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Abstract

This PhD research work introduces an energy management approach for Smart Multi-

Energy Systems (SMES) that leverages the power of Deep Reinforcement Learning (DRL)

algorithms. We propose a Smart Energy Management System (SEMS) that is designed

to optimize the management of flexible energy systems within SMES, including heating,

cooling and electricity storage systems as well as District Heating and Cooling Systems

(DHCS) such as district-level Thermo-Refrigerating Heat Pumps. The study focuses on

applying the proposed approach on the Meridia Smart energy (MSE) case-study, a real-

world demonstration project for SMES that is currently under construction within the

Nice Meridia eco-district in southern France. MSE consists of an eco-district that en-

compasses 50 buildings, many of which are equipped with photovoltaic (PV) panels. The

occupants will be supplied with heat and cold produced locally in the eco-district thanks

to a geothermal Fourth Generation DHCS. In addition to local electricity, heating and

cooling production, the SMES also integrates multi-energy storage systems, namely an

innovative heat storage system by phase-changing materials, a cold storage by ice storage

tanks and a battery storage offering additional flexibility.

The decision making problem is tackled using a DRL approach. The developed DRL

framework is based on an actor-critic architecture and is benchmarked against Model

Predictive Control (MPC), which is one of the most widely used methods for advanced

process control in both industrial and academic level. Simulation results on a first case-

study, a simplified simulation model drawn from MSE, demonstrate that the proposed

DRL approach succeeds in learning a strategy that closely approximates the theoretical

MPC optimum (within 98%) in terms of overall energy cost reduction. Notably, it even

outperformed some MPC variants with realistic forecasts. This study represents one of the
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initial attempts in the literature to simultaneously benchmark DRL and MPC approaches

for multi-energy management in SMES case-studies and suggests that the DRL approach

holds promise for energy and cost-efficient and sustainable management of SMES.

The proposed DRL framework is further applied on a second more complex case-study

where a digital twin has been developed for the MSE eco-district under Dymola (Mod-

elica language). This digital twin, exported as a Functional Mock-up Unit (FMU) and

wrapped as an Open AI Gym environment serves as training, validation and testing en-

vironment for the DRL agent. Simulation results of applying the DRL approach on the

MSE digital twin re-affirm the findings from the first case-study and showcased that DRL

is a promising approach to address the problem of optimal energy management in SMES.

Future works will involve transitioning the DRL framework from simulation to the real-

world systems of the MSE project and exploring additional use-cases and optimization

objectives such as collective self-consumption and participation in frequency regulation

markets and demand response mechanisms, and expanding the scope of the considered

SMES to involve the management of other multi-energy systems including electric vehi-

cles, charging stations, public lighting as well as controllable building devices.



Résumé

Cette thèse introduit une approche de gestion de l’énergie pour les Systèmes Multi-

Energies Intelligents (SMEI) basée sur des algorithmes d’Apprentissage par Renforce-

ment Profond (Deep Reinforcement Learning, DRL). Nous proposons un Système de

Gestion Multi-Énergies Intelligente (SGMEI) conçu pour optimiser la gestion des sys-

tèmes d’énergie flexibles au sein des SMEI, notamment les systèmes de stockage de

chaleur, de froid et d’électricité, ainsi que les systèmes de production dans les réseaux

de chaleur et de froid tels que les Thermo-Frigo Pompes (TFPs).

Cette étude vise l’application de l’approche proposée sur l’étude de cas Meridia Smart

Energie (MSE), un projet démonstrateur pour les SMEI, actuellement en construction

dans l’écoquartier de Nice Meridia, dans le sud de la France. Le projet MSE englobe

un écoquartier composé d’environ 50 bâtiments, dont plusieurs sont équipés de panneaux

photovoltaïques. Les occupants de cet écoquartier seront alimentés par de la chaleur et du

froid produits localement grâce à un ensemble de TFPs géothermiques et acheminés aux

bâtiments grâce à un réseau de chaleur et de froid de quatrième génération. En plus de la

production locale d’électricité, de chaud et de froid, le SMEI de MSE intègre également

des systèmes de stockage multi-énergies, notamment un système innovant de stockage

de chaleur par matériaux à changement de phase, un stockage de froid par des bacs de

glace et un stockage électrique par batterie. Le problème de gestion optimisée est abordé

en utilisant une approche basée sur des algorithmes de DRL. Les algorithmes développés

reposent sur une architecture dite acteur-critique et sont benchmarkés avec une approche

basée sur du Contrôle Prédictif (Model Predictive Control, MPC), l’une des techniques

les plus largement utilisées pour le contrôle avancé des processus, tant dans l’industrie

que dans le milieu académique. Les résultats de simulation sur le premier cas d’étude,
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un modèle de simulation pour un SMEI simplifié inspiré de MSE, démontrent que l’agent

DRL développé réussit à apprendre une stratégie qui s’approche étroitement de l’optimum

théorique obtenu par le contrôleur MPC (à hauteur de 98%) en termes de réduction des

coûts énergétiques globaux dans le SMEI. À noter que la performance de l’agent DRL a

même surpassé certaines variantes du MPC qui ont été alimentées par des prévisions réal-

istes. Cette étude représente l’une des premières tentatives dans la littérature qui visent à

comparer simultanément les approches DRL et MPC pour la gestion multi-énergie opti-

misée sur des cas d’étude de SMEI, suggérant que l’approche DRL est prometteuse pour

la gestion énergétique et économique durable des SMEI.

L’approche DRL proposée est ensuite appliquée à un second cas d’étude, pour lequel un

jumeau numérique a été développé sous Dymola (langage Modelica) pour l’écoquartier

MSE. Ce jumeau numérique est exporté en tant qu’Unité de Modélisation Fonctionnelle

(Functional Mock-up Unit, FMU) et encapsulé en tant qu’environnement Open AI Gym,

servant ainsi d’environnement d’entraînement, de validation et de test pour l’agent DRL.

Les résultats de simulation de l’application de l’approche DRL sur le jumeau numérique

de MSE valident les conclusions de l’étude de cas 1, confirmant que le DRL est une ap-

proche prometteuse pour la résolution du problème de la gestion optimisée multi-énergies

dans les SMEI.

Les travaux futurs consisteront à assurer la transition des algorithmes DRL développés

des modèles de simulation vers les systèmes réels de MSE et à explorer des cas d’usage

et des objectifs d’optimisation supplémentaires, tels que l’autoconsommation collective

au sein de l’écoquartier et la participation aux mécanismes d’effacement et aux marchés

de réglage de fréquence, ainsi que l’extension du SMEI pour inclure la gestion de sys-

tèmes multi-énergies supplémentaires, tels que les véhicules électriques, les stations de

recharge, l’éclairage public ainsi que les charges pilotables dans les bâtiments.
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General Introduction

Context

Within the radical changes that the energy landscape is currently undergoing, Smart Grids

(SG) are playing a major role in the modernization of the electrical grid [1]. These smart

electricity networks have the great advantage of integrating in a cost-effective way the

behavior and actions of all the users connected to them, including consumers, producers

and prosumers, to ensure a cost-efficient and sustainable operation of the power system

while guaranteeing quality and security of supply [2]. Besides electrical networks, Dis-

trict Heating and Cooling Systems (DHCS) also play a paramount role in the implemen-

tation of the new Smart Energy Systems (SES) [3]. In fact, the recently emerging concept

of Smart Thermal Grids (STG) also comes up with numerous advantages including flex-

ibility potentials and ability to adapt to the changes that affect the thermal demand and

supply in short, medium and long terms. Thus, smart thermal grids, as well, are expected

to be an integrated part of the future energy system [4], [5].

However, research works on the optimal control and energy management within the smart

grid context traditionally focus solely on the electrical usages. Though, jointly optimiz-

ing the electrical networks together with other energy vectors interacting with them like

heating and cooling networks has a great potential to increase the overall economic and

environmental efficiency and flexibility of the energy systems. This idea leads to a gen-

eralization of the smart grid concept towards Smart Multi Energy Grids (SMEG) [6] and

Smart (Multi-Energy) Systems [7] that lie on the interaction between electricity and other

energy vectors including heat, cold, gas and hydrogen as well as other sectors that elec-

tricity might interact with like the transport sector and water networks. Such multi-energy
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systems can enable the flexible utilization of various energy vectors while incorporating

storage systems, manageable loads and other flexibility potentials, based on a multitude

of criteria such as energy efficiency, reliability, costs and emissions. Considering these

interactions in the optimal management of energy systems allows to unlock considerable

efficiency and flexibility potentials and represents one of the main advantages of smart

(multi) energy systems.

Optimal control of smart (multi) energy systems is essential to guarantee a reliable op-

eration for their flexible components and ensure an optimal management of controllable

loads, production units and storage systems while minimizing energy and operational

costs [8]. One of the most popular and widely used optimal control techniques is Model

Predictive Control (MPC), also referred to as Receding Horizon Control [9], [10]. MPC

is a feedback control method where the optimal control problem is solved at each time

step to determine a sequence of control actions over a fixed time horizon. Only the first

control actions of this sequence are then applied on the system and the resulting system

state is measured. At the next time step, the time horizon is moved one step forward and

a new optimization problem is then solved, taking into account the new system state and

updated forecasts of future quantities. This receding time horizon and periodic adjust-

ment of the control actions make the MPC robust against the uncertainties inherent to the

model and forecasts [11]. MPC has been used in many successful applications in the field

of the energy management in smart grids and smart districts including [12]–[15].

Nevertheless, MPC and model-based approaches in general, rely on the development of

accurate models and predictors and on the usage of appropriate solvers. This does not

only require domain expertise but also involves a need to re-design these components

each time that a change occurs on the architecture or scale of the smart energy system

[16]. Furthermore, classical optimization approaches based on Mixed Integer Linear Pro-

gramming (MILP), Dynamic Programming (DP) or heuristic methods like Particle Swarm

Optimization (PSO) generally suffer from time-consuming procedures. In fact, they have

to compute all or part of possible solutions in order to choose the optimal one, and have

to re-run a generally time-consuming optimization procedure each time that an optimal

decision needs be taken. Therefore, such methods, despite their ability to provide quite

accurate results, generally fail to consider on-line solutions for large-scale real databases

[17].
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Learning-based techniques, on the other hand, do not require accurate system models and

uncertainty predictors and can, thus, be an alternative to model-based approaches. Rein-

forcement Learning (RL) [18] is a learning-based method that has been gaining popular-

ity over the past few years when it comes to dealing with challenging sequential decision

making tasks [19]. It consists of a learning paradigm in which an agent learns to control

a system by interacting with its environment and receiving feedback in the form of a nu-

merical reward. The learning agent takes a sequence of actions over time to maximize

its cumulative reward and it learns an optimal strategy over time through trial and error

by observing the consequences of its actions on the environment. The RL paradigm has

initially been developed in the context of control theory and operations research in the

1950s and 1960s with early research works like those of Richard Bellman [20] who laid

the theoretical foundations for RL by developing dynamic programming and the Bellman

equation, and Arthur Samuel [21] who developed one of the earliest self-learning pro-

grams. More recently, Richard Sutton and Andrew Barto made significant contributions

to the theoretical and practical advancements of RL, and their influential book [18] be-

came a foundational resource for researchers and students interested in this field.

RL has actually been around for several decades but its practical applications on real life

and complex decision making problems remained limited. Indeed, RL-based approaches

fail to handle large state and action spaces owing to the curse of dimensionality [22]: as

the number of states and actions to be handled by the RL agent increases, its compu-

tational and memory requirements grow exponentially, making it impractical for many

real-world problems. This major historical limitation of RL largely restricted its broader

adoption and effectiveness. Around 2013, a transformative breakthrough emerged and

led to a revival of interest in the RL field thanks to the work of Mnih et al. [23] who

successfully combined RL with Deep Learning (DL), giving birth to Deep Reinforce-

ment Learning (DRL). DRL combines the strong nonlinear perceptual capability of Deep

Neural Networks (DNNs) with the robust decision making ability of RL [24]. This way,

DNN enabled RL agents to efficiently represent and approximate complex value functions

and thus allowed them to effectively learn from high dimensional state spaces. Unlike RL,

DRL exhibits strong generalization capabilities in problems with complex state spaces. In

2015, the authors of Mnih et al. [23], in collaboration with researchers from DeepMind

published a paper in the journal Nature [25] where they demonstrated that DRL agents
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could achieve a superhuman performance on a range of Atari games. This work show-

cased the potential of DRL for complex decision-making tasks and has, as a consequence,

revitalized the field of RL and opened the doors to numerous successful applications of

DRL on challenging decision making problems. One of the main advantages of DRL

compared to other classical optimization approaches is that, once it learned an optimal

strategy, it can take optimal decisions in a few milliseconds without having to re-compute

any costly optimization procedure. This makes DRL algorithms less time-consuming than

classical optimization approaches and makes them, as a consequence, more suitable for

real-time optimization problems. What’s more, DRL algorithms can succeed in learning

optimal strategies directly from sensory inputs like images or sensor data without requir-

ing accurate models and predictors, handcrafted features or appropriate solvers. This

end-to-end learning approach makes DRL applicable for a wide range of control tasks

without requiring domain expertise.

DRL has, this way, shown successful applications in various real-life problems with large

state spaces like Atari and Go games [26], robotics [27], [28], autonomous driving [29],

[30] and other complex control tasks [25]. More recently, [31] proposed a novel assem-

bling methodology of Q-learning agents -a type of RL agents- trained several times with

the same training data for stock market forecasting. The use of DRL aimed at avoid-

ing problems that may occur when using supervised learning-based classifiers like over-

fitting. Other recent successful applications of DRL include intrusion detection systems

as presented in [32]. Furthermore, [33] proposed a new ensemble DRL model for pre-

dicting wind speed and the comparison of the proposed model with nineteen alternative

mainstream forecasting models showed that the DRL-based approach provided the best

accuracy. Moreover, Google has announced in 2018 that it gave control over the cooling

of several of its data centers to a DRL algorithm [34].

DRL has also recently gained a widespread recognition in Natural Language Processing

(NLP) and conversational AI thanks to increasingly popular applications like Open AI’s

ChatGPT [35] that uses DRL techniques to fine-tune its language generation capabilities

and improve the quality and relevance of its text responses in real-time conversations [36].
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Thesis objectives and contributions

This PhD research work focuses on the application of DRL for the optimal energy man-

agement problem in smart (multi) energy systems. This work is part of the Merdia Smart

energy (MSE) eco-district, which is a demonstrator project for smart energy systems

under construction in the city of Nice, south of France, since 2019. MSE is a smart

energy system that involves a Fourth Generation District Heating and Cooling system

(4GDHCS) that will provide the 50 buildings (≃ 3500 households) of the eco-district

with heat and cold. These buildings will also be equipped with photovoltaic (PV) panels

on their rooftops. The MSE smart energy system also includes multi-energy storage sys-

tems namely an electricity storage through a Battery Energy storage system (BESS), an

innovative heat storage through Phase-Change Materials (PCM) and a cold storage by an

ice on coil technology. A consortium has been created around the MSE project. It is com-

posed of four entities: the Métropole Nice Côte d’Azur, public service delegate, the Idex

company, energy service provider of the eco-district, as well as two research laboratories,

namely the Center for Atomic Energy and Alternative Energies (CEA) who developed,

designed and constructed the innovative phase-change material heat storage system, and

the Center for Applied Mathematics (CMA) of Mines Paris who is in charge of develop-

ing the optimal energy management algorithms of the multi-energy storage systems of the

MSE smart energy system, through the present thesis. This consortium received funding

from the ADEME, the french Agency for Ecological Transition 1 through the Program In-

vestissements d’Avenir 2 that they operate.

The aim of this thesis is therefore to develop an energy management system for smart

multi-energy systems starting from the MSE case-study. This energy management system

ensures the optimized management of the flexible energy systems, particularly the three

storage systems, with the aim of minimizing the overall energy consumption costs within

the smart energy system. The developed solution has to be adaptable to achieve other

potential optimization objectives such as maximizing the self-consumption and energy

self-sufficiency of the eco-district or minimizing its Greenhouse Gas (GHG) emissions.

The solution should also be reproducible in order to be deployable in any smart energy

1ADEME, the French Agency for Ecological Transition, https://www.ademe.fr/en/frontpage/
2French government, Le Programme d’Investissements d’Avenir, https://www.gouvernement.fr/le-

programme-d-investissements-d-avenir
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system similar to MSE.

To address the optimal energy management problem, we propose a DRL-based approach.

More specifically, we formulated the optimal control problem as a Markov Decision Pro-

cess (MDP) and developed a DRL agent to perform real-time scheduling of the multi-

energy storage systems within the considered smart energy system. The DRL agent that

we developed is based on an actor-critic algorithm called Deep Deterministic policy Gra-

dient (DDPG). One of the reasons behind this choice is the ability of these algorithms

to deal with continuous action spaces. We tested this approach on two simulated smart

energy system case studies, both drawn from the MSE real-world project. The first case-

study, denoted case study 1 is a simplified simulation model developed under Python,

where the DRL-based framework was tested and benchmarked against an MPC-based

framework that we developed for this case-study. In the second case study, case study

2, we developed a digital twin -a detailed simulation model- for the MSE smart energy

system under the Modelica language to account for the dynamics of the different energy

systems that it involves. We then tested the developed DRL-based framework for the

cost-optimal energy management of the multi-energy storage systems of this digital twin.

Thus, the main contributions of this research work are the following:

• DRL for the optimal operation of smart multi-energy systems: We developed

a Deep Reinforcement Learning-based framework for the optimal energy manage-

ment in smart energy systems. Unlike most of the previous works where mono-fluid

(electrical or thermal) Smart Grids are considered, we focus in this work on simul-

taneously managing multi-energy (electrical, heating, cooling) smart grids that in-

teract with the main utility grid. A variable electricity price signal is considered

and a DRL-based energy management system is developed to take price-responsive

control actions. This extends the applicability of DRL-based approaches to more

complex and interconnected energy systems.

• A DDPG algorithm for multiple continuous actions: We propose the use of an

actor-critic (DDPG) algorithm instead of the most commonly used value-based al-

gorithms (mainly Deep Q-Learning (DQL) algorithms). At each time step of the

control horizon, multiple continuous actions are simultaneously taken by the DDPG

agent to optimally schedule the various storage systems as well as the thermal pro-

duction units. The DDPG algorithm is actually capable to deal with the continuous
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action and state spaces that are inherent to the smart energy system model. Dis-

cretizing the action space, as would be required by a DQL approach, would result

in a loss of precision. Avoiding this precision loss would require a fine discretiza-

tion, which would lead the agent to explore more actions and hence increase the

complexity of the problem.

• Benchmark against an MPC controller: The proposed DRL-based approach is

tested on two different case studies, both drawn from the MSE smart energy system

real-world use case. In case study 1, we develop a simulation model under Python

where the dynamics of the different energy systems involved in the smart energy

system are considered in a simplified way. The cost-optimal energy management

problem of the three storage systems is formulated as a Markov Decision Process

(MDP) and is solved using DRL. The same problem is then converted into a lin-

ear Programming (LP) problem and is embedded into a Model Predictive Control

(MPC) framework. The DRL based approach is then benchmarked with the MPC

based approach through this case study. Simulation results showed a close perfor-

mance of the DRL agent to a perfect-forecast MPC controller and therefore suggest

that DRL is a promising approach for dealing with optimal energy management

problems in smart multi-energy systems. To the best of our knowledge, this work

represents one of the first studies that simultaneously benchmark DRL and MPC

on a smart multi-energy system case study. Indeed, the only work in literature

considering this subject is the paper of Ceusters et al. [37] which was conducted

simultaneously to our research work. In consistency with the conclusions of this

paper, our work also showcased that DRL performs close to perfect foresight MPC

and can even outperform MPC with realistic forecasts. It accordingly suggests that

DRL is a promising approach for the optimal energy management in smart energy

systems featuring multi-energy storage systems.

• Reward shaping to address sparse reward issues: the authors in [37] stated that

their DRL agent showed difficulties in managing the electrical and thermal storage

systems as this involves a short-term penalty (when charging) in order to achieve

mid-term reward. They suggested investigating, in future works, whether these

difficulties are due to the hyper parameters used, the implemented objective, the
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choice of PPO (Proximal Policy Optimization) as a DRL algorithm, or the use of the

RL-based approach itself. We think that the difficulties faced by the PPO agent may

stem either from the use of PPO or from the sparse reward problem, a challenging

issue faced by RL agents in situations where the agent does not receive enough

reward feedback from the environment, typically when the actions that it selects

do not yield any reward. In our work, we propose shaping the reward signal in

a way that ensures a more effective learning and guarantees avoiding the sparse

reward problem. Our simulation results show that the DDPG agent succeeds, after

training, in efficiently operating the three storage systems.

• Application on a Modelica digital twin developed for the real-world MSE smart

energy system: the proposed DRL-based framework is also applied on case study

2 where a digital twin of the MSE smart energy system is developed under Dymola

(Modelica language) to better account for the dynamics of its energy systems. The

Dymola digital twin is then exported as a Functional Mock-up Unit (FMU) using

the Functional Mock-up Interface (FMI) standard that allows models from differ-

ent modeling tools to be integrated and co-simulated. The FMU is then integrated

into the developed Python framework and interacts with the DRL agent after being

wrapped into an OpenAI Gym [38] environment. Simulation results showed that

the DRL agent also succeeds in efficiently operating the three energy storage sys-

tems in the more complex environment of this case study. Nonetheless, most of the

hyper-parameters we used for this case study are the same as for the simpler case

study 1. This suggests, in consistence with the work of Ceusters et al. [37] that

the hyper-parameters are not totally environment-specific but are more likely to be

task-specific. Future work includes transitioning the developed DRL-based frame-

work from simulation to real-world application on the MSE smart energy system

project. It will be deployed, as a first instance, as a decision-support tool for the

optimal operation of the three storage systems and the heat and cold power plant

(mainly through load shedding). In the future, the developed DDPG agent will be

extended to operating real-time energy management of the various energy systems

within the eco-district including the storage systems, district heating and cooling

production units, controllable loads of the buildings, heated water storage tanks,

electric vehicle charging stations and the public lighting of the district.
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Thesis outline
The remainder of this manuscript is divided into two parts that are organized as follows,

as illustrated in figure 1:

• Part I presents an overview on smart multi-energy systems as well as the optimal

control methods applied for their optimal operation. It then focuses on the two op-

timal control approaches on which we dwell in this work, namely Deep Reinforce-

ment Learning and Model Predictive Control. These two techniques are reviewed

and then simultaneously benchmarked on the same simulated smart energy system

case study 1.

– Chapter 1 introduces and defines key concepts around smart multi energy

systems, including smart (electrical) grids, District Heating and Cooling Sys-

tems (DHCS), smart thermal grids and their integration into the larger cross-

sectoral concepts of multi-energy smart grids, integrated energy systems and

smart multi-energy systems.

– Chapter 2 focuses on the optimal energy management in smart grids, DHCS

and smart multi-energy systems and reviews the optimization methods used

within these energy management systems.

– Chapter 3 proposes an in depth focus on the reinforcement learning paradigm

and its combination with deep learning by reviewing its theory and reporting

previous works proposing its application for energy systems.

– Chapter 4 sheds light on the model predictive control strategy and reviews its

previous applications in energy systems. Differences and similarities between

MPC and DRL are then highlighted.

– Chapter 5 proposes benchmarking MPC and DRL based approaches through

their simultaneous application for the optimal energy management in smart

multi-energy systems through simulated case study 1.

• Part II is devoted to the application of the proposed DRL-based approach on the

Meridia Smart Energy case study project that represents the context in which this

research work was conducted.



General Introduction 40

– Chapter 6 describes the MSE eco-district, the multi-energy systems that it

involves as well as the strategic objectives that mostly drive the energy man-

agement systems that we developed for these systems.

– Chapter 7 presents the Dymola simulation model that we developed for the

MSE eco-district and details the overall modeling approach that we adopted.

– Chapter 8 presents the application of the DRL-based approach proposed in

this work, on the developed MSE digital twin.

Figure 1: Plan of the manuscript.
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Introduction of Part I

This first part of the dissertation provides an insightful overview of smart multi-energy

systems by defining their key concepts and reviewing the array of optimal control meth-

ods that can be applied for their optimal operation. A focus is then made on two particular

approaches, namely deep reinforcement learning and model predictive control by review-

ing their principles and methodologies and reporting previous works applying them for

the optimal energy management in energy systems. These two techniques are then si-

multaneously benchmarked through their application on case study 1: a simulated smart

multi-energy system that is drawn from the MSE project.
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Chapter 1
Smart Energy Systems: an overview

Résumé

Ce premier chapitre introduit et définit les concepts clés qui sous-tendent ce travail de

recherche. On commence par définir les concepts de réseaux électriques intelligents, com-

munément appelés smart grids, ainsi que leurs composantes clés telles que les ressources

énergétiques distribuées, les compteurs intelligents et les systèmes de gestion de l’énergie.

Ensuite, on explore les analogues thermiques de ces réseaux, à savoir les réseaux ther-

miques intelligents ou smart grids thermiques qui émergent avec les réseaux de chaleur

et de froid de quatrième génération. Enfin, l’intégration de ces deux notions au sein de

cadres plus vastes et intersectoriels favorisant les synergies entre les différents vecteurs

énergétiques est passée en revue, en introduisant les concepts de réseaux intelligents

multi-énergies, de systèmes énergétiques intégrés et en aboutissant aux systèmes multi-

énergies intelligents.

1.1 Introduction

In this first chapter, we introduce and define key energy systems’ concepts around which

the present research work is structured. We first define the concept of Smart Electrical

Grids together with their key components like Distributed Energy Resources, smart me-

ters, information and communication technologies, and Energy Management Systems.

Then, a focus is made on the thermal energy systems by defining District Heating and

Cooling Systems (DHCS) and their classification into five different generations as well

as the new concept of Smart Thermal Grids that emerges particularly within the fourth
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and fifth generations. Finally, we review the integration of these two concepts, namely

Smart Electrical Grids and Smart Thermal Grids, into the larger cross-sectoral concepts

of Multi-Energy Smart Grids, Smart Energy Hubs, Integrated Energy Systems and Smart

Multi-Energy Systems.

1.2 Smart Electrical Grids

1.2.1 The concept

The radical changes that the energy landscape is currently undergoing led to an increasing

share of renewable energy generation and a growing use of Distributed Energy Resources

and energy storage systems. These changes have also brought about the adoption of new

technologies mainly for the power and energy management of these resources in order to

maintain the main objectives of the energy system: economical and environmental effi-

ciencies and security of supply. All these aspects contributed to the emergence of Smart

Grids [39], also known as smart electrical grids or smart power grids and sometimes also

referred to as intelligent grids, intelligrids, futuregirds, intergrids or intragrids [1]. The

concept of Smart Grids does not have one unique universally accepted definition [2]. For

instance, the Trans-European Networks – Energy (TEN-E) Regulation defines a Smart

Grid as "an electricity network that can integrate in a cost efficient manner the behaviour

and actions of all users connected to it, including generators, consumers and those that

both generate and consume, in order to ensure an economically efficient and sustainable

power system with low losses and high levels of quality, security of supply and safety"

[40]. Similarly to this definition, the European Technology Platform [41] defines it as "an

electricity network that can intelligently integrate the actions of all users connected to it

– generators, consumers and those that do both in order to efficiently deliver sustainable,

economic and secure electricity supplies". Different definitions of Smart Grids can also

be found in [42]. Overall, the main components of a Smart Grid that differentiate it from

a traditional grid are information and communication technologies, smart meters, Energy

Management Systems (EMS), Distributed Energy Resources (DER), Demand Side Man-

agement (DSM) and Smart users [43] that will be discussed in next sections. For further

details on the definitions of a Smart Grid, its various manifestations, its potential benefits

and challenges as well as a brief review of the developments and research directions in

the context of Smart Grids, we refer the interested reader to the work of El-Hawary [44].
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Figure 1.1: Types of energy storage systems in microgrids and Smart Grids (adapted from [47]).

1.2.2 Distributed Energy Resources

Distributed Energy Resources (DER) represent one of the main components of a Smart

Grid. They can be defined as "small power sources that can help to meet regular power

demand", according to ([2]). They include renewable energy generation, mainly wind

generators and photo-voltaic generators, as well as fuel cells, gas turbines, micro turbines

and internal combustion engines [45], [46] and energy storage technologies like Battery

Energy Storage Systems (BESS). Distributed generation in Smart Grids can also include

thermal generation (on which we focus in section 1.3) and Electric Vehicles (see para-

graph 1.2.5).

Among Distributed Energy Resources, energy storage systems are regarded as a promis-

ing solution for many of the challenges that come out with the Smart Gird concept, in

particular the intermittency of the renewable energy generation, and thus are playing a

key role in the development of Smart Grids. Energy Storage Systems in smart Grids in-

clude electrical, chemical, thermal, mechanical and electrochemical storage systems, as

summarized in figure 1.1 [47].

Electrical and electrochemical Energy Storage systems (ESS) consist basically in Battery

Energy Storage Systems (BESS) which are deemed to be efficient for many Smart Grid

applications such as self-consumption, ancillary services (like frequency control), arbi-

trage, peak shaving, load shifting and maintaining voltage on the distribution grid [48]–
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[50].

When it comes to mechanical ESS, they consist principally in Pumped Hydro Storage

Systems [51]–[55], flywheels [56], [57] , and Compressed Air Energy Storage (CAES)

[56], [58], [59] which are considered as an attractive storage technology for Smart Grids

thanks to their high ramp rate and quick start-up time [47].

Concerning Thermal Energy Storage Systems (TESS), they can be classified into three

types according to the material being used for the heat or cold storage into: sensible heat,

latent heat and thermo-chemical heat storage systems. Further details on each of these

TESS classes, their materials and the pros and cons of each type can be found in [60].

A complete review on thermal energy storage facilities in District heating and Cooling

Systems can be also found in [61].

Besides DER, a Smart Grid also contains a number of smart meters that produce a large

amount of online operational data, which represents one of the major both opportunities

and challenges of the Smart Grids.

1.2.3 Smart meters and information and communication technolo-

gies

Smart meters are one of the key devices in a Smart Grid. Their main role is to collect

energy consumption information from load devices and communicate them to the utility

company and/or the Smart Grid operator. These advanced energy meters are made up of

different sensors and control devices, together with a specific communication infrastruc-

ture [62]. According to [47], a Smart Grid can contain up to millions of smart meters.

Thus, the deployment of smart meters, together with other applications in Smart Grids

result in the generation of huge amounts of online operational data. That is why, com-

munication systems are also key elements in the Smart Grid infrastructure. They ensure

the transmission of data between sensors and power appliances and smart meters, and

between smart meters and utilities’ data centers using both wired and wireless communi-

cation media [63].

1.2.4 Demand Side Management

The equilibrium between supply and demand is of paramount importance for the reliable

operation of a power grid. In fact, if consumption outweighs or falls behind production,

the frequency of the grid diverges from its nominal value. This nominal value is of 50Hz
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for the European Synchronous Zone that involves most of Europe and other neighboring

countries, as well as for other countries like China, India, Indonesia and some African

countries. Other countries including the American continent, as well as Japan, south Ko-

rea and some African countries have a nominal frequency of 60Hz.

When the grid frequency deviates from its nominal value, regulation is needed to bring the

frequency back to its pre-defined value. Even though the supply side can be controlled

according to the load, it is still not easy to ensure the task of maintaining this equilib-

rium without controlling the demand side. Moreover, the increasing share of intermittent

renewable energy generation adds another layer of complexity to this problem. Renew-

able energy generation not only depends on weather conditions, but it also has generation

peaks that often do not always occur at the same time as peak demands. Thus, an inter-

esting alternative to maintaining the balance between supply and demand is to use new

strategies that rely more on demand control and end-users’ engagement. Demand side

Management (DSM) or Demand Response (DR) [64] is one of these promising strategies

and can be defined as " the planning, implementation and monitoring of utility activities

that are designed to influence the customer’s use of electricity, in a way that changes the

time pattern and magnitude of utility’s load" [65]. In other words, this consists in con-

trolling the energy consumption of the end-users by encouraging them to consume less

power during peak hours, or to shift their energy consumption to off-peak hours in order

to flatten the demand curve. DSM can therefore offer a wide range of potential benefits

for the power systems as explained in [66]–[68].

1.2.5 Electric Vehicles

With the recent advances in battery storage technologies and the emergence of electric

mobility, Plug-in Electric vehicles came into play and offer an additional distributed stor-

age capacity in the Smart Grid context via vehicle-to-grid integration [69]. In fact, Grid-

to-Vehicle, Vehicle-to-Grid and Smart charging technologies are seen as key steps towards

achieving economical and environmental benefits, as stated by [70]. This paper proposes

a multi-objective-techno-economic-environmental optimization approach for the schedul-

ing of charge-discharge of Electric Vehicles in Smart Grids by connecting the stakeholders

involved in the Smart Grids with the control of electric vehicles. One of the principal chal-

lenges that arise with the integration of electric vehicles in the power system is their highly

uncertain behaviour and thus the difficulty to predict EV arrival and departure times for
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Electric Vehicle Charging Stations (EVCS). The paper of Pflaum et al. [71] provides a

brief review of related works that propose EVCS control strategies taking this uncertainty

explicitly into account, and advances a robust EVCS management strategy which pro-

vides a day-ahead upper limit profile of the EVCS’s power consumption.

Dang et al. [72] studied the case of an eco-district with electric vehicles, which are con-

sidered as flexibility providing units due to their Vehicle-to-Grid capabilities. The Energy

Management System (EMS) of the eco-district developed in this work has an electric

vehicle power management aiming at maximizing the electric vehicle charging power

during off peak periods, and minimizing the discharge from electric vehicles when the

demand reaches the peak load or when the energy generation is too low to meet the total

demand. The results showed that the proposed EMS allowed a reduction of 70% in over-

loading duration and 17% in total electricity costs. Similarly, [73] designed an optimal

management and day-ahead scheduling strategy for a microgrid including a Vehicle-to-

grid system. Experimental tests showed that the proposed strategy results in daily cost

savings of nearly 10%.

1.2.6 Energy Management Systems

Energy Management Systems (EMS) are designed to ensure monitoring, analysis and con-

trol of energy systems and equipments in Smart Grids by means of meters, sensors and

control algorithms [74]. They dynamically adapt to distributed energy systems to make

them more effective and reliable by controlling distributed devices [75]. They can there-

fore be defined as control devices which are responsible for defining the optimum schedul-

ing of dispatchable units by using information such as load, renewable energy generation,

weather and energy grid prices forecasts, energy storage units’ state of charge, etc. [76],

[77]. These information are used as inputs to perform optimal scheduling by determining

optimal set points for the dispatchable units of the Smart Grid system. Developing an

EMS mainly relies on formulating an optimization problem where the objective function

can be single-objective or multi-objective. Single-objective functions basically consider

the minimum-cost operation of the Smart Grid. When it comes to multi-objective func-

tions, they involve a combination of two or more objectives that belong to the following

four types [78] summarized in figure 1.3: capital and operational objectives (that include

production and fuel costs, maintenance costs as well as start-up and shut-down costs),

energy storage objectives (mainly related to costs, charging and discharging efficiencies
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Figure 1.2: Energy Management Systems in Smart Grids [74].

and lifetime of the storage systems), environmental objectives (that involve maximizing

Renewable Energy Sources (RES) and minimizing Greenhouse Gases (GHG) emissions

and penalty costs related to them) and finally miscellaneous objectives (including penalty

and dissatisfaction costs, power losses, etc). A compendium of these optimization ob-

jectives, together with constraints, tools and algorithms for Energy Management Systems

is provided in [78]. Furthermore, an extensive literature review and analysis of the main

trends in the field of centralized Energy Management Systems in Microgrids can be found

in [79]. A deeper focus on Energy Management Systems literature is made in the next

chapter of this manuscript.

1.3 Smart Thermal Grids

1.3.1 District Heating and Cooling Systems

The heating and cooling demands are currently responsible for a share of about 50% of

the overall final energy consumption in Europe [80]. Households account for nearly 79%

of this energy consumption which is used basically for space and water heating together

with space cooling [81]. While almost 75% of this energy is still generated using fossil

fuels, the European Commission issued a set of guidelines aiming at reaching the long-

term carbon neutrality as well as the target GHG emissions, among which the transition

of the heating and cooling sector is claimed to be of paramount importance [82], [83].
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Figure 1.3: Types of optimization objectives in Smart Grids Energy Management systems.

District Heating and Cooling Systems, hereafter denoted DHCS, consist in centralised

power plants that distribute heat and cold in urban areas by feeding hot water and cold

water into a network of pipes. They are acknowledged to provide an efficient energy sup-

ply to cover the heating and cooling demand of buildings while reducing primary energy

consumption and GHG emissions and operating in a more cost-effective way relatively to

individual solutions [84]. In France in 2021, there were 833 District Heating Networks

that deliver 25.4 TWh of net heat to about 43945 buildings and 32 District Cooling Net-

works that deliver 0.81 TWh of net cold to 1401 buildings [85].

Since their origination in the 14th century [84], district energy systems have used a vari-

ety of energy sources such as geothermal or ground source [86]–[89], solar thermal [90]–

[93], fossil fuels [94], [95], biomass [96]–[98], waste incineration [99]–[102] and waste

heat [103]–[107]. In their review of district heating and cooling systems, Lake et al. [108]

described the technology and examined the advantages and disadvantages of each of the

aforementioned energy sources.

In the first generation of District Heating Systems (1GDHS), which inception dates back

to the 1880s in the USA, steam was used as the heat carrier. This technology was utilized

in most of the DHS in the USA and Europe between 1880 and 1930 and is nowadays

considered as obsolete basically because of the significant heat losses generated by high

temperature steam not to mention the safety issues due to steam explosion.

In the second generation (2GDHS), the heat carrier used is pressurised hot water for which

the supply temperature goes up to more than 100 ˚C. One of the main reasons behind im-
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plementing this technology was to economize on fuel and achieve better comfort by using

combined heat and power (CHP). It was used notably in the large DHS of the former

URSS. Its remains can still be found today in some countries as old parts of the present

water-based DHS. The third generation (3GDHS), sometimes also denoted "Scandinavian

district heating technology", has also pressurised hot water as heat carrier but with supply

temperatures generally below 100 ˚C. This technology was introduced in the 1970s and

was used in most of DHS extensions and new systems in Europe, USA, Canada, China

and Korea as well as replacements in Europe and the former URSS. The primary reason

behind implementing 3GDHS was to ensure security of supply, following the two major

oil crises of 1973 and 1979 [109], by enhancing energy efficiency and replacing oil with

local or cheaper fuels like coal, biomass, waste and even geothermal and solar heat in

some areas.

When it comes to District Cooling systems (DCS), three similar generations can be identi-

fied based on the advances in the technologies used for generating and distributing cold to

the end-users as well as the strategies of operating the DCS. The first generation, 1GDCS,

consists in pipeline refrigeration systems that appeared mainly in Europe and in North

America in the late 1880s [110], [111]. The distribution fluids that were used in this

technology are pressurized ammonia and brine solutions. Thereafter appeared the second

generation (2GDCS) in the 1960s that had cold water as distribution fluid and was in-

stalled in many cities like Hambourg (Germany), Hartford (USA) and La Defense area in

Paris (France). The third generation (3GDCS) has cold water as distribution fluid as well.

Its technology relies on the diversification of cold supply : absorption chillers, mechani-

cal chillers, excess cold streams, natural cooling from lakes and cold storage as reported

by Lund et al. [112]. This technology was implemented in many locations in the 1990s

following the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer [113]

that resulted in banning Chlorofluorocarbon (CFC) refrigerants [114].

1.3.2 Fourth Generation District Heating and Cooling Systems

The traditional high temperature DHS suffer from several shortcomings that can compro-

mise their financial return, namely the network thermal losses that can go up to 30% of the

supplied energy, high investment costs of installations, in addition to a heating demand

decline due to the renovation of the existing buildings [115]. All these reasons motivate

the current research focus on Fourth Generation and Fifth Generation District Heating and
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Cooling Systems (4GDHCS and 5GDHCS) that are acknowledged as a promising solu-

tion to achieve high efficiencies by operating at low temperature. The concept of Fourth

Generation District Heating System (4GDHS) was first introduced by Lund et al. [112] in

relation to the challenges of reaching a future renewable non-fossil heat and cold supply

as part of global sustainable energy systems. It is defined as "a coherent technological

and institutional concept for which the DHS provides heat supply for low-energy build-

ings, with low grid losses and using low-temperature heat sources." The recent paper of

Jodeiri et al. [116] gives a review of the challenges brought about by the integration of

high shares of RES and waste heat permitted by the 4GDHS. In fact, unlike the previous

three generations of DHS, the development of this fourth generation includes meeting

major challenges like ensuring energy efficient buildings and integrating DHCS as part

of the operation of Smart Energy Systems. The term Smart Energy Systems refers to the

concept of integrated Smart Electricity, Gas and Thermal Grids that will be dealt with in

the next section of this chapter.

Similarly to the concept of 4GDHS, fourth Generation District Cooling Systems (4GDCS)

can be defined as "new smart district cooling systems that are more interactive with the

electricity, heating and gas grids" [117]. In other words, the underlying goal behind

4GDCS is to achieve a cross-sectoral integration of the DCS as part of the smart energy

systems by exploiting the Combined Heating and Cooling (CHC) synergy by using syn-

chronously both ends of a heat pump or a combination of a heat pump and chiller working

in parallel. This can be done by using the surplus cold obtained from heat generation for

covering cooling demand and using the surplus heat obtained from cooling generation for

covering heating demand. Seasonal storages can also play a preponderant role in exploit-

ing this synergy by allowing the storage of cold from the heat pumps during winter for

later use during summer and storing low-temperature heat from the chiller during summer

for a later use in winter. This way, thermal storages help 4GDCS take part in smart energy

systems where flexibility potentials allow for a better integration of RES.

The concept of Fourth Generation District Heating and Cooling systems (4GDHCS) evolves

through the synergy between 4GDHS and 4GDCS and their integration in the multi-

energy and cross-sectoral Smart Energy Systems [118]. A recent review on 4GDHCS

as well as their integration in the state-of-the-art Smart Energy Systems was proposed

by Fabozzi et al. [119], and a methodology for the optimal design and control of these
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networks with thermal Energy Storage was proposed by Van der Heijde et al. [120].

1.3.3 Fifth Generation District Heating and Cooling Systems

After the emergence of the concept of 4GDHCS, the term Fifth Generation District Heat-

ing and Cooling Systems (5GDHCS) appeared for the first time in 2015 within the H2020

project known with the name FLEXYNETS which is an acronym for Fifth generation,

Low temperature, high EXergy district heating and cooling NETworks [121]. A defini-

tion of 5GDHCS, which is in accordance with the classification of DHCS proposed by

[112] and adopted in our work, is given by Buffa et al. [122] as a thermal energy supply

system that has hybrid substations with Water Source Heat Pumps (WSHP) and water or

brine as a carrier medium. It operates at low (close to ambient) temperature levels, which

allows to use renewable heat sources at low thermal exergy content and to directly ex-

ploit industrial and urban excess heat. The reversible operation of its hybrid substations

enables covering the heating and cooling demands of different buildings simultaneously

and with the same pipelines. Thanks to these hybrid substations, the 5GDHCS technol-

ogy permits sector coupling of thermal, electrical and gas networks as integrated parts of

decentralised smart energy systems. [122] also provides a review of 5GDHCS projects

in Europe and carries out an analysis of the pros and cons of these new technologies. It

is worth mentioning that among the 40 5DHCS projects reported in this paper, 15 are

located in Germany, 15 in Switzerland and 5 in Italy. Germany and Switzerland are thus

recognised as pioneers of this technology, while none of the projects mentioned in this

article are implemented in France.

The nomenclature of "fifth generation" was adopted in several research works [123]–

[125]. Meanwhile, other recent research papers argue that this nomenclature is not in

line with the labels established to DHS from 1GDHS to 4GDHS. For instance, Lund

et al. [126] identify the similarities and differences between 4GDHCS and 5GDHCS.

They explain that 5GDHCS might be a promising solution with several advantages, but is

rather regarded as a complementary technology to 4GDHCS and can thus coexist with it.

They conclude that this complementarity induces an absence of chronological succession

between 4GDHCS and 5GDHCS that would justify the use of the term "generation" to

qualify 5GDHCS.

Anyhow, Whether they are considered as two distinct generations or as complementry

technologies, 4GDHCS and 5GDHCS both belong intrinsically to the new concept of
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Table 1.1: Different generations of District Heating Systems.

Generation 1GDHS 2GDHS 3GDHS 4GDHS 5GDHS
Period of
peak
technology

1880-1930 1930-1980 1980-2020 2020-2050 2020-2050

Heat carrier Steam Pressurised
hot water
(>100˚C)

Pressurised
hot water
(<100˚C)

Pressurised
hot water
(around
50˚C)

Pressurised
hot water
(between
0˚C and

30˚C)

Smart Thermal Grids and are inherently related to the concept of Smart Energy Systems.

We discuss both of these concepts respectively in the next sections of this chapter.

1.3.4 The concept of Smart Thermal Grids

DHCS play a paramount role in the implementation of the new Smart Energy Systems [3].

That is why the concept of Smart Thermal Grids (STG), similarly to the Smart (electrical)

Grids, has recently emerged to allow the efficient integration of DER and Renewable En-

ergy Generation within DHCS [5]. Smart Thermal Grids, also referred to for instance by

the European Commission [127] as "smart heating and cooling grids", can be defined as

" a network of pipes connecting the buildings in a neighbourhood, town centre or whole

city, so that they can be served from centralised plants as well as from a number of dis-

tributed heating or cooling production units including individual contributions from the

connected buildings" [128]. They are in fact able to ensure the same functions performed

by classical thermal grids, but are developed in order to make an efficient utilization of

the intermittent thermal DER and to provide the required energy when needed through

optimal and intelligent management, as stated by [3] who investigated the impact of the

integration of distributed and centralized thermal energy storage and solar energy systems

within a community-level Smart Thermal Grid.

Like Smart (electrical) Grids, Smart Thermal Grids focus on the efficient and optimal op-

eration of a grid structure allowing for distributed and renewable energy generation and

possibly involving interaction with consumers as highlighted by [112] who also explained

that the two concepts differ slightly. Indeed, the major challenges faced by Smart Thermal

Grids come from the use of low-temperature heat sources and the interaction with low-
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energy buildings, whereas the main challenges faced by Smart (electricity) Grids result

from the intermittency of renewable electricity generation.

All in all, these two concepts not only complement each other but they are also both essen-

tial for the implementation of the future sustainable multi-energy systems, i.e., electrical,

heating, cooling and gas systems, that we detail in the following section. Hence, Smart

Thermal Grids are expected to be an integrated part of the future Smart Energy Systems

[4] since they come up with a bunch of advantages like flexibility and ability to adapt to

the changes that affect the thermal demand and supply in short, medium and long term

[5].

1.4 Towards integrated solutions: Smart Multi-Energy

Systems

1.4.1 Smart Multi-Energy Grids

Research works within the Smart Grid context traditionally focus solely on the electrical

usages. However, jointly optimizing the electrical networks together with the other energy

vectors interacting with them like heating and cooling networks, as well as gas and hydro-

gen networks, has a great potential to increase the overall economic and environmental

efficiency and flexibility of the energy systems. This idea brings about an extension of the

Smart Grid concept towards the concept of Smart electrical-thermal-gas grids or Smart

Multi Energy Grids that lies on the interaction between electricity and other energy sec-

tors (gas, hydrogen, heat and cold) as well as other sectors that electricity might interact

with like the transport sector. These interactions allow to unlock considerable efficiency

and flexibility potentials which represents one of the main benefits of Smart Multi Energy

Grids [6].

1.4.2 Smart Multi-Energy Systems

Smart Multi-Energy Grids do indeed belong to the larger concept of Multi-Energy Sys-

tems (MES) which refers to energy systems where multiple energy vectors (electricity,

heating, cooling, transport, fuel, etc.) optimally interact with each others at different lev-

els (for instance a district, city, region..) as stated by Mancarella [129] who explained
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Figure 1.4: A typical community-level Smart Multi-energy System [8].

that Multi-Energy Systems can feature better technical, economic and environmental per-

formance compared to classical independent or separate energy systems and at both the

planning and operational stage, which is currently being recognized by a wealth of re-

search being performed on related topics [130].

If a Multi-Energy System is acting in a smart environment and equipped with smart de-

vices (e.g. smart meters, sensors, actuators), communication infrastructures, and embed-

ded smart energy management systems, then it is referred to as a Smart Multi Energy

System (SMES) as defined by [8] who also proposed the architecture of a typical com-

munity level Smart Multi-Energy System (SMES) (figure 1.4): it can be connected to the

main utility grid as well as gas and district heating networks. As output, it can provide

power, heating and cooling to the end-users. Storage systems can involve power storage,

mainly Battery Energy Storage Systems (BESS), heat storage (e.g., in heated water stor-

age tanks) or cooling storage (e.g., ice storage tanks).

The increasing operational complexity of such multi-energy systems leads to a need for

advanced monitoring, forecasting and optimization algorithms [131]. Thus, a Smart

Multi-Energy System is also equipped with a Smart Multi-Energy Management System

(SMEMS). In fact, similarly to Energy Management Systems (EMS) previously defined

in relation with the Smart Electrical Grids, Smart Multi-Energy Management Systems are

developed to operate optimal energy management of Smart Multi-Energy Systems [8].

These SMEMS constitute the subject of the next chapter of this dissertation.
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Figure 1.5: From Smart Grids to Multi-Energy Systems.

1.4.3 Smart Energy Hubs

Community-level and district-level Multi-Energy Systems are installed close to end-users.

Energy transmission limits can thus be neglected since they involve short-distance trans-

missions. Therefore, energy flows in Multi-Energy Systems can be modeled with the

concept of energy hub [8]. This concept was defined for the first time in [132] as an inter-

face between consumers, producers, storage and transmission devices in different ways.

This interface is made directly or via conversion equipment and by handling one or differ-

ent carriers. However, its main idea relies on considering the external interactions of the

energy systems through an input-output equivalent model which dates back to the work

performed by Leontief in economics in 1986 [133].

In 2007, Geidl et al. [134], [135] introduced the use of the concept of Energy Hubs in

a Multi-Energy Systems context for the analysis of multi-energy conversion through an

input-output perspective. A complete review on this concept as well as an overview of the

works carried out on energy hub models can be found in [136].

In 2015, Sheikhi et al. [137] proposed a modification of the classic Energy Hub model to

present an upgraded model in the smart environment and introduced for the first time the

concept of "Smart Energy Hubs". Actually, the recent emergence of Smart Grids in the

power grid, coupled with the development of the Smart Grid concepts for the other energy

carriers and infrastructure such as gas and district heating networks (via smart Thermal
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Grids), led to the understanding of the fact that operating optimal management of smart

energy system requires consideration of various energy carriers that lead to the creation

of an integrated smart energy management system in the form of a Smart Energy Hub

(SEH) as detailed by Mohammadi et al. [43]. Rayati et al. [138] defined the term SEH as

"a unit in a smart energy infrastructure, where multiple energy carriers, e.g. natural gas

and electricity, can be converted, conditioned and stored". Thus, a SEH is an energy hub,

which entails appliances, loads and energy production systems that use smart meters and

that include two-way communication links for an optimal and smarter operation.

1.4.4 Smart Energy Systems

The use of the term Smart energy systems was proposed for the first time in 2012 by

Lund et al. [7] who later gave it a specific definition in [128], in [139] and in [140]

as an approach in which smart electrical thermal and gas grids, together with storage

technologies, are combined and jointly coordinated in a way that allows to identify and

exploit synergies between them and hence achieve an optimal solution for each individual

sector and for the overall energy system. In fact, some of the main synergies that can be

identified and exploited thanks to the combination of these different energy carriers into

integrated energy systems are, to name a few:

• Using electricity for heating and cooling purposes, which allows for the use of heat

and cold storage instead of or together with electricity storage. Thermal storage

may often be more efficient and cost-effective than electricity storage.

• Using electricity for gas (power-to-gas [141] ) allows for the use of gas storage in-

stead of, or together with electricity storage. Gas storage can also be more efficient

and cost-effective than electricity storage.

• Using electricity for heating and cooling can also be used for power balance and

ancillary services such as power markets regulation.

• Heat pumps for heating can also be used to meet cooling demands by providing

district cooling systems with cold and vice versa.

• Using electricity for mobility (electric vehicles) not only allows for fuel replace-

ment but also for providing power balancing services by exploiting the additional
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Figure 1.6: Overview of the components of Smart Energy Systems.

storage capacity that can be offered by the electric vehicles fleet (vehicle-to-grid

systems[142]).

• Using heat produced by DHS for biogas production. In fact, biogas production only

requires low-temperature heat. Supplying this heat by DHS is more effective than

producing biogas at the plant.

Many of these synergies are present and exploited in the Smart Energy systems studied in

this research work, in particular in the Meridia Smart Energy project case study presented

in details in chapter 6.

An overview of the different energy components of a Smart Energy System, inspired from

the definition and diagrams provided by the work of Connolly et al. [128], is presented in

figure 1.6.

1.4.5 Integrated Energy Systems

In the paper where they propose a definition of Smart Energy Systems, Lund et al. [140]

mentioned that the terms Integrated Energy Systems (IES) and Integrated Community En-
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ergy Systems (ICES) are sometimes used in literature to refer to Smart Energy Systems

[143]–[146]. Integrated Energy Systems are seen as a promising solution that can provide

multiple energy supplements and collaborations through the coupling of independent en-

ergy systems such as power, heat, and gas, which can lead to a reduction of operating

costs and an improvement of integrated energy efficiency [144].

The definitions of all the terms presented above are summarised in table 1.2. To the

best of our knowledge, the literature lacks studies or reviews where all these terms are

grouped, defined and discussed. Most of the aforementioned terms, in particular Smart

Energy Systems, Smart Multi-energy Grids or Multi-energy Smart Grids and Integrated

Energy Systems can be suitable to refer to the energy systems studied in our research

work. For the sake of simplicity, we will almost solely use the terms Smart Energy Sys-

tems and Smart Multi-Energy Systems to refer to these systems in the remainder of this

manuscript.

Table 1.2: Summary of concepts and definitions.

Concept Definition

Smart (Electrical)

Grids (SEG /SG)

Electricity networks that can intelligently integrate the actions of all users

connected to them, including generators, consumers and those that do both,

in order to efficiently deliver sustainable, economic and secure electricity sup-

plies [41], [42].

Smart Thermal

Grids (STG)

A network of pipes connecting the buildings in a neighbourhood, town centre

or whole city, so that they can be served from centralised plants as well as

from a number of distributed heating or cooling production units including

individual contributions from the connected buildings [128].

Smart Multi-

Energy Grids

(SMEG)

Extension of the concepts of Smart Electrical Grids and Smart Thermal Grids

where focus is not made solely on electricity grids or thermal networks but

on "all-energy systems" by adopting a holistic approach for the deployment

of all-energy systems at both operational and planning point of views [6].

Multi-Energy

systems (MES)

Energy systems where multiple energy vectors (electricity, heating,cooling,

transport, fuel...) optimally interact whith each others at different levels (for

instance a district, city, region, etc.) [129]
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Continuation of Table 1.2

Concept Definition

Smart Multi-

Energy Systems

(SMES)

Multi-energy systems that are acting in a smart environment and equipped

with smart devices (e.g. smart meters, sensors, actuators), communication

infrastructures, and embedded smart Energy Management Systems. They can

be connected to the main power utility grid as well as gas and district heating

networks [8].

Energy Hubs

(EH)

A concept used to model energy flows in Multi-Energy Systems. It is an

interface between consumers, producers, storage and transmission devices in

different ways. This interface is made directly or via conversion equipment

and by handling one or different carriers [132].

Smart Energy

Hubs (SEH)

Units in a smart energy infrastructure where multiple energy carriers, e.g.

natural gas and electricity, can be converted, conditioned and stored [138] .

Integrated Energy

Systems (IES)

A solution that can provide multiple energy supplements and collaborations

through the coupling of independent energy systems such as power, heat, and

gas, which can lead to a reduction of operating costs and an improvement of

integrated energy efficiency [144].

Smart Energy

Systems (SES)

An approach in which smart electrical thermal and gas grids, together with

storage technologies are combined and jointly coordinated in a way that al-

lows to identify and exploit synergies between them and hence achieve an

optimal solution for each individual sector and for the overall energy system

[140].

1.5 Conclusion
This first chapter introduced the key concepts of energy systems that drive our research

work, starting from Smart Electrical Grids, District Heating and Cooling Systems and

Smart Thermal grids and arriving to integrated energy systems that bring electricity grids

together with heating and cooling networks as well as other energy vectors (e.g gas) and

sectors (e.g mobility) they may interact with. The definitions of the terms Smart Multi-

energy Grids, Smart Energy Hubs, Smart Energy Systems, and Smart Multi-Energy Sys-

tems were reviewed and the latter was adopted as nomenclature for the remainder of this

manuscript.
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One of the major advantages brought about by Smart Energy Systems is that they al-

low for a joint operation and optimization of the different energy vectors which offers

a great potential for enhancing the overall flexibility and economical and environmental

efficiency of these combined energy systems. The next chapter of this thesis deals with

the optimal energy management of these Smart Energy Systems by explaining its objec-

tives, discussing previous work and reviewing the optimization techniques used for this

purpose.



Chapter 2
Optimal energy management in Smart

Energy Systems

Résumé

Ce second chapitre aborde la question de la gestion optimale de l’énergie dans les sys-

tèmes multi-énergie intelligents. En effet, même avec une conception et un dimension-

nement optimaux, la performance technique, environnementale de tels systèmes est déter-

minée par leur fonctionnement et leur gestion [147]. Par conséquent, l’optimisation du

pilotage des systèmes multi-énergies intelligents joue un rôle crucial dans l’exploitation

optimale des synergies entre les différents vecteurs énergétiques tout en garantissant un

fonctionnement optimal et des performances élevées pour chacun des systèmes mono-

énergétiques individuels les constituant. Ce chapitre propose une revue des méthodes

d’optimisation utilisées dans le développement de systèmes de gestion de l’énergie dans

les réseaux électriques intelligent, les réseaux de chaleur et de froid et les systèmes multi-

énergies intelligents.

2.1 Introduction

A Smart Energy System, even when optimally designed, still has its actual technical,

environmental and economical performance defined by its operation and management

[147]. Thus, the optimization of the Smart Energy Systems’ operation plays a great role in

optimally exploiting the synergies between the different energy vectors while ensuring an

optimal operation and high performance for each of the individual mono-energy systems.

63
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In this chapter, we shed light on the optimal energy management of Smart Electrical Grids,

DHCS and Smart Multi-Energy Systems and we review the optimization techniques used

within these energy management systems.

2.2 Smart Multi-Energy Management Systems

Similarly to Energy Management Systems in electrical Smart Grids contexts, Multi-Energy

Management Systems, also known as Smart Multi-Energy Management Systems, play

the role of the brain or control center in a Smart Energy System by ensuring optimal con-

trol and energy management of their energy generation, consumption, distribution and

storage systems. Meanwhile, given the complexity of these multi-energy systems, the

development of Smart Multi-Energy Management Systems is by no means an easy task

since it involves multiple vectors coupling, several operational objectives and different

time scales (short, medium and long-term) [148]. Extensive recent research works in the

(Smart) Multi-Energy Systems context focused on modeling, optimal configuration plan-

ning, optimal energy management and optimal energy flow [8], [149] . The focus of the

present work is mainly on optimal operational planning and control strategies in Smart

Multi-Energy Systems. The optimal operational planning of the Smart Energy Systems

is generally performed based on economic, environmental and supply security considera-

tions. It decides the optimal operation of local resources as well as the interactions with

the main utility grids. It aims at ensuring the load demand satisfaction for the end-users

while satisfying technical, operational and economical constraints. Meanwhile, the intra-

day optimal control of the Smart Energy System aims at adapting the energy management

strategies to the real time realization of the unknown quantities (load demand, renewable

energy generation, electricity prices, etc.) within a given control horizon and time step.

2.2.1 Optimal energy management in District Heating and Cooling

Systems

The intelligent control for optimal operation is a major future challenge for the improve-

ment of DHCS [112]. Nevertheless, due to their complexity and high parameters com-

binatorics, the determination of optimal production and distribution plans in DHCS is

difficult, if not impossible, when solely based on empirical laws and expert judgement.

That is why there is an emphasis in the literature on the need for operational optimization
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techniques to ensure an intelligent control of the DHS. These operational optimization

techniques as well as their taxonomy are detailed further in section 2.3. A review of mod-

eling techniques as well as the main exact and heuristic optimization techniques applied

to DHS can be found in [150]. Talebi et al. [151] also presented a review on the modeling

and optimization of DHS and [152] reviewed the optimization approaches and tools for

DHCN.

The paper of Benonysson et al. [153] was amongst the first studies that considered oper-

ational cost optimization in DHS by formulating a problem for supply temperature selec-

tion that embeds consumers, DHN and production plants. The control problem of supply

temperature in DHS was also addressed by Grosswindhager et al. [154] who proposed a

predictive control strategy based on Fuzzy Direct Matrics Control. A predictive control

strategy was also proposed by Sandou et al. [155] for the short-term control and optimiza-

tion of complex DHN. Idowu et al. [156] investigated the use of Machine Learning tech-

niques for the optimization of energy usage in DHS with a CHP plant. In 2015, Vesterlund

and Dahl [157] presented a method for the modeling and optimization of complex DHS

with meshed networks, i.e., networks containing loops. Guelpa et al. [158] proposed an

optimization method to minimize mainly pumping costs in large DHN, Giraud et al. [159]

dwelled on the optimal control of pressurized hot water in DHS and Vesterlund et al. [160]

dealt with the problem of minimizing total operational costs of complex DHN. Morvaj et

al. [161] focused on the simultaneous design and operational optimization of urban dis-

tributed energy systems including DHN. Later on, Li et al. [162] studied the optimization

problem in DHCS from three different perspectives, namely energy distribution, heat sub-

stations and end-users perspectives. They also paved the way for future research in the

new concept of Smart Thermal Grids by suggesting research directions towards further

development, testing, design and optimization. Within this framework, Zhang et al. [163]

proposed a method to solve the problem of flow rate control optimization in smart DHS.

When it comes to 4GDHCS, Schweiger et al. [164] presented a framework for their dy-

namic thermo-hydraulic simulation and optimization and van der Heijde [120] proposed a

methodology for optimal design and control of 4GHDCS with thermal storage. Lesko et

al. [165] also proposed a solution for the operational optimization of DHS with thermal

storage. In fact, several studies focused on operational optimization of thermal storage

within DHCS. For instance, [166] solved the problem of dynamic optimization for op-
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timal charging and discharging periods of a thermal energy storage to achieve electrical

and cooling load shifting and [167] introduced an approach for performance prediction

and real time control for cooling storage in DCS.

After reviewing these studies on the operational optimization of district heating and cool-

ing systems, the next section will focus on electrical Smart Grids and Micro-grids.

2.2.2 Optimal energy management in electrical Smart Grids and Mi-

crogrids

Similarly to DHCS and Smart Thermal Grids, intelligent control is also essential for elec-

trical Smart Grids to, inter alia, ensure the optimal management of loads, production and

storage units, minimize costs, fossil fuel consumption and Green House Gases emissions,

and to warranty a reliable operation for the Smart Grid components. A review of the

optimal control techniques applied to the energy management and optimal control of mi-

crogrids -which are vital components of Smart Grid architectures- is presented in [168].

These optimal control techniques are classified into classic methods such as Mixed inte-

ger Linear Programming and predictive optimization, and non classic methods like game

theory, non linear programming and Particle Swarm Optimization, on which we focus

further in section 2.3. More recently, Twaha and Ramli [169] presented a review of the

most common optimization approaches for distributed energy generation systems includ-

ing both stand-alone and grid-connected systems, and Pourbehzadi et al. [170] presented

a comprehensive review of solution methodologies for the optimal operation of hybrid mi-

crogrids under uncertainties of RES. In [169], the optimization methods are classified into

mathematical optimization methods and computer programming optimization methods.

The first class of methods includes combinatorial optimization, dynamic optimization,

linear and non linear programming, integer programming and network flow theory; and

the second class involves metaheuristic methods, linear programming as well as Dynamic

Programming. The paper shows that Artificial Intelligence techniques are the most used

optimization methods for Distributed Energy Generation Systems and highlights Parti-

cle Swarm Optimization as the most dominating Artificial Intelligence method used for

this purpose. Nevertheless, Reinforcement Learning and Deep Reinforcement Learning

are not mentioned among these Artificial Intelligence techniques used for optimization

within this framework. In the present work, we focus more on these two techniques that
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we present in section 2.3.

2.2.3 Optimal energy management in Smart Multi-Energy Systems

Electrical, thermal and gas grids are traditionally operated separately. Meanwhile, in the

future Smart Multi-Energy Systems, these different vectors need to be combined and con-

trolled in a coordinated way. This coordinated optimal planning and control allows to

identify synergies between them and achieve an optimal operation for each of these in-

dividual energy vectors, as well as for the whole Multi-Energy System [139]. Thus, a

number of countries around the world like The US, France, Germany and China are de-

veloping plans around building Multi-Energy Systems, many of them are mentioned in

[8]. Such energy systems are embedded with several energy converters and storage de-

vices in a way that allows various energy vectors to be converted, distributed and stored

locally in these community or district-level energy systems. Their inputs are connected to

energy networks like DHCN, electricity grids and natural gas networks, and their outputs

supply end-users with heat, cold, power and natural gas simultaneously [171].

As well, extensive research works are focusing on several aspects related to Multi-Energy

Systems like modeling (based on the Energy Hub concept), optimal structure and config-

uration planning, optimal energy flow, and optimal energy management strategies [149].

for instance, [8] explained that the Energy Management System of a Smart Multi-Energy

System, also referred to as Smart Multi-Energy Management System (SMEMS) is re-

sponsible for collecting data about the status of devices, energy prices, weather data as

well as forecasts on weather, PV and wind generation and power, heating and cooling

loads. Based on these information, it establishes optimal energy management strategies

and dispatch schemes and sends control signals to each of the considered controllable el-

ements in order to optimally manage the operation of the whole Multi-Energy System.

When it comes to optimization objectives in the Multi-Energy Systems and the smart

Grids context, the optimal operation problems can have either one or a combination of two

or more of the following objectives: Operational optimization and overall energy costs

minimization, Levelized Energy Costs minimization, Optimal Power Flow (OPF) [8],

[149], load peak reduction, self-consumption maximization, Green House Gases emis-

sion minimization, fossil fuel consumption minimization [172], etc. For instance, Weber

et al. [173] used an evolutionary algorithm optimizer to compute the trade-off between

multiple objectives, namely the trade-off between the CO2 emissions and investment and
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Figure 2.1: Energy management in Smart Energy systems (adapted from [148]).

operational costs. Moreover, a multi-objective model for the day-ahead operational plan-

ning of a microgrid was introduced by Hosseinnezhad et al. in [174]. Ma et al. [175] also

proposed a multi-objective optimization approach for a Multi-Energy System integrating

PV, CCHP and ground source heat pump.

Similarly to the previous works, the case studies under consideration in the present work

have multiple optimization objectives and hence, multi-objective optimization can be the

way to go. More details about these case studies as well as the choice of the methods for

their optimal operation will be discussed further in the next chapters.

2.2.4 Markov Decision Process formulation

The goal of optimal operation in Smart Multi-Energy Systems is to develop an optimal

planning and control strategy that maximizes some defined performance criteria for a

given Smart Multi-Energy System. Since this problem belongs to the sequential decision

making type of problems, it can be modeled as a Markov Decision Process (MDP).

The concept of Markov Decision Process was first introduced by Bellman in 1957 [176].

It is used to describe a stochastic process controlled by a sequence of control actions,
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under uncertainty [177]. MDP is in fact a fundamental formalism for Decision Theo-

retic Planning, Reinforcement Learning (cf. Chapter 3) and other learning problems in

stochastic domains. It has become the de facto standard formalism for learning sequential

decision making problems as pointed out by [178]. Thus, many stochastic optimization

problems in different domains like finance, telecommunication, routing problems, inven-

tory problems and stochastic scheduling can be formulated as MDPs as detailed by [179].

If the state and action spaces are finite, then the MDP is called Finite Markov Decision

Process (Finite MDP).

An MDP consists of states, actions, rewards and transition functions between states:

• State: for a given sequential decision making problem, a state is a unique charac-

terization of all what is important in the state of this problem [178]. As a matter of

example, if we consider the problem of playing the game of chess, a state would be

a complete configuration of all the board pieces.

• Action: an action a refers to an action that is taken to control the system states.

It can be either a unique action or a set of multiple actions, and can be composed

either of discrete or continuous actions.

• Reward: it specifies explicitly the goal of the optimization by specifying the reward

from being in a given state or taking a certain action for a state.

• Transition function: by applying an action a to a state s, the system moves from the

state s to a new state s′. A transition function T defines the probability of making

a transition to state s′ after taking action a in state s. If the transition function T

is known, the MDP decision making problem can be solved using Dynamic Pro-

gramming, and if T is unknown, Reinforcement Learning algorithms (introduced

in the next section and detailed in Chapter 3) such as Q-Learning can be used [180].

These ideas are discussed further in chapter 3.

For an extensive review on Markov Decision Processes, we refer the interested reader to

[181] and [182]. As well, the book of Sigaud and Buffet [183] discusses MDPs and prob-

lems of Artificial Intelligence that can be formalized as MDPs, mainly sequential decision

making under uncertainty and Reinforcement Learning problems. As a matter of exam-

ple, [184] showed how the problem of home energy management with Electric Vehicle
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charging can be formulated as an MDP. More details about the MPD formulation and the

way of solving it mainly through Reinforcement Learning techniques will be discussed

further in Chapter 3. In the next section, we present an overview of the optimization

techniques used in the literature for solving the optimal energy management problem in

Smart Energy Systems.

2.3 Optimization techniques for energy management in

Smart Energy Systems
Optimization methods used in Energy Management Systems of Smart Energy Systems

can be classified into three categories, as presented by [185]–[187] and as shown in figure

2.2 namely, rule-based techniques, optimization based techniques and hybrid techniques

that we detail in this section.

2.3.1 Rule-based techniques

Rule-based techniques are methods that rely on allocating reference points based on exist-

ing situations, defined scenarios and decision trees, as explained by [187]. These methods

can be nearly optimal for relatively simple use-cases such as energy systems with only one

energy storage device as in [188] who developed a rule-based control strategy for a Bat-

tery Energy Storage System for dispatching solar and wind energy or also in [189] and

in [190]. However, there is a common belief within the research community that rule-

based control and expert judgement are not sufficient to perform the optimal control for

more complex or hybrid energy systems in Smart (electrical) Grids, Smart Thermal Grids

and Smart Multi-Energy Systems. In fact, due to their complexity and high parameters

combinatorics, the development of optimal management plans and control strategies, for

example in District Heating Systems, is difficult, if not impossible, when based excusively

on empirical laws and/or expert judgements [159].

2.3.2 Optimization-based techniques

2.3.2.1 Exact mathematical methods

Optimization-based techniques can be classified according to whether they are exact

mathematical methods, approximate methods or hybrid methods. Another possible and

well-known classification would be to divide them into classic methods, which are the
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Figure 2.2: Classes of optimization methods used in the Energy Management Systems’ context.
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most widely used ones like Mixed Integer Linear Programming (MILP) and Model Pre-

dictive Control (MPC), and non classic methods such as game theroy, Non Linear Pro-

gramming, Partcile Swarm Optimization and Genetic Algorithms. In this work we opt for

the first type of classification. Main exact mathematical methods are:

• Linear Programming(LP): an LP formulation of the optimization problem is used if

both the objective function and all the equality and inequality constraints are linear.

LP problems can be mathematically expressed as:

min
x

f(x) = cTx (2.1a)

s.t. Ax ≤ b (2.1b)

x ≥ 0 (2.1c)

Where x represents the vector of decision variables, f(x) represents the objective

function to be optimized, A is a matrix of known coefficients, c and b are vec-

tors of known coefficients, and the inequality 2.1b includes the constraints of the

problem. The most used algorithms for solving LPs include the simplex method

introduced by Dantzig [191], and interior-point algorithms [192]. LPs belong to the

linear models family which also includes Integer Programming (if variables are of

type integer, most commonly binary) and Mixed Integer Linear Programming (if

variables are of both real and integer types).

• Non-Linear Programming (NLP): corresponds to mathematical problem formula-

tions where all the variables are continuous and that contain any kind of non-

linearity in the constraints and/or in the objective function [185]. This kind of

problems are solved using unconstrained and constrained optimization algorithms.

The most common algorithms designed for NLP optimization include Newton-

Raphon methods, conjugate gradient methods, quasi-Newton methods and succes-

sive quadratic programming methods (for quadratic optimization problems) [193].

• Mixed Integer Programming: Mixed Integer Programming (MIP) methods are used

to solve mixed-integer linear or non-linear programming problems. A general MIP
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problem can be expressed as follow:

min
x,y

f(x, y) = cTx+ hy (2.2a)

s.t. Ax+Gy ≤ b (2.2b)

x ≥ 0 (2.2c)

x = (x1, x2, ..., xn)
T ∈ Rn (2.2d)

y ∈ 0, 1 (2.2e)

Such problems deal with integer control variables which makes them require spe-

cific solving methods due to discontinuity of these variables. The main algorithms

developed to solve this type of problems include Branch-and-bound [194], Cutting-

plane [195] and the Branch-and-cut method which is a hybrid of the previous two

methods [196].

Mixed Integer Linear programming (MILP) is one of the most extensively explored

optimization-based techniques in the Smart Grid and district heating context [197],

[198]. For instance, [165] proposed an optimization solution based on MILP prob-

lems for the operational optimization of DHS with thermal storage. Similarly, a

MILP model is proposed for the optimal control of a pressurized water DHS in

[159]. The proposed algorithm optimizes the use of production means, supply tem-

perature and differential pressure. The optimal control is based on an MPC frame-

work associated with a dynamic non-linear model of the network. This model is

built using the simulation platform Dymola and the model library DistrictHeating

[199].

Mixed Integer Programming models also include MINLP (Mixed Integer Non-

Linear Programming) which are also used in power management, for instance when

dealing with probabilistic constraints. [200] illustrates a solution of a mixed-integer

stochastic nonlinear optimization problem with joint probabilistic constraints for

the power management of a hydro plant coupled with a wind farm.

• Dynamic programming: Dynamic programming refers to a class of algorithms that

can be used to compute optimal policies given a model of the environment as a
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Markov Decision Process [18]. It deals with optimal control problems where deci-

sions are made in stages and where the outcome of each decision can be relatively

anticipated but not totally predictable. Therefore, a decision can not be viewed in

isolation since a trade-off should be made between the desirability of low present

cost and the undesirability of high future costs as explained in the book of [201] on

Dynamic Programming and optimal control. Dynamic Programming captures this

trade-off by ranking decisions based on the sum of the present cost and the esti-

mated future costs at each stage. It aims to transform a complex decision making

problem into a sequence of embedded simpler problems by decomposing a multi-

stage problem into a sequence of single-stage decision problems, which are easier

to solve sequentially.

If the considered multi-stage optimization problem is of stochastic nature, i.e., if

one or several parameters of the problem are modeled as stochastic variables or

processes, then probabilistic or stochastic Dynamic Programming is used to solve

it [202], [203].

Even though Dynamic Programming is widely considered as the only feasible way

of solving general stochastic optimal control problems, it suffers from what Bell-

man refers to as the curse of dimensionality, meaning that its computational re-

quirements grow exponentially with the number of state variables. Nevertheless,

Dynamic Programming is still far more efficient and more widely applicable than

any other general method as explained by [18]. In other words, Dynamic pro-

gramming is sometimes thought to be of limited applicability because of the curse

of dimensionality, but the difficulties created by large state spaces and resulting

in the curse of dimentionality are indeed inherent difficulties of the problem, not

of Dynamic Programming as a solution method. Thus, Dynamic Programming is

still comparatively better suited to handling large state spaces than other competing

methods such as direct search and linear programming. The Dynamic Programming

approach is discussed further in Chapter 3.

2.3.2.2 Approximate methods

Meta-heuristics: meta-heuristics are "solution methods that orchestrate an interaction

between local improvement procedures and higher level strategies to create a process ca-

pable of escaping from local optima and performing a robust search of a solution space" as
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defined in the handbook of meta-heuristics [204]. The most popular meta-heuristic meth-

ods inlude Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Aunt Colony

and Simulated annealing. Among these methods, Genetic Algorithms and Particle Swarm

Optimization are the most widely used meta-heuristic methods in the energy management

context.

Genetic Algorithms are based on search techniques that mimic the process of natural evo-

lution, the Darwin thinking of natural selection and natural genetics. Genetic algorithms

start from a population, a set of feasible random solutions (chromosomes), and use search

operations with probabilistic rules of selection of new generation in the evolution pro-

cess, ensuring their improvement. The major advantage of evolutionary algorithms is the

search techniques that allows to achieve a global optimum, whereas other methods ensure

it only if some convex properties of the problem are satisfied. The no starting point de-

pendency and the ability to specialize the problem formulation makes Genetic Algorithms

very interesting for engineering application, ensuring a high probability to find a global

optimum.

As a matter of example, Genetic Algorithms are used in [205] for the operational cost

optimization of electricity and heating networks in buildings with distributed energy gen-

eration, electric storage with batteries and thermal storage, and in [120] for the optimal

design and control of Fourth Generation District Heating Networks with thermal storage.

Genetic Algorithms are indeed part of a more general class of methods called evolution-

ary algorithms. Evolutionary algorithms are used for instance in [173] for the design and

optimization of a district energy system. Similarly, the optimal integration of renewable

energy sources for autonomous tri-generation combined cooling, heating and power sys-

tem is achieved based on evolutionary Particle Swarm Optimization algorithm in [206].

Genetic algorithms and Particle Swarm Optimization are also combined in the work of

Mazafar et al. [207] who proposed an approach for the optimal allocation of renewable

energy sources and electric vehicle charging stations based on improved Genetic Algo-

rithm - Particle Swarm Optimization algorithm.

Artificial Intelligence: most of the aforementioned optimization methods proceed by

computing all or part of possible solutions before choosing the optimal one. This strategy

appears to be time consuming, and thus can hardly be suitable for (near) real-time deci-
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sion making process. This limitation, together with the availability of large amounts of

historical, on-line and operational data in the context of Smart Energy Systems and in the

era of big data, contributed to a growing research focus on the use of Machine Learning

methods for optimization in Smart Grids [208] and Smart Energy Systems.

• Reinforcement Learning (RL): Reinforcement Learning is a learning paradigm that

deals with learning to control a system in order to maximize a numerical perfor-

mance measure that expresses a long-term objective, referred to as the numerical

reward signal, as defined by [209]. The reward signal maximization implies learn-

ing what to do, by mapping situations to actions. The learner and decision-maker is

called the agent, and the system it interacts with (to take actions) is called the envi-

ronment (figure 2.3). Thus the terms agent, environment and action are used in lieu

of the terms controller, controlled systems and control signal. Other key compo-

nents of Reinforcement Learning include the reward signal, the value function, the

policy and the model of the environment. The reward signal is the value sent by the

environment to the agent at each time step. It defines the goal of the Reinforcement

Learning since the objective of the agent is to maximize the total reward it receives

from the environment. Thus, the reward signal defines the immediate "desirability"

of the environment states [18]. Conversely, the value function of a state indicates

the total expected reward to be accumulated over the future, starting from that state,

which means that it indicates the long-term "desirability" of the state. Therefore, a

given state can have a low immediate reward and a high value, and the opposite also

can be true. The policy defines the way in which the agent behaves (takes actions)

at a given time. And finally, the model of the environment is built to imitate the

behavior of the environment. Thus it can be used for instance to predict the system

state and reward that result from a given state-action pair. However, this model

is optional and is used only in Model-based Reinforcement Learning approaches

where a model is first learned and then used for planning [210]. In the opposite,

model-free Reinforcement Learning is a trial-and-error learning approach that does

not require a model of the environment. It is based on the agent’s learning to asso-

ciate optimal actions to states, without establishing transition probabilities between

states. One of the most widely used model-free Reinforcement Learning techniques

is QLearning [210], [211]. Further details about the Reinforcement Learning theory
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Figure 2.3: The agent-environment interaction in Reinforcement Learning [18].

as well as its aforementioned components will be given in Chapter 3.

The main characteristics that distinguish Reinforcement Learning from other Ma-

chine Learning methods are, as explained by [18], summarized in the three follow-

ing points:

– Reinforcement Learning problems are closed-loop problems in the sense that

actions taken by the learning systems do influence its later input.

– The learner in a Reinforcement Learning problem does not have direct instruc-

tions of what actions to take, as it is the case in many other Machine Learning

methods, but rather acts by trying actions to discover which of them yield the

most reward.

– Actions may have a consequence, not only on the immediate reward but also

on the next situation.

The Reinforcement Learning paradigm has its roots in Dynamic Programming al-

gorithms. However, for classical Dynamic Programming, there is a need to generate

the transition probability and reward matrices from the given random variables in

order to obtain an optimal solution, while for Reinforcement Learning, given the

same distributions of governing random variables, a near-optimal solution can be

solved by the use of a simulator and RL algorithm without the overhead of transi-

tion probability and reward matrices [156].

In traditional RL algorithms, action spaces are generally assumed to be discrete,

whereas more complex and actual tasks often have a large state space and a continu-

ous action space. In those cases, traditional Reinforcement Learning will encounter

the curse of dimensionality when dealing with high-dimensional input data, which

greatly limits the practical application of RL algorithms [22]. As a matter of fact,

in complex and stochastic environments with high-dimensional state spaces, like
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the typical Smart Grid or Smart Multi-Energy System environment, RL faces the

problem of curse of dimensionality, ie the fact that the number of parameters to be

learned increases exponentially with the number of variables, which results in a low

learning efficiency [212]. This major limitation of RL can be overcome by Deep

Reinforcement Learning (DRL) techniques.

• Deep Reinforcement Learning (DRL) is a state-of-the-art Machine Learning method

that combines Deep Learning with Reinforcement Learning [25]. In other words,

it combines the strong nonlinear perceptual capability of Deep Neural Networks

(DNNs) with the robust decision making ability of Reinforcement Learning [22],

[24].

Unlike Reinforcement Learning, Deep Reinforcement Learning algorithms exhibit

strong generalization capabilities in problems with complex state spaces. They have

for example shown successful applications in problems with a very large number

of states such as playing Atari, Go games [26], robotics, clinical trials [213], au-

tonomous driving and other complex control tasks [25], [27]–[30]. In fact, with the

development of distributed monitors and controllers, Smart Energy Systems con-

trol tasks can have very complex state spaces. Deep Reinforcement Learning al-

gorithms, with their generalization abilities and strong representation power, could,

therefore, be promising candidates for decision making problems where a large

amount of features can be used. This idea was exemplified by Di Wu et al. [184]

who showed that problems like home energy management can be dealt with using

both batch RL (off-line RL algorithm) and DQN (on-line DRL algorithm).

A deeper focus on the theory of (Deep) Reinforcement Learning and related work

on its applications in power systems is made in chapter 3.

2.3.3 Uncertainty approaches

Despite the important advances in operational research and optimization techniques, one

of the remaining current challenges consists in considering uncertainty in the optimiza-

tion process. In fact, most of real life problems do contain some kind of uncertainty.

For example, in economy, uncertainties might come for example from uncertain eco-

nomic growth rates. In agriculture, as well as production, we face uncertainties on prices,

demand and weather conditions. As far as the energy sector is concerned, sources of
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Figure 2.4: Uncertainty approaches.

uncertainties are also numerous [214]. For instance in the Smart Multi-Energy Systems

context, market prices, demand for electricity, heating, cooling and gas consumption and

weather conditions especially in renewable energy production are all associated to sources

of uncertainty that may have a serious impact on the problem and, in that case, should be

taken into account.

The approaches used to address problems under uncertainty can be classified into two

categories as presented in Figure 2.4: reactive approaches and preventive approaches. In

reactive approaches, a nominal plan is obtained using a deterministic formulation (i.e.,

that does not take uncertainties into account) and is then adjusted according to updated

forecasts and system data. On the other hand, in preventive approaches, all possible sce-

narios are taken into consideration in order to find a good solution that is feasible for all

the considered cases. Stochastic programming, robust optimization and fuzzy program-

ming are among the most widely used preventive approaches [185].

2.3.3.1 Model Predictive Control

Model Predictive Control (MPC) [9], [10] is a feedback control method that appeared in

the late 1970s and became widely used for advanced process control in both academic and

industrial applications [215]. It has then experienced remarkable progress from both theo-

retical aspects and industrial issues perspectives [216] and gave therefore rise to thousands

of successful industrial applications [217]. In the MPC mechanism, the optimal control
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problem is solved at each time step to determine a sequence of control actions over a fixed

time horizon. Only the first control action of this sequence is then applied to the controlled

system and the new resulting system state is measured. At the next time step, the time

horizon is moved one step forward and a new optimization problem is then solved, taking

into account the new system state and updated forecasts of future quantities. The reced-

ing time horizon and the periodic adjustment of the control actions make the MPC robust

against the uncertainties inherent to the model and forecasts [11]. A more in depth focus

on the MPC theroy is made in Chapter 4.

2.3.3.2 Rolling Horizon approach

Model Predictive Control (MPC) belongs to predictive control approaches that also in-

clude other well known methods like Rolling Horizon Control -also referred to as Re-

ceding Horizon Control (RHC)- and Generalized Predictive Control (GPC). Even though

these three control strategies have originally been investigated separately, MPC and RHC

rely on similar principles and are often considered as identical when the MPC is based on

the state-space model [218]. For instance, Kopanos and Pistikopoulos [219] who intro-

duced a Rolling Horizon approach for the reactive scheduling of a network of Combined

Heat and Power units, followed a state-space representation of the scheduling problem

and gave the example of MPC as a typical Rolling Horizon approach.

2.3.3.3 Stochastic Programming

Stochastic programming, also referred to as optimization under uncertainty [220], [221],

is the branch of optimization that addresses stochastic programs, i.e., optimization prob-

lems of the form:

min
x

f(x, ω) s.t. x ∈ X(ω), (2.3)

where the objective function f and/or the feasible set X depend on an uncertain parameter

ω. In stochastic programming, the decision variables are generally divided into two sets:

the first-stage variables which are here-and-now decisions that have to be taken before the

actual realization of the random events is revealed, and the second-stage variables, also

called recourse variables which are wait and see decision variables that are selected, at a

certain cost, after the random events take place. One of the most widely used stochastic

programming approaches is the two-stage stochastic formulation [222] partly because of

its simplicity relatively to other stochastic formulations.
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To solve a stochastic program, we need to make assumptions on the probability distribu-

tions of its random variable. Nevertheless, making such assumptions is not always possi-

ble, especially when it comes to variables that depend for example on political decisions,

such as oil prices.

2.3.3.4 Robust optimization

Another way to handle uncertainties in optimization problems -by making weaker as-

sumptions on the random data- is to consider the worst case situation between different

scenarios. This approach is referred to as robust optimization [223], which is commonly

used worldwide but does not belong to the field of stochastic programming. It is ac-

knowledged that worst case formulations generally result in expensive and conservative

decisions and may lead to heavy investment costs which are intended to cover some ex-

treme situations that may meanwhile have very low chance to occur. Nevertheless, using

such robust methods can be very interesting or even essential for several kinds of prob-

lems where the most pessimistic scenario must be given a due importance and particularly

considered. This can be the case, for example, for the sizing of dams where the most pes-

simistic cases should be considered because of the severe damage that can result from

wrongly planned dams.

2.3.3.5 Fuzzy programming

The fuzzy mathematical programming was introduced by Bellman and Zadeh in 1970

[224], and then gained into popularity thanks to the work of Zimmermann in 1991 [225].

Similarly to stochastic programming, it addresses the problem of optimization under un-

certainty, but is based on modeling uncertainty in a different way. In fact, while stochastic

programming considers uncertainty by modeling it through discrete or continuous prob-

ability functions, fuzzy programming relies on considering random parameters as fuzzy

numbers and constraints as fuzzy sets. Some constraint violation is allowed and we de-

fine the degree of satisfaction of a constraint as a membership function of the constraint

in question [226]. Several types of membership functions have been proposed in the lit-

erature, but the most used one is the linear membership function u(x) defined as follows:

for a linear constraint atx ≤ β, where x represents the decision vector and β is a ran-

dom parameter that can take values ranging from b to b + ∆b where ∆b ≥ 0, the linear



2.3. Optimization techniques for energy management in Smart Energy Systems 82

membership function u(x) is written as:

u(x) =


1, if atx ≤ b,

1− atx−b
∆b

, if b < atx ≤ b+∆b,

0, if atx > b+∆b.

(2.4a)

2.3.4 Hybrid-techniques

Hybrid techniques are methods composed of two or more of the previously mentioned op-

timization techniques. They can for instance put together MPC with genetic algorithms,

Neural Networks or Reinforcement Learning. For example, [167] proposed a novel ap-

proach based on a Neural Network based Model Predictive controller coupled with a

Genetic algorithm for the real time optimal control of a district cooling systems with ther-

mal energy storage (ice storage). Furthermore, Model Predictive Control is combined

with Reinforcement Learning in [227] for the control of systems described by Markov

Decision Processes. Reinforcement Learning is used to make the MPC learn from ex-

perience which, inter alia, speeds up the decision making process. Furthermore, Smarra

et al. [228] used a Neural Network based data-driven state model as a plant simulator

in the MPC closed-loop optimization. The proposed method deals with building energy

optimization and climate control.

2.3.5 Conclusion of the state-of-the-art

In light of the previous literature revue of related works on optimal energy management,

planning and control of Electrical, thermal and Smart Multi-Energy Systems, and on the

optimization techniques used for this purpose, we conclude that:

• Exact optimization-based methods like Mixed Integer Linear Programming, as well

as approximate optimization-based methods like Genetic Algorithms and Particle

Swarm Optimization can be suitable to solve optimal energy management problems

and thus are widely used in the Smart Grid context. Nevertheless, their procedure

can be time consuming and thus non suitable for an on-line optimization where real-

time or near real-time decision making is needed. In fact one common key feature

between all these methods is that they have to compute all or part of the possible

solutions before choosing the optimal one, which makes their procedures generally
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time consuming.

• This reason, added to the additional complexity related to the dynamic properties

of the Smart Multi-Energy System case studies considered in the present research

work, together with the large amount of on-line and operational data brought about

by the Smart Energy Systems’ concept, turn the choice of the operational optimiza-

tion methods towards Machine Learning techniques. Among ML techniques, Re-

inforcement Learning is the area that deals with sequential decision making under

uncertainty, and is thus suitable for cost optimization and optimal control prob-

lems. However, Reinforcement Learning fails to deal with large amounts of states

and/or actions, due to the curse of dimensionality. Thus, the state-of-the art Deep

Reinforcement Learning approach which is evolving through the combination of

Reinforcement Learning with Deep Learning can be the solution to overcome this

limitation.

• Despite the growing interest in the use of the Deep Reinforcement Learning ap-

proach and its success with many real-life problems, this method has hitherto been

applied exclusively to mono-fluid Smart Grid contexts. To the best of our knowl-

edge, there is a lack of studies considering the use of Deep Reinforcement Learning

for the optimal control of Smart Multi-Energy systems. In this work, we apply Deep

Reinforcement Learning in a Smart Multi-Energy System context. The main objec-

tive is to develop optimal planning and optimal control strategies for a real-life case

study: the Meridia Smart Energy (MSE) Smart Multi-Energy System presented in

further details in Chapter 6.

• Model Predictive Control (MPC) is one of the most widely used methods for ad-

vanced process control in both industrial and academic applications. In this work,

we apply MPC, besides the Deep Reinforcement Learning approach, on a Smart

Multi-Energy System case-study. A comparative study is carried out to evaluate the

trade-off between performance and computational time of these approaches. To the

best of our knowledge, this work represents one of the initial attempts in literature

to simultaneously benchmark Deep Reinforcement Learning and Model Predictive

control in a Smart Multi-Energy Systems context.
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2.4 Conclusion
This chapter introduced the problem of optimal energy management in Smart Energy

Systems and its formulation as a Markov Decision Process (MDP). The optimization-

based exact as well as approximate methods used in literature to solve this category of

problems were presented and the uncertainty approaches used to address these problems

taking into account uncertainty were reviewed. The MDP formulation will be discussed

in further details in Chapter 3. Besides, a more in depth focus will be made in the

next chapters on two particular methods to address the problem: Deep Reinforcement

Learning and Model Predictive Control. Applying and benchmarking these two methods

for the problem of intelligent control for the optimal operation of a Smart Multi-Energy

System case study represents one of the main contributions of this work.



Chapter 3
Deep Reinforcement Learning: theory and

applications in Smart Energy Systems

"Artificial Intelligence =

Reinforcement Learning + Deep

Learning."

David Silver [229]

Résumé

Ce chapitre commence par une brève introduction aux paradigmes de l’Apprentissage

Machine suivie d’une présentation des principales applications de ces paradigmes dans

les systèmes énergétiques intelligents. Ensuite, on propose un focus sur le paradigme de

l’apprentissage par renforcement en explorant son histoire, sa théorie et ses particularités

et en s’appuyant principalement sur la méthodologie et les notations du livre référence de

Sutton et Barto [18] sur l’apprentissage par renforcement. Enfin, on conclut ce chapitre

par une revue de littérature concernant les travaux ayant appliqué de cette approche pour

la gestion des systèmes énergétiques intelligents, mettant en évidence les contributions

principales de ce travail par rapports aux travaux antérieurs dans ce domaine.

3.1 Introduction

The Reinforcement Learning (RL) paradigm was first briefly introduced in this manuscript

in Chapter 2. In the present chapter, we propose a more in depth focus on the theory of

85
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RL and Deep RL (DRL) based mainly on the approach and notations presented in Sutton

and Barto’s reference book of RL [18]. This chapter starts with a brief introduction of the

different Machine Learning paradigms followed by an introduction of key applications

of these Machine Learning paradigms in the field of smart energy systems. We then fo-

cus on RL and DRL theory, review their applications in power systems, report previous

works using these approaches for optimal energy management in Smart Energy Systems

and finally specify the contributions of this PhD research work in this domain.

3.2 Machine Learning paradigms
Machine Learning (ML) is the field of scientific study of algorithms and statistical models

that give a computer the ability to learn without being explicitly programmed [230]. ML

paradigms are organized into a taxonomy based on their desired outcome [231]. The

most commonly used types include Supervised Learning, Unsupervised Learning and

Reinforcement Learning.

• Supervised Learning (SL): SL is the most commonly used field of ML. It is con-

cerned about learning a classification or a regression task from a set of labeled train-

ing data, by generating a function that maps the inputs to desired outputs. SL is the

learning paradigm studied in most current research in the field of ML according to

[18].

• Unsupervised Learning (UL): it refers to the task of learning models from data-sets

of inputs without labeled examples. In other terms, it is mainly about finding hidden

structures and discovering patterns and relationships in sets of unlabeled data.

• Reinforcement Learning (RL): RL is a learning paradigm that deals with how a

software agent learns to control a system by taking actions in an environment in

order to maximize a numerical performance measure that expresses a long-term ob-

jective, referred to as the reward signal. While Supervised and Unsupervised Learn-

ing models are generally myopic and only consider instant reward, Reinforcement

Learning is rather sequential and considers long-term cumulative rewards and thus

is far-sighted [232]. Reinforcement Learning is different from Supervised Learning

in that Supervised Learning is not adequate for learning from interaction. In fact,

Supervised Learning requires, for each given situation of the training set, a label that
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specifies the correct action to be taken by the system in that situation. Meanwhile,

in interactive problems, it is usually impractical to get the correct behaviour for all

the situations of a training set that is representative of all the situations in which

the learning agent is required to make decisions. Reinforcement Learning is also

different from Unsupervised Learning even though the fact that both paradigms do

not require examples of desired behaviour is misleading and might let one think of

Reinforcement Learning as a kind of Unsupervised Learning. Unlike Unsupervised

Learning, Reinforcement Learning is not about trying to find a hidden structure in

a set of unlabeled data but rather about trying to maximize a reward signal. More

fundamental distinctive features of Reinforcement Learning that make it different

from Supervised, Unsupervised and other learning paradigms are detailed in section

3.4.2.2.

3.3 Selective key Machine Learning applications in Smart

Energy Systems
In the following, we present some of the main applications of Machine Learning meth-

ods in the context of Smart Energy Systems as well as the classes of Machine Learning

techniques mostly used for each application.

3.3.1 Electrical load forecast

Forecasting electrical load in order to accurately predict the amount of power that is likely

to be consumed by the end-users is a crucial task in Smart Energy Systems. Methods

used for load forecast can be classified into three categories as explained in [233]: phys-

ical methods, also called engineering methods [167], statistical methods and Machine

Learning methods. Statistical methods used for electrical load forecasts include popular

techniques such as ARMA (AutoRegressive Moving Average) and SARIMA (Seasonal

AutoRegressive Integrated Moving average) [234]. Machine Learning methods include

popular and widely used methods like Support Vector Machines (SVM) [235]–[237], Re-

gression Trees (RT) [238], Multi Linear Regression (MLR), Artificial Neural Networks

(ANN) [239], and other state-of-the-art neural network-based methods like Long-Short

Term Memory (LSTM) [240].
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3.3.2 Thermal load forecast

Methods used for thermal load forecast are generally similar to those used for electri-

cal load forecast [156]. For instance, methods like regression models and ANN are

commonly used for both electric and thermal load forecasting. Some methods, mainly

physics-based models, are more used for thermal-load forecasting since they take into

consideration critical factors that influence the thermal load demand like the physical

properties of the buildings and the heat transfer dynamics. These methods are less com-

monly used for electrical load forecasting since the factors that influence electrical load

demand such as the usage patterns and the time of the day are better captured using other

ML metods.

Other state-of-the art methods like Deep Neural Network based prediction methods can

also be used for the thermal load forecasting task. For instance, a Deep Learning approach

is applied in [241] for the day-ahead forecast of thermal load in District Heating Systems.

The proposed approach is compared with a linear model and the paper concludes that the

Deep Learning model provides higher accuracy, even though simple linear models can

perform very well in predicting heat loads for DHS especially when non-linearities can

be accounted for.

3.3.3 Renewable energy generation forecast

The intermittent nature of renewable energy generation, mainly solar and wind power

generation, lead to a an important research focus on renewable power generation fore-

cast in order to efficiently manage their integration into Smart Energy Systems. In fact,

accurately forecasting renewable power generation can help the Smart Energy Systems’

operators to optimize grid stability, ensure an optimal energy dispatch as well as opti-

mally manage the energy storage and other flexible storage systems. Machine Learning

methods that are used for this purpose are broken down into three classes, namely Su-

pervised methods like Artificial Neural Networks and Support Vector Machines [242],

unsupervised methods like Deep Belief Networks [208], as well as hybrid models [242].

3.3.4 Flexibility quantification

Flexibility in smart thermal grids can be defined as " the ability to speed up or delay the

injection or extraction of energy into or from a system" [243]. It only requires that the sys-
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tem has thermal inertia in a way that guarantees that the energy balance can be respected

all the time. The sources of this inertia come from thermal capacities that can be found

in the heat or cold carrier, the heat or cold storage systems as well as the thermal inertia

of the buildings provided with heat or cold. Vandermeulen et al. [243] explained that

the question of flexibility quantification in the field of thermal networks is very relevant

especially when the problem of their control is considered.

When it comes to Smart Electrical Grids, flexibility refers to the capacity to increase or

decrease the electrical load at a certain time frame [244]. The work of Mocanu [208]

addressed the problem of flexibility identification, prediction and estimation of optimal

flexibility in electrical Smart Grids using mainly Machine Learning approaches. Clas-

sification is among data-driven methods used for flexibility detection and deep learning

methods are used for prediction. The work proposed a five-order restricted Boltzmann

machine approach and explained that this method outperformed most of these state-of-

the art methods in accomplishing flexibility identification, prediction and estimation of

optimal flexibility all at once.

3.3.5 Frequency control

Frequency control, also referred to as frequency regulation aims at maintaining the power

system frequency close to its nominal value, e.g., 50 Hz in the in the synchronous grid

of Continental Europe and 60 Hz in the U.S. In fact, the equilibrium between supply and

demand is of paramount importance for a power grid. If consumption outweighs or falls

behind production, the frequency of the grid diverges from its nominal value. In this case,

regulation is needed to bring the frequency back to its pre-defined value. In practice, this

can be done by absorbing the surplus power from the grid, or by injecting the missing

power when supply and demand are not balanced. To ensure this operation of frequency

regulation, Frequency Containment Reserves (FCR) are procured by the Transmission

System Operators. Deep Learning and Reinforcement Learning are among the most used

Machine Learning methods for this frequency control task [245].

3.3.6 Voltage control

Voltage Control is another task in the power systems context for which Machine Learning

approaches such as Deep Learning and Reinforcement Learning can be used. It refers

to the operation of keeping the voltage magnitude across the power network close to
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its nominal value. Unlike frequency control which is a fast-timescale control problem,

voltage control deals with both fast-timescale and slow-timescale controllable devices.

Moreover, the increasing penetration of renewable energy generation such as PV and

wind generation in distribution systems comes along with new challenges to the voltage

control operation due to the rapid fluctuations and significant uncertainties of intermittent

renewable generation. Several studies proposed the use of reinforcement learning-based

approaches to deal with the problem of voltage control including the work of Yang et al.

[246], Duan et al. [247] and Cao et al. [248].

3.3.7 Energy management

As introduced in Chapter 2 Energy Management Systems (EMS) are control software

that use information flow to monitor, control and optimize the operation of the system by

managing the power flow and maintaining the power balance in a reliable and efficient

way. Thus, they play a paramount role in Smart Energy Systems by enabling effective

control and optimization of energy generation, consumption and storage systems. Ma-

chine Learning methods can be used for this purpose by building models that can for

example learn from historical data and predict future energy demand or be used to iden-

tify patterns and recognize anomalies in energy consumption data. These models can be

incorporated within Energy Management Systems in order to significantly improve the

efficiency and sustainability of the energy management in Smart Energy Systems.

The present work focuses on this specific application of ML in smart energy systems,

namely energy management, and proposes to explore the potential of the DRL approach

in fulfilling this task. The remainder of this chapter dwells on the theory of reinforcement

learning and deep reinforcement learning and reviews their previous applications in the

energy systems’ context.

3.4 Deep Reinforcement Learning: theory

3.4.1 Deep Learning

Artificial Neural Networks (ANN) are functions that mimic the neural processing in the

brains of biological organisms through a set of algorithms [249]. They consist in functions

f : X → Y parameterized with weights θ ∈ Rnθ that take x ∈ X as input and give as
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Figure 3.1: Example of a Deep Neural Network (DNN) with fully connected hidden layers
(illustrated using NN-SVG tool [250]).

output y ∈ Y such that:

y = f(x; θ). (3.1)

Deep Neural Networks (DNN) are Artificial Neural Networks with more than one hidden

processing layer based on non-linear transformations as illustrated in Figure 3.1. These

layers are trained with the objective to minimize a given cost function such as Root Mean

Square error (RMS) for regression and cross-entropy for classification.

The last few years have witnessed a resurgence of interest in Deep Learning that can be

traced back basically to:

• The increase in computational power mainly due to the use of GPUs.

• The availability of a continuously developing ecosystem of software and datasets.

• Several advances in the deep learning methodology, some of which are mentioned

in [19] like the work of Srivastava et al. [251] and Szegedy et al. [252].

Therefore, Deep Learning or DNN is a particular scheme of ML. It has been applied

in all ML paradigms, usually for Supervised or Unsupervised Learning, but can also be

integrated with Reinforcement Learning mainly for function approximation.

• Deep Learning in Supervised Learning: Deep Learning is used for several suc-

cessful applications in the field of Supervised Learning, mainly in image recogni-
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tion applications. When provided with data in sufficient qualities and quantities, it

achieves low error rates and generally exceeds human performance in related chal-

lenges [19].

• Deep Learning in Unsupervised Learning: Deep Learning has also numerous ap-

plications in the field of Unsupervised Learning like image generation applications

where one of the most promising architectures is the Generative Adversarial Net-

works (GAN) introduced by Goodfellow et al. [253].

• Deep Learning in Reinforcement Learning: Deep Learning has been recently as-

sociated with RL to give birth to Deep Reinforcement Learning (DRL, DeepRL).

This combination has shown a great success in learning complex tasks from high-

dimensional inputs that were previously thought to be too complex to be completed

by a software agent. In fact, the ability of an RL agent to solve problems, espe-

cially those with large state spaces, is strongly linked to its ability to appropriately

generalize from its past experience. This is where comes the need for Supervised

Learning methods within RL since they can provide the RL agent with a strong

generalization capability. ANN and DNN are not the only or always the best way to

do this as stated by Sutton and Barto [18], but in problems with complex and high

dimensional state spaces, DNN exhibit a strong non linear perceptual capability that

can provide RL with the ability to generalize from its past experience.

3.4.2 Reinforcement Learning

3.4.2.1 A brief history

Two main threads have constituted the early history of Reinforcement Learning [18]: trial

and error learning and optimal control. These two threads evolved independently dur-

ing decades before meeting around a third thread, namely temporal-difference methods

(see paragraph 3.4.2.7), in the late 1980s to give birth to the modern Reinforcement

Learning. One of the most powerful aspects of modern Reinforcement Learning is its

interaction and integration with several disciplines including statistics, optimization, op-

erational research, control theory and other mathematical subjects, as well as psychology

and neuroscience. Indeed, among all Machine Learning schemes, Reinforcement Learn-

ing remains the closest form to natural human and animals learning process and many of
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its algorithms were inspired by the learning process of biological entities.

In their Introduction to Reinforcement Learning book [18], Sutton and Barto mentioned

that Harry Klopf, to whom they dedicate the book, was the individual whose ideas led to

the distinction between Reinforcement Learning and Supervised Learning by reviving the

trial-and-error thread within artificial intelligence [254], [255]. Klopf stated that a funda-

mental aspect of adaptive behaviour was being missed as Machine Learning researchers

were dwelling almost solely on Supervised Learning. This essential aspect consists in

the hedonic aspect of learning i.e., the fact that experiences range from pleasure to pain.

These ideas of trial-and-error learning and "pleasure-pain systems" were among the earli-

est to be thought of implementing when it came to the possibility of implementing artifi-

cial intelligence on a computer. In fact in 1948, Alan Turing talked about the design of "a

pleasure-pain system" that works similarly to the Law of Effect: "When a pain stimulus

occurs, all tentative entries are cancelled, and when a pleasure stimulus occurs, they are

all made permanent" [256].

3.4.2.2 Distinctive features of Reinforcement Learning

Besides the use of a numerical reward signal to formalize the idea of goals and pur-

poses which remains one of the most distinctive features of the Reinforcement Learning

paradigm, we can identify other important features that distinguish Reinforcement Learn-

ing from other Machine Learning paradigms:

Trial and error search

The Reinforcement Learning paradigm relies on the fact that the agent learns to take

actions in order to maximize a cumulative total reward signal without being told which

actions are likely to lead to achieving this goal. Instead, it has to learn which actions to

take by trying them. This way, it learns to select actions based on evaluative feedback that

does not require knowing what the desired actions should be.

Evaluative feedback

One of the most important distinctive features of Reinforcement Learning with respect

to Supervised Learning is that it uses evaluative feedback - i.e., feedback that evaluates

the actions taken - rather than instructive feedback -i.e., feedback that instructs by explic-

itly giving the correct actions-. One feature that distinguishes evaluative feedback from

instructive feedback is that the first depends completely on the action taken whereas the
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latter specifies the correct action to be taken regardless of the action actually taken by the

agent.

Delayed reward

In the most interesting and complex sequential decision making problems considered in

Reinforcement Learning, actions taken in a particular situation might affect not only the

instant immediate reward of the agent but also all the next situations of the system and, as

a consequence, the whole batch of subsequent rewards. Thus, a Reinforcement Learning

agent is concerned about immediate rewards as well as delayed rewards.

The exploration-exploitation conflict

The exploration-exploitation conflict, dilemma or trade-off is a well-known issue that

arises in Reinforcement Learning and not in other kinds of Learning. It refers to the

balance that the agent has to find between exploiting what it has already experienced in

order to obtain high reward values and exploring possibly better action selections. In

other words, the trade-off that the agent has to make - as it accumulates knowledge of its

environment- between following what seems hitherto to be the most promising strategy

with respect to what it has experienced so far, and trying new experiences to know more

about the environment. Indeed, in order to obtain high reward values, the agent has to

prefer actions that it has already tried and found out to yield high rewards, whereas to

discover these actions, it has to try actions that it has not selected before. The dilemma

consists in that following solely exploitation or exploration leads to failure in the task and

that is why the agent has to balance both by trying various actions and gradually preferring

those that yield the most reward.

3.4.2.3 Core Reinforcement Learning components

Reward signal

At each time step of the learning, the RL agent receives a numerical signal (in the form

of a single number) from the environment. This number is called the reward. The reward

signal then defines the goal of an RL agent since the unique objective of this agent is to

maximize its cumulative reward over the long run. If we see the agent as a biological

system, the reward signal would be reflected for example by the experience of pain for

negative values or pleasure for positive values.
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Value function

The difference between the value function and the reward signal is that the reward signal

specifies the immediate return and thus defines "what is good immediately" while the

value function rather defines "what is good in the long term". In other words, for a given

state of the environment, the reward indicates the immediate desirability of that state,

whereas the value function determines the long-term desirability of that state, i.e., the

total amount of accumulated rewards that the agent expects to get over the future, by

starting from that state and considering the whole set of states that are likely to follow,

together with their respective rewards. It is worth mentioning that most of Reinforcement

Learning algorithms involve estimating the value-function.

Policy

The policy is the core element of an RL agent in that it defines, by itself, the way of

behaving of the agent. It consists in a mapping of environment states and actions whose

form can range from simple functions and lookup tables to more computationally exten-

sive functions like search processes or stochastic policies defining probabilities associated

to actions.

Model

The model of the environment is an optional component in the sense that it is part only

of model-based RL. The model mimics the behaviour of the environment in a way that

allows it to predict, for each state and action set, the resulting next state and reward. It is

then used for a task referred to as planning which consists in deciding on a sequence of

actions, by considering possible future situations before they actually occur. A large part

of the methods used to solve RL problems do not rely on models and plannig but rather

on trial-and-error learning. These methods are referred to as model-free methods.

3.4.2.4 Problem setup

The Markov Decision Process formalism

Markov Decisions Processes (MDPs) are a classical standard formalisation of sequen-

tial decision making problems and constitute a mathematically idealized form of the Re-

inforcement Learning problems and more generally of the problems of learning goal-

directed behavior from interaction. The MDP framework suggests that an abstraction of

such problems of goal-directed learning from interaction can be made by reducing them
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to three main signals iteratively transiting between the agent and the environment:

• The first signal consist in the actions and represents the decisions taken by the agent.

In general, they can be any kind of decision we might want to learn how to make.

• The second signal consists in the states and represents the basis on which the agent’s

decisions are taken. In general, they can be any information one can know about

the environment that can be useful in making decisions.

• The third signal consists in the rewards and is used to define the goal of the agent:

it communicates to the agent what one wants to achieve but not how to achieve it.

In an MDP, the actions taken in a given time step do not only influence immediate rewards

but also subsequent states of the environment and, as a consequence, future rewards. The

sequence of time steps is considered to be discrete, even though many ideas of this theory

could be extended to continuous-time cases like in [257]. At each time step, the learning

agent receives an observation, which is a representation of the state of the environment

St ∈ S and takes an action At ∈ A(s). At the next time step, it receives an observation

of the new state St+1 as well as a numerical reward rt+1 ∈ R ⊂ R. We denote by finite

MDP an MDP where the state set S, the action set A and the reward set R all have a

finite number of elements and the random variables Rt and St have discrete probability

distributions that depend solely on the previous state and action. We then define the four-

argument ordinary deterministic dynamics function of the MDP p : S×R×S×A→ [0, 1]

for particular values s′ ∈ S and r′ ∈ R of these random variables as the probability of

occurrence of these values at time t given particular values s and r of the previous state

and action as:

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, ∀s′, s ∈ S, r ∈ R, a ∈ A(s).

(3.2)

This dynamics function defines a probability distribution of each state s and action a,

which means that

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A(s). (3.3)

In the Reinforcement Learning theory, the states are generally assumed to have what is

called the Markov property, which means that the state includes all necessary information
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about the past agent-environment interactions so that that the probability of each value of

state St and reward Rt only depend on the state and action of the previous time step St−1

and At−1 and, given them, it does by no means depend on earlier states and actions.

Once the dynamics function p defined, we can then define the state-transition probabili-

ties function p : S× S×A→ [0, 1] as:

p(s′|s, a) .
= Pr(St = s′|St−1 = s, At−1 = a =

∑
r∈R

p(s′, r|s, a)), (3.4)

As well as the expected rewards for a state-action pair r : S×A→ R:

r(s, a)
.
= E [Rt|St−1 = s, At−1 = a] =

∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), (3.5)

and the expected reward for a state-action-next state triples r : S×A× S→ R:

r(s, a, s′)
.
= E [Rt|St−1 = s, At−1 = a, St = s′] =

∑
r∈R

r
p(s′, r|s, a)
p(s′|s, a)

. (3.6)

We also define the expected return that we want the agent to maximize where the return

Gt for a time step t is defined as a specific function of the sequence of rewards received

after that time step Rt+1, Rt+2, Rt+3, ...,. The simplest form of this function is the sum:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + ...+RT , (3.7)

Where T refers to the time of termination i.e., the time step corresponding to the terminal

state of the environment. Such random variable is only defined for episodic tasks that

naturally break into identifiable subsequences such as game plays. However, for tasks

that go on naturally without a limit, such as control problems considered in the present

work, the termination time step would be T =∞. Such tasks are referred to as continuing

tasks. In such cases, the return function Gt that we seek to maximize can easily be infinite.

That is why we define the concept of discounted return:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1, (3.8)
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Where 0 ≤ γ ≤ 1 is a key parameter referred to as the discount rate or discount factor. If

γ < 1, then the infinite sum in the return function would have a finite value if the reward

sequence Rk is bounded. If γ = 0 then the approach is said to be myopic since the agent

is only looking to choose At in order to maximize its immediate reward Rt+1. Thus, the

parameter γ is used to determine the present value of future rewards: the more the value

of γ is closer to 1, the more importance the agent gives to future rewards and is said to be

farsighted.

This allows us to write the discounted return function defined above in a conventional

form that is available for both episodic and continuing tasks:

Gt
.
=

T∑
k=t+1

γk−t−1Rk, (3.9)

With the possibility of having T =∞ or γ = 1, but not both at the same time.

Value functions and policies

Value functions and policies are key concepts in Reinforcement Learning. A value func-

tion of a given state is an estimate of how good it is - in terms of expected future return-

for the agent to be in that state, and a value function of a given state-action pair is an

estimate of how good it is for the agent to take that action in that specific state. Most of

Reinforcement Learning algorithms involve estimating value functions. A value function

is defined with respect to a a policy π which is a representation of a given strategy, be-

havior, or way of acting, by mapping states to probabilities of taking each possible action.

If the agent is following a policy π(a|s) at a time step t, this means that π(a|s) defines a

probability distribution of a ∈ A(s) for each s ∈ S. The state-value function of a policy

π denoted vπ(s) is the expected return of starting from state s and following the policy π

and is defined as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s], ∀s ∈ S. (3.10)

We also define the action-value function of a policy π as:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] = Eπ[

∞∑
k=0

γkRt+k+1|St = s, At = a]. (3.11)
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A key property of value functions that is used in Reinforcement Learning as well as in

Dynamic Programming consists in the recursive relationship between the value vπ(s) of

any state s and the value of its possible successors:

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)], ∀s ∈ S.

(3.12)

This equation is known as the Bellman equation for vπ. It is a fundamental equation in

Reinforcement Learning and Dynamic Programming theory. It states that the value of a

given state is equal to the discounted value of the expected successor state added to the

reward expected on the way.

Optimal value functions and policies

We can define an optimal policy π∗ for a finite MDP as a policy that is better than or equal

to all other policies, in terms of expected return. The rule that defines whether a policy π

is better than a policy π′ is the following:

π ≥ π′ if and only if vπ(s) ≥ vπ′(s), ∀s ∈ S. (3.13)

There is always at least one optimal policy, and it might not be unique. In such cases,

all optimal policies are denoted π∗ and their common state-value function (resp. action-

value function) is referred to as optimal state-value function v∗ (resp. optimal action-value

function q∗). They are defined as follows:

v∗(s)
.
= max

π
vπ(s), ∀s ∈ S. (3.14)

q∗(s, a)
.
= max

π
qπ(s, a), ∀s ∈ S, a ∈ A. (3.15)

The relation between these two functions can be expressed as:

q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a]. (3.16)
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The optimal action-value function of a pair (s, a) gives the expected return for taking

the action a in the state s and following the optimal policy π∗. Similarly to the Bellman

equation 3.12, we define the Bellman equation for v∗ which is known as the Bellman op-

timality equation for v∗. It is a special consistency condition that optimal value functions

have to meet and it states that the value of a given state under an optimal policy π∗ is equal

to the expected return that corresponds to the best action from that state and it is written

as:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)], ∀s ∈ S.

(3.17)

This equation was first popularized by Bellman who referred to it as the basic functional

equation [20]. For a finite MDP, this equation has a unique solution, and for continuous

time and state problems, the equivalent of this equation is called Hamilton-Jacobi equa-

tion.

We also define the Bellman optimality equation for q∗ as:

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1,a′)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)].

(3.18)

The Bellman optimality equation given by 3.17 consists in system of n equations with n

unknowns, where n is the number of states. If the dynamics function p of the environment

is known, then one can use any method for solving systems of nonlinear equations to

solve the system of equations for v∗ and the related system of equations for q∗. Once

v∗ is obtained, computing the optimal policy π∗ becomes relatively straightforward: any

policy that is greedy with respect to v∗ is an optimal policy. In other words, if we have the

optimal value function v∗, then the actions that appear to be best after a one-step ahead

search are optimal actions, and any policy that allocates non-zero probabilities solely to
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these actions is an optimal policy. Thus, a one-step search using v∗ and evaluating only

short-term consequences does yield long-term optimal policies since the optimal value

function v∗ already considers the consequence, in terms of reward, of all possible future

behaviors.

Nevertheless, computing optimal policies using this method, i.e., by explicitly solving

the Bellman optimality equation, is not always feasible neither practical. In fact, three

conditions need to be satisfied in order for this to be true:

• The states of the MDP have the Markov property.

• The dynamics of the environment are known with precision.

• Sufficient computational resources are available.

These assumptions are rarely true in interesting decision making tasks in practice. For

instance, even if the first two conditions are satisfied, computing an optimal policy can

generally not be done without extreme computational expenses. That is why many deci-

sion making techniques like heuristic search and dynamic programming methods focus

on approximately solving the Bellman optimality equation. The same assumption is true

in Reinforcement Learning where we also have to settle for approximate solutions. One

key feature of Reinforcement Learning when approximately solving an MDP, in compar-

ison with other approaches, is in putting more effort into learning a good behavior for

frequently encountered situations (states) to the detriment of less frequently encountered

ones.

3.4.2.5 Dynamic Programming

Dynamic Programming involves the set of algorithms used to compute optimal policies

for MDPs where a perfect model of the environment is known. Despite its limited utility

for Reinforcement Learning, due to its great computational cost and the fact that it re-

quires a perfect model of the environment, Dynamic Programming is still a cornerstone

for the Reinforcement Learning theory [258]. Indeed, most of the Reinforcement Learn-

ing approaches can be seen as attempts to fulfill the same goal as Dynamic Programming,

i.e., computing value functions and using them to structure the search for good policies,

with less computational efforts and without requiring the knowledge of a perfect model

of the environment.
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The prediction problem, also referred to as policy evaluation in the Dynamic Program-

ming literature deals with computing a state-value function vπ for an arbitrary policy π.

Let us consider the Bellman equation for vπ presented in 3.12. If the dynamics of the

environment are accurately known then the vπ(s), s ∈ S are the solution of a system of

n linear equations with n unknowns that can be solved using iterative solution methods.

The first approximation v0 is chosen arbitrarily, with assigning 0 value to the terminal

state if it exists. Then, the Bellman equation is iteratively used as an update rule for the

successive approximations:

vk+1(s)
.
= Eπ[Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)], ∀s ∈ S,

(3.19)

where π(a|s) is the probability of taking action a in state s under policy π.

The iterative policy evaluation algorithm consists in computing iteratively a sequence

{vk}. This sequence converges to vπ as k →∞. The pseudo-code for the iterative policy

evaluation algorithm is presented in Algorithm 1.

The main reason behind evaluating a policy π by computing its value function, is to find

Algorithm 1: Pseudo-code for iterative policy evaluation algorithm to estimate
V ≈ vπ
1 Input the policy π to be evaluated
2 Fix the parameter θ > 0, a small threshold that determines accuracy of estimation
3 Initialize V (s) arbitrarily for s ∈ S with V (sT )← 0, where sT is the terminal

state, if any
4 while ∆ ≥ θ do
5 ∆← 0
6 for each s ∈ S do
7 v ← V (s)
8 V (s)←

∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

9 ∆← max(∆, |v − V (s)|)
10 end
11 end

better policies. The policy improvement theorem states that for a pair of deterministic

policies π and π′, if for every state s ∈ S, the value of selecting the action a = π′(s) and

then following π is greater than the value of just following π all the time, then the policy
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π′ is at least as good as (or better than) the policy π, that is if:

qπ(s, π
′(s)) ≥ vπ(s) ∀s ∈ S, (3.20)

then,

vπ′(s) ≥ vπ(s) ∀s ∈ S (3.21)

Which means that

π′ ≥ π (3.22)

This theorem holds if the pair of policies π and π′ are identical, except for a single state

s where π′(s) = a ̸= π(s). In this case, if qπ(s, a) > vπ(s) this actually means that the

changed policy π′ is better than π.

If we perform a policy change, not only for a single state but for all states s ∈ S, by

selecting for each state s the action a that maximizes the quantity qπ(s, a) as follows:

π′(s)
.
= argmax

a
qπ(s, a)

= argmax
a

E[Rt+1 + γvπ(St+1|St = s, At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)],

(3.23)

then this new policy is at least as good as (or better than) the original policy, according

the policy improvement theorem. This changed policy is called greedy policy, since it

takes the action that appears to be best in the short term according to the value function

vπ of the original policy π. The process that leads to this greedy policy is named policy

improvement. This process always leads us to an improved policy which is strictly better

than the original one, except when the original policy is already optimal. In fact, if we

suppose that the greedy policy π′ is just as good as, but not better than the original policy

π i.e., vπ′ = vπ, then ( 3.23) implies that

vπ′(s) = max
a

E[Rt+1 + γvπ′(St+1|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γvπ′(s′)].
(3.24)
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This equation is none other than the Bellman optimality equation 3.17, which means that

vπ = vπ′ = v∗ and that π and π′ are optimal policies. If we carry on iteratively alternating

policy evaluations and policy improvements as defined above, this process will converge

to the optimal policy and the optimal value function of the considered MDP. Indeed, a

finite MDP has a finite number of deterministic policies and this process will therefore

converge in a finite number of steps. The pseudo-code for this process, referred to as

policy iteration, is presented in Algorithm 2. Even though policy iteration algorithm

Algorithm 2: Pseudo-code for policy iteration algorithm to estimate π ≈ π∗ and
V ≈ v∗
1 Initialization
2 Initialize V (s) ∈ R and π(s) ∈ A(s) arbitrarily for s ∈ S with V (sT )← 0,

where sT is the terminal state, if any
3 Policy evaluation
4 Fix the parameter θ > 0, a small threshold that determines accuracy of estimation
5 while ∆ ≥ θ do
6 ∆← 0
7 for each s ∈ S do
8 v ← V (s)
9 V (s)←

∑
s′,r p(s

′, r|s, π(s))[r + γV (s′)]

10 ∆← max(∆, |v − V (s)|)
11 end
12 end
13 Policy improvement
14 policy-is-stable← true
15 for each s ∈ S do
16 old-action← π(s)
17 π(s)← argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

18 if old-action ̸= π(s), then policy-is-stable← false
19 end
20 If policy-is-stable then stop and return V ≈ v∗ and π ≈ π∗,
21 else go to Policy evaluation.

guarantees convergence to the optimal policy and value function, one of its limitations is

that each of its iterations includes policy evaluation which may involve many sweeps, i.e.,

updates for each state of the state set.

One way of ensuring faster convergence of the policy iteration algorithm consists in trun-

cating the policy evaluation step mainly by breaking it after one sweep. This algorithm is

referred to as value iteration and is detailed in Algorithm 3. This algorithm is obtained
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by converting the Bellman optimality equation 3.17 to an update operation as follows:

vk+1(s)
.
= max

a
E[Rt+1 + γvk(St+1|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] ∀s ∈ S.

(3.25)

This algorithm involves in each sweep one sweep of policy evaluation and one sweep

of policy improvement and achieves faster convergence when multiple sweeps of policy

evaluation are inserted between each sweeps of policy improvement.

This idea of putting together policy evaluation and policy improvement processes and al-

ternating them is referred to as generalized policy iteration (GPI). These processes are

interleaved until they both stabilize, i.e., both do not yield any more change. This only

happens when the policy found is greedy with respect to its evaluation function which

means that the Bellman optimality equation 3.17 has been met and that the policy and

value function found are optimal.

Not only Dynamic Programming methods but also most of Reinforcement Learning ap-

proaches can be considered as generalized policy iterations (GPI). One other common

thread between Dynamic Programming and Reinforcement Learning is bootstrapping. In

fact, all Dynamic Programming methods update estimates of the value of a state on the

basis of estimates of successor states i.e., update estimates based on other estimates. This

is called bootstrapping, and many Reinforcement Learning methods, even those who,

unlike Dynamic Programming methods, do not require a model of the environment, do

bootstrapping. Mentions of connections between Reinforcement Learning and Dynamic

Programming appeared in the literature since the early 1960s with Minsky [259] and later

in the work of Werbos [260] in 1977.

Nevertheless, Dynamic Programming suffers from several limitations, some of which are

inherent to the approach itself like the fact that it involves sweeps over the entire state

set. Other limitations, like the curse of dimensionality, limit its applicability on very large

problems. The term curse of dimensionality was first introduced by Bellman [20] and

refers to the exponential growth of the number of states with the number of state vari-

ables. However, this limitation is often thought of as a difficulty that is inherent to the

problem to be solved and not to Dynamic Programming itself as a solution method.

If we denote by n the number of states and k the number of actions of an MDP, the number
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of deterministic policies would be kn. Dynamic Programming still guarantees to find an

optimal policy in a number of computational operations that is less than some polynomial

function of k and n. On the other hand, any method of direct search through the policy

space would have to examine each of the kn policies in order to offer the same guaran-

tee. This means that Dynamic Programming would be exponentially faster. Even though

Linear Programming methods can also be used to solve MDPs and have better worst-case

convergence guarantees than those provided by Dynamic Programming, these methods

become impractical at approximately 100 times smaller state spaces than Dynamic Pro-

gramming methods. Thus, only Dynamic Programming approaches are still feasible for

the largest MDP problems .

Algorithm 3: Pseudo-code for value iteration algorithm to estimate π ≈ π∗

1 Initialize V (s) ∈ R arbitrarily for s ∈ S with V (sT )← 0, where sT is the
terminal state, if any

2 Fix the parameter θ > 0, a small threshold that determines accuracy of estimation
3 while ∆ ≥ θ do
4 ∆← 0
5 for each s ∈ S do
6 v ← V (s)
7 V (s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

8 ∆← max(∆, |v − V (s)|)
9 end

10 end
11 Return a deterministic policy π ≈ π∗ such that
12 π(s) = argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

3.4.2.6 Monte Carlo methods

Monte Carlo methods are methods for estimating value functions and discovering optimal

policies. They represent solution methods for Reinforcement Learning problems based on

averaging sample returns i.e., on sampling and averaging returns for each state-action pair.

Unlike Dynamic Programming, they do not require a model of the environment and can

learn optimal policies and value functions from experience, that is from sample sequences

of states, actions and rewards from real or simulated agent-environment interactions. They

have therefore several advantages over Dynamic Programming methods, namely:

• A model of the environment is only needed to generate sample transitions and not

the probability distributions of all possible transitions as it is the case for Dynamic

Programming.
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Table 3.1: Comparison of key properties of RL solution methods.

Method Does bootstrapping Requires a model
Dynamic Programming ✓ ✓

Monte Carlo methods ✗ ✗

Temporal Difference
Learning

✓ ✗

• Monte Carlo methods are able to learn optimal policies and value functions from

actual experience as well as from simulated experience.

• The computational costs for estimating the value of a given state does not depend

on the total number of states.

• Monte Carlo methods do not do bootstrapping which makes them less influenced

by violations of the Markov Property.

A particularly interesting class of solution methods for Reinforcement Learning problems,

called Temporal-Difference Learning (TD Learning), combines key aspects of Monte

Carlo methods and Dynamic Programming: they do bootstrapping like Dynamic Pro-

gramming, and learn from experience like Monte Carlo methods. These TD Learning

methods are the object of the next section.

3.4.2.7 Temporal Difference Learning

Temporal-Difference Learning is a both crucial and original idea in Reinforcement Learn-

ing. It combines interesting features from Monte Carlo and Dynamic Programming meth-

ods in that it is able to learn directly from raw experience without requiring a model of

the environment and that it updates estimates based on other available learned estimates.

In effect, similarly to MC methods, TD Learning methods use experience to solve the

prediction problem. We denote by prediction problem the problem of evaluating a policy

π by estimating its value function vπ, in contrast to the problem of finding an optimal

policy π∗ which is referred to as the control problem.

Indeed, MC methods update their estimate V of the value function vπ for a given experi-

ence following a policy π using the following update rule:

V (St)← V (St) + α[Gt − V (St)], (3.26)
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Where α is a step-size parameter. In other terms, for a visit to a given state, MC methods

need to wait until the end of the episode so that the return Gt for that visit is known and

then use it for the update of V (St). Unlike MC methods, TD methods do not have to wait

until the end of the episode and can update the estimate of V (St) just at the next time step

using the following update increment:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)], (3.27)

The quantity between brackets in the update rule is called the Temporal Difference error

and denoted δt. It is a crucial quantity that appears in different forms in Reinforcement

Learning. It is an error that measures the difference between the estimated value V (St)

and the better estimated value Rt+1 + γV (St+1):

δt
.
= Rt+1 + γV (St+1)− V (St). (3.28)

For a given time step t, the TD error δt depends on the reward Rt+1 and next state St+1.

As a result, the TD error for the time step t is not available until the next time step t + 1.

The TD method using this update rule is referred to as one-step TD or TD(0). The pseudo-

code for TD(0) is given in algorithm 4. TD learning comprises other general methods

called n-step TD or TD(λ).

Algorithm 4: Pseudo-code for Temporal Difference method TD(0) to estimate
vπ
1 Input the policy π to be evaluated
2 Fix the step size parameterα : 0 < α ≤ 1
3 Initialize V (s) arbitrarily for s ∈ S+ with V (sT )← 0, where sT is the terminal

state, if any
4 for each episode do
5 Initialize S
6 for each step of the episode, if state S is not terminal do
7 A← action given by the policy π for S
8 Execute the action A and observe the resulting new state S ′ and reward R
9 V (S)← V (S) + α[R + γV (S ′)− V (S)]

10 S ← S ′

11 end
12 end

TD methods have advantages over both Dynamic Programming and Monte Carlo
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Methods, namely:

• Unlike DP methods, they do not require a model of the environment’s dynamics, its

rewards and next state probability distributions.

• Unlike MC methods, they are implemented in an online and totally incremental

way. They just have to wait one time step and not an entire episode to learn, and

they learn from each transition, regardless of what subsequent actions are taken, and

still can guarantee convergence, regardless of the step size parameter α, provided

that it is chosen to be sufficiently small. In spite of these known advantages, some

questions are still open like which method among TD learning and Monte Carlo

methods converges faster, and which one makes a more efficient use of limited

data.

As a matter of fact, Temporal Difference methods are not restricted to Reinforcement

Learning. They can more generally be used to make long-term predictions about dynami-

cal systems. They can therefore be useful for many applications among which prediction

of power station demands, weather patterns, customer behaviour, financial data and elec-

tion outcomes were mentioned by Sutton and Barto [18]. Nonetheless, these potential

applications have not yet been sufficiently extensively explored, as stated by the authors.

In the remainder of this section, we present two of the most widely used TD methods,

SARSA and Q-Learning.

SARSA

SARSA (State Action Reward State Action) is an on-policy TD method used for the

control problem. Instead of considering transitions from a state to another and learning the

state values, here we consider transitions from a state-action pair to another and learning

state-action values qπ(s, a) using the quintuple St, At, Rt+1, St+1, At+1 that gives its name

to this algorithm. The update rule for the action-value function qπ(s, a) is as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)], (3.29)

and the pseudo-code for SARSA is given in algorithm 5. This algorithm is on-policy

because it continually estimates the action-value function qπ for the current behaviour

policy π, and at the same time changes π greedily with respect to qπ.
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Algorithm 5: Pseudo-code for the SARSA algorithm to estimate Q ≈ q∗

1 Fix the step size parameterα : 0 < α ≤ 1 and a small ϵ > 0
2 Initialize Q(s, a) arbitrarily for s ∈ S+,a ∈ A(s) with Q(sT , .)← 0, where sT is

the terminal state, if any
3 for each episode do
4 Initialize S
5 Choose A from A(s) given by a policy derived from Q (an ϵ-greedy policy

for example)
6 for each step of the episode, if state S is not terminal do
7 Execute the action A and observe the resulting new state S ′ and reward R
8 Choose A from A(s) given by a policy derived from Q (an ϵ-greedy

policy for example)
9 Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)]

10 S ← S ′, A← A′

11 end
12 end

Q-Learning

Q-Learning [261] is one of the most well-known and most widely used Reinforcement

Learning algorithms. Its development constituted one of the earliest breakthroughs in

Reinforcement Leaning. It consists in an off-policy Temporal-Difference algorithm for

the control problem where the learned action-value function Q approximates the opti-

mal action-value function q∗ independently of the policy followed. It is defined by the

following update rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (3.30)

The pseudo-code for Q-Learning is given by algorithm 6.

3.4.2.8 Function approximation

The methods discussed above are referred to as tabular solution methods because the

value functions and the policies are stored in tabular forms. A way of generalizing these

methods to large and continuous state and action spaces is by using function approxima-

tion. This consists in taking samples from a desired function and attempting to build on

them and generalize in order to construct an approximation of the whole function (e.g

the value function). In fact, for numerous decision making problems where one wants

to apply reinforcement learning, the state space is large and combinatorial. For instance,

let us consider using reinforcement learning to train an agent to play the game of Ms.
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Algorithm 6: Pseudo-code for the Q-Learning algorithm to estimate π ≈ π∗

1 Fix the step size parameterα : 0 < α ≤ 1 and a small ϵ > 0
2 Initialize Q(s, a) arbitrarily for s ∈ S+,a ∈ A(s) with Q(sT , .)← 0, where sT is

the terminal state, if any
3 for each episode do
4 Initialize S
5 for each step of the episode, state S is not terminal do
6 Choose A from A(s) given by a policy derived from Q (an ϵ-greedy

policy for example)
7 Execute the action A and observe the resulting new state S ′ and reward R
8 Q(S,A)← Q(S,A) + α[R + γmaxa Q(S ′, a)−Q(S,A)]
9 S ← S ′

10 end
11 end

Pac-Man. In this game, there are over 250 pellets that Ms. Pac-Man can eat. Each pellet

has two possible states (present or already eaten). This means that the total number of

states is about 1075, which is greater than the number of atoms in our galaxy [262]. It is

thus unrealistic to try to keep track of an estimate of all the Q-values or to expect to find

the optimal value function or an optimal policy for such tasks. The purpose is then to use

function approximation in order to find good approximate solutions that require limited

computational resources. Linear function approximation was one of the most used meth-

ods mainly due to its well established theoretical properties. Special non linear function

approximators, namely Artificial Neural Networks (ANN), became then a popular choice

mainly after the work of Mnih et al. [25], even though Sutton and Barto [18] explained

that the application of ANNs in reinforcement learning as function approximation dates

back to the work of Farley and Clark in 1954 [263]. The interested reader may refer to

the work of Schmidhuber [264] for a review on applications of ANNs in reinforcement

learning.

In algorithm 7, we present, as a matter of example the pseudo-code for TD(0) with func-

tion approximation called Semi-gradient TD(0).

3.4.3 Deep Reinforcement Learning

We talk about Deep Reinforcement Learning, denoted DRL or Deep RL, when Deep

Neural Networks are used to approximate the value function, the policy or the model

(i.e., the state transition function and the reward function) in Reinforcement Learning

[232]. In fact, real-world complex problems generally have high dimensional, often even
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Algorithm 7: Pseudo-code for TD(0) with function approximation to estimate
v̂ ≈ vπ
1 Input the policy π to be evaluated
2 Input a differentiable function v̂ : S+ ×Rd ← R such that v̂(sT , .)← 0, where sT

is the terminal state, if any
3 Fix the step size parameter α > 0
4 Initialize the weights w ∈ Rd of the value function arbitrarily (for example

w = 0)
5 for each episode do
6 Initialize S
7 for each step of the episode, state S is not terminal do
8 A← π(.|S)
9 Execute the action A and observe the resulting new state S ′ and the

reward R
10 w← w + α[R + γv̂(S ′,w)− v̂(S,w)]∇v̂(S,w)
11 S ← S ′

12 end
13 end

continuous, action spaces. Therefore, it can be of interest for Reinforcement Learning

algorithms to rely on Deep Neural Networks for learning the value function, the policy

or the model, for two main reasons [19]: on one hand, they are suitable for dealing with

high-dimensional sensor inputs without requiring an exponential data extension. On the

other hand, they are also suitable for online learning. In other terms, they are able to

exploit additional samples of data collected during learning in order to gradually improve

the function approximators.

3.4.3.1 Value-based DRL methods

Value-based methods are among the most popular classes of algorithms in Deep Rein-

forcement Learning. They rely on attempting to learn the optimal action-value function

that maps states to the expected cumulative reward obtained by taking a particular action

in that state. Deep Q-Learning (DQL) is one of the most well-known value-based meth-

ods. It consists in a neural network-based algorithm that uses experience replay and target

networks to stabilize training and improve learning efficiency. It attempts to minimize the

mean squared error between the predicted Q-value and the target Q-value for each state-

action pair. A pseudo-code for DQN is given in Algorithm 8, where the action-value

function approximated by a DNN is denoted Q, the target action-value function used to

compute the targets for the update step is denoted Q′, D refers to a replay memory uti-
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lized to store transitions to be used for the training of the Q network, and C refers to the

number of steps after which the target network Q′ is to be updated with weights of the

current network Q.

Nonetheless, one of the major limitations of value-based methods such as DQN is that

Algorithm 8: Pseudo-code for Deep Q-Learning algorithm with experience re-
play, adapted from [25]
1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights θ
3 Initialize target action-value function Q′ with weights θ′ (same as Q)
4 Initialize state s
5 for each episode in range(num-episodes) do
6 Initialize cumulative reward signal R to to 0
7 Initialize sequence s1 = {x1} and pre-processed sequence ϕ1 = ϕ(s1)
8 for each step t in range(num-steps-per-episode) do
9 Take action at ϵ-greedily with respect to Q, i.e select random action at

with probability ϵ, otherwise select at = argmaxaQ(ϕ(st, a; θ)
10 Execute action at and observe reward rt and image xt+1 of next state st
11 Set st+1 = st, at, xt+1 and pre-process ϕt+1 = ϕ(st+1)
12 Store transition (ϕt, at, rt, ϕt+1) in replay memory D
13 Sample mini-batch of transitions (ϕj, aj, rj, ϕj+1) from D
14 Compute target Q-values yj for mini-batch as follows:
15 if episode terminates at step j + 1 then
16 yj = rj
17 else
18 yj = rj + γ.maxa′Q

′(ϕj+1, a
′; θ′)

19 end
20 Update parameters of the Q-network by minimizing loss between

Q(st, at) and Q′(st, at) (perform a gradient descent step on
(yj −Q(ϕj, aj; θ))

2 with respect to the parameters θ of the network)
21 Every C steps, update Q′ with the weights of Q
22 end
23 end

they fail to handle environments with continuous action spaces. This is mainly due to the

fact that the output of the network represents the Q-values for a discrete set of actions,

and selecting the best action from a continuous range would require intensive additional

processing effort. Another limitation of value-based methods is that they may suffer from

instability in environments with sparse rewards or long-term dependencies. In these cases,

the Q-values may be inaccurate or biased, leading to poor performance.

To address these limitations, policy-based methods have been developed as an alternative

to value-based methods. Instead of learning the optimal action-value function, policy-
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based methods learn the optimal policy directly, which maps states to actions. This can

be more effective in continuous action spaces and environments with sparse rewards.

3.4.3.2 Policy-based DRL methods

Policy-based methods in deep reinforcement learning aim to learn a policy directly, with-

out estimating a value function. In other terms, instead of computing the value of each

state-action pair, they directly learn a policy that maps states to actions. One popular

policy-based method is the Reinforce algorithm that is based on the policy gradient theo-

rem. It estimates the gradient of the expected return with respect to the policy parameters

and updates the policy in the direction of the gradient. Specifically, the update rule scales

the gradient by the advantage function, which is a measure of how much better the action

taken was compared to the average action taken from that state. The Reinforce algorithm

has been shown to work well in high-dimensional and continuous action spaces.

Deep Policy Gradient (DPG) [265] are methods that extend the Reinforce algorithm to

Deep Neural Networks by using stochastic gradient descent to update the policy parame-

ters. These methods have been shown to work well in high-dimensional and continuous

action spaces, and have the potential to improve sample efficiency and convergence speed

compared to value-based methods.

3.4.3.3 Actor-Critic methods

Actor-critic methods are a class of reinforcement learning algorithms that combine the

advantages of both value-based and policy-based methods. In actor-critic architectures,

there are two eponymous networks: an actor network that generates actions based on the

current state of the environment, and a critic network that estimates the value of the cur-

rent state-action pair. The actor network is trained to maximize the expected return of

the policy, while the critic network is trained to estimate the state-value function, which

is the expected return starting from the current state. By combining the advantages of

both value-based and policy-based methods, actor-critic methods can achieve better per-

formance than either methods alone.

One of the most successful actor-critic algorithms is Deep Deterministic Policy Gradient

(DDPG). It is an off-policy algorithm that learns a deterministic policy function in contin-

uous action spaces in order to approximate the optimal policy. It combines the actor-critic

approach with the insights from Deep Q Networks (DQN) by using two Deep Neural
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Networks, namely an actor network and a critic network. Thus, in addition to being able

to handle continuous action spaces, it is also well-suited for high-dimensional state and

action spaces.

In DDPG algorithms, the actor network maps the state to a deterministic action, while the

critic network estimates the value function by learning the optimal Q-value for the current

state-action pair. Unlike DQN, the critic network in DDPG uses the predicted action of

the actor network to estimate the Q-value. This is referred to as the target Q-value, as it

is the value that the critic network is trying to approximate.

DDPG uses experience replay and target networks to stabilize the learning process. The

experience replay buffer stores tuples in the form of (state, action, reward, next state),

which are randomly sampled to update the networks. The target networks are copies of

the actor and critic networks, with their weights updated slowly using a soft update rule

to provide more stable target Q-values.

Among the main advantages of DDPG over other Deep Reinforcement Learning algo-

Algorithm 9: Pseudo-code for the DDPG algorithm
1 Initialize the actor network µ and the critic network Q with random weights θµ

and θQ

2 Initialize target networks µ′ and Q′ with the weights θµ′ ← θµ and θQ
′ ← θQ

3 Initialize the experience replay Buffer D
4 for episode← 0 to Nepisodes do
5 Initialize a random process R for action exploration
6 Get initial observation of state S1 at time step t = 1
7 for t← 1 to Nsteps do
8 Select action at = µ(st|θµ) +Rt according to the current policy and

exploration noise
9 Execute action at in the environment and observe the resulting reward rt

and the new state st+1

10 Store the transition (st, at, rt, st+1) in experience replay buffer D
11 Sample a random mini-batch of N transitions (si, ai, ri, si+1) from D

12 Set yi(ri, si+1) = ri + γ.Q′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
13 Update the critic by minimising the loss L = 1/N

∑
i Q(si, ai|θQ)− yi)

2

14 Update the actor policy using the policy gradient
∇θµ1/N

∑
s∈B Q(s, µ(s|θµ)|θQ)

15 Update the target networks: θQ′ ← (1− ρ).θQ + ρ.θQ
′ and

θµ
′ ← (1− ρ).θµ + ρ.θµ

′

16 end
17 end

rithms, it is worth mentioning its ability to learn policies in continuous action spaces,
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which is difficult for traditional value-based methods like DQN. Additionally, DDPG is

known to be relatively sample efficient and can learn from a small number of samples.

This makes it well-suited for real-world applications with limited sample availability.

However, like other actor-critic methods, DDPG can suffer from instability during the

learning process. The use of target networks and soft updates help mitigate this issue, but

tuning the hyperparameters properly can still be a challenging task.

Overall, DDPG is a powerful actor-critic algorithm that has shown great success in learn-

ing policies for continuous action spaces. Its ability to learn from limited samples makes

it a promising approach for real-world applications. However, careful tuning of hyperpa-

rameters remains necessary to ensure successful training.

Another example of actor-critic methods is the Trust Region Policy Optimization (TRPO)

algorithm. TRPO is a policy optimization method that iteratively improves the policy by

taking small steps in the policy parameter space while ensuring that the change in the

policy does not significantly affect the performance of the agent. It has been shown to be

robust to hyperparameter choices and can achieve high sample efficiency.

The well-known Proximal Policy Optimization (PPO) algorithm is a variant of TRPO. It

simplifies the optimization procedure by using a clipped surrogate objective function that

limits the change in the policy. PPO was shown to be more stable and sample-efficient

than TRPO, making it a popular choice for many Deep Reinforcement Learning applica-

tions.

Overall, actor-critic methods are a powerful class of reinforcement learning algorithms

that can achieve state-of-the-art performance in a wide range of applications. By com-

bining the benefits of value-based and policy-based methods, actor-critic methods pro-

vide a versatile and effective approach for solving complex sequential decision-making

problems. This has been among the strong motivations behind our choice of using the

actor-critic based Deep Reinforcement Learning algorithms in the present research work.
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3.5 Literature review of previous work on RL and DRL

applications in energy systems

3.5.1 Previous work on Reinforcement Learning

Reinforcement Learning has been used for numerous energy optimization applications

including cost optimization in the Smart Grids and District Heating Systems’ context.

Indeed, among Machine Learning techniques, Reinforcement Learning methods are the

most suitable for cost optimization problems since they can learn an optimal strategy, as

explained by Mocanu [208].

For instance, Idowu et al. [156] proposed a Reinforcement Learning based approach to

optimize energy usage and thus minimize the production costs of CHPs in a District Heat-

ing System. The optimization is done in the consumers homes, and believed to lead to an

efficiency through the whole District Heating Network.

Similarly, Di Wu et al. [184] proposed a Reinforcement Learning application in the elec-

trical Smart Grid context. The paper deals with the problem of optimal energy manage-

ment of a residential home with Electric Vehicle charging. The problem is formalized

as a Markov Decision Process, with the objective of minimizing the long-term operating

costs. Model-free Reinforcement Learning control algorithms were developed to address

this problem.

Moreover, Kuznetsova et al. [266] used a Reinforcement Learning algorithm for the opti-

mal energy management of an electrical microgrid composed of wind turbine and Battery

Energy Storage System and a local consumer. The Reinforcement Learning algorithm

aims at finding an optimal schedule for the battery so as to increase the use rate of the

battery during high electricity demand periods, decrease the electricity withdraw from the

external grid, and increase the use of renewable electricity produced locally by the wind

turbine. When it comes to multi-energy systems, Reinforcement Learning was used for

instance for the optimization of energy costs in a multi-carrier system modeled as a Smart

Energy Hub (SEH) in [138]. An Energy Management System was developed to find a

near optimal solution based on Reinforcement Learning algorithms together with Monte

Carlo estimation. The simulation results in this paper show that operating costs can be

reduced by up to 40% , peak load reduced by 17% and CO2 emission social cost reduced
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by 50% while keeping the comfort level.

Several studies also focus on the comparison of Reinforcement learning with other op-

timization techniques like Model Predictive Control. For instance Ernst et al. [267]

compared these two approaches on a power system problem, namely electrical power

oscillations damping problem, and showed that Reinforcement Learning can definitely be

competitive with Model Predictive Control even in contexts where an accurate determin-

istic model of the system is available.

3.5.2 Previous work on Deep Reinforcement Learning

The application of Reinforcement Learning in complex and real-time control tasks within

power systems remained limited due to curse of dimensionality, since such problems gen-

erally involve large state and action sets. Deep Reinforcement Learning approaches were

recently proposed as a promising solution to overcome this limitation. That is why an

increasing focus is currently made on application of DRL for the optimal energy man-

agement of energy systems. For instance, there have recently been several successful

applications of DRL within the energy sector in the context of microgrids, smart homes,

Smart Grids and District Heating Systems. For instance, in the context of Smart Elec-

trical Grids, two DRL algorithms, namely Deep Q-Networks (DQN) and Deep Policy

Gradient (DPG) have been used in [208] for building energy optimization in a smart grid.

Similarly, François-Lavet et al. [19], [268] proposed a Deep Reinforcement Learning

solution for the energy management of an electricity microgrid featuring PV panels and

both a long term and short term storage systems (respectively a hydrogen storage and

battery). The problem of optimally operating these storage systems is formulated as a

partially observable Markov Decision Process (MDP) where the decision is taken under

uncertainty. The considered uncertainty comes mainly from the electricity consumption

and the PV production. The developed Deep Q-Network (DQN) agent was tested on the

case of a residential customer microgrid located in Belgium and showed to successfully

extract knowledge from the past PV production and electricity consumption time series.

Even though this study empirically demonstrates that the proposed DRL model general-

izes sufficiently well to unseen situations of electricity demand and PV production, it has

some inherent limitations. First, it does not account for the microgrid’s interaction with

the main utility grid. Second, the model focuses exclusively on electrical load demand

and does not consider other energy vectors and usages. Besides, it does not consider



3.5. Literature review of previous work on RL and DRL applications in energy
systems 119

multiple actions: the DRL agent’s actions are restricted, with direct control limited the

hydrogen storage, while actions on the battery storage are dynamically adapted based

on the balance equation of the microgrid. Lastly, the DRL algorithm used in this work

(DQN) only permits discrete actions (i.e charging at maximum rate, discharging at maxi-

mum rate or remaining idle), limiting the granularity of the control. These four limitations

are addressed in the current research work through the case studies that we introduce in

chapters 5 and 6 of this dissertation.

In 2017, Mocanu [208] introduced a Deep Reinforcement Learning approach for build-

ing energy optimization. To our knowledge, this was the first time that the Deep Policy

Gradient algorithm is used in a Smart Grid context. The developed solution aimed at the

online optimization of the planning of electrical devices for both residential buildings and

an aggregation of buildings. Besides the Deep Policy Gradient method, Deep Q-Networks

ware also proposed for solving the same decision Making problem in this work. Similarly

to [268], the sequential decision making problem was formulated as a Markov Decision

process.

DRL has also been used for handling continuous action spaces in the Smart Grid con-

text. For instance, the work of Mocanu [208] extended DRL approaches for unsupervised

energy prediction using SARSA and Deep Q-Learning together with Deep Belief Net-

works for continuous action spaces. Hirata et al. [269] compared the results of a Deep

Reinforcement Learning approach with those of a MILP for Smart Grid optimization and

showed that the DRL agent successfully learnt to adjust its action during the training

phase to maximize the reward.

On the other hand, some recent research works also focused on the use of Deep Reinforce-

ment Learning Strategies in District Heating Systems. For instance, Zhang et al. [163]

presented a Deep Reinforcement Learning method for the flow rate control of District

Heating Systems during the heating process. Simulated experiments on a real life case

study showed savings of about 552 MWh of heat quantity and 42276.45 tons of water per

hour compared to a manual control.

When it comes to Smart Multi-Energy Systems, there is still a lack of research works that

consider Deep Reinforcement Learning for the intelligent control in this context. In fact,

the only research work where Deep Reinforcement Learning is applied to the optimiza-

tion in an integrated electrical and heating system is, to our knowledge, the work of zhang
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et al. [22] where DRL is applied for the control of energy conversion of wind power to

minimize operating costs in an integrated energy system.

The paper of Glavic et al. [270] presents a detailed survey of past applications of the

RL paradigm for solving electric power system decision and control problems. More re-

cently, Chen et al. [245] presented recent advances and future challenges within using

RL for selective key applications in power systems. Among major applications of RL in

power systems, they highlighted frequency regulation, voltage control and energy man-

agement. Figure 3.2 presents the schemes for RL-based decision-making in the power

systems context.

Figure 3.2: RL shemes for power systems control applications, adapted from [245].

The present work deals with the energy management applications. The interested

reader can refer to [245] for a review of RL-based applications in frequency and volt-

age regulation, and to [271] for a more general review of the research and practice of

Reinforcement Learning and Deep Learning in Smart Grids. For instance, besides the

previously mentioned work of François-Lavet et al. [268], Ji et al. [16] also proposed a

DQN approach to develop real-time generation schedules for a microgrid while optimiz-

ing its daily operational costs. DQL algorithms have also been applied in the work of

Qin et al. [272] for the coordinated operation of wind farms and energy storage and in
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the paper of Lin et al. [273] for the on-line optimization of a microgrid featuring PV and

wind generation, diesel generators, fuel cells, electric load and a BESS. Among the vari-

ous DRL algorithms, the conventional DQL remains the most widely used approach and

algorithms such as Deep Policy Gradient (DPG) and Actor-Critic (AC) are rarely inves-

tigated. This is primarily due to the simplicity of the DQL and to the fact that it handles

well discrete action spaces. Meanwhile, DQL can not be directly applied to problems with

continuous action spaces since they need to discretize the action space which leads to an

explosion of the number of actions and, as a consequence, to a decreased performance

[274], [275]. Indeed, considering only discrete actions for the planning and control of

the Smart Grid components significantly restrains their flexibility potentials and prevents

from obtaining the best optimal scheduling and control strategies. Unlike DQL, Deep

Policy Gradient (DPG) algorithms are capable of dealing with environments with contin-

uous actions spaces. In this respect, Mocanu et al. [276] proposed the use of DQL and

DPG for online building energy optimization through the scheduling of electricity con-

suming devices. The results showed that DPG algorithms are more suitable than DQN

to perform online energy resources scheduling. Even though this work pioneered the use

of DRL for online building energy optimization, the actions it considers are restricted

to the on/off status of flexible load devices in a smart building. Besides, the DPG algo-

rithms are also often criticized for the fact that their gradient estimator may have a large

variance, which is likely to lead to slow convergence [277]. In order to overcome this

limitation, Actor-Critic (AC) algorithms were proposed to combine the strong points of

DPG and DQL approaches by estimating both the policy and the Q-value function during

the training. In this respect, two DRL algorithms were designed for Smart Grid optimiza-

tion in [17]: on the one hand, DQL was applied for the discrete action control tasks like

charging/discharging the BESS or switching the buy/sell modes of the grid. On the other

hand, an AC algorithm named H-DDPG (Hybrid-Deep Deterministic Policy Gradient)

was developed to deal with continuous state and action spaces. Yet, only the results of the

DQN approach were presented in the paper and benchmarked with the results of a Mixed

Integer Linear Programming (MILP) optimization Matlab tool. Even though DDPG al-

gorithms were proposed for some applications in the energy systems context, namely for

dealing with cost optimization problems in Smart Home energy systems in [278], for flow

rate control in Smart District Heating Systems (SDHS) in [163], and for solving the Nash
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Equilibrium in energy sharing mechanisms in [279], most of these applications consider

mono-action and/or mono-fluid use-cases. In other words, they consider solely electrical

or thermal Smart Grids and do not consider jointly optimizing the uses of several energy

vectors within Smart Multi-Energy Systems. Besides, most of the previous works con-

sider applications on the Smart Home or building level and do not consider testing these

approaches on a larger smart district level. Finally, thourough comparisons of the per-

formance of DPG or Actor-Critic based approaches with other widely used techniques

like MPC for dealing with energy management systems in Smart Grids have rarely been

reported in the literature.

3.5.3 Contribution of the present work

In the present work, we propose an Actor-Critic-based approach to deal with the real-time

energy management of smart multi-energy systems. More specifically, we formulated the

optimal control problem as an MDP and developed a DDPG agent to perform real-time

scheduling of the multi-energy systems within the Smart energy system. This approach

was applied on two smart multi-energy system cases-studies detailed respectively in chap-

ters 5 and 8. The main contributions of the present work are the following:

• Unlike most of previous works where mono-fluid (electrical or thermal) Smart

Grids are considered, we focus on multi-energy (electrical, heating, cooling, hy-

drogen) smart grids that interact with the main utility grid. A variable electricity

price signal is considered and a DRL-based energy management system is devel-

oped to take price-responsive control actions.

• The DDPG algorithm is proposed instead of the mostly used DQN to deal with

the continuous action and state spaces inherent to the smart multi-energy system

model. At each time step of the control horizon, multiple continuous actions are

simultaneously taken by the DDPG agent to optimally schedule the different storage

systems as well as the thermal production units.

• The proposed approach is first tested on a simplified residential multi-energy system

model then on a more complex case-study represented by a detailed digital twin.

Ultimately, this approach will be applied on a real-life district-level smart multi-

energy system that is currently under construction in France. More specifically, the
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developed DDPG agent is aimed at operating real-time energy management of the

various energy systems within an eco-district: heating and cooling storage systems,

a battey energy storage system and a geothermal District Heating and Cooling sys-

tem. At a later stage of this project, the scope of the energy systems controlled by

the agent will be extended to the Electric Vehicle Charging Stations and the public

lighting of the district as well as controllable loads of the buildings and heated water

storage tanks. Simulation results of these two case studies are discussed in chapters

5 and 8 of this manuscript.

• The proposed approach is benchmarked with an MPC-based approach. A com-

parative study through the two Smart Energy System case studies is carried out to

evaluate the trade-off between performance and computational time of these ap-

proaches. To the best of our knowledge, this work represents one of the initial

studies that simultaneously benchmark Deep Reinforcement Learning and Model

Predictive Control in a Smart Multi-Energy Systems’ context, besides the work of

Ceusters et al. [37] that was conducted simultaneously with our research work

[280].

3.6 Conclusion
This chapter introduced the theory of Reinforcement Learning as well as its combination

with Deep Neural Networks as function approximators, that gives raise to Deep Rein-

forcement Learning. These methods can be used to solve sequential decision making

problem modeled as MDPs. Despite the numerous successful applications of DRL on

various domains, most of these applications are still much more focused on academic

than on real world applications. Unlike DRL, Model Predictive Control (MPC) tech-

niques have shown numerous successful real life applications and were largely adopted

in practice [267], [281]. That is why, we use MPC as a benchmark method to evaluate

the DRL approaches developed in the present work. The next chapter reviews the theory

as well as previous applications of MPC for the optimal energy management in Smart

Energy Systems.



Chapter 4
Model Predictive Control: theory and

applications in Smart Energy Systems

Résumé

Ce chapitre commence par une présentation de la théorie du Contrôle Prédictif basé sur

les Modèles (MPC), une stratégie de contrôle en boucle fermée avancée qui remonte à

la fin des années 1970 et qui compte des milliers d’applications réussies en matière de

contrôle de processus, tant dans le milieu académique qu’industriel. On explore ensuite

comment le MPC peut être appliqué pour résoudre les problèmes décrits dans les deux

premiers chapitres de ce manuscrit. Enfin, on effectue une brève revue des applications

des approches basées sur le MPC pour la gestion des systèmes énergétiques.

4.1 Introduction

Model Predictive Control (MPC) is an advanced feedback control strategy that dates back

to the late 1970s and has thousands of successful process control applications in both

academic and industrial fields. This chapter introduces MPC theory and how it can be

applied to handle the problems described in the first two chapters of this manuscript.

Applications of MPC-based approaches for energy systems management are then briefly

reviewed.
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4.2 Predictive optimization approaches
Model Predictive Control (MPC), also known as Receding Horizon Control (RHC) [9],

[10] belongs to the family of predictive optimization techniques. Predictive optimization

techniques are methods that explicitly consider forecasts in the decision making process.

For instance, in the case of energy and power systems control, one considers forecasts

on future uncertain quantities like loads, renewable power generation, prices, as well as

weather. Three types of predictive optimization approaches can be distinguished:

• deterministic approaches: that suppose to have perfect forecasts and thus do not

consider uncertainty on these forecasts.

• stochastic approaches: which consider uncertainty on forecasts, using probabil-

ity distributions (chance-constrained stochastic programming) or recourse functions

(stochastic optimization with recourse) [282].

• robust approaches: which are more conservative paradigms that consider the opti-

mal control for the worst case [223], [283], [284].

4.3 Model Predictive Control
MPC is one of the most popular and widely used predictive approaches for the optimal

control. As presented in chapter 2, it consists in a feedback control method where the

optimal control problem is solved at each time step to determine a sequence of control

actions over a fixed time horizon. The sequence of control actions is computed based on a

model of the dynamical system and its predicted future evolution [285], [286]. The control

objective and the mathematical model are formulated as a real-time optimization problem

that repeatedly computes the sequence of control actions. Only the control action of this

sequence that is associated with the current time step is then applied to the controlled

system and the new resulting system state is measured. At the next time step, the time

horizon is moved one step forward and a new optimization problem is then solved, taking

into account the new system state and updated forecasts of future quantities. The operation

scheme of MPC is illustrated in figure 4.1.

The receding time horizon and the periodic adjustment of the control actions make the

MPC robust against the uncertainties that are inherent to the model and forecasts [11]. In
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Figure 4.1: Model Predictive Control scheme.

fact, the regularly repeated optimization procedure provides a closed-loop feedback that

allows the MPC to override model uncertainties and external disturbances. Nevertheless,

this procedure is computational intensive since large-scale optimal control problems have

to be solved numerically in real time.

In the remainder of this section, we briefly introduce four of the most widely used

variants of MPC, namely linear MPC, non-linear MPC, data-driven MPC and learning-

based MPC.

4.3.1 Linear MPC

Linear models are among the most widely used prediction models within MPC. This is

referred to as linear MPC and results in a Linear Program (LP) or a convex Quadratic

Program (QP) optimization model for which fast optimization algorithms have been de-

veloped in the past decades [287]. Such advances in solution methods for linear MPC

allowed its application for larger scaled systems as well as systems with fast dynamics. In

fact, MPC is able to approximate and solve most optimal control problems numerically

with much lower computational effort than more classical approaches like dynamic pro-

gramming, and without facing the curse of dimensionality.

One additional great advantage of MPC over other approaches is that system limitations

such as the maximum capacity or the maximum charge and discharge power of an energy

storage system can be directly handled by adding them as constraints in the optimization

problem of the MPC.
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4.3.2 Nonlinear MPC

Nonlinear MPC, denoted NMPC, is the extension of the well-established linear MPC

to the nonlinear world for applications where process nonlinearities and nonlinear con-

straints need to be explicitly considered. It therefore holds much promise for more com-

plex practical cases than the traditional MPC for linear-constrained systems. For instance,

Schirrer et al. [288] proposed an NMPC for the optimal control of heating and cooling

activities for a low-energy office building. Nontheless, the incorporation of nonlinear

models that NMPC involves also brings about more challenging problems related mainly

to computational and theoretical control difficulties [289]. Overall, linear MPC remains

the prevailing choice over nonlinear MPC in current practice.

4.3.3 Data-driven MPC

The data-driven modeling approach is based on learning from historical measurable data

and without modeling physical details of the system. In fact, despite its effectiveness,

MPC faces major challenges coming mainly from the necessity of accurately modeling

the dynamics of the considered physical system. Several authors pointed out that cap-

turing such an accurate dynamical model requires time, cost and effort [290], [291]. To

overcome this limitation that challenges the cost-effectiveness of the MPC as an energy

management method, data-driven MPC can be used to reduce the modeling costs and ex-

ploit real data from existing systems. It can be particularly useful when accurate models

of the system are not readily available or when the system dynamics are too complex or

difficult to be modeled using traditional methods. It also has the advantage of being able

to adapt to changes in system behaviour and to provide robust control performance based

on real-time data. For instance, Smarra et al. [228] used a data-driven MPC using random

forests for the building energy optimization and climate control. Similarly, Ferreira et al.

[292] proposed a Neural Network-based MPC approach for the optimization of thermal

comfort and energy savings in public buildings. The Artificial Neural Networks are used

as predictive models and the discrete optimization problem considered is solved using the

Branch and Bound method.
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4.3.4 Learning-based MPC

In Learning-based Model Predictive Control (LB-MPC), a learning technique such as

Reinforcement Learning, Neural Networks or Gaussian processes, is used to enable the

MPC to learn from incorporating experience built up through the interaction with the sys-

tem during the decision making process. This approach allows combining the advantages

of MPC and Machine Learning techniques: the MPC part is used to provide the robust-

ness and decision making over the relatively short term, while the learning part is used to

provide robustness, decision making and adaptation over the long term.

When the learning technique used is Reinforcement Learning, the approach is then de-

noted RLB-MPC [293]. In this case, the Reinforcement Learning agent learns a value

function which is progressively taken into account as experience increases. This allows to

speed up the decision making process, to take control actions over an infinite time horizon

instead of the inherently finite time horizon of the MPC, and to adapt the actions to slowly

changing system and desired performances as explained by [227]. This paper proposes

a learning-based MPC approach to control systems described by Markov Decision pro-

cesses. The approach initially used a pure MPC, and experience is then more and more

taken into account as experience increases over time. Once the built up experience is

sufficient, the agent starts fully using it and thus requires less computational burden than

with non-learning approaches.

4.4 Model Predictive Control applications in energy sys-

tems

MPC is an advanced control mechanism that has thousands of successful applications

in numerous fields like industrial and chemical processes, supply chains, economic and

finance stochastic control, control of hybrid electric vehicles, automotive applications and

aerospace applications [294].

When it comes to the field of energy systems and their optimal management, MPC has

well-reported advantages over more traditional approaches, as mentioned for instance

by O’Dwyer et al. [295] and Killian and Kozek [296]. It thus had many successful

applications in this domain, ranging from smart building control [297], [298] to microgrid
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control [299] and district-level energy management [300], [301]. One of the simplest

and most used versions of MPC for these applications is the certainty-equivalent MPC

that consists in replacing the unknown quantities by their available forecasts to solve the

optimization problem.

4.4.1 Applications in microgrids and Smart Grids

MPC-based control approaches for energy management systems of microgrids are pro-

posed for example in Parisio et al. [13] for the efficient optimization of a microgrid

where the overall optimization problem is formulated as a Mixed Integer Linear Program

(MILP). The method was applied to an experimental microgrid located in Athens, Greece.

An experimental case study was also conducted in [302] where a two-stage stochastic ap-

proach was adopted for the energy management problem of the microgrid to take into

account the uncertainties due to the fluctuation of demand and renewable energy gener-

ation. The stochastic optimization problem was stated as a MILP and incorporated in

an MPC framework in order to further compensate the uncertainty. In [15], a stochastic

MPC approach was developed to take into account uncertainties on frequency deviations

in the optimal control of a PV-battery microgrid used to participate in the frequency con-

trol market. Similarly to [302], the two-stage stochastic optimization problem is stated as

an LP and incorporated in an MPC framework to further compensate uncertainties.

MPC was also used for the operational optimization of combined heat and power mi-

crogrids. For example, Gambino et al. [303] used an MPC for the optimal control of a

combined electric and heat power microgrid. The problem was formulated as a MILP

model and MPC is used to take the system uncertainties into account. The developed al-

gorithms have been applied on a microgrid located in Finland and the proposed approach

is compared to a heuristic one. Tang et al. [304] developed an MPC-based strategy for

the optimal control of thermal storage of commercial buildings in a smart grid during fast

Demand Response (DR) events.

A robust MPC has been used in [305] for the planning and control at various scales in the

electrical grid like smart homes, shared electric vehicle charging stations and wind farms

integrated in the transmission network. The approach is based on providing scenarios as

inputs to the optimization problem and optimizing the worst-case performance over those

scenarios. At the scale of a smart home, Gelleschus et al. [11] considered the control of

home energy systems composed of a PV-battery-heat pump system with energy storage
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via an MPC controller. Different optimization solvers are examined for the MILP opti-

mization problem of the MPC such as Branch-and-cut-based solvers, a hybrid Genetic

Algorithm and dynamic programming. The simulation results showed that the branch-

and-cut algorithms performed best with respect to reliability and computational time cri-

terion. The authors explained that genetic algorithms fail to find feasible solution because

of the many constraints in the problem’s formulation and the dynamic programming fails

to improve the calculation time because of the many states of the system. Jorissen et al.

[306] also applied MPC at home energy systems’ level. The paper considers the prob-

lem of building heating ventilation and air conditioning systems control. The proposed

approach is based on a white-box NMPC.

4.4.2 Applications in District Heating Systems

MPC-based strategies were also applied in the Distict Heating Systems (DHS) level. For

instance, Gambino et al. [307] considered the problem of operational optimization of

a district heating power plant with thermal energy storage. The optimal control strat-

egy aimed at reducing the operational costs by optimally managing the boilers, thermal

storage and load curtailment. The optimization problem is formulated as a MILP and

incorporated in an MPC framework. In addition, Verilli et al. [308] proposed a MILP-

based MPC controller for the optimal operation of a district heating power plant with

flexible loads and thermal energy storage. In [309], the authors developed a stochastic

MPC approach for the optimal energy management of a district heating power plant. A

two-stage stochastic formulation for the optimization problem of the MPC framework is

proposed to deal with the uncertainty on the power demand, the renewable energy gen-

eration, as well as the weather conditions. Lie-Jensen et al. [310] also considered the

problem of unit commitment and heat production unit control through the case study of a

DHS in Norway. The authors suggested the use of MPC for the optimal control of flow

rate and heat production units, the MILP optimization approach for the unit commitment

problem and multi-linear regression for the heat load forecast. Cupeiro Figueroa et al.

[311] proposed a methodology that introduces a shadow-cost in the objective function of

an MPC while dealing with the optimal control of hybrid geothermal systems. In fact,

the finite-horizon nature of the MPC makes it hard to properly consider long term objec-

tives and constraints. In this paper, a prediction horizon of the weather forecasts in the

order of days is used within the MPC framework in order to enable the system to react in
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advance to changes that occur on the heating and cooling loads of buildings. However,

when geothermal heat pump systems are considered, the ground dynamics are in the or-

der of months and even years. Thus, the prediction horizon in the order of days may be

sub-optimal. That is why, current research works in the field of MPC focus on tackling

this challenge for instance by adding shadow-costs to the objective function as in [311].

4.4.3 Applications in multi-energy systems

A few works considering the application of MPC in multi-energy systems have also been

reported. For instance, Huang et al. [312] proposed an MPC-based strategy for the daily

operational optimization of a multi-energy-system composed of an alkaline electrolyzer

that converts renewable power into heat and green hydrogen. The system is modeled as a

dynamic power-to-hydrogen-and-heat model, and the MPC-based approach is compared

with a traditional rule-based approach and showed operational cost savings of about 59%.

Blaud et al. [313] also considered the comparison of MPC and rule-based approaches in

multi-energy system case studies. The paper proposes the modeling of multi-energy sys-

tems’ dynamics based on Multi-Prosumer Node (MPN) formulation. The MPC controller

aims at minimizing economic costs and takes into account forecasts on loads, weather,

renewable power generation and cost of grid power purchase. The simulation results also

showed cost savings of 84.24% in summer and 8.21% in winter with respect to a rule-

based control benchmark.

Arnold et al. [314] proposed an MPC approach for the optimal control of multi-carrier

energy systems modeled using the energy hub concept. They considered mainly the cou-

pling of electricity and gas energy systems equipped with storage systems to boost their

efficiency and reliability. The same authors proposed in [315] the optimal control of

coupled electricity and gas networks modeled as energy hubs using a distributed MPC

scheme. An Artificial Neural Network-based MPC was introduced in [316] for the opti-

mal management in District Cooling Systems (DCS) belonging to multi-energy systems.

The multi-energy systems considered in this work include PV panels, connection to the

power grid and variable-load air-to-water heat pumps used as backup systems, along with

the DCS. The designed MPC controller aims at reducing the electrical energy withdrawn

from the power grid for the backup cooling systems in cases of temporal mismatch be-

tween energy demand and supply. Last but not least, Aliu [317] focused on the incorpo-

ration of electric vehicles with high penetration in the optimal operation of multi-energy
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systems using a stochastic MPC scheme. This approach allows to address uncertainties

related to the characteristics, availabilities and owner charging preferences of electric ve-

hicles.

4.5 On the relationship between MPC and DRL

While DRL and MPC are both approaches for system control, their main differences lay

in their way of approaching the control problem. Indeed, DRL is a model-free method

where the agent learns an optimal strategy by trial and error through interaction with the

environment, whereas MPC is a model-based method where the controller relies on a

model of the system dynamics as well as a prediction of its future behavior in order to

generate a control signal. Another key difference is also the level of problem complex-

ity they can be handled by each approach. While DRL has been successfully applied to

solve complex control tasks, MPC would be better suited for problems with known sys-

tem dynamics since it can handle constraints on the system variables more efficiently. A

comparison of MPC and DRL properties in summarised in Table 4.1.

Overall, the performance of reinforcement learning and model predictive control algo-

rithms depends on the specific application and problem considered. While there is no ab-

solute winner between these two approaches, researchers continue to explore the strengths

and weaknesses of each of them and look for ways to combine them for a boosted per-

formance. That is why, several studies have recently been focusing on the comparison of

Model Predictive Control and Reinforcement Learning. For instance, Gorges [258] re-

viewed the principles of both methods and studied their relations for discrete-time linear

time-invariant systems. Alamir [318] also considered the comparison of three approaches,

namely Reinforcement Learning, stochastic Model Predictive Control and certification

via randomized optimization for learning against uncertainty in control engineering prob-

lems. Many studies considered comparing these two approaches through applications

in several fields like building energy management [319], [320] and electrical power os-

cillations damping [267]. To the best of our knowledge, no studies prior to our work

considered bench-marking DRL and MPC for the optimal energy management in Smart

Multi-Energy Systems. Indeed, the only work in literature considering this subject is the

paper of Ceusters et al. [37] which was conducted simultaneously to our research work.

In this work, we propose the use of Deep Reinforcement Learning for the optimal en-
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Table 4.1: Comparison of MPC and DRL properties, adapted from [258].

MPC DRL

Disadvantages

A model is required

Advantages

No model required
Convexity is usually re-
quired

Convexity is not re-
quired

Adaptivity is immature
(usually based on ro-
bustness)

Adaptivity is inherently
mature

Online complexity is
high (except for explicit
and neural MPC)

Online complexity is
low

Advantages

Offline complexity is
low

Disadvantages

Offline complexity is
high

stability theory is ma-
ture (e.g. based on ter-
minal cost)

Stability theory is im-
mature

Feasibility theory is
mature (e.g. based on
terminal constraints)

Feasibility theory is im-
mature

Robustness theory is
mature

Robustness theory is
immature

Constraint handling is
inherently mature

Constraint handling is
immature (except for
input constraints)
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ergy management in smart multi-energy systems through two multi-energy system case

studies. These case studies are both drawn from the Meridia smart Energy (MSE) multi-

energy system project. The first case study is referred to as "case study 1" or "toy model

case study", since it serves as a fundamental starting point by presenting a simplified rep-

resentation of the multi-energy system. It is implemented in Python and it served as a

Proof of Concept (PoC) by capturing essential elements of the system while maintaining

a manageable level of complexity. This case study is presented in the next chapter of this

manuscript, together with implementation details and simulation results of applying the

deep reinforcement learning approach and the MPC-based approach on this first simu-

lated case study. The second case study, denoted "case study 2" involves a comprehensive

model and an advanced and more detailed representation of the dynamics of the multi-

energy system under the Modelica language. This case study as well as its simulation

results are the subject of part II of this dissertation.

4.6 Conclusion
This chapter presented a brief theory and practice overview of the Model Predictive Con-

trol strategy. For a more in depth review of the MPC theory, the interested reader can

refer for instance to the work of Garcia et al. [9]. In the present work, MPC is used as

a benchmark approach to evaluate the performance of the Reinforcement Learning-based

approaches developed for the optimal energy management in smart multi-energy systems.

Even though NMPC may exhibit a better performance, we opt for the use of LMPC as a

benchmark approach basically to align with the prevailing common practices and current

industry standards. In the next chapter of this dissertation, we compare simultaneously

Deep Reinforcement Learning and Model Predictive Control through their application on

a first Smart Multi-Energy System simulated case study.



Chapter 5
Deep Reinforcement Learning and Model

Predictive Control in Multi-Energy

System case study 1

Résumé
Plusieurs études ont signalé les similitudes entre le Contrôle Prédictif basé sur les Mod-

èles (MPC) et l’Apprentissage par Renforcement Profond (DRL), tant de manière formelle

[321] que par des simulations [267]. D’autres les ont présentés comme deux approches

complémentaires [322]. Dans ce chapitre, nous comparons ces deux approches à travers

une étude de cas simulée d’un système multi-énergie. Le cas d’usage proposé s’inspire du

système multi-énergie intelligent Meridia Smart Energie (MSE). Il est simulé en Python,

et le problème de contrôle correspondant est formulé à la fois sous la forme d’un pro-

cessus de décision markovien et sous la forme d’un problème d’optimisation linéaire à

horizon glissant. La première formulation permet de résoudre le problème en utilisant

une approche d’Apprentissage par Renforcement Profond (DRL), tandis que la seconde

permet d’utiliser une approche basée sur le MPC. Ce chapitre présente l’étude de cas,

la formulation du problème, les détails de mise en œuvre et les résultats de simulation et

de comparaison des solutions basées à la fois sur le DRL et le MPC pour cette première

étude de cas.
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5.1 Introduction
Several studies have reported the similarities that exist between Model Predictive Control

(MPC) and Deep Reinforcement Learning (DRL) formally as in [321] and by simula-

tions [267], and others presented them as two complementary frameworks [322]. In this

chapter, we compare these two approaches through a simulated multi-energy system case-

study. The use-case under consideration is inspired from the Meridia Smart Energy (MSE)

multi-energy system. It is simulated in Python and the corresponding sequential decision

making problem is formulated both as a Markov Decision process and a receding horizon

linear optimization problem. The first formulation allows for solving the problem using

a Reinforcement Learning (RL) approach and the second allows for using an MPC-based

approach. The case study, problem formulation, implementation details and simulation

results of both the DRL- and MPC-based solutions for this first case-study are presented

in this chapter.

5.2 Case study description

5.2.1 The use case

The multi-energy system use case considered in case study 1 is drawn from the Meridia

Smart Energy System (MSE) project and considers the following energy systems in a sim-

plified representation: residential electric heating and cooling loads, distributed renewable

energy generation (by PV panels), a Thermo-Refrigerating Heat Pump (TRHP) that con-

sumes electricity and produces simultaneously heat and cold for the buildings thermal

needs, a Battery Energy Storage System (BESS), a heat storage system and a cold storage

system. All these components are connected to the public utility grid. The grid connec-

tion is assumed to be sufficiently large that the electrical demand of the overall system

can always be fulfilled. The structure of the multi-energy system is shown in figure 5.1

and the properties of each of the energy systems are given in table 5.1. At each time step,

the electric loads of the buildings are met by the local PV generation, by discharging the

BESS or by withdrawing electricity from the public utility grid. The heating demand, on

the other hand, is met either by directly producing heat via the heat and cold production

unit (TRHP) or by discharging the heat storage system. Similarly, cooling loads are en-

sured by directly producing cold by the heat and cold production units or by discharging
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Public utility Grid

Electric storage

Heat storage

Smart
Grid 

Operator

Distributed Energy 
Ressources (DER)
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Building electric load Building cooling loadBuilding heating load

Energy Flow
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Figure 5.1: Architecture of the multi-energy system considered in case-study 1 [280].

the cooling storage system.

The objective of the optimal control problem considered here is to ensure the optimal

operation of the different storage systems in a way that minimizes the overall energy con-

sumption costs within the multi-energy system. This sequential decision making problem

was formulated as a Markov Decision Process (MDP) for the RL solution, and as a Linear

Programming (LP) optimization problem for the MPC solution. These two formulations

are detailed below.

5.2.2 MDP problem formulation

This optimal energy management problem aims at operating the controllable units of the

multi-energy system, specifically the three energy storage systems in this case study, while

minimizing the daily operational costs. To solve this sequential decision making problem,

we formulate it as a Markov Decision Process (MDP). In fact, the energy level of each of

the energy storage systems, at each time step, depends only on the energy level and the

charge/discharge power of the previous time step. Hence, the scheduling of the different

energy storage systems and production units satisfies the Markov property and can be

formulated as an MDP denoted M = (S,A, T,R, γ) where its key components, the state

space S, the action space A, the reward signal R and the transition function T are designed

as follows:
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Table 5.1: Properties of energy systems of case study 1.

Parameter Value
Size of the battery ξbat 1500 kWh
Battery charge efficiency ηbat 90%
Battery discharge efficiency ηbat 90%
Size of the heat storage ξHS 1200 kWh
Heat storage charge efficiency ηHS 75%
Heat storage discharge efficiency ηHS 75%
Size of the cold storage ξCS 800 kWh
Cold storage charge efficiency ηCS 75%
Cold storage discharge efficiency ηCS 75%
Peak power generation of PV 600 kWp
Maximal heat/cold generated by TRHP 1500 kW

• State space: the environment state at each time step t ∈ H is denoted by st and is

composed of six types of information:

st = (sStoraget , sLoadt , sGen
t , sGrid

t , sProd
t , sTemp

t ) where sStoraget ∈ SStorage denotes

the storage operation of the Smart Energy System and describes the amount of en-

ergy stored in each of the electric, heating and cooling storage systems: sStoraget =

(sBat
t , sHS

t , sCS
t ). sLoadt ∈ SLoad contains the electric, heating and cooling loads

denoted sLoad,et , sLoad,ht and sLoad,ct respectively. Similarly, sGen
t ∈ SGen contains

the current amount of distributed energy generation. In our case-study, it consists

of PV generation. sGrid
t ∈ SGrid contains the electricity prices λt as well as the

amount of power PGrid withdrawn or injected into the main utility grid at time step

t. The convention used for the grid power PGrid is such that its value is positive

when power is drawn from the grid and negative if power is supplied to the grid.

Finally, sProd
t ∈ SProd contains the quantities of heat and cold produced by the

TRHPs at time step t and sTemp
t ∈ STemp contains the outdoor temperature.

• Action space: the aim of the energy management system is to decide the charg-

ing/discharging power of each energy storage system P SS
t = (PBat

t , PHS
t , PCS

t ),

the amount of energy to be purchased from the public utility grid PGrid and the

thermal energy (heat or cold) produced by the TRHPs QTRHP . The actions on the

energy storage systems are composed by charge / discharge powers of the battery
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PBat, the heat storage system PHS and the cold storage system PCS such that:

PBat,min ≤ PBat
t ≤ PBat,max ∀t, (5.1)

PHS,min ≤ PHS
t ≤ PHS,max ∀t, (5.2)

PCS,min ≤ PCS
t ≤ PCS,max ∀t, (5.3)

where PBat,min is the minimum battery power, i.e maximum battery discharging

power, PBat,max is the maximum battery charging power, PHS,min the maximum

heat storage discharging power, PHS,max its maximum charging power, PCS,min

the maximum cold storage discharging power and PCS,max its maximum charging

power. It is worth noting that PBat
t , PHS

t and PCS
t can have either positive or

negative values (positive values meaning charging the storage system and negative

values meaning discharging it), and that these are direct actions to be taken by the

agent, while PGrid and QTRHP are dynamically adapted according to the balance

equations of the multi-energy system.

• Reward signal: when an action at ∈ At is applied on the system, this triggers the

environment to move from state st−1 to state st and hence a reward rt is obtained.

Since the aim of the agent is to minimize the total energy costs within the Smart

Energy System, the reward signal rt corresponds to the negative of rescaled instan-

taneous operational revenues at time step t:

rt = −α.[CGen
t .PGen

t + CGrid
t .PGrid

t ] (5.4)

Where CGen
t is the cost of distributed power generation and CGrid

t is the cost of

power purchase from the public utility grid i.e. the variable energy price, and α is a

factor by which we re-scale the cost function, such that

0 < α ≤ 1 (5.5)
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5.2.3 LP problem formulation

The sequential decision making problem defined by the MDP above can be formulated

as an LP optimization problem. In fact, the inter-conversion between MDP and LP for-

mulations consists in translating the dynamics of a sequential decision-making problem

into two distinct mathematical frameworks. While in the MDP formulation, the prob-

lem’s temporal evolution is captured through states, actions, transition probabilities, and

immediate rewards, translating this into an LP formulation consists in converting actions

into decision variables that can take on either real or integer values, converting states into

variables and replacing transition probabilities with deterministic constraints that enforce

the state transitions. The heart of the transformation lies in the reward signal, which

evolves from driving decision-making in the MDP to shaping the objective function in

the LP. This translation necessitates capturing the problem’s dynamics through a series of

constraints that maintain energy balances, adhere to storage system capacities, and satisfy

demand requirements. The LP formulation that we propose for the sequential decision

making problem of the case study considered in this chapter is as follows:

min
H∑
t=1

CGen
t .PGen

t + CGrid
t .PGrid

t (5.6a)

s.t. PGrid
t = P Load,e

t + P Bat
t + PGen

t + P TRHP,e
t ∀t (5.6b)

P TRHP,h
t = P load,h

t + PHS
t ∀t (5.6c)

P TRHP,c
t = P load,c

t + P CS
t ∀t (5.6d)

P TRHP,h
t + P TRHP,c

t = COP TRHP .P TRHP,e
t ∀t (5.6e)

PBat
t = P Bat,ch

t + P Bat, disch
t ∀t (5.6f)

EBat
1 = EBat

init .(1− kBat
sd ) + ∆t

(
P Bat, ch
0 ηBat, ch −

1

ηBat, disch
.P Bat, disch

0

)
(5.6g)

EBat
t+1 = EBat

t .(1− kBat
sd ) + ∆t

(
P Bat, ch
t .ηBat, ch −

1

ηBat, disch
.P Bat, disch

t

)
,∀t (5.6h)

EBat, min ≤ EBat
t ≤ EBat, max ∀t (5.6i)

P Bat,min ≤ PBat
t ≤ P Bat,max ∀t (5.6j)

PHS
t = PHS,ch

t + PHS, disch
t ∀t (5.6k)

EHS
1 = EHS

init .(1− kHS
sd ) + ∆t

(
PHS, ch
0 ηHS, ch −

1

ηHS, disch
.PHS, disch

0

)
(5.6l)
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EHS
t+1 = EHS

t .(1− kHS
sd ) + ∆t

(
PHS, ch
t .ηHS, ch −

1

ηHS, disch
.PHS, disch

t

)
∀t (5.6m)

EHS, min ≤ EHS
t ≤ EHS, max ∀t (5.6n)

PHS,min ≤ PHS
t ≤ PHS,max ∀t (5.6o)

PCS
t = P CS,ch

t + P CS, disch
t ∀t (5.6p)

ECS
1 = ECS

init .(1− kCS
sd ) + ∆t

(
P CS, ch
0 ηCS, ch −

1

ηCS, disch
.P CS, disch

0

)
(5.6q)

ECS
t+1 = ECS

t .(1− kCS
sd ) + ∆t

(
P CS, ch
t .ηCS, ch −

1

ηCS, disch
.P CS, disch

t

)
∀t (5.6r)

ECS, min ≤ ECS
t ≤ ECS, max ∀t (5.6s)

P CS,min ≤ PCS
t ≤ P CS,max ∀t (5.6t)

Where the label Bat in the notation refers to the battery, HS refers to the heat storage,

CS refers to the cold storage, ch refers to charging of storage systems, disch refers to

discharging, TRHP refers to the thermo-refrigerating heat pumps and t refers to the time

step. Equation (5.6a) represents the objective function that aims at minimizing the power

generation and grid power consumption costs over the multi-energy system. Constraints

(5.6b) to (5.6d) represent the power balance equations of the system, equation (5.6e) links

between the heat and cold power generated by the thermo-refrigerating heat pump and the

electricity that it consumes via the coefficient of performance COP TRHP . Constraints

(5.6f) to (5.6j) define the dynamics of the battery energy storage system, (5.6k) to (5.6o)

define the dynamics of the heat storage system and 5.6p to (5.6t) define those of the cold

storage.

We propose to address this optimal control problem using both a DRL and an MPC

based approach relying respectively on the MDP and LP formalisms defined above. Inter-

conversion between two formalisms is done by converting the reward signal (5.4) of the

MDP into the objective function (5.6a) of the LP and the action space of the MDP into

the decision variables of the LP. The state space of the MDP as well as the transition be-

tween states following actions define the environment of the RL agent. They are governed

by a Python simulator that defines the energy balance equations and the dynamics of the

energy storage systems based on the same equations that define the constraints (5.6b) to

(5.6t) of the LP problem.
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5.3 The Deep Reinforcement Learning approach

5.3.1 Algorithm architecture

The optimal control problem considered in this work involves continuous action spaces

that reflect the charge / discharge power of each of the storage systems. In future ver-

sions, this control problem will be extended to integrate optimized decisions on the heat

and cold power to be produced by the thermo-refrigerating heat pumps and the chillers at

a given time, the electric vehicles’ smart charging, domestic hot water storage tanks and

public lighting of the eco-district, as well as decisions regarding flexibility services such

as load shedding and frequency regulation. For most of these actions, adopting continu-

ous action spaces would ensure a precise and fine-grained control, while discrete action

spaces would inevitably result in a loss of granularity and ultimately lead to a sub-optimal

performance.

In order to harness the benefits of both value-based and policy-based RL algorithms, the

actor-critic architectures emerged. As illustrated in figure 5.2, actor-critic paradigms in-

volve two eponymous components: the actor which is responsible for representing the

policy and making decisions on actions based on state observation, and the critic who

simultaneously approximates the Q-value function and evaluates the quality of the ac-

tions chosen by the actor. In this work, we opt for the actor-critic paradigm to solve the

optimal multi-energy management problem. Among prominent actor-critic algorithms

such as Deep Deterministic Policy Gradient (DDPG) [274], Twin-Delayed Deep Deter-

ministic Policy Gradient (TD3) [323] and Soft Actor Critic (SAC) [324], we opt for the

DDPG algorithm, for which we provide the pseudo-code in Algorithm 10. This choice

of the DDPG algorithm is grounded in its strong sample efficiency and generalization

capabilities. This choice also finds support in several studies that conducted benchmarks

comparing DDPG with other DRL algorithms for optimal control in energy systems. For

instance, Wang et al. [320] considered a comparison of different DRL agents including

DDPG and SAC against MPC and other rule-based models for the optimal control of a

heat pump system in a residential house. Their findings on a standardized virtual building

simulator revealed that, among DRL agents tested, only the DDPG algorithm consistently

outperformed the baseline controller across all the considered heating scenarios.
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Figure 5.2: An illustration of the actor-critic architecture (adapted from [325]).

Algorithm 10: DDPG algorithm
1 Initialize the actor network µ and the critic network Q with random weights θµ

and θQ ;
2 Initialize target networks µ′ and Q′ with the weights θµ′ ← θµ and θQ

′ ← θQ;
3 Initialize the experience replay Buffer B ;
4 for episode← 0 to Nepisodes do
5 Initialize a random process R for action exploration;
6 Get initial observation of state S1 at time step t = 1;
7 for t← 1 to Nsteps do
8 Select action at = µ(st|θµ) +Rt according to the current policy and

exploration noise ;
9 Execute action at in the environment and observe the resulting reward rt

and the new state st+1 ;
10 Store the transition (st, at, rt, st+1) in experience replay buffer B;
11 Sample a random mini-batch of N transitions (si, ai, ri, si+1) from B ;
12 Set yi(ri, si+1) = ri + γ.Q′(si+1, µ

′(si+1|θµ
′
)|θQ′

) ;
13 Update the critic by minimising the loss L = 1/N

∑
i Q(si, ai|θQ)− yi)

2 ;
14 Update the actor policy using the policy gradient

∇θµ1/N
∑

s∈B Q(s, µ(s|θµ)|θQ) ;
15 Update the target networks: θQ′ ← (1− ρ).θQ + ρ.θQ

′ and
θµ

′ ← (1− ρ).θµ + ρ.θµ
′

16 end
17 end
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5.3.2 Reward signal engineering

A reinforcement learning agent aims to acquire a policy that maximizes its cumulative

sum of rewards over time. Consequently, the reward signal holds paramount importance

in the learning task of a reinforcement learning agent, making reward engineering a crit-

ical and sometimes challenging task. This process involves hand-crafting the structure

of the reward signal to effectively encapsulate the underlying objectives of the task while

supplying adequate feedback to allow a meaningful learning for the RL agent. In many

real-world scenarios, including the one explored in this study, rewards can be scarce, spo-

radic, irregular, infrequent, or unpredictable. This unpredictability can pose challenges

for the agent in deciphering the correct actions to take, a phenomenon commonly known

as the "sparse reward" problem. Addressing this issue is a complex task and is still not

fully comprehended [326], [327]. Various authors have proposed approaches to tackle this

problem, such as Trott et al. [328], Colas et al. [329], and Amin et al. [330]. Noteworthy

solutions to mitigate sparse reward problems include structuring the reward signal by in-

troducing penalty components or indicative functions, guiding the RL agent in navigating

the learning process.

One of the distinctive aspects of the problem addressed in this study, that further con-

tributes to the parse reward issue, is the agent’s need to embrace diminutive or negative

instantaneous rewards in order to optimize its future returns. This entails learning a strat-

egy that deviates from conventional scenarios where the agent typically avoids immediate

negative rewards to secure higher future rewards. For example, in the context of optimal

energy management of storage systems, the agent must learn to charge the storage systems

in specific time steps, often enduring negative instantaneous rewards, to discharge them

later during opportune moments and maximize overall rewards. Another complication

arises when handling storage systems that reach full charge or discharge. Traditionally,

these boundary constraints are managed using low-level controllers in addition to optimal

controllers. For instance, if the optimal controller suggests further discharging when the

storage system is already fully discharged, the low-level controller intervenes to ensure

compliance with boundary conditions and safe operational limits. Integrating such low-

level control with a reinforcement learning agent may introduce a potential sparse reward

problem. For instance, when the storage system is fully charged, and the RL agent’s sug-

gested action is to further charge it, the state of charge remains unchanged, resulting in no



5.3. The Deep Reinforcement Learning approach 145

variation of the system state. On the other hand, the reward signal may vary for example

because of the variation of the energy prices and/ or the grid power consumption. This

scenario may mislead the agent into mistakenly believing that taking no action on the

storage system is the optimal strategy, potentially trapping it in a local optimum.

If the challenge of sparse rewards is not effectively addressed, for instance through appro-

priate reward shaping, it can slow down the learning process or even lead to its failure. In

practical terms, the agent might expend numerous learning episodes exploring actions that

do not yield sufficient reward feedback. Consequently, the agent may converge to strate-

gies that represent a local optimum. An illustrative example of such strategies is opting

for minimal or nearly no utilization of the storage systems, which is certainly misaligned

with the desired optimal strategy. For instance, Ceusters et al. [37] encountered a simi-

lar challenge while addressing the optimal energy management problem in multi-energy

systems using a deep reinforcement learning algorithm called PPO (Proximal Policy Op-

timization). Specifically, they highlighted challenges wherein the RL agent struggled to

effectively operate both electrical and thermal storage systems. The authors attributed

this issue to the inherent nature of operating storage systems, which involves enduring

a momentary penalty (increased consumption during charging) to secure a mid-term re-

ward (achieved by discharging during opportune moments, such as when energy prices

are higher). Additionally, they suggested potential reasons for these difficulties, including

the hyper-parameters chosen for the PPO algorithm, the use of the PPO algorithm itself,

or even the application of the RL approach to this specific problem.

We posit that a likely explanation for this challenge lies in the sparse reward problem.

Indeed, we encountered comparable issues when implementing the DDPG algorithm in

our case study and successfully addressed them by enhancing the reward signal through

the incorporation of a penalty function. We propose a function that takes the following
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structure:

PenaltyBat
t =

−|P
Bat
t | if ∆SoCBat = 0,

0 otherwise.
(5.7a)

PenaltyHS
t =

−|P
HS
t | if ∆SoCHS = 0,

0 otherwise.
(5.7b)

PenaltyCS
t =

−|P
CS
t | if ∆SoCCS = 0,

0 otherwise.
(5.7c)

(5.7d)

Where PBat
t , PHS

t and PCS
t are the actions taken by the RL agent respectively for the bat-

tery, heat storage and cold storage systems operation. ∆SoCBat, ∆SoCHS and ∆SoCCS

are the state of charge variations of these respective storage systems yielded by the ac-

tions of the agent. This way, the agent incurs a penalty each time it executes an action

on a storage system that fails to induce any changes in its state of charge. This penalty

is particularly relevant when the agent tries to charge a storage system already at full ca-

pacity or discharge a system already at its minimum state of charge. Traditionally, these

constraints on storage systems are managed by a low-level controller that is external to

the agent. This controller receives the actions dictated by the high-level control agent (RL

agent, MPC, etc.) and adjusts them to adhere to the system’s constraints. While this con-

ventional constraint handling guarantees compliance with the system’s constraints, it falls

short in providing the RL agent with sufficient feedback to avoid sparse reward issues

during training.

By adding the penalty component to the reward signal, it becomes as follows:

rt = −α.[Cgen
t .P gen

t + Cgrid
t .P grid

t ] + PenaltyBat
t + PenaltyhSt + PenaltyCS

t . (5.8)

This approach effectively addressed the sparse reward problem by furnishing the RL agent

with more insightful feedback. Following this modification, the DDPG agent successfully

acquired a strategy for the efficient and simultaneous operation of the electrical and ther-

mal storage systems, as demonstrated in the simulation results section.
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5.3.3 The exploration-exploitation dilemma

As explained in chapter 3, striking the balance between exploration and exploitation in

reinforcement learning is essential to ensure an effective learning. This allows the agent

to find a trade-off between exploiting known strategies that already yielded high rewards,

while simultaneously exploring new actions that may lead to obtain potentially better

strategies. In this work, we addressed this issue by investigating the use of action noise

and parameter noise.

5.3.3.1 Action noise

Action noise consists in injecting randomness into the actions taken by the RL agent

during training, so as to promote exploration. In this work, we propose the use of two

types of action noise: a correlated noise, namely Ornstein-Uhlenbeck (OU) noise and an

uncorrelated noise, namely normal distribution noise.

OU noise is a correlated noise, which means that it introduces a correlation between its

successive noise samples. It is a stochastic process that is often used to model noises with

temporal correlations. It is commonly used as action noise in RL and is defined by the

following differential equation:

dxt = θ(µ− xt)dt+ σdWt (5.9)

Where xt is the value of the process at time step t, µ is the mean that the process tends

to revert to, θ is a parameter that monitors the speed of mean reversion towards µ, dWt

is referred to a Wiener process, it represents the randomness of the process, and σ is a

volatility parameter that scales the intensity of the noise. The discrete-time equation of

the OU process that we use in this work has the following form:

xt+1 = xt + θ(µ− xt)∆t+ σ
√
∆t.Zt (5.10)

Where Zt ∼ N(0, 1) is a sample from a standard normal distribution.

In this work, we tested both OU action noise and normal distribution noise to promote

better exploration of the RL agent. Normal distribution noise x ∼ N(µ, σ) , where µ is

its mean and σ is its standard deviation, is an uncorrelated action noise that adds random

perturbations to the agent’s actions with no inherent correlations between successive noise
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samples.

5.3.3.2 Parameter noise

Plappert et. al. [331] proposed an alternative to the approach commonly used to promote

exploration in DRL by injecting noise in the action space. Their alternative approach re-

lies on adding noise directly to the agent’s parameters. Their work showed that parameter

noise is a promising alternative to the conventional action space noise in that it leads to

a more efficient exploration even in problems with sparse rewards for which action noise

is not likely to be effective. The difference between action noise and parameter noise is

illustrated in figure 5.3.

Figure 5.3: An illustration of the difference between action noise (left) and parameter noise (right)
(adapted from from Open AI [332]).

In our work, we implemented and compared parameter noise in DDPG, alongside the

two previously mentioned variants of action noise. Our simulation results, presented fur-

ther in section 5.6 support that parameter noise may outperform both correlated and un-

correlated action noise in exhibiting effective exploration in some specific environments.

The results of comparison between the effectiveness of these three noise exploration types

in case-study 1 will be presented in forthcoming sections of this chapter.
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5.3.4 Hyper-parameters

Besides the exploration noises, the DDPG algorithm also relies on various parameters

that govern its behavior and can significantly influence its stability, its convergence speed

as well as its efficiency in the learning task. That is why, a careful consideration and

an effective tuning of these hyper-parameters are essential. These parameters include

the architectures of the actor and the critic, their respective learning rates, the discount

factor γ, the soft update parameter τ and the configuration parameters of the replay buffer,

namely the size of the replay buffer and the batch size:

• Architecture of the actor model: the actor’s deep neural network defines the pol-

icy that governs the actions selected by the actor and involves a mapping from states

to actions. Thus, its depth and width can influence the DRL agent’s capacity to rep-

resent complex policies.

• Architecture of the critic model: the role of the critic’s deep neural network is

to evaluate the actions taken by the actor by approximating the value function and

thus aiding the agent in understanding the expected cumulative rewards yielded

by its current policy. It encapsulates a mapping between pairs of states and actions

chosen by the actor as input, with their corresponding estimated Q-values as output.

By being able to predict and compare values of different actions, the agent can make

informed decisions about which actions are expected to yield the most favorable

rewards. Thus, similarly to the actor network, the architecture of the critic network

can affect the ability of the DDPG agent to deal with complex and high-dimensional

state spaces.

• Learning rates of the actor and the critic: they define the step size at which

the actor and the critic models update their respective parameters in response to

observed experiences. Even though high learning rates may result in a faster con-

vergence, it may also lead to instability and overshooting in the learning process.

Hence, balancing these rates is essential to achieve a compromise between speed

and stability. It is also important to consider the ratio between the learning rate of

the actor (LRA) and the learning rate of the critic (LRC). In fact, even though

this ratio may simply be taken equal to 1 (LRA = LRC) leading to the actor and

the critic updating their parameters at the same pace, several research works like
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[333] suggested that a better performance of the DDPG can be obtained if the critic

is trained at a slightly higher learning rate than the actor (around 2 to 10 times

higher). This strategy allows the value estimate to converge more quickly and ac-

curately while allowing the policy of the actor to adapt more slowly and profit from

more exploratory and adaptive learning ( since the actor’s policy updates will any-

ways be effectively guided by the critic).

• Discount factor 0 ≤ γ < 1: also referred to as discount rate, it is a key parameter

in reinforcement learning. It defines the importance that the agent gives to future

rewards (against immediate rewards) in the decision-making process. Its value is

commonly chosen in the range between 0.9 and 0.99. A low value of γ (close to

0) leads the agent to prioritize immediate rewards while a higher value (close to 1)

leads it to attribute more weights to future rewards and consequently encourages

long-term planning.

• Soft update parameter 0 < τ < 1: it dictates the rate at which the target networks

are updated from the online networks. A higher value of τ leads to more frequent

updates. This may boost the convergence speed, but can also result in noise and

instability. Conversely, smaller values of τ may lead to smoother updates and an

enhanced stability while slowing down the learning process. As a consequence,

tuning this parameter is also essential to reach a trade-off between stability and

convergence speed.

• Size of the replay buffer: the replay buffer stores past experiences, i.e tuples in

the form (state, action, reward, next state), in order for the agent to learn from them

through sample replay. The size of the replay buffer determines the number of past

experiences that will be retained for learning. Its value often ranges between 104

and 106. While increasing the buffer size can allow capturing a wider range of

experiences and as a result an improved exploration and stability, it will however

increase the memory requirements. Inversely, a smaller buffer size allows conserv-

ing memory but can impact the learning and convergence by limiting the diversity

of experiences.

• Batch size: for each update of the neural networks, a set of experiences are sampled

from the replay buffer. The batch size determines the number of sampled experi-
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ences. Its value often ranges between 32 and 256 experiences. Similarly to other

hyper-parameters, the selection of the batch size is important since it influences the

accuracy of the gradients estimates as well as the computational resources require-

ments.

5.4 Implementation details
We developed a custom DRL framework using Python, wherein the Deep Deterministic

Policy Gradient (DDPG) agent was crafted and designed to interact with the simulation

model, which serves as the experimental platform for our experiments and has been en-

capsulated as an OpenAI Gym environment. Instead of relying on pre-existing libraries

or frameworks such as OpenAI’s Baselines [334] or Stable Baselines [335], we intention-

ally built the DDPG agent from scratch. This deliberate choice was intended to foster a

profound understanding of the algorithm’s functioning and provide greater flexibility in

tailoring and refining the algorithm to suit the specific problem addressed in this study.

For the testing and parameter-tuning of the agent, we first reduced the case-study to a

mono-action environment where the agent learns to manage only one storage system (the

battery in this case). All the other components defined for this case study remained the

same, except for the heat and cold storage systems that were not used in this first mono-

action use-case. Once this initial phase of testing and fine-tuning the DRL agent on this

first use-case was successfully completed, this use-case was extended to the multiple-

action environment where the agent learns a strategy to simultaneously manage the three

multi-energy storage systems. Starting with a mono-action use-case aimed at gaining in-

sights into the algorithm’s behaviour and understanding its intricacies on a simpler setup

before progressively introducing complexity in the setup and tackling the broader prob-

lem of simultaneously orchestrating multiple multi-energy storage systems. Besides, fine-

tuning the agent for the mono-action use-case and then for the extended multiple-action

use-case also allowed us to understand the scalability of the DRL agent and the adapt-

ability of its hyper-parameters and to ensure that it can transition from managing a single

component to managing the synergic operation of multi-energy systems. The training

data comprising two consecutive years are split into two sets: a one year training set and

a one year validation set. This division represents a common practice in the ML field that

is adopted to avoid over-fitting as explained by François-Lavet et al. [268]. The training
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set basically offers a substantial amount of historical data to the agent to learn from and

the validation set serves as a checkpoint for evaluating the agent’s performance on unseen

data and fine-tuning the hyper-parameters. A visualization of the exogenous data used in

the simulations is provided in Figure 5.4 for a typical winter day and in Figure 5.5 for a

typical summer day. It should be noted that the input state data, actions and reward sig-

nals are normalized, as this normalization is a common practice in Deep Reinforcement

Learning since it helps the Deep Neural Networks to train more effectively by prevent-

ing issues related to exploding or vanishing gradients. Besides, the DRL agent can learn

optimal policies more easily when using normalized reward signals, especially when us-

ing activation functions such as tanh or sigmoid which naturally work within the range

between -1 and 1.

Figure 5.4: Visualization of the data used for simulations for a typical winter day: electric, heating
and cooling loads, PV generation and electricity prices.
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Figure 5.5: Visualization of the data used for simulations for a typical summer day: electric,
heating and cooling loads, PV generation and electricity prices.

5.5 The MPC-based benchmark approach
In order to provide a comprehensive evaluation of the DRL approach, we incorporated

an MPC-based algorithm as a benchmark to the DRL approach. The MPC framework

was developed under Python. As explained in Chapter 4, this predictive control approach

operates in a closed-loop fashion and optimizes control actions over a given time hori-

zon and given provided forecasts on future quantities for a specified forecast horizon. In

our implementation, we conducted simulation cycles that cover periods of one year with

hourly time-steps and involve a control horizon and a forecast horizon that were both set

to 24 hours.

At each time-step of the simulation, an energy manager class is called to solve the previ-

ously defined LP optimization problem for the upcoming 24 hours. The control actions

that correspond to the immediate time-step are then executed in the simulation model.

As the closed-loop simulation advances step by step, the system state is updated and the

forecast horizon is adjusted accordingly. We provide the controller with perfect forecasts

over future electricity prices, electric, heat and cold loads and PV generation, in order to

obtain a theoretical MPC optimum and thus establish a robust baseline for assessing the

effectiveness of the proposed DRL-based energy management approach.
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5.6 Simulation results

5.6.1 Single-action-environment results

5.6.1.1 Training and validation results

The DDPG agent was trained in the single-action environment through a series of learning

episodes of one-year simulation, with hourly time-steps. The training aimed at acquiring a

strategy for the efficient operation of the battery energy storage system while minimizing

the overall operational costs of the smart energy system. The DRL agent succeeded in

learning a strategy to optimally manage the storage system that achieved a total reward of

approximately 98% of the theoretical MPC optimum. Figure 5.6 provides a representation

of cumulative costs over one random week of the year, obtained by the trained DDPG as

well as those obtained by the theoretical MPC controller. Remarkably, the two cumulative

costs closely track each other, which underscores similarity in performance between the

two agents. We note that the costs and rewards depicted in the figures are presented in a

normalized format with reference to the total costs obtained by the MPC controller. This

normalization aims at facilitating the direct comparison between the performance of the

DRL agent and the MPC controller to which we associate a cost value of 1 (or 100%).

In Figure 5.7, we illustrate an example of the battery management strategies devised by

the DRL and the MPC agents for a week period. Even though these strategies are not

identical, both agents share a common approach in that they charge the battery during low

electricity price periods and profit from higher price periods to discharge the battery. As a

result, the two agents achieve comparable energy consumption costs, which indicates the

effectiveness of the DDPG agent in achieving performance levels akin to those obtained

with the MPC controller.
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Figure 5.6: Difference between normalized cumulative costs over one random week of the year
obtained by the DRL agent and the MPC controller.

Figure 5.7: Illustration of the battery energy management policies obtained by the DRL agent and
the MPC controller over one random week of the year.

5.6.1.2 Hyper-parameter tuning

Similarly to the approach adopted by Wang et al. [320] and regarding the excessive train-

ing duration of the DRL agent, we opted for a hyper-parameter tuning that relies on man-

ually varying one hyper-parameter at a time. The outcomes of these experiments are

presented below.

Tuning of the actor and critic DNNs The actor network aims at finding an optimal

policy through a mapping from states to actions. We designed a network that is composed



5.6. Simulation results 156

of four densely connected layers: an input layer that receives the state information and

thus involves as many nodes as the size of the state space, two subsequent hidden layers

that attempt to extract further meaningful features from the state space information, and

an output layer that provides the actions’ values and use hyperbolic tangent (tanh) as an

activation function to make sure that the actions fall within the desired bounds (-1 and 1).

On the other hand, the critic network aims at evaluating the quality of the actions selected

by the actor by taking both the states and the actions as inputs and estimating the Q-values.

The state inputs are transformed through two hidden layers, and the actions are processed

through one other hidden layers. Both layers are then concatenated and processed through

two additional hidden layers, and the final layer outputs a single value that provides an

estimated Q-value for the given state-action pair.

For the tuning of the actor and critic neural networks’ parameters, we tested five different

activation function types as well as five values for the size of the hidden layers, but did

not change the number of hidden layers of each of the neural networks. Actually, the

accuracy of a neural network depends on the number of hidden layers used, but is more

importantly defined by the type of activation function, as stated by Sharma et al. [336].

• Type of the activation functions: for the activation functions, we tested the five

following functions: ReLU (rectified Linear Unit), ELU (Exponential Linear Unit),

SELU (Scaled Exponential Linear Unit), Softplus, Softmax and Sigmoid. The re-

sults of these tests, as illustrated in Figure 5.8 and Table 5.2 show that RELU is

the activation function that allowed achieving the most accurate results for our case

study.
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Figure 5.8: Learning curve of the DDPG agent for three different types of activation functions for
the actor and the critic

Activation function Sigmoid Softmax Softplus Selu Elu Relu
Normalized Reward -1.04 -2.00 -1.11 -1.02 -1.04 -1.02

Table 5.2: Normalized final episodic rewards obtained for six different types of the activation
functions used in the actor and the critic neural networks

• Size of the hidden layers: for the number of nodes that compose each hidden layer

of the actor and the critic networks, we conducted experiments with five different

sizes: 32, 64, 128, 256 and 512. The results of these experiments, as shown in

Figure 5.9 and Table 5.3 revealed that hidden layer sizes that are smaller than 128

are not sufficient to achieve sufficiently accurate and stable solutions. Meanwhile,

we also noticed that increasing the number of neurons beyond 128 (for example 256

and 512) did not have a significant impact on the quality of the solution.
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Figure 5.9: Learning curve of the DDPG agent for three different sizes of the hidden layers for
the actor and the critic neural networks

Hidden Layers Size N=32 N=64 N=128 N=256 N=512
Normalized Reward -1.07 -1.03 -1.02 -1.02 -1.02

Table 5.3: Normalized final episodic rewards obtained for five different values of the size of the
hidden layers of the actor and the critic neural networks

Tuning of the learning rates The DDPG algorithm features two distinct learning

rates, one for the actor (LRA) and one for the critic (LRC). As explained above and

in consistence with recent literature in the field such as [337] and [333], we opted

for a training of the critic at a slightly higher (twice higher) learning rate than the

actor. To tune the learning rates, we tested six different values for the LRA ranging

from 10−1 to 10−6 while maintaining the ratio LRC = 2 ∗ LRA). Figure 5.10

presents the learning curves of the DDPG agent for different values of LRA. We

presented the learning curves for only three out of these six values to improve the

readability of the figure. The final episodic normalized reward after a training cycle

of each of the six tested learning rates are presented in Table 5.4 and show that the

learning rate that yields the better results is LRA = 10−4.
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Figure 5.10: Learning curve of the DDPG agent for different values of the learning rate of the
actor

Actor Learning Rate 10−1 10−2 10−3 10−4 10−5 10−6

Normalized Reward -2.55 -2.55 -1.13 -1.03 -1.07 -1.15

Table 5.4: Normalized final reward obtained by the DDPG agent for different values of the learn-
ing rate of the actor

Tuning of the discount factor The discount factor γ is one of the most crucial

hyper-parameters for the DDPG agent. We tested five values of γ ranging between

0.9 and 0.99. The results, presented in Figures 5.11 and Table 5.5 show that the

value of the discount factor that leads to the best final reward after training cycle is

γ = 0.975.

Figure 5.11: Learning curve of the DDPG agent for different values of the discount factor γ
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Discount Factor (γ) 0.9 0.925 0.95 0.975 0.99
Normalized Reward -1.04 -1.06 -1.04 -1.02 -1.06

Table 5.5: Normalized final reward obtained by the DDPG agent for different values of the dis-
count factor γ

Tuning of the soft update parameter For the soft update parameter τ , we tested

four different values ranging between 5.10−1 and 5.10−4. To compare these values,

we do not only examine the episodic reward reached at the end of the training cycle

but also the stability of the solution. For instance, the values τ = 5.10−1 and

τ = 5.10−2 presented an instability around the final episodes of the training phase,

as shown in Figure 5.12. Only the values of τ = 5.10−3 and τ = 5.10−4 presented

stable learning curves at the end of the training. Based on the results of the final

episodic reward illustrated in Table 5.6, we conclude that the best value obtained

for the soft update parameter is τ = 5.10−3.

Figure 5.12: Learning curve of the DDPG agent for three values of the soft update parameter τ

Soft update parameter (τ) 0.5 0.05 0.005 0.0005
Normalized Reward -1.06 -1.04 -1.03 -1.05

Table 5.6: Normalized final reward obtained by the DDPG agent for different values of the soft
update parameter τ

Tuning of the buffer size The experience replay buffer plays the role of a memory

where previous state-action transitions are collected as the agent interacts with the

environment and are stored in the form (state, action, reward, next state). By ran-

domly sampling from past experiences, the buffer breaks the temporal correlations
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in data and allows the agent to learn from its past interactions with the environment

while avoiding the risk of over-fitting to the most recent experiences. In fact, if

the buffer is too small, this may prevent the agent from capturing a wide range of

scenarios and thus increase the risk of over-fitting to recent data. This may lead to a

poor performance and an unstable learning process. Conversely, a too large replay

buffer will contain too many experiences that the agent will be likely to spend much

time revisiting old data, and may miss more recent and potentially relevant infor-

mation. This can significantly slow down the learning process. To tune the size of

the replay buffer, we tested values ranging from 103 to 107. The results of these ex-

periments illustrated in Figure 5.13 and Table 5.7 show that the best obtained value

for the size of the replay buffer is 106.

Figure 5.13: Learning curve of the DDPG agent for different values of the buffer size

Buffer Size 103 104 105 106 107

Normalized Reward -1.05 -1.04 -1.02 -1.02 -1.03

Table 5.7: Normalized final reward obtained by the DDPG agent for different values of the buffer
size

Tuning of the batch size For the tuning of the batch size, one has to consider a

trade-off between the quality and stability of the solution, and the generalization

performance of the agent. Actually, a larger batch size can increase the stability

of the training process but can also increase the risk of over-fitting. We tested four

different values of the batch size, namely 64, 128, 192 and 256, which fall within
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the range of typical batch size values that are commonly chosen by practitioners in

the field of DRL. As presented in Figure 5.14 and Table 5.8, we find that the value

that yields the best final reward is 128.

Figure 5.14: Learning curve of the DDPG agent for different values of the batch size

Batch Size 64 128 192 256
Normalized Reward -1.05 -1.03 -1.05 -1.05

Table 5.8: Normalized final reward obtained by the DDPG agent for different values of the batch
size

Tuning of the exploration noise The experiments that we conducted for the

hyper-parameter tuning of the DDPG algorithm highlighted that the type and pa-

rameters of the exploration strategy are one of the most influential parameters on

the performance and the learning dynamics of the agent. In this work, we experi-

mented two types of action noises, namely Ornstein-Uhlenbeck (OU) and normal

action noise, as well as one parameter noise. For each of these exploration noise

types, we tested training cycles with five different values of standard deviation.

The action noise is added to the actions selected by the RL agent at each time step

of each learning epoch. This noise is multiplied by a scaling factor ϵ that determines

the magnitude of the noise added to the actions. It starts at the initial value ϵ = 1

and decreases through the learning cycle by being incrementally multiplied by an

exploration rate exp such that:

exp = −α. 1

nep.nst

(5.11)



5.6. Simulation results 163

where nep is the total number of episodes of the training cycle, nst is the total num-

ber of time steps per episode and α is a constant that we fixed at the value α = 1.25

in order to have exploration only at the first 80% of the training steps. Moreover, to

ensure that the value of ϵ remains positive, it takes the value max(0, exp+ϵ) at each

time step. This exploration strategy aims at balancing exploration and exploitation

throughout the learning process. At the beginning of the training cycle, the value

of ϵ is high and the noise has, as a result, a more significant impact leading to more

exploration. As the training progresses, the value of ϵ decreases and thus allows the

agent to exploit more the policy that it learned.

– Ornstein-Uhlenbeck (OU) action noise: in these experiments, a noise of the

type OU is added to the actions selected by the RL agent at each time step of

each learning epoch. Training tests with five different values of the volatility

σ that scales the magnitude of the noise, ranging from 5% to 25%, revealed

that the value of σ = 10% gives the best results, as illustrated in Figure 5.15

and Table 5.9.

Figure 5.15: Learning curve of the DDPG agent with OU action noise for different values of the
standard deviation σ of the OU noise.

OU noise volatility σ 5% 10% 15% 20% 25%
Normalized Reward -1.11 -1.01 -1.02 -1.13 -1.07

Table 5.9: Normalized final rewards obtained by the DDPG agent for different values of the
standard deviation σ of the OU noise.
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– Normal action noise: similar experiments are carried out for a normal dis-

tribution action noise with different values of the standard deviation σ. The

results of these experiments (Figure 5.16 and Table 5.10) give the best value

of σ = 15%.

Figure 5.16: Learning curve of the DDPG agent with normal action noise, for different values of
the standard deviation σ of the normal noise.

Normal noise volatility σ 5% 10% 15% 20% 25%
Normalized Reward -1.20 -1.08 -1.02 -1.10 -1.10

Table 5.10: Normalized final rewards obtained by the DDPG agent for different values of the
standard deviation σ of the normal noise

– Parameter noise: similarly to the previous two experiments, we ran training

cycles using parameter noise instead of the action noise with five different

values of the standard deviation σ. These experiments showed that the best

value of σ for this case study is 5% (Figure 5.17 and Table 5.11).
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Figure 5.17: Learning curve of the DDPG agent with parameter noise, for different values of the
standard deviation σ of the parameter noise.

Parameters noise volatility σ 5% 10% 15% 20% 25%
Normalized Reward -1.00 -1.05 -1.07 -1.16 -1.15

Table 5.11: Normalized final rewards obtained by the DDPG agent with parameter noise, for
different values of the standard deviation σ of the parameter noise.

– Comparison of different exploration noises: in these experiments, we com-

pare the learning curves for the three different exploration noises previously

investigated, with the best values of standard deviation found for each noise

type. These learning curves, illustrated in figure 5.18, show that RL agents

with parameter noise achieved a faster convergence and better stability as

shown in Figure 5.18. These results align with research findings in the field of

RL, such as those of Plappert et al. [331].
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Figure 5.18: Learning curves of the DDPG agent for the three types of exploration noises: pa-
rameter noise, OU action noise and normal action noise.

Table 5.12 summarizes the optimal hyper-parameters found for the DDPG agent in

this single-action setup.

Parameter best value found
Activation function ReLU

Number of hidden layer for the actor network 2
Number of hidden layers for the critic network 4

Size of the hidden layers 128
Learning rate of the actor 10−4

Learning rate of the critic 2.10−4

Discount factor (γ) 0.975
Soft-update parameter (τ ) 5.10−3

size of the replay buffer 106

Batch size 128
OU noise standard deviation 10%

Normal noise standard deviation 15%
Parameter noise standard deviation 5%

Best found exploration noise Parameter noise

Table 5.12: Summary table of the parameter tuning results for the single-action setup

5.6.2 Multiple-action-environment results

5.6.2.1 Learning results

In this section, we expand the previously defined environment to include control

over the heat and cold storage systems in addition to the control over the battery
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storage system. As in the previous setup, the training cycles involve episodes that

cover a full year with hourly time steps. To evaluate the effectiveness of our DRL

agent, we benchmark the results against those of a theoretical MPC controller. Fig-

ure 5.19 illustrates the learning curve of the DDPG agent that showcases the evo-

lution of the total reward signal through the learning process. As explained previ-

ously, this reward signal involves two components: the overall energy consumption

costs of the multi-energy system and a penalty component that activates for each

time step in which the DRL agent suggests actions that violate any of the storage

systems’ constraints.

Figure 5.19: Learning curve of the DDPG agent for the multiple-action environment: evolution
of the total reward signal and the average reward over 100 rolling episodes throughout a training a
cycle.

In Figures 5.20 and 5.21 we separately plot the evolution of the penalty component

and the cost component of the reward signal respectively. Remarkably, the penalty

component progressively converges to zero indicating that the DRL agent succeeds

in handling the boundary constraints of the storage systems by the end of the learn-

ing process. Besides, the cost component of the reward signal converges to a final

value that closely approximates 98.5% of the theoretical MPC optimum, presented

in green in Figure 5.21. These results demonstrate the capability of the DRL agent

in orchestrating the operation of the multi-energy storage systems while adhering to

their operational constraints. It is worth noting that the results presented in this this
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section were obtained using the best-obtained hyper-parameter after tuning. The

results of this parameter tuning will be discussed in section 5.6.2.3.

Figure 5.20: Learning curve of the DDPG agent: evolution of the penalty component of the reward
signal, as well as its average over a rolling horizon of 100 episodes, throughout the training cycle

Figure 5.21: Learning curve of the DDPG agent: evolution of the cost component of the reward
signal, as well as its average over a rolling horizon of 100 episodes, throughout the training cycle,
and comparison with the theoretical optimal cost obtained by the MPC controller for the same
time frame.

To further evaluate the DRL agent’s performance, we extended the benchmark by
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introducing a level of noise to the forecasts F provided to the MPC controller such

that:

F = F (1 + ϵ) (5.12)

where the noise ϵ is modeled as a normal distribution ϵ ∼ N(0, σ2), for which we

vary the standard deviation from 10% to 30%. This leads to more realistic forecasts

instead of the perfect forecasts and thus provides a benchmark MPC controller that

is closer to real-world conditions (realistic forecast). The results are depicted in the

histogram of Figure 5.22 where we compare the final cost component of the DRL

agent’s reward against the total cost obtained by the MPC with different levels of

noise. We associate a percentage of 100% to the MPC optimum under ideal, noise-

free forecasts. The MPC controller maintained a slightly stronger performance with

noise standard deviations of 10% and 20%. Yet, as the noise standard deviation

increased to 25% and 30%, the performance of the MPC controller declined to

97.8% and 95.2% respectively, going gradually below the performance of the DRL

agent of 98.5%. Noticeably, the DDPG agent consistently delivered results that

are close to the theoretical MPC optimum, and in some cases outperformed the

MPC with realistic forecasts. These results underscore the resilience of the DRL

approach as compared with the MPC approach that presents a variability in real-

world forecasting scenarios.

Figure 5.22: Normalized reward obtained by the DRL agent and by variants of the MPC with
perfect and realistic forecasts
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5.6.2.2 Validation results

After training, the DRL agent is subjected to a validation phase where we use data

that were not previously utilized for the training phase. Figures 5.23 and 5.24 illus-

trate the strategy proposed by the DDPG agent for the management of the battery,

the heat storage and the cold storage respectively for one randomly selected winter

week. This strategy was overlaid with the one obtained by the theoretical MPC

controller for the same time frame. Even though the strategies proposed by the

DRL agent and by the MPC controller are not exactly identical, they show remark-

able performance parity in terms of overall energy consumption costs. Actually,

the DRL agent constantly achieves levels approaching 98% of the theoretical opti-

mum of the MPC. One notable difference between the MPC and the DRL strategies

arises when it comes to the management of the cold storage during winter. Indeed,

the DRL agent opts for a gradual and very slow charging of the cold storage during

winter, while the MPC does not. This divergence likely stems from the long time

horizon of the DRL agent which can be traced back to the discount factor γ of 0.975

and to its training over a span of a full year, whereas the control horizon of the MPC

is narrower (24 hours).

Figure 5.23: Illustration of the strategy proposed by the DDPG and the MPC agents for the
management of the battery for one randomly selected winter week.
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Figure 5.24: Illustration of the strategy proposed by the DDPG and the MPC agents for the
management of the heat storage for one randomly selected winter week.

Figures 5.25 and 5.26 illustrate the energy management strategies obtained by the

MPC and DRL agents for the battery and the cold storage systems respectively over

the course of one randomly selected week of the summer. Both agents did not opt

for the usage of the heat storage system during this summer week.

Figure 5.25: Illustration of the strategy proposed by the DDPG and the MPC agents for the
management of the battery for one randomly selected summer week.
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Figure 5.26: Illustration of the strategy proposed by the DDPG and the MPC agents for the
management of the cold storage for one randomly selected summer week.

5.6.2.3 Hyper-parameter tuning

In line with the approach we adopted for the hyper-parameter tuning of the single-

action DDPG agent, we carried similar tuning for the multiple-action environment,

where we vary one parameter at a time. The findings of this hyper-parameter tun-

ing are presented below. Overall, most of the best obtained parameter values closely

align with those found in the single-action setup, except for the exploration noise.

Actually, unlike the single-action environment for which parameter noise consider-

ably outperformed the two types of action noise considered, in the multiple-action

scenario, we observed that the parameter noise is no longer the best choice. Instead,

normal distribution action noise slightly outperformed parameter noise.

Tuning of the DNNs:

– Type of the activation functions: results of the fine-tuning of the activation

function used in the actor and critic neural networks for the multiple-action

environment exhibit similar trends to those obtained with the mono-action

environment. These results (illustrated in Figure 5.27 and Table 5.13) consis-

tently indicate that the ReLU (Rectified Linear Unit) is the optimal activation

function for this case-study.
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Figure 5.27: Learning curve of the DDPG agent for three different types of activation functions
for the actor and the critic

Activation function Sigmoid Sotmax Softplus Selu Elu Relu
Normalized Reward -1.29 -1.52 -1.08 -1.01 -1.02 -1.01

Table 5.13: Normalized final episodic rewards obtained for six different types of the activation
functions used in the actor and the critic neural networks - multiple actions environment

– Size of the hidden layers: results of the fine-tuning for the size of the hidden

layer of the neural networks for the multiple-action environment also closely

align with those obtained for the mono-action setup. They suggest a require-

ment of minimum 128 nodes for each hidden layer for an effective learning

(Figure 5.28 and Table 5.14). Remarkably, we observe that sizes of 32 and

64 yielded significantly poorer results for the multiple-action setup than their

counterparts for the single action setup.
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Figure 5.28: Learning curve of the DDPG agent for three different sizes of the hidden layers for
the actor and the critic neural networks

Hidden Layers Size N=32 N=64 N=128 N=256 N=512
Normalized Reward -1.16 -1.16 -1.02 -1.02 -1.02

Table 5.14: Normalized final episodic rewards obtained for five different values of the size of the
hidden layers of the actor and the critic neural networks - multiple actions environment

Tuning of the learning rates: Regarding the fine-tuning of the learning

rates, results also closely align with those observed for experiments with the

single-action agent. Its outcomes consistently suggest a requirement of a

learning rate of the actor of 10−4 while maintaining the value of the critic’s

learning rate as twice its value for the actor. Figure 5.29 presents the learning

curves of the DDPG for different values of the learning rate of the actor (LRA)

and Table 5.15 illustrates the final normalized episodic rewards obtained for

six different values of the learning rate.
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Figure 5.29: Learning curve of the DDPG agent for different values of the learning rate of the
actor

Actor Learning Rate 10−1 10−2 10−3 10−4 10−5 10−6

Normalized Reward -5.33 -1.24 -1.06 -1.03 -1.16 -1.25

Table 5.15: Normalized final episodic reward obtained by the DDPG agent for different values of
the learning rate of the actor - multiple actions environment

Tuning of the discount factor: the best obtained value of the discount factor

is also the same as for the single-action agent: γ = 0.975 as depicted in

Figure 5.30 and Table 5.16.

Figure 5.30: Learning curve of the DDPG agent for different values of the discount factor γ -
multiple action environment
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Discount Factor (γ) 0.9 0.925 0.95 0.975 0.99
Normalized Reward -1.06 -1.04 -1.04 -1.02 -1.02

Table 5.16: Normalized final reward obtained by the DDPG agent for different values of the
discount factor γ

Tuning of the soft update parameter: the outcomes of the fine-tuning of

the soft-update parameter τ (Figures 5.31 and Table 5.17) also closely resem-

ble the single-action agent results (optimal obtained value is τ = 5.10−3).

Figure 5.31: Learning curve of the DDPG agent for different values of soft update parameter τ

Soft update parameter (τ) 5 10−1 5 10−2 510−3 5 10−4 5 10−5 5 10−6

Normalized Reward -1.16 -1.16 -1.04 -1.05 -1.16 -1.16

Table 5.17: Normalized final episodic reward obtained by the DDPG agent for six different values
of the soft update parameter τ - multiple actions environment

Tuning of the buffer size: regarding the tuning of the buffer size for the

multiple-action environment, the outcomes globally align with those of the

single-action environment. The optimal value remains consistent at 106. How-

ever, for the multiple-action setup we observe a notable deviation for the val-

ues 103 where the results are significantly inferior to those of the single-action

environment, as shown in Figure 5.32 and Table 5.18. These symptoms may

reflect a catastrophic forgetting that occurs towards the end of the training

cycle. Catastrophic forgetting actually refers to a phenomenon where a neu-

ral network loses its ability to retain knowledge that it acquired during earlier

phases of training or to remember past experiences while adapting to new
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ones. A limited experience replay may be responsible for this phenomenon.

The agent may not be able to retain a sufficient variety of past experiences

because of very small buffer size and thus present a poor generalization capa-

bility.

Figure 5.32: Learning curve of the DDPG agent for different values of the buffer size

Buffer Size 103 104 105 106 107

Normalized Reward -1.28 -1.03 -1.03 -1.01 -1.02

Table 5.18: Normalized final reward obtained by the DDPG agent for different values of the buffer
size - multiple actions environment

Tuning of the batch size: the best obtained value of the batch size remains

in line with the outcomes of the single-action agent tuning, consistently at

128, as depicted in Figures 5.33 and 5.19. However, a notable disparity with

the results of the single-action environment arises with smaller batch sizes

(64) where the multiple-action agent’s performance is notably inferior to those

obtained with the single-action setting.
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Figure 5.33: Learning curve of the DDPG agent for different values of the batch size

Batch Size 64 128 192 256
Normalized Reward -1.16 -1.02 -1.04 -1.05

Table 5.19: Normalized final reward obtained by the DDPG agent for different values of the batch
size - multiple actions environment

Tuning of the exploration noise To fine-tune the type and parameters of

the exploration noise, we conducted experiments with three types of explo-

ration noises, similarly to the approach taken for the single-action environ-

ment. Specifically, we investigated OU and normal distribution action noises

as well as parameter noise.

* Ornstein-Uhlenbeck (OU) action noise: we explored seven standard

deviation values for the OU action noise. The results of these tests, pre-

sented in Figure 5.34 and Table 5.20 determined the best value of the

standard deviation at 15%.
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Figure 5.34: Learning curve of the DDPG agent with OU action noise, for different values of the
standard deviation σ of the OU action noise.

OU noise volatility σ 5% 10% 15% 20% 25% 30% 35%
Normalized Reward -1.15 -1.02 -1.01 -1.02 -1.02 -1.03 -1.16

Table 5.20: Normalized final rewards obtained by the DDPG agent for different values of the
standard deviation σ of the OU noise - multiple actions environment

* Normal action noise: we also examined seven values for the standard de-

viation of the normal distribution action noise, with the best-performing

standard deviation being at 20% as depicted in Figures 5.35 and Table

5.21.
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Figure 5.35: Learning curve of the DDPG agent with normal action noise, for different values of
the standard deviation σ of the normal action noise.

Normal noise volatility σ 5% 10% 15% 20% 25% 30% 35%
Normalized Reward -1.02 -1.04 -1.04 -1.01 -1.02 -1.02 -1.02

Table 5.21: Normalized final episodic reward obtained by the DDPG agent for seven different
values of the standard deviation σ of the normal action noise - multiple actions environment

* Parameter noise: to assess the optimal value for the standard deviation

of the parameter noise, we experimented five different values as presented

in Figures 5.36 and 5.22. We found tha the most effective value for the

standard deviation is 1%.
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Figure 5.36: Learning curve of the DDPG agent with parameter noise, for different values of the
standard deviation σ of the parameter noise.

Parameters noise volatility σ 1% 5% 10% 15% 20%
Normalized Reward -1.02 -1.04 -1.16 -1.16 -1.16

Table 5.22: Normalized final episodic reward obtained by the DDPG agent for five different values
of the standard deviation σ of the parameter noise - multiple actions environment

* Comparison of different exploration noises: when comparing the learn-

ing curves for the three different exploration noises, with the best obtained

values of standard deviation for each noise type we observe that, unlike

the single-action environment, the parameter noise is no longer the top

performer with the multiple-action agent. Instead, normal distribution

action noise exhibited a slightly better performance than parameter noise

as can be observed in Figure 5.37. This observation suggests that the pa-

rameter tuning of the DDPG algorithm is likely to vary according to the

complexity of the environment and the dimension of the action space.
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Figure 5.37: Learning curves of the DDPG agent for the three types of exploration noises: pa-
rameter noise, OU action noise and normal action noise.

Finally, the outcomes of the hyper-parameter tuning for both the single-action

and the multiple-action setting are summarised in Table 5.23.

Parameter Single-action setup Multiple-action setup
Activation function ReLU ReLU

Number of hidden layer for the actor network 2 2
Number of hidden layers for the critic network 4 4

Size of the hidden layers 128 128
Learning rate of the actor 10−4 10−4

Learning rate of the critic 2.10−4 2.10−4

Discount factor (γ) 0.975 0.975
Soft-update parameter (τ ) 5.10−3 5.10−3

size of the replay buffer 106 106

Batch size 128 128
OU noise standard deviation 10% 15%

Normal noise standard deviation 15% 20%
Parameter noise standard deviation 5% 1%

Best found exploration noise Parameter noise Normal action noise

Table 5.23: Summary table of the parameter tuning results for the single-action and multiple-
action setups

5.6.3 Computational time

The experiments presented above were run on a computer with an Intel(R)

Xeon(R) Gold 6138 CPU running at 2.00 GHz using 128 GB of RAM and

running Windows 10. The training of the DRL agent takes around 37 seconds

per episode for the single-action setup and 39 seconds for the multiple-action
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setup single-action setup multiple-action setup
Mean 36.78 39.23

standard deviation 15.62 18.25
Q 25 % 28.16 29.02
Q 75 % 42.04 45.47

Table 5.24: Training time statistics per one year of training episode for the DDPG agent

setup as summarized in Table 5.24. We run training cycles of 104 episodes,

which means that the overall computational time of a training phase is of about

100 hours. Nevertheless, once trained, the DRL agent becomes capable of

running a one year simulation in about 16 seconds for the multiple-action

environment. Meanwhile, the benchmark MPC algorithm takes 1135 seconds

to simulate one year of the same environment.

5.7 Conclusion

This chapter presented the simulation results that we obtained by applying the

DRL and the MPC approaches simultaneously on the same simulation model

of multi-energy system case study 1 that was drawn from the MSE eco-district

use case. These results showed that the DDPG agent presented, after learning

and meticulous hyper-parameter tuning, a comparable performance to that of

the MPC controller in terms of cost reduction, and a better computational

performance and therefore demonstrated on a first simplified case study that

DRL is a promising approach for the optimized multi-energy management of

smart energy systems. In the remainder of this manuscript, this conclusion

will be validated on a more complex case study 2 where the DRL approach is

applied to solve the optimized multi-energy management problem of a digital

twin that we developed under Modelica language for the MSE smart energy

system.
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Introduction of Part II

This second part of the manuscript is devoted to the MSE case study. We

first describe the MSE project and details the multi-energy systems that it in-

volves. Then, the Modelia digital twin of MSE is presented and the modeling

approach that we adopted for developing it is detailed. This digital twin, once

exported as functional mock-up unit and wrapped into an OpenAI Gym envi-

ronment, plays the role of the environment for the deep reinforcement learning

agent for this case-study. Simulation results of applying our DRL framework

for the optimal operation of the MSE digital twin are then discussed in the

thrid chapter of this part.
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Chapter 6
The Meridia Smart Energy case

study

Résumé

Ce chapitre introduit le projet Méridia Smart energie (MSE) qui définit le

contexte dans lequel ce travail de recherche doctoral a été mené. MSE est un

éco-quartier dont les systèmes énergétiques représentent un démonstrateur de

systèmes multi-énergétiques intelligents. Notre mission au sein de ce projet

est de développer des systèmes de pilotage multi-énergétique intelligent qui

assurent un fonctionnement optimisé des systèmes énergétiques flexibles au

sein de MSE tout en optimisant un ensemble d’objectifs stratégiques. Le pre-

mier chapitre de cette deuxième partie du manuscrit décrit le projet MSE, les

systèmes multi-énergétiques qu’il intègre ainsi que ses objectifs stratégiques.

6.1 Introduction

This chapter introduces the case-study project that constitutes the context in

which this PhD research work was conducted. In fact, this work was part of the

Meridia Smart Energy (MSE) project that aims at constructing an eco-district

whose energy systems represent a real-life case-study of Smart Multi-Energy

Systems. Our mission within this project is to develop Smart Multi-Energy

Management Systems that ensure the optimal operation of the flexible energy

systems within MSE while optimizing strategic objectives. The first chapter
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Figure 6.1: Development plan of the MSE eco-district buildings between 2018 and 2029 [338].

of this second part of the manuscript describes the MSE project, the multi-

energy systems that it integrates and the strategic objectives that mostly drive

the energy management systems that we develop for these systems.

6.2 The Meridia Smart Energy project

The case study under consideration in this work is part of the Merdia Smart

Energy (MSE) eco-district currently under construction since 2018 in the Nice

Meridia joint development zone located in the city of Nice, south of France.

By the time this manuscript is being written, 8 buildings have already been

connected to the District Heating and Cooling networks of MSE and a total

of 50 buildings will be connected by 2033, which corresponds to almost 3500

households. The development planning of these 50 buildings is illustrated in

Figure 6.1. The area covered by this neighborhood presents a density of new

buildings of various types, including residential buildings, shops, showrooms,

offices, healthcare facilities, university campuses, laboratories as well as other

tertiary activities.

The energy systems of this eco-district include renewable energy generation

via photovoltaic panels installed on the rooftops of office and residential build-
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Figure 6.2: Overview of the main energy systems integrated in the MSE smart multi-energy
system as well as their coordination process (adapted from [338]).

ings, a geothermal district heating and cooling system, ice storage tanks, heated

water storage tanks, heat storage by phase change materials as well as bat-

tery energy storage systems. These multi-energy production, consumption

and storage systems, together with the electric vehicle charging stations, the

additional energy storage capacity that will later be provided by the electric

vehicles (via Vehicle-to-grid systems) and the public lighting of the district

need to be optimally scheduled and operated so as to achieve the strategic

objectives laying behind this smart territory project. These optimization ob-

jectives are detailed in section 6.4.

6.3 Energy systems in the MSE Smart Multi-energy

System

An overview of the energy systems involved in the MSE smart multi-energy

system is presented in Figure 6.2 and the main components considered in the

present work are divided into production, storage and consumption units and

described in this section.

6.3.1 Energy generation systems

6.3.1.1 Geothermal District Heating and Cooling System

The Meridia Smart Energy eco-district is a cutting-edge sustainable urban de-

velopment that includes a district heating and cooling system using geother-
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mal Thermo-Refrigerating Heat Pumps (TRHP). This system provides build-

ings with both heat for heating as well as heated water storage tanks and cold

for air conditioning, while also reducing energy consumption and greenhouse

gas emissions. The geothermal District Heating and Cooling Network, to-

gether with the photovoltaic panels planned to be installed on the rooftops of

the buildings, will ensure a share of renewable and waste energy of more than

70% in the eco-district.

The district heating and cooling system consists of a network of pipes that cir-

culate water between a central heating and cooling plant and the substations

of the district’s buildings. The system is designed to simultaneously provide

heating and cooling for the end-users, using a combination of renewable en-

ergy sources and energy-efficient technologies.

The central heating and cooling plant is powered by six geothermal thermo-

refrigerating heat pumps, which extract heat from the aquifer during the win-

ter months and reject heat back into the aquifer during the summer months.

The geothermal heat pumps consist of a ground loop system that circulates a

fluid, such as water or antifreeze, through a series of underground pipes. The

fluid absorbs heat from the aquifer in the winter and transfers it to the heating

system, while in the summer, the process is reversed and the system rejects

heat into the aquifer. The technical characteristics of the geothermal thermo-

refrigerating heat pumps of the MSE eco-district are given in appendix A.

Overall, the district heating and cooling network of MSE lays over 3.5 kilo-

meters, will reach 5.6 kilometers by 2026, and comprises 12 geothermal wells

ranging between 30 and 40 meters of depth each. A map of the heating and

cooling network showing the locations of the geothermal wells as well as the

power plant is given in figure 6.3. A simplified diagram of the heating and

cooling power plant is illustrated in Figure 6.4 and a simplified P&ID (Pro-

cess and Instrumentation Diagram) is presented in appendix A. The Thermo-

Refrigerating Heat Pumps (TRHPs) and the chillers form the core of this heat-

ing and cooling power plant, and are specifically composed of:

* 2 tandems of 2 TRHPs each: Tandem 1 is composed of TRHPA and

TRHPB and tandem 2 is composed of TRHPC and TRHPD.
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* 1 positive chiller group

* 1 Positive-negative chiller group composed of 2 TRHPs.

* 3 adiabatic aero-refrigerant towers

* Access to the aquifer through a geothermal installation consisting mainly

of extraction and injection wells.

* Various heat exchangers and auxiliary components.

In addition to these heat and cold production systems, the MSE power plant

also involves thermal and power storage systems, namely:

* A heat storage by phase-change materials (PCM),

* A cold storage system by ice-on-coil,

* A battery energy storage system.

All the aforementioned energy systems will be described in further details in

the next sections of this chapter. By the end of its development in 2033, the

heating and cooling system is expected to have a total heat demand of 14765

useful MWh for a contracted power of 13491 kW, and a total cooling demand

of 16832 MWh for a contracted power of 16741 kW. The network will reach

45 subscribers for 94 substations and a total of 50 buildings. The layout of

the heating and cooling network presenting the locations of the substations is

given in Figure 6.5.

The connection of the buildings gradually started between 2020 and 2023,

and will carry on until 2033. The public service delegate, Idex, conducted a

simulation of the heat and cold power demands of the network up to 2033.

The modeling and analysis of the heating and cooling needs of the eco-district

led to an evaluation of the combined heating and cooling needs of 6 MW and

10.5 MW respectively. The evolution of the heating and cooling needs from

2020 to 2033 is shown in the graphs 6.6 and 6.7.

6.3.1.2 Solar energy generation

Over the past decade, the overall cost of renewable energy sources has sig-

nificantly decreased, making them competitive against traditional fossil fuels.

In particular, the average cost of photovoltaic solar generation has decreased

by 80% since 2008 [339] and keeps on this trend. This significant decrease
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Figure 6.3: Map of the MSE eco-district showing the locations of pumping and injection geother-
mal wells and the heating and cooling power plant (source: Idex document).

Figure 6.4: Simplified diagram showing the main components of the heating and cooling power
plant of the MSE eco-district.
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Figure 6.5: Layout of the geothermal heating and cooling network of the MSE eco-district illus-
trating the locations of substations. Each substation ID corresponds to two substations: one for
heating and one for cooling (source: Idex document).
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Figure 6.6: Evolution of the heat load and the number of heat substations for the district heating
and cooling network of the MSE eco-district (source: Idex document).

Figure 6.7: Evolution of the cooling load and the number of cooling substations for the district
heating and cooling network of the MSE eco-district (source: Idex document).
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has contributed to the growing deployment of renewable energy generation

equipments. Between 2012 and 2015, the total installed renewable capacity

worldwide increased by 60%, giving rise to a growing number of small-scale

and decentralized energy production installations.

At the local level in the city of Nice, the "Plaine du Var" territory has a strong

potential for photovoltaic production, ranging from approximately 1, 400 to

2, 000 kWh/m².year. That is why PV panels will be installed within the MSE

eco-district. It is planned that almost 100% of the tertiary buildings will be

equipped with PV panels on their rooftops. This is expected to allow for the

installation of up to 5, 000 kWp, resulting in an approximate annual produc-

tion of 6 GWh [340]. It is also possible for residential buildings to be equipped

with PV panels on their rooftops and to have these equipments managed by

the public service delegate Idex. These PV panels can be used to enable indi-

vidual or collective self-consumption within the eco-district, for example, to

heat domestic water in hot water tanks.

Finally, it is also envisaged that PV panels will be installed at the level of the

heating and cooling production plant of the eco-district, primarily to add PV

self-consumption through the battery as electrical flexibility alongside heat

and cold storage at the plant level, thus enabling multi-energy management at

the level of the power plant.

Nonetheless, as the eco-district is not yet fully constructed, the total surface of

PV panels that will be installed, the resulting PV power generation, the brand

or type of the PV modules, and the share of PV whose management will be

delegated to Idex are not yet known by the time this manuscript is being writ-

ten. Therefore, in order to account for this renewable electrical production in

this case study, some assumptions had to be taken when modeling solar pro-

duction at the eco-district level. Thus, a solar panel model has been validated,

which allows for the generation of PV power based on given weather condi-

tions, with a peak power of 1200 kWp. Once the total peak power is known,

simulations can be performed using the appropriate module type and multi-

plying the obtained time series by a coefficient. In order to validate the PV

model, simulations were conducted using four different weather patterns from
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Nice. More details on these models will be presented in the next chapter.

6.3.2 Energy storage systems

6.3.2.1 Thermal energy storage systems

In DHCS, two main gaps exist between thermal energy demand and supply.

The first gap arises from the time difference between thermal energy gener-

ation and consumption which can be attributed to physical factors such as

the intermittent nature and the dynamic characteristics of solar generations,

as well as economic factors related to the variability of the thermal energy

cost during the day. The second gap is related to the geographical distance

between thermal generation plants and the locations where heat and cold are

consumed. These gaps may lead to wasting the thermal energy that is not con-

sumed and to increasing inefficiencies if the thermal generation has to follow

the thermal demand. Thus Thermal Energy Storage Systems (TESS) appear

as a promising solution for the smart management of the gap between sup-

ply and demand. Not only can they be used as a buffer between load and

generation by storing heat and cold for later use, but they also contribute in

integrating renewable energy sources into DHCS and maximizing their flexi-

bility and performance [61]. Therefore, their integration in the industrial and

building sector in the European union has the potential to yield annual energy

savings of about 7.8% (approximately 1.4 million GWh of energy annually

[341]), together with a CO2 emission reduction by 5.5% [342].

Heat storage by phase-change materials

Phase Change Materials (PCM) constitute a promising option for a cost-effective

and energy-efficient heat storage due to their ability to absorb and release a

large amount of thermal energy at a constant temperature [343] during the

phase change ( melting/ solidification) process. The PhD thesis of Martellini

[344] investigated the potential of thermal energy storage using PCM for DHS

by exploring various aspects of PCM-based thermal energy storage including

PCM selection, storage system design and integration within district heating

networks as well as operation strategies optimization based on numerical sim-

ulations.
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Figure 6.8: The design and main components of the Phase-change material heat storage system
of the MSE eco-district (adapted from a CEA document).

Based on the insights from the research work of Martellini et al. [345], the

french Alternative Energies and Atomic Energy Commission (CEA), member

of the MSE consortium and a key actor of this demonstrator project designed,

constructed and installed a PCM-based Heat Storage system within the MSE

eco-district. This heat storage of about 1.2 MWh capacity is the first of its

kind and aims to demonstrate the feasibility and benefits of using PCM-based

thermal energy storage in district heating networks, with the ultimate goal of

reducing the overall peak energy consumption and carbon footprint of the eco-

district.

The design of this storage system, presented in Figure 6.8 is based on a tube

and shell heat exchanger technology of 12 meter tall and 2 meter diameter,

with a bundle of about 512 tubes in the middle and the PCM flowing around

the tubes. Unlike most of the components of the power plant which are located

indoors, the heat storage system is located outside due to its large size, as il-

lustrated in Figure 6.9. The system was installed within the power plant in

2023 and the first tests and experiments on this new systems were conducted
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Figure 6.9: The PCM heat storage system of the MSE eco-district installed outside the power
plant.

starting from march 2023. The selected PCM is a glycoled water solution

that has a melting temperature of around 58°C. The storage system operates

in "charge" mode when the heat transfer fluid (water) enters the storage at

around 65°C with the PCM being in the solid phase and in "discharge" mode

when the water passing through it is at a temperature of 35°C and the PCM

being in liquid phase. The operation of the storage depends on that of the

geothermal TRHPs of the power plant introduced in the previous section.

Cold storage by ice on coil

When it comes to cold storage, several technologies are used within DHCS,

including nodular storage systems and tube-based technologies known as ice

on coil systems. In the MSE project, an ice on coil cold storage system has

been integrated into the heating and cooling network at the power plant. Un-

like the heat storage, the cold storage system was installed indoors. The prin-

ciple of the ice on coil storage system involves submerging tubes in a water

pool or tank. A glycoled water solution flows through the tubes, lowering

its temperature to around -5°C until freezing the water surrounding the pool

tubes. This process results in a large block of ice within the pool when the

storage systems is fully charged. During discharge, warmer glycoled water

solution circulates through the tubes, melting the ice and thus releasing stored
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Table 6.1: Properties of the cold storage system.

Technical properties Unit 1 tank 2 tanks
Total storage capacity kWh 3795 7590

Latent storage capacity (ice) kWh 3458 6916
Sensible storage capacity (0°C to +5°C)) kWh 337 674

Maximum operating temperature °C 40 40
Maximum operating pressure bar 3 3

Total water volume m3 58 116
Total ice volume m3 37 74

Total glycoled water solution volume m3 1.88 3.76
Connectors, NP10 flanges ND 150 150

energy. To enhance the system’s performance, air agitation can be incorpo-

rated by diffusing air bubbles through compressors at the bottom of the pool.

This helps accelerate the transformation process and provide a higher power

output, which can be particularly useful during peak cold demand periods on

the DHCS.

The ice storage tank occupies a significant space within the heating and cool-

ing power plant, with a total water volume of 124m3 and a latent capacity of

6916 kWh. During winter, both the ice storage and the cooling units would

remain inactive due to low cooling demand. However, activating the system

during the summer season proves beneficial as it may allow avoiding the ex-

cess heat that would otherwise be rejected into the geothermal wells or through

the adiabatic aerorefrigerant towers installed on the rooftop of the heating and

cooling power plant. Hence, the cold storage allows to produce a large quan-

tity of cold without the need to reject excess heat. A cross-sectional view of

the cold storage system installed in the heating and cooling plant of the MSE

eco-district is presented in Figure 6.10 and its main technical details are sum-

marized in Table 6.1.

According to the manufacturer’s estimates, this storage system could provide

up to 2 MW of power, and when air agitation is activated, the power output

could reach up to 10% of the storage’s capacity.

During the charging phase, the negative cold group operates to cool the water

entering the ice storage to -6°C. During discharge, through an exchange sys-
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Figure 6.10: Cross-sectional view of the ice on coil cold storage system installed inside the power
plant of the MSE eco-district (source: Idex document).

tem, the water reaches a temperature of 16°C as it enters the ice storage. A

complete charge cycle typically takes around 8 hours.

6.3.2.2 Battery Energy Storage Systems

The battery energy storage system installed within the power plant of the MSE

eco-district is one of the key energy systems offering an additional flexibility

potential to the MSE smart energy system. Similarly to the heat storage sys-

tem, the battery storage system was also installed outdoors, mainly due to its

large size, as illustrated in Figure 6.11. This battery storage system consists

in a lithium-ion battery that boasts a capacity of 616 kWh.

This storage system offers several versatile applications. Among the intended

usages in the MSE project, we firstly consider enabling self-consumption for

instance by allowing excess energy generated from local renewable sources

such as PV panels to be stored and consumed later during periods of low gen-

eration or high load. Maximizing self-consumption not only contributes in

efficiently integrating renewable energy sources but also reduces dependency
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Figure 6.11: Picture of the battery energy storage system installed near to the power plant of the
MSE eco-district.

on the power grid and thus reinforces the energy self-sufficiency of the smart

energy system.

Additionally to self-consumption, the BESS can be used for providing fre-

quency regulation services to the transmission system operator. Indeed, BESSs

are deemed to be efficient in providing such services mainly due to their fast

ramp rate as explained in [15]. By dynamically adjusting their charge or dis-

charge rates, they can therefore help mitigate frequency deviations of the grid

by injecting or absorbing power.

In addition to self-consumption and frequency regulation, the BESS can also

be used for energy arbitrage, i.e for buying and selling electricity by profiting

from the wholesale electricity price fluctuations. This application allows for

cost savings by optimizing the electricity usage of the overall smart energy

system during periods of high demand. If injecting power on the main utility

grid is allowed, the purpose of arbitrage can go beyond cost saving and extend

to revenue maximization through participation in energy markets.

Peak shaving is another valuable application of the BESS that consists in re-

ducing electricity demand during peak hours when electricity prices are at

their highest mainly by storing energy during off-peak hours and discharging

it during peak periods to meet the power demand. Peak shaving does not only

allow optimizing energy costs similarly to energy arbitrage, it can also enable
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reducing carbon footprint.

6.3.3 Energy usages

6.3.3.1 Sub-stations, buildings and end-users

The MSE eco-district encompasses a comprehensive range of energy usages

comprising heating, cooling and electricity. Heating plays a vital role in main-

taining comfortable indoor temperatures for the buildings’ residents mainly

during cold seasons. This includes heating systems for the space heating and

the production of domestic hot water. Most of heating within the eco-district

is produced by the geothermal DHCS. Only some of the domestic hot water

storage tanks are "combined", which means that they offer the possibility of

using either heat coming from the DHCS or electricity to heat the domestic

water. This offers an additional possibility of arbitrage that can be exploited

by the energy management system.

When it comes to cooling usages, they mainly consist in air conditioning used

to encounter higher temperatures during hot weather periods and therefore

contribute to creating a comfortable living and working environment for the

residents of the eco-district. Similarly to heating, most of the cooling usages

within the eco-district will be provided by the geothermal DHCS. This sus-

tainable solution harnesses renewable energy from geothermal sources and

also helps mitigate the urban heat island effect that is often triggered by con-

ventional individual air conditioning systems [346].

Lastly, electricity usages include various needs within the buildings such as

lighting, electronic devices and other electricity-dependant appliances. In ad-

dition to buildings, one key electricity usage within the MSE eco-district is

given by the power consumption of the district heating and cooling power

plant which consumes electricity in the thermo-refrigerating heat pumps and

other delivery pumps to produce and distribute heating and cooling all over

the district network.

Within the heating and cooling network of MSE, each building is provided

with an average of one sub-station. A sub-station is a delivery point located

in a technical room next to the building and one can distinguish two types
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of sub-stations: single heating sub-stations and combined heating and cool-

ing sub-stations. The bloc diagram in appendix A illustrates the different

sub-stations that will be connected to the MSE DHCN throughout its devel-

opment. The portion of the heating and cooling network located upstream of

the substation is referred to as the primary network and the part located down-

stream of the sub-station is called the secondary network. After each heat

exchanger of the secondary network, temperature regulation is ensured by a

communicating controller that is connected to the supervision system of the

public service delegate.

Regarding the technical architecture, heating substations are composed of a

skid including the following components:

* A hot water exchanger that supplies buildings with heat for space heat-

ing, domestic water heating as well as any other process that requires a

negative enthalpy transfer from the network. The maximum temperature

regime on the primary heating network is 65°C on the supply side and

35°C on the return side.

* A two-way control valve on the primary side with various temperature

sensors on both the primary and secondary sides.

* A set of pipelines, isolation valves and draining points.

* A set of thermometers with immersion sleeves on both the primary and

secondary sides.

* A thermal energy meter.

* An electrical cabinet.

On the other hand, sub-stations also include a cold water skid that includes the

following components:

* A cold water exchanger that supplies buildings with cold for space cool-

ing, servers and any other process that requires a positive enthalpy trans-

fer from the network. The maximum temperature regime on the primary

cooling network is 8°C on the supply side and 18°C on the return side.

* A two-way control valve on the primary side with temperature sensors on

both the primary and the secondary sides.
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Figure 6.12: Schematic diagram of the primary side of a combined heating and cooling sub-
station.

* A set of thermometers with immersion sleeves on both the primary and

secondary sides.

* A thermal energy meter.

An example of schematic diagram of a combined heating and cooling sub-

station is illustrated in Figure 6.12.

6.3.3.2 Electric vehicles and electric Vehicle charging stations

As the eco-district evolves, electric vehicles will be deployed and public and

private electric vehicle parking lots and charging stations will be installed to

support the electrification of transportation within the eco-district. Besides,

advanced technologies such as smart charging and Vehicle-to-grid (V2G) will

be pursued and actively integrated within the multi-energy management sys-

tem. Smart charging will be used to optimize the charging process of electric

vehicles by dynamically adjusting their charging rates regarding various fac-

tors like electricity demand, grid capacity and renewable energy generation

patterns. On the other hand, the V2G concept enables electric vehicles to not

only be energy consumers but also act as mobile power storage systems. Thus,

electric vehicles can for example discharge their stored energy back to the grid



6.3. Energy systems in the MSE Smart Multi-energy System 204

during periods of high demand or grid instability. This bi-directional power

flow between electric vehicles and the grid can thus offer an additional flexi-

bility in mitigating peak loads, balancing supply and demand and reinforcing

the resilience of MSE smart energy system.

Similarly to most of the equipments that belong to the multi-energy infras-

tructure of the MSE eco-district, the operators of these systems have the pos-

sibility to delegate their management to Idex. If so, they should have these

equipments meet a Smart Grid Ready charter defined by Idex. In particular,

each Smart Grid Ready equipment should be able to offer services that belong

to one of the three following levels:

* Level 1: ability to transmit information to the local energy manager of

the eco-district.

* Level 2: ability to receive demand response orders from the local energy

manager of the eco-district. For the particular case of electric vehicle

charging stations, demand response orders consist in smart charging or-

ders. In order to be able to offer this service, they should comply with the

OCPP1 v 1.6 or v 2.0 standard and their supervision platforms have to be

compatible with the OSCP 2 standard [340].

* Level 3: ability to inject power back into the grid. For the particular

case of electric vehicle charging stations, this consists in V2G. However,

since there are no technical standards and corresponding offers currently

available within MSE, this level is not expected for several years.

While these systems are not yet implemented in the current phase of the eco-

district’s construction, they are expected to be progressively added in future

phases of the project development. They will then be seamlessly added to

the energy management systems of the eco-district but they are not yet taken

into account in the current model of the system since technical information on

these systems is not yet available.

1OCPP (Open Charge Point Protocol) is the open communication protocol between electric vehicle
charging stations and their management system [347].

2OSCP (Open Smart Charging Protocol) is the open communication protocol between the management
systems of a charging station and an energ management system. Both OSCP and OCPP protocols are
managed by the Open Charge Alliance OCA) consortium.
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6.3.3.3 Public lighting

Similarly to electric vehicles and charging stations, the public lighting within

the MSE eco-district can be optimally managed by the smart multi-energy

management system. Public lighting can in fact be modulated by adjusting

the intensity of streetlights based on various factors like the time of the day,

the natural ambient brightness, the presence and movement of people, as well

as other predefined parameters. This aims at reducing energy consumption

within the eco-district and associated costs while keeping adequate lighting

levels to ensure safety and comfort for users, and can be achieved for example

by using ambient light sensors and programmable timers.

It is worth noting that such operations on the public lighting require special

concessions from the city or the metropolitan authority (the Nice Côte d’Azur

Metropolis in the case of MSE). Each of these entities should be equipped

with a supervision platforms that the local energy manager should be able to

communicate with. Depending to the operator’s choice, the public lighting

equipment and the aforementioned platforms should be compliant with the

Smart Grid Ready charter and thus be able to provide one of the following

service levels:

* Level 1: ability to transmit information to the local energy manager of

the eco-district.

* Level 2: ability to receive demand response orders from the local energy

manager of the eco-district. These orders consist for instance in modula-

tion actions aiming at adjusting the lighting intensity of the streetlights.

* Level 3: ability to inject power back into the grid. Due to the absence

of storage systems within the public lighting network, this service level

is not expected in the MSE eco-district but can be considered in other

similar eco-districts.

Finally, it’s important to note that the management of electric vehicle charging

and public lighting is not yet operational within the eco-district. Therefore, the

integration of control for these elements into the energy management system

developed in this work is planned for future phases as the eco-district evolves.
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6.4 Strategic optimization objectives in MSE

The key strategic objectives behind the Meridia Smart Energy (MSE) project

are fixed by the public service delegate Idex, the delegating territorial authority

Metropole Nice Cote d’Azur, as well as the ADEME funder of the project

through the program "Investissements d’Avenir" that they operate. Among

these major strategic objectives we note:

* Maximizing the share of renewable energy and waste in the eco-district

(to reach more than 70%) and maximizing its self-consumption and en-

ergy autonomy,

* Minimizing the overall energy consumption and operational costs of the

Smart multi-energy systems of the eco-district, reducing load peaks and

minimizing the energy bills of the end users,

* Minimizing Green House Gases emissions and fossil fuel consumption,

* Valuing the flexibility potential provided for instance by the multi-energy

storage systems of the eco-district by demand Side Management of the

heating and cooling power plant and participation in certain ancillary ser-

vice markets (e.g. frequency regulation market).

6.5 Conclusion

This chapter provided a comprehensive overview of the multi-energy systems

integrated within the MSE eco-district, that form together the main smart

multi-energy system case-study for the current research work. The strategic

optimization objectives that lay behind developing a smart multi-energy man-

agement system for MSE were then outlined.

In the up-comping chapter, we will focus on the digital twin that we devel-

oped for the MSE eco-district and that served as a simulation environment for

the reinforcement learning algorithms and enabled the training, testing and

performance evaluation of the energy management systems developed in this

work.



Chapter 7
Building a simulation model for the

Meridia Smart Energy eco-district

"All models are wrong, but some are

useful"

Georges Box

Résumé

Ce chapitre détaille le développement d’un modèle de simulation pour l’ensemble

des systèmes multi-énergétiques de l’éco-quartier MSE présenté dans le chapitre

précédent. Ce modèle de simulation a été construit en langage Modelica (sur

le logiciel Dymola) afin de rendre compte avec précision du comportement

dynamique du système. Le principal objectif de ce jumeau numérique est

de servir d’environnement pour le système de gestion de l’énergie basé sur

l’apprentissage par renforcement profond (DRL) présenté précédemment et

développé sous Python: le jumeau numérique est encapsulé en tant qu’unité

de modélisation fonctionnelle (Functional Mock-up Unit, FMU) puis en tant

qu’environnement OpenAI Gym pour permettre son interaction avec les algo-

rithmes DRL développés sous Python. L’interaction entre l’agent DRL et le

FMU du jumeau numérique s’effectue grâce à la co-simulation en utilisant la

librairie FMPy. Cette approche de modélisation globale est détaillée dans ce

chapitre.

207
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7.1 Intrdoduction

This chapter presents the development of a simulation model for the multi-

energy systems within the MSE eco-district case-study presented in the pre-

vious chapter. The simulation model is built using mainly the Modelica lan-

guage, through the Dymola software, in order to accurately account for the

dynamic behaviour of the system. The main purpose of this digital twin is

to serve as an environment for the deep reinforcement learning based energy

management system previously presented and developed using Python: the

digital twin is encapsulated as a Functional Mock-up Unit (FMU) to enable

its interaction with the Python framework through co-simulation. This overall

modeling approach is detailed in this chapter.

7.2 The modeling approach

7.2.1 The modeling purpose and structure

Modeling plays a crucial role in understanding and analyzing complex sys-

tems such as smart multi-energy systems. In general, modeling approaches

can be classified into three categories: white box, black box and grey box

modeling [348]. White box models, also referred to as physical models, aim

at providing a detailed understanding of the underlying system by incorpo-

rating its fundamental principles and equations. Black box models, on the

other hand, focus solely on the input-output relationship of the system and do

not explicitly consider its internal processes and dynamics. Finally, grey box

models combine elements of both white box and black box modeling by incor-

porating some knowledge about the system while abstracting certain details.

On the other hand, the purposes of the system modeling can be classified

into two types: simulation and optimization [348]. Simulation models aim

at replicating the behaviour of the real system, capturing its dynamics and

giving insights about its behaviour and performance under different operating

conditions as well as forecasting its future behaviour. That is why they are

also referred to as forecasting models for instance by Klemm and Vennemann

[349]. On the other hand, optimization models aim at minimizing or max-
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imizing some specific criteria or objectives in order to find optimal system

configurations, sizing, or operating strategies.

The model of the multi-energy systems described in this chapter was built in

order to replicate the behaviour and dynamics of the actual systems so as to be

integrated into the optimized energy management frameworks. Once the mod-

eling purpose is defined, one has to choose the structure of the multi-energy

system models to be developed. Modeling structures also commonly fall into

two types: top-down and bottom-up approaches. The top-down approach usu-

ally starts with a broad, high-level representation of the system, then gradually

refines it by decomposing the system into its individual subsystems or com-

ponents. In contrast, the bottom-up approach generally begins by modeling

individual components or subsystems which are then progressively integrated

and interconnected to construct a comprehensive representation of the entire

system. In this work, we embraced a bottom-up approach for modeling the

multi-energy systems within the MSE eco-district. By identifying key com-

ponents of the overall system, carrying a detailed modeling of each of these

components, and subsequently interconnecting them, we aimed to construct a

comprehensive simulation model that captures the behavior and dynamics of

the system more accurately. Additionally, the individual models built for the

various defined subsystems provide us with a valuable repository of reusable

subsystem models. This collection of subsystem models can be effectively

used in the future for modeling and analyzing similar systems, thereby en-

hancing the reproducibility of the developed solution for comparable smart

multi-energy systems.

7.2.2 The modeling tool

Modeling tools designed for multi-energy systems frequently adopt the afore-

mentioned bottom-up approach, wherein the system’s components are mod-

eled using diverse libraries, and subsystem models are subsequently intercon-

nected. Notable examples of such modeling tools include EnergyPlus [350]

for building energy simulation, TRNSYS [351] for simulating transient sys-

tems behaviour, encompassing both electrical and thermal energy systems,
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and the Modelica [352] language for the object-oriented modeling of intricate

and multi-physics systems [353]. Modelica is supported by both an open-

source modeling and simulation environment, OpenModelica [354], and a

commercial software, Dymola [355]. For an in-depth review of modeling

and simulation tools tailored for multi-energy systems, we refer the interested

readers to the works of Allegrini et al. [356] and Klemm and Vennemann

[349]. These works provide comprehensive reviews of modeling, simulation,

and optimization tools specifically designed for district-scale energy systems.

Moreover, Gronier et al. [357] offer a review of literature references high-

lighting energy modeling tools.

In this case-study, we opted for the use of the Modelica language, predomi-

nantly using the Dymola software tool, for constructing the simulation model

of the MSE case-study. Notably, Dymola stands out as a robust commercial

software, recognized for its capability to handle models with a substantial

number of equations and to deliver simulation results with enhanced compu-

tational efficiency compared to other Modelica compilers [348], [358]. Addi-

tionally, Dymola ranks among the tools and Modelica compilers that exhibit

a high level of compatibility with the Functional Mock-up Interface (FMI)

standard (refer to Figure 7.1). FMI is a standard that serves as a common

framework, facilitating the exchange and co-simulation of dynamic models

across diverse software platforms. A focus on this standard and how we use it

to manage the interaction between the energy management system framework

and the simulation model is presented in section 7.4.1.

7.3 Aggregate simulation model

7.3.1 Model of the district heating and cooling network

7.3.1.1 The power plant

In order to build an initial comprehensive model of the district heating and

cooling network, we first adopted a simplified model of the heating and cool-

ing power plant that simultaneously produces heat and cold to meet the eco-

district’s buildings needs. Then, we modeled the heating and cooling network,
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Figure 7.1: Compatibility of Dymola and other alternative tools with the FMI standard 1.0 and
2.0 for FMU export and import with Co-Simulation (CS) and Model-Exchange (ME) (adapted
from [359]).

including the sub-stations in order to obtain an initial model of the complete

network. Subsequently, we replaced the simplified model of the power plant

with a more detailed model, which will be presented in section 7.3.2.

In the initial model, the heating and cooling power plant was represented as a

black box that simulates the heating and cooling processes of the fluid to meet

the setpoint temperatures and calculates the power transferred to the fluid.

The parameters of this model include temperature setpoints, nominal mass

flow rate, and nominal pressure drop (which can be optional). To develop

this model, we used the PrescribedOutlet model from the Modelica Buildings

library [360]. This model consists of a flow source with a prescribed tem-

perature on the primary side of the network. It acts as an infinite reservoir

that is capable of absorbing or generating as much energy as needed to main-

tain the temperature at the specified value. The return side was only defined

by the pressure of the heat transfer fluid, since mass flow rate, enthalpy, and

temperature vary during the simulation.

7.3.1.2 The heating and cooling network

A detailed topological simulation of the piping system of the district heating

and cooling network is beyond the scope of this work. Such simulations are

rather performed for very large networks where long pipelines can lead to
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Figure 7.2: Dymola model of a pipe.

complex flow distributions, particularly in bidirectional networks.

The model developed in our work takes as input the complete time series for

heating, cooling, and domestic hot water (DHW) demands. Each load is con-

nected to the heating and cooling power plant through pipes at different heat

exchange substations. The pipe parameters include the nominal mass flow rate

per section. The regular pressure drop for each section is calculated using a

simplified model like:

ṁ = k
√

∆p (7.1)

Where ṁ is the mass flow rate, ∆p is the pressure drop and k is constant that

is defined based on the nominal values of the mass flow rate and the pressure

drop ṁnominal and ∆pnominal.

The parameters of the fluid supply and return pipes include their length, the

thickness and thermal conductivity of the insulation, the nominal mass flow

rate and the velocity of the fluid. The pipe diameter can be automatically

determined by the component following the equation:

d =

√
4ṁnominal

ρπ∆pnominal

(7.2)

The developed Dymola model of a pipe is illustrate in figure 7.2 and is

based on the following equations (Note that in Dymola, the variables and pa-

rameters contained in a sub-model are referred to by using the sub-model’s

name followed by a dot and the name of the input or output. For example,

port_a.m_flow represents the mass flow rate m_flow at port_a):
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* Mass flow conservation:

port_a.m_flow = −port_b.m_flow (7.3)

* Equilibrium of potentials with pressure drops:

port_a.p = port_b.p+∆p (7.4)

* Energy conservation with thermal losses, in the flow direction and the

opposite direction respectively:

port_a.m_flow∗(inStream(port_a.h_outflow)−port_b.h_outflow) = −Q_flow

(7.5)

port_a.m_flow∗(inStream(port_b.h_outflow)−port_a.h_outflow) = Q_flow

(7.6)

The thermal power dissipated along the pipe is calculated, based on available

geometric data and the outside temperature, using the following classical for-

mula:

Q = G.∆T (7.7)

Where G is the conductance of the material and ∆T = Tinternal − Texternal.

7.3.1.3 The heat and cold substations

The substations are elements of the heating and cooling network that extract

a certain amount of heat or cold based on the needs of the buildings to which

they are connected. On average, each building is connected to one heat sub-

station and one cold substation. The heat substations cater to the heating and

domestic hot water needs of the buildings and the cold substations address the

cooling needs.

The primary functionality of a substation is to connect the energy production

source with the consumer point of that energy. We get the mass flow rate

in each branch of the network by applying mass conservation at each node,
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Figure 7.3: Illustrative diagram of a substation.

combined with the energy balance within each substation:

ṁn.i − ṁss = ṁn.o (7.8)

ṁss =
Q̇ss

cp,w ∗∆Tss

(7.9)

Where mn.i is the mass flow rate at the node inlet, mo.i the mass flow rate

at the node outlet, ṁss the mass flow rate at the substation, Q̇ss is the heat

transfer rate of the substation, cp,w the water specific heat capacity and ∆Tss

the temperature difference at the substation.

An illustrative diagram of a substation is given in figure 7.3 and the model we

developed for a substation in Dymola is illustrated in figure 7.4.

Our heating and cooling network Dymola model represents 17 heat substa-

tions and 15 cold substations that are all interconnected, forming a part of the

heating and cooling network.

One of the key elements of the district heating and cooling system is the heat

exchanger located inside each substation and that ensures the link between the

primary and the secondary network by transferring the heat generated by the
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Figure 7.4: Dymola model of a substation (example of a heat skid).

power plant from the primary network to the secondary network serving the

end users connected to the substation. A heat exchanger is modeled such that

a heat quantity

Qflow = u.Qflow_nominal (7.10)

is added to the stream, where the input signal u, |u| < 1, and the nominal heat

flow Qflow_nominal can have either positive or negative values (positive for

heating and negative for cooling). The mass and energy balance of the fluid

flow are solved by the component MixingVolume of the Buildings library, il-

lustrated as a blue sphere in figure 7.5. The kinetic and potential energies as

well as the pressure drop are not considered, and the volume exchanges heat

through a dedicated port.

The fluid dynamics at the heat exchanger are governed by two fundamental

physical principles: mass and energy conservation. The mass balance equa-

tion at the heat exchanger states that the net mass flux across the surface S of

the exchanger is equal to zero and can be written as follows:

∫
S

ρ−→u .−→n dS = 0 (7.11)

Where ρ is the fluid density, −→u its velocity vector and −→n the outward unit

normal vector to the surface S.

The energy balance equation can be written as:

∫
S

ρcT−→u .−→n dS =

∫
S

−→q .−→n dS (7.12)

Finally, the pressure drop at the heat exchanger is considered using the same

formula as for pipes. The Dymola model of the heat exchanger is illustrated
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Figure 7.5: Dymola model of a heat exchanger.

in figure 7.5.

The model of the substations is completed by a model of a circulation pump

from the Buildings library to ensure the flow of the heat transfer fluid. This

model called FlowControlled_m_flow consists of a pump for which the mass

flow rate is ideally controlled by an input signal. This means that the model

prescribes a mass flow rate, which is typically provided by a Modelica block

of type constant.

The models of the substations have then been integrated in the global model

of the district heating and cooling network, illustrated in figure 7.6.
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Figure 7.6: Dymola model developed for the MSE district heating and cooling network.

7.3.2 Model of the heating and cooling power plant

7.3.2.1 Thermo-refrigerating heat pumps

The four thermo-refrigerating heat pumps (TRHP) A, B, C and D were com-

bined to form a model of what we refer to as TRHP system. The model

of an individual TRHP was approached using the Carnot_Tcon heat pump

model available in Dymola. The technical characteristics of each of these four

TRHPs were specified based on the corresponding data provided by the man-

ufacturer. We then added an estimation of the equivalent electrical power con-

sumed by the TRHP based on an estimation of the Coefficient of Performance
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(CoP). In fact, the CoPs of the TRHP vary according to the system configura-

tion and load. However, the CoP values were not all available, that is why we

used nominal CoPs of the TRHPs provided by the manufacturer and adopted

a quasi-linear variation based on known equivalent CoPs. The documentation

sheet for the model of individuals TRHP is provided in appendix B.

The global TRHP system includes the two tandems of TRHPs A/B and C/D

as well as the regulation needed to operate their various configurations. Over-

all, the real TRHP system involves 14 configurations, detailed in Appendix B,

but for the sake of simplicity, only 7 configurations were considered in the

model. Indeed, our simplification consists in assembling two or three config-

urations defined as distinct by the manufacturer into one unique configuration

whenever they are identical from the TRHP system’s point of view. The 7

configurations we obtained are the following (note that we talk about configu-

rations for cold when the TRHP system’s production is adjusted according to

the cooling loads). If there is a surplus of heat production, it is either injected

into the geothermal wells or sent to the adiabatic aero-refrigerants according

to the system configuration. These kind of scenarios basically happen during

summer periods. Conversely, we talk about configurations for heat when the

TRHP system’s production is adjusted according to the heating loads. If there

is a surplus of cold production, cold water is injected back into the geothermal

wells.):

* Configuration A for cold: this configuration incorporates three different

scenarios for cold defined by the manufacturer and referred to as cold

scenarios A01, A02 and A03. We assemble these three scenarios in one

configuration since they are all identical from the TRHP system’s point

of view.

* Configuration B for cold: this configuration incorporates three other sce-

narios for cold referred to as B01, B02 and B03 that we assemble into one

unique configuration since they are all identical from the TRHP system’s

point of view.

* Configuration C for cold: this configuration incorporates three other sce-

narios for cold referred to as C01, C02 and C03 that we group under one
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configuration since they are all identical from the TRHP system’s point

of view.

* Configuration D01 for cold: this configuration represents the configura-

tion for cold referred to by the manufacturer as D01 for the TRHP system.

* Configuration D02-03 for cold: it merges the two configurations denoted

D02 and D03 for cold since they are identical from the TRHP system’s

point of view.

* Configuration A01 for heat: this configuration corresponds to the heat

scenario A01 defined by the manufacturer.

* Configuration A02 for heat: this configuration corresponds to the heat

scenario A02 defined by the manufacturer.

For the flow rates regulation, we calculated the coefficient that links the flow

rate on the condenser side of a TRHP to the flow rate on the evaporator side

of the TRHP based on the ratio of the heat flux provided by the TRHP at the

side of the condenser by the heat flux provided at the side of the evaporator.

This coefficient is constantly calculated to achieve the desired temperature

difference on both sides of the TRHP. Besides, we imposed maximum flow

rates to manage the TRHPs’ saturation. These flow rates are calculated based

on data provided by the manufacturer and are as follows:

* Tandem 1 (TRHPA and TRHPB) on the condenser side (35◦C/65◦C):

· 24.21 kg/s for the cold configurations A, B, D01, D02-03, and the

heat configuration A01,

· 46.46 kg/s for the cold configuration C and the heat configuration

A02.

* Tandem 1 (TRHPA and TRHPB) on the evaporator side (18◦C/8◦C):

· 60.18 kg/s for all the configurations,

* Tandem 2 (TRHPC and TRHPD) on the condenser side (35◦C/65◦C):

· 69.68 kg/s for all the configurations,

* Tandem 2 (TRHPC and TRHPD) on the condenser side (17◦C/27◦C):

· 69.68 kg/s for all the configurations,

* Tandem 2 (TRHPC and TRHPD) on the evaporator side (18◦C/8◦C):
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· 52.83 kg/s for all the configurations.

Furthermore, some other adaptations on the model of the TRHP system were

made in order to manage the different configurations as well as the transitions

between them in a single TRHP system model. The electrical power consump-

tion of the pumps of the TRHPs is also calculated and output by the model. A

documentation sheet for the individual TRHP model as well as for the global

TRHP system is presented in sections B.4 and B.5 of appendix B.

7.3.2.2 Chiller

The chiller was modeled following the same approach as for the unitary TRHP

model, including flow regulation. Similarly to TRHP models, the electrical

power consumed by the pumps of the chiller was calculated and maximum

flow rates based on the manufacturer’s data were imposed to manage the sat-

uration of the chiller. Their values are as follows:

* 52.58 kg/s on the condenser side (17◦C/27◦C)

* 47.78 kg/s on the evaporator side (18◦C/8◦C)

Overall, the whole system model can be considered as an equivalent unitary

TRHP.

7.3.2.3 Positive-negative chiller

The positive negative chiller is basically composed of two TRHPs forming a

positive-negative chiller tandem. Due to the lack of available manufacturer

data concerning this system, it was modeled based on the model of a single

TRHP whose technical characteristics were matched with those of the chiller.

The flow regulation was also matched with that of the unitary TRHP and the

chiller and the electrical power consumed by the pumps were calculated.

The positive-negative chiller has some additional specific features on the evap-

orator side. For instance, the cold storage system charging exclusively relies

on the cold produced by the positive-negative chiller. This chiller system can

also be used to assist the TRHP system and the chiller in producing cold in

order to meet the cooling loads. Such synergies normally involve interme-

diate networks of 6◦C/16◦C and −6◦C/ − 3◦C along with heat exchangers.
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However, to simplify the modeling process, we chose to work with the ba-

sic 8◦C/18◦C network and account for these interactions by means of power

equivalences. Overall, the whole positive-negative chiller system model can

be assimilated to that of the chiller, with additional synergies taken into con-

sideration.

7.3.2.4 Adiabatic aerorefrigerant towers

The real system incorporates three adiabatic aero-refrigerant towers (referred

to as DRY) to handle excess heat when the geothermal maximal capacities are

reached. In our model we consider one single equivalent DRY system. Even

though this model does not encompass the whole operational complexity of

such system, it is sufficient for our modeling purposes since it accounts for the

electric power consumption of the DRY system’s pumps and motorized fans

in a simplified way. A documentation sheet of the developed DRY Dymola

model is provided in section B.6 of appendix B.

7.3.2.5 Geothermal systems

The geothermal systems provide the heat and cold production system with the

possibility to dissipate the excess heat or cold production that results from

certain configurations. Once the geothermal capacity is reached, the TRHP

system is designed to transition to configurations of type D that allow usage

of adiabatic aero-refrigerant towers to evacuate excess heat. However, since

we have no data available concerning the thresholds that correspond to the

concept of saturation of the geothermal reservoir, an approximate reasoning

was adopted to account for this saturation concept in the management of the

different TRHP system configurations into the complete model of the power

plant presented in the next section. The electrical consumption of the injection

and extraction pumps was also taken into consideration in this model.

7.3.2.6 Global model of the heat and cold production system

The complete heat and cold production system model includes all the ele-

ments presented above. These elements were assembled following the P&ID

presented in appendix as well as the different TRHP configurations defined
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Figure 7.7: An overview of the global model of the heat and cold production system with regu-
lation.

in the functional analysis. Besides the simplifications made within each of

the previous models, some additional simplifications and adaptations had to

be made during their integration within the global power plant system model.

For instance, several auxiliary components were not taken into account in the

global model.

Figures 7.7 and 7.8 present an overview of the global model of the heat

and cold production system respectively with and without regulation, and fig-

ure 7.9 illustrates the model that controls the different configurations. This

comprehensive heat and cold production system model was integrated into the

district heating and cooling network model and its performance was tested

over a full year.

7.3.3 Model of the heat storage system

For the modeling of the Phase-Change Material (PCM) heat storage system,

it was decided to start from an existing model of the Buildings library that re-
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Figure 7.8: An overview of the global model of the heat and cold production system without
regulation.

Figure 7.9: An overview of the model that manages the different configurations of the heat and
cold production system.
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Figure 7.10: Parameters to be specified for the Dymola model of the PCM heat storage.

quires two classes: an icon and a model. The first is used to gather data where

the PCM parameters are specified and the latter takes the icon’s name as input

and uses data from the icon to perform calculations and enable the computa-

tion of the storage’s outlet temperature and power. The table of figure 7.10

summarizes the parameters that have to be specified for the icon. The values

of these parameters actually used in our model are those of the octadecanol

as a PCM material. They were selected based on the work of Martinelli [344]

and are detailed in table 7.1. Figure 7.11 illustrates an example of discharge

scenario where the model denoted lay uses the data from matPCM (phase-

change material) to calculate the outlet temperature and power of the storage

system. During the discharge phase, water enters the storage at 35◦C and is

heated by the storage system having its temperature approximately equal to

that of the PCM. Details on this PCM heat storage Dymola model are given in

the documentation sheet in section B.8 of appendices B. This model has been

validated using simulation data provided by the CEA who is in charge of the

design and construction of the PCM heat storage system in the MSE project.
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Figure 7.11: Illustration of a discharge scenario of the PCM heat storage model under Dymola.

Table 7.1: Properties of the octadecanol used in the model of the PCM heat storage.

Properties Values
thermal conductivity 0.2W/m.K
Specific heat capacity 2611J/kg.K

Mass density 0.77g/cm3

Melting temperature 58◦C
Latent heat of phase change 246900J/kg

7.3.4 Model of the cold storage system

Even though the ice on coil cold storage system is already installed within

the heat and cold power plant of the MSE eco-district, this system is not yet

operational. Besides, unlike the PCM heat storage system for which we were

provided with design and simulation data from the CEA, it was not possible

for us to obtain charge and discharge profiles of the ice storage system from

the manufacturer. We were provided with some typical charge and discharge

curves for the cold storage. However, for the charge curve given in figure

7.12 for instance, the inlet water temperature ranges between−3◦C and−6◦C

which is not the case for the MSE cold storage system for which the inlet wa-

ter temperature will remain constant at−6◦C. Besides, no further information

could be obtained regarding the flow rates considered in these charge curves.

Under these conditions, it was difficult to validate a model with specific

charge and discharge scenarios. One can also abstract from the physical
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Figure 7.12: Typical charge curve of the cold storage system provided by the manufacturer.

details of the model since our primary focus is to study the water temper-

ature at the storage system inlet and outlet. Therefore, we can consider a

black box model that simulates the dynamics of the actual system without

explicitly considering its physical intricacies. A simplified Dymola model

could consist of a Heat Capacitor from the base Modelica library Model-

ica.Thermal.HeatTransfer.Components.HeatCapacitor. Its heat capacity would

be calculated based on the temperature of the glycoled water and it would be

conneced to the fluid representing the glycoled water through heat transfer.

Overall, modeling the heat and cold storage systems of this project can be

complex for various reasons. For the cold storage system, the lack of simula-

tion data together with the absence of operational data pose challenges since

the storage system is not yet functional. As for the heat storage system, the

complexity comes basically from it being an innovative demonstrator. It is

indeed the first of its kind and size installed in a real project. That is why it is

essential to have data from the initial commissioning tests of both thermal stor-

age systems to calibrate the simulation models or use data-driven approaches

to identify the systems dynamics.

At the time of writing this dissertation, experiments on the PCM heat storage
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system have just began, while tests on the cold storage system have not yet

started. Therefore, we implemented, as a temporary solution, simplified Dy-

mola models of these two storage systems to incorporate their dynamics into

the overall simulation model of the eco-district. These models are presented

in section 7.3.6. Once operational data from the real systems become avail-

able, these simplified models will be replaced with more accurate data-driven

models.

7.3.5 Model of the electrical systems

The electrical systems of the eco-district were aggregated and integrated in a

simplified way into the global simulation model. Their model encompasses

all power prodcution and consumption systems as well as electrical compo-

nents from all the previously presented systems. This entire setup represents

a model of electrical grid that was included in the comprehensive simulation

model in parallel with the heating and cooling network. All the produced and

consumed powers are summed at each time step to determine the amount of

power to be withdrawn or injected to The public utility grid.

the power consumption considered in this model includes:

* Consumption of the distribution pumps of the heating and cooling net-

work,

* Consumption of the pumps of the heat and cold storage systems,

* Consumption of all the elements of the heat and cold production system

( including electric consumption of the thermo-refrigerating heat pumps,

chillers, pumps, adiabatic aero-refrigerant tower, ect.),

* Electric load due to the battery charging,

* Electric loads of the buildings of the eco-district, aggregated at the sub-

station level.

When it comes to the electrical power generation systems considered, they

include:

* Power generation provided by the battery when discharging

* Power generation from the PV panels.
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Figure 7.13: Dymola model of the electric systems of the MSE eco-district.

The latter power generation item was modeled based on the construction of

time series of PV power generation based on historical data available for the

MSE project’s location on PVGIS [361]. Some details regarding this PV sys-

tem model are also provided in section B.9 of appendix B.

Finally, a Dymola model of the electric storage system is developed based on

a battery model available in the BuildingSystems library. The storage system

is considered as a single equivalent lithium-ion battery block. The charac-

teristics of this block were defined based on available data provided by the

manufacturer. This model enables outputting the state of charge of a battery

energy storage system with configurable characteristics for a given charge or

discharge input power. Additional details regarding this model of the electric-

ity storage system are provided in section B.10 of appendix B.

7.3.6 Model simplification and final sub-models

7.3.6.1 Simplified model of the heat and cold storage systems

Simplified models of the thermal storage systems were integrated between the

heat and cold production system and the distribution system. Even though this

implementation does not exactly reflect the real installation of these two stor-
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ages, it can be considered as equivalent given the simplifying assumptions.

The simplified model of the heat storage system involves adding or withdraw-

ing a given flow rate at the inlet of the heat and cold production system. This

flow rate then directly undergoes a positive or negative heat exchange, de-

pending on whether the storage system is being charged or discharge, and is

finally re-injected. This model also includes the calculation of the electric

power consumed by the storage pumps as well as the state of charge (SoC)

of the storage system, taking into account daily losses and various regulation

elements. More details on the heat storage model are presented in appendix

B.

For practical reasons, the cold storage model is grouped in the same Dymola

model as the heat storage system. It is modeled similarly to the heat storage

system, only considering an inverse charge and discharge operation in terms

of heat flow and allowing charge solely using the Positive-Negative chiller.

Similarly to the heat storage, further details on the model of the cold storage

systems are presented in appendix B section B.11. An overview of the inte-

gration of this simplified heat and cold storage model into the overall power

plant is presented in figure 7.14.

Figure 7.14: Dymola model of the heat and cold storage systems integrated within the power
plant.

7.3.6.2 Global aggregate model

The compete aggregate model of the MSE eco-district’s multi-energy systems

incorporates in a coherent way the four major blocks presented above, namely:
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* District heating and cooling network,

* District heating and cooling production system composed of the TRHP

system, chiller, positive-negative chiller, adiabatic aero-refrigerants and

geothermal system,

* Heat and cold storage systems,

* Electrical systems including PV generation, electrical load and battery

energy storage system.

This compartmentalized approach allowed for testing each of these compo-

nents individually before connecting them and validating the operation of the

overall system over a full year in the base scenario. Moreover, this approach

also meets standardization requirements since most of the models developed

were accompanied by documentation sheets that describe the modeling pro-

cess and hypothesis.

This simulation model, illustrated in figure 7.15 can thus be considered as a

preliminary version of the MSE digital twin since it still contains certain flaws

and some missing elements. Actually, in order to advance this digital twin

and bring it closer to the actual system, additional design as well as opera-

tional data are required. Some of these needed data include:

* Technical specifications of the positive-negative chiller,

* Operational characteristics of the concept of geothermal saturation,

* Technical specifications of the geothermal pumps,

* CoPs of each of the TRHPs of the heat and cold power plant for each

system configuration and load rate,

* Functional analysis, technical characteristics and experimental data of the

cold storage system,

* Complementary functional analysis, technical characteristics and experi-

mental data of the heat storage system as well as its associated pumps.

Thanks to the commissioning tests and experiments being currently carried on

mainly for the heat storage system, the TRHP system and the battery energy

storage system, most of these required data will soon be available and will

provide valuable insights and allow us to advance this simulation model and
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enhance its accuracy.

Figure 7.15: Overall aggregate Dymola model of the multi-energy system of the MSE eco-
district.

7.4 Disaggregate simulation model

7.4.1 Interoperability, portability and co-simulation

The previously described aggregated model is considered as the initial ver-

sion of the simulation model that we built for the MSE case study. It can thus

represent a simulation environment for the smart multi-energy management

framework developed in Python. To this end, it needs to be able to interface

with this framework and an efficient way to achieve this is by exporting the

model as a Functional Mock-up Unit (FMU). FMUs are self-contained en-
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tities that encapsulate a simulation model and foster interoperability across a

spectrum of platforms and tools such as Dymola, Matlab-Simulink, Catia, and

Adams. This capability is enabled by a standardized interface known as the

Functional Mock-up Interface (FMI), which guarantees the seamless integra-

tion and utilization of FMUs across various software environments.

The FMI standard offers two methods for exchanging FMUs between vari-

ous tools and platforms, namely Model-Exchange (ME) and Co-simulation

(CS), as depicted in Figure 7.16. Both model-exchange and co-simulation

can be employed for exporting an FMU from one tool and importing it into

another. Subsequently, the imported FMU can be simulated to determine the

evolution of the system state over time. However, the key difference between

model-exchange and co-simulation lies in how the importing tool progresses

the FMU forward in time during the simulation:

* Co-Simulation (CS): also referred to as cooperative simulation or coupled

system simulation [125], [362], co-simulation involves providing the nu-

merical solver by the exporting tool and embedding it within the FMU. In

this approach, the importing tool configures the inputs, instructs the FMU

to progress in time, and then retrieves the outputs.

* Model-Exchange (ME): in model-exchange, the numerical solver is sup-

plied by the importing tool. The FMU offers functions to establish the

states and inputs, as well as compute the state derivatives. The solver

within the importing tool determines the time steps and calculates the

state at the subsequent time step. Generally, if the model to export in-

volves a simulation time on the order of minutes or more, model-exchange

may pose challenges, and it is advisable to consider co-simulation instead

[363].

In this work, we opted for the use of co-simulation with the library FMPy

[365]. Note that other libraries such as PyFMI [366] can also be used for

loading FMUs in Python frameworks and interacting with them for both co-

simulation and model-exchange.

Various tests carried on the global model FMU in co-simulation revealed some

limitations and simulation issues related mainly to the default solver (Cvode)
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Figure 7.16: Usage of the FMI standard for Co-Simulation (CS) and Model-Exchange (ME)
(adapted from [364]).

and to the lack of flexibility due to the aggregated approach. This led us to

introduce a second version of the simulation model based on a disaggregate

approach. In fact, this second version follows the same methodology as the ag-

gregate simulation model previously presented and uses the same sub-system

models. However, these models were dissociated into elementary blocks and

adapted to allow them to work independently and to be individually exported

as separate FMUs. The resulting disaggregate version of the simulation model

is presented in the next section.

7.4.2 Components of the disaggregate model

The elementary blocks that form the new disaggregate version of the MSE

simulation model are as follows:

* Heat substations: a model that aggregates all the heat substations of the

eco-district,

* Cold substations: a model that aggregates all the cold substations of the

eco-district,

* Heat distribution system: a model of the distribution system of the dis-

trict heating and cooling network that carries the heat flow between sub-

stations and the heat and cold power plant,

* Cold distribution system: a model of the distribution system of the dis-
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trict heating and cooling network that carries the cold flow between sub-

stations and the heat and cold power plant,

* Heat and cold production system: a model that involves all the energy

systems of the heat and cold production plant (TRHPs, chiller, negative-

positive chiller,etc. ), except for the storage systems,

* A model for each of the storage systems: the heat storage system, the cold

storage system and the battery energy storage system,

* Electric grid: a model that incorporates all the electricity demand end

generation devices as well as the connection to the main utility grid.

These elementary blocks as well as a graphical representation of the connec-

tions between them are illustrated in figure 7.17. Each of these individual

models was exported as an FMU and dedicated inputs and outputs were de-

fined to establish connections between them. These coupling variables, i.e.

the input and output variables that the individual FMUs exchange during a

co-simulation, are summarized in table 7.2.

Figure 7.17: Components of the disaggregate model.

Overall, these individual elementary FMUs interact with each other during a

co-simulation time-step by exchanging coupling variables. They collectively

form the disaggregate complete model - a second version that is more ro-

bust and flexible- of the MSE simulation model that we integrated within the
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Table 7.2: Coupling variables between the FMUs of the disaggregate model.

Coupling variable
name

Description Source FMU
(output)

Target FMU
(input)

debit_chaud_ss Global flow rate of
heat sub-stations

(aggregated)

Heat substations
FMU

Heat distribution
system FMU

debit_froid_ss Global flow rate of
cold sub-stations

(aggregated)

Cold substations
FMU

Cold distribution
system FMU

P_distrib_ch Electric
consumption of the

heat distribution
system

Heat distribution
system FMU

Electric grid FMU

P_distrib_fr Electric
consumption of the

cold distribution
system

Cold distribution
system FMU

Electric grid FMU

debit_chaud_distrib Heat flow rate
distributed by the

DHCN

Heat distribution
system FMU

Heat storage
system FMU

debit_froid_distrib Cold flow rate
distributed by the

DHCN

Cold distribution
system FMU

Cold storage
system FMU

P_elec_stock_ch Electric
consumption of the

heat storage

Heat storage
system FMU

Electric grid FMU

debit_ch Heat flow rate Heat storage
system FMU

Heat and cold
production system

FMU
P_elec_stoch_fr electric

consumption of the
cold storage

Cold storage
system FMU

Electric grid FMU

debit_fr Cold flow rate Cold storage
system FMU

Heat and cold
production system

FMU
debit_GF_NP Cold flow rate to

be provided by the
negative-positive

chiller

Cold storage
system FMU

Heat and cold
production system

FMU

P_elec_sp electric
consumption of the

heat and cold
production system

Heat and cold
production system

FMU

Electric grid FMU

P_charge_batt Battery charge
power

Battery storage
system FMU

Electric grid FMU

P_decharge_batt Battery discharge
power

Battery storage
system FMU

Electric grid FMU
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Python framework and tested for co-simulation. This disaggregate version of

the simulation model paves the way for coming advanced versions. Indeed, as

soon as sufficient operational data for a given energy system of the MSE eco-

district become available, we can use, for instance, data-driven approaches to

identify more precisely the dynamics and behavior of this system. This way,

we can create a new and improved FMU of this component. If this new com-

ponent is closer to the real-system behaviour, the compartmentalized approach

we adopted in the disaggregate model will allow us to easily replace the old

component FMU by the new one. As we gather more data from different com-

ponents of the energy systems, we can thus update their corresponding FMUs

accordingly. This approach not only facilitates improving the accuracy of the

digital twin but also ensures that it remains up-to-date and reflective of the

current operational conditions in the eco-district.

7.5 Conclusion

This chapter presented the simulation tool that we developed for the multi-

energy systems of the Meridia Smart Energy eco-district. This digital twin

built using the Modelica language under the Dymola Software serves mainly

as a test-bed for the DRL-based smart multi-energy management systems de-

veloped in this work. Indeed, this digital twin is converted to an FMU and

integrated into the Python-based framework to play the role of the environ-

ment in the DRL-based algorithms by means of co-simulation. Using the

developed DRL-based framework for the optimal energy management of the

MSE digital twin constitutes the second case study of our research work and

its simulation results are presented in the next chapter.



Chapter 8
The DRL approach applied on the

Meridia Smart Energy case study

Résumé

Ce chapitre vise l’application de l’approche basée sur l’apprentissage par

renforcement profond (DRL) proposée sur le jumeau numérique que nous

avons développé pour le système multi-énergie intelligent MSE, tel que dé-

taillé dans les chapitres précédents. Ce jumeau numérique est encapsulé

sous la forme d’une Unité de Modélisation Fonctionnelle (FMU) et intégré

sous la forme d’environnement Open AI Gym. Cette transformation permet

l’intégration du jumeau numérique en tant qu’environnement au sein du cadre

DRL développé sous Python. L’agent DRL interagit avec le FMU en prenant

des actions de pilotage sur les trois systèmes de stockage d’énergie et en

recevant des informations sur l’état et le signal de récompense, apprenant

ainsi une stratégie optimale de gestion multi-énergies par essais et erreurs.

Dans ce chapitre, on présente d’abord la méthodologie et l’architecture du

cadre développé, puis on discute des résultats de simulations où on évalue

l’efficacité de l’agent DRL dans le pilotage de systèmes multi-énergétiques

intelligents complexes et dynamiques.

237



8.1. Introduction 238

8.1 Introduction

This chapter focuses on the application of the DRL-based approach on the

digital twin that we built for the MSE smart multi-energy system, as detailed

in the preceding chapters. The digital twin is encapsulated as a Functional

Mock-up Unit (FMU) and wrapped as an Open AI Gym environment. This

transformative process allows the integration of the digital twin as an environ-

ment within the Python-based DRL framework. The DRL agent interacts with

the FMU by taking managing actions on the three energy storage systems and

receiving state and reward feedback from it and hence learning an optimal en-

ergy management strategy through trial and error. Within this chapter, we first

elucidate the methodology and architecture of the framework developed and

then discuss the simulation results where we evaluate the effectiveness of the

DRL agent in operating complex and dynamic smart multi-energy systems.

8.2 Methodology and framework setup

The case-study that we consider in this chapter, referred to as case-study 2,

is the disaggregate digital twin of the MSE smart-energy system presented

in the preceding chapter. As detailed previously, this model is composed

of nine elementary blocks, namely: heat substations, heat distribution sys-

tems, a heat storage system, cold substations, cold distribution systems, a cold

storage system, a heat and cold production system, a battery storage system

and an electricity grid. Each of these individual models is exported as a co-

simulation FMU, and coupling input and output variables allow interaction

between them. On the other hand, the interaction of the DRL agent with these

simulation models within the Python framework is orchestrated through the

use of the FMPy library. The architecture of the framework created to ensure

this interaction is illustrated in Figure 8.1 and the architecture of the tool-chain

used is presented in Figure 8.2. Basically, at each step of the training or vali-

dation cycle, the DRL agent provides its selected actions to the FMUs. These

actions are applied to the digital twin using the fmu.setReal() function on the

corresponding FMU. All the FMUs are then orchestrated and simulated for
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one time step using the function fmu.doStep() and their subsequent updated

state can be accessed through the fmu.getReal() function. Hence, an obser-

vation of the state of the digital twin can be provided as feedback to the DRL

agent and allows computing the reward signal and moving to the next train-

ing or validation step. This observation of the state contains information like

charge or discharge power and state of charge of the heat storage, cold storage

and battery storage systems, electric, heating , domestic hot water and cooling

demands of the buildings, PV generation in the district, electric consumption

of the heat and cold production system and network distribution system, heat

and cold power produced by the power plant, electricity prices, outdoor tem-

perature and date time information.

Figure 8.1: Architecture of the proposed framework.
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Figure 8.2: Architecture of the tool-chain used in the proposed framework (adapted from [37]).

8.3 The benchmark solutions

Unlike the case-study 1 where an MPC-based controller embedding a Linear

Programming (LP) optimization problem proved effective due to the model’s

simplicity, the same approach could not be used as a benchmark in this case-

study 2 due to significantly increased complexity and detail of the digital twin.

Actually, trying to translate the problem into an LP (or a MILP) would in-

evitably lead to a significant loss of precision rendering the LMPC approach

inadequate. As an alternative, a setup was attempted where MPC was used,

but instead of an LP model, a Genetic Algorithm (GA) [367] was embedded

to perform searches by simulating the digital twin and minimizing the out-

put cost function resulting from the simulations. Unfortunately, the tests with

this setup yielded inconclusive results. Despite multiple attempts, the GA ap-

proach failed to provide outcomes, primarily due to runtime errors. Efforts to

mitigate this issue by extending the function timeout in the GA library [368]

that we used proved ineffective. The reasons behind this behavior, whether

attributed to the GA library used, the parameters we tested for the GA algo-

rithm, or the suitability of the GA for this context, remained unexplored due

to the excessive computational time required by the GA for this digital twin-

based case-study. Further investigation is needed to determine the root cause

and potential solutions for this computational challenge.

The alternative benchmark strategy that we used in this case study relies on

a rule-based approach commonly employed in the industry for the manage-



8.4. Exogenous data used 241

ment of energy storage systems. This strategy aims at optimizing cost sav-

ings by taking advantage from fluctuating energy prices throughout the day.

The main principle of this rule-based approach involves charging the energy

storage systems during periods of low prices, typically observed at night and

during off-peak hours, often around 2 and 3 PM, and discharging the storage

systems during periods of higher prices, notably in the morning around 9 AM,

mid-day, and in the evening around 7 PM, based on the price signal used in

this case study. This rule-based strategy aligns with prevailing industry prac-

tices, leveraging market price fluctuations to minimize energy consumption

costs.

8.4 Exogenous data used

The data used while training or testing the DRL agent are classified into two

categories that account for the dual deterministic-stochastic nature of the smart

energy systems [268]:

* Exogenous data (fixed inputs): they involve variables that stem from ex-

ternal factors to the dynamics of the smart energy system. This includes

renewable energy generation, outdoor temperatures, electricity prices, as

well as electric, heating and cooling loads of the buildings that are largely

influenced by meteorological and consumer behavior factors. Hence,

these data embody the stochastic aspect of the smart energy system. Since

they are independant of the system’s energy dynamics, they are supplied

to the digital twin and to the DRL agent across predefined scenarios, and

are divided into distinct sets for training, validation and testing cycles to

prevent over-fitting.

* Dynamically adapted data: these data embody the deterministic aspect

of the smart energy system. They include information such as the state

of charge of the various storage systems, the output of the heat and cold

power plant and the heat and cold flow in different locations of the dis-

trict heating and cooling network. They are called "dynamically-adaped"

data because their values dynamically adapt in response to actions taken.

Thus, they can not be provided as pre-defined scenarios and are rather
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computed based on the dynamic response of the digital twin to actions

selected by the DRL agent.

In practise, exogenous data used for simulations in this work are derived from

estimations using various tools. These estimations as well as the tools used for

each type of exogenous data will be presented in this section. Nevertheless, as

the development of the real-life MSE eco-district progresses, these data will

be gradually replaced with real-time as well as historical data sourced from

the MSE project’s Datalake. This Datalake is supplied with data coming from

the sensors deployed within the eco-district’s infrastructure.

8.4.1 Heating and cooling demands

In order to generate realistic heating and cooling load profiles that are repre-

sentative of specific criteria like the MSE building’s types, characteristics, oc-

cupants and local weather, we propose the use of TEASER (Tool for Energy

Analysis and Simulation for Efficient Retrofit) [369]. TEASER is an-open

source tool developed by researchers from the RWTH Aachen University. It

allows the generation of building archetypes with limited input requirements

as well as the export of individual simulation models for various Modelica

libraries. It provides hence an alternative to more complex building models

generated by more complete Dynamic Thermal Simulation (DTS) software

that require more inputs such as Compfie-Pleiade [370]. The methodology

and package structure of the TEASER tool are provided by Remmen et al.

[371]. In this work, we used the Aixlib [372] library within the Modelica

language, together with the TEASER package to generate the heat and cold

load profiles of the MSE eco-district’s buildings. To generate Aixlib building

models, we supplied the TEASER tool with buildings’ information including

orientation, number of floors, height of floors, window areas, wall, roof and

intermediate floor areas and intended uses. Most of these information came

from available documents of the MSE project including Revit models of the

buildings, Autodesk plans, Dynamic Thermal Simulation reports, energy per-

formance diagnostics, a well as Google Earth [373]. Finally, in order to val-

idate the models developed, we checked that the obtained total heat and cold
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consumption are in line with the reference values provided in the initial devel-

opment program realised by Idex, specifically, a total annual heating demand

of 9 MWh and an annual cooling demand of 10.8 MWh.

8.4.2 Domestic hot water demands

Domestic Hot Water (DHW) demands are estimated for each individual sub-

station and injected as inputs to the digital twin of the district heating and

cooling network together with the heating and cooling demands. The devel-

opment plan of the MSE project provided by Idex outlines that substations

of the network do not all have integrated DHW needs. Thus, we evaluate

the hourly DHW requirements only for the valid substations. To do so, we

propose the use of the LoadProfileGenerator tool developed by Pflugradt et

al. [374]. This open source software enables the generation of household

models based on the assignment of weekly activities to the occupants with

specific ages, gender and profiles. Each activity is associated with an energy

vector among heating, cooling and electricity. We selected specific profiles

on the LoadProfileGenerator tool based on building types including students

residence, social housing, families with or without children, couples work-

ing mostly from home or not, etc. The output DHW requirements of house-

holds were then aggregated to obtain the total DHW for each building, with

hourly time steps. The aggregation of these time series consistently revealed

two main demand peaks, one occurring in the morning and the other in the

evening at around 7 PM. We also checked that the annual DHW requirements

per person per household align with the french average of 80 liters per person,

with a variation of around ±35 liters, as outlined by the ADEME in [375]. A

visualisation of the obtained heat and cold flow demands evolution through-

out the year, including heating, cooling and DHW demands, is presented in

Figures 8.3 and 8.4.
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Figure 8.3: Visualization of annual heat flow dynamics in the district heating and cooling network
substations (aggregated for all substations, including space heating and DHW demands).

Figure 8.4: Visualization of annual cold flow dynamics in the district heating and cooling network
substations (aggregated for all substations).

8.4.3 Electric load demands, PV power generation and elec-

tricity prices

To generate annual electric load time series, excluding heating and cooling re-

lated consumption, we considered distinct methodologies for office buildings

and for residential buildings. For office buildings, electric loads are mainly

driven by computer work-stations, lighting and auxiliary devices. The annual

consumption of a computer work-station ranges from 120 to 250 kWh per

year. We used hourly consumption data for screens and central processing

units provided by the ADEME-ENERTECH study [376], and we aggregated

these data to obtain average daily consumption per work-station, taking into

account an annual holiday period of five weeks. The same study was also used

to estimate lighting electric consumption. Thus, the total electric consumption
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profile of an office building is obtained by summing work-station and lighting

consumption.

For residential buildings, electric consumption is mainly driven by lighting,

kitchen appliances (including oven, microwave, stovetop, dishwasher, refrig-

erator, etc. ) washing-machines and various other power-consuming devices

like computers, TVs and mobile phones. We generated hourly electrical load

profiles for buildings by selecting specific devices and estimating hourly con-

sumption values for each equipment type based on average annual consump-

tion data provided by RTE [377]. Daily profiles for these equipment were

established by selecting their weekly usage frequency and randomly select-

ing their days of usage. Similarly to office buildings, we considered an annual

holiday period of five weeks where only refrigerators’ consumption is present.

Finally, we obtained the electrical load time series for each building by ag-

gregating the consumption profile of the different households that it involves

based on its type.

Regarding the PV power generation, time series were generated based on his-

torical data available in PVGIS for the location of the MSE eco-district, as

explained in the preceding Chapter 7 and in Appendix B.

For the hourly electricity price signal, we explored various price structures

to ensure that the DRL-based approach is effective across various price sce-

narios, since they directly influence the optimization objective in our energy

consumption cost minimization problem. The simulation results presented in

the following section correspond to a generated price structure based on peak

and off-peak hours. Variations on both the timing and pricing of these peak

and off-peak periods are introduced to bring stochasticity into the price struc-

ture.

8.5 Simulation results

8.5.1 Training and parameter tuning

Similarly to the approach adopted in case-study 1, the DDPG agent was trained

in this digital twin-based case-study 2 through a series of learning episodes of
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one-year simulation, with hourly time-steps. The training objective was to ac-

quire an effective operational strategy for the heat, cold, and battery energy

storage systems, that allows minimization of the overall energy consumption

costs within the smart energy system. The DRL agent successfully learnt a

management strategy for the storage systems that surpassed the performance

of the rule-based benchmark strategy, resulting in a noteworthy 5% reduction

in annual energy consumption costs. The learning curve of the DDPG agent,

depicted in Figure 8.5, illustrates the progression of the total reward signal

throughout the learning phase. Once again, rewards were normalized with

reference to those generated by the benchmark approach to facilitate a direct

and meaningful comparison between the two approaches.

In Figure 8.6, we depict the penalty component of the reward signal, triggered

when the agent selects actions that could breach the constraints of a storage

system. This visual representation illustrates that the penalty component of the

reward steadily converges to zero, meaning that the agent successfully learnt

to navigate and manage the boundary constraints by the end of the training

phase. Additionally, Figure 8.7 outlines the trajectory of the energy consump-

tion cost component within the reward signal, demonstrating the DRL’s supe-

riority over the rule-based benchmark approach.

It should be noted that a more streamlined hyper-parameter tuning was con-

ducted in this case-study given the prolonged training time of the DDPG agent

combined with the Dymola licensing restrictions allowing one simulation at a

time for each license (we own two licenses). Actually, a training episode of

case-study 2 takes an average 5 minutes, whereas a learning episode of case-

study 1 takes around 50 seconds. This computational time difference is mainly

due to the interaction and simulation time of each of the FMUs for each hourly

time-step of the training episode. That is why, preliminary hyper-parameter

adjustments were carried with a particular focus on the most influential fac-

tors, primarily the exploration noise. We observed that, consistently with the

results of case-study 1, normal action noise yielded slightly better results than

Ornstein uhlenbeck action noise and parameter noise.

Remarkably, we obtained the simulation results presented in Figures 8.5, 8.6
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and 8.7 by applying the optimal parameters obtained from case-study 1 and we

found out that they performed effectively in this more complex case-study 2.

This observation is in line with the conclusions drawn by Ceusters et al. [37]

which suggest that the optimal hyper-parameters of a DRL agent are mainly

task-specific and not entirely environment-specific. Nonetheless, further in-

vestigations need to be performed in future research to validate this relation-

ship.

Figure 8.5: Learning curve of the DDPG agent for the case-study 2 environment: evolution of
the total reward signal and the average reward over 100 rolling episodes throughout a training a
cycle.
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Figure 8.6: Learning curve of the DDPG agent for the case-study 2 environment: evolution of
the penalty component of the reward signal and the average penalty over 100 rolling episodes
throughout a training a cycle.

Figure 8.7: Learning curve of the DDPG agent: evolution of the cost component of the reward
signal, as well as its average over a rolling horizon of 100 episodes, throughout the training cycle,
and comparison with the cost obtained by the benchmark approach (presented by the dotted line
in green).

8.5.2 Validation results

Once the DRL agent trained, we validate its acquired approach by applying

it on the digital twin, using a distinct dataset for the exogenous data. The
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simulation results presented in the following figures illustrate the strategies

yielded by the DRL agent and by the predefined rule-based strategy for one

randomly selected winter week and one randomly selected summer week. In

each case, we present the evolution of the difference between normalized cu-

mulative costs of the DRL-based strategy and the rule-based strategy through-

out the week. In both cases, this evolution showed the superior performance

of the DRL-based strategy with respect to the rule-based one. We also show

a visualization of the state of charge of each of the storage systems, the ag-

gregated heat and cold flow demand of the DHCN’s substations, the heat and

cold produced by the power plant, as well as the PV generation, electric loads

of the buildings and the overall power withdrawn from the public utility grid.

Visualization of the DRL strategy for a winter week

Figure 8.8 presents the evolution of the difference between normalized cumu-

lative costs of the DRL-based strategy and the rule-based strategy throughout

the week, for one random winter week.

Figure 8.8: Difference between normalized cumulative costs over one random week of the winter
obtained by the DRL agent and the benchmark approach.

Figures 8.9, 8.10 and 8.11 show the strategy adopted by the trained DRL agent

for the selected winter week: Figures 8.9 shows the evolution of the state of
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charge of each of the storage systems, as well as the electricity prices sig-

nal. Figure8.10 presents the aggregated heat flow demand of the DHCN’s

substations and the heat flow produced by the power plant, and Figure 8.11

shows the PV generation, electric loads of the buildings and the overall power

withdrawn from the public utility grid denoted Pgrid. The latter value is com-

puted based on the total power demand of the district, including the electric

power consumption of the thermo-refrigerating heat pumps, the electric power

consumption of the heat and cold distribution system’s pumps, as well as the

auxiliary electric power consumption heat and cold storage systems.

Figure 8.9: Visualization of the state of charge of the heat storage, cold storage and battery
storage systems following the operational strategy of the DRL agent, together with the electricity
price signal for a randomly selected winter week.

Figure 8.10: Visualization of the state of charge of the heat storage system, together with the
aggregated heat flow demand of the DHCN’s substations and the heat flow provided by the power
plant for the DRL-based strategy.
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Figure 8.11: Visualization of the PV power generation, the aggregated buildings’ electric loads
and the overall power withdrawn from the public utility grid for the DRL-based strategy.

Visualization of the rule-based strategy for the same winter week

Figures 8.12, 8.13 and 8.14 show the strategy obtained by applying the rule-

based benchmark strategy for same the selected winter week.

Figure 8.12: Visualization of the state of charge of the heat storage, cold storage and battery
storage systems following the rule-based strategy, together with the electricity price signal for the
same winter week.
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Figure 8.13: Visualization of the state of charge of the heat storage system, together with the
aggregated heat flow demand of the DHCN’s substations and the heat flow provided by the power
plant for the rule-based strategy.

Figure 8.14: Visualization of the PV power generation, the aggregated buildings’ electric loads
and the overall power withdrawn from the public utility grid for the rule-based strategy.

Visualization of the DRL strategy for a summer week

Figure 8.15 presents the evolution of the difference between normalized cumu-

lative costs of the DRL-based strategy and the rule-based strategy throughout

the week, for one random summer week.
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Figure 8.15: Difference between normalized cumulative costs over one random week of the
summer obtained by the DRL agent and the benchmark approach.

Figures 8.16, 8.17, 8.18 and 8.19 show the strategy adopted by the trained

DRL agent for the selected summer week: Figure 8.16 shows the evolution

of the state of charge of each of the storage systems, as well as the electricity

prices signal. Figure 8.17 presents the aggregated cold flow demand of the

DHCN’s substations and the heat cold produced by the power plant, Figure

8.18 presents the aggregated heat flow demand of the DHCN’s substations

and the heat flow produced by the power plant, and Figure 8.19 shows the PV

generation, electric loads of the buildings and the overall power withdrawn

from the public utility grid denoted Pgrid.
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Figure 8.16: Visualization of the state of charge of the heat storage, cold storage and battery
storage systems following the operational strategy of the DRL agent, together with the electricity
price signal for a randomly selected summer week.

Figure 8.17: Visualization of the state of charge of the cold storage system, together with the
aggregated cold flow demand of the DHCN’s substations and the cold flow provided by the power
plant for the DRL-based strategy.
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Figure 8.18: Visualization of the state of charge of the heat storage system, together with the
aggregated heat flow demand of the DHCN’s substations and the heat flow provided by the power
plant for the DRL-based strategy.

Figure 8.19: Visualization of the PV power generation, the aggregated buildings’ electric loads
and the overall power withdrawn from the public utility grid for the DRL-based strategy.

Visualization of the rule-based strategy for the same summer week

Figures 8.20, 8.21, 8.22 and 8.23 show the strategy obtained by applying the

rule-based benchmark strategy for same the selected summer week.
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Figure 8.20: Visualization of the state of charge of the heat storage, cold storage and battery
storage systems following the rule-based strategy, together with the electricity price signal for the
same summer week.

Figure 8.21: Visualization of the state of charge of the cold storage system, together with the
aggregated cold flow demand of the DHCN’s substations and the cold flow provided by the power
plant for the rule-based strategy, over the same summer week.
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Figure 8.22: Visualization of the state of charge of the heat storage system, together with the
aggregated heat flow demand of the DHCN’s substations and the heat flow provided by the power
plant for the rule-based strategy, over the same summer week.

Figure 8.23: Visualization of the PV power generation, the aggregated buildings’ electric loads
and the overall power withdrawn from the public utility grid for the rule-based strategy over the
same summer week.

A notable distinction between the energy management strategies obtained for

the winter and for the summer periods basically lies in the utilization of the

different energy storage systems. While during winter, we observe a deploy-

ment of the battery and heat storage systems, with limited to no utilization of

the cold storage, the three storage systems come into play during winter. This

seasonal variation can be attributed to the absence of cooling demand during

winter months. Conversely, in the summer time, the cooling demand is cou-

pled with a heating demand mainly for domestic hot water.

This intricate interplay between the three storage systems demonstrates the

adaptability of the DRL-based approach in learning to manage multi-energy

systems according to seasonal requirements and prices signals. It is worth not-
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ing that the DRL agent successfully learns these dynamic strategies without

being provided with any prior guidance regarding the actions to take. This

emphasizes the capability of the DRL agent to adapt and make informed de-

cisions based on evolving conditions and system requirements.

Overall, the results obtained from applying the proposed DRL-based approach

on the digital twin-based case study, and benchmarking it with a rule-based

approach, corroborate the results from case-study 1 presented in Chapter 5

suggesting that the DRL approach holds a significant promise for the opti-

mized energy management in smart multi-energy systems. Particularly, the

application of this approach on the more complex setting of case-study 2 fur-

ther showcases the adaptability of DRL and its potential in addressing the

intricacies of real-world smart energy systems’ optimization challenges.

8.6 Conclusion

In this chapter, we implemented the proposed DRL-based approach on the

MSE digital twin-based case study. The strategy learnt by the DDPG agent

aims at simultaneously operating the storage systems in a way that minimizes

the energy consumption costs within the smart multi-energy system. This ac-

quired strategy resulted in cost savings of at least 5% when compared to a

predefined rule-based strategy.

Future research works pertaining to this case-study will focus on reducing the

simulation time of the digital twin. This effort will not only diminish the DRL

agent’s training duration and therefore facilitate a more comprehensive pa-

rameter tuning, but it will also facilitate the identification and execution of an

optimization-based benchmark approach that closely approximates the theo-

retical optimum, instead of the rule-based approach.

Further prospective work within this case-study will also expand the scope

of the optimization objective to include intricate and multi-objective applica-

tions such as peak shaving and demand response, together with energy cost

minimization.



General conclusion and perspectives

Summary and contributions

This PhD research work proposes the application of Deep Reinforcement

Learning to address the problem of optimally operating smart multi-energy

systems: a DRL-based framework has been developed and applied on two

simulated smart multi-energy system case-studies. Chapter 1 of this manuscript

provided an overview of the smart energy systems concept. It defined key con-

cepts such as smart electrical grids, district heating and cooling systems and

smart thermal grids and set the stage for the broader emerging concepts of

smart multi-energy grids and smart (multi) energy systems. Then, chapter 2

sheds light on the optimal control and energy management in smart energy

systems and focuses on optimization techniques and established methodolo-

gies that can be used to address this problem like Model Predictive Control.

These optimization-based techniques are classified into three categories: exact

methods, approximate methods and hybrid methods. While exact mathemat-

ical methods often guarantee the exact optimum, they generally suffer from

costly optimization procedures in terms of computational requirement. They

are thus hardly adequate to solve real-time optimal control of complex sys-

tems. On the other hand, an RL agent, once it learnt how to act, is able to take

actions within a few milliseconds. Besides, most of model-based approaches,

such as MPC, require accurate system models and predictors as well as ap-

propriate solvers. This intricate model development demands domain exper-

tise and requires a continual adaptation and a re-design of these components

259
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whenever a change is made to the architecture or scale of the smart energy

system at hand. These limitation may significantly restrict the adaptability

and scalability of these methods in complex and dynamically evolving sys-

tems. In response to these challenges, we propose a paradigm shift towards

data-based and model-free approaches: we introduce a deep reinforcement

learning based approach for the optimized energy management in smart en-

ergy systems and evaluate its performance through comparison with an MPC

controller. In chapter 3 we propose a comprehensive examination of the RL

paradigm as well as its combination with deep neural networks for function

approximation by explaining its principle and distinctive features and tracing

its historical evolution from its earliest pioneers to its contemporary academic

and industrial applications. In chapter 4, we propose an exploration of the

MPC approach from theoretical and practical points of view. Following this,

we simultaneously benchmark DRL and MPC approaches through a simu-

lated smart energy systems case study featuring three storage systems and

drawn from the MSE real-life smart energy system. The problem of managing

these three storage systems while minimizing total energy consumption costs

is formulated both as a Markov Decision Process and as a linear programming

optimization problem. The first formulation allows solving the problem using

an RL-based approach and the latter is embedded in an MPC controller. The

DRL framework developed is based on an actor-critic architecture, namely

a DDPG algorithm, that combines the advantages of both value-based and

policy-based RL algorithms and allows dealing with continuous action spaces.

On the other hand, the MPC framework developed is based on a linear MPC in

order to align with the prevailing practices, despite the potential for superior

performance of a non linear MPC. Simulation results presented in chapter 5

showed that the trained DRL agent performs close (within 98%) to the theoret-

ical MPC controller (that was provided with perfect forecasts) and performs

even better than some variants of the MPC controller that involve more real-

istic forecasts. To sum up, the first part of this thesis represented one of the

first studies in the literature to simultaneously benchmark DRL and MPC on

smart multi-energy system case studies and suggests that DRL is a promising
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approach for the optimal energy management in smart multi-energy systems.

The second part of this thesis is devoted to validating the proposed DRL-based

approach on the Meridia smart Energy (MSE) case-study: chapter 6 presents

the MSE smart multi-energy system and details the various energy systems

that it involves and chapter 7 introduces the digital twin that we developed

under Dymola to better account for the dynamics of the energy systems of

the MSE eco-district. This digital twin is exported as a Functional Mock-up

unit (FMU) and plays the role of the environment that the DRL agent inter-

acts with during the training, validation and test processes. Finally, simulation

results of applying the DRL approach to the MSE digital twin are presented

in chapter 8 and showcased that the DRL agent succeeds in learning a near-

optimal energy management strategy and outperforms widely used rule-based

approaches.

This work paved the way for applying the DRL-based approach on the real-

world MSE smart energy system by seamlessly transitioning from simulation

to reality. Indeed, future works will include training the DRL agent on other

optimization objectives that integrate peak shaving, load shedding as well as

participation in various ancillary service and energy markets, before focusing

on the learning transfer from simulated environments to the real-world MSE

systems and data. This involves further investigating the generalizability of

the DRL agent, i.e. its ability to leverage the knowledge that it learnt on given

environments to perform well in a wider range of environments and situations.

Challenges, limitations and future works

While this PhD research work presented a successful implementation of a

DRL-based approach for the optimal energy management in smart multi-energy

system case studies, it also revealed some challenges and limitations that re-

quire further refinement and investigation in future research works. These

challenges and shortcomings are briefly discussed below.
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Constraint handling and learning legal actions

One difficulty that is encountered by the DRL agent during training is learning

legal actions and effectively handling system constraints. A specific reward

shaping, such as the integration of hand-crafted penalty components in the

reward signal, might drive the RL agent towards learning legal actions while

also speeding up the training time, since the agent would spend less training

steps in exploring actions that do not yield a change of the state or reward.

Nevertheless, achieving a robust constraint handling remains a quite complex

task. That is why future research should explore advanced approaches for

constraint handling such as constrained reinforcement learning to improve the

DRL agent’s ability to adhere to legal actions and system constraints.

Variability of training results and catastrophic forgetting

Training a DRL agent also often involves a variability of the results, which can

be traced back, for instance, to the stochastic nature of the exploration noises.

Moreover, the problem of catastrophic forgetting also presents a significant

challenge while training a DRL Agent. The term catastrophic forgetting is

used to refer to the tendency of an agent to forget knowledge that has pre-

viously been learned during training, when adapting to new information and

situations [378]. Thus, future research efforts should also focus on mitigating

variability and catastrophic forgetting issues, for example by developing more

stable exploration and training strategies.

Challenges of real-world applications of RL

Even though the DRL approach has proven its success on a bunch of appli-

cations, only a few real world applications are beginning to show. Actually,

the transition of DRL from simulation environments to extensive real-world

deployment is not trivial [379] and is still limited by several challenges. This

idea was outlined by Dulac-Arnold et al. [380] who identified nine indepen-

dent challenges that limit common deployment of RL in real-world systems

and formalized them in the context of Markov Decision Processes. The au-

thors stated that an approach that addresses these nine challenges would be
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ready to be widely implemented in real-world systems.

Among the challenges of applying Reinforcement Learning approaches in

real-world problems: the RL agent often does not have the ability to freely in-

teract with the real environment mainly because of safety and/or cost reasons.

In such situations, the agent may not have access to the actual environment

but only to a simulation of it as it was the case for the present work. One of

the main challenges in this kind of problems is that one has to deal with what

is called the reality gap between the simulator and the true environment as

denoted by [19]. In order to reduce this gap, one can first aim to make the dig-

ital twin as accurate as possible. Second, the Deep Reinforcement Learning

algorithm can be designed in a way that aims at improving generalizability.

In fact, despite the numerous recent successful applications of RL, general-

ization across different unseen scenarios remains one of its fundamental chal-

lenges for real-life applications [381]. These challenges can be mitigated for

instance by incorporating transfer learning techniques [382], [383] in order

to seamlessly adapt to real-world scenarios. Besides, increasing the diversity

and the size of the training set is known to improve the generalization of RL

agents.

Training time and hyper-parameter tuning

The training phases of a DRL agent are generally time-consuming. For in-

stance, a single training episode for case study 2 in our study requires an

average of 5 minutes to complete. Considering that a training cycle involves

thousands of episodes, this extensive training time can be challenging in the

research and development process. In fact, the extended training time itself

is typically not problematic once the initial training phase is completed, since

the DRL agent, once trained, is capable of taking actions within a matter of

milliseconds. However, the lengthy training duration poses challenges for

initial experimentation and comprehensive hyper-parameter tuning where the

ability to iterate through various settings can be crucial for fine-tuning and op-

timizing the agent. Typically, due the prolonged training duration of the DRL

algorithm, we opted for a hyper-parameter tuning that relies on varying one
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parameter at a time. Yet, we believe that additional and exhaustive parameter-

tuning may further enhance the DRL agent’s performance and generalizabil-

ity. That is why, future research works should also investigate methods to

reduce the training duration, potentially through parallelization. This option

could not be investigated in our study due to inherent limitations (our current

implementation of the DRL agent does not support parallelization) and due

to licensing constraints of the Dymola software. Therefore, alternative ap-

proaches to build the digital twin should as well be considered in future works

such as developing surrogate models derived from the Dymola digital twin or

building data-driven models using historical data from the actual systems.

Other future research directions

The following points outline other potential research directions that aim at

enhancing the versatility and applicability of the DRL approach for the opti-

mization of smart multi-energy systems:

* Integrating additional optimization objectives: future research works will

extend the considered smart multi-energy system use-cases to integrate a

wider spectrum of optimization objectives, beyond energy cost minimiza-

tion. Typically, for the MSE case-study, future use-cases would include

collective self-consumption within the eco-district and participation in

various markets such as frequency regulation and demand response pro-

grams. Besides, it is also crucial to account for the aging processes within

the different storage systems while dealing with their energy management

in order to ensure their long-term efficiency and performance.

* Expanding the scope of the smart energy systems considered: as the MSE

eco-district evolves, it will incorporate further energy systems and func-

tionalities such as electric vehicles, smart charging, Vehicle-to-grid sys-

tems, electric vehicle charging stations management, optimization of the

district’s public lighting and even building-level demand response, etc.

Thus, including the management of these additional flexibility poten-

tials in the proposed DRL-based energy management systems becomes

increasingly relevant and emerges as a promising avenue for future re-
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search.

* Exploring application on similar smart energy systems: other eco-districts,

heating and cooling networks and smart energy systems managed by Idex

offer opportunities for extending the methodology developed in this work,

evaluating its performance and assessing its generalization capabilities

on diverse environments. This future research would provide valuable

insights for a broader applicability of the DRL-based approach.

* Integrating other energy vectors: while the current research work has pri-

marily focused on the integration and management of electricity, heating

and cooling systems, it is worth noting that other energy vectors such as

gas and hydrogen are integral components of future comprehensive smart

multi-energy systems. While their integration in the DRL-based smart

multi-energy management approach was beyond the scope of the present

research work, this holds a great potential for future research.

* Exploring alternative DRL and MPC variants: future research can explore

alternative DRL algorithms such as Twin Delayed Deep Deterministic

Policy Gradient (TD3), Proximal Policy Optimization (PPO) and Soft

Actor Critic (SAC) in order to evaluate and enhance the robustness of the

proposed approach. Furthermore, benchmarking against other variants

of MPC like Nonlinear MPC (NMPC) and stochastic MPC to consider

forecast uncertainties could also be considered.

* Investigating imitative Learning: imitative or imitation learning involves

using expert-generated actions as a form to guide the reinforcement learn-

ing agent during the training phase. This can help the RL agent learn and

converge faster and more effectively by leveraging the knowledge intro-

duced by the expert’s actions. In future research work, we can for instance

use optimized control actions generated by a Model Predictive Controller

as expert demonstrations for training the DRL agents.

These suggested future research directions extend the application of the DRL-

based multi-energy management in smart energy systems. Exploring these re-

search directions holds the potential to address a wider range of optimization

objectives, enhance the adaptability of the proposed methodology to evolving
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energy landscapes and improve its effectiveness in real-world scenarios. As

these areas continue to evolve, they contribute to the advancement of sustain-

able, cost-effective, and resilient energy management solutions for the future.
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Appendix A
Technical details of the energy

systems in the Meridia Smart Energy

case study

A.1 Thermo-refrigerating heat pumps

A Thermo-refrigerating Heat pump is denoted by TRHP and tandem of TRHPs

refers to a pair of TRHPs. The technical specifications of the four TRHPs of

the MSE power plant are given in table A.1.

Table A.1: Technical specifications of the geothermal TRHPs of the MSE eco-district.

Parameter Unit TRHPA TRHPB TRHPC TRHPD Total
Load % 100 100 100 100 100
Cooling
capacity

kW 1259.7 1381.8 1105.8 1178.9 4926.2

Heating
capacity

kW 1520.3 1698.8 1458.5 1600.8 6278.4

Share in
the
tandem
(AB or
CD)

% 47 53 48 52

Share in
the
A-B-C-D
series
configu-
ration

% 24 27 23 25
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A.2 P&ID of the heating and cooling power plant

A simplified P&ID of the MSE heating and cooling power plant is given in

figure A.1.

Figure A.1: Simplified process and instrumentation diagram of the MSE eco-district heating and
cooling power plant.

A.3 Heating and cooling sub-stations

A schematic overview of the MSE district heating and cooling network illus-

trating its different sub-stations is given in figure A.2.
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Figure A.2: Schematic overview of the MSE district heating and cooling network illustrating
locations of the sub-stations and their heating power (denoted Pch), domestic water heating power
(denoted PECS) and cooling power (denoted Pfr).



Appendix B
Documentation sheets for the

Dymola sub-models of the MSE

simulation model

The following appendices contain documentation sheets for the sub-models

developed in this study and that once connected together allowed building a

simulation model for the MSE eco-district. We would like to bring to your at-

tention that these documentation sheets are presented in French. In fact, these

documents are part of a set of deliverables and reports that were submitted

to the MSE project funding authority which requires all project reports to be

submitted in French. Regarding the time that would be required for translating

these extensive documentation sheets from french to english, we have opted

to include them in their original language in these appendices.

B.1 Heat substation with valve
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B.2 Cold substation with valve
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B.3 Configurations of the TRHP system

This appendix describes the 14 different configurations of MSE’s Thermo-

Refrigerating Heat Pumps as described in the functional analysis provided by

the company PiLogic [384].

* Configuration de froid A01: Cette configuration est la configuration de

base du fonctionnement en mode froid, c’est-à-dire quand les besoins de

froid sont supérieurs aux besoins de chaud, classiquement en été.

* Configuration de froid A02: Cette configuration fait suite à la configura-

tion froid A01. Lorsque les besoins de froid ne peuvent être satisfaits par

les deux tandems de TFP, le Groupe Froid (GF) est employé.
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* Configuration de froid A03: Cette configuration fait suite à la configura-

tion froid A02. Si les deux tandems de TFP et le GF ne peuvent répondre

aux besoins de froid alors le Groupe Froid Negatif-Positif (GF-NP) est

employé.

* Configuration de froid B01: Cette configuration fait suite à la configura-

tion froid A03. Si l’ensemble tandems de TFP, GF et GF-NP ne peut pas

répondre aux besoins de froid alors le système de production change de

catégorie de configuration pour tenter d’y répondre.
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* Configuration de froid B02: La configuration froid B02 fait suite à la

configuration froid B01. Lorsque les besoins de froid ne peuvent être

satisfaits par les deux tandems de TFP, le GF est employé.

* Configuration de froid B03: La configuration froid B03 fait suite à la

configuration froid B02. Si les deux tandems de TFP et le GF ne peuvent

répondre aux besoins de froid alors le GF-NP est employé.
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* Configuration de froid C01: Cette configuration ne fait pas suite aux con-

figurations froid A ou B. Il s’agit de la configuration de base en mode

froid lorsque les besoins de chaud ne peuvent être assurés par un seul

tandem de TFP.

* Configuration de froid C02: La configuration froid C02 fait suite à la

configuration froid C01. Lorsque les besoins de froid ne peuvent être

satisfaits par les deux tandems de TFP, le GF est employé.
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* Configuration de froid C03: La configuration froid C03 fait suite à la

configuration froid C02. Si les deux tandems de TFP et le GF ne peuvent

répondre aux besoins de froid alors le GF-NP est employé.

* Configuration de froid D01: Cette configuration ne fait pas suite aux

configurations A, B ou C. Il s’agit de la configuration de base en mode

froid lorsque les capacités d’absorption de la géothermie sont « saturées

». Cette configuration correspond à une faible saturation.
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* Configuration de froid D02: La configuration froid D02 fait suite à la

configuration froid D01. Le passage à cette configuration s’effectue si les

capacités d’absorption de la géothermie sont moyennement saturées.

* Configuration de froid D03: La configuration froid D03 fait suite à la

configuration froid D02. Le passage à cette configuration s’effectue si les

capacités d’absorption de la géothermie sont totalement saturées.
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* Configuration de chaud A01: Cette configuration est la configuration de

base du fonctionnement en mode chaud, c’est-à-dire quand les besoins de

chaud sont supérieurs aux besoins de froid, classiquement en hiver.

* Configuration de chaud A02: La configuration chaud A02 fait suite à la

configuration chaud A01. Si les besoins de chaud ne peuvent être comblés

par un seul tandem de TFP alors le deuxième entre en fonctionnement.
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B.4 Individual thermo-refrigerating heat pump
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B.5 Thermo-refrigerating heat pump system

Figure B.1: An overview of the thermo-refrigerating heat pump system without regulation.
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Figure B.2: An overview of the thermo-refrigerating heat pump system with regulation.
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B.6 Adiabatic aero-refrigerant system (DRY)
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B.7 Geothermal system

Figure B.3: Process and Instrumentation diagram for the geothermal drilling of MSE.
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B.9 PV panels

Due to the lack of information regarding the specific characteristics of the

PV systems that will be installed within the MSE eco-district, an equivalent

system was considered with the following specifications for the solar panels:

* Unitary power of 400Wp (Watt peak),

* Mono-crystalline type

* Fixed mounting configuration

* Inclination of 39◦ for an optimal annual generation

* Azimuth of 0◦ for an optimal annual generation

The total power of the equivalent PV system is defined as follows:

* 500kWp installed capacity

* system losses of 20%

* A footprint area of 2m2 per panel, resulting in a total area of 2500m2 for

the 1250 panels.

The power generation data for this systems were extracted from PVGIS be-

tween the years 2005 and 2020 at hourly time steps. These data were then

averaged to construct the time series used in the comprehensive simulation

model. An overview of this PV generation time series is illustrated in figure

B.4.
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Figure B.4: An overview of the equivalent PV system’s power generation (denoted
Pelec_prod_PV.y[t]) over a complete year for the base scenario.

B.10 Battery energy storage system
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B.11 Simplified model of the heat and cold stor-

age systems
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MOTS CLÉS

Systèmes Multi-Energies Intelligents, Eco-quartiers, Smart Grids, Réseaux de Chaleur et de Froid, Systèmes

de Gestion de l’Energie, Contrôle Optimal, Apprentissage par Renforcement Profond, Contrôle Prédictif.

RÉSUMÉ

Cette thèse propose une approche de gestion de l’énergie basée sur l’Apprentissage par Renforcement Profond (DRL)

pour les Systèmes Multi-Énergies Intelligents (SMEI). Le Système de Gestion Multi-Énergies Intelligente (SGMEI) est

conçu pour optimiser la gestion des systèmes d’énergie flexibles, y compris le stockage de chaleur, de froid et d’électricité,

ainsi que les systèmes de production dans les réseaux de chaleur et de froid, comm les Thermo-Frigo Pompes (TFPs).

On propose ainsi l’application de cette approche sur l’étude de cas du projet Meridia Smart Energie (MSE), un projet réel

de SMEI en cours de construction dans l’écoquartier de Nice Meridia, en France. L’agent DRL développé est comparé

à un Contrôleur Prédictif (MPC) sur un premier cas d’étude simulé de SMEI simplifié, montrant que le DRL est capable

d’approcher l’optimum théorique du MPC (à hauteur de 98%) en termes de réduction des coûts énergétiques. Cette

étude suggère que le DRL est une approche prometteuse pour la gestion énergétique optimisée des SMEI. L’approche

DRL est également appliquée sur un second cas d’étude à un jumeau numérique plus détaillé de MSE, développé sous

Dymola, pour valider ces résultats sur un second cas d’étude plus complexe. Les futurs travaux porteront sur le transfert

de l’apprentissage de la simulation à la réalité sur MSE et étendront l’application de cette approche à de nouveaux cas

d’usage de SMEI.

ABSTRACT

This research introduces a Deep Reinforcement Learning (DRL)-based approach for the optimized energy management

in Smart Multi-Energy Systems (SMES). A Smart Energy Management System (SEMS) is proposed to efficiently man-

age flexible energy systems, including heating, cooling, electricity storage, and District Heating and Cooling Systems.

The Meridia Smart Energy (MSE) eco-district, a real-world SMES project in southern France, serves as the case-study.

The DRL framework uses actor-critic architecture and is compared to Model Predictive Control (MPC). Results from a

first simplified MSE simulation model show that DRL closely approximates MPC’s theoretical optimum (within 98%) and

even outperforms some realistic MPC variants. A more complex digital twin-based case-study further validates DRL’s

promise for SMES energy management. Future work includes real-world integration, exploring additional objectives, and

expanding to other SMES use-cases.

KEYWORDS

Smart Multi-Energy Systems, Eco-districts, District Heating and Cooling Systems, Energy Management Sys-

tems, Optimal Control, Deep Reinforcement Learning, Model Predictive Control.
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