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Chapter 1

Introduction

Abstract The significance of fluid flows in the operation of diverse systems has
been recognized since ancient times. The pursuit of a deeper comprehension of these
flows, their characteristics and interactions with the environment, has resulted in a
rich history marked by diverse contributions. These contributions have ultimately
led to the development of today’s Computational Fluid Dynamics (CFD) tools, which
play an indispensable role in simulating fluid flows across various industries. Despite
their current extensive abilities, several challenges still impede the ability of computa-
tional fluid dynamics to meet the continuously escalating needs of present industries.
In an attempt to reduce computational costs while achieving greater accuracy, the
CFD community is continuously investigating new methodologies to enhance its cur-
rent standing. The success of deep learning models and data-based approaches in
various domains has positioned them as primary candidates for aiding in resolving
the current challenges of the CFD community. The convergence of these two distinct
disciplines, each with a rich history of contributions and achievements, ignites scien-
tific curiosity for exploring innovative solutions beyond the current paradigm. Thus,
this chapter is dedicated to providing a brief history of both disciplines, highlighting
present challenges encountered by current CED tools, existing interdisciplinary and
intradisciplinary approaches for tackling them, and finally, presenting the scope of
interest of this thesis along with the suggested outline.

Abstract L’importance des écoulements de fluides dans le fonctionnement de divers
systemes est reconnue depuis l’antiquité. La quete d’une compréhension plus pro-
fonde de ces écoulements, de leurs caractéristiques et de leurs interactions avec
l’environnement, a abouti a une histoire riche marquée par des contributions di-
verses. Ces contributions ont finalement conduit au développement des outils actuels
de la Dynamique des Fluides Numérique (CFD), qui jouent un réle indispensable
dans la simulation des écoulements de fluides dans diverses industries. Malgré leurs
capacités actuelles étendues, plusieurs défis entravent toujours la capacité de la dy-
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namique des fluides numérique a répondre aux besoins continuellement croissants des
industries actuelles. Dans le but de réduire les couts de calcul tout en garantissant
une plus grande précision, la communauté de la CFD cherche continuellement de
nouvelles méthodologies pour améliorer sa situation actuelle. Le succes des modeles
d’apprentissage en profondeur et des approches basées sur les données dans divers
domaines les positionne comme des candidats principaux pour aider a résoudre les
défis actuels de la communauté de la CFD. La convergence de ces deux disciplines
distinctes, chacune avec une riche histoire de contributions et de réalisations, suscite
la curiosité scientifique pour explorer des solutions innovantes au-dela du paradigme
actuel. Ainsi, ce chapitre est consacré a fournir un bref historique des deux disci-
plines, en soulignant les défis actuels rencontrés par les outils actuels de la CFD,
les approches interdisciplinaires et intradisciplinaires existantes pour les aborder, et
enfin, en présentant le champ d’intérét de cette these ainsi que le plan suggére.
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1.1 Evolution of Fluid Understanding

From ancient times, the importance of fluids for the functioning of various systems
was noticed. Fluid flows and their interaction with their surroundings is the focus
point in many phenomena. For instance, ocean currents, atmosphere weather, wa-
ter in rivers, melting of metals, blood in the human body, lift and drag forces in
aeronautics and automotive, and irrigation systems are just a few examples that
highlight the role of fluids in our everyday life. The journey of understanding these
fluids, to endeavor their powers and optimize various systems, stems back to ancient
Romans, with Archimedes initiating the field of hydrostatics to understand water-
works, such as canals and bathhouses [1]. A few centuries later, holding the same
objective, Leonardo Da Vinci observed in his famous nine parts collection [2], " The
Motion and Measurement of Water,” plenty of natural phenomena and thoroughly
depicted them, while Isaac Newton contributed to quantifying and predicting the
fluid flow phenomena through his famous order laws and principles [3].

The impulse to attain a more profound comprehension and unravel the com-
plexities of these physical phenomenon drove the search for mathematical models
to ease their understanding. The modeling of fluid flow problems began with the
efforts of Daniel Bernoulli, who harnessed the principle of energy conservation and
employed it for fluid motion [4], resulting in the well-known Bernoulli equation.
Leonhard Euler focused on conservation laws and later introduced the currently
known Euler’s Equations that depict a more general form of the latter model, al-
lowing for extending its spectrum of applicability [5]. Finally, expanding upon prior
research and encompassing the effect of viscous transport on the latter equations
led both the Frenchman Claude Louis Marie Henry Navier and the Irishman George
Gabriel Stokes to the formulation of the currently most vital system of equations
for understanding the behavior of fluids, the famous Navier-Stokes equations [6].

Although the formulation of the Navier-Stokes equations held a significant in-
trinsic value in the theoretical and physical insights they provided regarding fluid
flows, their complexity, and non-linearity restricted their analytical solution to only
simplified problems for specific situations, with no general proof achieved for the
existence and smoothness of solutions for all possible fluid flows [7]. This initially
distilled choices of further understanding flows to very few and rendered experiments
as the primary approach for studying fluid dynamics. Although notable results were
found, especially by Osborne Reynolds’s experiments in turbulent flows [8], the need
for a more convenient, inexpensive, and reproducible approach remained an urge.
The emergence of numerical methods provided a breakthrough perspective for solv-
ing the complex system of differential equations, with initial attempts for numerical
solutions of flow around a circular cylinder by both Thom and Kawaguti, converging
to the same solution [9, 10]. However, the vast time scale required for acquiring the
desired solution kept these methods infeasible until the development of a new set of
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numerical methods by Los Alamos National Laboratory, [11], and novel computa-
tional algorithms by the Imperial College of London, [11], which paved the way for
Computational Fluid Dynamics as the go-to choice for studying fluid flow problems.
Figure 1.1 summarizes the key contributions in understanding fluid flows until their
spread as main tools in the market.
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Figure 1.1: Fvolution of Fluid Mechanics

From the day of their release, CFD tools has played a prominent role in un-
derstanding fluid dynamics. CFD simulators have become an indispensable tool
for predicting fluid flows, analyzing them, and optimizing them in many fields [12],
including aerospace, automotive, energy, environmental, biomedical, and architec-
tural. The contribution of Computational Fluid Dynamics tools in enhancing ef-
ficiency, ensuring safety, and optimizing performance in various systems while si-
multaneously reducing production costs and environmental impacts has motivated
scientists and industries to conduct extensive research on new algorithms and meth-
ods daily, aiming to attain more accurate and efficient CFD tools. This is obvious
by investigating the number of published articles related to this field, as shown in
Figure 1.2.

1.2 The Rise of Deep Learning

After a period marked by numerous substantial contributions, the ease for intro-
ducing novelty within the CFD field began to decrease. On the other hand, artifi-
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Figure 1.2: The number of articles, including both peer-reviewed and preprints, mentioning
Computational Fluid Dynamics in either their title or their abstract. Results
obtained from https://app.dimensions.ai/

cial intelligence, in general, and deep learning, in particular, began to demonstrate
promising potential across various fields. Although deep learning is considered a rel-
atively new field, its history runs back to the early days and has witnessed multiple
peaks, valleys, and competitors before reaching its current position. The current
deep and complex models of today, with their high capacities and potentials, stem
back to a simple model introduced by Franck Rosenblatt under the name of the
Perceptron, [13]. This computational model, which evolved from the early theoret-
ical ideas of McCulloch and Pitts for mimicking the human brain nerve network
by artificial neurons [14], consisted solely of a single output layer of perceptrons
that could learn linear logical operators and classify simple shapes. The ambitions
of Rosenblatt toward artificial intelligence and the birth of machine learning fueled
great interest in this field. However, this momentum was shortly criticized by the
subsequent findings of Marvin Minsky and Seymour Papert, [15]. Their research
shed light on the limitations of the perceptron model and its mathematical inability
even to model simple non-linear logical functions such as the exclusive OR, XOR,
and the necessity of having at least two layers for modeling such functions with the
incapability of current learning algorithms to train multilayer models.

These pivotal findings of Minsky and Papert triggered a first winter in machine
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learning research, with interest in achieving artificial intelligence dimmed greatly.
This winter lasted until Geoffrey Hinton, later named the godfather of deep learning,
proposed a solution for mitigating the difficulties in training multilayer perceptions
[16]. Hinton and two other colleagues, David Rumelhart and Ronald Williams,
proposed employing the backpropagation algorithm, previously derived in the early
1960s [17], and later modernized by Linnainmaa [18], for training neural networks.

The introduction of backpropagation for training neural networks and the math-
ematical proof of their ability to act as universal approximations, [19], brought
some warmth to the AI winter and motivated various developments during that
period. Mainly, LeCun et al., [20], defined the concept of convolutional neural
networks trained by backpropagation for classifying handwritten digits from the
MNIST dataset. Their LeNet-5 model was an extension of a previous model known
as NeoCogNitron [21]. NeoCogNitron initially introduced the feature extraction and
pooling concept but did not incorporate backpropagation for learning its parameters.
The first practical application of Neural networks came through the LeNet-5 model,
with only 60K learnable parameters, where it was nationally deployed for processing
around 20 % of handwritten checks in the United States around 1998 [22]. Another
significant advancement emerged from the research of Schmidhuber and Hochreiter,
which enhanced the practicality and effectiveness of recurrent neural networks, [23],
by introducing the Long-short-term memory variant that addressed the vanishing
gradient problem and allowed them to capture long-range dependencies [24].

However, these developments in neural networks often went unnoticed and were
overshadowed by Support Vector Machines (SVM) [25], an alternate machine learn-
ing approach developed by Cortes and Vapnik that showed faster training and sim-
pler interpretability [26]. Although superior accuracy was attainable by relying on
neural networks if trained on larger datasets, computational constraints and lack
of data availability back then hindered such training. This impracticality of neural
network training was further compounded by the vanishing gradients problem in
deep networks with numerous layers [27], thus again diverting attention over neural
network-related research.

Another significant breakthrough accomplished by Hinton and two of his students
regarding the vanishing gradient problem sooner restored this fading attention. Hin-
ton et al. tied this problem to the poor initialization of trainable parameters and
proposed a layer-by-layer pretraining of the model’s parameters [28]. The com-
bination of this work, significant advancements in computational speed, and the
adoption of graphical processing units all contributed to deep neural networks re-
gaining competitiveness with other machine learning algorithms, including SVMs.
Understanding the reasons behind the early obstacles encountered by deep learning
models and addressing them by allocating greater consideration to the choice of
activation functions and trainable parameters initialization, [29, 30], rapidly led to
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proving their supreme performance over other machine learning algorithms by high-
lighting their power and achieving a state of art results starting with the ImageNet
competition [31]. Deep learning models have, since then, consistently dominated
the research landscape, driven by substantial interest and rational ambitions from
major corporations like Google and Microsoft, with multiple potentials still uncov-
ered. Figure 1.3 summarizes the key contributions that have shaped the history of
deep learning and led to its current flourishing.
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Figure 1.3: Evolution of Deep Learning

Although deep learning is an evolving field whose future is still hard to determine,
the multitude of disciplines in which deep learning techniques have proven to be
successful throughout the last decade and their transformative force in reshaping
industries ascend it as an interdisciplinary technique with promising capacity worth
investigating for addressing challenges in unexplored domains.

1.3 Challenges in CFD

Despite its long history and extensive contributions, several challenges still impede
the ability of computational fluid dynamics to meet the continuously escalating
needs of current industries. The significance of CFD for the industry lies in its
ability to provide a virtual laboratory for analyzing fluid phenomena. This allows
for optimizing various designs and enhancing the performance of many products,
all while avoiding the need for expensive and time-consuming physical prototyping.
However, this role is consistently tested by the ongoing requirement of achieving
accurate simulations at an accelerated pace for even more intricate processes.
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The significance of meeting these demands and accelerating numerical simu-
lation techniques resides in the substantial time savings achieved. These savings
extend to the various phases of system realization, beginning with the initial fore-
casts and extending to the diverse parametric studies employed in system conception
and optimization. Additionally, it presents an opportunity to capture finer physics
still unattainable with the largest available supercomputers. Thus, striving to cut
huge computational costs and enhance its solvers, the CFD community began by
investigating interdisciplinary approaches before expanding its search toward new
disciplines that offer fresh, innovative solutions from out of the current box.

1.4 Interdisciplinary Approaches

Prior to incorporating deep learning techniques into the pursuit of addressing the
complex challenges within the Computational Fluid Dynamics (CFD) community,
a multitude of diverse approaches have been proffered and proven beneficial across
a spectrum of scenarios. For example, in an attempt to close the gap of uncertainty
between a numerical model prediction of a complex system and actual data, data
assimilation techniques have been suggested [32, 33]. These techniques help reduce
the uncertainty present in a model prediction by merging the strengths of numerical
models and realistic observations. Data assimilation relies on comparing a short-
term forecast of a numerical model to a newly received observation. The resulting
error is employed for calibrating and refining the model state. These techniques were
successful in various fields, such as oceanography and meteorology, where they have
been used for operational ocean monitoring, [34], or large-scale weather forecast-
ing [35]. Despite its advantages, data assimilation may encounter many challenges,
mainly when access to observations is constrained, thereby diminishing the prospect
of improving numerical model predictions. Similarly, when the problem being inves-
tigated resides in a high-dimensional space, the feasibility of the assimilation process
is also questioned.

On another track, Model order reduction (MOR) is another discipline that fo-
cuses more on reducing the computational cost and complexity of CFD simulations
rather than enhancing its accuracy, thus allowing for efficient exploration of varia-
tions in large parametric spaces [36]. MOR techniques aim to substitute a computa-
tionally expensive high-fidelity model with a faster and more efficient reduced-order
model while maintaining a certain level of accuracy. Various numerical approaches
have spanned the realm of Reduced order models, such as the Proper Orthogonal
Decomposition - Galerkin approach [37], the proper generalized decomposition ap-
proach [38], or the reduced basis method [39]. Finally, although these approaches
have been extensively and successfully employed for various CFD applications [40—
42], their feasible applicability is not guaranteed for all problems, especially for the
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ones with nonlinear solution manifolds such as advection-dominated problems, wave
propagation problems, or elliptic problems with high parameter sensitivity [43-45].
These problems are characterized by maximum projection error, also known as the
Kolmogorov width [46], that slowly decays when increasing the dimension of the ap-
proximation space. The required large number of approximation bases for attaining
a sufficiently low Kolmogorov width hinders the fast computation of the approx-
imation solution and thus motivates further research in this field. Various inter-
disciplinary approaches have already been suggested for adapting MOR. techniques
to these non-reducible problems, such as online adaptation of the ROM with new
information for limiting the extrapolation error [47], interpolating between different
precomputed ROMs [48], or relying on a dictionary of basis vectors [49], or a dictio-
nary of several local ROMs [50]. However, various current traits of these methods
still encourage deploying more efforts to explore their potential for improvement.

In the complex realm of turbulence flows, achieving the comprehensive resolution
of scales while enforcing a mesh size smaller than the tiniest eddy scale proves to be a
daunting computational challenge, even for relatively modest Reynolds numbers [51].
Consequently, various methods have been developed within turbulence modeling to
address this issue. Among these methods, Large Eddy Simulation (LES) emerges
as a sub-grid scale modeling technique that attempts to balance between accuracy
and efficiency [52]. LES focuses on resolving larger scales only while modeling the
influence of smaller unresolved scales. Despite this, LES remains out of reach for
large-scale engineering simulations, compelling industrial applications to adopt the
Reynolds-averaged Navier-Stokes (RANS) family of models [53]. These RANS mod-
els return time-averaged fields by representing the effects of turbulence through an
artificial eddy viscosity [54-56]. However, despite their computational speed, RANS
methods reside at the lower end of the accuracy spectrum. Consequently, various
approaches have been proposed recently to hybridize them with superior methods,
such as [57], while continuously searching to bridge the gap between computational
efficiency and precise simulation results.

Finally, In addition to the preceding methodologies, a multitude of other tech-
niques are also employed to further enhance and accelerate CFD models and have
been comprehensively discussed in the literature. For instance, advances in parallel
computing have significantly impacted CFD models by dividing a complex problem
into smaller sub-problems that can be solved concurrently on multiple processors or
cores. This distribution of workload has significantly contributed to attaining faster,
higher resolution, and more integral simulations [58]. The potential of parallel com-
puting was further realized with the emergence of Graphical Processing units and
their recent adaptation in CFD tools, thus allowing for dramatic speedups compared
to traditional central processing units (CPUs) [59]. Also, integrating adaptive mesh
refinement techniques to optimize the mesh resolution in critical areas and coars-
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ening it in regions with minor variations or less important physical impact allowed
for even more efficient computational resource allocation. These techniques proved
to be of significant importance in an extensive range of simulations, particularly in
scenarios with complex geometries or in scenarios with multiple fluids evolving, thus
allowing for achieving accurate results while further minimizing computational costs
[60].

These mentioned methodologies and approaches certainly do not constitute an
exhaustive list of all the developments employed to address the diverse challenges in
CFD. However, it underscores the many existing difficulties and sheds light on the
substantial scope for further improvement in currently employed techniques. This
has encouraged the CFD community to explore other contemporary domains, partic-
ularly deep learning methodologies, in an attempt to complement current techniques
and overcome some of the remaining obstacles.

1.5 Intradisciplinary Approaches

After achieving remarkable results on the ImageNet dataset and surpassing state-
of-the-art models in terms of accuracy, deep learning models earned recognition and
attracted more attention for further exploration. The considerable attention and
investment from giant corporations, such as Google and Microsoft, intensified the
research in Deep Learning and led it to gain considerable momentum, as shown in
Figure 1.4.

The fruit of this surge initially impacted domains that traditionally lacked well-
established mathematical models and often relied on conventional machine-learning
approaches that demanded manual feature engineering [61]. As a primary exam-
ple and due to the initial popularity of convolutional neural networks, the field of
computer vision witnessed multiple revolutionary developments, especially in tasks
related to object detection [62], image classification [63], and semantic segmentation
[64]. This rendered deep learning techniques a standard approach for obtaining a
performant and robust solution in computer vision and thus commercialized it for
various scenarios like automated driving, product inspection, abnormality detection
in medical imaging, facial recognition, and many others. Similar transformative
effects were also witnessed in the fields of natural language processing [65], speech
recognition [66], and many more. The positive impact of deep learning on these
domains brought experts from diverse backgrounds together to leverage its capabil-
ities. This led to the exploration of various model architectures, based on the needs
of each domain, tailored to tackle specific challenges and operate over different data
types. As an example, autoencoder-based models, specializing in dimensionality re-
duction and feature extraction, returned significant results in denoising tasks [67].
Meanwhile, transformer networks, known for their effectiveness on data with long-
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Figure 1.4: The number of articles, including both peer-reviewed and preprints, mentioning
Deep Learning in either their title or their abstract. Results obtained from
https://app.dimensions.ai/

range dependencies, found great utility in chatbots and image captioning [68, 69].
Lastly, graph neural networks expanded the capabilities of traditional convolutional
neural networks to handle graph-structured data and found valuable applications
in social network analysis and customer recommendation systems [70, 71]. These
architectures represent just a fraction of the diverse landscape of deep learning and
highlight its ability to evolve and adapt to various tasks.

Incorporating machine learning methods in general and deep learning techniques
in particular with the scientific world was relatively delayed compared to other disci-
plines. The presence of mathematical models that have been developed, tested, and
improved for centuries in the physical and scientific realm, along with the obscurity
covering deep learning techniques due to their exclusive dependence on data, hin-
dered most opportunities for cooperation between these two disciplines. However,
although mathematical models are derived from physical laws, which themselves
required a long history of observations and experimentation as detailed previously
for fluid flows, these models are inherently simplifications of nature. This simplifi-
cation might originate from insufficient observations, the fragility of derived models
for drastic variations, the partial understanding of specific processes, or other com-
putational challenges, as detailed previously. These limitations of current physical
models, along with the proven strengths of machine learning approaches, especially
regarding computation speed and approximation capacity, ignited the efforts for
combining both worlds and attaining the best of both rather than solely relying on
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each independently. The fruits of these efforts stem back to the pre-deep learning
era, [72, 73|, and have nourished the emergence of a new research field known as
scientific machine learning [74].

1.5.1 Integrating Deep Learning in the Scientific World

Just as other domains have influenced the attributes of deep learning models and
tailored various aspects for their specific needs, the cross-fertilization of deep learn-
ing models with the scientific world and the emergence of this new research track
have given birth to various model adaptations, enabling more seamless integration.
These adaptations have targeted several dimensions within the deep learning mod-
els, encompassing various areas such as the optimization of trainable parameters,
their initialization, or the model architecture.

From the initial contributions to this field, Raissi et al. focused on addressing
the sole reliance of deep learning models on data and their complete neglect of
prior knowledge of physical laws [75]. They attempted to leverage prior knowledge
and enhance the deep learning model capabilities by physically constraining the
parameter optimizations by including the physical laws residuals in the models’
loss function. Other consequent variations of this work relied on incorporating the
variational form of the problem in the loss function, [76], or using the energy of the
system as the basis for the construction of the loss function [77].

In an alternative approach, several research efforts were dedicated to initializing
model parameters. Rather than commencing training from a random state, these
approaches aimed to introduce the model to a physically informed starting point,
thus accelerating its training and minimizing the dataset size needed [78]. The first
suggested methodology for achieving a physics-guided initialization drew inspiration
from the realm of computer vision and relied upon transfer learning [79]. In this
method, the initial parameters of the model are either transferred from a pre-trained
older model for a similar task, [80], or another model trained on an easy-to-collect
dataset, [78]. Another methodology suggests supervising the hidden layers parame-
ters for predicting an intermediate variable prior to training for the desired quantity
of interest as depicted in [81] for modeling the temperature and flow in river net-
works.

Finally, various attempts contributed to leveraging deep learning architectures
for its use in the scientific world. These works focused on enhancing the model’s
interpretability by enforcing desired physical properties into its architectural choice,
thus constraining its search space and enhancing its generalization capability. One
of the techniques for attaining this objective is to incorporate physically constrained
neurons in the model architecture [82, 83]. These neurons are explicitly specified to
mimic intermediate physical variables and thus help extract physically meaningful
hidden representations. Another similar technique suggests assigning known values
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from the governing equations for a certain number of the weights [84]. Moreover,
system symmetries and invariances are usually desired traits for various physical sys-
tems. Encoding these characteristics into the model architecture positively impacts
its robustness to multiple variations. This could be satisfied by relying on architec-
tures that inherently possess invariant traits, such as convolutional neural networks
that encode spatial invariance or recurrent neural networks that encode temporal
invariance, or by adding customized layers to enforce required symmetries [85, 86].
Also, multiple architectures were proposed to favor specific physical properties or
numerical schemes by construction. ResNets [87], for example, have found extensive
applications in modeling various dynamical systems [88, 89]. The primary reason
for their adoption is their resemblance with the Euler Integration scheme commonly
used for numerically resolving ordinary differential equations [90]. The residual
blocks within ResNets can be conceptualized as a mechanism for making incremen-
tal updates, thus directing the model’s approximation capacity towards mastering
the variations in the quantity of interest rather than exclusively concentrating on
the direct transformation from the input to the output. Regarding physical proper-
ties, some models focused on integrating the Hamiltonian operator directly in their
architecture. The Hamiltonian operator in physics corresponds to the system’s total
energy and is crucial in determining the time evolution of systems with conserved
quantities. Some networks attempted to predict the Hamiltonian of the system and
post-process it to attain the physical state of interest [91], while others attempted
to learn the abstract phase space to easily generalize to other problems [92].

1.5.2 Expanding to the world of CFD

These various outcomes of the current coupling between the scientific and the deep
learning world have triggered the curiosity of the research in the CFD community.
The various emerging tailored developments under the umbrella of Scientific ma-
chine learning have revealed promising potential if they are well aligned to address
the specific needs of CFD applications. In reality, these methodologies, developed by
different domains independently of the specific needs of computational fluid dynam-
ics, offered a new dimension for exploring novel solutions for addressing the current
challenges. The recent growing interest of the CFD community in these data-based
approaches can be noticed by inspecting the number of publications encompassing
both disciplines through Figure 1.5.

For instance, in an attempt to address the computational cost of data assimilation
processes for CFD applications, a deep-learning neural network was trained on the
misfit between the results of a CFD air pollution model and a data assimilation
model, thus implicitly providing data assimilated forecasts at a reduced cost when
coupled with the CFD model [93].

Multiple efforts were also directed toward combining the potentials of both deep
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Figure 1.5: The number of articles, including both peer-reviewed and preprints, mentioning
both Deep Learning and CFD in either their title or their abstract. Results
obtained from https://app.dimensions.ai/

learning techniques and model order reduction methods. For example, in scenar-
ios where the quantity of interest is discretized on a huge discretization space, di-
mensionality reduction techniques could be employed to obtain a reduced set of
variables. These techniques could either be based on traditional interdisciplinary
methods, such as the Linear Proper Orthogonal decomposition (POD), or rely on a
data-based deep learning approach, such as the autoencoders [94]. Next, multiple
model architectures are later suggested for modeling the latent dynamics, e.g., POD
reduction with multi-layer perceptrons (MLP) [95], or POD with long-short-term
memory models (LSTM) [96], or autoencoder with LSTM for attaining nonlinear-
latent-spaces [97]. Also, in the other scenarios of non-reducible problems, where
linear model order reduction techniques suffer to provide accurate solutions, multi-
ple solutions based on integrating a deep learning model in the solution framework
were suggested. Some of these solutions relied on an autoencoder, as a computa-
tionally practical approach, for computing the nonlinear manifold prior to solving
the dynamical system [98, 99], while other solutions relied on a deep learning model
for recommending a local ROM from a cluster of models adapted for the various
regions of the nonlinear manifold [100].

Additionally, in the context of turbulence modeling, integrating deep learning
techniques into the CFD community also gave rise to various contributions. Some
works have suggested different architectures for directly predicting the required tur-
bulent physical fields [101-103]. Others have taken a hybrid approach and focused
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the model capacity on learning high-fidelity enriched closure models [104-106]. Fur-
thermore, some of the research efforts focused on attaining super-resolution flows
from reconstructing underresolved ones [107, 108].

1.6 Outline

This thesis is dedicated to further exploring the untapped potential resulting from
the convergence of two distinct disciplines, each with a rich history of contributions
and achievements. The area of interest, highlighted in Figure 1.6, broadly categorizes
the scope of this work’s contributions. Precisely, this thesis aims to leverage novel
deep learning methodologies, integrate them with well-established CFD tools, and
tailor them to align with the current requirements of the community, particularly in
the context of reducing computational costs of multiphysics CFD simulations.

Artificial Intelligence

Machine Learning

Deep Learning

P

CFD

Computational
Mechanics

Science &
Engineering

Figure 1.6: Region of focus of current thesis

The content of this manuscript is structured into three distinct stages, as illus-
trated in Figure 1.7. Each chapter of this thesis represents one of these stages, as
will be elaborated upon later. In the first stage, the integration of deep learning
models with CFD is initially examined through a convolutional neural network in
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the context of a multiphysics conjugate problem. Next, in the second stage, this
integration framework is further developed and adapted to address more intricate
problems involving an evolving interface and necessitating a dynamic, unstructured
triangular mesh. Finally, in the last stage, multiple implementation methodologies
are proposed to address the curse of dimensionality of such a framework and thus
expand its range of applications and facilitate its realization.

)

( 1. Testing ) ( 2. Enhancing

Figure 1.7: Organization of current thesis

In chapter two, a deep learning-assisted numerical solver is suggested for lifting
part of the computational burden in the multiphysics CFD problem. The problem
is concerned with the forced convective cooling of a workpiece placed in a confined
space. Such a problem is governed by a unidirectional coupled system of partial dif-
ferential equations consisting of the nonlinear Navier-Stokes equations and a scalar
transport equation, the heat energy equation. Interest in addressing such a prob-
lem stems from the multitude of different processes governed by a similar set of
equations. The suggested coupling framework relied on an encoder-decoder convo-
lutional neural network trained on physical fields encoded into a structured grid for
modeling the scalar energy equation while maintaining a bridge for communication
and redirection with the traditional solver. The model’s performance, accuracy, and
ability to generalize to different cooling setups are all studied and discussed, along
with all the procedure details.

In chapter three, the coupling framework suggested in the previous chapter is
upgraded to tackle a two-fluid flow multiphysics CFD problem. The system of gov-
erning equations in this problem is similar to that introduced in chapter two, except
that it encompasses a bidirectional coupling between the different equations and
relies on the level-set equation required for capturing the interface between the dif-
ferent fluids rather than the heat energy equation. Moreover, the computational cost
required for resolving such an equation is negligible, and most of it is dominated
by resolving the Navier-Stokes flow fields. Furthermore, the dynamic evolution of
the interface with the flow fields hinders the ability to capture the induced physics
using a structured discretization grid accurately. Thus, to efficiently reduce the
computational burden and avoid the accumulation of error and loss of accuracy, a
graph-based deep learning model that operates directly on the dynamically evolving
unstructured irregular triangular mesh and thus dodges the constraints of the pre-
vious convolutional model is suggested to simulate the complex Navier-Stokes flow

17



1 Introduction

fields. The methodologies proposed for successfully training such a model, along
with the various ingredients involved and the obtained results, are all detailed in
this chapter.

In chapter four, the problem of dimensionality during the training of the deep
learning models is addressed. Although incorporating a deep learning model in the
solution loop might aid in addressing various challenges, the training of these models
is faced with multiple obstacles, especially with high dimensional data points. The
following chapter focuses on enriching current training methodologies with advanced
implementation techniques to avoid the famous out-of-memory error while securing
the fidelity of the attained results.

The following manuscript is finally concluded by evaluating our proposed meth-
ods and the currently available frameworks along with the available future paths for
further accompanying the numerical transformation in the industry. In particular,
the work detailed in this thesis focuses on addressing the evolving requirements of
Transvalor, a French company with a worldwide presence that specializes in pro-
viding simulation software for material forming and processes. Transvalor plays a
crucial role in supporting diverse industries, including automotive, aerospace, energy,
construction, and medical fields, as they undergo digital transformation and accom-
pany them in their material forming operations. Transvalor equips these industries
with a comprehensive suite of high-performance simulation tools comprising over
seven software solutions, each tailored to cover a broad spectrum of aspects related

to forming processes involving metallic solids, liquids, and polymers.
* k%
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Chapter 2

Deep learning model to assist
multiphysics conjugate problems

)

( 1. Testing ) (2. Enhancing )

Figure 2.1: Introductory Figure for Chapter Two

Abstract The availability of accurate and efficient numerical simulation tools has
become of utmost importance for the design and optimization phases of existing in-
dustrial processes. The latter requires the computation of multiple physical fields gov-
erned by coupled systems of partial differential equations and tends to require large
computational resources. Recently, the coupling of machine learning techniques with
numerical simulation tools has allowed lifting part of this computational burden, by
replacing parts of the resolution process with trained neural networks, which execu-
tion cost is far less than their traditional counterparts. The work of this chapter
falls under the fist stage of all the three thesis stages, as highlighted in Figure 2.1,
where the initial coupling of a deep learning model with CFD 1is tested. Precisely, an
auto-encoder convolutional neural network is suggested to reduce the resolution cost
of the forced cooling of a hot workpiece in a confined space by modeling the scalar
transport equation coupled to the Navier—Stokes equations. Although the proposed
model was trained on a relatively limited amount of data, it was able to generalize
accurately for different cooling setups with different inlet locations, thus leading to a
reliable deep learning-assisted numerical solver.

Abstract L’ importance des outils de simulation numérique précis et performants
a considérablement augmenté, notamment dans le contexte de la gestion des phases
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2 Deep learning model to assist multiphysics conjugate problems

de conception et d’optimisation des processus industriels existants, qui mécessitent
un calcul intensif impliquant de multiples champs physiques régis par des systémes
couplés d’équations aux dérivées partielles. Récemment, le couplage des techniques
de machine learning avec les outils de simulation numérique a permis de réduire
une partie de cette charge de calcul, en remplacant certaines étapes du processus de
résolution par des réseauxr meuronaux entrainés, dont le cotut d’exécution est bien
inférieur a celui de leurs homologues traditionnels. Le travail de ce chapitre releve
de la premicre étape des trois étapes de la these, comme indiqué dans la Figure
2.1, ou le couplage initial d’un modéle deep learning avec la CFD est testé. Plus
précisément, un réseau de neurones convolutionnels auto-encodeur est suggéré pour
réduire le cout de résolution du refroidissement forcé d’une piece chaude dans un
espace confiné en modélisant ’équation de transport scalaire couplée aux équations
de Navier-Stokes. Bien que le modéle proposé ait été entrainé sur une quantité
relativement limitée de données, il a été en mesure de généraliser de maniere précise
pour différentes configurations de refroidissement avec différentes positions d’entrée,
conduisant ainsi a un solveur numérique fiable assisté par le deep learning.
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2.1 Introduction

Current industries are continuously aiming to satisfy the needs of the demanding
market with high-quality products in the shortest feasible delay. This objective can
only be achieved by rapidly and accurately forecasting the results of every single
stage in the production process, thus establishing a precise idea of the final product
from the early design phases. Prior simulation of problems involving fluid flows is
accomplished using numerical analysis methods for computational fluid dynamics
[1]. These methods serve numerous fields such as weather simulation, aerospace,
aerodynamics, and many others.

Accurate modeling of many real-life phenomenons requires the coupling of mul-
tiple physics. Turbulent flow problems past a certain obstacle, for example, can be
modeled by the nonlinear Navier-Stokes equations coupled with a single-equation
turbulence model, [2], or a two-equation model, [3-5]. Other problems, that are
involved with the cooling and heating of a workpiece using natural or forced con-
vection, require the coupling with a heat transfer equation [6, 7].

Unfortunately, multiphysics problems governed by the coupling of the Navier—
Stokes equations with a scalar transport equation, whether it is a weak or a strong
coupling, are computationally expensive to solve, thus limiting the practicability of
modeling complex industrial applications. Moreover, the partial differential equa-
tions in coupled problems have, as input parameters, fields set up in huge ambient
spaces such as the velocity field convecting the scalar in transport equations. The
high dimensionality of these input spaces makes extrapolations or interpolation quite
difficult. However, the recent increased availability of computational capacities and
data resources has brought the capabilities of deep learning to the front of the
stage. In the past decade, the potential of machine learning has been demonstrated
in multiple domains, such as natural language processing [8], machine translation [9],
speech recognition [10], or computer vision [11]. The recent years also witnessed ap-
plications to computational mechanics for the simulation of physical problems. For
example, In [12], Raissi et al. introduced a regularization mechanism that informs
the deep learning model about the governing equations of the physical problem. In
[13], the authors suggested using a deep classifier to adapt the reduced-order model
to an input tensor parametrizing an anisothermal elastoplastic problem in structural
mechanics. Neural networks that operate directly on graph-structured data, [14-16],
have also been exploited to assist in various physical problems. In [17], the authors
suggested incorporating neural networks to infer problem-specific coefficients for the
estimation of spatial derivatives required for the solution of various PDEs model-
ing physical phenomena such as shock formations, solitary waves on a river bore,
and flame fronts. Another method where a deep learning model is used to reduce
the computational cost of a physical simulation is suggested in [18]. The authors
proposed assisting the in-plane-out-of-plane PGD solver by introducing a model re-

32



2 Deep learning model to assist multiphysics conjugate problems

sponsible for inferring the out-of-plane function and tested their methodology for a
3D heat conduction problem in a plate.

In the present work, an auto-encoder architecture [19, 20] is employed to model
the scalar transport equation in a coupled system. This system, consisting of the
Navier—Stokes equations along with the heat energy equation, is required to simulate
the cooling process of a work object using forced convection. The required data to
train the model is obtained using an industrial-level computational fluid dynamics
solver [21]. The latter exploits the immersed volume method (IVM) [22] equipped
with interface capturing and anisotropic mesh adaptation method [23], to overcome
the difficulties encountered in specifying the specific solid-fluid interface. The re-
sulting equations are resolved using a continuous finite element method along with
the variational multiscale approach (VMS) [24-26]. The mathematical formulation
of IVM, in the context of finite element VMS methods, is detailed in the following
papers [27, 28].

The deep learning model architecture used can accurately model the scalar energy
equation and thus infer the required future temperature field at the next time step.
The model is trained to predict the field with a larger time step than that of the
solver, thus allowing to span the whole time domain in much fewer computational
steps. Moreover, the trained model reveals precise interpolation ability for both,
time and cooling inlets positions, thus permitting us to exploit its potential for
numerous flow setups by moderately training it on a few snapshots, scattered across
the required time domain, obtained from discrete setups. The model also manages
to span independently the whole time domain, i.e. relying solely on its prediction
and without referring back to the traditional solver, and returns reliable results with
much less computational time.

The success of this model paves the way for assisting the simulation of numerous
industrial problems where coupling with a scalar transport equation exists. More-
over, other types of transport equations can be examined in future work with the
same methodology, thus broadening the potential of this technique. The paper com-
mences by stating the governing equations and the methods used to resolve them
numerically in section 2.2. Details of the problem setup are provided in section 2.3.
Section 2.4 details the sets used to train and test the model. The model architecture
and its training are respectively presented in sections 2.6 and 2.7. Finally, the per-
formance of the model on multiple flow setups and its ability to span independently
the required time domain are briefed in 2.8. This contribution is concluded finally
in section 2.11.
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2.2 Governing Equations

The Navier-Stokes momentum and continuity equations are usually accompanied
by a third scalar transport equation to simulate different physical applications. For
example, the turbulent flow past an object requires supporting these equations with
a turbulent model such as the Spallart—Allmaras model [29]. In case of heat transfer
problems, the equations are accompanied by a heat equation to govern the change
of temperature in the domain. The general form of the governing equations is shown
in (2.1), where the third equation is a comprehensive form of the scalar transport
equation that can be used to compute different fields based on the problem setup.

p(Om+u-Vu) =V (—pl+2pue(u)) + 9,
V-u=0, (2.1)
adF'+ pfu-VF =V - (yVF)+ x.

In the above system, u and p are respectively the velocity and pressure fields,
while F' is the coupled scalar field required for the test case simulation. In the case
of heat transfer, F' would represent the temperature distribution in the domain,
while for turbulent flows, F' would represent the Spallart—Allmaras scalar, 7. p and
i are the fluid’s density and dynamic viscosity respectively, while «, [, and ~ are
coefficients specific to the coupled model. Finally, e(u) = (Vu+ Vu®)/2 is the rate
of deformation tensor, while @ and yx are the source terms.

For problems concerned with an interaction between a fluid and a solid phase,
several coefficients should be predefined to govern the exchange at the interface.
The investigation of the value of the coefficients is an exhaustive task and requires
previous research. To overcome this difficulty, the immersed volume method is
suggested [7]. Using IVM, the problem is defined using a single fluid domain but
with different properties for the solid and the fluid materials. Unifying the domain
eliminates the need of specifying coefficients that may vary with shape, size, or
position. Thus, the interaction between both phases is implicitly derived due to
different properties across the elements. Sections 2.2.1, 2.2.2, and 2.2.3 introduce
the main building ingredients required for the successful implementation of this
method. Furthermore, the resulting variational formulation of the problem is prone
to instability and numerical oscillations due to the presence of large convective
fields. The variational multi-scale method is introduced in section 2.2.4 to stabilize
the discretized form of the problem, resulting in accurate solution fields compared
to the standard Galerkin formulation.
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2.2.1 Level-set method

The efficiency of the IVM relies on multiple ingredients. The interface between
the solid and the fluid must be accurately defined to enable the initialization of
the varying properties between the solid object and the fluid surrounding it. This
interface is specified using a smoothly varying signed distance function, hereafter
denoted ¢. Conventionally, ¢ attains a positive value in the fluid domain 2y, a
negative value within the solid domain (), and is equal to zero on the interface
Linterface = €25 N €, as summarized in (2.2). The following framework, used to
specify the solid phase and define the interface by a zero-level set distance function,
is known as the level set method [30].

—d ((:Ea y)> 11inte1rface) if (17, y) S QS,
¢(2§', y) - 0 if ($7 y) € Finterface; (22)
d ((iL‘, y)> Finterface) if (l', y) € Qf

where d ((z, y), Tinterface) 18 the nearest distance from a point in the domain, (x, ),
to the fluid-solid interface, I'jptertace- Thus, the interface between the solid phase and
the fluid phase, I'intertace, Will be identified by the zero-level set of ¢ as seen in
equation (2.2). In the case of advection, the distance function is cast into a scalar
transport equation. This equation accounts for any variation in the shape, size,
displacement, etc., of the solid. The solution of such an equation requires numerical
attention to ensure feasibility for long-time simulations and avoid the vanishing of
the function with time. For more details regarding the level set method, the reader
is invited to read [30-33]. It should be noted that in our test case, the solid phase is
fixed in position and vary neither in size nor in shape. Thus, the level set function
does not evolve as the solution proceeds.

2.2.2 Mixing laws

After defining the level set function that enables the specification of different phases
location, the distribution of properties along the domain can be initialized with the
aid of appropriate mixing laws. Almost all physical properties are defined using the
mixing law introduced in (2.3):

p(x,y) = prHe (d(z,y)) +ps (1 — He (d(2,9))), (2.3)

where p is any physical property that affects the resulting simulation such as
the density, viscosity, or specific heat. py and p, are the values of this property for
both the fluid phase and the solid phase, respectively. H, is the smoothed Heaviside
function [34], which is used to obtain improved continuity at the fluid-solid interface
by introducing a virtual thickness to the interface. The smoothed Heaviside function
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is parameterized by the interface thickness e, which depends on the mesh size at the
interface and is used to specify the virtual thickness of the interface. The smoothed
Heaviside function is defined as shown in equation (2.4):

1 if ¢ > €,
H(¢) =< 3(1+ 2+ Lsin(Z2)) if |¢| <, (2.4)
0 if p < —e.

It should be noted that references [35, 36] suggest using a harmonic mixing law
for the thermal conductivity A, rather than the general law defined in (2.3). The
harmonic law is defined in equation (2.5) and is used to ensure continuity of the
heat flux in addition to enhanced numerical accuracy:

1
Noy) ~ oy e @@y + 5 (1= He(6le,9) (2.5)

2.2.3 Anisotropic mesh adaptation

Simulations of processes with multiple phases, such as flow past a solid object, usu-
ally require a highly refined mesh to capture all the physics near the interface, leading
to increased computational requirements. The computation time of such simulations
can be drastically reduced using anisotropic mesh adaptation while maintaining the
accuracy and reliability of the simulation, as shown in [37, 38]. The anisotropic
adaptation reduces the number of nodes required by focusing on regions with large
variations in the physical or geometrical fields. The metric used to perform the
adaptation may depend on multiple variables where a method based on the inter-
section of all variables” metrics is used to compute it. For example, in the case of
forced convection, the normalized fields of the velocity components, velocity magni-
tude, the level set, and the temperature, are used to compute the adaptation metric.
Moreover, anisotropic mesh adaptation avoids numerical oscillations by aligning the
element edges with the interface. Also, it reduces the virtual thickness of the inter-
face due to the refinement of the mesh size along it. The adaptation method used
in this paper follows the same method used in [39]. The reader is advised to refer
to [40] for more details regarding the method summarized below.

To compute the required adaptation metric, the procedure starts by estimating
an error associated with each edge. The error indicator function e¥, associated to
an edge 7 = x/ — x' (where node j lies in the patch I'(i) of the nodes sharing a
single edge with the node i), is defined using the exact interpolation error shown in

(2.6):
e’ =|g7 - 2], (2.6)
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where ¢¥ is the change in the gradient along edge 2 of a P1 finite element
Lagrange approximation function wy,, i.e. ¢ = ¢ — g* = Vg - 2%. However, the
gradient is not known at the nodes, and thus an estimated error function is defined
using a recovered gradient G, computed using a length distribution tensor X?, as
shown in equation (2.7):

e =GV . 1" (2.7)
where the recovered gradient at node i, G, is defined as:
Gi _ (Xi)—l Z Uz’sz’j
Jer(@@)
while the length distribution tensor X, is equal to:
i 1 ij ij
X' = —_— Z X J X x J
T =
Jer()
After computing the estimated error, a stretching factor relative to every edge
is defined:
eij
e(N)’
where e(V) is the total mesh estimated interpolation error. Finally, the required
metric M?, is computed as shown in (2.8):

ij _

M= (X) - (2.8)
where,
- 1 o
)(Z = — SZJ X S”.
0l 2
2.2.4 Variational multi-scale approach

The system of governing equations (2.1) can then be resolved using the finite element
method, to obtain accurate solutions eligible to be used as ground truth for the
training of a deep learning model. To obtain the weak form of (2.1), each equation
is multiplied by its specific weighting function, and integration by parts is performed,
leading to the following weak form:

(p(Ou + u - Vu),w) + (2ue(u),e(w)) — (p,V-w) + (V- u,q) = (¢Y,w),
(@O F + pu-VF),s)+ (vVE,Vs) = (x, ),
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where w, ¢, and s are respectively the test functions for velocity, pressure, and
the required scalar field F'. Yet, the Galerkin discrete formulation of the above weak
form may fail if the flow is advection-dominated, or if the space discretization of
the problem variables does not satisfy the LBB criteria (also known as the Babuska-
Brezz condition or the inf-sup condition) [41]. To ensure the convergence of the above
system to a unique solution not polluted by artificial oscillations, the variational
multiscale method (abridged to VMS) will be utilized [24].

The VMS method starts by decomposing the required fields and their weighting
functions, i.e. the velocity, pressure, and the scalar variable governed by the trans-
port equation, into two scales: (i) a resolvable coarse-scale, and (ii) an unresolved
fine-scale. Replacing the decomposed fields into the variational form results in two
sub-problems specific for every scale. For the fine-scale Navier—Stokes problem, a
separation technique is proposed to facilitate the resolution of the unknown fine
fields [42, 43]. The continuity equation is replaced by a pressure Poisson equation
allowing to approximate the fine scale pressure as a product of a stabilization pa-
rameter and the residual of the continuity equation. The fine-scale velocity field is
similarly expressed from the momentum equation, with the aid of a bubble function,
as a product of another stabilization parameter, and the residual of the coarse-scale
momentum equation. The assumptions required to reach the above forms of the
fine-scale fields are justified in [44-46]. The definition of the stabilization parame-
ters appearing in the continuity and momentum equation can be found in [47, 48]. A
similar approach is applied for the convection-diffusion-reaction transport equation,
[49, 50], and the definition of its corresponding stabilization parameters is stated in
[51, 52].

For the coarse-scale problem, the fine-scale fields are replaced by their corre-
sponding expressions obtained from solving the fine-scale problem. This eliminates
the appearance of the fine scales but preserves their effects on the coarse-scale prob-
lem as shown in (2.9):

(p(Ou +u-Vu) , w)+ 2ue(u) , e(w))—(p, V-w)+(V-u, q) =, w)
+ Z MRy, u-Vw)g + (mRy , Vg)k + (Re, V- w)k]
KeTs,
(@O F + pu-VF), s)+ (yVF , Vs)=(x, s)
+ > [(3Rp . w-Vs)x + (Rp , (w-VF/||VF|*)VE - Vs)g]

KeTy,
(2.9)
where Ry, Re, and R are respectively the approximate residuals of the mo-
mentum, continuity, and scalar transport equation. The diffusion term is neglected
in the residuals as can be seen in (2.10):
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—Ry = p(Ou+u-Vu)+ Vp— 1,
—Re=V-u, (2.10)
—Rr =a0;F+ pu-VF — x.

It can be seen that the resulting discrete stabilized variational form of the prob-
lem, (2.9), includes additional integrals over the sum of element interiors compared
to the standard Galerkin formulation. These additional terms enrich the coarse-scale
solution of the fields with fine-scale characteristics. Moreover, adding these terms
relieves the restrictions on the discrete fields spaces, enhances its accuracy, and sta-
bilizes the problem by including dissipative small scales contributions. For more
extensive details regarding the VMS method, the reader is referred to [53, 54]. The
resulting set of equations is solved sequentially using an industrial-level in-house
VMS solver, the results of which were previously validated [27, 28]. The solver
computes the velocity and pressure fields before computing the additional scalar
governed by the scalar transport equation. It should be noted that all linear sys-
tems are preconditioned with a block Jacobi method supplemented by an incomplete
LU factorization, and solved with the GMRES algorithm.

2.3 Problem Definition

The problem detailed in this paper concerns the forced cooling of a hot workpiece
by a cold fluid flow, placed in a rectangular cavity. Such a problem requires the
coupling of Navier—Stokes equations with a heat energy equation responsible for the
evolution of temperature across the domain. Thus, the problem is governed by a set
of equations similar to (2.1), but with a scalar transport equation specific to heat
transfer:

pcp (0T +u-VT)=V-(AVT) + x,

where p, ¢,, and X are respectively the fluid density, specific heat, and thermal
conductivity. This equation is a scalar transport equation similar to the one defined
in (2.1) with a = 8 = pc, and v = A\. However, the fluid flow and its properties are
assumed to be invariant for the variations in the temperature field, meaning that the
coupling in this problem is weak, and the interaction between the computed fields
is unidirectional.

A schematic of the problem setup is shown in figure 2.2. The setup consists of
a 0.2H x 0.4H hot rectangular object placed at the center of a closed rectangular
cavity with a width of 4H and a height of H. The upper wall of the rectangular
cavity contains three similar inlets, 0.2H in width, required for the blowing of the
cold fluid. The distance of the side inlets to the origin of the cartesian coordinate
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system coinciding with the center of mass of the object, d;,; and d;,2, is varied
throughout the different data sets generated to enable us to train the model for
different setups and test its generalization capacity on new ones as will be detailed
later. Finally, the sidewalls of the rectangular cavity are equipped with outlets,
having the same dimensions as the inlets, to allow the escape of the hot fluid. The
outlets are positioned at the bottom of the sidewalls as is depicted in the problem
setup schematic.

Iil Iil Ill

=

T

>
AH

4H

Figure 2.2: Setup schematic required for cooling a hot object with fluid flow. The cold
fluid inlets are represented with blue arrows while the hot fluid outlets with red
ones. This specific setup shown has inlets placed symmetrically on both sides
with dinl == ding =1.5H.

To define the flow problem, the magnitude of the velocity at the inlets is set
to Vi, = lm/s with a fluid density of p; = lkg/m® and dynamic viscosity of

Vinl
M) equal

ty = 0.001Pa-s, thus resulting in a flow with Reynolds number, Re =
to 200. The outlets are designated with a zero-pressure condition. A no-slip bound-
ary condition is specified on the remaining boundaries. As detailed in section 2.2,
the immersed volume method is utilized to simulate the flow around the immersed
object. Thus, the solid phase is defined as a fluid with relatively high density and
viscosity, p; = 100kg/m? and p, = 1000Pa-s. The very large magnitude of the ratio
between the solid viscosity and that of the fluid, u& = 10°, ensures the satisfaction
of the no-slip condition at the solid-fluid interface along with a zero velocity in the
solid domain. Also, due to zero velocity in the solid domain, the convective term in
the energy equation diminishes, resulting in a pure conduction equation whenever
the radiation effect is neglected (i.e. x = 0). The source term in the NS equations
is also set to zero, thus neglecting any buoyancy forces or stress on the fluid.
Concerning the heat equation, the hot temperature of the solid is initialized to
Ty, = 150°C, whereas the cold temperature of the fluid at the inlet, T, is set to 10°C.
Isothermal condition is enforced on all the walls with T,, = T, = 10°C. The heat
exchange at the interface is implicitly regulated by specifying different values for the
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thermal properties of the composite fluid. For instance, the thermal conductivity A;
and specific heat ¢, ¢, for the fluid are set to 0.5W/m-K and 1000J /kg-K respectively,
thus resulting in a Prandtl number, Pr = %, of 2, while those of the solid are
set to: Ay = 15W/m-K and ¢, s = 300J /kg-K.

An unstructured triangular mesh of 15 000 elements, accompanied with anisotropic
mesh adaptation as detailed in section 2.2.3, is used to discretize the computational
domain. Figure 2.3 shows the developed mesh at a specific time step after the flow
has stabilized. A visualization of the computed fields that will be fed to the model,
i.e. the temperature and velocity components, is also shown in figure 2.4.
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Figure 2.3: Adapted mesh at a certain time step used to discretize the computational
domain.

2.4 Generated Datasets

The main objective of this paper is to assist a numerical solver by directly inferring
the temperature field using a deep learning network modeling the scalar transport
equation. Thus, the model should be trained to infer the temperature field for
different cooling setups. To attain this objective, the fields are computed for multiple
inlet positions with the same flow conditions. The dataset is assembled with the
temperature, at a certain time step, along with the velocity components as input
features and the temperature field, at a future time step, as the desired target.
Figure 2.5 shows a representative sketch of the model with its corresponding inputs
and inferred output.

The fields are computed using a CFD solver that discretizes the domain into an
unstructured irregular triangular mesh. However, since the model used will be based
on 2D convolutional layers, the computed fields must be interpolated to a structured
encoding mesh. Thus, two encoding meshes are suggested, a 161 — by — 641 mesh
for the input field and a 176 — by — 656 mesh for the output fields. The size of the
output mesh is implicitly specified by the model architecture since no interpolation or
cropping layers are utilized to enforce a certain size, thus preserving the information
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Figure 2.4: Sitmulated fields obtained at a developed time step after the flow has sta-
bilized. The fields shown are the (a) Velocity x-component, (b) Velocity y-
component, and (c) Temperature.

encoded along the feature maps boundaries. The computed fields will be transported
from the unstructured triangular mesh, using linear Lagrange interpolation elements,
to the required structured representation.

The first dataset, denoted as SymVar, is obtained by computing the fields for 18
different symmetrical inlet positions. The inlet positions are obtained by varying the
distance from the origin to the center of the side inlets, d;,; and d;,2, between 0.1H
and 1.8 H with a step of 0.1H. The data is sampled after the flow has stabilized. The
solver’s time step, Atgver, iS equal to 0.1 sec. However, the model will be trained
to infer the fields with 30 times larger time step, meaning that, given the fields at
t1, the model infers the temperature field at ¢t = ¢t; + 30At¢. The choice of a larger
model time step, compared to that of the original solver, is motivated by reducing
the number of operations required to span the whole time domain. Yet, the size of
the increase depends on the scalar field being inferred and should avoid discarding
variations necessary for the inferring of the future time step. Moreover, increasing
the incremental step will lead to a decrease in the data available for training, thus
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Figure 2.5: Model sketch

decreasing the model inferring quality. Thus, the size of the incremental step of
the model is a parameter that its choice is affected by the transport equation being
modeled and the required model accuracy. 329 snapshots of fields are gathered from
every simulation between t; = 50 s. and t; = 217 s., leading to a total of 5922
snapshots. It should be noted that for the training dataset, the fields are sampled
once every 5 time steps only, allowing us to test the ability of the model to infer the
in-between fields.

70% of the SymVar dataset is reserved for training, while the remaining portion
is used to test and validate the model. Each sample of the dataset contains, as
features, an encoded representation of the velocity fields, u"*!, and the temperature
field T™. The temperature field at the next desired step, 77!, is provided for every
sample as a label. The notation n 4+ 1 denotes that the fields are computed at
t = t, + 30At. Other datasets are obtained and used only to test the performance
of the model. Dataset Sym1.05 contains samples from a CFD simulation where
the inlets are symmetrically placed at d;,; = d;,2 = 1.05H from the origin. Dataset
UnSym is obtained by placing the inlets at different distances from the origin,
i.e. dipy = 1.3H and d;,» = 1H. The third dataset, SameSide, is collected by
placing both inlets on the same side with d;,; = 0.8H and d;,» = 1.6 H. Figure 2.6
summarizes the location of the inlets for the different datasets used.

2.5 Introducing the deep learning model components

The following section aims at providing a brief introduction for the main ingredients
constituting the model architecture. The core building block of any convolutional
neural network is the convolutional layer. Its main role is to automatically extract
higher abstract features from the input data into feature maps. This layer essentially
comprises a convolution operation with a specific padding and a stride, followed by
a non-linear activation. The following section will elaborate on each of the following
elements.
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Figure 2.6: Gathered datasets used for training and testing the model generalization
capacity from different cooling setups: (a) SymVar Dataset, (b) Sym1.05
Dataset, (¢c) UnSym Dataset and (d) SameStide Dataset. The setups shown
m 5b, 5c and 5d are never seen during training.

Convolution Operation

The input data of a convolutional layer is usually encoded on a structured grid,
similar to pixels in an image, and could be described using a three dimensional
tensor with a shape of h X w x ¢ with h,w and ¢ respectively the tensors height,
width and number of channels. Each input pixel in this data is in high correlation
with its neighbouring pixels and essential information for extracting higher level
abstract features is embedded in the pixel neighborhood. Thus, to avoid any loss
of structural information by flattening an image into a vector and operating on
it using an MLP, where the notion of locality is irrelevant, convolutional neural
networks were invented [55, 56].

The constituting operation of such a layer is the convolution operation. In this
operation a set of learnable filters, also known as kernels, are applied to the input
data as shown in Figure 2.7a. Each kernel is usually a square shaped tensor, k? x c,
where k is known as the kernel size and ¢ is the number of channels in the input
data. Each filter convolves across the input data in a systematic manner to extract
a feature map. The size of the kernel defines the receptive field of the output pixel in
the extracted feature map. Usually small kernels with k less than five are preferred
to avoid increasing the number of weights quadratically. At each position where the
filter overlaps with the tensor, the k2 x ¢ local components of the tensor are flattened
into a vector, and a dot product is computed between these components and the
kernel weights. The resulting scalar output at every location is then stacked in a
2D tensor, while respecting the location of its receptive field, to attain the required
feature map. The multiple feature maps obtained from each kernel convolution are
finally concatenated in a single 3D tensor to obtain the output of the convolution
layer as shown in Figure 2.7b. Finally, it should be noted that every pixel in the
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Figure 2.7: Convolution operation on a 6 X 6 x 1 single channel input image. In (a) a
symmetric filter with k = 3 is used to convolve the input image. In (b) the
feature maps of three different filters are concatenated to obtain the output of
the convolution layer.

output feature map could be visualized as a neuron as shown in Figure 2.8. The
input of this neuron are the local tensor components while its weights are the kernel
parameters.

Padding and Stride

A kernel in a convolutional layer may not be able to convolve over all the pixels
available in the input image. This problem occurs near the boundaries where the
size of the kernel exceeds the remaining available pixels in the image. Since the
kernel outsizes the image at these boundary pixels, the information in these pixels is
discarded or only considered few times compared to pixels away from the boundaries.
[57-59] are few examples of works that aimed at assessing the importance of padding
and its impact on the final model performance. In this manuscript, the effect of
different padding schemes on the model performance is evaluated in Section 2.10.
Briefly speaking, padding is a term relevant to convolutional neural networks,
and is simply surrounding the borders of the input image or hidden feature maps by
an extra layer of pixels, thus extending its area. This prevents the fast shrinking of
the input image in network with deep architectures and most importantly preserves
information from border pixels. Various schemes of padding are excessively utilized
such as same-padding, reflect-padding or symmetric-padding. In addition to these,
plenty of other less utilized schemes, suited for specific applications, can be found
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Figure 2.8: A neuron depicting a pizel, y, in the output feature map. The input of this
neuron are the local tensor components x; and the weights are the kernel pa-
rameters, w;. The number of input pixzels and trainable parameters depend on
the kernel size, k, and input number of channels, c. o and b are respectively
the non linear activation function and the bias.
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Figure 2.9: Examples of different padding schemes that preserve the size of the input tensor
for a single-stride convolution with a kernel size of three. The padding schemes
are: (a) same-, (b) symmetric-, and (c) reflect- padding.

by investigating the literature [60, 61]. Figure 2.9 illustrates visually the various
padding schemes mentioned.

The size of the padding, along with the kernel size and convolution stride, de-
termine the size of the output tensor. The stride, s, is a parameter used to tune
the compression of the convolution operation and the overlapping of receptive fields.
Thus, it specifies the rate of sliding of the kernel, 7.e. the number of pixels by which
the kernel slides after each operation, as shown in Figure 2.10. To maintain the
same size of the input image in the output feature map, a single-stride convolution
operation is usually accompanied with a padding of p layers on each side computed
using equation 2.11,
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Figure 2.10: Examples showing the central of the convolving kernel on the first row of the
input tensor for two different stride values: (a) s =1 and (b) s = 2.

p=k—1 (2.11)

Where k is the size of the kernel and 2p is the total number of padding layers
along both sides of the image. Usually, odd-sized kernels are used to ensure the same
number of padding layers is added on each side of the image and thus preserving
the spatial dimensionality of the image. If the size of the kernel is even, a common
practice is to pad [k—1/2] on one side and [k—1/2] on the other side. In general, the
shape of the output tensor, hyys X Wout X Cout, resulting from a convolution operation
with a pad p, stride s, and d; kernels on an input tensor of shape, h;, X w;, X ¢, is
computed as shown in Equation 2.12,

hout = —+ ]-7
S

wyy = Cn TR (2.12)
S

Cout = dl-

Non-linear activation

The model’s approximation capacity is intrinsically tied to its depth and the count
of trainable parameters. Nevertheless, employing multiple hidden layers without
applying a non-linear activation function to the output of the weighted sum is es-
sentially equivalent to utilizing a single linear layer. Figure 2.11 illustrates this
concept using a basic MLP with only one hidden linear layer. The visualization
demonstrates that the entire model could be reduced to a single linear layer owing
to the lack of nonlinearity.
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Figure 2.11: Two equivalent MLPs with similar model output due to absence of non-
linearity. Both models have x € R3*!, and y € R as their inputs and output,
respectively. In (a), h € R>*! is the hidden layer activation vector, with
WO e R2%3 gnd WP e R'™2 g5 the hidden and the output layer weights,
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Figure 2.12: Examples of popular activation functions: (a) Sigmoid function, (b) Hyper-
bolic tangent function, and (¢) ReLU function.

To benefit from the deep neural networks’ approximation capacity when em-
ploying multiple layers of hidden neurons, it is essential to introduce a nonlinear
activation function after each layer. Commonly chosen nonlinear functions include
the sigmoid activation, hyperbolic tangent (tanh), and rectified linear unit (ReLU).
Figure 2.12 illustrates the behavior of these functions concerning their input val-
ues. By incorporating these nonlinear activation functions, deep neural networks
can maintain their expressive power and avoid collapsing into a single linear layer.

Deconvolution Layers

Convolutional neural networks typically aim to extract hierarchical features from
input images to perform various tasks, including classification, object detection, or
scalar prediction. To reduce the computational load and emphasize their approxi-
mation capacity for relevant information, multiple downsampling layers are incor-
porated into the architecture. These downsampling layers typically take the form of
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pooling layers, most commonly max pooling or average pooling [62], or strided con-
volutions (convolution layers with a stride larger than one). However, certain models
are employed for other tasks that require reconstructing the dimensions of the in-
put data or generating an image from a lower-dimensional input. An example of
such models includes convolutional autoencoders [63]. These architectures typically
consist of two main parts: an encoder and a decoder. The encoder is responsible
for extracting a compressed representation of the input using various downsampling
layers, while the decoder reconstructs the input dimensions by upsampling the latent
features.

Two common types of upsampling layers are typically used to increase the size of
the encoded features and reconstruct the input dimensions: the upsample layer and
the transpose convolution layer. The upsample layer is a straightforward method
that expands the spatial dimensions of its input by replicating the values of the
original feature map. While this method is simple and computationally efficient,
it lacks any form of learning due to its reliance on deterministic nearest-neighbor
interpolation. On the other hand, the Transpose convolution layer, also known as
deconvolution or fractionally strided convolution, is a more complex upsampling
method. It is a learnable layer that interprets the coarse input data to fill the
upscaled data with more meaningful information rather than simply replicating its
values.

More precisely, the transposed convolution layer perfroms upsampling and con-
volution at the same time. Similar to a convolutional layer, the number of kernels
d;, the size of the kernel k, the pad p and the stride s, are all hyperparameters that
will impact the size of the output. The number of channels in the output tensor is
similarly imposed by the number of kernels, with each channel being the convolution
result between one kernel and the input. For each kernel, the tranposed convolution
initially upsamples the input tensor by inserting s—1 zeros between every two neigh-
boring pixels. To recover an output shape scaled by s, ”same padding” is performed
on the upsampled input following Equation 2.11. Finally, the upscaled output is
obtained by performing a single-stride convolution on the obtained modified input.
The following procedure is visualized in Figure 2.13.

Batch Normalization

Although, deep neural networks are advantageous over shallow models due to their
significantly increased approximation capacity, however, this advantage comes with
the trade-off of longer and more challenging training. One major source of this chal-
lenge arises from the dynamic variations in the distribution of internal hidden layer
activations during the optimization process, a phenomenon known as ’internal co-
variate shift.” Specifically, during optimization, weight updates for a given layer are
computed under the assumption that other parameters remain constant. However,
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Figure 2.13: Different steps of the transposed convolution on a single channel input tensor
with a kernel of size k = 3. The stride is set to 2, s = 2, and same padding
is utilized to preserve the expected output dimension. The kernel weights
are here specified as shown in figure although in practice they are trainable
parameters.

due to the simultaneous updates of various parameters and the resulting variation in
the distribution of hidden layer activations, the optimization algorithm is hindered
as it chases a continuously moving target.

To address this challenge, batch normalization, has been suggested [64]. This
technique standardizes the activations of a layer using its mini-batch statistics, thus,
reducing the dramatic fluctuations in their distributions across the different update
steps. Other than reducing the internal covariate shift, employing batch normaliza-
tion also serves in smoothing the landscape of the associated optimization problem,
thus, further contributing in accelerating convergence and reducing training times
[65]. Finally, Batch Normalization introduces some regularization to the network
due to the noise in the computed mini-batch statistics, thus also serving in reducing
the generalization error of the model.

In essence, batch normalization computes the mean and variance for each activa-
tion within a hidden layer across the mini-batch. These statistics are then utilized
to standardize the layer’s activations. Moreover, to preserve the network’s repre-
sentation power, additional trainable parameters, S and v, are introduced. These
parameters automatically shift and scale the standardized layer activations, as de-
picted in Equation 2.13.

Lo A0 x (WO — @)

norm

+ 89, (2.13)
oW? ¢

where h®, 1. and ¢®” are the I** layer activations, computed mean and vari-
ance, respectively. € is a small constant for numerical stability, while v and g"
are the introduced learnable parameters.

Finally, a moving average of the computed mean and standard deviation, ,u%)m,
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and aﬁé)ov, are also computed across the various update steps, as shown in Equation
2.14, to allow consistent standardization during inference.
luv(’iz)ov = :u7(7l1)ov X m + lu(l)(l - m)?
o =60 xm+4+oW(1—m),

mov mov

(2.14)

where m is a momentum hyperparameter while ) and o are the mini-batch
specific statistics.

2.6 Model Architecture

The task of the considered neural network is to model the scalar transport equation,
shown in (2.1). Thus, instead of solving both the NS equations and the transport
equation using traditional numerical methods, a deep learning regression model will
be responsible for the resolution of the scalar field F. The architecture of the
model used to accomplish the above-mentioned task is an auto-encoder-like end-
to-end network [19], presented in figure 2.14. While auto-encoders are designed
to generate a compressed representation of their input [66-69], in the suggested
model, the output of the model is a distinct field. Similar architectures have been
previously employed to infer other physical fields for fluid flow problems [70, 71].
The model consists mainly of three components: encoder, bottleneck, and decoder.
The encoder gathers the information from the input fields and compresses them to
a reduced dimension representation denoted as the bottleneck (also known as the
latent space). The spatial reduction, in the encoder, is handled using downsampling
convolutional layers with a stride of two. These layers are preceded by a single-stride
convolutional layer and followed by batch normalization [64], and ReLU non-linear
activation [72]. This pattern of layers is repeated N = 4 times as seen in the upper
branch of figure 2.14. The encoder is followed by a decoder responsible for inferring
the required scalar field from the compressed latent space. The building block of the
decoder consists of a single-stride convolutional layer, followed by a deconvolutional
layer responsible for the upsampling of the input to a larger dimensional space, in
addition to a non-linear activation function. This pattern of layers is repeated the
same number of times as its contrast downsampling pattern in the encoder. The
decoder is represented by the bottom branch in figure 2.14.

It should be mentioned that the physical fields, fed to the model, are priorly nor-
malized. This standard preprocessing operation unifies the scale of all the fields and
thus ensures a faster training process as is detailed in appendix 2.9. Moreover, the
convolutional layers present throughout the model are preceded by a padding layer
following the reflect scheme. Using such a scheme preserves the physical statistical
distribution of the feature maps without introducing artifacts near the boundaries
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Figure 2.14: Deep learning model architecture used to infer the required temperature
given temperature, at previous time step, and velocity components as feature
mputs.

[58]. Appendix 2.10 supports our choice of reflect padding by comparing the per-
formance of the model with different schemes. The resolution of the discretization
in the encoding meshes is specified while keeping in mind the available memory to
store the data and train the model. Finer structured meshes would allow the model
to execute superior predictions but at the cost of larger memory requirements and
longer training times. The aspect ratio of the encoding mesh is chosen similar to
that of the computational domain, i.e. Z—Z ~ %, where n, and n, are the number
of nodes in the x and y direction respectively. This choice of aspect ratio is made
to ensure the feature maps are not biased toward a spatial dimension despite what
consequences would have resulted from such bias. Moreover, the input encoding
mesh dimensions are selected while assuring the downsampling convolutional layers
present in the encoder do not violate equation (2.15):

hi = s x (hy — 1)+ k — 2p, (2.15)

where h; and h, are respectively the input and output dimension size of the
image and s, £ and p are respectively the kernel stride, size and padding of the
considered layer. Violating equation (2.15) for downsampling convolutional layers
leads to uneven padding operations, which may deteriorate the performance of the
model [58]. It should be noted that the next possible encoding mesh size respecting
equation (2.15) and maintaining aspect ratio close to 1/4, will possess 21, 588 addi-
tional pixels which require around 20% supplementary storage and memory space
for every field.

2.7 Training

The inferring quality of the deep learning model described in setion 2.6 depends
on the trainable set of weights and biases. These parameters define the model and
its ability to infer the required scalar fields. After randomly initializing them with
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Figure 2.15: Training curve showing the evolution of the MSFE loss, for both the training
and validation dataset, over the number of epochs.

Gaussian distribution, the optimal set of parameters is obtained by minimizing a cer-
tain loss function quantifying the error between the inferred fields and the reference
ones. In our model, 2937025 parameters are optimized, using Adam optimizer [73],
with a learning rate equal to 107°. The optimizer iteratively minimizes the mean
squared error (MSE), computed between the reference fields and the predicted ones
and defined as in (2.16):

samplcs Ny n

- 2
Nsamples X Ny X Ny Z Z ( - F ) (216)

=1 r=1 c=1

E:

where Ngamples s the number of samples for every optimization step, n, and
n, are respectively the number of nodes in the x and y direction for the output
encoding mesh, i.e. n, = 176 and n, = 656, Fj’c is the true scalar value at a
specific location for a sample ¢ and Ff}c is the value inferred by the model. The
training is performed using the TensorFlow API [74], on an Nvidia Tesla V100
GPU. The optimization is performed using mini-batches of size 32 for a total of
1651 epochs, requiring approximately 21 hours. The training is terminated using
the early stopping criterion after a satisfying accuracy is attained and before the

performance on the validation dataset starts to deteriorate, as can be seen in figure
2.15.

2.8 Results and discussion

Although the temperature fields are inferred on the whole computational domain,
the main interest of any industrial practitioner will be biased toward the temperature
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Figure 2.16: Location of sampling probes. On left, probes that capture the variation
of the field along a specific line. On right, probes inside working object to
capture variation over time.

fields within the object being cooled. To focus more on this region, temperature
probes are installed at various positions within the object as is demonstrated in
figure 2.16. These probes allow plotting the evolution of the temperature field over
the simulation time. Plots of the variation of the temperature field over predefined
lines in the computational domain will also be obtained. Moreover, the plot of the
temperature field in the region of interest, and the computation of a normalized
error, will also allow the evaluation of the model on various data sets with different
flow characteristics.

First, the input fields from a simulation with symmetrical inlets, placed at d;,; =
dino = 1.5H, will be provided for the model to assess its interpolation ability over
time. This setup is partially included in the SymVar dataset used to train the model
where only 12% of the total 1971 time steps are previously seen during training and
no snapshot was provided at a step exceeding 2300. This dataset will be referred
to as Sym1.5 in the figures and tables used to assess the model performance. The
model extrapolation ability over time was tested for 200 extra time steps. Figure 2.17
shows the plots of temperature at various probes where almost exact similar fields
are inferred by the model over the whole range of provided time steps. If the model
is required to predict for further time intervals, the time domain of the provided
training dataset should be expanded to avoid divergence in model inferrings’.

The generalization capacity of the model to completely unseen inlet setups is
also evaluated. Three data sets were created for this purpose: Sym1.05, UnSym,
and SameSide. The first dataset, Sym1.05, with symmetrical inlets, placed at
dipn = dine = 1.05H, has similar flow characteristics as the dataset used to train
the model but with different positions of inlets, not seen before by the model. The
remaining two data sets, UnSym and SameSide, have both their inlets placed
at an unsymmetrical location with respect to the origin. However, the SameSide
dataset, with both inlets placed on the left of the object, shows a very large change
in the characteristics of the flow compared to the other sets. Figure 2.18 shows the
flow fields resulting from all three different setups.

Figure 2.19 shows the line plots of temperature across specific x and y values
shown in figure 2.16. The line plots are obtained at the same single time step for all
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Figure 2.17: Plot of computed and inferred field at various probe locations for
setup with symmetrical inlets at d;,1 = d;no = 1.5. The predicted fields
are plotted with dashed lines, while the computed ones are plotted with solid
lines. The shaded region, shown after time step 2300, represents the region
where extrapolation over time occurs.
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Figure 2.18: Velocity magnitude from the different flow setups used to test the model
generalization capacity. FEach setup is for a specific dataset: (a) Sym1.05
dataset, (b) UnSym dataset, and (c) SameSide dataset.
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sets. For the first three data sets, Sym1.5, Sym1.05, and UnSym, the model was
able to accurately infer the variation of temperature over the whole computation
domain. This can be seen by the overlapping plots of the inferred field and the
label field obtained from a CFD simulation. For the SameSide dataset, although
a larger deviation between the fields can be observed, mainly in the fluid domain
where the flow characteristics drastically change, the model is still able to infer the
general trend of the variation of the field. To quantify the quality of the inferred
fields over the different inlet setups, the Iy normalized error, defined in equation
(2.17), is computed for each sample:

1T — F7|]
error R (2.17)
where || - || is the I3 norm of the physical field. T™ is the true scalar field at time
step n, and F"™ is the model inferred one.

The model performance is approximately similar over the Sym1.5, Sym1.05,
and UnSym sets with an average error ranging from 1.27 x 1072 to 1.54 x 1072.
The error increases for the SameSide set, as expected due to a large change in
flow characteristics, with a maximum not exceeding 1.35 x 107!, All results are
summarized in table 2.1 along with the time step that corresponds to the maximum
error in each setup. Moreover, the error in the domain of the object is also computed
neglecting the surrounding domain, and shown in the last row of Table 2.1. This
error is an order of magnitude lower than its counterpart due to fewer changes in
the object domain with the variation in the positions of the inlets. The error fields
maps, computed using the absolute error normalized with the true temperature in
Kelvin, are shown in figure 2.23. Moreover, a visual comparison between the inferred
fields and their computed counterpart in the region of interest, i.e. the domain of
the object, is shown in figure 2.22. The obtained fields are almost identical except
for the SameSide set where deviation from the true field occurs but maintains the
same range of temperature values.

Finally, the trained network, modeling the scalar transport equation, is incor-
porated in the solution loop as shown in figure 2.20. Initially, the CFD solver is
utilized to resolve both governing equations, i.e. the Navier-Stokes and the trans-
port equations, until all lows are well established. Starting ¢ = 50 sec, the trained
deep learning model can be used to infer the scalar field. The temperature, 7", along
with the velocity fields obtained from resolving the Navier-Stokes equation, u"*! and
v™" 1 are interpolated into the required encoding mesh of the model. The model will
infer the temperature field 77!, at the next model time step, "™ = t" 4+ 30 At orper-
The inferred temperature field is recycled by encoding it and feeding it back to the
model for multiple times f. After multiple predictions, the traditional transport
solver is utilized to redirect the solution before proceeding again with the model.
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Line plot of temperature variation over a certain direction. The
temperature field, both computed and inferred, at the same time step, T'S =
1750, is plotted along both lines, x = 0 and y = 0, for different inlet setups.
Every row of plots corresponds to a separate dataset. The order of sets is:
Sym1.5, Sym1.05, UnSym, and SameSide.
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Dataset H Sym1.5 Sym1.05 UnSym SameSide
Average 1.27x 1072 | 1.564 x 1072 | 1.33 x 1072 | 1.09 x 10~*
Maximum 1.92x 1072 | 2.35 x 1072 | 1.66 x 1072 | 1.35 x 107*
Time Step 1575 567 1745 637
Focused Average | 2.6 x 1073 | 3.09 x 1072 | 3.58 x 1072 | 3.23 x 1072

Table 2.1: Summary of obtained error. The average of the lo normalized error is
computed across all samples. The time step corresponds to the step at which
the maximum error is found. The focused average is computed only over the
object domain.

The model predicted field, 77/ is interpolated back to the unstructured mesh to
enable the finite element transport equation solver to operate on. The input re-
quired by the traditional solver to resolve the field at the next time step is identical
to that of the model. The solver inferred field, 77"+, can then be refed to the deep
learning model to advance in the solution. This sequence is repeated until the whole
time domain is spanned. The number of times the model is used consecutively f,
affects the quality of the solution. Large f values allow advancing with larger time
steps throughout the required time interval but may lead to less accurate solutions.

vn Vn+1 Vn+f Vn+f+1
ol s NS Tv—>__>

" I n+1 Tn-‘,—f Tn+f+1
—— | DL model cee Transportl =~ s 7, model |—s> ...
Equation
. J . J
v v
Repeat f times Repeat f times

Figure 2.20: Implementing the deep learning model in the solution loop.

The total time required for the industrial-level CFD solver to resolve both gov-
erning equations for ¢ € [50,250] sec is 491.92 seconds. Around 22% of this com-
putational time is required for only resolving the scalar temperature field 7. To
explore the potential of our model, the value of f is set to infinity, meaning that the
temperature field across the whole time domain will be resolved by the deep learn-
ing model without referring back to the scalar finite element solver. Knowing that
Atmodel = 30 X Atgover, the model resolves the temperature field across the whole
computation domain in 8.71s., i.e. around 12 times faster than the finite element
scalar equation solver. At last, the [; normalized error for the predicted fields on the
Sym1.5 dataset, with f set to infinity, maintains an average of 2.49 x 102 and does
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not exceed the 3.61 x 1072 level as can be seen in figure 2.21a. The mean tempera-
ture field over the whole spatial domain is computed and compared to that obtained
with the CFD solver as shown in figure 2.21b. Moreover, the results obtained with
f set to 10 are also shown in both figures, 2.21a and 2.21b.

= CFD solver
freq = inf
N —- freq=10

0.035

0.030 1

0.025 A

0.020

Normalized Mean Error
Mean of Temperature

0.015

0.010 4—*

500 750 1000 1250 1500 1750 2000 2250 2500 500 750 1000 1250 1500 1750 2000 2250 2500
Time Step Time Step

(a) (b)

Figure 2.21: Implementation results for different values of f with (a) showing the
plot of error evolution and (b) the plot of the average temperature evolution.
In both figures, the cross sign is shown for the prediction obtained after the
traditional solver is used.
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£

Figure 2.22:

54 56 58 60 62 64 66

Temperature field in object domain. The temperature field, computed on
left and inferred on right, at the same time step, T'S = 1750, is plotted in the
region of interest, for different inlet setups. Fvery row of plots corresponds
to a separate dataset. The order of sets is: Sym1.5, Sym1.05, UnSym,
and SameSide.
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Figure 2.23: Error field maps obtained for the different inlet setups of the (a) Sym1.05
dataset, (b) UnSym dataset and the (¢) SameSide dataset.

2.9 Exploring performance for different scaling methods

For deep learning approaches using gradient descent to optimize their parameters,
it is suggested to maintain the input features at a similar scale. This practice is
motivated by a faster convergence of the optimizer toward the requested minimum
[75]. Moreover, scaling the target fields avoids encountering the exploding gradient
problem. Multiple methods exist to scale the fields such as the min-max scaler,
the standard scaler, the robust scaler, etc. The most common methods used are
the min-max scaler, also known as field normalization, and the standard scaler (i.e.
field standardization). The choice of the suitable scaling method depends on mul-
tiple factors and may vary between fields. For example, different resources suggest
normalizing in case the field distribution is not Gaussian, and others suggest stan-
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dardizing if outliers exist. In the present work, the temperature field is normalized,
given its non-Gaussian distribution, and the performance of the model is evaluated
for both scaling methods available for the velocity field. Moreover, the model is also
trained with raw data as a reference for both scaling methods. Equation (2.18) is
used to normalize a field, while equation (2.19) is used to standardize it:

X —min

X=——" (2.18)
max — min

X —
X =="F (2.19)
g

where min, max, pu, and o are respectively the minimum, maximum, mean, and
standard deviation of the field X, obtained based on the training dataset.

The plot of the loss curve over the validation dataset will be used to compare
among the different scaling methods. Figure 2.24 shows the evolution of the valida-
tion loss for three similar models trained with fields scaled using different methods
for 600 epochs. The inferred temperature field is restored to its original scale before
computing the loss to allow the comparison between the different models.
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Figure 2.24: Validation loss for different scaling methods.

By inspecting the above figure, the advantages of scaling fields before training
are obvious since both models with scaled data encounter a faster decrease in the
loss than the one with the raw data. Approximately similar performance is observed
for both scaling methods, however, we chose to normalize both fields rather than
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standardizing velocity and normalizing temperature since slightly lower losses are
obtained in some training epoch intervals. Using scaled data, the loss at epoch 600
decreases to 5.96 x 1072 for normalizing both fields, and 6.25 x 102 for standardizing
velocity and normalizing temperature, whereas, for raw data, a higher loss, 7.97 x
1072, is obtained.

2.10 Exploring performance for different padding methods

To choose the appropriate padding scheme, the model was trained with different
padding methods. The investigation was limited to only three schemes and the vali-
dation loss, obtained after training is terminated using the early stopping criteria, is
used to compare between the different schemes. Figure 2.25 shows the loss obtained
during training over the validation dataset for the three padding schemes: same, re-
flect, and symmetric padding. Although the performance is slightly affected by the
scheme used and all three curves look similar, the model trained with reflect padding
scheme returned the lowest mean squared error with a value of 2.6420 x 1079, com-
pared to 2.78 x 107% and 2.88 x 107° for same padding and symmetric padding,
respectively.
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MSE Loss
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Figure 2.25: Validation loss for different padding methods.

Table 2.2 summarizes the obtained losses over both the training and the valida-
tion dataset. Based on the shown losses, the model trained with reflect padding and
obtained at epoch 1650 will be used to predict the temperature field for different
setups as detailed in section 2.8. The slightly larger training loss obtained for the
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same and reflect padding, compared to that of validation, can be accounted for the
stochastic nature of training along with the fact that the training loss is computed
half an epoch earlier than the validation loss.

Padding H Same ‘ Symmetric ‘ Reflect ‘

Training || 3.02e-6 2.87e-6 2.69e-6
Validation || 2.78e-6 2.88e-6 2.64e-6
Epoch 1553 1427 1651

Table 2.2: Summary of obtained losses for different padding schemes over both the training
and the validation dataset

2.11 Conclusion

In this work, a deep learning model, based on a convolutional network with an au-
toencoder architecture, is employed for inferring a certain scalar field. The model
was trained for predicting the temperature field in a conjugate heat transfer problem
and thus models the scalar transport equation in the coupled system of equations.
Although the model was trained on samples obtained from a few different symmet-
rical cooling setups, it was able to accurately infer the fields for new inlet positions,
whether symmetrical or not, with a maximum error of 1.35 x 10~%. Also, the abil-
ity of the model to interpolate in the time-domain, permitted training on multiple
cooling setups, with a few snapshots for each setup, distributed on this domain.
Moreover, the model manages to span the whole time domain independently, i.e.
without referring back to the scalar transport equation solver, 12 times faster than
the industrial level CFD solver, and returns reliable predictions for the evolution
of the temperature field with an average I, normalized error equals to 2.49 x 1072.
These results motivate us to exploit the capacity of deep learning models, with
similar architecture, for assisting in the simulation of numerous number of physical
problems governed by a similar set of equations where the Navier—Stokes equations
are coupled with a scalar transport equation responsible for the computation of a
certain physical field.
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Chapter 3

Deep learning model for Two-Fluid Flows

)

( 1. Testing ] (2. Enhancing |

Figure 3.1: Organization of current thesis

Abstract Various industries rely on numerical tools to simulate multiphase flows
due to the wide occurrence of this phenomenon in nature, manufacturing processes,
or the human body. However, the significant computation burden required for such
simulations directs the research interest toward incorporating data-based approaches
in the solution loop. Although, these approaches returned significant results in vari-
ous domains, incorporating them in the computational fluid dynamics field is wran-
gled by their casting aside of the already known governing constitutional laws along
with the natural incompatibility of various models with unstructured irreqular dis-
cretization spaces. This work falls under the second stage of the thesis organization,
as shown in Figure 3.1, where the model framework introduced in the first stage is
enhanced to tackle more complex problems. Precisely, it suggests a coupling frame-
work, between a traditional finite element CFD solver and a deep learning model, for
tackling multiphase fluid flows without abandoning the benefits of physics-enriched
traditional solvers. The tailored model architecture, along with the coupling frame-
work, allows tackling the required problem with a dynamically adapted unstructured
wrreqular triangular mesh, thus dodging the limitation of traditional convolution neu-
ral networks. Moreover, the various ingredients that allowed the model to simulate
the complex and computation-demanding Navier-Stokes flow equation, such as rely-
mg on a sequential validation dataset while exposing the model training to a noise
inherited from the quality of its inferring, along with the proper choice of model
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imputs, are highlighted and elaborated throughout this paper. To the authors’ knowl-
edge, this work is the first of its type to introduce a data-based graph-based approach
for solving multiphase flow problems with a level-set interface capturing method.

Abstract Diverses industries s’appuient sur des outils numériques pour simuler
les écoulements multiphasiques en raison de la fréquence de ce phénomeéene dans
la nature, les processus de fabrication ou le corps humain. Cependant, la charge
de calcul importante nécessaire pour de telles simulations oriente l'intérét de la
recherche vers ['intégration d’approches basées sur des données dans la boucle de
résolution. Bien que ces approches aient donné des résultats significatifs dans divers
domaines, leur intégration dans le domaine de la dynamique des fluides numérique
est entravée par leur mise de coté des lois constitutionnelles déja connues, ainsi que
par lincompatibilité naturelle de divers modéles avec les espaces de discrétisation
wrréquliers non structurés. Ce travail s’inscrit dans le cadre de la deuxieme Etape
des trois étapes de la these, comme le montre la Figure 3.1, ou le cadre du modele
introduit lors de la premiéere étape est amélioré pour aborder des problemes plus com-
plexes. Plus précisément, il propose un cadre de couplage entre un solveur CEFD a
éléments finis traditionnel et un modeéle deep learning pour aborder les écoulements de
fluides multiphasiques sans perdre les avantages des solveurs traditionnels enrichis
en physique. L’architecture du modele, associée au couplage, permet de résoudre
le probleme requis avec un maillage triangulaire irrégulier non structuré adapté de
maniere dynamique, échappant ainsi a la limitation des réseaux neuronaux convolu-
tionnels traditionnels. De plus, les différents éléments qui ont permis au modéle de
simuler I’équation complexe des écoulements de Navier-Stokes, tels que le recours a
un ensemble de données de validation séquentielle tout en exposant [’entrainement
du modeéle a un bruit hérité de la qualité de son inférence, ainsi que le choix appro-
prié des entrées du modeéle, sont mis en évidence et développés tout au long de ce
chapitre. A la connaissance des auteurs, ce travail est le premier en son genre a in-
troduire une approche basée sur des données et basée sur des graphes pour résoudre
les problemes d’écoulement multiphasique avec une méthode de capture d’interface,
la méthode level-set.

76



3 Deep learning model for Two-Fluid Flows

Contents

3.1 Introduction . ... ........... . 0000 78
3.2 Governing Equations . ... ... .............. 81

3.2.1 Level-Set Method: Convective-Reactive Method for Inter-
face Capturing and Evolution . . . . . . .. ... ... .. 82
3.2.2 Mixing Laws: Initialize the Flow Properties . . . . . . .. 83
3.2.3 Anisotropic mesh adaptation . . .. ... .. ... .... 84
3.2.4 The Stabilized Navier-Stokes Flow Equations . . . . . .. 85
3.3 Problem Definition ... ... ..... ... .. ..., 87
34 MainlIdea . . . . . . ... o e 89
3.5 Introducing the deep learning model components . . . . 95
3.6 Model Architecture . . ... ... ... ... ..., 99
3.7 Training . . . . . . . o i i i i it 101
3.8 Results and Discussion . . ... ............... 105
3.9 Conclusion . . ... .. ...ttt 109
Bibliography . . . . . . . . . . . o e e e e e 112

77



3 Deep learning model for Two-Fluid Flows

3.1 Introduction

Multiphase flows dominate a large number of phenomena in both nature and in-
dustry [1]. Blood in the human body, groundwater flow through porous media,
and crude oil or drilling fluid flow in the petroleum industry, are a few real-life ex-
amples of simultaneous flow of materials with two or more thermodynamic phases.
These problems are of great interest to the scientific community, in general, and
for the computational fluid dynamics (CFD) community, in particular [2], due to
the difficulty of experimental investigation. However, simulating such flows requires
coupling various partial differential equations together in a computationally expen-
sive environment with major challenges [3]. Coupling the flow and scalar transport
equations is highly popular for various industrial multiphysics problems. One of the
methods for solving multiphase flow problems is based on coupling the Navier-Stokes
equation, responsible for resolving the flow fields, along with a scalar transport equa-
tion, the level set method, responsible for tracking the interface. Examples of other
problems governed by a similar set of equations include turbulent flow problems, in
which the level set equation is replaced by another scalar equation, the one-equation
Spalart Allmaras turbulence model [4], or convective heat exchange problems, where
the energy equation replaces the level set equation. Although considerable efforts in
the scientific community have been invested throughout the past decades to develop
highly advanced numerical solvers, resolving large governing systems consisting of
multiple differential equations is still challenging regarding the required time for
obtaining the solution. Nevertheless, a large portion of this time is monopolized
for resolving the flow equations. This is mainly due to the high dimensionality of
the Navier-Stokes equations, along with the presence of nonlinear terms resulting in
solution instabilities requiring additional treatment, especially for high convective
flows. This high computational cost renders simulating complex industrial processes
impractical and thus hinders the ability of industries to respond to the highly de-
manding market requests. All of these drawbacks impose the scientific community
to search for techniques that may aid in resolving this issue.

On the other hand, current advances and expansion in computational power,
along with the increased availability of data and numerous resources for its accu-
mulation, all suggested machine learning in general, and deep learning (DL) in par-
ticular, as a promising candidate for aiding in the solution of the above-mentioned
problem. Throughout the past decade, these data approaches have succeeded in
performing tasks in various fields previously considered challenging to tackle, such
as machine translation [5], natural language processing [6], speech recognition [7],
and computer vision [8]. The proven ability of these early data-based approaches
led to their fast diffusion to the world of computational mechanics and mainly that
of fluid mechanics in multiple aspects: Turbulence modeling [9], flow prediction
[10], and drag and lift forecasting [11, 12] are just a few examples of where these
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models turned out to be beneficial. Moreover, dynamic problems with an evolving
solution of interest, such as the tackled multiphase flow problem, or problems with
a final oscillating state, require more tailored models that are able to capture the
solution dynamics and act as physical simulators. Various works can be found in
the literature regarding this matter: [13-16] introduced a recurrent autoencoder
that operates on the reduced latent dimension of flow fields to infer its evolution
in time. The authors in [17] focused on modeling the energy equation in a multi-
physics environment using an encoder-decoder architecture to aid in simulating the
forced convective cooling of a workpiece. In [18], the ability of convolutional neu-
ral networks (CNNs) was compared to that of recurrent ones for predicting surface
waves governed by Saint-Venant equations, while in [19], they focused on LSTM
based approach for predicting the changes of pressure fields in an eulerian setup.
Moreover, Lino et al. [20], explored the ability of U-Net architecture to simulate
surface waves. Finally, the use of DL models as simulators was not only limited to
the computational fluid dynamics community but extended to simulate dynamics of
a variety of systems such as traffic forecasting [21, 22|, molecular dynamics [23-25],
biological dynamics [26], etc.

The appealing characteristics of CNNs regarding their maturity for performing
various tasks, along with their interesting properties of translational invariance and
locality in inferring latent features, attracted most of the research effort in the last
few years [27, 28]. However, various drawbacks can be observed for such models
that hinder their applicability to solving complex CFD problems. Mainly, these
models are constrained to an image-like rectangular-grid input/output data, which
imposes an additional computation overhead required for encoding the physical fields
living on unstructured irregular meshes into an appropriate space to be able to
operate on. Moreover, this encoding step imposes using a homogeneous resolution
along the whole computational domain, which is usually accompanied by a loss of
physics in high-resolution regions in the original mesh. However, recent research
efforts were able to bring into light DL models that can mitigate the topological
limitations of CNNs by directly performing convolutions on graph-structured data
[29]. Two methods can be distinguished for performing convolution operations on
graphs: spectral convolutions [30, 31| and spatial convolutions [32-34]. Although
spectral convolutions are limited to a fixed graph structure due to the global Fourier
transform operation on the graph, thus rendering training on data with variable
or evolving domain discretizations impossible, various works employed it for CFD
simulations [35]. Regarding spatial convolutions, the graph networks framework,
introduced by Battaglia et al. [34], is of particular interest since it extends and
generalizes to various graph approaches. The framework suggests computing the
required features of the output graph by simply proceeding from the edge, then
to the node, and finally to the global level using multiple update and aggregation
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functions. This framework gained large popularity in various fields [36-38] and also
contributed to the CFD workflow in various aspects: [39] proposed an encoder-
decoder graph model architecture to predict the steady-state laminar flow field past
random 2D obstacles. [40, 41] proposed a particle-based graph neural network that
models the dynamics of different substances with different material properties, [42]
predicted the time evolution by learning the operators and potentials of the generic
formulation for dissipative dynamic problems, i.e., the Couette and cylinder flows.
Finally, [43] proposed a mesh-based model to simulate the continuum mechanics of
compressible and incompressible flows by inferring the flow fields at the next time
step.

Although graph convolutional neural networks attracted many researchers in the
CFD field due to their natural accordance with unstructured discretizations, most
of the work relating both deep learning and multiphase flows relied on standard ar-
chitectures and did not expand to graph-based methods. Dang et al. [44] suggested
a long-short term memory convolutional neural network for inferring the water cut
and the average flow velocity for oil-water flows in an industrial setup. In this work,
the impedance and phase-angle readings, at a specific pipe cross-section, from a mul-
tichannel measurement system are fed to the model to allow it to infer the required
flow scalars. In [45], the authors also suggested convolutional neural networks, with
custom sparse layers, to tackle single- and two-phase flow problems governed by a
scalar transport equation and Darcy’s law for resolving, respectively, the saturation
and the velocity fields. Other works, such as [46], extended previous contributions
for Fourier Neural operators (FNO) on single-phase flows, [47], to tackle multiphase
flow problems. The authors proposed an FNO-based model architecture to address
the pressure buildup and gas saturation in the COs-water multiphase flow prob-
lems. Also, various works incorporated various machine learning methods for the
particle-laden two-fluid flows where one of the phases is formed from dispersed par-
ticles while the other carrier fluid is continuously connected. Examples of such flows
include the flow of polluted air, dust storms, aerosol sprays, or even blood flows.
In [48], the authors merited from the low prediction time of convolutional neural
networks to allow for real-time sediment monitoring where the output signal of a
particle-laden droplet-driven triboelectric nanogenerator (PLDD-TENG) is used to
predict the particle parameters. Both, Balachandar et al. and Seyed-Ahmadi et al.,
highlighted in their works, [49, 50], the limitations of Fully Connected Neural Net-
works (FCNN) in the prediction of hydrodynamic forces on individual particles, in
arrays of randomly distributed spheres, due to a large number of input parameters
accompanied by the scarcity of training data. To overcome this limitation, the au-
thors of [50] suggested a Physics-Informed Neural Network, with shared parameters
and superposed pairwise particle interactions, that is able to directly predict these
forces and torques. On the other hand, in [49] the authors suggested a two-step
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process consisting of an accurate flow prediction step followed by a force evalua-
tion using the predicted flows to overcome the problem of overfitting in the direct
force prediction. Finally, interested readers are suggested to also consider other
works where data-based approaches, operating on a structured grid or vectorized
encodings, are utilized to assist in the simulation of multiphase flows [51-55].

In the present work, a message-passing graph convolution neural network is em-
ployed to simulate the dynamics of the flow equations in a strongly coupled system
consisting of the Navier-Stokes equations along with the level set equation. The sug-
gested coupling framework, along with the graph-based architecture of the model,
allows capturing the evolution of the problem while maintaining the dynamic adap-
tation of the irregular unstructured triangular mesh. The problem under study
concerns the multiphase flow of a liquid into a gaseous domain. Up to the current
knowledge of the authors, the following work is the first to tackle multiphase flow
problems with a Navier-Stokes convected level-set interface using a graph-based deep
learning approach. The deep learning model architecture used can accurately model
the Navier-Stokes equations and thus infer the required flow fields at the next time
step. The model is trained to predict the field with a larger time step than that
of the solver, thus allowing it to span the whole time domain in much fewer com-
putational steps. Moreover, the trained model reveals precise interpolation ability
for velocity inlet magnitudes, thus permitting us to exploit its potential for numer-
ous flow setups by moderately training it on a few snapshots, scattered across the
required time domain, obtained from discrete setups. The model also manages to
span, independently, the time domain, i.e., relying solely on its prediction and with-
out referring back to the traditional solver, and returns reliable results with much
less computational time.

The current work is organized as follows: the governing equations and the meth-
ods used to resolve them numerically are presented in Sec. 3.2. Details of the
problem setup are then provided in Sec. 3.3. The intentions behind various chosen
paths, along with the suggested coupling framework, are detailed in Sec. 3.4. Later,
the model architecture and its training are respectively presented in Secs. 3.6 and
3.7. Finally, a visual and numerical evaluation of the model performance on unseen
trajectories along with its ability to span independently the required time domain
are briefed in Sec. 3.8. This contribution is concluded finally in Sec. 3.9.

3.2 Governing Equations
The performance of any data-based approach relies mainly on the quality of the
provided dataset. Special attention is denoted to the numerical method used to

generate the required datasets to guarantee our deep learning model’s high caliber
and reliability. Various methods can be found in the literature for simulating flows
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with multiple phases. On the flow modeling level, these methods can be classified
into either Eulerian [56-58], Eulerian-Lagrangian [59, 60], or particle-resolved meth-
ods [61-63]. Moreover, on the interface modeling level, two large classes can be
distinguished: the implicit interface capturing class [64, 65], or the explicit interface
tracking class [66]. This section introduces the main ingredients required for suc-
cessfully simulating our multiphase flow using a Eulerian implicit interface capturing
method and a monolithic mesh-based approach.

Thoroughly, the interface in immiscible multiphase flows, i.e., the thin layer that
separates both fluids, witnesses abrupt changes in thermodynamic properties, such
as density and viscosity. The flow characteristics for every fluid rely mainly on
these properties. Thus, an adequate interface capturing technique that specifies the
interface’s location, using an implicit auxiliary function, and follows its evolution
in time is required, as detailed in Sec. 3.2.1. After specifying the location of the
interface in the computational domain, the mixing law required to smoothly define
the variation of the fluid properties across this domain is detailed in Sec. 3.2.2.
Moreover, Sec. 3.2.3 introduces the gradient-based mesh adaptation method needed
to reduce the computational cost of such complex simulations and accurately capture
the interface and its evolution. Finally, the evolution of the interface is guided
by the flow fields resolved using the Navier-Stokes equation. Thus, Sec. 3.2.4 is
solely devoted to detailing the method used to resolve these equations along with a
stabilization algorithm required for convective-dominated flows discretized with the
classical Galerkin formulation.

3.2.1 Level-Set Method: Convective-Reactive Method for
Interface Capturing and Evolution

Accurately resolving multiphase flows relies on precisely capturing the interface sep-
arating the different fluids and its evolution. An interface capturing method, known
as the level set method, is utilized for this objective. This method relies on a signed
distance function with a zero level set on the interface. The method uses a geomet-
ric brute force algorithm to determine the smallest distance, d((x,y),I;)), to the
interface, I';, at every point in the domain, (z,y) € 2. The different fluid domains,
(24, and €y,, are then differentiated by signing the obtained distance:

—d((l’, y), FZ) if (S(Z,y) < qu
oz, y) =<0 if (x,y) € Ty, (3.1)
d((‘ray)vrz) if (:v,y) € sz

The evolution of the interface over time and the variation in each domain shape,
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size, etc., is governed by a scalar transport equation:

%—T—FU-V@:O, (3.2)
where u is the convecting flow velocity. However, relying solely on the transport
equation to model the interface evolution will diffuse the iso values near the interface
and deport ¢ from being a distance function with a unity gradient. This leads to a
nonphysical varying interface thickness and inappropriate distribution of properties.
The level set function is reinitialized by solving a Hamilton-Jacobi problem that
recovers the analytical unity value of the gradient to solve the above problem [67].

However, the above procedure is rendered inefficient due to: first, the requirement
of a two-step process, i.e., transporting then reinitializing the distance function at
every time increment, and second, convecting the function on the whole computation
domain despite its sole importance across the interface. This process is optimized
by reducing the two-step procedure into a one-equation single-step evolution model
by embedding the Hamilton-Jacobi equation into the transport equation. Moreover,
rather than considering the whole domain, the function in the proximity of the
interface is only convected by applying a filter that results in a zero-gradient at
nodes lying outside the interface thickness.

It should be noted that the level set method also suffers from violating the mass
conservation for every phase due to numerical dissipation [68]. The numerical solu-
tion of partial differential equations introduces additional terms in the discretized
form leading to both numerical dissipation and dispersion [69]. Although this dis-
sipation eases the convergence and the stability of the resulting solver and damps
under-resolved high frequency modes, it deteriorates the solution fidelity and in-
duces amplitude errors. Other interface capturing methods, such as the Volume of
Fluid method (VoF) for example, are able to exactly, by construction, to conserve
mass and overcome the above limitation since they solve directly for the advection
equation of the volume fraction [70]. However, for the level-set method, this error
can be reduced by using a high-resolution discretization near the interface. The
resulting sharp gradient in the filtered level set function aids our gradient-based
metric mesh adaptation method in focusing on the interface and better capturing it
using highly stretched elements, thus reducing this conservation error.

3.2.2 Mixing Laws: Initialize the Flow Properties

The main objective of following the evolution of the interface is to accurately define,
at every point in space, the physical properties that parameterize the partial dif-
ferential equations governing the simulation. The signed filtered level set function,
defined in the previous section, is used to implicitly annotate the different physical
subdomains in our monolithic computational domain and to define the distance of
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the nodes to the interface. This function, in addition to a Heaviside function, H,
will be used to compute the global material properties, e.g., density, viscosity, etc.,
based on the mixing law shown in Eq. 3.3:

p(e,y) = pp H (6(x,9)) + pr (1= H(0(z.9)) ) (3.3)

where py, is the physical property specific for each phase. The classical Heaviside
function, H, causes numerical instabilities near the interface due to the abrupt
changes in physical properties. To overcome this problem, a smoothed Heaviside
function [71], H., parametrized by a virtual interface thickness, €, is instead utilized
in correspondence with the above mixing law and defined in Eq. 3.4. Other Heaviside
functions that aid in tackling the above problem can be found in the literature [72].

The virtual interface thickness, €, is specified based on the discretization mesh
size near the interface and allows smoothing of the transition. Adequate adaptive
mesh methods aid in reducing this virtual thickness and obtaining a more accurate
physical distribution of properties.

if ¢ > e,

(1+ 2+ Lsin(Z2)) if |¢] <e, (3.4)
if o < —e¢

He<¢) =

[l NI

Moreover, it should be noted that specific physical properties, such as thermal
conductivity, require adapted mixing laws to avoid inaccurate results along the in-
terface [73, 74]. However, these properties are not utilized in the multiphase flow
simulations considered in this current work and thus will not be discussed.

3.2.3 Anisotropic mesh adaptation

Accurate capturing of all the physics across the multiphase flow interface requires
a high-resolution mesh. Having a coarse mesh across this delicate region induces
various numerical and physical problems. Other than the increase of mass con-
servation error encountered in level-set methods over coarse resolutions, inaccurate
distribution of material properties over nonphysical wide virtual interface thickness
occurs. Moreover, discontinuities in physical properties result in sharp gradient
fields. These sharp gradients may induce numerical instabilities if intersecting an
arbitrary discretization mesh.

To overcome the above difficulties without inducing a high computational cost,
usually present in multiphase flow simulations over high-resolution computational
domains, an anisotropic mesh adaptation technique, driven by gradient-based di-
rectional error estimators, is employed. The adaptor can accurately capture the
evolving interface by locally refining the discretization around the zero iso value of
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the level set using highly stretched and well-oriented elements in the regions with
high variations. The procedure to compute the adaptation metric is briefly summa-
rized in this section, and interested readers may refer to [75] for further details.
First, the interpolation error, £%, along a mesh edge, ¥, can be computed using
the gradients at the edge extremities, i.e., ¢* and ¢/, of the approximate solution, uy.
However, a gradient recovery procedure is required since the computational domain
is discretized using first-order elements, and thus no gradient is defined at the node
level. To obtain the recovered gradient, G?, at vertex i, a local optimization problem
is solved and results in a gradient defined in terms of a length distribution tensor,
X% This recovered gradient is then used to estimate the error as shown in Eq. 3.5,

B = (G- G")-e" (3.5)

Then, a stretching vector, s¥, based on the estimated error, is computed for
every edge,

M= 3.6

= o (36)

where e(N) is the total mesh estimated interpolation error. Finally, the required
metric, suitable for performing the gradient-based mesh adaptation, is defined as

shown in Eq. 3.7,

-1

- 1 o

N — _< Y ®s”) , (3.7)
r\ 2

where I'(7) is the set of nodes sharing a single edge with node i.

It should be noted that the framework suggested in this work for tackling mul-
tiphase flow simulation with the aid of deep learning models is able to preserve all
the stated benefits of using the above adaptive mesh refinement method. This is
mainly due to the modularity of our framework, where bonding with the traditional
solver is maintained.

3.2.4 The Stabilized Navier-Stokes Flow Equations

To obtain the unsteady and incompressible flow fields required to convect the in-
terface, the famous Navier-Stokes equations must be resolved. The equations are
constituted of a momentum conservation equation and a continuity equation reflect-
ing the incompressibility of the fluid. The unsteady flow simulation tackled in this
work is restricted to Newtonian incompressible fluids, and thus the required velocity,
u, and pressure, p, fields are governed by the equations shown in 3.8.
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p(Ou+u-Vu) =V - (—pl+2ue(u)) + v,
V-u=0,

where p and p are, respectively, the global density and dynamic viscosity of the
fluid. The strain rate tensor, &, is computed using the flow gradient’s symmetric
part, i.e., e(u) = 3(Vu+ Vu®). All external forces acting on the system are
accounted for in @. Moreover, the following equations should be accompanied by
the appropriate initial and boundary conditions for well defining the problem.

However, analytical solutions to these equations are rare and limited to a few
simplified problems. Thus, a finite element method is suggested to obtain the re-
quired fields accurately. To derive the variational formulation, the Green theorem
is first utilized to obtain the weak formulation of the above flow equations. Next,
the finite element approximation is obtained by discretizing the computational do-
main into K triangular simplex elements using the classic Galerkin approach. Thus,
resulting in the following discrete problem,

(3.8)

(p(Oup, +up - Vuy) , wy) + 2ue(w), , e(w)n) — (prn, V-wy) = (¢, wy),
(V-up, gn) =0,
(3.9)
where u;, and p, are the approximate finite solution of velocity and pressure,
and wy,, and ¢, are their respective test functions.

However, the above variational formulation suffers from numerical instabilities
and thus requires additional treatment. The instabilities originate either from the
nonlinear convective term present in high Reynolds number flows or from the classic
Galerkin space discretization that does not satisfy the Ladyzhenskaya—Babuska—Brezzi
(LBB) criteria [76]. The Variational Multiscale approach (VMS) [77] is suggested in
this work to tackle the above instabilities and will be briefly outlined in this section.

The VMS approach is based on enriching the standard Galerkin formulation with
additional weighted residual-based stabilization terms. These terms are obtained by
enriching the functional spaces with orthogonal subscales. Initially, the solution
fields and their weighting functions are decomposed into a resolvable coarse-scale
component and an unresolved fine-scale component. Introducing the decomposed
terms into the unstable variational formulation results in two sub-problems relative
to every scale. First, the fine-scale problem is simplified using various assumptions,
justified in [78-80], and is used to approximate the subscale flow components with
the aid of a separation technique [81, 82]. The fine scales are approximated as the
product of stabilization parameters and the residuals of the coarse-scale momentum
and continuity equations. Next, the derived approximations are used to substitute
the fine-scale components present in the coarse-scale problem, thus eliminating their
appearance but preserving their effects on the coarse fields. Finally, the obtained
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coarse-scale stabilized form, enriched with fine-scale characteristics, is resolved for
the required flow fields. It should be noted that various definitions can be found in
the literature for the stabilization coefficients with an ongoing interest in enhancing
the resulting convergence behavior [83].

3.3 Problem Definition

The multiphase flow considered in this work is the unsteady forced vertical flow of
a fluid into the domain of another. Thus, a fluid substitutes another fluid, with dif-
ferent thermodynamical properties, in an unsteady, dynamic process. This problem
is similar to the tank-filling problem, where fluid fills an empty tank from a bottom
inlet. This problem is governed by a multiple set of equations consisting of the
Navier stokes equations, 3.8, responsible for resolving the flow fields as mentioned
in Sec. 3.2.4, along with a convective self-reinitialization level set equation, Eq. 3.1,
accountable for capturing the interface and its evolution as detailed in Sec. 3.2.1.

It should be noted that the governing system of equations is a strongly coupled
system leading to a bidirectional interaction between systems’ partial differential
equations. The convected level set function strongly affects the distribution of the
thermodynamical parameters, which in their turn, are used to recompute the con-
vecting flow fields using the Navier-Stokes equations. Thus, the resulting equations
are solved sequentially using an industrial-level in-house VMS solver. The solver
starts by computing the flow fields, i.e., the velocity and pressure, then resolves
for the next-step level-set function using the computed fields. The solver precondi-
tions all linear systems with a block Jacobi method supplemented by an incomplete
LU factorization and solves it with the generalized minimal residual (GMRES) algo-
rithm. Finally, it is important to state that the solver’s accuracy and reliability have
been tested and validated in various works related to multiphase flows [3, 84, 85],
thus minimizing the concerns of having a deteriorated dataset that may reduce the
performance of our DL model.

The problem setup consists of a rectangular domain with a bottom inlet and a
top outlet. The tank width and height are respectively H and 2H. The 0.2H-wide
inlet is positioned at the center of the bottom wall and is required to fill the tank
with fluid 1. It should be noted that the side walls of the inlet are slightly extruded
by a value of 0.1H to enhance numerical stability. Similarly, a same-width outlet
is positioned at the center of the opposing wall to allow the escape of fluid 2. All
information regarding the problem setup is summarized in Figure 3.2a. Moreover,
multiphase flows with a fluid filling from the bottom are usually characterized by
a dome-shaped interface, as shown in Figure 3.2b. This dome’s height, h, is of
particular interest for comparison with experimental results or for validating the
simulation accuracy and will be later utilized to evaluate the performance of our
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suggested resolution method.
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Figure 3.2: Problem Setup of a multiphase flow problem with (a) showing fluid 1 with
thermal properties, py, and g, , filling a 2H-by-H tank previously occupied by
a fluid with different properties, pg, and pg,. In (b) the dome height, h, later
used to evaluate framework performance, is shown.

To define the flow problem, the thermodynamic properties of each fluid phase are
specified. The density and dynamic viscosity of the filling fluid, i.e., fluid 1, are py, =
102 kg/m3 and py, = 107! Pa s. Similarly, the properties of the escaping fluid, i.e.,
fluid 2, are set to py, = 107" kg/m3 and up, = 107* Pa s. The interface separating
fluids 1 and 2 is initially located by a zero level set, defined by a distance function
at an offset of 0.01H below the bottom wall, thus allowing fluid 1 to approximately
fill the extruded inlet pipe. For the flow fields, a no-slip boundary condition is
specified on the top and bottom walls, whereas a symmetric condition is specified
for the side walls. The outlet is designated with zero pressure while the velocity
at the inlet is varied to allow us to train the model for different flow fields and
test its generalization on new ones, as will be detailed later. Finally, the source
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term in the momentum equation, ), is set to zero since no buoyancy forces or
stresses on the fluid are considered. The required physical fields are computed on
an unstructured irregular anisotropic triangular mesh. The number of elements in
this mesh is limited to 20,000. The mesh is dynamically adapted with the convected
interface, as is discussed in Sec. 3.2.3. The evolution of the discretization domain
throughout the simulation, along with the various computed physical fields, are
depicted in Figure 3.3 for various time steps.

3.4 Main Idea

Various multiphysics CFD simulations are governed by coupling Navier-Stokes equa-
tions to a scalar transport equation. Most of the computation burden is monopolized
by the numerical solver required to resolve the flow fields governed by the Navier-
Stokes equations. This is clearly depicted in Figure 3.4, showing the percentage
distribution of CPU time, over both the NS solver and the scalar transport equa-
tion solver, for different problems. For certain problems, such as forced convective
cooling or the turbulent flow past an object, the computational cost of the scalar
transport equation is not negligible, although dominated by that of the Stokes equa-
tions. Thus, it will remain beneficial to model the scalar equation using data-based
approaches as done in previous works, [9, 17]. However, with only 2% of the total
computational time required to resolve the level-set convection equation in multi-
phase flows, it will be impractical to model it using a deep learning model.

Thus, this work intents is to aid a traditional finite element solver by directly
inferring the flow fields using a deep learning network. The network is trained to
model the Navier-Stokes equation and predict the governing flows for various inlet
velocities. To attain this objective, the required physical fields are initially obtained
for discrete values of inlet velocity magnitudes. Specifically, the amplitude of the
inlet vertical velocity component is varied in the range of w,;, = [0.5,1] m/s by
a step of 0.05 m/s to generate multiple simulation trajectories for filling a 2-by-1
m? tank. The obtained trajectories, comprised of a varying number of snapshots
due to the difference in the time required for filling the tank, are distributed into
three separate datasets: a training dataset with 6 trajectories and around 3000
snapshots, a validation dataset, and a testing dataset with single trajectories and
around 500 snapshots each. The first dataset, composed of most trajectories, is used
to determine the appropriate set of trainable parameters, as detailed in Sec. 3.7.
The remaining two datasets are employed to ensure the robustness of the model,
and its performance on unseen data, respectively.

The choice of the input and output fields of the model is inspired by those re-
quired by the original equation. For the input fields, the sets are assembled with the
velocity components, uy and uy, and the computed global density, p", at a certain
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TS =250 TS =500 TS = 2500 TS = 3000 TS = 3500

Figure 3.3: The evolution of the discretization mesh and the physical fields over
sitmulation time. The snapshots, from left to right, are obtained at the fol-
lowing time steps: 250, 500, 2500, 3000, and 3500. A simulation with an inlet
velocity of 0.55 m/s is utilized. The first row shows the discretization mesh
obtained using the gradient-based mesh adaptive method over the filtered level-
set function. The second and th§6d rows show the density and the streamlined
velocity fields.
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Figure 3.4: Comparison of the percentage of computation time required for each solver for
various multiphysics problems: (a) Convective cooling, (b) Resolving turbulent
flows, and (c) Multiphase flows.

time step, ¢t = t", along with a binary scalar required to flag the boundary nodes,
b". The number of thermodynamic properties provided to the model input space
is limited to density only, without extending to the remaining properties, since a
single property only is sufficient to flag the physical subdomains in the global com-
putational domain and thus maintain a low dimension input space. Concerning the
outputs, both the next-step pressure, p"™!, and acceleration, a” and a,,, computed
using a linear finite difference scheme, are used. The required next-step velocity is
easily attained using a forward Euler scheme, i.e., u"™! = u™ 4 At,, x a”. A sketch
of the model’s inputs and outputs is shown in Figure 3.5.

)
u
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Figure 3.5: Model sketch showing the various input fields at t", and the required fields
at the next model time step, t"t!1 = t" + At,,.

The choice of acceleration as an output field, rather than directly inferring the
velocity field, is initially motivated by the model architecture with residual connec-
tions that aims at predicting the change in the input fields. Moreover, the smaller
variation in the acceleration distribution compared to that of velocity, as shown in
the histogram plots in Figure 3.6, facilitates the inferring objective of our data-based
approach. This is highlighted later in Sec. 3.8, where the performance of models
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trained with different output fields is compared.
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Figure 3.6: Fields distribution for both (a) velocity and (b) acceleration z-components.
Both fields are normalized and transformed to the same scale before obtaining
their distribution to ease comparison. It should be noted that similar distribu-
tions are obtained for the y-components.
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As detailed later in Sec. 3.6, the model used is able to perform direct convo-
lutions on graph-structured data. This feature elevates the previous requirement
of having the data transported into a structured grid encoding to allow traditional
convolutional neural networks to operate on them [17]. Most importantly, working
directly on the original discretization domain avoids losing physical information, usu-
ally encountered if interpolating into a coarser resolution, and avoids the additional
computational burden required if a finely structured grid encoding is utilized. Thus,
the computed physical fields, along with the positional information, are directly
encoded into a graph having an identical topology as the unstructured irregular tri-
angular discretization used by the finite element solver. Specifically, for every time
step, the physical fields are encoded as node features for the mesh vertices, whereas
positional information is provided as edge features for the mesh edges. It should be
noted that the model architecture utilized requires an identical graph structure for
both its input and output fields. In the case of a dynamic mesh, this requirement
demands interpolating the resolved physical fields at the next time step to the par-
ent mesh at the previous time step. However, since the mesh evolves leisurely, the
output mesh is almost similar to the input mesh, and thus, the error encountered
due to this interpolation step is negligible.

The time step of the model is chosen to be larger than that of its parent solver,
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Figure 8.7: Plot of the a posteriori error metric over simulation time for various
model time step size, N = 5, 10 and 30. The model used for comparison is
a simplified version of the main model with fewer parameters to reduce the
required training time.

.., Atyodger = N X Atgorper, where N is a user-defined parameter based on the tack-
led problem characteristics and the allowed margin of error in its application. This
allows for further reduction in computational cost offered by spanning the time do-
main at faster rates and is rendered possible due to the lack of direct constraints of
the CFL condition (Courant—Friedrichs—Lewy) on DL models. However, the choice
of the step size should be made in accordance with the modeled partial differential
equation and its dynamics to avoid inducing instable fluctuations and discarding
variations necessary for the inference of future time steps. Very large time steps
lead to deterioration in the resolution of the time-space discretization and are ac-
companied by depreciation of the available samples in the training dataset, leading
to a reduction in model performance. Thus, the choice of N is a tradeoff between
the attained reduction in computational cost and model performance, as seen in
Figure 3.7.

The framework utilized to tackle the multiphase flow described in this work is
depicted in Figure 3.8. Initially, the governing equations are resolved solely using the
traditional solver until the initial transition phase, with abrupt variations in fields, is
bypassed. After that, at ¢ = t", the deep learning model is engaged to infer the flow
fields instead of the CFD solver. The flow fields, u”, along with the thermodynamic
properties, p", at time step t", are fed to the deep learning model. The model infers
the required flow fields at the next time step t"*!, where t"*! = " 4+ At,ode1. The
predicted fields are then transmitted to the solver responsible for convecting the
interface where the level set function, a"*!, is computed. The updated distribution
of thermodynamical properties, p"*1, is then found. Finally, the inferred flow fields
are then recycled by feeding them back to the model, along with the solver computed
properties, for multiple steps specified by the control parameter f. After multiple
predictions, the finite element flow solver is re-engaged to redirect the solution and
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Figure 3.8: Coupling Framework for multiphase flow problems governed by strongly
coupled Navier-Stokes equation, NS, and the level-set equation, LS.

enforce the governing constitutional laws, such as the conservation of mass and
momentum. Finally, the outputted corrected flow fields, u"*/*!, are then utilized
to proceed again with the deep learning model, and the same sequence is repeated
until the whole time domain is spanned.

The advantage of the introduced coupling framework lies in its ability to tackle,
in a modular approach, complex CFD problems requiring the resolution of various
partial differential equations. The deep learning model doesn’t infer all required
physical fields in an end-to-end manner. Instead, it focuses its approximation capa-
bilities on modeling only the equations requiring high computational cost, such as
the Navier-Stokes equations, and allows the handling of the remaining cheap equa-
tions using their traditional well-established accurate solvers, as depicted in Figure
3.4 which compares the required portion of each solver from the total computation
time for the various multiphysics problems, [17, 86], resolved using our in-house finite
element library, [87]. Furthermore, as the data-based solver propagates in time, the
accumulation of approximation errors might result in inaccurate outcomes. Thus, to
elevate this issue, the number of data-based inferrings is controlled using a recurrent
correction frequency parameter, f, that can be either predefined to a certain value
based on experience or related to an error quantification metric, such as the residual
of the equations. Finally, modularizing the resolution process and maintaining a live
connection with the CFD solver allows performing tasks not yet fully approached
with deep learning, either due to their complexity or due to the lack of research in
this specific area, such as adapting and evolving the discretization mesh which is a
required key parameter for interface tracking problems.

The coupling framework, incorporating our data-based approach in the solution
loop, extends the previous framework introduced in [17]. First, the deep learning
model employed in this work allows operating directly on the triangular discretiza-
tion mesh without any prior requirement of interpolation into a structured grid
encoding. Moreover, the framework is generalized to tackle strongly coupled prob-
lems where the solution of both the scalar and the Navier-Stokes equations affects
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the computation of the required physical fields at the next step. This necessitated
introducing additional communication bridges between solvers to allow the exchange
of needed information. Finally the data-based approach is incorporated in this work
to infer the flow fields rather than a single scalar field. This paves the way for our
framework to tackle a broader range of simulation problems where inferring the flow
fields is required, despite the remaining set of equations involved.

3.5 Introducing the deep learning model components

The following section is reserved for providing a brief overview of the main deep
learning components later utilized in defining the model architecture. It primarily
focuses on introducing the message-passing approach for convolution over graphical
data. The distinction between the convolutional kernels in traditional CNN models
and those in graph neural networks is highlighted. Lastly, the LayerNorm technique,
used to expedite model training and mitigate internal covariate shifts, is discussed.

Convolutions on graphical data

The success of deep learning models across various tasks has sparked interest in their
application to novel domains. However, certain applications demand the handling
of data structured as graphs, where conventional architectures like multilayer per-
ceptrons or convolutional neural networks prove unsuitable. A graph, denoted as
G = (V, E), comprises unstructured data with nodes represented as V' = {v;}1*; and
edges as E = {e;}¢;. Graphs find wide-ranging utility in representing data such
as traffic networks, social interactions, or chemical compounds. Additionally, un-
structured discretization spaces employed in computational physics can be viewed as
graphs, with mesh vertices as nodes and the connectivity between mesh elements as
edges. Figure 3.9 shows examples of different type of data that could be represented
with graphs.

8”3 —>z8
. ,/‘:;\‘.L
“weld

(a) (b)

Figure 3.9: Representing data using graphs: (a) A chemical molecule converted into a
graph, and in (b) a social network represented as a graph with directed edges.
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Several challenges hinders the applicability of conventional deep learning archi-
tectures on graphical data. First, the unstructured nature of graphs with completely
arbitrary indexing of nodes and edges constitutes the first challenge. Also, Graphs,
in general, are dynamic and lack a fixed form, meaning that multiple visual repre-
sentations can coexist for a single graph instance. Also, in contrast to images, where
every pixel is consistently surrounded by a well-defined number of neighboring pix-
els, the number of connections between nodes in a graph can vary significantly. The
above reasons motivated the search for new deep learning models that are adapted
for directly operating on graphical data.

The initial approach for convolving over graphical data was based on spectral
convolution, drawing inspiration from graph signal processing. This approach relied
on the graph Fourier transform to substitute convolution with the product of the
eigen-decomposed feature matrix and the convolution kernel in the Fourier Space
[88]. However, its dependence on an expensive eigen-decomposition operation and
the kernel’s rigidity in relation to graph topology have impeded its practicality, thus
giving preference to alternative methodologies. Several other methodologies have
been proposed to perform convolution operations directly on graph-structured data
within the spatial domain. One of the most common approaches is neural message
passing, initially introduced by Gilmer et al. [32], and later extended into the Graph
Networks Framework [34]. The convolution operation based on the message-passing
approach can be decomposed into two main steps, as illustrated in Figure 3.10.
In the first step, edge features are updated by incorporating information from the
connected nodes using an edge kernel, f¥. Subsequently, the updated edge features
are aggregated at each node and then used to update the node’s features via a node
kernel, fV. In each message-passing layer, both the edge and node kernels, f¥ and
fV, which are essentially two shallow multi-layer perceptrons, are applied to all
edges and nodes, thus performing a single convolution operation across the entire
graph. Similar to convolutional neural networks, multiple layers of message-passing
are stacked to enhance the model’s approximation capacity and expand the scope
of communication for each neuron.

Convolution kernels

In a traditional convolutional layer applied over a structured input data, a vector
or a tensor, referred to as a kernel, is employed to perform convolution across the
input data. This kernel systematically traverses the input to calculate a point-wise
weighted sum at each position, and subsequently applies a non-linear activation
function. The following convolution operation is marked by two main features: lo-
cality and translation invariance. Locality denotes that the computed output at any
specific location depends solely on the nearby data points, with no regard for distant
elements. Also, translation invariance is attained through the consistent reuse of the
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(a) (b)

Figure 3.10: Message passing on graphs. The procedure is divided into two steps: (a)
update the edge features using the features of the connected node. In (b) the
updated edge features are aggregated on each node to update the node features.

same convolutional kernel across all regions within the input. In convolution over
graphical data using the message-passing approach, the objective is to inherit these
characteristics. However, this task is complicated by the unstructured nature of
input graphs, which renders the use of structured kernels for computing non-linear
weighted sums over local regions impractical. To address this challenge, two distinct
multilayer perceptrons, denoted as f¥ and fV, substitute the traditional convolution
kernels and are employed for convolution over all edges and nodes within the input
graph, respectively. These functions are consistently applied across each element of
the graph, ensuring uniformity in the update process within the same set of entities.
Furthermore, this update process is constrained to the local neighborhood of each
entity, thereby preserving the inherent biases stemming from the graph’s underlying
topology. Figure 3.11 visualizes the convolution operation for both a structured
image and an unstructured graph.

LayerNorm

Mini-batch training is usually employed to optimize the model parameters based
on a batch of input data rather than relying on a single example at every update
step. However, the definition of a batch on graphical data might differ from that
on images. Previously, for images, a tensor with the shape of N, X h X w X ¢ was
used to represent a batch of N, images, each with a height, width, and channel
of h, w, and ¢, respectively. However, for unstructured graphical data with each
having a different number of vertices, relying on 4D tensors to represent batches of
data samples is impossible. Instead, a global graph is constructed to allow mini-
batch training. A global graph is simply a large graph that concatenates individual
independent graphs, as shown in Figure 3.12.

The variation in the distribution of the internal hidden activations for every hid-
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Figure 3.11: Convolution for different data structures. In both inputs, the input entities
considered by the convolution operation at that position are highlighted with
orange. The weights of the kernel in (a), wyj, or the parameters of the con-
volution function f¥, are maintained for the same for all the entities. It
should be noted that in (b) only the convolution over nodes is visualized for

stmplicity.
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Figure 3.12: Batches of data of different types: (a) A batch of Ny structured singe channel
images, and in (b) A Global graph constituted of three separate graphs.
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den layer is preferably maintained limited across the different update steps to allow
faster convergence of the training algorithm [89]. For traditional convolutional neural
networks, a batch normalization layer could be appended to the model architecture
after every convolution layer to standardize the computed hidden activations. Lay-
erNorm is a similar technique that reduces the internal covariate shift and ensures
faster convergence of the optimization algorithm [90]. Contrary to batch normal-
ization, previously discussed in 2.5, LayerNorm standardizes the activations of its
input batch using each input sample independently rather than relying on the stats
of each activation across the whole batch. In the context of graph neural networks,
LayerNorm layers can be appended to the model architecture following every Graph
Network (GN) block, i.e., on the updated features after each convolution operator,
f¢ and fY. Assume x’,, to be the updated feature vector of node ¢ with a latent
dimension of d;. The computed stats for a LayerNorm layer, added after the update
function, will rely solely on the entries of x,,., as shown in Eq. 3.10,

d
Zjl xgji,]’

IU/Ui = dl ?
P ) (3.10)
2 Z] (ZL"UZ‘J - /"L'Uz)
g =
V4 dl

The mean and variance specific for node ¢, i.e., u, and Jgi, are then used to

standardize the entries in the node feature vector, before passing it to the next GN
block, as shown in Eq. 3.11,

X (X — fho,
X/vi,norm = ’le ( - le) + ﬁvw (311>
where € is a small constant for numerical stability, while ~,, and 3,, are the
introduced learnable parameters to avoid constraining the layers’ approximation
capacity.

3.6 Model Architecture

The introduced framework consists of two main solvers: the traditional finite element
solver and the data-based solver. To facilitate the coupling between both solvers and
reduce the data processing steps, the latter solver possesses a graph-network-based
architecture. The presence of an extensive volume of data characterized by a graphi-
cal structure, such as social networks, citation networks, molecular compounds, etc.,
where heterogeneous relations exist between the various entities, urged the develop-
ment of data-based approaches that operate directly on such data and that maintain
the relational bias originating from the nodal connections. Interest in predictions,
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on such data, exists at various levels: Graph-level, Node-level, or Edge-level. For a
Graph-level prediction, a property for the entire graph is required, such as predict-
ing the chemical properties of the molecular compound or associating a label for the
whole image [91, 92]. Whereas, for a node-level prediction, a property is required
for each node within the graph rather than a global property for the whole graph
such as the semantic class of each pixel in an image [93]. Finally, for an edge-level
prediction, identifying the relations between nodes and labeling the connections is
the prediction target [94]. For all three levels of prediction, a single class of models,
known as Graph Neural networks, is capable of handling the required tasks using
the message-passing embeddings-update procedure proposed by Gilmer et al., [32],
and encompassed by the Graph Network framework later suggested in [34]. This
class learns to progressively transform all input graph attributes, on the various
levels, until attaining the required attributes on the target level, while preserving
the graphical structure of the input graph. The process can be simply described
in a three-step procedure that progresses by encoding the information in the data
to the various attributes of the graph, updating these attributes through a series
of message-passing GN blocks, and finally predicting the required level property.
Thus, this architecture allows encoding the information on the discretization mesh
to a computational graph without squandering the attained topological knowledge.
The details of this process, along with all the required steps for operating on graphi-
cal data, are provided throughout this section in the scope of the current task tackled
throughout this paper. The main blocks of the used model architecture, along with
the required input and output fields, are also depicted in Figure 3.13.

To start, the current mesh state, M’ is encoded into a graph, G = (V, E),
consisting of nodes, V', and edges, £. Each node in the graph is a representative
of a vertex in the parent discretization mesh. The bidirectional edges connecting
graph nodes together are an incarnation of the connections in the input mesh state.
The model maps the features present in the input graph, G, to the output graph,
G through a series of convolutional operations on the node, Xy € RM X4 and
edge feature matrices, Xz € RVe*9e2 with Ny and N the number of nodes and
edges, respectively, and dy and dg the dimensions of the constituting feature vectors.
Nodes feature vectors, x, € R4, consist of the required physical fields with,

X" = (ul,ul, p",b) € R* and x{* = (af,al, p"*") € R?,

where x and x%" are the node feature vectors for the input, G, and output graphs,
G respectively. On the other hand, relative positional information is provided as
edge features to achieve spatial equivariance with,

Xy = (wy, [uy]) € R,
where u;; is the relative displacement vector between nodes i and j, and |u;;| is its
norm.
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After allocating the information in the mesh state, M, to the node and edge
feature matrices, the model encodes the information into a higher dimension latent
space using a separate encoder for each feature matrix, i.e., En and EnY. The
encoding is performed using 2-layer MLPs, operating on every node and edge feature
vector, with an output latent space dimension of d; = 128.

Xey; En® (xé’fj) and x,, < En" (xffj) with x. ., x,, € R%

The high-dimension latent space vectors are further processed using a series of
10 message-passing Graph Net blocks [34]. The trainable parameters are unshared
across the message-passing blocks, maintaining a unique set for every block and
increasing the approximation power of the model as a whole. The output dimension
of both the updated node and edge feature vectors is kept constant and equal to that
of the encoding space, i.e., d; = 128, and residual connections are added between
consecutive block updates.

The message-passing graph convolution operation consists of two main steps:
an edge features update, followed by a node features update. The updated edge
features, x’ei],, are obtained by passing the current features, x.,;, along with the
corresponding node features, x,, and x,,,, to an edge convolution operator, f E Next,
the updated features of the edges relative to a node are aggregated and passed, along
with current node features, x,,, to a node convolution operator, fV, thus obtaining
the updated node features. Both edge and node convolution operators, f# and fV,
are implemented using 2-layer MLPs with 128 hidden neurons in each layer and a
ReLU nonlinear activation function followed by a LayerNorm layer.

xéij — fF (Xeij,xvi,xvj> + X, and x; v (Xv“ ZXI%') + X,
J

Finally, the updated node features, obtained after multiple message passing oper-
ations, are decoded to the required physical fields using a 2-layer 128 hidden neurons
MLP and a linear output layer with a dimension equal to that of the required out-
puts, d,.

%o < De" <xvi>

CH

3.7 Training
The model parameters are initially defined using the Glorot scheme, [95]. However,

the model performance and inferring quality solely depend on the value of these
parameters. A loss function, quantifying the error between the model predictions
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Figure 3.13: Model Architecture with an Encoder-Processor-Decoder structure. The
processor is constituted from multiple GN blocks with unshared parameters
and residual connections.

and the true computed CFD fields, is defined to determine the optimal set of pa-
rameters. Various choices of loss functions are available in the literature; however,
in this work, the mean squared error, MSE, defined in Eq. 3.12, is utilized,

Ny d,

NV Ny x d, DD —w)? (3.12)

i=1 j=1

where Ny is the number of nodes in the global graph, d, is the dimension of the
output node feature vector, :ﬂout is the 5 true component at node i and 1:°“t is the
model inferred one.

The MSE is known for its popularity in regression models and ability to restrict
model predictions of outliers, thus limiting the possibility of diverging the coupled
solver due to mispredicted fields [96]. The training objective is to minimize the loss
function over the training dataset by calibrating the value of the trainable param-
eters using a variant of the gradient descent algorithm. A subset of the training
dataset, consisting of 8 randomly sampled snapshots, is assembled into a single
global graph containing the disjoint subgraphs. The considered fields are priorly
standardized to a mean of zero and a unity variance to avoid a feature-scale biased
update mechanism. After computing the loss function based on the predicted fields
and their corresponding labels, its gradient with respect to the model weights is
determined using the well-known backpropagation algorithm [97]. The gradients
are finally used to optimize the parameters using the Adam optimizer, [98], with a
learning rate of 1le—4. This process is repeated for a maximum of 375, 000 steps, and
training is terminated using early stopping criteria based on a sequential validation
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Figure 8.14: Training curve showing the evolution of the MSE loss, for both the training
and validation dataset, over the number of epochs.

loss, as will be detailed later.

An in-house Tensorflow implementation of model architecture and training pro-
cedure is used [99]. The training of the 1, 588, 483 parameters is performed on Nvidia
Tesla V100 GPU for a total of 258 epochs. Figure 3.14 shows the evolution of the
losses over the epochs prior to converging to an MSE of 7.91e — 2 and 1.14e — 2
for the training and validation error, respectively, without any signs of overfitting.
The training of the 1,588,483 parameters for 258 epochs over a single GPU device
is accomplished within 23 hours. Although this training time may be considered as
an offline cost and is of least importance compared to the online cost of inferring,
it should be noted that shorter training times could be attained by releasing hard-
ware limitation and employing distributed training, [100], or by employing various
optimization and implementation methods that focuses on reducing this time and
easing the exploration of the training parametric space [101].

The validation loss is the main parameter controlling the whole training process
and the resulting model. Thus, particular attention is provided to the computation
of this loss and its evolution through the training process. The primary purpose
behind computing the validation loss is to search the hyperparameter space for the
best model performance. This is also applicable in searching for the appropriate
model trainable parameters, i.e., its weights and biases. The early stopping crite-
rion is employed to avoid overfitting the model’s trainable parameters to the training
dataset by terminating the training procedure based on the dynamics of the vali-
dation loss. If the model’s performance over the validation dataset is no longer
enhanced, the training is terminated, and the model with the lowest error metric is
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chosen. For the following task under study, a patience window of 60 epochs is set to
avoid very early stopping due to the noisy training nature. Usually, the validation
loss inherits the exact nature of the training loss, meaning that it is computed using
a similar metric and on an independent dataset representing the training dataset,
i.e., the validation dataset. However, since the main intention behind our model is
to employ it as an incremental solver, the loss is evaluated over multiple validation
trajectories, consisting of a sequence of snapshots rather than single-step inferrings.
This guarantees, in addition to the model’s ability to generalize to unseen datasets,
its edge in rolling out in time over models trained with traditional validation pro-
cedures. It should be noted that to avoid lengthy training processes, the length of
the trajectories is limited to only 50 steps. The evaluation is performed on a simpli-
fied problem where the thermodynamical parameters are approximated rather than
computed using the CFD solver.

Another key parameter for employing the model as an incremental solver is the
addition of noise during training. For the model to roll out in time, it should
be able to dampen the error in its inferrings and avoid its accumulation if the
predicted physical fields are required for the next-step inferring. This is rendered
possible by initially exposing the model to input fields that are deteriorated by
a normally distributed noise with a variance in the proximity of its single step
inferring error. The model is also trained to infer deflected acceleration fields that
aid in canceling the noise while computing the following step velocity fields, as
suggested in [102]. To determine the amount of deflection, d, that must be annexed
to the inferred normalized acceleration, a” ,while training, to have noise-free next-
step velocity fields, w™*!, the integration update scheme is shown in Eq. 3.13,

u™t = (04(@" +d) + pta) Al + (ou(@” + €") + ), (3.13)

where €" is the noise present in the input velocity, u4”. ¢ and p are, respectively,

the standard deviation and the mean of their corresponding field, while At,, is the
model’s time step. Thus, to cancel the noise present in the input velocity fields, n,
the model is required to infer the normalized acceleration fields, deflected by d and
computed as shown in Eq. 3.14,

oy

S .14
d S AL X n (3.14)

To demonstrate the superiority of our model, trained with noisy inputs and
deflected outputs and elected using early stopping criteria based on a sequential
validation dataset, the dynamics of the flow fields are plotted and compared to
those obtained with a basic model. The basic model is trained without any noise
addition, and its training is terminated using the traditional early stopping criteria.
Figure 3.15 shows the error plot of the inferred flows over the simulation time for
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Figure 8.15: Plot of error for flow fields predictions obtained using a basic model,
shown in grey, and our suggested model, shown in blue. The recurrent cor-
rection frequency is set to infinity for both rollouts and an inlet velocity,
Uy in = 0.75 m/s, not shown during training, is used for comparison.

both models, obtained with a recurrent correction frequency set to infinity, i.e.,
solely relying on the trained model. Although initially, the basic model returns flow
fields with a lower error metric due to the absence of any noise in the single-step
training process, however, after a few steps, the accuracy of the inferrings starts to
deteriorate compared to our trained model. Thus, the addition of noise and using
a sequential validation dataset increases the robustness of the model against noisy
inferrings and ensures longer rollout trajectories with a smaller overall error.

3.8 Results and Discussion

The framework’s ability to span the time domain is initially assessed visually, as
shown in Figures 3.16 and 3.17. The figures are obtained at various time steps and
for multiple coupling frequencies. Although the training data is restricted to 500
snapshots from each trajectory, ranging between T'S = 2500 and T'S = 3000, the
model’s ability to extrapolate to unseen regimes is assessed by obtaining the fields
at T'S = 3250 and T'S = 3500 shown in the last two columns of both figures, thus
exceeding the training domain by almost 500 model time steps. The first column
corresponds to the fields obtained at T'S = 2500 while the last for T'S = 3500,
thus incrementing by a step of 250 between each column. The fields shown in the
second row are obtained with a recurrent correction frequency of 1, meaning that
the traditional solver is incorporated after every model inferring. However, for the
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final row, the frequency is set to infinity, meaning that the model solely spans the
whole time domain without any inference from the Navier-Stokes CFD solver.

Although visual agreement can be clearly recognized between various simula-
tion setups, Figure 3.18 further investigates the quality of the coupling framework
suggested in this work. Multiphase flows with a fluid filling from the bottom are
usually characterized by a dome-shaped interface, as shown in Figure 3.2b. The
dome’s height, h, is of particular interest for comparison with experimental results
or for validating the simulation accuracy. To evaluate the accuracy of the results
incorporating a deep learning model to those obtained using the traditional finite
element method, the dynamics of this metric over the simulation time are recorded
and plotted for various correction frequencies, as shown in Figure 3.18. Although
the value of the dome height, obtained from a framework relying solely on the deep
learning model to resolve the flow equations, starts to exceed the true height, f = 0,
after recycling the inferred fields for various steps, the margin of error is still ac-
ceptable as is shown with the grey plot labeled by f = inf. As expected, restricting
the number of model predictions to a finite number, f = 0 and f = 1, redirects
the solution fields and damps the accumulation of error, even for extended rollouts.
Finally, it should be noted that the model temporal training domain is restricted to
half the domain used during testing.

The [, normalized error is also computed, over the predicted flow velocities, to
compare the different correction frequencies over a testing trajectory within the
training domain time interval. The error metric, at every time step, is defined as
shown in Eq. 3.15, and the results are shown in Table 3.1.

1 n __on un _ an
error:—(HU”’ U$||2+H Y yH2>, (3.15)
2\l [l 2
where || - || is the [ norm of the physical field. u} and uj are respectively the

true z and y components of the velocity field while @y and u; are their predicted
counterparts at time step n. Asis expected, as the frequency increases, the computed
error metric will increase due to the less enforcing of governing laws imposed by the
traditional finite element solver. The maximum average error is obtained for a
simulation that relies solely on the deep learning model to span the whole time
domain and is restricted to 1.29 x 107!, Finally, it can be noted that the maximum
error for all frequencies occurs toward the final time steps due to the accumulation
of errors throughout the simulation.

For investigating the attained reduction in computational cost, the time required
for inferring the flow fields using the traditional finite element solver is recorded and
compared to that required by the deep learning model on both a CPU and a GPU
device and for various recurrent correction frequencies. Initially, the traditional
solver requires around 122.09 seconds to span 500 incremental steps. Employing
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TS = 2500 TS = 2750 TS = 3000 TS = 3250 TS = 3500

Figure 3.16: Visual comparison of the evolution of the velocity field for various
correction frequencies. The figures show the velocity fields along with their
streamlines for an inlet velocity not observed by the model during training.
For every frequency, various snapshots are shown, starting at T'S = 2500 and
incrementing by 250 steps for every column. Every row of figures corresponds
to a separate frequency. The 071" ¢77’ of frequencies is: 0, 1, and oo, where f = 0
corresponds to the true CFD tesults.
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Figure 3.17: Visual comparison of the evolution of flow for various coupling
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’ f H 1 2 00
Average [ 9.44 x1072]9.80 x 1072 [ 1.29 x 107"
Maximum || 1.31 x 107 | 1.16 x 10~ | 1.56 x 10~ *
Time Step 2005 2095 3000

Table 3.1: Summary of obtained error. The average of the lo normalized error is
computed across all samples. The time step corresponds to the step at which
the maximum error is found.

the data-based model on the same CPU device and with the recurrent correction
frequency set to 1, a reduction of around 4.9% is obtained. Increasing the recurrent
frequency and relying more on the deep learning model leads to a further reduction
in the computation cost. That said, with f = 2, the reduction increases to 6.5%
and for f <« oo, a reduction of 9.9% is attained. Knowing that Graph neural
networks operate most efficiently on a graphical processing unit [103], an order of
magnitude higher reduction in computational cost is obtained with the prediction
time dropping to around 10.88 seconds, thus predicting the flow fields around 11
times faster than the traditional CFD solver. Further reduction is also possible
by enhancing the current model implementation and considering various methods,
such as pruning [104] and quantization [105], for reducing its inference time since
the primary focus of this work was to investigate the coupling framework and its
approximation capacity for multiphase flow problems without large consideration to
the prediction speed.

Finally, to validate the choice of using acceleration as the model’s output rather
than directly inferring the required velocity fields, the performance of trained models
with different output fields is compared. A model that predicts the velocity at the
next time step rather than the change in the field, i.e., the acceleration, is trained
in a similar environment as the basic model previously described. Moreover, both
models are trained without any noise addition and using traditional early stopping
criteria to equate the odds between them. The physical fields used to asses the
superiority of a model over another are obtained from simulations with an infinite
correction frequency. This is done to limit the effect of external factors on the quality
of predictions. Figure 3.19, showing the evolution of error over time for the various
fields, clearly favors predicting acceleration rather than velocity.

3.9 Conclusion

In current contribution, a coupling framework between a traditional finite element
CFD solver and a deep learning model was presented. This coupling framework was
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Figure 8.18: Interface metric evolution for various coupling frequencies. The plot
shown in blue and labeled with f = 0 represents the results obtained using
solely CFD finite element solver. The remaining plots, shown in grey, rep-
resent results obtained using the introduced coupling framework for various

frequencies.
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Figure 8.19: Roll-out performance comparison for models trained with either accel-
eration (whose results shown in grey), or velocity (shown in blue) as their
output field. The comparison is done for the obtained fields at the next time

step: (a) ug, (b) uy, (c) p.
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employed to resolve the strongly coupled equations required for tackling multiphase
flow problems with a level-set interface capturing method. Since most of the com-
putational cost for resolving such a problem is monopolized by the flow equations’
finite element solver, i.e., around 98 % of the computational time is required for
resolving the flow fields compared to only 2 % for resolving the level-set scalar field,
the deep learning model was chosen to predict the evolution of the flow fields in
time. The task of the model was facilitated by the proper choice of model targets,
an appropriate training process, and the use of a sequential validation dataset to
terminate training. Moreover, the graph-based model architecture, along with the
suggested coupling framework, allowed for the dynamic adaptation of the unstruc-
tured irregular triangular mesh with the interface evolution. Various visual and
numerical tests were used to evaluate the model’s performance on new and unseen
simulation trajectories. Finally, incorporating the finite element solver in the sim-
ulation trajectory damped the accumulated error resulting from the data approach
inferring by reimposing the well-established physical laws. This is made evident by
the computed error metric for different recurrent correction frequencies, where the
I, normalized error for a frequency set to f = 1 averages at 9.44 x 10~2 while for
f = inf, the average is around 1.29 x 1071,

Although significant potential can be seen for the proposed method, mainly for
finite values of recurrent correction frequencies, various ameliorations can be ad-
dressed to enhance its performance for infinite correction frequencies. Relying on a
greedy procedure for the choice of training data samples or additionally constrain-
ing the model predictions using the already known physics are expected to enhance
current performance and partly relieve the CFD solver from imposing the required
physical constraints. Moreover, although the current framework is introduced for
2D multiphase flow problems, other flow setups with different characteristics or even
new applications could be exploited with slight modifications. This abstraction is
inherited from the constituting pillars’ robustness. That is, both employed meth-
ods, the finite element technique, and the deep learning approach, have acquired
reliability with the successful implementation of the former, over a wide range of
applications [106], and the universality of the latter, secured by the universal ap-
proximation theorem [107, 108]. Also, various physical problems are governed by a
similar set of equations, where the flow equations are coupled to a scalar transport
equation and thus are foreseen as a fertile space for investigating the applicability of
the current framework. Finally, the modern results attained by deep learning mod-
els over three-dimensional data, [109, 110], pave the path for extending the current
framework, in future work, for simulating 3D multiphase flow problems where the
impact of simulation time is of great importance.
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Chapter 4

Tackling the Curse of Dimensionality in
DL Models

( 1. Testing ) ) ( 3. Scaling )

Figure 4.1: Organization of current thesis

Abstract Throughout the last decade, multiple disciplines and industries have
tended toward incorporating and relying on data-based approaches, including the
CFD community, where various efforts were exerted to either infer a physical field,
accelerate a traditional solver, or enhance an obtained solution. The mastery of
these approaches in multiple tasks, previously rendered impossible or challenging to
perform, along with their contribution to simplifying or accelerating various problem
solutions, directed the current research toward investigating the mazimum potential
of these models on more complex tasks. All of the above fueled the current trend
of relying on large models with millions of parameters and their training on mas-
siwe and complex datasets. However, the attained boost in approximation capacity
powered by the more significant number of trainable parameters is associated with
various caveats. One of these significant drawbacks is the additional pressure on the
current hardware infrastructure due to the immense growth in the required memory
footprint. This issue squanders the ambitions of various research groups in further
exploring the potential of deep learning models and necessitates joining efforts to
handle it prior to exploring more complicated problems. Thus, this work falls un-
der the third and final stage of the following manuscript ogranization, as shown in
figure 4.1, where it aims at complementing the previous suggested frameworks with
advanced implementation techniques to tackle memory problem and allow future scal-
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ing to higher dimensional problems. Precisely, it focuses on exploring an assembly of
techniques that address this issue while avoiding mutating the model’s architecture or
deteriorating its accuracy. The result of inheriting these techniques, in the context
of Computational Fluid Dynamics problems, is highlighted through the training of a
Graph Neural Network for inferring the Navier Stokes Flow Fields in a multiphase
flow problem with dynamically adapted anisotropic triangular mesh. Finally, an 78
% reduction in the habitually required memory, accompanied by eight times shorter
training step times, 1s made possible by incorporating various techniques simultane-
ously, as will be detailed.

Abstract Tout au long de la derniere décennie, de nombreuses disciplines et in-
dustries ont montré une tendance a intégrer et a dépendre de méthodes basées sur
les données, y compris la communauté de la CFD, ou des efforts considérables ont
été déployés pour soit inférer un champ physique, soit accélérer un solveur tradi-
tionnel, soit améliorer une solution obtenue. La maitrise de ces approches dans
de multiples taches, auparavant jugées impossibles ou difficiles a réaliser, ainsi
que leur contribution a la simplification ou a l'accélération de diverses solutions
de problemes, ont orienté la recherche actuelle vers [’exploration du potentiel max-
imal de ces modeéles sur des taches plus complexes. Tous les éléments ci-dessus
ont renforcé la tendance actuelle qui consiste a s’appuyer sur de vastes modeles
dotés de millions de parametres et a les entrainer sur des ensembles de données
massifs et complexes. Néanmoins, ['augmentation de la capacité d’approximation
obtenue grace a un nombre plus important de parametres ajustables est assortie de
plusieurs inconvénients. L’un de ces inconvénients majeurs réside dans la pres-
ston supplémentaire exercée sur linfrastructure matérielle actuelle en raison de
['tmmense croissance de la taille mémoire requise. Cette problématique compromet les
ambitions de divers groupes de recherche en ce qui concerne l’exploration plus appro-
fondie du potentiel des modéles de deep learning et nécessite une collaboration pour
la résoudre avant d’aborder des problémes plus complexes. Ainsi, ce travail s’inscrit
dans la troisieme et derniere étape de l’organisation du manuscrit suivante, comme
le montre la figure 4.1, ou il vise a compléter les cadres suggérés précédemment avec
des techniques d’implémentation avancées pour résoudre le probleme de la mémoire
et permettre une extension future vers des problemes de dimensions supérieures.
Précisément, il se concentre sur l’exploration d’un ensemble de techniques visant
a résoudre cette problématique tout en évitant de modifier [’architecture du modéle
ou de compromettre sa précision. Les résultats de 'application de ces techniques,
dans le contexte des problemes de dynamique des fluides numérique, sont mis en
cvidence par lentrainement d’un réseau meuronal graphique pour l'inférence des
champs d’écoulement de Navier-Stokes dans un probléme d’écoulement multiphasique
avec un maillage triangulaire anisotrope adaptatif dynamique. Finalement, une
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réduction de 78 % de la mémoire habituellement requise, accompagnée de temps

de formation huit fois plus courts, est rendue possible en incorporant simultanément
diverses techniques, comme cela sera détaillé.
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4.1 Introduction

In the modern era, the industrial landscape heavily depends on numerical simulation
tools to expedite operations. Many of these processes encompass fluid flows coupled
with other physical phenomena. Examples of such multiphysics problems include
the turbulent flow past an obstacle [1], the cooling or heating of a workpiece using
either natural or forced convection [2, 3|, fluid-structure interaction [4], multiphase
flows [5], and a wide range of other captivating scenarios. Unfortunately, solving
multiphysics problems, particularly with multiphase flows, remains challenging, de-
spite the scientific community’s continuous efforts to forge cutting-edge numerical
solvers. This challenge arises from the substantial computational burden entailed
for resolving large governing systems, compromising a multitude of partial differen-
tial equations, along with the high dimensionality and nonlinearity of Navier-Stokes
equations [5]. Conversely, the demonstrated potential of data-based methodologies
in diverse domains like computer vision [6], machine translation [7], speech recogni-
tion [8], and natural language processing [9], has positioned them as promising candi-
dates for tackling the aforementioned challenge. Consequently, the fluid mechanics
community swiftly integrated these approaches with a wide range of applications
while embracing a multitude of architectures. Initially, Deep learning models based
on multilayer perceptrons were first introduced; Raissi et Al. [10] employed them
for predicting the flow fields at specific locations within the domain while informing
the loss function of the governing equations. Similarly, in [11], a model is used to
predict problem-specific coefficients for estimating spatial derivatives in shock for-
mation phenomena. Furthermore, in [12], the authors utilized an MLP to predict the
out-of-plane 1D function for resolving heat problems using Proper Generalized De-
composition (PGD). Subsequently, models based on convolutional neural networks
gained growing interest owing to their remarkable traits in extracting spatial fea-
tures, relying on local connectivity, and sharing parameters across the input space.
These models were employed in diverse applications such as forecasting drag and
lift forces [13, 14], predicting the flow [15], or inferring scalar field in multiphysics
problems [16, 17]. Finally, models that operate directly on graphical data started to
gain popularity due to their ability to operate directly on unstructured discretiza-
tion mesh, thus preserving the topological information [18, 19]. For instance, in the
work conducted by Chen et al. [20], an encoder-decoder Graph Neural Network was
employed to predict the steady-state laminar flow field past random 2D obstacles.
Similarly, Belbute-Peres [21] utilized these models for ameliorating the solution of a
low-resolution Navier-Stokes solver.

Inspecting the trend of architectures utilized in the CFD community within the
last years indicates a preference toward relying on larger and more complex models.
Various factors encouraged this expansion in the size of DL models. The increase in
data availability, supported by advancements in data-collection technologies, open
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data initiatives, and data augmentation techniques, motivated researchers to inves-
tigate larger datasets and extract more complex patterns and representations. The
model’s capacity to extract abstract information from datasets strongly depends
on its number of trainable parameters and architecture [22]. Model scaling tech-
niques, such as depth scaling [23, 24], width scaling [25], resolution scaling [26], or
even compound scaling [27, 28], are known to lead to lower error at the expense
of the number of floating point operations. These results, coupled with the grow-
ing demand for attaining higher model performance and accuracy in various fields,
drove researchers to compete in designing complex architectures with a large num-
ber of parameters. Examples of model architectures that have been known for their
state-of-the-art results on various benchmarks include: ResNet-50 for image clas-
sification, segmentation and object detection with over 23 million parameters [29],
VGG-19 (Visual Geometry Group-19) also used in the field of computer vision and
relies on more than 138 million parameters [23], BERT (Bidirectional Encoder Rep-
resentations from Transformers) for natural language processing tasks with around
345 million parameters [30], and finally GPT-3 (Generative Pre-trained Transformer
3), also used for natural language processing but with 175 billion parameters [31].
The following set of examples strongly highlights the current trend of increasing
model sizes and the number of parameters in deep learning research.

The current hype of large complex deep learning models trained on massive
datasets imposes various challenges, mainly concerning computational resources.
Starting from the memory required for loading and preprocessing the extensive in-
put data, moving to the required resources for the model’s trainable parameters,
and finally to the memory necessary for storing intermediate values, later used for
performing backpropagation [32], all of the following subjects the training process to
the well-known out-of-memory (OOM) error [33]. Initial attempts to mitigate such
an error might be at the expense of the model’s accuracy. To alleviate the OOM
error, practitioners might lean toward pruning the model architecture, reducing the
model’s depth or width, or using shared parameters across model layers [34, 35].
However, such actions compromise the model’s capacity to learn complex represen-
tations and might weaken its performance [36]. Others might rely on cutting off
the number of samples in a batch to reduce the number of intermediate variables
and, thus, the peak memory required for a single update step. However, this re-
sults in a noisy gradient estimate, thus threatening the stability and accuracy of
the updates and questioning their efficiency [37, 38]. Influenced by reducing the
training samples in a batch, Hu et Al. suggested a novel training methodology [39],
specific for physics-informed neural networks with high-dimensional partial differ-
ential equations, in which the gradient updates are computed based on a random
subset of the residual gradients across the dimensions. Although this approach re-
turned interesting results on various equations, however, it remains directly bound
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to residual-based models for high-dimensional partial differential equations. Finally,
limited memory resources also hinder tuning the model parameters and exploring its
hyper-parametric space, thus leading to suboptimal model parameter settings and
inferior accuracy [40].

Various methods can be found in the literature to overcome memory limitations
and enable the training of complex models with large datasets. Distributed training
is one of the common approaches that rely on expanding the hardware infrastruc-
ture to compensate for the additional memory requirements and reduce the required
training time [41], mainly for GPUs with limited per-unit storage capacities. This
approach distributes the training process across multiple devices or machines. Var-
ious techniques are utilized for employing distributed training: Model parallelism
[42, 43], data parallelism [44], or even a combination of both [45]. For model paral-
lelism, the model is initially partitioned into submodels, also known as chunks, that
are then distributed across the available devices. The computed outputs are then
combined to obtain the required model output. Although this technique eases large
model deployability, however, it is naturally suited for architectures with distinct
parts and may require significant modifications for models with high sequential or
temporal dependencies across layers [46]. On the other hand, data parallelism relies
on splitting the data batch into multiple non-overlapping subsets to be concurrently
processed on separate devices. The computed gradients from the various subsets are
further reduced into a single set before optimizing the model’s parameters. Although
both techniques offer multiple benefits depending on the specific use case, data par-
allelism is more prevalent in deep learning applications with extensive training data
sets due to its ease of implementation and universality concerning model architec-
tures [47]. Although relying on distributed training offers a convenient and easy
technique to overcome the OOM error without risking the model’s accuracy or per-
formance since no modifications are performed on the model architecture, however,
it necessitates the availability of substantial computational infrastructure compro-
mised of multiple accelerated processing units accompanied by high capacity storage
units with large memory bandwidth to avoid bottlenecks and ease the transfer of
data between. Such infrastructure requires a substantial amount of funds, and thus
its expense might stall various researchers and organizations, with limited resources,
from further exploring new deep learning model architectures [48].

On the other hand, carefully scanning the literature reveals other methods em-
ployed in different fields and for various applications that can reduce the memory
footprint and allow for training larger deep learning models without endangering
the model’s accuracy or expanding the hardware infrastructure. Various works sug-
gested training the model with reduced precision by binarizing the weights [49],
activations [50], or all the tensors, including the gradients [51], or by quantizing the
parameters to different bit counts [52, 53]. Of particular interest in this area is the
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work of Micikevicius et al. [54], which relied on a floating point half-precision for
all tensors and arithmetics with no hyperparameters tuning. Their work resulted in
a reduction in the memory footprint for various deep learning architectures without
accuracy deterioration. On another side, statically defining model’s computational
graph before execution allows for various optimizations that can also be employed to
enhance performance and reduce the memory footprint. This is possible due to the
complete graph analysis and the required peak memory prediction that opens the
door for further optimizations, such as constant folding, pruning redundant graph
nodes, etc [55]. Also, mitigating dynamic execution and relying instead on static
one enables more efficient use of hardware resources by eliminating unnecessary
memory allocation and avoiding fragmentation [56, 57|. Finally, the above set of
optimizations can be further extended to computation-specific optimizations on cer-
tain subclusters in the computational graph with the aid of JIT compilers [58]. The
latter set of optimizations is distributed between both platform-agnostic optimiza-
tions and target-specific optimizations, offering a further reduction in computational
cost and memory footprint [59].

In the following work, we’ve addressed the problem of limited resources encoun-
tered while training a deep learning model with a specific focus on CFD applica-
tions with mesh adaptation. Precisely, the graph-structured deep learning model,
suggested in [60] for inferring the Navier-Stokes flow fields in a two-fluid flow prob-
lem with dynamically evolving anisotropic discretization space, is implemented and
retrained in different environments in an attempt to reduce its required memory
footprint. The tested approaches focus on lightening the memory requirement with-
out expanding the hardware infrastructure and while maintaining the same model
architecture, thus avoiding incurring additional hardware costs or endangering the
model’s performance. The approach is based on adopting the mixed precision train-
ing methodology, previously suggested in [54], and employed for various model ar-
chitectures based on convolutional neural networks or on recurrent ones for a graph-
structured flow predicting model. The possible reductions are further enforced by
incorporating multiple static computational graph optimizations, thus joining forces
of numerous techniques simultaneously rather than relying on a single exclusive
method alone. This allowed for retraining the same number of model parameters
eight times faster with an 80 % lower peak memory, compared to the initial de-
fault implementation, on the exact same hardware. The current work is organized
as follows: Sec. 4.2 starts by showcasing the reason behind memory build-up in
neural network training and highlights its scaling with the input dimensions for a
simple MLP. Next, in Sec 4.3, three techniques for counteracting this buildup are
discussed, and their effect on both the memory and training step time is shown for
the same MLP. The introduced methods will then be employed, in Sec. 4.4, to a
graph-structured deep learning model used for inferring the Navier-Stokes flow fields
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in a two-fluid flow problem with mesh adaptation. This contribution is concluded
finally in Sec. 4.5.

4.2 The curse of input dimensionality in Deep Learning
models

Deep learning models are simply non-linear functions parametrized by a set of train-
able parameters and are commonly used to approximate a particular target func-
tion. The value of their parameters is usually determined by training them on a large
dataset. However, during this training, memory buildup occurs due to relying on the
backpropagation algorithm for computing the gradients required by the optimizer.
Section 4.2.1 expands the various points for a single update step and elaborates on
the reason for memory buildup in the backpropagation algorithm, while the next
section, Section 4.2.2, demonstrates this memory buildup for the common multilayer
perceptron and illustrates its scaling with the dimension of the input.

4.2.1 Training a Deep Learning model using Backpropaga-
tion

A deep learning model used to approximate a target function, F*(x) =y, is simply
a nonlinear function, F(x;60) = y, that maps an input, x, into an approximated
output, y, and that is parametrized by a set of trainable parameters, 6, also known
as the model’s weights and biases. The values possessed by this set of parameters
are initially randomly chosen; however, the output accuracy of the model solely
depends on their values. Thus, they are continuously updated to converge the model
outputs toward the desired targets until the difference between the predictions and
desired targets, quantized using a loss function, is minimized. The non-convex loss
function, due to the model’s non-linearity, imposes the use of iterative gradient-based
optimizers. Thus, to update the parameters, the gradient of the loss function with
respect to the parameters is required and is computed using the backpropagation
algorithm [32].

However, the memory footprint attains a peak value at every update step during
parameter optimization and significantly scales with the dimension of the model
input. To clarify the reason behind this memory peak value, the process of an
update step will be demonstrated over a feedforward network, also known as a
multi-layer perceptron (MLP). Although this demonstration is performed over an
MLP, the update step is similar to all sequential models. Also, MLPs are seen as the
constitutional base unit of various DL. models and are of essential importance in the
DL field due to their numerous offspring architectures, such as graph convolutional
networks or recurrent neural networks. Thus, a single training step consists of
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forward propagation, followed by a backward propagation, also known as Backprop,
and finally, parameters update as shown in Figure 4.2. In the forward pass, an input
x is propagated through the model layers, fi(x!;#%), until an output y followed by
a scalar cost J(0) is computed. Next, the gradient of this cost with respect to the
model parameters is computed by flowing the information backwardly using the
backpropagation algorithm. Then, the optimizer uses the computed gradients to
update the current parameters state. Finally, to ensure more stable updates and
reduce the attained training noise, the error from a batch of examples can be used
similarly to perform the update rather than using a single example.

FORWARD PATH
o) 0(2)

Vo) £ Vo) £
BACKWARD PATH

Figure 4.2: Training Step consisting of a forward path for computing the scalar loss, J,
a backward path for computing the gradients of the loss with respect to the
trainable parameters, VyuJ, and an update step for optimizing these param-
eters.

The mentioned peak in memory occurs specifically during the backward propa-
gation step. The Backprop is not specific to MLPs and can compute the derivative
for any function. Moreover, although it is mostly employed to compute the gra-
dient of the cost function with respect to the parameters, it can also be used for
computing other gradients. To describe backpropagation accurately, we will refer
to the involved computations using graphs where each node in the graph represents
a variable, e.g., scalar, vector, matrix, etc., and each edge represents an operation,
e.g., addition, multiplication, ReLU, etc. In reality, the backpropagation algorithm
computes the derivatives of a function relying on the chain rule of calculus. It per-
forms a Jacobian-gradient product for each operation in the graph as shown, for
example, in Eq. 4.1 for a computational graph depicting z = f(g(x)) = f(y) with
the input, «, being a vector and in Eq. 4.2 for the input being a tensor.
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where @, y and z € R™, R"™ and R respectively.

0z

Vxz=) (VxY)) 5,
J

(4.2)

where z = f(g(X)) = f(Y) with X and Y representing tensors of any arbitrary
dimension and Y; a specific entry of the tensor.

Generally, the Backprop computes the gradient of the output node with respect
to any node in the computational graph relying on an efficient implementation of
the chain rule of calculus. Various computational subexpressions are numerously
repeated throughout the computation of the gradients at each node using the naive
implementation of the chain rule rendering the process inefficient for complex graphs.
The Backprop elevates this problem at the expense of the memory footprint by stor-
ing the value of these common subexpressions avoiding unnecessary recomputations.
This limits the number of operations at the node level to a single gradient computa-
tion per edge where only the gradient of every child node for the parent is required.
Thus, the Backprop algorithm computational graph is a replica of the forward graph,
as shown in Figure 4.3, having the same number of nodes and edges but traversed
in the opposite direction where each edge imposes the computation of the gradient
of the child node with respect to its parent and each node becomes its gradient with
respect to the output.
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Figure 4.3: Computational Graphs for both forward and backward path of an MLP with

a single hidden layer.

WO b 70 20 gnd al® are respectively the weight

tensor, bias vector, weighted sum, activation and the non-linear activation
specific for the ith layer. The graph operations are considered to include a
non-linear operation, f, along to a loss computing operation, loss. In (a), the
mput, &, propagates from bottom to top until a scalar loss, J, is computed.
In (b), the gradient of the loss with respect to every nodal variable, shown in

orange, is computed by

propagating backwardly from top to bottom. Operations

denoted by (op) compute the gradient of the child node with respect to its par-
ent, VenPa. Faded nodes are duplicated nodes for the ease of representation.
Note that the following graphs are simplified schematic representations of the

true graphs that might

differ with various implementation methods.

4.2.2 Memory overhead accompanied in a training step

In a training step, the value of the computed parameters, such as the hidden layer
activations, is maintained in memory until the gradients are calculated. The value
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of these parameters is required by the backpropagation algorithm for efficiently
propagating the backward computational graph. For example, on a single training
sample, the gradient of the scalar loss with respect to the i** layer weights, Vwa J,
is equal to the product of the propagated gradient at the related activation child
node, V) J, with the i""~! layer activations, i.e. V aJ X ai=1" a5 shown in Figure
4.3b. Thus, these activations, along with other previously computed variables during
the forward path, are kept stored in the memory until their related gradients are
computed throughout the backward path. This leads to memory accumulation,
with a peak value attained at the backward path, as shown in Figure 4.4, where
the evolution of the memory footprint through a single training step for an MLP is
plotted.

Memory (GB)

Figure 4.4: Memory footprint for a single training step of an MLP. The network is
trained on an input batch consisting of 1M samples. The network consists
of 2 ReLU-activated hidden layers followed by a linear output layer. The
dimension of all layers, including the input and output layers, is set to 128.

Moreover, the magnitude of the attained peak memory is directly related to the
dimension of the hidden layers along with the number of input samples. An input
batch, consisting of N samples with R™ feature vector, will result in hidden-layer
activation tensors in RN*"  where n; is the dimension of the 7** hidden layer. Thus,
input tensors with a larger number of samples, N, will demand larger computational
resources as shown in Figure 4.5 where the required peak memory for a single step
training of an MLP increases proportionally with the number of samples in the input
tensor.
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Figure 4.5: Variation of the attained peak memory with the number of input

samples. The network consists of 2 ReL U-activated hidden layers followed by

a linear output layer. The dimensions of all layers, including the input and

output layers, are set to 128.

4.3 Review of implementation methods to counteract mem-
ory buildup

Various methods exist in the literature to lower the effect of the memory buildup oc-
curring during the training of deep learning models. Some methods turn to alter the
model’s architecture, while others opt for incorporating larger hardware infrastruc-
ture. In this section, we will direct our focus toward methods that offer a reduction
in the required memory footprint without demanding architectural modifications or
an expansion in hardware. In particular, Section 4.3.1, provides details for training
a model with reduced parameter precision without endangering the model’s accu-
racy. While sections 4.3.2 and 4.3.3 offer a reduction in memory by optimizing the
computational graph at various levels.

4.3.1 Mixed precision

Deep learning models are usually trained with a single floating point precision. This
requires each model parameter, activation, or gradient to occupy 32 bits of memory.
Reducing the required storage bits will induce a large reduction in the required mem-
ory during training, especially for complex models trained with a very large number
of samples, along with possible speedups on modern accelerators. Micikevicius et
al. explored in their work, [54], using mixed precision, with both 16- and 32-bit
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floats, for training various convolutional and recurrent network architectures. The
suggested methodology is applicable without changes to the model’s architecture
or its hyperparameters and offers relaxation for both the memory and the compute
resources on most hardware.

Although the reduction in memory is guaranteed regardless of the hardware
architecture, using mixed precision for specific processing units may offer no im-
provement in performance. Improvement in performance using mixed precision
stems from either decreased memory bandwidth or reduction in arithmetic time with
half-precision floats. However, Central Processing Units (CPUs) are inadequate to
perform reduced precision math, and mixed precision may result in slower training.
Also, some NVIDIA Graphical processing units, with compute capability lower than
7.0 that are not equipped with Tensor Cores, [61], limit their speedups to memory
bandwidth savings only. Finally, the speedup on GPUs with compute capabilities of
at least 8.0 is also limited to memory bandwidth savings since Tensorfloat-32, [62],
automatically uses accelerated lower precision arithmetics for some operations.

However, due to the narrower dynamic range of the half-precision float point
format compared to the single-precision counterpart, a loss of information may occur
during model training, leading to a deterioration in the resulting model accuracy.
To overcome this problem, three techniques have been suggested in [54]. First, a
master copy of the model trainable parameters is maintained in the FP32 format.
The intuition behind this act is backed by the fact that the weight updates may
underflow in FP16 formats, 7.e. the product of the weight gradient and the learning
rate may attain values smaller than 272* during training and thus are zero-valued
in the reduced precision format. Also, an update that is 2'' times smaller than its
corresponding weight value also becomes zero due to the binary point alignment
within the addition operation. Thus, maintaining a single precision copy of the
weights to accumulate the updates will bypass the above-mentioned problems with
a negligible 50% increase in weight memory requirement since memory consumption
during training is mostly dominated by storing activations. The second technique
suggested to avoid deterioration of accuracy is loss scaling. The intention behind
scaling the loss is also due to the small values attained by the gradients throughout
the backward pass, which might fall below the representable range of FP16, leading
to the same underflow problem. Multiplying the computed loss by a scale factor
before the backpropagation path shifts the computed gradients with the same scale
and helps them occupy a larger portion of the FP16 representable range. The
computed gradients are then unscaled before updating the FP32 master copy of
the weights. Finally, care should be granted while specifying the scaling factor to
avoid computing gradients with a value larger than the maximum limit of FP16,
.e. 65,504, leading to an overflow. Finally, the third technique suggests carrying
out certain arithmetic operations in FP32 while maintaining the memory read /write
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to FP16 tensors. Examples of such operations include the large tensor reductions
occurring in a softmax layer or in batch-normalization layers or the accumulation of
partial products for the vector dot-products operations.

As mentioned earlier, the reduction in the memory footprint accompanied by
implementing mixed precision training methodology is directly dependent on the
complexity of the model and its deepness. Precisely, mixed precision stores the
computed activations of the model layers, the trainable parameters, and the gra-
dients in half-precision tensors and maintains a single-precision copy of the model
parameters. This results in halving the memory required for storing the activations
while increasing by half the memory required for storing the parameters. However,
since the number of activations typically dominates the number of parameters, the
effect of mixed precision on memory is focused on the number of activations present
in the model architecture. Furthermore, certain implementations also require cast-
ing the model prediction to a single-precision tensor to ensure numerical stability,
[63], thus further limiting the attained reductions in memory footprint. To showcase
the effect of the number of activations on the required peak memory for training the
model, the number of hidden layers in the Multilayer Perceptron model introduced
in Section 4.2.2 is varied, and the required memory is registered for both, full pre-
cision and mixed precision training. The effect of casting the predictions to single
precision is also considered, and the results are shown in Figure 4.6.

—&— Full Precision
=~ Casted Mixed Precision
—— Mixed Precision
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Figure 4.6: Variation of the attained peak memory with the number of hidden
layers for reduced precision implementations. The dimensions of all
layers, including the input and output layers, are set to 128.
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4.3.2 Migrating eager execution and performing graph op-
timizations

Various platforms exist for building and training deep learning models. Nowadays,
both TensorFlow and PyTorch have attained popularity within the research commu-
nity due to various factors such as their large community, detailed documentation,
and coding flexibility. To broaden their spectrum of users, both libraries rely on a
simple Pythonic approach as their default option for building a model, i.e. Eager
execution with TensorFlow and similarly Dynamic computational graphs with Py-
Torch. Although this approach is easier to employ and more intuitive, it comes at
the cost of efficiency and deployability with operations being executed one-by-one
in Python with small space for performing optimizations and code acceleration. Mi-
grating these approaches to faster and more efficient execution methods is possible
by considering the Graph execution in TensorFlow or Static computation graphs
within PyTorch. Both these methods compile a static computational graph prior
to execution, thus opening the door for potential acceleration opportunities and op-
timizing possibilities. The remainder of this section will rely on the terminology
used for the TensorFlow Graph execution method, although similar concepts exist
across the various deep learning platforms. The computational graph is held in a
Dataflow, device-independent TensorFlow Graph with nodes representing operations
and edges representing data flowing between the operations. To ease transforming
the python-eager code into TensorFlow graph operations, TensorFlow has developed
the Autograph library to handle these transformations for plenty of operations, in-
cluding control flow ops, i.e. loops, and conditionals, that are usually easier to
understand in Python format. Figure 4.7 shows the obtained TensorFlow execution
graph for the previously defined MLP model prediction with five hidden layers.

The main advantage of graph execution lies in the broader range of possible
optimizations, such as compiler-level transformations, optimizations in structure,
and enhanced resource distribution. In TensorFlow, all of the following optimiza-
tions are handled by Grappler. Grappler’s main role is to optimize the Python-level
user-defined graph before converting it to a TensorFlow execution graph by running
various sub-optimizers for multiple iterations. The sub-optimizers perform various
operations, including graph pruning, function inlining, constant folding, arithmetic
simplification, etc. For interested readers, a comprehensive list of available opti-
mizers and further details can be found in TensorFlow documentation [63]. Finally,
to showcase the attained reduction in peak memory obtained from migrating to
optimized static graph execution, the predefined MLP model in previous sections
is used and tested for various numbers of hidden layers. The obtained results are
summarized in Figure 4.8.

However, due to the static nature of the computational graph, various points
require more attention. First, since static programming requires declaring the whole
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BiasAdd

Figure 4.7: TensorFlow Computational Graph for an MLP with five hidden layers.
The dimension of all layer features is set to 128. The nodes represent oper-
ations, whereas the edges represent the flow of data. The flow of data occurs
from bottom to top with an input batch of 4M samples.

computational graph prior to executing, this step is costly and might result in an
overall slower model if employed for functions not frequently utilized. Also, since
the computational graph is statically defined, variation within the input samples
regarding either the type or size, such as that occurring for data obtained from
CFD simulation with dynamically adapted discretization space, requires additional
effort to handle it. Moreover, since calling operations are delayed until the whole
graph is compiled, debugging is foreseen as a harder task in static programming
compared to dynamic one. Finally, drifting from the native Python environment
to more specific static graph operations may induce implementation difficulties for
unseasoned programmers.

142



4 Tackling the Curse of Dimensionality in DL Models

—8— Dynamic Execution

=~ Static Execution
28

26

24 A

22

Peak Memory (GB)

N N N N “
Number of Layers
Figure 4.8: Variation of the attained peak memory with the number of hidden

layers for various execution methods. The dimension of all layers, in-
cluding the input and output layers, is set to 128.

4.3.3 Accelerated linear algebra

Multiple optimizers are employed in the static execution of a Tensorflow Graph as
detailed in Section 4.3.2. However, these optimizations are only driven by pattern-
matching and thus are limited to previously defined kernels. Further enhancement
in performance and reduction in memory bandwidth can be attained by introduc-
ing the Accelerated Linear Algebra compiler, also known as XLA. The XLA is a
domain-specific compiler for linear algebra that emits code for multiple backends and
extends the available set of optimizations by introducing computation-specialized
optimizations. These optimizations are distributed between both platform-agnostic
optimizations and target-specific optimizations.

Briefly, the XLA compiles clusters of the Tensorflow Graph into other strongly-
typed intermediate representations allowing for further optimizations before emit-
ting backend-specific machine code. The cluster of operations to be compiled can
be either explicitly specified or automatically defined. Multiple compiled clusters
can exist in a Tensorflow Graph thus closing the gap in execution speed, through
Just-In-Time compilation, between compilers and interpreters The choice of clusters
is motivated to include the largest possible number of short-lived operations accom-
panied with plenty of kernel launches, i.e., in the context of deep learning, the whole
training step is suggested to be compiled. These clusters can be identified with the
aid of a profiler or through Autoclustering After identifying the clusters of computa-
tional nodes in the Tensorflow Graph, the Tensorflow runtime translates the obtained
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subgraph into an XL A High-level operations intermediate representation (HLO IR).
The HLO is a functional language for modeling linear algebra computations that
consists of around 50 operations compared to Tensorflow which compromises around
1500 operations. It is a strongly typed language with specified data type, shape,
and layout, thus facilitating the optimization process. Multiple target-independent
passes for analysis and optimization are executed on the obtained HLO graph, in-
cluding common-subexpression elimination, fusion, buffer analysis, etc. Note that
kernel fusion is seen as one of the most impactful optimizations for GPU, where
various operations are fused into a single computation, thus reducing the number
of GPU kernels to be launched and reducing the memory bandwidth by avoiding
materialization of intermediate results into the memory. Next, the XLA backend,
operating on the optimized HLO graph and invoking either the LLVM backend or
the CUDA library, will be responsible for the target-dependent optimization and
analysis along with the target-specific code generation. The whole process of XLA
along with its different paths, are all summarized in Figure 4.9.
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Figure 4.9: Schematic of the Accelerated Linear Algebra compiler showing both
the frontend and the backend optimizations.

Finally, although implementing XLA is accompanied by various advantages, in-
cluding enhancing performance and reducing memory footprint and bandwidth,
however, various limitations may hinder its employment. Mainly, a large number of
operations in Tensorflow, around 60%, are currently uncompilable with XLA. This
may stem from either their inherited incompatibility, such as 1/O ops, or due to
the novelty of XLA and lack of development resources. Moreover, since XLA relies
on strongly typed intermediate representation, dynamically evolving input shape or
size will require recompilation and thus introduce an unexpected latency. Finally,
since the obtained optimization is both model and hardware-dependent, deteriora-
tion in performance or additional memory overhead could be expected in certain
circumstances.

The resulting performance and memory footprint optimizations attained from
implementing XLA depend on the model under study. For the model utilized
throughout the previous sections and for all tests, an enhancement in performance
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is always visualized. However, the reduction in the memory footprint with XLA
is only attained if accompanied by mixed precision. Also, since XLA performs
optimizations on High-Level-Operations intermediate representations derived from
TensorFlow graphs, static execution is also required. To showcase the optimizations
obtained by implementing XL A, the required time and peak memory for performing
a single training step are recorded for multiple model architectures, implemented
with a mixed precision policy as described in Section 4.3.1, and for a various num-
ber of samples. Figures 4.10a and 4.10b, showing respectively the obtained peak
memory and required training-step time for both accelerated and non-accelerated
implementations, highlight the attained variation in memory optimization depend-
ing on model architecture. The acceleration in performance is maintained across
various model architectures but comes at the cost of the memory footprint for mod-
els with a large number of layers.

22
—e— Static Execution —e— Static Execution

— Accelerated Static Execution 180 { = Accelerated Static Execution

20

Peak Memory (GB)
&

N v ) > o N Vv > > A
Number of Layers Number of Layers
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Figure 4.10: Variation of the (a) attained peak memory and (b) single training-
step time with Model architecture for both accelerated and non-
accelerated implementations. The dimension of all layers, including the
input and output layers, is set to 128. The number of samples used for
updating parameters is N = 4M.

4.4 Application on Graph Neural Network for CFD simu-
lation

To test the utility of the methods suggested in Section 4.3 in the field of computa-
tional dynamics, a deep learning model with a graph-based architecture employed
for predicting the Navier-Stokes flow fields on an unstructured irregular dynamic
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discretization space and for multiphase flow problems is introduced in Section 4.4.1.
All the necessary details for successfully embracing these techniques with this spe-
cific model are highlighted in sections 4.4.2; 4.4.3 and 4.4.4 along with the attained
reduction in the computational cost.

4.4.1 Model details and architecture

To investigate the applicability and the resulting reductions of the above-stated
implementation methods, a deep learning model that operates directly on graph-
structured data [36, 64, 65], and employed for the inferring of the flow fields in a
multiphase flow problem setup is utilized. The model architecture and the details of
the problem have been previously introduced in [60] where the authors have trained a
full precision model in a dynamic environment. This training environment will later
be referred to as ”Reference implementation” to allow for comparing the required
peak memory and training time with those obtained in the new suggested training
methodologies. For a fair comparison between the different training processes and
the resulting model performance, all details are maintained the same with the exact
same distribution of datasets across all performed trainings. Any variation from the
reference environment will be explicitly specified for every suggested implementation.

The deep learning model is employed to assist in the solution of an unsteady
multiphase flow problem. The problem under study involves a fluid forced to flow
into another fluid’s domain with differing thermodynamical properties. The domain
is similar in shape to an air-filled tank with a fluid inlet at the bottom and a
pressure relief outlet at the top, and the problem setup is shown in Figure 4.11. This
problem is governed by the Navier-Stokes equations strongly coupled to a convective
self-reinitializing level-set equation [66]. The location of the interface, and thus
the distribution of the thermodynamical properties, is determined by convecting
the level-set using the computed Navier-Stokes flow fields. Finally, these required
physical fields are computed on a dynamically adapted unstructured anisotropic
triangular discretization mesh that ensures the fine capturing of the interface and
all the physics around it [67], and the set of equations are sequentially solved using
an industrial-level in-house finite element VMS solver [5, 68]. Figure 4.12 shows
the evolution of the discretization mesh, along with the distribution of the physical
properties and the flow fields over multiple time steps, for one of the obtained
solution trajectories later used for model training.

To reduce the computational cost of such a problem, a deep learning model,
faster than the traditional computationally demanding Navier Stokes Finite element
solver, is suggested to infer the next time step flow fields. The model input is a graph
with the same topological characteristics as the solver’s adapted discretization space.
The computed physical fields, i.e., the velocity and the thermodynamical properties,
along with a binary scalar highlighting the boundary nodes, are informed to the
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Figure 4.11: Problem Setup of a multiphase flow problem with showing fluid 1 with
thermal properties, py, and py, , filling a 2H-by-H tank previously occupied
by a fluid with different properties, py, and fiy,.

model as node features, whereas spatial information is provided as edge features.
The model initially encodes the nodes and edges features into a higher dimensional
space using an encoder. The encoded features are then updated using ten message-
passing blocks [19, 69], and the required acceleration fields are finally predicted as
node features using the decoder. A schematic of the model architecture, along with
the input and output fields, is shown in Figure 4.13. Each message passing step
consists of an edge update function followed by another node update function. All
update functions, along with the encoder and decoder, are two hidden layers MLPs
with latent and output layers dimensions of 128, except for the decoder, whose
output layer dimension is dictated by the size of the predicted field.

The above model architecture compromises around 1588483 trainable parame-
ters. These parameters are simultaneously updated for multiple training steps to
enhance the model inferring quality. To update these parameters, a mean squared
error loss function, quantizing the error between the predicted and CFD fields,
is computed for an input global batch graph consisting of multiple disjoint sample
snapshots graphs. The gradient of this function with respect to the trainable param-
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Figure 4.12: The evolution of the discretization mesh and the physical fields
over sitmulation time. The snapshots, from left to right, are obtained at
the following time steps: 250, 500, 2500, 3000, and 3500. A simulation with
an inlet velocity of 0.5 m/s is utilized. The first row shows the discretiza-
tion mesh obtained using the gradient-based mesh adaptive method over the
filtered level-set function. The second and third rows show the density and

the st lined velocit lds.
e streamlined velocity fie 8148



4 Tackling the Curse of Dimensionality in DL Models

e er——. ¢ s se3 M) )

Encoder
a

zZ
I0p0ood(]

Figure 4.13: Model Architecture with an Encoder-Processor-Decoder structure. The
processor is constituted from multiple GN blocks with unshared parameters
and residual connections.

eters is determined using the backpropagation algorithm [70]. Lastly, these gradients
are used to optimize the parameters using the Adam optimizer [71]. The memory
footprint at every stage of a single training step, obtained using the reference im-
plementation and for a global input graph consisting of eight disjoint subgraphs, is
shown in Figure 4.14a. Also, Figure 4.14b highlights the peak memory variation
with the size of the input global batch graph. Finally, it should be noted that all
training implementations are performed on an NVIDIA Tesla V100 GPU.

4.4.2 Mixed precision

In this section, the training with mixed precision, following the suggested method-
ology in [54] with a single precision model output to keep with TensorFlow’s blog
recommendations, is tested for the Graph Neural Network model introduced in Sec-
tion 4.4.1. To start, the model trainable parameters, corresponding to 1.6 million
parameters, are stored in a half-precision floating point format. A master copy of
the parameters, with a single precision format, is also maintained to accumulate
the obtained gradient updates and avoid neglecting minor parameter updates. The
current model architecture consisting of an encoder, 10 Graph-Network blocks, and
a decoder, all based on MLPs with two hidden layers of 128 neurons and a latent
output dimension of 128, results for every additional node or single direction edge
in around 4608 activations. Considering the smallest global input graph utilized
with 5230 nodes and 15423 edges, we will obtain around 95.2 million activations
compared to only 1.6 million parameters. Thus, the reduction in memory obtained
from storing these activations in a half-precision format will dominate the additional
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Figure 4.14: Memory footprint attained using the reference training methodology for the
CFD deep learning model. (a) Shows the evolution of this footprint through
a single training step with a global input graph consisting of eight disjoint
subgraphs, while in (b), the value of the peak required memory is shown for
different global input graph sizes.

memory overhead necessary for maintaining an FP32 copy of the weights and biases,
thus ensuring an overall lower peak memory. Finally, the computed loss is adap-
tively scaled before computing the gradients to avoid any numerical instability. The
impact of mixed precision on both the memory and the time required for a single
update is shown in Figures 4.15a and 4.15a, respectively.

Relying solely on mixed precision offers, on average, around a 25% reduction in
computational cost with a deterioration in training step time of 12.24%. The ob-
tained deterioration is due to the incompatibility of the utilized tensor sizes with the
hardware requirements for half-precision. Although simple modifications could be
performed to avoid the occurring increase in time, the authors preferred to maintain
the same model specs, without any modifications, due to their intent of reporting
the effect of incorporating these methods directly as ready-to-go tools along with
the objective of reducing the peak memory required without a primary focus on the
required time.

Finally, to investigate the effect of the employed method on both the training
process and the resulting model’s accuracy, the obtained validation loss at every
epoch is compared with the reference full-precision training process validation loss,
as shown in Figure 4.16. The obtained plot ensures that using mixed precision for
our current model architecture and application does not deteriorate the training
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Figure 4.15: Variation of the (a) attained peak memory and (b) single training-
step time with the number of Nodes in the global input graph for
both full-precision and mixed-precision implementations.

process and results in a final validation error of 1.09 x 10~2 compared to a slightly
higher error of 1.14 x 1072 in the reference training.

4.4.3 Static execution

In this section, the computational graph of the whole update step, including both the
forward and the backward passes, is initially predefined prior to execution. Migrat-
ing the dynamic execution approach and relying on a static one allows for various
optimizations, as previously specified in Section 4.3.2. The effect of these optimiza-
tions on both the required peak memory and the update step time is compared with
the initial dynamic training process and is shown in Figures 4.17a and 4.17b for
various global input graph sizes.

Particular attention shall be denoted to the definition of the static computational
graph due to the effect of mesh adaptation on the shape of the input graph. The
nature of the tackled application involving two-fluid flows with a dynamically evolv-
ing interface requires a fine-adapted discretization space that evolves simultaneously
with the interface to capture all the physics. This requirement induces a variation
in the shape of the training data at every update step due to the correlation of the
discretization mesh with the topology of the input graph. Thus, to avoid retracing
the computational graph for every new input shape, the graph is initially traced for
specific input argument data types but with no concrete definition of shapes. Al-
though this approach truncates the number of possible optimizations due to relaxing
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Figure 4.16: Validation loss obtained from training two models with different precision

policies. The training environment is similar for both models with a batch
input graph of around 40000 nodes.

the input arguments data structure, however, it avoids the computational overhead
accompanied by retracing at every single step.

Finally, combining static execution with mixed precision employed in Section
4.4.2 ensures further reduction in the required peak memory, as shown in Figures
4.18a and 4.18b. Due to incorporating mixed precision, the hardware-related in-
crease in the update time step, compared to solely relying on static execution, could
be tolerated in light of the attained reduction in the required peak memory.

Similarly, the obtained validation loss at every epoch from both approaches is
compared with that obtained during the basic training approach. The similarity of
the training curves shown in Figures 4.19a and 4.19b ensures the safety of employing
these methods without endangering the returned model’s accuracy.

4.4.4 Accelerated linear algebra

In Section 4.4.3, immigrating dynamic execution and relying on static one, where
the whole computational graph is previously defined, opens the door for multiple
optimizations and leads to a significant reduction in computational cost, as shown
in Figures 4.17a, 4.17b, 4.18a, and 4.18b. However, all performed optimizations
were restricted to general graph-level optimizations with no specific optimizations
tailored for the current model computational graph. In this section, the accelerated
linear algebra compiler will be utilized on a predefined cluster of nodes of the current
model’s graph to expand the set of possible optimizations and obtain further reduc-
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Figure 4.17: Variation of the (a) attained peak memory and (b) single training-
step time with the number of Nodes in the global input graph for
both static execution and the reference dynamic execution.

tions. As previously detailed in Section 4.3.3, this augmentation in incorporated
optimizations is possible due to operating on domain-specific strongly typed inter-
mediate representations along with the additional target-dependent optimizations.
The effect of embracing these computation-specific, architecture-independent, and
dependent optimizations on the resulting peak memory and computational cost of
the current Graph Neural Network model is shown in Figures 4.20a and 4.20b.

Investigating Figure 4.20a highlights an average reduction in the maximum re-
quired memory of approximately 52 % between the reference training process and
the current statically accelerated training. This reduction in memory is accompa-
nied by a negligible training step time averaging around 8.89 ms, as shown in Figure
4.20b. Moreover, to attain an additional reduction in memory, the precision of model
parameters is reduced, as detailed in Section 4.3.1, and the required training mem-
ory and time are plotted in Figures 4.21a and 4.21b, respectively. This results in an
additional 26.47 % reduction in memory, thus a total of around 78.38 % relative to
the reference case, and an average step time of around 78.93 ms, larger than that
obtained if relying on a full precision accelerated training alone, but approximately
eight times faster than the reference training process.
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Figure 4.21:

Variation of the (a) attained peak memory and (b) single training-
step time with the number of Nodes in the global input graph for mixred
precision implementation coupled to accelerated linear algebra compilation.

Finally, it should be noted that cooperating XLA compilers in the training pro-
cess requires a compilation of an optimized strongly typed intermediate represen-
tation. Variations in the shape of the global input graph, originating from the
dynamically adapted discretization space, impose the requirement of recompiling
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Figure 4.19: Validation loss obtained from training the same model architecture with
various implementation techniques: (a) Comparing static execution with ba-
sic implementation and (b) Comparing mized precision static execution with
basic implementation. The training environment is similar for both models
with a batch input graph of around 40000 nodes.

for every encountered new input shape, thus drastically slowing the training pro-
cess. To avoid this demanding recompilation, a static input graph is required. This
static graph can be attained by either efficiently padding every resulting global input
graph by a subgraph to homogenize the shapes across the training steps or by hing-
ing to a discretization space with a constant number of nodes and edges across all
timesteps. However, this work will be satisfied with the currently obtained results
regarding the effect of XLA on memory and time, with no further investigation of
the suggested methods of homogenizing the input graph shape.

4.5 Conclusion

The current contribution presented various methods for tackling the out-of-memory
problem without endangering the model’s capacity or requiring more extensive hard-
ware infrastructure. The reason behind the memory buildup and its scaling with
the dimension of the input was explained in depth, and different methods employed
previously in other domains to address this issue were revised. The inheritance of
these techniques to the CFD field was tested using a graph-structured model to
predict the flow fields in a two-fluid flow problem. The choice of the application was
motivated, first, by the dynamically evolving discretization mesh, thus allowing to
generalize of the conclusions to a large set of complex problems in the CFD and not
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Figure 4.20: Variation of the (a) attained peak memory and (b) single training-
step time with the number of Nodes in the global input graph for both the
reference implementation and the linear algebra accelerated implementation.

being restricted to simple problems with fixed discretization space, and second, by
the novelty of the utilized model architecture that allows operating directly on the
unstructured irregular anisotropic mesh thus preserving all topological information
and avoiding deteriorating the physical fields by the interpolation noise common in
encoding parent fields to different discretization spaces. Initially, the effect of using
mixed precision for training a graph neural network inferring the Navier-Stokes flow
fields was examined for its impact on both the computational cost and the model
accuracy. This resulted in a 25 % reduction in the required peak memory with-
out any deterioration in the model accuracy. Simultaneously incorporating static
execution with the reduced precision training, and opening the door for the vari-
ous computational graph optimizations, allows for an additional 48 % reduction in
the required memory and around four times speedup in updating the parameters.
This reduction and speedup are further augmented by incorporating the accelerated
linear algebra compiler that allows for further domain and architecture-specific op-
timizations, thus finally resulting in a total of around 78 % memory reduction and
8x faster update steps compared to the initial reference training implementation.
Embracing the proposed implementations and harnessing the resulting reductions
in computational time and cost allows researchers to further explore the potential of
large deep-learning models on more complex data sets, attain more accurate models
by allowing for larger batch sizes, and finally, finetune the model’s parameters by fa-
cilitating the exploration of the hyperparametric space. The significant benefits that
can be witnessed for the proposed methodologies encourage exploring other dimen-
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sions that might also allow training performant models without incurring additional
hardware infrastructure. Relieving the model from the need for an extensive dataset
by previously informing it about the governing physics or allowing for faster informa-
tion propagation without requiring a large number of message-passing blocks are all
a few examples of the additional methods foreseen as fertile space for investigation.
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Chapter 5

Conclusions

Abstract This final chapter concludes our manuscript by providing a brief summary
of all our proposed methods for employing deep learning models for predicting fluid
flows and multiphysics modeling. Additionally, this chapter sheds light on various
available future paths for incorporating deep learning models along with CFD to
further advance the numerical transformation in the industry.

Abstract Ce dernier chapitre conclut notre manuscrit en fournissant un bref
résumé de toutes nos méthodes proposées pour l'utilisation de modéles d’apprentissage
en profondeur pour prédire les écoulements de fluides et modéliser la multiphysique.
De plus, ce chapitre éclaire diverses voies futures disponibles pour intégrer les modeles
d’apprentissage en profondeur avec la CFD afin de faire progresser davantage la
transformation numérique dans l’'industrie.
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5 Conclusions

5.1 Summary

The manuscript begins by tracing the historical interest of researchers in under-
standing fluid flows and their impact on various real-world phenomena, leading to
extensive research in computational fluid mechanics. Subsequently, it highlights
the breakthroughs in artificial intelligence, particularly deep learning, which have
evolved in parallel with computational fluid mechanics and demonstrated their effec-
tiveness across diverse fields. Next, diverse strategies for adopting these models to
address various challenges in the realm of CFD are discussed. Finally, this chapter
concludes by emphasizing our interest in further exploring the potential applica-
tions of the emerging field of scientific machine learning, with a primary focus on
accelerating multiphysics CFD simulations.

Chapter Two provides a comprehensive overview of the initial proposed approach
for integrating deep learning methodologies into multiphysics conjugate problems.
The chapter highlights the significance of multiphysics conjugate problems, empha-
sizing their extensive range of applications across various industrial sectors. Subse-
quently, it outlines the governing equations necessary for simulating forced convec-
tive cooling of a work object, a prime example of a multiphysics problem involving
fluid flow and heat exchange. Additionally, it specifies all the essential computa-
tional fluid dynamics (CFD) tools required to ensure accurate simulation of this
process. Next, an encoder-decoder convolutional neural network architecture is sug-
gested for reducing the computational burden by handling part of the resolution
process, precisely the energy equation. This neural network is trained to directly
predict the scalar temperature field at the subsequent time step, and its robustness
is thoroughly evaluated using data generated from various cooling configurations.
This data is encoded on a structured grid. The motivation behind the chosen ar-
chitectural design, the selection of preprocessing operations, and the intricacies of
the training process are comprehensively detailed. Lastly, the chapter proposes a
coupling framework that integrates the data-based model with the traditional finite
element solver. This integration allowed for a significant acceleration in spanning the
time domain of the solution, achieving a 12-fold improvement over the conventional
scalar transport solver. Furthermore, the chapter assesses the model’s performance,
interpolation capabilities, and generalization ability across different flow setups, in-
cluding those exhibiting significant differences in flow characteristics compared to
the training dataset.

In Chapter Three, the preliminary approach suggested to address multiphysics
problems in the previous chapter is expanded to encompass a larger set of prob-
lems, such as the multiphase flow problems with dynamically evolving interfaces.
First, in the cooling of the workpiece problem, the flow fields computed at the next
time step were assumed independent of the resolved temperature fields, thereby
limiting the coupling to a single direction. However, this assumption is invalid for
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5 Conclusions

many problems, including the two-fluid flow problem governed by a strongly coupled
system of equations. This system of equations consists of the Navier-Stokes equa-
tions, responsible for resolving the flow fields, and the level-set equation required
for capturing the evolution of the interface, thus requiring adapting the coupling
framework to include additional communication bridges. Moreover, the computa-
tional cost of solving the scalar transport equation in multiphase flow problems is
significantly lower than that of solving the energy equation in the previous scenario.
This undermines the beneficial effect of modeling the scalar transport equation using
a deep learning model and necessitates providing an alternative solution to alleviate
the computational burden. Finally, accurately capturing a progressively changing
interface, separating both fluids, implies employing a dynamically evolving unstruc-
tured irregular anisotropic discretization space for resolving the physical fields. This
raises concerns regarding the ongoing compatibility of convolutional neural networks.
Thus, Chapter Three suggests a coupling framework between the traditional finite
element CFD solver and a graph convolutional deep learning model that allows
tackling the required problem directly on the dynamically adapted triangular mesh.
Different methodologies were proposed for successfully training the model on pre-
dicting the computationally demanding Navier-Stokes flow fields rather than the
simple scalar field. Finally, the model’s performance and ability to independently
span the required time domain were proved on new unseen trajectories.

Finally, in the last part of the manuscript, the out-of-memory problem encoun-
tered while training deep learning models is addressed. The reason behind the
accumulation of the memory during training and its scaling with the dimension of
the problem under study is clarified with the aid of a multilayer perceptron. Also,
different methodologies for counteracting this problem while avoiding the expansion
of hardware infrastructure or endangering the model capacity are detailed. Finally,
these techniques were inherited into the CFD field by employing them to train the
graph-structured deep learning model introduced in the previous chapter. This
adoption reduced both the required memory and training time, thus setting the
ground for further exploring the potential of larger deep-learning models on more
complex datasets or enhancing the accuracy of current models by facilitating the
exploration of hyperparameter space.

5.2 Future Works

The topics presented in this manuscript give rise to a number of possible further de-
velopments, lying at the intersection of deep learning, computational fluid dynamics
and enrichment. We close this manuscript with a short discussion of these topics.
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5.2.1 Expanding to problems with larger discretization space

The methodologies suggested in chapter 4 offered a large reduction in both training
time and required memory. This does not only facilitates the fine tuning process
for attaining better accuracy, but also opened the door for tackling more complex
CFD problems with much larger discretization space, such as three-dimensional
industrial problems. A promising continuation of this work suggests the utilization
of the proposed methodologies to train a deep learning model for a three-dimensional
multiphysics problem, where even slight reductions in computational costs could
have a significant impact.

5.2.2 Explore the advantages of incorporating Attention mech-
anism in model architecture

The modularity of the coupling approach, proposed initially in Chapter 2, facili-
tates adapting the framework for new scenarios. This is made evident by observing
the proposed adjustments on the initial framework of Chapter 2 for addressing the
novel challenges encountered in multiphase flows detailed in Chapter 3. Another
advantage of such modularity is the ability to optimize for better accuracy by easily
migrating to novel deep-learning architectures. One of many prospective suggestions
is to investigate the benefits of complementing the architecture with spatial,[1-3],
and temporal attention mechanisms [4, 5]. Such mechanisms proved advantageous
over other sequential deep learning models in various aspects, such as their ability
of parallelism, shorter training times, and minimization of the vanishing gradient
problem [6]. Thus, the numerous traits of such architectures and their achievements
in various fields firmly impose them on the head of the list of future investigations

[7].

5.2.3 Incorporate prior physical knowledge in various stages

Finally, the diverse coupling approaches proposed in this manuscript avoid total
reliance on data by incorporating prior knowledge through their connectivity with
the traditional finite element CFD solver. This connection serves to redirect the
model’s solution and prevent the accumulation of errors. However, several unex-
plored avenues remain for further harnessing this prior knowledge to achieve even
better results. This suggests potential directions for future work. Omne of these
directions involves enriching the optimization process of the deep learning model
with prior knowledge through physics-driven regularization [8-10]. Another direc-
tion suggests constraining the model’s predictions to intermediate fields which can
subsequently be used to explicitly construct the final required field, ensuring adher-
ence to specific conservation laws and physical principles [11, 12]. By integrating
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these techniques with the training methodologies outlined in Chapter 3, we antic-
ipate the development of a deep learning model that respects geometry and aligns
more closely with physical laws. This enhancement should significantly improve the
generalization capabilities of the trained models and potentially reduce the required
size of the training dataset.
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RESUME

Lutilisation d’outils numériques efficaces et précis pour la simulation de I'écoulement des fluides est devenue indispensable dans de
nombreuses industries. Cependant, la simulation des probléemes multiphysiques nécessite la résolution d’un vaste systeme d’équations
tels que les équations Navier-Stokes couplées a d’autres équations aux dérivées partielles, exigeant beaucoup de ressources ainsi qu’un
temps de calcul considérable. Récemment, le couplage des techniques deep learning avec les outils de simulation numérique a dominé
la recherche et a donné des résultats encourageants dans divers domaines. Cette thése est dédiée a explorer davantage le résultat
de la convergence de ces deux disciplines, en particulier la réduction des colts du calcul des simulations CFD multiphysiques. Ainsi,
dans la premiére partie, un réseau de neurones, autoencoders, est intégré dans le cadre de résolution d’'un probléeme multiphysique
concernant le refroidissement d’'une piece par convection forcée. Le modéle est développé pour prédire la température du champ afin
d’éviter la résolution de I'équation de transport scalaire par I'analyse par éléments finis. Bien que les paramétres du modéle aient
été calibrés a I'aide d’'une quantité relativement limitée de données, il a été possible de le généraliser avec précision pour différents
systemes de refroidissement avec différentes entrées non traitées lors du processus d’entrainement, cela a permis I'accélération du
processus de résolution. Dans la deuxiéme partie, le couplage précédent a été amélioré afin de traiter un probléme d’écoulement de
deux fluides avec une interface évolutive. Pour maintenir la précision prés de l'interface, un modele d’apprentissage profond graphique,
qui fonctionne directement sur le maillage triangulaire irrégulier en évolution dynamique, est proposé. Ce modele est développé pour
prédire les champs d’écoulement de Navier-Stokes plutét que le champ scalaire de la fonction level-set, pour garantir la plus grande
réduction des colts de calcul. Tous les éléments qui ont facilité ce couplage sont mis en relief, et la précision du couplage a été établie
sur de nouvelles trajectoires de simulation. Dans la derniére partie, le probleme de dimensionnalité en machine learning a été résolu.
Les causes de ce probléme sont clairement mises en évidence, et les différentes méthodologies pour y faire face sont détaillées. Enfin,
différentes techniques ont été proposées pour pouvoir résoudre ce probleme sans avoir recours a la modification de la forme du modele.
Ces techniques ont été également introduites dans le modéle deep-learning de I'écoulement de deux fluides et ont permis de réduire a
la fois 'empreinte mémoire requise ainsi que le temps d’entrainement nécessaire.

MOTS CLES

Réseau neuronal convolutif, Réseaux neuronaux graphiques, Dynamique des fluides numérique, Méthode
des éléments finis, Ecoulements multiphasiques

ABSTRACT

The availability of accurate and efficient numerical tools for simulating various fluid flow phenomena has become of great importance
across a multitude of industries. However, simulating multiphysics problems requires resolving an extensive system of governing equa-
tions incorporating the Navier-Stokes flow equations coupled with other partial differential equations. Such a task is resource-demanding
and requires considerable computational time. Recently, coupling deep learning techniques with numerical simulation tools has domi-
nated the research landscape and returned promising results in various domains. This thesis is dedicated to further exploring the po-
tential resulting from the convergence of these two disciplines, particularly in the context of reducing computational costs of multiphysics
CFD simulations. Thus, in the first part, an auto-encoder convolutional neural network is incorporated into the solution framework of
a multiphysics problem concerning the forced convective cooling of a workpiece. The model is trained to predict the temperature field
to escape resolving the scalar transport equation using the traditional finite element methods. Although the model parameters were
calibrated using a relatively limited amount of data, it was able to generalize accurately for different cooling setups with different inlet
locations, not seen during the training process, and provide adequate speedup to the resolution process. In the second part, the previous
coupling framework is upgraded to tackle a two-fluid flow problem with an evolving interface. To maintain accuracy near the interface, a
graph-based deep learning model that operates directly on the dynamically evolving unstructured irregular triangular mesh is suggested.
This model is trained to predict the Navier-Stokes flow fields rather than the level-set scalar field to ensure attaining the most significant
reduction in computational cost. All the ingredients that facilitated this coupling are highlighted, and the coupling framework accuracy is
established on unseen simulation trajectories. Finally, in the last part, the problem of dimensionality during the training of deep learning
models is addressed. The roots of this problem are clearly highlighted, and the various methodologies for coping with it are detailed.
Lastly, an assembly of techniques is suggested to tackle this problem without requiring any mutation to the model architecture. These
techniques were further employed to train the deep learning model on the two-fluid flow problem and allowed for achieving a reduction
in both the required memory footprint and the training time.

KEYWORDS

Convolutional Neural Networks, Graph Neural Networks, Computational Fluid Dynamics, Finite Element Anal-
ysis, Multiphysics flows
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