-
lations non-Gaussiennes encapsule la nature statistique complexe des superfluides fortement
interagissants bien en amont de la transition de phase vers l’isolant de Mott. Enfin, lors de la
transition de phase, on constate une augmentation des fluctuations du nombre d’occupation du
mode du BEC, constituant une signature directe des fluctuations quantiques induisant la tran-
sition. Des quantités indépendantes de la taille du système, telles que le cumulant de Binder,
présentent des variations abruptes même dans un système de taille finie et semblent promet-
teuses pour constituer des observables appropriés permettant de déterminer le comportement
universel lorsqu’elles sont mesurées dans un système homogène.

Avec l’avènement de la mécanique quantique au début du 20e siècle, les physiciens en sont
5



6
venus à considérer la lumière et la matière sur un pied d’égalité. De Broglie a énoncé pour la
première fois le concept de dualité onde-particule en 1924 [1]. Après que Bose a dérivé la distri-
bution de Planck pour les photons sur la base de l’hypothèse des quanta de lumière [2], Einstein
a utilisé son résultat pour dériver une théorie quantique du gaz de Bose idéal, prédisant une
condensation des atomes dans l’état fondamental en dessous d’une température critique [3]. Il
a fallu presque tout le reste du siècle pour que la technologie laser et les techniques de refroidis-
sement [4–6] progressent suffisamment pour permettre les premières réalisations expérimen-
tales de la condensation de Bose-Einstein [7, 8]. Depuis, les expériences sur les gaz quantiques
ont progressé et sont maintenant régulièrement capables d’atteindre la dégénérescence quan-
tique, un régime caractérisé par une longueur d’onde de Broglie λdB des atomes de l’ordre de
la distance interparticulaire moyenne, nλ3dB ∼ 1, avec n la densité du gaz et λdB croissant inver-
sement avec la température et la masse de la particule. Dans une telle situation, le caractère
ondulatoire des particules massives devient crucial et les effets de la mécanique quantique do-
minent. Ces expériences ont ouvert la voie au domaine de la simulation quantique.

Simulation quantique

Les systèmes présents dans la nature sont généralement constitués d’un grand nombre de
particules en interaction et sont souvent caractérisés par des phénomènes complexes qui ré-
sultent de l’interaction complexe de ces interactions entre leurs composants. Étant donné la
faible masse de l’électron, les systèmes de matière condensée ont tendance à entrer dans cette
catégorie, car leur densité de particules peut être suffisamment élevée pour atteindre la dé-
générescence quantique, même à température ambiante. Les systèmes d’électrons fortement
corrélés dans la matière condensée présentent des phénomènes émergents tels que la supra-
conductivité [9] ou la physique de Hall quantique [10]. Les grands ensembles de nombreux corps
sont notoirement difficiles à décrire exactement, car la taille de l’espace de Hilbert associé croît
de façon exponentielle avec le nombre de degrés de liberté, ce qui met souvent le calcul de la
fonction d’onde de nombreux corps hors de portée des ordinateurs classiques. Les approches
de champ moyen qui remplacent l’effet des interactions particule-particule par un effet d’in-
teraction moyen offrent un équilibre entre la précision et la faisabilité informatique, mais sont
incapables de capturer les corrélations et fluctuations quantiques complexes [11–13].
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Une solution possible à ce problème remonte à une suggestion de Feynman [14], qui a pro-
posé d’utiliser un système quantique sous contrôle presque parfait pour imiter et simuler le
comportement d’un second système quantique intéressant. Dans ces situations, les expériences
peuvent montrer la voie et simuler des problèmes quantiques trop complexes pour être réso-
lus numériquement [15]. Grâce au contrôle précis des paramètres microscopiques tels que le
paysage énergétique ou les interactions dans le système, ainsi qu’à la capacité de mesurer de
nombreuses observables d’intérêt, la boîte à outils que représentent les ensembles d’atomes
ultrafroids s’est avérée constituer un banc d’essai bien adapté pour cartographier des hamilto-
niens complexes [16].

Interactions et transitions de phase quantiques

Malgré la percée dans le domaine des atomes ultrafroids qui a été réalisée par la mise au
point des premiers condensats de Bose-Einstein (BEC), ces systèmes peuvent difficilement être
considérés comme des "nombreux corps" du point de vue de la mécanique quantique, puisque
presque tous les atomes se trouvent dans le même état quantique décrit par une fonction
d’onde macroscopique. La possibilité de simuler des transitions de phase quantiques avec des
ensembles d’atomes ultrafroids permet l’étude expérimentale d’assemblages d’atomes qui sont
véritablement "à plusieurs corps", dans le sens où, malgré l’hypothèse réductionniste de pou-
voir tout ramener à des lois fondamentales, l’inverse ne s’applique pas : Ces systèmes sont ca-
ractérisés par des phénomènes émergents qui résultent uniquement de l’interaction de grands
ensembles de particules en interaction qui ne peuvent être décrits sur la base des lois fonda-
mentales pour les seuls constituants individuels. Dans les systèmes où les interactions entre les
particules dominent leurs énergies cinétiques individuelles, l’interaction entre les particules peut
devenir si dominante que des états quantiques fortement corrélés émergent.

L’un des hamiltoniens les plus simples d’un point de vue conceptuel, mais qui contient néan-
moins des caractéristiques complexes denombreux corps quantiques, est l’hamiltoniendeBose-
Hubbard, qui décrit des particules dans un paysage potentiel périodique avec deux échelles
d’énergie concurrentes : Le couplage tunnel J entre les sites adjacents, et l’interaction sur site U
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de deux particules partageant le même site. Le système subit une transition de phase quantique
d’un superfluide à un isolant de Mott à une valeur critique de U/J qui a été observée expéri-
mentalement dans l’une des premières mises en œuvre réussies de la simulation quantique [17]
après sa proposition [18], en utilisant des treillis optiques pour simuler le paysage potentiel pé-
riodique [19]. La transition de phase de l’isolant de Mott est induite par des interactions et des
fluctuations quantiques, et constitue donc un type de transition de phase fondamentalement
différent de celles induites par un paramètre thermodynamique externe et des fluctuations de
température.

Fluctuationsquantiques et corrélationsdenombreux corpsdans l’espacedesquan-

tités de mouvement

Les corrélations dans les systèmes à plusieurs corps sont généralement le résultat de la
non-commutabilité des parties de l’hamiltonien, par exemple la partie d’interaction qui ne com-
mute pas avec la partie de non-interaction. Elles s’accompagnent de fluctuations quantiques
lorsque la partie du hamiltonien qui interagit ne commute pas avec la partie qui n’interagit pas,
ce qui entraîne une compétition entre les deux échelles d’énergie associées qui peut induire une
transition de phase quantique, c’est-à-dire une transition dans l’état fondamental du système à
plusieurs corps qui n’est pas déterminée par la température. Dans le cas du modèle de Bose-
Hubbard, cette transition sépare un état fondamental conducteur d’un état fondamental isolant.
Il est donc naturel d’examiner cette transition de phase dans l’espace des quantités de mouve-
ment. Dans les expériences, on peut y parvenir en désactivant le piège qui maintient le système
en place et en le laissant tomber sous l’effet de la gravité pendant un temps suffisamment long.
Les particules ayant une vitesse initiale élevée seront plus éloignées du centre après la chute
libre, ce qui permet d’établir une correspondance entre la position après l’expansion et la distri-
bution de la quantité de mouvement dans le piège [17,20,21].

Les corrélations peuvent coder unemultitude d’informations sur l’état du système. Dans cer-
taines circonstances, elles peuvent même présenter des statistiques similaires à celles des états
purs, ce qui n’est pas évident dans une expérience réelle. L’émergence de corrélations à partir
de l’interaction des interactions et de l’énergie cinétique est l’un des aspects centraux de l’in-
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térêt et de l’étude de l’expérience sur le treillis d’hélium au LCF. Dans le cas de la physique de
Bose-Hubbard, le régime d’interaction faible est caractérisé par des corrélations de paires entre
atomes à des moments opposés [22, 23]. L’augmentation des interactions au-delà du domaine
des fluctuations quantiques linéarisées devrait produire des corrélations plus complexes, car
les paires corrélées sont brisées dans des processus d’interaction d’ordre supérieur. L’augmen-
tation continue des interactions permet de réaliser la transition de phase d’un superfluide à un
isolant de Mott. Dans le régime critique quantique, on s’attend à des fluctuations accrues résul-
tant des fluctuations quantiques à l’origine de la transition. L’étude de ces sujets est au cœur des
travaux de recherche présentés dans ce manuscrit.

Statistiques numériques et détection d’atomes uniques en trois dimensions

Les plateformes d’atomes froids ont mis en œuvre avec succès une variété de techniques
d’imagerie destructives et non destructives. Les microscopes à gaz quantique résolus en un
seul site sont capables de détecter des particules uniques dans des dimensions inférieures à
trois [24–27]. En trois dimensions (3D), cependant, les expériences reposant sur l’interaction des
atomes avec la lumière pour sonder les atomes sont soumises à l’intégration de la ligne de visée
des caméras et nécessitent généralement de nombreux photons par atome pour atteindre une
force de signal suffisante. Pour évaluer les signaux de corrélation à corps multiples entre plu-
sieurs particules, il est nécessaire d’observer la dynamique de chaque composant individuel au
sein du système [28–30], ce qui implique en principe unemesure de la distribution complète des
particules dans le degré de liberté considéré. Cela constitue un formidable défi dans le cas des
systèmes 3D, où la détection d’une seule particule n’est pas réalisable par des moyens optiques.

Pour contourner ce problème, cette expérience utilise de l’héliummétastable comme espèce
atomique, ce qui permet une détection électronique dans le champ lointain puisque son éner-
gie interne est suffisante pour qu’un seul atome arrache un électron d’une plaque métallique ;
une technologie développée à l’Institut d’Optique au début dumillénaire [31]. Avec une efficacité
quantique du détecteur de η = 53(2)%, la précision des mesures du nombre d’atomes dans l’es-
pace des quantités de mouvement est suffisante pour que la densité moyenne des quantités de
mouvement s’étende sur quatre ordres de grandeur en amplitude. Elle permet également d’ac-
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céder à la distribution d’occupation complète dans l’espace des quantités de mouvement pour
les grands systèmes de 103 − 105 atomes, ce qui permet d’analyser les moments d’ordre supé-
rieur au-delà de la moyenne et de la variance et constitue un atout inestimable dans l’analyse
des corrélations quantiques à partir des statistiques de nombre de l’état préparé.

Ce manuscrit est divisé en quatre chapitres : Le chapitre 2 présente le dispositif expérimen-
tal. Les séquences de refroidissement et de piégeage sont décrites et conduisent à la production
de BECs avec des temps de cycle aussi bas que quatre secondes. La configuration du réseau op-
tique et le schéma de détection électronique sont détaillés, ainsi que le système de surveillance
du laboratoire récemment mis en place qui a permis une surveillance continue de l’équipement
expérimental critique et des conditions de la salle de laboratoire à partir de n’importe quel en-
droit. Les trois chapitres suivants sont consacrés aux résultats expérimentaux obtenus dans le
cadre de l’expérience sur le réseau d’hélium : Dans le chapitre 3, le sort du signal de corrélation
de paires de Bogoliubov [22] qui caractérise le régime d’interaction faible des gaz de Bose [23]
est examiné dans le contexte d’interactions plus fortes. Il s’avère que le signal d’appariement est
supprimé avec l’augmentation des interactions en faveur de corrélations plus complexes entre
plus de deux particules, signalant le début du régime fortement corrélé. Une observation directe
d’un cumulant de quatre opérateurs non nul lors d’interactions fortes est présentée, constituant
une signature directe de corrélations non gaussiennes [32]. Le chapitre 4 présente une analyse
des statistiques de comptage complet des gaz de treillis en interaction préparés dans l’expé-
rience. Les états quantiques à grand nombre de corps emblématiques tels que les BEC de réseau
et les isolants de Mott sont caractérisés par leurs propriétés de cohérence à grand nombre de
corps lorsqu’ils sont sondés dans de petits volumes de l’espace des quantités de mouvement
après une expansion. Le rôle de l’appauvrissement du condensat est mis en évidence dans les
petites déviations des statistiques de Poisson pour les BEC à partir des corrélations normalisées
à distance nulle jusqu’au sixième ordre. Enfin, le chapitre 5 présente une analyse des fluctua-
tions des paramètres d’ordre du condensat mesurées à travers la transition de phase de l’isolant
de Mott. Ces fluctuations, mesurées via le nombre d’occupation du condensat, sont renforcées
vers la transition de phase, présentant un pic d’amplitude ∆N0 ∼

√
⟨N⟩ incompatible avec le

bruit expérimental modélisé, reflétant les observations faites dans le contexte de la transition
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de condensation du gaz normal [33,34]. En outre, le cumulant de Binder est extrait pour sonder
les propriétés statistiques du paramètre d’ordre BEC et il s’avère qu’il présente une forte varia-
tion à la transition de phase, ce qui ouvre la voie à l’analyse de la mise à l’échelle de la taille finie
dans les systèmes homogènes. Les annexes contiennent des informations supplémentaires sur
les thèmes de la statistique et de la programmation.
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1 - Introduction

With the advent of quantummechanics at the beginning of the 20th century, physicists came
to see light and matter on a similar footing. De Broglie first stated the concept of wave particle
duality in 1924 [1]. After Bose derived the Planck distribution for photons based on the hypothe-
sis of light quanta [2], Einstein used his result to derive a quantum theory of the ideal Bose gas,
predicting a condensation of the atoms into the ground state below a critical temperature [3]. It
took nearly the entire remainder of the century for laser technology and cooling techniques [4–6]
to advance sufficiently to enable the the first experimental realizations of Bose-Einstein conden-
sation [7, 8]. Ever since, quantum gas experiments have been on the advance, and are now
routinely able to reach quantum degeneracy; a regime characterized by a de Broglie wavelength
λdB of the atoms on the order of the average interparticle distance, nλ3dB ∼ 1, with n the density
of the gas and λdB growing inversely with temperature and particle mass. In such a situation
the wave-like character of massive particles becomes crucial and quantum mechanical effects
dominate. Such experiments have opened the door for the field of quantum simulation.

Quantum simulation

Systems that occur in nature are typically made up of large numbers of interacting particles
and are often characterized by complex phenomena that emerge based on the intricate interplay
of these interactions among their components. Given the small mass of the electron, condensed
matter systems tend to fall into this category, since their particle density can be sufficiently high
to reach quantum degeneracy even at ambient temperature. Strongly-correlated electron sys-
tems in condensed matter exhibit emergent phenomena such as superconductivity [9] or quan-
tum Hall physics [10]. Large many-body ensembles are notoriously difficult to describe exactly,
since the size of the associated Hilbert space grows exponentially with the number of degrees of
freedom, often putting the calculation of the many-body wavefunction out of reach of classical
computers. Mean-field approaches that replace the effect of particle-particle interactions with
an average interaction effect provide a balance between accuracy and computational feasibility,
but are unable to capture complex quantum correlations and fluctuations [11–13].

17



18 CHAPTER 1. INTRODUCTION

One possible solution to this problemdates back to a suggestion by Feynman [14], who proposed
making use of one quantum system under near-perfect control to mimick and simulate the be-
havior of a second quantum system of interest. In those situations experiments can lead the
way and simulate quantum problems too complex to solve numerically [15]. With their precise
control over microscopic parameters such as the energy landscape or interactions in the sys-
tem, as well as the ability to measure many observables of interest, the toolbox represented by
ensembles of ultracold atoms has proven to constitute a well-suited testbed onto which to map
complex Hamiltonians [16].

Interactions and quantum phase transitions

Despite the breakthrough in the field of ultracold atoms that was delivered by the realiza-
tion of the first Bose-Einstein condensates (BECs), these systems can hardly be considered to
be "many-body" from a quantum mechanical point of view, since nearly all the atoms are in
the same quantum state described by a macroscopic wavefunction. The possibility to simulate
quantum phase transitions with ensembles of ultracold atoms enables the experimental study
of assemblies of atoms that are truly "many-body" [35] in the sense that, despite the reductionist
hypothesis of being able to break everything down to fundamental laws, the inverse does not
apply: These systems are characterized by emergent phenomena that arise solely from the in-
terplay of large ensembles of interacting particles that cannot be described on the basis of the
fundamental laws for the individual constituents alone. In systems where interactions between
particles dominate over their individual kinetic energies, the interplay between the particles can
become so dominant that strongly correlated quantum states emerge.

One of the conceptually simplest Hamiltonians that hosts nonetheless complex quantum
many-body features is the Bose-Hubbard Hamiltonian, which describes particles in a periodic
potential landscape with two competing energy scales: The tunnel coupling J between adjacent
sites, and the onsite interactionU of two particles sharing the same site. The systemundergoes a
quantum phase transition from a superfluid to aMott insulator at a critical value of U/J that was
observed experimentally in one of the first successful implementations of quantum simulation
[17] following its proposal [18], using optical lattices to simulate the periodic potential landscape
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[19]. The Mott insulator phase transition is induced by interactions and quantum fluctuations,
and thereby constitutes a fundamentally different type of phase transition than those induced
by an external thermodynamic parameter and temperature fluctuations.

Quantum fluctuations and many-body correlations in momentum space

Correlations in many-body systems are typically the result of non-commutating parts of the
Hamiltonian, e.g. the interaction part not commutating with the non-interacting part. They are
accompanied by quantum fluctuations when the interacting part of the Hamiltonian does not
commute with the non-interacting part, leading to a competition between the two associated
energy scales that can induce a quantum phase transition, i.e. a transition in the many-body
ground state of the system that is not driven by temperature.
In the case of the Bose-Hubbardmodel, this transition separates a conducting from an insulating
ground state. It is therefore a natural setting to examine this phase transition in momentum
space. In experiments this can be achieved by switching off the trap holding the system in place
and letting it fall under gravity for a sufficiently long time. Particles with high initial speed will
be further from the center after the free fall, mapping the position after the expansion onto the
momentum distribution in the trap [17,20,21].
Correlations can encode amultitude of information about the state of the system. Under specific
circumstances, they can even exhibit statistics similar to those of pure states; a feat that is not
obvious in any real experiment.
The emergence of correlations from the interplay of interactions and kinetic energy is one of the
central aspects of interest and study of the Helium Lattice experiment at LCF. In the case of Bose-
Hubbard physics, the weakly-interacting regime is characterized by pair correlations between
atoms at opposite momenta [22, 23]. Increasing the interactions beyond the realm linearized
quantum fluctuations is expected to produce more complex correlations as the correlated pairs
are broken up in higher-order interaction processes. Continuing to increase the interactions
results in realizing the phase transition from a superfluid to a Mott insulator. In the quantum
critical regimeenhancedfluctuations are expected as a result of the quantumfluctuations driving
the transition. The investigation of these topics is at the heart of the research work presented in
this manuscript.
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Number statistics and single atom detection in three dimensions

Cold atom platforms have successfully implemented a variety of both destructive and non-
destructive imaging techniques. Single-site resolvedquantumgasmicroscopes are able to achieve
single particle detection in dimensions lower than three [24–27]. In three dimensions (3D), how-
ever, experiments relying on the interaction of atoms with light to probe the atoms are subject
to the line-of-sight integration of the cameras and typically require many photons per atom to
achieve sufficient signal strength.
To assess many-body correlation signals among multiple particles, it is necessary to observe the
dynamics of each individual component within the system [28–30], implying in principle a mea-
surement of the full particle distribution in the considered degree of freedom. This constitutes
a formidable challenge in the case of 3D systems, where single-particle detection is not feasible
by optical means.
To circumvent this issue, this experiment uses metastable Helium as atomic species, which al-
lows for electronic detection in the far field since its internal energy is sufficient for a single atom
to strike out an electron of a metal plate; a technology developed at Institut d’Optique at the
beginning of the millennium [31]. With a quantum efficiency of the detector of η = 53(2)% the
ensuing precision on measurements of the atom number in momentum space is sufficient for
the average momentum density to span four orders of magnitude in amplitude. It also provides
access to the full occupation distribution in momentum space for large systems of 103 − 105

atoms, enabling the analysis of higher order moments beyond mean and variance and consti-
tuting an invaluable asset in the analysis of quantum correlations from the number statistics of
the prepared state.

Outline of the manuscript

This manuscript is divided into four chapters:
— In chapter 2 the experimental apparatus is presented. The cooling and trapping sequences

are outlined that lead to the production of 4He∗ BECs cycle times as lows as four sec-
onds. The optical lattice setup and electronic detection scheme are detailed, as well as
the newly-implemented lab monitoring system that has enabled continuous surveillance
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of critical experimental equipment and lab room conditions from anywhere.

The following three chapters are dedicated to experimental results achieved on the Helium Lat-
tice experiment:

— In chapter 3 the fate of Bogoliubov’s pair correlation signal [22] that characterizes the
weakly-interacting regime of Bose gases [23] is examined in the context of stronger inter-
actions. The pairing signal is found to be suppressed with increasing interactions in favor
of more complex correlations between more than two particles, signaling the onset of
the strongly correlated regime. A direct observation of a non-zero four-operator cumu-
lant at strong interactions is presented, constituting a direct signature of non-Gaussian
correlations [32].

— In chapter 4 an analysis of the Full Counting Statistics of the interacting lattice gases pre-
pared in the experiment is presented. Iconic many-body quantum states such as lattice
BECs and Mott insulators are characterized by their many-body coherence properties
when probed in small volumes of momentum space after an expansion. The role of the
condensate depletion is highlighted in the small deviations from Poisson statistics for the
BEC from the normalized zero-distance correlations up to sixth order [36].

— Finally, in chapter 5 an analysis of the condensate order parameter fluctuationsmeasured
across theMott insulator phase transition is presented. These fluctuations, measured via
the condensate occupation number, are found to be enhanced towards the phase tran-
sition, exhibiting a sharp peak of amplitude∆N0 ∼

√
⟨N⟩ incompatible with the modeled

experimental noise, mirroring the observations made in the context of the normal gas
condensation transition [33,34]. Additionally, the Binder cumulant is extracted to probe
the statistical properties of the BEC order parameter and found to exhibit a sharp varia-
tion at the phase transition, paving theway for finite-size scaling analysis in homogeneous
systems.

— The appendices contain additional information on the topic of statistics, as well as some
additional measurement results not included in the main text.
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2 - The Helium Lattice Experiment

Helium is an exotic element in the community of ultracold quantum gases. As of the writing
of this text, there are only six of experiments in the world that work with degenerate Helium
gases [36–41], as opposed to the hundreds that work with conventional alkaline metals such as
Rubidium, Sodium or Lithium. More generally, noble gases as a whole are a rarity in this do-
main. The reason for this lies in the atomic energy level structure of these elements. Their filled
electron shells make them less reactive and more challenging to cool and manipulate at the low
temperatures required for ultracold atom physics. They have high-lying first excited states that
are not ideally suited for laser cooling and trapping, since their transitions lie in the ultravio-
let (UV) (as is the case for Helium and Neon) or vacuum ultraviolet (VUV) (Argon, Krypton and
Xenon) range of the electromagnetic spectrum. There are sometimes further inconveniences
apart from the lack of suitable transitions from the ground state, such as the absence of usable
Feshbach resonances in the case of 4He [42,43]. Feshbach resonances are a phenomenonwhere
the scattering properties of atoms can be dramatically altered by the presence of a magnetic 1
field [44]. They are typically associated with atoms or molecules with hyperfine structure and
magnetic moments, and occur when the energy of a bound state of the system coincides with
the energy of a scattering state, leading to significant changes in the scattering length and inter-
action strength between atoms. Since Helium is a noble gas with no nuclear spin (I ≃ 0) and no
hyperfine structure 2, its interactions with magnetic fields do not lead to Feshbach resonances 3
as seen for instance in alkali metals with more complex electronic and nuclear properties. Other
drawbacks of 4He include the presence of two-body losses from light-assisted collisions in the
metastable state and the small efficient cross-sections of the imaging transitions (both detailed
later in this chapter).

1. Magnetic tuning is the most common method, but optical Feshbach resonances exist as well.2. Of the noble gases only Xenon exhibits nuclear spin and hyperfine structure, with themost commonisotope 129Xe possessing a nuclear spin of I = 1/2.3. Specifically, the absence of hyperfine coupling between different Born-Oppenheimer potentials isnot favorable for accessible s-wave Feshbach resonances for the fully spin-stretched states used in theexperiment (see below), with the molecular bound state separated by large energy distances on accountof the small mass of Helium. Experimental investigations of theoretically predicted d-wave Feshabch res-onances [42] have not been able to establish their experimental accessibility [45].
23
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Why then, with all these apparent disadvantages, would some research groups still choose
such an (in some aspects rather inconvenient) atomic species as fundamental building block
for their experimental platform? There are several answers to this question: For one thing, as
the second element of the periodic table its simple electronic structure leads to Helium being
one of the only atoms where energies and interaction properties can be calculated ab initio with
extreme precision, making it an ideal testbed for exploring fundamental theories of atomic struc-
ture. The answer that has turned out to be decisive in choosing it for the purposes of this experi-
ment, however, lies not in the state preparation, nor in the physical systems that can be explored,
but in the detection: The atomic energy level structure of Helium contains a metastable state
whose internal energy is considerably larger than the work functions of most common metals,
which are typically on the order of 2-5 electronvolts (eV). This means that a single atom has a
high probability of striking a single electron out of a metal plate upon contact. The ability for a
single particle of the system to trigger a single, discernible (within limits) detection event in both
space and in time paves the way for single-particle detection in all three dimensions.

Experiments with ultracold atoms inherently strive to isolate the atoms from the environ-
ment in order to be able to manipulate and probe them with as little destructive interference
from the outside world as possible. Such an experimental apparatus usually consists of a se-
ries of vacuum pumps, tubes and viewports inside which the atoms are prepared and detected.
Therefore, one of the prominent means of interacting with the particles is to make use of their
interaction with electromagnetic radiation, i.e. to shine light on them. This works extremely well
for the preparation stages, often in conjunction with the use of magnetic fields, but it represents
a drawback for the detection of a three-dimensional (3D) system: The signal usually consists of
many photons per atom, and ensemble sizes for quantum gas experiments typically range from
a few thousand to a fewmillion atoms. Thismeans that a large number of photons arrive in quick
succession on the sensor of the camera, so quickly in fact that it is impossible to discern their
arrival times, and thus the signal is almost always subject to line-of-sight integration. Addition-
ally, the required signal strength of many photons per atom and limited resolution of cameras
make it virtually impossible to infer the position of the specific emitting atom from the photon
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signal for 3D systems. The only signals that can be extracted by optical means are thus photon
counts that are integrated over the entire depth of the sample along the imaging axis (and in
many cases also in the transverse plane within single pixels of resolution limited cameras), mak-
ing single particle detection in 3D impossible with standard imaging techniques 4.

Atoms in metastable states of Helium can be detected directly, without resorting to pho-
tons as intermediate information carriers between the system and the detector. Experiments
with metastable Helium allow for single-particle detection in 3D for thousands of particles per
experimental realization. In the absence of an information carrier between the system and the
detector, the detection process necessarily implies that the system itself needs to come into con-
tact with the metal plate. This makes in situ detection difficult to even conceptualize: The metal
plate would have to move across the atomic cloud without inducing any interference that could
perturb the system in the moment of detection, such as blocking off any laser light. Instead,
the way to bring the atoms into contact with the metallic plate is to let them fall onto it under
gravity. In this case, the position of an atom on the detector after a long time-of-flight (TOF) can
be related not to its original position, but rather its momentum, with an atom with a high initial
velocity being detected further from the center and vice versa.

The detectability without photons is the key attribute that sets Helium apart from other
atomic species. The advantage is such that, for physical systems that can greatly benefit from
having access to the entire 3Dmomentum distribution, some groups choose to take upon them-
selves all of the inconvenient factors that comealongwith the use ofHelium for anultracold atom
experiment. One of the more significant of these disadvantages is the absence of Feshbach res-
onances that allow for a precise tuning of the interaction strength between atoms. For atoms
with no electrical dipole moment inter-atomic collisions are often the most prominent form of
interaction. The strength (or rather: the rate) of these collisions depends on the atomic density.
The density of colliding atoms can be increased by the use of an optical lattice, thereby lending
(some) control over interaction strength in the system back to the experimentalist. As is out-
lined later in this chapter, the optical lattice also plays a significant role in the detection process,

4. Even though imaging systemshave been able to extract someadditional information along the imag-ing axis by making use of holography [46].
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independently of any modification of the interaction strength in the system. The combination
of these two aspects makes it thus rather natural for an ultracold atom experiment that uses
Helium to also employ an optical lattice. In fact, three out of the six Helium experiments in the
world use such a lattice in one way or another [36,41,47]. Thus the name of the setup on which
this work has been carried out: The Helium Lattice Experiment.

The following section details the experimental setup used to bring 4He to quantum degener-
acy. The subsequent sections elaborate the optical lattice and the detection process, with a final
section being accorded to the lab monitoring system that has been setup during this thesis.

2.1 . Bose-Einstein Condensation of Metastable Helium

The numerous challenges that have to be overcome in order to reach the quantum critical
regime with Helium have been outlined above. This section now illustrates how these hurdles
can be surpassed to produce Bose-Einstein condensates (BECs) of 4He. In doing so, it follows the
path of the atoms from the Helium gas bottle to the science chamber where the experiments
are performed on them. Since the experimental sequence has not seen a significant evolution
over the last years, the description of the individual stages is kept brief, with more detailed treat-
ments being the subject of the team’s previous theses [48–53].

In order for quantum effects to dominate the behavior of the gas, the ensemble of atoms
has to be brought to quantum degeneracy, that is the phase space density has to be increased
to a level where the spatial wavefunctions of the individual particles start to overlap. This is what
it means in a quantum sense for the atoms to sense each other’s presence. Quantum degen-
eracy occurs when the thermal de Broglie wave volume is on the order of the inverse density:
λ3dB n ∼ 1, where λdB = h/

√
2πmkBT . This immediately implies that the atoms have to be cooled

down to very low temperatures in order to increase λdB, while at the same time increasing the
density. The first of these concerns is addressed by cooling and the latter by trapping techniques
for ultracold atoms, the relevant aspects of both of which are outlined below in the context of
the Helium Lattice experiment at LCF.
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The first BECs of metastable Helium were obtained simultaneously by groups at the Institut
d’Optique [54] and the Laboratoire Kastler Brossel [55] in 2001. In 2006 the fermionic isotope 3He
was also brought to quantum degeneracy [56]. All of the experiments start by exciting Helium to
the metastable state, denoted 4He∗ for the bosonic isotope, from which cooling transitions can
be addressed using commercial lasers in the near-infrared range.

2.1.1 . Metastable Helium Source

As mentioned above, the electronic level structure for noble gases is such that transitions
from the ground state lie in the UV or VUV regions of the electromagnetic spectrum and are thus
not accessible using standard visible or near-infrared light sources. Furthermore, in the case
of Helium, it is precisely the high internal energy of the metastable state 2 3S1 of 19.8 eV [57],
the largest of any metastable atom, that enables the unique single-atom detection techniques.
The reliance on the metastable state is so significant that it is routinely referred to when citing
the atomic species of the experiment: 4He∗, metastable Helium-4. The reason for this special
treatment of the 2 3S1 state of Helium-4 is its extremely long lifetime of more than 2 hours [47]
compared to the experimental cycle duration (about 10 seconds) which obviates the need to
contemplate the possibility of a 4He∗ atom spontaneously returning to the 1 1S0 state during the
experiment. The excitation of this metastable state is therefore the natural starting point for
any quantum gas experiment with Helium, since it is only from the 2 3S1 state that the toolbox of
standard trapping and cooling techniques for ultracold atoms becomes available with standard
wavelength lasers. This is illustrated in figure 2.1, which depicts the 4He energy levels relevant
for this experiment.

Since optical excitation is not a realistic option for the 2 3S1 state, the universal method of
choice is to use a plasma DC discharge. A high voltage of about 2.8 kV is applied to a metallic
needle fixed inside a glass tube through which the Helium atoms flow. The tube ends in a small
hole in a Boron-Nitride (BN) piece that directs the atoms onto a grounded skimmer (a perforated
metallic plate that reduces the variance of the transverse velocity distribution). The high voltage
ionizes the 4He atoms and creates a fast flow of 4He+ ions and electrons from the tip of the nee-
dle to the skimmer. These charged particles can recombine in themetastable 2 3S1 state, creating
a beam of very fast moving 4He∗ atoms behind the skimmer with a supersonicmean longitudinal
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Figure 2.1 – Relevant energy levels of 4He. The metastable state 2 3S1 is the starting point forall cooling, trapping and imaging transitions towards the 2 3P0,1,2 states, which can be accessedwith standard near-infrared lasers at wavelengths around 1µm. Taken from [52].

velocity of about 1200 m/s and transverse velocities around 50 m/s. The first cooling stage for
metastable Helium occurs cryogenically using liquid nitrogen that flows through a copper tubing
in contact with the BN piece. BN is chosen for its remarkable properties of being a good thermal
conductor, allowing for heat transfer from the atoms in the plasma to the liquid nitrogen, while
at the same time being an electrical insulator that does not interfere with the plasma creation
process induced by the high voltage. The liquid nitrogen cooling stage sufficiently reduces the
speed of the metastable atoms to allow for the application of standard laser cooling techniques
in the subsequent steps. The entire source setup is schematically depicted in figure 2.2.

The source setup is in principle readily extensible to accommodate the fermionic species 3He
alongside its current bosonic counterpart. However, with the much more costly fermion the low
conversion efficiency to the metastable state of only about 10−4 becomes a critical issue which
necessitates amodification of the apparatus to reuse the non-converted atoms that are currently
evacuated at every repetition of the experiment. He4 is inexpensive enough to be able to discard
99.9% of every gas bottle.
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Figure 2.2 – Schema of the metastable Helium source. The Helium atoms are excited to themetastable state in the plasma that forms between the BN and the skimmer. Taken from [52].

2.1.2 . Cooling and Trapping He4

One of the fundamental parts of every quantum gas experiment are the laser cooling stages.
Whatmay seem counter-intuitive to the uninitiated, that is being able tomake something cold by
shining light on it, has become the backbone of atomic physics experiments in recent decades.
In its most basic variant, which is usually referred to as Doppler cooling, the atom is thought of
as a two-level system that will absorb resonant light (and thereby momentum) in opposition to
its movement direction and spontaneously re-emit in random directions that will tend to aver-
age out. In order for the momentum transfer to occur in the opposite direction of the atomic
trajectory, the laser light is negatively detuned with respect to the atomic resonance, so that the
moving atom sees the light shifted to resonance via the Doppler effect. This slowing by radiation
pressure is limited by the natural linewidth Γ of the excited state, that is by the rate at which the
atom absorbs and re-emits photons on this transition, with the temperature at the Doppler limit
being given by TD = ℏΓ/2kB.

Doppler Cooling Limit

Since the detuning of the cooling laser light is matched to the initial atomic velocity, the res-
onance condition is no longer fulfilled for an atom that has already been cooled, so that no
re-heating by absorption occurs. The transition used for Doppler cooling in this experiment is
the 2 3S1 → 2 3P2 transition (see fig. 2.1). The use of σ+ polarized light makes the atoms cycle
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between themJ = 1 andmJ = 2 sublevels of the 2 3S1 and 2 3P2 states, respectively, and creates
an effective two-level system. The natural linewidth of the excited state is Γ23P ≃ 2π × 1.6 MHz.
This corresponds to a Doppler temperature of TD = ℏΓ23P/2kB ≃ 39 µK, a theoretical limit for
the use of this technique that was observed by the Helium Lattice experiment in 2014 [58].

Transverse Molasses and Zeeman Slower

After exiting the source the atoms are in a supersonic beam and have a significant transverse
velocity spread that necessitates a collimation stage before the beam can be slowed down. This
is achieved by the use of a transverse molasses setup made up of to counter-propagating beam
pairs that Doppler cool the transverse velocity components of the beam. This increases the num-
ber of atoms that are able to reach the science chamber by a factor of about 20.
The atomic beam is thus collimated, but its longitudinal velocity is still supersonic. In order to be
able the trap the atoms in a small cloud to perform experiments on them, the beam has to un-
dergo significant deceleration. A widely used cooling method in the initial stages of an ultracold
quantum gas experiment involves the use of a Zeeman slower, which is a lengthy tube encir-
cled by magnetic coils to establish a consistently varying magnetic field. The Zeeman shift of the
atomic energy levels induced by this field keeps the atoms resonant with a counter-propagating
laser beam as they progress along the tube, thus allowing for their continuous deceleration. Due
to the light mass of Helium and the small cross-section of its cooling transition, the atoms need
to absorb many photons before their initial velocity of about 1200 m/s is reduced to the cap-
ture velocity of a Magneto-Optical Trap (MOT), which is around 50 m/s. This leads to metastable
Helium experiments having some of the longest Zeeman slowers in the world with a length of
around 2.5 m.

Magneto-Optical Trap

After exiting the Zeeman slower the atoms enter the science chamber. As outlined above, the
two categories of steps required to achieve quantumdegeneracy consist in cooling and trapping.
The exit velocity of the Zeeman slower is sufficiently low to begin adding the latter to the former.
This is realized with a Magneto-Optical Trap (MOT) that consists of three orthogonal pairs of
counter-propagating red-detuned laser beams in conjunction with a quadrupole magnetic field.
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The two components function jointly in such a way that atoms become more resonant with the
light as they move away from the center of the trap, leading to a position-dependent net force
towards the trap center as well as simultaneous cooling. The Helium Lattice experiment cur-
rently uses 25 G/cmmagnetic gradients in a combination with laser beams at 15 Isat per beam at
a detuning of ∆ = −60 Γ, thereby capturing about 2 × 109 atoms in 1.5 s. In a final compression
stage the density is increased by reducing the detuning by a factor of 5 while also decreasing the
intensity to 0.1 Isat, which yields clouds at a temperature of T ≃ 1.2mK and a density of n ∼ 7×109

atoms/cm3 while keeping roughly the same atom number as before the compression.
These values imply that in their current state the atoms are still several orders of magnitude
below the quantum degeneracy limit of λ3dB n ∼ 1. For 4He∗ , there exists no experimental tech-
nique capable of increasing phase-space density in such a way that the atoms can be brought
to quantum criticality in one single step. Instead, as is the case for most ultracold atom exper-
iments, a sequence of different techniques has to be employed one after the other, each one
contributing to either reducing the temperature or increasing the density of the trapped ensem-
ble (ideally both simultaneously). Figure 2.3 depicts the path of phase space density along the
different steps of the cooling sequence.

As a general rule of thumb, the endpoint of an arrow in figure 2.3 to a given step in the cooling
sequence is usually not far from the lowest or densest result that can be achieved by applying
that specific cooling technique to 4He∗ , implying that another type of cooling procedure has to
be employed at this point to further cool or condense the cloud. The order of the sequence
of different steps results from certain techniques requiring an appropriately low temperature
of the ensemble to begin with in order to work efficiently, while others necessitate a specific
global transformation of an internal degree of freedom of the cloud, such as spin-polarization
(see below).

Red Molasses

Starting from the trapped cloud in theMOT, themagnetic quadrupole field is switched off and
the detuning is reduced to∆ ≃ −Γ, while at the same time the intensity is lowered by a factor of
two to reduce light-assisted Penning collisions (more on these two-body losses below). As in the
case of theMOT, the Doppler frequency shift experienced by an atommoving towards one of the
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Figure 2.3 – Phase-spacedensity at thedifferent stages of the cooling sequence. A sequenceof different cooling techniques has to be employed in order to be able to cross the quantumdegeneracy limit of λ3dB n = 1. Taken from [53].

laser beams shifts the balance of radiation pressure such that it is more likely to absorbmomen-
tum in the direction opposing its movement. On average this results in a friction-like force acting
on atoms with trajectories away from the trap center, hence the name "optical molasses". About
90% of the atoms from theMOT are retained in thismolasses stage, while the cloud temperature
is reduced to T ≃ 100 µK within 5 ms. This approaches the Doppler limit 5 and corresponds to a
sufficiently low temperature to proceed with sub-Doppler cooling techniques.

In other atoms sub-Doppler mechanisms would spontaneously take over at this point and
further reduce the temperature, actually preventing the observation of the Doppler cooling limit.
The observation of [58] indicates that these mechanisms do not occur spontaneously in red
molasses of 4He∗. This fact is attributed to its low capture velocity, implying that in this case
Doppler cooling yields too great a final velocity for sub-Doppler mechanisms to work efficiently

5. In order to attain the Doppler limit as in [58] the laser intensity has to be lowered to values thatreduce the atom number too drastically for the purposes of the usual experimental sequence wherelarge atom numbers are required to reach quantum degeneracy.
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in the same conditions.

Grey Molasses

Sub-Doppler cooling is more involved than the mechanisms described so far, requiring a
more complex target structure than a two-level system. In the case of 4He∗ the absence of
hyperfine coupling leads to a perfectly degenerate "ground state" (the metastable state) that
provides the lambda-like configuration between the 2 3S1 and the 2 3P1 states required for the
implementation of a grey molasses stage, a name that stems from the recurring transitioning
of the atoms between so-called bright and dark states. Fig. 2.1 illustrates that a different ex-
cited state is now addressed to proceed with sub-Doppler cooling techniques. More specifically,
the lambda configuration is implemented using three pairs of counter-propagating σ+ − σ− -
polarized laser beams and leads to the population of a long-lived dark state, a superposition of
the degenerate ground-states that does not interact with the laser light. A cooling technique
consisting in repetitively cyling the atoms through a potential energy landscape to convert their
kinetic into potential energy ("Sisyphus cooling") with motional coupling between the dark state
and the state interacting with the laser light (the bright state) leads to the accumulation of slow-
moving atoms in the dark state via velocity-selective coherent population trapping. The viability
of this cooling procedure for 4He has been well known for several decades [59,60].
Sisyphus cooling is implemented on the 2 3S1 → 2 3P1 transition using a detuning of ∆ ≃ 8Γ and
an intensity of 4.7 Isat per beam. Atom numbers remain nearly constant with respect to the red
molasses, and the sub-Doppler regime is reached with temperatures decreasing to T ≃ 15 µK.

Light-assisted Collisions

At this point the cloud is reasonably cold, but the phase-space density limited by the position-
space density and therefore only on the order of ∼ 10−5. The limiting factor for the position-
space density are light-assisted collisions that arise from the energy of themetastable state being
greater than half the ionization energy of 4He, meaning that it is energetically favorable for two
metastable atoms to collide and Penning ionize [61] one of the atoms while leaving the other in
the (true) ground state 1 1S0:
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He∗ +He∗ → He + He+ + e− (2.1)
The centrifugal barrier renders this type of collision highly improbable and therefore negligi-

ble when both 4He∗ atoms are in the (metastable) ground state 2 3S1 [62]. This barrier is removed,
however, with the excitation by a near-resonant photon of one of the 4He∗ atoms to a 2 3P state,
hence the name light-assisted collisions.
Since only 4He∗ atoms are trapped in the experiment, this type of collision leads to the loss of
twometastable atoms andmakes light-assisted collisions a considerably greater source of atom
loss than for experiments that do not involve metastable states, constituting the limiting factor
for the density in all laser cooling stages [63–66]. A different type of cooling procedure is thus re-
quired to be able to increase the density of the cloud without the need to rely on near-resonant
light. In principle one could imagine charging the atoms into a far-off resonance optical dipole
trap (ODT) in order to perform evaporative cooling to quantum degeneracy. However, the in-
crease in the atomic density due to the tight confinement of such a trap has been shown in this
experiment to increase the rate of Penning collisions to prohibite levels when attempting such
a transfer directly from the grey molasses stage, effectively ruling out an all-optical cooling ap-
proach for 4He∗ and suggesting the implementation of a hybrind solution involving a magnetic
trap.
To circumvent the collision issue the gas is spin polarized, which has been shown to reduce the
rate of Penning collisions by about 4 orders of magnitude when compared to a spinmixture [67],
with spin-conservation leading to an effective suppression of Penning ionization 6. The cloud is
thus optically pumped to the magnetic sub-level mJ = +1 of the 2 3S1 state before being trans-
ferred to a magnetic quadrupole trap, which acts as a reservoir fromwhich the ODT can be filled
in a subsequent step [68].

Magnetic Trap

Only the pumped sub-level mJ = +1 (about 85% of the cloud) is trapped by the magnetic
quadrupole field, with the others being either insensitive to magnetic fields (mJ = 0) or anti-

6. When spin-polarized, the left-hand side of eq. 2.1 has a total spin of S = 2 and the right-hand side atotal spin of S = 1, rendering the collision forbidden by conservation of total spin.
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trapped (mJ = −1). A bias field is applied in the vertical z-direction to define the quantization
axis. Magnetic gradients of ∼ 5 G/cm trap the pumped atoms from the grey molasses and are
increased to ∼ 35 G/cm to increase the position-space density, with the density of the spin-
polarized cloud no longer limited by Penning collisions. Radio-frequency (RF) evaporation re-
moves the hottest atoms for a duration of 3 seconds during which the frequency is linearly de-
creased from 40 MHz down to 6 MHz. This cooling by evaporation works much like blowing
on a cup of coffee: The most energetic particles are selectively expelled from the trap, while
the remainder is left behind at a lower temperature. The relatively long duration of this step
(nearly 50% of the total experimental sequence duration) stems from the slow ramp of the RF
wave frequency, which has be to decreased in accordance with the time it takes for the gas to
re-thermalize through collisions. The result of this first evaporation process is a slightly warmer
cloud at T ≃ 70 µK, but with a much larger density of n ≃ 6.6× 1011.
Quadrupole magnetic traps are characterized by a zero-field crossing in the trap center that can
induce spin flips to one of the untrappedmagnetic sublevels (mJ = 0, −1) on account of the disp-
pearance of the quantization axis in the zero field region [69]. These so-calledMajorana spin flips
result in atom losses at a rate inversely proportional to the particle mass [70,71], making Helium
particularly vulnerable to this effect. Furthermore, colder atoms are more susceptible to being
lost in this way than hotter ones since they are more likely to stay around the zero field position
in the trap center, leading to a heating of the cloud. Unsurprisingly, large Majorana losses have
been observed in the experiment [68] and limit the density and lifetime in the magnetic trap,
but the final atom number of about 108 coupled with the 50-fold increase in density over the
grey molasses stage constitute a sufficient starting point in terms of phase-space density for a
transfer to a crossed optical dipole trap (ODT).

Crossed Optical Dipole Trap

One of the main advantages of evaporative cooling in an ODT are the higher trapping fre-
quencies 7 that lead to increased densities and collision rates when compared to evaporation
in a magnetic trap. The unique characteristics of 4He∗ that enable single-particle detection are
a considerable advantage in the search for rare events such as multi-particle correlations that

7. In the initial stage at large intensities of the ODT beams.
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require the acquisition of large amounts of data to achieve the necessary statistical significance.
The faster and more robust production of degenerate ensembles of 4He∗ offered by an ODT is
thus a significant asset in the ongoing quest to maximize the data acquisition rate for such sig-
nals.

The ODT consists of two far-off resonance Gaussian shaped beams at a wavelength of 1550
nm and an angle of 20◦ that are focused down to respective waists of 133 µm and 63 µm to trap
the atoms in the maximum of the laser intensity. The loading process consists in a simultane-
ous increase of the ODT laser power (up to 18 W in the first beam and 8 W in the second) and
a decrease of the quadrupole coil current creating the magnetic trap. One trap is slightly offset
in the vertical direction with respect to the other to avoid the Majorana losses that would result
from the accumulation of atoms in the zero-field center of the magnetic trap, with only a small
a magnetic bias field remaining to maintain the cloud in its spin polarized state. Only about 10%
of the atoms are loaded into the narrow ODT, but this transfer results in an increase in density
of two orders of magnitude and a two-fold decrease in temperature.

The final evaporation process to achieve Bose-Einstein condensation (BEC) consists in an
exponential decrease of the ODT laser power over 600 ms, with the final value of the ramp de-
termining the BEC atom number. For typical experiments with about 5000 atoms in the trap, the
trapping frequencies amount to (ωx, ωy, ωz) = 2π × (41, 173, 180) Hz. In its current state the He-
lium Lattice experiment is capable of producing BECs of N ≃ 106 atoms every 4.8 seconds 8 with
technical fluctuations of about 8% in the atom number. However, the usual sequence duration
for data acquisition with the single particle detector is extended to the range of 6 - 7 seconds in
order to remove magnetic impurities in themJ = 0 state from the trap.
Despite the drastic reduction of Penning collisions through spin polarization of the gas, these
losses still represent the limiting factor for the lifetime of the BEC in the ODT (τBEC ≃ 5 − 10 s),
with the background pressure of the science chamber in principle admitting single-particle life-
times on the order of 40 s.

8. The fastest BEC production time of the experiment is 2.8 seconds, but not in the stable mode ofoperation employed for data acquisition.
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2.1.3 . Imaging techniques

Even though the single particle detector is the main workhorse of the Helium Lattice exper-
iment (see below), fluorescence and absorption imaging techniques still prove invaluable for
probing the cloud at various stages of the experimental sequence. The implementation of both
techniques for 4He∗ is briefly summarized below.

Fluorescence Imaging

Fluorescence imaging is used to probe the initial stages of the experimental cycle. The atoms
absorb resonant light from all six MOT beams for 100 µs following a time-of-flight (TOF) of a few
ms, and the resulting fluorescence in the vertical direction is captured by an InGaAs camera with
a resolution of 125 µm in the plane of the atoms that allows for measurements of the cloud
temperature and atom number up until the loading of the ODT, at which point the fluorescence
signal of the cloud is too small to be resolved by the imaging system.

Absorption Imaging

After transfer to the ODT the cloud can be probed using absorption imaging on the 2 3S1
→ 2 3P2 transition with beam of intensity 4Isat for a duration of 25 µs in σ+ polarization (so as
to stay on a closed transition starting from mJ = 1), where the effect of stimulated emission is
accounted for by a careful calibration. After a TOF of about 10 ms the shadow of the cloud is
imaged by a second InGaAs camera with a resolution of 13 µm, which allows for the extraction of
the BEC atom number by fitting Thomas-Fermi profiles to the cloud shape. In situ imaging would
require an even higher resolution imaging system.
Helium in and of itself is far from an ideal candidate for high-quality absorption imaging, its low
mass and resulting high recoil velocity making it more susceptible to being Doppler-shifted out
of resonance for long imaging pulses. However, recent efforts on the experiment have led to
an improvement of the absorption imaging by providing a numerical correction for the effect of
stimulated emission at high intensities of the probe beam, rendering the peak optical depth in
each shot independent of the probe intensity.
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2.2 . Helium in Optical Lattices

Quantum simulation is one of themain application fields of ultracold atom experiments. The
ideawas originally brought forth by Richard Feynman [14] and consists in using one quantum sys-
tem as a toolbox to mimic and study the behavior of other more complicated quantum systems.
Ultracold atoms can bemanipulated and controlled with high precision and are capable of mod-
elingmore complex systems, such asmolecules ormaterials, that are challening to study directly
in the original systems. In this case the atoms are used as a means to an end more than as the
primary object of research, since inmany cases one is less interested inmeasuring the character-
istics of an individual atom butmore in the emergent properties of a larger ensemble of interact-
ing particles. So calledmany-body systems are characterized by collective behaviors that are not
present in systems of isolated or non-interacting particles, such as phase transitions [17, 18, 72],
multi-particle entanglement [73,74], topological order [75], quasiparticles [22,23] or many-body
localization [76–78]. The exponential growth of the associated Hilbert space with the number of
degrees of freedom generally limits exact descriptions of such systems to ensembles no larger
than a few dozen particles, making quantum simulation of the corresponding Hamiltonians one
of only a few viable options to study quantummany-body physics in larger ensembles. Ultracold
atoms are only one of a multitude of platforms that enable this approach [16], with very suc-
cessful contributions stemming from experiments using Rydberg atoms [79], superconducting
qubits [80] or trapped ions [81]. Some advantages of quantum gas platforms are the large parti-
cle numbers and control over the interactions and potential energy landscape they provide, with
the latter often being implemented via optical lattices [19] that create a periodic energy profile
in space similar to the Coulomb potential experienced by electrons in a crystal. As the name
implies, optical lattices are a central aspect of the Helium Lattice experiment at LCF; this section
is dedicated to their role and setup in the experiment.

Optical lattices are used for several purposes in the experiment: To tune the interactions be-
tween particles, to simulate a toy Hamiltonian frommany-body physics called the Bose-Hubbard
(BH) model, and to ensure the accurate detection of the atomic cloud in momentum space after
a long TOF. The first of these points is necessitated by the absence of (usable) Feshbach reso-
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nances in metastable Helium. The second enables the realization of a set of experiments on a
very common solid-state model using a rather uncommon platform. The third is what enables
the mapping of the impact positions and times on the detector onto the in-trap 3D momentum
distribution. All of these points are detailed in the following subsections.

2.2.1 . The Bose-Hubbard model

Phase transitions are a macroscopic change in the properties of the system that is driven by
microscopic fluctuations. For classical systems these fluctuations are linked to the competition
between inner energy and entropy. Quantum phase transitions, on the other hand, are driven
by quantum fluctuations that stem from the non-commutativity of different operators in the
Hamiltonian of a system, and occur only in the ground state 9. One of the most iconic of these
ground-state phase transitions in condensed matter physics is the transition from a metal to an
insulator driven by strong electron-electron interactions 10. Conventional band theories of solids
may fail in the description of materials where Coulomb interactions between electrons play a
central role for the behavior of the system. The class of materials that come by their insulating
nature as a result of these repulsive interactions between electrons are named after Sir Nevill
Mott for his substantial contributions in explaining the occurence of such insulators through the
formation of an energy gap [82–84].
One of the simplest models that can account for the transition from a conducting state to a Mott
insulator is the Hubbard model [85] that describes the behavior of strongly-correlated electrons
in a lattice structure. Here the correlations in the system are a direct consequence of the in-
teractions between the particles 11. In the context of superfluid-to-insulator transitions in liquid
Helium this framework was extended to the Bose-Hubbardmodel [72], describing bosonic parti-
cles with repulsive contact interactions hopping through a lattice potential [86]. After a proposal
that the phase transition described by this model might be observable with ultracold atoms in
an optical lattice [18] the first experimental realization [17] marked the beginning of the field of

9. Though critical behavior such as power-law scaling of certain quantities may still be visible at finitetemperature.10. Besides the repulsive Coulomb interactions between electrons, phase transitions from a metal toan insulator can also be driven by disorder on the localization of the electrons or by the presence offrustration.11. Consider for instance how spatial correlations arise from the mutual repulsion of electrons throughtheir interaction.
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simulating many-body physics using ultracold lattice gases [16].

The Bose-Hubbard Hamiltonian

The potential of a 3D cubic lattice of amplitude V0 with separation d between adjacent sites
writes:

V (r) = V0

[
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(
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2
z

)]
(2.2)

The corresponding reciprocal lattice vector is kd = 2π/d. It is often convenient to express the
lattice amplitude in units of the recoil energy v0 = sEr where the latter is given by the lattice
spacing and the atomic massm: Er = h2/(8md2) with the Planck constant h.
An ensemble ofN non-interacting bosons in the lattice is thus describedby the bandHamiltonian

ĤBand, 3D =

N∑
i=1

p2
i

2m
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V (ri) (2.3)
Cubic symmetry implies the separability of this Hamiltonian and in the absence of interac-

tions it suffices to consider the 1D case for a single particle:

ĤBand, 1D =
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)
(2.4)

The eigenstates of ĤBand, 1D are statedbyBloch’s theorem [87] to be theBlochwavesψn,q(x) =

eiqxun,q(x), the product of a plane wave eir·q and a function reflecting the periodicity of the lattice
uq(r). Here n ∈ N corresponds to the band index and q ∈ R to the quasi-momentum of the Bloch
wave. The eigenvalue equation for the Bloch wave writes:

[
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)]
uq(x) = E(q)uq(x) (2.5)

Since un,q is periodic in q → q + kd, so are the eigenenergies En(q), and the range of quasi-
momenta can be limited to the First Brillouin Zone (FBZ): q ∈ [−kd/2, kd/2). Numerical solutions
for the first three energy bands are plotted in figure 2.4.

By design each Bloch wave represents a wavefunction that is spread out over the entire lat-
tice. In many cases in can be useful to change to a basis of wavefunctions that are localized on
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Figure 2.4 – Dispersion relations of the lowest three Bloch bands for increasing lattice
amplitudesV0. The mean energy of the band grows with the band index. In 3D a gap opens upbetween the first two bands at the edge of the FBZ for V0 ≳ 2.2. Taken from [53].

the individual lattice sites. These are the Wannier functions [88]:

wn,j(x) =

√
d

2π

∫
FBZ

ψn,q(x)e
−ijqddq (2.6)

where j ∈ Z corresponds to the index of the lattice site. Thewn,j correspond to thewavefunc-
tions of a particle in band n on lattice site j. The delocalized Bloch waves can be decomposed
into a sum over the localized Wannier functions:

ψn,q(x) =

√
d

2π

∑
j

wn,j(x)e
−ijdq (2.7)

In second quantization the operator that creates a particle in the Bloch wave ψn,q is denoted
ĉ†n,j . The band Hamiltonian in second quantization writes thus:

ĤBand, 1D =

∫
FBZ

E(q)ĉ†q ĉqdq (2.8)
The operator creating a particle in the Wannier function wn,j is denoted b̂†n,j and its definition

follows from (2.7):

ĉn
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−ijdq (2.9)
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In the Wannier basis and using second quantization the band Hamiltonian now writes:

ĤBand, 1D =
∑
n

∑
j,j′

Jn(j − j′)b̂†n,j′ b̂n,j (2.10)
The tunneling amplitude Jn(j − j′) describes the process of a particle hopping from site j to

another site j′ via tunnel effect and decreases with the distance between the sites and the lattice
amplitude:

Jn(j − j′) =
d

2π

∫
FBZ

ei(j−j′)qdEn(q)dq (2.11)
In the Tight-Binding (TB) limit where the lattice amplitude is large 12, the lowest energy band is

considered with the excitation to higher bands made all but impossible by the large energy gap.
Therefore the only tunneling processes taken into account are those between adjacent lattice
sites, and the tunneling energy term is constant: J = −J(−1) > 0. In the ground state only the
first band is populated (n = 0) and the band Hamiltonian in the TB limit simplifies to:

ĤBand, TB = −J
∑
⟨i,j⟩

b̂†i b̂j (2.12)
with the sum being carried out over all adjacent lattice sites i and j.

Allowing for two-particle interactions adds a term to the band Hamiltonian (2.3):

ĤBand, 3D =
N∑
i=1

p2
i

2m
+

N∑
i=1

V (ri) +
N∑
i

N∑
j>i

Uint(r1, r2) (2.13)
In second quantization the interacting part of the 1D band Hamiltonian writes:

Ĥint =
1

2

∫
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∫
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′)Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x) (2.14)
where Ψ̂†(x) creates a particle at position x and relates to the creation operator in the Wan-

nier basis via:

Ψ̂†(x) =
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j

wj(x)b̂
†
j =

∑
j

w0(x− xj)b̂
†(x) (2.15)

12. Concretely V0 ≥ 5Er.
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using the property that for Wannier functions w0(x − jd) = wj(x). Assuming a two-body

contact interaction potential of the form Uint(x1, x2) = gδ(x1 − x2) with the coupling constant
g = 4πℏ2as/m and s-wave scattering length as, the interaction Hamiltonian writes:

Ĥint =
g
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∗
j3(x)wj2(x)wj1(x)dx (2.16)

In the TB regime the Wannier functions wj are narrow due to the large lattice amplitude, and
thus their overlap over different sites can be neglected. This collapses the four sums into the
case of on-site interactions only with the sole contributing term stemming from j1 = j2 = j3 = j4.
Introducing the on-site interaction energy U1D = g

∫
|w0,0(x)|4 and atom number n̂j = b̂†j b̂j the 1D

interaction Hamiltonian in the TB limit simplifies to:

Ĥint, TB =
U1D

2

∑
j

n̂j(n̂j − 1) (2.17)
In the 3D case the on-site interaction potential generalizes in a straightforward manner to:

U = g

(∫
|w0(x)|4

)3 (2.18)
Adding the interaction Hamiltonian to the band Hamiltonian in 3D yields the Bose-Hubbard

Hamiltonian:

ĤBH = −J
∑
⟨i,j⟩

b̂†i b̂j +
U

2

∑
j

n̂j(n̂j − 1) (2.19)

ĤBH describe an ensemble of bosons in the lowest band of a lattice of such amplitude that
particles can move from site to site only via tunnel effect (J ), with two-body contact interactions
(U ) occurring on sites withmultiple occupation (see fig. 2.5). Themacroscopic state of the system
is dictated by the ratio of the two energy scales in ĤBH, u = U/J .

The Mott transition

A BEC is described by a single macroscopic wavefunction and exhibits long-range phase co-
herence. This superfluid can be loaded into an optical lattice where the atoms can move from
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Figure 2.5 – Schematic representation of the two energy terms in the Bose-HubbardHamil-
tonian. Bosons can move around the lattice via tunnel coupling J and interact via two-bodyrepulsive contact interaction U on doubly-occupied sites. Taken from [52].

one site to the next only via tunnel effect. If the repulsive interactions between atoms are small
compared to the tunnel coupling, the systemwill remain in a superfluid state with kinetic energy
being minimized by delocalization over many lattice sites. The excitation spectrum is gapless
and long-range phase coherence persists, with large atom number fluctuations on every lattice
site. If the interactions are large compared to the tunnel coupling, however, energyminimization
leads to the atom number per site being pinned to the same integer value throughout the lattice,
resulting in loss of phase coherence and a gap in the excitation spectrum. From these opposing
limits it is clear that the collective behavior of the ground state of the system is determined by
the competition between the kinetic energy J and the interaction term U in (2.19).

Taking the limiting case where the interactions U are vanishingly small before the tunnel
coupling J , the ground state of the system of N particles in a lattice of M sites is a superfluid
with a wave function corresponding to a Bloch wave at q = 0:

|Ψ0⟩SF =
1√
N !

(
ĉ†q=0

)N
|0⟩ = 1√

N !

 1√
M

M∑
j=1

b̂†j

N

|0⟩ (2.20)

The probability to find n atoms on site j is Poissonian:

P (nj) ≈ e−nn
nj

nj !
(2.21)

where n = N/M is the average lattice filling. Equation (2.21) corresponds to the probability
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distribution of a coherent state with mean atom number N :

|Ψcoh⟩ = N e
√
Nĉ†q=0 |0⟩ (2.22)

that can be expressed in the Wannier basis of wavefunctions localized on each lattice site j:

|Ψcoh⟩ = N
M∏
j=1

e
√
nb̂†j |0⟩ =

M∏
j=1

Nj

∞∑
nj=0

α
nj

j√
nj !

|nj⟩j =
M∏
j=1

|αj⟩j (2.23)

where the local coherent state on lattice site j is characterized by its amplitude αj =
√
n and

is normalized by Nj = e−|αj |2/2.The presence of long-range off-diagonal order becomes evident
in the expression of the first order correlation function G(1)(i, j), which is independent of the
separation between the considered lattice sites i and j:

G(1)(i, j) = ⟨b̂†i b̂j⟩ = ⟨Ψcoh| b̂†i b̂j |Ψcoh⟩ = α∗
iαj = n (2.24)

On the contrary, if it is the tunneling that is vanishingly small before the on-site interaction
energy, (2.19) reduces in good approximation to (2.17), which is diagonal in the basis of Fock states
with a ground state wavefunction given by [72]:

|Ψ0⟩MI =
1√
N !

M∏
j=1

(
b̂†j

)n
|0⟩ (2.25)

In the effective absence of tunnel coupling phase coherence between the sites is lost and the
lattice filling is pinned to its lowest integer value n = N/M on each site. The absence of long-
range off-diagonal order due to the large on-site phase fluctuations is once again visible from
the first-order correlation function, which vanishes between different sites:

G(1)(i, j) = MI ⟨Ψ0| b̂†i b̂j |Ψ0⟩MI = δi,jn (2.26)
The phase transition between these two limiting cases results from the competition between

the two energy terms U and J in (2.19). It is thus associated to the unitary dynamics of the
system and occurs in the ground state, thereby constituting a quantum phase transition [89].
As such, it has an associated order parameter (the condensate wavefunction) that characterizes
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the behavior of the system throughout the quantum critical regime. This order parameter will
be the subject of detailed investigation in chapter 5.

Experimental implementation

The parameters of the model, i.e. the hopping strength J and the on-site interaction energy
U , can be controlled experimentally. In the experiment, the lattice is created by making three
perpendicular laser beams interfere with their own back-reflection, creating standing waves that
form a periodic lattice potential with a cubic unit cell. The distance between two lattice sites is
thus determined by the laser wavelength λ: d = λ/2. In the absence of any frequency modula-
tion of the lattice laser to drive the system, the lattice amplitude s remains as the only tunable
parameter to drive the system from a superfluid to a Mott insulator. Its relation to the energy
terms of (2.19) can be seen in figure 2.6. Changing the lattice amplitude modifies both U and J ,
whichmeans that the two energy terms of (2.19) are not independent: An increase in s leads to an
exponential decrease in the tunnel coupling, while at the same time causing a narrowing of the
Wannier function shape on each lattice site, which increases U following (2.18). The combinatin
of both effects leads to a net exponential increase in u with s, which allows for the continuous
variation of u over several orders ofmagnitude in the experiment by tuning the lattice amplitude.
This enables an effective tuning of the interactions in the system even for situations where ĤBH

is not necessarily the sole object of interest. In fact, the ability to tune U in this way opens up a
whole range of possibilities to study interacting Bose gases outside of BH physics. Thus, in some
way the lattice compensates somewhat for the absence of usable Feshbach resonances in 4He∗,
albeit with slightly less flexibility than is offered by the latter.
When using this type of setup, the Gaussian shape of the laser beams leads to an additional
external trapping potential that can have a non-negligible effect on the physics in the lattice, as
is outlined in the following.

2.2.2 . The Harmonic Trapping Potential

One of themost important aspects of any quantum simulation experiment is the fidelity with
which the target Hamiltonian can bemapped onto the actual physical system. Whilst great care is
taken to isolate the atomic cloud as well as possible from the environment, the reality of lab work
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Figure 2.6 – Evolution of the Bose-Hubbard energy terms (a) and their ratio (b) with the
lattice amplitude. From figure (a) it is clear that with the lattice amplitude (expressed here inunits of the recoil energy) as only tunable parameter, the two energy terms J and U of (2.19) arenot independent. Their ratio (b) is what determines the macroscopic state of the ground state.Taken from [52].

is often that there are noperfect solutions, only compromises. One such compromise applying to
certain aspects of this experiment is the inherent superposition of a harmonic trapping potential
with the optical lattice potential, which renders the system inhomogeneous. This superposition
is due to the Gaussian profile of the laser beams used to create the lattice that leads to a weak
external trapping potential of harmonic shape:

Vext(r) =
1

2
mω2

extr (2.27)
where the external trapping frequency depends on the laser intensity viaωext = 2π×140

√
sHz.

In principle this additional spatially varying potential would break the translational invariance
of the lattice that is a fundamental prerequisite for Bloch’s theorem. However, with s ≪ 100 in
our experiment these frequencies lie below the kHz, and Vext can be considered to vary suffi-
ciently slowly between neighboring lattice sites to allow for the incorperation of the external
trapping potential into a position-dependent effective chemical potential via a Local Density Ap-
proximation (LDA) [90]:
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µ→ µeff(r) = µ− Vext(r) (2.28)
The LDA consists in treating the system as if being made up of individual cells that are both

large enough to apply thermodynamics and at the same time small enough for their density to
be quasi-homogeneous. This simplification breaks down in the vicinity of the quantum critical
regime [91]. While µeff can vary locally, the global chemical potential is still fixed by the total atom
number.
Since µeff is position-dependent, so is the lattice filling. This consequence leads to the superpo-
sition of different phases (both superfluid and Mott insulating) in the trap instead of the system-
wide macroscopic change of state expected in the homogeneous case, as is illustrated in figure
2.7.

Figure 2.7 – Phase diagram (a) and spatial density profile (b) for the inhomogeneous sys-
tem. (a) The phase diagram (chemical potential as a function of the tunnel coupling, both in unitsof the on-site interaction) shows the appearance of Mott insulating shells at integer filling. (b) Inthe inhomogeneous system a wedding-cake structure is formed with Mott shells surrounded bysuperfluid shells. Taken from [92].

From (2.28) it follows that the effective chemical potential and thus the filling take on their
maximal values at the trap center 13. As a consequence the highest-filling Mott insulating phase
is located at this point in space. Moving further outward (following the arrow in fig. 2.7 (a)) the
filling decreases continuously throughout the innermost superfluid shell, until forming the next
Mott insulating shell at the next-lowest integer filling. Since the Mott phases are incompressible,
13. This is a direct result of Vext increasing towards the edges of the systemas per definition of a trappingpotential.
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their density remains constant even as Vext increases, which leads to the so-called wedding cake
structure in the density of the trapped cloud shown in fig. 2.7 (b).
This unintended feature occurs in position space, not in momentum space where the measure-
ments are carried out in this experiment. The time-of-flight evolution induces an averaging of
the different layers of the wedding cake as the distribution of the particle positions starts to map
onto the in-trap momentum distribution, a side-effect that is not straightforward to correct in
post-analysis. Fig. 2.7 (b) shows that even when the Mott transition is crossed in the center of
the trap, a measurement of the system as a whole will also contain superfluid phases. In this
case one refers to the system being in a Mott insulating state as soon as a single Mott shell has
appeared.
Even though this effect might seem like an unequivocal experimental drawback on the surface,
it brings with it some positive aspects in other areas: In a homogeneous system the gapped
excitation profile of the Mott insulating state hinders the creation of excitations, which induces
an increase in temperature in order to keep entropy constant. In the inhomogeneous system,
however, the entropy can be absorbed in the superfluid shells (possibly even transitioning them
to the normal gas phase), which prevents a significant temperature increase from occurring as
the system is driven into the Mott regime.

2.2.3 . Lattice alignment and calibration

Figure 2.6 (b) shows the exponential relationship between the Bose-Hubbard parameter u =

U/J and the lattice amplitude s. Since it is s and not u that is under direct experimental control,
precise knowledge of and control over the lattice laser power that is sent onto the atoms as a re-
sult of the calibration and alignment of the optical system is of utmost importance. An inaccurate
power calibration can lead to a perceived shift of the phase diagram 14, while a suboptimal aling-
ment of the optical setup can lead to an undesirable heating of the cloud, as well as a decrease
in intensity. While finding and maintaining an optimal alignment of the lattice requires some of
the touch and instinct of an experimentalist 15, the power calibration is conducted according to
14. For instance if the lattice light intensity in the science chamber is actually smaller than what is as-sumed, the systemwill still be in the superfluid state at values of u that one would expect to induce aMottinsulator.15. Remember that all three lattice beams need to be simultaneously aligned (i) with their own back-reflection, (ii) with each other so as to insure orthogonality in 3D, and (iii) onto the micron-sized BEC
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a standardized experimental procedure that employs parametric excitation of the atoms from
the fundamental to the second excited band [93, 94]. This procedure is briefly outlined in the
following.

In the usual experimental sequence the BEC is loaded from the ODT into the lattice by de-
crease the power of the optical dipole trap while at the same time ramping up the lattice laser
power in all beams. For the power calibration, the lattice beam to be calibrated is kept at a
higher value than the two others (s = 10 vs 7). After the ramp the amplitude of the higher beam
is modulated for a duration of 20 ms, during which atoms can be parametrically excited from
the fundamental to the second band when the modulation frequence equals twice the energy
difference between the bands:

fmod = 2fres = 2(E2(q = 0)− E0(q = 0))/h (2.29)
After the modulation the atoms remaining in E0 are loaded back into the ODT while those

excited to E2 are lost, indicating the resonance frequency by a dip in the recaptured atom num-
ber as a function of fmod (see fig. 2.8 (a)). Energy band calculations yield the relation between fres
and s (see fig. 2.8 (b)) and allow thus for a calibration of the power in the beam that is modulated.

2.2.4 . Finite temperature effect

While the preceding subsection dealt with a (in certain aspects) slightly detrimental aspect of
the experimental setup, the undesirable effects brought on by the external trapping potential
are something that can in principle be avoided. Experiments are technically capable of produc-
ing homogeneous lattice systems, and while the realization of Mott insulating states on such
platforms brings with it its own set of experimental challenges, there is nothing intrinsically pre-
venting the realization of such a system.
The story is a different one altogether when talking about the effect of a finite temperature. It
goeswithout saying that any experiment takes place at non-zero temperature. How then can one
hope to ever be able to observe the effects linked to a ground-state phase transition in an ex-
periment? The answer lies in the critical behavior associated to the region of the phase diagram
formed in the ODT.
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Figure 2.8 – Atom numbers (a) and band calculation (b) for the calibration of the optical
lattice intensity via parametric heating. (a) Atom number as a function of the modulationfrequency of one of the lattice beams. The pronounced dip is fitted with a Lorentzian curve toindicate the value of the resonance frequency according to (2.29). In this case fres = 102.9(2) kHz.(b) Band calculation relating the resonance frequency to the lattice beam intensity. The value for
fres determined in (a) corresponds to s = 4.29(2). The fitting error on fres leads to the uncertaintyin s (red shaded area).

around the phase transition: Certain properties of the system, for instance correlation lengths,
susceptibility or specific heat, follow power-law dependencies with temperature and other pa-
rameters. These dependencies are governed by critical exponents and scaling laws that charac-
terize a universal behavior that is independent of the system’s microscopic details, with different
physical systems undergoing the same type of phase transition exhibiting the same universal be-
havior. Different phase transitions are grouped together in distinc universality classes such that
all members of a class share the same critical exponents and scaling laws. Concretely, the su-
perfluid to Mott insulator phase transition of the BH model belongs to the 3D XY universality
class [95], which is notable for short-range interactions, O(2) symmetry and a two-component
order parameter.
This universal behavior is thus what leads to the critical properties of the ground-state phase
transition being accessible at finite temperature [96], under the condition that the energy scale
of the thermal fluctuations is smaller than the one associated to the the critical scaling: If the
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fluctuations of the order parameter at the critical point decay on a timescale of τc, the condition
on the associated energy scale is:

h/τc = ℏωc > kBT (2.30)
However, this only shows that some critical behavior should be observable at some finite

temperature; whether or not the temperature implied by (2.30) is in fact attainable in the exper-
iment is not a straightforward question to answer.
Figure 2.9 shows the BH phase diagram at finite temperature. Increasing temperature leads to
the system entering a normal gas phase starting from both the superfluid and the Mott insu-
lator. In the first case, this corresponds to a phase transition similar to BEC, which is driven by
temperature and thus classical in nature. In the latter case there a smooth crossover, with the
Mott melting temperature being equal to about 0.2 U/kB.

Figure 2.9 – Bose-Hubbard phase diagram. Temperature rescaled by the tunnel coupling asa function of the BH parameters u = U/J . The quantum phase transition is located on the x-axis. At finite T the superfluid and Mott insulating phases are separated by a normal gas phase.Above the quantum critical point there is a region where quantum critical phenomena can stillbe expected to be observable despite the finite temperature. Taken from [53].

Adiabatic preparation of equilibriummany-body states

It seems intuitive that in order for quantummechanics to affect the behavior observed around
the transition the temperature in the experiment should be kept as low as possible. This includes
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the avoidance of unwanted heating effects such as the one associated to the alignment of the
lattice. But even for a perfectly aligned lattice it is not obvious that the lattice ramps that charge
the BEC from the ODT do not induce any type of undesirable change in the temperature or en-
tropy of the prepared system.
This question has been studied in detail on the Helium Lattice experiment [97]. An approach
using thermometry via the comparison of momentum densities obtained from experimental
data with ab-initio QuantumMonte Carlo (QMC) simulations of the same quantity found the ob-
served temperatures to align with isentropic lines reconstructed through the QMC simulations
for the relevant experimental parameters. The entropy per particle was thus shown to be con-
served throghout the BH phase diagram at a value of S/N = 0.8(1) kB, affirming the capability of
our experiment of adiabatically preparing equilibrium states of the BH model, even within the
quantum-critical regime above the Mott transition where the thermometry method was in fact
shown to be the most accurate. More details on this investigation can be found in [52,53].

2.2.5 . Time-of-flight dynamics

A final point remains regarding the use of the lattice in this experiment. This aspect does not
concern the ability to prepare a given physical system, but rather the one linked to the subse-
quent measurement of its momentum density. In fact, the lattice is a crucial element in enabling
the single particle detection in momentum space with high fidelity that distinguishes the Helium
Lattice experiment. However, what main seem like a simple premise on the surface, i.e. that
the position of an atom after a long free fall can be related to its initial velocity, is only true if
the free fall of the atoms is not perturbed by any interactions on the way. But the cloud that is
released from the trap contains thousands of interacting atoms in a micron-sized volume and it
is not obvious that some of them might not collide on their free fall path to the detector, which
would obscur any information on their initial momentum in the trap.

The distance between the science chamber and the detector is such that the far-field con-
dition is fulfilled 16, and the time scale on which the trap is switched off 17 to release the atoms
16. For 4He the far-field time (the time it takes to pass from the Fresnel to the Fraunhofer regime ofpropagation) is less than 100 ms, and the distance from the trap center to the detector of 43 cm implies afall duration of nearly 300 ms for an atom with no initial vertical velocity.17. Less than 1 µs for optical potentials.
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is much shorter than the one associated to the energies in the system. Thus, in the ideal case
where no undesirable effects occur during the free fall, the spatial position r of an atom after a
fall time tTOF can be related to its in-trap momentum ℏk via the ballistic relation:

ℏk =
mr

tTOF
(2.31)

The absence of accessible Feshbach resonances in 4He∗ rules out the commonly employed
solution of tuning the interaction strength to zero as the atoms are being released from the
trap, effectively turning off the interactions for the time-of-flight [43]. Instead, the lattice offers
the possibility to rely on the rapid expansion of the cloud induced by trapping frequencies far
above the mean-field interaction energy. When a trap with a frequency much larger than the
chemical potential (ℏωt ≫ µ) is switched off, the wavefunctions expand on a time scale (∼ 1/ωt)
that is much shorter than the one linked to the interaction-driven dynamics. Thus the rapid
dilution of the expanding gas effectively suppresses any possibility of interactions. While the
trapping frequencies of a 3D harmonic trap are generally insufficient to induce this effect, those
associated to the single site of a sufficiently deep optical lattice meet the criteria 18 [98].

While the above considerations apply at the mean-field level, it is still possible for two-body
collisions to occur during the TOF, especially in the case of a superfluid being released from the
lattice, where elastic s-wave scattering leads to the formation of scattering halos in the far-field
momentum distribution. This effect has been investigated in the experiment [99], and the pres-
ence of said scattering halos was indeed confirmed. However, this effect was also shown to only
be relevant at much higher atom numbers than those typically used in the experiment, conclud-
ing that the probability for these collisions to occur for the usual experimental parameters was
on the order of 10−3. Thus the lattice constitutes not only a means of tuning the interactions
and simulating condensed matter systems in the experiment, but it also plays a vital role in ac-
curately detecting the momentum distribution of the system under investigation. The analysis
of these two-body collisions in the time-of-flight dynamics is covered in greater detail in [51,52].

18. If the lattice filling is low, as is the case in this experiment.
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2.3 . Individual atom detection in 3D

As outlined in the introduction to this chapter, it is the ability to achieve single particle detec-
tion in 3D for ensembles made up of thousands of atoms that is the decisive feature for building
a quantum gas experiment around 4He∗ . Thus, this section is dedicated to the measurement
apparatus and procedure that enable this unique detection method, which is at the heart of
nearly all the data being analyzed throughout this work.

In the absence of an information carrier between the atoms and themeasurement apparatus
such as photons in optical imaging, the electronic detection mechanism capable of sensing sin-
gle atoms is almost inherently linked to a preceeding free fall, since the atoms themselves have
to come into contact with the detector. Even though subsection 2.2.5 detailed how the use of
an optical lattice facilitates the accurate detection of momentum desities after a long TOF, these
considerations pertained to possible sources of problems stemming from within the atomic en-
semble itself, such as interactions between the particles during the TOF. Whilst eliminating the
possibility of such undesirable effects occurring is indispensable, another possible source of dis-
turbances exists that originates from outside the system: Since the atoms are spin-polarized
during the final stages of the experimental sequence, they interact with magnetic fields, both
in the desirable way designed into the experimental sequence, but also inadvertently with re-
maining stray magnetic fields in their environment. One can usually cope with the latter aspect
during the duration of the experimental sequence, where all kinds of bias and gradient fields are
deliberately employed to keep the atoms in an optimal state for manipulating them. However,
the moment of the free fall leading up to the detection represents a challenge in this aspect,
since traps are turned off in order to release the atoms in precisely the state they were pre-
pared in, while at the same time the distance of nearly half a meter between the trap and the
detector is much larger and thus considerably more difficult to control in terms of the magnetic
environment than the center of the scienc chamber itself. Previous considerations pondered
the possibility of turning off the interactions between atoms to eliminate unwanted effects dur-
ing the TOF, and while this option is unavailable for 4He∗ in terms of interparticle interactions, it
does exist when it comes to the interaction of the atoms with eventual stray magnetic gradient
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fields on their way to the detector. The first step of the detection sequence implies thus trans-
ferring the atoms to a magnetically neutral sublevel so as to avoid any distortion of their impact
positions on the detector due to the interaction with eventual stray magnetic fields during the
TOF.

2.3.1 . Raman transfer

The original way of transferring the atoms to themJ = 0 sublevel in the experiment consisted
in separating the sublevels of the 2 3S1state by applying a magnetic bias field, and subsequently
driving the transfer between the sublevels with an RF wave at a frequency corresponding to the
Zeeman shift. While the implementation of such an RF transfer is straightforward, the popula-
tion transfer to the mJ = 0 level is inherently limited to 50%, since the RF wave is also resonant
with the mJ = 0 → mJ = −1 transition. The atoms in mJ = −1 are (in absolute terms) just as
susceptible to being perturbed by straymagnetic gradients during the TOF as the ones inmJ = 1

and are thus lost from a detection standpoint, decreasing the effective detection efficiency on
the total atomic ensemble by 50%. This drawback represents a significant disadvantage in the
search of faint signals such as multi-particle correlations that have a detection probability that
decreases with the effective detection efficiency to the power of the number of correlated parti-
cles 19. Circumventing this type of issue is thus crucial in the quest to observe such signals, and a
solution has been put in place that consists in replacing the RF wave with a two-photon Raman
transfer in order to achieve as efficient a transfer to the desired sublevel as possible.

The Raman transfer is implemented via the intermediate |2 3P0, mJ = 0⟩ state. The magnetic
bias field remains to split the Zeeman sublevels, but now the |2 3S1, mJ = 0⟩ state is specifically
adressed by a 2-photon process: A σ− polarized pump beam couples the |2 3S1, mJ = 1⟩ to the
intermediary |2 3P0, mJ = 0⟩ state, which is in turn coupled to the final |2 3S1, mJ = 0⟩ state via
a π polarized Stokes beam. The transfer occurs coherently via absorption of a photon from the
Pump beam and subsequent stimulated emission into the Stokes beam. In the experiment co-
propagating beams for the Pump and Stokes imply that no significant amount of momentum
19. For instance if some effect decreases the detection efficiency by 50% in the analysis of three-bodycorrelations, the detection probability of a correlation event decreases to (1/2)3 = 0.125. To compensatefor this effect, the experiment would thus have to accumulate 8 times more data to achieve the samestatistics.
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is transferred to the atoms with this process. In order to avoid one-photon absorption of the
Pump beam, the one-photon detuning has to be kept large, ∆ >> Γ, while the two-photon
detuning is set so that the energy difference between Pump and Stokes matches the Zeeman
shift ∆E ≃ h× 13 MHz induced by the magnetic bias field.
The successful implementation of the Raman transfer has enabled a refinedmeasurement of the
quantumefficiency of the single particle detector, whichwas found to be equal to ηMCP = 0.53(2).
A detailed description of this analysis and of the Raman setup as a whole is given in [52,53].

2.3.2 . Description of the Detector

The last piece of the experimental puzzle is also arguably its centerpiece. Single particle de-
tectors using micro-channel plates (MCPs) are much more common in particle physics [100–102]
or for the detection of charged particles [103] or high-enery photons [104, 105] than in experi-
ments with ultracold atoms [66]. The setup that enables the single-particle detection in 3D over
a dynamic range of several orders of magnitude is outlined in this section 20.

Signal amplification: The Micro-Channel Plates

A metastable Helium atom in the 2 3S1state was measured to have a secondary electron
coefficient of about 70% [106]. Such a signal has to undergo further amplification before it can
be acquired, which is achieved by using micro-channel plates; metallic discs with holes in the
surface leading to an ensemble of coated tubes with a diameter of a few microns [107]. When
polarized with a high voltage on the order of a kV the electrons ejected by the impact of a 4He∗
atom are accelerated and create an electron avalanche that leads to a total gain on the order
of 103 − 104 per MCP. A stack of two MCPs on top of each other is sufficient to reach the gain
saturated regime [108]. The specific models currently in use on the Helium Lattice experiment
are the F9142-01 MOD6 fabricated by Hamamatsu. Its principal characteristic is the open-to-air
ratio that is given by sum of the surface area of all holes relative to the total surface of the disc,
a figure that amounts to 90% in this case. The disc diameter is 8 cm, with a single tube being
only 12 µm wide. Drilling the tubes at a surface angle of 20◦ ensures that an atom falling onto
the surface at a right angle will eventually hit the wall of one of the tubes. The amplification
20. The detector setup has not seen any significant updates over recent years, therefore the discussionis kept brief at this point. A more detailed overview is given in [50].
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process preserves the information about the spatial position of the initial impact of the atom,
and is recorded using a set of cross delay lines [109].

In-plane positional resolution: The Delay Lines

The delay lines are placed under the MCP stack and consist of a plane of electrical wires
interwoven at a right angle, with a single delay line being made up of two parallel wires forming
a waveguide. The electron shower exiting a single MCP channel generates two electronic pulses
propagating in opposite directions along each delay line (see fig. 2.10). With the length of the
wires precisely known, recording the arrival times of these four pulses allows to reconstruct
the impact position along the line, with the third coordinate in z direction given by the time of
impact on the MCP surface that can equally be reconstructed from the arrival times of the four
pulses. For a detailed description of the algorithm responsible for the reconstruction of the 3D
atom coordinates from the arrival time quadruplets see [50]. The first implementation of this
detection scheme for 4He∗ was achieved at Institut d’Optique in 2005 [31].

The Time-to-digital Converter

The arrival times of the four electronic pulses of the delay lines have to be read out at a
maximum bandwidth so as to not limit the detectable particle flux. This is achieved using ampli-
fiers and Constant-Fraction Discriminators that have a bandwidth of several hundred MHz. The
bottleneck in the acquisition chain in terms of maximal detectable flux is given by the time-to-
digital converter (TDC) developped from an FPGA chip. In its current state the highest achievable
continuous acqusition rate is around 4× 106 particles per second [111].

Resolution and limitations of the detector

With the reconstruction of the impact coordinates being based on the quadruplets of arrival
times from the delay lines, it is clear that the ability of the detector to distinguish the impact posi-
tions of two atoms in space is directly linked to the temporal resolution of the arrival times 21. The
coding step of the TDC of 10 ps is the most significant irreducible time constant in the acquisition
21. For instance in order to distinguish two atomswith impact positions on theMCP that are 1mmapart,a temporal resolution of 2 ns is necessary.
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Figure 2.10 – Schematic representation of single particle detection of 4He∗ usingMCPs and
cross delay lines. The metastable atoms are measured after a long TOF and each extract anelectron from the surface of an MCP. The resulting signal is amplified in the MCPs and triggersfour electronic pulses on the cross delay lines below. From the arrival times of these pulses theimpact positions on each of the orthogonal lines and the impact time on the MCP surface canbe reconstructed, yielding the 3D position of the atom upon impact and thereby, via (2.31), itsin-trap momentum. Taken from [110].

chain and limits the spatial resolution in the detector plane (referred to as the xy plane) to 60
µm. The vertical resolution is not subject to the same limitation as its coordinate is reconstructed
differently from the x and y coordinates. Instead its resolution is governed by the geometric
constraint of the 20◦ angle at which the tubes are drilled into the MCP that renders two atoms
separated by less than 12 µm/ tan (20) indistinguishable 22, which limits the vertical resolution to
about 33 µm. These spatial resolution limits can be converted to their corresponding in-trap
momenta using (2.31), which gives a momentum resolution in kx and ky of about 1.5 × 10−3 kd

22. This follows from a basic geometric consideration of the tube diameter and angle in the situation oftwo atoms arriving at the MCP surface at slightly different times but making contact with the inner tubewall at the same time at different depths along the tube.
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and in kz of about 9× 10−4 kd. These values have been confirmed experimentally, see [53].

The quantum efficiency of the detector is limited by the probability of an incoming 4He∗ atom
to lead to a first signal in the formof an ejected electron. Once this electron has entered the chain
of amplification and conversion to a quadruplet of arrival times, its detection is virtually guar-
anteed. Thus it is intuitive that the open-to-air ratio of the MCP plays a crucial role, since any
electrons ejected from the metal surface can only be amplified if an atom falls into one of the
tubes. The model currently in use is at the high end of the range of technologial feasability with
an open-to-air ratio of 90%. The main factor that is currently limiting the single particle detec-
tion efficiency is the probability for the first ejected electron to continue its path down the tube,
with the geometry of the MCPmaking it possible for this electron to escape to the outside of the
tube. The quantum efficiency was measured after the implementation of the Raman transfer
and found to be ηMCP = 0.53(2) [52,53], which indicates that the escape probability for an initial
electron is considerable and presumably around 50%.

A further aspect to be considered for a detector capable of detecting such faint signals as
a single atom is the possibility of any saturation effects at high particle flux. These are known
to occur in MCPs [31, 112] due to the time that it takes for a single micro-channel to replenish its
charge after a detection avalanche, which imposes an inevitable dead time within that tube dur-
ing which any other atoms falling into the same tube have a lower probability of being detected.
An investigation of the MCP saturation on the experiment concluded the critical flux to be on the
order of 250× 103 atoms/cm2/s [50,51,111], a threshold that is surpassed whenworking with BECs
or lattice superfluids and leads to visible saturation of the densest features of the correspond-
ing momentum distributions. Furthermore there is an additional saturation effect originating
from the reconstruction algorithm, which encounters difficulties in identifying the correct time
quadruplets for signals with high particle flux. These complications stem from the criteria for
the assignment of delay line pulses not being error proof, as was shown in [50]. This can lead to
incorrectly reconstructed atoms in the xy plane, which is why this small central plane of data is
sometimes excluded in post-processing of experimental data.
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Ona final note, in the current setupwith a distance of 43 cmbetween the positions of theODT

and the MCP, the ensuing long TOF leads to to high-momentum parts of the distribution falling
outside the detector on account of its finite size of 8 cm, which limits the accessible momentum
range in the xy plane to little over the FBZ. This does not represent a significant drawback for
most measurements where the essential physics of the system can be accessed from quantities
measured within the FBZ, but it makes for a difference in the total detected and in-trap number
that is larger than the factor given simply by the quantum efficiency η of the detector.

2.3.3 . Automating the data pipeline for large quantities of data

The ability to detect thousands of individual particles per experimental realization, coupled
with the high sensitivity of a measurement apparatus capable of detecting single atoms, result
in large quantities of data that make up a single dataset. This is all the more true in the search of
faint signals where multi-particle correlations may have probabilities considerably below unity
of being present in a single shot of the experiment. Furthermore, even if they are present, a large
number of experimental repetitions is required in order to separate these signals consisting of
only a handful of atoms per shot from the background made up of thousands of atoms with
the necessary statistical significance. Additionally, when probing the critical regime around the
phase transition where the most intriguing correlation signals are expected, the precise setup
and calibration of the experiment is of utmost importance, since close to the transition a minute
change in for instance the lattice intensity may drastically alter the macroscopic behavior of the
system. This naturally leads to many datasets being taken in what are supposedly the same ex-
perimental conditions, but what is often only found out in post-analysis to contain a slight but
crucial deviation in a key experimental parameter.
Consider for instance the lattice alignment: There exists currently no quantitative protocol for
determining the best alignment of the three lattice beams with respect to the atoms and each
other, with adjustments having to rely on the inuition of the experimentalist for the final steps
of the fine-tuning procedure. as outlined above, an even slightly misaligned lattice can induce
non-negligeable heating effects in the ensemble; a fact that can only be determined after the
acquisition of several hundreds of shots in the experiment since any kind of thermometry equiv-
alent employed to gauge the temperature requires averaging over many repetitions to achieve
a meaningful signal-to-noise ratio. In this case the selection of the most appropriate dataset for
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any given analysis that involves probing the system across a range of configurations, such as
traversing the BH phase diagram, has the potential to turn into a challenging task, and it is of
vital importance that no mixup can occur in this data selection process.
There is a certain upper boundary to the efficiency range of a standard file-based organization
system that stores data in directories on the computer. A given hierarchical level in such a file
management system can only contain so many elements before it becomes impractical, a state-
ment that is especially true if the characteristics bywhich the elements are sorted can vary across
multiple dimensions. A concrete example for this experiment is a dataset taken at a certain ratio
of interaction to tunnel coupling in the BH sense. The BH parameter U/J is usually the top hier-
archical element in classing datasets, since the total atom number is often kept constant at the
value that corresponds to unit filling in the trap center at the phase transition (N = 5000 atoms).
If only U/J is made to vary for a series of datasets, then no complications arise in the organiza-
tion. However, the level of complexity of a quantum gas experiment makes for a host of other
parameters entering into contention for being possibly relevant. What is most often kept to tell
different dataset at the same value of U/J apart is the acquisition date. In that sense the need
to acquire a lot of shots of the experiment for a single dataset turns into an advantage, since
it makes it extremely rare that multiple datasets can be taken in a single day. However, other
experimental parameters may vary between datasets, and the scaling limit of the file-based or-
ganization limit has seemed within reach.
As a solution an automatic data pipeline has been set up to handle the acquisition and storage
of all data without the need formanual intervention. The data is autonomously transferred from
the acquisition computer to the team’s main server, where it is systematically organized in an
SQL database and stored in binary form. Any dataset can be accessed from anywhere on the
local network, or from the outside using the lab’s VPN. The database is backed up to the group’s
NAS, and any computer of the group can choose to automatically synchronize the database to
keep local copies.
This system is extensible to any type of data storage and can be set up using the automation
scripts contained in the project’s GitHub repository.

https://www.github.com/JPBureik/MCP-Database
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2.4 . Expmonitor: A Python library for the lab room

During the Covid-19 pandemic lab access was restricted, but a quantum gas experiment can-
not simply be turned off in its entirety. Vacuum pumps have to keep on running to maintain the
ultra-low vacuum in the experimental apparatus, especially in the science chamber. Lab temper-
atures need to be monitored to catch a possible A/C failure as early as possible. In this context
an automatic lab monitoring system was designed and installed on the experiment that will be
briefly detailed in the following. The software for the system described here is available on the
project’s GitHub repository.

2.4.1 . System setup

The goal with the setup was to create a budget friendly fully autonomous solution that could
run continuously in the background and provide essential insight into the state of lab equipment.
In order to avoid having to rely on any of the existing lab computers which run the experiment
and data acquisition, a new small server was installed 23 specifically for the lab monitoring. The
server runs a program that polls data from all connected lab equipment periodically, stores the
values in a local time-series database and displays the information on a graphical user interface
that can be accessed both locally and from outside the institute via a VPN. The total cost of a new
setup is below €100 and the automatic setup script builds most of what the server needs to start
logging, with a setup script containing detailed instructions and total install time being less than
1h. The codebase is open source and canbe foundat https://www.github.com/JPBureik/experiment-
monitoring.
Most of the code base is written in Python, with only the setup script and the execution file for the
Linux service being written in Shell script, while the script for themicrocontroller is written in em-
bedded C (see below). In the core of the program, each sensor is piloted via its own driver class.
An abstract base class implements the abstract methods connect, disconnect and rcv_vals that
every driver class has to overwrite in order for any of its members to be instantiated. This makes
for a homogeneous interface across all connected devices that the main execution script can in-
teract with. The abstract base class for all sensors defines the public methods measure and to_db

that handle incoming values from the connected equipment and outgoing values to bewritten to
23. A Raspberry Pi 4B manufactured by the Raspberry Pi Foundation.

https://www.github.com/JPBureik/experiment-monitoring
https://www.github.com/JPBureik/experiment-monitoring
https://www.github.com/JPBureik/experiment-monitoring
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the database. In addition, it defines a public method spike_filter that has proven invaluable in
the handling of data from analog sources. Each equipment-specific driver class defines its own
conversion function and unit as class attributes (among other more specific equipment-related
information such as the baudrate, timeout and port for serial connections) so that data is passed
in the correct format to the main function.
The utility module contains the global the expetion handler and the driver class for the datab-
sae. InfluxDBwas chosen for its optimization for storing and querying time-stamped data, which
makes it a natural fit for any monitoring application. Its horizontal scalability, efficient retention
policies and data downsampling allow for aggregation and reduction of data granularity as it
ages, helping to manage long-term storage. In three years of data acquisition at a constant 5
second interval the net storage occupied by the database is only on the order of a handful of GB,
an essential feature for ensuring compatibility with the small RaspberryPi server.
The storage solution on the server consists of a pair of USB thumb drives in RAID1 configuration,
with any storage capacity over 100 GB ensuring sufficient overhead for years to come.
In order to be able to connect analog devices, a solution has been implemented that involves
a microcontroller 24 connected to the local network. The analog devices are linked up to the
analog-to-digital (ADC) ports of the microcontroller, using Zener diodes for overvoltage protec-
tionwhere necessary. Themicrocontroller executes a script that polls all analog input portswhen
prompted and returns the corresponding values. Communication with the server is established
via TCP/IP. The server sends a message to the microcontroller that prompts the readout of the
analog voltages. Network communication implies that the two devices need not be physically
connected but can be placed anywhere in the local network. On the server side communication
is handled by a specific driver class (ArduinoADC) for the microcontroller that defines the port
and IP address for TCP/IP as class attributes. Using this driver class, any analog equipment will
simply define an instance of the ArduinoADC as class attribute to handle all of the communica-
tion with the microcontroller. Since the converted signals from many analog devices might not
be as precise as desired out of the box, especially in cases where a voltage conversion stage is
required before the input of the ADC, a calibration script is provided in the utility module. This
feature consists of a shell script that asks for the current true value (as seen on the display of the
24. Arduino Due fabricated by Adafruit, using the EthernetShield2 for TCP/IP communication.
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equipment) and compares this to the value currently being read by the system. After a series of
measurements it can fit the provided calibration function to the recorded data knowing the cor-
responding true values, and continuously update the fit parameters for the conversion function
of the driver class.
If no new driver classes need to be written (see below), only the simple setup script has to be
modified by the end user. This script imports the driver classes and instantiates the correspond-
ing objects using the parameters provided in the __init__method. Additional settings (such as
the spike filter) can be toggled via properties on the instantiated objects. This script also contains
system wide parameters such as the acquisition interval and details for exception handling. A
screenshot of part of the setup script is reproduced in fig. 2.11.

The system can be set up to automatically back up the contents of the server (especially the
calibration settings and the InfluxDB database), either to a connected hard drive or to a NAS on
the local network. The setup process for this feature is detailed in the documentation on GitHub.

2.4.2 . Surveillance of lab equipment

Themain program executed by the server is completely agnostic as to the specific equipment
that is connected, it simply executes the standard polling with the interface details being left to
the equipment specific child class that is used to drive it. Currently the following interfaces are
supported out of the box:

— Serial
— TCP/IP
— Analog
— SNMP
— USB
Polling occurs in a serial manner in order to avoid concurrency issues of multiple threads

or processes trying to access the same periphery simultaneously. In principle a multi-threaded
solution could be implemented so long as safeguards are put into place that ensure proper syn-
chronization, but the time constants for most of the lab equipment are on the order of seconds
when it comes to monitoring, which is fully within reach for the current solution. This situation is
susceptible to change however in the case of a single long I/O operation blocking the execution,
a scenario that has not occurred so far and would be specific to the connected equipment in
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Figure 2.11 – Part of the configuration script for the experiment monitoring system. Eachpiece of equipment is instatiated from the imported driver classes. Options such as the spikefilter can be toggled via properties on the instantiated objects.

question.
The continuous data acquisition is handled by a Linux Systemd service. The exception handler is
set up in such a way that ameasurement problem on a single piece of equipment does not block
the execution; instead a report of the exception is written to the log file on the home directory
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of the server.
Figure 2.12 shows a screen shot of the graphical user interface implemented using Grafana.

Figure 2.12 – Experiment monitoring GUI. The Grafana interface for the experiment monitor-ing system can be accessed locally or from outside the lab via a VPN. Gauges and time seriesplots indicate the current state of affairs of connected lab equipment, with the vertical lines cor-responding to situations that trigger an automatic alert, here in the case of a lab-wide A/C failure.The limit for the lab temperature is passed at the yellow line, and after not falling below the limitin terms of its average value for a pre-set duration, an alert message is sent (red line). When thesituation is back to normal, another e-mail is sent to inform the users (green line).

2.4.3 . Automatic alerts

The system also sends automatic alert e-mails in case of a pre-defined condition for any of
the connected equipment. For instance, users can be rapidly alerted in case of an A/C failure in
the lab or an issue with the vacuum system. A valid e-mail address from which to send the alerts
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has to be provided. It is highly recommended to choose a dedicated new e-mail account for this
feature, on the one hand for security reasons since in its current state the password is stored
on the server, and on the other hand to avoid any issues in case of a multitude of alerts or a
server malfunction 25. Furthermore compatibility has to be ensured between the SMTP host of
the provided mail account and the security regulations of the network the server is connected
to 26. The alert conditions for all equipment can be defined immediately through the Grafana
web interface, obviating the need of modifying the server settings after its initial setup. The en-
tire setup process for this feature is detailed in the documentation on GitHub.

The experiment monitoring system has been running with minimal maintenance for several
years now and its modularity makes it readily extensible to new interfaces. The only currently
known bug or problem consists in the Grafana Image Renderer is not being available for the
ARM processor of the RaspberryPi. Therefore the alert e-mails do not contain a snapshot of the
time series that causes the alert.

25. Some e-mail providers block users above a certain threshold of sent messages per time interval.26. For instance, as of late 2023 Université Paris-Saclay only allows a single host, namely
smtps.universite-paris-saclay.fr on port 465.



3 - Bogoliubov Pairing and Non-Gaussian Correlations in

Interacting Bose Gases

The standout advantage of the Helium Lattice experiment presented in chapter 2 is its ability
to study large many-body quantum systems that exhibit strong interactions (tuneable with the
optical lattice) by measuring their 3D momentum distribution with single-atom precision (using
the combination ofMCPs and delay lines). A platformwith such capacities is ideally suited for the
study of momentum correlations between a large number of particles in strongly correlated sys-
tems. In this chapter, the first of a series of analyses that follow that line of thought is presented.
These findings are the result of an investigation [32] into the characteristics of a system that ex-
hibits strong correlations on account of strong interactions giving rise to non-linear quantum
fluctuations. Even though experimental observations of such non-Gaussian correlations have
been sparse so far, strongly-correlated materials represent one of the most intriguing aspects
of quantum many-body physics.

Indeed, weakly-interacting systems are often characterized by Gaussian correlations, mean-
ing that quantum fluctuations around the mean-field ground state are small and can be ade-
quately described by a Gaussian distribution 1. In assuming that the probability distribution of
the correlations is Gaussian, and thus fully characterized by its mean and variance, the correla-
tions in the system are completely determined once the mean values and the variances of the
relevant operators are known 2. This assumption simplifies the analysis and often allows for an-
alytical or semi-analytical solutions. However, in strongly correlated systems or systems with
significant quantum fluctuations, higher-order correlations beyond the mean and variance be-
come important, and the Gaussian approximation may break down.

1. Mathematically, the assumption of Gaussian correlations implies that the probability distribution ofa set of operators representing observables in the system can bewritten in terms of a Gaussian functional.2. Note that the term "Gaussian" here is used in the context of probability distributions and statisti-cal mechanics, and it doesn’t imply that the physical observables themselves are necessarily Gaussian-distributed. Instead, it refers to the distribution of fluctuations around the mean values.
69
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One famous example of the successful application of a Gaussian approximation is Bogoli-
ubov theory for describing Bose gases in the context of weak interactions. This theory is a central
cornerstone of descriptions of quantum fluids and superfluidity, having correctly predicted the
linear spectrum of excitations, as well as the existence of a non-condensed fraction in the many-
body ground state resulting from interactions. Due to momentum conservation, this so-called
quantum depletion is made up of pairs of atoms with opposite momenta that are described as
two-mode squeezed states, which are Gaussian and thus exhibit linear correlations.

The analysis presented in this chapter seeks out to investigate the transition from theweakly-
interactingBose gas, characterizedbyBogoliubov theory andGaussian correlations, to the strongly-
correlated regime beyond Bogoliubov theory in search of complex non-Gaussian quantum fluc-
tuations. The specific observables used to characterize the state of the system are correlation
functions between two (or more) atoms in momentum space. The interaction-induced correla-
tions between pairs of atoms at opposite momenta predicted by Bogoliubov theory were first
observed on the Helium Lattice experiment [23]. The Gaussian assumption of Bogoliubov the-
ory translates to neglecting correlations between more than two atoms, a simplification that is
justified in the weakly-interacting regime. By increasing the interactions beyond the realm of the
approximations that underly Bogoliubov theory, the Gaussian assumption is expected to break
down due to the emergence of non-negligible correlations betweenmore than two particles. The
consequences of the arisal of such higher-order correlations for the pairing signal are unclear;
there is no theory to analytically predict its behavior for larger interactions. Its evolution as a
function of increasing interactions is the main focus of this chapter.

To set the context for this analysis, the first part of the chapter lays out the main aspects
of Bogoliubov theory, followed by the presentation of the initial observation of the opposite-
momentum pair correlation signal, with the experiments carried out with weakly-depleted BECs.
In the following, interactions are increased and the evolution of the pairing signal is studied.
The observed suppression of the pairing signal is associated to the emergence of complex non-
Gaussian correlations stemming from the increased interactions. Finally, the behavior of the
pairing signal is compared with numerical simulations which qualitatively confirm the experi-
mental picture.
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3.1 . Description of the weakly-interacting Bose gas

While problems of interacting many-particle assemblies can be addressed using quantum
field theory and Green’s functions, physical intuition can often become clearer by employing a
more direct approach that involves simplifying the Hamiltonian in second quantization and us-
ing approximations that render the problem exactly solvable. Canonical transformations of the
creation and destruction operators in the occupation-number Hilbert space do not alter the orig-
inal commutation relations that completely define these operators. In the case of the interacting
Bose gas, the approximation of weak interactions allows for the diagonalization of the quadratic
part of the Hamiltonian through a unitary transformation conceived by N. Bogoliubov in a land-
mark contribution to the understanding of quantum fluids and superfluid phenomena [22]. The
foundational framework that he laid in inferring both the excitation spectrumand the formof the
many-body ground state stands as a cornerstone of the field of weakly-interacting Bose gases
until today. By approximating the interacting system as a non-interacting one, on top of which
interaction-induced quantum fluctuations [113] are incorporated as a perturbation, Bogoliubov
deduced the nature of the low-lying excitations as being collective oscillations of the condensate
density that give rise to superfluid behavior. Lee, Huang and Yang later gave a correction to Bo-
goliubov’s mean field result [114–116] that included a contribution from atoms outside the k = 0

mode the many-body ground state. Bogoliubov deducted that the processes imparting finite
momentum to these atoms occur pairwise due to momentum conservation, with both atoms
carrying opposite momentum. In this way, momentum correlations evolve intuitively from the
non-interacting starting point. Bogoliubov theory played a foundational role at the outset of the
study of emergent phenomena in many-body quantum systems, and its key aspects are briefly
detailed in the following. Since the main focus of this chapter concerns the physics beyond the
weakly-interacting regime, the reader is referred to he group’s previous theses [52,53] for amore
detailed exposition of Bogoliubov theory and the initial observation of its predicted momentum
correlated pairs on the Helium Lattice experiment [23].

3.1.1 . Bogoliubov approximation

Consider a homogeneous Bose gas in a box of volume L3. In the absence of interactions,
there are no correlations between the populations of different momentum modes ki, with fluc-
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tuations of their populations having an entirely incoherent (thermal) origin. Correlations arise in
the presence of interactions. In their most basic form, two incoming modes k1 and k2 are cou-
pled to two outgoingmodes k3 and k4 in a four-wavemixing process. Two-body repulsive contact
interactions can be modeled by the potential δ(r − r′) with interaction strength U = 4πℏ2as/m

and s-wave scattering length as > 0 [117]. Modeling interactions with this potential is reasonable
when the gas is dilute and the the mean distance between atoms is much larger than the scat-
tering length asn1/3 ≪ 1, where n is the density and as = 7.5 nm for He∗. In second quantization
this system’s Hamiltonian is given by

Ĥ =

∫
ℏ2

2m
∇Ψ̂†(r)∇Ψ̂(r) dr+

U

2

∫
Ψ̂†(r)Ψ̂†(r′)δ(r− r′)Ψ̂(r)Ψ̂(r′) dr′dr (3.1)

The field operators Ψ̂ and Ψ̂† can be written in the plane wave basis:

Ψ̂(r) =
1

L3/2

∑
k

âke
ik·r (3.2)

and

Ψ̂†(r) =
1

L3/2

∑
k

â†ke
−ik·r (3.3)

with âk and â†k the operators that destroy and create a particle of momentum k, respectively,
and that satisfy the Bose commutation relations

[
âk, â

†
k′

]
= δk,k′ and [

âk, â
†
k

]
=
[
âk′ , â†k′

]
= 0 (3.4)

Using the momentum space decompositions (3.2) and (3.3) the Hamiltonian (3.1) can be writ-
ten in the plane wave basis:

Ĥ =
∑
k

ϵkâ
†
kâk +

U

2L3

∑
k,k′,k′′

(
â†kâ

†
k′ âk′′ âk+k′−k′′ + c.c.) (3.5)

with the kinetic energy of a particle in momentum mode k given by

ϵk =
ℏ2k2

2m
(3.6)
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With weak interactions being a key assumption of a theory primarily concerned with low en-

ergy excitations, scattering processes are presumed to be elastic, and thus momentum is con-
versed in the interaction term of (3.5), which translates the phase-matching condition k1 + k2 =

k3 + k4.
An ideal Bose gas (U = 0) is entirely Bose condensed at zero temperature with all particles oc-
cupying the single-particle ground state, which corresponds essentially to the k = 0 mode: the
BEC. Bogoliubov’s approximation of weak interactions manifests itself in the assumption that
as U takes on a finite but small value, the departure from a perfect BEC is sufficiently insignif-
icant in terms of the occupation numbers to assume that the single-particle ground state will
continue to be strongly populated, ⟨N0⟩ ≫ 1. Mathematically, this translates to neglecting the
operator character 3 of â0 and â†0 and instead treating them as ordinary numbers, a0, a†0 ≈

√
N0.

This amounts to treating the condensate mode as a classical field. Treating the interaction
potential as a weak perturbation provides the basis for a systematic expansion of the Hamil-
tonian (3.5): Ĥ =

∑
k ϵkâ

†
kâk + V̂int where the interaction potential is now approximated as

V̂int ≈ V̂ (2) + V̂ (3) + V̂ (4) with the individual orders equal to

V̂ (2) =
UN2

0

2L3
+

U

2L3

∑
k ̸=0

(
â†kâ

†
−k + c.c.) (3.7a)

V̂ (3) =
U
√
N0√

2L3/2

∑
k,k′ ̸=0

(
â†k+k′ â

†
−kâk + c.c.) (3.7b)

V̂ (4) =
U

2L3

∑′

k,k′,k′′

(
â†k+k′−k′′ â

†
k′′ âk′ âk + c.c.) (3.7c)

where the sum ∑′ in the last term excludes ki = 0 and k+ k′ + k′′ = 0.
3.1.2 . Many-body ground state

In a further implication of Bogoliubov’s approximation of weak interactions, the number of
particles outside the k = 0mode is presumed to be small, while the vast majority of particles will
continue to occupy the single-particle ground state, Nk=0 = N0 ≈ N , with only a small fraction

3. Specifically, the approximation is that, with ⟨N0⟩ ≫ 1 strongly populated, the prefactors √
N0 and√

N0 + 1 for â0 and â†0, respectively, are considered equal, and thus their commutator vanishes.
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of the total atom number N removed from the BEC by interactions. Under these conditions the
interaction potential V̂int can be truncated and only the quadratic term (3.7a) is retained, which
neglects all interactions outside of the condensate 4. The Hamiltonian in Bogoliubov approxima-
tion is thus given by

Ĥ =
Un0N0

2
+
∑
k ̸=0

(ϵk + 2Un0) â
†
kâk +

Un0
2

∑
k ̸=0

(
â†kâ

†
−k + c.c.) (3.8)

with the spatial density in the condensate mode n0 = N0/L
3.

The first of these terms corresponds to the interaction energy of the particles occupying the
k = 0 mode; the second to the kinetic energy and Hartree and Fock terms of the interaction
between particles in the k = 0 and k ̸= 0modes, respectively; and the final term to the creation
or annihilation of pairs of atoms in finite momentum modes at opposite momenta k and −k

(diagramatically shown in fig. 3.1).

Figure 3.1 – Diagram of the pair creation and annihilation processes induced by interac-
tions. The interactions described by V̂ (2) induce correlations between the momentummodes kand −k. Taken from [118].

Neglecting orders above V (2) in the interaction potential amounts to linearizing the quan-
tum fluctuations, as now only pairwise correlations remain, with phase matching ensuring their
opposition in momentum.

4. Note that it is this approximation of retaining only terms up to V̂ (2) in V̂int that will be relinquishedin the second part of the chapter where interactions are larger and higher-order processes can no longerbe neglected.
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3.1.3 . The excitation spectrum

With quantum fluctuations linearized, the Hamiltonian (3.8) describes a bosonic Gaussian
state, since it is a quadratic form in the creation and destruction operators. As such, it can
be solved exactly by diagonalizing it with a canonical transformation. The so-called Bogoliubov
transformation [22] consists in introducing the quasi-particle creation and annihilation operators
b̂†k and b̂k defined by

b̂k = ukâk + v∗−kâ
†
−k (3.9a)

b̂†k = u∗kâ
†
k + v−kâ−k (3.9b)

In order for the transformation to be canonical, the quasi-particle operators have to fulfill the
bosonic commutation relations

⟨
[
b̂k, b̂

†
k′

]
⟩ = δk,k′ and ⟨

[
b̂k, b̂

†
k

]
⟩ = ⟨

[
b̂k′ , b̂†k′

]
⟩ = 0 (3.10)

The first of these conditions is fulfilled by imposing the restriction |uk|2 − |v−k|2 = 1 on the
complex numbers uk and v−k, leaving only their ratio to be determined. This is achieved by re-
quiring that the Hamiltonian be explicitly diagonal in the quasi-particle operators, which imposes
the additional condition ⟨b̂†kb̂

†
−k⟩ = ⟨b̂kb̂−k⟩ = 0. This determines uk and v−k as

uk =

√
ϵk + gn0
2Ek

− 1

2
(3.11a)

v−k = −
√
ϵk + gn0
2Ek

− 1

2
(3.11b)

with the Bogoliubov dispersion relation giving the quasi-particle energy as

Ek =
√
ϵk (ϵk + 2gn0) (3.12)

and diagonalizing the Hamiltonian in the quasiparticle basis:
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ĤBogo = ELHY +
∑
k

ϵkb̂
†
kb̂k (3.13)

which is given by the energy associated to the non-interacting quasiparticles in addition to
the Lee-Huang-Yang energy correction ELHY which arises from no longer considering the inter-
action potential as a delta function [114]. In numerous systems [119–123], experimental observa-
tions have confirmed the highly successful prediction of the excitation spectrum (3.12) made by
Bogoliubov theory. The system’s superfluid characteristics are linked to the linear behavior of
(3.12) at low momenta [124]:

Ek
k→0−−−→ ℏk

√
gn0
m

(3.14)
which is the dispersion relation of phonons, with the sound velocity c =√gn0/m representing

the threshold belowwhich an impurity canmove through the gas without undergoing scattering.
At highmomenta, on the other hand, (3.12) approaches the free-particle dispersion relation (3.6):

Ek
k→∞−−−→ ϵk (3.15)

In this limit the quasi-particle operators become equivalent to the particle operators, since
vk

k→∞−−−→ 0 and uk k→∞−−−→ 1 imply b̂k k→∞−−−→ âk.
Thus, Bogoliubov quasi-particles as defined by (3.9) are phonons at lowmomenta and free parti-
cles at high momenta. The characteristic length scale associated to the transition between these
two regimes occurring at ϵk ≃ gn0 is the so-called healing length

ξ =

√
ℏ2

2mgn0
(3.16)

and represents the spatial extent over which a local perturbation of the density is smoothed
back to the bulk density of the condensate.

The Bogoliubov approach characterizes the excitations of the weakly-interacting Bose gas as
non-interacting quasi-particles. Consequently, these quasi-particles exhibit ideal bosonic behav-
ior and are populated at finite temperatures according to the Bose distribution:
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⟨b̂†kb̂k⟩ =
1

eEk/kBT − 1
(3.17)

which implies that at zero temperature the quasi-particle population is

⟨b̂†kb̂k⟩T=0 = 0 (3.18)
Using the quasi-particle operator definitions (3.9), (3.17) can be used to express the popula-

tion of the free particles as

⟨â†kâk⟩ = (|uk|2 + |vk|2)⟨b̂†kb̂k⟩+ |vk|2 =
|uk|2 + |vk|2

eEk/kBT − 1
+ |vk|2 (3.19)

which can be seen to contain two contributions: The first term corresponds to the so-called
thermal depletion, constituted of quasi-particles excited by finite temperature, since this terms
vanishes at T = 0. The emergence of the second term stems from the non-commutation of the
bosonic creation and annihilation operators, signifying an inherently quantum phenomenon.
This term is present even at zero temperature and implies that ⟨â†kâk⟩T=0 ̸= 0. Consequently,
the many-body ground state contains a fraction of atoms with finite momentum outside the
k = 0mode: the so-called quantum depletion. These states are not populated by temperature,
but rather by the interplay of interactions and quantum fluctuations.
It is of note that correlations between particles at opposite momenta also occur in a plethora
of other systems, such as parametric down-conversion [125], dissociation of diatomic molecules
[126], and elastic collisions in high-energy physics [127] or with Bose-Einstein condensates [128].
The significant distinction with regards to the mechanism derived in Bogoliubov theory resides
in the fact that the k/−k pairs appear in the weakly-interacting Bose gas as a result of quantum
fluctuations in an equilibrium state, as opposed to the examples cited above which all constitute
out-of-equilibrium effects. Indeed, themany-body ground state ismade up of two contributions:
The coherent state in the k = 0 mode is in a coherent superposition with two-mode squeezed
states of pairs of opposite momenta k/ − k [22, 114]. Consequently, the wavefunction of this
ground state 5 is expressed as a coherent superposition of both contributions:

5. (3.20) shares the same form as the Bardeen-Cooper-Schriefer ground state for superconductive sys-tems [129] that harbor fermionic Cooper pairs at opposite momenta [130].
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|ΨGS⟩ ∝ exp

√N0â
†
0 +

∑
k ̸=0

vk
uk
â†−kâ

†
k

 |0⟩ (3.20)

It is noteworthy that the thermal depletion is primarily associated with single-particle exci-
tations, except at very small momenta (kξ ≪ 1), where a quasi-particle exhibits a pronounced
phononic character with |uk| ∼ |vk|. To effectively detect Bogoliubov pairs, it is essential to work
at low temperatures, ensuring that the contribution of thermally depleted (incoherent) atoms is
minimized. This condition corresponds to entering the low-temperature regime (kBT/µ≪ 1). In
the optical dipole trap, this ratio is approximately unity (kBT/µ ≈ 0.75) [131], given the constraints
of evaporative cooling. To mitigate the influence of the thermal depletion, the optical lattice is
used to increase the interactions (see chapter 2), and thereby the term gn0 in (3.11).

In the presence of an optical lattice, a Bogoliubov Hamiltonian of the form of (3.13) can be
derived for the Bose-Hubbard model [132,133], involving the effective massm∗ and replacing the
interaction constant g with the on-site interaction energy U = g

∫
|drω0,0(t)|4. No extension of

the theory exists, however, for the system realized in the experiment of 3D lattice bosons with
an additional harmonic confinement. Comparisons with theory can therefore only be made via
numerical simulations.

3.2 . Normalized two-body correlation functions

Having established the emergence of correlations at opposite momenta in the many-body
ground state (3.20) described by Bogoliubov theory, the more practical questions arises of the
choice of observable best suited to reveal the presence of these atompairs in aweakly-interacting
Bose gas. As shown in the preceding section, these pairs populate the quantum depletion via
interaction processes that correlate them at oppositemomentum. By analogy with quantum op-
tics [134, 135] such types of momentum correlations can be quantified by two-body correlators
in second quantization of the form

G(2)(k,k′) = ⟨â†kâ
†
k′ âkâk′⟩ (3.21)
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where the normal operator ordering arises from the destruction of the 4He∗ atom uponmea-

surement in the same way as it applies to detected photons. The linear nature of Bogoliubov’s
transformation implies that the Gaussian statistics [136] inherent to the eigenstates of (3.13) per-
tain not only to the quasi-particles described by (3.9) but also to the real particles, so that Wick’s
theorem can be applied [137] to decompose (3.21):

G(2)(k,k′) = ⟨â†kâ
†
k′⟩⟨âkâk′⟩+ ⟨â†kâk′⟩⟨â†k′ âk⟩+ ⟨â†kâk′⟩⟨â†k′ âk⟩

= |⟨â†kâ
†
k′⟩|2 + ρ(k)ρ(k′) + |⟨â†kâk′⟩|2 (3.22)

with momentum density ρ(k) = ⟨â†kâk⟩. The first term of 3.22 is referred to as anomalous
two-body correlations and contains correlations between opposite momentum modes k and
−k. The term anomalous stems from the apparent non-conservation of particle numbers. Note,
however, that the BEC essentially serves as a reservoir of particles and does not appear in the
calculations since it is described as a classical field. Besides the atompairs in the quantumdeple-
tion, quasi-particles at opposite momenta contribute to this term in the low-momentum regime
kξ ≪ 1 where they behave essentially like phonons. Excluding this contribution, along with the
one of the condensed atoms in the k = 0 mode, therefore imposes restrictions on the size of
the measurement volume.

In working with lattice superfluids, the momentum distribution consists of the Bragg diffrac-
tion pattern of a coherent matterr wave released from an optical lattice, with momentum peaks
of width ∼ 1/L3

BEC [138] reflecting the periodicity of the latter (as seen for the momentum dis-
tributions in fig. 3.2 and 3.4). The extension in momentum space of the quantum depletion,
on the other hand, is approximately given by the inverse healing length 1/ξ ≫ 1/LBEC, which
corresponds to a momentum volume much larger than the one occupied by the BEC, a state-
ment that has been shown to also pertain to the thermal depletion at the temperatures of the
experiment [139]. In order to exclude the condensed atoms which do not exhibit correlations at
opposite momenta, the measurement volume Ωk for the analysis of the k/ − k pairs is chosen
to exclude the k = 0 mode and probe only the depletion part of the momentum distribution
Ωk = 0.15 kd ≤ |kx,y,z| ≤ 0.85 kd. Since for the minimum value of k this already corresponds to
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kξ ≈ 0.85 kd, this choice of measurement volume also excludes the contribution of thermally
depleted atoms to the anomalous correlation signal.

In order to increase the signal-to-noise ratio and reduce the dimensionality of the correlation
function from 6D to 3D, 3.22 is computed over the modes k and δk− k and integrated over Ωk:

G
(2)
A (δk) =

∫
Ωk

dkG(2)(k, δk− k) =

∫
Ωk

dk ⟨â†kâ
†
δk−kâkâδk−k⟩ (3.23)

and subsequently normalized to flatten the contribution of the uncorrelated background of
the momentum density:

g
(2)
A (δk) =

∫
Ωk

dk ⟨â†kâ
†
δk−kâkâδk−k⟩∫

Ωk
dk ρ(k)ρ(δk− k)

(3.24)

With the definition of (3.24) a peak at δk = 0 in the amplitude of g(2)A (δk) identifies thus the
presence of k/− k pairs.

3.2.1 . Initial observation of anomalous two-body correlations

As outlined in chapter 2, the experiment begins with the production of a He∗ BEC in a crossed
optical dipole trap [68] which is adiabatically loaded into a 3D optical lattice [97] used to increase
interactions and the quantum depletion [23], modeling the Bose-Hubbard Hamiltonian (2.19).
This first series of experiments is carried out in a shallow lattice with a value of the Bose-Hubbard
parameter U/J = 5 corresponding to the weakly-interacting regime. With a condensed fraction
of fc = N0/N ≃ 84% the cloud is thus in the superfluid state far from theMott insulator transition
at U/J = 26(1) [140]. A normalized 1D cut of its momentum density is included in fig. 3.4. A total
atom number of N = 5.0(7) × 103 ensures unity lattice filling and circumvention of interactions
during the TOF [99]. As mentioned in the previous chapter, the residual harmonic confinement
of the lattice beams implies that the quasi-momentum is not a good quantum number, which
leads to a reduction in the amplitudes of correlation functions as compared to those measured
in a homogeneous lattice potential. The 3D single-atom resolved distributions measured by the
combination ofMCPswith delay lines [111] constitute the raw experimental data of in-trap particle
momenta [139] from which the correlation functions are calculated. An example of a single shot
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of the momentum distribution is shown in fig 3.2. A typical dataset consists of approximately
2500 such shots.

Figure 3.2 – 3Dmomentumdistribution recorded in the experiment. Single-shot experimen-tal distribution of individual atoms inmomentum space, fromwhichmomentum correlations arecomputed.
The resulting normalized anomalous two-body correlations (3.24) are plotted in figure 3.3 for

all three axes of the optical lattice.
Figure 3.3 shows clear correlation peaks at δk = 0 for all three axes of the optical lattice,

constituting the first experimental observation of Bogoliubov’s correlated atom pairs in the de-
pletion of a weakly-interacting Bose gas [23]. For more details on this observation, refer to the
group’s previous theses [52, 53], where this correlation signal was among other things shown
to disappear with increasing temperature (highlighting its quantum origin) and conform to the
characteristics expected for two-mode squeezed states such as linear scaling with the inverse
density and relative number squeezing.
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Figure 3.3 – Anomalous correlations revealing pairs of atoms at opposite momenta. One-
dimensional cross-sections of g(2)A (δk) are taken along the three lattice axes, with transverseintegration using δk⊥ = 3.0×10−2 kd and a longitudinal voxel size of δk∥ = 1.2×10−2 kd. Gaussianfunctions (solid lines) are used to fit the data, and error bars are determined from the inversesquare root of the voxel count.

3.2.2 . Evolution of normalized two-body correlations with interactions

As alluded to in the introduction to this chapter, the main focus of this chapter is on the
evolution of this pairing mechanism as interactions are increased beyond the weakly-interacting
regime. As outlined in the first part, the theory predicting two-body correlations of the form
observed in fig. 3.3 is based on the assumption of interactions being sufficiently weak to lend
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themselves to a perturbative treatment. While the initial observation of these momentum cor-
related pairs has constituted a siginificant step towards validating Bogoliubov’s prediction from
over 70 years ago, nothing is said in his theory about the fate of these correlations as interac-
tions are increased beyond the realmof its assumptions. Intuitively, themany-body ground state
should continue to contain characteristic signatures of the interaction effects in the system that
can be revealed through momentum correlations. Extending the investigation of momentum
correlations from the weakly- to the strongly-interacting regime represents thus a natural ap-
proach for determining the fate of Bogoliubov’s momentum pairing thoughout these different
regimes and possibly establishing the limit of validity of Bogoliubov theory for interacting Bose
gases.

The most natural way to extend the analysis presented in the first part of this chapter is to
apply the same procedure to experimental data taken with higher values of interaction U/J > 5.
In an effort to investigate the fate of the correlation signal presented in figure 3.3 as interactions
are increased, the experiment is repeated for interaction values in the range 2 ≤ U/J ≤ 22,
entering the strongly-interacting regime while steering clear of the critical regime at the (finite-
temperature) Mott transition at uc = 26(1) [140]. Correspondingly, figures 3.4a and 3.4b indicate
the presence of contrasted Bragg diffraction peaks associated to the presence of large BECs in
the momentum density profiles of all datasets, including the one shown in figure 3.3.

Figure 3.4c indicates a decrease from about 90% to about 20% in the condensed fraction
fc = N0/N as interactions are increased from U/J = 2 to 22. In the momentum distributions this
manifests as an increase of more than one order of magnitude in the depletion density around
the edge of the FBZ at k = 0.5 kd, clearly visible in the semi-logarithmic scale of fig. 3.4b. It is
important to note that the reduced temperature T/J is constant (within error bars) for all the
datasets [97], implying that this increase in the depletion density is predominantly the result of
the change in interactions, rather than being due to heating.
The size of themeasurement volume is slightly reduced around the edge of the FBZ with respect
to the first part of this chapter in order to increase the amplitudes of the anomalous correla-
tions, which are proportional to the inverse density as a general property of two-mode squeezed
states. Ωk now corresponds to a cubic corona constituting the difference in volume between two
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Figure 3.4 – Momentum density profiles. a Normalized 1D cuts of the momentum densities
ρ(k)/ρ(0) for the datasets used in this analysis with with varying interactions 2 ≤ U/J ≤ 22. bSame data as a in semi-log scale. The green shaded area indicates the measurement volume
Ωk of the depletion over which the two-body correlations are computed. c Condensed fraction
fc = N0/N as a function of the interaction strength, calculated following the procedure outlinedin appendix A of [53]. The dashed line is a guide to the eye ∝ (1 − u/uc)

2β with β = 0.3485 and
uc = 26 [140]. Vertical error bars correspond to fit uncertainties in determining the inflectionpoint of the double structure in the momentum densities [53].

cubes of half-radii 0.7 kd and 0.3 kd, which implies 1.8 ≤ |k|ξ ≤ 3.0 atU/J = 2 and 1.2 ≤ |k|ξ ≤ 2.0 at
U/J = 22 and thereby continues to exclude the phononic part of the thermal depletion (|k|ξ ≪ 1).

There are two different mechanisms that give rise to peaks in the two-body correlation func-
tion g(2)(k,k′) [23]: The normal and the anomalous correlations. The latter is located at opposite
momenta k′ = −k and is caused by the interaction-induced quantum fluctuations at the heart
of Bogoliubov theory defined in (3.24). The former is located at k′ = k and corresponds to the
bosonic bunching of Hanbury-Brown and Twiss (HBT) correlations:
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g
(2)
HBT(0) =

∑
k∈Ωk

⟨â†kâ
†
kâkâk⟩∑

k∈Ωk
⟨Nk⟩2

(3.25)
As for fig. 3.3 both of these correlation peaks can be fitted with Gaussian functions to extract

their amplitudes. The result for all datasets 2 ≤ U/J ≤ 20 is show in figure 3.5.

Figure 3.5 – Amplitudes of the normal (HBT) and anomalous (pairing) normalized two-body
correlations for increasing interactions. The blue circles are amplitudes of the normal (HBT)
and the green ones of the anomalous (pairing) normalized correlations g(2)HBT (3.25) and g(2)A (3.24)as a function of the interaction strength u. Vertical error bars correspond to the standard de-
viations of the amplitudes of g(2)x,y,z while correcting for the effect of transverse integration [53].Horizontal error bars correspond to average uncertainties on the fit in the parametric heatingcalibration of the lattice depth shown in fig. 2.8. The dashed line represents a theoretical per-
fectly contrasted bunching g(2)HBT = 2 expected for any strength of interactions.

Figure 3.5 shows perfectly-contrasted bunching amplitudes g(2)HBT = 2.00(5) for all regimes of
interactions. This observation extends the results of previous work on the experiment [141] to
the strongly-interacting regime. In contrast to this consistency, the normalized pairing ampli-
tude decreases monotonously with U/J . As shown in [23, 52, 53], the amplitude of the pairing
signal has been confirmed to be inversely proportional to the mode population g(2)A −1 ∝ 1/ρ(k),
as is expected for two-mode squeezed states. Since this decrease is thus compatible with the
predictions of Bogoliubov theory, it poses a challenge for drawing a definitive conclusion, as
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this reduction is anticipated not only due to the increase in the depletion density but also due
to a decrease of the population of the two-mode squeezed states, as would be possible when
the system transitions into the strongly-correlated regime where Bogoliubov’s approximation
breaks down. Consequently, disentangling these two effects poses a significant difficulty. This
highlights that normalized correlation functions are inappropriate for establishing a limit of va-
lidity for Bogoliubov theory and underscores the need for a different observable. The remainder
of this chapter is dedicated to demonstrating that connected correlation functions are able to
fulfill this role and quantify the fate of Bogoliubov’s momentum pairing at strong interactions in
an unambiguous manner.

3.3 . Suppression of Bogoliubov pairing and emergence of non-Gaussian corre-

lations

Increasing the interaction strength beyond the assumptions underlying Bogoliubov theory
amounts to having to consider higher orders of interaction processes than merely those de-
scribed by V̂ (2), as strong interactions are expected to give rise to strongly-correlated systems
[89, 142] exhibiting large quantum fluctuations with more complex statistics than Gaussian [58,
143]. The truncation of the interaction potential at quadratic order must be relinquished in the
context of stronger interactions that deplete the condensate out of the range of validity of the
approximation Nk=0 = N0 ≈ N . With the ratio of particles occupying the quantum depletion
increasing monotonously as a function of the interaction strength, higher-order processes in-
volving interactions outside the condensate cease to be negligible, invalidating the linearization
of quantum fluctuations as momentum correlations between more than two particles appear
out of the the cubic and quartic terms of the interaction potential that cannot be simplified to
pairwise interactions, indicating an unmistakable departure from Gaussian states. The impact
of the arisal of such higher-order correlations on the two-body pairing signal is unclear, as is the
range of interactions for which the predictions of Bogoliubov theory hold true.

Admitting the higher orders V̂ (3) and V̂ (4) in the interaction potential amounts to the arisal
of successive scattering events, that is contrary to Bogoliubov theory, interactions outside the
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condensate can no longer be neglected. This leads to additional correlations in momentum be-
sides the two-mode squeezed states already present at weak interactions. Figure 3.6 illustrates
the possible scattering events arising from all three constituent terms of V̂int.

Figure 3.6 – Singular and successive two-body scattering processes from the BEC.With thedevelopment of the interaction potential truncated above the quadratic term V̂ (2) the only in-teraction process considered in Bogoliubov theory gives rise to two-mode squeezed states atopposite momenta (a). For stronger interactions collisions outside the condensate constitutesuccessive scattering processes that give rise to momentum correlated triplets (b) and quartets(c), and generally n-uplets with∑n
j=1 kj = 0 (oranges surfaces).

The cubic and quartic terms of V̂int correlate triplets and quadruplets, respectively, with zero
total momentum sums.

3.3.1 . Connected correlation functions

With the inaptitude of magnitudes of normalized correlation functions to reveal the fate of
the pairing signal for stronger interactions established (see fig. 3.5), a different observable has
to be analyzed in order to study the hierarchy of momentum-correlated subsets involving n > 2

modes. One such possibility resides in the analysis of connected correlation functions G(n)
c , also

called n-th order multivariate cumulants or Ursell functions [144], of the momentum density
operator N̂k = â†kâk. They are defined by subtracting the contributions of all lower-order corre-
lations n′ < n from the correlator of order n of the populations:

G(n)
c (k1,k2, . . .kn) = ⟨Nk1Nk2 . . . Nkn⟩ −G

(n)
dis (k1,k2, . . .kn) (3.26)
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In eliminating G(n)
dis the connected correlations G(n)

c isolate genuine n-mode correlations that
are not reducible to correlations of lower order. Explicitly, the second and third order connected
correlations of the momentum density operator are given by

G(2)
c (k1,k2) = ⟨Nk1Nk2⟩ − ⟨Nk1⟩⟨Nk2⟩ (3.27)

G(3)
c (k1,k2,k3) = ⟨Nk1Nk2Nk3⟩ − ⟨Nk1⟩⟨Nk2Nk3⟩

− ⟨Nk2⟩⟨Nk1Nk3⟩ − ⟨Nk3⟩⟨Nk1Nk2⟩

+ 2⟨Nk1⟩⟨Nk2⟩⟨Nk3⟩ (3.28)

Connected correlation functions are not specific to quantummany-body systems, but awidely
used tool in statistical mechanics. Indeed, the Ursell function Uk(σ1, . . . , σk) can be defined for
any family of k random variables σ1, . . . , σk via the exponential generating function [145] :

Uk(σ1, . . . , σk) =
∂k

∂h1 . . . ∂hk
ln⟨exp

k∑
i=1

hiσi⟩|h≡0 (3.29)
Solving a quantum many-body problem amounts to gaining knowledge of all its correlation

functions. Approximate solutions can be found by considering the degrees of freedom where
only a few of the lowest order correlation functions are relevant. Such a choice of basis (i.e.
degrees of freedom) where the correlation functions factorize amounts to diagonalizing the
many-body Hamiltonian. Analyzing the connected correlation functions (3.26) calculated from
the mode populations of the recorded momentum distributions represents an experimental
approach to conducting a quantitative investigation of a regime whose correlation structures
have thus far eluded understanding with only a few exceptions 6.

The most relevant quantum correlations induced by interactions, both in Bogolyubov theory
and beyond (see fig. 3.6), manifest as connected correlations among momentum modes that
sum to zero (G(n)

c (K = 0)). Conversely, incoherent (thermal) fluctuations lack a momentum-sum
constraint, allowing themomentumsum tofluctuate incoherently. Detecting correlations among

6. See [146] for a theoretical approach in continuum space.
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zero-summodes thus serves as a robust indication of their quantum origin, stemming from pro-
cesses depicted in fig. 3.6, which illustrates the fact that each higher order of interaction-induced
momentum correlated n-uplets is translated by the corresponding connected correlation func-
tion G(n)

c (K = 0). Observing non-zero values for these quantities in the experiment is therefore
a direct trace about the presence of underlying successive scattering processes leading to high-
order correlations that exceed the realm of Gaussian statistics.

In order to continue to investigate the fate of the pairing signal presented in the first part of
this chapter, while avoiding the pitfalls associated with the use of normalized correlation func-
tions, the two-mode, zero-sum connected correlations

G(2)
c (k,−k) = ⟨â†kâ

†
−kâkâ−k⟩ − ⟨Nk⟩⟨N−k⟩ (3.30)

are analyzed. In the context of Bogoliubov theory, these correlations quantify the momen-
tum pairing in the system, with (3.30) being equivalent toG(2)

c (k,−k) = |⟨â†kâ
†
−k⟩|

2, as can be seen
from the following considerations:

The perfectly-contrasted bunching g(2)HBT = 2.00(5) observed in fig. 3.5 justifies the assump-
tion that the interaction processes described by (3.7) do not induce the appearance of a finite
value of ⟨ak⟩ in the depletion, since this would reduce the bunching amplitude. Under this as-
sumption, and relaxing the one of particle-number conservation, the connected correlations of
four momentum density operators in the depletion can be expressed as

⟨â†kâ
†
−kâkâ−k⟩c = ⟨â†kâ

†
−kâkâ−k⟩ −

∣∣∣⟨â†kâ†−k⟩
∣∣∣2 − ∣∣∣⟨â†kâ−k⟩

∣∣∣2 − ⟨â†kâk⟩⟨â
†
−kâ−k⟩ (3.31)

where the last term is equal to −⟨Nk⟩⟨N−k⟩. Consequently, (3.30) can be written as 7

G(2)
c (k,−k) =

∣∣∣⟨â†kâ†−k⟩
∣∣∣2 + ∣∣∣⟨â†kâ−k⟩

∣∣∣2 + ⟨â†kâ
†
−kâkâ−k⟩c (3.32)

As outlined in the first part of this chapter, the approximations underlying Bogoliubov theory
imply a linearization of quantumfluctuations and thereby lead to exclusively Gaussian states. For

7. (3.32) is a generic equation applicable to both Gaussian and non-Gaussian states.
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such states connected correlations of four operators are zero by definition, i.e. ⟨â†kâ†−kâkâ−k⟩c =

0. Additionally, the theory predicts incoherence amongmodes at oppositemomenta, i.e. ∣∣∣⟨â†kâ†−k⟩
∣∣∣2 =

0. With all other terms assumed to vanish, the approximations made in Bogoliubov theory thus
predict the connected correlations (3.32) to consist solely of the pairing at opposite momenta:

G(2)
c (k,−k) = |⟨â†kâ

†
−k⟩|

2 (3.33)
3.3.2 . Extracting two-body connected correlations frommomentum distributions

The connected correlations at opposite momenta G(2)
c (k,−k) are extracted from the exper-

imental data shown in fig. 3.4 for momenta k belonging to the same measurement volume Ωk

as for the analysis of the normalized correlation functions in fig. 3.5. In order to compute the
two-body connected correlations (3.30) from the 3Dmomentum distributions of the type shown
in fig. 3.2, the histogram of momentum sums k1+k2 is calculated for all pairs of atoms detected
in a run of the experiment. Removing the disconnected part amounts to subtracting the product
of average occupations ⟨Nk1⟩⟨Nk2⟩ from this histogram.

Within finite-size systems, correlation functions exhibit a limited range, defined as the corre-
lation volume, the size of which is determined by the size of a single mode (see chapter 4). For
the normalized two-body correlations of type g(2)(k,−k+δk) shown in fig. 3.3, the presence of an
isotropic harmonic trap suggests that the function is anticipated to be isotropic. Empirically, it is
observed that the function is effectivelymodeled by an isotropic Gaussian function, an approach
that was already employed in the beginning of this chapter where these fits were used to extract
the normalized two-body correlation amplitudes at oppositemomenta. For these Gaussians, the
correlation length lc is defined as the 1/e2 size according to:

g(2)c (k,−k+ δk) = 1 +
A
√
2√

πlc
e−2δk2/l2c (3.34)

When defined in such a way, 95% of atoms are expected to be found in the spherical volume
given by |δk| ∈ [0, lc].
The two-body connected correlation G

(2)
c (k,−k) is determined by integrating G(2)

c (k,−k + δk)

across a cubic volume with a size of ∆k:
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G(2)
c (k,−k) =

∫
[−∆k/2,∆k/2]3

dδkG(2)
c (k,−k+ δk) (3.35)

Since G(2)
c (k,−k + δk) ∝ g(2)(k,−k + δk) − 1, it follows that G(2)

c (k,−k) ∝
[
erf
(

∆k√
2lc

)]3. The
volume ∆k3 is selected in such a way that the integral on dδk saturates, setting ∆k = 0.18 kd ≃

3× lc to ensure that G(2)
c (k,−k) represents 99% of the pairing amplitude in theory.

This is confirmed experimentally for moderate interaction strengths U/J < 20, as shown
in fig. 3.7, where the integrated version G(2)

c (0) =
∑

kG
(2)
c (k,−k) is plotted normalized by the

integration volume ∆k3.
Indeed, G(2)

c (0)/∆k3 decays to zero within the expected range of∆k ∼ 0.18 kd, and the varia-
tion [erf ( ∆k√

2lc

)]3
/∆k3 is obtained from the bell-shaped function of the normalized correlations.

This observation is analogous to the peak observed in the normalized correlation g(2)(k,−k+δk)

centered on δk = 0 for U/J < 20.
Conversely, at U/J = 20 (and similarly at U/J = 22), G(2)

c (0)/∆k3 exhibits a distinct pattern.
While it registers slightly positive values at extremely small ∆k values, it remains consistently
negative otherwise. This contrasting behavior is responsible for the negative values of G(2)

c (0)

depicted below. The observation ofG(2)
c (0) < 0 indicates that the coincidence counts inmodes at

opposite momenta are fewer than the counts expected in an uncorrelated ensemble of atoms
with a similar momentum density ρ(k) = ⟨â†kâk⟩. Consequently, modes at opposite momenta
are inferred to be anti-correlated. Summarizing the above considerations, the histograms are
integrated over a cubic volume centered on k1 + k2 = 0 and of size 0.18 kd set by the width of
the two-body correlation function. In order to increase the signal-to-noise ratio, the resulting
connected correlations are averaged over the modes that constitute Ωk

G
(2)
c (K = 0) =

∑
k∈Ωk

G(2)
c (k,−k) (3.36)

where the sum is defined over (quasi-) momenta k contained in Ωk such that k + Q ̸= −k,
whereQ is a reciprocal lattice vector. These values are multiplied by η−2 to account for the finite
detection efficiency η = 0.53(2) of the detector.
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Figure 3.7 – Two-body connected correlations normalized by the integration volume as
a function of the latter. The orange circles represent the evolution of G(2)

c (0)/∆k3 with ∆k.The interactions range from weak at U/J = 5 to strong at U/J = 20. The error bars repre-sent 68%-confidence intervals obtained from a bootstrap method. The red solid line depicts
the anticipated variation [erf ( ∆k√

2lc

)]3
/∆k3 associated with the correlation length lc of the nor-

malized two-body correlation g(2)(k,−k + δk). Insets provide a closer look within the range of
dδk ∈ [0.14 kd, 0.38 kd].

3.3.3 . Two-body connected correlations at opposite momenta

The resulting integrated amplitudes G(2)
c (K = 0) of the Bogoliubov momentum pairing are

plotted in figure 3.8 as a function of the interaction strength.
Figure 3.8 constitutes the main experimental result of this chapter. It shows an initial in-

crease in G(2)
c (0). Bogoliubov theory predicts a monotonous increase of the population of the

two-mode correlated quantumdepletion, indicating the validity of its underlying approximations
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Figure 3.8 – Two-body connected correlations at oppositemomenta. AmplitudeG(2)
c (K = 0)of the Bogoliubov momentum pairing at opposite momenta (K = k1 + k2 = 0) measured inthe volume Ωk of the depletion of the lattice BEC (orange circles) and of a harmonically-trappedBEC (orange square). The dashed line is a guide to the eye. The vertical error bars represent

68%-confidence intervals obtained from a bootstrap method. The horizontal error bars are the
same as in fig. 3.4c. The inset displays G(2)

c (K = 0) as a function of the condensate fraction fc.

in the weakly-interacting regime. However, G(2)
c (K = 0) is found to decrease at larger values of

U/J , a decrease that occurs for the adiabatic increase of the interaction strength [97] and not
due to heating. Furthermore, the inset of fig. 3.8 indicates that location of the maximum aligns
with a notably substantial condensate fraction of fc ∼ 0.75, far from the Mott transition. This ob-
servation strongly indicates that these observations are not specific to lattice bosons at integer
filling but are representative of strongly interacting Bose gases in general.
Since a similar decreasing tendency was previously established for the normalized two-body
correlation signal at opposite momenta (see fig. 3.5), the difference between the two quantities
G

(2)
c (K = 0) and g(2)(0) is again emphasized at this point:

The normalized correlation function g(2)(0) depends inversely on the population of the depletion
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modes in Ωk and is therefore undiscernable from the effect of the decrease of fc shown in figure
3.4c. The connected correlations G(2)

c (K = 0) on the other hand contain only contributions of
interaction processes at order n, with the effect of the average mode populations that leads to a
decrease in the normalized correlations being eliminated via the subtraction of the disconnected
part ⟨Nk⟩⟨N−k⟩ from the n-th order correlator in (3.30).
Figure 3.8 also shows an increase in the size of the error bars of G(2)

c (K = 0) as interactions
are increased, which indicates a rise of fluctuations for this quantity. Since these fluctuations
are sensitive to higher orders of correlation n > 2, this increase might be an indication to the
increasing complexity of the equilibrium many-body state as the system enters the strongly-
interacting regime.

The decrease of G(2)
c (K = 0) seen in fig. 3.8 constitutes an experimental observation of non-

Gaussian statistics, since it is not predicted by Bogoliubov theory, which encompasses interac-
tions in Bose gases at the Gaussian level. However, a more direct conclusion on non-Gaussian
statistics can be obtained from the negative values of G(2)

c (K = 0) at the largest interactions for
U/J = 20 and 22, as is detailed in the following.

3.3.4 . Experimental signature of non-zero four-particle correlators

In the effort to explore the hierarchy of momentum correlations depicted in fig. 3.6, observ-
ing a non-zero value for the integrated three-mode correlations,G(3)

c (0) =
∑

k1,k2
G

(3)
c (k1,k2,−k1−

k2), which quantify genuine three-mode correlations with zero momentum sum, would consti-
tute a direct observation of statistics beyond the Gaussian regime. However, the experimen-
tally measured values of G(3)

c (0) are found to be indistinguishable from zero for all interaction
strengths U/J ∈ [2, 22]. Measuring G(3)

c (0) ̸= 0 is not the sole means to demonstrate non-
Gaussian statistics in the experimental data. As shown above, the connected two-mode cor-
relations can be expressed in terms of the fourth order cumulant (3.32). Eq. (3.32) reveals
that negative values of G(2)

c (K = 0) necessarily imply a non-vanishing fourth order cumulant
⟨â†kâ

†
−kâkâ−k⟩c ̸= 0, constituting a direct signature of non-Gaussian statistics. Indeed, negative

connected correlations G(2)
c (k,−k) < 0 amount to anti-bunching, i.e. a number of coincidence

counts ⟨â†kâ†−kâkâ−k⟩ smaller than the expected uncorrelated gas value ⟨Nk⟩⟨N−k⟩. Correlations
of order n > 2 are required to reduce the coincidence counts below ⟨Nk⟩⟨N−k⟩.
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Fig. 3.7 shows a significant shift in the shape of the correlation function G(2)

c (k,−k+ δk) at large
interactions U/J = 20 (that has also been found to be present at U/J = 22). Notably, there is
hardly any correlation peak at δk = 0, but instead, a constant (negative) offset as a function of
δk is observed. In this regime, G(2)

c (0) < 0 is observed (see fig. 3.8), and∑k⟨â
†
kâ

†
−kâkâ−k⟩c ̸= 0.

A non-zero fourth-order cumulant serves as a clear indication of non-Gaussian statistics with-
out relying on theoretical modeling, providing compelling evidence for strongly correlated (non-
Gaussian) nature of Bose gases at large interactions.

In order to investigate this possiblity and explore the evolution of two-mode connected cor-
relations theoretically, the remainder of this chapter is dedicated to a comparison of the exper-
imentally measured connected correlations shown in fig. 3.8 with numerical simulations using
quantum Monte Carlo (QMC) simulations on the 3D quantum rotor model. These simulations
and their analysis were performed by T. Roscilde (ENS Lyon).

3.4 . Comparison with numerical simulations

To explore the fate of two-mode connected correlations beyond theweakly interacting regime,
numerically exact quantum Monte Carlo (QMC) simulations on a 3D quantum rotor model are
employed, which capture the essential physics of the Bose-Hubbard model at large, integer fill-
ing, and in the absence of confining potentials [147]. While the filling much larger than unity im-
plies that simulations based on this model are not expected to lend themselves to quantitative
comparisons with the experimental data of fig. 3.8, they do provide a means to access arbitrary
correlations in momentum space without requiring specialized update algorithms [148, 149] at
arbitrary temperatures and interactions up to the Mott transition.

Various quantum Monte Carlo approaches are available to explore the equilibrium thermo-
dynamics of the original Bose-Hubbard model [150, 151]. However, these methods commonly
employ Fock states in real space as the computational basis, making themomentumdistribution
an off-diagonal observable. Estimating off-diagonal observables necessitates specialized update
schemes referred to as "worm algorithms." While complex worm-like algorithms exist that are
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suited for the investigation of the second moment of the momentum distribution fluctuations
in the 1D Bose-Hubbard model [148, 149], probing third moments has never been explored with
such algorithms, highlighting the flexibility of the quantum rotor approach.

3.4.1 . QMC simulations on the 3D quantum rotor model

The quantum-rotor model provides an approximation to the Bose-Hubbard model that is
valid for large, integer fillingsnQR [147]. Using the amplitude-phase decomposition of the bosonic
field, ai = eiϕ

√
ni, with [ϕ, ni] = 1, expressing the density as ni = nQR + δni and assuming that√

⟨(δni)2⟩ ≪ nQR (since nQR ≫ 1) in all relevant physical regimes, one can write

a†iaj + h.c. ≈ 2nQR cos(ϕi − ϕj) (3.37)
neglecting density fluctuations. Quantum fluctuations in the phase still arise due to density-

density interactions since n2i = − ∂2

∂ϕ2
i
. The quantum rotor Hamiltonian is obtained by working at

integer filling, which eliminates all linear terms in the density:

HQR = −2JnQR

∑
⟨ij⟩

cos(ϕi − ϕj)−
U

2

∑
i

∂2

∂ϕ2i
(3.38)

Using a coherent-state path-integral approach [147, 152], the quantum statistical physics of
the quantum-rotor Hamiltonian (3.38) in d dimensions can be mapped onto an effective clas-
sical problem of classical rotors, i.e., planar spins or angles ϕi,p, where i represents the spa-
tial position and p is the position in the extra (Trotter) dimension. A QMC simulation of the
quantum rotor model amounts to sampling configurations of this (d + 1)-dimensional classical
model [147, 153]. The approximation in (3.37) allows for the unique association of a momentum
distribution Np(k) =

nQR

V

∑
ij e

ik·(ri−rj)e−i(ϕi,p−ϕj,p) to each configuration of classical rotors {ϕi,p}
at a given Trotter step p, thereby enabling the reconstruction of arbitrary correlation functions
for the momentum populations N(k) by sampling the partition function of the classical rotors.

3.4.2 . Comparison between theory and experiment

The connected two-body correlationsG(2)
c (K = 0) obtained fromQMC simulations on the 3D

quantum rotor model are shown in figure 3.9 as a function of the interaction strength u and for
different temperatures T . In a previous work the temperature of the experiment was estimated
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as kBT/J ≈ 2 [97], which corresponds to the data for the quantum rotor model at a temperature
TJ = kBT/(2JnQR) = 1 represented by the green line in fig. 3.9.

Figure 3.9 – Numerical calculations of connected two-body correlations with the quantum
rotor model. Connected correlations G(2)

c (0) for two modes, obtained using the quantum rotormodel (solid lines), are depicted at various temperatures ranging from TJ = kBT/(2JnQR) = 0.2(dark blue) to TJ = 1.8 (red). The result from Bogoliubov theory is represented by the dotted line.
The inset displays a logarithmic plot of the data from the main panel. The amplitude of G(2)

c (0)is normalized to the measured atom number ⟨NΩk
⟩ (see text).

The connected two-body correlations are integratedover the quasi-momenta in a cubic corona
Ωk between two cubes of sides 2× 0.3 kd and 2× 0.5 kd for a system of 103 cubic lattice sites. The
numerically-computed population ⟨N th

Ωk
⟩ of themodes inmomentum space is altered depending

on the filling nQR, while G(2)
c (K = 0) is expected to scale as the square of the density of parti-

cles in the measurement volume, ρΩk
= ⟨NΩk

⟩/VΩk
, with the number of modes VΩk

=
∑

k∈Ωk
1,

and linearly in the number of modes, i.e. G(2)
c ∼ ⟨NΩk

⟩2/VΩk
. In order to allow for a comparison

at least in terms of orders of magnitude between the numerically simulated and experimentally
measured two-body connected correlations, the theoretical amplitudes are normalized to the ex-
perimentally detected atom number ⟨NΩk

⟩ =
∑

k∈Ωk
⟨Nk⟩ by a factor∼ (⟨NΩk

⟩/⟨N th
Ωk

⟩)2 (V th
Ωk
/NΩk

)

for each interaction strength u. The ratio rV = V th
Ωk
/VΩk

is purely geometrical and independent of
the Hamiltonian parameters. However, making an unambiguous estimation of rV is not straight-
forward. Only the core of the atomic cloud, which in principle dictates the size of themomentum
modes in momentum space, is expected to be superfluid at the temperature of the experiment
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and to contribute to the measured momentum-space correlations. The ratio rN = ⟨NΩk
⟩/⟨N th

Ωk
⟩,

on the other hand, depends significantly on the interaction strength u and can be unambiguously
determined. Therefore, the theoretical data forG(2)

c (K = 0) are rescaled by r2N , with rV assumed
to be on the order of rV ∼ O(1). The validity of this assumption is confirmed by the matching
orders of magnitude between the experimental values in fig. 3.8 and the rescaled theoretical
curve r2NG(2)

c (K = 0) in fig. 3.9.

In addition to the right order of magnitude with respect to the experimentally measured
connected two-body correlations, the quantum rotor predictions can also be seen to capture
the non-monotonic behavior of G(2)

c (K = 0) in fig. 3.9. Consequently, the numerical simulations
confirm that the decay in the connected two-body correlationsG(2)

c (K = 0)originates fromquan-
tum fluctuations beyond the linearized Bogoliubov regime. The maximum value of G(2)

c (K = 0)

represents thus amicroscopic signature of the Bose gas entering the strongly correlated regime,
whose description requires accounting for correlations among n > 2momentum modes.

3.4.3 . Three-mode connected correlations

As outlined at the end of the last section, observing a non-zero value for an order n > 2 in
the hierarchy of momentum correlations shown in fig. 3.6 would constitute a direct observation
a microscopic process leading to non-Gaussian correlations. As seen above, such an observa-
tion could not be made from the experimental data. Therefore, the QMC simulations on the
3D quantum rotor model are employed to establish an expected order of magnitude for the in-
tegrated three-mode correlations G(3)

c (0) =
∑

k1,k2∈Ωk
G

(3)
c (k1,k2,−k1 − k2) that reveal genuine

three-mode correlations with zero momentum sum. More precisely, the above sum is defined
over inequivalent pairs of (quasi-) momenta k1,k2, i.e. k1 ̸= k2 + Q both contained in Ωk and
such that k3 = −k1 − k2 is also contained in Ωk, with reciprocal lattice vector Q.
The numerically calculated three-mode connected correlationsG(3)

c (0) computed for quasi-momenta
in Ωk are presented in figure 3.10.

In keeping with the normalization considerations made in the previous section about the nu-
merical simulation data, the simulated values for G(3)

c (0) are rescaled by a factor
∼ (⟨NΩk

⟩/⟨N th
Ωk

⟩)3 (V th
Ωk
/NΩk

) for each interaction strength u, since G(3)
c (0) is expected to scale as

the cube of the density and as the square of the number of modes, i.e. G(3)
c (0) ∼ ⟨NΩk

⟩3/VΩk
,
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Figure 3.10 – Numerical calculations of connected three-mode correlations with the quan-
tum rotormodel. Connected correlationsG(3)

c (0) for threemodes, obtained using the quantum
rotor model (solid lines), are depicted at the same temperatures as those for G(2)

c (0) in fig. 3.9.
The amplitude of G(3)

c (0) is normalized to the measured atom number ⟨NΩk
⟩ (see text).

amounting to a rescaling by r3N .
From fig. 3.10 it is clear that the genuine three-mode correlations in the system are positive, con-
firming the image proposed in fig. 3.6, and that they rise along with the two-mode correlations.
This indicates an incompleteness in the Bogoliubov picture of the Bose gas with intermediate
interactions, highlighting the presence of substantial non-Gaussian correlations in the system.
However, the three-mode correlations are significantly smaller in magnitude as the two-mode
correlations at the same values of interaction and temperature. One potential explanation for
this discrepancymay reside in the fact that, while two-mode correlations with a total zero (quasi-
)momentum uniquely identify correlated pairs of modes, three-mode correlations with a zero-
sum (quasi-)momentum can link every mode to approximately O(N) pairs of other modes, re-
sulting in considerably weaker correlations within each trio. Upon increasing the number n of
modes, correlations are expected to be evenmore tenuous. Furthermore, detecting triple coinci-
dences of atoms in three modes is challenging due to the finite detection efficiency η of the MCP
detector. These factors evidently pose challenges in observing correlations involving more than
two modes (n > 2). Ultimately, both types of correlations (two-mode and three-mode) diminish
as the system transitions into the strongly correlated regime.
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3.5 . Conclusion

In conclusion, insights into correlations in an interacting Bose gas beyond the Bogoliubov
regime are provided by employing advanced techniques for ultracold gas preparation and de-
tection, along with sophisticated numerical methods. Two-mode correlations, which are pre-
dominant in the weakly interacting Bogoliubov regime, are diminished as the system enters the
strongly interacting regime. This transition gives way to n-mode correlations (n > 2) and the
emergence of non-Gaussian correlations. The findings suggest that with increasing interactions,
entanglement inmomentum space becomes intricate in itsmultipartite nature and elusive. Each
mode is weakly entangledwith numerous (O(Nn−2)) (n−1)-plets of othermodes to form n-mode
entangled clusters. The theoretical characterization and experimental identification of this com-
plex entanglement structure present intriguing open questions for future studies.



4 - Full-Counting Statistics and High-Order Correlations

of Interacting Bosons

One of themain advantages of the single atomdetector is the ability to characterize quantum
states in small volumes of momentum space with a good signal-to-noise ratio. This ability is on
full display in the analysis of full-counting statistics (FCS) which allows for the characterization of
quantum states from its many-body coherence properties.

Being able to detect well-contrasted signatures of pure states in experiments is not obvious.
At the global level the number statistics of the system is not given by the underlying quantum
state, but by the result of the experimental preparation procedure. Such global thermodynamic
constraints imply that quantum states described in the grand-canonical ensemble can only be an
approximate description of states prepared in the experiment, at least in systems that impose
overall particle conservation as is usually the case when working with atoms. As will be shown
in this chapter, single-atom detection techniques can offer a way around this intrinsic problem
by taking a small sub-volume of the entire measurement volume as system of interest, with the
rest of the system effectively acting as a reservoir for this small subsystem, thereby enabling the
observation of the signatures of the underlying pure quantum states.

This technique of characterizing quantum states in the experiment is detailed in the follow-
ing section, followed by the results of applying the technique for the case of two (very different)
textbook quantum states: Weakly-interacting lattice superfluids and strongly-interacting Mott
insulators. It is shown how the many-body coherence properties of these states reflect their
different underlying quantum statistics. A simple heuristic model allows for the quantitative
explanation of the measured values of the high-order order correlation functions. Before begin-
ning the analysis, a brief reminder is given concerning the quantum statistics expected for these
states when counting atoms in small volumes of momentum space.

101
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One of the main themes of this thesis is the characterization of quantum many-body phe-
nomena through higher orders of the occupation number that is enabled by detecting atoms
one by one in 3D. As such, the information about the quantum state that is contained in the
statistical quantities extracted from this occupation number can be harnessed. Access to the
single-particle resolved 3D momentum distribution opens the way for going beyond the infor-
mation contained in the average value of the measured momentum densities in investigating
the dispersion of momentum occupation numbers in various situations. This approach is con-
ceptually very simple when using a single-particle detector, but as will be shown careful analysis
is required to be able to extract the desired quantities beyond simply counting the atoms in a
certain part of momentum space. It may be of note that all three of the chapters presenting ex-
perimental results are for the most part based upon the very same datasets. This fact illustrates
the richness and remarkable information content of datasets that are made up of thousands of
atoms, each detected one by one.

4.1 . FCS approach for identifying quantum states in the experiment

Despite the uniqueness of this experimental platform, the extraction of physical properties
from the analysis of quantum and thermal noise is not a new approach, as demonstrated by ex-
periments in quantum electronics [154], quantum optics [136] and quantum gases [29, 155, 156].
The FCS is the counting statistics 1 of particles in a given time and/or space interval [157]. Thus, by
nature, it relies on the detection of individual particles, and its initial successful implementations
have come about as a consequence of the development of single-particle detection techniques
for photons and electrons, thus contributing to the fields of quantumoptics andmesoscopic con-
ductors [157]. With cold atom experiments protruding into the realm of single-particle detection,
FCS has found application in systems based on Rydberg atoms [158–160] and non-interacting
atomic gases [41, 161], with the advantage of being less resource-consuming than a full-state to-
mography [162] while having been shown theoretically to nonetheless be able to shed light on
phenomena such as quantum phase transitions [163–165], universality [166, 167], entaglement
properties [168] and out-of-equilibrium dynamics [169]. In contrast to the full state tomogra-

1. In theory up to infinite order n, in practice n > 2.
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phy, FCS only yields information on the diagonal part of the many-body density matrix, a fact
that makes this technique amenable to being employed in the characterization of large systems.
Nevertheless, knowledge of the populations is already sufficient for identifying a large number
of quantum states, similarly to the characterization of light sources from higher order photon
correlations [134] 2. In the context of highly correlated quantum states, the measurement of
FCS is expected to reveal non-Gaussian correlations resulting from the nontrivial correlations in
the system [29, 170–172] such as the ones shown for strongly-interacting Bose gases in chapter
3. Furthermore, it has been shown that applying unitary transformations before measurement
also allows access to the non-diagonal correlators from a measurement of the number statis-
tics [173, 174].

The single-particle detection capabilities for large atom numbers of the Helium Lattice ex-
periment constitute a well-suited platform for this type of analysis. The Bose-Hubbard model
described in chapter 2 allows for the realization of different many-body quantum states in equi-
librium, such as weakly-interacting lattice superfluids and strongly-interacting Mott insulators.
The aim of this chapter is to present the approach for extracting the FCS from the experimental
datasets and to discuss the observed many-body coherence properties that allow for the char-
acterization of the different states. It is in large parts based on the work presented in [36]. Prior
to delving into the experimental details, however, it is useful to consider the expected structure
of the FCS for the different states in order to be able to confirm them experimentally later on.

4.1.1 . FCS for ideal BECs and Mott insulators

For textbook many-body quantum states like ideal BECs and Mott insulators, the FCS, that is
the probability distribution of the occupation number, is well-known. While these descriptions
are in their most fundamental form made in an ideal and simplified context that implies that
one should use caution when expecting experimental measurements to reflect these theoretical
predictions, they do represent a useful starting point 3 for the expected form of the FCS when
probing the actual quantum states in the experiment.

2. For Gaussian states, which have positive Wigner functions [136], this approach is equivalent in itsinformation content to a FCS analysis.3. As will be shown in the following, in this case the pure state description is much more than simply astarting point but in fact an experimentally observable feature.
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BECs have long-range coherence properties with a well-defined phase that results from the
spontaneous breaking of gauge symmetry [175]. In the ground state they are thus amenable to
a grand-canonical ensemble description 4 in terms of a coherent state |α⟩. The natural choice of
basis for the FCS are the Fock states |n⟩, onto which |α⟩ can be decomposed according to

|α⟩ = e−|α|2/2
∑
n

αn

√
n!

|n⟩ (4.1)
Coherent states are known to have a Poissonian probability distribution of the occupation

number that depends only on the mean particle number |α|2:

P (n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2

n!
(4.2)

On the other hand, ideal Mott insulators, that is uniform and at zero temperature, are diago-
nal in the Fock state basis of the in-trap position. The absence of coherence between lattice sites
leads to the different sites behaving like a series of uncorrelated emitters. Consequently, in the
far field Mott insulators have been shown to yield thermal-like statistics [132, 176, 177]. The cor-
responding FCS is a geometric probability distribution associated to thermal states with a mean
particle number n̄:

P (n) =
n̄n

(n̄+ 1)n+1
(4.3)

The FCS (4.2) and (4.3) correspond to ideal scenarios describing pure states. As states with
Gaussian Wigner functions, these probability distributions are fully determined by the mean
particle numbers [136] and their character is therefore unaltered by a finite detection efficiency
in the experiment, whose only consequence is the rescaling of the mean particle numbers by
the corresponding factor. There are, however, other circumstances intrinsic to experiments,
such as finite temperature and coupling to the environment, that make it not at all obvious that
a description in terms of pure states should apply to the result of any experiment quite generally,
a subject that is still an open question in the domain of experimental quantum simulation. In
the following it will be shown how in this case a careful choice of the measurement volume can

4. In a single shot of the experiment, the atom number is of course fixed and the BEC is not a coherentstate.
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allow for the extraction of pure state statistics.

4.1.2 . Measurement volume for pure state FCS

There are several experimental constraints that limit the size of the measurement volume
beyond the issue of sufficient statistics.
A first constraint on the size of the volume used to compute P (n) is that it has to be smaller than
the total volume of the system. Should this not be the case, the number statistics will simply
reflect the total atom number fluctuations of the final state of experimental preparation, since
macroscopic quantities are subject to global thermodynamic constraints imposed by the exper-
iment. As an infinite superposition of Fock states, observing coherent state statistics in systems
of massive particles is not obvious 5, independently of any experimental imperfection: Consider
an experiment producing ideal BECs at T = 0 with no shot-to-shot fluctuations of the total atom
number. If the measurement volume is chosen to be such that it encompasses the entire sys-
tem 6 the detected atom number will be constant with the experiment mimicking the canonical
(or micro-canonical) ensemble, a fact that has been experimentally demonstrated for extremely
stable cold atommachines [33]. Therefore, the statistics of the BEC atom number is not that as-
sociated to a coherent state, which can only be observed in a grand-canonical context [178]. This
implies that the measurement volume VΩ needs to be so small as compared to the total system
size VBEC that the remainder of the system VBEC − VΩ ∼ VBEC can be considered to be a particle
reservoir, thereby circumventing the global thermodynamic constraint on the atom number and
allowing for particle number fluctuations of NΩ ≪ N in a grand-canonical sense.

A second constraint on the measurement volume is that it be no larger than the volume
occupied by a single mode in momentum space. This is intuitive in the case of the ideal BEC,
since coherent state statistics can only be present in the k = 0 mode, with the thermal and
quantum depletion of finite momentummodes displaying thermal chaotic statistics [141]. In the
case of the Mott insulator, choosing a measurement volume larger than the volume of a single

5. Note that throughout this chapter the statistical properties of ideal BECs are linked to those of acoherent state; this is to be taken as pertaining exclusively to the number statistics. No statement ismade about the phase since the phase of the condensate wavefunction is uncorrlated between differentrepetitions of the experiment.6. In the far field this corresponds approximately to (1.6/L)3 where L is the in-trap size of the system[138].
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mode in momentum space shifts the FCS from a thermal to a multimode thermal distribution,
as will be shown in the following. For an in-trap cloud size L the volume occupied by a mode
in momentum space is Vc = (2π/L)3, and the constraint on the measurement volume VΩ thus
reads VΩ ≲ Vc.
In the case of the BEC the fulfillment of this condition is implied by the previous consideration
of VΩ ≪ VBEC. In the case of the Mott insulator, however, VΩ ≲ Vc is a more stringent condition
than VΩ ≪ VMott since Mott insulators are large and dilute clouds in momentum space with VMott

larger than the FBZ. The ability to achieve sufficient statistics when probing such small volumes
in momentum space is the essential asset of the Helium Lattice experiment that paves the way
for the analysis of FCS of pure states in the experiment and is in large part enabled by the high
detection efficiency of the MCP detector.

Figure 4.1 – Schematic representation of the FCS measurement. The 3D momentum distri-bution is recorded in the far field after a long free fall from the optical lattice. The measurementvolume VΩ = (δk)3 has to be chosen to be smaller than the size of a single mode in momentumspace Vc = (2π/L)3.

Figure 4.1 illustrates the experimental procedure for the measurement of FCS. Atomic clouds
ofN ≈ 5000 atoms are adiabatically loaded into the lowest energy bandof a 3Doptical lattice [97].
After a long TOF the 3Dmomentum space distribution is recorded by the MCP detector [99,139].
The length δk of the measurement volume VΩ is chosen to be smaller than the mode size in
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momentum space set approximately by the inverse size of the cloud in the trap L (see below).
The atomnumberNΩ insideVΩ then immediately yields the probability distribution of occupation
P (NΩ) when analyzed over many experimental repetitions. Each dataset for a given value of
U/J presented in this chapter is made up of about 2000 realizations of the experiment, with ⟨.⟩

used to denote statistical averages 7. Shot-to-shot fluctuations of the total atom number in the
experiment exert a negligibly weak influence on this quantity since by design it is insensitive to
global thermodynamic constraints such as the total particle number in a given shot. The long
free fall implies a measurement in the far-field regime such that interference effects allow for
the FCS to identify quantum states through their many-body coherence [179].

The extracted FCS for weakly-interacting lattice BECs and Mott insulators are presented and
discussed in the following sections. The significant difference in the local density of the momen-
tum distributions of these two states necessitates a slightly different analysis procedure for each
of these two cases, which is discussed in the context of the respective experimental results.

4.2 . FCS of Mott Insulators

The dilute nature of the momentum distributions of Mott insulators drastically reduces the
atom number in volumes of the order of Vc as compared to the k = 0 mode of a BEC 8. Using a
deep lattice at U/J = 76 withN = 6.5(6)× 103 atoms ensures unity filling at the trap center [176].
In keeping with the above considerations concerning the maximum size of the measurement
volume, VΩ is taken to be a cube of length δk = 6× 10−2 kd. Due to the diluteness of momentum
distributions of Mott insulators the statistics within a single such voxel is insufficient to extract
a well-contrasted FCS, and increasing the total atom number would induce a filling greater than
one atom per lattice site in the trap center. To circumvent the issue of too few counts in a single
measurement volume, the entire FBZ is divided into cubic voxels of the same size over which the
measured probability distributions are averaged. The resulting FCS is shown in figure 4.2.

From figure 4.2 it is clear that the measured FCS for Mott insulators follows the distribution
7. For instance over all Nruns in each dataset, but also over all individual measurement volumes in thecase of Mott insulators. P (n) is a measure of correlations within a single shot.8. For a weakly-interacting lattice superfluid such as the one shown in fig. 4.4 at U/J = 5, the averageoccupation of a volume of size VΩ = (6× 10−2 kd)

3 centered on the origin of momentum space is equal toseveral hundreds of atoms; for a Mott insulator the occupation of the same volume is nearly on the orderof unity.
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Figure 4.2 – FCS of Mott insulators. The black circles are experimental data of the occupationprobability distributions in volumes of size VΩ = 0.9Vc averaged over the entire FBZ for a Mottinsulator with unity filling. The dashed and dashed-dotted lines correspond to the prediction forthermal and Poissonian statistics, respectively, and are entirely determined by the mean atomnumber in VΩ of ⟨NΩ⟩ = 0.46(5)without any adjustable parameters. The shaded areas representthe uncertainty on ⟨NΩ⟩. The error bars on the experimental data give the standard deviationestimated via bootstrapping.

expected for a statistical mixture of thermal bosons. The dashed and dashed-dotted lines cor-
respond to the ideal pure state FCS of coherent and thermal states, (4.2) and (4.3) respectively.
These theoretical curves are entirely determined by the mean atom number in VΩ and thus con-
tain no adjustable parameters when ⟨NΩ⟩ is measured; in this case ⟨NΩ⟩ = 0.46(5).

4.2.1 . Multimode thermal FCS in large measurement volumes

In order to achieve the best signal-to-noise ratio in terms of statistics, the measurement vol-
ume is taken to be as large as possible while still satisfying the condition VΩ ≲ Vc. Quantita-
tively, Mott insulators are shown (see below) to reproduce thermal FCS in momentum space for
measurement sizes as large as 90% of the coherence volume, VΩ = 0.9Vc, as evidenced by the
measurement of fig. 4.2. As outlined above, this is based on the notion that a Mott insulator will
display thermal statistics in the far-field when probed in volumes that are not larger than that
of a single mode Vc. Increasing the measurement volume beyond this size is expected to yield
multimode thermal statistics with the probability distribution of occupation morphing from that
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of a single mode (4.3) to one reflecting the contributions ofM independent modes with average
occupation ⟨N⟩ according to [41, 180]:

PM (NΩ) =
(⟨NΩ⟩+M − 1)!

⟨NΩ⟩!(M − 1)!

(⟨NΩ⟩/M)NΩ

(1 + ⟨N⟩/M)NΩ+M
(4.4)

which contains the single-mode case of (4.3) for M = 1. In order to establish up to which
volume size the condition VΩ ≪ Vc is stringent, fig. 4.3 shows the result on the measured FCS
of increasing the size of VΩ from slightly below to significantly above Vc, with the predictions of
(4.4) entirely defined by the average atom number ⟨NΩ⟩ and the number of modes contained in
the measurement volume M = VΩ/Vc. There are therefore no adjustable parameters used to
plot the predictions of 4.4 in fig. 4.3.

Figure 4.3 – FCS of Mott insulators for different sizes of the measurement volume. TheFCS of Mott insulators morphs from a thermal to a thermal multimode description as the sizeof the measurement volume VΩ is increased above the coherence volume Vc. The symbols areexperimental data and the lines predictions of (4.4) that are given by the measured mean atomnumber ⟨NΩ⟩ and the number of modes M = VΩ/Vc. The black data are the same as in figure4.2.
Figure 4.3 reveals the condition VΩ ≤ Vc to be sufficient for the observation of thermal statis-

tics for Mott insulators, with no need to ensure the more stringent VΩ ≪ Vc. As is the case for
smaller measurement volumes, the measured probability distributions of occupation are well
reproduced by (4.4) for measurement volumes VΩ > Vc.
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4.3 . FCS of weakly interacting BECs

The momentum distribution of lattice BECs in the far field is characterized by a Bragg diffrac-
tion pattern that reflects the coherent nature of the matter wave released from a periodic struc-
ture. At a shallow lattice depth of U/J = 5 the most dominant feature of this distribution in
momentum space is a peak of width∆k ≃ 0.15kd centered at k = 0 [23]. The high density of this
peak means that sufficient statistics can be achieved for very small measurement volumes that
satisfy the condition VΩ ≪ VBEC necessary to circumvent the macroscopic constraint of a fixed
total atom number impacting the statistics of NΩ.

For the lattice BECs taking the measurement volume to be a sphere SΩ of radius δk = 2.5 ×

10−2kd ≪ ∆k is sufficient to obtain a good signal to noise ratio on the measured atom number.
For this choice of measurement volume the mean detected atom number is ⟨NΩ⟩ ≈ 5, which is
roughly an order of magnitude larger than in the case of Mott insulators despite the the mea-
surement volume being only about a third in size. Figure 4.4 shows the measured probability
distribution of occupation of SΩ as a function of the particle number n. The observed FCS is well
described by a Poissonian distribution (4.2) and clearly differs from the thermal prediction (4.3).
The theory lines are entirely determined by the mean atom number and contain no adjustable
parameters. A small deviation from the perfect Poisson law is observed that will be the subject
of further discussion in the following.

From comparing figures 4.2 and 4.4 it is clear that the different statistical properties associ-
ated to lattice BECs and Mott insulators are well reflected by their respective probability distri-
butions of occupation, highlighting the capabilities of FCS to identify many-body quantum states
after an expansion. Furthermore, the respective FCS do in fact reproduce the predictions for
pure states (4.2) and (4.3) when themeasurement volume is taken to be of appropriate size. Pure
states can generally only be approximate descriptions of states realized in experiments due to
unavoidable coupling to the environment and macroscopic constraints on thermodynamic vari-
ables. The deviation from a perfect Poissonian distribution for lattice BECs visible in figure 4.4
will be further investigated in the following section.
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Figure 4.4 – FCS of weakly-interacting lattice BECs. The FCS reveals the underlying Poissonstatistics associated to the coherent state of the BEC. Blue circles are experimentally measuredprobability distributions to find NΩ atoms in SΩ for U/J = 5 with ⟨NΩ⟩ = 5.3(2). Error barsindicating the standard deviation via bootstrapping are smaller than the symbols. The blue andblack curves are predictions for Poissonian and thermal statistics from (4.2) and (4.3) determinedby ⟨NΩ⟩ without any adjustable parameters. Shaded areas represent the uncertainty on ⟨NΩ⟩. Asmall deviation from the Poissonian distribution occurs around the maximum probability that isfurther discussed in the following.

4.3.1 . Deviation of condensate FCS from Poissonian statistics

The prediction of (4.2) was derived for a pure BEC in a grand-canonical context where all
particles in the system are in the condensate and thus describable in terms of a coherent state.
However, the fixed experimental particle number at every shot implies that coherent state statis-
tics can only pertain to subvolumes of the entire system. Moreover, in the experiment the BEC
is depleted by finite temperature and by interactions (see chaper 3). In a finite-size system, a
measurement volume centered on k = 0 of size much smaller than the size of a single mode will
necessarily contain contributions from low-energy excited states of the trap, implying that both
condensed and depleted atoms contribute to the signal. The thermal depletion is instinctively
expected to contribute in an incoherent manner to the statistics, and the quantum depletion
has been shown to amount to an incoherent contribution as well when measured in small vol-
umes at nonzero momenta [141]. Since the thermal depletion is approximately constant in the
experiment due to the adiabatic loading process into the lattice, the Bose-Hubbard parameter
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U/J can be changed at a constant reduced temperature T/J [97]. The remainder of this chapter
is dedicated to a quantitative analysis of this deviation from a perfect coherent state statistics
by varying the interactions in the experiment and analyzing the higher-order moments of the
measured coherence properties.

4.4 . Many-Body Coherence of BECs and Mott Insulators

The probability distributions of occupation presented in the preceding part of this chapter
give an initial positive indication to the fact that pure state statistics of many-body quantum
states can be retrieved from measurements of single atoms in momentum space. It is not with-
out difficulty, however, to develop a model capable of giving a quantitative explanation for the
deviation from a perfect Poissonian FCS in the case of the BEC. Luckily, the measurements of
3D momentum distribution at a single particle level for systems comprised of several thousand
atoms are extremely rich datasets and allow for the extraction of other statistical quantities be-
sides the occupation probability of a given volume inmomentumspace in the quest of identifying
the underlying quantum states. One such alternative quantity that can be computed from the
same data are correlation functions of high order n, with high n implying significantly larger than
n > 2 in this case. From a theoretical point of view these quantities are just as well known for
the textbooks examples of ideal BECs and Mott insulators as the FCS, with the original idea of
making use of them for the characterization of quantum states dating back to R. Glauber’s work
on photon correlations for light fields [134, 181].

The idea of momentum correlations in the far field reflecting multi-particles interferences in
the system and thereby allowing to deduce the many-body coherence properties is directly ap-
plicable to atomic gases [179]. As alluded to previously, this approach is even exactly equivalent
to the FCSmeasurement in the case of Gaussian states. In this case, no additional information is
contained in the higher orders of correlations since they factorize down to the first order. There-
fore, non-Gaussian correlations are expected to be contained in the higher orders in the cases of
strongly-correlated non-Gaussian systems [170–172]. Such high orders of correlation functions
are not usually measured with atomic gases since they rely on the detection of individual parti-



4.4. MANY-BODY COHERENCE OF BECS AND MOTT INSULATORS 113
cles in large systems with strong interactions. Lower orders up to second order have been the
subject of measurements on systems of in non-interacting and non-degenerate bosons [31, 182]
and fermions [183, 184], as well as BECs [185], interacting bosons on optical lattices [23, 141, 186]
and interacting fermions [130]. Third order correlations have been measured in BECs [185] and
sixth order correlations for non-interacting bosons [182], both making use of the single particle
detection capabilities of 4He∗. The measurement of these quantities at high order and in the
presence of strong interactions as is the case in strongly-interacting lattice BECs and Mott in-
sulators is thus a novelty in the context of quantum gas experiments, with the testbed of the
Bose-Hubbard model able to simulate strongly-correlated systems near the superfluid to Mott
insulator transition where the possibility of identifying non-Gaussian states through high order
correlation functions presents itself as inspiring future goal.

4.4.1 . Normalized correlation functions

In order to quantify the coherence properties of a quantum state at arbitrarily high orders,
Glauber [134] defined the correlation functions G(n)(x1, . . . , xn) based on the joint probability of
detecting a given number of photons at a given point in spacetime xj = (rj , tj), with the order
n set by the number of parallel detectors. It is often convenient to work with the normalized
quantity defined as

g(n)(x1, . . . , xn) =
G(n)(x1, . . . , xn)∏n

j=1G
(1)(xj)

(4.5)
Crucially, Glauber defined coherent states as having a normalized correlation amplitude of

unity:

g
(n)
coh(x1, . . . , xn) = 1 (4.6)

for all orders of n and all coordinates xj . This is in stark contrast to the bosonic bunching dis-
played by thermal or chaotic states [181], characterized for simultaneous and localized detection
x1 = · · · = xn ≡ x for correlation functions that grow in amplitude with n according to

g
(n)
chaot(x, . . . , x) = n! (4.7)
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as famously showcased in the Hanbury-Brown and Twiss experiment [187].
Even though Glauber’s seminal work was motivated by the study of coherence properties of
light fields, the approach using normalized correlation functions can be readily transposed to
quantum gases measured in momentum space [179], with the coordinates now being given by
the momenta k and thus g(n)(k, . . . ,k) ≡ g(n)(0). This amplitude of the correlation function at
zero separation can then be directly derived from the bosonic commutation rules in second
quantization:

[
â(k), â†(k)

]
= δk,k′ (4.8)

which leads to the following expression at arbitrary order n:

g(n)(0) = g(n)(k, . . . ,k) =
⟨
[
â†(k)

]n
[â(k)]n⟩

⟨â†(k)â(k)⟩n
(4.9)

For the purposes of this analysis k is the momentum indicating the location of the measure-
ment volume VΩ in momentum space such that ⟨â†(k)â(k)⟩ = ⟨N̂Ω⟩, with eq. (4.8) implying that
themagnitudes of the correlation functions can be directly determined from themeasured atom
numbers NΩ via the factorial moments [188–190]:

g(n)(0) =
⟨N̂Ω(N̂Ω − 1) · · · (N̂Ω − n+ 1)⟩

⟨N̂Ω⟩n
(4.10)

The factorial moments appear out of the power of the number operator due to the normal
ordering of creation and annihilation operators ⟨(â†)nân⟩. In quantum optics this ordering is
usually chosen to ensure that the vacuum state has a well-defined expectation value for the
photon number and reflects the inevitable destruction of a photon in the detection process. Even
though this principle does not usually apply to the detection of atoms, it does so in the case of
4He∗ where any detected atom is for all intents and purposed destroyed from the metastable
state since it returns to the ground state. Transposing this approach from quantum optics hence
yields the magnitude of the zero-distance correlation functions, which evaluates concretely to,
for instance at second order:
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g(2)(0) =
⟨â†(k)â†(k)â(k)â(k)⟩

⟨â†(k)â(k)⟩2

=
⟨N̂Ω(N̂Ω − 1)⟩

⟨N̂Ω⟩2

=
⟨N̂2

Ω⟩ − ⟨N̂Ω⟩
⟨N̂Ω⟩2

= 1 +
σ2NΩ

− ⟨N̂Ω⟩
⟨N̂Ω⟩2

(4.11)

where σ2NΩ
= ⟨N̂2

Ω⟩ − ⟨N̂Ω⟩2 is the variance of the particle number NΩ in the measurement
volume. Equation (4.11) shows that the amplitude of the zero-distance correlation function is
determined by the statistical properties of the quantum state. The variance of the probability
distributions of occupation (4.2) and (4.3) is well-known and allows immediately for the evalua-
tion of g(2) in the case of ideal BECs and Mott insulators: The Poissonian probability distribution
describing coherent states has a variance equal to the mean σ2N = ⟨N̂⟩ which gives g(2)(0) = 1 in
accordance with Glauber’s definition. The geometric probability distribution describing thermal
statistics such as the one ofMott insulators in the far field has a variance equal to σ2N = ⟨N̂⟩2+⟨N̂⟩

which indicates bosonic bunching at zero distance g(2)(0) = 2, an observation that had been con-
firmed in previous work on the Helium Lattice experiment [176].

On a side note, this manifestation of bosonic bunching in the far field of a Mott insulator
that closely resembles that of a thermal state can also be derived directly from the correlation
function at second order:
Decompose the momentum operators that enter into the expression for g(2)(0) in the Wannier
basis (as is customary for treating Mott insulators), that is using the operators b̂†j and b̂j defined
via (2.9) that create and annihilate a particle in the Wannier function of the j-th lattice site:

â(k) =
1√
V

Nsite∑
j=1

eik·rj b̂j (4.12)
where Nsite is the number of lattice sites. Acting on the many-body ground state wave func-

tion of an ideal Mott insulator given by (2.25) yields the following type of correlators:
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g(2)(0) ∝ ⟨b̂†i b̂
†
j b̂k b̂l⟩ = n̄2(δi,k + δj,l)− n̄δi,j,k,l (4.13)

with the mean lattice filling n̄ = Ntot/Nsite. The terms quadratic in n̄ run twice over all lattice
sites and the term in linear in n̄ only once, making the latter negligible for large values ofNsite (in
the experiment Nsite ≈ 403). Using ⟨â†(k)â(k)⟩2 = n̄2 one is thus left with

g(2)(0) =
2n̄2

n̄2
= 2 (4.14)

This reasoning is extendable to all higher orders of n where one recovers (4.7), and which
corresponds to the bunching at zero distance shown by thermal chaotic states up to negligible
terms.

4.4.2 . Measurement volume for fully contrasted correlation functions

In the beginning of the chapter the size of the measurement volume has been shown to play
a crucial role in being able to access pure state statistics in the experiment in the context of the
measurement of FCS. With the close relationship in information content of that quantity with the
normalized correlation functions introduced in the previous part, it comes as little surprise that
this question is also of significant importance in this context. The global constraints on macro-
scopic variables elaborated beforehand still apply in this case, but the physical quantity that is
subject to a maximum size condition is now a different one:
Correlation functions do not only contain physically relevant information in the value of their
amplitude. The decay distance in the system coordinates of any change in amplitude towards
zero distance is also of vital importance. In the far field it represents the typical separation be-
tween constituent parts of the system that are uncorrelated and is thus called the correlation
length lc. In the case of Mott insulators where thermal statistics are expected in the far field, the
bell-shaped bunching peak towards zero distance in themagnitudes of the correlation functions
is well-fitted by Gaussian functions [176] so that the two-body correlation length lc can be defined
from the shape of the second-order correlation function:

g(2)(k1,k2) = g(2)(0)× exp

(
−2|k1 − k2|2

l2c

)
(4.15)
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As a measure of the decay distance of the correlations in the system, this the correlation

length is inversely proportional to the source size, as was famously showcased in the Hanbury-
Brown and Twiss experiment [187].

When its light intensity is measured from a great distance, a star can be thought of as a col-
lection of independent emitters of photons, with the far field statistics governed by interferences
that take place between emission and detection. In the absence of a coherent mechanism syn-
chronizing the emission of individual photons, the ensuing measured statistics have therefore
thermal (chaotic) character. The photon arrival rate of such a source displays thermal statis-
tics in the far field: Bosonic stimulation leads to a strong correlation of intensity fluctuations
towards zero distance in both space and time coordinates. The space part of these correlations
can be probed by placing two photon detectors at positions r1 and r2 and varying their sepa-
ration |r1 − r2|. Hanbury-Brown and Twiss observed a peak caused by the bosonic and chaotic
statistics of the starlight in the far field for a detector separation smaller than a certain distance.
This decay distance of the correlation function is closely related to the correlation length lc and
could thus be used to determine the angular size of the star.

The detector separation in the HBT experiment is analogous to the size of the measurement
volume used to compute atom correlations in this analysis. A finite correlation length implies
that if VΩ is taken to be larger than the correlation volume defined by lc, the simultaneous fluc-
tuations are measured in part between atoms that are uncorrelated and thus drown out the
correlation signal, leading to a reduction in the peak amplitude of g(n)(0). Fully contrasted cor-
relations amplitudes, such as (4.7) in the case of thermal statistics can thus only be measured in
volumes smaller than the correlation volume set by lc. In larger volumes a bunching peak might
still be visible, but its amplitude will be reduced with respect to the theoretically expected value.
This fact was confirmed by work on the Helium Lattice experiment investigating the amplitude
of the third order correlation function at zero distance in Mott insulators [176, 177].

For the Mott insulator data shown in the upper left panel of fig. 4.5 the two-body correlation
length fitted using (4.15) is lc/kd = 0.031(2), which is commensurate with the expected value given
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by the number of lattice sites occupied by the Mott insulator in the trap lc/kd ∼ 1/Nsite [176]. If
the correlation length lc is defined as the 1/e2 width of the bunching peak (4.15), its relation to
the in-trap system size L in the case of thermal statistics is given by lc ≃ π/L. The corresponding
coherence volume associated to one mode in momentum space is thus Vc = (2lc)

3 = (2π/L)3.
In order to measure fully contrasted correlation amplitudes, the measurement volume must
be considerably smaller than this, VΩ ≪ Vc, which is a more stringent condition than the one
established in the context of the FCS measurement. Choosing a similar measurement volume
size as before such as VΩ = Vc would lead to a reduction in the two-body correlation amplitude
by a factor of 1/[√π/8 erf(√2)]3 ≈ 4.7.

Even though this condition is more stringent than for the FCS measurement, it is fulfilled for
the same size of measurement volume SΩ for lattice superfluids as in the previous case, since
SΩ ≪ Vc. The density of the 0th-order diffraction peak at k = 0 is sufficiently elevated for the
extraction of the factorial moments. As in the previous case, however, the situation is drastically
different for theMott insulatorwhich has a very dilutemomentumdistribution in the far field. On
top of that, while VΩ can be on the order of Vc and still yield single-mode FCS (see fig. 4.3), VΩ ≃ Vc

is insufficient for the extraction of fully-contrasted correlation function which requires the more
stringent δk ≪ lc. The already low mean detected atom number in VΩ is thus further diminished
by the reduction in the size of the measurement volume in the context of this analysis. In order
to achieve sufficient statistics in the face of this additional obstacle anisotropic voxels are now
used to bin momentum space VΩ = δk × δk2⊥ with a transverse size larger than the correlation
length δk⊥ > lc > δk. This increases the mean detected atom number in VΩ at the cost of losing
the full contrast in the correlation amplitude, a trade-off that is slightly inconvenient but without
alternative in the context of the low density exhibited by the far-field momentum distribution of
Mott insulators. Similarly to the FCS analysis, the atom number countsNδk⊥ extracted from each
measurement volume across the FBZ are averaged to increase the signal, with the quantity of
interest being now the factorial moments N̂ (n)

δk⊥
:

⟨N̂ (n)
δk⊥

⟩ =
∑

j∈FBZ

⟨Nδk⊥(Nδk⊥ − 1) . . . (Nδk⊥ − n+ 1)⟩j (4.16)

from which the amplitudes of the normalized correlation functions are directly obtained by
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applying the normalization:

g
(n)
δk⊥

(0) =
⟨N̂ (n)

δk⊥
⟩∑

j∈FBZ⟨Nδk⊥⟩nj
(4.17)

For the second order (4.17) can also be evaluated by computing the histogram of atom pairs
instead of the factorial moments [176], which has been verified to yield similar results for the
magnitude of g(2)δk⊥

(0).
The averaging process over the FBZ alone is not sufficient for the extraction of higher order mo-
ments, which necessitates the use of the anisotropic measurement volumes. The corresponding
reduction in contrast caused by integration over uncorrelated atoms along the directions δk⊥
means that the measured magnitudes will be lower than the prediction for thermal statistics
(4.7). In order to quantify this effect, figure 4.5 shows the corresponding reduction in amplitude
of the correlation functions as δk⊥ is increased. The effect is visible at every order from second
all the way through sixth.
While this effect is without a doubt undesirable, it does not prevent one from confirming the
thermal nature of the obtained statistics. Indeed, the anisotropic geometry of the chosen mea-
surement volume implies that this effect only occurs along two of the three directions of mo-
mentum space, which decouple on account of the 3D Gaussian shape of the correlation volume.
This decoupling allows for the quantification of the reduction in amplitude of the correlation
functions g

δk
(n)
⊥

along the δk-axis due to the large transverse integration along the two directions
δk⊥. Repeated calculation of g(n)δk⊥

for different values of δk⊥ with the longitudinal dimension of
VΩ at a constant δk = 1.5× 10−2kd ≤ lc then permit the extrapolation of g(n)δk⊥

in the limit δk⊥ → 0,
which in turn yields the fully contrasted amplitudes g(n)(0).

4.4.3 . High-order correlation functions of BECs and Mott insulators

Figure 4.6 shows the measured amplitudes of the correlation functions g(n)(0) for Mott insu-
lators and the k = 0 mode of lattice BECs up through sixth order. The difference in amplitude
between the correlation functions of the two datasets becomes more and more striking with
increasing order as the Mott insulator data is consistent with a thermal scaling according to (4.7)
while the BEC appears to remain constant around g(n) ≃ 1. At the highest extracted order this
leads to a difference of almost three orders of magnitude in the amplitude of the correlation
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Figure 4.5 – Effect of the transverse integration δk⊥ on the amplitudes of the correlation
functions g(n)δk⊥

. Varying δk⊥ while keeping the longitudinal dimension of VΩ at a constant δk =

1.5× 10−2kd ≤ lc allows for the extrapolation of the fully contrasted correlation functions g(n) inthe limit δk⊥ → 0 (black dashed lines).

functions.
Previous measurements of the second and third order correlation functions of Mott insula-

tors carried out on the Helium Lattice experiment [176] were unable to extract a fully contrasted
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Figure 4.6 – Correlation functions of BECs and Mott insulators for orders n = 2 through 6.TheMott insulator follows the expected factorial law (4.7) (black line), while the k = 0mode of thelattice BEC appears to be consistent with the coherent state prediction (4.6). Error bars for theMott insulator dataset are the fitting errors from the extrapolation of the correlation amplitudein the limit of vanishing transverse integration (see fig. 4.5). Error bars for the BEC mode arecalculated according to (4.18).

correlation amplitude by a considerable margin 9. Here, the approach detailed above allows for
the circumvention of the transverse integration effect and thus the extraction of fully contrasted
correlation function amplitudes up to sixth order. Themain experimental advancement enabling
this measurement is the implementation of the Raman transfer detailed in chapter 2 which has
increased the detected atom number in volumes compatible with Vc sufficiently for the extrac-
tion of the factorial moments.
The compatibility of the values of g(n)(0)with n! justifies the argument presented above for iden-
tifying the far-fieldmomentum space coherence forMott insulators with those of a thermal state
up to negligible factors. The only way to differentiate these two states from the measured mo-
mentum distributions is to compare their correlation lengths l(n)c . While both display bunching
of the same amplitude and of size lc ∝ 1/L, they differ in their in-trap size L due to the incom-

9. Due to the limited detection efficiency at the time a much larger measurement volume had to beused with the increase in transverse integration reducing the expected values from 2 to 1.065(10) for
g(2)(0) and from 6 to 1.32(5) for g(3)(0). Nonetheless, the correct scaling could be extracted for the ratio
g(3)(0)−1
g(2)(0)−1

≃ 5.
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pressibility of Mott insulators. The latter makes L strongly dependent on the total atom number
Ntot, while for thermal clouds L is independent of Ntot [191]. Despite their apparent similarities
in terms of the measured quantities in momentum space, previous work on the experiment has
carried out this comparison and thereby confirmed that the states prepared at high values of
U/J are indeed Mott insulators and not thermal states [97, 140, 176].

In the log scale used for figure 4.6 the k = 0mode of the BEC appears to be consistent with
Glauber’s definition (4.6). Looking more closely at the values around unity, however, reveals a
systematic deviation from this value that makes the BEC data incompatible with 1 for all orders
above the first, as is shown in figure 4.7.

Figure 4.7 – Correlation functions for the weakly-interacting BEC and the randomized
dataset. Zooming in on the region around unity for the BEC data shown in fig. 4.6 (blue cir-cles) reveals a deviation from the coherent prediction (4.6) (red line) for all orders n > 1. Therandomized dataset (orange squares), void of any coherence by construction (see text), adheresto the expected value of unity at all orders up to sixth, indicating that the deviation from thecoherent state statistics observed in the blue points is not due to a lack of statistics. Error barsfor both datasets are calculated according to (4.18).

The error bars for this dataset are given by

∆g
(n)
BEC(0) =

∆N
(n)
Ω

⟨N⟩n
(4.18)
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which is calculated from the standard error of the factorial moments:

∆N
(n)
Ω =

1√
Nruns

√
⟨(N (n)

Ω )2⟩ − ⟨N (n)
Ω ⟩2 (4.19)

The deviation increases with n and only the first order of the correlation function amplitude
remains at unity 10. Moreover, the way that g(n)(0) deviates from unity seems to resemble the re-
sult of a combination of a dominant contribution from coherent state statistics, since the values
stay close to 1, with a small addition of some incoherent, thermal-like constituent part adding a
small share of n!-like behavior.
In order to verify that the observed deviation is statistically meaningful instead of simply being
an artifact of an insufficient number of detection events within the measurement volume SΩ,
figure 4.7 also shows the result of the computation of the n-body correlations carried out on an
artificial dataset obtained by randomly shuffling the detected atoms across the different runs
of the experiment while keeping both the total number of shots and the mean detected atom
number per shot constant with respect to the original dataset. Since the correlation between
any two atoms from different shots of the experiment is zero, this procedure destroys all many-
body coherence effects within a single randomized shot. Thus, the discrete nature of the single
particle detection method applied to fully independent events leads to each randomized shot
being constituted of a collection of discrete and independent detection occurrences at a fixed
rate (due to the randomization). Such conditions give rise to a Poisson distribution, which has a
zero-distance amplitude of correlation equal to g(n)Poisson(0) = 1 for all orders n, reflecting the fact
that detection events in a Poisson process are independent from another and thus the occur-
rence of one event has no effect on the likelihood of the occurrence of another one.
It is important to note at this point that, even though the randomized dataset fulfills the condi-
tions for exhibiting Poissonian statistics and therefore an amplitude of the correlation functions
equal to unity, this does not occur as a consequence of the same root cause in a physical sense
as the one leading to the identical result for the statistics exhibited by a coherent state. Simply
put, there are different underlying statisticalmechanisms that can give rise to a Poissonian distri-
bution of probability, and while a coherent state is one of them, the relationship is not bijective.
The creation of a randomized dataset that contains no correlations between atoms within a sin-
10. Per definition g(1)(0) = 1 whatever the nature of the probed state
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gle run by construction offers the possibility to test the available statistics to verify the algorithm.

As is evident from fig. 4.7, the magnitudes of the n-body correlations of the randomized
dataset adhere perfectly to unity as is expected in the absence of all coherence within a single
shot, with amplitudes equal to g(n)(0) = 1.00(2) at any order n ≤ 6. This randomization method
produces the same result when applied to the Mott insulator dataset, validating the computa-
tion algorithm for the n-body correlations and confirming the physical origin and significance of
the deviation from 1 observed for the BEC mode. This observation is indeed equivalent to the
deviation from a perfect Poissonian distribution for the same data in the FCS analysis shown
in figure 4.4. The remainder of this chapter is dedicated to a quantitative interpretation of this
deviation from pure state statistics that is now evident from two different analyses of the data.

4.4.4 . Establishing the limit of the experimental statistics

The randomization procedure detailed in the context of fig. 4.7 has been shown to allow
for a consistency check of the algorithm used to extract the n-body correlations. Fig. 4.8 now
presents the extension of this approach on the same dataset at U/J = 5 to even higher orders
of correlation up to n = 10.

Figure 4.8 – Amplitudes of correlation functions for the randomized dataset extended to
higher orders of correlation. The orange points correspond to the same randomized datasetas in fig. 4.7 with the analysis continued through the tenth order of correlation. A systematicdeviation towards smaller values occurs for n > 6, indicating a limit to the extensibility of themodeling analysis for orders higher than six.

Fig. 4.8 shows the appearance of a systematic trend above n = 6 that deviates the random-
ized data from the g(n)(0) = 1 line towards smaller amplitudes. This trend is to be taken as
an indication to the fact that the statistics within SΩ are no longer sufficient to reproduce the
theoretically certain result for a dataset known to be completely free of coherence and thus of
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any systematic trends in the correlation amplitudes. The appearance of this effect for higher
orders constitutes an indication to the fact that the limit of experimental statistics is starting
to be tested for n ≥ 7 with simultaneous detection events of NΩ ≥ n now representing an in-
creasingly unlikely occurrence. Surpassing this limit would require either a significantly larger
number of repetitions of the experiment, or (a considerably more efficient option) an increase
in the quantum efficiency η of the single particle detector, with the latter affecting the simulta-
neous detection of n particles required for a contribution to the the factorial moment ⟨N̂ (n)

Ω ⟩ by
a factor of ηn. With the implementation of the Raman transfer detailed in chapter 2, however,
it can be assumed that nearly all atoms prepared in the system are transferred to the detected
state, and thus increasing η would necessitate a change in the experimental setup, most likely
replacing the detector with one with a higher quantum efficiency 11.

4.5 . Deviation from Coherent Statistics in Correlations of Lattice BECs

As alluded to in the beginning of the chapter, recovering pure state statistics from experi-
mental data is not an obvious endeavor. The Poissonian FCS and ensuing unity of the correlation
function amplitudes rely on the description of the quantum state as an ideal BEC. Unsurprisingly,
this state does not correspond to the one prepared in the experiment, where the BEC is depleted
by both non-zero temperature and interactions between atoms. Based on previous investiga-
tions of the statistical properties of the total depletion [141] these contributions are known to
add an incoherent component to the observed local statistics. With the amplitudes of the cor-
relation functions seemingly containing a small incoherent part manifesting in a deviation from
unity that increases like some small factor times n! (see fig. 4.7), this incoherent character seems
to be reflected in the measured correlation functions and might consequently also account for
the deviation from a Poissonian FCS evident in fig. 4.4. Hence, it seems relevant to investigate
the role of the depletion in many-body coherence properties for the lattice BECs prepared in the
experiment.

11. As of the time of this writing, no MCP detector with a higher quantum efficiency is available on themarket.
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4.5.1 . The incoherent statistical properties of the depletion

With the enhancement of interactions in the optical lattice [97,141] endowing the experiment
with ability to probe the low temperature regime kBT ≪ µ, where µ is the chemical potential, the
two contributions to the total depletion are approximately comparable. Concretely, for U/J = 5

at kBT/µ ≃ 0.3 the thermal depletion is on the order of 10% and the quantum depletion on the
order of 5% [23]. The origin of the incoherent statistical propertieswith respect tomeasurements
in small volumes in momentum space differs for the two depletion parts.
On the one hand, the atoms depleted by thermal excitation in the low-temperature regime are
known to form a thermal state of noninteracting bosonic Bogoliubov excitations [22] whose pop-
ulation is determined by Gaussian statistics and the temperature. The linearity of Bogoliubov’s
transformation implies that the Gaussian statistical properties of these quasi-particles carry over
to their associated particle momenta, and thus g(n)(0) = n! [132, 137, 192].
On the other hand, the quantum depletion consists of a superposition of two-mode squeezed
states at opposite momenta [23] 12, and is a feature associated to the (zero temperature) ground
state of a BEC in the presence of interactions [22]. With the pairs described as being in a coherent
superposition with the condensate, the question arises as to why they should lead to an inco-
herent contribution. The answer lies in the measurement procedure specific to the FCS analysis
that requires probing small volumes of momentum space. If located at finite momentum, such
small volumes can by construction not contain both partners of a k/−k pair of the quantum de-
pletion, and measuring one while ignoring the other one amounts to performing a partial trace
over the second parnter of the atom pair at opposite momentum. Correlations measured in
small volumes at finite k thus probe correlations between atoms that belong to different pairs,
and the density matrix describing them, which results from the partial trace over the second
partner of each pair, has thermal (chaotic) statistics, similarly to the statistics associated with the
observation of only one partner of parametric down conversion photons pairs [193] or of atom
pairs resulting from two-body collisions [41, 194]. Previous work on the Helium Lattice experi-
ment has demonstrated that the quantum depletion exhibits thermal statistics when probed in
12. Note that the considerations outlined in this section are based on the assumption that Bogoliubovtheory describes the experimental system. This is certainly justified at small values of U/J . However,following the results presented in chapter 3, this is not the case for the k/ − k correlations at largerinteraction strengths. Despite that, the quantum depletion is still expected to contribute incoherently tothe statistics measured in small volumes of momentum space in this region.
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small volumes at nonzero momenta [141]. The overlap of the first excited trap states with the
k = 0mode present in the finite-size experimental system is expected to be sufficiently small for
the simultaneousmapping of both oppositemomenta into this mode to be a rare occurrence, so
that when one partner of a pair is detected in the k = 0mode, the other one will be most likely
be situated at a finite momentum state, and the partial trace argument implies an incoherent
contribution to the measured local statistics of the k = 0mode.

The finite size of the system implies that modes corresponding to the first excited states of
the trap contribute to the signal measured in a volume of size much smaller than that of a single
mode, implying the presence of atoms belonging to the depletion when probing the k = 0mode.
It is not possible to divide their respective contributions apart in the momentum distributions
that make up any single dataset, since it is impossible to attribute any detected atom to either
the thermal or the quantum depletion. It is, however, possible to vary the impact of one while
keeping the other one more or less constant.
This statement may seem intuitive in the case of temperature, since most quantum gas experi-
ments strive to achieve temperatures that are as low as possible in order to reveal effects asso-
ciated to quantum degeneracy. As outlined in chapter 2 this is all the more true for the Helium
Lattice experiment that sets out to be a platform capable of exploring characteristics of a quan-
tum phase transition that occurs at zero temperature (see chapter 5). Since a considerable effort
is undertaken to reduce the temperature of the prepared system as much as possible, it is rel-
atively straightforward from an experimental point of view to achieve what would otherwise be
considered a suboptimal cloud temperature 13. Any procedure resulting in an increase of the
thermal depletion is, however, not completely separable from the state of the quantum deple-
tion, at least in the present case of constant total atom numbers for all datasets 14. Since the
quantum depletion consists of atoms expelled from the condensate via interactions, a decrease
in the condensed fraction fc brought about by a heating procedure that increases the thermal
depletion automatically reduces the number of available atoms in the condensate that can form
momentum-correlated pairs via collisions, thereby reducing the quantum depletion. As demon-
13. See for instance the paragraph Heating procedure from theMethods of [23].14. As outlined in chapter 2 this condition ensures unity filling of the lattice in the trap center at theMotttransition.
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strated in a previous work on the experiment [23] this effect can be made to be sufficiently con-
sequential as to drown out any correlation signal associated to the quantum depletion.
The same consideration naturally holds in the opposite case as well, where a condensate de-
pleted by strong interactions will have less atoms available to be thermally excited into the ther-
mal depletion, even in the case of isentropic loading into the deeper lattice [97]. While these two
considerations are to be kept in mind when attributing differences in datasets at different val-
ues of T/J or U/J to a single variable, it is also clear that the effect is not dominant and indeed
assumed to be sufficiently small in the context of the datasets presented in this chapter at dif-
ferent values of U/J in the superfluid phase that one can consider differences in datasets to be
primarily attributable to differences in quantum depletion and thereby the quantum depleted
fraction only.

With these considerations in mind, the idea for attributing the deviation from coherent state
statistics observed in fig. 4.4 and 4.7 to the presence of atoms from the depletion in the mea-
surement volume consists in increasing the contribution of the depletion to quantify the change
in this deviation as the overall depleted fraction of atoms increases. In principle, either one of
the outlinedmechanismmight be used to increase the incoherent contribution of the atoms out-
side the condensate, but increasing the interactions by tuning the Bose-Hubbard parameterU/J
offers far greater control and precision than increasing the temperature of the cloud. Addition-
ally, the ensuing states may still be compared in the context of varying many-body equilibrium
states at similar temperature, emphasizing the role of the many-body ground state properties
significantly more than increasing temperature but leaving the parameters of the Hamiltonian
of the system unchanged.
The set of experiments realized in the quest to quantify and interpret the deviation from coher-
ent state statistics consists thus in increasing the lattice depth to augment the interactions and
consequently the quantum depletion, and conducting the same analysis as for the BEC mode as
in the previous part of the chapter to investigate the role of the depletion in setting the many-
body coherence properties of the quantum system.

An additional context for this series of experiments is given by previous measurements of
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the same quantities in lattice BECs [185]. These experiments, carried out on a different 4He∗ ex-
periment, reported second- and third-order momentum correlations of amplitudes consistent
with Glauber’s definition for coherent states g(2)(0) = g(3)(0) = 1 without any systematic devia-
tion from unity. Explaining this discrepancy with respect to the data shown in fig. 4.7 represents
a further aim of this analysis.

4.5.2 . Increasing the incoherent contribution via interactions

In keeping with the above considerations about the role of the depletion in the measured
many-body coherence properties, the experiment is performed for a range of increasing inter-
actions set by the Bose-Hubbard parameter U/J while keeping to the superfluid part of the
phase diagram. Concretely, U/J is increased from the low interaction value of U/J = 5 (corre-
sponding to the data shown in fig. 4.4, 4.6 and 4.7) all the way to U/J = 20, where the BEC is
strongly depleted due to interactions but is still well shy of entering the Mott insulating regime
with the critical value located at (U/J)c = 26(1) [140]. As a consequence the condensed fraction
is decreased from fc ≈ 84% at U/J = 5 all the way down to fc ≈ 15% at U/J = 20. Having
established that the reduced temperature T/J remains constant as U/J is increased [97], it is
the quantum depletion that is mostly responsible for this increase in the condensate depletion.
All other experimental parameters are kept constant 15 with respect to the initial experiment at
U/J = 5. The resulting n-body correlations are shown in figure 4.9.

From figure 4.9 it is clear that increasing the interaction strength increases the deviation of
the n-body correlations from the coherent state statistics (4.6). In addition to increasing withU/J
across all datasets for any given order n, the deviation also increases as a function of nwithin any
single dataset, as already observed in fig. 4.7. This behavior is reminiscent of that of a state with
thermal statistics for which the n-body correlations increase with n according to (4.7). As implied
by the equivalence in information content between FCS and n-body correlations, a gradual devi-
ation from the Poissonian FCS is also observed in the FCS of the datasets for 5 ≤ U/J ≤ 20. With
the increase in quantum depletion being the main differing feature between these momentum
distributions, this result confirms the intuition formulated at the outset, namely that of the de-
15. Technically speaking, increasing U/J also increases the frequency of the harmonic trap as an un-avoidable side effect of increasing the intensity of the lattice laser beams due to their harmonic confine-ment effect.
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Figure 4.9 – Correlation functions of lattice BECs at increasing interactionsU/J. As interac-tions increase, so does the deviation from unity for the amplitudes of the correlation functions
g(n)(0) obtained from the factorial moments of the occupation of the measurement volume SΩ.The dataset at U/J = 5 is the same as in fig. 4.4, 4.6 and 4.7. As observed in fig. 4.7, within eachdataset this deviation also increases with the order of correlations, reminiscent of the behaviorof states with thermal statistics that exhibit a scaling according to (4.7). Error bars for all datasetsare calculated according to (4.18).

viation from coherent state statistics being due to an incoherent contribution of the depletion,
at least qualitatively. In the following a heuristic model is introduced in order to describe the
impact of the condensate depletion on the n-body correlations in a quantitative manner.

4.5.3 . Modeling the role of condensate depletion in many-body coherence

Since no theoretical analytical prediction exists for the description of large 3D systems of
interacting lattice bosons in a harmonic trap, a simple model is developped in an effort to quan-
titatively represent the role of the condensate depletion in themany-body coherence properties
of the system. In addition to supposing that the BEC statistics can be described by those of a
coherent state and that the depletion exhibits thermal statistics in SΩ, the model is based on the
simple, but by no means trivial, assumption that atoms in the condensate and in the depletion
contribute independently to the measured counting statistics in the measurement volume [178].
This assumption is reasonable in the weakly-interacting regime where the condensate depletion
is treated as a perturbation on top of the BEC.
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It is emphasized that many of the central aspects of this model arise from the small size of the
measurement volume, which, as has been outlined throughout this chapter, is of vital impor-
tance in the quest of extracting pure state statistics from experimental data. The reason behind
the importance of this fact in the context of setting up the heuristic model is that if the mea-
surement volume were to encompass the entire system, a strong correlation would naturally
prevail between the condensed and the depleted atoms, which in the absence of technical im-
perfections pertaining to the experiment (such as a finite detection efficiency) would amount to
Ntot = NBEC+Ndep, implying perfect correlation between the two quantities in the canonical en-
semble. The reality of measuring inside the small sphere SΩ of radius δk = 2.5×10−2kd, however,
implies probing a region of momentum space far smaller than the extension of the depletion.
So long as the condensed fraction stays relatively large, i.e. in the Bogoliubov regime, approxi-
mating no correlations between condensed and depleted atoms inside SΩ that are imposed by
constraints on macroscopic observables seems reasonable. When moving towards the strongly
interacting regime where the condensate is significantly depleted and the depletion constitutes
no longer just a perturbation on top of the BEC, on the other hand, the validity of this assumption
remains an open question and can only be justified by the success of the model that is based
upon it in describing the observed effects (see below).

With these assumptions in mind, themodel is created from expressing the expectation value
of the number operator for the measured occupation of SΩ in terms of the creation and anni-
hilation operators of the parts contributing to the statistics in the measurement volume, that
is

NΩ = ⟨N̂Ω⟩ = ⟨â†BECâBEC⟩+ ⟨â†depâdep⟩ = NBEC +Ndep (4.20)
where the assumption of independent contribution of atoms belonging to the condensate

and the depletion has entered in the form of neglecting their correlators ⟨â†BECâdep⟩ = 0. Note
that from here on out all quantities subscripted BEC and dep are meant to be understood in the
context of the measurement volume, so that for instance Ndep refers to the number of atoms
from the (quantum or thermal) depletion falling inside SΩ rather than the total number of de-
pleted atoms in the system.
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With âBEC and âdep assumed to be uncorrelated, the n-th power of âΩ can be expressed simply
as

âΩ =
n∑

p=1

(
n

p

)
(âBEC)

p (âdep)
n−p (4.21)

from which follows the expectation value for the n-th factorial moment of the atom number
in SΩ:
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â†BEC

)p
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With the amplitude of the n-body correlation function being essentially given by a normal-

ization applied to the factorial moments, the models yield thus as analytic expression for the
n-body correlations:
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⟨
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where the single parameter uponwhich g(n)(0) depends has been introduced as the coherent
fraction:

fcoh ≡ NBEC

NΩ
=

⟨â†BECâBEC⟩
⟨â†ΩâΩ⟩

(4.24)
Thus fcoh represents the fraction of atoms inside the measurement volume that contribute

in a coherent fashion to the measured statistics, which by assumption for this models means
the fraction of atoms in SΩ belonging to the condensate.

Having derived an analytic formula for the n-body correlations from a small set of simple
assumptions, and given the close relationship between the amplitudes of the correlation func-
tions and the FCS, one naturally wonders if a similar result can be derived for the probability
distributions of occupation. However, despite their strong connection and in some cases even
strict equivalence in terms of information content, it is not at all straightforward to derive P (NΩ)
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from g(n)(0). In fact, the neat separation between the contributions of the condensate and the
depletion (4.20) does not carry over to the probability distributions, with the latter containing a
complex convolution of P (NBEC)and P (Ndep). This is in line with a more universal understand-
ing that probability distributions of a random variable are notoriously difficult to derive from its
moments in quite a general context [195, 196].

4.5.4 . Establishing the predictive capacities of the model

With the analytical formula (4.23) for the n-body correlations at hand, the model is put to
the test by fitting the experimental data of the magnitudes g(n)(0). A successful reproduction of
the experimental observations might be seen as a positive indication, though certainly no proof,
regarding the justification of the assumptions underlying the model. A failure to reproduce the
experimental data, on the other hand, would certainly constitute a strong case for their invalidity.

Figure 4.10 shows the n-body correlations at U/J = 5 from fig. 4.7, with the added dashed
line corresponding to the model prediction from (4.23).

With (4.23) being a function of a single parameter, fitting this analytic expression to the ex-
perimental data yields a value for the coherent fraction of fcoh = 0.9960(5). One can argue about
whether or not it is warranted to label this fit as being a prediction, since it contains an adjustable
parameter. What fig. 4.10 does certainly reveal, however, is that with the resulting value for fcoh
the expression (4.23) reproduces the observed data with an accuracy of 5×10−4, thereby consti-
tuting a first step towards a potential validation of the assumptions the model is based on.
The value of fcoh is close to unity, which is in line with the expectation that for weakly-interacting
lattice BECs the number of depleted atoms in SΩ is small. Despite the incoherent fraction 1−fcoh
being less than half a percent of the atoms in the measurement volume, it affects the statisti-
cal properties of the many-body state in such a way as to confirm its incompatibility with those
of a completely coherent state from the second order on. The ability to extend the measure-
ment to orders as high as six results in an uncertainty on the fit parameter that is significantly
smaller than the experimental error bars, making this experimental approach extremely sensi-
tive to even small deviations in the many-body coherence properties. It is worthwhile to note
that, based on the mechanism employed to increase the incoherent fraction, this shift is directly
related to parameters in the Hamiltonian of the system and thus the many-body ground state,
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Figure 4.10 – Application of themodel to the experimentally observed n-body correlations
for the weakly-interacting BEC. The blue points are the same experimental data and errorbars as in fig. 4.7. The dashed line is a fit of (4.23) to the experimental data with fcoh as onlyadjustable parameter. The blue shaded region indicates the uncertainty on the fit. The model(4.23) succeeds in confirming the deviation from unity in the correlation amplitudes observed inthe experiment and reproduces the experimental data with an extremely low uncertainty on thefit parameter fcoh.

as opposed to being simply an artifact of modifying the external conditions of the experimental
environment such as the finite temperature. While one has to be careful not to push this line of
reasoning too far, since fcoh would arguably be larger at zero temperature, comparing the vari-
ation of this quantity over datasets that differ nearly exclusively in the value of the parameter
driving the unitary dynamics is an exciting prospect that will be pursued in the following, with
fig. 4.11 extending the modeling analysis to the other datasets from fig. 4.9.

Figure 4.11 shows that the model likewise succeeds in the reproduction of the experimental
data at higher interaction strengths. As expected, the fitted values for fcoh decrease with U/J as
the stronger interactions successively increase the quantum depletion. Since the measurement
volume SΩ is much smaller than the size of a single mode and centered on k = 0, it does not
contain the same ratio of condensed to depleted atoms as the system as a whole 16:

16. It is reminded again that in this section NBEC refers to the quantity measured inside SΩ and not tothe total number of detected condensed atoms.
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Figure 4.11 – Extension of the application of the model to the experimentally observed n-
body correlations for BECswith stronger interactions. The points are the same experimentaldata and error bars as in fig. 4.9. The dashed lines are fits of (4.23) to the experimental data with
fcoh as only adjustable parameter. The shaded regions indicate the uncertainties on the fits.The model (4.23) continues to succeed in confirming the deviations from unity in the correlationamplitudes observed in the experiment and to reproduce the experimental data with an lowuncertainties on the fit parameters fcoh even in the context of strong interactions.

fcoh =
NBEC

NΩ
̸=
N tot

BEC

Ntot
= fc (4.25)

The relationship between fcoh and its approximate counterpart at the macroscopic scale fc
is the subject of the final part of this chapter.

4.5.5 . Extrapolating depletion densities below the BEC

Since it is impossible to attribute a detected atom within SΩ to either the condensate or the
depletion, the quantity NBEC cannot be extracted from the experimental data. No quantitative
analytical prediction exists forNBEC in large 3D systems of trapped interacting lattice bosons. In
the absence of a possible direct comparison between the fitted value of fcoh and the experimen-
tal value of NBEC/NΩ, other quantities have to be examined in order to evaluate the validity of
the assumptions underlying themodel. Although the successful reproduction of the experimen-
tal data observed in the preceding part of this section is a positive indication towards this end,
the reliance on an adjustable parameter does not allow for a universal conclusion on this point.
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Consequently, seeking further validation of the model from the comparison of its predictions
with other quantities seems appropriate.
One such possible quantity for comparison is given by 1D cuts of the momentum densities ρ(k).
Such a comparison can necessarily only be of qualitative nature, since, even though the profile of
the BEC mode centered on k = 0 is well known [138], no analytical formula exists for describing
the shape of the depletion distribution in this region of momentum space. In an effort to arrive
at some quantitative indications nonetheless, the tails of the momentum distribution far from
the k = 0 mode in the range 0.2 ≤ k/kd ≤ 0.5 are fitted by bell-shaped functions; an approach
that has been heuristically established to produce the best quantitative agreement when using
Lorentzian functions, which are thus employed without any physical justification. The extrapola-
tion of these curves into the region k/kd < 0.2 beneath the BEC can then be compared with the
fit result for the incoherent fraction 1− fcoh. The results of this analysis for one weakly- and one
strongly-interacting dataset at U/J = 5 and 20, respectively, are shown in figure 4.12.

Figure 4.12 – Comparison of the model predictions with 1D density cuts of the momentum
densities of lattice BECs. The solid lines are normalized 1D cuts of the experimentallymeasuredmomentum densities ρ(k) for weakly- (left) and strongly- (right) interacting BECs. The dashedlines are Lorentzian fits to the tails of ρ(k) in the region 0.2 ≤ k/kd ≤ 0.5 and extrapolated to
k = 0. The shaded areas around these lines represents the uncertainty of the fits to the tails.The red shaded area centered at the origin indicates the extension of the measurement volume
SΩ. The black dash-dotted lines indicate the values of the incoherent fractions in SΩ resultingfrom the fits of fcoh in fig. 4.11.

Figure 4.12 shows the momentum densities ρ(k) for two of the datasets presented in figure
4.11 computed with a small transverse integration so as to increase the signal to noise ratio of
the depletion tails at high momenta while keeping them from being distorted at the same time.
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Normalization with respect to the maximum at k = 0makes for an immediate comparability of
the values with the incoherent fraction 1−fcoh. The depletion densities extrapolated to the origin
of momentum space are consistent with the values resulting from the fits of fcoh, an agreement
that is found to prevail over a range of interactions that make for a variation in both quantities
of more than one order of magnitude.

4.5.6 . Relationship between the condensed and the coherent fraction

A final comparison made to ascertain the validity (insofar as feasable) of the model concerns
the link between the the coherent and the condensed fraction (4.25). While the coherent fraction
has been the subject of extended discussion throughout this chapter, little has been said so far
about its approximate counterpart at the macroscopic scale of the system. While conceptually
simple in its definition, this quantity results from a separate measurement procedure [53] that
is entirely independent from the analysis of fcoh. For the reasons elaborated in the discussion
of the results shown in fig. 4.11, fcoh and fc are not expected to be exactly equivalent. As it turns
out, a relationship between these two quantities can be derived based in part 17 on the same
assumptions that underlie the model (4.23) presented above.
The approach employed in the comparison with 1D cuts of the momentum densities is carried
forward in maintaining the assumption that the depletion density is described by a Lorentzian
function along each lattice axis, considered independently:

ndep(k) = ρdep(0)
∏

j=x,y,z

(
σ2dep

4k2j + σ2dep

)
(4.26)

A further supposition, although based on considerably more established ground [138], con-
sists in assuming a 3D isotropic Gaussian for the form of the BEC in the FBZ:

nBEC = ρBEC(0)e
−k2/2σ2

BEC (4.27)
In the preceding equations σdep and σBEC refer to the RMS-widths of the corresponding mo-

mentum distributions. In approximation, the coherent fraction can be expressed in terms of the
momentum densities of the constituent parts of NΩ:
17. As mentioned in the following, in this part some additional assumptions are made in the derivationof (4.33) that are not required for the derivation of the model (4.23).
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fcoh =
NBEC

NBEC +Ndep
≃ ρBEC(0)

ρBEC(0) + ρdep(0)
(4.28)

On a macroscopic scale the same approach leads to the condensed fraction:

fc =
N tot

BEC

N tot
BEC +N tot

dep

≃
∫
FBZ dknBEC(k)∫

FBZ dk [nBEC(k)ndep(k)]
(4.29)

Since the BEC width is significantly smaller than the momentum range of the FBZ (fig. 4.12
shows a decrease of roughly four orders of magnitude in density between the center and the
middle of the FBZ), the integration over the FBZ can be replaced with one extending over all mo-
mentum space for the BEC. This allows for the condensed fraction to be expressed as a function
of the maximum densities of the respective momentum distributions:

fc ≃
ρBEC(0)Vc

ρBEC(0)Vc + ρdep(0)Vd
(4.30)

where the normalized total volumes of momentum space occupied by the BEC and the de-
pletion are given by

Vc ≃
∫∞
−∞ dknBEC(k)

ρBEC(0)
=
(√

2πσBEC

)3 (4.31)
and

Vd ≃
∫
FBZ dkndep(k)

ρdep(0)
=

[
σdep arctan

(
kd
σdep

)]3 (4.32)
Combining (4.28) and (4.30) thereby yields an approximate expression relating the coherent

to the condensed fraction that depends only on the ratio Vc/Vd of the total volumes occupied by
the BEC and the depletion:

fcoh ≃ fc
fc + (1− fc)Vc/Vd

(4.33)
The ratio Vc/Vd can be calculated from the widths σBEC and σdep extracted from fits to the

momentum densities, as already shown in fig. 4.12 in the case of the depletion. σBEC shows a
constant behavior as a function of U/J as the successive reduction in size of the condensate
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and increasing trap frequency mutually cancel each other out (see appendix B). Moreover, σdep
is also found to remain constant for all examined interaction strengths, but with the Lorentzian
fitting function being a purely pragmatic choice, establishing a physical reason for this consis-
tency is more subtle. However, the constant size of both σBEC and σdep implies that their ratio
Vc/Vd can be taken to be fixed for the purposes of this analysis, with the consequence of making
fcoh immediately determined by the value of fc. To proceed, the average value of the ratio of
the volumes Vc/Vd ≃ 0.3(1) over all datasets is used, with the error given by the standard de-
viation. Consequently, fcoh can be continuously extrapolated from fc for all values 0 ≤ fc ≤ 1

via (4.33), rather than being limited to the discrete data points of each dataset. The result is a
continuous prediction for fcoh as a function of fc without adjustable parameters. The variation
of the coherent fraction as a function of the condensed fraction is shown in figure 4.13.

Figure 4.13 – Coherent fraction as a function of the condensed fraction. The data pointscorrespond to the values of fcoh resulting from the fits to the n-body correlations of each datasetshown in fig. 4.11. The corresponding condensed fraction is determined following the procedureoutlined in appendix A of [53] in each case. Error bars represent uncertainties of the respectivefits. The dashed line represents the continuous prediction of (4.33) for the average ratio of vol-umes with the shaded area translating the uncertainty on this average value. The inset shows amagnification of the region of highest coherent fraction. Since fc decreases with U/J , the hori-zontal axis runs in opposite direction to the interaction strength.

Figure 4.13 shows that the values for the coherent and condensed fractions found from the
fits on the n-body correlations and momentum densities are in quantitative agreement within
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the uncertainties of the continuous prediction of (4.33) using the average ratio of volumes with
no adjustable parameters. Since fcoh and fc are the result of an entirely independent analysis
from one another with fcoh obtained from fits to g(n)(0) and fc from themomentumdensity [139],
this congruence may be seen as a further validation of the model presented in this chapter.

The non-linearity of the prediction of (4.33) illustrates the difference in the extend to which
the condensed and depleted atoms contribute in the two different measurement volumes con-
sidered for fcoh and fc, respectively. With SΩ centered on the k = 0 mode and of size much
smaller than 2π/L, the contribution of condensed atoms naturally dominated this part of mo-
mentum space. This implies that for a considerable system-wide increase of 1 − fc with U/J ,
the ensuing change of 1 − fcoh is barely noticeable, unless fc ≪ 1. Prior to that moment, the
majority of NΩ is predominantly contributed by NBEC, since atoms that are depleted from NBEC

are unlikely to end up in the incoherent contribution inside SΩ but much rather outside of SΩ
altogether. Therefore, unlike ⟨Ntot⟩, ⟨NΩ⟩ is not conserved as U/J is changed, and fcoh and fc do
not show a linear relationship.

The fact that 4.33 is able to correctly predict this non-linear behavior between fcoh and fcwith-
out any adjustable parameters is a further robust indication towards the validity of the heuristic
model. The fact that it is able to do so even in the regime where fc tends towards very small
values is remarkable, however, and its full understanding would undoubtedly require a more
sophisticated theoretical framework than the one outlined in this chapter.

4.6 . Conclusion

While the multiple validating indications of the model presented in this chapter are intuitive
in the context of weak interactions where the assumptions underlying it are on reasonably solid
ground, the prevalence of these agreements when analyzed for stronger interactions is not triv-
ial. For the largest values of U/J analyzed in the superfluid regime, the interaction effect on the
depletion of the BEC is such that the condensed fraction decreases to below 20%. Thismakes it all
the more remarkable that a model whose foundational presupposition of uncorrelated BEC and
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depletion operators can only be asserted with confidence in the context of weak interactions is
nonetheless capable of reproducing the experimental observations with quantitative accuracy.
Specifically, one of the principal hypotheses is that of the BEC and the depletion contributing in
an independent manner to the statistics observed in the small measurement volumes, which is
not entirely counter-intuitive, but still complicated to conclusively substantiate from theoretical
perspective alone. In this context the validation of the model results a posteriori from its agree-
ment with the experimental data across all compared quantities, a statement which suggests by
no means that a more sophisticated theoretical approach than the one presented here might
not be of vital interest in explaining the observed impact of the condensate depletion on the
many-body coherence.

In giving a positive indication to the attribution of the deviation of the n-body correlations
from unity to the presence of the quantum and thermal depletion of the condensate, the re-
sults confirm the coherent character of the BEC up to sixth order. Previous experiments had
reached a similar conclusion up to third order [185], but failed to observe the effect of the de-
pletion already evident at second order in this analysis. As a matter of fact, the measurement
volumes probed in [185] were significantly larger than Vc in order to offset a smaller detection
efficiency, which convolutes uncorrelated atoms and leads to a reduction in the amplitude of
correlation functions as discussed in this chapter. This fact is illustrated by the observed values
of g(2)(0) = 1.022(2) and g(3)(0) = 1.061(6) in that work which are well below the full contrast given
by g(2)(0) = 2 and g(3)(0) = 6, respectively, highlighting the complexity associated to obtaining
sufficient statistics in small volumes required for the characterization of many-body quantum
states from their many-body coherence properties.

In summary, this chapter has been dedicated to the presentation of measurements of Full
Counting Statistics and high-order correlations in interacting lattice Bose gases based on the
work pusblished in [36]. It has been demonstrated that the approach developed here is capable
of identifying quantum states based on theirmany-body coherence properties. Based on the fac-
torial moments of the detected atom number in small volumes in momentum space, perfectly
contrasted n-body correlations were obtained between up to n = 6 individual atoms as illus-
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trated by the measured amplitudes g(n)(0) = n! in Mott insulators. The FCS of Mott insulators
and BECs were established to conform to those predicted for thermal and coherent states re-
spectively, manifested by their thermal and Poissonian probability distributions and confirming
their effective description in terms of pure states when constraints on macroscopic quantities
are released. Additionally, it has been shown that the coherence properties of interacting Bose
superfluids deviate from those of a coherent state due to the presence of the condensate deple-
tion, particularly the quantum depletion. This underscores the capability of the Helium Lattice
experiment to obtain sufficient statistics in volumes of smaller dimension than the system’s cor-
relation length, constituting a key advantage for quantitatively probing many-body correlations,
an approach that indicates potential for the exploration of a variety of interacting quantumstates
and phase transitions [165–167, 197]. With its remarkable sensitivity to many-body coherence ef-
fects at high orders, a future extension of this technique into the quantum critical region above
the superfluid toMott insulator transitionwhere fluctuations are expected to intensify (see chap-
ter 5) and coherence properties undergo substantial changes is expected to hold great promise
for the possible revelation of complex non-Gaussian n-body correlations [173, 174].



5 - BEC AtomNumber Fluctuations Across theMott Tran-

sition

This chapter is dedicated to the analysis of the fluctuations of the condensate order parame-
ter across the superfluid toMott insulator phase transition at finite temperature. Contrary to the
classical normal gas condesnation transition which is driven by a variation of a the temperature,
the Mott transition is driven by interactions, and piloted by the quantum fluctuations that these
interactions induce. The transition is described in terms of an order parameter (the condensate
wave function), which takes on a non-zero average value in the ordered (superfluid) phase and
vanishes (on average) in the quantum disordered (Mott insulating) phase. In theory, properties
of universal behavior associated to the phase transition can be extracted from (higher moments
of) the order parameter when measured across the phase transition. However, sharp features
for such quantities are only to be expected in the thermodynamic limit, where the order param-
eter goes to zero at a sharp boundary that characterizes the quantum phase transition. In finite
size systems, cusps are rounded off and shifted, hindering such an analysis of universal scaling.
One possible solution to this is to construct quantities that are independent of the system size,
such as the Binder parameter.

The goal of this analysis is first and foremost to establish the experimental observation of
the order parameter fluctuations associated to the superfluid to Mott insulator phase transition.
Measuring the BEC atom number NBEC and analyzing its fluctuations amounts to probing the
second-ordermoment of the order parameter. As shown below, these fluctuations are expected
to be enhanced in the ordered phase upon approaching the critical regime, but separating them
from the inherent technical noise fluctuations of an average quantum gas experiment is not triv-
ial. Secondly, a brief study is conducted into the variations of the order parameter fluctuations
in the critical regime as the system size is changed. This analysis is somewhat limited in its ex-
tend due to the small overall range of the atom number available in the experiment. Finally, the
Binder cumulant is computed from themeasured fluctuations, andwhile the quantitative extrac-
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tion of numerical values associated to universal behavior is not possible in this experiment on
account of its harmonic trapping potential rendering the system inhomogeneous, qualitatively
interesting behavior such as a sharp variation of the Binder parameter at the transition suggests
the potential of this type of investigation for finite-size scaling analysis when applied to homo-
geneous systems.

The main difficulty in the experimental investigation of these order parameter fluctuations,
and presumably the primary reason why few experiments have ever been able to gather exper-
imental evidence for them, is that they are easily drowned out by the inherent technical fluctua-
tions present in a typical quantum gas experiment. In order to render their observation possible,
one either has to reduce the other sources of fluctuations to a large degree by conceiving an ex-
tremely stable experiment from the outset, or one has to be able to accurately separate the
technical from the order parameter fluctuations in post-analysis. The possibility to achieve the
latter is given by the single-particle detection capabilities of the Helium Lattice experiment.
In the first section of this chapter a brief overview is given of the physics of the order parameter
in the context of a second order quantum phase transition. The second section details previ-
ous observations of fluctuations of the order parameter in the context of the classical superfluid
to normal gas transition. The following section delineates how a measurement of the same
quantity has been achieved in the context of the Helium Lattice experiment by using precise
post-selection and careful modeling of the major sources of fluctuations in the experiment. The
remainder of the chapter presents the experimental observation of the order parameter fluctu-
ations across the superfluid to Mott insulator phase transition, their scaling with the total atom
number and the measurement of the Binder cumulant from higher order moments of the order
parameter. Preliminary numerical simulations by T. Roscilde (ENS Lyon) based on the quantum
rotor model are shown to be in qualitative agreement with the experimental observations.

5.1 . Second order phase transitions

This section gives a broad background on second order phase transitions, their distinction
with regards to discontinuous transitions and differences between classical and quantum phase
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transitions.

5.1.1 . Classical phase transitions

Ehrenfest classified [198] a phase transition between two phases A and B as being of n-th
order when the n-th derivative of the chemical potential µ(T, P ) has a jump:

(
∂m

∂Tm

)
P

(µA − µB)


= 0 (m < n)

̸= 0 (m = n)

(5.1)

Theoretical treatment of the transition usually starts with the choice of a macroscopic quan-
tity that occurs a characteristic change at the transition point, e.g. the volume for a liquid to gas
transition or the magnetization for a ferromagnetic transition. Nowadays it is the behavior of
this so-called order parameter ψ at the transition that labels 1 the order of the transition:

ψ =


discontinuous (1st order transition)
continuous (2nd order transition) (5.2)

First-order transitions are thus characterized by a discontinuous jump of ψ at the transition
point. When the discontinuity in this jump approaches zero, the transition is said to be of second
order. In first case there can be coexistence of the two phases at the transition temperature Tc 2,
contrary to the second case where this is not possible 3. While inmany cases there is a seemingly
natural choice for ψ, this choice is not unique (any power of an order parameter is itself an order
parameter for instance). Some examples of commonly used order parameters are:

ψ =



M/M0 (ferromagnetic)√
ρ0/ρ (BEC)√
ρs/ρ (λ transition)

(v − vc)/v (gas - liquid)

(5.3)

1. This is with the exception of topological phase transitions, which are not characterized by orderparameters.2. As is the case for water and ice at 0◦ C, for instance.3. Think for example of the continuous destruction of the regular ordering of magnetic moments inthe ferromagnetic transition of iron.
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whereM is the magnetization, ρ0 the condensate density and ρs the superfluid density. The
square root appears in the second and third case because the underlying quantity is the macro-
scopic wavefunction. In the case of Bose-Einstein condensation the number of condensed parti-
clesN0 changes continuously, implying a phase transition of second order. The order parameter
is a thermodynamic quantity whose average value is zero in one phase and non-zero in the other,
leading to the phases being referred to as the ordered and the disordered phase:

ψ


= 0 T ≥ Tc (disordered phase)
̸= 0 T < Tc (ordered phase) (5.4)

Though its thermodynamic average is zero in the disordered phase, the fluctuations of the
order parameter are not. The spatial correlation length ξ of these fluctuations increases upon
approaching the critical point. Second-order phase transitions are characterized by the fact the
increase in the order parameter fluctuations ends in a divergence of their correlation length at
the transition point:

ξ ∝ |t|−ν (5.5)
ν is referred to as the correlation length critical exponent and t quantifies the distance from

the critical point in a dimensionless manner, e.g. in the case of temperature it might be defined
as t = |T − Tc|/Tc. The long range of the order parameter fluctuations manifests itself not just
in space but also in time, with the correlation time τc (the decay time scale of the fluctuations)
diverging as

τc ∝ ξz ∝ |t|−νz (5.6)
Here z is referred to as the dynamic critical exponent. Critical exponents such as ν and z can

be thought of as a measure of the strength of the singularity. Say an observable X depends on
a the distance t from the critical point via a power law with critical exponent n: X ∝ tn. Then
all derivatives dmX/dtm with m > n diverge as t → 0, and the value of n dictates how soon this
occurs.
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The critical phenomena associated to the phase transition are a consequence of the diver-

gencies (5.5) and (5.6): Since at the transition point the correlations are of infinite range in both
space and time, the order parameter fluctuations are present on all length and time scales. A
system for which this condition holds true is said to be scale-invariant, with all observables de-
pending on the external parameters via power laws [89]. As a consequence, knowledge of the
corresponding so-called critical exponents completely characterizes the critical behavior of the
system in the vicinity of the phase transition [89].
Remarkably, systems can be grouped together based on their space dimensionality and symme-
try properties of the order parameter such that the critical exponents of their phase transitions
are the same for an entire class of very different physical systems. This feature of continuous
phase transitions is referred to as universality. It, too, is rooted in the divergencies (5.5) and
(5.6): With correlation lengths and times diverging at the critical point, the microscopic details of
the Hamiltonian are washed out and rendered unimportant by the system effectively averaging
over large volumes in space and time. Systems belonging to the same universality class show
identical macroscopic behavior, even though the details of their microscopic interactions might
be completely different.
In principle, universality should thus allow for the exact determination of the critical exponents
of a phase transition by studying any simple model system that belongs to the same universality
class. Naturally, the study of such critical exponents has been a field of great interest in both
theoretical [199–201] and experimental [202,203] condensed matter physics.

5.1.2 . Quantum phase transitions

The above considerations apply to classical phase transitions, so defined because they are
driven by fluctuations in temperature and result thus from a competition between energy and
entropy. With the critical point being associated to a certain temperature Tc, quantum mechan-
ical effects will play no significant 4 role for |t| < T

1/νz
c , which makes the critical behavior asymp-

totically close to the transition amenable to a classical description and is the reasonwhy all finite-
temperature transitions are referred to as "classical".
Contrary to that, quantum phase transitions occur at zero temperature through the variation of

4. Quantummechanicsmay be important for the behavior on amicroscopic scale, but themacroscopicscales associated to the critical behavior are dominated by thermal fluctuations.
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a physical (non-thermal) parameter in the Hamiltonian. They are thus brought about as a result
of competition between different ground state phases of the system. These types of transitions
are induced by quantum fluctuations resulting from the non-commutativity of operators in the
Hamiltonian (Heisenberg uncertainty principle). At the Quantum Critical Point (QCP) the fluctua-
tions driving the transition diverge and become scale invariant in space and time. In experiments
this critical behavior may still be visible in the low-temperature regime, despite not being at zero
temperature, due to the particular excitation spectrum of the quantum critical ground state.
With the typical time scale of the long-distance order parameter fluctuations diverging upon ap-
proaching the transition, the corresponding frequency scale ωc = ξ−z goes to zero, as does the
associated energy scale

ℏωc ∝ |t|νz (5.7)
As long as the energy of thermal fluctuations kBT is smaller than the energy scale associated

to the long-distance order parameter fluctuations ℏωc, the system remains in the quantum crit-
ical regime even at finite temperature. For ℏωc ≪ kBT the order parameter fluctuations can be
treated classically. The presence or absence of quantum critical behavior at finite temperature
depends on whether or not long-range order can exist in the system at finite temperature.

Absence of long-range order

In cases where the existence of long-range order is incompatible with finite temperature 5 no
real phase transition is observable in an experiment. Instead the interplay between quantum
and thermal fluctuations leads to different regimes that are separated by smooth crossovers.
Universality effects are observable near theQCP in a so-called quantum critical region, the extent
of which is given by the scaling of the correlation length of the order parameter fluctuations: The
systems appears critical with respect to the tuning parameter as long as

kBT > ℏωc ∝ |r − rc|νz (5.8)
5. Consider for instance magnets in two dimensions with SU(2) symmetry, where the Mermin-Wagnertheorem rules out long-range order at finite temperature in the thermodynamic limit.



5.1. SECOND ORDER PHASE TRANSITIONS 149
Within this region, the behavior of the system is set by the thermal excitations of the quantum

critical ground state, which possesses an excitation spectrumwithout conventional quasiparticle-
like excitations. This bestows the quantum critical region with unusual finite-temperature prop-
erties. While the range of values for the external parameter r that correspond to the critical
regime actually increases with temperature, the response in amplitude of the system to any ex-
citation may become weaker as temperature increases, generally making the quantum critical
effects more difficult to observe.
To either side of the critical region, the system is in a disordered phase for finite temperature,
explaining the lack of a true observable phase transition. The causes for the disorder differ be-
tween the different sides of the phase transition: While for r > rc the disorder is brought about
by the quantum fluctuations as would be the case at zero temperature, with the corresponding
excitation gap leading to a finite temperature state that closely resembles the quantum disor-
dered ground state, the disorder is caused by thermal fluctuations in the opposite case. It is in
this region that the presence of any finite temperature has a drastic effect on the system, im-
mediately bringing in out of the ordered phase as soon as T > 0. At high temperature thermal
fluctuations drown out any quantum fluctuations as soon as kBT > ℏωc. A schema of the phase
diagram corresponding to a system without long-range order at finite temperature is given in
figure 5.1 (a).

Presence of long-range order

If, on the other hand, long-range order can exist in the system at finite temperature, addi-
tional features appear in the phase diagram, with an ordered phase now surviving the onset of
finite temperature fluctuations for values of r below rc. This implies that a real phase transition
can be observed despite the transition being quantum in nature. As outlined above, the fact that
this phase transition occurs at finite temperature implies its classical nature, with the QCP rep-
resenting a zero-temperature endpoint to a line of finite-temperature transitions. This situation
is depicted in figure 5.1 (b).

Since in classical systems statics and dynamics decouple while remaining always coupled in
quantum systems, and time scales like a length to the power z according to (5.6), a quantum
phase transition in d dimensions can be related to a classical phase transition in (d+ z) space di-
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Figure 5.1 – Schematic phase diagrams for continuous quantum phase transitions, tem-
perature as a function of the parameter driving the transition. (a) No long-range order canexist at finite temperature. The only ordered phase exists at T = 0. (b) Long-range order can ex-ist at finite temperature. There is an ordered phase above T = 0 and below the classical criticalline separating it from the thermally disordered phase. In both cases the condition for observingquantum criticality at finite temperature is given by (5.8). Taken from [204].

mensions. Thus, approaching a finite temperature phase transition for a quantum system turns
out to be equivalent to a dimensional crossover with the temperature of the quantum prob-
lem mapping onto the inverse length of the imaginary time dimension. Static phase transitions
are the ones amenable to study with usual statistical physics methods, such as locating non-
analyticities in the free-energy density (or in a different relevant thermodynamic potential). In
the static case the various phases identified by different behavior of the order parameter are
thus equilibrium phases.

5.1.3 . Finite-size scaling

For continuous phase transitions, the non-analiticity of the ground state properties of the sys-
tem is of higher order than the level crossing associated to first-order transitions and involves an
infinite number of many-body eigenstates. Consequently, this type of transition is rounded into
a crossover for any finite-size system, with sharp features associated to the collective transition
phenomenon only appearing in the thermodynamic limit defined as

N → ∞, V → ∞, v =
V

N
= const. (5.9)
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The fact that sharp phase transitions only occur in the presence of an infinity in the system

(usually in the system size) is sometimes referred to as an "extended singularity theorem". Mean
field theories do no respect this theorem, but renormalization theories do.
The reason behind this theorem lies in the association of phase transitions to the divergence of
some derivative of the free energy (or other thermodynamic potential) at the critical value of the
control parameter. Any thermodynamic potential is derived from the partition function, which
is a sum of positive terms and as such an analytic function of the parameters in a system with a
finite number of degrees of freedom, implying that none of its derivatives can diverge. Thus it is
only in the case of the thermodynamic limit where the number of degrees of freedom diverges
that a phase transition can occur.
The finite size induces a smoothing of the singularity at the critical point across a parameter
space region where ξ ∼ L. Despite the absence of sharp features and divergences in finite size
systems, there is a scaling region characterized by ξ ≫ L where peaks form close to where the
divergencies would occur in the thermodynamic limit. With increasing system size these peaks
become higher and narrower, and their position shifts towards the critical point. This behavior
is illustrated in figure 5.2. The way that these peaks behave as a function of the system size is
described by finite scaling exponents [205] that relate the value of a physical observable AL(t) in
a systemof sizeL to its value in the thermodynamic limitA∞(t), which allows for the extraction of
the values of the critical exponents. According to the finite scaling hypothesis, close to the critical
point the thermodynamic quantities depend only on the ratio ξ/L of the correlations length to
the system size, with the microscopic length scale related to the range of interactions dropping
out of the problem.

5.1.4 . The role of the order parameter

The physics at the phase transition is described by long-range fluctuations of the order pa-
rameter. The symmetry properties of the order parameter determine the universality class and
the existence of low-energymodes. As outlined above, the average value of the order parameter
serves to distinguish the phases on either side of the phase transition, with the quantum disor-
dered phase exhibiting a value of zero. Since the order parameter is a thermodynamic quantity,
it can fluctuate on both sides of the phase transition, only its thermal average is zero in the disor-
dered phase. Near the critical point, the behavior of the order parameter is governed by critical
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Figure 5.2 – Finite size scaling. Behavior of a physical observable A in the vicinity of the criticalpoint Tc = 1 as a function of temperature T for different system sizes L. As L increases, theposition and shape of the peak is shifted towards the divergence situation found for L → ∞.Taken from [206].

exponents that determine the power-law scaling of various thermodynamic quantities as a func-
tion of their distance from the transition point. These exponents characterize thus the critical
behavior of the system and determine the universality class of the phase transition. Goldstone
modes are present when the ordered phase breaks a continuous symmetry.

5.1.5 . Spontaneous symmetry breaking and Goldstone modes

Phases beyond straightforward gases or liquids break one or more of the inherent sym-
metry properties adhered to by the microscopic interactions among the constituents that con-
stitute these phases, meaning that the microscopic state possesses a symmetry that the low-
temperature phase does not.
In the case of the paramagnetic transition at zero field, for instance, a specific direction in space
is selected for the net magnetization, even though the Hamiltonian has full rotational symmetry.
This symmetry is thus spontaneously broken and a the system establishes a corresponding long-
range order. The rotational symmetry remains now only in the fact that a simultaneous uniform
rotation of all individual magnetizations costs no energy, with all ordered states being equiva-
lent. By continuity, given the fact that a uniform rotation costs no energy, a rotation that is not
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uniform but has only long wavelength variations (that is, it varies slowly in space) will cost very
little energy. The excitations corresponding to such low energy rotations are called Goldstone
modes, and are present in any system with a spontaneously broken continuous symmetry 6.
Goldstone’s theorem [207] states that the spectrum of excitations contains one massless scalar
particle per generator of a spontaneously broken symmetry, which is referred to as Goldstone
boson and represents long-wavelength fluctuations of the corresponding order parameter. In
crystalline structure for instance, the low energy collective excitations associated to the sponta-
neous breaking of translational and rotational symmetries are phonons.

5.1.6 . The Binder cumulant

One valuable tool often employed to locate the critical point in systems with a continuous
phase transition is the Binder parameter, or fourth-order cumulant [208, 209], which can be
thought of as a variation of the kurtosis of the order parameter for a given system size L. Due
to its scaling dimension being zero, the value of this parameter remains invariant with respect
to the system size when approaching the critical point. Consequently, the Binder parameters
corresponding to various system sizes intersect all at the critical point, which can be identified in
this way. The universality class and critical exponent of the system can be determined from the
value that the Binder parameter takes at the critical point. This principle is usually applied in the
context of spin systems [210], but it is applicable to particle systems as well. Its ease of use and
superior convergence properties have made the Binder parameter a useful alternative to other
dimensionless variables, such as the ratio of the correlation length to the linear system size. The
Binder parameter for an arbitrary order parameter s and for a system of linear size L is defined
as follows:

UL = 1− ⟨s4⟩
3⟨s2⟩2

(5.10)
The order parameter has a mean value of zero in the disordered phase and its higher mo-

ments are given by its Gaussian distribution of variance σL: ⟨s2⟩L = σ2L and ⟨s4⟩L = 3σ4L, which
implies UL = 0. In the ordered phase with a spontaneously broken continuous symmetry, the

6. Discrete symmetries rule out the low energy excitations since you cannot slowly transform one stateinto an equivalent one.
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order parameter has a nonzero mean value. In the thermodynamic limit, its distribution can be
modeled by a delta function, and thus UL = 2/3. Outside the thermodynamic limit 7, UL must
exhibit a crossover from one of these regimes to the other.
Different Binder cumulants UL, UL′ for different system sizes L, L′ have the same asymptotic
values for very large and very small values of the control parameter. Furthermore, for finite-size
systems the value of the Binder cumulant at the critical point is independent of the system size
L [208], which means that all curves for UL, UL′ etc. cross each other in the same point corre-
sponding to the critical point of the phase transition. This allows for the determination of the
critical point from the intersection point of different Binder cumulants, a procedure that has
been successfully employed in the study of numerous continuous phase transitions [211]. In nu-
merical simulations for systems such as the 2D Ising model, the value of the Binder parameter
at the critical point, U∗

L, has been shown to depend sensitively on the boundary conditions.

Figure 5.3 – Binder cumulant analysis for the 2D Ising model. Binder cumulants for differentsystem sizes of a 2D Ising model calculated via a Monte Carlo renormalization group technique.The critical temperature (in the thermodynamic limit) is obtained from their interception. Takenfrom [212].
Figure 5.3 depicts an example of an analysis of the Binder cumulant [212]. UL was calculated

for different system sizes of a 2D Isingmodel calculated via aMonte Carlo renormalization group
7. UL is a discontinuous function of the control parameter in the limit L→ ∞.
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technique. It describes the statistical properties of the order parameter in the system, i.e. the
magnetization M . UL can be seen to depend on the size of the system: For larger systems UL

is larger below Tc and smaller above Tc, and vice versa, implying an inversion of the curves at
the critical temperature. Finite size scaling analysis implies that close to the critical temperature
all Binder cumulants become independent of the system size, so that the curves representing
Binder cumulants of different sizes collapse onto one point. From this interception of different
UL the critical temperature is obtained (in the thermodynamic limit).

5.2 . BEC number fluctuations across BEC transitions

5.2.1 . The superfluid to normal gas transition

The order parameter usually chosen for the treatment of the BEC transition is the wavefunc-
tion of the condensate ψ0. Its modulus square is equal to the number of condensed particles
N0 = |ψ0|2. Studying the number of condensed atoms across this phase transition can thus give
insight into the critical behavior of the associated order parameter. Moreover, since any power
of an order parameter is itself an order parameter,N0 represents an order parameter in its own
right. Being driven by temperature the superfluid to normal gas transition is considered a clas-
sical phase transition.
According to grand-canonical theory [213] the occupation fluctuations of the i-th state are given
by

∆N2
i = Ni(Ni + 1) (5.11)

In a system with a macroscopically occupied ground state, as is the case in BEC, (5.11) leads
to unphysically large fluctuations of the order of the total particle number ∆N0 → N , a phe-
nomenon known as grand-canonical catastrophe [214,215]. Canonical [216] and micro-canonical
[217] descriptions that account for the particle conservation in ultracold atom experiments pre-
dict the leading contributions to the ground state occupation fluctuations to be equal to

∆N2
0 =

(
ζ(2)

ζ(3)
− 3ζ(3)

4ζ(4)

)
N

(
T

Tc

)3 (5.12)
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where ζ(x) is the Riemann zeta function. The second term corresponds to the reduction in
fluctuations in themicro-canonical case. Figure 5.4 dresses a rudimentary picture of the variation
of the BEC number fluctuations towards the phase transition.

Figure 5.4 – BEC number fluctuations across the normal phase transition. The blue line isthe microcanonical prediction of (5.12). The red dashed line corresponds to the grand-canonicalprediction (5.11).

The qualitative picture dressed by fig. 5.4 serves the purpose of illustrating the expected be-
havior of the condensate fluctuations on both sides of the phase transition: Starting at T = 0

and increasing the temperature, the fluctuations gradually rise according to theMCE description
(5.12). At the critical point there is a sharp drop indicated by the GCE description (5.11) and the
fluctuations are expected to vanish in the absence of a condensate.
Beyond this primitive picture, the exact form of the condensate number fluctuations is still topic
of theoretical debate. In the weakly-interacting case calculations in the MCE induce a suppres-
sion of the predicted peak fluctuations compared to the CE, while the weak interactions shift
their position away from Tc [218]. In the strongly-interacting limit exact calculations are more
complex still, as outlined below in the context of the Mott insulator transition.

From fig. 5.4 it is clear that the peak fluctuations ∆N2
0 expected at the transition should ap-

proximately be of the order of magnitude of the total atom number, with the standard deviation
of the BEC atom number on the order of √N . Observing such small fluctuations represents a
considerable challenge for a typical quantum gas experiment that is subject to inherent tech-
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nical shot-to-shot fluctuations of the total atom number on the order of ∼ ⟨N⟩ (for the Helium
Lattice experiment ∆N/⟨N⟩ ≃ 15% before post-selection.) The only apparatus to ever realize
such observations employs an active feedback control during the experimental cycle via non-
destructive Faraday imaging [219] to achieve an astonishing stability of the total atom number
of ∆N/⟨N⟩ < 0.1%, i.e. below the shot-noise limit. This unique approach has enabled the ob-
servation of BEC number fluctuations in the weakly-interacting regime as Tc is approached from
below, with a sharp drop after crossing the critical temperature [33]. Themain result of this work
is reproduced below.

Figure 5.5 – Condensate number fluctuations across the condensation transition observed
by Kristensen et al. [33]. The blue points correspond to the experimentally observed varianceof N0 for a total atom number of ⟨N⟩ ∼ 5× 105. The dark grey shaded area represents an offsetdue to technical fluctuations. The dashed line is a fit to the experimental data using a noninter-acting model and the light blue shaded area corresponds to an exact theoretical calculation fora noninteracting gas.

The experimental observation of Kristensen et al. shown in fig. 5.5 confirms the initial intu-
ition conveyed by the simplistic analysis of fig. 5.4, with peak fluctuations of the order of the total
atom number. It also shows the above-mentioned shift towards smaller temperatures induced
by the weak interactions in the system. In a subsequent experiment these fluctuations were re-
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vealed to be of microcanonical rather than canonical nature [34].

As outlined in the first part of this chapter, ψ0 acquires a randombut definite phase upon con-
densation, constituting a spontaneous breaking of a continuous symmetry, with the randomness
being due to the lack of a phase stabilization force in the system. The thermal fluctuations of the
ensuing Goldstone mode that drive the superfluid to normal gas transition shown in fig. 5.5 are
predicted to scale anomalously with the size of the system, with the scaling exponent in the ther-
modynamic limit of ∆N2

0 /N ∝ Nγ where γ = 1/3 [220–222]. In the subsequent experiment [34]
such an anomalous scaling was in fact observed, with a scaling exponent of γ = 0.134(5). As out-
lined below, however, despite the fact that this scaling is predicted to conserve its anomalous
character for an arbitrary range of interactions (at least in homogeneous systems) [222], such
an anomalous scaling is not expected in the case of the Mott insulator transition, which is not
driven by Goldstone mode fluctuations.

The findings [33, 34] represent the only observation of BEC atom number fluctuations and
pertain to a classical phase transition driven by temperature. However, increasing the temper-
ature in a weakly-interacting system is not the only means by which one can decrease the pop-
ulation of the BEC mode, even though the number statistics of the condensate occupation in
systems where interactions are prominent remain largely unknown. Investigating these num-
ber fluctuations in the context of an interaction driven BEC transition can shed light on the deli-
cate balance between quantum coherence and many-body correlations. The lack of theoretical
models capable of predicting these fluctuations beyond the weakly-interacting limit poses a sig-
nificant challenge in unraveling the complex behavior of these systems. Thus, the goal of this
analysis is to investigate the BEC number fluctuations in the context of a quantum phase transi-
tion, i.e. the superfluid to Mott insulator transition.

5.2.2 . The superfluid to Mott insulator transition

As outlined in chapter 2, the 3D Bose-Hubbard model exhibits a quantum phase transition
from a superfluid to a Mott insulator as a result of the competition between the two energy
terms in the Hamiltonian ĤBH associated to on-site interaction U and tunnel-coupling J . This
phase transition belongs to the 3D XY universality class [95], a class of phase transitions charac-
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terized by the presence of short-range interactions, O(2) symmetry and a two-component order
parameter (in this case the condensate wave function with its phase and amplitude). According
to (5.7) the energy scale associated to the long-wavelength order parameter fluctuations goes
to 0 upon approaching the transition. In the case of the superfluid to Mott insulator transition
this leads to the transformation of the excitation spectrum of ĤBH from the gapless Bogoliubov
excitations spectrum in the superfluid phase to a gapped particle-hole excitation spectrum in
the Mott insulating phase.

On-site number fluctuations

When talking about number fluctuations in the case of this transition, there can arise a slight
ambiguity with regards to the state whose occupation is fluctuating: On the one hand there is the
occupation of the single-particle ground state N0, which is linked to the order parameter ψ0 by
modulus square. Fluctuations of this quantity diverge at the critical point in the grand-canonical
ensemble. On the other hand one can talk about on-site fluctuations of the atom number, which
are large in the superfluid regime because of the long-wavelength coherence of the condensate
wavefunction, but go to zero at the transition when the atom number becomes pinned to an
integer on each lattice site.

Thewell defined phase on each lattice site implies that the onsite particle number is quantum
mechanically uncertain in the case of the superfluid, as it corresponds to a superposition of
different numbers. Measuring the onsite occupation thus yields random numbers according
to a Poisson distribution. Increasing the interactions narrows the number distribution, which
results in a fixed atom number on each site deep in the Mott insulating regime.

BEC occupation fluctuations

No theoretical prediction of the condensate occupation fluctuations exists across the super-
fluid toMott insulator phase transition. However, theoretical investigations of these fluctuations
at zero temperature where only quantum fluctuations contribute to ∆N2

0 show an increase of
the fluctuations with U/J , as shown in figure 5.7.

The zero-temperature BEC occupation fluctuations have been predicted by Zwerger [222]:
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Figure 5.6 – Onsite number fluctuation across the superfluid toMott insulator phase tran-
sition. Contrary to the condensate number fluctuations N0, the onsite fluctuations vanish uponapproaching the phase transition but remain large in the superfluid region due to the long-wavelength coherence of the condensate wavefunction. Taken from [223].

Figure 5.7 – Theoretical predictions of T = 0 BEC fluctuations as a function of U/J . Theblue line is a prediction of (5.19) and the orange line a prediction of (5.20). The zero-temperaturecondensate density n0 contains itself a dependence on U/J .

⟨∆N̂2
0 ⟩|T=0 ≃ 2

(
n0(T = 0)

n

)2 (mc
2ℏ

)2 1

2π2
ΛV (5.13)
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where n0(T = 0) is the condensate density at zero temperature and Λ is the momentum

cutoff; and by Giogini et al. [220]:

⟨δN̂2
0 ⟩|T=0 = 2

√
π(an0)

3/2V (5.14)
Both (5.13) and (5.14) can be applied to the Helium experiment in a rather primitive, ad-hoc

approach by replacingm is with the effective massm∗:

m∗ =
ℏ2

2Jd2latt
(5.15)

where J is the tunnel coupling and dlatt = 1550/2 nm is the lattice spacing; and c with the
sound velocity in the lattice:

c =
1√
κm∗

(5.16)
with the compressibility given by

κ =
1

Un0
(5.17)

where U is the onsite interaction and n0 is the zero-temperature condensate density, as-
sumed to vary according to the critical scaling law:

n0 ∝
(
1− U/J

(U/J)c

)2β (5.18)
where β = 0.3485 for the 3D XY universality class and (U/J)c = 25.2(8) for the considered

datasets (see below). A quantitative agreement certainly not be expected, therefore the variation
of the fluctuations is evaluated in arbitrary units (normalized to its maximum). Expressing only
the dependence of the parameters on U/J , the ground state occupation fluctuations of (5.13)
behave thus according to

⟨δN̂2
0 ⟩|T=0 ∝ (n0m

∗c)2 ∝ U

J
n30 (5.19)

and those of (5.14) scale as
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⟨δN̂2
0 ⟩|T=0 = 2

√
π(an0)

3/2V ∝ (Um∗n0)
3/2 ∝

(
U

J
n0

)3/2 (5.20)
While by no means indicative of any physics associated to the Mott transition, these two

generic formulas still indicate a rise of quantum fluctuations with increasing interactions, until
the condensate density becomes too small upon approaching the transition. The question thus
arises whether a similar observation of an increase of the condensate fluctuations towards the
phase transition followed by a sharp drop can be made as those shown in fig. 5.5. The remain-
der of this chapter is dedicated to answering this question.

It is emphasized once again at this point that the Helium Lattice experiment, like any exper-
iment, naturally does not create systems in a zero-temperature context. However, the certified
adiabatic loading process into the optical lattice [97] implies that the Bose-Hubbard phase dia-
gram can be traversed at constant entropy per particle, with the most significant part of increas-
ing the condensate depletion due to interaction induced quantum fluctuations and not thermal
fluctuations. In such a situation where quantum fluctuations drive the phase transition, the crit-
ical regime is expected to mirror the behavior of the ground state (i.e. at T = 0) even for a finite
temperature in the experiment.

5.3 . Measurement of ∆N2
BEC across the Mott transition

5.3.1 . The measurement volume for condensate number fluctuations

Due to the randomness of on-site particle numbers within a superfluid, the most direct
method of revealing its presence in any experiment is through the utilization of interference.
If a superfluid is released from an optical lattice, the far field corresponds to a perfect matter
wave interference pattern because of Bragg diffraction, similarly to a coherent laser beam being
diffracted on an optical grating. In both cases the far field intensity distribution is a diffraction
pattern with a peak separation that corresponds to the inverse spacing of the diffracting ele-
ment.
Due to the finite size of theMCP detector in relation to the long time-of-flight, some of the diffrac-
tion peaks of lattice superfluids fall outside detector even for the first order at±kd. Thus it is not
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possible to account for all condensed atoms from the trap by counting the atoms in all diffrac-
tion peaks. We therefore restrain our measurement volume to the FBZ.N0 represents therefore
not the total number of condensed atoms, but only the atoms in the 0-th order diffraction peak
measured in a cube of size 0.3 kd centered on the origin of momentum space. The different
measurement volumes are depicted in figure 5.8.

Figure 5.8 – Measurement volume for condensate fluctuations. Same 3Dmomentum distri-bution as shown in fig. 3.2, with the different measurement volumes highlighted. The BEC atomnumber is evaluated by counting the atoms in the 0-th order diffraction peak in a cube of size
0.3 kd (red). It is set into relation with the condensed fraction not via comparison with the totalatom number, but the atom number in the FBZ only (green).

The crystalline symmetry of the lattice suggests a strong correlation between quantitiesmea-
sured in the FBZ and their equivalents on a system-wide scale. However, a strict equivalence
between the two cannot simply be taken as a given. The amplitude of the density in the higher
order diffraction peaks is dictated by the envelope of the modulus square of the Fourier trans-
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formed Wannier functions: N(k) ∝ |w̃(k)|2, where the Wannier functions on each lattice site are
given by

wn,j(x) =

√
d

2π

∫
FBZ

dqψn,q(x)e
−ijqd (5.21)

where j ∈ Z corresponds to the index of the lattice site and n = 0 (omitted hereafter) to the
index of the lowest lattice band in the tight-binding limit. The Fourier-transformedWannier func-
tions are denoted w̃(k). In a 3D cubic lattice they factorize, so the atom number in momentum
space is related to

N(k) ∼ |w̃(k)|2 = |w̃(kx)|2 × |w̃(ky)|2 × |w̃(kz)|2 (5.22)
The other condensed atoms NBEC −N0 are dispersed over the diffraction peaks of order > 1:

NBEC ∼
∑′

k
|w̃(k)|2, where the sum runs over all diffraction peaks including the 0th order. For

instance, for the second-order diffraction peak atk/kd = (1,−1, 0): |w̃(k)|2 = |w̃(kd)|2×|w̃(−kd)|2×

|w̃(0)|2 = |w̃(kd)|4 with the normalization of the Wannier functions to 1 at the origin. To calculate
NBEC for a specific diffraction order n ∈ Z, the sum runs over all Miller indices k/kd = (h, k, l)

such that |h|+ |k|+ |l| = n.
Based on these considerations, the quantitiesmeasured in the FBZ can be approximately related
to system-wide measurements of the equivalent quantities, with the result shown in figure 5.9.

From fig. 5.9 it is clear that quantities measured in the FBZ and their counterparts on a
system-wide scale do not differ by an order of magnitude, but rather by a factor ∼ 3 − 4. Such
a corrective factor could thus be applied to all experimentally measured quantities within the
FBZ 8; however for the purposes of this analysis the choice was made to simply present the raw
data, with the relation to the usual quantities given by fig. 5.9. Thus, for the remainder of this
chapter, the occupation of the k = 0mode N0 will take the role of the total condensate occupa-
tionNBEC, and the occupation of the FBZNFBZ that of the total atom numberN . The equivalent

8. This calculation is based on assumptions that are strictly-speaking only fulfilled on the Mott insu-lating side of the phase transition, i.e. a homogeneous repartition of the atoms throughout momentumspace. On the superfluid side, however, most of the density is concentrated along the lattice axes them-selves, therefore one should use caution in applying the same quantitative factor of three throughout. Amore thorough comparison may be amenable via a direct 3D fit to QMC simulations of the momentumdensity using the experimental parameters.
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Figure 5.9 – Comparison between quantities measured in the FBZ and on the scale of the
entire system. On account of the enlarging of the Fourier transforms of the Wannier functionswith U/J the discrepancy grows with increasing interactions, but overall remains of the order ofabout a factor of three. See footnote in the main text for a caveat when applying the factor ofthree to measurements on the superfluid side of the phase diagram.

BEC number fluctuations normalized to the total atom number are thus throughout∆N2
0 /NFBZ.

An alternative to circumvent the finite size issue of the detector (and increase the statistics
of the measured atom number) would reside in the use of bandmapping in order to have all the
atoms fall onto the detector. However, after the results presented in the previous two chapters,
the current investigation is the third one based upon the same datasets spanning the Bose-
Hubabrd phase diagram, and one that these datasets were not initially set out to support. Since
the drawback by limiting themeasurement volume to the FBZ is not prohibitive for the purposes
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of this analysis, this reason alone does not constitute sufficient ground for employing bandmap-
ping and acquiring an entirely new series of datasets.

5.3.2 . Post-selection and noise modeling

Selection of datasets and determination of the critical point

To investigate the fluctuations of the condensate atom number across the phase transition,
ensembles of N = 5000 atoms are prepared at various values 9 of the Bose-Hubbard parameter
U/J = u. Taking data close to the Mott transition represents an increased experimental chal-
lenge, since the system is considerablymore susceptible to small perturbations such as a slightly
suboptimally aligned optical lattice that induces a small amount of heating due to photon scat-
tering or cloudmovement while loading if misalignedwith respect to theODT. As a consequence,
multiple datasets 10 have been acquired for many values of U/J . The choice between different
datasets taken at the same value ofU/J but possibly with slightly different temperatures ismade
by following an approach established in [140] that consists in analyzing the density ρ0 of the k = 0

mode with respect to the expected critical scaling behavior for the 3D XY universality class:

ρ0(u) = ρu=0
0 |1− u/uc|2β (5.23)

where ρu=0
0 and uc are fit parameters and β = 0.3485 [95]. The density is probed in a small

volume of size Vk = (kd/30)
3. The result of this analysis carried out for the retained datasets is

shown in figure 5.10.
From the analysis of fig. 5.10 the critical point and its uncertainty from the critical scaling fit

are determined as uc = 25.4(9), which is in agreement 11 with the value observed in [140]. Going
forward the critical regime is indicated on the all plots of atom number fluctuations to facilitate
situating the fluctuations with respect to the phase transition.

9. Most of these datasets are the same as the ones presented in the previous two chapters.10. See for instance p. 136 of [53].11. Note that the error bars in fig. 5.10 are larger than the ones shown in [140] where they were normal-ized by the square root of the number of shots.
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Figure 5.10 – Density of the zero momentum mode. ρ0 measured in a volume of size Vk =
(kd/30)

3 for the datasets used in this analysis. Vertical error bars are one standard deviationon ρ0. Horizontal error bars correspond to average uncertainties on the fit in the parametricheating calibration of the lattice depth shown in fig. 2.8. The grey shaded area represents thecritical value uc of the Mott transition and its uncertainty as identified from the fitted dashed lineusing the critical scaling exponent for the 3D XY universality class.

Post-selection of experimental stability

To observe the order parameter fluctuations above the inherent technical background fluc-
tuations present in any quantum gas experiment, a post-selection technique is employed based
on the relatively precisely known atom number. This ensures the necessary experimental sta-
bility for the observation of atom number fluctuations in the condensate of the interacting Bose
gas.

The post-selection procedure for a typical dataset is detailed in figure 5.11.
As evidenced by fig. 5.11, the precise knowledge of the detected atom number allows to re-

duce the relative shot-to-shot fluctuations of the total atom number in the experiment, from an
initial value of about∆NFBZ/⟨NFBZ⟩ ≃ 15% down to only∆NFBZ/⟨NFBZ⟩ = 3.5%. The trade-off to
be made is in terms of the number of shots available for the analysis, which incurs a drop from
the original 2953 down to only 499 shots. Even though trading stability for statistics is certainly
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Figure 5.11 – Post-selection procedure. Total detected atom number as a function of repeti-tions of the experiment. Before post-selection typical technical shot-to-shot fluctuations in theexperiment amount to approximately ∆NFBZ/⟨NFBZ⟩ ≃ 15%. The precision of single-atom de-tection allows to reduce the technical fluctuations in the experiment in post-selection down tolow levels. By selecting only the red dots, the fluctuations are reduced down to∆NFBZ/⟨NFBZ⟩ =
3.5%, at the cost of retaining only 499 out of the original 2953 shots.
not an ideal situation, a balance can be found between the two that is in large part set by the
fluctuations associated to the single particle detection, which limit the lower end of the range of
the relative stability available in post-selection, as is outlined in the following.

Modeling the experimental noise fluctuations

In order to allow for an unambiguous separation of the order parameter fluctuations from
other technical sources of fluctuations in the experiment, the latter have to be modeled and un-
derstood precisely. The twomain contributions of technical noise fluctuations in the experiment
are shot-to-shot variations of the total atom number and fluctuations associated to the detec-
tion of single particles with a finite quantum efficiency detector 12.
12. Saturation effects of the detector are neglected here, as are fluctuations in the total measured atomnumber due to a combination of the finite detector size and small center of mass fluctuations of thetrapped cloud.
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In the following a model is constructed to predict the experimental noise fluctuations that con-
tribute within the measurement volume around the k = 0mode from averaged measurements
of the total atom number in the measurement volume around the k = 0 mode and the FBZ.
Being determined by average measured values only implies that the experimental noise model
predictions can be calculated from experimental data without being sensitive to the order pa-
rameter fluctuations, allowing thus to tell the two types of fluctuations apart.

The quantum efficiency of the MCP detector is equal to η = 0.53(2). Being for all intents and
purposes a stochastic process, the detection mechanism introduces fluctuations that cannot
easily be separated from those present in the trapped system. They aremodeledwith a binomial
distribution with a success probability per trial equal to p = η and the number of trials given by
the in-trap atom number n = N trap. On average their effect is naturally nothing more than to
rescale the mean in-trap atom number by the quantum efficiency:

⟨Nmeas⟩ = η⟨N trap⟩ (5.24)
Since the binomial probability distribution resulting from the detection is conditioned by the

fluctuations of the total atom number in the trap (about which no assumptions are made in
terms of probability distribution), the resulting variance is given by the law of total variance (see
eq. (A.1) of appendix A):

(∆Nmeas)2 = ⟨(∆(Nmeas|N trap))2⟩+ (∆(⟨Nmeas|N trap⟩))2 (5.25a)
= ⟨η(1− η)N trap⟩+ (∆(ηN trap))2 (5.25b)
= η(1− η)⟨N trap⟩+ η2(∆N trap)2

= (1− η)⟨Nmeas⟩+ η2(∆N trap)2 (5.25c)

From a mathematical point of view, employing a post-selection procedure on Nmeas invali-
dates the use of the law of total variance in going from (5.25a) to (5.25b) since the contributions
of the fluctuations due to the detection cannot be disentangled from those occurring already
in the trap, so that after post-selection Nmeas is not strictly conditioned by N trap anymore. This
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issue becomes relevant in the limit of a very strict post-selection that starts to cut into the width
of the binomial distribution of the detection, as will be discussed further below. In the absence
of a more complete model, this consideration is put aside for the time being, and the result of
the post-selection on the measured FBZ atom number is simply given by the number resulting
from normalizing the standard deviation after post-selecting 13:

NPS ≡
∆Nmeas

FBZ

⟨Nmeas
FBZ ⟩

(5.26)
(5.25c) can then be used to express the variance of the measured FBZ atom number:

(∆Nmeas
FBZ )2 = (1− η)⟨Nmeas

FBZ ⟩+ η2(∆N trap
FBZ)

2 (5.27a)
= N 2

PS⟨Nmeas
FBZ ⟩2 (5.27b)

where the last line is simply the defition (5.26). (5.27a) and (5.27a) can be used to express the
variance of the total in-trap FBZ atom number:

(∆N trap
FBZ)

2 = η−2
[
N 2

PS⟨Nmeas
FBZ ⟩2 − (1− η)⟨Nmeas

FBZ ⟩
] (5.28)

The variance of themeasured BEC atom number 14, on the other hand, can also be expressed
via the law of total variance (5.25c):

(∆Nmeas
0 )2 = (1− η)⟨Nmeas

0 ⟩+ η2(∆N trap
0 )2 (5.29)

The shot-to-shot fluctuations of the in-trap atom number can be assumed to simply rescale
the entire in-trap distribution homogeneously, such that

∆N trap
FBZ

⟨N trap
FBZ⟩

=
∆N trap

0

⟨N trap
0 ⟩

(5.30)
which implies for the variance of the in-trap BEC atom number:

13. No new notation is introduced here to differentiate the atom atom number before and after post-selection in order to avoid rendering the notation heavier than it already is.14. The order parameter fluctuations are naturally not considered in the derivation of the experimentalnoise model.
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(∆N trap
0 )2 =

(∆N trap
FBZ)

2

⟨N trap
FBZ⟩2

⟨N trap
0 ⟩2 (5.31)

Finally, (5.29) can be fully expressed in terms of average measured quantities only with the
use of (5.31) and (5.28):

(∆Nmeas
0 )2 = (1− η)⟨Nmeas

0 ⟩+ η2
(∆N trap

FBZ)
2

⟨N trap
FBZ⟩2

⟨N trap
0 ⟩2

= (1− η)⟨Nmeas
0 ⟩+

(∆N trap
FBZ)

2

⟨N trap
FBZ⟩2

⟨Nmeas
0 ⟩2

= (1− η)⟨Nmeas
0 ⟩+ ⟨Nmeas

0 ⟩2
N 2

PS⟨Nmeas
FBZ ⟩2 − (1− η)⟨Nmeas

FBZ ⟩
⟨Nmeas

FBZ ⟩2

= (1− η)⟨Nmeas
0 ⟩+ ⟨Nmeas

0 ⟩2
[
N 2

PS −
1− η

⟨Nmeas
FBZ ⟩

]
(5.32)

Equation (5.32) allows to predict the contribution of experimental noise fluctuations to the
total fluctuations measured in the measurement volume around the k = 0mode.
Note that (5.28) states an implicit lower bound for the post-selection procedure: Since ∆N trap

FBZ

cannot be negative, the minimal relative fluctuations that can be set on the measured FBZ atom
number in post-selection are given by:

NPS,min =

√
1− η

⟨Nmeas
FBZ ⟩

(5.33)
Since ⟨Nmeas

FBZ ⟩ varies slightly between different datasets, so doesNPS,min. Themeanmeasured
FBZ atom number averaged over all datasets for all values of U/J is ⟨Nmeas

FBZ ⟩ ≃ 450, which corre-
sponds to a maximum relative stability of NPS,min ≃ 3.2%. However, in order to be able to use
the same value for all datasets, the minimum value is chosen, min(⟨Nmeas

FBZ ⟩) ≃ 380, which gives a
slightly higher post-selection bound of

NPS,min ≃ 3.5% (5.34)
The predictions of the experimental noise model (5.32) are plotted in figure 5.12. In order to

alleviate the notations, the superscript meas is dropped from here on and only measured quanti-
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ties are shown.

Figure 5.12 – Modeled experimental noise fluctuations. The fluctuations associated to thetotal experimental noise as resulting from (5.32) are calculated from average experimental val-ues for various values of relative stability NPS set in post-selection. Shaded areas represent
2σ-uncertainties on average experimental values. The red curve is given by (5.34). The bottompanel shows the variation of ⟨NFBZ⟩ with U/J without any post-selection.

Fig. 5.12 shows that the experimental noise is expected to decrease with U/J , which is not
surprising given the dependence of (5.32) on ⟨N0⟩. The plot of the average occupation of the FBZ
shows a positive correlation between ⟨NFBZ⟩ and∆N2

0 which stems from the minus sign in front
of the corresponding term in (5.32). This effect is more pronounced for large values ofNPS since
for small values the contribution of the ⟨N0⟩2 term vanishes as the relative fluctuations tend to-
wards their lower limit (5.34). The non-monotonous variation of ⟨NFBZ⟩ with U/J thus explains
the similar behavior for the experimental noise fluctuations.

With the experimental noise fluctuations decreasing in amplitude towards the phase transi-
tion onemight be tempted to conclude that as long as the experimentally measured fluctuations
show an increase with U/J similar to fig. 5.5 or 5.7, their identification with the fluctuations of
the order parameter might be a foregone conclusion. However, in order to attribute observed
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fluctuations to any other source than the experimental noise, the model (5.32) needs validating
in a regime where these technical fluctuations are expected to dominate, i.e. far from the phase
transition at low values of U/J and for large relative fluctuations NPS.

5.3.3 . Measurement of order parameter fluctuations

From the experimental data the first twomoments of the atomnumber of thek = 0mode are
extracted, i.e. its average ⟨N0⟩ and its variance∆N0. The observed fluctuations of the condensate
occupation for the same datasets across the superfluid to Mott insulator phase transition are
plotted in figure 5.13 alongside the prediction for the experimental noise (5.32) for the lowest
level of shot-to-shot fluctuations obtainable in post-selection 15.

Fig. 5.13 shows an increase in the BEC number fluctuations with increasing interactions to-
wards the superfluid to Mott insulator phase transition, starting out at a value corresponding
to the offset due to experimental noise (5.32) and rising to a factor on the order of magnitude
of the FBZ atom number. Just before the critical regime of the phase transition there is a sud-
den drop in the fluctuations and they slowly decrease towards the offset of experimental noise
as interactions are further increased in the Mott insulating phase. The peak amplitude of the
fluctuations is equal to max(∆N2

0 ) = 2.2(1)⟨NFBZ⟩. Following the considerations of fig. 5.9 this
translates to the equivalent system-wide quantities max(∆N2

BEC) = 0.7(1)⟨Ntot⟩ or from (5.25c)
in terms of in-trap quantities:

max(∆(N trap
BEC)

2) = 1.0(1)⟨N trap
tot ⟩ (5.35)

In order to attribute the observed number fluctuations to those of the order parameter at
the phase transition, the experimental noise model (5.32) has to be validated in a range of pa-
15. It should be noted that the the model of experimental noise (5.32) is not expected to yield quanti-tatively reliable results as soon as the relative fluctuations NPS start to test the limit of their lower bound(5.34). As explained above, the process of post-selection invalidates the assumption underlying the use ofthe law of total variance. For large values ofNPS this should not constitute a significant violation since thepost-selection does not significantly alter the in-trap distribution. However, when NPS is close to NPS,minthis is no longer the case. In the extreme case of a perfectly stable in-trap distribution the fluctuationsresulting from the detection process would still have finite variance, implying that the accuracy of thepost-selection is intrinsically limited to the width of the binomial distribution associated to the detectionprocess. For this reason the experimental model predictions are shown with a 2σ incertitude since thestandard error alone calculated on (5.32) with the standard deviations of experimental average valuesdoubtlessly overestimates the precision of the model.
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Figure 5.13 – Experimental observation of fluctuations of the condensate occupation
across the superfluid toMott insulator transition. The circles are the second ordermomentsof the BEC atom number distribution extracted from experimental data. Vertical error bars cor-respond to the standard error of variance (A.3). Horizontal error bars are the same as in fig.5.10. The line is the prediction from the experimental noise model (5.32) with its shaded arearepresenting 2σ-uncertainties on average experimental values. All quantities are evaluated fora post-selection of experimental shots corresponding to the lower limit of the allowed range ofrelative fluctuations (5.34).

rameters where its contributions are known to dominate. Intuitively it is clear that increasing the
relative fluctuations NPS increases the role of shot-to-shot fluctuations. The same analysis as in
fig. 5.13 is thus repeated for higher values of NPS, with the results shown in figure 5.14.

Fig. 5.14 shows a satisfactory agreement between the experimental model prediction (5.32)
and the second order moments of the BEC atom number distribution in the superfluid regime
15 < U/J . In this regime experimental noise fluctuations are large due to the significant con-
tribution of the ⟨N0⟩ dependency of (5.32). For any given value of relative fluctuations NPS, the
experimentallymeasured fluctuations are found to decreasewithU/J as predicted by themodel.
Furthermore, for values of U/J up to 20, the fluctuations increase as a function of NPS and are
clearly separated, confirming the added contribution of additional shot-to-shot fluctuations in-
cluded by enlarging the post-selection range of NPS.
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Figure 5.14 – Fluctuations of the condensate occupation across the Mott transition for
higher levels of experimental noise. The circles are the second order moments of the BECatom number distribution extracted from experimental data. Vertical error bars correspond tothe standard error of variance (A.3). Horizontal error bars are the same as in fig. 5.10. The linesare the prediction from the experimental noisemodel (5.32) with their shaded area representing
2σ-uncertainties on average experimental values. All quantities of a given color are evaluatedfor a given value of relative overall fluctuations established in the post-selection of experimentalshots.

Towards the phase transition (U/J ≥ 20), however, the behavior is radically different: The various
curves of experimental noise decrease considerably due to the decrease in ⟨N0⟩ brought about
by a continuing depletion of the condensate. The experimentallymeasured fluctuations collapse
on top of each other for different values of NPS, indicating that in this regime the experimental
fluctuations that can be influenced by post-selection cease to play a significant role in the overall
fluctuations ofN0. For low values ofNPS this region is accompanied by a rise in the amplitude of
the fluctuations, while for large values the initial amplitude deep in the superfluid is so significant
that no discernible peak can be made out from the overall tendency of the experimental data
points. This highlights the crucial role of the post-selection in being able to reduce experimental
noise fluctuations sufficiently to be able to make out a fluctuation peak towards the transition,
as is evident in the data for the smallest values ofNPS. The collapse of the different series ofNPS
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on top of each other implies that the peak amplitudes at U/J = 24 are all compatible with each
other within error bars.
The transition itself is marked by a sharp drop in fluctuations for all post-selection regimes, or
inversely by a sharp onset of fluctuations coming from the Mott insulating side and crossing the
BEC transition.
After the transition, finally, the different series continue their joint evolution, as the region of
momentum space in which the fluctuations are measured is now sufficiently sparsely populated
for experimental noise fluctuations to fade away in amplitude. As shown in fig. 2.7, the inho-
mogeneous nature of the experimental system implies a wedding cake structure in the trap, so
that some superfluid shells survive the initial onset of the transition in the region of uc. Conse-
quently, the experimentally observed fluctuations do not recede all the way into the background
of experimental noise immediately after the transition, but take until U/J = 35 to be entirely ab-
sorbed by them, indicating the disappearance of the final superfluid constituents in the trap.

The combination of the observation of enhanced fluctuations towards the phase transition
and at the same time the quantitative agreement with the experimental noise model that arises
jointly from figures 5.13 and 5.14 suggests that the observed fluctuations in the second order
moment visible in fig. 5.13 may indeed be associated with fluctuations of the condensate order
parameter in the context of a continuous phase transition. The formof the observed fluctuations
is qualitatively similar to the observations made in the context of the normal gas condensation
transition [33,34], as is the peak amplitude when converted into units of in-trap quantities mea-
sured on the scale of the entire system.

The size of the measurement volume was introduced in the context of fig. 5.8 with little
more justification than being slightly larger than the size occupied by the k = 0 diffraction peak
in momentum space so as to not cut off any fluctuations. A systematic analysis reveals that the
result of the analysis is not very sensitive to the exact size of the measurement volume. The BEC
occupation fluctuations for different sizes are compared in figure 5.15.

Figure 5.15 shows that the fluctuations for the smallest value of post-selected shot-to-shot
fluctuations shown in fig. 5.13 persist to increase towards the phase transition throughout a
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Figure 5.15 – Fluctuations of the condensate occupation across the Mott transition for
various sizes of the measurement volume. Second order moments of the BEC atom numberdistribution measured inside volumes Vkmax = (2kmax)

3 for all datasets for the lowest value ofpost-selection NPS,min. The size of the measurement volume used for the figures above is Vk =
(0.3kd)

3.

large range of measurement volumes, indicating that the result of the analysis does not de-
pend strongly on this parameter. Intuitively this is not unexpected since increasing the mea-
surement volume slightly above the "true" BEC volume is not likely to recuperate the atoms lost
from the BEC in fluctuations, which are on average more likely to populate higher momentum
states elsewhere in the depletion region from geometric arguments alone. When the size of the
measurement volume is increased so significantly as to encompass the entire FBZ, the value of
the observed fluctuations falls back to the value ofNPS established in post-selection as expected.
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Besides the observed dependence of the BEC number fluctuations on the size of the mea-
surement volume, there is also a physical reason for choosing kmax = 0.15kd: The BEC number
fluctuations are extracted from measurements of ρ(k). The 1/e2 size of the diffraction peaks of
the lattice is σ1/e2 ≃ 0.043kd. Integrating over three times this ranges (≃ 0.13kd) amounts to count-
ing 99% of the atoms in the peaks. To account for center-of-mass fluctuations of the trapped
cloud between shots, kmax is taken to be slightly larger at 0.15kd. Both of these values are indi-
cated in fig. 5.16 where the BEC number fluctuations are averaged for all datasets as a function of
the size of themeasurement volumeaccording to: ∆N2

0 (kmax)/⟨NFBZ⟩ =
∑

U/J ∆N2
0 (U/J ;kmax)/⟨NFBZ⟩nb. of datasets .

Figure 5.16 – Averaged BEC number fluctuations as a function of the size of the measure-
ment volume. Fluctuations of the atom number inside a volume of size Vkmax = (2kmax)

3 aver-aged over all datasets. The red line corresponds to three times the 1/e2 size of the BEC diffrac-tion peak. The green line corresponds to the value of kmax for this analysis and is taken to beslightly larger to account for center of mass fluctuations of the trapped cloud. For large values(kmax → 0.5kd) the average fluctuations reach the level of relative stability NPS established inpost-selection.

Fig. 5.16 confirms that there is a large range of measurement volume sizes 0.06kd < kmax <

0.12kd where the total average BEC fluctuations are maximal and constant. Upon increasing the
measurement volume size further, the fluctuations diminish, until finally saturating at the level
of fluctuations set in post-selection NPS as kmax → 0.5kd.
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Quantum Rotor Calculations

Numerical simulations of the fluctuations of N0 across the Mott transition were performed
by T. Roscilde (ENS Lyon) using the quantum rotor model described in chapter 3. The results for
two different system sizes are shown in fig. 5.17.

Figure 5.17 – Quantum rotor simulation of the condensate number fluctuations across the
Mott transition. The plotted quantity is (∆N trap

BEC)
2/⟨N trap

tot ⟩. The different colors correspond todifferent system sizes, all evaluated for a reduced temperature of T/(2Jn) = 1. Probing differentsystem sizes with the quantum rotor model amounts to probing different atom numbers in theexperiment where the size is fixed. However, quantum rotor calculations rely on a lattice fillingmuch larger than unity that does not correspond to the situation in the experiment. In theseunits the Mott transition occurs at a value of U/(2Jn) ≃ 9. Precisely at the transition point thenormalized fluctuation amplitudes show an increase with L, illustrating the anomalous scalingof the quantum fluctuations at this particular point.
Fig. 5.17 shows that the quantum rotor simulations produce a qualitatively similar behavior of

the condensate number fluctuations across theMott phase transition as the one observed in fig.
5.13, displaying a continuous rise of the fluctuations with interactions followed by a sudden drop
after the phase transition. The plotted quantities are not exactly the same as in the figures show-
ing experimental data; instead they correspond to the quantity (∆N trap

BEC)
2/⟨N trap

tot ⟩ which cannot
directly be accessed in the experiment. Given the estimated conversion between the measured
atom numbers in the FBZ and the in-trap atom numbers on the scale of the entire system, (5.35)
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appears to be in perfect agreement with the simulated peak fluctuation amplitude. However, as
outlined in chapter 3, these models rely on the assumption of a lattice filling considerably larger
than unity, which is different from the average lattice filling in the experiment of approximately
unity. Hence, any observed agreement in fluctuation amplitudes between the measured and
simulated data should be considered coincidental.

Fig. 5.17 seems to indicate that at the point of the phase transition the normalized fluctuation
amplitudes grow with the system size in the superfluid part of the phase diagram. In order to
attempt an experimental observation of such an effect, the fluctuations are analyzed at different
total atom numbers in the following.

5.3.4 . Scaling of the number fluctuations with varying system size

In principle one would like to be able to analyze the behavior of these fluctuations as a func-
tion of the total system size by varying the total particle number in the systemover several orders
of magnitude. However, with this experiment relying on optical lattices to create the periodic po-
tential landscape simulating the Bose-Hubbard Hamiltonian, the Gaussian beam waists induce
an external harmonic trapping potential that renders the system non-homogeneous, which pre-
vents a straightforward analysis by varying the total atom number over large scales. In fact, such
a procedure wouldmodify the critical parameters of the system in non-trivial ways for the differ-
ent atom numbers, since in the experiment the Mott transition is shifted to different values of
U/J depending onwhetherN = 5×103 or 5×105. Therefore, in its current state the experimental
apparatus is not amenable to varying the total atom number over several orders of magnitude
while keeping the realized systems quantitatively comparable.

Moreover, contrary to [34], the BEC transition probed in this experiment is not driven by
thermal fluctuations of Goldstone modes populated by finite temperature, which show anoma-
lous scaling with the total atom number according to ∆N2

0 ∝ N4/3 in the thermodynamic limit
[220–222]. Instead, zero-temperature quantum fluctuations such as the ones driving the Mott
transition exhibit normal scaling with the system size, ∆N2

0 ∝ N [220, 221]. This statement re-
mains true for all situations of very low temperature values probed across the superfluid phase
except exactly at the phase transition, at which point the critical modes (in this case not the Gold-
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stone modes but the Higgs modes) show thermally-induced anomalous scaling, but this single
point constitutes a particular case.

Despite the experimental constraints on the total atom number, there exists the possibility
to make use of post-selection to shift the mean atom number within the limits of remaining
reasonably close to unity filling experiment, which corresponds to less than a factor of about 2
in total variation of N . The model (5.32) established to the experimental noise fluctuations can
equally be used to predict the scaling behavior of the fluctuations for different datasets. This
approach is naturally extremely limited, but is explored nonetheless since the post-selection
route offers a straightforward approach to varying the total atom number on already existing
datasets. The scaling of the amplitude of the fluctuations of the condensate occupation and that
of the experimental noise predictions (5.32) at the lowest limit of post-selection stability NPS,min

are plotted in figure 5.18 for each dataset.

Figure 5.18 – Scaling of the measured fluctuations of the condensate occupation for all
datasets across the BH phase diagram. The colored points are experimental data, the blackpoints are predictions for technical noise according to (5.32). The dashed lines are power law fitsof of amplitude and exponent according to (5.36). Experimental noise fluctuations are set to thelowest value NPS,min. Vertical error bars are the standard error on the variance (A.3). Horizontalerror bars correspond to one standard deviation of NFBZ.
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Figure 5.18 shows first and foremost the differences in amplitudes between the noise model
(5.32) and the experimental data that were already visible in fig. 5.13. Most datasets appear to
follow a similar scaling trend as the noise model, with the notable exception of the one at the
transition at U/J = 24. In order to be better able to gauge the different scaling behaviors, the
data and the model are fitted with a power law:

∆N2
0 /⟨NFBZ⟩ ∝ α⟨NFBZ⟩γ (5.36)

Due to the small range in values of ⟨NFBZ⟩ far from the origin, these fits cannot be expected
to be of great quantitative precision. Indeed, the results were found to depend strongly on the
fit parameters 16. Notably the inclusion of an additive offset in 5.36 would render the results for
the amplitude and exponent fits over-dependent on initial conditions, and this parameter was
discarded with fluctuations naturally expected to die down as ⟨NFBZ⟩ vanishes. The resulting
fitted exponents are shown in figure 5.19 for both the experimental data and the noise model
(5.32).

As expected from applying the fitting procedure to such a small range of atom numbers,
it is not obvious to extract a definite tendency from the experimental data. The experimental
noise model (5.32) relies only on average occupation values, which might be why its distribution
of fitted exponents as a function of U/J appears more stable. They appear to show a slight
tendency throughout the superfluid region to disperse around a value of about 0.5, followed by
a drop to approximately 0 at the phase transition. The experimental values of γ are dispersed
around the experimental noise values, but their variance is so large that it is hard to read a
definitive tendency into them.

5.4 . Measurement of the Binder cumulant across the Mott transition

The Binder cumulantUL (5.10) for the condensate order parameter can be extracted from the
experimental data. Since the system consists of a gas trapped in an inhomogeneous (harmonic)
potential, the variation of the Binder cumulant cannot be used to extract critical parameters and
exponents in the critical regime: Since the degree of critical behavior is position dependent in an
16. Bounds and initial guesses.
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Figure 5.19 – Fitted exponents γ for the scaling across theMott transition. The blue crossesare fits of (5.36) to the experimental data, and the black points are fits of (5.36) to the predictionsfrom the noise model (5.32).

inhomogeneous system (see fig. 2.7), the Binder cumulant itself is inhomogeneous throughout
the system, which makes the comparison between different sizes unfeasible.

When analyzing the fluctuations of the total atom number (in the subsystem of the FBZ), one
essentially probes the integral of the order parameter. The considerations concerning the Full
Counting Statistics in chapter 4, however, have demonstrated that if one is interested in the ac-
tual statistics of the underlying quantum state, one has to choose ameasurement volume with a
size on the order of the coherence length only. Therefore, the measurement volume is reduced
for the analysis of the Binder cumulant to match the one established in chapter 4 to correspond
to the coherence volume of a single mode, with a size of 0.038 kd.

From its definition in terms of an order parameter (5.10), the Binder cumulant can be ex-
pressed in terms of the condensate atom number as follows:
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UL = 1− ⟨|ψBEC|4⟩
3⟨|ψBEC|2⟩2

= 1− ⟨N2
0 ⟩

3⟨N0⟩2
(5.37)

=
2

3
− ∆N2

0

3N2
0

(5.38)

From (5.37) the asymptotal values of UL can be calculated for the superfluid and the Mott
insulating regime using the normalized correlation amplitudes defined in terms of the facto-
rial moments (4.11): The expectation value of the second moment in 5.37 can be expressed as
⟨N2

0 ⟩ = ⟨N0⟩2g(2)(0)+ ⟨N⟩. The ideal values of g(2)(0) in the superfluid and Mott insulating regime
established in chapter 4 can thus be used to obtain the asymptotal values of the Binder cumu-
lant in both cases:
Deep in the superfluid regime (U → 0) the statistics of N0 is Poissonian (g(2)(0) = 1) so that
⟨N2

0 ⟩ = ⟨N0⟩2 + ⟨N0⟩ and the Binder cumulant tends towards

UL,SF = 1− ⟨N2
0 ⟩

3⟨N0⟩2
=

2

3
− 1

3⟨N0⟩
(5.39)

Deep in theMott regime (U → ∞), on the other hand, the statistics ofN0 is Gaussian (g(2)(0) =
2) so that ⟨N2

0 ⟩ = 2⟨N0⟩2 + ⟨N0⟩ and the Binder cumulant tends towards

UL,MI = 1− ⟨N2
0 ⟩

3⟨N0⟩2
=

1

3
− 1

3⟨N0⟩
(5.40)

For all datasets UL can be directly calculated from the condensate number fluctuations and
mean occupation via (5.38). The post selection can be less stringent here since, as it was shown
in chapter 4, with the size of themeasurement volume corresponding to the correlation volume,
the extracted values aremostly insensitive to shot-to-shot fluctuations of the total atom number
on the scale of the entire system. NPS is thus increased to about 5%, increasing the statistics of
the available number of shots.
Figure 5.20 shows the Binder cumulant extracted from the experimental data across the super-
fluid to Mott insulator phase transition.

Fig. 5.20 shows the Binder cumulant to adhere to the asymptotal value expected in the super-
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Figure 5.20 – Binder cumulant measured across the Mott transition. Circles are values ofthe Binder cumulant calculated from experimental data using (5.10) in a volume of size of thecorrelation volume (2.1 × 10−2 kd)
3. The solid line is a guide to the eye. Vertical error bars rep-resent the combination of the standard error on the variance (A.3) and the standard deviationof the average BEC atom number. Horizontal error bars are the same as in fig. 5.10. The dashedlines represent the asymptotal values (5.39) and (5.40), expected in the superfluid and in theMott insulating regime, respectively.

fluid regime (5.39), followed by a characteristic drop in amplitude at the phase transition. Once
theMott regime is reached, the statistics in the small volume become insufficient (see chapter 4).
It is likely that the error bars in this region are underestimated in fig. 5.20, since UL is expected
to vary monotonously. However, within the dispersion that is present around the asymptotal
value (5.40), the Binder cumulant appears to be in the vicinity of the expected value for the Mott
regime.

Ideally, one would like to be able to scale the atom number over a sufficiently large range
to determine the intersection in the region of the phase transition from the different curves.
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However, with the small variations of N available in the datasets, the different curves are too
close together to be separated, as is shown in figure 5.21.

Figure 5.21 – Binder cumulant across theMott transition for different total atomnumbers.Same quantities as is fig. 5.20 for different values of the total atom number varied via post-selection. The different curves are too close to separate and indicate the critical point throughtheir interception.
As seen in chapter 4, the counting statistics of Mott insulators converges towards a Poisson

distributionwhen computed over volumes larger than the correlation volume Vc as a result of the
addition of contributions frommany (independent) volumes of size Vc. This is confirmed in figure
5.22 where a large measurement volume of the same size as the one used in the analysis of the
BEC number fluctuations is used. Consequently, in this situation the system exhibits Poissonian
statistics on both sides of the phase transition and UL becomes almost flat.
If, on the contrary, the size of the measurement volume is reduced below Vc, the occupation of
the k = 0 mode becomes so small in the Mott regime that the term in 1/⟨N0⟩2 dominates and
UL drops far below its expected asymptotal value, as evidence by fig. 5.22.
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In both cases the statistics on the superfluid side remains close to Poissonian, since even for
very small a measurement volumes the k = 0mode density is sufficiently large.

Figure 5.22 – Binder cumulant across the Mott transition for different measurement vol-
umes. Same quantities as is fig. 5.20 for different sizes of themeasurement volume. The contin-uous change on the Mott side from insufficient statistics (smallest volume) to Poissonian statis-tics on account of averaging over independent contributions (largest volume) can be seen, withthe expected astymptotal value for the Mott regime (5.40) approximately compatible with themeasurement volume of the size of the correlation volume.

In conclusion, the Binder parameter extracted from experimental data exhibits the charac-
teristics sharp dip at the phase transition. Its expected asymptotal values are confirmed when
measured in a volume of the size of the correlation volume, as expected from chapter 4. The
external trapping potential renders the system inhomogeneous and prevents the extraction of
quantities linked to universal behavior from the value of UL at the phase transition. However,
the approach presented here is in principle readily extendible to homogeneous systems, paving
the way to a finite size scaling analysis.
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5.5 . Conclusion

BEC number fluctuations were probed across the superfluid to Mott insulator phase transi-
tion and found to be peaked at the phase transition, similarly as observations made in the case
of the thermally driven superfluid to normal gas transition. The statistical properties of the or-
der parameter are revealed through the extraction of the Binder cumulant, which shows a sharp
variation at the phase transition. Though the inhomogeneous nature of the experiment does not
allow for the extraction of universal behavior, this approach can be leveraged to pave the way
for finite-size scaling analysis in the context of homogeneous systems.



6 - Conclusion

This manuscript has presented investigations into the emergence of complex many-body
correlations from the interplay of interactions and kinetic energy based on measurements car-
ried out on lattice Bose gases. The Bose-Hubbard model was simulated by loading BECs of 4He∗
atoms into a 3D optical lattice. The number statistics of occupation of different volumes of mo-
mentum space were accessed via electronic detection in 3D of the prepared many-body quan-
tum states. Several dozens of datasets have been acquired in experiments spanning the U/J
axis in the Bose-Hubbard phase diagram across the Mott transition isentropically. The result-
ing datasets, all made up of thousands of shots, each one composed of thousands of individual
atoms in momentum space, have permitted to carry out a multitude of analyses in the realm of
quantum many-body physics of interacting Bose gases.

Firstly, the weakly-interacting regime of lattice Bose gases was found to be characterized
by Bogoliubov’s emblematic pair correlation signal between atoms at opposite momenta. This
pairing signal was shown to be suppressed upon increasing interactions in favor of more com-
plex correlations betweenmore than two particles, signaling the onset of the strongly correlated
regime. This observation was consolidated by a qualitatively similar result obtained by a theory
collaborator from numerical simulations based on the quantum rotor model, highlighting the
role of non-linear quantum fluctuations in the system. A direct experimental signature of non-
Gaussian correlations was obtained via the observation of a non-zero four-operator cumulant
at strong interactions, providing insight into the emergence and physical origin of non-Gaussian
correlations in ensembles of interacting bosons.

Secondly, an analysis of the Full Counting Statistics of the interacting lattice gases was carried
out. Iconic many-body quantum states such as lattice BECs and Mott insulators were character-
ized by their many-body coherence properties when probed in small volumes of momentum
space after an expansion. Mott insulators were found to exhibit thermal FCS characterized by
perfectly contrasted bunching amplitudes in the normalized zero-distance correlations that were
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probed up to sixth order. Small deviations fromPoisson statistics for the BECwere observed that
were shown to increase with interactions, highlighting the role of the condensate depletion on
many-body coherence.

Finally, the fluctuations of the condensate order parameter where analyzed across the super-
fluid to Mott insulator phase transition, extracted via measurements of the condensate occupa-
tion number. After modeling the principal experimental noise contributions, the order param-
eter fluctuations were found to be enhanced towards the phase transition, exhibiting a sharp
peak of amplitude∆N0 ∼

√
⟨N⟩ that was deemed incompatible with the modeled experimental

noise. This behavior was thus suggested to mirror previous observations made in the context of
the normal gas condensation transition driven by temperature and thermal fluctuations [33,34].
Additionally, the Binder cumulant was extracted to probe the statistical properties of the BEC
order parameter. This system-size independent quantity was found to exhibit a sharp variation
at the phase transition even for the finite size-system probed in the experiment. Though it was
outlined that no universal scaling behavior could be extracted from this measurement on ac-
count of the harmonic trapping potential rendering the experimental system inhomogeneous,
this approach was shown to hold promise for paving the way for finite-size scaling analysis in
homogeneous systems.
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A - Correlations and Statistics

A.1 . Law of total variance

The law of total variance for a probability distribution Y conditioned by another probability
distribution X is given by:

VarY (Y ) = EX [VarY (Y |X)] + VarY (EX [Y |X]) (A.1)
where E[X] is the expectation value of X.

A.2 . Standard error of variance

Let X1, . . . , Xn be a random sample from N (µ, σ2).
The sample variance is given by

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2 (A.2)
and its standard error by [224]

σS2 = S2

√
2

n− 1
(A.3)
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B - Evolution of the in-situ cloud size with interactions

Supposing the in-trap density profile of the cloud is parabolic, its radius R can be calculated
from theRMSwidths σBEC of theBEC after the TOF. The result is shown in figure B.1 for all datasets.

Figure B.1 – In-situ cloud size as a function of interactions. Vertical error bars are one stan-dard deviation on extracted in-situ sizes. The extracted values show no systematic tendency asa function of U/J an are therefore taken to be constant.
Figure B.1 shows that the extracted in-situ cloud sizes show no appreciable tendency as a

function of the interaction strength, justifying the approximation made in chapter 4 of consider-
ing them to be constant.
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