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par un modèle couplé champ de phase et milieu de

Cosserat
Phase field and Cosserat simulation of

recrystallization in polycrystals

Soutenue par

Flavien GHIGLIONE
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Spécialité
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Abstract

Thermomechanical treatment of crystalline materials induces significant microstructural changes that
must be understood in order to control the resulting macroscopic properties. In particular, recrystallization,
i.e. the nucleation and growth of grains with low dislocation density, is of industrial interest for microstruc-
ture optimization during metal forming. Despite its importance, the modelling of this phenomenon remains
fragmentary. While numerous models have been developed to efficiently simulate the growth phase (Monte-
Carlo Potts, cellular automata, level sets, phase-fields, etc.), the simulation of nucleation traditionally in-
volves the ad hoc introduction of new spherical or circular grains linked to a critical value of strain, stress or
dislocation density. It is therefore necessary to develop models that spontaneously account for the appear-
ance of new grains. During thermomechanical processes, the (visco)plastic deformation of the material can
lead to a significant reorientation of the crystal lattice and a heterogeneous distribution of orientations can
appear within grains that are initially homogeneously oriented. At the mesoscopic scale, these phenomena
are well accounted for by models of crystal plasticity. An enriched description of matter, such as that of
Cosserat continua, also allows size effects to be taken into account. In this theory, additional degrees of
freedom are introduced in the form of microrotations, which can be identified with the rotations of the crys-
tal lattice by means of internal constraints. We propose new analytical solutions to the problems of torsion
of an isotropic elastic-plastic cylinder and shear of a single crystal. For the latter, different formulations of
the free energy potential exploring various dependencies on the curvature-torsion tensor are studied. Among
the available grain growth models, only the two-phase-field approach proposed by Kobayashi-Warren-Carter
(KWC) can model an intragranular orientation gradient induced by deformation. Since phase-field models
are based on a thermodynamic formulation, coupling to mechanics via the free energy potential is partic-
ularly straightforward. The full-field mesoscopic model used in this work, developed by Ask et al., thus
combines Cosserat crystal plasticity and the KWC phase-field model of grain growth. One of the features
of the model studied is the inclusion of inelastic relaxation behaviour at the grain boundary in addition to
the (visco)plastic deformation of the grain. Therefore, the choice of the relaxation function on the formation
and movement of grain boundaries is investigated. In particular, the existence of a threshold stress in the
relaxation function is shown to potentially hinder the formation and movement of grain boundaries. We also
show through finite element simulations that KWC-type models can spontaneously simulate the nucleation
of new (sub)grains due to the presence of crystal orientation gradients. A three-dimensional torsional cal-
culation of a single-crystal copper rod with a circular cross section of axis [111] shows the nucleation of
subgrains along the rod due to lattice orientation gradients induced by mechanical loading. This observation
is qualitatively confirmed by comparison with experimental results on the torsion of an aluminium single
crystal obtained by M.E. Kassner.

Keywords

Crystal plasticity, Phase field, Cosserat mechanics, Grain boundary migration, Recrystallization, Finite
element method
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Résumé

Les traitements thermomécaniques des matériaux cristallins provoquent d’importants changements mi-
crostructuraux qu’il convient de maitriser pour contrôler les propriétés macroscopiques qui en résultent. En
particulier, la recristallisation, i.e la germination et croissance de grains possédant une faible densité de dis-
locations, est d’intérêt industriel pour l’optimisation de microstructures lors la mise en forme des métaux.
Malgré son importance, la modélisation de ce phénomène reste parcellaire. En effet, si de nombreux mod-
èles ont été développés afin de reproduire efficacement la phase de croissance (méthodes de Monte-Carlo
Potts, automates cellulaires, level-sets, champs de phase. . . ), la simulation de la germination passe tradi-
tionnellement par l’introduction ad hoc de nouveaux grains sphériques ou circulaires en lien avec une valeur
critique de déformation, contrainte ou densité de dislocations. Il convient donc de développer des modèles
rendant compte spontanément de l’apparition de nouveaux grains. Lors des procédés thermomécaniques, la
déformation (visco)plastique du matériau peut engendrer une réorientation importante du réseau cristallin
et une distribution hétérogène d’orientations peut apparaître au sein de grains initialement orientés de façon
homogène. À l’échelle mésoscopique, ces phénomènes sont bien pris en compte par des modèles de plas-
ticité cristalline. Une description enrichie de la matière, telle que celle des milieux de Cosserat, permet
en outre de prendre en compte des effets de taille. Dans cette théorie, des degrés de liberté additionnels
de microrotations sont introduits et peuvent être identifiés aux rotations du réseau cristallins par le biais de
contraintes internes. Nous proposons de nouvelles solutions analytiques aux problèmes de la torsion d’un
cylindre en elastoplasticité isotrope et du cisaillement d’un monocristal. Pour ce dernier, différentes formu-
lations du potentiel d’énergie libre explorant diverses dépendances vis-à-vis du tenseur de courbure-torsion
sont étudiées. Parmi les modèles de croissance de grains, seule l’approche à deux champs de phases pro-
posée par Kobayashi-Warren-Carter (KWC) peut modéliser un gradient d’orientation intragranulaire induit
par la déformation. Les modèles à champs de phase s’appuyant sur une formulation thermodynamique,
le couplage avec la mécanique via le potentiel d’énergie libre est particulièrement aisé. Le modèle méso-
scopique en champs complets utilisé dans cette thèse, développé par Ask et al., combine ainsi la plasticité
cristalline des milieux de Cosserat et le modèle à champs de phase de croissance de grains de KWC. Une
des particularités du modèle étudié est d’ajouter à la déformation (visco)plastique du grain un comporte-
ment inélastique de relaxation du joint de grain. L’influence du choix de la fonction de relaxation aux joints
de grain sur la formation et le mouvement de ceux-ci est ainsi étudiée. En particulier, il est montré que la
présence d’une contrainte seuil dans la fonction de relaxation peut ralentir la formation et le mouvement
des joints. Nous montrons également par des simulations éléments finis que les modèles de type KWC
peuvent simuler de façon spontanée de la germination de nouveaux (sous)grains en raison de la présence
de gradients d’orientation cristalline. Un calcul tridimensionnel de torsion d’une barre monocristalline
de cuivre à section circulaire d’axe [111] montre ainsi la formation de sous-grains le long de la barre en
raison du développement d’un gradient d’orientation du réseau dû au chargement. Cette observation est
confortée qualitativement par une comparaison aux résultats expérimentaux sur la torsion d’un monocristal
d’aluminium obtenus par M.E. Kassner.

Mots clés

Plasticité cristalline, Champs de phase, Mécanique des milieux de Cosserat, Migration de joint de grains,
Recristallisation, éléments finis
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Introduction

Résumé en français

A l’échelle mésoscopique, la microstructure des métaux subit d’importants changements lors des opéra-
tions de mise en forme. Ces évolutions ont un impact direct sur les propriétés macroscopiques du matériau.
Dès lors, l’intérêt industriel et scientifique de la compréhension et la maîtrise de ces évolutions microstruc-
turales est clair. Un phénomène de restauration appelé recristallisation peut se produire au cours de la mise
en forme à chaud ou après déformation à froid suivie d’un recuit. Ce phénomène peut grossièrement être
décrit comme la germination et croissance de nouveaux grains. Dans la compréhension actuelle de la ger-
mination, les grains sont déjà présents dans l’état déformé et sont localisés, notamment, aux hétérogénéités
de déformation.

Du point de vue de la modélisation, cela nécessite une description prenant en compte les inhomogénéités
locales de déformation, telles que les théories continues de la plasticité cristalline. En particulier, les mod-
èles de plasticité cristalline des milieux généralisés, tels que la théorie de Cosserat, présentent un certain
attrait. Ils permettent en effet de palier à certaine limitations du milieu continu de Cauchy par l’introduction
de longueurs internes, ce qui permet de rendre compte des effets de taille par exemple.
Ces modèles de plasticité cristalline sont classiquement couplés à des modèles de croissance de grains pour
simuler la recristallisation. On observe notamment un certain engouement pour les méthodes à champs de
phase, qui se basent sur une description continue des interfaces (ici les joints de grains). Ces modèles ont
pour avantage d’être formulé dans un cadre thermodynamique, ce qui permet des couplages multiphysiques
relativement simples via l’énergie libre. Le modèle à deux champs de Kobayashi-Warren-Carter (KWC)
[Kobayashi et al., 2000] est le seul permettant de prendre en compte des gradients d’orientation intragranu-
laires susceptibles de mener à la germination au sein des grains.

Malgré son importance, la germination reste actuellement un point bloquant majeur dans la simulation
de la recristallisation. En effet, dans l’immense majorité des cas, des germes circulaires ou sphériques sont
introduits dans la microstructure en se basant sur des critères de densité de dislocation, déformation ou
contrainte critique. En conséquence, l’objectif principal de cette thèse est de modéliser, à l’échelle méso-
scopique et en champs complets, les évolutions microstructurales des métaux en prenant en compte de façon
"spontanée" la germination. Pour ce faire, le modèles KWC et KWC-Cosserat Ask et al. [2018b] sont util-
isés pour étudier la germination en lien avec une localisation hétérogène de la courbure du réseau cristallin.
Nous nous limitons au cadre des petites déformations, rotations et courbure pour des processus isothermes.

Afin de faciliter la compréhension du modèle couplé utilisé, ses différentes composantes sont abordées
de manière isolées. Ainsi, le premier chapitre de ce manuscrit est consacré à quelques rappels concernant
les joints de grains et la recristallisation. Le deuxième chapitre aborde la théorie de Cosserat et présente de
nouvelles solutions analytiques au problème de la torsion d’un cylindre à section circulaire et au cisaille-
ment du monocristal. Dans ce cas, différentes formulations de l’énergie libre vis-à-vis de la courbure sont
envisagées pour se rapprocher du modèle à champ de phase de KWC, présenté au chapitre 3. La deuxième
partie de ce chapitre est consacrée au modèle couplé KWC-Cosserat, où l’effet de la mécanique sur le joint
de grain est également étudié. Les modèles KWC et KWC-Cosserat sont ensuite appliqués, au chapitre 4, au
phénomène de germination dans les monocristaux en présence de gradients d’orientation cristalline. Enfin,
le cinquième chapitre présente quelques extensions aux polycristaux et autres cas d’application.
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General context

Thermomechanical processing and microstructure evolution in crystalline materials

Metals and metallic alloys consist of grains, which are typically between 1-500 µm in size, separated
by grain boundaries that usually measure about 0.1-1 nm in thickness. Alongside the chemical composition
and crystalline structure, the size, morphology, and orientation of the grains (i.e. the microstructure) have a
direct influence on the macroscopic properties of the material. One example of this is the effect of grain size
on yield strength and fracture toughness, as demonstrated by the work of Hall and Petch in the early 1950s.

To achieve the intended shape for the end product, a sequence of heating and shaping procedures known
as thermomechanical processing is usually carried out. The microstructure of the material also undergoes
significant changes during these thermomechanical treatments. Indeed, the process of metal forming induces
inelastic deformation of the material and introduces dislocations into the microstructure. Subsequent heating
results in the reorganisation and elimination of these defects by thermally activated mechanisms. This
process, referred to as recovery, partially restores the microstructure to its original state. An additional
restoration process, known as recrystallization, leads to the nucleation and growth of new dislocation-free
grains and is critical in metal forming processes. Once the material is fully recrystallised, grain growth can
occur on further annealing to reduce the energy stored in the form of grain boundaries.

These significant microstructural evolutions, especially recrystallization, must therefore be controlled.
This necessity has been well understood from the industrial standpoint and from the 1960s onwards, com-
panies began incorporating microstructural features to enhance the final product through thermomechanical
treatment [Montheillet, 2009]. Optimisation of the microstructure to achieve the desired macroscopic prop-
erties can be achieved, for example, by hot forming prior to forming the final product. For example, hot
rolling can notably refine the grain size, thereby enhancing the yield strength. Similarly, a combination of
cold rolling and annealing is employed to increase the formability of aluminium sheets.

Some physical and phenomenological aspects of recrystallization

As mentioned, recrystallization consists of the nucleation and growth of new grains with low dislocation
content. More specifically, it involves the formation and migration of high angle grain boundaries (HAGBs)
to reduce the stored energy. This process can occur during the deformation, typically during hot working
operations: it is then referred to as dynamic recrystallization. Conversely, annealing of a metal that has been
previously cold worked leads to static recrystallization. In addition, depending on whether the nucleation
and growth stages are clearly identifiable, recrystallization is termed discontinuous or continuous. This work
focuses on discontinuous static recrystallization.

The nucleation of recrystallization cannot be explained by the classical nucleation theory of thermo-
dynamics based on thermal fluctuations, but nuclei are already present in the deformed state. Three main
nucleation processes have been identified in the literature for single phase materials: strain induced bound-
ary migration (SIBM), subgrain coarsening and subgrain coalescence.

Strain induced boundary migration [Beck and Sperry, 1950] consists of a pre-existing grain boundary
growing into a grain with a higher dislocation content. The migration of grain boundaries creates defect-
free zones in its wake and increases the total area of the HAGB. The orientation of the nucleus will be
close to that of the grain from which it grew [Rollett et al., 2017]. Subgrain coarsening [Beck, 1949; Cahn,
1950] describes the thermally assisted growth of a subgrain at the expense of its surrounding neighbours
to reduce the stored energy by dislocation annihilation and rearrangement. By absorbing dislocations, the
subgrain increases its misorientation with respect to the surrounding subgrains, forming HAGBs. Subgrain
coalescence is the rotation of two adjacent subgrains to align their lattices and form a larger subgrain with
increased orientation difference with respect to the surrounding matrix, forming HAGBs. However, it is
debated whether this is a recrystallization or recovery mechanism prior to SIBM [Rollett et al., 2017].
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Due to the intricacy of the phenomena involved, controlling and predicting microstructural changes that
occur during thermomechanical processing of metals and metallic alloys presents a significant industrial and
scientific challenge. From a modelling perspective, mean field and macroscopic full-field models are limited
since they are unable to characterise local phenomena that are crucial to microstructure evolution, such as
intragranular lattice orientation gradients that occur during deformation. Consequently, it is imperative to
develop and employ full-field models at the mesoscale.

Existing approaches to full-field modelling of microstructure evolution

The deformed state: crystal plasticity and generalised continua

Recrystallisation is closely linked to the deformed state of a material, necessitating a description that
takes into account local strain heterogeneities as these are preferential sites for the nucleation of new
dislocation-free grains. Physically, plastic deformation of crystalline materials occurs through slip along
specific crystallographic planes (typically the densest ones at low temperature) induced by the motion of
crystal defects called dislocations. Classically, dislocations are divided into statistically stored dislocations
(SSDs) that accumulate due to interactions with other dislocations or precipitates, and geometrically nec-
essary dislocations (GNDs) required to accommodate plastic strain gradients and ensure deformation com-
patibility. GNDs are therefore intrinsically linked to lattice curvature [Ashby, 1970]. From the modelling
standpoint, several approaches exist depending on the chosen length scale. Typically, interactions between
a few dislocations are studied using atomic models. On a coarser scale, discrete dislocation dynamics or
continuum crystal plasticity models are used. In the latter, dislocations are not individually represented but
rather only the quantity of plastic slip on each slip system, due to the collective motion of dislocations, is
retained. This is currently the preferred approach for modelling microstructure evolutions at the mesoscale.

However, classical continuum crystal plasticity models have limitations. For instance, they cannot ac-
count for the size effects that are experimentally observed during the torsion of wires [Fleck et al., 1994].
These size effects stem from strain gradients, which induce a density of GNDs that contribute, in addition
to the SSDs, to the work hardening. Consequently, the thinner the wire, the higher the strain gradient and
thus the higher the density of GNDs and hardening. Models that propose an enriched description of matter,
such as Cosserat continua [Cosserat and Cosserat, 1909] or strain gradient plasticity [Fleck et al., 1994], can
capture these size effects. In the Cosserat theory, additional degrees of freedom are introduced in the form
of microrotations (that are a priori independent of the displacement), which are identified with rotations of
the crystal lattice by means of internal constraints [Forest et al., 1997, 2000]. Thus, the Cosserat curvature
can be seen as an approximate measure of GND density.

Simulation of recrystallization: normal grain growth models and coupling with mechanics

In the available literature, crystal plasticity models are used to obtain the deformed state of the material
and coupled with grain growth models to simulate recrystallization. Various grain growth models have
been developed to describe microstructure evolution, including Monte-Carlo Potts [Anderson et al., 1984],
cellular automata [Hesselbarth and Göbel, 1991], level sets [Bernacki et al., 2008], and phase-field methods.
The latter relies on a continuous representation of interfaces, in which grain boundaries are diffuse. Two
major approaches for phase-field modelling of microstructure evolution exist: one with one phase-field
variable per grain [Chen and Yang, 1994; Steinbach and Pezzolla, 1999], and one with only two independent
phase-field variables for the entire polycrystalline microstructure [Kobayashi et al., 2000; Warren et al.,
2003], known as the Kobayashi-Warren-Carter (KWC) model. Only the latter is capable of accounting for
intragranular orientation gradients that may lead to the emergence of new (sub)grains. Furthermore, the
thermodynamic framework of phase-field models is highly adaptable to the integration of other physical
phenomena such as mechanics [Steinbach and Apel, 2006]. This is conventionally achieved by adding
physical contributions to the free energy density. Classically, the multiphysics problem is solved using
staggered schemes. Only Ask et al. [2018b] and Admal et al. [2018] have proposed a unified framework for
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the evolution of microstructure and concurrent (visco)plastic deformation.

Shortcomings of the current modelling approaches

The modelling of the nucleation stage of recrystallization, despite its importance, remains incomplete.
While several models have been developed to efficiently simulate the growth phase, the simulation of nucle-
ation is still inadequate. The classical theory of nucleation, used to model solidification, employs thermal
fluctuations for the emergence of new phases. In full-field models, this is typically done by adding noise to
the field equations. However, the renormalisation of these equations in the presence of strong noise prevents
quantitative modelling of nucleation processes [Plapp, 2011]. It has long been recognised that explaining
the nucleation process during recrystallization with the classical theory of nucleation is inadequate. Indeed,
recrystallization nuclei are not stricto sensu thermodynamic nuclei but small pre-existing volumes in the
deformed microstructure [Rollett et al., 2017]. Thus, simulating the nucleation stage of recrystallization has
traditionally involved the ad hoc introduction of new spherical or circular grains linked to a critical value of
strain, stress or dislocation density. There is therefore a need for models that spontaneously account for the
appearance of new grains. We consider that orientation phase-field models combined with mechanics are
capable of capturing such phenomena.

Objective

The main aim of this work is the full-field modelling of microstructure evolution at the mesoscale ac-
counting for spontaneous nucleation. More specifically, the objective is to demonstrate that, in the presence
of lattice orientation gradients, spontaneous nucleation (i.e without the introduction of spherical/circular
nuclei) can be simulated with the orientation phase-field models [Kobayashi et al., 2000; Ask et al., 2018b]
in single crystals. In the simulations that will be discussed, nucleation spontaneously arises to accommodate
these gradients. Therefore, the modelling of strain induced boundary migration or subgrain coarsening/co-
alescence is not addressed in the present work.

Methodology

The model of Ask et al. [2018b] used in this work combines in a unified framework the Cosserat theory
to describe the deformed state of the material and the grain growth phase-field model of Kobayashi et al.
[2000]. The simulation of spontaneous nucleation in the presence of lattice orientation gradients is first
carried out using the original KWC model. The instability induced by these gradients introduced as initial
conditions is assessed both analytically, via a linear perturbation analysis, and numerically through finite
element simulations. The numerical study is then extended to the KWC-Cosserat model,whose coupling is
achieved through the free energy density, to verify that this nucleation capability is retained. The physical
relevance of the simulation is demonstrated by conducting a three-dimensional computation in which the
lattice orientation gradients are generated through the torsional loading of a single crystal rod with axis
[111]. This simulation is validated based on a comparison with experimental results found in the literature.
In addition, simulations of deformation and subsequent relaxation of polycrystalline aggregates are carried
out to evidence the link between curvature localisation and nucleation of new (sub)grain boundaries.

Outline

This work is organized as follows. Chapter I presents essential notions about the structure, properties
and motion of grain boundaries as well as recrystallization and its full-field modelling.
The KWC-Cosserat model being somewhat intricate, its two components are first presented separately for
an easier understanding. Thus, the mechanics of Cosserat continua at small deformation is introduced in
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chapter II and illustrated on simple examples. This work provides new analytical solutions to the problems
of torsion of isotropic elastic-plastic rods and shear of a single crystal. In the latter, several formulations of
the Helmholtz free energy density are explored in order to get closer to that of the orientation phase-field
models [Kobayashi et al., 2000; Ask et al., 2018b]. Size effects that emerge during mechanical loading are
also addressed.
In chapter III KWC-type microstructure evolution models are presented and the static and dynamic prop-
erties of grain boundaries are studied. The effect of the grain boundary inelastic behaviour in the coupled
model is scrutinized and a finite element extension to the three-dimensional case is discussed.
Chapter IV addresses nucleation due to lattice orientation gradients in single crystals. An analytic lin-
ear stability analysis and finite element simulations are performed in this purpose. Most notably, a three-
dimensional calculation of the torsion of a single crystal rod is presented and the outcomes are qualitatively
compared to experimental results in the literature.
Finally, chapter V presents applications of the orientation phase-field models to bicrystals and polycrys-
talline aggregates. They represent first steps towards full-field simulation of thermomechanical processes in
a unified, thermodynamically consistent framework.
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Chapter I

Essentials about the structure, properties and motion of grain
boundaries

Résumé en français

Ce premier chapitre présente un bref résumé des connaissances nécessaires à la compréhension des
prochains chapitres du manuscrit. Ainsi, nous abordons la structure et les propriétés des joints de grains.
L’énergie et la mobilité des joints de grains ainsi que la distinction entre joint de faible désorientation et joint
de grande désorientation sont rappelées. En particulier, la formulation de type Read-Schockley de l’énergie
des joints de grain de faible désorientation et la proportionalité entre vitesse du joint et force motrice sont
évoquées.

Dans un second temps, quelques aspects physiques et phénoménologiques de la recristallisation et crois-
sance de grains sont présentés. Ainsi, la cinétique de recristallisation (loi de Johnson-Avrami-Kolmogorv
(JMAK)) et de croissance des grains (loi de Burke-Turnbull) sont rappelées. Les principaux mécanismes
de germination identifiés dans la littérature sont également abordés. Ceux-ci comprennent le SIBM et la
croissance/coalescence de sous-grains.

Nous dressons également un état de l’art succinct des différents modèles à champs moyens et champs
complets principaux utilisés pour la simulation de la recristallisation, en nous attardant sur les méthodes à
champs de phases de Kobayashi-Warren-Carter (KWC) et multi-phase field (MPF). Enfin, nous présentons
quelques aspects de la simulation de la germination en mentionnant certains travaux qui proposent une
approche différente de la traditionnelle étape d’introduction de germes circulaires.
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I.1 Introduction

I.1 Introduction

The purpose of this chapter is to provide a brief summary of the structure and properties of grain bound-
aries and recrystallization processes in single-phase, single-component crystalline materials. This is not a
comprehensive review, only the elements relevant to the rest of the thesis are presented.
The first part is largely based on the work of Rollett et al. [2017]; Gottstein and Shvindlerman [2009];
Priester [2012]; Han et al. [2018] and deals with the description of grain boundaries and their properties.
The second part is devoted to grain nucleation and growth, its is mostly based on the work of Doherty
et al. [1997]; Rios et al. [2005]; Raabe [2014]; Ferdinand Knipschildt [2022]; Rollett et al. [2017]. The
third part then shortly introduces historical and more recent mean-field models of recrystallization and grain
growth. Finally, the fourth part deals with the full-field continuum modelling, at the mesoscopic scale, of
grain growth and recrystallization, with a brief introduction to the main simulation techniques, in order to
position this work in relation to the literature. Monte Carlo Potts, cellular automata, phase field, and level
sets methods are discussed, with emphasis on phase-field models. The main purpose is to present the advan-
tages and drawbacks of each model. More detailed reviews are available elsewhere, for example in Rollett
[1997]; Hallberg [2011]; Raabe [2014]; Rollett et al. [2017].

I.2 Structure, energy and mobility of grain boundaries

The migration of grain boundaries is the dominant process during microstructure evolution induced by
thermomechanical processing and is heavily influenced by the grain boundaries’ properties, which in turn
are related to their structure. Therefore, a concise presentation of grain boundaries and their properties
is given in this section in order to apprehend more readily recrystallization and grain growth described in
section I.3.

I.2.1 Structure of grain boundaries

A grain boundary is defined as a lattice defect separating two regions of the same crystal structure but
with different orientations. In the two-dimensional case, four degrees of freedom (DOFs) are required to
describe a grain boundary mathematically. These are divided into macroscopic and microscopic parame-
ters. The macroscopic DOFs are the misorientation θ between the two crystals and an angle defining the
orientation of the boundary plane with respect to one of the crystals. The microscopic parameters define
the translation vector, which describes the translation of one crystal with respect to the other. This becomes
more complicated in 3D, where 8 DOFs are required:

• 5 macroscopic parameters: 3 characterising the orientation relationship between the two crystals (2
for the rotation axis and one for the rotation angle θ or 3 Euler-Bunge angles), 2 describing the
orientation of the boundary plane using its normal unit vector.

• 3 microscopic parameters describing the translation vector.

Grain boundaries are usually divided into low angle grain boundaries (LAGBs) and high angle grain
boundaries (HAGBs) according to their misorientation. The usual threshold for misorientation is θm ∼
15◦, where grain boundaries with a misorientation lower or higher than θm are called LAGBs and HAGBs
respectively. Subgrain boundaries are LAGBs formed within a grain by the rearrangement of dislocation
cells during hardening. Grain boundaries are also often referred to as tilt, twist or mixed grain boundaries,
depending on whether the misorientation axis is parallel, perpendicular or has no particular relationship to
the boundary plane. The term symmetric tilt boundaries is used to describe tilt boundaries where the two
crystals are mirror images of each other. Illustrations of a 2D grain boundary and a twist and symmetric tilt
boundary are given in figures 1.1 and 1.2.

A periodic arrangement of dislocations can be used to represent low angle grain boundaries. Symmetric
tilt boundaries, for example, can be described as a wall of edge dislocations with a single set of Burgers
vectors, as illustrated in Fig. 1.3.
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Figure 1.1: A grain boundary between two crystals misoriented by an angle θ about an axis normal to the
page [Rollett et al., 2017].

(a) A symmetrical tilt boundary. (b) A twist boundary.

Figure 1.2: Schematic representation of twist and symmetrical tilt boundaries from Gottstein and Shvindler-
man [2009].

It has been established by Read and Shockley [1950] that for such grain boundaries the Burgers vector
b and the dislocation spacing d are related to the disorientation angle θ by

b
d
= 2sin

(
θ

2

)
' θ . (1.1)

In the more general case where several sets of Burgers vectors are involved, their interaction leads to 2D
networks of dislocations whose character depends on the type of dislocations. The shape of the network is
influenced by the angle between the grain boundary plane and the crystals. Similar to the Read-Shockley
approach, a continuous description of any grain boundary as a surface dislocation was proposed by Bilby
[1955]; Bilby et al. [1955].

For HAGBs the Read-Shockley approach is no longer valid. There is however an important feature
related to the orientation relationship that is used to describe some HAGBs: the coincident site lattice (CSL).
It is obtained by extending the lattice of one of the grains into that of the other, the coincident sites forming
the CSL. A reciprocal coincident site density Σ is defined to characterize these coincident boundaries:

Σ =
size of a unit cell of the CSL

size of the unit cell of the primitive lattice
. (1.2)
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Figure 1.3: A symmetrical tilt low angle grain boundary comprised of edge dislocations denoted by ⊥
f rom Read [1953].

Coincident grain boundaries correspond to a coincidence relationship and can be associated with local min-
ima or maxima of grain boundary energy. However, there is no one-to-one relationship between the value
of Σ and that of the energy.
In some cases, the atomic arrangement at the grain boundary is such that well-defined structural units can
be formed. This is illustrated in Fig. 1.4.

Other descriptions of grain boundaries such as disconnections and disclinations are not discussed here
but are addressed for instance by Fressengeas et al. [2011] Han et al. [2018], Hirth et al. [2020], Sun et al.
[2018].

Figure 1.4: High-angle annular dark field scanning electron microscopy Fourier-filtered image of a grain
boundary exhibiting kite-like structural units in α-Fe at 4% Al [Ahmadian et al., 2021].

I.2.2 Energy of grain boundaries

The presence of a grain boundary induces an excess of energy - compared to that of a pristine crystal -
which depends on the macroscopic and microscopic parameters of the boundary. For LAGBs the interfacial
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energy γ follows the Read-Shockley equation [Read and Shockley, 1950]:

γ = γ0θ(A− log(θ)), (1.3)

γ0 =
µb

4π(1−ν)
, A = 1+ log

(
b

2πr0

)
, (1.4)

with µ the shear modulus, ν Poisson’s ratio and r0 the radius of the dislocation core (b ≤ r0 ≤ 5b). A
normalized grain boundary energy can also be defined as

γ

γm
=

θ

θm

(
1− log

θ

θm

)
(1.5)

where γm is the energy corresponding to a boundary of misorientation θm or to the maximum energy mea-
sured. This form of the Read-Shockley equation is convenient as it allows to measure energies in relative
units. The Read-Shockley equation has been proven to successfully model the energy-misorientation rela-
tion of LAGB, as illustrated in Fig. 1.5 which shows a good agreement between experiment and theory.
This formula is restricted to LAGBs due to overlapping of the dislocation cores for θ > θm.

Figure 1.5: Experimental (markers) and Read-Shockley (solid line) grain boundary energy [Read, 1953]

The energy of HAGBs is much more complex as there is no simple relationship between the energy of a
boundary and its geometry. The energy-misorientation curve can exhibit a plateau (Fig. 1.6a) or deep cusps
(Fig. 1.6b). An empirical extension of the Read-Shockley equation was proposed in [Wolf, 1989]:

γ = γ0 sin(θ)(A− log(sin(θ))) , (1.6)

which is able to accurately predict HAGB energy in some cases (Fig. 1.6a.)

Based on CSL theory, it is expected that the energy would be a minimum for an exact coincidence
relationship, and that any deviation from this coincidence would increase the energy. Moreover, low values
of Σ would indicate low energies. However, this is not what is observed experimentally or computationally,
as shown in [Rohrer, 2011] and [Ratanaphan et al., 2015], which suggest that grain boundary anisotropy is
influenced more by the orientation of the boundary plane than by misorientation.

Experimental measures of grain boundary energy are obtained from the geometry of interface junctions
at equilibrium [Rohrer, 2011]. For triple junctions, simplifications of the Herring [Herring and Kingston,
1951] equation are used. It is often assumed that only the tangential forces are equilibrated, this simplified
Herring equation is then referred to as Young’s equation:

γ1

sin(θ2,3)
=

γ2

sin(θ1,3)
=

γ3

sin(θ1,2)
, (1.7)
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(a) Energy of <100> symmetrical twist boundaries.
Markers denote energies computed with molecular dy-
namics and solid lines are computed with the extended
Read-Shockley equation [Wolf, 1989].

(b) Relative energies of <110> tilt boundaries measured
in Al [Hasson and Goux, 1971].

Figure 1.6: Examples of grain boundary energy-misorientation curves

where γi is the energy of the ith grain boundary and θi, j is the contact angle between grains i and j. This
approach allows relative grain boundary energies to be obtained simply by measuring the contact angles
between grains. For more details on experimental measurements of grain boundary energy, a catalogue of
different techniques is given in Gottstein and Shvindlerman [2009]. Grain boundary energies can also be
obtained from atomistic calculations, often at 0K as in Wolf [1990].

I.2.3 Grain boundary mobility

The migration of grain boundaries plays a key role in thermomechanical processes. Migration of LAGB
occurs during recovery and the nucleation stage of recrystallization whereas HAGB migrate during and after
primary recrystallization. Despite the importance of this phenomenon, the understanding of the process is
only partial and experimental measurements of grain boundary mobility are complex.
It is generally assumed that the mobility M relates the grain boundary velocity v to the driving force respon-
sible for grain boundary migration P by

v = MP. (1.8)

The mobility usually follows an Arrhenius law with respect to temperature

M = M0 exp
(
− Q

RT

)
. (1.9)

Based on dislocation theory, it is assumed that LAGB migrate through climb and glide of the dislocations
belonging to the grain boundary. The dependence of mobility of LAGBs on misorientation is complex. For
aluminium for instance, in [Bainbridge et al., 1954] a decrease in the mobility with increasing misorientation
is reported, whereas in [Huang and Humphreys, 2000] the mobility increases with the misorientation. In
some cases the mobility may be independent of the misorientation, as stated in [Winning et al., 2001].
For HAGBs, the dominant mechanism is thought to be atomic jumps across the boundary. Their mobility is
usually higher than that of LAGBs and seems to be largely independent of misorientation, as visible in Fig.
1.7.
Experimental measurements are preferably conducted in bicrystals due to the reproducibility associated with
this technique, compared to polycrystals [Gottstein and Shvindlerman, 2009]. Based on curvature driven
motion of grain boundaries, this provides the advantage of the driving force being almost independent of
temperature due to the weak dependence of the surface tension of the grain boundary on this variable. It is
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however rather complex to produce these bicrystals.

(a) Grain boundary mobility as a function of mis-
orientation and temperature in Al-0.05% Si [Huang
et al., 2000].

(b) Grain boundary mobility as a function of misorienta-
tion in high purity Al [Winning et al., 2001].

Figure 1.7: Grain boundary mobilities as a function of misorientation

In the literature, experimental and numerical identification of grain boundary properties have been car-
ried out, in particular, for high purity copper and aluminium. Typical values of grain boundary properties
for copper are reported in table 1.1.

Parameter
Approximate value

for Cu Misorientation [◦] Temperature [◦C]
Means of

measurement Reference

Energy γ [J/m−2] 0-0.8 0-30 -273 Computation [Wolf, 1990]

Mobility M [m4s−1MJ−1] 6.31×10−10 36.4 121 Experiment [Vandermeer et al., 1997]
Reduced mobility

Mr = γM [cm2s−1]
1−4000×10−9 2-32 275-1025 Experiment [Viswanathan and Bauer, 1973]

Table 1.1: Experimental or computed values of grain boundary energy, mobility and reduced mobility for
copper.
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I.3 Recrystallisation

I.3 Recrystallisation

The thermomechanical processing of crystalline materials involves a relatively wide variety of phenom-
ena, the terminology of which is recalled here after Rollett et al. [2017].
During cold working, plastic deformation introduces dislocations into the material, increasing the free en-
ergy of the crystal. When the work piece is heated to a high temperature - a process called annealing -
the dislocations can annihilate or rearrange into lower energy configurations. During annealing, a partial
restoration of microstructure and properties can occur in a process called recovery, which preserves the
shape of the deformed grains and gives rise to a subgrain structure. A separate restoration process called
recrystallisation is also possible, in which new dislocation-free grains are nucleated. Recrystallisation in-
volves the formation and migration of HAGBs to reduce the stored energy, resulting in a new grain structure.
A third process that occurs during annealing is grain growth, which results in a reduction in the total grain
boundary area. In some cases, a few large grains will grow at the expense of the others in a process known
as abnormal grain growth or secondary recrystallization. These processes are referred to as either static or
dynamic, depending on whether they occur after or during plastic deformation. If the nucleation and growth
stages are clearly identifiable, they are referred to as discontinuous processes, otherwise they are termed
continuous. Discontinuous or primary recrystallization usually occurs at relatively low or moderate strain
(ε . 1) and will be the focus of the remainder of this thesis.

I.3.1 Nucleation stage of recrystallization

The nucleation stage of recrystallization is driven by the stored energy E due to dislocation density ρ

which is estimated as
E ' 1

2
µb2

ρ. (1.10)

For copper (ρ ∼ 1015− 1016 m−2, G ∼ 42 GPa, b ∼ 0.26 nm) the driving force due to stored energy is
about 2-20 MPa. Since the driving force is low and the interfacial energy is high (γ ∼ 0.5− 1 J.m−2), the
nucleation of recrystallization cannot be explained by the classical nucleation theory of thermodynamics
based on thermal fluctuations, but is already present in the deformed state. Three main nucleation processes
have been identified in the literature for single phase materials [Doherty et al., 1997; Raabe, 2014; Rollett
et al., 2017; Ferdinand Knipschildt, 2022]: strain induced boundary migration (SIBM), subgrain coarsening
and subgrain coalescence. They are shown schematically in Figure 1.8.
Strain induced boundary migration [Beck and Sperry, 1950] consists of a pre-existing grain boundary grow-
ing into a grain with a higher dislocation content. The migration of the grain boundary creates defect-free
zones in its wake and increases the total area of the HAGB. It has been reported to occur in regions of large
strain differences on either side of the grain boundary and is the main recrystallization mechanism for rela-
tively small strains (up to 40%). The orientation of the nucleus will be close to that of the grain from which
it grew [Rollett et al., 2017].
Subgrain coarsening [Beck, 1949; Cahn, 1950] describes the thermally assisted growth of a subgrain at the
expense of its surrounding neighbours to reduce the stored energy by dislocation annihilation and rearrange-
ment. By absorbing dislocations, the subgrain increases its misorientation with respect to the surrounding
subgrains, forming HAGBs. This mechanism occurs at large strains, high annealing temperatures and large
orientation spreads [Rios et al., 2005].
Subgrain coalescence is the rotation of two adjacent subgrains to align their lattices and form a larger sub-
grain with increased orientation difference with respect to the surrounding matrix, forming HAGBs. It is
associated with transition bands, moderate strains and relatively low annealing temperatures. However, it is
debated whether this is a recrystallization or recovery mechanism prior to SIBM [Rollett et al., 2017].

Recrystallisation occurs preferentially at sites of large lattice curvature, such as grain boundaries and
triple junctions. The reason advanced in [Rollett et al., 2017] is the presence of stress gradients across the
boundary due to differences in the active slip systems, leading to an accumulation of lattice misorientations.
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(a) Strain-induced boundary mi-
gration (b) Subgrain coarsening

(c) Subgrain coalescence

Figure 1.8: Schematic illustration of SIBM, subgrain coarsening and subgrain coalescence [Ferdi-
nand Knipschildt, 2022]

Large orientation gradients can also result from heterogeneous deformation. For example, transition bands
are bands of high lattice strain that separate regions of different orientations of a grain that has split during
deformation. Shear bands are another example of preferential nucleation sites due to heterogeneous defor-
mation. They consist of thin regions of highly strained material associated with large stored energy and
orientation gradients across the band.

I.3.2 Grain boundary migration: growth of nuclei and grain growth following recrystal-
lization

For single phase, single component materials under isothermal annealing the main driving forces for
grain boundary motion are the stored energy due to dislocations and the grain boundary energy/curvature,
as summed up in table 1.2.

Table 1.2: Driving forces for grain boundary motion [Gottstein and Shvindlerman, 2009]

Once formed, a nucleus can grow into the strained microstructure by stored energy driven migration of
the HAGB. Due to the curvature and energy of this newly formed grain of radius R, a retarding pressure
P is exerted on the boundary, inducing shrinkage of the grain as it drives migration of the grain boundary
towards its centre of curvature:

P =
2γ

R
. (1.11)
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As a result, the driving force induced by the accumulation of stored energy must overcome the retarding
pressure caused by the curvature of the boundary. This results in a critical radius for nucleus growth [Bai-
ley and Hirsch, 1962]. With γ ∼ 0.5 J/m2 and P∼ 1−10 MPa, the critical grain size is therefore 0.1−1 µm.

However, once the material is fully recrystallised, the microstructure is relatively defect-free but still
unstable due to the presence of grain boundaries. Grain growth, which is the curvature driven migration
of HAGBs, can occur to reduce this excess energy. During grain growth, the smaller grains are consumed
by the larger grains so that the average grain size increases. The kinetics is often described by the Burke-
Turnbull law [Burke and Turnbull, 1952]

R̄ = Bt1/n, (1.12)

with R̄ the mean grain size, n is the grain growth exponent and B is a constant.

I.3.3 Kinetics of recrystallization

The kinetics of isothermal static primary recrystallization is usually represented by the phenomenolog-
ical Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation [Kolmogorov, 1937; Johnson and Mehl, 1939;
Avrami, 1939, 1940], which gives the evolution of the volume fraction of recrystallised material X as a
function of time:

X = 1− exp(−Btn), (1.13)

where B is a constant and n is the Avrami exponent. Comparison with the JMAK model is often carried
out by plotting the log-log plot of log(1/(1−X)) as a function of the annealing time, referred to as JMAK
plot. This should result in a straight line whose slope is equal to n. However, it is often observed that above
a certain volume fraction of recrystallised material the curve deviates from the slope due to microstructure
heterogeneity [Rollett et al., 2017] , as visible in Fig. 1.9.

Figure 1.9: JMAK plot of 99.96% Cu cold-rolled at 92% total deformation and annealed at 121◦ C [Woldt
and Jensen, 1995].

I.4 Mean field models

Microstructure descriptors such as grain size or recrystallised fraction can be described by mean-field
models, which are based on an implicit and reduced representation of the material. These simplifying
assumptions allow these types of model to be much faster than full-field models. However, they do not take
into account the grain topology and the interactions between grains, so the local variations in properties
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are generally neglected. The work of Burke and Turnbull [1952] can be considered as one of the earliest
examples of a mean-field model for grain growth.
An extended description of the microstructure was proposed by Hillert [Anand et al., 2015], in which N
classes of spherical grains are considered and each class is represented by a grain radius. This makes the
model more versatile than that of Burke and Turnbull [Cruz-Fabiano et al., 2014].
More complex models have been proposed by adding more descriptors such as dislocation density to model
nucleation and growth in discontinuous dynamic recrystallization [Montheillet et al., 2009; Cram et al.,
2009; Bernard et al., 2011; Beltran et al., 2015; Maire et al., 2018].
Most mean field models are based on the SIBM nucleation mechanism, where a critical nucleus radius
arises when the driving force due to stored energy becomes greater than the boundary curvature [Bailey
and Hirsch, 1962]. Based on the simple Bailey-Hirsch model, approaches describing nucleation as the
unstable growth of cells have been proposed by Humphreys [1997]; Hurley and Humphreys [2003], Zurob
et al. [2006] and more recently Després et al. [2020] who was able to account for the subgrain boundary
properties dependence on misorientation.

I.5 Full-field modelling of grain growth and recrystallization at the meso-
scopic scale

I.5.1 Monte-Carlo Potts models

First introduced in a series of papers by Anderson et al. [1984], Monte Carlo Potts models discretise the
microstructure into a lattice of N sites. Each site is then assigned an orientation number si. A grain is defined
as one or more blocks of the same orientation, while grain boundaries are implicitly defined as the boundary
between two blocks of different orientations (cf Fig. 1.10). The total energy of the system accounts for grain

Figure 1.10: Discretized microstructure in the Monte Carlo Potts model [Anderson et al., 1984]

boundary and stored energy contributions of lattice site i with n nearest neighbours. A Monte Carlo sampling
of the different orientations is then performed to model microstructure evolution. A site is selected at random
and given a new orientation, inducing an energy change ∆E. A transition probability p is associated with
this new orientation, which favours the changes that lead to a decrease in the energy. When all lattice sites
have undergone this orientation change, a ’Monte Carlo step’ (MCS) has been completed. One of the main
drawbacks of the Monte-Carlo Potts model is the lack of physical time and length scales, although several
remedies have been proposed to relate the MCS to real time, see for example [Gao and Thompson, 1996],
[Raabe, 2000], [Liu and Lusk, 2002]. Another disadvantage of this type of model is the unsatisfactory
non-linear relationship between grain boundary velocity and stored energy driving force, as pointed out by
[Rollett and Raabe, 2001]. Finally, the use of a lattice in the Monte Carlo model introduces an inherent
anisotropy that cannot be neglected if quantitative results are to be obtained [Mason et al., 2015]. However,
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the simplicity of its implementation, computational efficiency and straightforward extension to 3D make it
a widely used model to date, for example in additive manufacturing simulations [Wei et al., 2019].

I.5.2 Cellular automata

Similar to Monte Carlo Potts models, cellular automata are based on a discretisation of the microstruc-
ture into a grid of cells. A cellular automaton is then characterised by the geometry, neighbourhood and
state of the cell, and the transition/switching rules that determine the state of the cell at the next time step.
Note that the entire lattice is updated simultaneously.
Applications of cellular automata to recrystallization date back to [Hesselbarth and Göbel, 1991], where
only two states were possible: either recrystallised or not. The definition of the states of the cells and the
associated transformation rules make the cellular automaton approach very flexible and versatile. For ex-
ample, in [Liu et al., 1996] the states of the cell account for grain orientations to simulate normal grain
growth, and in [Raabe, 1998] probabilistic transformation rules are used. Another advantage of this method
is that it can be efficiently parallelized with great scalability, resulting in fast simulations [Sitko et al., 2020].
However, it has been reported that the type of neighbourhood can influence the shape of grains [Janssens
et al., 2007], and although stored energy driven migration is well accounted for, curvature driven migration
is often neglected due to difficulties in evaluating the local curvature [Mason, 2015].

I.5.3 Level-set models

The use of level-set functions to describe grain growth and recrystallization has been extensively studied
by Bernacki and colleagues since [Bernacki et al., 2008]. In this framework grain boundaries are defined
as the zero isovalues of a signed distance function φ . The temporal evolution of φ is given by a transport
equation

∂φ

∂ t
+ v ·∇φ = 0, (1.14)

where v is the grain boundary velocity, which can be split into curvature and stored energy contributions.
Grain boundary properties such as mobility and energy are well controlled and go directly into the expression
for velocity. The framework allows to account for anisotropy of the grain boundary energy both in 2D and
3D [Hallberg, 2014; Hallberg and Bulatov, 2019]
When considering polycrystals, each grain is given an independent level set function φi and nucleation is
treated by adding new level set functions. A recolouring scheme [Scholtes et al., 2016] can be used to reduce
the total number of level set functions. A disadvantage of this approach is the loss of the distance properties
of the level sets after transport, which requires a reinitialisation of these functions [Shakoor et al., 2015].
Interface reconstruction may also be needed for the localisation of triple junctions [Hallberg, 2013]. It is
a rather algorithmically complex method associated with high computational cost, as remeshing operations
may be required to correctly capture the isovalues of the level set functions or when a core is introduced
[Sarrazola et al., 2020b]. Furthermore, this type of model is not formulated in a thermodynamic framework.
However, despite the high computational cost and numerical difficulties, this approach has been coupled
with crystal plasticity to simulate dynamic recrystallization in 3D [Sarrazola et al., 2020b,a].

I.5.4 Phase-field models

In phase-field models, microstructures are described by a set of continuous field variables. Sharp in-
terfaces are made diffuse, allowing continuous variation of physical properties over a narrow region, as
illustrated in Figure 1.11 [Moelans et al., 2008; Steinbach, 2009; Finel et al., 2010].

In this paradigm there is no need to explicitly trace the location of the interfaces as they are implicitly
described by regions of large gradients of field variables, allowing complex morphologies to be taken into
account [Moelans et al., 2008]. Another consequence of the diffuseness of the grain boundaries is the
mitigation of the lattice anisotropy effect [Fan et al., 1997] that occurs in Monte Carlo Potts models. Based
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(b) Diffuse interface: continous properties

Figure 1.11: Comparison between the sharp and diffuse interface approaches

on a mathematical asymptotic analysis, it is possible to derive a "sharp interface limit" of phase field models
which recovers the sharp interface behaviour [Elder et al., 2001]. These models are based on thermodynamic
principles and include phenomenological parameters to account for material properties, which are derived
from experimental and theoretical data [Moelans et al., 2008]. This is not always a trivial task, as will be
shown later in the Kobayashi-Warren-Carter model [Kobayashi et al., 2000].
Two types of field variables are distinguished: conserved (e.g. concentration) and non-conserved (e.g. lattice
orientation). The main components of phase field models are a free energy potential, which is a function of
the field variables and their gradients, and a set of evolution equations describing the time evolution of these
field variables. For grain growth applications, the earliest model, proposed by [Chen and Yang, 1994], was
based on the following free energy:

FCY =
∫
V

P

∑
i=1

−α

2
φ

2
i +

β

4
φ

4
i + γ

P

∑
i=1

P

∑
j>1

φ
2
i φ

2
j +

P

∑
i=1

κi

2
(∇φi)

2 dV,

where φi are the nonconserved order parameters describing the grain orientations and α, β , γ, κi are co-
efficients. In this model the orientation in the grain is constant and equal to 1, while all other φi vanish.
Consequently, there are as many φi as there are grains. Figure 1.12 shows a schematic microstructure and
grain boundary obtained with the Chen-Yang model.

The evolution of the phase field variables is then given by the time-dependent Ginzburg-Landau or
Allen-Cahn equation:

∂φi

∂ t
=−Mi

δFCY

δφi
=−Mi

(
∂FCY

∂φi
−∇ · ∂FCY

∂∇φi

)
, (1.15)

where Mi are kinetic coefficients.

I.5.4.1 Multi-phase-field model

In a similar approach proposed by Steinbach and colleagues [Steinbach and Pezzolla, 1999; Steinbach,
2009], called the Multi-Phase-Field (MPF) model, the interfacial energy γi j and width `i j enter directly into
the free energy functional:

FMPF =
∫
V

N

∑
i, j=1, i 6= j

4
γi j

`i j

[
−
`2

i j

π2 ∇φi ·∇φ j +φiφ j

]
dV. (1.16)
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(a) Schematic microstructure (b) Schematic profiles of two phase-field variables
across the flat grain boundary between grain 1 and
grain 2

Figure 1.12: Schematic representations of a microstructure and the orientation fields across the grain bound-
ary between grains 1 and 2, after [Chen and Yang, 1994]

The phase field variables are assumed to represent volume fractions of grains of different orientations, and
are therefore bounded by

N

∑
i=1

φi = 1 (1.17)

which is the main difference with the Chen-Yang model [Chen, 2002]. Another discrepancy lies in the
evolution equations of the phase field variables, which take into account the influence of the other interfaces:

∂φi

∂ t
=−

N

∑
j=1, j 6=i

π2

8`i jN
Mi j

(
δFMPF

δφi
− δFMPF

δφ j

)
. (1.18)

Both models suffer from the fact that grains are defined as regions of constant orientation and thus may
not account for intragranular lattice reorientation due to simultaneous viscoplastic deformation and grain
boundary migration. Furthermore, the computational cost is very high as the interfaces have to be discre-
tised with sufficient resolution. Recent work in this area has led to the so-called Sharp Phase Field Method
[Finel et al., 2018], which, based on an inherently discrete Chen-Yang type free energy functional, allows
the interface width to be reduced to a single lattice point while retaining the grain growth kinetics of the
classical phase field model [Dimokrati et al., 2020].

Due to their thermodynamic framework, phase field models can easily be extended to multiphysics.
Indeed, other physical contributions, such as elastic strain or stored energy, can be taken into account by
adding them to the free energy functional [Steinbach and Apel, 2006]. The MPF model has been coupled
with mechanics in a staggered scheme to simulate static and dynamic recrystallization [Takaki et al., 2008a;
Takaki and Tomita, 2010] with extension to 3D [Chen et al., 2015].

I.5.4.2 Kobayashi-Warren-Carter model

Unlike the MPF-type models, another phase field approach proposed in [Kobayashi et al., 2000] de-
scribes grain boundaries by relying on only two phase fields for the whole system: θ the lattice orientation
and φ the crystal order, which is a coarse-grained measure of crystallinity. A schematic illustration of the
phase-fields is given in Fig. 1.13, where it can be seen that the interface widths are different for both fields.
It is however possible to decrease the interface thickness for φ by adopting a Modica-Mortola functional
[Giga et al., 2023].
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Figure 1.13: Typical phase-field profiles in the KWC model

This type of formulation allows for the occurrence of intragranular orientation gradients, thus making this
model a strong candidate for the natural modelling of (sub)grain nucleation due to large intra/inter gradients.
The frame-invariant free energy of the Kobayashi-Warren-Carter (KWC) model is given by

FKWC =
∫
V

f (φ)+
α2

2
|∇φ |2 + sg(φ)|∇θ |+ ε2

2
|h(φ)∇θ |2dV, (1.19)

where f (φ) is a single well potential with minimum value at φ = 1, g(φ) and h(φ) are coupling functions
required to be positive definite, and α,s,ε are coefficients. The term |∇θ | allows to localise grain boundaries
of finite width, while the term |∇θ |2 tends to smear the interfaces and is required to account for grain
boundary motion. The time evolution of the phase fields is then given by the following gradient flow
equations:

Q(φ ,∇θ)τφ

∂φ

∂ t
=−δFKWC

δφ
, (1.20)

P(φ ,∇θ)τθ

∂θ

∂ t
=−δFKWC

δθ
, (1.21)

where τφ ,τθ are kinetic scaling factors and Q,P are inverse mobility functions.
A major drawback of this model is the non-trivial link between the model parameters and the grain boundary
properties. In fact, the grain boundary energy and the mobility for curvature driven migration are obtained
using a mathematically involved matched asymptotic expansion [Lobkovsky and Warren, 2001]. Coupled
with crystal plasticity in a staggered scheme, the KWC model has been used to model recrystallization in
[Takaki et al., 2008b], [Abrivard et al., 2012a] and more recently in [Luan et al., 2020].
Monolithic models coupling mechanics and microstructure evolution based on KWC have been proposed
in [Admal et al., 2018] and [Ask et al., 2018b] by resorting to generalised continua. They provide a unified
and thermodynamically consistent framework for modelling microstructure evolution, capable of account-
ing for concomitant deformation and grain boundary motion. The common feature of these models is the
identification of the lattice orientation gradient in the KWC free energy with a generalised strain gauge: the
geometrically necessary dislocation density tensor in Admal’s model and the Cosserat curvature in Ask’s
model. However, the introduction of additional degrees of freedom and stiff equations to solve greatly in-
creases the already high computational cost associated with the KWC model.

A wide variety of approaches have been proposed to simulate recrystallization and grain growth, notably
Monte Carlo Potts, cellular automata, level-sets and phase-field methods. The advantages and drawbacks of
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the models described above are summarized in table 1.3. Other less common approaches to simulate grain
growth such as geometrical [Mahin et al., 1980; Jensen, 1992], tessellation updating method [Telley et al.,
1992; Sakout et al., 2020], moving finite element [Kuprat, 2000; Kuprat et al., 2003; Gruber et al., 2005]
and vertex models [Kawasaki et al., 1989; Piękoś et al., 2008; Mellbin et al., 2015] are not discussed here
for the sake of brevity.

Model Advantages Drawbacks

Monte Carlo Potts
Easy implementation

Computationaly efficient
Straightforward extension to 3D

Complex link between Monte-Carlo step
and physical time/length scales

Inherent anisotropy due to the lattice
Stored energy driven migration not satisfactory

Cellular automata
Very flexible and versatile

Great scalability when parallelized

Definition of the cell’s neighbourhood
influences the shape of the grains

Curvature is hard to handle

Level sets
Good control of GB properties

Complex morphologies and shape changes

High computational cost
Complex to implement

No thermodynamic framework

Multiple phase fields
(MPF & Yang-Chen)

Thermodynamically consistent
Easy extension to multiphysics

Complex morphologies and shape changes
Good control of the GB properties

High computational cost
No intragranular orientation gradients

KWC

Thermodynamically consistent
Easy extension to multiphysics

Accounts for intragranular orientation gradients
Complex morphologies and shape changes

High computational cost
No trivial relation between the parameters

and the GB properties
Two different interface widths

Table 1.3: Main approaches to simulating recrystallization and grain growth

I.5.5 Modelling grain nucleation

A major issue in the modelling of recrystallization is the treatment of nucleation. In fact, in numerical
simulations it is not treated "naturally" by the models mentioned above, but rather - in an additional step
in the model - by introducing spherical/circular nuclei based on a critical stored energy, dislocation density
or strain criterion. It is also often restricted to grain boundaries, see for example [Scholtes et al., 2016;
Sarrazola et al., 2020b] for necklace-type nucleation in the context of a crystal plasticity level set, or [Takaki
et al., 2009; Luan et al., 2020] for nucleation at grain boundaries using a coupled crystal plasticity and MPF
or KWC model. This nucleation step can also have a probabilistic character, as in [Li et al., 2020], where the
probability of a nucleus appearing in the material follows a Weibull distribution involving dislocation den-
sities. Takaki and Tomita [2010] simulated nucleation by subgrain growth with the MPF model. However,
the subgrain structure was obtained by simulation of normal grain growth of circular seeds whose position
and radius was predetermined. It cannot be termed as fully spontaneous. Within the context of cellular
automaton modelling of recrystallization, a more spontaneous treatment of nucleation has been proposed
by Hallberg and Ristinmaa [2013]. In this work, dislocation density concentrates at the grain boundaries
and triple junctions, naturally providing the nucleation sites. The nuclei are then initiated where the dislo-
cation density reaches a critical value and are assigned a random orientation from a uniform distribution.
Therefore, this approach may be limited in modelling nucleation induced by intragranular lattice orientation
gradients.

A promising model for simulating grain nucleation is that of Ask and colleagues [Ask et al., 2018b], as
in a recent article [Ask et al., 2020] simulations showed nucleation of subgrain boundaries in conjunction
with plastic strain/curvature localisation. In addition, these newly formed boundaries can exhibit spots of
different orientation associated with a local decrease in dislocation density, which could be interpreted as
nuclei.
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I.6 Summary

The microstructural evolution that occurs during thermomechanical processing of crystalline materials
is of paramount importance in predicting macroscopic properties. Static primary recrystallization, i.e. the
formation and migration of high-angle grain boundaries that reduce the energy stored in the material, is a
restoration process that has been studied for decades but is still not fully understood. However, there is
experimental evidence that the nucleation stage of recrystallization occurs mainly in regions of large lattice
orientation gradients such as grain boundaries, triple junctions or transition and shear bands. It has been
shown that it can result from the migration of pre-existing high angle grain boundaries (SIBM) or from
the rearrangement of subgrains into grains with high angle grain boundaries relative to their neighbours
(subgrain coarsening and subgrain coalescence).

In order to deepen our understanding of the phenomenon and to achieve quantitative predictions of
microstructures and properties, many approaches to full-field modelling of recrystallization have been de-
veloped, notably Monte Carlo Potts, cellular automata, level-sets and phase-field models. The latter is
particularly promising due to their thermodynamic framework, which favours full coupling with continuum
mechanics, as well as the implicit tracing of grain boundaries, which allows complex grain shapes and trans-
formations to be taken into account. Among these, the KWC model appears to be a strong candidate for
addressing a key issue in the modelling of recrystallization: the nucleation stage. In fact, up to now nuclei
have been introduced as an additional step in the simulation, based on criteria such as the critical density
of stored energy. However, the KWC model is thought to be able to naturally account for nucleation due to
lattice orientation gradients. This will be demonstrated in the present work.
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Chapter II

Mechanics of elastoplastic Cosserat continua

Résumé en français

Ce deuxième chapitre aborde la mécanique des milieux continus de Cosserat, l’objectif étant de présen-
ter et illustrer cette formulation sur des exemples simples. Dans un premier temps, les équations de champs
sont rappelées dans le cas de matériaux élastiques linéaires isotropes. Deux exemples sont étudiés de façon
analytique et numériques tout au long de ce chapitre: la torsion d’un cylindre à section circulaire et le
glissement simple d’une bande de matériau pour lequel le champ de microrotation est imposé nul aux bords.
Dans le cas du glissement simple, différentes formulations du potentiel d’énergie libre vis-à-vis du tenseur
de courbure sont envisagées: une contribution quadratique et une contribution de rang 1. Ce dernier cas
étant non régulier pour une courbure nulle, le champ de microrotation est discontinu aux bords du domaine.
Une tentative a également été faite de combiner à la fois un potentiel quadratique et un potentiel en norme
pour se rapprocher du modèle à champ de phase de Kobayashi-Warren-Carter.

La seconde partie du chapitre est dédiée à l’étude de la torsion du cylindre dans le cas où la loi de
comportement est elastoplastique isotrope. Une solution analytique est trouvée dans le cas simplifié où
seule la partie symmétrique du déviatorique des contraintes intervient dans la contrainte équivalente, ce
qui correspond à un critère de von Mises appliqué à la théorie de Cosserat. Une analyse limite permet de
mettre en évidence un effet de taille proportionnel à l’inverse du rayon du cylindre. Des solutions pour des
critères plus complexes faisant intervenir la partie antisymmetrique du tenseur des contraintes et le tenseur
de couple-contrainte sont également obtenues numériquement par la méthode des éléments finis.

Enfin, la troisième partie de ce chapitre traite de la plasticité cristalline. Après avoir rappelé le cadre
théorique du modèle, le cas du monocristal soumis un chargement de glissement simple est à nouveau étudié
pour deux potentiels d’énergie libre différents. Une fois de plus, lorsque l’énergie libre dépend de la norme
du tenseur de courbure à la puissance 1, le champ de microrotation présente une discontinuité aux bords du
domaine.
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II.1 Introduction

II.1 Introduction

The thermodynamic framework of the KWC phase field model is well suited for coupling to mechanics
via the free energy potential. Remarkably, it bears similarity to the formulation of Cosserat continuum me-
chanics [Cosserat and Cosserat, 1909], making it a strong candidate for a fully coupled model that accounts
for simultaneous viscoplastic deformation and microstructure evolution. This chapter introduces Cosserat
mechanics and proposes new analytical solutions to two academic problems: the torsion of an elastic-plastic
cylinder adapted from Ghiglione and Forest [2022] and the shearing of a single crystal based on Forest and
Ghiglione [2023]. The first part of this chapter deals with the formulation of Cosserat mechanics in elas-
ticity, while the second and third parts focus respectively on generalised von Mises plasticity and crystal
plasticity at small deformations.

II.2 Isotropic elastic behavior

II.2.1 Field equations

The theory of Cosserat/micropolar media was established by the Cosserat brothers [Cosserat and
Cosserat, 1909] and was later extended to the general finite deformation setting by Kafadar and Eringen
[1971]; Eringen [1976] and finally reported in the book [Eringen, 1999]. Eringen and Kafadar applied their
theory to hyperelasticity of Cosserat media. The extension of this model to finite deformation elasto-visco-
plasticity was proposed much later in [Dluzewski, 1992; Sievert, 1995; Sansour, 1998; Forest and Sievert,
2003]. The present work however concentrates on small deformations, rotations and curvatures because this
theoretical framework is more easily amenable to analytical solutions in elasticity and even plasticity.

Cosserat material points are characterized by their displacement, u , and microrotation degrees of free-
dom [Nowacki, 1986; Eringen, 1999]. The inclusion of microrotations makes Cosserat theory particularly
amenable to model heterogeneous materials such as granular or particles-containing materials, since the size
effects and the relative rotations between grains/particles are captured. It also allows, due to the presence
of internal lengths, to address strain localization and, contrary to a Cauchy continuum, the width of the
localisation zone is independent of the mesh size [Mühlhaus and Vardoulakis, 1987; Stefanou et al., 2017].
These internal lengths are thought to be scale parameters connected with long range interactions or geom-
etry and thus are indicative of some nonlocality [Kunin, 1968, 1982, 1983]. The approach is not limited to
metals, but can also be applied to block and masonry structures [Masiani and Trovalusci, 1996; Trovalusci
and Masiani, 2003; Trovalusci and Pau, 2014; Sulem and Mühlhaus, 1997; Stefanou et al., 2008; Godio
et al., 2014], random composites [Trovalusci et al., 2015], and geomaterials [Sulem et al., 2011; Stefanou
et al., 2017; Rattez et al., 2018].
Early considerations of the incorporation of moments and oriented particles within a theory of elasticity
include the molecular model of Voigt [1887, 1900, 1910] in which particles interact through forces and cou-
ples.

In the remainder of this work, the microrotation is represented by the axial vector θ . Within the small
strain, small rotation and small curvature assumption, the Cosserat deformation measures are the relative
deformation and curvature tensors defined as

e = u ⊗∇+ ε
'
·θ , ei j = ui, j+ εi jk θk, (2.1)

κ∼ = θ ⊗∇, κi j = θi, j, (2.2)

in an orthonormal basis. The work-conjugate variables of the strain measures respectively are the force
stress and couple-stress tensors, which, for an isotropic elastic medium, are given by:

σ∼ = λ Tr
(
e∼
)
I∼+2µe∼

sym +2µce∼
skew, σi j = λekkδi j +2µesym

i j +2µceskew
i j (2.3)
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m∼ = α Tr
(
κ∼
)
I∼+2βκ∼

sym +2γκ∼
skew, ακkkδi j +2βκ

sym
i j +2γκ

skew
i j (2.4)

where λ and µ are the classical Lamé coefficients, µc is the Cosserat coupling modulus and α,β ,γ are
Cosserat bending-torsion moduli with force units. The quantities described above fulfil the static balance
laws for momentum and moment of momentum

σ∼ ·∇ = 0, σi j, j = 0, (2.5)

m∼ ·∇− ε' : σ∼ = 0, mi j, j− εi jk σ jk = 0, (2.6)

in the absence of body forces and couples. These field equations are accompanied by appropriate Neumann
boundary conditions in the form

t = σ∼.n , ti = σi jn j, m =m∼ .n , mi = mi jn j, (2.7)

where t and m are surface traction and couple stress vectors.

II.2.2 Torsion of a cylinder with circular cross-section

Solutions of many boundary value problems in Cosserat elasticity have been made available in the
literature since more than 50 years. Kim and Eringen [1973] solved the problem of the stress concentration
at a hole in a micropolar plate. The general Saint-Venant problem was extended to elastic micropolar
media in the case of circular cylinders by Reddy and Venkatasubramanian [1976]. The torsion problem is a
particular case of the Saint-Venant problem and is the subject of the present work.

The analytical solution of an isotropic Cosserat bar subjected to torsional loading has been known since
the work of Ieşan [1971] and Gauthier and Jahsman [1975]. It has been shown that the Cosserat formulation
gives rise to characteristic lengths related to the microstructure. This effect has been studied numerically for
anisotropic Cosserat bars in Taliercio and Veber [2016]. Torsional loading of elastoplastic materials leads
to size effects which are not captured by classical continuum mechanics and require the use of enriched
models. In this work, an analytical solution for the torsion of isotropic perfectly plastic Cosserat cylindri-
cal bars with circular cross–section is derived in the case of generalized von Mises plasticity accounting
solely for the symmetric part of the deviatoric stress tensor. The influence of the characteristic length on the
microrotation, stress and strain profiles as well as torsional size effects are then investigated. In particular,
a size effect proportional to the inverse of the radius of the cylinder is found for the normalized torque.
A similar analysis for an extended plasticity criterion accounting for both the couple-stress tensor and the
skew-symmetric part of the stress tensor is performed by means of systematic finite element simulations.
These numerical experiments provide results regarding size effects which are similar to those predicted by
the analytical solution. Saturation effects and limit loads are found when the couple stress tensor enters the
yield function.

Note that the torsion problem has been solved for several other generalized continua like strain gradient
elastic media [Lazopoulos and Lazopoulos, 2012; Iesan, 2013; Beheshti, 2018], and recently elastic stress
gradient media [Kaiser et al., 2021]. The torsion of Cosserat bars is of physical relevance for the identi-
fication of Cosserat elasticity moduli and associated internal length scales [Gauthier and Jahsman, 1975].
This test was applied to several materials with highly heterogeneous microstructures like bones [Yang and
Lakes, 1981] and other foam materials [Lakes, 1987; Onck, 2002]. Early solutions of the torsion problem
for elastic Cosserat bars were provided by Smith [1967]; Ieşan [1971]. In the present work, the solution
given by Taliercio and Veber [2016]; Drugan and Lakes [2018] will be recalled and used as a starting point
for tackling the elastoplastic case.
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II.2 Isotropic elastic behavior

II.2.2.1 Problem setting

Consider a solid cylinder of radius R and height L subjected to an angle of torsion ±ϑ at the top and
bottom surfaces respectively (figure 2.1). The difference between the angle of torsion at the top and that at
the bottom is denoted ∆ϑ . The angle of torsion per unit length is written as

a =
∆ϑ

L
. (2.8)

The Cartesian coordinate (e x,e y,e z) and the cylindrical coordinate (e r,e θ ,e z) systems are shown in figure
2.1. The lateral sides of the cylinder are traction-free, namely:

σ∼(r = R) · e r = 0 , m∼ (r = R) · e r = 0 , (2.9)

where σ∼ andm∼ are the (generally non-symmetric) Cosserat force and couple stress tensors.

L

ex

ez

ey

ex

ey

er

eθ

θ

r

Figure 2.1: Torsion of a cylindrical bar and coordinates systems.

II.2.2.2 Problem solution

The analytical solution for an isotropic elastic Cosserat bar is recalled here in cylindrical coordinates.
The displacement and micro-rotation fields are of the form:

u =


0

arz

0

 , θ =


θ(r)

0

az

 . (2.10)

The displacement vector is exactly the same as for a classical continuum. The micro-rotation field keeps the
classical component θz = az. However, the r component of the rotation is the unknown function θr = θ(r)
which, for symmetry reasons, can be assumed to only depend on r. The strain and curvature tensors are
calculated using equations (2.1) and (2.2) respectively:

e∼=


0 0 0

0 0 ar+θ

0 −θ 0

 , κ∼ =


θ ′ 0 0

0
θ

r
0

0 0 a

 , (2.11)
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where ′ denotes a derivation with respect to r. The stress and couple-stress tensors then follow from equa-
tions (2.3) and (2.4):

σ∼ =


0 0 0

0 0 (µ +µc)ar+2µcθ

0 (µ−µc)ar−2µcθ 0

 , (2.12)

m∼ =


(α +2β )θ ′+α

(
θ

r
+a
)

0 0

0 (α +2β )
θ

r
+α

(
θ
′+a

)
0

0 0 (α +2β )a+α

(
θ
′+

θ

r

)
 . (2.13)

The balance equation (2.6) gives:

m′rr +
mrr−mθθ

r
− (σθz−σzθ ) = 0. (2.14)

Replacing the force stresses by their expressions one gets:

m′rr +
mrr−mθθ

r
−2µc(ar+2θ) = 0, (2.15)

which can finally be expressed as an ODE for the unknown function θ(r):

θ
′′+

θ ′

r
−
(

4µc

α +2β
+

1
r2

)
θ = 2

µc

α +2β
ar. (2.16)

This differential equation is a modified Bessel equation with a non-zero right-hand side. The regular solution
takes the form:

θ(r) = AI1 (r/`)−
a
2

r, with `=

√
α +2β

4µc
, (2.17)

where I1 is the modified Bessel function of the first kind, A is an integration constant and ` is the charac-
teristic length, which only depends of the new moduli introduced by the Cosserat formulation. Note that
−a

2 r is exactly the r component of the material rotation of a classical continuum subjected to torsion. The
integration constant A can be determined from the traction-free boundary condition on the lateral sides of
the cylinder:

m∼ (r = R) · e r = 0 =⇒ mrr(r = R) = 0 =⇒ A =
βaR

4µc`RI0(R/`)−2β I1(R/`)
. (2.18)

The final expression for θ finally is:

θ(r) =
βaR

4µc`RI0(R/`)−2β I1(R/`)
I1 (r/`)−

a
2

r. (2.19)

This analytical solution is now illustrated and used to validate the finite element implementation of the
Cosserat model in Zset software [Besson and Foerch, 1997; Z-set, 2022]. More details regarding the im-
plementation of the Cosserat element are given in reference Forest et al. [2000]. The radius and height of
the cylinder are respectively R = 1 mm and L = 10 mm. The chosen material parameters are given in table
2.1, with for all cases E = 70000 MPa, ν = 0.3, and µc = 50000 MPa. The simplification γ = β is used
throughout. The characteristic length of the medium will be varied in the analysis.

Figure 2.2 shows the influence of ` on the profiles of θ normalized by aR. Note that in classical Cauchy
elasticity, the material rotation along axis e r is −ar/2. It can be seen that as ` increases, so does θ . For the
case `→ 0 the classical solution is retrieved.
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` [mm] α [N] β [N]

0.05 300 100

0.1 1000 500

0.2 4000 2000

0.9 62000 50000

Table 2.1: Material parameters used for the calculations.

Figure 2.2: Profiles of θ along a radius for various internal lengths for torsion in linear isotropic Cosserat
elasticity. Analytical solutions are in black solid lines. Symbols denote finite element predictions.

Figure 2.3 shows the influence of ` on the stress profiles of σθz and σzθ , normalized by the shear at the
outer radius for a classical continuum, i.e. µaR. The curves are roughly symmetric with respect to the line
y = r/R, σθz and σzθ being respectively above and below that line. They tend to coincide with that line for
decreasing length scale `→ 0, where the stress tensor becomes symmetric as expected in the classical case.
Strong asymmetry is observed for large values of `.

Finally, the sensitivity of the components of the couple-stress tensor to the characteristic length is illus-
trated in figure 2.4. The components mrr,mθθ and mzz are normalized by the classical torque divided by the
area of a subsection of the cylinder. The components of the couple-stress tensor are fairly uniform for low
internal lengths. An increase in ` leads to nonlinear profiles as well as an increase of the maximum absolute
value attained by the solution. Decreasing ` to zero leads to vanishing couple stress values, as it should be
for a classical continuum. The boundary condition mrr(r = R) = 0 is clearly satisfied, as can be seen on the
profile of mrr.
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Figure 2.3: Profiles of σθz (in blue) and σzθ (in red) along a radius for various internal lengths, for torsion
in linear isotropic Cosserat elasticity. Analytical solutions are in black solid lines. Symbols denote Finite
Element predictions.

II.2.2.3 Size effect

For a Cosserat continuum, the resulting torque on a given cross-section of the cylindrical bar involves
two contributions: one from the stress tensor (moment of forces), as for classical media, and one from the
couple-stress tensor (intrinsic surface couple), as follows:

M =
∫ 2π

0

∫ R

0

(
OM ∧

(
σ∼ · e z

)
+m∼ · e z

)
rdrdθ . (2.20)

The torque C is then simply the component of M with respect to axis z, given by:

C = 2π

∫ R

0
(rσθz +mzz)rdrdθ , (2.21)

which in turn gives, in the linear isotropic elastic case:

C e = C e
class

(
1+

4β

µR2

(
1+

µc`RI0(R/`)−β I1(R/`)
2µc`RI0(R/`)−β I1(R/`)

))
, (2.22)

where the torque for a classical continuum reads:

C e
class = π

µaR4

2
. (2.23)

An alternative and useful expression has been derived by Taliercio and Veber [2016]:

C e

C e
class

= 1+
4β

µR2

(
2−
(

2− β I1(R/`)
µc`RI0(R/`)

)−1
)
. (2.24)

Using this expression, various limit cases can be studied. Let us start with the case R/`→ 0. For fixed
R, this limit behaviour can be obtained by taking `→ +∞. According to formula (2.17), this situation
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(a) Profiles of mrr. (b) Profiles of mθθ .

(c) Profiles of mzz.

Figure 2.4: Profiles of mrr , mθθ and mzz along a i radius for various internal lengths in the case of linear
isotropic Cosserat elasticity. Analytical solutions are in black solid lines. Symbols denote finite element
predictions.

can equivalently be studied either by taking µc→ 0 keeping other parameter constants (which uncouples the
micro-rotation and displacement fields but keeps the contribution of intrinsic couples to the resulting torque)
or for both α,β →+∞.
Using the equivalents

In(x)∼
(x/2)n

Γ(n+1)
for x→ 0, (2.25)

one gets:

I0(R/`) →
`→+∞

1, I1(R/`) →
`→+∞

R
4`
, (2.26)

and finally
C e

C e
class

→
`→+∞

1+
4β

µR2
3α +4β

2α +3β
. (2.27)

In this expression, a size effect proportional to R−2 clearly appears. This can be verified in figure 2.5, which
illustrates in a log-log plot the ratio of torques as a function of the normalized radius. A fit is also plotted to
verify the R−2 scaling. It can be seen that as R

` → +∞ the classical torque is retrieved, whereas for R
` → 0

the ratio of torques increases. Thus, the smaller the radius of the cylinder, the stiffer the response. Note
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that this result seems to also hold true for more general prismatic bars, as investigated by Drugan and Lakes
[2018].
Another interesting limit case arises when µc→+∞ and other parameters are fixed, which leads to:

C e

C e
class

→
`→+0

1+
6β

µR2 . (2.28)

This corresponds to the solution obtained for Koiter’s couple stress theory, which constrains the micro-
rotation to be equal to the material rotation.

Figure 2.5: Cosserat torque normalized by that of a Cauchy continuum as a function of the bar’s normalized
radius for `= 0.1 mm.
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II.2.3 Simple glide

The size-dependent response of a Cosserat continuum is also evaluated in the case of a simple one-
dimensional shear test involving one single slip system and vanishing microrotation prescribed at the bound-
aries of a material strip of width 2L. The inhomogeneous distribution of slip in the channel mimics the
piling-up of dislocations against the boundaries. The free energy density function depends on the elastic
strain and Cosserat curvature tensors. Two types of potentials are examined with respect to the curvature
tensor, namely a quadratic function of its norm, on the one hand, and the norm itself, on the second hand.
The first model is very often used but turns out to be non-physical since, according to physical metallurgy,
the stored energy is proportional to the dislocation density (here the density of geometrically necessary dislo-
cations) rather than its square. Analytical solutions are derived first considering pure elasticity in the present
section, and crystal plasticity in section II.4.2. The scaling laws predicted by these models are shown to be
L−2 or L−1, respectively. The latter scaling is reminiscent of Orowan’s law of yielding [Hirth and Lothe,
1982]. Finally, a third type of potential involving both quadratic and rank-one contributions of the norm of
the curvature tensor, similar to the KWC model for grain boundaries, is assessed in pure elasticity for the
sake of simplicity.

II.2.3.1 Studied boundary value problem

The one-dimensional simple shear problem of Fig. 2.6 is considered successively for several choices of
the free energy potential and Schmid law. It involves a single slip system (` ,n ) respectively parallel to the
two first vectors of the orthonormal basis (e 1,e 2,e 3). The origin is located at the centre of the strip of width
2L and height H. The height H is regarded as infinite so that the solution is invariant along the y−direction.

The unknown displacement and microrotation fields take the following simple form:

u = γ̄ye 1 +u(x)e 2, θ = θ(x)e 3, (2.29)

where the mean shear amount γ̄ is prescribed to the strip. The total deformation and curvature tensors follow

e∼= (γ̄ +θ)e 1⊗ e 2 +(u′−θ)e 2⊗ e1, κ∼ = θ
′e 3⊗ e 1, (2.30)

where u(x) and θ(x) are the main unknowns of the problem. The notation u′ is set for the derivative of u(x)
with respect to x.

The following boundary conditions are enforced:

u(0) = 0, u(−L) = u(L), θ(−L) = θ(L) = 0. (2.31)

The first condition sets the rigid body translation and the second set of conditions correspond to periodicity
requirement of the fluctuation u(x). Finally, the micro-clamping conditions for the Cosserat rotation mimic
the piling-up of dislocations at the left and right boundaries.

II.2.3.2 Simple glide in isotropic elasticity

The boundary value problem of section II.2.3.1 is first solved in the case of linear isotropic elasticity, i.e.
in the absence of plasticity. The isotropic elasticity laws are given by equations 2.6 and 2.5 In the particular
case of simple shear, the non-vanishing components of the stress tensors are

σ12 = (µ +µc)γ̄ +(µ−µc)u′+2µcθ , (2.32)

σ21 = (µ−µc)γ̄ +(µ +µc)u′−2µcθ , (2.33)

m31 = 2βθ
′. (2.34)
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Figure 2.6: Geometry of the simple shear boundary value problem in crystal plasticity involving a single
slip system.

The force stress balance tells that σ12,2 = σ21,1 = 0 so that σ21 is uniform. This provides a first differential
equation

(µ +µc)u′′−2µcθ
′ = 0 =⇒ u′′ =

2µc

µ +µc
θ
′. (2.35)

On the other hand, the couple stress balance equation yields

m31,1− (σ12−σ21) = 0, (2.36)

βθ
′′−µc(γ̄−u′+2θ) = 0. (2.37)

The combination of the previous equations leads to the following differential equation for θ

θ
′′′ = ω

2
θ
′, with ω =

√
2µµc

β (µ +µc)
, (2.38)

from which the microrotation function is deduced, after consideration of the boundary conditions (2.31)3,

θ(x) = a(cosh(ωx)− cosh(ωL)). (2.39)

The displacement function then follows from Eq. (2.35):

u(x) =
2µc

µ +µc

a
ω

sinh(ωx)+bx+ c. (2.40)

The boundary conditions (2.31)1,2 are used to determine the constants b and c:

u(x) =
2µc

µ +µc

a
ω
(sinh(ωx)− x

L
sinh(ωL)). (2.41)

The integration constant a is finally determined by inserting the found functions in Eq. (2.37):

a =
γ̄

2(cosh(ωL)− µc
µ+µc

sinh(ωL)
ωL )

. (2.42)

The parameters given in table 2.2 are used throughout this work, unless explicitly specified otherwise.
Comparisons of the analytical and FEM solutions for the displacement and microrotation fields are plotted
in figure 2.7, which shows a perfect agreement between the solutions.
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Parameter value

2L [mm] 20

H [mm] 1

E [MPa] 70000

ν 0.3

µc [MPa] 10000

α [N] 0

β [N] 26923.8

Table 2.2: Parameters used for computing analytical and numerical solutions.

Figure 2.7: Cosserat elasticity, displacement and microrotation fields. finite element simulations are com-
pared to the analytical solution, based on the parameters of table 2.2.

II.2.3.3 Rank one energy potential

In this section, a non-quadratic free energy potential is adopted

ψ(e∼
e,κ∼) =

1
2
e∼

e : Λ
≈

: e∼
e +A‖κ∼‖, with ‖κ∼‖=

√
κ∼ : κ∼, (2.43)

involving the norm of the curvature tensor. The force and couple stress tensors are then given by

σ∼ =
∂ψ

∂e∼
e = Λ

≈
: e∼

e, (2.44)

m∼ =
∂ψ

∂κ∼
= A

κ∼
‖κ∼‖

. (2.45)

It is apparent that the couple stress tensor is singular in the case of vanishing curvature.
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In the one-dimensional shear problem studied here, the single non-vanishing component of the couple
stress tensor is

m31 = A
θ ′

|θ ′|
. (2.46)

In the elastic case, e∼
e ≡ e∼. The microrotation profile is searched for in the following form:

θ(x) = θ̄(H(x+L)−H(x−L)), (2.47)

θ
′(x) = θ̄(δ (x+L)−δ (x−L)), (2.48)

which means that the microrotation takes the unknown uniform value θ̄ in ]−L : L[ and is indeterminate at
the ends of the interval. The expression involves the Heaviside function and the Dirac distribution such that

H ′(x−a) = δ (x−a). (2.49)

The uniform rotation field corresponds to the classical solution in the absence of curvature. The difference
in the Cosserat case is that curvature energy is now concentrated at the boundaries.

It follows that the couple stress component is indeterminate due to the vanishing of θ ′. The total work
balance equation is therefore used for a suitable treatment of the distribution functions:∫

V
σ∼ : (u ⊗∇+ ε

∼
·θ )+m∼ : κ∼dV =

∫
∂V

t ·u +m ·θ dS. (2.50)

The volume V is the infinite ribbon [−L : L]×R and invariance along y is assumed. The application of the
divergence theorem and the Neumann condition t = σ∼ · n are used to eliminate the u ⊗∇ and t · u terms
(Eq. 2.50), while the last term vanishes due to the vanishing microrotation boundary conditions. It remains∫

V
σ∼ : ε
'
·θ +m∼ : (θ ⊗∇)dV = 0. (2.51)

Keeping only the non-vanishing components, the latter becomes∫ L

−L
(σ12−σ21)θ +m31θ

′ dx =
∫ L

−L
(σ12−σ21)θ +A|θ ′|dx = 0, (2.52)

where m31θ ′ = Aθ ′2/|θ ′| has been used. After considering Eq. (2.48), the last integral is evaluated as∫ L

−L
A|θ ′|dx = A|θ̄ |

∫
|(δ (x+L)−δ (x−L))|dx = 2A|θ̄ |. (2.53)

The first contribution in Eq. (2.52) is then evaluated as∫ L

−L
(σ12−σ21)θ dx =

∫ L

−L
2µc(γ̄−u′+2θ)θ dx = 4µcθ̄L(γ̄ +2θ̄), (2.54)

taking the periodicity of u into account. Finally, the combination of the two found relations provides the
value

θ̄ =− γ̄

2
− A

4µcL
signθ̄ =− γ̄

2
+

A
4µcL

signγ̄, (2.55)

where θ̄ and γ̄ have opposite signs for sufficiently high values of µc. The limit case µc→+∞ constrains θ̄

to coincide with the material rotation−γ̄/2. Fig. 2.8 shows the profiles of θ for potentials that are quadratic
and a rank 1 with respect to the curvature tensor. Physically, the resulting rotation field is interpreted as
corresponding to dislocation pile-up at the boundaries in the case of the quadratic potential and the formation
of dislocation walls for the rank 1 potential.
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Figure 2.8: Comparison of the rotation field obtained with a quadratic (left) and rank 1 (right) potential in
the problem of simple glide

Finally, the displacement field is obtained from the shear stress component

σ21 = (µ +µc)u′+(µ−µc)γ̄−2µcθ . (2.56)

According to equilibrium, this component is uniform from which we deduce that u′′ = 0 so that u(x) is
linear.

The couple stress component m31 is indeterminate in the interval ]− L : L[ where θ ′ vanishes. Let
us assume that it is uniform in this interval. This, combined with the balance of moment of momentum
equation, implies that the skew symmetric part of the stress tensor also vanishes. Finally,

u = (γ̄ +2θ)x =
A

2µcL
xsign γ̄, ∀x ∈]−L : L[. (2.57)

This fluctuation vanishes for µc→ ∞ or vanishing length scale.

II.2.3.4 Combined potential

In this section, a free energy involving both quadratic and norm potentials is considered

ψ(e∼
e,κ∼) =

1
2
e∼

e : Λ
≈

: e∼
e +

1
2
κ∼ :C

≈
: κ∼+A‖κ∼‖, with ‖κ∼‖=

√
κ∼ : κ∼. (2.58)

The simple and couple stress tensors are then given by

σ∼ =
∂ψ

∂ee = Λ
≈

: e∼
e, (2.59)

m∼ =
∂ψ

∂κ∼
=C
≈

: κ∼+A
κ∼
‖κ∼‖

. (2.60)

In the problem considered in this work, the only non-vanishing component of the couple-stress tensor is

m31 = 2βθ
′+A

θ ′

|θ ′|
. (2.61)

More precisely,

m31(x) = 2βθ −A, if x< 0, (2.62)

= 2βθ +A, if x> 0, (2.63)
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Chapter II. Mechanics of elastoplastic Cosserat continua

considering the situation where θ(x) is decreasing (resp. increasing) on [−L,0] (resp. [0,L]). In that case, the
curvature is indeterminate only at x = 0. The field equations (2.36) to (2.38) from section II.2.3.2 are valid
in the present context. The solution has cosh form but there is a jump of sign θ ′ at zero. The micro-rotation
field is therefore assumed to be of the following form:

θ(x) = a+ cosh(ωx)+b+ sinh(ωx)+ c+, if x> 0, (2.64)

= a− cosh(ωx)+b− sinh(ωx)+ c−, if x< 0. (2.65)

The microtation field is an even function, θ(x) = θ(−x), which results in

a+ = a− = a, b+ =−b− = b, c+ = c−. (2.66)

The boundary conditions, θ(−L) = θ(L) = 0, give

c =−(acosh(ωL)+bsinh(ωL)). (2.67)

The integration constant b can be found by ensuring the continuity of the couple stress at x = 0, m31(0−) =
m31(0+), due to the unhindered transmission of the couple stress vector,

2βωb+A =−2βωb−A =⇒ b =
−A

2βω
. (2.68)

According to Eq. (2.62) and (2.63), the continuity of m31 results in a jump of θ ′ at x = 0. Finally, the last
integration constant a is obtained after integrating the equilibrium equation for the couple-stress∫ L

−L
m31,1dx =

∫ L

−L
σ12−σ21dx. (2.69)

The couple stress m31(x) being an odd function, the left hand-side of the above equation is evaluated as∫ L

−L
m31,1dx = 2 lim

ε→0

∫ L

ε
m+

31,1dx, (2.70)

∫ L

−L
m31,1dx = 4βω (asinh(ωL)+bcosh(ωL))+2A, (2.71)

whereas the second integral to be evaluated gives∫ L

−L
σ12−σ21dx =

∫ L

−L
2µc
(
γ̄−u′+2θ

)
dx, (2.72)

∫ L

−L
σ12−σ21dx = 4µc

[
γ̄L+2

(
a
ω

sinh(ωL)+
b
ω
(cosh(ωL)−1)+ cL

)]
, (2.73)

where the periodicity of u and θ has been accounted for. Eq. (2.69) now becomes

4βω (asinh(ωL)+bcosh(ωL))+2A = 4µc

[
γ̄L+2

(
a
ω

sinh(ωL)+
b
ω
(cosh(ωL)−1)+ cL

)]
. (2.74)

After replacing the constants b and c by their found values one gets

a =
2µµcLγ̄ +A(Lω(µ +µc)sinh(ωL)+µc(1− cosh(ωL))

4µµcLcosh(ωL)−2µcβω sinh(ωL)
. (2.75)

The microrotation field is continuous at x = 0 but its first derivative experiences a jump at this location.
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II.3 Isotropic elastoplastic structures

II.3.1 Formulation of rate-independent Cosserat plasticity

The framework of Cosserat rate-independent plasticity in a general case is briefly introduced here. Ex-
tensions of the von Mises plasticity criterion to Cosserat media go back to pioneering contributions by
Neuber [1966, 1968]; Lippmann [1969]; Besdo [1974]; Sawczuk [1967]. First applications to the plasticity
of metals were proposed by Diepolder et al. [1991]; Lippmann [1995]. A single, extended von Mises equiv-
alent stress measure incorporating both the stress and couple-stress tensors, adapted from [Besdo, 1974;
Diepolder et al., 1991], is given in the following form:

σeq(σ∼,m∼ ) =

√
3
2

(
σ∼
′ sym

: σ∼
′ sym

+bσ∼
skew : σ∼

skew + c1m∼
sym :m∼

sym + c2m∼
skew :m∼

skew

)
. (2.76)

The proposed extended von Mises yield function for the Cosserat continuum is given by:

f (σ∼,m∼ ) = σeq(σ∼,m∼ )−σY , (2.77)

where σY is the current value of the yield stress.
The total deformation and curvature tensors are split into elastic and plastic parts:

e∼= e∼
e +e∼

p, κ∼ = κ∼
e +κ∼

p. (2.78)

The plastic strain and curvature rates are then derived from a generalized normality rule in the form:

ė∼
p = ṗ

∂ f
∂σ∼

, κ̇∼
p = ṗ

∂ f
∂m∼

, (2.79)

where ṗ is a single plastic multiplier. Time integration of the plastic multiplier provides the path-dependent
cumulative plastic slip variable p. In the case of the present extended von Mises yield criterion, this gives

ė∼
p = ṗ

3
2
σ∼
′sym +bσ∼

skew

σeq(σ∼,m∼ )
, κ̇∼

p = ṗ
3
2

c1m∼
sym + c2m∼

skew

σeq(σ∼,m∼ )
. (2.80)

The plastic multiplier can be expressed as the following norm of the plastic strain and curvature rates:

ṗ =

√
2
3

(
ė∼

p sym : ė∼
p sym +

1
b
ė∼

p skew : ė∼
p skew +

1
c1
κ̇∼

p sym : κ̇∼
p sym +

1
c2
κ̇∼

p skew : κ̇∼
p skew

)
. (2.81)

It is such that σ∼ : ė∼
p +m∼ : κ̇∼

p = σeq ṗ. The yield stress can be a function σY (p) to describe isotropic
hardening of the material. In the present work, hardening is not considered for simplicity and σY is a
constant value, the initial yield threshold, corresponding to perfect plasticity.

II.3.2 Torsion of a cylinder

Kaplunov and Lippmann [1995] provided the first asymptotic solution for the elastic-plastic Cosserat
continuum in the case of torsion of circular cylinders. More recently, torsion in Cosserat plasticity was con-
sidered from the computational perspective by Grammenoudis and Tsakmakis [2005, 2009] which allows
for the consideration of isotropic and kinematic hardening.

The objective of the present work is to provide a fully explicit analytical solution of the torsion problem
for elastic perfectly plastic Cosserat bars with circular cross-section. This is made possible by the use
of a simplified version of the general extension of the von Mises yield function to Cosserat media. The
reduced form includes an equivalent stress measure that depends solely on the symmetric part of the force–
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Chapter II. Mechanics of elastoplastic Cosserat continua

stress tensor. The proposed solution is then compared to finite element results in the case of more general
formulations involving the skew–symmetric part of the force–stress tensor and the full couple–stress tensor.
The analytical solution is shown to be sufficient to exhibit the main features of the elastic–plastic response
of Cosserat bars including stress-strain distributions in the cross–subsection. In particular it predicts size
effects depending on the ratio between the bar radius and the intrinsic length arising in the elasticity solution.

II.3.2.1 Analytical solution in a simplified case

An analytical solution is derived in the following particular case of formula (2.76):

b = 0, c1 = c2 = 0. (2.82)

The yield function reduces in that case formally to the classical von Mises criterion involving the quadratic
norm of the symmetric deviatoric stress tensor:

σeq(σ∼) =

√
3
2
σ∼
′sym : σ∼

′sym. (2.83)

Plasticity occurs when f (σ∼) = 0. In the torsion case, this gives

3
4
(σθz +σzθ )

2 = σ
2
Y . (2.84)

Making use of equation (2.84), σθz and σzθ can be related by the following formula:

σzθ =
2σY√

3
−σθz, (2.85)

assuming that the loading is such that σθz +σzθ ≥ 0.
Starting from the elasticity solution exhibited in the previous subsection, the yield criterion will be

reached at the outer boundary r = R for a critical value of the loading al computed as

al =
σY

µR
√

3
. (2.86)

For increasing torsion loading, the bar cross-section will be split into a central disc of radius rl where the
yield stress has not been reached yet (elastic core), and an annulus rl ≤ r≤ R in which plastic yielding takes
place (plastic zone):

rl =
σY

µa
√

3
. (2.87)

For the yield criterion presented in equation (2.83), the expressions of rl and al are the same as for a classical
continuum.

Figure 2.9 shows the cumulative plastic strain at two different steps of the torsional loading of the
Cosserat elastoplastic bar. The elastic core is shrinking with increasing load.

The total deformation induced by torsion is still given by equation (2.11). It is now decomposed into
elastic and plastic contributions: {

ee
θz + ep

θz = ar+θ ,

ee
zθ
+ ep

zθ
=−θ .

(2.88)

The elastic strain tensor is obtained by inverting the isotropic elasticity law, equation (2.3). For monotonic
loading, the plastic strain tensor is derived directly from equation (2.80):

e∼
e =

1
4µµc

(
(µ +µc)σ∼+(µc−µ)σ∼

T ) , e∼
p = p

3
4σY

(σ∼+σ∼
T ) (2.89)
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Figure 2.9: Evolution of the cumulative plastic strain represented on the reference configuration for an
imposed maximum angle of torsion amax = 0.02 rad/mm and `/R = 0.2. The reduced yield function (2.83)
is used.

Substituting the strains given in equation (2.89) into the system of equations (2.88) allows to derive an
analytical expression for the plastic strain p:

p =
σY

3
4(σθz +σzθ )

(
−θ − 1

4µµc
(σzθ (µ +µc)+σθz(µc−µ))

)
. (2.90)

Finally, substituting this expression of p in the system of equation (2.88) and using equation (2.84), the
stress components are fully determined as{

σθz = µc(ar+2θ)+ σY√
3
,

σzθ =−µc(ar+2θ)+ σY√
3
.

(2.91)

Contrary to the classical case, the stress tensor is not uniform in the plastic zone, even though no hardening
is present. Moreover, this stress tensor is not symmetric.
Using equation (2.91), equation (2.90) simply reduces to the following expression, which is the same as for
a Cauchy continuum:

p =

{
0 for r ≤ rl,

a√
3
(r− rl) else.

(2.92)

The profile of p along a normalized radius is shown in figure 2.10 where it can be seen that it is null for
r ≤ rl and increases linearly for r > rl .

The obtained stress tensor must also satisfy the moment of momentum balance equation:

m′rr +
mrr−mθθ

r
− (σθz−σzθ ) = 0. (2.93)
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Figure 2.10: Profiles of cumulative plastic strain p along a radius for various internal lengths and a = 0.02
rad/mm. Analytical solutions are in black solid lines. Symbols denote finite element predictions. The reduced
yield function (2.83) is used.

Replacing σθz and σzθ by their expression given in equation (2.91), the balance equation becomes:

m′rr +
mrr−mθθ

r
−
(

µc(ar+2θ)+
σY

2
√

a1
−
(
−µc(ar+2θ)+

σY

2
√

a1

))
= 0, (2.94)

which reduces to:
m′rr +

mrr−mθθ

r
−2µc(ar+2θ) = 0. (2.95)

This equation is exactly the same as equation (2.15) derived in the purely elastic case. Since the simplified
criterion (2.83) does not involve the couple-stress tensor, m∼ keeps its purely elastic form. The ODE gov-
erning θ therefore is necessarily the same as for the elastic case and given by equation (2.16). The final
expression of θ (2.19) is still valid.

The stress fields can be visualized in figure 2.11. As expected from equation (2.91) σθz has greater
values than σzθ . Figure 2.12 shows the profiles of these stresses normalized by the shear stress value at
the outer radius for a classical continuum µaR, as functions of the normalized radial coordinate. Just like
in the elastic case presented in subsection II.2.2.2, the stresses symmetrically deviate from the classical
solution and the point at which this deviation occurs decreases with increasing internal length. For a large
characteristic length the elastic response (r ≤ rl) differs from the Cauchy one and the stresses distributions
are not really symmetric with respect to that of a classical continuum.
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(a) σθz (b) σzθ

-40 1.6e+02
-24 -7.5 8.8 25 41 58 74 90 1.1e+02 1.2e+02 1.4e+02

Figure 2.11: Fields of the σθz and σzθ stress components represented on the deformed configuration for an
imposed twist angle a = 0.02 rad/mm and `/R = 0.2. The reduced equivalent stress (2.83) is used in the
yield function.

Figure 2.12: Profiles of σθz (in blue) and σzθ (in red) along a radius for several values of the internal length
and loading a = 0.02 rad/mm. Analytical solutions are in black solid lines. Symbols denote finite element
predictions. The reference solution for a classical continuum is in purple solid line. The reduced equivalent
stress (2.83) is used in the yield function.
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II.3.2.2 Size effect

As plasticity does not occur for a≤ al , the torque must be separated into two parts: the torque produced
for a purely elastic bar and the one corresponding to elastoplastic deformation of the bar. For the elastoplastic
part, an elastic core zone exists for r ≤ rl . The contribution of the stress tensor to the total torque can be
split into elastic (for r ≤ rl) and plastic (for r ≥ rl) parts. In the end, the moment takes the following form:

C =

{
2π
∫ R

0 rσ elastic zone
θz +mzzrdrdθ , for a≤ al,

2π
∫ rl

0 rσ elastic zone
θz rdrdθ +

∫ R
rl

rσ
plastic zone
θz rdrdθ +

∫ R
0 mzzdrdθ , for a≥ al.

(2.96)

After integration, the expressions of the torque are:

C = π
µaR4

2

(
1+

4β

µR2

(
1+

µclRI0(R/`)−β I1(R/`)
2µclRI0(R/`)−β I1(R/`)

))
, for a≤ al, (2.97)

C = 2π

[
µar4

l
4

+
σY

3
√

3

(
R3− r3

l
)
+2µcA`3

((
R
`

)2

I0(R/`)−2
R
`

I1(R/`)

)

+ βR2a+αARI1(R/`)
]
, for a≥ al. (2.98)

The second expression can be expanded by inserting the value (2.9) of the integration constant A (the same
value as in the purely elastic case as discussed earlier), for a≥ al:

C = 2π

[
µar4

l
4

+
σY

3
√

3

(
R3− r3

l
)
+βR2a

+
βaR

4µc`RI0(R/`)−2β I1(R/`)

(
2µc`

3

((
R
`

)2

I0(R/`)−2
R
`

I1(R/`)

)
+αRI1(R/`)

)]
. (2.99)

In the latter expression, the torque for a classical elastoplastic material C p
class appears:

C p
class = 2π

[
µar4

l
4

+
σY

3
√

3

(
R3− r3

l
)]
. (2.100)

For a Cauchy continuum the torque-twist angle curve exhibits a plateau as a→∞, which corresponds to the
case where the plastic zone invades the whole cylinder, i.e rl→ 0. This limit value of the torque is given by:

C ∞
class = lim

a→∞
C p

class =
2πσY

3
√

3
R3. (2.101)

However, for a Cosserat continuum with the yield criterion involving the reduced invariant (2.83), such a
saturation of the torque does not occur. This is illustrated in figure 2.13. This figure shows the total torque
as well as its different contributions normalized by R3 as functions of the shear strain at the outer radius, as
classically done in other works [Fleck et al., 1994; Grammenoudis and Tsakmakis, 2009] for both analytical
and FEM solutions. Although no hardening is present in the model, an apparent hardening is visible on
this curve. This is due to the last term proportional to the twist angle a in the equation (2.99). This term
has two contributions. One is related to the fact that there is no limit for the couple stress component mzz

since it does not enter the reduced yield criterion. The second contribution stems from the fact that the sum
σθz +σzθ is bounded due to the yield condition, but not the individual components. An excellent agreement
is found between the analytical and finite element solutions, as it should.

As for the elastic case, a size effect occurs with the elastoplastic model studied in this subsection.
Consider `→ +∞, combining the equivalents given in equation (2.26) with the expression of the torque in
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(a) Normalized torque as a function of the classical
shear strain.

(b) Normalized torque as a function of the classical
shear strain, zoom on the beginning of the curve.

Figure 2.13: Normalized torque as a function of the classical shear strain with `/R = 0.1. Analytical
solutions are in black solid lines. The reduced equivalent stress (2.83) is used in the yield function.

the plastic zone equation (2.99) one gets:

C ∼ Cclass +2πβR2a
(

1+
α +β

2α +3β

)
, (2.102)

and the expression of the normalized torque is then:

C

C ∞
class
∼ Cclass

C ∞
class

+
3
√

3β

σY

(
1+

α +β

2α +3β

)
a
R
. (2.103)

Agreement between the expression of the torque (2.99) and its equivalent (2.103) has been studied numer-
ically and holds true for α � β . Moreover, though a slight accuracy loss occurs, equation (2.103) can be
further simplified :

C

C ∞
class
∼ 1+

3
√

3β

σY

(
1+

α +β

2α +3β

)
a
R
. (2.104)

From this expression, a size effect clearly appears. In contrast to the elastic case, the normalized torque is
proportional to R−1, instead of R−2, and depends on a. This is due to the fact that the normalization C∞

class is
proportional to R3 (instead of R4 for Ce

class) and does not depend on a, contrary to Ce
class. This size effect is

illustrated in figure 2.14. These figures show, in the case a≥ al (i.e. R≥ σY
µa
√

3
), the torque (2.99) normalized

by the limit torque of a classical continuum as a function of the relative coordinate R/`, for two different
values of a. The fitted curves confirm that the size effect is indeed proportional to R−1. As mentioned
above, the size effect is sensitive to the twist angle a, leading to a straighter curve for higher values of a.
Once again, a good agreement is found between the analytical and FEM solutions.

II.3.2.3 FEM analysis in a more general case: Effect of σ∼
skew

In this subsection, the influence of the skew-symmetric part of the stress tensor in the yield criterion is
numerically investigated. The following equivalent stress measure is considered:

σeq =

√
3
2
(
σ∼
′sym : σ∼

′sym +σ∼
skew : σ∼

skew
)
, (2.105)
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(a) Normalized torque as a function of the normalized
radius for `= 0.1mm and a = 0.02 rad/mm.

(b) Normalized torque as a function of the normalized
radius for `= 0.1mm and a = 0.2 rad/mm.

Figure 2.14: Torque normalized by the limit torque of a classical continuum as a function of the normalized
radius for ` = 0.1 mm and different values for a. Cylinder radius R is such that R > σY

µa
√

3
thus ensuring

plastic yielding. The reduced equivalent stress (2.83) is used in the yield function.

which is equivalent to:

σeq(σ∼) =

√
3
2
(
σ∼
′ : σ∼

′
)
. (2.106)

This corresponds to the following values of parameters in the general equivalent stress measure (2.76):

b = 1, c1 = c2 = 0. (2.107)

With these parameter values, the yield function is still given by equation (2.77).
The profiles of θ normalized by aR along a normalized radius are shown in figure 2.15 for several

internal length values.
The stress profiles are completely different from what was obtained with the reduced criterion (2.83),

as illustrated in figure 2.16. The values are much lower and for large internal lengths, σzθ is no longer the
symmetric image of σθz with respect to the curve obtained for a classical continuum.

Finally, the normalized profiles of mrr,mθθ and mzz are shown in figure 2.17. Compared to the profiles
obtained with criterion (2.83), the values are lower and the curves are straighter and more spread, though it
does not seem to be the case for mzz.

The normalized torque-twist angle curve is plotted in figure 2.18 for criterion (2.106). Contrary to the
curve obtained with criterion (2.83), the contribution due to σθz seems to reach a plateau. The one due to
mzz keeps increasing as it does not enter the yield criterion, just like with yield function (2.83). The values
are of the same order of magnitude for both yield functions, although those for the contribution due to mzz

are slightly higher.
A size effect is also predicted by criterion (2.106), as shown in figure 2.19. The normalized torque is

still proportional to R−1 and sensitive to the twist angle, just like with criterion (2.83).
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Figure 2.15: Profiles of θ along a radius for various internal lengths and a = 0.02 rad/mm. The equivalent
stress used in the yield function is given by equation (2.106).

Figure 2.16: Profiles of σθz (in red) and σzθ (in blue) along a radius for various internal lengths and
a = 0.02 rad/mm. The equivalent stress used in the yield function is given by equation (2.106).
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(a) Profiles of mrr. (b) Profiles of mθθ .

(c) Profiles of mzz.

Figure 2.17: Profiles of mrr , mθθ and mzz along a radius for various internal lengths and a = 0.02 rad/mm.
The equivalent stress used in the yield function is given by equation (2.106).
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Figure 2.18: Normalized torque as a function of the shear with `/R = 0.1. Interpolated solutions are in
black dash-dotted lines. The equivalent stress used in the yield function is given by equation (2.106).

(a) Normalized torque as a function of the normalized
radius for `= 0.1mm and a = 0.02 rad/mm.

(b) Normalized torque as a function of the normalized
radius for `= 0.1mm and a = 0.2 rad/mm.

Figure 2.19: Torque normalized by the limit torque of a classical continuum as a function of the normalized
radius for ` = 0.1mm and several values of a. The equivalent stress used in the yield function is given by
equation (2.106).
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II.3.2.4 FEM analysis in a more general case: Effect of σ∼
skew andm∼

In this subsection, the yield criterion considered takes into account both the couple-stress tensor and the
skew-symmetric part of the stress tensor. The chosen equivalent stress measure is taken as

σeq(σ∼,m∼ ) =

√
3
2
(
σ∼
′sym : σ∼

′sym +σ∼
skew : σ∼

skew +m∼
sym :m∼

sym +m∼
skew :m∼

skew
)
, (2.108)

which reduces to:

σeq(σ∼,m∼ ) =

√
3
2
(
σ∼
′ : σ∼

′+m∼ :m∼
)
. (2.109)

This corresponds to the following values of the parameters of the general equivalent stress (2.76):

b = 1, c1 = c2 = 1 mm−2. (2.110)

The yield function is still defined by equation (2.77) using the definition (2.109) of the equivalent stress.
The normalized profiles of θ for several internal length values are plotted in figure 2.20. The results are

fairly close to those obtained with yield function (2.106) except for large length scales, for which the curves
are less straight and the range of values is smaller. As for the stress profiles shown in figure 2.21, for low
characteristic lengths the results are similar to those obtained with yield function (2.106) in terms of order
of magnitude and shape of the curves. However, the behavior is totally different for large internal length
values, the linear elastic part of the curves becomes smaller and the stresses become lower.

Figure 2.22 shows the normalized profiles of the couple stress tensor components. Contrary to the results
obtained with the previous yield functions, the yield function (2.109) predicts a saturation of the size effect:
The profiles for `/R = 0.2 and `/R = 0.9 do not differ much. Another difference is that the mzz component
is much lower.

The normalized torque-twist angle curves obtained with yield function (2.109) are shown in figure 2.23.
It can be seen that both contributions from the couple-stress and stress tensors display a saturation. Contrary
to the curves obtained using the other criteria, the contribution due to the couple stress is not monotonically
increasing and exhibits a decrease after an initial increase, before it reaches a plateau.

Finally, the size effect evidenced for the normalized torque in figure 2.24 is still proportional to R−1 and
sensitive to the the twist angle, just like the other yield criteria studied in this work.
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Figure 2.20: Profiles of θ along a radius for several internal length values and a = 0.02 rad/mm. The
equivalent stress used in the yield function is given by equation (2.109).

Figure 2.21: Profiles of σθz (in red) and σzθ (in blue) along a radius for several internal length values and
a = 0.02 rad/mm.The equivalent stress used in the yield function is given by equation (2.109).
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(a)Profiles of mrr. (b)Profiles of mθθ .

(c)Profiles of mzz.

Figure 2.22: Profiles of mrr , mθθ and mzz along a radius for various internal length values and a =
0.02 rad/mm. The equivalent stress used in the yield function is given by equation (2.109).

Figure 2.23: Normalized torque as a function of the shear with `/R = 0.1. Interpolated solutions are in
black dash-dotted lines. The equivalent stress used in the yield function is given by equation (2.109).
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(a) Normalized torque as a function of the normalized
radius for `= 0.1 mm and a = 0.02 rad/mm.

(b) Normalized torque as a function of the normalized
radius for `= 0.1 mm and a = 0.2 rad/mm.

Figure 2.24: Torque normalized by the limit torque of a classical continuum as a function of the normalized
radius for `= 0.1 mm and different values for a. The equivalent stress used in the yield function is given by
equation (2.109).

II.4 Crystal plasticity

Cosserat modelling has been recognized as a good candidate for continuum modelling of plasticity in
crystals containing dislocations [Günther, 1958; Schaefer, 1967] due to the relation between inhomogeneous
dislocation distributions and lattice curvature [McClintock et al., 1958; Kröner, 1963]. Alternative general-
ized continuum theories to the Cosserat approach are gradient or micromorphic plasticity, as discussed in
[Mayeur et al., 2018; Forest et al., 2018].

Cosserat crystal plasticity constitutive equations involve elastic contributions, a generalized Schmid
law and size–dependent hardening induced by the curvature development, as exposed in the formulations
presented in the references [Forest et al., 1997, 2000; Mayeur et al., 2011; Mayeur and McDowell, 2014;
Rys et al., 2022]. A critical ingredient of the model is the choice of the dependence of the Helmholtz free
energy potential on the curvature tensor. Quadratic dependence has been classically used, especially in strain
gradient plasticity models [Gurtin, 2003; Gurtin and Anand, 2009]. The quadratic choice was questioned in
several contributions like Ohno and Okumura [2007]; Forest [2013], because it predicts unrealistic scaling
laws. Alternative potentials include energy functions proportional to the norm of the curvature or dislocation
density tensor or its logarithm [Forest and Guéninchault, 2013; Wulfinghoff et al., 2015]. Both rank one and
logarithmic potentials are non-differentiable at zero curvature which leads to difficulties in implementing
these models and requires the consideration of discontinuities in analytical solutions.

One single slip system is considered for simplicity and the usual Schmid law is extended to the Cosserat
case. In particular the scaling laws with respect to the system size are derived and solutions are compared
to existing ones in strain gradient plasticity models involving the dislocation density tensor [Cordero et al.,
2010; Wulfinghoff et al., 2015].

II.4.1 Constitutive equations

The Cosserat deformation tensor is decomposed into elastic and plastic contributions

e∼= e∼
e +e∼

p. (2.111)

In the present work, no such decomposition is introduced for curvature, for the sake of simplicity following
Russo et al. [2020]; Ghiglione and Forest [2022].
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The Helmholtz free energy density function ψ(e∼
e,κ∼) is here assumed to depend on elastic deformation

and total curvature. Stress–deformation relations are derived from this free energy potential in the form

σ∼ =
∂ψ

∂e∼
e , m∼ =

∂ψ

∂κ∼
. (2.112)

Special forms of the free energy function will be considered in the proposed analysis, including a quadratic
potential and more general power law potentials.

Crystal plasticity is based on Schmid’s yield function, written here for a single slip system

f (σ∼, l ,n ) = |τ|− τc, with τ = σ∼ : (l ⊗n ), (2.113)

where τ is the resolved shear stress and τc the critical resolved shear stress. The plastic slip system is
characterized by the slip direction l and the normal to the slip plane n . Normality is a property of the
crystal plasticity flow rule

ė∼
p = γ̇

∂ f
∂σ∼

= γ̇ (signτ)l ⊗n , (2.114)

where γ̇ is the plastic multiplier.
The Schmid law is generalized here for Cosserat media accounting for generally non-symmetric stress

tensor Forest et al. [1997]; Mayeur et al. [2018]; Forest et al. [2018]; Rys et al. [2022]. A special case
limiting the Schmid law to the symmetric part of the stress tensor will also be considered in the following
analysis.

II.4.2 Simple glide

II.4.2.1 Cosserat elastoplasticity based on a quadratic potential

In this section, the Helmholtz free energy potential is assumed to be a quadratic function of the defor-
mation measures

ψ(e∼
e,κ∼) =

1
2
e∼

e : Λ
≈

: e∼
e +

1
2
κ∼ :C

≈
: κ∼, (2.115)

where Λ
≈

and C
≈

are the fourth order tensors of Cosserat elastic moduli. Point symmetry was assumed, thus
excluding coupling terms between elastic deformation and curvature. The Cosserat elastic laws follow from
Eq. (2.112)

σ∼ = Λ
≈

: e∼
e, m∼ =C

≈
: κ∼. (2.116)

Crystal plasticity based on the full stress tensor

The resolved shear stress is computed as

τ = σ∼ : (l ⊗n ) = σ∼ : (e 1⊗ e 2) = σ12. (2.117)

In the plastic regime, assuming positive shear, τ = τc, the critical resolved shear stress is taken as a constant
parameter (no hardening). Assuming that this plasticity threshold is reached in the whole specimen, the
stress components σ12 and σ21 are therefore uniform during further straining. Space derivation of Eq. (2.36)
implies that

m′′31 = 0 =⇒ θ
′′′ = 0. (2.118)

It follows that the microrotation distribution in the strip is parabolic:

θ(x) = a(x2−L2), (2.119)
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with the integration constant a. The plastic and elastic deformation tensors take the form

e∼
p = γ l ⊗n = γ e 1⊗ e 2, (2.120)

e∼
e = e∼−e∼

p = (γ̄ +θ − γ)e 1⊗ e 2 +(u′−θ)e 2⊗ e 1, (2.121)

where γ(x) is the plastic slip distribution to be determined. In the presence of plasticity, the equations (2.32)
and (2.33) are replaced by

σ12 = (µ +µc)(γ̄− γ)+(µ−µc)u′+2µcθ = τc, (2.122)

σ21 = (µ−µc)(γ̄− γ)+(µ +µc)u′−2µcθ . (2.123)

Elimination of γ in the previous equation and recalling that σ ′21 = 0 due to equilibrium leads to the following
relation

u′′ = θ
′ =⇒ u(x) = a

x
3
(x2−L2), (2.124)

where the displacement boundary conditions have been taken into account. The slip distribution is obtained
from (2.122) and the found expressions for microrotation and displacement are:

γ(x) = γ̄− τc

µ +µc
+a
(

x2− µ +5µc

µ +µc

L2

3

)
. (2.125)

The coefficient a is determined after insertion of u(x) and θ(x) in the moment of momentum equation Eq.
(2.36) which can be worked out as

(µ +µc)βθ
′′− τcµc +2µµc(u′−θ) = 0. (2.126)

Finally

a =
τc

2β (1+µ/µc)+4µL2/3
=

τc/2µ

β (1/µ +1/µc)+2L2/3
. (2.127)

To highlight the size effect induced by the Cosserat model, the stress component σ21 is computed as a
function of the parameter β and structural length L:

σ21 =
µ−µc

µ +µc
τc +

4µµc

µ +µc
(u′−θ) (2.128)

=
µ−µc

µ +µc
τc +

8
3

µµc

µ +µc
aL2 (2.129)

= τc

(
µ−µc

µ +µc
+

4µµc

µ +µc

L2

3β (1+µ/µc)+2µL2

)
. (2.130)

The limit case µc→ ∞ can be more easily interpreted:

lim
µc→∞

σ21/τc =−1+
4µL2

3β +2µL2 = τc
1−3β/2µL2

1+3β/2µL2 . (2.131)

where β → 0, the classical limit σ21 = σ12 = τc with a symmetric stress tensor, is retrieved. For vanishing
system size L→ 0, σ21 =−σ12 =−τc and the stress tensor is skew-symmetric.

Schmid law limited to the symmetric part of the stress tensor

A variant of the previous analysis is the consideration of a modification of the generalized Schmid law
(2.113):

f (σ∼, l ,n ) = |τ|− τc, with τ = sym(σ∼) : (l ⊗n ). (2.132)
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According to this variant, the resolved shear stress is computed from the projection of the symmetric part of
the stress tensor instead of the full stress tensor.

The analysis of the one-dimensional shear layer problem is modified as follows.

τ = (σ12 +σ21)/2 = τc, (2.133)

assuming positive shear loading. This yield condition combined with balance of momentum implies that
both σ12 and σ21 are uniform as in the previous section. It follows that the microrotation profile (2.119) is
unchanged in the analysis. This holds true for Eq. (2.120) and (2.121).

A difference arises in the evaluation of the resolved shear stress

σ12 +σ21 = 2µ(γ̄− γ)+2µu′ = 2τc, (2.134)

but the same relation u′′ = θ ′ is finally obtained, implying the same displacement profile (2.124). The
constant a is determined from Eq. (2.126) which is modified here as

βθ
′′− µc

µ
τc +2µc(u′−θ) = 0 (2.135)

and finally

a =
τc/2µ

β/µc +2L2/3
(2.136)

γ(x) = γ̄− τc

µ
+a(x2−L2/3) (2.137)

which are slightly different from (2.127) and (2.125).
The stress components are then computed as

σ12 = τc(1+
µc

µ
)− 4

3
µcaL2, (2.138)

σ21 = τc(1−
µc

µ
)+

4
3

µcaL2. (2.139)

The first equation yields the following scaling with the size L of the system

σ12/τc = 1+
β/µ

β/µc +2L2/3
. (2.140)

In the limit case,

lim
µc→∞

σ12/τc = 1+
3β

2µL2 , (2.141)

making the 1/L2 scaling clearly visible. This scaling is rather questionable according to physical metallurgy
which rather predicts 1/L (Orowan) or 1/

√
L (Hall-Petch) scaling laws in plasticity [Hirth and Lothe, 1982;

Forest, 2013].

Comparison with the CurlH p model

According to the theory developed in [Wulfinghoff et al., 2015], the displacement gradient is split into
elastic and plastic contributions:

H∼ = gradu =H∼
e +H∼

p. (2.142)

The free energy density of the CurlH p model is taken as a quadratic form

ψ(ε∼
e,curlH∼

p) =
1
2
ε∼

e : Λ
≈

: ε∼
e +A‖curlH∼

p‖2, (2.143)
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where the elastic strain ε∼
e is the symmetric part of H∼

e and A the higher order modulus. The curlH p model
involves a size-dependent back-stress

x =−A(curlcurlH p) : (l ⊗n ). (2.144)

The Schmid law is generalized into

f (σ∼,x, l ,n ) = |τ− x|− τc, (2.145)

and
Ḣ∼

p = γ̇ l ⊗n sign(τ− x) with τ = σ∼ : (l ⊗n ). (2.146)

When applied to the studied boundary value problem, the CurlH p model predicts the following:

H∼ = γ̄e 1⊗ e 2 +u′e 2⊗ e 1, H∼
p = γ e 1⊗ e 2, (2.147)

curlH∼
p =−γ

′ e 1⊗ e 3, curlcurlH p =−γ
′′e 1⊗ e 2, x =−Aγ

′′ (2.148)

The single non-vanishing component of the stress tensor is

σ12 = σ21 = µ(γ̄− γ +u′). (2.149)

The Schmid law then stipulates that
σ12 +Aγ

′′ = τc. (2.150)

Equilibrium σ21,1 = 0 requires that the shear stress is uniform. The previous equations then imply that
γ ′′′ = 0 so that the slip distribution is parabolic as in the Cosserat case. Boundary conditions must be chosen
to represent the fact that no plasticity occurs at the boundaries:

γ(±L) = 0 =⇒ γ(x) = a(L2− x2). (2.151)

Note that these conditions are only approximately equivalent to those chosen for the Cosserat medium,
namely vanishing lattice rotation θ(±L) = 0.

The stress is then related to coefficient a by

σ12 = τc−Aa. (2.152)

The displacement is derived from Eq. (2.149):

u′ =
σ12

µ
− γ̄ + γ,

u = (
τc−Aa

µ
− γ̄ +aL2)x−a

x3

3
+Cste. (2.153)

The constant vanishes since u(0) = 0. The condition u(−L) = u(L) is used to determine the remaining
constant a:

a =
3

2L2

(
τc

µ
− γ̄

)
, (2.154)

and finally, the shear stress value

σ12 = τc−
3A
2L2

(
τc

µ
− γ̄

)
. (2.155)

The 1/L2 scaling is clearly observed and is in agreement with the Cosserat solutions Cordero et al. [2010].
Quadratic potentials in Cosserat or strain gradient plasticity therefore suffer from the same limitations com-
pared to common knowledge in mechanical metallurgy.
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II.4.2.2 Rank one energy potential

In the crystal plasticity case, the shear stress component σ12 is equal to the critical resolved shear stress
value. Eq. (2.52) is still valid and now provides the relation

(τc−σ21)θ̄2L+2A|θ̄ |= 0. (2.156)

Equilibrium still implies that σ21 is uniform. Its value follows

σ21 = τc +
A
L

signθ̄ . (2.157)

The scaling in 1/L is clearly visible and is distinct from the 1/L2 scaling law found for the quadratic
potential.

On the other hand, the elasticity law tells us that

σ12−σ21 = 2µc(γ̄− γ(x)−u′(x))+4µcθ . (2.158)

Averaging this relation over the interval [−L : L] and assuming periodicity of displacement give

τc−σ21 = 2µc < γ̄− γ >+4µcθ̄ . (2.159)

The average < γ̄− γ > is deduced from Eq. (2.122) as

< γ̄− γ >= (τc−2µcθ̄)/(µ +µc), (2.160)

and finally
2µc

µ +µc
(τc +2µθ̄) =−A

L
signθ̄ , (2.161)

from which the constant θ̄ is derived:

θ̄ =− τc

2µ
− A

L
µ +µc

4µµc
signθ̄ . (2.162)

Comparison with the CurlH p model

A rank one potential was also considered in Wulfinghoff et al. [2015]; Mesarovic et al. [2019]:

ψ(ε∼
e,curlH∼

p) =
1
2
ε∼

e : Λ
≈

: ε∼
e +A‖curlH∼

p‖, (2.163)

involving the norm of the dislocation density curl∼ H p. The symmetric stress tensor and the higher order
stress are then computed as

σ∼ = Λ
≈

: ε∼
e, m∼ = A

curlH∼
p

‖curlH∼
p‖
. (2.164)

In the studied problem,
curlH∼

p =−γ
′ e 1⊗ e 3, m∼ =−Asignγ

′. (2.165)

It was shown in Wulfinghoff et al. [2015]; Mesarovic et al. [2019] that the total work balance reduces to the
integral ∫

V
s∼ :H∼

p +m∼ : curlH p dV = 0, (2.166)

where the involved generalized stress tensors fulfill the balance law, s∼+curlm∼ = 0. For the studied problem,
this amounts to ∫ L

−L
s12γ +A|γ ′|dx = 0. (2.167)
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According to the Schmid law,
σ12 + s12 = τc, (2.168)

where both σ12 and s12 are uniform.
The plastic slip distribution is uniform in ]−L : L[:

γ(x) = γ̄(H(x+L)−H(x−L)), (2.169)

γ
′(x) = γ̄(δ (x+L)−δ (x−L)). (2.170)

Finally, the previous integral is calculated as

(τc−σ12)2Lγ̄ +2Aγ̄ = 0, (2.171)

so that the stress value
σ12 = τc +

A
L
, (2.172)

exhibits a 1/L size dependence, in the same way as the previous Cosserat model.

II.5 Summary

In this chapter, the framework of Cosserat mechanics with elastic, generalized von Mises elastoplasticity
and crystal plasticity behaviours are presented. The torsion of isotropic, perfectly plastic Cosserat bars is
investigated both analytically and numerically. Notably, an analytical solution was derived in the case of a
reduced form of the extended von Mises yield criterion only accounting for the symmetric part of the devi-
atoric stress tensor, though the stress tensor itself is non-symmetric in general. The torsional characteristic
length given by equation (2.17) and derived in the elastic case, plays a major role on the resulting profiles of
micro-rotation, stresses and couple-stresses. A size effect of the normalized torque proportional to R−1 and
dependent on the twist angle naturally arises in the torsional response of this model. Comparison with solu-
tions obtained via the finite element method by means of the software Zset shows perfect agreement. Details
regarding the implementation of the implicit integration of constitutive equations are given in appendix A.
A numerical investigation accounting for more general extended von Mises yield criteria shows comparable
size effects, though the influence of the internal length on the resulting profiles can be very different. De-
pending on the yield criterion used, the different contributions to the total torque can display a saturation
with respect to the twist angle.

The case of a single crystal subjected to shear loading is also addressed. Several Helmholtz free energy
potentials with different dependencies on the curvature tensor are considered, namely quadratic, rank one
and combined quadratic-rank one. Analytical solutions are presented in both elasticity and crystal plasticity
and comparisons are made with strain gradient plasticity based on the dislocation density tensor Curl(H p).
In crystal plasticity these solutions show a clear size effect proportional to L−2 and L−1 depending on
whether the dependence of the free energy on the curvature tensor is quadratic or rank one. These potentials
will be used in the following chapters of the manuscript.
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Chapter III

Orientation phase-field models for grain boundaries

Résumé en français

Ce chapitre est consacré aux modèles à champs de phase de type Kobayashi-Warren-Carter (KWC)
pour l’évolution de microstructures. Dans la première partie, le modèle KWC est rappelé et l’influence des
paramètres sur le joint de grain statique (épaisseurs des interfaces, courbe énergie-désorientation) et mobile
(vitesse de migration) est étudiée. En particulier, des simulations par la méthode des éléments finis montrent
que pour obtenir un profil de φ étroit avec un minimum profond la relation ᾱ < s̄ doit être respectée lors du
choix de ces paramètres. Également, on observe une vitesse de migration constante pour un joint de grain
plat soumis à une différence d’énergie stockée (ici par les dislocations) de part et d’autre de l’interface,
celle-ci dépendant principalement du paramètre η̄φ et peu du paramètre η̄θ tant que η̄θ < η̄φ . Dans le cas
d’un grain circulaire rétrécissant sous l’effet de sa courbure et de l’énergie di joint de grain, les contributions
de chaque paramètre sont moins évidentes et les simulations montrent l’importance du produit η̄θ µ̄p/ε̄ pour
empêcher la réorientation du grain durant le rétrécissement. Enfin, Des éléments de choix des paramètres
du modèle sont également donnés.

La deuxième partie du chapitre porte sur le modèle KWC-Cosserat et l’influence de la mécanique sur le
joint de grain. Une des particularités de ce modèle est l’inclusion d’une orientation de référence, nécessaire
à l’établissement d’un état initial sans contrainte. Son évolution suit une loi visqueuse de relaxation des
contraintes antisymétriques aux joints de grain, qui a fait l’objet d’une étude particulière. Notamment, on
observe, pour un bicristal, des profils de contraintes similaires à ceux obtenus par la théorie élastoplastique
des dislocations et disclinaisons de Taupin et al. [2013]. La contribution majeure de ce chapitre réside
dans l’ajout d’une contrainte seuil pour cette relaxation, dont la présence induit des contraintes résiduelles
au sein du joint de grain. Des simulations numériques montrent que selon la magnitude de ce seuil, un
ralentissement voire un ancrage du joint de grain est possible.
Enfin, nous présentons une formulation éléments finis du modèle en trois dimensions qui a fait l’objet d’une
implémentation dans le logiciel Zset. Des comparaisons avec le modèle bidimensionnel sur des cas simples
tels que la formation et le cisaillement d’un joint de grain ont montré un accord suffisant pour utiliser le
modèle sur des simulations 3D plus complexes.
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III.1 Introduction

A wide variety of techniques have been developed to model grain boundary migration and recrystal-
lization in full-field simulations, including Monte-Carlo Potts [Anderson et al., 1984; Gao and Thompson,
1996; Raabe, 2000; Liu and Lusk, 2002; Mason et al., 2015], cellular automata [Hesselbarth and Göbel,
1991; Liu et al., 1996; Raabe, 1998; Sitko et al., 2020], level sets [Bernacki et al., 2008; Scholtes et al.,
2016; Sarrazola et al., 2020a,b] and phase-field methods [Chen and Yang, 1994; Steinbach and Pezzolla,
1999; Kobayashi et al., 2000]. Phase field models offer the advantage of being developed in a thermo-
dynamic framework, making them easily extendable to multiphysics coupling via the free energy density
[Steinbach and Apel, 2006]. Chapter I outlines two primary strategies for modelling crystal microstructure
evolution: multi-phase-field approaches utilising a singular phase-field per grain [Chen and Yang, 1994;
Steinbach and Pezzolla, 1999] or the Kobayashi-Warren-Carter (KWC) phase-field model [Kobayashi et al.,
2000; Warren et al., 2003], which requires only two phase-fields to simulate the entire microstructure. How-
ever, microstructure evolution models lack the ability to account for material deformation by themselves.
Hence, they are generally combined with continuum mechanics and crystal plasticity laws in staggered
schemes. The framework of generalised continua crystal plasticity, mentioned in Chapter II, has been suc-
cessfully used in conjunction with phase-field models to simulate deformation-induced microstructure evo-
lution. Strain gradient crystal plasticity [Fleck et al., 1994] for instance has been integrated with a multi
phase-field model by Takaki and Tomita [2010] and the KWC model by Takaki et al. [2008b] in staggered
schemes. Meanwhile, Admal et al. [2018]; He and Admal [2021] and Ask et al. [2018b, 2020] proposed
unified frameworks that respectively combine strain gradient and Cosserat crystal plasticity with the KWC
model.

This chapter focuses on the KWC [Kobayashi et al., 2000] and KWC-Cosserat [Ask et al., 2018b] mod-
els. The objective is to present fundamental aspects of the orientation phase-field models for both static
and mobile grain boundaries. First, the influence of phase-field and mobility parameters on the resulting
grain boundary properties (such as energy and mobility) is shown through numerical simulations on bicrys-
tals with the original KWC model. The simulations are performed using finite difference (FD) or finite
element (FE) schemes to ensure consistency of the implementations. No original contribution arises from
these studies, the goal is mainly to get a better understanding of this model. In a second part, the coupling
with Cosserat mechanics is presented. Special attention is drawn to the inelastic grain boundary relaxation
behaviour. The main contribution from this chapter is the introduction of a stress threshold that leads to the
emergence of residual stresses within the grain boundaries. It will be shown that the inclusion of a critical
stress may impede grain boundary motion.

The chapter is structured as follows. Section III.2.1 presents the original KWC model and its formu-
lation, with emphasis on interface width definition. Section III.2.2 pertains to static grain boundaries. In
particular, we compare the diffuse model with analytical results based on interfaces with sharp orientation
fields [Kobayashi and Giga, 1999; Kobayashi et al., 2000] and matched asymptotics expansions [Lobkovsky
and Warren, 2001]. Furthermore, we evaluate the effect of phase-field parameters on grain boundary width
and energy. Migration induced by curvature and stored energy is examined in Section III.2.3. The impor-
tance of preventing rotation during shrinkage is highlighted. A qualitative analysis of the effect of mobility
parameters on grain boundary migration rate is conducted.The second part of this chapter discusses the cou-
pling with Cosserat mechanics presented by Ask et al. [2018b]. The model is summarised in section III.3.1.
The influence of mechanics on grain boundaries is assessed without considering crystal plasticity, but ac-
counting for the viscoelastic or viscoplastic behaviour of the grain boundaries. We analyse the mathematical
formulation used to relax the skew-symmetric stresses at the grain boundaries and illustrate this with numer-
ical simulations on both stationary and moving grain boundaries in sections III.3.2-III.3.3. Additionally, we
explore the formulation and validation of a three-dimensional implementation of the model using the finite
element method in section III.3.4.
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Chapter III. Orientation phase-field models for grain boundaries

III.2 Kobayashi-Warren-Carter model

III.2.1 Free energy and interface widths

The two-dimensional phase-field model proposed by Kobayashi et al. [2000]; Warren et al. [2003] is
based on two scalar order parameters: the crystal lattice orientation θ and the crystal order parameter φ .
The latter varies between zero for a fully disordered phase and one for a perfect crystal. The presence of
grain boundaries contribute to lower the value of φ . Extensions have been made to include the contributions
of defects, such as dislocations, that also decrease the value of the crystal order [Takaki et al., 2008b;
Abrivard et al., 2012a].The dimensionless free energy F̄KWC of the KWC model is given by

F̄KWC =
FKWC

f0Λ3 =
∫

Ω̄

ψ̄(∇̄θ ,φ , ∇̄φ)+φ ĒdΩ̄ (3.1)

where f0 [J/m3] is a scaling factor for the magnitude of the free energy density and Λ [m] is a length scale,
∇̄ = Λ∇ is the dimensionless gradient operator and Ē = E/ f0 is the dimensionless stored energy due to stor-
age of dislocations. The last term in Eq. (3.1) representing the stored energy contribution, was introduced
in the original KWC potential by Abrivard et al. [2012a]. An alternative formulation of the stored energy
potential in the context of KWC modeling can be found in Takaki et al. [2008b]. The dimensionless free en-
ergy density ψ̄(∇̄θ ,φ , ∇̄φ) is independent of the lattice orientation due to the frame invariance requirement,
and has the following form:

ψ̄(∇̄θ ,φ , ∇̄φ) = ψ(∇θ ,φ ,∇φ)/ f0 = f (φ)+
ᾱ2

2

∣∣∇̄φ
∣∣2 + s̄g(φ)

∣∣∇̄θ
∣∣+ ε̄2

2
h(φ)

∣∣∇̄θ
∣∣2 (3.2)

where the model parameters ᾱ =
α√
f0Λ

, s̄ =
s

f0Λ
, ε̄ =

ε√
f0Λ

are dimensionless. In addition to regular

quadratic terms with respect to the gradient of the phase-field variables, the singular term |∇̄θ |, not differ-
entiable at 0, is required to localize grain boundaries of finite width. The term |∇̄θ |2 is needed for grain
boundary motion according to [Warren et al., 2003]. The functions f , g, h are dimensionless by construction
and have the following form:

f (φ) =
1
2
(1−φ)2 (3.3)

g(φ) = φ
2 or g(φ) =−2(log(1−φ)+φ) (3.4)

h(φ) = φ
2 (3.5)

Using g(φ) as a logarithmic function, the Read-Shockley form of the grain boundary energy can be obtained
[Kobayashi et al., 2000]. For φ = 1 the function g(φ) diverges, so a regularisation is needed for the numerical
implementation of the model. This is achieved by adding a small positive constant γg� 1 to the argument
of the logarithm.

A feature of the model is the presence of two interface widths, one for each phase field variable, as
sketched in Fig. 3.1. The interface widths `φ and `θ of the phase fields φ and θ depend in a non-trivial way
on the parameters ᾱ, s̄, and ε̄ . With the usual parameters used in the literature, lφ can be almost one order of
magnitude larger than lθ . In the matched asymptotics analysis performed by Lobkovsky and Warren [2001],
the interface width `θ is defined as the region of non-zero orientation gradient in a bicrystal. Rather than
adopting the usual definition `φ = 2ᾱ , we have chosen to take `θ and `φ as the distance between two points
corresponding to 10% of the maximum value of the phase field gradients:

`θ = 2x̄ | x̄> 0 and ∇̄θ(x̄) = 0.1max(|∇̄θ |) (3.6)

`φ = 2x̄ | x̄> 0 and ∇̄φ(x̄) = 0.1max(|∇̄φ |) (3.7)

This definition has the advantage to better account for the large tails of the exponential profiles of the phase

72



III.2 Kobayashi-Warren-Carter model

field (Fig. 3.1). The interface widths also depend on the misorientation angle, as shown in Fig. 3.2. At
the mesoscale of a few micrometers, a typical interface width `θ can be selected down to a few hundred
nanometers to remain in acceptable computational time. The difference between the interface widths can be
mitigated somewhat by changing the magnitude of the contributions in the free energy density. This can be
achieved by using a Modica-Mortola formulation of f (φ), such that f (φ) = (1−φ)2/ᾱ , as in [Giga et al.,
2023]. A finite element simulation using such a formulation of the KWC free energy was performed for a
grain boundary energy comparable to that of the regular KWC model, and the resulting interface widths are
plotted as well in Fig. 3.2. It can be seen that the ratio `φ/`θ decreases from approximately 6 in the classical
formulation to 4 in this modified version of the free energy.
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Figure 3.1: Definition of the lengths `φ and `θ characterizing the width of the grain boundary zone.

0.01 0.1 0.2 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

,
[

m
]

 FEM
 FEM
 Asymptotic analysis
 Asymptotic analysis

Figure 3.2: Interface widths `φ and `θ as functions of misorientation ∆θ for the logarithmic function
g(φ).These widths refer to the distance between two points where the phase-field gradient reaches 10%
of its maximum. In addition, measurements with a modified KWC free energy functional following Giga
et al. [2023] are represented by a star and diamond symbol for `θ and `φ respectively.

Contrary to the multi-phase-field method, the KWC model does not readily allow for the introduction
of physical quantities such as grain boundary energy and mobility. The non-dimensional grain boundary
energy of a flat interface is obtained by integrating the non-dimensional free energy without the stored
energy term along a line passing through the grain boundary, denoted by ∂

2
Ω̄:

γ̄GB =
∫

∂ 2Ω̄

f (φ)+
ᾱ2

2

∣∣∇̄φ
∣∣2 + s̄g(φ)

∣∣∇̄θ
∣∣+ ε̄2

2
h(φ)

∣∣∇̄θ
∣∣2dx̄ (3.8)

73



Chapter III. Orientation phase-field models for grain boundaries

III.2.2 Static grain boundaries

In this section the static behaviour of grain boundaries is analysed. Firstly, we compare the phase-field
equilibrium profiles with analytical solutions for sharp orientation field interfaces and semi-analytical so-
lutions in the asymptotic expansion of Lobkovsky and Warren [2001]. We then assess the impact of static
parameters ᾱ , s̄ and ε̄ on the equilibrium profiles and grain boundary energy. Note that up to section III.2.4,
calculations are performed with g(φ) = φ

2 unless explicitly stated otherwise.

III.2.2.1 Interface with sharp orientation field

Consider a one-dimensional bicrystal whose grain boundary is at x̄ = 0. The orientation at x̄ = +∞ is
θ
+, that at x̄ = −∞ is θ

−. The misorientation angle is given by ∆θ = |θ+− θ
−|. The crystal order field

takes the value 1 at x̄ =±∞. It was proved by Kobayashi and Giga [1999] that if φ has only one minimum
and ε̄ = 0, then θ is a step function located at the minimum of φ . The resulting equilibrium profiles are then
given by Kobayashi et al. [2000] :

θ(x) =

{
θ
−, x< 0

θ
+, x> 0

(3.9)

φ(x) = 1− (1−φmin)exp
(
− 1

ᾱ
|x̄|
)

(3.10)

where
φmin = min(φ) =

1
1+ s̄∆θ

ᾱ

(3.11)

The grain boundary energy can be shown to be equal to:

γ̄GB =
ᾱ s̄∆θ

ᾱ + s̄∆θ
(3.12)

The solutions are compared with those from the KWC model, solved using a finite difference (FD) scheme
described in [Warren et al., 2003], with ε̄ = 0. The results are shown in Fig. 3.3 and indicate good agreement
between the two solutions for the profiles of θ , φ , φmin, and the dimensionless grain boundary energy.
Furthermore, it is observed that with increasing misorientation the minimum value of φ decreases and the
grain boundary energy increases, as expected from Eqs. 3.12 and 3.11.
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Figure 3.3: Comparison of the profiles of φ (top left), θ (top right) along a bicrystal as well as φmin (bottom
left) and γ̄GB as functions of the misorientation ∆θ for the KWC model solved with a finite difference (FD)
scheme and analytical solutions for interfaces with sharp orientation field (ᾱ = 0.3, s̄ = 2, ε̄ = 0).

III.2.2.2 Matched asymptotics analysis

In the original KWC model, explicit semi-analytical solutions for the profiles of φ and θ , grain boundary
energy, and mobility can be obtained through a formal asymptotic expansion, as demonstrated by Lobkovsky
and Warren [2001]. The key concept is to define the grain boundary as the strip S between two non-
intersecting smooth curves Γ

− and Γ
+ where ∇̄θ 6= 0. A curvilinear coordinate system {r̄(x̄, ȳ, t̄), s̄(x̄, ȳ, t̄)}

is adopted with r̄(x̄, ȳ, t̄) representing the distance from Γ− to a point (x̄, ȳ) in the inner domain and s̄(x̄, ȳ, t̄)
is the arc length on Γ− . In addition, a stretched coordinate z = r̄/ε̄ is introduced. Figure 3.4 depicts a flat,
static interface with three distinct regions. Firstly, the phase-fields remain constant far from the interface,
with ∇̄φ = 0 and ∇̄θ = 0. Secondly, at the interface for z > δ z, ∇̄φ 6= 0 while ∇̄θ = 0. Lastly, for z < δ z,
∇̄φ 6= 0 and ∇̄θ 6= 0.

The phase-fields are expanded into power series of ε̄:{
φ = φ

0 + ε̄φ
1 + ...

θ = θ
0 + ε̄θ

1 + ...

The parameters ᾱ and s̄ are scaled with respect to ε̄:

α̃ = ᾱ/ε̄, s̃ = s̄/ε̄, η̃φ = η̄φ/ε̄
2, η̃θ = η̄θ/ε̄

2
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Chapter III. Orientation phase-field models for grain boundaries

The solutions are identified within each region and then matched at the interface between them. The interface
width, energy, and stationary profiles are obtained through the 0th order expansion in ε̄ , while the interface
mobility and velocity are obtained through the 1st order expansion in ε̄ . It should be noted that this analysis
does not apply to migration driven by stored energy.
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Figure 3.4: Schematic representation of the solution for a flat static interface between two grains.

The profiles of φ
0 and θ

0 are obtained by integrating

∂φ 0

∂ z
=


1
α̃

√
2 f 0− s̃2

h0 (g
0(φ 0

max)−g0), φ
0
min ≤ φ

0 ≤ φ
0
max

1
α̂

√
2 f 0, φ

0
max < φ

0 ≤ 1
(3.13)

∂θ0

∂ z
= s̃

g0(φ 0
max)−g(φ 0)

h0(φ 0)
, 0≤ z≤ δ z (3.14)

The values of φ
0
min (at z = 0) and φ

0
max (at the limit between the two regions of the grain boundary) are

obtained from

s̃
2

(
g0(φ 0

max)−g0(φ 0
min)
)2

h0(φ 0
min)

− f 0(φ 0
min) = 0 (3.15)

∆θ

2
=
∫

φ 0
max

φ 0
min

∂θ 0

∂ z
∂ z

∂φ 0 dφ
0 (3.16)

The half interface width `θ/2 is given by

`θ/2 = δ z = α̃

∫
φ 0

max

φ 0
min

1

2 f 0− s̃2

h0 (g0(φ 0
max)−g0)

dφ
0 (3.17)

Finally, the grain boundary energy is found to be

γ̄GB = 2α̃
2
∫ 1

φ 0
min

∂φ 0

∂ z
dφ

0 + s̃g0(φ 0
max)∆θ (3.18)

The profiles from the asymptotic analysis are compared to those from the formulas for an interface with
sharp orientation field and a KWC model solved through a finite difference scheme for ε̄ ∈ {0,2} in Fig.
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III.2 Kobayashi-Warren-Carter model

3.5. It is evident that when a fixed set of parameters, ᾱ and s̄ is utilized, the addition of the term ε̄
2|∇̄θ |2 to

the KWC free energy results in a more diffuse grain boundary, a reduced crystal order field and increased
grain boundary energy. The increase in grain boundary energy is expected from the positivity of the term
ε

2h(φ)
∣∣∇̄θ

∣∣2 that is added to the free energy density.
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Figure 3.5: Comparison of the profiles of φ (top left), θ (top right) along a bicrystal as well as φmin (bottom
left) and γ̄GB as a function of the misorientation ∆θ for the KWC model solved with a finite difference
scheme, matched asymptotic analysis (ε̄ 6= 0) and analytical solution for interfaces with sharp orientation
field (ε̄ = 0).

III.2.2.3 Influence of phase-field parameters

Interface widths

The choice of parameters ᾱ, s̄, ε̄ influences the phase-field profiles and the grain boundary energy. The
impact of parameter s̄ is illustrated for the case ε̄ = 0 in Fig. 3.6 where it can be seen that for a fixed ᾱ

the larger s̄ the deeper the profile of φ and the thinner the profile of θ . The decrease of φmin to 0 as ᾱ/s̄
decreases is a predictable result of Eq. 3.12.

Now accounting for ε̄ 6= 0, figures 3.7a and 3.7b show the φ and θ profiles respectively for different
values of s̄, while keeping fixed values of ᾱ and ε̄ . As anticipated, similarly to ε̄ = 0, it is clear that
if s̄ > ᾱ , the minimum value of φ is lower, and the θ profile is narrower. However, when ᾱ ≈ s̄, the
finite element method (FEM) solution does not identify a grain boundary, whereas the matched asymptotic
analysis identifies a grain boundary with a misorientation of ∆θ = 0.4 instead of ∆θ = 0.3. This implies that
certain combinations of s̄ and ᾱ are not allowed for this particular set of initial and boundary conditions.
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Figure 3.6: Comparison of the profiles of φ (left) and θ (right) along a bicrystal for the KWC model solved
with a finite difference scheme and analytical sharp interface solutions for several values of s̄ (ᾱ = 0.3, ε̄ =
0). Dashed/dotted lines correspond to the analytical solutions for interfaces with sharp orientation field.

To investigate this further, several FEM calculations were performed for s̄ and ᾱ values ranging from 0 to
2, with ε̄ fixed at 0.5. The results are displayed in Fig. 3.8, and the θ -width `θ (the region where ∇θ 6= 0)
was capped at 1. As shown in this figure, deep and thin grain boundaries can only be achieved if s̄> ᾱ , thus
limiting the parameter space.
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Figure 3.7: Influence of the parameter s̄ on the phase-field profiles (φ on the left, θ on the right). FEM
solutions are denoted by solid lines, while dashed lines depict matched asymptotic analysis solutions.
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Grain boundary energy

The grain boundary energy is also affected by the choice of phase-field parameters. Figure 3.9a illus-
trates a grain boundary energy-misorientation curve with different values of s̄, while holding fixed values of
ᾱ = 0.3 and ε̄ = 2. It is evident that with increased s̄, the grain boundary energy for the same misorientation
also increases, owing to the augmented contribution of s̄g(φ)|∇̄θ | to the free energy density.

The energy of low-angle grain boundaries is often expressed as a function of misorientation through the
normalized Read-Shockley equation [Read and Shockley, 1950] recalled below:

γGB =


γm∆θ

∆θm

(
1− ln

(
∆θ

∆θm

))
for ∆θ < ∆θm

γm for ∆θ ≥ ∆θm

where ∆θm represents the transition misorientation that distinguishes low angle from high angle grain bound-
aries and γm the associated grain boundary energy. To facilitate comparison with the KWC model, we intro-
duce the dimensionless Read-Shockley grain boundary energy: γ̄GB = γGB/γm. Figure 3.9b shows a compar-
ison of the grain boundary energy misorientation curves using the Read-Shockley formula and asymptotic
analysis for different s̄ and g(φ). The energies are scaled such that max(γ̄GB) = 1. The use of a logarithmic
g(φ) allows to obtain a grain boundary energy of the Read-Shockley type. It will be demonstrated in sec-
tion III.2.4 that the parameters ᾱ and s̄ can be calibrated to fit the low angle grain boundary energy to data
obtained from experiments or molecular dynamics simulations.

III.2.3 Mobile grain boundaries

The present section evaluates the dynamic behaviour of grain boundaries in the original KWC model.
Firstly, the case of curvature-driven migration is examined, with attention given to the separation of bulk
and boundary behaviours through the inverse mobility function P (see Eq. 3.21). Secondly, stored energy-
driven migration, formulated by Abrivard et al. [2012a], is illustrated via numerical simulations. Finally, the
influence of mobility parameters is discussed for both mechanisms.
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Figure 3.9: Grain boundary-misorientation curves for different values of s̄ and ᾱ = 0.3, ε̄ = 2.

III.2.3.1 Evolution equations

Assuming relaxational dynamics for both phase-fields, the evolution equations of the phase-fields are
given by

η̄φ φ̇ =

(
∂ψ̄

∂ ∇̄φ

)
· ∇̄− ∂ψ̄

∂φ
= ᾱ

2
∇̄

2
φ − f,φ − s̄g,φ |∇̄θ |− ε̄2

2
h,φ |∇̄θ |2− Ē (3.19)

Pη̄θ φ
2
θ̇ =

(
∂ψ̄

∂ ∇̄θ

)
· ∇̄− ∂ψ̄

∂θ
= ∇̄ ·

(
ε̄

2h∇̄θ + s̄g
∇̄θ

|∇̄θ |

)
(3.20)

with ẋ = ∂x/∂ t̄, t̄ = t/τ0 where τ0 is a time scale. P is a dimensionless inverse mobility function assumed
to depend on φ and/or ∇̄θ and η̄φ , η̄θ are constant kinetic factors. The choice P = 1 results in a spatially
uniform mobility. Alternatively, the function P can be different in the bulk of the grain and in the diffuse
grain boundary region to avoid simultaneous shrinkage and non-physical rotation during curvature driven
migration by depending on ∇̄θ :

P = 1 or P(∇̄θ) = 1+
(

µ̄p

ε̄
−1
)

exp
(
−βpε̄|∇̄θ |

)
(3.21)

A microforce formalism à la Gurtin [1996] provides a variational framework that allows to recover the
evolution equations for the phase-fields. For this purpose, internal microforces and microstress vectors
π̄φ , π̄θ , ξ̄

φ
, ξ̄

θ
are associated with φ ,θ , ∇̄φ and ∇̄θ respectively. The application of the principle of virtual

power and thermodynamics gives the following balance equations in the body Ω̄ and boundary conditions
on ∂ Ω̄, here written in the absence of external and surface or volume densities of microforces:

ξ̄
φ
· ∇̄+ π̄

sto
φ + π̄

dis
φ = 0 in Ω̄ (3.22)

ξ̄
θ
· ∇̄+ π̄

sto
θ + π̄

dis
θ = 0 in Ω̄ (3.23)

ξ̄φ ·n = 0, ξ̄θ ·n = 0 on ∂ Ω̄ (3.24)
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with

ξ̄
φ
=

∂ψ

∂ ∇̄φ
, ξ̄

θ
=

∂ψ

∂ ∇̄θ
(3.25)

π̄
sto
φ =−∂ψ

∂φ
, π̄

dis
φ =−η̄φ φ̇ (3.26)

π̄
sto
θ =−∂ψ

∂θ
, π̄

dis
θ =−φ

2Pη̄θ θ̇ (3.27)

so that the evolution equations (3.19)-(3.20) are retrieved.
An additional evolution equation for the stored energy must be added to account for recovery in the wake
of the moving grain boundary. Following Abrivard et al. [2012a] the time evolution of the stored energy is
given by:

˙̄E =

{
−CDĒ tanh

(
C̄A|∇̄θ |2

)
φ̇ , φ̇ > 0

0, φ̇ ≤ 0
(3.28)

The singular term 1/|∇̄θ | in Eq. 3.20 requires regularization in the numerical treatment. In [Warren
et al., 2003] this is achieved by replacing the term |∇̄θ | in the free energy with a quadratic potential for
orientation gradients below a numerical threshold 1/γ̄:

|∇̄θ | ∼ Aγ(|∇̄θ |) =


γ̄

2
|∇̄θ |2 for 0≤ |∇̄θ | ≤ 1/γ̄

|∇̄θ |− 1
2γ̄

for |∇̄θ |> 1/γ̄

(3.29)

From Eq. 3.19, it is apparent that the presence of stored energy will tend to decrease the value of the
phase-field φ . As this stored energy is related to the buildup of crystal defects (dislocations) that occurs
during plastic deformation, it is physically motivated that the crystal order should decrease. It should be
noted that in this work, grain boundary motion results from both the grain boundary energy/curvature and/or
a stored energy difference. To tackle the first issue, we investigate the shrinkage of a circular grain embedded
in a larger grain, which is the subject of section III.2.3.2. The second driving force is examined in subsection
III.2.3.3, where a difference in stored energy is imposed on a bicrystal.

III.2.3.2 Curvature driven migration

Spurious grain lattice rotation

In the absence of stored energy, subgrains may reduce their total energy by shrinking or rotating [Rollett
et al., 2017]. The KWC model can simulate these phenomena by considering a circular grain embedded
in a larger square grain (periodic boundary conditions for φ are applied at the boundaries of the larger
grain). However, rotation is only present in ultra-fine materials with sub-micron grains. Therefore, this is
an undesirable mechanism for engineering materials, which usually contain grains of several micrometres.
The KWC model includes both mechanisms, but this spurious rotation can be avoided by careful parameter
selection for the inverse mobility function, which limits reorientation to a small region around the interface:

P(∇̄θ) = 1+
(

µ̄p

ε̄
−1
)

exp
(
−βpε̄|∇̄θ |

)
(3.30)

where βp is the size of the localisation zone and µ̄p is the magnitude of the inverse mobility function in the
bulk of the grain, where it must be large. If P(∇̄θ) is too small in the bulk, rotation without shrinkage may
occur. To illustrate this, finite element computations were carried out on a 10×10 mesh of 25600 elements
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with reduced integration and quadratic shape functions. The initial conditions were given by

φ(x̄, ȳ, t̄ = 0) = 1− 1−φmin[
cosh

(
`φ0 [x̄2 + ȳ2− R̄2

0]
)]2 (3.31)

θ(x̄, ȳ, t̄ = 0) =

{
∆θ ,

√
x2 + y2 < R̄0

0, else
(3.32)

with ∆θ = 0.3, φmin = 0.05, `φ0 = 0.5, R̄0 = 6. The parameters used in the FEM computations of this
section are given in table 3.1. At the moment they do not correspond to any precise material.

Parameter ᾱ s̄ ε̄ η̄φ η̄
?

µ̄p βp CD C̄A γ̄

Value 0.3 2 2 50 0.5 106 103 100 1 104

Table 3.1: Parameters used in the FEM computations of curvature and stored energy driven migration of
grain boundaries.

Figure 3.10, which depicts the evolution of the θ (top) and φ (bottom) phase-fields at several times,
shows reorientation without shrinkage. We can see that both the circular and the larger grains reorient to
form a single crystal, thereby reducing the total energy of the system.

(a) Lattice orientation θ at t̄ = 0, t̄ = 3, t̄ = 7, t̄ = 10

(b) Crystal order φ at t̄ = 0, t̄ = 3, t̄ = 7, t̄ = 10

Figure 3.10: Snapshots of θ (top) and φ (bottom) fields during spurious rotation of a grain embedded in a
matrix. Parameters are ᾱ = 0.3, s̄ = 2, ε̄ = 2, µ̄p = 2, η̄φ = 1, η̄θ = 1 at t̄ = 0, t̄ = 3, t̄ = 7, t̄ = 10.

Grain shrinkage without reorientation

By selecting the appropriate parameters of the inverse mobility function P(∇̄θ), the KWC model can
successfully model grain shrinkage without concurrent rotation. This is demonstrated in Fig. 3.11, which
shows that the grain shrinks without rotating until it vanishes, resulting in a single crystal with 0 misorien-
tation.
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(a) Lattice orientation θ at t̄ = 0, t̄ = 4000, t̄ = 7100, t̄ = 7500

(b) Crystal order φ at t̄ = 0, t̄ = 4000, t̄ = 7100, t̄ = 7500

Figure 3.11: Snapshots of θ (top) and φ (bottom) fields during shrinkage of a circular grain embedded in
a matrix at t̄ = 0, t̄ = 4000, t̄ = 7100, t̄ = 7500. The parameters are ᾱ = 0.3, s̄ = 2, ε̄ = 2, η̄φ = 50, η̄θ =
0.5,µP = 106,βP = 1000.

This simulation is further investigated below. Figure 3.12a depicts the time evolution of the total di-
mensionless energy, which shows a significant decrease at the beginning. This indicates the balancing of
the system, as the initial state is far from equilibrium. Alternatively, a preliminary KWC simulation could
have been run to find the correct φ and θ fields, which could then be used as initial conditions. The time
evolution of the radius of the circular grain is shown in figure 3.12b. As in Kobayashi et al. [2000], the
radius is marked by the minimum value of φ . The curve displays the characteristic shape of the shrinkage
of a circular grain as described in Kobayashi et al. [2000]. The serrated aspect of the curve is probably due
to the spatial discretisation.

The rate of grain boundary migration v is generally accepted to be proportional to the driving force F
responsible for this movement, according to the following relationship:

v = MF (3.33)

where M is the grain boundary mobility. The dimensionless grain boundary migration rate, mobility and
driving force are respectively v̄= vτ0/Λ, M̄ =Mτ0 f0/Λ and F̄ = F/ f0. In the case of interest in this section,
this boils down to:

˙̄RGB = M̄
γ̄GB

R̄GB
(3.34)

where γGB is the grain boundary energy and 1/RGB is the curvature of the grain boundary. According to
Kobayashi et al. [2000] the grain boundary energy is computed from the total energy of the KWC model
F̄KWC and the grain radius R̄GB as

γ̄GB =
F̄KWC

2πR̄GB
(3.35)

Equation 3.34 is valid for t̄ ∈ [165,7150] approximately as shown in Fig. 3.12c, where the relationship
between ˙̄RGB and 1/R̄GB is linear. The grain boundary energy, calculated using Equation 3.35, is plotted as
a function of time in Fig. 3.12d and remains approximately constant throughout this range.
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(b) Dimensionless grain radius as a function of time.
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(c) Dimensionless grain boundary migration rate as
a function of grain curvature. The dashed black line
indicates a linear fit.
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(d) Dimensionless grain boundary energy as a func-
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Figure 3.12: Total dimensionless energy as a function of time (top left), dimensionless grain radius as
a function of time (top right), dimensionless grain boundary migration rate as a function of the curvature
(bottom left) and dimensionless grain boundary energy as a function of time (bottom right) during shrinkage
of a circular grain. Black lines correspond to the smoothed curve for which there is a linear relationship
between ˙̄RGB and 1/R̄GB (t̄ ∈ [165,7150]).

III.2.3.3 Stored energy driven migration

The subject of this section is the second driving force of interest, which relates to a dislocation based
stored energy difference. We recall that in the dimensionless KWC model the contribution of dislocation
storage is included in the free energy density through the term φ Ē where Ē =E/ f0. Let’s consider a bicrystal
with an initial dimensionless stored energy content of Ē = 0.1 on the left side of the grain boundary and
Ē = 0.4 on the right side. As the interface is flat, there is no curvature and reducing the stored energy
content on the right side of the interface is the only way to decrease the total energy. For simplicity, it is
assumed that complete recovery occurs behind the region swept by the grain boundary during its migration.
As stated in section III.2.3.1, it is anticipated that the presence of stored energy will decrease the value of φ .
A value for the crystal order far from the interface, where ∇θ = ∇φ = 0, can be analytically derived from
the equilibrium evolution equation for φ [Abrivard et al., 2012a]:

0 = ᾱ
2
∇̄

2
φ − f,φ − s̄g,φ |∇̄θ |− ε̄2

2
h,φ |∇̄θ |2− Ē (3.36)

0 =− f,φ − Ē (3.37)

φ = 1− Ē (3.38)
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As 0≤ φ ≤ 1, Eq. 3.38 gives an upper bound for Ē = E/ f0:

Ē ≤ 1 (3.39)

For the simulations, the bicrystal has a total length 2L̄ = 20 and the following initial and boundary
conditions are applied:

IC



θ(x̄, t̄ = 0) =
∆θ

2
(tanh(ax̄)+1)

Ē(x̄, t̄ = 0) = Ēl +
∆Ē
2

(tanh(ax̄)+1)

φ(x̄, t̄ = 0) =


1− Ēl−

1− Ēl−min(φ)

[cosh(bx̄)]2
, x̄≤ 0,

1− Ēr−
1− Ēr−min(φ)

[cosh(bx̄)]2
, x≥ 0

(3.40)

BC


θ = 0 rad @ left
θ = ∆θ rad @ right
θ & φ periodic at the top and bottom edges

(3.41)

With Ēl and Ēr the dimensionless stored energies on the left and right sides of the interface, ∆Ē = Ēr− Ēl the
stored energy difference and parameters a,b control the spread of the tanh and cosh functions respectively.
The parameters for the initial and boundary conditions are as follows: Ēl = 0.1, Ēr = 0.4, ∆θ = 0.3, a =
10, b = 5. Note that in the case studied here the phase-fields are not at equilibrium at t̄ = 0. Doing so
would require the results of an extremely low mobility simulation to find the equilibrium profiles of φ and
θ without migration. The parameters given in table 3.1 are still used.
Figure 3.13 displays the profiles of θ (top left), φ (top right), and Ē (bottom left) along the bicrystal at
various dimensionless times. They clearly illustrate that the grain boundary moves to the right side of the
domain, which has a higher dislocation content, in order to reduce the total energy. It can be seen that in the
wake of the moving grain boundary the stored energy goes to 0 and φ goes to 1, indicating full recovery. It
is recalled that the recovery rate is controlled by the recovery parameter CD in Eq. 3.28. Furthermore, when
plotting the position of the grain boundary (assumed to be at the minimum value of φ ) against dimensionless
time (see Fig. 3.13 bottom right), a straight line is obtained, suggesting a steady migration rate.

Finally, Eq. 3.33 still holds. In this case it reduces to:

v̄ = M̄∆Ē (3.42)

where ∆Ē is the stored energy difference. Plotting the migration rate as a function of the stored energy
difference gives a straight line whose slope is the grain boundary mobility, as can be seen in Fig. 3.14.
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Figure 3.13: Profiles of φ (top left),θ (top right), Ē (bottom left) and position of the grain boundary (bottom
right) during stored energy driven migration of a flat interface. The parameters are ᾱ = 0.3, s̄ = 2, ε̄ =
2, η̄φ = 50, η̄θ = 0.5,µP = 106,βP = 1000,CD = 100,CA = 1.
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Figure 3.14: Dimensionless grain boundary migration rate as a function of the stored energy difference
during stored energy migration of a flat grain boundary. The parameters are ᾱ = 0.3, s̄ = 2, ε̄ = 2, η̄φ =
50, η̄θ = 0.5, µ̄p = 106,βP = 1000,CD = 100,CA = 1.

III.2.3.4 Influence of mobility parameters

The influence of several mobility parameters is studied in this section by running multiple finite element
simulations for a fixed set of parameters, given in table 3.1 with βp = 100, while varying one parameter.
This investigation is conducted for both stored energy and curvature driven migration.
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Stored energy driven migration

The impact of the mobility parameters η̄φ and η̄θ is examined on a bicrystal. The bicrystal is subject
to a dimensionless stored energy jump of 0.3. The dimensionless velocity of the interface remains constant
and is determined by the slope of the function representing the position of the grain boundary over time.
Figure 3.15a presents the dimensionless migration rate plotted against the value of the parameter η̄φ . With
an increase in η̄φ the grain boundary migration rate decreases by several orders of magnitude and tends
exponentially towards 0. A similar assessment was performed to determine the influence of the mobility
parameter η̄θ with a fixed η̄φ of 50. The obtained curve v̄− η̄θ is shown in Fig. 3.15b. This curve indicates
that the rate of grain boundary migration remains relatively constant when η̄θ ≤ η̄φ . For η̄θ ≥ η̄φ , the
migration rate decreases as η̄θ increases. It appears that the influence of η̄θ on the resulting migration rate
is much less significant: changing η̄φ can change the migration rate (and thus mobility) by several orders of
magnitude, while varying η̄θ changes the migration rate by only a factor of 2. This observation is expected
since the stored energy term only appears in the evolution equation for φ , whose kinetic constant is η̄φ .

The effect of parameters µ̄p and βp entering the inverse mobility function P on the migration rate is then
assessed. For a flat interface, the parameter µ̄p appears to have little influence on the kinetics, as can be seen
in Fig. 3.16a. Finally, this study examines the impact of the parameter βp on the outcomes, as displayed in
Fig. 3.16b. It is observed that the migration rate increases with increasing βp, reaching a threshold limit.
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(a) Influence of parameter η̄φ .
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(b) Influence of parameter η̄θ .

Figure 3.15: Influence of parameters η̄θ and η̄φ on the resulting dimensionless migration rate for stored
energy driven migration.
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Figure 3.16: Influence of parameters µ̄p and βp on the resulting dimensionless migration rate for stored
energy driven migration.

Curvature driven grain shrinkage

We now examine the case of a circular grain embedded in a larger matrix to simulate curvature driven
migration. Influence of parameters η̄φ and η̄θ on grain size, as a function of time, is depicted in Fig. 3.17.
It is evident that the grain size decreases more quickly as the inverse mobility parameters decrease. The
migration rate in this case appears to depend on parameters η̄θ and η̄φ in a more complex manner than for
migration driven by stored energy, but features can still be extracted. It is apparent in this figure that for
η̄θ ∈ [0.05,5] the kinetics is rather similar. Indeed, variations of about 30% for the time required to reach a
null radius are observed, despite the fact that η̄θ varies over two orders of magnitude. However, if η̄θ is too
low compared to µ̄p/ε̄ , there may be a reorientation of the inclusion and matrix, as the product of η̄θ and
the inverse mobility function P may not be high enough in the bulk to prevent spurious reorientations. That
is the case for η̄θ = 0.005 and explains why the radius suddenly goes to 0.

Figure 3.18 illustrates the time evolution of the grain radius for various values of µ̄p and βp. Clearly,
as µ̄p approaches infinity, the velocity approaches 0. When µ̄p/ε̄ = 1, which occurs at µ̄p = 2, the inverse
mobility function P always equals 1 regardless of the orientation gradient. This makes it impossible to
distinguish between bulk and grain boundary behaviours. For some larger values such as µ̄p = 103, one
would expect the localisation to be active. However, the value of µ̄p alone is not what determines the
mobility, but that of η̄θ µ̄p/ε̄ . In this case, it is not high enough to prevent reorientation. It is therefore
necessary to increase the magnitude of parameter µ̄p for the behaviours to be really distinct in the bulk and
in the grain boundary. A value of µ̄p = 106 for instance, appears to be effective in halting grain rotation
during shrinkage.
For parameter βp, the choice βp = 0 yields a constant value of P= µ̄p/ε̄ , which does not prevent concomitant
reorientation and shrinkage. As µ̄p = 106 the time evolution of the radius is very slow due to the low
mobility. For larger values of βp, like in the case of migration driven by stored energy, the velocity remains
constant once a threshold value is reached. It is expected that this value depends on the interface width `θ .
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Figure 3.17: Influence of parameters η̄θ and η̄φ on the resulting grain size for curvature driven migration.
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Figure 3.18: Influence of parameters µ̄p and βp on the resulting grain size for curvature driven migration.

III.2.4 Calibration of phase-field and mobility parameters

The studies conducted so far did not incorporate parameters with physical relevance. In this section,
we describe a simple calibration procedure to retrieve more physically meaningful phase-field and mobility
parameters.

The phase-field parameters ᾱ and s̄ in the free enery density can be calibrated using the asymptotic
analysis of Lobkovsky and Warren [2001] to fit a zero-temperature grain boundary energy misorientation
curve found in the literature (see Fig. 1 in Ask et al. [2020]). The misorientation is capped at ∆θ = 30◦ to
include only the Read-Shockley part of the curve and discard the local GB energy cusps. A grain boundary
energy magnification factor f ac can be defined such that

f ac =
γre f (∆θ = 30◦)
γ̃(∆θ = 30◦)

= f0Λε̄, γ(∆θ) = γ̃(∆θ)× f ac (3.43)

where γre f (∆θ = 30◦) and γ̃(∆θ = 30◦) are the reference (used to calibrate the parameters) and asymptotic
grain boundary energies, respectively, for a misorientation of 30◦. The parameter ε̄ in the free energy density,
which controls the grain boundary diffusivity, can be chosen freely. The parameters are calibrated for pure
copper with g(φ) = −2(log(1−φ)+φ). At the mesoscale, appropriate length scale Λ and time scale τ0
are respectively Λ = 1µm and τ0 = 1s. This calibration method gives s̄ = 0.75 and ᾱ = 0.31 for ε̄ = 1.
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The grain boundary energy is fitted against that of a < 100 > Cu tilt boundary obtained from atomistic
simulations [Wolf, 1990], see Fig. 3.19a. The grain boundary energy scale factor is f ac = 2300 mJ/m2,

which corresponds to a grain boundary energy scale parameter f0 =
f ac
Λε̄

= 2.3 MPa.
The various parameters of the model are summarised in table 3.2. Note that the grain boundary width can

Parameter/quantity dimensionless expression calibration

Energy magnitude f0 [Jm−3] NA Fit of the GB energy

Time scale τ0 [s] NA Choice or ratio of mobilities

Length scale Λ [m] NA Choice

Length x [m] x̄ =
x
Λ

NA

Free energy F [J] F̄ =
F

f0Λ3 NA

Stored energy density Ē [Jm−3] Ē =
E
f0

Choice or computation

α [
√

J/m] ᾱ =
α√
f0Λ

Fit of the GB energy

ε [
√

J/m] ε̄ =
ε√
f0Λ

Choice

s̄ [J/m 2] s̄ =
s

f0Λ
Fit of the GB energy

grain boundary energy γ [Jm−3] γ̄ =
γ

f0Λ
Asymptotic analysis/FD/FE computation

grain boundary mobility M [m4s−1MJ−1] M̄ = M
τ0 f0

Λ
Numerical experiment

ηφ [Js/m 3] η̄φ =
ηφ

f0τ0
Numerical experiment

ηθ [Js/m 3] η̄θ =
ηθ

f0τ0
Numerical experiment

µp [m] µ̄p =
µp

Λ
Choice

βp [-] NA Numerical experiment

CA [m] C̄A =
CA

Λ
Choice

CD [-] NA Choice

Table 3.2: Parameters and material properties of the KWC model.

be selected with some control by changing the ε̄ parameter and the α̃ = ᾱ/ε̄, s̃= s̄/ε̄ parameters accordingly.
For example, choosing ᾱ = 0.31, s̄ = 0.75, ε̄ = 1→ α̃ = 0.31, s̃ = 0.75 will give a θ–width `θ ∼ 0.3. This
width can be halved by dividing the value of the parameter ε̄ by a factor of 2: ε̄ = 0.5, ᾱ = 0.31, s̄ = 0.75⇒
α̃ = 0.155, s̃ = 0.375 gives a `θ ∼ 0.15. These two parameter sets are energetically equivalent. However,
there seems to be a lower limit to the value of ε̄ that can be chosen, as can be seen in Fig. 3.20 where for
ε̄ = 0.1 the grain boundary is not well defined. This figure shows the θ and φ fields zoomed in the interface
region for different values of ε̄ , which changes the grain boundary width for a given set of ᾱ, s̄.

As there is no published asymptotic analysis that accounts for grain boundary migration due to a stored
energy difference, the mobility parameters η̄φ , η̄θ , µ̄p,βp must be tuned so that the resulting mobility of a
1D boundary subjected to a stored energy difference is comparable to data found in the literature [Gottstein
and Shvindlerman, 2009]. Parameter µ̄p must be sufficiently high to effectively separate the behaviours in
the bulk and in the grain boundary. Parameter βp must be chosen so that the threshold value for constant
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Figure 3.19: Grain boundary energy–misorientation curve (left) and grain boundary mobility as a function
of temperature (right).
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Figure 3.20: Profiles of φ and θ for different values of ε̄ (and thus different values of α̃, s̃). Marked solid
lines are FEM solutions whereas dotted lines denote solutions obtained with the matched asymtotic analysis.

velocity is reached. The recovery parameters C̄A,CD are chosen so that full recovery, i.e. annihilation of
stored dislocations, occurs behind the moving grain boundary. Data related to the grain boundary mobility
of pure copper can be found in the work of Vandermeer et al. [1997], where mobilities for a wide range of
temperatures are presented, which can be used as a reference to estimate the temperature in the KWC model.
The data used in Fig. 5 of this reference is plotted in Fig. 3.19b. The basic test of a bicrystal with a lattice
misorientation of 0.3 subjected to a stored energy difference of 0.09 is carried out to determine sensible
values of η̄φ and η̄θ . The initial state is in equilibrium. To do this, a KWC simulation is first run to find the
fields φ ,θ at equilibrium. The parameters used in this simulation as well as the resulting temperatures and
mobilities are listed in table 3.3. Migration of a flat interface driven by a stored energy was chosen due to the
linear relationship between boundary migration rate and driving force. Moreover, the stored energy related
to dislocations is the predominant driving force in plastically deformed crystals. Alternatively, simulations
of curvature driven migration in wedged bicrystals [Gottstein and Shvindlerman, 2009] could be run in order
to calibrate the kinetic constants of the model.
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Parameter/property Unit Value Comment

τ0 s 1 time scale
Λ µm 1 Length scale
f0 MPa 2.3 GB energy magnitude parameter
ᾱ - 0.31 Phase-field parameter
s̄ - 0.75 Phase-field parameter
ε̄ - 1 Sets the θ -width for fixed ᾱ, s̄

η̄φ - 10 Viscosity parameter for the evolution of φ

η̄θ - 0.1 or 1 Viscosity parameter for the evolution of θ

C̄A - 1 Sets the width of the recovery area aroung the GB
C̄D - 100 Sets the magnitude of the recovery
µ̄p - 1×106 Specifies the magnitude of P(∇̄θ) in the bulk of the grain
βp - 100 or 1000 Sets the rate at which the mobility function goes to 1 in the GB
γ̄ - 1 ×104 Regularizing term for the singular diffusivity
γg - 1 ×10−4 Regularizing term for function g(φ)

∆θ
◦ 15 Lattice misorientation

∆Ē - 0.09 Stored energy difference
γGB mJ/m2 756 GB energy
M m4/MJ/s 2.4×10−8 or 2.2×10−8 GB mobility
T ◦C ' 230 or 220 Temperature

Table 3.3: Parameters and properties of a bicrystal used to determine the GB mobility during stored energy
driven migration.

III.3 Coupled KWC-Cosserat crystal plasticity model

III.3.1 Governing equations

The KWC phase-field model seems to be a powerful tool for modelling microstructure evolution in
(poly)crystalline materials. However, it does not account for lattice reorientation due to deformation, nor
the increase in stored energy due to dislocation buildup. To tackle this problem and consider the interaction
between mechanics and grain boundary motion, the KWC model can be extended in a fully coupled formu-
lation with generalised continua such as strain-gradient plasticity Admal et al. [2018] or Cosserat mechanics
Ask et al. [2018b].

III.3.1.1 Link between KWC model and Cosserat mechanics

The framework of continuum thermodynamics used for formulating phase-field models as described
by Gurtin [1996] allows for a strong coupling between continuum mechanics and phase-field models for
microstructure evolution [Steinbach and Apel, 2006]. The model proposed in a series of papers by Ask
et al. [2018b,a, 2019, 2020] is based on a modified KWC free energy in which the orientation phase-field
is identified with Cosserat microrotational degrees of freedom. The free energy potential therefore has both
quadratic and rank-one dependencies on the norm of the curvature. Contributions due to elastic strain and
statistically stored dislocation densities are also included in this free energy. Furthermore, the evolution
equation of the lattice orientation in the KWC model is interpreted as a balance equation for the couple
stress in the framework of Cosserat continuum dynamics with both quadratic and rank-one contributions
of the norm of the curvature. In the current work, the hypothesis of isothermal processes at small strains,
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rotations and curvatures is assumed, which results in the following equations:

Pηθ φ
2
θ̇ =−∂ψ

∂θ
+∇ · ∂ψ

∂∇θ
= ∇ ·

(
ε

2h∇θ + sg
∇θ

|∇θ |

)
(KWC) (3.44)

% Iθ̈ =−∂ψ

∂θ
+∇ · ∂ψ

∂θ ⊗∇
=−ε

'
:
(
Λ
≈

: skew(∇u + ε
'
·θ )

)
+∇ ·

(
C
≈

: θ ⊗∇+A
θ ⊗∇

‖θ ⊗∇‖

)
(Cosserat)

(3.45)

This full-field mesoscopic model is thermodynamically consistent by construction and is able to account
for the heterogeneous reorientation produced by plastic slip, as well as that of a material point caused by a
migrating front.

III.3.1.2 Free energy, evolution equations & difference with the KWC model

Free energy

In this section we briefly recall the dimensionless coupled KWC-Cosserat model proposed by Ask et al.
[2018a,b, 2020]. This model is valid for small strains, rotations and curvatures and only considers the Read-
Shockley part of the grain boundary energy-misoriation curve. It is therefore limited to low angle grain
boundaries. This formulation couples the KWC phase-field model to Cosserat mechanics via the following
free energy potential:

ψ(φ ,∇φ ,θ ⊗∇,e∼
e,rα) = f0

(
f (φ)+

α2

2
|∇φ |2 + sg(φ)||θ ⊗∇||+ ε2

2
h(φ)||θ ⊗∇||2

)
︸ ︷︷ ︸

KWC GB energy

+
1
2

sym(e∼
e) :E

≈
s : sym(e∼

e)+2µcskew(e∼
e) : skew(e∼

e)︸ ︷︷ ︸
Cosserat elasticity

+ ψρ(φ ,rα)︸ ︷︷ ︸
SSD accumulation

(3.46)

ψρ(φ ,rα) = φ
1
2

χµ

N

∑
α=1

rα2
, rα = b

√√√√ N

∑
β=1

hαβ ρβ (3.47)

where µ,b,ρα ,hαβ and χ ∼ 0.3 are respectively the shear modulus, the magnitude of the Burgers vector,
the dislocation density of the slip system α , the slip interaction matrix and a coefficient. The number of slip
systems is denoted by N. The generally non symmetric strain tensor e∼ in the free energy density given by Eq.
3.46 has been split into symmetric and skew-symmetric contributions. For simplicity, the skew-symmetric
part will be assumed isotropic, though the symmetric isotropic elasticity tensor e

≈
s can be anisotropic.

Principle of virtual power

The balance laws and boundary conditions are derived using the principle of virtual power on the fol-
lowing set of virtual field variables and their gradients:

V = {φ̇ ,∇φ̇ , u̇ , u̇ ⊗∇, θ̇ , θ̇ ⊗∇} (3.48)

The generalised stresses {σ∼,m∼ ,πφ ,ξ
φ
} are the work conjugates quantities of the phase-field and defor-

mation variables {e∼,θ ⊗∇,φ ,∇φ}. For any region D with boundary ∂D of a volume Ω, the principle of
virtual power in the absence of inertial (micro) forces states that for all virtual fields φ , u̇ , θ̇ :∫

D
pidV =

∫
D

pedV +
∫

D
pcdV (3.49)
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where pi, pe, pc are respectively the virtual density of internal, external and contact forces. They are given
by:

pi =−πφ φ̇ +ξ
φ
·∇φ̇ +σ∼ : u̇ ⊗∇−2

×
σ · θ̇︸ ︷︷ ︸

σ∼ :ė∼

+m∼ : θ̇∼⊗∇ (3.50)

pe = π
ext
φ φ̇ + f ext · u̇ + c ext · θ̇ (3.51)

pc = π
c
φ φ̇ + f c · u̇ + c c · θ̇ (3.52)

By integrating by parts and applying the divergence theorem to the principle of virtual power, the balance
equations and boundary conditions are obtained ∀D ⊂Ω, ∀(φ , u̇ , θ̇ ):

∇ ·ξ
φ
+πφ +π

ext
φ = 0 in Ω (3.53)

σ∼ ·∇+ f ext = 0 in Ω (3.54)

m∼ ·∇+2
×
σ + c ext = 0 in Ω (3.55)

ξ
φ
·n = π

c
φ on ∂D (3.56)

σ∼ ·n = f c on ∂D (3.57)

m∼ ·n = c c on ∂D (3.58)

The constitutive equations derive from the Clausius-Duhem inequality:

−ρΨ̇+ pi ≥ 0 (3.59)

with Ψ the Helmholtz free energy density such that:

ρΨ = ψ(φ ,∇φ ,θ ⊗∇,e∼
e,rα) (3.60)

where rα are the internal variables associated with the inelastic behavior. Combining Eqs. 3.60 and 3.50,
the Clausius-Duhem inequality 3.59 becomes

− ψ̇−πφ φ̇ +ξ
φ
·∇φ +σ∼ : e∼

e +m∼ : θ ⊗∇+σ∼ : e∼
in ≥ 0 (3.61)

Applying the chain rule to the term ψ̇ gives the following inequality

−
[

πφ +
∂ψ

∂φ

]
φ̇ +

[
ξ

φ
− ∂ψ

∂∇φ

]
·∇φ̇ +

[
σ∼−

∂ψ

∂e∼
e

]
: ė∼

e +

[
m∼ −

∂ψ

∂θ ⊗∇

]
: θ̇ ⊗∇

+σ∼ : ė∼
in−∑

α

∂ψ

∂ rα
ṙα ≥ 0 (3.62)

In accordance with Gurtin [1996] it is assumed that πφ contains energetic and dissipation contributions such
that:

πφ = π
eq
φ
+π

neq
φ

(3.63)

94



III.3 Coupled KWC-Cosserat crystal plasticity model

The Clausius-Duhem inequality becomes

−
[

π
eq
φ
+

∂ψ

∂φ

]
φ̇ +

[
ξ

φ
− ∂ψ

∂∇φ

]
·∇φ̇ +

[
σ∼−

∂ψ

∂e∼
e

]
: ė∼

e +

[
m∼ −

∂ψ

∂θ ⊗∇

]
: θ̇ ⊗∇︸ ︷︷ ︸

Energetic contribution

−π
neq
φ

φ̇ +σ∼ : ė∼
in−∑

α

∂ψ

∂ rα
ṙα

︸ ︷︷ ︸
Dissipative contribution

≥ 0 (3.64)

The following constitutive relations are deduced from the Clausius-Duhem inequality 3.64:

π
eq
φ

=
−∂ψ

∂φ
, ξ

φ
=

∂ψ

∂∇φ
(3.65)

σ∼ =
∂ψ

∂e∼
e , m∼ =

∂ψ

∂θ ⊗∇
(3.66)

Rα =
∂ψ

∂ rα
(3.67)

where Rα is the thermodynamic force associated with the internal variable rα . In this model these internal
variables are related to the statistically stored dislocation densities ρ

α such that

rα = b

√√√√ N

∑
β=1

hαβ ρβ (3.68)

Constitutive and evolution equations

With the free energy given by Eq. 3.46, the constitutive equations are:

sym(σ∼) =E≈
s : ε∼

e (3.69)
×
σ = 2µc

×
e e (3.70)

ξ
∼

θ = f0

[
sg(φ)

1
||θ ⊗∇||

+ ε
2h(φ)

]
θ ⊗∇ (3.71)

ξ
φ
= f0α

2
∇φ (3.72)

The Cosserat couple stress m∼ = ∂ψ/∂θ ⊗∇ and skew-symmetric stress
×
σ are identified with ξ

θ
and

πθ/2 respectively in Gurtin’s formulation of the KWC model (Eq. 3.23). The evolution equations of the
dissipative contributions are assumed to derive from the following dissipation potential:

Ω = Ω
in(σ∼)+Ω

φ (φ)+Ω
α(rα) (3.73)

so that

ė∼
in =

∂Ωin

∂σ∼
, ṙα =−∂Ωα

∂Rα
, φ̇ =− ∂Ωφ

∂π
neq
φ

(3.74)

The KWC evolution equation for the crystal order can be retrieved by choosing a quadratic dissipation
potential for Ω

φ :

Ω
φ =

1
2

η
−1
φ

(
π

neq
φ

)2
(3.75)
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The KWC evolution equation for φ is retrieved by the equilibrium law for the microstress :

∇ · ξ
φ︸︷︷︸

∂ψ

∂∇φ

+ π
eq
φ︸︷︷︸
− ∂ψ

∂φ

+ π
neq
φ︸︷︷︸
−ηφ φ̇

= 0 (3.76)

ηφ φ̇ = α
2
∇

2
φ − f,φ − sg,φ |∇θ |− ε2

2
h,φ |∇θ |2− 1

2
µb2

N

∑
α=1

N

∑
β=1

hαβ
ρ

β

︸ ︷︷ ︸
E

(3.77)

The inelastic dissipation potential Ω
in is assumed to have contributions from crystal plasticity in the bulk of

the grain (Ωslip) and viscoelastic/viscoplastic relaxation of the skew symmetric stress at the grain boundary
in response to lattice reorientation (Ω?):

Ω
in = Ω

slip(σ∼)+Ω
?(
×
σ ;θ ⊗∇) (3.78)

Ω
slip =

N

∑
α=1

K
n+1

〈
|τα |−Rα/φ − τc

K

〉n+1

(3.79)

τ
α = σ∼ : ` α ⊗n α , Rα = φ χµb

√√√√ N

∑
β=1

hαβ ρβ (3.80)

where 〈•〉 denotes the positive part and K,n are viscoplasticity parameters. The resolved shear stress is
denoted by τ

α and the hardening value by Rα . The initial critical resolved shear stress is represented by τc.
During grain boundary migration, local lattice reorientation occurs inside the grain boundary and gives rise
to skew symmetric stresses. This change of lattice orientation reference for a zero-stress state is represented
by θ

?, a grain boundary contribution to the skew symmetric part of the plastic deformation e∼
in. In other

words, in the bulk of the grain lattice rotation is only due to elastic/plastic deformation, whereas in the grain
boundary an orientation change is only prompted by the evolution of θ

?, the orientation reference with zero
skew-symmetric stress. This inelastic mechanism is associated with a relaxation equation whose driving
force is the skew-symmetric stress. This equation is described in detail in section III.3.2, where it is also
shown that without this grain boundary relaxation, grain boundary motion would be hindered. The inelastic
strain rate is derived from the dissipation potential Ω

in such that:

ė∼
in =

∂Ωslip

∂σ∼
− ε
'
· ∂Ω?

∂
×
σ

= ė∼
slip− ε

'
· θ̇ ? (3.81)

ė∼
slip =

N

∑
α=1

γ̇
α` α ⊗n α , γ̇

α =

〈
|τα |−Rα/φ − τc

K

〉n

sign(τα) (3.82)

(3.83)

where ` α and n α are the slip direction and normal to the slip plane for the slip system α , γ̇
α is the slip rate.

The strain tensor is therefore given by

e∼= u ⊗∇+ ε
'
·θ = e∼

e +e∼
slip− ε

'
·θ ? (3.84)

(3.85)

The strain tensor is split into symmetric and skew-symmetric contributions

sym(e∼) = ε∼= ε∼
e +ε∼

slip (3.86)

skew(e∼) = ω∼+ ε'·θ = skew(e∼
e)+ skew(e∼

slip)− ε
'
·θ ? (3.87)
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The skew-symmetric part of the elastic strain is now

skew(ee) = ω∼− skew(e∼
slip)︸ ︷︷ ︸

ω∼
e

+ε
'
·θ + ε

'
·θ ? (3.88)

×
e e =

×
ω

e−θ −θ
? ∼ 0 ⇒

×
ω

e ∼ θ +θ
? (3.89)

As the Cosserat microrotation is associated with the lattice orientation, it is generally non-zero in the initial
state. Thus, the reference configuration can only be stress-free if the initial inelastic deformation is also
non-zero. Therefore, it is necessary to adopt the following initial condition:

θ
?(t = 0) =−θ (t = 0) (3.90)

The inelastic grain boundary behaviour is therefore necessary to accommodate an initial orientation distri-
bution from a stress-free state. It can be as a reference orientation state of the grain, whose evolution law
ensures that it is inherited to a region swept by a migrating grain boundary.

From Clausius-Duhem inequality 3.64 and the constitutive equations 3.65-3.66 the residual dissipation
reads

−π
neq
φ

φ̇ +σ∼ : ė∼
in−∑

α

∂ψ

∂ rα
ṙα ≥ 0 (3.91)

with

σ∼ : ė∼
in = σ∼ : ė∼

slip +2
×
σ · θ̇ ? ≥ 0 (3.92)

A dissipation potential for the internal variables rα is not explicitly formulated. Instead, a Kocks-
Mecking-Teodosiu law is adopted to describe the evolution of the stastically stored dislocations. It is slightly
modified to acccount fore static recovery behind a moving grain boundary, in a similar way to Abrivard et al.
[2012a], thereby allowing the release of the stored energy via grain boundary motion:

ρ̇
α =



1
b

 1
Kr

√
∑
β

ρβ −2dρ
α

 |γ̇α |−ρ
αCD tanh(CA|θ ⊗∇|) φ̇ , φ̇ > 0

1
b

 1
Kr

√
∑
β

ρβ −2dρ
α

 |γ̇α |, φ̇ ≤ 0

(3.93)

The finite element implementation of the presented models is based on the weak formulation of the
balance laws. The discretization and resolution methods are described in the references [Abrivard et al.,
2012a; Ask et al., 2018b] while details on the extension to 3D are given in section III.3.4.1. The implicit
finite element solver Z–set is used [Besson and Foerch, 1997; Z-set, 2022]. Global resolution is carried
out using a Newton-Raphson method and the nonlinear constitutive laws are time-integrated by means of a
Runge-Kutta method with automatic time stepping, see [Besson et al., 2009].

III.3.2 Models for the relaxation of skew-symmetric stresses in the grain boundaries

The inelastic stress relaxation at the grain boundaries can be modelled with several formulations. In
addition to viscous rheological laws like the Kelvin-Voigt or Maxwell viscoelasticity models, the Norton
law with threshold or time-independent formulation can also be employed. This section focuses on the
impact of the selected relaxation model on the static and dynamic behaviour of grain boundaries. In line
with Ask et al. [2018b, 2020], the relaxation will be restricted to the grain boundaries via the localization
function P (Eq. 3.21), unless explicitly stated otherwise. In the following, physical quantities and parameters
are dimensionless, see table 3.6 for more information.
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III.3.2.1 Kelvin-Voigt rheological model

The skew-symmetric stress in the initial KWC-Cosserat formulation [Ask et al., 2018b] was based on a
Kelvin-Voigt rheological model. In this case, the thermodynamics is slightly different from the one that was
presented above as the skew-symmetric stress is also assumed to have stored and dissipative contributions:

×
σ =

×
σ

eq +
×
σ

neq (3.94)

σ∼
eq =

∂ψ

∂e∼
e (3.95)

The Clausius-Duhem inequality 3.62 now becomes

−
[

π
eq
φ
+

∂ψ

∂φ

]
φ̇ +

[
ξ

φ
− ∂ψ

∂∇φ

]
·∇φ̇ +

[
σ∼

eq− ∂ψ

∂e∼
e

]
: ė∼

e +

[
m∼ −

∂ψ

∂θ ⊗∇

]
: θ̇ ⊗∇︸ ︷︷ ︸

Energetic contribution

−π
neq
φ

φ̇ +2
×
σ

neq · ×̇e e +2
×
σ · θ̇ ?

+σ∼ : ė∼
slip−∑

α

∂ψ

∂ rα
ṙα

︸ ︷︷ ︸
Dissipative contribution

≥ 0 (3.96)

In addition, the following relation still holds

×
e e =

×
ω

e−θ −θ
? (3.97)

Combining the above equations therefore allows to retrieve the expression for the residual dissipation:

−π
neq
φ

φ̇ +2
×
σ

neq ·
[
×̇
ω

e− θ̇

]
+2

×
σ

eq · θ̇ ?
+σ∼ : ė∼

slip−∑
α

∂ψ

∂ rα
ṙα ≥ 0 (3.98)

The inelastic dissipation potential is then given by:

Ω
in = Ω

slip(σ∼)+Ω
?(
×
σ

eq)+Ω
θ (
×
σ

neq) (3.99)

such that

×̇
ω

e− θ̇ =
∂Ωθ

∂
×
σ neq

, θ̇
?
=

∂Ω?

∂
×
σ eq

, ė∼
slip =

∂Ωslip
∂σ∼

(3.100)

The following quadratic dissipation potentials are chosen, in order to ensure positivity of the dissipation:

Ω
θ =

1
2

τ
−1
θ

×
σ

neq ·
×
σ

neq (3.101)

Ω
? =

1
2

τ
−1
?

×
σ

eq ·
×
σ

eq (3.102)

where τ? and τθ are mobility functions. In [Ask et al., 2018b] they are taken such that

τθ (θ ⊗∇) =
1
2

φ
2
η

θ P(θ ⊗∇) (3.103)

τ?(∇φ) = η
? tanh−1 (C2

? |∇φ |2) (3.104)

98



III.3 Coupled KWC-Cosserat crystal plasticity model

where η
? and η

θ are kinetic constants and C? is a parameter with unit [m]. The contributions to the skew-
symmetric stress are therefore

×
σ

eq = 2µc
×
e e = τ?θ̇

? (3.105)
×
σ

neq = τθ

[
×̇
ω

e− θ̇

]
(3.106)

which can be schematically represented by the rheological element in Fig. 3.21.

Figure 3.21: Kelvin-Voigt rheological model for the skew-symmetric stress relaxation at the grain boundary.

The evolution equation for θ , here written in its dimensionless form, is obtained from the balance of
moment of momentum and substitution of constitutive laws:

m̄∼ · ∇̄+2
×
σ̄ = 0 (3.107)(

s̄g
θ ⊗ ∇̄

||θ ⊗ ∇̄||
+

ε̄2

2
h||θ ⊗ ∇̄||

)
· ∇̄+2

(
2µ̄c

×
e e +

1
2

φ
2
η̄

θ P(θ ⊗ ∇̄)

[
×̇
ω

e− θ̇

])
= 0 (3.108)

φ
2
η̄

θ P(θ ⊗ ∇̄)

[
−
×̇
ω

e + θ̇

]
=

(
s̄g

θ ⊗ ∇̄

||θ ⊗ ∇̄||
+

ε̄2

2
h||θ ⊗ ∇̄||

)
· ∇̄+4µ̄c

×
e e (3.109)

The main difference with the KWC evolution Eq. 3.44 is the addition of the lattice rotation rate
×̇
ω

e. An
additional term related to the skew-symmetric part of the elastic strain is also included, which is not present
in the KWC model. As it has been extensively studied in [Ask et al., 2018b], this relaxation model will not
be discussed further in the rest of the manuscript.

III.3.2.2 Maxwell rhelogical model

The second viscoelastic law considered is that of a Maxwell rheological model according to Ask et al.
[2020] and illustrated in Fig. 3.22. The dissipation potential is given by

Figure 3.22: Maxwell rheological model for the skew-symmetric stress relaxation at the grain boundary

Ω
? =

1
2

τ
−1
?

×
σ ·
×
σ (3.110)
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with
τ?= η

?P(θ ⊗∇) (3.111)

where η
? is a constant viscosity parameter and P(∇θ) is the same as in Eq. (3.21). The evolution of the

reference orientation is then given by the viscous constitutive law

θ̇
?
=

1
η̄?P(θ ⊗ ∇̄)

×
σ̄ =−×̇e e + ω̇

e− θ̇ (3.112)

Inserting Eq. (3.112) into the momentum balance (eq. (3.55)) gives the following evolution for θ :

η̄
?P(θ ⊗ ∇̄)

[
×̇
e e−

×̇
ω

e + θ̇

]
=

(
s̄g

θ ⊗ ∇̄

||θ ⊗ ∇̄||
+

ε̄2

2
h||θ ⊗ ∇̄||

)
· ∇̄ (3.113)

The main difference from the original KWC evolution equation (3.20) is the addition of the relative rotation

rate
×̇
e e−

×̇
ω

e. Note that, similarly to Ask et al. [2020] and unlike [Warren et al., 2003; Ask et al., 2018b],
it was decided not to include the phenomenological coupling term φ

2 multiplying P(θ̄), as it appeared to
significantly increase the computational cost in the coupled model.

III.3.2.3 Norton law with threshold

The third relaxation law considered in this work is based on a viscoplastic Norton formulation with
threshold that only concerns the skew-symmetric stress, which gives the following dissipation potential for
Ω
? :

K̄c

nc +1
1

η̄?P(θ ⊗ ∇̄)

〈
|
×
σ̄ |− σ̄c

K̄c

〉nc+1

(3.114)

The evolution equation for θ̇
? is then derived from this potential:

θ̇
?
=

1
η̄?P(θ ⊗ ∇̄)

〈
|
×
σ̄ |− σ̄c

K̄c

〉nc ×
σ̄

|
×
σ̄ |

(3.115)

where σ̄c is the stress threshold for relaxation and K̄c,nc are viscoplasticity type parameters. The momentum
balance is once again used to retrieve the evolution law for θ :

|
×
σ̄ |η̄?P(θ ⊗ ∇̄)

〈
|
×
σ̄ |− σ̄c

Kc

〉−nc [
×̇
e e−

×̇
ω

e + θ̇

]
=

(
s̄g

θ ⊗ ∇̄

||θ ⊗ ∇̄||
+

ε̄2

2
h||θ ⊗ ∇̄||

)
·∇ (3.116)

By setting K̄c = nc = 1, as illustrated in Fig. 3.23, the only difference with Maxwell’s model is the
addition of a threshold for the activation of a skew-symmetric stress relaxation.

Figure 3.23: Norton law with threshold for the skew-symmetric stress relaxation at the grain boundary
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In the following the two-dimensional case is considered. The evolution equation for θ
? is now

θ̇
? =

1
η̄?P(∇̄θ)

〈
|
×
σ̄ |− σ̄c

〉
sgn(

×
σ̄) (3.117)

III.3.2.4 Rate-independent relaxation law

Finally, a rate-independent relaxation law is formulated. Inspired by rate-independent isotropic plasticity
(see section II.3.1), the following yield function is adopted:

f (
×
σ) = |

×
σ |−σc (3.118)

The eigen rotation rate is then given by

θ̇
?
= υ

∂ f

∂
×
σ︸︷︷︸

n

= υ

×
σ

|
×
σ |

(3.119)

where υ is the cumulated eigen rotation (similar to plastic multiplier in isotropic plasticity) and n the normal
to the yield surface. The consistency condition ḟ = 0 is then used to deduce the expression for υ :

ḟ = 0⇔ n ·
×̇
σ = 0 (3.120)

Replacing
×̇
σ with its expression one gets:

n · (
×̇
ω

e− θ̇ − θ̇
?
)2µc = 0 (3.121)

which after inserting Eq. 3.119 becomes:

n · (
×̇
ω

e− θ̇ −υn ) = 0 (3.122)

The expression for υ is finally retrieved:

υ =
n · (

×̇
ω e− θ̇ )

n ·n
(3.123)

Note that contrary to the other laws explored in this section, the relaxation of skew-symmetric stress occurs
in the whole domain due to the absence of a localisation function in this formulation, provided the skew-
symmetric stresses are high enough.

III.3.3 Effect of mechanics on grain boundaries in the absence of crystal plasticity

III.3.3.1 Static grain boundaries

In this section the effect of mechanics is evaluated in the absence of crystal plasticity for different formu-
lations of the reference orientation rate θ̇

?. Finite element simulations are performed with the parameters
given in table 3.4 on a regular two-dimensional domain of total length 2L̄ = 10 with one element in height
and 200 elements in length. Rectangular elements with quadratic shape functions with reduced integration
are used. Only the viscoelastic and viscoplastic behavior of grain boundaries is considered in this section,
which means that no dislocation slip is activated in the stability analysis. No mechanical loading is applied
to the material strip. The function g(φ) =−2log(1−φ)+φ is used in the remainder of this chapter.
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Parameter Ēe
ν µ̄c ᾱ s̄ ε̄ η̄φ η̄

?
µ̄p βp γ̄ γg

Value 56×103 0.3 104 0.31 0.75 1 10 1 106 103 104 10−4

Table 3.4: Model parameters used in the simulations with the coupled model, without crystal plasticity.

The following initial and boundary conditions are used to evaluate the effect of relaxation of the skew
symmetric stress during grain boundary formation:

IC:

φ(t̄ = 0, x̄) = 1

θ(t̄ = 0, x̄) =
∆θ

2
(tanh(15x̄)+1)

(3.124)

BC:


φ(t̄, x̄ =−L̄) = φ(t̄, x̄ = L̄) = 1
θ(t̄, x̄ =−L̄) = 0, θ(t̄, x̄ = L̄) = ∆θ

ūx = ūy = 0 at the bottom left corner
ūy = 0 at the top right corner

(3.125)

with ∆θ = 0.3. Multiple point constraints are also imposed on the top and bottom edges to ensure the peri-
odicity of φ ,θ , ūx, ūy along the vertical direction y. The objective is to analyze the build-up and relaxation
of stresses in the diffuse GB zone during the formation of a grain boundary. The out-of-equilibrium initial
conditions lead to instantaneous build-up of stresses in the GB region which then relax according to the
viscoelastic law for θ

?.

Maxwell rheological model for the relaxation of the skew-symmetric stress

The results of the simulation are shown in Fig. 3.24, which shows the element-averaged profiles of

sym(σ̄∼)12 and
×
σ̄ = skew(σ̄∼)12 at different times during grain boundary formation. The stresses sym(σ̄∼)12

and skew(σ̄∼)12 are clearly mirror images of each other with respect to the line ȳ = 0 and the profiles are also
antisymmetric with respect to x̄ = 0. The stresses vanish in the region where |∇̄θ | 6= 0, as expected from
the localisation function 1/P(∇̄θ). Numerical residual stresses of the order of 10−2 are present after full
relaxation.

The existence of internal stresses in the grain boundary region is a physically relevant feature due to
strong elastic strains induced by change of atomic order. Such nanoscale residual stresses can be computed
by molecular dynamics but also continuum theories. Interestingly, the profile of sym(σ̄∼)12 resembles that
of the elasto-plastic theory of dislocation and disclination fields by Taupin et al. [2013], as shown in Fig.
3.25, probably because they both share the same generalized balance equation for the moment of momentum
and associated couple stress tensor. It can be seen that they show similar trends, such as sharp variation in
a narrow region and anti-symmetric profile. However, a major difference is that in the nanoscale model
of Taupin et al. [2013] a residual stress still remains within the grain boundary at equilibrium, whereas in
the micron-scale model of Ask et al. [2020] relaxed grain boundaries are assumed to be stress-free after
relaxation. However these residual stresses can play some role in the GB formation and migration. That is
why a viscoplastic formulation of the GB behavior is introduced in the next section.

Introduction of a threshold: residual skew-symmetric stresses

The influence of the value of the stress threshold σ̄c on the profiles of φ and θ during grain boundary
formation is shown in Fig. 3.26. As σ̄c→ 0 the behavior of the Maxwell relaxation model is recovered and
the profiles are identical to the original KWC model. However, increasing the threshold leads to a delay in
the development of the equilibrium profiles.
The effect of the threshold on the stress profile of skew(σ̄∼)12 is illustrated in Fig. 3.27. Fluctuations of
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Figure 3.24: Relaxation of the element averaged symmetric shear stress component σ̄
sym
12 (in red on the left)

and skew-symmetric shear stress
×
σ̄ (in blue on the right) for the KWC-Cosserat model with Maxwell type

relaxation during grain boundary formation. The vertical dashed lines mark the region where |∇̄θ | 6= 0.

stresses are observed in the GB zone at the initial stress due to the strong out-of-equilibrium initial condi-
tions. At the point of maximum relaxation (t̄ = 1000) all stresses above the threshold have decreased to the
value of σ̄c, forming plateau-like regions. The stresses below this value are not relaxed, which explains why
some oscillations below σ̄c still remain. The introduction of a viscoplastic GB law with threshold therefore
enables the existence of residual stresses in the GB region.
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Figure 3.25: Superimposed stress and rotation profiles for a grain boundary according to Taupin et al.
[2013] (left) and using the KWC-Cosserat model of Ask et al. [2020] (right).
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Figure 3.26: Influence of the magnitude of the critical skew-symmetric stress in the KWC-Cosserat model
with Norton law with threshold on the profiles of φ and θ at t̄ = 200 during grain boundary formation.
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Figure 3.27: Relaxation of the skew-symmetric stress for the KWC-Cosserat model with Norton relaxation
law with threshold during grain boundary formation.

Time-independent relaxation

Finally, the stress profiles in Fig. 3.28 are obtained with the time-independent model (equations 3.119-
3.123). Close to the grain boundary, similar profiles to those obtained with the Norton law with threshold
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are visible, except that the relaxation is now quasi-instantaneous as the maximum skew-symmetric stress is
equal to σ̄c from the beginning. However, the absence of a localisation function restricting the relaxation to
the grain boundary leads to non-zero stresses away from the interface.

4 2 0 2 4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sk
ew

12

c = 0.1
c = 1
c = 2

(a) t̄ = 1

4 2 0 2 4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sk
ew

12

c = 0.1
c = 1
c = 2

(b) t̄ = 11

4 2 0 2 4
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sk
ew

12

c = 0.1
c = 1
c = 2

(c) t̄ = 1000

Figure 3.28: Relaxation of the skew-symmetric stress for the KWC-Cosserat model with time-independent
relaxation law during grain boundary formation.

III.3.3.2 Mobile grain boundaries

Stored energy driven migration in a bicrystal

Simulations of stored energy driven migration are performed in a bicrystal by prescribing an initial
heterogeneous stored energy distribution (Ē = 0.01 on the left side of the interface and Ē = 0.1 on the right
side). A first preliminary computation is run with the KWC model to find the equilibrium profiles of φ and
θ . In a second time, the symmetric and skew-symmetric stresses are relaxed by the KWC-Cosserat model
with Maxwell relaxation. The resulting φ , θ and Ē fields then serve as initial conditions for the simulation
of stored energy-driven migration in a bicrystal. The parameters given in table 3.4 are used in all simulations
with CD = 100 and C̄A = 1 to account for full recovery behind the moving grain boundary. Figure 3.29 shows
φ and θ at t̄ = 400 for the original KWC model and the two versions of the KWC-Cosserat model presented
above. Comparing the KWC-Cosserat model with Maxwell relaxation law and the original KWC model,
the differences in the observed kinetics are due to the dissimilar evolution equations for θ , Eq. (3.20) and
(3.113). For the KWC-Cosserat model with threshold, increasing the magnitude of σ̄c slows down the grain
boundary and can even pin it if it is high enough. Pinning of the grain boundary is observed here for σ̄c = 0.5
but this property will depend in general on the ratio between the values of the stored energy jump and GB
yielding threshold. As shown in Fig. 3.30, a similar behaviour is observed for the time-independent model.
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Figure 3.29: Comparison of the KWC and KWC-Cosserat model with different relaxation laws for the stored
energy driven migration of a flat interface. The profiles of φ (on the left) and θ (on the right) are plotted at
t̄ = 400.
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Figure 3.30: Comparison of the Norton law with threshold and time-independent relaxation for the KWC-
Cosserat model during stored energy driven migration of a flat interface. The profiles of φ (on the left) and
θ (on the right) are plotted at t̄ = 400.

Curvature driven migration

Finally, the last case considered is that of a circular grain embedded in a larger matrix. For this calcula-
tion, the grain has an initial dimensionless radius of about 2.4 with a misorientation of ∆θ = 0.3. The time
evolution of the radius is shown in Fig. 3.31. As with the stored energy driven migration, the relaxation
threshold can slow down or pin the grain boundaries as its value increases. In the case of σ̄c→ 0 the kinetics
of the KWC Cosserat model with Maxwell relaxation is recovered.

III.3.4 Implementation and validation of a 3D finite element model

III.3.4.1 Finite element formulation

While the KWC-Cosserat model was developed in a three-dimensional framework in Ask et al. [2018b,
2020], its implementation has only been performed in a two-dimensional finite element formulation so
far. In this section, we provide details on its application in 3D. The framework remains that of small
deformations, rotations, and curvatures. The isotropic grain boundary energy is still assumed. The weak
form of the balance equations, as shown in equations 3.53–3.55, is derived by multiplying with a virtual
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Figure 3.31: Radius as a function of time during grain shrinkage of a circular grain.

field, integrating across the entire domain and employing the divergence theorem.

−
∫

V
σ∼

s : u ⊗∇
s +π θ ·

×
ω dV +

∫
∂V

u · t dS = 0 (3.126)∫
V
−ξ
∼

θ : θ ⊗∇+θ ·π θ dV +
∫

∂V
θ ·ξ
∼

θ ·n dS = 0 (3.127)∫
V
−ξ

φ
·∇φ +φ ·πφ dV +

∫
∂V

φ ·ξ
φ
·n dS = 0 (3.128)

with π θ = 2
×
σ , t = σ∼ · n , M = ξ

∼
θ · n . The displacement, lattice orientation and crystal order fields are

interpolated at the n nodes of the elements such that

u (x , t) =
n

∑
i=1

Neu

i j (x )u
e
j(t), θ (x , t) =

n

∑
i=1

Neθ

i j (x )θ
e
j(t), φ (x , t) =

n

∑
i=1

Ne
i (x )φ

e
i
(t) (3.129)

with the nodal values arranged as follows:

φ
e(t) =

(
φ

1
φ

2
φ

3 . . . φ
n
)T

(3.130)

u e(t) =
(

u1
1 u1

2 u1
3 u2

1 u2
2 u2

3 . . . un
1 un

2 un
3

)T
(3.131)

θ
e(t) =

(
θ

1
1 θ

2
1 . . . θ

n
1 θ

1
2 θ

2
2 . . . θ

n
2 θ

1
3 θ

2
3 . . . θ

n
3

)T
(3.132)

The shape functions are thus:

Ne
i =

[
N1 N2 N3 . . . Nn

]
(3.133)

Neu

i j =


N1 0 0 N2 0 0 . . . Nn 0 0

0 N1 0 0 N2 0 . . . 0 Nn 0

0 0 N1 0 0 N2 . . . 0 0 Nn

 (3.134)

Neθ

i j =


N1 N2 . . . Nn 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 N1 N2 . . . Nn 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 N1 N2 . . . Nn

 (3.135)
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The discrete gradients of the degrees of freedom in the element are given by

∇φ(x , t) =
n

∑
i=1

Beφ

i j φ
e
j (t), θ (x , t)⊗∇ =

n

∑
i=1
B∼

eθ

i j (x )θ
e
j(t) (3.136)

u (x , t)⊗∇
s =

n

∑
i=1
B∼

eu

si j
(x )u e

j(t),
×
ω (x , t) =

n

∑
i=1
B∼

eu

ωi j
(x )u e

j(t) (3.137)

such that
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The element residuals Re•
i (where • is the degree of freedom considered) for the variational formulation are

then

Reu

i =−
∫

V e

[
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s

]T
· {σ s}+
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eu

ω

]T
· {πθ}dV +

∫
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[Neu

]T · {t}dS = 0 (3.142)

≡ {uFe
i }−{uFe

e }= 0 (3.143)
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[Neθ

]T · {M}dS = 0 (3.144)

≡ {θ Fe
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≡ {φ Fe
i }−{φ Fe

e }= 0 (3.147)

(3.148)

where {•Fe
i } and {•Fe

e } are the vector of the internal reaction associated with the degree of freedom •
and the vector of the external forces in the element, respectively. The nonlinear system to be solved with
Newton’s method is then 
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where A denotes the assembly operator over all the elements. The Jacobian matrix [Ke
t ] of the element is

obtained by derivation of the internal reactions with respect to the degrees of freedom:
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t ] =
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III.3.4.2 Validation tests

The implemented three-dimensional formulation is tested against the two-dimensional one in several
cases.

Formation of a bicrystal

The first test case is the formation of a flat grain boundary. The mesh is a cuboid of 200 quadratic
elements with reduced integration. The initial conditions are given by Eq. 3.124 and the boundary conditions
for the 2D computation are the same as Eq. 3.125. For the 3D computation ū1, ū2, ū3 are constrained at the
front bottom left corner while ū2, ū3 are constrained at the top right back corner in order to prevent rigid
body motion. Multiple point constraints are applied to the bottom-top and front-back surfaces for all DOFs
to ensure invariance. The resulting equilibrium profiles are shown in Fig. 3.32, where it can be seen that
they coincide.
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Figure 3.32: Profiles of φ (left) and θ (right) during the formation of a grain boundary for the 2D and
3D FEM implementation of the KWC-Cosserat model with Maxwell relaxation law for the skew-symmetric
stress.
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Periodic shear of a periodic bicrystal

The final test involves the periodic shear of a periodic bicrystal. To create the dislocation-free mi-
crostructure, a KWC simulation is performed to determine the equilibrium profiles of φ and θ . A 5%
periodic shear loading is then applied to the periodic bicrystal. In the 3D case, ū3, θ1, θ2 are set to 0 for
all nodes, and crystal plasticity is enabled with only the slip system ` = [100], n = [010]. The mechanical
properties parameters are presented in table 3.5. The remaining parameters are identical to those listed in
table 3.4.

Parameter C̄11 C̄12 C̄44 K̄ n τ̄c χ µ̄ Kr d̄ b̄

Value 69600 47800 32600 4.35 10 4.35 0.3 21750 10 10−3 0.256

Table 3.5: Additional parameters for plastic flow and evolution of dislocation density for a periodic bicrystal
subjected to periodic shear loading.

The simulation results are presented in Fig. 3.33. Figure 3.33a demonstrates that the 3D and 2D profiles
for φ coincide. Changes in the initial profile arise from the production of dislocations due to plasticity
activation that produce statistically stored dislocations, i.e stored energy. Likewise, the profiles for θ appear
identical, as illustrated in Fig. 3.33b. The mechanical loading induces lattice rotation, which subsequently
affects θ . This explains the disparity with the initial condition. The symmetrical and skew-symmetrical
stress profiles, as shown in Fig. 3.33c and 3.33d, are comparable, with the primary difference residing near
the interfaces. Ultimately, for lattice rotation and cumulative slip (Fig. 3.33e and 3.33f), the 2D and 3D
profiles remain constant per grain and agree sufficiently well.
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Figure 3.33: Comparison of 3D and 2D simulations of a periodic shear of a periodic bicrystal: φ (top left),
θ (top right), σ̄

sym
12 (middle left) , 2σ̄

skew
12 (middle right), ω (bottom left) and γc (bottom right).
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III.3.5 Choice of parameters

The determination of the phase-field and mobility parameters follows the procedure outlined in section
III.2.4. To ensure effective stress relaxation and unhindered grain boundary motion in the coupled model, it
is essential to maintain η̄

? < η̄φ . It should be noted that currently, the selection of these kinetic parameters
is based on stored energy driven migration, which results in a linear relationship between the migration
rate and the driving force, as opposed to the shrinkage of a circular grain. To obtain quantitative results
comparable to experiments, a more thorough calibration procedure is necessary. This may be accomplished
through modelling experiments on curvature-driven migration in bicrystals, as described in Gottstein and
Shvindlerman [2009]. Mechanical behavior parameters are adopted from existing literature focused on pure
copper, for instance Gérard et al. [2009]; Cheong and Busso [2004]. It is worth repeating that the Cosserat
coupling modulus acts as a penalty parameter and forces

×
e e ' 0 . The selected value for µ̄c must therefore

ensure that this relationship is upheld. To achieve this, two-dimensional FEM simulations with various
values of µ̄c are performed for grain boundary formation. The L2 norm of

×
e e is then presented in Fig. 3.34

as a function of time. Choosing µ̄c = 104 results in
∫

V̄

×
e e2

dV̄ ≈ 10−14. The different parameters/properties

involved and their dimensionless versions are summarized in table 3.6.
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Figure 3.34: L2 norm of the skew-symmetric elastic strain
×
e e as a function of time during grain boundary

formation for various values of parameter µ̄c.
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Parameter/
property

Unit Dimensionless expression Comment

τ0 s - Time scale

Λ µm - Length scale

f0 Jm−3 - Energy magnitude

E MPa Ē = E/ f0 Stored energy due to dislocation build-up

ρ m−2
ρ̄ = ρ/Λ

2 SSD density

σ∼ MPa σ̄∼ = σ∼/ f0 Stress tensor

m∼ MPa m m̄∼ =m∼ /( f0Λ) Couple stress tensor

α m ᾱ = α/Λ

Phase field parameterss m s̄ = s/Λ

ε m ε̄ = ε/Λ

ηφ Js/m3
η̄φ = ηφ/( f0τ0) Mobility parameter for φ

η
? Js/m3

η̄
? = η

?/( f0τ0) Mobility parameter for θ
?

µp m µ̄p = µp/Λ
Parameters for the localization function P(∇θ)

βp - -

Ee MPa Ēe = E/ f0 Young’s modulus

ν - - Poisson’s ratio

µc MPa µ̄c = µ/ f0 Cosserat coupling modulus

K MPa s1/n K̄ = K/ f0 Viscoplasticity parameters
n - -

τc MPa τ̄c = τc/ f0
Critical resolved

shear stress
χ - - Coefficient

µ MPa µ̄ = µ/ f0 Mean shear modulus

Kr - -
Kocks-Mecking parameters

d m d̄r = dr/Λ

b m b̄ = b/Λ Burgers vector

CA m2 C̄A =CA/Λ
2

Parameters for recovery
CD - -

γ m γ̄ = γ/Λ Regularization for |∇̄θ |
γg - - Regularization for g(φ) =−2(log(1−φ)+φ)

Table 3.6: Parameters in the KWC-Cosserat model.

III.4 Summary

In this chapter, the primary equations of the KWC model are recalled, and numerical simulations are
used to evaluate the impact that parameters have on the static and dynamic behaviour of grain boundaries.
Specifically, it is demonstrated that to achieve narrow grain boundaries with significant minima of φ , the
relation ᾱ < s̄ must be met. It was also shown that in the case of migration driven by stored energy, the
grain boundary migration rate is primarily dependent on η̄φ and independent of η̄θ , as long as η̄θ < η̄φ .
This observation holds true to some extent for curvature-driven migration during the shrinkage of a circular
grain, though the contribution of each parameter is less obvious. Simulations demonstrated the significance

of the product η̄θ

µ̄p

ε̄
in preventing spurious grain reorientation during shrinkage. It was shown that low

values of this product are not effective for that purpose.

The second section of this chapter concentrates on the KWC-Cosserat model and the influence of me-
chanics on grain boundaries. Specifically, the development and relaxation of stresses during grain boundary
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formation and stored energy driven migration is discussed. The role of the chosen function for the relax-
ation of skew-symmetric stresses is assessed for both stationary and moving grain boundaries. In addition to
the viscoelastic Maxwell and Voigt models for relaxation, which have already been described in Ask et al.
[2018b] and Ask et al. [2020] respectively, the inclusion of a stress threshold was taken into account and
represents the major original contribution in this chapter. This critical stress was introduced in two distinct
models: a viscoplastic Norton law with threshold and a rate-independent law based on isotropic plasticity.
The evolution equation for φ is identical for all models, but the same cannot be said for θ as outlined in Ta-
ble 3.7. It was shown that the stress profiles of the bicrystal exhibit similarities with the elasto-plastic theory
of dislocations and disclinations [Taupin et al., 2013]. The incorporation of a threshold in the relaxation law
results in residual stresses that may impede motion of the grain boundary. As predicted, the limit σ̄c → 0
retrieves the kinetics of a Maxwell model.
Subsequently, a three-dimensional version of the KWC-Cosserat model with Maxwell relaxation was for-
mulated using finite elements and coded in Zset software. The implementation was compared to the two-
dimensional version in different test cases, such as grain boundary formation and periodic shear of a periodic
bicrystal. The results were considered satisfactory enough to carry out 3D simulations on more complex mi-
crostructures and load cases.

Model Evolution equation for θ Reference

KWC P(∇θ)η̄θ φ
2
θ̇ = ∇̄ ·

(
s̄g

∇̄θ

|∇̄θ |
+ ε̄

2h∇̄θ

)
Kobayashi et al. [2000]

KWC-Cosserat
Kelvin relaxation law

φ
2
η̄

θ P(θ ⊗ ∇̄)

[
−
×̇
ω

e + θ̇

]
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×
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e e−
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KWC-Cosserat
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|
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σ̄ |η̄?P(θ ⊗ ∇̄)

〈
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σ̄ |− σ̄c
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〉−nc [
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e e−
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(
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·∇ This work

Table 3.7: Summary of the evolution equations for θ for the orientation phase-field models
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Chapter IV

Phase-field Cosserat modelling of grain nucleation in single crys-
tals

Résumé en français

Dans ce chapitre, les modèle à champs de phase KWC et KWC-Cosserat sont appliqués au problème de
la germination de grains en présence de gradients d’orientation du réseau cristallin dans les monocristaux,
phénomène que nous interprétons comme l’accommodation d’une configuration instable. Dans un premier
temps, une analyse de stabilité linéaire quasi-1D montre qu’un gradient homogène d’orientation présente
une zone d’instabilité. Puis, une étude numérique est menée pour différentes configurations initiales du
gradient d’orientation. On observe une fragmentation du monocristal initial en une multitude de grains de
faible désorientation, qui vont ensuite fusionner pour former des grains plus larges et plus désorientés en
raison des interactions entre les interfaces diffuses. Les simulations montrent également qu’une diminution
de l’énergie totale est associée à ce phénomène de germination. La présence de gradients d’orientation est
nécessaire pour déclencher le processus de germination. En effet, des simulations menées en présence d’un
gradient d’énergie stockée par les dislocations de type SSD ne permettent la formation de nouveaux grains.
L’effet de la mécanique sur la germination de grains été étudié pour le modèle KWC-Cosserat en l’absence
de chargement mécanique pour deux lois d’évolution de l’orientation de référence: un modèle viscoélastique
de Maxwell et un modèle de Norton à seuil. La présence du seuil de relaxation conduit à des contraintes
résiduelles et peut, selon sa magnitude, retarder voire empêcher le phénomène de germination.

Enfin, nous simulons la torsion d’une barre monocristalline de cuivre à section circulaire dont l’axe est
aligné avec la direction [111]. Seuls les systèmes du plan (111) sont pris en compte dans ce calcul. Le
chargement mécanique génère un fort gradient d’orientation autour de l’axe du cylindre, ce qui permet la
formation de nouveaux grains le long de cet axe, en accord avec les simulations quasi-1D. Les gradients
radiaux et circonférentiels d’orientation et d’énergie stockées générés sont en revanche trop faibles pour im-
pacter le champ d’ordre cristallin de façon significative. Les nouveaux grains formés sont donc homogènes
dans la section transverse et forment un empilement de grains le long du cylindre. Des expériences de
fluage en torsion menées par Kassner [1989] sur des monocristaux d’aluminium montrent également une
microstructure en bambou ou les grains sont parallèles aux plans (111). Il ya donc un accord qualitatif entre
la simulation et cette expérience.
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IV.1 Introduction

IV.1 Introduction

Few attempts have been made towards phase field modelling of spontaneous grain and subgrain nucle-
ation in single phase single component crystalline materials. Amongst the main mechanisms identified in
the literature and described in Chapter I, nucleation by subgrain growth/coarsening for instance, has been
simulated with a multi phase field model by Suwa et al. [2008, 2021] using the controversial assumption that
the subgrain energy/curvature is the main driving force for nucleation Holm et al. [2003]. Another example
is the simulation of nucleation by subgrain coalescence and nucleus growth with the KWC model by Mura-
matsu et al. [2014]. They showed that the model captured the shift in the misorientation distribution towards
low-angle grain boundaries after recrystallization. It is worth pointing out that in both instances the effect of
mechanical deformation was not considered. The inclusion of continuum mechanics in simulating recrys-
tallization is classically done by coupling phase field models with crystal plasticity in staggered schemes.
The nucleation step is handled by placing a circular/spherical nucleus at grain boundaries based on a critical
strain, stress or dislocation density criterion. This ad hoc step can be deterministic or probabilistic as in Li
et al. [2020]. Examples of such coupling in the multiple phase-field approach to simulate static and dynamic
recrystallization can be found in [Steinbach and Apel, 2006; Takaki et al., 2008a; Takaki and Tomita, 2010]
with extension to 3D by Chen et al. [2015]; as for the KWC model, examples can be found in [Takaki et al.,
2008b], [Abrivard et al., 2012a,b] and more recently in [Luan et al., 2020]. It is noteworthy that Takaki
and Tomita [2010] proposed an interesting approach to modelling nucleation in this context. The key con-
cept involves substituting the stored energy derived from crystal plasticity computations with a subgrain
structure, whose total boundary energy is equivalent to the stored energy. Subgrain radii are derived from
the equality of energies and non-overlapping circular subgrain seeds are then placed on the computational
domain. A normal grain growth step then occurs to achieve the subgrain structure. With continued grain
growth, nucleation as a result of subgrain coarsening is observed. The method was labelled "spontaneous"
by the authors, however, a seeding stage is still required for the subgrain structure to form. The highlighted
limitations in the simulation of the nucleation of recrystallization call for the development of models that
incorporate this phenomenon more spontaneously, i.e without prior seeding of grain/subgrain nuclei. We
believe that the orientation phase-field models described in Chapter III could facilitate the resolution of this
problem.

The aim of this chapter is to contribute to the mesoscopic and full-field simulation of the nucleation
stage of recrystallization in single crystals. We emphasize that we are not proposing a new model for
recrystallization, but rather show the capabilities of already existing frameworks to simulate spontaneous
nucleation in single crystals. We will show through numerical simulations with the orientation phase-field
models [Kobayashi et al., 2000; Ask et al., 2018b] described in details in Chapter III that lattice curvature
in single crystals can lead to grain nucleation to accommodate these gradients. The process by which
nucleation occurs in these cases is not related to SIBM or subgrain coarsening/coalescence but emerges as a
consequence of the unstable development of strong lattice gradients inside grains. To our knowledge, these
potentialities of KWC and KWC-Cosserat approaches have not been demonstrated in earlier contributions,
although Admal et al. [2018] discussed subgrain nucleation due to plastic distortion within the framework
of KWC-strain gradient plasticity.

This chapter is organized as follows. First, an analytic linear stability analysis is carried out and con-
fronted to numerical simulations using the finite element method in section IV.2. In a second time, purely
numerical experimentations are performed in section IV.3 in order to have a finer understanding of the
model. They pertain to the influence of boundary and initial conditions as well as coupling function g(φ)
and inverse mobility P. Time evolution of the phase-fields and key indicators are also studied. The influence
of stored energy on the nucleation process is discussed as well. Finally, three-dimensional simulations of
(sub)grain nucleation in a single crystal bar subjected to torsion are presented in section IV.4 and qualitative
comparisons to experimental results from the literature are made.

119



Chapter IV. Phase-field Cosserat modelling of grain nucleation in single crystals

IV.2 Stability of lattice curvature fields: linear stability analysis of the KWC
model

The aim of this section is to assess the linear stability of the KWC phase-field model around the configu-
ration (φ0(x̄, t̄),θ0(x̄, t̄)). To do so, small perturbations of the phase fields (denoted by δφ(x̄, t̄) and δθ(x̄, t̄))
are introduced such that:

φ(x̄, t̄) = φ0(x̄, t̄)+δφ(x̄, t̄), (4.1)

θ(x̄, t̄) = θ0(x̄, t̄)+δθ(x̄, t̄). (4.2)

Let ψ(a) be a scalar function where a is either φ or θ . A Taylor series expansion around a0 at the first order
gives:

ψ(a)' ψ(a0)+
∂ψ

∂a

∣∣∣∣
a0

δa = ψ0 +
∂ψ0

∂a
δa. (4.3)

Let ψ,χ be functions of θ ,φ and their derivatives with respect to space. Perturbation of ψχ gives:

δ (ψχ) = ψ0δ χ +χ0δψ. (4.4)

We recall that the evolution equations are

Qη̄φ φ̇ = ᾱ
2
∇̄

2
φ − f,φ − s̄g,φ |∇̄θ |− ε̄2

2
h,φ |∇̄θ |2− Ē, (4.5)

Pη̄θ φ
2
θ̇ = ∇̄ ·

(
ε̄

2h∇̄θ + s̄g
∇̄θ

|∇̄θ |

)
. (4.6)

For the sake of simplicity, the chosen functions are

f (φ) =
1
2
(1−φ)2, f,φ (φ) = φ −1, (4.7)

g(φ) = h(φ) = φ
2, g,φ (φ) = h,φ (φ) = 2φ . (4.8)

Following the work of Warren et al. [2003] the singular term sg(φ)|∇̄θ | in the free energy is regularized by
the function sg(φ)Rγ(|∇̄θ |) where

Rγ(|∇̄θ |) =


γ

2
|∇̄θ |2 for 0≤ |∇̄θ | ≤ 1

γ
,

|∇̄θ |− 1
2γ

for |∇̄θ |> 1
γ
.

(4.9)

Derivatives with respect to t̄ and x̄ are denoted˙and ′ respectively. For the sake of simplicity, inverse mobility
functions P and Q are assumed to be constant and the parameters given in table 4.1 are used throughout this
section, unless specified otherwise. It is recalled that ᾱ, s̄, ε̄ are phase-field parameters, η̄φ , η̄θ are inverse
mobility parameters, L is the length of the 1D domain, K is the value of the constant orientation gradient,
A,ξ are the amplitude and period of the perturbation, and γ is a regularization parameter.

Parameter ᾱ s̄ ε̄ P Q η̄φ η̄θ L K A ξ γ

Value 0.31 0.75 1 1 1 10 0.1 10 0.03 0.01 1 10000

Table 4.1: Parameters used for the numerical simulations.
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IV.2 Stability of lattice curvature fields: linear stability analysis of the KWC model

IV.2.1 Perturbation analysis in the quadratic regime

It is first assumed that 0≤ |∇̄θ | ≤ 1
γ

. The 1D regularized evolutions equation are thus

Qη̄φ φ̇ = ᾱ
2
φ
′′− (φ −1)−2φ

(
s̄

γ

2
+

ε̄2

2

)
(θ ′)2 (4.10)

Pη̄θ φ
2
θ̇ = 2φ

′
φ(ε̄2 + s̄γ)θ ′+φ

2(ε̄2 + s̄γ)θ ′′ (4.11)

Perturbing the above equations around the functions (φ0,θ0) gives:

Qη̄φ δ φ̇ = ᾱ
2
δφ
′′−δφ −2

(
s̄

γ

2
+

ε̄2

2

)
[(θ ′0)

2
δφ +2φ0θ

′
0δθ

′] (4.12)

Pη̄θ (φ
2
0 δ θ̇ +2φ0θ̇0δφ) = 2(ε̄2 + s̄γ)(φ0θ

′
0δφ

′+φ
′
0θ
′
0δφ +φ

′
0φ0δθ

′)

+(ε̄2 + s̄γ)(φ 2
0 δθ

′′+2θ
′′
0 φ0δφ) (4.13)

The perturbations are taken of the following form:

δφ = δ̂ φ exp(ikx̄)exp
(
ωφ t̄
)

(4.14)

δθ = δ̂ θ exp(ikx̄)exp(ωθ t̄) (4.15)

where k =
2π

ξ
is a dimensionless wavenumber and ωφ ,ωθ are dimensionless growth rate of the perturba-

tions. The evolution equations then become:

Qη̄φ δ φ̇ =−
[
k2

ᾱ
2 +1+

(
s̄γ + ε̄

2)(θ ′0)2]
δφ −2

(
s̄γ + ε̄

2)
φ0θ

′
0ikδθ (4.16)

Pη̄θ φ
2
0 δ θ̇ =

[
2(ε̄2 + s̄γ)

(
φ0θ

′
0ik+φ

′
0θ
′
0 +θ

′′
0 φ0
)
−2Pη̄θ φ0θ̇0

]
δφ

+(ε̄2 + s̄γ)
(
−k2

φ
2
0 +2φ

′
0φ0ik

)
δθ (4.17)

This system of first order differential equations can be put in the following matrix form:

(
δ φ̇

δ θ̇

)
=

 −
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
(θ ′0)

2

Qη̄φ

−2φ0ik
(
s̄γ + ε̄2

)
θ ′0

Qη̄φ

2(ε̄2 + s̄γ)(φ0θ ′0ik+φ ′0θ ′0 +θ ′′0 φ0)−2Pη̄θ φ0θ̇0

Pη̄θ φ 2
0

(ε̄2 + s̄γ)
(
−k2φ 2

0 +2φ ′0φ0ik
)

Pη̄θ φ 2
0


︸ ︷︷ ︸

M

·

(
δφ

δθ

)

(4.18)

The solutions of this system of ODEs are:(
δφ

δθ

)
= Aexp(λ1t̄)V 1 +Bexp(λ2t̄)V 2 (4.19)

with A,B constants to be determined from the initial conditions, λ1,λ2 the complex eigenvalues and V 1,V 2
the associated eigenvectors. The stability of this system of ODEs depends on the sign of the real part of the
eigenvalues: if there is at least one positive eigenvalue then the system is unstable. The configuration that is
first tested is that of a single crystal subjected to a constant orientation gradient:

φ0(x̄, t̄) = 1 (4.20)

θ0(x̄, t̄) = Kx̄ (4.21)
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Chapter IV. Phase-field Cosserat modelling of grain nucleation in single crystals

It is worth noting that equations (4.20,4.21) do not fulfil the equilibrium condition for φ , except for K = 0.
For K 6= 0, the chosen perturbed state is therefore not a stationary solution of the system of equations
(4.10,4.11).

The system becomes:

(
δ φ̇

δ θ̇

)
=

−
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
K2

Qη̄φ

−2ik
(
s̄γ + ε̄2

)
K

Qη̄φ

2ik
(
s̄γ + ε̄2

)
K

Pη̄θ

−k2(ε̄2 + s̄γ)

Pη̄θ

 ·
(

δφ

δθ

)
(4.22)

For K = 0 the eigenvalues are given by the diagonal coefficients, which are always negative, hence
ensuring the stability:

λ1 =−
ᾱ2k2 +1

Qη̄φ

(4.23)

λ2 =
−k2(ε̄2 + s̄γ)

Pη̄θ

(4.24)

This can be explained by the fact that θ(x̄, t̄) = constant, φ(x̄, t̄) = 1 is a stable equilibrium configuration
corresponding to the bulk state of the grain. Finite element simulations are carried out to assess the relevance
of this linear stability analysis. The parameters used for these computations are given in table 4.1 with
γ = 10. A low value of γ was chosen to ensure that the regularization is effective for all values of ∇θ . The
initial conditions are periodic fluctuations of period ξ = 10 around φ(x̄, t̄) = 1, θ(x̄, t̄) = 0 and the following
boundary conditions are imposed:

φ(x̄ =−L, t̄) = φ(x̄ = L, t̄) = 1 (4.25)

θ
′(x̄ =−L, t̄) = θ

′(x̄ = L, t̄) = 0 (4.26)

The results are shown in figure 4.1 where visibly the profiles of φ and θ converge towards φ = 1 and θ = 0,
which corroborates the linear stability analysis.
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Figure 4.1: Profiles of φ and θ for γ = 10, ξ = 10 in the quadratic regime and φ0 = 1, θ0 = 0.

Now considering K 6= 0, the characteristic equation is:

(M11−λ )(M22−λ )−M21M12 = 0 (4.27)

λ
2−Tr(M)λ +det(M) = 0 (4.28)
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IV.2 Stability of lattice curvature fields: linear stability analysis of the KWC model

with

det(M) = M11M22−M21M12 (4.29)

Tr(M) = M11 +M22 (4.30)

The discriminant of the characteristic equation is then:

∆ = (Tr(M))2−4det(M) (4.31)

∆ =

(
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
K2

Qη̄φ

− k2(ε̄2 + s̄γ)

Pη̄θ

)2

+16
k2
(
s̄γ + ε̄2

)2 K2

Pη̄θ Qη̄φ

≥ 0 (4.32)

The eigenvalues are purely real and given by:

λ =
Tr(M)±

√
∆

2
(4.33)

2λ =−

(
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
K2

Qη̄φ

+
k2(ε̄2 + s̄γ)

Pη̄θ

)

±

√(
ᾱ2k2 +1+(s̄γ + ε̄2)K2

Qη̄φ

− k2(ε̄2 + s̄γ)

Pη̄θ

)2

+16
k2 (s̄γ + ε̄2)2 K2

Pη̄θ Qη̄φ

(4.34)

Let us now study the sign of these eigenvalues. As Tr(M) < 0, Tr(M)−
√

∆ < 0. Thus there can be a
positive eigenvalue only if Tr(M)+

√
∆≥ 0. We now look for the wave-numbers which fulfill that condition.

We obtain:

−
√

3K2(s̄γ + ε2)−1
ᾱ2 ≤ k ≤

√
3K2(s̄γ + ε2)−1

ᾱ2 (4.35)

By choosing k ∈ R the following constraint must be fulfilled:

3K2
lim(s̄γ + ε

2)−1≥ 0 (4.36)

|Klim| ≥

√
1

3(s̄γ + ε2)
(4.37)

For K < Klim there is no k ∈ R such that λ > 0, thus no instability occurs. For K > Klim an instability

may arise if k ∈

[
−
√

3K2(s̄γ + ε2)−1
ᾱ2 ,

√
3K2(s̄γ + ε2)−1

ᾱ2

]
.

The eigenvalues are plotted as a function of k for different values of K in figure 4.2 with the set of
parameters given in table 4.1 and γ = 10 to ensure activation of the quadratic regime.

FEM computations are performed for different values of the orientation gradient K and perturbation
period ξ in figure 4.3. With an orientation gradient corresponding to a variation of about 0.6 radians
over 2L = 20 (K = 0.03) and a perturbation of period ξ = 1, it is predicted that no instability will occur
as K < Klim. The FEM simulations in figure 4.3a show that, in accordance with this stability analysis,
the phase fields do not depart much from the configuration θ(x̄, t̄) = Kx̄, φ(x̄, t̄) = 1. On the contrary
with K = 0.3 > Klim, ξ = 10 it is expected that the instability will grow as for this set of parameters

k ∈

[
−
√

3K2(s̄γ + ε2)−1
ᾱ2 ,

√
3K2(s̄γ + ε2)−1

ᾱ2

]
. That is what is indeed observed in figure 4.3b) in which

FEM simulations show the formation of a grain boundary to accommodate this instability.
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Figure 4.2: Eigenvalues λ1 and λ2 as functions of the wavenumber for γ = 10 in the quadratic regime and
φ0 = 1, θ0(x̄) = Kx̄.
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Figure 4.3: Profiles of φ and θ for γ = 10 in the quadratic regime and φ0 = 1, θ0(x̄) = Kx̄.

IV.2.2 Stability analysis in the non-quadratic regime

It is now assumed that |∇̄θ |> 1
γ

. The 1D non regularized evolution equations are then:

Qη̄φ φ̇ = ᾱ
2
φ
′′− (φ −1)−2sφ ε θ

′− ε̄
2
φ(θ ′)2 (4.38)

Pη̄θ φ
2
θ̇ = ε̄

2 (2φφ
′
θ
′+φ

2
θ
′′)+2s̄ ε φφ

′ (4.39)
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IV.2 Stability of lattice curvature fields: linear stability analysis of the KWC model

with ε=±1.

Perturbation of the above equations gives:

(
δ φ̇

δ θ̇

)
=

 −
ᾱ2k2 +1+2s̄ ε θ ′0 + ε̄2(θ ′0)

2

Qη̄φ

−2φ0ik(s̄ ε+ε̄2θ ′0)

Qη̄φ

−2Pη̄θ φ0θ̇0 +2ε̄2[φ ′0θ ′0 +φ0θ ′′0 ]+2s̄ ε φ ′0 +2φ0ik(s̄ ε+ε̄2θ ′0)

Pη̄θ φ 2
0

2ε̄2φ0φ ′0ik− ε̄2k2φ 2
0

Pη̄θ φ 2
0

 ·
(

δφ

δθ

)

(4.40)

Considering equations 4.20-4.21, eq. 4.40 now becomes:

(
δ φ̇

δ θ̇

)
=

−
ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

−2ikφ0(s̄ ε+ε̄2K)

Qη̄φ

2ikφ0(s̄ ε+ε̄2K)

Pη̄θ φ 2
0

−ε̄2k2

Pη̄θ


︸ ︷︷ ︸

M

·

(
δφ

δθ

)
(4.41)

The discriminant of the characteristic equation is then:

∆ =

(
ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

− ε̄2k2

Pη̄θ

)2

+16
k2(s̄ ε+ε̄2K)2

Pη̄θ Qη̄φ

≥ 0 (4.42)

The eigenvalues are real and given by:

2λ =−
(

ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

+
ε̄2k2

Pη̄θ

)

±

√(
ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

− ε̄2k2

Pη̄θ

)2

+16
k2(s̄ ε+ε̄2K)2

Pη̄θ Qη̄φ

(4.43)

We once again look for the wave-numbers k satisfying Tr(M)+
√

∆> 0. The following domain of instability
is found:

−
√

3ε̄4K2 +6s̄ ε Kε̄2− ε̄2 +4s2

ε̄2ᾱ2 ≤ k ≤
√

3ε̄4K2 +6s̄ ε Kε̄2− ε̄2 +4s2

ε̄2ᾱ2 (4.44)

As k ∈ R the following constraint must be fulfilled:

3ε̄
4K2 +6s̄ ε Kε̄

2− ε̄
2 +4s2 ≥ 0 (4.45)

which has solutions in R only if

∆K = 12(ε̄6− ε̄
4s̄2)≥ 0 (4.46)

This is ensured with the parameters given in table 4.1. Finally the condition for K is

K ≤ −6s̄ ε ε̄2−
√

12(ε̄6− ε̄4s̄2)

6ε̄4 or K ≥ −6s̄ ε ε̄2 +
√

12(ε̄6− ε̄4s̄2)

6ε̄4 (4.47)

The eigenvalues are plotted as functions of k for several values of K in figure 4.4 with the set of param-
eters given in table 4.1. It can be seen that for ε= 1 the instability domain increases with K, meaning that
larger initial orientation gradients tend to destabilize the system.
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(b) ε=−1.

Figure 4.4: Eigenvalues λ1 and λ2 as functions of the wavenumber for the non-quadratic regime and φ0 =
1, θ0(x̄) = Kx̄.

Finite element simulations performed for ξ = 10 in figure 4.5 show that grain boundaries arise to accom-
modate the instability predicted by the linear stability analysis. However, for large values of k it is expected
that no instability will occur, which is not what is observed by FEA as grain boundaries are still formed.
This discrepancy is likely to stem from non-linear effects which are not accounted for in the linear stability
analysis that was performed.
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Figure 4.5: Profiles of φ and θ for the non-quadratic regime and φ0 = 1, θ0(x̄) = Kx̄.

IV.2.3 Influence of the equilibrium solution: quadratic regime

We now look for the equilibrium solution of φ(x̄, t̄) satisfying θ(x̄, t̄) = Kx̄ in the quadratic regime:

ᾱ
2
φ
′′− (1+K2(s̄γ + ε̄

2))φ +1 = 0 (4.48)

The solution to the homogeneous equation is simply:

φ(x) = Aexp(ν1x)+Bexp(ν2x) (4.49)

where ν1,ν2 are the solutions to the characteristic equation:

ᾱ
2
ν

2− (1+K2(s̄γ + ε̄
2)) = 0 (4.50)

Thus

ν1 =

√
1+K2(s̄γ + ε̄2)

ᾱ
, ν2 =−ν1 (4.51)
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We look for a particular solution of the form φ =C where C is a constant. We find C =
1

1+K2(s̄γ + ε̄2)
, so

that the general solution is:

φ(x) = Aexp(ν1x)+Bexp(−ν1x)+
1

1+K2(s̄γ + ε̄2)
(4.52)

The constants A,B are determined by the boundary conditions taken as:

φ(x = L) = φ(x =−L) = 1 (4.53)

The system to be solved is then:

Aexp(ν1L)+Bexp(−ν1L)+
1

1+K2(s̄γ + ε̄2)
= 1 (4.54)

Aexp(−ν1L)+Bexp(ν1L)+
1

1+K2(s̄γ + ε̄2)
= 1 (4.55)

which gives:

A =
1− 1

1+K2(s̄γ+ε̄2)
−Bexp(−ν1L)

exp(ν1L)
(4.56)

B =
(exp(ν1L)−1)

(
1− 1

1+K2(s̄γ+ε̄2)

)
2sinh(2ν1L)

(4.57)

Note that θ(x̄, t̄) = Kx̄ does not fulfil the equilibrium equation for θ . Indeed, at equilibrium φ and θ must
satisfy

ᾱ
2
φ
′′− (φ −1)−φ(s̄γε̄

2)(θ ′)2 = 0 (4.58)(
φ

2(s̄γ + ε̄
2)θ ′

)′
= 0 (4.59)

ᾱ
2
φ
′′− (φ −1)−φ(s̄γε̄

2)(θ ′)2 = 0 (4.60)

φ
2(s̄γ + ε̄

2)θ ′ =C (4.61)

where C is a constant. From equation 4.61 an expression for θ
′ can be obtained and inserted in equation

4.60:

θ
′ =

C
s̄γ + ε̄2 φ

−2 (4.62)

ᾱ
2
φ
′′− (φ −1)−φ(s̄γ + ε̄

2)
C2

(s̄γ + ε̄2)
φ
−4 = 0 (4.63)

Analytical solutions to this system of nonlinear differential equations are not readily found.
Finite element simulations with γ = 10 to ensure the quadratic regime is active give the profiles depicted in
figure 4.6. The equilibrium solution found by FEA is close to θ(x̄, t̄) = Kx̄ and φ given by equation 4.52. To
assess the difference between the two solutions in a more quantitative way, the relative difference is plotted
as a function of x̄ in figure 4.7. The maximum relative difference is about 0.005% for φ and 1.5% for θ .
Thus, θ(x̄, t̄) = Kx̄ and φ given by equation 4.52 can be considered as a near equilibrium configuration.
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Figure 4.6: Comparison of the analytical and FEM solutions of the equilibrium profile of φ and θ in the
quadratic regime.
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Figure 4.7: Relative difference between the analytical and FEM solutions of the equilibrium profiles of φ

and θ in the quadratic regime.

One can notice in figure 4.6 that

|φ ′0|= ϕ ∼ 0 ∀x ∈

− ln
(

ϕ

Bν1

)
ν1

,
ln
(

ϕ

Aν1

)
ν1

 (4.64)

with ϕ � 1.
The stability analysis performed in section IV.2.1 found the following system:

(
δ φ̇

δ θ̇

)
=

 −
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
(θ ′0)

2

Qη̄φ

−2φ0ik
(
s̄γ + ε̄2

)
θ ′0

Qη̄φ

2(ε̄2 + s̄γ)(φ0θ ′0ik+φ ′0θ ′0 +θ ′′0 φ0)−2Pη̄θ φ0θ̇0

Pη̄θ φ 2
0

(ε̄2 + s̄γ)
(
−k2φ 2

0 +2φ ′0φ0ik
)

Pη̄θ φ 2
0


︸ ︷︷ ︸

M

·

(
δφ

δθ

)

(4.65)

The interval [−L,L] is split into two parts:

−L,−
ln
(

ϕ

Bν1

)
ν1

∪
 ln
(

ϕ

Aν1

)
ν1

,L

 and

− ln
(

ϕ

Bν1

)
ν1

,
ln
(

ϕ

Aν1

)
ν1

.
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Let us first consider x ∈

− ln
(

ϕ

Bν2

)
ν2

,
ln
(

ϕ

Aν1

)
ν1

, thus φ
′
0 ∼ 0 and φ0 ∼ constant. We then have:

(
δ φ̇

δ θ̇

)
=

−
ᾱ2k2 +1+

(
s̄γ + ε̄2

)
K2

Qη̄φ

−2ik
(
s̄γ + ε̄2

)
K

Qη̄φ

2ik
(
s̄γ + ε̄2

)
K

Pη̄θ

−k2(ε̄2 + s̄γ)

Pη̄θ

 ·
(

δφ

δθ

)
(4.66)

which corresponds to the system found in equation 4.22. With the parameters used for the simulations in
figure 4.6, it is found that K < Klim, meaning that no instability occurs according to this analysis. The FEM
solution indeed found no evolution of the equilibrium configuration, which corroborates the linear stability
analysis.

Let us now consider x ∈

−L,−
ln
(

ϕ

Bν1

)
ν1

 ∪
 ln
(

ϕ

Aν1

)
ν1

,L

, such that φ
′
0 = Aν1 exp(ν1x) −

Bν1 exp(−ν1x).
The discriminant being complex, we look for z ∈ C such that z2 = ∆. Let a and b be the real and

imaginary parts of z whereas x, y denote those of ∆. We obtain:

a2−b2 = x, 2ab = y, a2 +b2 =
√

x2 + y2 (4.67)

We find:

a =±

√
x+
√

x2 + y2

2
, b =±

√
−x+

√
x2 + y2

2
(4.68)

The sign of a and b is obtained from the equation 2ab = xy:

if y≥ 0 : a≥ 0, b≥ 0, else : a≥ 0, b≤ 0 (4.69)

The eigenvalues are then given by:

λ =
Tr(M)± z

2
(4.70)

Due to the mathematical cumbersomeness of the expanded form of this solution, the eigenvalues are only
computed numerically. The λ−k curve is plotted in figure 4.8 at the point x̄= 9.8. Similarly to the case stud-
ied in section IV.2.1, there seems to be a threshold value of the orientation gradient K required to give rise to

a domain of instability. Note that this domain is different from the one found for x∈

− ln
(

ϕ

Bν2

)
ν2

,
ln
(

ϕ

Aν1

)
ν1

.

IV.2.4 Influence of the equilibrium solution: Non-quadratic regime

A similar investigation to the one performed in section IV.2.3 is then carried out for the non-quadratic
regime. We look for φ(x̄) such that:

ᾱ
2
φ
′′− (1+ ε̄

2K2 +2s̄ ε K)φ +1 = 0 (4.71)

The solution is then

φ(x) = Aexp(ν1x)+Bexp(−ν1x)+
1

1+ ε̄2K2 +2s̄ ε K
(4.72)
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Figure 4.8: Eigenvalues as a function of the wavenumber for the near equilibrium solution in the quadratic
regime.

with

ν1 =

√
1+ ε̄2K2 +2s̄ ε K

ᾱ
(4.73)

A =
1− 1

1+ε̄2K2+2s̄εK −Bexp(−ν1L)

exp(ν1L)
(4.74)

B =
(exp(ν1L)−1)

(
1− 1

1+ε̄2K2+2s̄εK

)
2sinh(2ν1L)

(4.75)

This analytical solution is compared to the one obtained with the FEM by imposing θ = Kx̄ ∀x ∈ [−L,L]
(figure 4.9). The two solutions match fairly well with each other.
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Figure 4.9: Comparison of the analytical and FEM solutions of the equilibrium profile of φ(x) for an
imposed θ(x̄) = Kx̄.
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One can notice in figure 4.9 that

φ
′
0 = ϕ ∼ 0 ∀x ∈

− ln
(

ϕ

Bν1

)
ν1

,
ln
(

ϕ

Aν1

)
ν1

 (4.76)

with ϕ � 1.

The stability analysis performed in section IV.2.2 found the following system:

(
δ φ̇

δ θ̇

)
=

 −
ᾱ2k2 +1+2s̄ ε θ ′0 + ε̄2(θ ′0)

2

Qη̄φ

−2φ0ik(s̄ ε+ε̄2θ ′0)

Qη̄φ

−2Pη̄θ φ0θ̇0 +2ε̄2[φ ′0θ ′0 +φ0θ ′′0 ]+2s̄ ε φ ′0 +2φ0ik(s̄ ε+ε̄2θ ′0)

Pη̄θ φ 2
0

2ε̄2φ0φ ′0ik− ε̄2k2

Pη̄θ

 ·
(

δφ

δθ

)

(4.77)

which in this case becomes:

(
δ φ̇

δ θ̇

)
=

 − ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

−2φ0ik(s̄ ε+ε̄2K)

Qη̄φ

2ε̄2φ ′0K +2s̄ ε φ ′0 +2φ0ik(s̄ ε+ε̄2K)

Pη̄θ φ 2
0

2ε̄2φ0φ ′0ik− ε̄2k2φ 2
0

Pη̄θ φ 2
0

 ·
(

δφ

δθ

)
(4.78)

The interval [−L,L] is split into two parts:

−L,−
ln
(

ϕ

Bν1

)
ν1

∪
 ln
(

ϕ

Aν1

)
ν1

,L

 and

− ln
(

ϕ

Bν1

)
ν1

,
ln
(

ϕ

Aν1

)
ν1

.

Let us first consider x ∈

− ln
(

ϕ

Bν1

)
ν2

,
ln
(

ϕ

Aν1

)
ν1

, thus φ
′
0 ∼ 0 and φ0 ∼ constant. We then have:

(
δ φ̇

δ θ̇

)
=

−
ᾱ2k2 +1+2s̄ ε K + ε̄2K2

Qη̄φ

−2φ0ik(s̄ ε+ε̄2K)

Qη̄φ

2φ0ik(s̄ ε+ε̄2K)

Pη̄θ φ 2
0

−ε̄2k2

Pη̄θ

 ·
(

δφ

δθ

)
(4.79)

which corresponds to the system found in eq. 4.41.

Now considering x̄ = 9.8 such that x ∈

−L,−
ln
(

ϕ

Bν1

)
ν1

∪
 ln
(

ϕ

Aν1

)
ν1

,L

, the λ − k curve is plotted in

figure 4.10. The results are rather similar to those obtained for x ∈

− ln
(

ϕ

Bν1

)
ν2

,
ln
(

ϕ

Aν1

)
ν1

 as the term φ
′
0

becomes non negligible for somewhat large values of K.
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ε= 1 ε=−1

Figure 4.10: Eiegenvalues as functions of the wavenumber for the near equilibrium solution in the non-
quadratic regime.

IV.3 Stability of lattice curvature fields: numerical study

In this section the capability of the KWC model to handle grain nucleation in single crystals is assessed
numerically using the finite element method. To this end several nucleation cases due to orientation gradients
are studied, accounting for different initial and boundary conditions.

IV.3.1 Uniform orientation gradient

The first configuration considered is that of a spatially uniform initial orientation gradient in a single
crystal of total length 2L = 20. These initial conditions (IC) are summarized in Eq. (4.80) with ∆θ = 0.3.

They describe a uniform orientation gradient of ∇θ =
∆θ

2L̄
=

0.3
20

= 0.015µm−1, which, using Nye’s formula,

corresponds to a GND density of ρGND =
∇θ

b
=

0.015
0.2556×10−3 ' 58.7× 1012m−2. Note that the initial

uniform field φ = 1 is not in equilibrium in the orientation gradient field.
Dirichlet boundary conditions (BC) are imposed on the left and right edges of the domain for the phase

field and the orientation field (Eq. (4.81)). This type of boundary condition for θ enforces the presence
of a lattice orientation gradient. Alternatively, zero flux Neumann BC can be prescribed. Multiple point
constraints are also enforced at the top and bottom edges to ensure periodicity along the vertical direction.

IC:

θ(t̄ = 0, x̄) = ∆θ
x̄+ L̄

2L̄
φ(t̄ = 0, x̄) = 1

(4.80)

BC:


θ(t̄, x̄ =−L̄) = 0, θ(t̄, x̄ = L̄) = ∆θ

φ(t̄, x̄ =−L̄) = φ(t̄, x̄ = L̄) = 1
or
ξ̄

φ
(t̄, x̄ =−L̄) ·n = ξ̄

φ
(t̄, x̄ = L̄) ·n = 0

(4.81)

Unless specified, all simulations are conducted with the parameters listed in Table 4.2.
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Parameter ᾱ s̄ ε̄ η̄φ η̄θ µ̄p βp CD C̄1 γ̄ γg

Value 0.31 0.75 1 10 0.1 106 102 100 1 104 10−4

Table 4.2: Model parameters used in the simulations with the KWC model.

IV.3.1.1 Nucleation process

The nucleation process is first studied in the case of Dirichlet boundary conditions prescribed for both φ

and θ . The profiles of φ and θ are plotted at different times in Fig. 4.11. First, as can be seen in Fig. 4.11a,
the crystal order field reaches its equilibrium value around t̄ = 100 and grain boundaries begin to form near
the left and right boundaries. At t̄ = 350, fluctuations of the order and orientation fields are observed in
the linear central zone. These fluctuations reveal the unstable character of the linear orientation distribu-
tion. Next, the linear profile of the lattice orientation splits into a series of piece-wise constant regions that
can be interpreted as subgrains with low angle grain boundaries. Initially, the distance between the neigh-
boring grain boundaries is smaller than `φ . Consequently, the exponential tails of the phase field profiles
of neighboring grains interact strongly and the subgrains merge to form grains with larger misorientations
(Fig. 4.11c). The process evolves toward well separated grains with larger misorientations (Fig. 4.11d). The
interfaces considered here are flat so that the observed motion of low angle grain boundaries is not due to GB
curvature nor stored energy. The coalescence results from the overlap of the diffuse grain boundary regions
of neighboring newly formed grains. Thus, the interface width `φ imposes a constraint on the maximum
number of grains N that can be nucleated along the initial single crystal of total length 2L̄: N < 2L̄/`φ .
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Figure 4.11: Snapshots at different times t̄ of the θ (left) and φ (right) profiles for a single crystal subjected to
an initial uniform orientation gradient. The initial conditions are indicated by thin black dashed lines. The
phase field φ at equilibrium with respect to a linear orientation field prescribed at all points is represented
by thin red dotted lines.

IV.3.1.2 Effect of boundary conditions

The evaluation of boundary conditions for φ at the left and right edges is presented. Either Dirichlet
or zero flux boundary conditions are applied. Dirichlet boundary conditions for θ are enforced in both
cases. The results are shown in figure 4.12. It can be seen that nucleation proceeds in a similar way, with
equilibration of the crystal order field, the emergence and propagation of fluctuations leading to subgrain
formation, and finally the formation of grains with increased misorientation due to subgrain merging. The
main difference lies in the early stage of the process. Indeed, when Neumann BC are prescribed, the crystal
order field is not constrained at the left and right boundaries. The decrease of φ is therefore homogeneous
in the whole domain, contrary to the situation when Dirichlet BC are imposed.

IV.3.1.3 Influence of g(φ) and the mobility function

Dirichlet boundary conditions for both phase-fields have been arbitrarily chosen for the following sim-
ulations. The influence of the selected mobility function P(∇θ) (given by Eq. 3.21) and g(φ) (Eq . 3.4)
is then evaluated. It should be reminded that it was suggested by Warren et al. [2003] to choose either
g(φ) = φ

2 or g(φ) =−2(log(1−φ)+φ), the choice of the latter being motivated by a grain boundary en-
ergy that is mathematically closer to a Read-Schockley model. As for P, it should be noted that, depending
on its mathematical expression, it can differentiate the behaviour in the bulk from that at the grain boundary,
potentially inhibiting spurious rotation. Specifically, when P = 1, both rotation and shrinkage can occur for
a circular grain embedded in a larger matrix, whereas using the expression given by Eq. 3.21, only shrinkage
may occur. Fig. 4.13 illustrates the impact of g and P selection on nucleation behavior. When P remains
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(a) Profile of θ for Dirichlet (left) and Neumann zero flux (right) boundary conditions.
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(b) Profile of φ for Dirichlet (left) and Neumann zero flux (right) boundary conditions.

Figure 4.12: Profiles of φ and θ for Dirichlet (left) or Neumann zero flux (right) boundary conditions for φ

during nucleation in a single crystal subjected to a uniform initial orientation gradient. Dirichlet BC are
imposed on θ in both instances.

constant, a bicrystal nucleates regardless of the choice of g. Conversely, utilizing P(∇θ) results in multiple
grain nucleation for a logarithmic g(φ) while nucleation is visibly postponed when g(φ) = φ

2. Thus, select-
ing a logarithmic form of g(φ) together with P(∇θ) not only avoids spurious rotations and aligns well with
a Read-Shockley energy, but also facilitates the nucleation of more grains. Therefore, it will be adopted
from now on.
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Figure 4.13: profiles of φ and θ at t̄ = 10000 for different combinations of g(φ) and inverse mobility function
P.
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IV.3.1.4 Effect of the magnitude of the orientation gradient

To assess the existence of a threshold of the orientation gradient to trigger nucleation in the KWC model,
simulations were performed with different magnitudes of the orientation gradient ∆θ ∈ {0.01,0.3,0.6}. As
can be seen in Fig. 4.14, it appears that (sub)grains are nucleated even for very low orientation gradients.
Furthermore, as expected from the analysis in [Lobkovsky and Warren, 2001], the misorientation between
grains as well as the minimum value of φ are found to depend on the value of the initial orientation gradient.
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Figure 4.14: Profiles of θ (left) and φ (right) at t̄ = 10000 for single crystals with initial homogeneous
orientation gradients of different magnitudes.

IV.3.1.5 Nucleation statistics and time evolution of the total energy

A study of the time evolution of the microstructure was carried out by following the evolution of indica-
tors for t̄ ∈ [0,107] with data acquisition every 1000 increment of t̄. At each time steps, we have collected the
sets of values of (i) φ at the cusps defining the very center of the grain (sub-)boundaries, noted min(φ); (ii)
misorientation defined as the amplitude of the local jump of θ , noted ∆θ ; (iii) the number and (iv) the size
of the grains defined by the segments in the θ profiles where ∇̄θ is below 10−4. The average, the minimum
and the maximum in these sets are plotted in Fig. 6 with solid black, blue and red lines respectively. The
grey filling spans the interval [average ± standard deviation] for the considered quantity at time t̄. Grains
are defined as regions with uniform orientations. From Fig. 4.15a and 4.15b it is clear that the single crystal
is rapidly fragmented into a large number of very small grains which then merge to form fewer and larger
grains until only a bicrystal remains as t̄→∞. This phenomenon is due to the Dirichlet boundary conditions
which force the existence of a lattice orientation gradient. However, if zero flux boundary conditions were
imposed for θ , the final state would be a single crystal, as this is the configuration with the lowest total en-
ergy due to the absence of interfaces. In Fig. 4.15c the minimum value of φ decreases globally as grains are
merging, increasing the misorientation as seen in Fig. 4.15d. The peaks in the maximum value of min(φ)
(blue curve) are associated with these mergers: when two grains merge, the misorientation between them
decreases, resulting in less deep φ cusps.

In the case of an initial uniform gradient of θ with a sine perturbation with period λ̄ = 1 and λ̄ →∞ (no
perturbation), the time evolution of the total energy, computed numerically by integrating the free energy
density over the whole domain, is also shown in Fig. 4.16. This confirms that the nucleation and merger
processes due to orientation gradients lead to a global decrease in the total energy of the system. This is
expected since the evolution equations of the KWC model are based on a minimization of the total energy.
This also explains why, between t̄ = 6× 105 and t̄ = 1.5× 106, the tri-crystal slowly reorients towards the
more energetically favorable bicrystal. Note that energy of the final state corresponds to the grain boundary
energy calculated with the matched asymptotics analysis of Lobkovsky and Warren [2001] that is briefly
recalled in III.2.2.2.
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Figure 4.15: Time evolution of the number of grains (top left), dimensionless grain size (top right) as well
as minimum value of φ (bottom left) and misorientation ∆θ (bottom right) for a single crystal subjected to
a uniform orientation gradient with the KWC model.
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Figure 4.16: Time evolution of the total dimensionless energy for a single crystal subjected to an initial
uniform orientation gradient with a sinusoidal perturbation of period λ̄ . The horizontal dashed line corre-
sponds to the grain boundary energy of a bicrystal computed with the asymptotic analysis of Lobkovsky and
Warren [2001].
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IV.3.2 Orientation gradient with a perturbation

IV.3.2.1 Sinusoidal perturbation of an initially uniform orientation gradient

The initial condition on the orientation field is now modified by adding a sinusoidal perturbation of
spatial period λ̄ and amplitude A:

IC:

θ(t̄ = 0, x̄) = ∆θ
x̄+ L̄

2L̄
+Asin

(
2π

λ̄
x̄
)

φ(t̄ = 0, x̄) = 1
(4.82)

Fig. 4.17
shows the profiles of φ and θ for two values of the perturbation spatial period. It can be seen that the

fluctuations of θ are captured by φ and the number of grains initially nucleated depends on λ̄ . However, the
resulting microstructure exhibits overlapping diffuse grain boundaries that tend to coalesce. As in section
IV.3.1.1 the width of the diffuse grain boundary zone for φ therefore sets a maximum value for the final
number of grains.
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Figure 4.17: Profiles of θ (left) and φ (right) for a single crystal with an initial orientation gradient with a
sinusoidal perturbation of spatial period (a) λ̄ = 10, (b) λ̄ = 1 and amplitude A = 0.01.
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IV.3.2.2 Sinusoidal perturbation of a 0-average valued initial orientation gradient

A different initial condition for the orientation is then prescribed in the form of a fluctuation with 0
average value:

θ(t̄ = 0, x̄) = Asin
(

π

L
x+

π

2

)
(4.83)

Periodicity is enforced for both φ and θ at the top/bottom and left/right edges. Several combinations of
g(φ) and P are considered in Fig. 4.18. Regardless of the choice of g, nucleation does not occur when
P is uniform, in contrast to the situation where a uniform orientation gradient is imposed. However, if P
depends on the orientation gradient, nucleation occurs regardless of the choice of g. Interestingly, the process
of nucleation appears to be triggered initially in the area with the maximum absolute value of the initial
orientation gradient. This is evident from the plots of φ at t̄ = 10. This is likely due to the terms s̄g,φ |∇̄θ |
and ε̄

2/2|∇̄θ |2 included in the evolution equation for φ (Eq. 3.19). A similar situation has been examined
in the context of KWC-strain gradient plasticity by Admal et al. [2018]. A rectangular single crystal was
subjected to sinusoidal vertical displacement, generating a sinusoidal lattice rotation distribution. The bulk
dislocations produced during the loading procedure subsequently reorganised into grain boundaries in the
regions with the highest lattice orientation gradient values. These simulations therefore show the intrinsic
ability of the orientation phase-field models to account for spontaneous (sub)grain nucleation in relation to
intragranular lattice orientation gradients.
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Figure 4.18: Profiles of φ and θ for an initial orientation field with 0 average value and different combina-
tions of g(φ) and P.

IV.3.3 Influence of a stored energy gradient

Gradients of stored energy Ē are known to promote GB migration. In this section, we investigate the
stability of such a gradient in the KWC-Cosserat medium. In this study, the initial crystal orientation is
assumed to be homogeneous. Simultaneous gradients of orientation and stored energy Ē are then considered.
The parameters given in table 3.4 are used in all the simulations with CD = 100 and C̄A = 1 to account for
full recovery behind the moving grain boundary.

IV.3.3.1 Stability of an SSD density gradient

Similar to section IV.3.1, the effect of a constant SSD-based stored energy gradient on nucleation is
studied with the KWC model. For that purpose, a linear profile of slope ∆Ē is prescribed in a single crystal
with a uniform lattice orientation. Zero flux boundary conditions are applied for both φ and θ . As shown
in Fig. 4.19, no grain has been formed and φ simply follows Eq. (3.38) away from the domain boundaries
where the boundary conditions impose ∇̄φ ·n = 0, n being the outward normal vector. The lattice orientation
remains uniform and equal to its initial value, meaning that a decrease in the crystal order due to the presence
of defects (here the SSD) does not lead to a lattice reorientation. This outcome is to be expected from the
KWC evolution equation for θ (Eq. 3.44) as it does not depend on ∇̄φ . Hence, grain boundaries can be
nucleated from an initial state with φ = 1, ∇̄θ 6= 0 but not with ∇̄θ = 0, ∇̄φ 6= 0. To assert this statement,
an FEM simulation is carried out. The initial orientation is 0 and the initial crystal order field is that of a
bicrystal with misorientation ∆θ = 0.3. Zero flux BCs are prescribed for θ on the left and right edges while
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Dirichlet BCs φ = 1 are enforced. The results plotted in Fig. 4.20 show that the final state is a homogeneous
φ(x̄) = 1. This indicates that no grain boundary will nucleate in the absence of orientation gradients.
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Figure 4.19: Profiles of φ (left) and Ē (right) for a single crystal with uniform initial gradients of stored
energy of different magnitudes. The orientation θ is uniform and equal to 0. The simulations are performed
with the KWC model.
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Figure 4.20: Profiles of φ (left) and θ (right) for a microstructure with 0 misorientation and initial crystal
order field at equilibrium for a grain boundary with misorientation ∆θ = 0.3.

IV.3.3.2 Stability of superimposed SSD and GND density gradients

Now combining uniform initial gradients of both orientation and stored energy, the former triggers grain
nucleation whereas the latter provides a driving force for grain boundary motion. Fig. 4.21 shows such
simulations with the KWC model comparing the influence of the magnitude of the stored energy gradient
on the resulting microstructure. The presence of stored energy promotes grain boundary motion and grain
coalescence that did not occur in its absence. During the early stages of nucleation, when grain boundaries
are not well defined, the phase-fields fluctuate and the presence of stored energy affect these fluctuations.
The subsequent grain coalescence therefore differ from that in the absence of stored energy, which explains
the difference in the profiles of φ in Fig. 4.21a at t̄ = 51. At a later stage, when the grain boundaries
are better established, the presence of stored energy can cause grain boundary motion that promotes grain
merger. Such a phenomenon can be seen in Fig. 4.21c, where the grain boundaries at x̄ =−2.8 and x̄ =−1.1
at t̄ = 51 have coalesced in part by being brought closer together by stored energy driven migration. The fact
that migration occurred in part due to stored energy is evident in the stored energy profile of Fig. 4.21b, as
a decrease in stored energy indicates recovery in the wake of the moving grain boundary. These figures also
show stored energy driven migration without grain coalescence, as the grain boundary located at x̄ = 1.6 has
moved to the edge of the domain at t̄ = 2001.
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Figure 4.21: Profiles of φ (top), Ē (middle) and θ (bottom) for a single crystal with uniform initial gradients
of stored energy and orientation. The simulations are performed with the KWC model and are plotted at
t̄ = 51 on the left and t̄ = 2001 on the right.

IV.3.4 Grain nucleation with the KWC-Cosserat model in the absence of crystal plasticity

The numerical stability analysis of section IV.3 is revisited by including mechanical aspects in the prob-
lem, in particular the effect of skew-symmetric stresses. In this section, we employ the Maxwell type and
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Norton with threshold relaxation laws. As a reminder, these formulations result in the following evolution
equations for the eigenrotation:

θ̇
?
=− 1

η̄?P(∇̄θ)

×
σ̄ =

×̇
e e− ω̇

e + θ̇ Maxwell law (4.84)

θ̇
? =− 1

η̄?P(∇̄θ)

〈
|
×
σ̄ |− σ̄c

〉
sgn(

×
σ̄) Norton law with threshold (4.85)

The nucleation behaviour of the KWC-Cosserat model is assessed here for a single crystal subjected to a
uniform orientation gradient. A first simulation is run with the KWC model to determine the equilibrium
profile of φ with respect to the initial orientation field by imposing a linear θ . The obtained fields then
serve as initial conditions in subsequent computations in order to limit oscillations caused by too far from
equilibrium initial conditions. Then the stability of a uniform orientation gradient is investigated again by
adding elastic and viscoelastic/viscoplastic effects in the grain boundaries with Young’s modulus Ee = 130
GPa and Poisson’s ratio ν = 0.3. The full list of parameters is given in table 3.4. For the Maxwell relaxation
law, no significant differences are observed with regards to the original KWC model, as shown in Fig. 4.22a.
When a Norton relaxation model with threshold is chosen, the existence of the yield stress can substantially
delay grain boundary nucleation as shown in Fig. 4.22b. For example, for a value of σ̄c = 0.5 or σ̄c = 0.25
the nucleation process is still in its early stages at t̄ = 1000 as the profiles in the central zone away from the
left and right boundaries of the domain are the same as the initial conditions. In comparison, lower values
of the threshold, such as σ̄c = 0.05, allow nucleation to occur at the same t̄. As expected, for σ̄c → 0 the
behavior is similar to the KWC model. The introduction of residual stresses can therefore delay or even
impede the GB formation and migration.
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(a) KWC-Cosserat model with Maxwell relaxation law.
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Figure 4.22: Profiles of φ (left) and θ (right) at t̄ = 1000 for a single crystal with a uniform initial orientation
gradient for the KWC-Cosserat model with Maxwell relaxation law (top) and Norton law with threshold
(bottom).
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IV.4 Grain nucleation during torsion of a single crystal rod

The KWC-Cosserat approach to grain nucleation and GB migration is now applied to a 3D structural
problem for which orientation and SSD density gradients will be naturally induced by crystal plasticity in
an initially homogeneous single crystal. The torsion of a cylindrical bar with circular cross-section made of
a copper single crystal is computed by the finite element method. A 3D simulation framework is required
by the anisotropy of the problem. Longitudinal rotation gradients are induced by torsion. Strain gradients
are expected from the center to outer surface of the bar. In addition, the cubic symmetry of the FCC crystal
leads to a gradient of plastic slip along the circumference of each cross-section as demonstrated numerically
and experimentally by Nouailhas and Cailletaud [1995]. This is due to the varying resolved shear stress on
each slip system along the circumference. Torsion of elastic-plastic Cosserat bars was recently considered
in the isotropic case by Ghiglione and Forest [2022], and in the case of strain gradient crystal plasticity by
Scherer et al. [2020]; Phalke et al. [2021] where various crystal orientation effects on crystal hardening were
investigated. Torsion of a single crystal bar with square cross-section was performed using Cosserat crystal
plasticity at finite strains by Blesgen [2015]. The present simulations of KWC-Cosserat single crystal bars
are the first of this kind. They are performed to show whether gradients produced by torsion in a single
crystal are sufficient to trigger GB formation and grain nucleation.

IV.4.1 Problem setting

As shown in the above sections, the ability of the KWC model to handle grain nucleation in the presence
of orientation gradients is naturally inherited in the coupled model. So far, these gradients were prescribed
as initial conditions. In contrast, in this section the orientation gradients are produced through mechanical
loading. Indeed we will show through numerical examples that the torsion of a single crystal rod with
circular cross-section leads to a uniform orientation gradient along the axis of the cylinder. The computation
is made of two loading sequences: first, a torsional loading is applied in order to generate orientation
gradients, then the deformation is held constant to let the microstructure evolve to simulate relaxation of the
bar. The structure considered here is a cylinder with circular cross-section of radius R̄= 1 and length L̄ = 20.
Torsion is applied about the [111] direction coinciding with the cylinder axis z. Under these conditions, only
the 3 slip systems in the plane (111) are active: [101̄](111), [11̄0](111), [011̄](111). All slip systems
have an initial SSD density of ρ0 = 1011m−2. The mesh is made of 25920 elements with quadratic shape
functions and reduced integration resulting in 109169 nodes and 103680 Gauss points. Since each node is
endowed with 7 degrees of freedom, namely displacements ūx, ūy, ūz, lattice orientations θx,θy,θz and order
parameter φ , the size of the problem to be solved at each time step is 764183 DOFs. The computation
took 53 days on 24 Intel Xeon CPUs, requiring 112 GB of memory. The long computation time associated
with very fine time steps required by the strongly nonlinear KWC-Cosserat model explains while recent
attempts have been made to implement more efficient solvers for the model by Blesgen [2015]; He and
Admal [2021]. The initial conditions are uniform φ = 1 and θ = 0 . Dirichlet displacement boundary
conditions are imposed on ūx, ūy, ūz corresponding to a rigid rotation of the top/bottom surfaces of ±ϑ

around the z axis. Dirichlet boundary conditions θz = ±ϑ are also imposed on the top/bottom surfaces.
Neumann conditions mxz = myz = 0 are applied at the top/bottom as well. On the whole surface Neumann
conditions are imposed for the order parameter φ such that ξ

φ
· n = 0, where n is the exterior normal.

Finally, the lateral surfaces of the cylinder are free of all forces (zero traction and surface couples). After
torsional loading at the prescribed angle ϑ the deformation is maintained according to table 4.3 to simulate
relaxation. The simulation was performed with the KWC-Cosserat model with a Maxwell relaxation law
in the GB region and parameters are given in table 4.4. They correspond to pure copper at about 200◦C
where only self hardening is enabled (hi j = δi j). However, isotropic elasticity (E = 130 GPa, ν = 0.3) was
adopted for simplicity. For more details about the choice of parameters, see sections III.2.4-III.3.5.
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t̄ 0 1 730

Prescribed rotation ϑ 0 15◦ 15◦

Table 4.3: Loading table for torsional loading

Parameter Ēe
ν K̄ n Kr d̄ χ τ̄c b̄ µ̄ h1 h2 h3

Value 56×103 0.3 4.35 10 10 1×10−3 0.3 0 0.2556×10−3 21750 1 0 0

Parameter ᾱ s̄ ε̄ η̄φ η̄
?

µ̄p βp CD C̄A γ̄ γg

Value 0.31 0.75 1 10 0.1 106 102 100 1 104 10−4

Table 4.4: Model parameters used in the simulation of a single crystal bar under torsional loading.

IV.4.2 Results

After deformation, tangential, radial and longitudinal rotation gradients are generated as shown in Fig.
4.23. In this figure the curvature tensor is computed in cylindrical coordinates and the magnitude of the
radial, tangential and longitudinal components are given by |κ̄∼ · e r|, |κ̄∼ · e θ | and |κ̄∼ · e z| respectively. The
six-fold symmetry of the the curvature and plastic deformation patterns is due to crystal symmetry of the
shear (111) plane and associated slip systems. It is clear that the dominant gradient is that along the vertical
direction, which is about two orders of magnitude larger than the others. It is fairly uniform except close
to the ends of the bar and is reminiscent of the initial conditions given in section IV.3.4. The cumulative

plastic slip γ
tot =

3

∑
α=1
|γα | is shown in the cross-section of the middle of the rod in Fig. 4.23a. It can be

seen that the cumulative plastic slip is made of concentric hexagons whose magnitude increases linearly
from the center to the outer region of the cross-section up to about 3%. As illustrated in Fig. 4.24, the
stored energy field generated by the loading is heterogeneous in the cross-section but its magnitude is rather
low (max(Ē) ∼ 10−2), partly due to the fact that only self hardening was considered (hi j = δi j). Thus,
according to Eq. (3.38), one expects local variations of φ of about 0.01 in the cross-section, which explains
why the crystal order is mostly impacted by the longitudinal torsion. After subsequent relaxation, grain
nucleation is observed in Fig. 4.25 in the form of a stack of pancake grains. As in section IV.3.3.2 grain
nucleation is triggered by the rotation gradient. The SSD-based stored energy being low, the grains are rather
homogeneous in the cross-section. We expect that increasing the magnitude of the torsion angle should still
result in grains stacking along the rod, but the crystal order field should consist of concentric hexagons
whose magnitude decreases linearly along the radius. The nucleation process being triggered by rotation
gradients, it is not expected that grains will nucleate along the radius of the rod. Such a nucleation process
would require the presence of multiple grains in the cross-section, or an additional mechanical loading
prompting rotation gradients around the x or y axis. Another requirement would be to increase the radius of
the rod, as the interface width `φ is larger than the radius (`φ/R∼ 1.6 in this computation). The profiles of
φ and θz along the axis of the cylinder are shown in Fig. 4.26 and are very similar to those in section IV.3.4.
The nucleation process in this figure is still quite in its early stage with misorientations ranging between
1◦− 3◦. The model being computationally expensive, a later simulation stage is not available at the time
and a rather coarse mesh has been used. However, we think that using a finer mesh will give quite similar
qualitative results compared with the current mesh. In addition, it is expected that upon further relaxation the
different grains will merge along the vertical axis to accommodate the interface width `φ with misorientation
between grains increasing up to forming a bicrystal for t̄→∞, as with the KWC model. Given the boundary
conditions of the simulation, the bicrystal should have a final misorientation of about 30◦.
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Figure 4.23: Magnitudes of the curvatures in cylindrical coordinates in the longitudinal (top), radial (bottom
left) and tangential (bottom right) directions after torsional loading of a single crystal rod.
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Figure 4.24: Crystal order φ (left) and stored energy Ē (right) after torsional loading of a single crystal rod.
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Figure 4.25: Crystal order φ (left) and θz component of the lattice orientation (right) after torsional loading
and subsequent relaxation of a single crystal rod.
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Figure 4.26: Profiles of φ (left) and θz (right) along the axis of the cylinder after torsional loading and
subsequent relaxation (t̄ = 730).

IV.4.3 Comparison with experimental results from the literature

The presented simulations suggest that single crystal copper bars under torsion at sufficiently high tem-
perature will recrystallize and a bamboo grain microstructure is expected to form. Torsion tests at high
temperature are routinely performed for polycrystalline metals and alloys [Montheillet et al., 1984]. They
show typical oscillatory torque/angle responses due to successive recrystallization processes and strong
crystallographic texture and grain morphology evolution. However, few published papers deal with torsion
of single crystal wires at high temperature. High pressure torsion of HCP Magnesium single crystals lead to
recrystallization as shown in Bonarski et al. [2008] but the observed grain morphology was not described.
Compression of aluminum single crystals and torsion of aluminum polycrystals also lead to recrystalliza-
tion phenomena observed by Gourdet and Montheillet [2000]. Kassner [1989] performed large strain torsion
experiments on Al single crystals with the torsion axis parallel to the [111], exactly the physical situation in-
vestigated in our simulations. This led to the early formation of geometrically necessary boundaries (GNBs)
parallel to the slip plane and perpendicular to the torsion axis, in agreement with the present simulation re-
sults. The bamboo structure in the twisted rod can be observed in Fig. 4.27 that is taken from Fig. 3 of
[Kassner, 1989] and is comparable to the simulation results of Fig. 4.25a. Despite the very large strains of
about 16 under creep loading, only about 10% of the subgrain facets were found to be high angle bound-
aries (HABs) [Kassner and Barrabes, 2005]. The experimental results of Kassner [1989] therefore bring
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some experimental validation of the predicted microstructure evolution. However, the building-up of a low
angle boundary bamboo grain structure predicted by the present simulations during torsion therefore calls
for more systematic experimental validation.

Figure 4.27: Optical micrograph of a tangential section of an Al single crystal under torsional deformation
[Kassner, 1989]. The torsion axis is parallel to the horizontal axis of the micrograph. The microstructure
exhibits the same banded aspect as the simulations with the KWC-Cosserat model.

IV.5 Summary

The ability of the KWC model to spontaneously simulate grain nucleation in a single crystal in the
presence of orientation gradients was demonstrated in this chapter both through analytical and numerical
stability analysis of orientation gradients in the one-dimensional case. The role of gradients of stored energy
was also assessed for the KWC and KWC-Cosserat phase-field models by means of 1D numerical compu-
tations. According to the simulations, the initial single crystal is fragmented into a multitude of grains with
low misorientation (LAB) that grow and merge together due to interaction between diffuse grain boundary
zones. By tracking the time evolution of the total energy, it was shown that grain nucleation contributes to
the minimization of total energy. It was demonstrated that the presence of orientation gradients is necessary
to trigger grain nucleation, as a gradient of stored energy in a single crystal cannot lead by itself to the
formation of new grains, according to the model. Gradients of stored energy influence the mobility of newly
formed grain and subgrain boundaries. A similar study was carried out with the KWC-Cosserat model of
Ask et al. [2020] to investigate mechanical effects on grain nucleation, firstly in the absence of overall load-
ing. Special attention was drawn to the development and relaxation of skew-symmetric stresses during the
formation and the migration of grain boundaries. Two different types of evolution law of the reference ori-
entation – required to relax skew-symmetric stresses at the grain boundaries – were considered: a Maxwell
viscoelastic model and a Norton viscoplastic model with threshold. The introduction of a threshold in the
relaxation law leads to residual stresses that delay grain boundary motion and nucleation. Sufficiently high
values of the threshold can impede grain nucleation within an orientation gradient.
A 3D structural finite element simulation combining crystal plasticity and grain boundary formation was
then performed for the torsion of a single crystal bar with circular cross-section. Initial quasi-static torsion
was followed by simulation of a relaxation stage. The torsion axis was aligned with the [111] direction of
the FCC crystal. The torsional loading generated a significant rotation gradient along the cylinder axis that
was sufficient to trigger grain nucleation in the form of a stack of cylindrical grains with low angle grain
boundaries, in agreement with the 1D stability analysis. The radial and circumferential gradients of SSD-
based stored energy induced by heterogeneous plastic slip in the cross-sections are too low in magnitude to
trigger subgrain formation in the cross-section. This results in a bamboo-like subgrain microstructure in the
wire. Experimental support of the torsion simulation result was found in the case of torsion of aluminum
single crystals under creep loading in [Kassner, 1989; Kassner and Barrabes, 2005] where stacks of LABs
were observed parallel to the (111) planes.
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Chapter V

Phase-field Cosserat modelling of microstructure evolution in
polycrystalline aggregates

Résumé en français

Dans ce chapitre nous présentons plusieurs applications des modèles à champs de phase de type
Kobayashi-Warren-Carter et KWC-Cosserat. La première partie est dédiée au cisaillement d’un polycristal
périodique à 10 grains avec un seul système de glissement par grain. Selon l’orientation du système de
glissement par rapport à l’orientation cristalline du grain, différentes formes de localisation de la déforma-
tion plastique peuvent apparaitre, telles que des bandes en genou et des bandes de glissement. En particulier,
pour les bandes en genou une localisation de la courbure de réseau est observée, ce qui résulte en l’apparition
de nouveaux sous-joints de grains, en accord avec des simulations similaires par Ask et al. [2020]. En re-
vanche, les bandes de glissement observées ne sont pas nécessairement associées à une forte réorientation du
réseau et ne peuvent donc pas provoquer la germination de nouveaux sous-joints de grain avec ces modèles.

La seconde application concerne le passage d’un joint de grain à travers un vide. La simulation est dans
un premier temps effectuée avec le modèle KWC. On observe un comportement similaire au cisaillement
d’un précipité par une dislocation. En outre, on observe une similitude notable avec les simulations basées
sur un modèle multi-champs de phase de type Chen-Yang dans les travaux de Zhang et al. [2022], ce malgré
des approches relativement différentes entre les deux modèles.
Dans un second temps, ce cas d’application est étendu en ajoutant un chargement mécanique de compres-
sion. On observe une réduction signifiative de la contrainte de compression à mesure que le grain se déplace
sous l’effet de la différence d’énergie stockée par les dislocations, en accord avec des simulations éléments
finis de plasticité cristalline par Wang et al. [2023].

Enfin, la troisième et dernière application traite de la torsion de bicristaux. L’interface est localisée au
milieu de la barre et les grains sont désorientés uniquement par rapport à l’axe du cylindre. De façon simi-
laire à la torsion du monocristal présentée au chapitre IV, Le chargement en torsion génère de fort gradient
d’orientation du réseau cristallin, ce qui entraine la germination de nouveaux grains. La différence ici est
que l’existence à l’état initial d’un joint de grain entraine sa persistance après chargement mécanique. Un
deuxième cas présente un bicristal dont la normale au plan du joint est perpendiculaire à l’axe du cylindre.
Le chargement mécanique entraine une réorientation du plan de joint, dont la normale après relaxation est
parallèle à l’axe du cylindre.
Des analyses supplémentaires sont nécessaires pour examiner plus en détails ces simulations mais il apparaît
clairement que l’approche peut être étendue à d’autres applications plus complexes. Cela requerra cepen-
dant d’améliorer le coût calcul très élevé de l’implémentation actuelle du modèle KWC-Cosserat, surtout en
ce qui concerne la simulation de polycristaux.

151



Chapter V. Phase-field Cosserat modelling of microstructure evolution in polycrystalline aggregates

Contents
V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
V.2 Periodic shear of a periodic polycrystal . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

V.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
V.2.2 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
V.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

V.2.3.1 Localization in the form of kink bands . . . . . . . . . . . . . . . . . 155
V.2.3.2 Localization in the form of slip bands . . . . . . . . . . . . . . . . . 157

V.3 Grain boundary migration in the presence of a void . . . . . . . . . . . . . . . . . . . . . 158
V.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
V.3.2 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
V.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
V.3.4 Inclusion of mechanical effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

V.4 Torsion of bicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
V.4.1 Misorientation about the rod’s axis and GB plane normal parallel to the rod’s axis 165
V.4.2 Misorientation about the rod’s axis and GB plane normal orthogonal to the rod’s

axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
V.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

152



V.1 Introduction

V.1 Introduction

Orientation phase-field models have mainly been applied to single crystals in the previous chapters.
This chapter showcases a range of applications of orientation phase-field models to bi and polycrystals.
These simulations should be considered as preliminary investigations for modelling microstructure evolution
of polycrystalline aggregates during thermomechanical processing. The chapter is organised as follows.
Section V.2 demonstrates the periodic shear of a periodic polycrystal with a single slip system per grain.
The study investigates the localisation of plastic strain, curvature, and the resulting microstructure evolution.
Section V.3 examines the migration of a grain boundary across a void, while section V.4 extends the case of
the torsion of a single crystal to bicrystals.

V.2 Periodic shear of a periodic polycrystal

V.2.1 Introduction

Plastic deformation of polycrystals frequently triggers slip localization at the mesoscale. In the litera-
ture, two primary modes of localization involving a single slip system are identified: slip and kink banding.
Slip bands refer to the localisation of intense plastic slip activity on a few crystallographic planes very close
to each other. These planes take the form of bands that are parallel to the glide plane. Slip bands are re-
sponsible for the emergence of macroscopic shear bands [Korbel and Martin, 1986]. The alternative mode
of localization, namely kink banding, is linked to significant lattice rotation, resulting in bands that are per-
pendicular to the glide direction.
Within the context of continuum modelling, the theory developed by Asaro and Rice [1977] demonstrates
that slip and kink bands emerge from bifurcations in the constitutive equations when a previously homoge-
neous pattern of deformation is disrupted in the presence of material softening. The theory predicts that slip
and kink bands may appear simultaneously, even though they represent distinct localization modes from a
physical standpoint. Forest [1998] dealt with this problem by employing generalized continua to enhance
the microstructure description. The study demonstrated that the incorporation of curvature effects through
Cosserat crystal plasticity enables the distinction between slip and kink banding.
KWC-Cosserat modelling of kink banding and subsequent subgrain boundary nucleation has been studied
by Ask et al. [2020] but slip banding was not observed. In this section, we show through finite element sim-
mulations that the model handles slip localization in the form of slip and kink banding as well as subsequent
subrain boundary nucleation when applicable.

V.2.2 Problem set-up

Subgrain nucleation due to mechanical loading is studied numerically using the two-dimensional finite
element implementation of the coupled model with Maxwell grain boundary relaxation. Similarly to the
work of Ask et al. [2020] a 2D periodic polycrystal is subjected to a periodic shear by imposing a displace-
ment field of the form

u =B∼ · x + p (x ) (5.1)

with

B∼ =


0 0 0

B21 0 0

0 0 0

 (5.2)

and p (x ) a periodic fluctuation having the same values at opposite nodes of the boundary.
It is assumed that each grain has only one slip system to facilitate plastic strain localization. The grains

are oriented at an angle θ relative to the laboratory reference frame, and the slip system (l ,n ) of each
grain is oriented at an angle a relative to the crystal frame, as seen in figure 5.1a. Different values of a are
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considered to induce distinct types of plastic strain localisation. The corresponding microstructure is shown
in figure 5.1. The orientation of each grain is in the range 0−30◦.

(a) Laboratory, crystal frames
and slip systems.

(b) Polycrystal with angle a =
90◦ between the crystal frame
and the slip system.

(c) Polycrystal with angle a =
45◦ between the crystal frame
and the slip system.

Figure 5.1: Periodic polycrystal with 10 grains used to study subgrain nucleation due to plastic strain
localization. Black lines denote the slip direction of each grain.

The polycrystal is generated using Neper software [Quey et al., 2011]. The subsequent simulations are
performed using a 50x50 square mesh of 10000 reduced elements with quadratic shape functions and 30401
nodes. Each grain is described using a set of elements and is given a random uniform initial orientation
between 0◦ and 30◦. As the crystal order is still unknown at this stage and the grain boundaries are faceted
because of discretization, an initial simulation using the KWC model is performed to both refine the orien-
tation field and reach equilibrium for the crystal order. The fields resulting from this simulation then serve
as initial conditions for subsequent computations with the coupled model. Figure 5.2 provides an overview
of this process. The parameters used in the simulations are the same as those in Ask et al. [2020] and are
recalled in table 5.1. The targeted material is pure copper at around 150−160◦C ( f0 = 1.15MPa).

Figure 5.2: Microstructure initialisation procedure.
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Parameter C̄11 C̄12 C̄44 K̄ n Kr d̄ χ τ̄0 b̄ µ̄

Value 139×103 95.6×103 65.2×103 8.7 10 10 1×10−3 0.3 0 0.2556×10−3 4×104

Parameter ᾱ s̄ ε̄ η̄φ η̄
?

µ̄p βp CD C̄A γ̄ γg

Value 0.62 1.5 2 100 10 109 102 100 1 104 10−4

Table 5.1: Model parameters used in the simulation of a single crystal bar under torsional loading.

V.2.3 Results

The microstructure generated using the above procedure is now subjected to periodic shear loading
using the KWC-Cosserat model with Maxwell type relaxation for the skew-symmetric stress at the grain
boundaries. Simulations are conducted for two different situations: one with the slip system angled at
90◦ relative to the grain orientation and the other with a = 45◦. The applied average deformation linearly
increases from 0 to 5% between t̄ = 0 and t̄ = 10. It is subsequently held constant from t̄ = 10 to t̄ = 7200
to simulate relaxation.

V.2.3.1 Localization in the form of kink bands

Kink bands formation after deformation

With a = 90◦ the shear loading induces significant plastic strain localization that occurs perpendicularly
to the slip direction, which is indicative of the formation of kink bands. Figure 5.3 shows that the SSD
density and curvature norm demonstrate intense localization at the bottom grains of the polycrystal. The
presence of orientation gradients and dislocations visibly reduces the value of the crystal order in these
regions.
Subgrain formation in kink bands after relaxation

The microstructure following relaxation is depicted in Figure 5.4. The kink bands display higher cur-
vature than immediately after deformation. Additionally, there is a significant decrease in crystal order in
these regions, primarily among the grains positioned at the bottom. The crystal order is sufficiently low to
classify these as new subgrain boundaries that result from grain fragmentation. Circular regions with differ-
ent orientations from the matrix are observed in the bottom right grain and could indicate potential nuclei.
These regions are linked to a local reduction in dislocation density. However, due to the stored energy being
mostly concentrated within the band, these nuclei are unable to grow as there is no difference in stored
energy to prompt grain boundary motion. This phenomenon was also noted by Ask et al. [2020].
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Figure 5.3: Kink bands formation

Figure 5.4: Subgrain formation in kink bands
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V.2.3.2 Localization in the form of slip bands

Slip bands formation

After deformation and at a = 45◦, plastic strain localisation now occurs in the form of bands parallel to
the slip direction (indicating slip bands), either at grain boundaries or through the grains, as seen in Fig. 5.5.
They are generally not associated with strong orientation gradients. The presence of lattice rotation in the
large grain at the top right is thought to be accommodation of deformation incompatibilities that occur due
to interactions with surrounding slip bands or boundary conditions.

Microstructure changes after relaxation

After relaxation the crystal order is lower in these bands of large statistically stored dislocation density
as shown in Fig. 5.6 in the central grains where φ goes as low as 0.2. For the two large grains at the
bottom, these localisation bands are not correlated with lattice reorientation and the fragmented aspect of the
grains on the crystal order field results solely from the accumulation of SSD. The absence of misorientation
on both sides of the decrease in local order suggests that this is not a new subgrain boundary. That is
expected as a local decrease in φ due to the presence of SSDs does not lead to an orientation gradient, as
discussed in section IV.3.3.1, where it was shown that the presence of orientation gradients is required for
boundary nucleation with the orientation phase-field models. On the contrary, the large grain at the top right
is fragmented due to lattice rotation.

Figure 5.5: Slip bands formation
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Figure 5.6: Subgrain formation in slip bands

V.3 Grain boundary migration in the presence of a void

V.3.1 Introduction

The generation of intragranular voids, as seen in additive manufacturing processes, can lead to stress
concentration which is known to promote the fracture of crystalline materials [Bourcier et al., 1986]. The
interaction between these voids and migrating grain boundaries is complex. For instance, much like the
Zener pinning effect, voids can impact grain boundary behaviour during the process of recrystallization
[Zhang et al., 2022]. Migration of the grain boundary across a void can reduce stress concentration and
prevent crack formation and propagation [Wang et al., 2023]. From the industrial viewpoint, it is therefore
essential to comprehend the interaction between voids and migrating grain boundaries to design dependable
safety components through additive manufacturing techniques. We investigate here the ability of the KWC
and KWC-Cosserat models to simulate the motion of grain boundaries across voids.

V.3.2 Problem set-up

Consider a 15×10 rectangular domain with a hole of radius R̄= 1.25. The mesh, made of 4800 quadratic
elements with reduced integration and 14800 nodes, is visible in Fig. 5.7.

A grain boundary is initialized at the left side of the structure so that the hole is fully contained in the
grain on the right side of the boundary. A stored energy difference is applied so that the grain boundary will
pass through the hole. Zero flux boundary conditions are enforced for both φ and θ at all the boundaries
(including the hole surface) except for the top and bottom edges where periodicity is prescribed. The sim-
ulation is performed with the KWC model and the parameters given in table 5.2, which correspond to pure
copper at about 220◦C.
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Figure 5.7: Mesh used in the simulation of stored energy driven migration of a grain boundary in a perfo-
rated plate.

Parameter ᾱ s̄ ε̄ η̄φ η̄θ µ̄p βp γ̄ γg

Value 0.31 0.75 1 10 1 106 103 104 10−4

Table 5.2: Model parameters used in the simulation of stored energy driven migration of a grain boundary
in a perforated plate.

V.3.3 Results

Snapshots of the orientation and crystal order fields can be seen in Fig. 5.8. The curvature of the
grain boundary becomes more noticeable as it approaches the hole, due to the interaction of φ with the
void’s free surface. As it passes through the hole, the zero flux boundary conditions (∇̄φ ·n = 0 with n the
outwards normal) on the void require the phase-fields to be orthogonal to the tangent of the void, resulting
in the curvature of the grain boundary. A reorientation takes place around the void area, which leads to the
reduction of the value of φ in that region. Once both the top and bottom portions of the grain boundary
have passed through the void, they unite, resulting in a straight grain boundary again. At the final state, only
a single crystal remains due to the grain boundary sweeping across the entire domain. Notably, a similar
behaviour has been modelled by Zhang et al. [2022] via a modified multi phase-field model of Chen-Yang
type, as depicted in Fig. 5.9. The degrees of freedom in their research represent the recrystallized grains
and deformed microstructure, rather than the grain orientation and crystal order. Notably, rather than a
non-meshed area, the void was represented through the inclusion of a parameter in the free energy density
that modified the grain boundary and stored energy contributions. Although the approaches used differ
fundamentally, there is significant similarity in the qualitative behaviour exhibited by the grain boundary.
Our simulation presented in this section is merely an initial step and requires further investigation. Firstly,
a greater number of grains should be included, as demonstrated in [Zhang et al., 2022]. Subsequently,
the KWC-Cosserat model must be applied in order to evaluate the influence of bulk and grain boundary
mechanical behaviour on the outcomes.
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0.35 10.40 0.46 0.51 0.57 0.62 0.68 0.73 0.73 0.84 0.89 0.95 0 0.30.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275

(a) φ and θ at t̄ = 0.

(b) φ and θ at t̄ = 7500.

(c) φ and θ at t̄ = 7700.

(d) φ and θ at t̄ = 8100.
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(e) φ and θ at t̄ = 9100.

(f) φ and θ at t̄ = 10550.

(g) φ and θ at t̄ = 10600.

(h) φ and θ at t̄ = 16100.

Figure 5.8: Snapshots of the crystal order (φ , on the left) and orientation (θ , on the right) fields during
simulation of grain boundary migration through a void with the KWC model.
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Figure 5.9: Multi phase-field simulation of grain boundary migration through a void, after Zhang et al.
[2022] (supplementary material).

V.3.4 Inclusion of mechanical effects

The study is now extended by using the KWC-Cosserat model. The initial state, shown in Fig. 5.10,
still consists in a grain boundary with a stored energy difference on each side of the interface. The bicrystal
is now subjected to compression and subsequent relaxation by imposing a vertical displacement at the top
surface that linearly increases from ūy(t̄ = 0) = 0 to ūy(t̄ = 20) = −0.1 and is then held constant. The
simulation is in "2.5D" such that the structure can expand axially along the z direction, i.e εzz is homogeneous
and εxz = εyz = 0. The parameters used are indicative of pure copper at about 200◦C and are given in table
5.3. All 12 FCC slip systems are considered and the interaction matrix [h] is given by

hi j =

{
ω1 if i 6= j
1+ω1−ω2 else

(5.3)

Parameter C̄11 C̄12 C̄44 µ̄c K̄ n τ̄c χ µ̄ Kr d̄ b̄ ω1 ω2

Value 69600 47800 32600 10000 4.35 10 4.35 0.3 20000 71.4 10−3 0.256 1.5 1.2

Table 5.3: Material parameters used for the simulation of a bicrystal containing a void and subjected to
compression.

The deformed state is shown in Fig. 5.11. As the grain boundary is parallel to the loading, a compression
stress develops within the interface. As expected, stress concentration is observed close to the void, with
a magnitude larger than that in the grain boundary. After relaxation, migration of the grain boundary is
seen in Fig. 5.12 to occur as per the KWC model studied before. The KWC-Cosserat model provides
further information. Notably, grain boundary motion through the void is shown to significantly reduce the
stress concentration in the region swept by the interface. Conversely, away from this zone, the stress does not
exhibit a drastic decrease in magnitude. In the recent work of Wang et al. [2023], experimental investigations
showed that grain boundary migration through voids prevented the nucleation and propagation of micro-
cracks through the voids. They explained this phenomenon, through crystal plasticity finite element (CPFE)
simulations, by alleviation of stress concentration in the vicinity of the voids, i.e exactly the case studied
in this section. However, in their work grain boundary motion was not explicitly accounted for since their
approach was based on a ’hard-soft grain pair’. The simulation with the KWC-Cosserat model therefore
provides qualitative agreement with their conclusions, but also allows to go beyond the limitations of CPFE
through the incorporation of the dynamics of the grain boundary.
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Figure 5.10: Initial microstructure to study grain boundary migration through a void subjected to compres-
sion and subsequent relaxation.

Figure 5.11: bicrystal with intragranular void after compression (t̄ = 20)
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(a) t̄ = 200

(b) t̄ = 990

Figure 5.12: bicrystal with intragranular void after compression and subsequent relaxation

164



V.4 Torsion of bicrystals

V.4 Torsion of bicrystals

V.4.1 Misorientation about the rod’s axis and GB plane normal parallel to the rod’s axis

The case explored in section IV.4 is now reconsidered for a bicrystal. A rod with height H̄ = 10 and
radius R̄ = 1 is meshed with 1260 quadratic elements with reduced integration and 55089 nodes, resulting
in 330534 DOFs. The initial bigrain is obtained from a three-dimensional KWC simulation, which results
in a bicrystal with misorientation ∆θz = 0.3. The interface is located at the middle of the rod, as illustrated
in Fig. 5.13. The other components of θ are set to 0. The bicrystal is subsequently subjected to torsional
loading and relaxation. The boundary conditions and parameters are the same as those in section IV.4 except
that at the top and bottom surfaces the boundary condition for θz is now of zero flux type. The computation
took approximately 117 days on 24 Intel Xeon CPUs and requiring 54GB of memory.

0.37

1

0.40
0.42
0.45
0.47
0.50
0.52
0.54
0.57
0.60
0.62
0.65
0.67
0.70
0.72
0.75
0.77
0.80
0.82
0.85
0.87
0.90
0.92
0.95
0.97

0.

0.3

0.01
0.02
0.04
0.05
0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17
0.18
0.19
0.20
0.22
0.23
0.24
0.25
0.26
0.28
0.29

Figure 5.13: Initial bicrystal obtained with a 3D KWC simulation. The crystal order field is on the left and
the lattice orientation θz is on the right. The other components of θ are set to 0.

The results displayed in Fig. 5.14 show that torsional loading generates orientation gradients around
the rod’s vertical axis, promoting nucleation, just as in single crystals. In comparison with the initial state,
a rather uniform lattice orientation gradient is induced in each grain by the mechanical loading. It is also
evident that the initial grain boundary remains even after the loading and subsequent relaxation processes.
In the early stages of nucleation, newly formed grains with very low misorientation can be observed on
either side of the original grain boundary. In addition, they are symmetrically distributed with respect to the
centre of the rod. Subsequently, as expected, the grains merge and two subrains remain on each side of the
initial grain boundary. The observed symmetry might result from the position of the initial grain boundary.
it is assumed that upon further relaxation, the subgrains with low misorientations will merge to form a
bicrystal. This computation represents a first step towards KWC-Cosserat modelling of recrystallization
in polycrystalline aggregates during torsion. Additional simulations, encompassing columnar bicrystals and
tricrystals, need to be conducted. In particular, simulations that explore grains that are not purely misoriented
about the rod’s axis are required.
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(a) Crystal order and lattice orientation after torsional loading (t̄ = 1).
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(b) Crystal order and lattice orientation after torsional loading followed by relaxation (t̄ = 3471).
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Figure 5.14: Crystal order φ (left) and lattice orientation θz (right) after torsional loading of a bicrystal.
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V.4.2 Misorientation about the rod’s axis and GB plane normal orthogonal to the rod’s axis

The previous problem is now reconsidered for an initial grain boundary parallel to the rod’s axis, with
the misorientation still only about the rod’s axis. The initial microstructure is shown in Fig. 5.15.
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Figure 5.15: Initial bicrystal obtained with a 3D KWC simulation. The crystal order field is on the left and
the lattice orientation θz is on the right. The other components of θ are set to 0.

As usual, mechanical loading induces a strong orientation gradient about the rod’s axis. Figure 5.16 shows
that the field θz after loading is in the form of stacks that are not homogeneous in the cross-section due to
the presence of the initial grain boundary. During relaxation, the boundary plane gradually changes over
time due to the strong orientation gradient θz,z. As a result, the boundary normal aligns with the rod’s axis,
leading to the formation of a bamboo microstructure as in the previous cases.
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(c) Crystal order and lattice orientation after torsional loading followed by relaxation (t̄ = 241).
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Figure 5.16: Crystal order φ (left) and lattice orientation θz (right) after torsional loading of a bicrystal.
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V.5 Summary

Several applications of orientation phase-field models are presented in this chapter as first steps towards
modelling microstructure evolution of polycrystalline aggregates. Through the simulation of a periodic
polycrystal subjected to periodic shear, the model is shown to account for plastic strain and curvature local-
ization. Kink bands formed mechanically cause subgrain boundary nucleation, resulting in grain fragmen-
tation, as anticipated, which supports previous investigations by Ask et al. [2020]. In contrast, slip bands
are unrelated to lattice curvature and therefore cannot result in subgrain nucleation as per the orientation
phase-field models.
The KWC model was also used to examine the interaction between a non-meshed intragranular void and a
migrating grain boundary. The behaviour is comparable to that of a dislocation passing through a precipitate.
Comparison with the work of Zhang et al. [2022] based on a modified Chen-Yang multi-phase-field model
demonstrates notable qualitative agreement, despite the fundamentally different modelling approaches. The
study was then extended to the compression of a bicrystal containing an intragranular void using the KWC-
Cosserat model. The simulation shows a significant reduction of the stress concentration in the region swept
by the grain boundary which supports crystal plasticity finite element simulations by Wang et al. [2023].
Additionally, we presented an extension of our research on the torsion of single crystal rods to bicrystals.
The interface was located in the centre of the rod and the grains were misoriented solely with respect to the
rod’s axis. Upon torsional loading, orientation gradients are created, thereby promoting grain nucleation as
anticipated. The existence of an initial grain boundary within the microstructure compels, in this particular
study, the persistence of the grain boundary even after torsion and relaxation. When the GB plane normal is
orthogonal to the rod’s axis, the orientation gradient induced by the mechanical loading forces the alignment
of the interface normal with the rod’s axis.
Additional analysis is necessary to further examine these simulations, but it is clear that the approach can
be extended for use in a wider range of applications. One important issue that needs addressing in order to
simulate large polycrystalline aggregates is the high computational cost of the current implementation.
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Résumé en français

Cette thèse s’intéresse à la simulation en champs complets d’évolution microstructurales dans les métaux
à l’échelle mésoscopique. Pour ce faire, le modèle proposé par Ask et al. [2018b] est utilisé. Celui-ci com-
bine la théorie de Cosserat en plasticité cristalline et le modèle à champs de phase de croissance de grains de
Kobayashi-Warren-Carter. Les principaux apports de cette thèse concernent d’un côté la mécanique des mi-
lieux de Cosserat et de l’autre la simulation d’évolutions microstructurales. Ainsi, nous proposons dans ce
travail de nouvelles solutions analytiques aux problèmes de torsion d’un barreau en plasticité de von Mises
généralisée et au cisaillement d’un monocristal. Pour le second cas différentes dépendances du potentiel
d’énergie libre vis-à-vis du tenseur de courbure sont considérées.

Nous étendons également le modèle de Ask et al. [2018b] par l’introduction d’une contrainte seuil pour
la relaxation aux joints de grains, ce qui résulte en la présence de contraintes résiduelles pouvant gêner le
mouvement des interfaces.
Par ailleurs, nous montrons que la présence d’un gradient d’orientation peut entrainer la germination de
nouveaux grains de façon "spontanée" (sans introduction ad hoc de nouveaux grains) avec le modèle KWC.
Dans cette étude, le gradient d’orientation induit une division du monocristal en une multitude de grains
faiblement désorientés qui vont ensuite fusionner, en raison de la diffusivité des joints de grains. Nous
illustrons ensuite ce phénomène en simulant la torsion et relaxation d’un monocristal de cuivre avec le mod-
èle KWC-Cosserat, qui mène à une microstructure en bambou. Un accord qualitatif avec des expériences
menées sur des monocristaux d’aluminium trouvées dans la littérature est observé.

Les perspectives de ces travaux pourront tenter de remédier aux limites actuelles du modèle utilisé. A
court terme, celles-ci concernent principalement l’établissement d’une procédure de calibration plus robuste
concernant les paramètres de mobilité et l’amélioration des temps de calcul par décomposition de domaines
et intégration implicite de type θ−method pour les lois de comportement. L’extension au grandes déforma-
tions, rotations et courbure s’avérera probablement nécessaire pour la modélisation des procédés de mise en
forme. Enfin, l’étude de la germination en torsion devra être étendue aux polycristaux et la simulation des
mécanismes de type SIBM ou grain coarsening devra être étudiée.

Sur le long terme, la prise en compte explicite de la température pourra s’avérer intéressante pour modéliser
l’effet de gradients thermiques. Il pourrait également être utile de considérer une approche par multiplica-
teurs de Lagrange pour appliquer la contrainte

×
e e = 0 plutôt que la pénalisation actuellement utilisée. En

outre, une prise en compte de l’anisotropie des propriétés des joints de grains (vis-à-vis du plan de joint par
exemple) sera requise pour augmenter la pertinence du modèle. Enfin, il serait intéressant d’appliquer le
modèle au design de microstructures bimodales.
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Main results

The current thesis focuses on the mesoscale full-field simulation of microstructure evolution in metals.
To achieve this, we employed and further developed the model formulated by Ask et al. [2018b]. This
particular model combines Cosserat crystal plasticity and the Kobayashi-Warren-Carter phase-field model
of grain growth. The individual frameworks for each segment of the model are presented and subsequently
the unified model is recalled. The main original contributions found in this work concern two topics: on the
one hand, Cosserat continuum mechanics and on the other hand, simulating microstructure evolution with
the KWC-Cosserat model. The main results of the thesis can be summarized as follows:

• Cosserat continuum mechanics of isotropic elastic-plastic structures: new analytical solutions
have been developed for the torsion problem of isotropic elastic-plastic rods. The framework only
includes the symmetric part of the deviatoric stress tensor and uses a reduced form of the extended
von Mises yield criterion. However, the stress tensor itself is non-symmetric in general. The torsional
response of this model naturally exhibits a size effect of the normalized torque that is proportional to
the inverse of the rod’s radius and dependent on the twist angle. Comparison with results obtained
using the Finite Element Method through Zset software demonstrates perfect agreement.

• Cosserat crystal plasticity: new analytical solutions are derived for a single crystal under shear
loading. Different dependencies of the Helmholtz free energy density on the curvature tensor are
assessed, including quadratic, rank one, and combined quadratic-rank one. Analytical solutions are
demonstrated in both elasticity and crystal plasticity, with comparisons made to strain gradient plas-
ticity that is based on the dislocation density tensor Curl(H p). In crystal plasticity, these solutions
exhibit a noticeable size effect that is directly proportional to L−2 and L−1, where L is the half length
of the material strip, depending on whether the dependence of the free energy on the curvature tensor
is quadratic or rank one.

• KWC-Cosserat modelling of grain boundaries: our work discusses the development and relax-
ation of stresses during grain boundary formation and migration. It assesses the role of the selected
function in relaxing skew-symmetric stresses for stationary and mobile grain boundaries. These skew-
symmetric stresses are relaxed in a stable grain boundary. The relaxation function includes a stress
threshold in two distinct models: a viscoplastic Norton law with a threshold and a rate-independent
law based on isotropic plasticity. Incorporating a threshold into the relaxation law leads to residual
stresses that could hinder both formation and movement of the grain boundary. The bicrystal’s stress
profiles exhibit similarities to the elasto-plastic theory of dislocations and disclinations [Taupin et al.,
2013]. Afterwards, the finite element implementation of a 3D version of the KWC-Cosserat model
with Maxwell relaxation, programmed in the Z-set software, is presented. The three-dimensional ver-
sion was tested against the two-dimensional one in various scenarios, including the formation of grain
boundaries and periodic shear of a periodic bicrystal.

• Modelling grain nucleation with the KWC model: a linear perturbation analysis and finite element
simulations demonstrate that the existence of a lattice orientation gradient in a single crystal results in
(sub)grain formation to accommodate the gradient. This nucleation proceeds depending on material
parameter values that are indicative of temperature. The simulations reveal that the original single
crystal is divided into a multitude of grains with low misorientation (LAB), which, due to interaction
between diffuse grain boundary zones, grow and merge together. Tracking the time evolution of the
total energy demonstrated that grain nucleation aids in the minimisation of the total energy. Con-
versely, a gradient of the crystal order field, caused by a heterogeneous SSD distribution, does not
lead to the formation of new (sub)grain boundaries.

• Modelling grain nucleation with the KWC-Cosserat model: a three-dimensional finite element
simulation, which incorporated crystal plasticity and grain boundary formation, was conducted on a
single crystal bar with a circular cross-section to study torsion. Firstly, initial quasi-static torsion was
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performed, after which simulation of relaxation was carried out during a relaxation stage. The torsion
axis was aligned with the [111] direction of the FCC crystal. The application of torsion caused a
substantial gradient of rotation along the cylinder axis. This was adequate to initiate the formation of
grains in the shape of a stack of cylinders with low angle boundaries between them, which matches the
1D stability analysis. Consequently, a bamboo-style subgrain microstructure was developed within
the wire. Experimental evidence supporting the torsion simulation result was discovered during the
study of the torsion of aluminum single crystals under creep loading in [Kassner, 1989; Kassner and
Barrabes, 2005]. It was observed that stacks of Low Angle Boundaries (LABs) were parallel to the
(111) planes.

• Applications of the orientation phase-field models: simulations of periodic polycrystalline aggre-
gates with a single slip system per grain subjected to periodic shear loading evidenced the capability
of the KWC-Cosserat model to account for strain localization. The formation of kink bands and
subsequent subgrain boundary nucleation was observed and support previous investigations by Ask
et al. [2020]. Plastic slip localization in the form of slip bands was also captured but did not lead to
nucleation of new boundaries. Finally, the interaction of a grain boundary and an intragranular void
showed remarkable qualitative agreement with the modified Chen-Yang multi phase-field in the work
of Zhang et al. [2022].

Numerical implementations in the finite element code Z-set

During the work carried out in this PhD thesis, the following implementations were added in the Z-set
software:

• Time implicit integration of isotropic Cosserat (visco)plasticity: isotropic Cosserat (visco)plasticity
was implemented in Zset only for time explicit integration using Runge-Kutta’s method. In this work
we added a time implicit integration using the θ -method that is detailed in A.

• Relaxation laws in KWC-Cosserat models: in addition to Maxwell’s law, viscoplastic isotropic and
Norton laws as well as rate-independent viscoplasticity were programmed.

• Three-dimensional KWC-Cosserat model: the 2D KWC-Cosserat finite element implementation
was extended to 3D based on the weak form of the balance equations.

Current limitations

• Parameter identification procedure: currently, the outcomes achieved with the KWC-Cosserat
model remain rather qualitative. The first step towards more quantitative predictions would be to
develop a proper parameter calibration procedure based on experimental results. Currently, the me-
chanical parameters are not identified on the basis of experiments carried out over a specific tempera-
ture range, but are taken from the literature. Furthermore, the phase-field parameters are fitted based
on a 0K grain boundary energy, despite the simulated phenomena occurring during material heating.
The most challenging aspect, however, lies in the identification of mobility parameters, as the cur-
rent procedure is inadequate. Indeed, the mobility parameters are chosen based on numerical tests of
stored energy driven of a flat interface.

• Computational cost: the substantial computational cost in the present model implementation posed
a challenge. It is still unclear whether this is an inherent feature of the model or a consequence of the
implementation. The finite element scheme involves seven degrees of freedom for each node, and the
nonlinear equations to solve are very stiff.

• Infinitesimal deformation framework: the current model assumes infinitesimal deformations, which
is inappropriate for metal forming as it occurs mainly at large strains and curvatures.
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Prospects

Various enhancements can be made based on the current limitations of this work and are proposed in the
following:
Short term prospects

• Parameter identification procedure: stored energy and curvature driven grain boundary migration
experiments in bicrystals as described by Gottstein and Shvindlerman [2009] could be carried out. A
large amount of simulations that aim at reproducing these experiments could then be carried out to
retrieve the mobility parameters.

• Reduction of the computational cost: parallel computing based on domain decomposition might
be a way to deal with this issue. Furthermore, the explicit Runge-Kutta method is currently used
to integrate the constitutive laws of the KWC-Cosserat model, necessitating small time steps. Yet,
the implicit θ–method could conceivably reduce computation time by allowing for larger time steps.
Additionally, the optimum element type and form of shape functions were not examined in this thesis.
Alternative numerical methods, including fast Fourier transforms, might be worth investigating.

• Extension to Finite Strains, Rotation and Curvature: a proposed extension to the model by Ask
et al. [2019] tackles this issue theoretically, but numerical implementation is yet to be done. The
changeover to finite deformations entails additional numerical complexity due to the nonlinearity of
rotations compared to the present deformation framework. In addition, remeshing operations might
be needed. Yet, this extension is imperative to ensure accurate simulation of thermomechanical pro-
cesses. The PhD thesis of Russo [2022] presents theoretical and numerical aspects of finite deforma-
tion Cosserat mechanics that could be used for the numerical implementation of the KWC-Cosserat
model at finite deformation.

• Grain nucleation during torsion: further experimental and numerical studies are required to inves-
tigate nucleation caused by curvature heterogeneities induced by mechanical loading in the torsion
of crystals. Conducting numerical creep tests could help bring the simulations closer to the exper-
imental results of Kassner [1989]. An extension of the study to a bicrystal has been presented, but
additional investigation regarding the location of the grain boundary is needed. The case of tricrystals
and polycrystals could also be explored.

• Modelling physical mechanisms of grain nucleation: we believe that orientation phase-field mod-
els may be able to model physical mechanisms of grain nucleation, such as Strain Induced Boundary
Migration and subgrain coarsening. A first attempt at simulating SIBM with the KWC model can be
found in Abrivard [2009]. In this simulation the stored energy difference results from a heterogeneous
initial distribution of stored energy and not from mechanical loading. Similarly, Takaki and Tomita
[2010] modelled subgrain growth using a multi phase-field approach. Simulations of both mecha-
nisms with a unified model that combines crystal plasticity and grain growth remain to be done.

• Modeling nucleation at preferential sites: grain boundaries and triple junctions are likely nucleation
sites during recrystallization. As demonstrated in this work, the model captures nucleation in the
presence of lattice orientation gradients. In the literature, such large lattice orientation gradients have
been reported near triple junctions [Humphreys, 2004]. It would be interesting to see if the model is
able to reproduce such phenomenon. This would probably require the orientation gradient to extend
over a region that is multiple times larger than the diffuse interface width.

Long term prospects

• Explicit incorporation of temperature: currently, temperature is related to the mobility of grain
boundaries. Although adding an extra degree of freedom would increase the already high compu-
tational cost, it could enhance the physical relevance of the model and potentially allow to explore
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anisothermal effects and microstructure evolution induced by thermal gradients. Another approach
could be to express the material parameters as functions of temperature (typically Arrhenius laws) not
as a degree of freedom, but rather as a parameter derived from previous thermal calculations.

• Fine tuning the relaxation behaviour of the grain boundaries: restriction of the relaxation be-
haviour to the grain boundaries is currently achieved by using a function that depends on the orien-
tation gradient. Alternatively, a more appropriate approach could be to use a rule of mixtures. In
addition, the formulation of the inverse mobility/localization function might also be changed to, for
instance, allow for grain rotation to occur below a certain grain size.

• Enforcing the internal constraint ×e e = 0 : nullity of the skew symmetric part of the elastic strain
is achieved via the Cosserat coupling modulus µc acting as a penalization parameter. An alternative
would be to resort to Lagrange multiplier. We believe that this could potentially help in reducing the
stress oscillations that develop in the grain boundaries. The effect of not enforcing this constraint
locally might also be worth investigating.

• Accounting for anisotropic properties of the grain boundaries: even though misorientation de-
pendence of properties such as grain boundary energy is accounted for, the same cannot be said for
the boundary plane. Building on early considerations of this issue by Kobayashi et al. [2000]; War-
ren et al. [2003], a fully anisotropic 3D KWC model that accounts for the orientation axis and the
inclination of the grain boundary plane was developed by Admal et al. [2019].

• Application to the design of bimodal microstructures: the orientation phase-field models are yet to
be used to design microstructures combining two distinct grain sizes, i.e allowing both ductility and
sufficient hardening. Examples of numerical bimodal microstructures taken from [Flipon et al., 2020]
are shown in Fig 5.17.

Figure 5.17: Example of numerical bimodal microstructures after Flipon et al. [2020] for different coarse
grain distributions. Grain size ratio of 5 (a-c) and 10 (d-f).
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Appendix A

Time implict integration of Cosserat (visco)plasticity
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I.1 Introduction

In this section the objective is to derive the expressions of the consistent tangent matrices for Prandtl-
Reuss (isotropic law with isotropic hardeining) viscoplasticity and rate-independent plasticity of a Cosserat
medium using the θ -method based on [Besson et al., 2009] (pp 337-343). The consistent tangent matrices[
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The Jacobian matrix is then given by:
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The inverse of the Jacobian matrix is made of blocks:
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For a Cosserat medium with an isotropic elasticity law they can be retrieved knowing that
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e)I∼+2(µ +µc)e∼
e +2(µ−µc)e∼

eT

which can be rewritten as
σ∼ = Λ

≈
σ : e∼

e

with
Λ
≈

σ = λI∼⊗I∼+2(µ +µc)I≈+2(µ−µc)I≈
T

where
I
≈
= δikδ jl, I≈

T = δ jkδil

Similarly we have
m∼ = Λ

≈
m : κ∼

e

with
Λ
≈

m = αI∼⊗I∼+2(β + γ)I
≈
+2(β − γ)I

≈
T
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Finally:

e∼
e
t+∆t = e∼

e
t+θ∆t +(1−θ)∆e∼

e

κ∼
e
t+∆t = κ∼

e
t+θ∆t +(1−θ)∆κ∼

e

pt+∆t = pt+θ∆t +(1−θ)∆p

I.2 Prandtl-Reuss rate indepedent elastoplasticity

I.2.1 Single criterion framework

The Prandtl-Reuss law for a Cosserat medium is given by

f (σ∼, m∼ ) = J2(σ∼, m∼ )−R(p)

where J2(σ∼, m∼ ) is the extended von Mises equivalent stress Forest [2005]

J2(σ∼, m∼ ) =
√

a1σ∼
′ : σ∼

′+a2σ∼
′ : σ∼

′T +b1m∼ :m∼ +b2m∼ :m∼
T

The plastic strain rate and curvature rate tensors are then given by

ė∼
p = ṗ

∂ f
∂σ∼

, κ̇∼
p = ṗ

∂ f
∂m∼

where the normals to the yield surface appear:

n∼
σ :=

∂ f
∂σ∼

=
a1σ∼

′+a2σ∼
′T

J2(σ∼, m∼ )
, n∼

m :=
∂ f
∂m∼

=
b1m∼ +b2m∼

T

J2(σ∼, m∼ )

Let us now compute the components of the Jacobian matrix at time t +θ∆t where Xt = X(t) and Xθ =
x(t +θ∆t). First, let us compute the derivatives of r∼

σ
e

∂r∼
σ
e

∂∆e∼
e =

∂

∂∆e∼
e

(
∆e∼

e +∆e∼
p)

=
∂

∂∆e∼
e

(
∆e∼

e +∆pn∼
σ

θ

)
= I
≈
+∆p

∂n∼
σ

θ

∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e

knowing that
∂e∼

e
θ

∂∆e∼
e =

∂e∼
e
t +θ∆e∼

e

∂∆e∼
e = θI

≈

as well as
∂σ∼θ

∂e∼
e
θ

= Λ
≈

σ

θ
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and

∂n∼
σ

θ

∂σ∼θ

=
∂

∂σ∼θ

(
a1σ∼

′
θ
+a2σ∼

′T
θ

J2(σ∼θ , m∼ θ )

)

=
J2(σ∼θ , m∼ θ )

∂

∂σ∼θ

(
a1σ∼

′
θ
+a2σ∼

′T
θ

)
−
(
a1σ∼

′
θ
+a2σ∼

′T
θ

)
⊗ ∂J2(σ∼θ ,m∼ θ )

∂σ∼θ

J2
2 (σ∼θ , m∼ θ )

=
J2(σ∼θ , m∼ θ )

(
a1P≈

dev +a2P≈
devT
)
−
(
a1σ∼

′
θ
+a2σ∼

′T
θ

)
⊗n∼

σ

θ

J2
2 (σ∼θ , m∼ θ )

∂n∼
σ

θ

∂σ∼θ

=
1

J2(σ∼θ , m∼ θ )

(
a1P≈

dev +a2P≈
devT
)
−

a1σ∼
′
θ
+a2σ∼

′T
θ

J2(σ∼θ ,m∼ θ )
⊗n∼

σ

θ

J2(σ∼θ , m∼ θ )

∂n∼
σ

θ

∂σ∼θ

=
1

J2(σ∼θ , m∼ θ )

(
a1P≈

dev +a2P≈
devT
−n∼

σ

θ ⊗n∼
σ

θ

)

∂n∼
σ

θ

∂σ∼θ

:=N
≈

σ

θ =
1

J2(σ∼θ , m∼ θ )

(
a1P≈

dev +a2P≈
devT
−n∼

σ

θ ⊗n∼
σ

θ

)
where P

≈
dev and P

≈
devT

are the deviatoric projectors:

P
≈

dev = I
≈
− 1

3
I∼⊗I∼, P≈

devT
= I
≈

T − 1
3
I∼⊗I∼

Thus we find:

∂r∼
σ
e

∂∆e∼
e
θ

= I
≈
+

∂n∼
σ

θ

∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e

= I
≈
+∆pN

≈
σ

θ : Λ
≈

σ

θ : θI
≈

∂r∼
σ
e

∂∆e∼
e = I

≈
+θ∆pN

≈
σ

θ : Λ
≈

σ

θ

∂r∼
σ
e

∂∆p
=

∂

∂∆p

(
∆e∼

e +∆pn∼
σ

θ

)

∂r∼
σ
e

∂∆p
= n∼

σ

θ

∂r∼
σ
e

∂∆κ∼
e =

∂

∂∆κ∼
e

(
∆e∼

e +∆pn∼
σ

θ

)
= ∆p

∂n∼
σ

θ

∂∆κ∼
e

= ∆p
∂n∼

σ

θ

∂m∼ θ

:
∂m∼ θ

∂κ∼
e
θ

:
∂κ∼

e
θ

∂∆κ∼
e
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knowing that
∂κ∼

e
θ

∂∆κ∼
e =

∂κ∼
e
t +θ∆κ∼

e

∂∆κ∼
e = θI

≈

as well as
∂m∼ θ

∂κ∼
e
θ

= Λ
≈

m
θ

and

∂n∼
σ

θ

∂m∼ θ

=
∂

∂m∼ θ

(
a1σ∼

′+a2σ∼
′T

J2(σ∼, m∼ )

)

=
−
(
a1σ∼

′+a2σ∼
′T )⊗ ∂J2(σ∼θ ,m∼ θ )

∂m∼ θ

J2
2 (σ∼θ , m∼ θ )

=
−(a1σ∼

′+a2σ∼
′T)

J2(σ∼θ ,m∼ θ )
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )

=
−n∼

σ

θ
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )

We find

∂r∼
σ
e

∂∆κ∼
e =−∆p

n∼
σ

θ
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )
: Λ
≈

m
θ : θI

≈

∂r∼
σ
e

∂∆κ∼
e =−θ∆p

n∼
σ

θ
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )
: Λ
≈

m
θ

Let us now compute the derivatives of r∼
m
e :

∂r∼
m
e

∂∆κ∼
e =

∂

∂∆κ∼
e

(
∆κ∼

e +∆κ∼
p)

=
∂

∂∆κ∼
e

(
∆κ∼

e +∆pn∼
m
θ

)
= I
≈
+∆p

∂n∼
m
θ

∂m∼ θ

:
∂m∼ θ

∂κ∼
e
θ

:
∂κ∼

e
θ

∂∆κ∼
e
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with

∂n∼
m
θ

∂m∼ θ

=
∂

∂m∼ θ

(
b1m∼ θ +b2m∼

T
θ

J2(σ∼θ , m∼ θ )

)

=
J2(σ∼θ , m∼ θ )

∂

∂m∼ θ

(
b1m∼ θ +b2m∼

T
θ

)
−
(
b1m∼ θ +b2m∼

T
θ

)
⊗ ∂J2(σ∼θ ,m∼ θ )

∂m∼ θ

J2
2 (σ∼θ , m∼ θ )

=
J2(σ∼θ , m∼ θ )

(
b1I≈+b2I≈

T
)
−
(
b1m∼ θ +b2m∼

T
θ

)
⊗n∼

m
θ

J2
2 (σ∼θ , m∼ θ )

∂n∼
m
θ

∂m∼ θ

=
1

J2(σ∼θ , m∼ θ )

(
b1I≈+b2I≈

T
)
−

b1m∼ θ+b2m∼
T
θ

J2(σ∼θ ,m∼ θ )
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )

∂n∼
m
θ

∂m∼ θ

=
1

J2(σ∼θ , m∼ θ )

(
b1I≈+b2I≈

T −n∼
m
θ ⊗n∼

m
θ

)

∂n∼
m
θ

∂m∼ θ

:=N
≈

m
θ =

1
J2(σ∼θ , m∼ θ )

(
b1I≈+b2I≈

T −n∼
m
θ ⊗n∼

m
θ

)
Thus we find:

∂r∼
m
e

∂∆κ∼
e
θ

= I
≈
+

∂n∼
m
θ

∂m∼ θ

:
∂m∼ θ

∂κ∼
e
θ

:
∂κ∼

e
θ

∂∆κ∼
e

= I
≈
+∆pN

≈
m
θ : Λ
≈

m
θ : θI

≈

∂r∼
m
e

∂∆κ∼
e = I

≈
+θ∆pN

≈
m
θ : Λ
≈

m
θ

∂r∼
m
e

∂∆e∼
e =

∂

∂∆e∼
e

(
∆κ∼

e +∆pn∼
m
θ

)
= ∆p

∂n∼
m
θ

∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e

with

∂n∼
m
θ

∂σ∼θ

=
∂

∂σ∼θ

(
b1m∼ +b2m∼

T

J2(σ∼, m∼ )

)

=
−
(
b1m∼ +b2m∼

T
)
⊗ ∂J2(σ∼θ ,m∼ θ )

∂σ∼θ

J2
2 (σ∼θ , m∼ θ )

=
−(b1m∼ +b2m∼

T)
J2(σ∼θ ,m∼ θ )

⊗n∼
σ

θ

J2(σ∼θ , m∼ θ )

=
−n∼

m
θ
⊗n∼

σ

θ

J2(σ∼θ , m∼ θ )
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In the end
∂r∼

m
e

∂∆e∼
e =−θ∆p

n∼
m
θ
⊗n∼

σ

θ

J2(σ∼θ , m∼ θ )
: Λ
≈

σ

θ

∂r∼
m
e

∂∆p
=

∂

∂∆p

(
∆κ∼

e +∆pn∼
m
θ

)

∂r∼
m
e

∂∆p
= n∼

m
θ

Finally, let us compute the derivatives of rp:

∂ rp

∂∆p
=

∂

∂∆p

(
J2(σ∼θ , m∼ θ )−R(p)

)
=− ∂R

∂∆p
:=−Hθ

∂ rp

∂∆p
=−Hθ

∂ rp

∂∆e∼
e
θ

=
∂

∂∆e∼
e
θ

(
J2(σ∼θ , m∼ θ )−R(p)

)
=

∂J2(σ∼θ , m∼ θ )

∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e

= n∼
σ

θ : Λ
≈

σ

θ : θI
≈

∂ rp

∂∆e∼
e
θ

= θn∼
σ

θ : Λ
≈

σ

θ

∂ rp

∂∆κ∼
e =

∂

∂∆κ∼
e

(
J2(σ∼θ , m∼ θ )−R(p)

)
=

∂J2(σ∼θ , m∼ θ )

∂m∼ θ

:
∂m∼ θ

∂κ∼
e
θ

:
∂κ∼

e
θ

∂∆κ∼
e

= n∼
m
θ : Λ
≈

m
θ : θI

≈

∂ rp

∂∆κ∼
e = θn∼

m
θ : Λ
≈

m
θ

Finally, the Jacobian matrix is given by

∂r∼
σ
e

∂∆e∼
e = I

≈
+θ∆pN

≈
σ

θ : Λ
≈

σ

θ

∂r∼
σ
e

∂∆κ∼
e =−θ∆p

n∼
σ

θ
⊗n∼

m
θ

J2(σ∼θ , m∼ θ )
: Λ
≈

m
θ

∂r∼
σ
e

∂∆p
= n∼

σ

θ

∂r∼
m
e

∂∆e∼
e =−θ∆p

n∼
m
θ
⊗n∼

σ

θ

J2(σ∼θ , m∼ θ )
: Λ
≈

σ

θ

∂r∼
m
e

∂∆κ∼
e = I

≈
+θ∆pN

≈
m
θ : Λ
≈

m
θ

∂r∼
m
e

∂∆p
= n∼

m
θ

∂ rp

∂∆e∼
e = θN

≈
σ

θ : Λ
≈

σ

θ

∂ rp

∂∆κ∼
e = θN

≈
m
θ : Λ
≈

m
θ

∂ rp

∂∆p
=−Hθ
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with

N
≈

σ

θ =
∂n∼

σ

θ

∂σ∼θ

:=N
≈

σ

θ =
1

J2(σ∼θ , m∼ θ )

(
a1P≈

dev +a2P≈
devT
−n∼

σ

θ ⊗n∼
σ

θ

)
, N
≈

m
θ =

1
J2(σ∼θ , m∼ θ )

(
a1I≈+a2I≈

T −n∼
m
θ ⊗n∼

m
θ

)

I.2.2 Multi-criterion framework

In this case two yield functions are adopted so as to decouple the contributions of σ∼ and m∼ . However,
a new plastic multiplier κ is introduced:

f (σ∼,R) = J2(σ∼)−R(p,κ), f m(m∼ ,R
m) = J2(m∼ )−Rm(p,κ)

J2(σ∼) =
√

a1σ∼
′+a2σ∼

′T , J2(m∼ ) =
√

b1m∼ +b2m∼
T

The normals to the yield surfaces are then given by:

n∼
σ :=

∂ f
∂σ∼

=
a1σ∼

′+a2σ∼
′T

J2(σ∼)
, n∼

m :=
∂ f m

∂m∼
=

b1m∼ +b2m∼
T

J2(m∼ )

The rates of the plastic deformation and plastic curvature are thus given by:

ė∼
p = ṗ

∂ f
∂σ∼

, κ̇∼
p = κ̇

∂ f m

∂m∼

The residuals are then given by: 
r∼

σ
e

r∼
m
e

rσ
p

rm
p

=


∆e∼

e +∆pn∼
σ

θ

∆κ∼
e +∆κn∼

m
θ

f
(
σ∼t+θ∆t

)
f m (m∼ t+θ∆t

)


Let us now compute the derivatives of r∼

σ
e . One can see that

∂r∼
σ
e

∂∆e∼
e and

∂r∼
σ
e

∂∆p
are the same as for the single

criterion case. However,
∂r∼

σ
e

∂∆κ∼
e is now null since J2(σ∼) does not depend on m∼ anymore. Finally, it can be

seen that r∼
σ
e does not depend on ∆κ thus

∂r∼
σ
e

∂∆κ
= 0.



∂r∼
σ
e

∂∆e∼
e

∂r∼
σ
e

∂∆κ∼
e

∂r∼
σ
e

∂∆p
∂r∼

σ
e

∂∆κ


=


I
≈
+θ∆pN

≈
σ

θ : Λ
≈

σ

θ

0
≈

n∼
σ

θ

0∼
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An analogical reasoning can be made for r∼
m
e . One gets:

∂r∼
m
e

∂∆e∼
e

∂r∼
m
e

∂∆κ∼
e

∂r∼
m
e

∂∆p
∂r∼

m
e

∂∆κ


=


0
≈

I
≈
+θ∆pN

≈
m
θ : Λ
≈

m
θ

0∼
n∼

m
θ



Let us now focus on the plastic residuals and compute the derivatives of rσ
p . It can be seen that

∂ rσ
p

∂∆e∼
e =

∂ rp

∂∆e∼
e

and
∂ rσ

p

∂∆p
=

∂ rp

∂∆p
. Moreover

∂ rp

∂∆κ
=

∂

∂∆κ

(
J2(σ∼θ )−R(p,κ)

)
=−∂R

∂κ

∂R
∂κ

is defined as the hardening modulus H pc Forest [2005]; Forest and Sievert [2003] and such that H pc =

∂R
∂κ

=
∂Rm

∂ p
. Finally

∂ rp

∂∆κ∼
e =

∂

∂∆κ∼
e
θ

(
J2(σ∼θ )−R(p,κ)

)
= 0∼

In the end, 

∂ rσ
p

∂∆e∼
e

∂ rσ
p

∂∆κ∼
e

∂ rσ
p

∂∆p
∂ rσ

p

∂∆κ


=


θN
≈

σ

θ : Λ
≈

σ

θ

0∼
−Hθ

−H pc
θ



Similarly, it can be found that: 

∂ rm
p

∂∆e∼
e

∂ rm
p

∂∆κ∼
e

∂ rm
p

∂∆p
∂ rm

p

∂∆κ


=


0∼

θN
≈

m
θ : Λ
≈

m
θ

−H pc
θ

−Hm
θ
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The expression of the Jacobian matrix is therefore:

[J] =



∂r∼
σ
e

∂∆e∼
e = I

≈
+θ∆pN

≈
σ

θ : Λ
≈

σ

θ

∂r∼
σ
e

∂∆κ∼
e = 0

≈

∂r∼
σ
e

∂∆p
= n∼

σ

θ

∂r∼
σ
e

∂∆κ
= 0∼

∂r∼
m
e

∂∆e∼
e = 0

≈

∂r∼
m
e

∂∆κ∼
e = I

≈
+θ∆pN

≈
m
θ : Λ
≈

m
θ

∂r∼
m
e

∂∆p
= 0∼

∂r∼
m
e

∂∆κ
= n∼

m
σ

∂ rσ
p

∂∆e∼
e = θN

≈
σ

θ : Λ
≈

σ

θ

∂ rσ
p

∂∆κ∼
e = 0∼

∂ rσ
p

∂∆p
=−Hθ

∂ rσ
p

∂∆κ
=−H pc

θ

∂ rm
p

∂∆e∼
e = 0∼

∂ rm
p

∂∆κ∼
e = θN

≈
m
θ : Λ
≈

m
θ

∂ rm
p

∂∆p
=−H pc

θ

∂ rm
p

∂∆κ
=−Hm

θ
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I.3.1 Single criterion framework

In this case

ṗ =

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n

∆p
∆t

=

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n

The elastic residuals r∼
σ
e and r∼

m
e are the same as for rate-independent plasticity with single criterion. How-

ever, the inelastic one rp is not:

rp = ∆p−∆t
〈

J2(σ∼θ , m∼ θ )−R(p)
K

〉n

= 0

∂ rp

∂∆e∼
e =

∂

∂∆e∼
e

(
∆p−∆t

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n)
=−∆t

n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1
∂J2(σ∼θ , m∼ θ )

∂∆e∼
e

=−∆t
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1
∂J2(σ∼θ , m∼ θ )

∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e

=−∆t
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

n∼
σ

θ : Λ
≈

σ

θ : θI
≈

∂ rp

∂∆e∼
e =−∆tθ

n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

n∼
σ

θ : Λ
≈

σ

θ
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∂ rp

∂∆κ∼
e =

∂

∂∆κ∼
e

(
∆p−∆t

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n)
=−∆t

n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1
∂J2(σ∼θ , m∼ θ )

∂∆κ∼
e

=−∆t
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1
∂J2(σ∼θ , m∼ θ )

∂m∼ θ

:
∂m∼ θ

∂κ∼
e
θ

:
∂κ∼

e
θ

∂∆κ∼
e

=−∆t
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

n∼
m
θ : Λ
≈

m
θ : θI

≈

∂ rp

∂∆κ∼
e =−∆tθ

n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

n∼
m
θ : Λ
≈

m
θ

∂ rp

∂∆p
=

∂

∂∆p

(
∆p−∆t

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n)
= 1−∆t

(
−∂R

∂ p
∂ p

∂∆p
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1
)

= 1+∆t
∂R
∂ p

θ
n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

∂ rp

∂∆p
= 1+θ∆t

∂R
∂ p

n
K

〈
J2(σ∼θ , m∼ θ )−R(p)

K

〉n−1

I.3.2 Multi criterion framework

As for rate independent plasticity with multi criterion there are two inelastic residuals:

rσ
p = ∆p−∆t

〈
J2(σ∼θ )−R(p,κ)

K

〉n

= 0

and

rm
p = ∆κ−∆t

〈
J2(m∼ θ )−Rm(p,κ)

K

〉n

= 0

As for the single criterion visoplasticity case we find that:

∂ rσ
p

∂∆e∼
e =−∆tθ

n
K

〈
J2(σ∼θ )−R(p,κ)

K

〉n−1

n∼
σ

θ : Λ
≈

σ

θ

as well as:
∂ rσ

p

∂∆p
= 1+θ∆t

∂R
∂ p

n
K

〈
J2(σ∼θ )−R(p,κ)

K

〉n−1
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Appendix A. Time implict integration of Cosserat (visco)plasticity

The derivative of rσ
p with respect to ∆κ is given by:

∂ rσ
p

∂∆κ
=

∂

∂∆κ

(
∆p−∆t

〈
J2(σ∼θ )−R(p,κ)

K

〉n)
=−∆t

(
−∂R

∂κ

∂κ

∂∆κ

n
K

〈
J2(σ∼θ )−R(p,κ)

K

〉n−1
)

= ∆t
∂R
∂κ

θ
n
K

〈
J2(σ∼θ )−R(p,κ)

K

〉n−1

∂ rσ
p

∂∆κ
= θ∆tH pc

θ

n
K

〈
J2(σ∼θ )−R(p,κ)

K

〉n−1

finally we have:
∂ rσ

p

∂∆κ∼
e = 0∼

The derivatives of rm
σ can be computed using the same method. We find:

∂ rm
p

∂∆e∼
e = 0∼

∂ rm
p

∂∆κ∼
e =−∆tθ

n
K

〈
J2(m∼ θ )−Rm(p,κ)

K

〉n−1

n∼
m
θ : Λ
≈

m
θ

∂ rm
p

∂∆κ
= 1+θ∆t

∂Rm

∂κ

n
K

〈
J2(m∼ θ )−Rm(p,κ)

K

〉n−1

∂ rm
p

∂∆p
= θ∆tH pc

θ

n
K

〈
J2(m∼ θ )−R(p,κ)

K

〉n−1

I.4 Crystal plasticity

We consider the case where there is no plastic curvature. We have

e∼= e∼
e +e∼

p

with

e∼
p =

N

∑
s=1

γ
sP∼

s

where
P∼

s = l s⊗n s

is the orientation tensor and

γ̇s =

〈 |σ∼ : P∼
s|− rs

K

〉n

sgn(σ∼ : P∼
s)

190



I.4 Crystal plasticity

The derivatives of the elastic residuals are:

∂r∼
σ
e

∂∆e∼
e =

∂

∂∆e∼
e

(
∆e∼

e +
N

∑
s=1

∆γ
sP∼

s

)

∂r∼
σ
e

∂∆e∼
e = I

≈

∂r∼
σ
e

∂∆κ∼
=

∂

∂∆κ∼

(
∆e∼

e +
N

∑
s=1

∆γ
sP∼

s

)

∂r∼
σ
e

∂∆κ∼
= 0
≈

∂r∼
σ
e

∂∆γs =
∂

∂∆γs

(
∆e∼

e +
N

∑
s=1

∆γ
sP∼

s

)

=
∂

∂∆γs

(
N

∑
s=1

∆γ
sP∼

s

)

∂r∼
σ
e

∂∆γs =
N

∑
s=1
P∼

s

∂r∼
m
e

∂∆e∼
e =

∂

∂∆e∼
e

(
∆κ∼+

N

∑
s=1

∆γ
sP∼

s

)

∂r∼
m
e

∂∆e∼
e = 0

≈

∂r∼
m
e

∂∆κ∼
=

∂

∂∆κ∼

(
∆κ∼+

N

∑
s=1

∆γ
sP∼

s

)

∂r∼
m
e

∂∆κ∼
= I
≈

∂r∼
m
e

∂∆γs =
∂∆κ∼
∂∆γs

= 0∼

∂r∼
m
e

∂∆γs = 0∼
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∂ rp

∂∆γs =
∂

∂∆γs

(
∆γ

s−∆t
〈 |σ∼ : P∼

s|− rs

K

〉n

sgn(σ∼ : P∼
s)

)
= 1−∆t

∂ rs

∂γs
γs

∆γs
n
K

〈 |σ∼ : P∼
s|− rs

K

〉n−1

sgn(σ∼ : P∼
s)

∂ rp

∂∆γs = 1−θ∆t
∂ rs

∂γs
n
K

〈 |σ∼ : P∼
s|− rs

K

〉n−1

sgn(σ∼ : P∼
s)

∂ rp

∂∆e∼
e =

∂

∂e∼
e

(
∆γ

s−∆t
〈 |σ∼ : P∼

s|− rs

K

〉n

sgn(σ∼ : P∼
s)

)
=−∆t

n
K

〈 |σ∼ : P∼
s|− rs

K

〉n−1
∂ |σ∼ : P∼

s|
∂σ∼θ

:
∂σ∼θ

∂e∼
e
θ

:
∂e∼

e
θ

∂∆e∼
e sgn(σ∼ : P∼

s)

=−∆t
n
K

〈 |σ∼ : P∼
s|− rs

K

〉n−1 σ∼ : P∼
s

|σ∼ : P∼
s|
P∼

s : Λ
≈θ : θI

≈
sgn(σ∼ : P∼

s)

−θ∆t
n
K

〈 |σ∼ : P∼
s|− rs

K

〉n−1

P∼
s : Λ
≈θ sgn(σ∼ : P∼

s)sgn(σ∼ : P∼
s)

∂ rp

∂∆κ∼
=

∂

∂κ∼

(
∆γ

s−∆t
〈 |σ∼ : P∼

s|− rs

K

〉n

sgn(σ∼ : P∼
s)

)
= 0∼

∂ rp

∂∆κ∼
= 0∼
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Appendix B

KWC model using microforce formalism

The energy functional of the system is defined by

F =
∫

V
f (φ ,∇φ ,θ ,∇θ)dV =

∫
V

f0(φ)+
α2

2
|∇φ |2 + sg(φ)|∇θ |dφ

This free energy corresponds to a KWC model with ε = 0. Let us determine the evolution equations
based on the approach proposed by Gurtin [1996], which uses the principle of virtual powers. To do so, let
us first introduce the generalized stress measures which are power-conjugate to the fields of virtual order
parameters φ

?(x , t) and θ
?(x , t) and their first gradient:

• The internal microforce πφ associated to φ
?

• The internal microforce πθ associated to θ
?

• The microstress vector ξ
θ

associated to ∇φ
?

• The microstress vector ξ
θ

associated to ∇θ
?

• The external microforce γφ associated to φ
?

• The external microforce γθ associated to θ
?

• The volume density of microforce γ
φ

associated to φ
?

• The volume density of microforce γ
θ

associated to θ
?

• The surface density of microtraction ζφ associated to φ
?

• The surface density of microtraction ζθ associated to θ
?

The virtual power of internal generalized forces is given by:

P i =
∫

V
πφ φ̇ ?+πθ θ̇ ?−

(
ξ

φ
·∇φ̇ ?+ξ

θ
·∇θ̇ ?

)
dV

Recalling the identity
∇ ·
(

ξ ••
)
= •∇ ·ξ •+ξ • ·∇•

where •= {φ ?,θ ?}, we get:

P i =
∫

V
πφ φ̇ ?+πθ θ̇ ?−

(
∇ ·
(

ξ
φ

φ̇ ?
)
− φ̇ ?∇ ·ξ

φ
+∇ ·

(
ξ

θ

)
− θ̇ ?∇ ·ξ

θ

)
dV

=
∫

V

(
πφ +∇ ·ξ

φ

)
φ̇ ?+

(
πθ +∇ ·ξ

θ

)
θ̇ ?−

(
∇ ·
(

ξ
φ

φ̇ ?
)
+∇ ·

(
ξ

θ
θ̇ ?
))

dV
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Appendix B. KWC model using microforce formalism

Making use of the divergence theorem
∫

V
∇ ·ξ dV =

∫
∂V

ξ ·n dS we get:

P i =
∫

V

(
πφ +∇ ·ξ

φ

)
φ̇ ?+

(
πθ +∇ ·ξ

θ

)
θ̇ ?dV −

∫
∂V

(
ξ

φ
φ̇ ?+ξ

θ
θ̇ ?
)
·n dS

The virtual power of external forces applied to the considered body is defined by:

Pe =
∫

V
γφ φ̇ ?+ γ

φ
·∇φ̇ ?+ γθ θ̇ ?+ γ

θ
·∇θ̇ ?dV

Pe =
∫

V

(
γφ −∇ · γ

φ

)
φ̇ ?+

(
γθ −∇ · γ

φ

)
φ̇ ?dV +

∫
∂V

(
φ̇ ?γ

φ
+ θ̇ ?γ

θ

)
n dS

where the divergence theorem was used. Finally, let us express the contact power:

Pc =
∫

V
ζφ φ̇ ?+ζθ θ̇ ?dV

Neglecting the inertial microforces, the principle of virtual powers reads:

P i +Pe +Pc = 0

which gives:∫
V

(
πφ +∇ ·ξ

φ
+ γφ −∇ · γ

φ

)
φ̇ ?dV +

∫
V

(
πθ +∇ ·ξ

θ
+ γθ −∇ · γ

θ

)
θ̇ ?dV

+
∫

∂V

((
γ

φ
−ξ

φ

)
·n +ζφ

)
φ̇ ?+

(
+
(

γ
θ
−ξ

θ

)
·n +ζθ

)
θ̇ ?dS = 0

which can be satisfied ∀φ ?,∀θ ? and ∀V if and only if:

∇ ·
(

ξ
φ
− γ

φ

)
+πφ + γφ = 0

∇ ·
(

ξ
θ
− γ

θ

)
+πθ + γθ = 0

in V (balance equations)


(

γφ −ξ
φ

)
·n +ζφ = 0(

γθ −ξ
θ

)
·n +ζθ = 0

on ∂V (boundary conditions)

In the remainder of this work, γφ = γθ = 0 and γ
φ
= γ

θ
= 0 . The balance equations and boundary conditions

thus reduce to: {
∇ ·ξ

φ
+πφ = 0

∇ ·ξ
θ
+πθ = 0

in V (balance equations){
ζφ = 0
ζθ = 0

on ∂V (boundary conditions)

Without accounting for inertia and volumetric heat sources, the first principle of thermodynamics states that:

Ė = Pext +Q

where Pext is the power of external forces such that P int +Pext = 0, Ė =
∫

V
ėdV is the time variation of

the internal energy and ė its volume density. Q = −
∫

∂V
q ·n dS is the heat rate and q the heat flux. Using
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the identity P int +Pext = 0 allows to rewrite the first principle such that:

Ė =−P int +Q

This gives: ∫
V

ρ ėdV =−
∫

V
πφ φ̇ +πθ θ̇ −

(
ξ

φ
·∇φ̇ +ξ

θ
·∇θ̇

)
dV −

∫
∂V

q ·n dS

=
∫

V
−πφ φ̇ −πθ θ̇ +ξ

φ
·∇φ̇ +ξ

θ
·∇θ̇ −∇ ·q dV

The local form of the internal energy is thus:

ρ ė =−πφ φ̇ −πθ θ̇ +ξ
φ
·∇φ̇ +ξ

θ
·∇θ̇︸ ︷︷ ︸

−pi

−∇ ·q (2.1)

Neglecting volumetric heat sources, the second principle of thermodynamics states that:∫
V

ρ ṡdV ≥−
∫

∂V

q ·n
T

dS (2.2)

where s is the entropy per unit mass. The entropy inequality can be rewritten as:∫
V

ρ ṡdV +
∫

∂V

q ·n
T

dS≥ 0

⇐⇒
∫

V
ρ ṡ+∇ ·

q
T

dV ≥ 0

The local form of the inequality is thus, for isothermal processes:

ρ ṡ+∇ ·
q
T
≥ 0 (2.3)

ρ ṡ+
∇ ·q

T
−

q ·∇T
T 2 ≥ 0 (2.4)

Multiplying this inequality by T > 0 and using ∇ ·q = ė+ pi, the inequality becomes:

ρ(T ṡ− ė)− pi−
q ·∇T

T 2 ≥ 0 (2.5)

The time variation of the free energy density ψ(φ ,∇φ ,θ ,∇θ) is given by

ψ̇ = ė−T ṡ =
∂ψ

∂φ
φ̇ +

∂ψ

∂∇φ
·∇φ̇ +

∂ψ

∂θ
θ̇ +

∂ψ

∂∇θ
·∇θ̇

Combining T ṡ = ė− ψ̇ with the local entropy inequality gives the Clausius-Duhem inequality:

−ρψ̇− pi−
q ·∇T

T 2 ≥ 0

−ρ

(
∂ψ

∂φ
φ̇ +

∂ψ

∂∇φ
·∇φ̇ +

∂ψ

∂θ
θ̇ +

∂ψ

∂∇θ
·∇θ̇

)
−πφ φ̇ −πθ θ̇ +ξ

φ
·∇φ̇ +ξ

θ
·∇θ̇ −

q ·∇T
T 2 ≥ 0

−
(

πφ +
∂ψ

∂φ

)
φ̇ +

(
ξ

φ
− ∂ψ

∂∇φ

)
·∇φ̇ −

(
πθ +

∂ψ

∂θ

)
θ̇ +

(
ξ

θ
− ∂ψ

∂∇θ

)
·∇θ̇ −

q ·∇T
T 2 ≥ 0

This inequality must hold ∀(φ ,∇φ ,θ ,∇θ). The micros stresses ξ
φ
(φ ,∇φ) and ξ

θ
(θ ,∇θ) are assumed
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Appendix B. KWC model using microforce formalism

independent of φ̇ ,∇φ̇ , θ̇ ,∇θ̇ . Thus:

ξ
φ
=

∂ψ

∂∇φ
, ξ

θ
=

∂ψ

∂∇θ

It is assumed that πφ ,πθ contains energetic and dissipative contributions:

πφ = π
eq
φ
+π

neq
φ
, πθ = π

eq
θ
+π

neq
θ

(2.6)

πφ =
∂ψ

∂φ
+π

neq
φ
, πθ =

∂ψ

∂θ
+π

neq
θ

(2.7)

Let us assume the existence of a dissipation potential Ω

(
π

neq
φ
,πneq

θ

)
of the form

Ω =
1
2

1
Qτφ

(
π

neq
φ

)2
+

1
2

1
Pτθ

(
π

neq
θ

)2

where Q and P are functions of (φ ,∇φ ,θ ,∇θ ,T ) and τφ ,τθ are material parameters. The convexity of this
potential is ensured by the choice of quadratic terms. This convexity ensures the positivity of the dissipation.
The evolution laws derive from this potential:

φ̇ =
−∂Ω

∂π
neq
φ

θ̇ =
−∂Ω

∂π
neq
θ

⇐⇒


φ̇ =− 1

Qτφ

π
neq
φ

θ̇ =− 1
Pτθ

π
neq
θ

⇐⇒


πφ =−Qτφ φ̇ − ∂ψ

∂φ

πθ =−Pτθ θ̇ − ∂ψ

∂θ

Then: 
πφ =−Qτφ φ̇ − ∂ψ

∂φ

πθ =−Pτθ θ̇ − ∂ψ

∂θ

Finally, combining these equations with the balance equations

{
∇ ·ξ

φ
+πφ = 0

∇ ·ξ
θ
+πθ = 0

and


ξ

φ
=

∂ψ

∂∇φ

ξ
θ
=

∂ψ

∂∇θ

the evolution equations are:
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∇ ·
(

∂ψ

∂∇φ

)
−Qτφ φ̇ − ∂ψ

∂φ
= 0

∇ ·
(

∂ψ

∂∇θ

)
−Pτθ θ̇ − ∂ψ

∂θ
= 0

⇐⇒


∇ ·
(

∂ψ

∂∇φ

)
− ∂ψ

∂φ
= Qτφ φ̇

∇ ·
(

∂ψ

∂∇θ

)
− ∂ψ

∂θ
= Pτθ θ̇

⇐⇒


Qτφ φ̇ =−δF

δφ

Pτθ θ̇ =−δF

δθ

where
δF

δ•
=

∂ f
∂•
−∇ · ∂ f

∇•
is the functional derivative with respect to variable •.
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Interface with sharp orientation field
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III.1 1D stationary equations

Let us choose
f0(φ) =

1
2
(1−φ)2, g(φ) = h(φ) = φ

2

for the free energy density. The 1D equilibrium equations are thus:
0 =−δF

δφ

0 =−δF

δθ

⇐⇒


0 =−

(
∂ f0(φ)

∂φ
+ s

∂g(φ)
∂φ
|∇θ |

)
− ∂

∂x

(
α2

2
∂

∂∇φ
|∇φ |2

)
0 =−

(
− ∂

∂x

(
∂

∂∇θ
sg(φ)|∇θ |

))

⇐⇒

0 = (1−φ)−2φs|∇θ |+α
2
∆φ

0 = s
∂

∂x

(
φ

2 ∂

∂∇θ

√
(∇θ)2

)

⇐⇒


0 = (1−φ)−2φs|∇θ |+α

2
∆φ

0 = s
∂

∂x

(
φ

2
∂ (∇θ)2

∂∇θ

2
√
(∇θ)2

)

⇐⇒

0 = (1−φ)−2φs|∇θ |+α
2
∆φ

0 = s
∂

∂x

(
φ

2 ∇θ

|∇θ |

)
It has been mentioned by Kobayashi et al. [2000] that the solution for θ of this system of equations can be
showed to be Kobayashi and Giga [1999]:

θ(x) =

{
θ
−, x< 0

θ
+, x> 0

(3.1)
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Appendix C. Interface with sharp orientation field

Moreover, ∣∣∣∣∂θ

∂x

∣∣∣∣= ∆θδ (x)

with ∆θ the misorientation angle and δ (x) the Dirac delta function. It has the property∫ +∞

−∞

f (x)δ (x)dx = f (0)

.

III.2 Determination of φ(x)

Let us now consider x ∈]−∞,0[∪]0,+∞[ such that ∇θ = 0. The equation on φ is now given by:

0 = (1−φ)+α
2
∆φ

The homogeneous equation associated to this differential equation is

0 = α
2
∆φ −φ

The characteristic equation is
α

2y2−1 = 0

whose solutions are y =±
√

1
α2 =± 1

α
the solution to the homogeneous equation is given by:

φh = A1 exp
(
− 1

α
|x|
)
+A2 exp

(
1
α
|x|
)

Let us find a particular solution φp to the equation 0 = (1−φ)+α
2
∆φ . Seeking it in the form of φp = cst

we get yp = 1. Thus

φ(|x|) = φh +φp = A1 exp
(
− 1

α
|x|
)
+A2 exp

(
1
α
|x|
)
+1

The boundary condition φ(x =±∞) = 1 gives:

lim
x→∞

φ(x) = 1⇒ lim
x→∞

A2 exp
(

1
α
|x|
)
= 0

⇒ A2 = 0

Thus

φ(x) = A1 exp
(
− 1

α
|x|
)
+1

A1 can be determined from the condition φ(x = 0) = φmin:

A1 +1 = φmin

⇐⇒ A1 = φmin−1

Finally,

φ(x) = (φmin−1)exp
(
− 1

α
|x|
)
+1
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III.3 Determination of φmin

An equivalent form used in Kobayashi et al. [2000] is

φ(x) = 1− (1−φmin)exp
(
− 1

α
|x|
)

III.3 Determination of φmin

Using the newly found expression for φ(x) and making use of the property of the Dirac distribution, we
can compute φmin by integrating the equation on φ between 0+ and 0−:

α
2
∫ 0+

0−
φ
′′dx =−

∫ 0+

0−
1dx+

∫ 0+

0−
φdx+2s

∫ 0+

0−
φ |θ ′|dx

α
2[φ ′]0

+

0− =−
∫ 0+

0−
1dx+

∫ 0+

0−
φdx+2s

∫ 0+

0−
φ∆θδ (x)dx

=−
∫ 0+

0−
1dx+

∫ 0+

0−
φdx+2s∆θφ(0)

=−
∫ 0+

0−
1dx+

∫ 0+

0−
φdx+2s∆θφmin

=−
∫ 0+

0−
1dx+

(∫ 0+

0−
1− (1−φmin)exp

(
− 1

α
|x|
)

dx
)
+2s∆θφmin

=−
∫ 0+

0−
1dx+

∫ 0+

0−
1dx− (1−φmin)

[
− α

sign(x)
exp
(
− 1

α
|x|
)]0+

0−
+2s∆θφmin

=−(1−φmin)(−α−−α)+2s∆θφmin

Finally, we get
α

2[φ ′]0
+

0− = 2sφmin∆θ

with the expression φ
′(x) =

(
−sign(x)

α

)(
−(1−φmin)exp

(
1
α
|x|
))

we can compute φmin:

α
2
(

1
α
(1−φmin)−−

1
α
(1−φmin)

)
= 2sφmin∆θ

⇐⇒ 2α(1−φmin) = 2sφmin∆θ

⇐⇒ φmin

(
1+

s∆θ

α

)
= 1

In the end:

φmin =
1

1+ s∆θ

α

=
α

α + s∆θ
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Appendix C. Interface with sharp orientation field

III.4 Determination of γGB

The 1D energy functional is given by:
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∫ +∞
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f (φ)+
α2

2

∣∣∣∣∂φ

∂x

∣∣∣∣2 + sg(φ)
∣∣∣∣∂θ

∂x

∣∣∣∣dx

=
∫ +∞

−∞

1
2
(1−φ)2 +

α2

2

∣∣∣∣∂φ

∂x

∣∣∣∣2 + sφ
2
∣∣∣∣∂θ

∂x

∣∣∣∣dx

=
∫ +∞

−∞

1
2
(1−φ)2 +

α2

2

∣∣∣∣∂φ

∂x

∣∣∣∣2 dx+
∫ +∞

−∞

sφ
2
∣∣∣∣∂θ

∂x

∣∣∣∣dx

=
∫ +∞

−∞

1
2
(1−φ)2 +

α2

2

∣∣∣∣∂φ

∂x

∣∣∣∣2 dx+
∫ +∞

−∞

s∆θφ
2
δ (x)dx

=
∫ +∞

−∞

1
2
(1−φ)2 +

α2

2

∣∣∣∣∂φ
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Focusing on
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We get
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III.4 Determination of γGB

Using φmin =
α

α + s∆θ
we find:

γGB = α

(
1− α

α + s∆θ

)2

+ s∆θ

(
α

α + s∆θ

)2

= α
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1−2

2α
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=
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Finally

γGB =
αs∆θ
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MOTS CLÉS

Plasticité cristalline, Champs de phase, Mécanique des milieux de Cosserat, Migration de joint de grains,
Recristallisation, éléments finis

RÉSUMÉ

Les traitements thermomécaniques des matériaux cristallins provoquent d’importants changements microstructuraux qu’il convient de
maitriser pour contrôler les propriétés macroscopiques qui en résultent. En particulier, la recristallisation, i.e la germination et croissance
de grains possédant une faible densité de dislocations, est d’intérêt industriel pour l’optimisation de microstructures lors la mise en
forme des métaux. Malgré son importance, la modélisation de ce phénomène reste parcellaire. En effet, si de nombreux modèles
ont été développés afin de reproduire efficacement la phase de croissance (méthodes de Monte-Carlo Potts, automates cellulaires,
level-sets, champs de phase. . . ), la simulation de la germination passe traditionnellement par l’introduction ad hoc de nouveaux grains
sphériques ou circulaires en lien avec une valeur critique de déformation, contrainte ou densité de dislocations. Il convient donc de
développer des modèles rendant compte spontanément de l’apparition de nouveaux grains. Lors des procédés thermomécaniques, la
déformation (visco)plastique du matériau peut engendrer une réorientation importante du réseau cristallin et une distribution hétérogène
d’orientations peut apparaı̂tre au sein de grains initialement orientés de façon homogène. À l’échelle mésoscopique, ces phénomènes
sont bien pris en compte par des modèles de plasticité cristalline. Une description enrichie de la matière, telle que celle des milieux
de Cosserat, permet en outre de prendre en compte des effets de taille. Dans cette théorie, des degrés de liberté additionnels de
microrotations sont introduits et peuvent être identifiés aux rotations du réseau cristallins par le biais de contraintes internes. Nous
proposons de nouvelles solutions analytiques aux problèmes de la torsion d’un cylindre en elastoplasticité isotrope et du cisaillement
d’un monocristal. Pour ce dernier, différentes formulations du potentiel d’énergie libre explorant diverses dépendances vis-à-vis du
tenseur de courbure-torsion sont étudiées. Parmi les modèles de croissance de grains, seule l’approche à deux champs de phases
proposée par Kobayashi-Warren-Carter (KWC) peut modéliser un gradient d’orientation intragranulaire induit par la déformation. Les
modèles à champs de phase s’appuyant sur une formulation thermodynamique, le couplage avec la mécanique via le potentiel d’énergie
libre est particulièrement aisé. Le modèle mésoscopique en champs complets utilisé dans cette thèse, développé par Ask et al.,
combine ainsi la plasticité cristalline des milieux de Cosserat et le modèle à champs de phase de croissance de grains de KWC. Une
des particularités du modèle étudié est d’ajouter à la déformation (visco)plastique du grain un comportement inélastique de relaxation
du joint de grain. L’influence du choix de la fonction de relaxation aux joints de grain sur la formation et le mouvement de ceux-ci est ainsi
étudiée. En particulier, il est montré que la présence d’une contrainte seuil dans la fonction de relaxation peut ralentir la formation et le
mouvement des joints. Nous montrons également par des simulations éléments finis que les modèles de type KWC peuvent simuler de
façon spontanée de la germination de nouveaux (sous)grains en raison de la présence de gradients d’orientation cristalline. Un calcul
tridimensionnel de torsion d’une barre monocristalline de cuivre à section circulaire d’axe [111] montre ainsi la formation de sous-grains
le long de la barre en raison du développement d’un gradient d’orientation du réseau dû au chargement. Cette observation est confortée
qualitativement par une comparaison aux résultats expérimentaux sur la torsion d’un monocristal d’aluminium obtenus par M.E. Kassner.

ABSTRACT

Thermomechanical treatment of crystalline materials induces significant microstructural changes that must be understood in order to
control the resulting macroscopic properties. In particular, recrystallization, i.e. the nucleation and growth of grains with low dislocation
density, is of industrial interest for microstructure optimization during metal forming. Despite its importance, the modelling of this phe-
nomenon remains fragmentary. While numerous models have been developed to efficiently simulate the growth phase (Monte-Carlo
Potts, cellular automata, level sets, phase-fields, etc.), the simulation of nucleation traditionally involves the ad hoc introduction of new
spherical or circular grains linked to a critical value of strain, stress or dislocation density. It is therefore necessary to develop models
that spontaneously account for the appearance of new grains. During thermomechanical processes, the (visco)plastic deformation of
the material can lead to a significant reorientation of the crystal lattice and a heterogeneous distribution of orientations can appear within
grains that are initially homogeneously oriented. At the mesoscopic scale, these phenomena are well accounted for by models of crystal
plasticity. An enriched description of matter, such as that of Cosserat continua, also allows size effects to be taken into account. In this
theory, additional degrees of freedom are introduced in the form of microrotations, which can be identified with the rotations of the crystal
lattice by means of internal constraints. We propose new analytical solutions to the problems of torsion of an isotropic elastic-plastic
cylinder and shear of a single crystal. For the latter, different formulations of the free energy potential exploring various dependencies
on the curvature-torsion tensor are studied. Among the available grain growth models, only the two-phase-field approach proposed by
Kobayashi-Warren-Carter (KWC) can model an intragranular orientation gradient induced by deformation. Since phase-field models are
based on a thermodynamic formulation, coupling to mechanics via the free energy potential is particularly straightforward. The full-field
mesoscopic model used in this work, developed by Ask et al., thus combines Cosserat crystal plasticity and the KWC phase-field model
of grain growth. One of the features of the model studied is the inclusion of inelastic relaxation behaviour at the grain boundary in
addition to the (visco)plastic deformation of the grain. Therefore, the choice of the relaxation function on the formation and movement
of grain boundaries is investigated. In particular, the existence of a threshold stress in the relaxation function is shown to potentially
hinder the formation and movement of grain boundaries. We also show through finite element simulations that KWC-type models can
spontaneously simulate the nucleation of new (sub)grains due to the presence of crystal orientation gradients. A three-dimensional
torsional calculation of a single-crystal copper rod with a circular cross section of axis [111] shows the nucleation of subgrains along the
rod due to lattice orientation gradients induced by mechanical loading. This observation is qualitatively confirmed by comparison with
experimental results on the torsion of an aluminium single crystal obtained by M.E. Kassner.

KEYWORDS

Crystal plasticity, Phase field, Cosserat mechanics, Grain boundary migration, Recrystallization,
Finite element method
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