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Abstract

Fallow mapping in West Africa is essential to accurately assess agricultural systems and

its contribution to food security and agro-ecological sustainability of current practices,

and yet the available mapping methodologies are not adapted to the environmental and

cropping conditions encountered when addressing tropical smallholder agriculture. In this

doctoral thesis, we explore different mapping strategies based on supervised classification

techniques and making use of Sentinel-2 imagery and rainfall data as input, as well as

multiple years of in-situ data to map fallow land at local scale in a Soudanian site in

Burkina Faso (Koumbia) between the years 2016 and 2021. Results show that ”tradi-

tional” machine learning based mapping approaches are not sufficient for detecting fallow

land under the given pedoclimatic conditions, resulting in very low accuracy figures (e.g.,

F1-scores below the 0.2 mark). Most promising results were obtained when following a

trajectory analysis approach, where a series of methodological adaptations had to be done

to exploit annual data in a multi-year oriented manner. In this last case we reformulate

the mapping problem to target non-active agricultural land (NAAL) as whole, obtain-

ing F1-score ranging from 0.75 to 0.92 values when validating against complete (no data

gaps) reference data set. Our results show that strategies that incorporate multiple years

of spectral data in their learning process as a potential viable approach, where fallow

land is not described by current status of land surface (i.e. land cover) but rather by the

changes of it along the period that encircles the moment in which crop inactivity begins.

However, results also indicate that the spatial application scope might be limited, with

an augmentation of model uncertainty in areas where no ground truth data is available,

highlighting the need to incorporate unsupervised approaches for enhanced extrapolation.

On the other hand, more explicit multi-year strategies, where temporal analysis is dele-

gated to model classifiers yielded marginally better results than annual direct mapping

strategies, yet performances obtained do not reach satisfying results, with top average

F1-score reaching the 0.44 mark. Methodological development is still required for both

(a) exploiting more efficiently and direct manner multi-year data, and (b) building more

cost-efficient unsupervised solutions that could be tested in areas with a reduce amount

of ground truth data.

Keywords : Fallow, Africa, Sentinel, Burkina Faso, multi-year
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Résumé

En Afrique de l’Ouest, la cartographie des jachères est essentielle pour caractériser les

systèmes agricoles et évaluer avec précision la durabilité agroécologique des pratiques

actuelles et leur contribution à la sécurité alimentaire. Cependant, les méthodes actuelle-

ment disponibles pour la cartographie des surfaces cultivées ne sont pas adaptées aux

conditions environnementales et culturales rencontrées en contexte d’agriculture famil-

iale en Afrique sub-saharienne. Dans cette thèse de Doctorat, plusieurs stratégies de

cartographie des jachères basées sur des approches de classification supervisée ont été

explorées. Pour ce faire, des séries temporelles d’images Sentinel-2 ainsi que des données

pluviométriques ont été confrontées à une importante base de données collectées sur le

terrain entre 2016 et 2021 sur le site de Koumbia, localisé en zone soudanienne au Burkina

Faso. Les résultats de ce travail de thèse ont montré que les méthodes d’apprentissage

automatique, dites ”traditionnelles”, ne permettent pas de détecter les surfaces en jachère

dans les conditions pédoclimatiques de la zone d’étude. En effet, les précisions obtenues

sont très faibles, avec des F1-scores inférieurs à 0.20. Les résultats les plus promet-

teurs ont été obtenus à partir d’une approche basée sur l’analyse des trajectoires. Une

série d’adaptations méthodologiques a alors dû être effectuée afin de pouvoir exploiter les

données annuelles dans leur contexte pluri-annuel. Ainsi, cette thèse s’est concentrée sur

la classe ”terres agricoles non actives” (NAAL en anglais) pour laquelle des valeurs de

F1-scores entre 0.75 et 0.92 ont été obtenus, en considérant un jeu de données de référence

complet. Par ailleurs, nos résultats ont mis en évidence que les stratégies de cartographie

intégrant des informations spectrales pluri-annuelles dans le processus d’apprentissage

constituent une approche viable, permettant de décrire les surfaces en jachère non pas

par leur état actuel (c’est-à-dire par l’occupation du sol), mais par les changements au

cours de la période qui jouxte la mise au repos des cultures. Cependant, nos résultats ont

également montré que le domaine de validité spatiale de l’approche pouvait être limité,

en raison de l’augmentation de l’incertitude du modèle dans les zones où aucune donnée

de terrain n’est disponible. Cela souligne l’importance d’incorporer des approches non

supervisées au processus de classification afin de permettre plus de fiabilité dans le pro-

cessus d’extrapolation spatiale. Des stratégies pluri-annuelles plus explicites, où le proces-

sus d’analyse temporelle est délégué aux algorithmes de classification ont également été

testées et ont montré des résultats légèrement améliorés par rapport aux stratégies de car-

tographie annuelles directes. Toutefois les performances obtenues restent modérées avec

un F1-score moyen de 0.44. Des développements méthodologiques sont encore nécessaires
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pour (a) exploiter de manière plus efficiente et directe les données pluri-annuelles, et (b)

mettre en place des approches non-supervisées plus efficaces pouvant être testées dans les

environnements pauvres en données de terrain.

Mots-clés: Jachère, Africa, Sentinel, Burkina Faso, pluriannuel
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Chapter 1

Introduction

1.1 General context

Sub-Saharan Africa (SSA) has been for decades the center of multiple initiatives, projects

and research studies seeking ways to eradicate hunger, poverty and promote sustainable

development in the subcontinent. In SSA over 22% of population is affected by chronic

hunger, the highest proportion compared to other regions of the world (FAO, 2023).

Climate change, demographic pressure and socio-political instability are some of the main

drivers hindering development towards UN’s 2030 agenda (Desa and others, 2016). West

Africa in particular, has been under intensive demographic pressure, more than tripling its

population since 1960s (FAO, 2022a) (see Fig. 1.1) and is expected to continue increasing

to c.a. 1.5 billion by year 2100 (Vollset et al., 2020). Hence, an ever increasing strain in

primary production systems is to be expected to cope with populations needs, specially

in agriculture sector.

Sub-Saharan agriculture is composed by a large proportion of smallholders where

small cropping fields are common, often less than 1 hectare defining a highly fragmented

agricultural land, characterized by a high heterogeneity at the field level and where soil

degradation, as well as a reduced and financially unaffordable access to mineral inputs

and mechanization, limit crop production (Ruthenberg, 1971; Snapp et al., 2018; Tittonell

and Giller, 2013). In this regard, Lowder et al. (2016) analyzed multiple data sources to

quantify the type of farm, size and distribution of farmland worldwide, indicating that for

the case of SSA, around 80% of farms are less than 1-2 ha and that these operate about

40% of farmland (see Fig. 1.2).

West African cropping systems have traditionally relied on long uncultivated periods

of time to restore natural soil fertility, in some instances surpassing a decade between

two periods of cultivation, after which the next cropping cycle is triggered by a removal

and burning of all natural vegetation that has regrown during this idle period (slash-and-

burn) (Ruthenberg, 1971; Manlay et al., 2000a; Samaké et al., 2005; Faye et al., 2021;

Zoungrana, 1993). However, the necessity to enhance the agricultural production, driven

by a growing population (Vollset et al., 2020), has promoted a shift in cropping systems,
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Figure 1.1: Annual population in Africa by regions (Source: FAO (2022a))

Figure 1.2: Sub-Saharan Africa average distribution of farms and farmland area by land
size classes (Source: Lowder et al. (2016)). Number in parenthesis shows the number of
countries considered.
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which has been characterized by a reduction of fallow land and hence an increase of soil

degradation. The quantification of both active (AAL) and non-active agricultural land

(NAAL) is crucial not only for improving the estimation of potential production in the

region but also for monitoring the sustainability of current intensification trends in local

cropping practices from an agro-ecological perspective.

1.2 Fallow practice

Non-active agricultural land is often used as a synonym of “fallow”, which according

to FAO’s definition accounts to “the cultivated land that is not seeded for one or more

growing seasons. The maximum idle period is usually less than five years” (FAO, 2022b).

Following this definition, what describes a fallow land is (a) the land has been previously

cultivated, (b) the land is not currently being cultivated and (c) it is a temporary state

that ends with a recultivation of land. This implies that the fallow land is actually defined

by its past, current and future use rather than its sole current observable “land cover”.

However, more strict definitions also assume that (d) fallow fields exist as an agricultural

practice within a cropping system as described in Bégué et al. (2018), which in turn implies

that other abandoned agricultural land, due to reasons unrelated to cropping practices

such as soil exhaustion, sociopolitical instability or simply manpower shortage should not

be included within a strict sense “fallow” class. We could therefore establish that the idle

period between two moments of observable active cropping is a necessary condition for

validating a NAAL as “fallow” based exclusively on land cover data.

Fallow practice’s role as mentioned before, relies essentially on its capacity of restoring

soil fertility. Hence, fallow practice is an integral part in many cropping systems world-

wide, but especially interesting in regions with low soil fertility and with reduced access

to mineral fertilization, as it is the case in SSA. Nonetheless, in this same area fallows

can also have additional functions beside soil fertility, as for example a way to provide

animal feed or wood. Moreover, their importance has been further pointed out in recent

times concerning the related implications on climate change mitigation through carbon

sequestration and biodiversity conservation (Dayamba et al., 2016; Ringius, 2002). Shift-

ing cultivation has been the primary agricultural system on SSA, which is characterized

by a period of successive cultivation cycles 2-4 years/cycles, after which land would be

abandoned once crop yields are no longer satisfactory. The period of abandonment (or

fallowing) would vary depending on pedo-climatic conditions going from 2-3 years to more

than 10 years in tropical regions. The duration of the active and inactive periods vary

regionally, depending on the type of crops employed, pedo-climatic conditions and local

socioeconomic factors (Ruthenberg, 1971) . During this uncultivated period, natural veg-

etation would gradually develop, recovering soil natural fertility until a new cultivation

cycle is triggered by cutting out and burning all vegetation (commonly known as slash-

and-burn) before cultivation. However, since the early 1960s scientific literature, authors

have reported a shift in agricultural practices towards more intensive agricultural systems
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in Africa, shortening farming cycles and exhausting soil fertility (Floret and Pontanier,

2001; Zoungrana, 1993; Jahel et al., 2018; de Ridder et al., 2004). This trend has been as-

sociated to demographic pressure and agricultural policies that encouraged specific, more

intensive types of crops such as cotton in Burkina Faso (Jahel et al., 2018; Ouedraogo

et al., 2010), characterized by the use of mineral inputs and mono-cropping (i.e. cultivate

every season with same crop on same land). In fact, Quillemin (1956) already discussed

the importance of fallow practice as well as the degradation of soil, and the consequent

the loss of crop productivity, caused by demographic pressure and the shortening of crop

cycles (see Fig. 1.3).

Figure 1.3: The relation between length of fallow and soil productivity in shifting cultiva-
tion. (a) Case where fallow period is longer than necessary for soil fertility recovery, (b)
fallow period is sufficiently long to regenerate fertility and (c) fallow period is shorter than
minimum needed for soil fertility regeneration (source: Quillemin (1956) and Ruthenberg
(1971)).

Many are the ways and clues commonly used to characterize the implementation and

effects of fallow practices. In most studies, the duration (or “age”) of the idle period

emerges as one of the main features used by authors to describe different categories of

fallow land (Manlay et al., 2000b; Samaké et al., 2005; Faye et al., 2021; Zoungrana, 1993;
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Akpo et al., 2002; Jouve, 1993). Such duration has an impact on the different stages of its

“ecological” development, where the amount, type and predominance of vegetative species

will vary, and hence in the plant/soil carbon storing capacity or potential nutritional levels

for livestock feed (Manlay et al., 2000a; Dayamba et al., 2016; Akpo et al., 2002). Other

abiotic parameters (temperature, soil type, humidity, etc) are also frequently taken into

account, since they further condition its development, creating contrasting conditions

among agro-climatic regions, yet fallow land is utilized for the same purposes. Moreover,

we can identify more “pro-active” types of fallow where land is not simply left aside for

a given period but actively managed, where we can find the so called improved fallows

in which a selection and plantation of woody species is conducted to enhance fertility

restoration during fallow period (Kaya and Nair, 2001). The human influence can also

have an impact over the spatial arrangement of abandoned/fallowed fields as described by

Ruthenberg (1971) in Tanzania, where a rotation system in which available land is divided

and exploited during long 15-year cycles which include shorter (2-3 years) crop/fallow

cycles before moving to a different area (Lericollais and Milleville, 1993). In Floret and

Pontanier (2001) it is stated that for manual agricultural systems a higher probability

of fallowing is observed in those fields further away from villages as they require more

traveling time and workforce, whereas a higher cropping activity is more likely to be found

in the vicinity of households.

Summing up, multiple factors can be identified which describe a widely heterogeneous

typology of fallow land, which we tried to gather and illustrate schematically in Fig. 1.4.

Most of the studies analyzing the role and potential benefits related to fallows in West

Africa (and in entire Africa for that matter) are based theories and hypothesis built on a

cohort of study sites, that provide insights on the factors that determine the characteristics

of this practice. However, these studies depict a portrayal of fallow practices that dates

back more than two decades and is likely in need of updating to reflect the integration of

this practice into contemporary agronomic systems. Few studies have provided explicit

and plausible estimates of the extent of this practice. Hence, considering the cumulative

effect of decades of a growing population since the time when most of these studies were

conducted and the changes that this implies in agronomic systems, there is a need for

analyzing and quantifying its current state, especially in the Sudano-Sahelian area where

most of smallholder agriculture traditionally relies on some sort of temporary agricultural

land abandonment.

As a result of continued needs for accurate information regarding food production and

available land to produce it, a growing interest in refining cropland mapping strategies

has put the spotlight on the different uses of agricultural land worldwide with a particular

attention to fallow practice given its rather extended use in agriculture sector and its clear

impact over land mapping products accuracies.
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1.3 Fallow mapping studies

Satellite imagery has been proved to be a useful tool for generating land cover over

broad regions such as GlobCORINE (Bontemps et al., 2009), CGLS-LC100 (Buchhorn

et al., 2020), or Dynamic World (Brown et al., 2022), allowing for a relatively economic

solution and covering much larger areas compared to in situ surveys, and with continuous

improvements in its spatio-temporal resolution. Nevertheless, NAAL mapping (or fallow

land for that matter) has been, for the most part, disregarded by considering it an implicit

part of a generic “cropland” class.

Indeed, few studies propose specific methodologies for mapping and quantifying non-

active agricultural land through the analysis of satellite imagery. These works are quite

varied in terms of the spatial scale, from regional level in California (Wallace et al., 2017)

or in China (Zhang et al., 2014), to entire countries (Qiu et al., 2022), continental scale

(Estel et al., 2015, 2016) or target specific agro-climatic zones such as the Sahel in Africa

(Tong et al., 2020). Almost all these attempts for differentiating non-active agricultural

land are based on the hypothesis that fallow land exhibits a significantly different spectral

signature during the growing season with respect to active cropland, and then implement a

classification strategy based on machine learning algorithms (Tong et al., 2020, 2022; Estel

et al., 2015; Rufin et al., 2022) or a rule-based system at an annual scale (Wallace et al.,

2017; Qiu et al., 2022; Zhang et al., 2014). To the best of our knowledge, only few studies

have implemented strategies using input data which exceed a single growing season for

determining whether a field is being actively cropped or not. In these cases (Yin et al.,

2018; Dara et al., 2018), decades of Landsat data are used for determining a cropland

probability, and land use classes are subsequently determined by inflection points of this

probability through time. Moreover, in more recent studies (Rufin et al., 2022; Tong

et al., 2022) a complementary verification is performed for “fallow” fields, requiring them

to being cultivated once on previous years. A particularly interesting approach is proposed

in Zhao et al. (2023) to estimate the proportion of abandoned cropland (hence not directly

targeting fallow land) in Yunnan province in China using long time-series of Landsat

imagery and a trajectory analysis based on long term land use annual mapping. Thus,

establishing a multi-year temporal relationship as a strategy for NAAL identification,

either for generating reliable reference data sets or as part of their mapping methodology,

appears to be a point of convergence for scientific community. Regardless of the strategy

implemented, these approaches often rely on the use of a cropland mask to focus the

analysis on arable land only : GlobCORINE map cropland class in Estel et al. (2015,

2016), USDA-CDL in Wallace et al. (2017) and Wu et al. (2014), or CGLS-LC100 in

Tong et al. (2020). Moreover, data acquisition for training and/or validation is based

for the most part on photo-interpretation of high resolution imagery or relying on the

availability of a single season in situ data collection.

Summarizing, most of the remote sensing-based methods to monitor fallows require

either (a) prior knowledge of cropland, (b) a crop/fallow reference data set obtained from
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ground surveys or through photo-interpretation, and (c) contrasted seasonal spectral sig-

natures among the land cover and land use (LCLU) classes. The first requirement usually

implies the use of accessible global cropland products. In West Africa, the accuracy of

such products is generally low to moderate, depending on the farming system in place

(Leroux et al., 2014) with below 70% user accuracy on best cases (Samasse et al., 2018;

Xu et al., 2019). The second requirement must cope with the lack of reliable ground truth

data, which is often insufficient in both time and space, or available imagery does not allow

the visual recognition of small and heterogeneous crop/fallow fields. Moreover, the latter

requirement assumes a clear delimitation of cropland space (first requirement), however,

under less favorable context, one can risk omitting fallow land as a consequence of a poor

quality cropland mask. Alternatively, if no cropland mask is employed, the classifica-

tion is further extended by including non-cropland vegetated spaces which are exposed to

the same dynamics one can expect for fallow land (e.g. same vegetative species, abiotic

conditions). This last issue connects directly with the third requirement (i.e. highly con-

trasted spectral signatures), which is rarely verified in tropical West Africa where, most

of crops are rainfed, hence exhibiting any potential discriminating phenological develop-

ment synchronously to other non actively managed vegetated spaces. Furthermore, given

the rainfed nature of both cropped fields and naturally vegetated spaces, most of optical

remote sensing imagery is unlikely to be fully exploitable due to cloud coverage.

1.4 Objectives

In light of the implications of fallow practice (or in a more broad sense, the presence

of NAAL) in food security and other related environmental services, the evident lack of

monitoring systems and the challenging “radiometric context” in West Africa, we state

our main general objective for this thesis as:

Explore and evaluate viable strategies for the identification of non active

agricultural land (NAAL) in typical West African agro-systems through

the analysis of high resolution satellite image time series relying on

machine and deep learning classification algorithms.

We also establish a series secondary objectives for this thesis:

• Determine what are the properties and conditions observable

through remote sensing data that allow fallow detection

• Quantify the need of reference data on land use/land cover which

enable the different fallow mapping strategies (annual or multi-

year).

• Provide recommendations for sampling protocols based on expe-

rience obtained in the different tested approaches.

To this end, we assume that recent satellite missions such as ESA’s Sentinel-2, delivering
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high-resolution and high frequency acquisitions in the optical multi-spectral domain over

the globe, may indeed provide enough information to tackle some of these issues : (i)

decametric spatial resolution can suitably address the spatial scale of the average field

size in most of West African agrosystems, thus coping with landscape fragmentation

issues, (ii) 5-day revisit time generally guarantees the acquisition of a sufficient number

of images over a cropping season for tracking vegetation growth stages at field scale to

some limited extent, and (iii) a sufficiently long archive of data (starting from late 2015)

which largely encompass an entire fallow cycle (according to the FAO definition, see

FAO (2022b)). Nonetheless, the diversity of cropping practices (sowing dates, cropping

patterns, etc.) in conjunction with the local variability of the cropping conditions (soil,

rainfall) may hinder the identification of specific agricultural land uses based on the sole

image-derived spectral and temporal signatures (Inglada et al., 2015). We will focus on a

representative study site of the Sudanian region in West Africa for which a ground truth

dataset is available with observations of land use over multiple consecutive years covering

the period 2013-2021.

The general approach followed in this thesis is based on first performing a series of

preliminary analysis over available ground truth data in order to identify potential radio-

metric features that can be associated to non-active agricultural land (Chapter 3). Sub-

sequently, we employ these insights to elaborate and test different classification strategies,

separated into three different chapters (Chapters 4, 5 and 6), each varying in technical

complexity, in terms of training data set and relying on different manners to conceive

non active agricultural land. In Fig. 1.5 we illustrate a schematic summary of the struc-

ture of this work, where in Chapter 2 (left side box) we describe the data and methods

employed in the all the subsequent chapters. A series of preliminary analysis conducted

over the ground truth data are presented Chapter 3, where we test different hypothesis

and explore potential radiometric features that can describe fallow land. In Chapter

4 we test two annual direct mapping strategies where we use traditional satellite image

time series classification workflows for discriminating fallow land, basically providing a

baseline approach that we intend to improve by shifting to multi-year analysis. In order

to leverage the intrinsic multi-year nature of non-active agricultural land, in Chapter 5

we present a first strategy based on a multi-year land cover/land use trajectory analysis

for annual NAAL mapping. In Chapter 6 we test two different strategies for mapping

NAAL which, contrarily to our previous setting, advocates the use of multiple consecutive

years of radiometric data as input data in order to build a proper NAAL classification

model. Finally, in Chapter 7 we provide an in-depth discussion about the outcomes of

our experiments and we draw conclusions.
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Chapter 2

Material and methods

2.1 Study site

Figure 2.1: Location of the Koumbia study site in South-West of Burkina Faso (top left),
JECAM ground data set polygons (Jolivot et al., 2021) and Sentinel-2 sub-image in 2017
(right), and a zoom-in (bottom left).

In this thesis work we focus on a study site located in the commune of Koumbia, Tuy

Region, in South-Western Burkina Faso (see Fig. 2.1), covering an area of over 2500

km2. In this area, rainfall distribution over a year is uni-modal and averaging between
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900-1200 mm (see Fig. 2.2), which corresponds to typical values in the Sudanese agro-

climatic zone (Abdoulaye et al., 2017). Cropping season begins on late April-May and

extends till November-December, in concordance with the rainy season. As in most part

of the Sahelian area, the study area is characterized by a tree-based cropping system,

where multipurpose trees have been deliberately preserved and managed by farmers on

agricultural land (Boffa, 1999). The cropping system is rainfed, relying mainly on maize-

cotton rotations. Other crops include sorghum, millet, groudnuts, sesame (we group these

groundnut and sesame within the oilseed label) and leguminous (e.g. cowpea) crops.

Predominant soil textural types are sandy clay loam and sandy loam, accounting for 44%

and 54% respectively in the region of study (Miller et al., 2021).

Figure 2.2: Monthly precipitation for all years considered (2016-2021) for Koumbia study
site (Source: CHIRPS data Funk et al. (2014)).

2.2 Data

2.2.1 Reference data set

Across the multiple analysis performed, we employed as reference data the Koumbia

subset of the recently published JECAM1 (Joint Experiment for Crop Assessment and

Monitoring) harmonized in-situ data set2 (Jolivot et al., 2021). This ground data set

includes land cover and agricultural land use in-situ observations collected annually over

the Koumbia site during the 2013-2021 period (on average, c.a. 840 observations per year).

The data set is built upon field missions conducted during the growing season where field

1https://www.jecam.org
2Access data at: https://doi.org/10.18167/DVN1/P7OLAP
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operators collected waypoints for fields of at least 20 m2 and were equipped with GPS

tablet. Tablet disposed of a Very High Spatial Resolution (VHSR, SPOT 6/7 imagery)

image acquisition of the site as a basemap, obtained during that same season. Field

boundaries were digitized afterwards ex situ based on these same VHSR images. Each

object (polygon) is annotated at both a land cover level, using a general nomenclature

including the agricultural land in a single class (cropland, which includes also “fallow”

land), and a set of classes related to natural areas (discriminating herbaceous savanna and

natural pastures from shrubby and woody savanna and forests), water bodies and non-

vegetated areas (built-up surfaces andmineral soils). In the JECAM data set, information

on the crop type is also available for each polygon within the cropland class. We used

this information to build an intermediate-level nomenclature named “Crop group”, to

keep fallow fields and active agricultural land (cash crop, cereals, leguminous, oilseed)

separated. Details on the final nomenclature along with the surface covered by each class

are given in Tab. 2.1.

Information for year 2019, originally missing from the published data set, was collected

in 2020 by a local agent who carried out a delayed field survey, during which details on

fallow land could not be collected.

Table 2.1: JECAM Koumbia data set area (ha) at land cover and crop group levels.

Land cover Crop group 2015 2016 2017 2018 2019 2020 2021

Bare soil 1.60 1.41 0.66 1.33 0.00 3.40 1.90
Built-up sur-
face

6.59 11.48 8.21 8.59 5.98 9.50 9.79

Herbaceous
savanna

85.70 102.02 110.90 111.58 62.58 64.45

Natural pas-
tures

11.25 18.68 12.52 16.88 0.00 43.42 23.26

Shrubby sa-
vanna

214.43 229.51 241.94 231.96 214.43 219.04 235.59

Woody sa-
vanna

0.00 21.84 17.10 35.67 0.00 0.00 7.44

Forest 133.70 130.88 142.32 139.77 115.61 155.02 142.67

Water bodies 12.24 12.24 12.24 12.24 12.24 12.24 12.24

Cropland Cash 73.71 105.78 212.01 94.22 102.59 81.16 114.78
Cereals 171.53 179.51 232.07 159.50 161.14 109.74 172.20
Leguminous 34.94 39.40 27.33 36.00 17.37 71.90 96.71
Oilseed 50.04 42.60 35.22 15.63 8.52 28.69 34.08
Fallow 32.13 20.64 21.79 7.69 0.00 8.74 9.41

Total 865.61 917.49 1077.30 872.65 700.92 809.10 924.28

2.2.2 Satellite and environmental data

In all the analysis conducted in the different chapters that compose this manuscript, we

employed L2A Sentinel-2 (S2) image time series. The Copernicus Sentinel-2 mission in-

cludes a constellation of 2 satellites carrying a single multi-spectral instrument (MSI) with
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13 spectral channels distributed in the visible/near infrared (VNIR) at 10 m spatial reso-

lution, in short-wave infrared (SWIR) at 20 m spatial resolution, and in complementary

bands at 60 m spatial resolution for cloud screening and atmospheric corrections (Drusch

et al., 2012). All available images between 2016 and 2021 were downloaded from Theia3

Land repository, and pre-processed using the open access MORINGA processing chain

(Gaetano et al., 2019). Image pre-processing includes resampling the SWIR 20 m bands

to 10 m resolution, and image time series gap filling of cloudy pixels using multi-temporal

linear interpolation as explained in (Inglada et al., 2017). Gap-filled images were gen-

erated at a regular 10-day frequency and six vegetation-related radiometric indices (see

Tab. 2.2) were calculated and appended to the reflectance bands for each time-step.

The soil type being a possible driver in the occurrence and duration of fallow practices

(Samaké et al., 2005), we also computed for each year the median values of several soil

indices using images acquired during the dry season (January - June) when the vegetation

has not yet grown and the soil is visible. Four soil indices have been chosen, along with the

Normalized Burn Area ratio as a variable describing the occurrence of fires, potentially

related to slash-and-burn practices happening during the dry season prior to cultivation.

A table resuming the computed indices used in this study, and their formula, is reported

in Tab. 2.2.

Finally, in order to take into account rainfall in our analysis, we also acquired CHIRPS

v 2.0 (Funk et al., 2014) monthly rainfall data, originally at 0.05◦ (≈ 5.5 km) spatial

resolution, reprojected over the S2 grid at 10 m resolution, using bicubic interpolation

(see Fig. 2.2). Besides the fact that a significant downscaling error is likely, rainfall is

known to be highly spatially variable in West Africa (Graef and Haigis, 2001; Lebel and

Le Barbé, 1997), we make the assumption that these data may relate to the site-scale

rainfalls.

In those instances where random forest-based classification tasks result into accuracy

metrics beyond the 0.5 mark (see Sec.?? an assessment of the contribution of each input

variable on model decision is part of our analysis.

2.2.3 Complementary spatialized data

Additionally, as part of the preliminary analysis described in Chapter 3 we download

some complementary spatialized data which is not employed in classification strategies

(i.e. Chapters 4, 5 or 6). More specifically we retrieved the high resolution (30 meter

pixel) ISDA top 20 cm (0-20 cm soil depth) USDA soil textural classes (Miller et al., 2021)

data for our study site; We also retrieved the High Resolution Settlement Layer (HRSL)

(Lab and for International Earth Science Information Network-CIESIN-Columbia Uni-

versity, 2016), containing information on human settlements in both urban and rural

environments, as well as and population density for year 2015 at a pixel resolution of

3THEIA is the French Land Surface Pole gathering academic and public institutions to facilitate the
use of Earth observation for monitoring continental surfaces. See https://theia-land.fr for more
information.
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Annual
time-step

Index Formula Reference

10-day Normalized Differ-
ence Vegetation In-
dex

NDV I =
B8−B4

B8 +B4
Rouse et al. (1974)

Normalized Differ-
ence Water Index

NDWI =
B3−B8

B3 +B8
McFeeters (1996)

Brightness Index BRI =
√
B22 + · · ·+B122 Inglada et al. (2017)

Modified NDWI MNDWI =
B3−B11

B3 +B11
Xu (2006)

Short-wave NDVI SWNDV I =
B11−B8

B11 +B8
Gao (1996)

Normalized Differ-
ence Red Edge In-
dex

NDRE =
B8−B5

B8 +B5
Barnes et al. (2000)

Seasonal
(Jan-
Jun)

Redness Index RI =
B42

B33
Mathieu et al. (1998)

Color Index CI =
B4−B3

B4 +B3
Mathieu et al. (1998)

Brilliance Index BI =

√
B32 +B42

2
Mathieu et al. (1998)

Brilliance Index II BI2 =

√
B32 +B42 +B82

3
Escadafal et al. (1989)

Normalized Burn
Ratio

NBR =
B8−B11

B8 +B11
Garćıa and Caselles (1991)

Table 2.2: List of the radiometric indices used. Provided bands refer to Sentinel-2 nomen-
clature (B2 is the blue band, B3 is green, B4 is red, B5, B6 and B7 are red-edge bands
(700-800 nm),B8 is near infrared and B9, B10, B11 and B12 are short-wave infrared
bands (950-2200 nm)). The first group corresponds to the multi-temporal indices com-
puted at 10-day frequency over a whole year; The second group refers to the soil indices
computed for the January-June period.
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approximately 30 meter.

Notice that the ISDA soil data is a machine learning based predicted map which

exploits over 40 000 soil samples in sub Saharan Africa. In this regard, we also generated a

10-meter resolution custom soil typology using Sentinel-2 imagery for enhanced resolution

in our study site. For details in the protocol followed see annex section Dry season soil

map generation procedure.

2.3 Image classification methods

Concerning the supervised classification strategies that were implied throughout the the-

sis, we mainly rely on two state-of-the-art machine learning methods which have proven

their way in land cover/land use classification from satellite image time series. The first

is the long time popular Random Forest technique, a classification method widely em-

ployed for highly multivariate data and consolidated for time-series classification tasks.

As an alternative method, we considered the Temporal Convolutional Neural Network

(TempCNN) (Pelletier et al., 2019) a novel technique from recent Deep Learning litera-

ture which, contrarily to Random Forest, explicitly models temporal correlation. These

two methods (for which a brief description is given below) are used for implementing dif-

ferent NAAL discrimination strategies which vary in the amount of data given as input,

nomenclature used in ground truth reference data (according to how we group the original

JECAM land use classes) and the target class and period (usually a year).

For every classification task we provide a specific validation using dedicated portions

of the JECAM land use/land cover data as reference data and providing the following

confusion matrix derived accuracy metrics: overall accuracy (OA), user accuracy (UA),

producer accuracy (PA) and per class harmonic mean (F1-score) (see Müller and Guido

(2016)). Due to the highly unbalanced representation of classes, where cropland and

natural spaces are highly over represented, OA is prone to be highly influenced by these

majoritarian classes and hence not providing sufficient detailed insights. User accuracy

and Producer accuracy can both provide better per-class details on commission and omis-

sion errors respectively. Yet, we deemed F1-score as a more representative metric of

per-classes performance that can consolidate both UA and PA into a single metric with

values ranging from 0 to +1 (with +1 being a perfect score). As we will specify in more

details later in the manuscript (see Sec. 2.3.3), we will rely on a k -fold cross-validation

(Müller and Guido, 2016), a process that splits reference data in k equally distributed

subsets, of which k -1 concur to the model training and the remaining fold is used for

testing. In principle, k different models are built at each training stage, and the final ac-

curacy metrics are averaged over the k complementary models. Once classification models

are trained and validated, we typically generate classification maps. These maps are con-

structed by first generating per model (5 maps) probability maps and then assigning the

final class as the class with the highest average probability across all five probability maps.
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2.3.1 Random Forest Classifier

Random Forest (Breiman, 2001) is an algorithm part of the ensemble decision tree family,

commonly used in image classification tasks due to its predictive accuracy with largely

multivariate data and ease of parameterization. This algorithm relies on a multitude of

decision tree classifiers each performing a prediction based on a different random subsets

of the input features provided. For its part, a decision tree classifier explore the feature

space to find a suitable hierarchical partitioning of the source data based on simple feature-

wise rules (e.g. thresholding), conceptually generating a tree representation of the input

data whose leaves contain samples belonging to a single class (see Fig. 2.3). The main

hyperparameters of a Random Forest classifier hence are the number of decision trees in

the “forest”, the maximum depth of these trees, the number of features to select for each

tree and the level of “purity” of their leaves (i.e., the maximum number of samples in each

leaf). Once the trees are built, the final prediction is the result of the most voted class

across all trees that composes the forest. As a consequence, Random Forest predictions

are based on statistically reliable decision rules, generally providing low levels of over-

fitting. It is a very popular method in classical machine learning which is employed in

a large number of different fields, including remote sensing where it has long been a de-

facto standard for LULC mapping applications (e.g. Gbodjo et al. (2021); Inglada et al.

(2017); Estel et al. (2015)). A complementary characteristic of Random Forest is that,

once the model is trained, feature importance measures can be computed according to

their occurrences in the different decision trees, and to the average level in which each

tree considers them (features used closer to the tree root are generally more important).

This allow for an in-depth inspection on the discriminative potential of each variable, and

consequently, the possibility to optimize the model in terms of trade-off between speed

and accuracy. However, with regards to its use in multivariate time-series, Random Forest

exploits each feature independently, resulting in a lack of exploitation of any possible

temporal correlation between timestep. For this reason, we decided to also test a second

classification method in our experiments, which is introduced in the following subsection,

especially conceived to explicitly model temporal correlations in time series of satellite

images.

2.3.2 TempCNN classifier

The Temporal Convolutional Neuronal Network (TempCNN) is a deep learning classifier

develop by Pelletier et al. (2019), specifically designed for working with time series of

satellite images and explicitly modeling the temporal correlation between the different

timesteps composing the series.

In a classical supervised deep neural network, data is processed through a series of

consecutive layers which take as input data the outputs of the previous layer. Each layer

is composed of a given number of units (or “neurons”) and generates its outputs by ap-

plying a so called “activation” function to a linear combination of its inputs. There are
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Figure 2.3: General schema of a decision tree in a four class classification task. F1, F2,
F3 and F4 represent input features.

multiple types of layers that process data differently, where the most common types in

a Convolutional Neuronal Network (CNN) are convolutional layers, non-linearity layers

and pooling layers (Zhang et al., 2016). Training a deep learning model consists in find-

ing the constants, or “weights”, of each internal layer. This is usually done through an

iterative process where the model is assessed through a loss function to minimize (e.g.

the categorical cross-entropy (Goodfellow et al., 2016) for the typical multi-label classifi-

cation task) and then weights adjusted performed through an optimization strategy. The

optimization strategy (e.g. stochastic gradient descent (Bottou, 2010)) is what defines the

actual learning process, basically performing a back-propagation of the current error by

translating it into slight modifications to the layers’ weights.

Back to TempCNN, The building blocks of the TempCNN architecture are one-dimensional

convolutions operating in the time dimension and working jointly on all the set of input

variables (see Fig. 2.4). The input time series flows through three consecutive convolu-

tion layers, followed by one dense layer that connects all neurons of the last convolution

layer to each output unit, and finally a Softmax layer where outputs from the dense layer

are employed to generate a probability-like classification with values ranging from 0 to

1, hence compose of C output units, where C is the number of target classes. Several

additional mechanisms intervene in the learning strategy (dropout, weight regularization,

batch normalization, see Pelletier et al. (2019) for details) to avoid over-fitting and make

the architecture more robust and resilient to noisy data.

Notice that, in a classical deep learning classification task, data is usually divided

into three independent parts training data set, used for learning patterns, a test data

set for evaluating generated model accuracy and a validation data set use during the
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Figure 2.4: TempCNN architecture scheme. The network input is a multi-variate time
series. Three convolutional filters are consecutively applied, then one dense layer, and
finally the Softmax layer, that provides the predicting class distribution. (Source: Pelletier
et al. (2019)).

training phase for evaluating and assessing model performance after each epoch, typically

to stop the learning process when no significant improvements are measured on loss decay.

However, since we work with a reduced data set, we opt for preserving data for model

training and test only, using an heuristically determined number of epochs as learning

duration. Details are given in the experimental sections.

2.3.3 General model training protocol

In this manuscript we will discuss multiple model training tasks that, unless specified

otherwise, follow the same general protocol described in the following paragraphs. Due

to an overall reduced amount of reference data (at least from the machine learning/deep

learning point of view), especially when considering fallow land, it was decided to imple-

ment a k -fold cross validation design in the training procedure. Hence, data is split into

five different (5 fold) subsets. In this manner, for each trial we train five models, each

trained with a different combination of the available data. In each training job, model is

trained with four out of the five folds (k -1 ) and validation is performed in the remaining

fold. To cope with potential disparities in the amount of data for classes considered (i.e.

some classes could not be equally represented among folds) and spatial auto-correlation

issues in the validation process (Ploton et al., 2020), the sampling of data for the gen-

eration of folds happens at the level of polygons in the JECAM data base, following a

stratified approach to ensure that the percentage of selected polygons is preserved in each

class to the extent possible. We hence make the underlying assumption that, within each

class, polygons have comparable areas (same order of magnitude), i.e. the distribution of

samples across folds at pixel level will not differ significantly.

2.3.4 Classifiers setup

In this paragraph the basic parameterization for the two classification techniques described

above are resumed. With due exceptions, these are the setting used in all the experiments.

39



CHAPTER 2. MATERIAL AND METHODS

Random Forest

Concerning the Random Forest (RF) classifier, we use the python package scikit-learn

v1.2.2 implementation (Pedregosa et al., 2011). For all our experiences we set the pa-

rameterization based on previous ones over data in similar agro-climatic contexts and for

comparable classification complexity. As we described in Sec. 2.3, RF has a reduced

number of critical parameters to calibrate which may significantly impact the classifica-

tion performances, which made the validation of the parameterization on our data sets

relatively easy. More in detail, in our training setup we set the number of trees in forest

to 400. Increasing this value does not generally translate into improved accuracies while

requiring higher processing time, whereas the opposite (lower amount of trees) provides

significantly lower performances. We also set the minimum number of samples required

to split an internal node to 25 (with no limit to the depth of the trees), which favors

generalization and speeds up processing especially at inference time. All the rest of pa-

rameters are left with default values, where the most relevant one is the maximum number

of features employed at each tree split which is set by default to the root square of the

maximum amount of input features.

As we will see in the different strategies tested further in this manuscript, avoiding

unnecessarily complex models is fundamental for both obtaining sufficiently robust per-

formances and optimizing computing resources.

A separated parameterization was employed for the case of the unsupervised approach

detailed inChapter 4 where we used the Random Forest implementation of OrfeoToolbox

(OTB) v7.2.0. (Inglada and Christophe, 2009). This setup used a maximum number of

trees of 200, a training/validation ratio of 0 (i.e. all data is used for training) and default

values for the remaining parameters. The latter setup is employed for an unsupervised

approach whose accuracy was tested with ground truth data.

TempCNN

With regards to TempCNN, we only slightly modified the implementation provided by

the original authors (see Pelletier et al. (2019)) in the Keras library (Chollet et al., 2015)

with Tensorflow deep learning framework as backend (Abadi et al., 2016), and given

the similar application context and volumes of data concerned, we also inherited the

default parameterization of the original work, namely 64 units for each of the internal

convolutional neural network layer, and 256 units for the subsequent dense layer. The

number of input variables accepted by the model was modified accordingly to work with

16 variables per date (only decametrics variables from Sentinel-2 reflectances and indices).

Moreover, early stopping of the learning procedure was deactivated and the number of

training epochs is fixed at 20: the reason of this choice is that early stopping needs a

dedicated portion of the reference data set (usually called validation data set in the deep

learning context), which is not provided in our case in order to keep most of the reference

data for the more critical training and test phases. We still keep 5% of training data
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in each fold for model assessment after each training epoch (too few to decide for early

stopping) in order to track the loss decay and check for the appropriateness of the training

length. As in the original work, dropout rate is fixed to of 0.5 to minimize over-fitting

issues.

In order to enable the fusion of per-fold model predictions, we modified the final layer

in the architecture (the softmax layer) to directly yield per-class probabilities at pixel

level instead of providing labelled samples. Final labelled maps are generated using these

probability maps as described in Sec. 2.3.
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Chapter 3

Exploratory analysis

In this chapter we will provide a deep insight into the JECAM data set and analyse

the information it provides about the fallow practice. More specifically, we will try to

understand how this practice relates to the local pedo-climatic conditions, and mine into

the associated spectral, temporal and spatial features to better identify the methodological

clues allowing for the mapping of this practice. We employ Burkina Faso JECAM’s

data subset (from now on also addressed as Koumbia dataset) as a spatial reference and

Sentinel-2 images as input data to calculate spectral features, pre-processed as described

in Chapter 2. Our idea is to formulate and test different hypotheses, as those introduced

in Chapter 1 (See Fig 1.4, on how the implementation of fallow practices may be related

to specific descriptors which could be extracted by combining these two sources of data,

hence helping with the conception of a mapping strategy based on such information.

3.1 Spatial analysis of reference data set

A first important step towards the proposed analysis is to assess the appropriateness of

the reference data set to be used jointly with the available Sentinel-2 image time series,

especially from the point of view of its spatial characteristics in the perspective of coupling

such data with the specific resolution and level of details of the imagery employed.

For our case, the reference data set is built upon field data which has been collected

over multiple years, suitably processed and stored in vector GIS format. We can find

multiple overlapping entities (polygons) that cover the same area, but registered on in-

dependent field missions conducted on different years. As a consequence, inter-annual

spatial discrepancies may emerge when considering data year by year (g̃rowing season)

(see Fig. 3.1). Some of these spatial discrepancies could be caused by shifts in the ac-

quisition protocol followed for generating the data set (see Chapter 2): for example,

unaligned polygons could be associated to a change of boundary for a given field, whereas

missing fields (i.e. “holes” in the multi-year sequence of records) can be explained by

differences in the itinerary during the field mission or inability to recognize the specific

land use (e.g. passage after harvest).
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In general, we can identify a significant number of instances where previously registered

fields are delimited differently in subsequent field missions, suggesting a farmer-driven

reshaping of fields. Nonetheless, the overall surface of the Koumbia dataset which overlaps

through multiple years might be sufficient for a reliable characterization of multi-year

dynamics. However, in order to better assess this potential, and possibly even exploit

field spatial dynamics in the conceptualization of a fallow mapping strategy, we conducted

an in-depth analysis to quantify the proportion of fields that are exposed to these inter-

annual reshaping, which will be presented in the next subsection.

Figure 3.1: Example of two consecutive years of JECAM vectorial data with significant
miss-matched surfaces.

3.1.1 Inter-annual spatial variation quantification

To quantify the proportion of fields that are affected by significant inter-annual spatial

variations we adapted an analysis based on the comparison of segmentation maps over

the area using the so-called Hoover metrics (see Hoover et al. (1996)). Just as a reminder,

image segmentation is a process that takes an image as input (generally a multi-band

image) and provides a partitioning of such image into disjoint objects (i.e. aggregates

of pixels) covering the whole image extent. In other words, each image’s pixel ends up

belonging to one and only one object, and all pixels are assigned to a corresponding object.

Many approaches exist to accomplish this task, some more appropriate than others for a

use in remote sensing such as the “superpixel” approach proposed by the SLIC algorithm
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(Achanta et al., 2012), statistical image processing methods (Gaetano et al., 2007), or

region/object growing techniques (Baatz et al. (2000).

Hoover analysis allows the user to compare the objects defined by two different seg-

mentation (in general, a reference one and a machine-generated one, but the comparison

apply to any possible couple of segmentations) and identify if the objects of the two maps

lying in a same area are matching (i.e. they cover the same area within a given toler-

ance), over- or under-segmented (i.e. a group of objects in one map lies in the extent of

an object in the other one). In our case, we decide to somehow divert the use of this tool

to compare two sets of objects issued by the rasterization of the Koumbia dataset over a

given image lattice as a spatial reference. This allows for the detection of the temporal

dynamics of fields (i.e. fragmentation through over-segmentation), and merging through

under-segmentation) at least on the annotated sample to provide a statistical insight. The

Hoover metric calculations operates as follows:

• two objects from the first and the second segmentation are matching (labelled as

correct) if their intersection is above a given percentage (threshold th) of their

respective area;

• a over-segmentation is detected if an object of the first map posses at least th-

percent of its surface, distributed into a set of objects of the second map, whose

total surface also must overlap the first object of at least the same percentage;

• a under-segmentation is the exact opposite of a over-segmentation : the overlap

between a set of objects of the first map and a single one of the second is reciprocally

at least th-percent of total respective areas;

• all other situations are simply marked as a non-correspondence (labelled as missed)

between the corresponding objects.

Prior to hoover analysis, a series of pre-processing steps on the original spatial data

sets have been necessary in order to provide a consistent comparison. In particular, after

filtering out all fields not belonging to the cropland or fallow classes, for each year’s data

set:

• a spatial processing is performed to collate spatially all adjacent fields with the same

crop type, to cope with cases in which a single field has been digitalized in two parts

(probably as a legacy of previous digitalizations in the same area). First, fields are

dilated using a small buffer size (1 m), then all overlapping polygons belonging to

the same crop type class are dissolved (merged). A final negative 7 m buffer reduces

fields to their final “core” surface;

• the resulting pre-processed data set is rasterized using the crop type or fallow class

numerical identifier, over an artificial 5 m resolution grid (i.e., using as minimum

sampling units a surface of 25 m2), as a compromise between the preservation of the
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original field shapes, the computational burden and the proximity with the Sentinel-

2 spatial resolution;

• the connected components of the resulting raster (i.e., sets of adjacent pixels with

the same class label) are independently labelled, in order to identify the different

portions of field which are issued by a spatial split either forward or backward in

time.

Finally, for each couple of subsequent year under analysis, a mask is applied to only

include the common annotated surface. This is necessary to eliminate any residual bias

due to a different application of the sampling/digitalization protocol from one year to

another, which may lead to a considerable false detection of field boundary reshaping.

For the computation of the Hoover metrics, we make use of the tool implemented

in the Orfeo Toolbox (OTB, v7.2.0). We then run the Hoover analysis over all couples

of consecutive years of rasterized data sets, setting the overlapping threshold th by trial

and error to 75%, which turns out to be a sufficiently restrictive value for detecting only

significant changes in landscape. Note also that this technique provides a labelling of each

independent object that can be consistently interpreted in both the senses of analysis (i.e.,

an over-segmentation in one sense is detected as under-segmentation in the other, etc.),

thus making a causal analysis (through consecutive years in a single temporal direction)

exhaustive w.r.t. all possible field boundary variation scenarios.

An example depicting the whole procedure is reported in Fig. 3.2: some typical frag-

mentation examples are in the left part of the sample area, with sets of monocrop maize

fields in 2016 that are first remapped to single fields after pre-processing (see second row),

in order to enable the detection of the field fragmentation happening in 2017 on the same

surfaces (e.g., the big 2016 maize field in the top left part which is split in alternate maize

and cotton fields in 2017). Also a merging is reported (bottom right of the area, in blue),

on a small 2016 maize field which is merged to a big cotton field in 2017. The missed

field is here considered too small (outside the 75% threshold) to be significant, while all

green areas are “compatible” fields within the 75% threshold, net of any gaps in the dig-

italization protocol.

A statistical synthesis of the result, reported in Fig. 3.2, shows a ratio of inter-annual

spatial variation, which is the sum of both types of possible segmentation discrepancies

(i.e. over/under segmentation) reaching around 0.25 (or 25% of annual cropland in pixels)

for five periods out of six, with significant lower values only for the 2013-2014 comparison,

mainly due to a lack of common annotated surfaces. These results indicate a consistent

active process of reshaping land surface use. Notice that periods related to year 2019 are

not included since no vector data was initially available for this year. Note also that the

given percentages only concern major modifications in field shape dynamics, due to the

tolerance that we use in detecting coherent object splits and merges.
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Figure 3.2: Example of inter-annual spatial variation results adapting Hoover segmenta-
tion comparison tool. (Top) Source JECAM fields, (mid) geo-processed JECAM fields
prior to 5-meter rasterization and (bottom) color coded Hoover results using year 2016
as ”ground truth”.
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Figure 3.3: Ratio of surface subjected to inter-annual spatial variation (fields either split-
ted or unified). Fields are considered exposed to inter-annual spatial variation if at least
75% of its surface is affected. Values represent the total portion of rasterized cropland
fields.

3.1.2 Reference data set spatio-temporal harmonization

A second main objective of this part of the work is to use the multi-year Sentinel-2 time

series introduced in Chapter 2 to characterize the effect of agricultural land use dy-

namics in the productivity of vegetated cover, particularly using the NDVI radiometric

indices to identify trends related to the occurrence or absence of fallowing periods. To this

aim, having a spatialized multi-year data set is a great opportunity, since this allows the

aggregation of radiometric indices at the plot scale, enabling a more robust characteriza-

tion through zonal statistics. This aspect is fundamental in such agrosystems, due to the

strong intra-field variability which would make a point sampling strategy too uncertain.

Nonetheless, the analysis presented in the previous section raises an important issue

in the perspective of performing a robust characterization of fallow surfaces using the

multi-year satellite image time series. In fact, the reference data utilized lacks rigorous

spatio-temporal continuity. This inconsistency arises not only from missing fields reported

for certain years but also from the local reshaping of agricultural boundaries. For this

last reason, when using the original polygons from the Koumbia data set, fields that are

registered as fallow (or other LULC classes for that matter) in a given year, although

significantly overlapping with their homologous, are with high probability reshaped into

a new field disposition in another year, if not omitted due to a missed visit during the

field mission. If the latter problem eventually causes a simple missing value in the series

of recorded land uses, the former on its side generates ambiguity about the surfaces that

must be used to aggregate zonal statistics from the satellite images. For these reasons, we

decided to construct a spatially consistent vector data set allows the multi-year analysis
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of the agricultural land use but at the same time preserves most of the original JECAM

data.

The idea is to enforce local consistency by identifying portion of land to which we

can assign one, and only one, land use trajectory across the different years of the data

set, possibly with holes due to missing data, but with a non-zero surface. Since the miss-

ing field situation is quite recurrent in the data set (without mentioning the completely

missing information on fallow land in 2019, see Sec. 2.2.2), accepting partial sequences

is necessary as it would maximize the probability of gathering a large enough sample to

compute statistics on crop sequences and crop/fallow cycles.

To build such a set of consistent land units we performed a specific geo-processing

workflow in vector GIS format, based on the subsequent intersection of field polygons

through the different years of the data set.The process is iterative, based on the subsequent

cumulative intersection of each year’s set of fields (layer) where, at each iteration, we make

two different choices according to the result of the intersection: (i) for overlapping fields,

we only keep the intersected portion(s) in order to have coherent surfaces for the multi-

year Sentinel-2 based characterization, while (ii) non-overlapping (disjoint) fields in both

the intersected layers are simply copied to the output layer, under the assumption that

their characterization is still possible at the price of a hole in the sequence of land uses.

A scheme of the procedure is depicted in Fig. 3.4:

Figure 3.4: Scheme of the spatio-temporal harmonization procedure conducted over JE-
CAM dataset

given a sequence of N available years {Y1, . . . , YN}, at iteration i = 1, the output D1 is

initialized with fields from the first annual layer Y1. At each iteration, the current result

Di is intersected with the next layer in the sequence, Yi+1 and a filter based on an area

threshold (set to 200m2) is applied to remove small residual fields that cannot be reliably

characterized at Sentinel-2 resolution (100m2 per pixel). In parallel, the two layers are

compared to recover disjoint fields and add them to the next result Di+1. Procedure stops
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at iteration N − 1, then a morphological opening is performed on the final output layer

D = DN−1 by applying a negative buffer of 5m followed by a positive buffer of 3m. This

last step jointly provide a filtering of small residual areas and a remodelling of the resulting

fields to more regular shapes by eliminating thin appendices which may introduce noise

when computing zonal statistics from the Sentinel-2 time series but cannot be filtered

with a simple area threshold.

Finally, this procedure yields a single set of non-overlapping polygons containing the

underlying LCLU multi-year data. A zoom on a clip of the resulting data set is presented

in Fig. 3.5, and compared to the original layers from two specific years.

Figure 3.5: Example of resulting processed JECAM’s “harmonized surfaces” compared to
two consecutive years of JECAM vectorial data with significant miss-matched surfaces.
Grey color indicates overlapping surface.
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3.2 Analysis of multi-year fallow NDVI profiles

Now that we dispose of the coherent set of reference surfaces to attribute with remote

sensing based indices, it is time to select more specifically the information we derive

from our input multi-year satellite image time series. In order to inspect the vegetation

dynamics related to the different uses of the cropland in our study site, we employ the

Normalized Difference Vegetation Index (NDVI, Rouse et al. (1974)) as a base spectral

feature that could allow to identify possible discriminating insights, which is calculated

as follows:

NDV I =
NIR−RED

NIR +RED
(3.1)

Where NIR and RED represent near-infrared (wavelength 7̃60-1500 nm) and red

(wavelength 6̃00-750 nm) bands respectively. In our case we use Sentinel-2 bands B4

(central wavelength 665 nm) and B8 (central wavelength 842 nm) for RED and NIR.

NDVI is typically used as an indicator of the vegetative activity (or level of “greenness”).

As any normalized difference, values of the NDVI range from -1 to +1. Values closer

to +1 indicate high levels of presence of green, healthy vegetation, whereas values close

to 0 are usually associated with the absence of any active vegetation. Negative values

are more typical of humid surfaces and water bodies. This index relies on the fact that

photosynthetically active biomass reflects a high portion of the incoming sun radiation in

the NIR region whereas the opposite is true for the RED region. It is useful to analyze

NDVI values along the cropping season, as this index varies along the season with high

positive values during peak growing season where most of vegetative development occurs,

and low values close to zero when there is none or low vegetative growth. Hence, most of

vegetative differences described by this index cannot be captured with a single measure,

but rather through its dynamics along the cropping season. Thus, we use NDVI profiles

(a NDVI for each image of the time series) as a primary tool to analyze the dynamics of

this indicator for all JECAM’s LULC classes that might present a vegetative cover (i.e.

cropland, forest, etc) and dismissing less relevant classes such as water bodies or urban

surfaces.

3.2.1 Class-wise NDVI profiles

A first inspection of NDVI profiles at an annual scale, as in the example shown in Fig. 3.6

for year 2017, reveals very subtle differences in NDVI intra-seasonal dynamics among the

different LCLU classes considered with the exception of woody class. The woody class

presents an average NDVI more stable along the period considered, with higher values

during the dry season. Fields that make use of fallow practice present similar NDVI profile

dynamics as other major crop classes such as cereal crops or leguminous crops, with a peak

by the end of the rainy season. This is to be expected in rainfed agricultural systems, since

most of vegetative growth is likely to be conditioned by the availability of water. Hence,
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both cropland and other types of natural vegetation spaces present a growing NDVI value

once the rainy season begins. In the example shown in Fig. 3.6 peak NDVI is reached

in October, however considering that most of the precipitations occur between May and

September we can assume that the likelihood of cloud-free images during this period is

rather low. In fact, despite using the gap-filling strategy to mitigate this issue, we can

notice that the NDVI for all classes in the period between July and October follows a

rather linear trajectory, most likely as a consequence of this image processing technique

itself. In an ideal case, where all images present no imperfections (i.e. no clouds, no

shadows, no noise, etc), we could expect a more “bell-shaped” NDVI curve with a less

pronounced peak. Thus, the NDVI dynamics captured are strongly conditioned by cloud

presence for our study site, which ends up rendering any image classification task more

difficult.

Figure 3.6: Average seasonal NDVI profiles calculated with gap-filled Sentinel-2 data and
JECAM’s Koumbia subset. Rainfall data obtained from CHIRPS monthly data (Funk
et al., 2014). Vertical lines represent standard deviation for each LCLU class. Adapted
from (Castro Alvarado, 2022).

Consequently, annual mapping strategies for differentiating any type of vegetative class

under this rather unfavorable radiometric context are much likely bound to fail, with a

possible exception for the woody class. This class is composed of a less senescent type

of vegetation, which translate into a characteristic higher NDVI values during dry season

compared to rest of vegetative classes, and where cloud presence is reduced.

As for the case of fallow class, there are no apparent contrasting NDVI features dur-

ing growing season. Nonetheless, the effects of such agricultural practice are likely not

detectable during the first fallowing season, but rather during the subsequent cropping

seasons after one or more years of fallow (or ”post-fallow seasons”). Hence, according to

the known properties of soil regeneration associated with the fallow practices, one could
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reasonably make the hypothesis that regenerative effect of fallow practice are more likely

to be reflected in higher NDVI values through the course of multiple consecutive years of

non cultivating a given land. Thus, by making use of the reference consistent land units

whose generation process is described in Sec. 3.1.2, we generate average yearly NDVI

profiles for fallow samples, but this time differentiating fields according to the duration of

the fallowing process (see Fig. 3.7). According to this figure, NDVI results suggest that,

with the exception of five-years old fallow land, more than one consecutive year of fallow

present a higher NDVI maximum peak, reached between day 240 to 300 of the year (i.e.

between late August and late October). We can see that four-years old fallow land has

the highest NDVI peak and that there is not clear distinction between two and three-

year-old fallow land. A slight difference between the moment when the peak of NDVI is

reached is appreciated between two and three-years old fallow land. However, it has to be

noted that the duration-based fallow typology considered in Fig. 3.7 is extracted from

JECAM’s data coming from different years (e.g., a three year old fallow can be between

2015-2017 or between 2016-2018). Furthermore, the longer the fallow period, the less data

are available for that given fallow typology. Thus, fallow phenology is strongly dependent

on the amount of available data and on the climatic conditions under which this data has

been acquired. Consequently, special precaution is needed regarding the interpretation

of these results given the low statistical relevance due to the reduced amount of fields

with a confirmed duration of at least two consecutive years. Another extra factor that

is not being accounted in these results is the effect of location, or more specifically soil

conditions which can further add intra-class variability.

Figure 3.7: Average seasonal fallow NDVI profiles calculated with gap-filled Sentinel-2
data and processed “reliable surfaces” (see Sec. 3.1.2)

53



CHAPTER 3. EXPLORATORY ANALYSIS

3.2.2 Field level multi-year NDVI profiles

In an effort to further analyze fallow practice using NDVI as a describing feature and

reduce the effect of weather conditions, we also conducted a multi-year NDVI analysis at

the field level. Again, we use the reference consolidated surfaces presented in Sec. 3.1.2

as spatial reference for generating per field level multi-year NDVI profiles (see Fig. 3.8

and 3.9).

(a)

(b)

Figure 3.8: Average multi-year NDVI profiles at field level extracted over processed JE-
CAM’s spatio-temporally consolidated surfaces (see Sec. 3.1.2): examples for monocrop
fields. Light blue shaded area indicates the standard deviation.
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(a)

(b)

Figure 3.9: Average multi-year NDVI profiles at field level calculated over processed
JECAM’s “spatio-temporal stable fields” (see Sec. 3.1.2) examples of fields including
fallow practice. Light blue shaded area indicates the standard deviation.

In Fig. 3.8 we can see two different fields that have been cropped every growing season

for the period 2015-2021. If we consider year 2016 as a reference season for comparing

NDVI dynamics, where both fields were cropped with maize and have similar NDVI

behaviour, their multi-year profile also follows a similar behaviour for the rest of the

period of analysis. Noticeably, year 2018 and 2021 have significantly lower NDVI peaks

when compared to 2016 season. The differences between these two fields during that two

given years are likely the result of differences in the chosen crop grown those years, as
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well as the specific soil properties that differentiate these two fields (if any). For instance,

field number 99 was cropped with maize and cotton for years 2018 and 2021 respectively,

whereas field number 106 was cropped with soybean in both years. In this way, although

both field could be integrated into a single “cropped” class, we identify strong NDVI

differences depending on a series of pedo-agroclimatic circumstances. However, most

importantly, we appreciate a global trend of loss in vegetation productivity over the

years, especially if we keep annual rainfall conditions into consideration.

Conversely, if we analyze instances where cropped fields have been alternated with

fallow periods (see Fig. 3.9), we observe what appears to be a cumulative positive effect

on maximum NDVI values during and after cropping activity has been paused. More-

over, we detect instances where a given land known to have been cropped in past has

been registered as a type of natural vegetation space (Herbaceous savanna in example),

highlighting the difficulties of differentiating non-active agricultural land as there are no

clear markers that allow identifying land beyond all doubt as such (here, possibly an an-

notation error due to the absence of knowledge on past activity from the field operator).

When comparing NDVI results from both figures (Fig. 3.8 and 3.9) on year 2021 we

observe a significant difference between fields that have been cropped and fallow land,

where cropped fields have a NDVI peak close to 0.6 and fallow land is closer to 0.8 for

the same year. We also value a modest early development of vegetation in fallow land,

observing NDVI increases as early as May, whereas cropped fields had a shorter cycle

which started in late July-August. This suggest a possible delay in the sowing dates of

such actively managed fields, with respect to the spontaneous development of vegetation

over fallow land, the former basically not taking advantage of early precipitations at the

beginning of the rainy season.

The selected examples depict some of the different trajectories a given land can en-

counter along the period considered, where in some instances there are significant changes

in seasonal peak that coincide with periods of changes in the type of management done

during the season which, in this case, are either cropped or fallow. Nonetheless, the illus-

trated trends/differences between land use types along multiple consecutive years are a

rather uncommon behaviour among all the fields analyzed. This can be explained by the

highly heterogeneous landscape which is the result of the presence of weeds and hetero-

geneous cropping practices (e.g. seeding and harvesting are done during multiple weeks)

which in turn produces a rather smooth NDVI signal.

3.3 Agrosystem related drivers for fallow practice

As we discussed in Chapter 1, there are multiple factors that can imply the emergence

of fallow practices, some of which can be related to the loss of vegetation productivity

(or similarly, the will to restore fertility), and characterized through the analysis of NDVI

dynamics like the examples we provided in the previous section. In this section we will

analyze other possible drivers, more related to external agro-systemic factors than to the
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cropping conditions, which may favour the emergence of fallow practices and help define

a priori knowledge about their relative location in the landscape.

3.3.1 Fallow practice and soil types

One of the first characteristics to test is the relationship of fallow land with regards to soil

properties. Taking into consideration that most of cropland in our study site (and most

of Sub-Saharan Africa for that matter) is built upon rainfed agriculture, one of the main

limiting factors for crop growth is likely to be water availability. Available water for plants

is dependent on both precipitations and soil properties. For example, it is reasonable to

assume that shallow soils have a lower soil water retention, i.e. water is not stored in soil in

sufficient quantity and would tend to quickly evaporate into atmosphere, whereas in sandy

soils water would tend to filter down to depths where plant roots cannot reach this water.

From an agricultural point of view, these field might be considered less fertile and hence

less interesting to work upon, hence more likely to be left uncultivated when conditions

are not optimal (e.g. low precipitation, reduced amount fertilisers, etc). Consequently,

we can make the hypothesis that specific soil types are linked to the emergence of fallow

land.

In order to test this hypothesis, we make use of the JECAM data set including data

from the period 2013-2021, where, thanks to the available annotations, the original classes

have been grouped into four cropland major crop classes (leguminous, oil seed, cereals and

cash), a woody class and a separated class for fallow land and analyze the soil types within

each JECAM field. As for soil data, we tested both a freely available product which covers

the area, namely the 30 meter ISDA USDA soil texture data for the top 20 cm (Miller

et al., 2021), and a 10 meter ad-hoc soil type map that we generated making use of

Sentinel-2 imagery during dry season (seeDry season soil map generation procedure in

annex). Then, we calculated the proportion of each soil type present at field level (see

Fig. 3.10).

As shown in Fig. 3.10, for the case of ISDA soil data, most of the cropland in the study

case is dominated by a few soil type classes, which correspond to the USDA soil textural

classes Sandy Loam and Sandy Clay Loam. For the case of our custom soil classification,

obtained by clustering areas according to the visible soil properties during the dry season,

what we have is basically a purely radiometric categorization, offering a clear evidence

of contrast among different type of soils but with no pedological clues. We hence limit

the categorization to a simple numeration of the detected soil types. As for the study

area, three types of soils, namely soil type 0, soil type 3 and soil type 4, are the most

prevalent classes across JECAM cropland, with a reduced presence of soil type 3. Notice

that, soil type 2 is not present in any cropland group. Moreover, it appears that that

soil type 3 could be linked to woody species with a clear predominance in woody class,

hence revealing that this particular class may more reasonably represent a more generic

woody class rather than a soil class, since on these areas no soil is visible also during the
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Figure 3.10: Proportion of soil types within JECAM fields data for the period 2013-2021,
with respect to ISDA soil data (Miller et al., 2021) and ad-hoc soil typology (see Sec. 7.5).

dry season. The significant presence of soil type 3 in the rest of cropland groups might

be induced by a high presence of trees in crop fields.

No significant distinction can be observed for fallow land with respect to other types

of LULC classes considered independently of soil classification product employed. Notice

that for the case of ISDA soil map, there are two extra soil type classes which are present

in the study site (i.e. Loam and Clay Loam ), yet not represented in the reference ground

truth data employed. There was no sufficient evidence to support the hypothesis about a

possible correlation between the type of soil and the emergence of fallow, as tested in this

section. However, it is unclear to which extent these results are influenced by the sampling
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protocol followed during JECAM field missions. When considering the distribution of field

included in source JECAM data, it is clear that most of sampled fields are limited to those

close to main roads for accessibility purposes. In this manner, the representativeness of a

potential link between soil type and fallow might be hampered by the spatial distribution

of sampled fields in reference data. ”For more details on the JECAM sampling strategy

and implementation, please refer to Jolivot et al. (2021).

3.3.2 Fallow practice and its relative location

Another spatial dimension that we can analyze as a potential descriptor of fallow practice

is the relative location of fallow land with respect to populated areas. One factor that

describes smallholder agriculture is its rather pragmatic approach towards agricultural

decisions. Thus, the amount of work dedicated to a given land will be determined by the

expected return of a given field, favoring land known as, so to speak, “fertile”. Nonethe-

less, these decision are strongly influenced by the availability or lacking of workforce and

mechanized labor. In this manner, under a context where workforce is reduced, not re-

newed and progressively older as a consequence of young population rural exodus, it is

likely that most of agricultural activity is clustered around the vicinity of villages. Hence,

less attractive fields, from an agricultural point of view, would likely be located away from

home field and might be left uncultivated more often than closest fields.

In order to explore this hypothesis we make use of the High Resolution Settlement

Layer (HRSL) (Lab and for International Earth Science Information Network-CIESIN-

Columbia University, 2016), containing geo-spatialized estimates of population density

for Burkina Faso at a 30 meter resolution for year 2015. We assume that the value

stored in each 30-meter pixel might have varied along since 2015, but the location of the

population clusters (i.e. settlements) has been rather stable across time. Thus, we produce

a proximity map which calculates the distance between target pixels (i.e. settlement

pixels) and overlay unaltered JECAM data for the period 2013-2021 to calculate per field

settlement distance statistics (see Fig. 3.11).

Results shown in Fig. 3.11 show no apparent significant differences among cropland

classes considered in JECAM dataset with the exception of woody class which includes

a series of minority tree-based crops. Excluding woody class, all interquartile ranges (i.e.

box length) overlap between classes, with mean and median distance for all classes reach-

ing 9.03 Km and 7.45 Km respectively. Most of cropland is hence located below the 10

Km mark from the nearest human settlement as described in the HRSL, with a significant

portion of cropland reaching a distance of more than 15 Km and an average distance to the

nearest settlement of 6.3 Km. Results did not highlight higher distances for fallow land

to human settlements, hence rejecting again the proposed hypothesis. Nonetheless, there

are multiple instances of cropland fields located far beyond the 15 Km mark, suggesting

that agricultural activity might extend beyond the area sampled in JECAM dataset. As

mentioned in previous section (see Sec. 3.3.1), spatial representativeness might be ham-
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Figure 3.11: JECAM cropland fields distance to human settlements derived from Lab and
for International Earth Science Information Network-CIESIN-Columbia University (2016)

pered by JECAM sampling protocol, where most remote fields are not sampled due to

accessibly issues and potentially not including less active cropland. As a consequence, mi-

nority classes such as fallow land class could be negatively affected by a reduced coverage

during the field missions. Not to mention that main classes are only sampled alongside

main roads hence potentially missing a significant portion of cropland that are closer to

villages which can translate into a distortion of resulting distances.

3.4 Conclusions

On this chapter we explored different aspects for describing cropland in our study site

making use of JECAM geo-spatialized data. From an spectral perspective, there are no

clear differences between main crop classes when analyzing annual NDVI profiles. Multi-

year NDVI profiles calculated at field level suggest a cumulative effect of fallow land when

conducted during multiple consecutive years. However, due to a highly heterogeneous

spectral context, rule-based modelling does not appear viable under the agroclimatic

conditions considered. When analyzing the spatial distribution of JECAM data set, it was

detected a significant inter-annual spatial variation, reaching up to 15% of JECAM fields

affected by process of either merging or fragmentation, suggesting active agricultural field

reshaping (i.e. new field boundary definitions). JECAM’s sampled fields gathers around

main roads, hampering the representativeness of the field distribution. Consequently,

hypothesis related to the relative location of fallow fields cannot be verified, further

justifying our major investment toward a more data-driven approach since no explicit
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modelling seems possible on the study area.
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Chapter 4

Annual mapping strategies

In this chapter we analyze the potential of automatic image classification methods to

discriminate fallow land from other types of land uses on a yearly basis using seasonal

information. We implement two different strategies for discriminating fallow land : (a) a

more classical supervised classification workflow, and (b) the unsupervised methodology

proposed in Tong et al. (2020) originally developed for mapping fallow land across the

Sahel band.

4.1 Direct Detection of Fallow Class

One of the first strategies for detecting non-active agricultural land is to attempt to detect

it as another land use/land cover class comparable to other types of uses such as specific

crop types (e.g. maize, cotton, etc) or other non-cropland classes (e.g. forest, savannas,

built-up spaces, etc). This approach is worth testing in our case due to the presence of

samples in the JECAM data set explicitly annotated as fallow that we can use to assess it.

In principle, such approach could yield accurate results as long as (1) the fallow practice

is associated with highly contrasted spectro-temporal features (commonly making use of

SITS) and, (2) one disposes of sufficient reliable reference data for each class to verify

predicted results. Hence, when there is a clear and stable delimitation of the agricultural

land, this tasks is reduced to identify those areas within cropland that present clear signs

of the absence of human activity. Thus, a clear understanding of local fallow practices and

a cropland delimitation (usually achieved through the use of cropland masks products) are

necessary to better isolate the practice in time and space. The methodological approach

implemented will depend on the general agro-climatic context and on the characteristics

defining the target fallow practice. For instance, if fallow land is known to be conducted

in conjunction with weeding activities, one could expect a highly contrasting field with

low vegetation growth compared to the rest of cropland. In this case a rule-based system

might suffice to differentiate this practice, whereas in regions where this practice is not

clearly defined or it does not present highly distinguishing features automatic classification

systems relying in machine learning algorithms might be more adequate.
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As mentioned at the introduction of this chapter, we will analyze two different ap-

proaches, a more “legacy” supervised strategy where fallow land is one extra cropland

class and where we make no use of any cropland mask, and another unsupervised ap-

proach that replicates fallow mapping procedure proposed by Tong et al. (2020) for which

in principle no explicit ground truth on fallow practices is needed. Both of these strategies

are described below and will establish the baseline of to which compare other strategies

tested in posterior chapters.

4.1.1 Supervised annual fallow mapping approach

In this strategy we will perform image classification based on a 6-class nomenclature:

cropped, fallow, water body, evergreen, herbaceous savanna and non-vegetated surfaces.

Non-vegetated surfaces is composed of JECAM’s built-up and bare soil classes, whereas

evergreen is composed of forest and savanna with trees classes. Given a lack of cropland

products with sufficient accuracy at local scale for our study site, we decided to, instead

of using a third party cropland mask, include non-cropland classe into the classification

process. The number of data points (or pixels) available once reference data is rasterized

using Sentinel-2 images as spatial reference (10 meters) is shown in Fig. 4.1. It can be

seen that the total number of data points varies significantly among the classes considered,

yet the distribution of these into cross validation folds is rather balanced.

Figure 4.1: Number of data points in pixels (after rasterization using the Sentinel-2 10-m
grid as spatial reference) for all years and separated by LCLU classes. Bar splits represent
the proportion of pixels employed in each cross validation fold, see Chapter 2.

Model training process followed the standard procedure described in Chapter 2 (see

Sec. 2.3.3) and performed annually for the period 2016-2021, using both image classifi-

cation algorithms Random Forest and TempCNN. Note that, in order to have comparable

models, we use as input data Sentinel-2 reflectance bands and indices only, thus rainfall

and other non-decametric features are not used here. This can be explained by the fact
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that for TempCNN to be able to exploit temporal relationships between features, these

require an equal time-step distribution for all variables. Thus, any extrapolated data

could hamper model performance. In our case we consider that gap-filled Sentinel-2 im-

agery was a good enough compromise that allows us to cover the entire season, whereas

adapting input data to include CHIRPS monthly rainfall might result in either (a) lose of

temporal resolution (S2 data at a monthly time-step) or (b) incorporated highly codepen-

dent rainfall data (CHIRPS rainfall at 10-day time-step). Nonetheless, we will perform

an analysis of impact of such variables for classification in a simplified framework as will

be explained in Chapter 5.

4.1.2 Unsupervised annual fallow mapping approach

As a complementary analysis, we implemented the procedure described in Tong et al.

(2020) and use JECAM data as reference for testing the accuracy of the results obtained.

Although this methodology has the advantage of not being constrained by a limited

ground truth reference data set, which makes it easily upscalable to large extents, we

keep in mind that its potential for producing accurate results in our case will be deemed

compared to any supervised methodology which can learn from reference data, especially

at such a small scale like the one referred here. However, we consider its assessment on

our study site a fundamental step to further motivate our interest towards supervised

classification approaches. For this reasons, we estimate that implementing Tong et al.

(2020) unsupervised fallow mapping methodology to a single year is a sufficiently extended

trial as for evaluating this approach. Year 2017 was chosen as the period to test this

approach as this is the period where there is the largest amount of fallow fields registered

in JECAM data set, allowing for a more suitable evaluation of generated maps against

ground truth data.

This approach consist of two main steps, namely (a) the generation of a reference data

set (b) an image classification step based on such reference (steps a and b from source

flowchart in Tong et al. (2020), see Fig. 4.2). In both cases a Random Forest classifier

is employed mainly differing in what data is used as reference and the input data used as

predictor variables. The last step of the original workflow (“assessment”) is not conducted

in our implementation.

Reference data generation

This part of the approach is sub-divided into three steps which consist in (a) determi-

nation of optimal image selection period based on the detection of the mid- and end-of-

season, performed using MODIS imagery, (b) generation of “first reference data” through

unsupervised classification (clustering) using a Sentinel-2 composite over the previously

identified period and (c) generation of a “second reference data” in which we train a

Random Forest classifier using results from previous step as reference labels and produce

a binary classification (cropped / fallow) of the entire cropland. Final reference data is
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Figure 4.2: Original workflow schema of unsupervised fallow mapping. a) Generation of
training reference data set, b) model training and test and c) assessment of the proportion
of fallow land in different cropland products (Source: Tong et al. (2020)).

obtained by selecting aggregates of pixels most likely to approximate the shape of fields.

This last selection step was customized for our case and further detailed are given in

following subsections.

Optimal image selection period. This step is conducted by performing the fitting

of MODIS 16-day composites NDVI band from year 2017 (MOD13Q1, v6) (Didan et al.,

2015) to a double sigmoid, which allowing to represent a growing, plateau and senescent

period. With this we can extract phenological information: mid of season and end of

season specifically. This was conducted by means of OrfeoToolbox’s (OTB) Sigmofitting

application on version 7.2.0, taken from an official remote module of the toolbox (see

Inglada (2017)). The optimal period was determined by the mid of season (MOS) and

end of season (EOS) dates, which in turn are defined as the moment of 80% of amplitude

before maximum NDVI and 50% of amplitude after maximum NDVI (Tong et al., 2020).

Generation of first reference data set. Sentinel-2 imagery is retrieved for year 2017

between obtained MOS and EOS dates. Median values over the temporal dimension

for VNIR (red, green, blue and near-infrared) and NDVI bands are then computed to

build a unique multi-band composite. A total of ten thousand pixels were randomly

sampled within a cropland mask built from previous experiences on the study site using

the Moringa processing chain (Gaetano et al., 2019). This sampling was then clustered

using K-means algorithm to split data into two classes. The cluster whose centroid has

the lowest NDVI value is considered as cropped, while the other (higher NDVI value) as

fallow class respectively. Note that this choice stems from a fundamental observation

made in the paper about the typical intra-seasonal dynamics of NDVI for fallowed and

cropped fields in the Sahelian band, which is likely to be inappropriate for the sudanian

site under study as observable from Fig. 3.6. However, since statistics of Fig. 3.6 may

be severely affected by the presence of clouds, we decided to go on with our test in order

to definitely infirm the underlying hypothesis on NDVI for our study caseA. Finally, in
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order to obtained highly contrasting classes, bottom 25% (below 25th percentile) and top

25% (above 75th percentile) pixels are selected for cropped and fallow class respectively

based on the median NDVI values.

Generation of second reference data set. A second reference data set is then con-

structed by training a Random Forest classifier using as reference data the first reference

data set and median VNIR and NDVI values as input data. Trained model is then em-

ployed to generate a classified map for the entire study site. Resulting map was employed

to label the object of a segmentation issued from the median Sentinel-2 VNIR/NDVI im-

age, which was generated using Baatz and Schäpe algorithm (Baatz et al., 2000) through

the application available in the Orfeo Toolbox named Generic Region Merging (OTB

v7.2.0, Inglada and Christophe (2009)). Segmented image parameters are set by trial

and error to generate compact object of approximate field-like sizes and shapes. Object

selection is done by filtering object with at least 75% class coverage, object area between

2-6 ha and a compactness index (perimeter/area) below 0.04. The selection procedure

differs from original methodology, but in turn, yields more spatially accurate reference

data as this process is handled following a more restrictive object-based approach.

Image classification and testing

Using filtered second reference data set as training set and the full Sentinel-2 NDVI time

series as input predictor variables, we trained a Random Forest model and classified the

entire cropland into cropped or fallow. The resulting map is then tested using the original

JECAM’s data set.

4.2 Results

4.2.1 Supervised annual fallow mapping approach

For this approach multiple we trained multiple Random Forest (RF) and TempCNN

(TCNN) image classifiers using the standard 5-fold cross-validation procedure as described

in Sec. 2.3.3 on an annual basis. As said, the classification task is divided into six target

classes, including a fallow class. Trained models resulted into an average overall score

(OA) of respectively 89% and 82% for Random Forest classifier (RF) and TempCNN for

the period 2016-2021 (year 2019 not included). Average user accuracy (UA) was 81%

and 70% for RF and TempCNN respectively for the same period (2016-2021), whereas

producer accuracy (PA) were 70% and 79%. An extract of accuracy metrics is presented

in Tab. 4.1. For more detailed results see the full table Tab. A.1. The F1-score is here

referred as a more adequate metric to evaluate the specific detection of the fallow class,

given the highly unbalanced nature of the classification task. Nonetheless, when analyzing

class-wise F1-scores (see Fig. 4.3) fallow class is noticeably low compared to the rest of
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other classes considered, with best results obtained with TempCNN trials yet below the

0.40 mark.

Looking at the maps generated with the corresponding models, the RF trial (see

Fig. 4.4) did not manage to detect fallow land outside the few instances that correspond

to locations where reference data (used for training) was available, hence showing an in-

sufficient generalization capability for this class. In contrast, trials where TempCNN is

employed (see Fig 4.5) resulted into slightly better results than RF, which translated,

in turn, into a far more significant presence of fallow class (in red on the maps). For

the examples shown, the proportion of fallow class over total cropland surface (i.e. sum

of cropped and fallow classes) reached 0.03% and 38.60 % for RF and TCNN trial re-

spectively, with values in opposite extremes and both significantly disagreeing with fallow

estimates in JECAM data set (4% of cropland sampled).

68



CHAPTER 4. ANNUAL MAPPING STRATEGIES

Table 4.1: Supervised fallow annual mapping accuracy metrics. UA, PA and OA stand for
user’s accuracy, producer’s accuracy and overall accuracy respectively. Trial classes RF,
TCNN stand for Random Forest and TempCNN image classification methods respectively.

Trial Year OA Class UA PA

RF 2016 0.87 cropped 0.85 0.98
fallow 0.29 0.01

RF 2017 0.89 cropped 0.91 0.98
fallow 0.03 0.00

RF 2018 0.90 cropped 0.90 0.97
fallow 0.20 0.00

RF 2020 0.88 cropped 0.92 0.98
fallow 0.11 0.01

RF 2021 0.91 cropped 0.92 0.98
fallow 0.92 0.10

TCNN 2016 0.75 cropped 0.94 0.66
fallow 0.07 0.40

TCNN 2017 0.78 cropped 0.97 0.75
fallow 0.11 0.71

TCNN 2018 0.83 cropped 0.94 0.83
fallow 0.06 0.36

TCNN 2020 0.85 cropped 0.96 0.92
fallow 0.19 0.70

TCNN 2021 0.89 cropped 0.96 0.91
fallow 0.18 0.63
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Figure 4.3: F1-scores for supervised annual fallow mapping strategies using Random
Forest (top) and TempCNN (bottom) classifiers. All trials were tested using JECAM’s
data as reference data set.
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Figure 4.4: Example of classification results for year 2017 for RF trial. Top right zoom-in
shows area with known fallow fields as registered in ground truth data.

Figure 4.5: Example of classification results for year 2017 for TCNN trial. Top right
zoom-in shows area with known fallow fields as registered in ground truth data.

71



CHAPTER 4. ANNUAL MAPPING STRATEGIES

4.2.2 Unsupervised annual fallow mapping approach

Reference data generation

First of all, we show the final second reference data set object from the unsupervised

methodology are shown in Fig. 4.6. Resulting object are scattered across the cropland

area of our study site and yielded a total amount of 546 cropped objects and 256 fallow

objects. These objects are independent from those contained in JECAM data set, hence

the number of available data points (pixels) as well as the number of classes considered

differs significantly when compared with JECAM’s 2017 data.

Figure 4.6: Filtered second reference data set obtained for Semi-supervised approach for
year 2017. Selection of objects followed size and compactness criteria.

The spatial distribution of this data set covers a larger portion of the study site. This

is an expectable result due to its unsupervised-based sampling, where the only limiting

spatial factor is the cropland mask employed. By contrast, although highly more accurate,

the JECAM data set presents a more clustered data, that locates in the vicinity of main

roads. This is due to the sampling protocol it self used in field missions that compose

JECAM data, causing more isolated and less accessible fields not to be included.

Classification results

Once the reference data set is built accordingly to procedure described in Sec. 4.1.2,

we could train a Random Forest model using the selected compact objects from the

second reference data set (see Sec. 4.2.2) as model’s input labelled reference data and
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the Sentinel-2 extracted NDVI time-series for the year 2017 as input features. To evaluate

and calculate model accuracy metrics we used the now trained model to predict the classes

cropped and fallow for the entire study site and evaluated predicted results using 2017

JECAM’s Koumbia data set. Final unsupervised classification approach evaluated against

JECAM ground truth data are present in Tab. 4.2.

Table 4.2: Unsupervised annual fallow mapping confusion matrix (in number of pixels)
and accuracy metrics. UA, PA and OA stand for user’s accuracy, producer’s accuracy
and overall accuracy respectively. Trial class UN stands for unsupervised classification
approach. C and F stand for cropped and fallow, whereas subscripts r and p stand for
reference and predicted in confusion matrix.

Trial Year OA Class Cr Fr UA PA F1-score

UN 2017 0.44 Cp 9662 517 0.95 0.44 0.61
Fp 12052 287 0.02 0.36 0.44

Results in Tab. 4.2 show a high level of both commission and omission error towards

fallow class, with more than 50% of reference cropped pixels miss-classified as fallow and

more than 60% of reference fallow pixels miss-classified as cropped class, represented by a

low user accuracy and producer accuracy respectively. The cropped class is not as severely

affected in its user accuracy as a consequence of the reduced amount of reference fallow

pixels, hence with the effect to further increase commission error (i.e. reference fallow

miss-labelled as cropped class). Note that in this approach, as a consequence of the use of

a cropland mask, the amount of reference data points (i.e. Rasterized JECAM 10 meter

pixels) is significantly reduced, with a total of 21714 for cropped and 804 fallow class

pixels available out of over 50000 and 2000 pixels in source JECAM data set for year 2017

(see Fig.4.1). Needless to say, overall model ability to discriminate the targeted classes

is subjected to the quality of the cropland mask employed during the training process. If

we attend to F1-score values as a single measure that can represent the per-class overall

accuracy, the proposed method exhibit a clearly poor performance for fallow class in our

case.

In Fig. 4.7 we present the results of the predicted map over the entire study site.

It can be noticed a high level of overestimation of the fallow class across the study site,

accompanied with general salt-and-pepper artifacts. Assuming that the proportion of

fallow land in JECAM during 2017 is sufficiently representative of the entirety of the

study site, we can estimate that c.a. 4% of cropland in JECAM data set is considered as

fallow compared to around 42% for this trial. Moreover, it can be noticed that most of

the fallow -annotated JECAM fields are miss-labelled as cropped class (see zoomed image

in Fig. 4.7). As a further evidence of the inappropriateness of the provided map, in no

case we can observe isolated pixel aggregates exhibiting the typical field size or shape and

labelled as fallow.
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Figure 4.7: Unsupervised annual fallow mapping image classification result. Notice that
this trial is a binary classification, grey color was added to enhance contrast. Top right
zoom-in shows area with known fallow fields as registered in ground truth data (dark blue
dash line fields).

4.3 Conclusions

In this chapter we tested an unsupervised annual fallow mapping approach based on Tong

et al. (2020) procedure and a supervised annual fallow mapping approach. In both strate-

gies the final discrimination is performed by an automatic image classifier trained with

Sentinel-2 time-series and where fallow land is considered as another cropland subclass.

Results were evaluated against JECAM ground truth data, showing that these method-

ologies are not sufficient to provide any viable estimate of fallow land. Resulting model

showed a lack of discriminative power indicating that methodologies employed cannot

capture the potential explanatory information contained in radiometric features.
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Chapter 5

Trajectory analysis

On this chapter we present a different methodological approach for mapping the propor-

tion of cropland that is not being actively cropped. This methodology addresses some of

the limitations related to the direct mapping of fallow land as a specific cropping practice,

by relying on an original land trajectory modelling which exploits the multi-year nature

of the reference data. This chapter made the basis of a scientific publication (see Cas-

tro Alvarado et al. (2023)).

5.1 Non active agricultural land mapping approach

The analysis and experimental results presented so far in this thesis have given quite an

evidence of the challenge that represents the mapping of fallow practice using satellite im-

age time series. On one hand, they seem to prove that the seasonal dynamic of vegetation,

as measured by Sentinel-2 imagery, does not contain enough information to distinguish

fallow land from any other vegetated class with an annual vegetation cycle (either agricul-

tural land uses or natural deciduous vegetation). On the other hand, no external sources

of information among those tested have proven effective as a spatial proxy of the presence

of fallow land, which could be effectively used as prior knowledge in an automatic remote

sensing based mapping process.

For these reasons, the idea here is to somehow reformulate the mapping problem, by

tackling the identification of non-active agricultural land (NAAL) as a whole, rather than

the fallow land intended as previously active cropland undergoing an explicitly sought re-

generation process prior to a new cropping period. NAAL is here more loosely understood

as known cropland that is no longer cropped and with unconfirmed recultivation. This

means that it includes the stricto sensu fallow land as mentioned, but it also encompass

all other types of “abandoned” cropland, and therefore ends up playing a similar role

w.r.t. fallows in the context of the agro-system.

To be more specific on the proposed approach, rather than attempting to differentiate

NAAL from other types of uses based on annual land cover data, we start from the obser-

vation that a way to trigger the identification of NAAL is to detect, over multiple cropping
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seasons and over areas exhibiting seasonal vegetation life cycle (cropland-like), transitions

between periods in which vegetation growth is managed, i.e. a cropping activity is ac-

tually performed, and periods in which it exhibits an unmanaged condition, which may

happen at seasonal scale for both NAAL and areas with natural deciduous/herbaceous

vegetation. Based on the hypothesis that an annual time series of optical multi-spectral

images may enable the accurate identification of these two states (managed / unmanaged

vegetation over a cropping season), our approach relies on such annual LULC mapping

and the subsequent analysis of these maps over multiple years to provide a consistent,

field-level accurate mapping of NAAL.

Obviously, the main constraint of this approach is the availability of a proper reference

data set covering multiple consecutive years, which provides information, for each year

and with no ambiguities, on whether a labeled surface belongs to the active cropland,

and hence to a managed agricultural land class, or to an unmanaged class, which can in

turn include both non active cropland and natural herbaceous vegetation. Information

might also be provided for land cover classes with more stable dynamics across time,

information which can be useful to detect and mask out such areas which are less related

to the purpose of NAAL mapping. Needing no specific details on these classes, we could

complete our annual land cover model by grouping them all under two classes, namely

evergreen and non-vegetated, to address respectively the constant presence and absence

of green vegetation.

As already mentioned in the data description section, the JECAM data set provides

annual information on both land cover and crop group classes, and it can easily be used to

comply to the 4-class model (managed, unmanaged, evergreen, non-vegetated) and allow

the production of the annual base maps used for multi-year NAAL identification.

On these premises, the method we intend to propose here is quite straightforward,

composed of three stages tackling respectively : (a) the production of annual base maps

inferring the 4-class land cover model to the entire area, (b) the application of transition

rules for the analysis of land cover trajectories allowing the identification of NAAL, and

(c) a suitable processing of the original reference data set to provide a reliable and fair

validation of NAAL detection. An overall scheme of the proposed three-stage method is

depicted in Fig. 5.1, a detailed description of each processing block is provided in the

following subsections.

5.1.1 Annual management mapping

Our first step consists in training a set of annual supervised classification models using the

corresponding time series of Sentinel-2 images as a main input. A first straightforward

possibility could have been to simply perform a supervised classification directly using

the JECAM data set as-is to train the classifier. However, it is clear from Tab. 2.1 and

the results presented in Chapter 4, that a strong class imbalance is present in terms

of annotated surface, which may lead to poor performances on less represented classes.
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This is particularly true for the fallow class which, as arguably deductible observing the

entangled NDVI profiles shown in Fig.3.6 (Chapter 3) (for year 2017, without loss of

generality), is likely to be confused with some active crop class and hence erroneously

detected as managed, in contradiction to the provided definition of NAAL.

Hence, we here decide to pre-process the JECAM data set prior to the supervised

classification process, by relabeling samples of the active crop classes into a single man-

aged class (namely the cash crops, cereals, leguminous and oilseed classes), and grouping

fallows with other deciduous vegetation classes (namely herbaceous, shrubby savanna and

pastures) into the unmanaged class. Woody savanna and forest fall into the evergreen

class, while the non-vegetated class includes all constantly non-vegetated areas (bare soil,

built-up, water bodies). We report in Fig. 5.2 the final number of pixels per class after

the proposed class grouping and the rasterization of the source vector layer using the

Sentinel-2 10 m grid. As expected, the final result shows a much more balanced config-

uration of class samples, especially between the managed and unmanaged classes whose

transitions through subsequent years are susceptible to trigger the detection of NAAL

areas. The overall classification problem is simplified, with the least represented classes

being the non-vegetated and evergreen areas which are in turn the easiest to discriminate

using radiometric information.

Figure 5.2: Number of data points in pixels (after rasterization using the Sentinel-2 10-m
grid as spatial reference) for all years and separated by management land use classes.
Bar splits represent the proportion of pixels employed in each cross validation fold, see
Sec. 5.2.1.

Following an ensemble classification strategy based on the Random Forest algorithm,

we decide to use the whole gap-filled time series, along with the derived indices (vegetation-

related and soil) as well as rainfall data as predictor variables. A detailed description of the

experimental setting of this phase along with an insight on the importance of such variables

is provided in the experimental section of this chapter. In parallel we conducted a similar

classification strategy implementing TempCNN algorithm for exploiting possible temporal
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correlation of input variables during the season, but using exclusively the Sentinel-2 image

time series (and the relative indices), for the reasons already mentioned in Sec. 4.1.1.

5.1.2 NAAL detection

Annual 4-class maps provided in previous step over the available time span, say Xt with

t ∈ {1, . . . , n}, are then employed for the analysis of trajectories implying classes managed

(M) and unmanaged (U) at pixel level to derive the set of n−1 NAAL (N) maps Yt over t ∈
{2, . . . , n} (as a consequence of our causal inter-annual analysis, NAAL identification for

the first year of available reference data can not be computed). Our trajectory hypothesis

is quite simple, and based on the following two main rules (see the right-upper part of

Fig. 5.1):

1. any transition from managed to unmanaged over two subsequent years on a pixel in

a location (u, v), say Xi−1(u, v) = M and Xi(u, v) = U , implies “flagging” a pixel

as NAAL on year i, say Yi(u, v) = N ;

2. if a pixel is flagged as NAAL for a given year, any subsequent unmanaged label

on the same pixel is automatically classified as NAAL on the output to maintain

temporal and spatial consistency, say:

Yi(u, v) = N,Xj(u, v)|j∈i+1,...,n = U ⇒ Yj(u, v) = N

In order to reduce possible ambiguities, and on the hypothesis that classes which are

less reliant on vegetation dynamics are usually more accurately discriminated, occurrences

of either the evergreen and non-vegetated class on a pixel over time lead to the automatic

classification of this pixel as non-NAAL (O) for the whole period. This is done under the

implicit hypothesis that no significant changes (such as artificialization or tree plantations)

have taken place over the period.

5.1.3 NAAL validation and assessment

In the proposed NAAL classification workflow, a major issue is represented by the ne-

cessity to work out a test reference data set to validate the methodology and assess the

accuracy of the NAAL maps output by the multi-year trajectory analysis. Matter of

facts, we do not dispose of a multi-year data base of properly annotated NAAL fields.

In principle, we could limit our validation to the original JECAM data set and consider

the fallow class for NAAL assessment. Yet, only relying on this would be unfair, since

much more of the arable land could be de facto included into the wider NAAL class,

including a part of the fallow land which has been annotated as belonging to another

deciduous vegetation class because of missing explicit information on cropping practices

or abandoned agricultural fields.
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However, it is possible to derive some NAAL-specific validation set from the original

JECAM data set by applying the same rules that we use for trajectory analysis on land

cover maps, using objects from the data base instead of map pixels, and the intersection

of objects over multiple years to track transitions between the managed and unmanaged

classes. This is made possible by the fact that, as already mentioned in Chapter 2, the

field survey protocol for the Koumbia site was enforced by taking annotations over the

same fields year-by-year to the extent possible. Still, this process is more subtle than

it may appear, since a sufficiently large quantity of surface which is overlapping over

time and may be labeled as NAAL (which appears to be a small percentage of the area

according to the JECAM data set) is in fact needed. Moreover, field boundaries are not

static across years, which may lead to a dramatic reduction of usable surface if a simple

intersection rule is applied, and in particular a single missing annotation for a given field

will make all the data from the relative field unusable.

Thus, we decided to provide several versions of the validation data set, each obtained

with a different set of rules for the analysis of the overlaps over time. This goes from

a data set obtained by a rigorous intersection of polygons, which is very precise in term

of NAAL identification but with a possibly insufficient surface for a reliable assessment,

to progressively admitting extrapolation of missing data in space and time, in order to

extend the total validation surface, and hence the statistical sufficiency, at the price of

some “noise” in the resulting data set.

The different processing approaches over the reference data set, rendered so as to com-

ply to our 4-class model for trajectory analysis, are described below and summarized on

Fig. 5.3. All these processes start with a rasterization of the reference polygons, available

in vector format, using the Sentinel-2 grid as geometric reference. As already mentioned,

all proposed strategies aim at the relabeling of the whole set of reference pixels from

the 4-class nomenclature used for annual mapping to a binary (NAAL vs. non-NAAL)

nomenclature based on the same transition rules applied for trajectory analysis. This

means that all reference pixels that, for a given year, are not concerned by a relabeling

to NAAL are grouped in the unique antagonist non-NAAL class. Obviously, the result-

ing data sets are expected to be strongly unbalanced (NAAL accounts only for a small

percentage of the whole area), but in this case the unbiased assessment of the detection

of NAAL areas will eventually be possible using per-class figures (precision, recall and

F1-score).

Data set A : Original JECAM data set This validation set is simply made up of

the original JECAM Koumbia data set in which the objects are relabeled to fit the 4-class

trajectory model. No spatial or temporal modification is applied on the source data. This

represents the original data set where only “fallow” fields are considered as NAAL data.

There is no data alteration on this case.
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Data set B : Strictly reliable surfaces This is the case when the rigorous multi-year

intersection of reference objects is performed, basically retaining only the most reliable

surfaces. In other words, only those pixels where data is available in all consecutive years

are considered for trajectory analysis and NAAL relabeling. Any point with missing data

for a given year is dropped out of the data set.

Data set C : Locally reliable surfaces In this scenario, we make the implicit assump-

tion that the validity of a surface for a given year only depends on its past validity. This

means that, for each year, the intersection is only performed with the surface of the over-

lapping object in the previous year. In this way, all pairs of pixels from two consecutive

years that are eligible to be relabeled to NAAL are taken into consideration, regardless

of what happened before or after, while the portion of object which is non comparable is

discarded. Compared to data set B, this data set do not guarantee that a comparable set

of surfaces are used for validation year-by-year, leading to possible discrepancies in the

multi-year assessment strategy.

Data set D : Sub-field NAAL relabeling Here, we basically propose the same logic

than for data set C at pixel level, with the exception that the portions of objects which

are left out from an intersection between two consecutive years are not discarded, and

can still be used for NAAL relabeling in subsequent years. Alternatively said, relabeling

can occur at sub-field level.

Data set E : field-level NAAL extrapolation Based on the observation that field

boundaries can move through time, and considering how densely cultivated the area is,

for this data set we make the underlying hypothesis that, if a certain field is known to

have been actively cropped on year Yi, a newly annotated unmanaged field on Yi + 1

whose surface is only partly overlapping with the past year’s field is probably a whole

NAAL field. Hence, similarly to data set D, in this case we still consider pairwise overlaps

between consecutive years and no data is lost from the source objects after processing.

However, relabeling to NAAL can be propagated to an entire object if the intersection of

the given object with the one from the previous year is larger than a given threshold in

terms of area percentage, here heuristically fixed to 30%.

A resume of the total number of NAAL pixels for each validation data set and per-

year is reported in Fig. 5.4, along with the percentage it represents with respect to

the full data set (including non-NAAL pixels). Note that, by only retaining the strictly

reliable surfaces, data set B systematically provide a severe selection of NAAL pixels w.r.t.

the total samples, but the other strategies which try to extrapolate NAAL areas at the

plot scale progressively tend to first restore the original amount and ratio observable in

the data set A (actual Fallow fields w.r.t. the total annotated surface), then add some

potential NAAL surface in reasonable measure (within a factor of 2). The slight drop in

the amount of NAAL pixels in 2020-21 is due to the absence of Fallow annotated polygons
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Figure 5.4: Total number of NAAL Sentinel-2 pixels in the validation data sets before
(A) and after (B to E) processing. The validation data set A corresponds to the JECAM
original data set in which the NAAL data pixels correspond to the “Fallow” polygons.
For the record, only the cropped fields were registered for year 2019. Values on top of
bars show the proportion of NAAL pixels over the total amount of available pixels for
that given validation data set and year.

in the original JECAM data base in 2019.

5.2 Implementation of the approach

5.2.1 Annual LULC maps

For the production of annual 4-class land use maps reliable enough to enable trajectory

analysis for NAAL detection, we carried out a strategy based on multiple per-year Random

Forest (RF) and TempCNN (TCNN) classifications. Such solution deemed necessary to

cope with the relatively low quantity of available annotated surface, especially if compared

to the complexity of the landscape and the dimensionality of the input variables (593 and

544 variables per pixel for in total for RF and TCNN trials respectively), as well as to

ensure comparability among the different maps.

We implemented the standard 5-fold model training procedure described in Chapter

2 and make use of a 4-class based management nomenclature as described in Sec. 5.1.1.

Resulting data splits using this nomenclature are shown in Fig. 5.2, where due to the

splitting occurring at the polygon level sample selection translates into numbers of refer-

ence pixels in per fold/class/year. We used the standard parameterization described in

Chapter 2 to train our models and then generated an annual 4-class map by averaging

the probability maps of the 5 models and labeling pixels according to the class with the

highest probability. Variable importance (averaged over folds as well and only available
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for RF models) was also computed for each year in order to identify the main predictors

and check for consistency across years. Additionally, maximum per-pixel class probability

was used as a proxy for identifying zones of lower model certainty.

5.2.2 NAAL mapping

Once 4-class maps were generated we perform the trajectory analysis as described in

Sec. 5.1.2 via custom scripts written on Python 3.8.

5.3 Results

5.3.1 Annual management mapping

The Random Forest and TempCNN trained models were employed for generating 4-class

land use maps for the entire study site (see example in Fig. 5.5 for 2017). The average

overall accuracy (OA) across all years considered (2016-2021) was of 91.4% (RF) and

91.2% (TCNN), whereas the average user accuracy (UA) was 91.7% (RF), 89.8% (TCNN)

and producer accuracy (PA) was 87.3% (RF), 86.9% (TCNN) all classes considered during

the same period. Full report of map accuracies is provided in Annexes (see Tab A.2).

Classwise minimum F1-scores values for RF trials were 0.91, 0.86, 0.80 and 0.75 for

managed, unmanaged, evergreen and non-vegetated classes, whereas for TCNN trial these

values were 0.93, 0.86, 0.76 and 0.75 respectively. For both algorithms managed and

unmanaged classes were consistently the classes with the best average scores across all

the considered period (Fig. 5.6), except for year 2019 with TCNN.

Given the globally accurate results provided by these classification tasks, it is now

possible to perform an in-depth analysis of the importance of variables using the RF

models. Per-year RF’s variable importance averaged across models is shown in Fig. 5.7.

In order to simplify the reading of such list, the importance for all multi-temporal variables

has been averaged over time (e.g. B4 is the average importance of every 10-day Sentinel-2

red bands), but the maximum value of these variables over time is also depicted in red.

We here observe that the “hierarchy” of such importance is globally stable over the years,

with bands from the red and SWIR spectrum, along with some vegetation indices (NDVI,

NDRE) steadily occupying the highest places in the list. Noticeably, both soil indices

(RI and CI in particular) and rainfall data have a relatively high importance compared

to the large number of spectral variables. Of course, maximum values show that if we

consider individual time-steps for each variable, the absolute importance is higher for

several spectral bands and indices, but still both external sources of information have

a significant and systematic impact in all years’ model decisions. For rainfall data in

particular, which varied significantly across years considered (see Fig. 2.2), importance

results support the hypothesis that even at low resolution such information may impact

the quality of annual mapping of managed/unmanaged surfaces, independently of inter-

seasonal variations. Yet, this did not translate into noticeable differences between RF
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(a)

(b)

Figure 5.5: Resulting annual 4-class land use map for Koumbia site in 2017. On the right,
zoom-in and corresponding SPOT 6 ©Airbus DS 2017. (a) Obtained from RF trial and
(b) TCNN trial.

and TCNN where the later did not use rainfall as input data, probably thanks to the

ability of the latter to compensate the absence of external sources through the more

subtle exploitation of temporal correlations.
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(a)

(b)

Figure 5.6: Average and standard-deviation (error bars) F1-score of annual management
land use class, calculated for the five trained Random Forest (a) and TempCNN (b)
model’s predictions.

Some interesting elements also come out watching at the maximum class probability

map in Fig. 5.8, which has also been averaged over years. InFig. 5.8 we present model

maximum class probability as the average of all folds (5-fold per year, one model per

fold), all years confused for the period 2016-2021. For the case of TCNN-based models,

in order to highlight potential spatial differences of maximum class probability, values

between 0.7-1.0 (top 30%) were normalized. As one might expect, classifier confidence

is higher in areas close to the location of reference polygons, even if the average mem-

bership probability can also be high in areas where the reference data density is low.

However, a pattern of confidence drop is observed across the administrative boundaries
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Figure 5.7: Per-year average and importance of variables for the Random Forest land use
classification models. The importance values of the 10-day variables averaged over the
year are represented in blue, and the annual maximum values are reported in red.

of the Koumbia commune. This spatial pattern may be related to shifts in the landscape

outside of the commune, in which reference data loses part of its representativeness. Tem-

pCNN tend to yield classification decisions (here used improperly as class “membership

probabilities”) with much higher levels of confidence (values mainly over 0.8), hence in

order to illustrate spatial differences in classification we normalized top values from 0.7

to 1. Thus, TCNN maximum class probabilities present a similar behaviour, resulting in

lowest confidence in the south-western quadrant as well as inside the Koumbia commune

in areas with a higher density of human settlements, that are characterized by a more

heterogeneous landscape.
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(a)

(b)

Figure 5.8: Average maximum class probability for (a) Random Forest and (b) TempCNN
based mapping for the period 2016-2021 period. Pixel value represents the maximum
probability among the four classes considered averaged for all five (5-fold) models and six
years considered (2016-2021). For the TCNN case, pixel values represent the top 30%
values that have been normalized for enhanced visual inspection. The white polygons
correspond to all available years of data from JECAM reference data overlapped with a
200 m buffer.
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5.3.2 NAAL mapping and validation

Once the 4-class annual maps have been produced for the 2016-2021 time-span, the tra-

jectory analysis described in Sec. 5.1.2 was applied to provide NAAL maps over the

2017-2021 period. NAAL map for 2017 is depicted in Fig. 5.9 where, for sake of clarity,

the non-NAAL class (O in Fig. 5.1) has been split in two classes, respectively the active

agricultural land (AAL) and the non-agricultural land, by simply marking as the latter all

pixels that have occurrences of either the evergreen or non-vegetated classes in the annual

land use map time series. Observations made for this year remain valid for other years’

NAAL maps as well, which are reported in Figs. A.1-A.8 (see Annexes), with major

instabilities only over the low-confidence area of the annual mapping.

At a first glance, when attending to RF-based NAAL maps, it seems evident that

the areas corresponding to low classification confidence for annual land use mapping (see

Fig. 5.9a) present larger portions detected as NAAL, which are more likely to be due to

errors in the base maps than to a true switch in agricultural land use in these areas. Things

seem more plausible in the area within the Koumbia commune boundaries, also considering

prior knowledge on the study site (NAAL accounts in average for c.a. 10% of the total

arable land). However, the zoom in the right-upper part of Fig. 5.9a highlights that,

apart from some expected salt-and-pepper artifacts, two different spatial contexts emerge

concerning NAAL detection, either (a) in the form of suitably shaped fields within AAL

(red regular patches surrounded by yellow), or (b) in transition areas between the AAL

and the non-agricultural class (red irregular patches along black patches). Some details

on field-scale NAAL detection for RF trial are depicted in Fig. 5.10, where it is possible

to appreciate, in different years and spatial contexts, the correspondence between sets of

connected pixels (field-like shaped) detected as NAAL in a given year (right column) and

the corresponding field appearance on a very high resolution scene (left column) acquired

the same year, at the peak of the growing season. In contrast, artifacts on transition areas

may be partly caused by errors in the base mapping due to mixed or misaligned pixels in

S2 time series. All this makes reasonable the hypothesis of a significant commission error

on these results, and motivates the efforts done in further numerical assessment.

If we analyze TCNN-based NAAL maps (see Fig. 5.9b) the first major difference is

that detected NAAL and non agricultural land (in black) is significantly reduced in those

areas where RF trial presented a low confidence, which might reduce commision error for

NAAL class. This may indicate that the higher classification confidence of TCNN models

was not occasional, but a real sign of a better generalization capability of such technique

outside of the reference area. When comparing the zoomed view we can corroborate

that (a) many of mapped NAAL in transition areas is (close to to non-agricultural land

borders) are mainly integrated into non-agricultural land or AAL class. Moreover, (b)

isolated NAAL field-like patches are also present in TCNN NAAL maps. However, a

more in depth inspection of this last statement (see Fig. 5.11) shows that several NAAL

fields initially included (in blue) in JECAM data (and used indirectly for training) are

not detected. For the case of fields not included in JECAM data detected in RF trial (in
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(a)

(b)

Figure 5.9: Annual non-active land (NAAL) map for Koumbia site in 2017, derived from
(a) RF and (b) TCNN trials. On the right, zoom-in and corresponding SPOT 6 image
©Airbus DS 2017.

green), these were either not detected or included into non-agricultural land. This last

evidence appears to be associated to the previously mentioned transition zones issue and

to fields with a high density of trees, which TCNN most likely tend to incorrectly classify
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Figure 5.10: Multiple samples of RF-based NAAL mapping at field scale and differ-
ent years. For each sample, the image on the left is a very high resolution acquisition
(SPOT6/7) which has also been used for field delineation in the JECAM data set (Jolivot
et al., 2021); Dotted blue lines have been added to highlight photo-interpretated fields
for which NAAL reference data was available for that given year. Dotted green lines
represents fields for which no reference data was available that given year. All the fields
shown here for which a reference polygon existed was correctly labelled as “NAAL”.

as evergreen class (see example in the bottom right position).

Accuracies (F1-scores) relative to the detection of the NAAL class using the different

validation data sets (see Sec. 5.1.3) are reported in Fig. 5.12 for each year (2019 is

skipped since no fallow samples are available for data set A), and averaged over the

period in Fig. 5.13, along with uncertainties. A full summary of indicators is reported

in Tab. 5.1. Note that due to the large class unbalance in all the reference data sets

(NAAL only accounts for 5 to 10% of the annotated surface) we only present per-class

accuracy metrics for the NAAL class, since the non-NAAL class achieves always a very

high score (close to 1).

First of all, non surprisingly, data set A is the one providing the poorest accuracy

figures, with a F1-score over NAAL averaged over the period of analysis around 0.53 for

RF and 0.58 for TCNN, with the exception of 2017 when a satisfying score of 0.76 for

RF and 0.65 for the case of TCNN. One may think that this may be due to the missed
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Figure 5.11: Multiple samples of TCNN-based NAAL mapping at field scale and different
years. Images correspond to the same fields shown in Fig. 5.10. For each sample, the
image on the left is a very high resolution acquisition (SPOT6/7) which has also been used
for field delineation in the JECAM data set (Jolivot et al., 2021); Dotted blue lines have
been added to highlight photo-interpretated fields for which NAAL reference data was
available for that given year. Dotted green lines represents fields for which no reference
data was available that given year. All the fields shown here for which a reference polygon
existed was correctly labelled as “NAAL”.

detection (omission error) of older fallows, which would in principle require a “bootstrap”

period of five years (according to the agreed-upon definition) to be properly covered by

our trajectory model. However, looking at Tab. 5.1 it is clear how the low F1-score is

mainly due to a systematically low user’s accuracy for both RF and TCNN trials, hence

to a high commission error. Indeed, in the JECAM database a field is annotated as fallow

only if a history of active cropping is explicitly known, otherwise non-active cropland fields

fall back into the herbaceous vegetation class. This again seems to confirm the hypothesis

that not all of the NAAL are correctly represented in the original reference database as

fallow land, making it necessary to validate NAAL mapping with a different strategy.

Notice that for the case of TCNN trials, worst results are associated to years 2020 and

2021 suggesting a more accentuated effect of this hypothesis likely due to the lack of fallow

land data for year 2019 in original reference data set.
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(a)

(b)

Figure 5.12: Sensitivity of the NAAL class accuracy to the validation data set used (A,
B, C, D or E) ; F1-score for RF-based (a) and (b) TCNN-based average annual NAAL
calculated over the 2017-2021 period (2019 excluded, see text).

Accuracy improve significantly when validating using data set B (strictly reliable sur-

faces), with an average score of more than 0.8 over the period for both RF and TCNN

trials. However, looking at the number of available reference data points in Fig. 5.4, we

must face the evidence that this value might not be statistically sufficient, as testified by

the larger uncertainty. Moreover, this validation potentially suffers from a positive bias

due to the fact that, although the two data sets have a different nomenclature (man-

aged/unmanaged vs. NAAL/non-NAAL) and data distribution among classes, the vali-

dation data points belong to the training surface used for annual land use classification.

As expected, accuracy values progressively drop when validating over the augmented vali-
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(a)

(b)

Figure 5.13: Sensitivity of the NAAL class accuracy to the validation data set used (A,
B, C, D or E); Box plot of the mean F1-score calculated over the 2017-2021 period for
Random Forest (a) and TempCNN (b) trials (2019 excluded, see text). Green line and
black cross indicates group median and mean values respectively.
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dation data sets C/D/E, attaining average F1-scores ranging from 0.68 to 0.59 for RF and

from 0.61 to 0.66 for TCNN trials, but since they rely on a greater number of validation

samples (Fig. 5.4) the uncertainty is reduced as well.

5.4 Conclusion

In this chapter we explored a trajectory based NAAL mapping strategy, where a simpli-

fied 4-class based management nomenclature is used for generating annual management

maps. Through a restrictive rule system, we discriminate NAAL as a change between

actively managed vegetated land to unmanaged vegetated land. A thorough evaluation

of results was conducted employing different variations of the JECAM data set for the

period 2016-2021 as reference data, each accounting for a different assumption made for

dealing with a lack of spatio-temporally stable reference data. Accuracy varied depend-

ing on the classifier employed, as well as on the validation data set employed with mean

F1-scores of over 0.8 using the most restrictive validation data set to 0.6 for when using

the most extrapolated validation data set. Geo-spatial quality of predicted maps allowed

for identification of “field-like” objects and showed low levels of classification uncertainty

at least within Koumbia administrative limits. Significant differences were identified in

the classification uncertainty and the level of NAAL overestimation depending on classi-

fication algorithm employed.
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Chapter 6

Multi-year mapping strategies

In this chapter we will test two different strategies for training image classification models

using multiple consecutive years of Sentinel-2 imagery (an its associated spectral indices)

to identify non-active agricultural land.

6.1 Multi-year approaches

As it has been pointed out along this document, fallow practice involves one or multiple

years of cropland inactivity, during which natural vegetation regrow and, at a given time,

soil fertility might recover to its pre-human activity state. As such, the radiometric

features describing fallow land or, in a more broad definition, NAAL, might benefit of an

enhanced explanatory power when considering temporal periods beyond a single season.

In this chapter we propose two different strategies where we train our image classifier

with multiple years of data in order to let the model learn from multi-year dynamics

(if any) instead of imposing a set of expertise-based rules. Due to its proven ability of

managing temporal correlations and the evidences of a greater generalization capability

over the study area, we choose to only test the TempCNN classifier to mine into the in-

formation contained in multiple years of Sentinel-2 SITS data. Matter of facts, a Random

Forest Classifier basically establish only hierarchical relationships among the input vari-

ables, with each variable’s discriminative power (i.e., a date of the time series) is tested

independently. In other words, just to make an example, NDVI computed from a given

acquisition is not explicitly related with any other NDVI, even on closer acquisitions. If

this may not be of great limitation for annual time series, whose density is relatively low at

the annual scale and whose scattered nature is favored by the presence of clouds, exploit-

ing correlations in time becomes a fundamental prerequisite when analysing multi-year

signals. These signals exhibit similar dynamics and seasonality (i.e., periodicity), with the

explicit objective of detecting “low frequency” shifts among the different periods, which

holds significance at the multi-year scale (e.g., the gain or loss of vegetation productivity

through comparison of season-wise cumulative NDVI).
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6.1.1 Causal and anti-causal fallow mapping approaches

This approach is related to the one described in the Direct mapping strategy (see Chapter

4), mainly due to the fact that the employed nomenclature is the same. In other words, we

here target the fallow land as one of the LULC classes for each given year and simply seek

to characterize it through a multi-year satellite image time series. Consequently, a key

point of this strategy is the definition of the period of reference to include as input training

data, in order to exploit the potential information available to discriminate fallows while

(i) keep complexity limited by using only a given number of years and (ii) separately

assess the importance of the past and future data with respect to the time series over the

target year. This basically accounts to focusing either on the fallow drivers, such as the

loss of vegetation productivity which may push the farmers to abandon the field or engage

a fallowing process, or on the effects of fallowing, since the restoration of soil fertility may

be measured by satellite data as an increase in the cumulative values of vegetation indices

over the next seasons. In all cases, since the objective is to map fallow land on yearly

basis, we employ the original JECAM’s field spatial delimitation for each year, regardless

of possible shifts prior or after the target year in LULC class or boundary limits.

More in detail, we here implement a (a) causal temporal approach, where the target

year is described by its current and past data, an (b) anti-causal approach, where tar-

get class is determined by its current and future (with respect to target year) spectral

information. Lastly, we also consider a third case (c) which is a combination of previous

two approaches, meaning that the LULC class could be described by several years of data

centered over the target year, under the hypothesis that both past and future data are

likely to be relevant for the task.

6.1.2 Land/Cropping system mapping approach

With the rather straightforward multi-year strategy introduced in the previous section,

we are basically seeking for multi-year descriptors that may help the identification of the

annual fallow/NAAL class. Again, a major limiting factor may still reside in the lack of

sufficient ground truth data for such classes, especially if considering the fact that with

larger descriptors (i.e. a bigger number of variables) the need for annotated ground truth

theoretically increases (it’s the well known curse of dimensionality, see Bellman (1966)).

One important factor to consider when mapping any type of NAAL is that it is associ-

ated with long-term behaviours that are ultimately reflected into its spectral dynamics at

a temporal scale which is larger than a single year. A trivial example may be the difference

between two fields, one of which undergoes active cropping, using the same crop types,

for several consecutive years, while the other is cropped with cycles of different crop types

combined with alternate periods of fallow. This suggests a different way to approach the

mapping problem that breaks the constraint of the yearly detection fallow land or NAAL,

and focuses more to the identification of those portions of cropland on which fallowing

occurs, with any frequency, in a given (multi-year) lapse of time. In projection, this may
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also be extended to the discrimination of crop surfaces that are managed with a more

dynamic approach, with regular changes of practices, in contrast with land undergoing a

more speculative approach, to finally assess the performances of these different strategies

in terms of productivity in the long run.Nonetheless, such a mapping approach requires

an alternative modelling of the classification problem, in which the LULC classes are re-

placed by a nomenclature made up of different land systems, including cropping systems

intended as those where cropping practices are implemented over time. Among them, at

least one of the classes may represents the system in which yearly NAAL occurs, providing

an estimate of the presence of fallow practices at a coarser temporal scale, but possibly

more reliable.

Again, based on the JECAM data we defined a novel nomenclature based on land

use trajectories, conceived to be associated to spatially stable, multi-year reference sur-

faces, in which instead of a fallow class we target cropland fields exposed (at least once)

to fallow practice along the period considered. In contrast to this class, we decide to

differentiate fields that are always cropped during the entire period. Including areas out-

side the cropland, we come up with a final 6-class based nomenclature composed of five

classes which may be considered stable in time: non-vegetated, evergreen, always cropped,

water and herbaceous savanna, along with a sixth class composed of all those instances

where non-active periods emerge after or between two active cropping periods, which we

call dynamic agricultural land class (DAL). This reduces the cropping system mapping

problem to only two classes (always cropped and DAL), which may be insufficient for a

fully fledged characterization of cropping practices over the area, but still may offer an

insight to the potential of this approach. Note also that, with specific reference to the

aforementioned paucity of reference data on NAAL, this strategy also allows to cumulate

reference surfaces where NAAL occurs at least once over multiple years in a single class,

hence resorting to a more balanced reference data set as we will show in the next section.

6.2 Implementation

6.2.1 Causal and anti-causal fallow mapping

For these experiments we employ the same 6-class nomenclature used in Chapter 4:

cropped, fallow, water body, evergreen, herbaceous savanna and non-vegetated surfaces.

Non-vegetated surfaces is composed of JECAM’s built-up and bare soil land use classes,

whereas evergreen is composed of forest and savanna with trees classes.

For both the causal and anti-causal strategies we use every possible combination of

available years in the Sentinel-2 time series as input (see Fig 6.1). As an example,

when targeting year 2019 using the causal approach, we test all the three possible cases

which include Sentinel-2 data for year 2019 plus one extra consecutive past year (e.g.

2018/2019 for the first test, 2017/2018/2019 for the second, and so on). For the case of

the combined approach we limited the experiment to sets of three years which include
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current, past and succeeding year of available Sentinel-2. Finally, as a complementary

experiment, we conducted a series of model training tasks where we include all available

years of Sentinel-2 data. A scheme summarizing the different experiments proposed in

this approach is illustrated in Fig. 6.1. For each training job, we make use of the general

5-fold cross validation training protocol as described in Chapter 2. Thus, the total

amount of data points available for each class and year is the same as shown previously

in Fig. 4.1 (Chapter 4), where fallow class is significantly under-represented compared

to the rest of the LCLU classes considered.

6.2.2 Land/Cropping system mapping implementation

For this experiment we processed all available years of JECAM’s data at pixel level (ras-

terizing data at a 10-meter resolution using Sentinel-2 as reference image) for the period

2016-2021 and applying a trajectory relabelling to infer the nomenclature described in

Sec. 6.1.2 in a pixel-wise manner. For the case of the DAL class we included any data

point that combined a cropped period with any other vegetated LCLU JECAM class.

Thus, if a given pixel has been cultivated at least once and combines either fallow or

herbaceous savanna JECAM LCLU class then it is considered as DAL, again assuming

possible mislabelling issues in the source JECAM data. Non-vegetated and water classes

are not allowed to be mixed with other vegetated classes. Hence, when these two classes

are present in the period considered, water or non-vegetated class is preserved. A scheme

of the implementation of this nomenclature is shown in Fig. 6.2.

Subsequently, we performed a regrouping of connected pixels with the same class

labels and proceed to split data to perform a 5-fold cross validation strategy as described

in Chapter 2, with the difference that data splits are done using these newly generated

objects. Distribution of data points per class is shown in Fig. 6.3. The total amount of

available data points using this nomenclature results into a more balanced distribution,

at least between the critical always cropped and DAL classes, which are by the way

significantly less represented compared to herbaceous savannas.

6.3 Results

6.3.1 Causal and Anti-causal fallow mapping approach

We conducted a series of trainings using TempCNN classifier and a 5-fold cross validation

approach as described in Chapter 2. Thus, we trained an ensemble of five models for

every possible combination of Sentinel-2 annual data for causal (C), anti-causal (A), the

combination of causal and anti-causal (CA) and the complementary trials for which all

available Sentinel-2 data is used (ALL). This yielded a total of 31 training jobs for all

possible combinations of years (not including year 2019 since no fallow data is available

in reference data), all experiments combined. Average 5-fold F1-score for fallow class is
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Figure 6.2: Scheme of application of Land/Cropping system nomenclature (always
cropped, dynamic agricultural land, water, evergreen, non-vegetated, herbaceous savanna)
at pixel level. Both non-vegetated and water classes apply the same overwriting principle
when present in the trajectory.

shown in Fig. 6.4, where F1-scores reached a maximum value of 0.42 for year 2020 in

trial C3 (i.e. trained with 2020, 2019 and 2018 data).
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Figure 6.3: Number of data points in pixels (after rasterization using the Sentinel-2 10-m
grid as spatial reference) per class. Bar splits represent the proportion of pixels employed
in each cross validation fold.

Figure 6.4: Average 5-fold fallow class F1-scores for causal (CA) and anti-causal (AC)
multi-year approaches. Number coding shows how many years of Sentinel-2 data were
included in training (ex: CA2 includes two consecutive years of data). ALL indicates that
all available years were included, whereas CA/AC is composed of sets of 3 years (Yn−1, Yn

and Yn+1). Black error bars represent f1-score standard deviation. *Trial CA3 for 2017
is not shown because all folds yielded an F1-score of zero.

Results presented in Fig.6.4 show that independently of the strategy (causal/anti-

causal) or the amount of data used for model training (C2, C3, ...) targeting directly

fallow land does not allow for sufficiently accurate results, with performances with high
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variations for the same target year with multiple instances were F1-score is below 0.1.

Average F1-scores for each training strategy was 0.27, 0.22, 0.17 and 0.23 for ALL, CA,

AC and for the three year combined causal/anti-causal AC respectively. In Fig. 6.5 we

present the classified map of one of these trials as an illustrative example.

Figure 6.5: Example of predicted map (5-fold average) for 3-year causal trial (CA3) for
year 2020.

In the example of Fig. 6.5 we can quickly notice that the fallow class is rather absent,

with known fallow fields as registered in JECAM data set mislabelled as cropped (see top

right zoom). The spatial distribution of cropped, evergreen and Herbaceous savanna ap-

pears to be coherent to other image classification trials in previous chapters. In fact, if

we attend to the per-class confusion matrix shown for this example in Tab. 6.1, we de-

tect overall acceptable performances, with F1-scores over 0.75 mark for classes evergreen,

cropped, water and Herbaceous savanna. Besides fallow class, low F1-scores are also de-

tected for class non-vegetated. A significant commission error is found in evergreen class

(30% CO), with mislabelling issues occurring between classes evergreen and herbaceous

savanna. For the case of fallow class, most of commission and omission errors occur to-

wards cropped class. Note also that the two worst performing classes (non-vegetated and

fallow) correspond to those for which the less amount of reference data was available.
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Table 6.1: Average 5-fold confusion matrix of 3-year causal (CA3) 2020 trial testing re-
sults. CE and OE stand for commission error and omission error respectively, calculated
over average confusion matrix, whereas UA, PA and F1 stand for user accuracy, producer
accuracy and f1-score respectively.

Reference /
Predicted

Non-
vegetated

Forest Cropped Water Fallow Herb. sa-
vanna

Non-
vegetated

148.80 0.20 38.80 0.00 10.20 59.60

Forest 0.00 2131.60 16.00 0.00 0.20 951.60
Cropped 35.20 6.80 5712.40 0.00 51.40 64.60
Water 3.60 0.00 0.00 200.00 0.00 39.00
Fallow 3.40 0.20 91.80 0.00 63.40 17.40
Herb. sa-
vanna

87.20 508.60 132.80 0.00 7.20 5805.20

avg. CE 0.35 0.27 0.03 0.19 0.64 0.12
avg. OE 0.33 0.19 0.05 0.00 0.45 0.18
avg. UA 0.67 0.81 0.95 1.00 0.55 0.82
avg. PA 0.65 0.73 0.97 0.81 0.36 0.88
avg. F1 0.59 0.76 0.96 0.83 0.42 0.85

If we now consider the all the classes (see Fig. 6.6), we can observe that, with the

exception of fallow class, all other classes reach F1-scores beyond the 0.7 mark. For the

case of cropped, herbaceous and water there are no significant differences among the trials,

with one exception for water class in trial CA3. Despite the fact that it remains within

acceptable ranges (lower whisk above 0.8 mark), we can reasonably state that these classes

do not benefit from adding extra input data beyond the limits of a single season. When

we shift our focus to classes evergreen and non-vegetated, we observe a contrasted and

opposite behaviour between them, where average F1-scores for causal trials are higher

than anti-causal trials in evergreen class, whereas the inverse relationship is observe in

non-vegetated class. For the case of fallow class, we no longer observe clear differences

between causal and anti-causal trials. Nonetheless, we observe a cumulative increase

of median F1-score when incorporating extra years of input data for both approaches

(CA and AC). Notice that highest F1-scores for fallow class were obtained with the

causal approach, which also yields the highest variability. Nonetheless, despite the relative

enhanced performance for fallow class, the absolute F1-scores remain sub-optimal with

respect to the land trajectory strategy introduced in Chapter 5.
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6.3.2 Land/Cropping system classification

We conducted a 5-fold cross-validation following the strategy described in Sec. 6.1.2,

using all available years of Sentinel-2 data and its indices for the period 2016-2021 to

train a TempCNN model. Resulting model obtained an 5-fold average overall accuracy

(OA) of 77.69% and per class F1-scores ranging from 0.44 to 0.86 (See Fig. 6.7). Target

DAL class obtained the lowest average F1-score of 0.44.

Figure 6.7: Average 5-fold F1-scores for multi-year Land/Cropping system mapping strat-
egy.

Clearly, the proposed strategy proves ineffective even considering the presence of fal-

lows cumulatively over the Sentinel-2 coverage period. Anyway, despite the sub-optimal

results obtained for this mapping strategy, this approach did yield improved performances

when compared to previous causal/anti-causal strategy where, although the classes are not

directly comparable, fallow land obtained average F1-scores below 0.3 independently of

the training approach used. Taking a look at the average confusion matrix (see Tab. 6.2),

we can see that both types of errors (commission and omission) are present and most con-

flicts are related to the always cropped and savanna classes, which is clearly due to the

proximity in spectral dynamics among these three classes, which may be enhanced by the

fact that, in given periods of time, they may account for basically the same condition in

terms of vegetation growth (crop activity or inactivity).

In Fig. 6.8 we present an example of the classification results obtained using this

mapping approach. At first glance, and as expected, there is high presence of DAL with

a proportion over total cropland (i.e. always cropped plus DAL) of 75%. It is worth

recalling that, due to the nomenclature change this values are not directly comparable

to JECAM annual fallow land class. Nonetheless, we can perform a coarse estimate over
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Table 6.2: Average 5-fold confusion matrix of Cropping systems testing results. CE and
OE stand for commission error and omission error respectively, calculated over average
confusion matrix, whereas UA, PA and F1 stand for user accuracy, producer accuracy
and f1-score respectively.

Reference/Predicted Non-
vegetated

Forest Always
cropped

Water DAL Herb. sa-
vanna

Non-
vegetated

183.40 12.00 8.20 0.00 67.80 95.60

Forest 0.20 2965.80 2.80 0.00 146.00 625.00
Always
cropped

6.00 3.20 887.00 0.00 316.20 38.60

Water 0.00 0.80 0.00 239.60 1.20 1.00
DAL 24.60 79.60 256.80 0.00 563.20 210.80
Herb. sa-
vanna

55.40 1056.20 49.80 0.00 335.00 7016.20

CE 0.50 0.21 0.29 0.01 0.50 0.18
OE 0.32 0.28 0.26 0.00 0.61 0.12
UA 0.50 0.79 0.71 0.99 0.50 0.82
PA 0.68 0.72 0.74 1.00 0.39 0.88
F1 0.58 0.75 0.72 0.99 0.44 0.85

JECAM data set by stacking all ever cropped and fallowed surfaces for the period 2016-

2021, which yields a ratio “at least once fallowed” over cropland of 3.1%.

Figure 6.8: Predicted classification results for Cropping system approach.
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6.4 Conclusion

On this chapter we tested two different approaches for training a deep learning TempCNN

model in which we employed multiple years of Sentinel-2 as training data. In the first

causal/anti-causal approach we target fallow class as included in JECAM database, which

yield poor performances independently on the type or quantity of data included during

training. For the second approach, accounting for land/cropping system mapping, we

used a more wide nomenclature and targeted what we called Dynamic Agricultural Land

(DAL), which is not linked to a given year/season but encompasses the whole period of

analysis. This last approach yielded better results than the first multi-year approach,

reaching the 0.44 mark on average F1-score for DAL class, whereas the majority of multi-

year fallow mapping trials did not reach the 0.3 F1-score mark. Although the cropping

system approach yielded marginal improved performances for the target fallow-related

class, none of the approaches guarantee a sufficient level of accuracy as for providing

reliable estimates of fallow land.
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Chapter 7

Discussion and conclusion

7.1 The path from land cover to land use

7.1.1 Challenges and issues

The work presented in the different chapters composing this document aimed at proposing

different strategies for the automatic mapping, using time series of optical multi-spectral

satellite images, of fallow land. The targeted land is basically made up of land surfaces

which undergo what is at its core, an agricultural decision (i.e. not cultivating that

portion of potentially cultivated land), whether it be direct or indirect. As pointed out

progressively across the work, such research challenge presents a series of inexorable con-

straints, from the necessity of detecting a given practice that is not properly defined by

any particular observable state of land (i.e. land cover, LC), to the additional difficulties

associated to our specific agro-climatic context.

Starting from the latter, the agro-climatic characteristics of the study site are in-

deed the first contextual element that set the amplitude of our challenge : with rainfed

agriculture and precipitations concentrated in a few months, vegetation growth both for

cropland and naturally vegetated spaces happens in the very same lapse of time, creat-

ing an unfavorable conditions for satellite imagery based analysis with an overlapping of

spectral signatures and a reduced amount of cloud-free images. Moreover, the reduced

size of fields (often less than 1 ha), a strong heterogeneity in the management of cropped

surfaces in both intra- and inter-annual strategies (heterogeneity of cropping practices,

reshaping of fields, etc.), the presence of trees and weeds in cropping fields as well as the

variations in soil fertility, are all factors that limit the potential of remote sensing imagery

in characterizing fallow land.

Additionally, this highly dynamic agricultural system is also being affected by an

increasing population growth, which requires an increase of cultivated land to subsist, but

rather causes a decreased availability in financial and human resources for the agricultural

sector, creating situations of land abandonment as a consequence of the lack of inputs to

manage it. In fact, this means that yet another kind of land dynamics could be related,

although inappropriately if considering a more strict definition, to fallow practices. The
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lack of resources is also revealed in more indirect manners, with few paved roads enabling

the transport and movement of goods and workforce, or the absence of a technological

data infrastructure storing official graphical registers of land use (and hence potential high

quality reference data on larger scales). These are just some of the factors that describe a

highly fragmented and dynamic landscape that represents a wide portion of Sub-Saharan

Africa, and that might help the reader fixing the ideas on the complexity of the mapping

problem and understanding the exploratory approach that we adopted in this thesis .

7.1.2 An exploratory approach

In this thesis, our exploratory approach intended to leverage the use of multiple years of

radiometric data obtained from time series of satellite images, eventually complemented

with geo-spatialized rainfall (CHIRPS, Funk et al. (2014)), to derive discriminating infor-

mation for the mapping fallow practices by means of different single- and multi-year image

classification strategies, elaborated by coupling machine and deep learning techniques to

suitable knowledge-based modellings of the classification problem. To this aim, we first

made the essential choice to make use of Sentinel-2 imagery as a well adapted product

that can capture seasonal vegetation dynamics and allow us to work at the field level, with

specific reference to the tropical/sub-humid West African agrosystems in which our study

area is located. We also decided to make use of the JECAM data set, since it provided us

with multiple series of ground truth data that could be employed for (i) characterize the

presence of fallow on the study area and the potential drivers that could be observed to

identify fallow practices, and (ii) build suitable reference data sets for training and testing

the machine learning building blocks supporting all our mapping strategies.

In Chapter 3 the limitations mentioned in the previous paragraph were made explicit

by analyzing JECAM’s fallow samples in combination with Sentinel-2 derived time series

of vegetation indices (NDVI), showing that this type of land results indistinguishable from

other types of agricultural land uses when exploiting data at an annual scale. Enlarging

the time-span of analysis and working at field level permitted to detect instances where

NDVI appeared to show a positive inter-annual NDVI increase when fallow practice was

being used. Yet, these patterns were not general enough on the whole data set to allow

for a possible rule-based system for fallow land detection. This lack of generality is prob-

ably due to the highly heterogeneous fields, where it is possible to have vegetative states

and dynamics that vary significantly from one field to another, as a results of pedocli-

matic conditions, but also as a consequence of extended periods of seeding/harvesting and

the absence of any kind of mechanization, without mentioning the sparsity of available

satellite observation during the growing season. The potential of data on soil types as a

possible predictor of the occurrence of fallows has also been tested, unfortunately with

poor outcomes.

As a consequence of this acquired awareness, we decided to set the remainder of the

work around the main research question on: How can we transition from land cover
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information, defined as the present state of land with properties that are measurable

through satellite imagery, to a land use understood as an abstract categorization of land

described by its exploitation purposes, as exemplified by fallows in their agricultural

system? Due to the lack of any evidence on the existence of direct spatial indicator for

the presence of fallow, we opted for a more data-driven strategy based on the use of

machine learning (mainly Random Forest and TempCNN classifiers), and tested different

strategies to model fallow land.

As a first baseline approach, in Chapter 4, we tested different direct annual mapping

methods, where fallows are addressed as another land cover class. In this phase, our

reference surfaces are those annotated as fallow in the JECAM data set, although well

aware of the noise that they may contain (missed - mostly - and wrong fallow annota-

tions). Results showed that in all instances, targeting fallow land directly as a machine

learning/deep learning classification problem is not sufficient to differentiate this type of

land use, with average F1-score below the 0.2 mark. Annual strategy results exhibit high

levels of omission for the fallow class using both RF and TCNN classifiers. For sake of

completeness, we also tested an unsupervised classification strategy recently appeared in

literature (Tong et al. (2020)) specifically conceived for fallow mapping in the semi-arid

(Sahelian) band using Sentinel-2 imagery, which as expected performed poorly in our area

(which is located in the subhumid band), resulting in significant fallow class overestima-

tion (commission error). This goes in line with previous trials of direct annual mapping

of fallow land on the same area, even if in a larger land cover mapping scenario, in which

the fallow class was mostly missed (average F1-scores lower than 0.2) (Gaetano et al.,

2019).

It soon appeared clear that employing annual time series of radiometric features does

not provide sufficient information for a classification model to “learn” to identify the fallow

practice, due to the absence of a specific signal for the related land cover dynamics. Truth

is, this is not surprising given the multi-year nature of this practice, whose occurrence

depends not only on the observed degradation of land productivity after multiple years of

active cropping, but also on multiple pedoclimatic and socioeconomic factors which end

up widening the range of fallow land types, finally making their yearly characterization

practically impossible. Moreover, the strategy described in Chapter 6, namely the causal

/ anti-causal approach, which aims at detecting fallow land in each given year through the

use of multiple subsequent years of Sentinel-2 acquisitions, also proved rather inaccurate.

Taking all necessary precautions into account, it is highly likely that this evidence suggests

that the long-term degradation of vegetation growth, potentially leading to fallows, as well

as its regenerative effects, are not consistently captured by the input time series. This

renders the “naive” multi-year approach ineffective. Therefore, we esteemed necessary

to adapt our strategies to cope with this variability and exploit the most identifiable

properties of this practice.

We hence decided to revisit the findings of our exploratory study on the reference

surfaces, which further confirmed the hypothesis that vegetation dynamics on fallow land
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develop over extended periods rather than within a single year. This motivated us to

adopt an alternative approach, one that transcends the modeling of fallow practice solely

as a distinct type of land cover. Instead, we interpret it more coherently as a land use

type, necessitating a more explicit definition based on observable characteristics through

satellite data. This rationalization brought us to the broader concepts of Non-Active

Agricultural Land (NAAL) and Dynamic Agricultural Land (DAL) employed in Chapter

5 and 6, that respectively represent to two ways to “extrapolate” from proper fallows

in (i) a land use class which includes all surfaces which are not cropped in a given year

but have been cultivated in the recent past (de facto including abandoned fields) and

(ii) an intrinsically multi-year land use class encompassing all surfaces where, in several

subsequent years, active cropping is alternated to idle periods (hence mapping a cropping

system that makes sense only over multiple years). Note that, the solution (i) still accounts

for a yearly mapping of NAAL, but the constraint of “rigorous fallow” is relaxed, while

in (ii) we clearly conceptualized a different mapping product, whose reference period

might be of several consecutive years, focusing mainly on the identification of agricultural

practices which are susceptible to make (direct or indirect) use of fallows to regenerate

land productivity.

Summarizing, in order to develop a somewhat viable approach for detecting fallow

land we conceived different manners to conceptualize it, rethinking what are the charac-

teristics that define a particular use of land and how it can be isolated. We concentrated

the problem around the temporal dimension, which yielded different conceptualization

(see Fig. 7.1) from more “traditional” definitions of fallow as a land cover class, to more

“atemporal” definitions where fallow practice is encompassed within a highly variable

agricultural system. Following rigorously constructed validation protocols, which uti-

lize classical machine learning tools and appropriately modify the original JECAM refer-

ence dataset, transitioning from annual approaches to multi-year modeling and strategies

proves to be highly beneficial for mapping performance. Of these strategies, the land

trajectory modeling approach (NAAL mapping) stands out as the most effective to date..

However, many are the questions to be raised on the viability and generalization potential

of these approaches, which we will try to analyze in detail in the reminder of this chapter.

7.2 Exploiting temporal dimension

7.2.1 Direct multi-year mapping strategy

In Chapters 4 and 6 we tested different mapping strategies that target annual fallow

land using JECAM’s fallow records as reference surfaces. This allowed us to established a

mapping “baseline” that implements a similar logic as in more traditional land mapping

strategies, where targeted classes can be directly explained by a given dynamic of radio-

metric features along the target year (often the growing season). As for the causal/anti-

causal approach this was extended beyond a single growing season and tested different
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Figure 7.1: Summary scheme of all the approaches tested and objective target. NAAL,
DAL and SITS refer to Non-Active Agricultural Land, Dynamic Agricultural Land and
Satellite Imagery Time-Series. Each SITS represent the available images for a given year
(or agricultural season), where n is the current year and m the total amount of SITS
available.
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types of temporal relation w.r.t. the target year. In Chapter 4, classification trials were

not capable of accurately detect annual fallow land. Nonetheless, other classes consid-

ered achieved satisfactory classification accuracies with F1-scores beyond the 0.6 mark,

showing that for some types of land use direct approaches as these might suffice.

In Chapter 6 the causal/anti-causal approaches have shown the effects of using ex-

tended periods of input data, in the past and future directions and both, on the very

same classification workflow. Results were contrasting for the fallow, evergreen and non-

vegetated classes (see Fig. 6.6), with surprisingly the latter class present enhanced F1-

scores for anti-causal (AC trials). This is probably related to the fact that classes with

a more stable radiometric dynamic over the years (this one includes JECAM’s built-up

and bare soil classes) may benefit more from the redundancy of the input signals (since it

raises classifier’s confidence). Although this may also be the case for the evergreen class

(exhibiting similar temporal profiles every year), this effect was more unstable, providing

significantly improved F1-scores only for the causal trials w.r.t. anti-causal trials, pos-

sibly indicating a certain sensitivity in classes that may be affected by shifts in seasonal

rainfall. For the most important case of fallow land, there were no clear differences be-

tween causal and anti-causal trials, yet we did observe slightly enhanced F1-scores when

extending the time period considered of the input radiometric features, suggesting an

increased explanatory power with longer time-series.

7.2.2 Trajectory analysis based strategy

As mentioned above, results showed in Chapter 5, might be the most viable way to

provide reliable mapping of NAAL surfaces based on Sentinel-2 image time series in the

sub-humid West African agrosystems. An extensive validation has been provided using

multiple versions of the reference data set, showing that if we keep the most reliable in-

formation available on NAAL reference surfaces the measured accuracy is very high (>

0.8 F1-score) considering the fine scale targeted. Moreover, when coping with possible

biases in such data set, results also show that, enabling different amounts of reference

data augmentation based on suitable hypothesis on spatial correlation at field level, per-

formances still remain significantly moderately positive (F1-score ranging from 0.5 to

0.8) if compared with results achieved in direct mapping strategies (Chapter 4 and

Causal/Anti-causal approach in Chapter 6. Due to the lack of other reference databases

long enough to further validate this methodology, this assessment does not yet allow an

operational transfer of the proposed method as a decision support tool, nonetheless we

may legitimately state that trajectory-based model proposed here achieve promising re-

sults.

Spatial inspection of NAAL maps also confirms that (i) many areas detected as NAAL

are compatible to agricultural fields in shape and size (see Fig. 5.10) and (ii) the overall

occurrence of NAAL surfaces, which amounts in average to around 11% of the total

arable land (with peaks of 14% years 2019 and 2021) is coherent with the occurrence
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of fallow fields in the JECAM data set across the period. Thus, we can conclude that

the proposed methodology is adept at generating locally significant NAAL maps down to

the plot scale. This stands in contrast to recent studies on fallow mapping (Tong et al.,

2020; Dara et al., 2018; Rufin et al., 2022), which primarily concentrate on large-scale

assessments and do not offer evidence of comparable local significance at the level of

pixel aggregates. Yet, there is room for improvement in spatial accuracy which could be

achieved by post-processing NAAL maps based on prior information on the location and

shape of the detected fields.

7.2.3 Cropping systems mapping strategy

The results of the land/cropping systems mapping approach (Chapter 6) where it is at-

tempted to locate the so-called DAL surfaces provided improved results when compared

to annual and multi-year fallow land direct mapping. Although the fallow class from the

original JECAM data set and Dynamic Agricultural Land class are semantically differ-

ent, the latter provides an alternative way to quantify the presence of fallow in a given

agricultural system, which is less precise in time but still might give precious information

for its assessment. However, overall performances obtained in cropping systems mapping

strategy were not sufficient for generating a reliable cartography, with an average F1-score

of 0.42. In this approach land use change detection is being handled directly by Tem-

pCNN algorithm, which is designed to exploit the temporal dimension in a multivariate

intra-seasonal/annual time-series. Hence, might not be properly adapted for multi-year

land use change detection. In this line, more traditional multi-year analysis tools such as

LandTrendr or BFAST (Verbesselt et al., 2010; Kennedy et al., 2010), oriented to detect

seasonal trends and requiring long time series (20+ years), may achieve better perfor-

mances. Although a possible way to implement such strategy could be the use of longer

time series of decametric satellite images (such as Landsat imagery at 30 m resolution),

we doubt that such data may offer the adequate spatial and temporal resolution to cope

with the specificity of our targeted agricultural system.

7.3 The importance of ground truth data

In all the classification tasks conducted in this thesis we used the JECAM reference data

for testing the resulting accuracy of generated maps allowing for the assessment over the

same study site along the period 2016-2021. This data set, which has the advantage of

providing explicit records on fallow fields, allows us to develop and evaluate different

approaches for mapping fallow practice, as well as to identify the limitations, require-

ments and methodological adaptations needed to this aim. However, it is important to

also understand what are the limitations related to the reference data itself: quality and

extensive ground truth data sets are rare, resource intensive and logistically challenging,

which motives the development of “cheaper” solutions including those who leverage satel-
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lite imagery to upscale to larger areas. Yet, the resulting accuracy and quality of these

mapping strategies is to be tested against high quality reference data, ideally recorded

in situ, which makes initiatives for building ground truth data such as JECAM data set

indispensable.

Herein we leverage such data set, but also explore its limitations through the different

classification tasks performed. Certainly, the availability of a suitable reference database,

both precise at field scale and conducted over multiple years, is rather uncommon for the

target region. On the other hands, we also could measure that the non-static nature of

field boundaries reduces the surface available for the validation of multi-year strategies,

making it necessary, as we have shown in Chapter 3, to process the original samples

in order to build a spatio-temporally harmonised ground truth data. Additionally, the

limited accessibility of large portion of the study site also limits the potential coverage of

the data set: gaps are present in the multi-year characterisation of a significant percentage

of fields, which implied further noise-prone processing to data set prior to its use. But most

importantly, the representativity of collected samples, which are almost mostly collected

along passable pathways, is questionable. In Chapter 5, some evidences are provided on

how this fact can directly impact the confidence of classification models, whose reliability

drops when moving far from the areas where reference data is available. In other words,

ensuring the spatial representativeness of reference data is one extra desirable feature

that can enhance model predictive capabilities by capturing spatial differences linked to

changes in soil properties, climate (e.g. uneven rainfall), vegetation or other factors.

Always concerning representativity, another fundamental limitations to fully assess the

proposed strategies relies on the absence of reference data on other study sites, at least

within the same geographical area: investing in the construction of several other data set

enabling for the multi-year tracking of cropping practices is necessary to provide further

evidences on the methodological clues brought up by this thesis.

One may argue that the building of such data sets could be addressed through the use

of high resolution imagery and photo-interpretation. Yet the feasibility of this strategy

would rely on the ability of discriminating fallows, or at least their encompassing classes

(NAAL, DAL), from other types vegetated spaces, including cropland and natural spaces.

This condition is rarely met in sub-humid West Africa due to a mainly rainfed-based

agriculture and a lack of reliable cropland mapping products (without mentioning the

limited availability of exploitable image acquisitions during the rainy season). Any im-

provement in image spatial resolution or temporal frequency within the current range of

available products are therefore unlikely to provide substantial improvements both in the

construction of an extensive enough reference database through photo-interpretation or

in providing improved radiometric quality with potentially enhanced explanatory power.

118



CHAPTER 7. DISCUSSION AND CONCLUSION

7.4 Perspectives, limitations

7.4.1 Multi-sensor approaches to cope with cloudy images

As explained in Chapter 2, in this thesis we have dealt with the presence of clouds in the

satellite image time series by means of a linear “gap-filling” technique to infer missing

values, thanks to the available cloud masks provided. Yet, this method, which is necessary

in order to provide complete time series to the classifiers, performs poorly especially during

the rainy season, where a significant number of consecutive missing acquisitions produces

a piece-wise linear signal which can only hardly reproduce the real changes happening

under the clouds. One potential alternative to alleviate the lack of cloud free imagery is

the integration of images from different sensor, including products obtained by the fusion

of multiple imagery, e.g. MODIS-Landsat (Gao et al., 2017), Sentinel-LandSat (Wu et al.,

2022), where the reduction of cloud presence is achieved by an increased combined image

revisit time. Yet, this is still dependent on the occurrence of cloud-free days during the

rainy season, which may be rare, without mentioning the implicit reduction in either

radiometric quality or pixel spatial resolution that the fusion methodologies imply. More

advanced solutions worth considering are approaches where Synthetic Aperture Radar

(SAR) images, such as those provided by the open-access Sentinel-1 mission with its

cloud-penetrating capabilities, may be used jointly to optical data to improve classification

accuracies, or even fused by means of machine and deep learning algorithms in order to

generate estimations and “fill” missing radiometric features of interest such as NDVI

(see Scarpa et al. (2018); Ebel et al. (2020); dos Santos et al. (2022); Lasko (2022)). An

Alternative focus can involve more complex cloud removal strategies (”gap-filling) through

the use of deep learning algorithms and radar data (see Meraner et al. (2020); Zhang

et al. (2020)). Thus, showing that there is a wide range of state-of-the-art methodological

improvements that can potentially enhance image/data quality.

7.4.2 Moving towards unsupervised methods

Matter of fact, in this thesis we provide a first evidence that for the identification, at least

a rough one, of NAAL surfaces the regular detection of active cropland vs. other kinds of

non-managed deciduous vegetation may suffice, since this would enable the application of

a trajectory model like the one proposed in Chapter 5. Hence, a possibility that we con-

sider worth exploring to address the issue of large-scale NAAL identification is to resort

to unsupervised classification techniques for the managed vs. unmanaged LULC map-

ping problem, eventually adapted to specific agro- and eco-systems. One way to proceed

could be to exploit the proposed supervised classification workflow to deeply inspect the

combination of image-derived variables allowing for the discrimination between these two

classes, and design a proper unsupervised methodology to provide such discrimination.

In this setting, the deployment of field work for gathering reference data may be based on

an agrosystem-scale sampling in representative areas, moving the whole workflow within
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the range of feasibility.

An intermediate solution towards building an approach less reliant in high quality

ground truth data and also increase the extent/area covered is to use strategies relying

on Positive Unlabelled Learning (Bekker and Davis, 2020), a particular machine learning

setting where the learner only knows about a “positive” class and deduces the negative

one from the difference in the unlabelled set. In our case, the positive class could be the

active cropland, the unmanaged surfaces being the negative class. In this scenario we

could limit the field efforts to collecting samples of active cropland, generally easier to

access and annotate, and let the machine manage the antagonist class prior to proceed to

a trajectory based analysis.

7.4.3 Methodological improvements

Finally, in this thesis we employed TempCNN image classifier as an state-of-art deep

learning alternative to Random Forest classifier, which showed statistically similar per-

formances in all classification trials tested herein, but yielded improved spatially coherent

classifications in areas where no reference data was available (see Chapter 5). Moreover,

due to the intrinsic potential within the “layered” structure in deep learning models it

seems worth exploring more adapted or ad-hoc deep learning models where user can, to

some extent, “guide” the model and determine what are the building blocks from which

to derive the explanatory data.

A possibility could be to leverage temporal domain adaptation to both enable the si-

multaneous use of reference data from multiple years in each annual land cover mapping

task and cope with seasonality shifts in satellite image time series from different years

(Capliez et al., 2023). Another relevant possibility worth mentioning would be the incor-

poration of 2D-CNN models for enhancing the spatial quality of provided maps, including

field boundaries delimitation. Yet, such solution would imply a significant increase in the

need for reference data, which may render the approach simply unfeasible in areas with

limited accessibility like the one studied in this thesis.

7.5 Conclusion

In this thesis we have illustrated different manners to detect fallow practice in West

African smallholder agriculture. All throughout our exploratory approach, we could pro-

vide several methodological clues which may be foundational for the development of an

operational strategy for fallow mapping. Furthermore, provided results over a representa-

tive study site for the sub-humid Sudanian agricultural systems seem to indicate, with all

the due precautions, a non-negligible presence of agricultural land which is not actively

cropped during the growing season. Due to the technical limitations in terms of data

availability, it is not possible to determine to what extent this land might correspond

unquestionably to a regular implementation of some type of fallow practice. Yet, these
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insights provide evidence of the presence of a highly dynamic agricultural system that

cannot be overlooked, and definitely confirm the necessity of pursuing methodological

research on the accurate mapping of this practice at broad scale.
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pixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence 34, 2274–2282. doi:10.1109/TPAMI.2012.120.

Akpo, L.E., Masse, D., Grouzis, M., 2002. Durée de jachère et valeur pastorale de la
végétation herbacée en zone soudanienne au Sénégal. Revue d’élevage et de médecine
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Leroux, L., Jolivot, A., Bégué, A., Seen, D.L., Zoungrana, B., 2014. How Reliable is the
MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes?
Remote Sensing 6, 8541–8564. URL: https://www.mdpi.com/2072-4292/6/9/8541,
doi:10.3390/rs6098541. number: 9 Publisher: Multidisciplinary Digital Publishing
Institute.

Lowder, S.K., Skoet, J., Raney, T., 2016. The number, size, and distribution of farms,
smallholder farms, and family farms worldwide. World development 87, 16–29.

127

https://www.mdpi.com/2072-4292/9/1/95
https://www.mdpi.com/2072-4292/9/1/95
http://dx.doi.org/10.3390/rs9010095
https://linkinghub.elsevier.com/retrieve/pii/S026483771631081X
https://linkinghub.elsevier.com/retrieve/pii/S026483771631081X
http://dx.doi.org/10.1016/j.landusepol.2017.11.025
https://essd.copernicus.org/preprints/essd-2021-125/
https://essd.copernicus.org/preprints/essd-2021-125/
http://dx.doi.org/10.5194/essd-2021-125
https://doi.org/10.1023/A:1010717629129
https://doi.org/10.1023/A:1010717629129
http://dx.doi.org/10.1023/A:1010717629129
https://www.mdpi.com/2072-4292/6/9/8541
http://dx.doi.org/10.3390/rs6098541


BIBLIOGRAPHY

Manlay, R.J., Cadet, P., Thioulouse, J., Chotte, J.L., 2000a. Relationships between abiotic
and biotic soil properties during fallow periods in the sudanian zone of Senegal. Applied
Soil Ecology 14, 89–101. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0929139300000524, doi:10.1016/S0929-1393(00)00052-4.

Manlay, R.J., Cadet, P., Thioulouse, J., Chotte, J.L., 2000b. Relationships between
abiotic and biotic soil properties during fallow periods in the sudanian zone of Sene-
gal. Applied Soil Ecology 14, 89–101. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0929139300000524, doi:10.1016/S0929-1393(00)00052-4.

Mathieu, R., Pouget, M., Cervelle, B., Escadafal, R., 1998. Relationships be-
tween Satellite-Based Radiometric Indices Simulated Using Laboratory Reflectance
Data and Typic Soil Color of an Arid Environment. Remote Sensing of Environ-
ment 66, 17–28. URL: https://www.sciencedirect.com/science/article/pii/

S0034425798000303, doi:10.1016/S0034-4257(98)00030-3.

McFeeters, S.K., 1996. The use of the Normalized Difference Water In-
dex (NDWI) in the delineation of open water features. International Jour-
nal of Remote Sensing 17, 1425–1432. URL: https://doi.org/10.1080/

01431169608948714, doi:10.1080/01431169608948714. publisher: Taylor & Francis
eprint: https://doi.org/10.1080/01431169608948714.

Meraner, A., Ebel, P., Zhu, X.X., Schmitt, M., 2020. Cloud removal in sentinel-2 imagery
using a deep residual neural network and sar-optical data fusion. ISPRS Journal of
Photogrammetry and Remote Sensing 166, 333–346.

Miller, M.A.E., Shepherd, K.D., Kisitu, B., Collinson, J., 2021. iSDAsoil: The first
continent-scale soil property map at 30 m resolution provides a soil information revolu-
tion for Africa. PLOS Biology 19, e3001441. URL: https://dx.plos.org/10.1371/
journal.pbio.3001441, doi:10.1371/journal.pbio.3001441.

Müller, A.C., Guido, S., 2016. Introduction to machine learning with Python: a guide for
data scientists. ” O’Reilly Media, Inc.”.

Ouedraogo, I., Tigabu, M., Savadogo, P., Compaoré, H., Odén, P.C., Ouadba, J.M.,
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Samaké, O., Smaling, E., Kropff, M., Stomph, T., Kodio, A., 2005. Effects
of cultivation practices on spatial variation of soil fertility and millet yields
in the Sahel of Mali. Agriculture, Ecosystems & Environment 109, 335–
345. URL: https://linkinghub.elsevier.com/retrieve/pii/S0167880905001246,
doi:10.1016/j.agee.2005.02.024.

Samasse, K., Hanan, N., Tappan, G., Diallo, Y., 2018. Assessing Cropland Area in
West Africa for Agricultural Yield Analysis. Remote Sensing 10, 1785. URL: http:
//www.mdpi.com/2072-4292/10/11/1785, doi:10.3390/rs10111785.

dos Santos, E.P., da Silva, D.D., do Amaral, C.H., Fernandes-Filho, E.I., Dias, R.L.S.,
2022. A machine learning approach to reconstruct cloudy affected vegetation indices
imagery via data fusion from sentinel-1 and landsat 8. Computers and Electronics in
Agriculture 194, 106753.

Scarpa, G., Gargiulo, M., Mazza, A., Gaetano, R., 2018. A cnn-based fusion method for
feature extraction from sentinel data. Remote Sensing 10, 236.

129

https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y
http://dx.doi.org/10.1038/s41467-020-18321-y
https://www.sciencedirect.com/science/article/pii/S1569843222001947
https://www.sciencedirect.com/science/article/pii/S1569843222001947
http://dx.doi.org/10.1016/j.jag.2022.103006
https://linkinghub.elsevier.com/retrieve/pii/S0308521X0300101X
http://dx.doi.org/10.1016/j.agsy.2003.06.004
https://ntrs.nasa.gov/citations/19750020419
https://ntrs.nasa.gov/citations/19750020419
https://linkinghub.elsevier.com/retrieve/pii/S1569843222001340
https://linkinghub.elsevier.com/retrieve/pii/S1569843222001340
http://dx.doi.org/10.1016/j.jag.2022.102937
https://linkinghub.elsevier.com/retrieve/pii/S0167880905001246
http://dx.doi.org/10.1016/j.agee.2005.02.024
http://www.mdpi.com/2072-4292/10/11/1785
http://www.mdpi.com/2072-4292/10/11/1785
http://dx.doi.org/10.3390/rs10111785


BIBLIOGRAPHY

Snapp, S., Rahmanian, M., Batello, C., Calles, T., 2018. Pulse crops for sustainable farms
in sub-saharan africa. FAO. doi:10.18356/6795bfaf-en.

Tittonell, P., Giller, K.E., 2013. When yield gaps are poverty traps: The paradigm
of ecological intensification in African smallholder agriculture. Field Crops Re-
search 143, 76–90. URL: https://www.sciencedirect.com/science/article/pii/
S0378429012003346, doi:10.1016/j.fcr.2012.10.007.

Tong, X., Brandt, M., Hiernaux, P., Herrmann, S., Rasmussen, L.V., Rasmussen, K.,
Tian, F., Tagesson, T., Zhang, W., Fensholt, R., 2020. The forgotten land use class:
Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sensing of En-
vironment 239, 111598. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0034425719306182, doi:10.1016/j.rse.2019.111598.

Tong, X., Brandt, M., Vang Rasmussen, L., Hiernaux, P., Bech Bruun, T., Reiner,
F., M. Abdi, A., M. Herrmann, S., Li, S., Fensholt, R., 2022. Nano-satellites
uphold Boserup’s theory of smallholder agricultural intensification. URL: https:

//www.researchsquare.com, doi:10.21203/rs.3.rs-2041995/v1.

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010. Detecting trend and
seasonal changes in satellite image time series. Remote sensing of Environment 114,
106–115.

Vollset, S.E., Goren, E., Yuan, C.W., Cao, J., Smith, A.E., Hsiao, T., Bisignano, C.,
Azhar, G.S., Castro, E., Chalek, J., Dolgert, A.J., Frank, T., Fukutaki, K., Hay,
S.I., Lozano, R., Mokdad, A.H., Nandakumar, V., Pierce, M., Pletcher, M., Roba-
lik, T., Steuben, K.M., Wunrow, H.Y., Zlavog, B.S., Murray, C.J.L., 2020. Fertility,
mortality, migration, and population scenarios for 195 countries and territories from
2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. The
Lancet 396, 1285–1306. URL: https://www.sciencedirect.com/science/article/
pii/S0140673620306772, doi:10.1016/S0140-6736(20)30677-2.

Wallace, C.S., Thenkabail, P., Rodriguez, J.R., Brown, M.K., 2017. Fallow-land Al-
gorithm based on Neighborhood and Temporal Anomalies (FANTA) to map planted
versus fallowed croplands using MODIS data to assist in drought studies leading
to water and food security assessments. GIScience & Remote Sensing 54, 258–282.
URL: https://www.tandfonline.com/doi/full/10.1080/15481603.2017.1290913,
doi:10.1080/15481603.2017.1290913.

Wu, J., Lin, L., Li, T., Cheng, Q., Zhang, C., Shen, H., 2022. Fusing landsat 8 and sentinel-
2 data for 10-m dense time-series imagery using a degradation-term constrained deep
network. International Journal of Applied Earth Observation and Geoinformation 108,
102738.

Wu, Z., Thenkabail, P.S., Mueller, R., Zakzeski, A., Melton, F., Johnson, L., Rosevelt,
C., Dwyer, J., Jones, J., Verdin, J.P., 2014. Seasonal cultivated and fallow cropland
mapping using MODIS-based automated cropland classification algorithm. Journal
of Applied Remote Sensing 8, 083685. URL: https://www.spiedigitallibrary.

org/journals/journal-of-applied-remote-sensing/volume-8/issue-1/083685/

Seasonal-cultivated-and-fallow-cropland-mapping-using-MODIS-based-automated/

10.1117/1.JRS.8.083685.full, doi:10.1117/1.JRS.8.083685. publisher: SPIE.

130

http://dx.doi.org/10.18356/6795bfaf-en
https://www.sciencedirect.com/science/article/pii/S0378429012003346
https://www.sciencedirect.com/science/article/pii/S0378429012003346
http://dx.doi.org/10.1016/j.fcr.2012.10.007
https://linkinghub.elsevier.com/retrieve/pii/S0034425719306182
https://linkinghub.elsevier.com/retrieve/pii/S0034425719306182
http://dx.doi.org/10.1016/j.rse.2019.111598
https://www.researchsquare.com
https://www.researchsquare.com
http://dx.doi.org/10.21203/rs.3.rs-2041995/v1
https://www.sciencedirect.com/science/article/pii/S0140673620306772
https://www.sciencedirect.com/science/article/pii/S0140673620306772
http://dx.doi.org/10.1016/S0140-6736(20)30677-2
https://www.tandfonline.com/doi/full/10.1080/15481603.2017.1290913
http://dx.doi.org/10.1080/15481603.2017.1290913
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-8/issue-1/083685/Seasonal-cultivated-and-fallow-cropland-mapping-using-MODIS-based-automated/10.1117/1.JRS.8.083685.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-8/issue-1/083685/Seasonal-cultivated-and-fallow-cropland-mapping-using-MODIS-based-automated/10.1117/1.JRS.8.083685.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-8/issue-1/083685/Seasonal-cultivated-and-fallow-cropland-mapping-using-MODIS-based-automated/10.1117/1.JRS.8.083685.full
https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-8/issue-1/083685/Seasonal-cultivated-and-fallow-cropland-mapping-using-MODIS-based-automated/10.1117/1.JRS.8.083685.full
http://dx.doi.org/10.1117/1.JRS.8.083685


BIBLIOGRAPHY

Xu, H., 2006. Modification of normalised difference water index (NDWI) to en-
hance open water features in remotely sensed imagery. International Jour-
nal of Remote Sensing 27, 3025–3033. URL: https://doi.org/10.1080/

01431160600589179, doi:10.1080/01431160600589179. publisher: Taylor & Francis
eprint: https://doi.org/10.1080/01431160600589179.

Xu, Y., Yu, L., Feng, D., Peng, D., Li, C., Huang, X., Lu, H., Gong, P., 2019. Compar-
isons of three recent moderate resolution African land cover datasets: CGLS-LC100,
ESA-S2-LC20, and FROM-GLC-Africa30. International Journal of Remote Sensing
40, 6185–6202. URL: https://www.tandfonline.com/doi/full/10.1080/01431161.
2019.1587207, doi:10.1080/01431161.2019.1587207.

Yin, H., Prishchepov, A.V., Kuemmerle, T., Bleyhl, B., Buchner, J., Radeloff,
V.C., 2018. Mapping agricultural land abandonment from spatial and temporal
segmentation of Landsat time series. Remote Sensing of Environment 210, 12–
24. URL: https://linkinghub.elsevier.com/retrieve/pii/S0034425718300622,
doi:10.1016/j.rse.2018.02.050.

Zhang, L., Zhang, L., Du, B., 2016. Deep learning for remote sensing data: A technical
tutorial on the state of the art. IEEE Geoscience and remote sensing magazine 4, 22–40.

Zhang, M., Wu, B., Meng, J., Dong, T., You, X., 2014. Fallow land mapping for better
crop monitoring in Huang-Huai-Hai Plain using HJ-1 CCD data. IOP Conference Series:
Earth and Environmental Science 17, 012048. URL: https://iopscience.iop.org/
article/10.1088/1755-1315/17/1/012048, doi:10.1088/1755-1315/17/1/012048.

Zhang, Q., Yuan, Q., Li, J., Li, Z., Shen, H., Zhang, L., 2020. Thick cloud and cloud
shadow removal in multitemporal imagery using progressively spatio-temporal patch
group deep learning. ISPRS Journal of Photogrammetry and Remote Sensing 162,
148–160.

Zhao, Z., Wang, J., Wang, L., Rao, X., Ran, W., Xu, C., 2023. Monitoring and anal-
ysis of abandoned cropland in the Karst Plateau of eastern Yunnan, China based
on Landsat time series images. Ecological Indicators 146, 109828. URL: https://
www.sciencedirect.com/science/article/pii/S1470160X22013012, doi:10.1016/
j.ecolind.2022.109828.

Zoungrana, I., 1993. Les jachères nord-soudaniennes du Burkina Faso: 1. Analyse de la
reconstitution de la végétation herbacée, in: La Jachère en Afrique de l’Ouest, Mont-
pellier (France), 1991.

131

https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
http://dx.doi.org/10.1080/01431160600589179
https://www.tandfonline.com/doi/full/10.1080/01431161.2019.1587207
https://www.tandfonline.com/doi/full/10.1080/01431161.2019.1587207
http://dx.doi.org/10.1080/01431161.2019.1587207
https://linkinghub.elsevier.com/retrieve/pii/S0034425718300622
http://dx.doi.org/10.1016/j.rse.2018.02.050
https://iopscience.iop.org/article/10.1088/1755-1315/17/1/012048
https://iopscience.iop.org/article/10.1088/1755-1315/17/1/012048
http://dx.doi.org/10.1088/1755-1315/17/1/012048
https://www.sciencedirect.com/science/article/pii/S1470160X22013012
https://www.sciencedirect.com/science/article/pii/S1470160X22013012
http://dx.doi.org/10.1016/j.ecolind.2022.109828
http://dx.doi.org/10.1016/j.ecolind.2022.109828


BIBLIOGRAPHY

132



Annexes

Table A.1: Supervised annual fallow mapping strategies per-class accuracy metric. RF
and TCNN stand for supervised Random Forest classifier and TempCNN classifier trials.
OA, UA and PA stand for overall accuracy, user accuracy and producer accuracy respec-
tively. For more detail of approaches see Chapter 4.

Trial Year OA Class UA PA

RF 2016 0.87 non-vegetated 0.93 0.47
RF 2016 evergreen 0.85 0.68
RF 2016 cropped 0.85 0.98
RF 2016 water 1.00 0.99
RF 2016 fallow 0.29 0.01
RF 2016 nat.herbaceus 0.88 0.88
RF 2017 0.89 non-vegetated 0.96 0.72
RF 2017 evergreen 0.85 0.71
RF 2017 cropped 0.91 0.98
RF 2017 water 1.00 0.99
RF 2017 fallow 0.03 0.00
RF 2017 nat.herbaceus 0.87 0.88
RF 2018 0.90 non-vegetated 0.89 0.62
RF 2018 evergreen 0.88 0.80
RF 2018 cropped 0.90 0.97
RF 2018 water 1.00 1.00
RF 2018 fallow 0.20 0.00
RF 2018 nat.herbaceus 0.89 0.91
RF 2020 0.88 non-vegetated 0.85 0.54
RF 2020 evergreen 0.84 0.74
RF 2020 cropped 0.92 0.98
RF 2020 water 1.00 1.00
RF 2020 fallow 0.11 0.01
RF 2020 nat.herbaceus 0.87 0.89
RF 2021 0.91 non-vegetated 0.91 0.50
RF 2021 evergreen 0.90 0.83
RF 2021 cropped 0.92 0.98
RF 2021 water 1.00 1.00
RF 2021 fallow 0.92 0.10
RF 2021 nat.herbaceus 0.90 0.92
TCNN 2016 0.75 non-vegetated 0.32 0.65
TCNN 2016 evergreen 0.77 0.70
TCNN 2016 cropped 0.94 0.66
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Continuation Tab. A.1
Trial Year OA Class UA PA
TCNN 2016 water 0.99 1.00
TCNN 2016 fallow 0.07 0.40
TCNN 2016 nat.herbaceus 0.87 0.84
TCNN 2017 0.78 non-vegetated 0.46 0.86
TCNN 2017 evergreen 0.78 0.75
TCNN 2017 cropped 0.97 0.75
TCNN 2017 water 1.00 1.00
TCNN 2017 fallow 0.11 0.71
TCNN 2017 nat.herbaceus 0.88 0.82
TCNN 2018 0.83 non-vegetated 0.51 0.78
TCNN 2018 evergreen 0.79 0.81
TCNN 2018 cropped 0.94 0.83
TCNN 2018 water 0.98 1.00
TCNN 2018 fallow 0.06 0.36
TCNN 2018 nat.herbaceus 0.89 0.87
TCNN 2020 0.85 non-vegetated 0.59 0.75
TCNN 2020 evergreen 0.78 0.79
TCNN 2020 cropped 0.96 0.92
TCNN 2020 water 1.00 1.00
TCNN 2020 fallow 0.19 0.70
TCNN 2020 nat.herbaceus 0.88 0.84
TCNN 2021 0.89 non-vegetated 0.40 0.69
TCNN 2021 evergreen 0.82 0.88
TCNN 2021 cropped 0.96 0.91
TCNN 2021 water 1.00 1.00
TCNN 2021 fallow 0.18 0.63
TCNN 2021 nat.herbaceus 0.91 0.88
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Trajectory based NAAL mapping

Table A.2: Annual 4-class management accuracy metrics. RF and TCNN stand for
supervised Random Forest classifier and TempCNN classifier trials. OA, UA and PA
stand for overall accuracy, user accuracy and producer accuracy respectively. For more
detail of approaches see Chapter 6.

Classifier Year Class UA PA F1-Score OA

RF 2016 unmanaged 0.89 0.86 0.86 0.88
RF non-vegetated 0.96 0.70 0.79
RF managed 0.86 0.98 0.91
RF evergreen 0.94 0.73 0.82
RF 2017 unmanaged 0.87 0.86 0.86 0.9
RF non-vegetated 0.74 0.81 0.75
RF managed 0.92 0.98 0.95
RF evergreen 0.90 0.75 0.80
RF 2018 unmanaged 0.93 0.90 0.91 0.92
RF non-vegetated 0.93 0.83 0.83
RF managed 0.91 0.97 0.94
RF evergreen 0.92 0.87 0.88
RF 2019 unmanaged 0.95 0.95 0.95 0.96
RF non-vegetated 0.96 0.94 0.94
RF managed 0.97 0.99 0.98
RF evergreen 0.95 0.89 0.91
RF 2020 unmanaged 0.89 0.93 0.90 0.91
RF non-vegetated 0.94 0.77 0.82
RF managed 0.92 0.99 0.95
RF evergreen 0.96 0.76 0.84
RF 2021 unmanaged 0.91 0.92 0.89 0.92
RF non-vegetated 0.96 0.78 0.88
RF managed 0.93 0.98 0.95
RF evergreen 0.93 0.83 0.86
TCNN 2016 unmanaged 0.87 0.85 0.86 0.88
TCNN managed 0.90 0.97 0.93
TCNN evergreen 0.82 0.71 0.76
TCNN non-vegetated 0.91 0.74 0.81
TCNN 2017 unmanaged 0.90 0.86 0.87 0.9
TCNN managed 0.94 0.97 0.96
TCNN evergreen 0.85 0.82 0.83
TCNN non-vegetated 0.75 0.83 0.75
TCNN 2018 unmanaged 0.92 0.88 0.90 0.91
TCNN managed 0.91 0.97 0.94
TCNN evergreen 0.86 0.87 0.86
TCNN non-vegetated 0.92 0.82 0.86
TCNN 2019 unmanaged 0.94 0.95 0.94 0.95
TCNN managed 0.97 1.00 0.98
TCNN evergreen 0.96 0.81 0.84
TCNN non-vegetated 0.95 0.96 0.96
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TCNN 2020 unmanaged 0.91 0.89 0.90 0.91
TCNN managed 0.94 0.98 0.96
TCNN evergreen 0.84 0.78 0.80
TCNN non-vegetated 0.89 0.76 0.78
TCNN 2021 unmanaged 0.92 0.89 0.91 0.92
TCNN managed 0.94 0.98 0.96
TCNN evergreen 0.85 0.86 0.85
TCNN non-vegetated 0.90 0.71 0.77
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Figure A.1: Annual non-active land (NAAL) map for Koumbia site in 2018, based on
Random Forest generated annual management maps. On the right, zoom-in and corre-
sponding SPOT 7 image ©Airbus DS 2018.
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Figure A.2: Annual non-active land (NAAL) map for Koumbia site in 2019, based on
Random Forest generated annual management maps. On the right, zoom-in and corre-
sponding SPOT 7 image ©Airbus DS 2019.
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Figure A.3: Annual non-active land (NAAL) map for Koumbia site in 2020, based on
Random Forest generated annual management maps. On the right, zoom-in and corre-
sponding SPOT 7 image ©Airbus DS 2020.
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Figure A.4: Annual non-active land (NAAL) map for Koumbia site in 2021, based on
Random Forest generated annual management maps. On the right, zoom-in and corre-
sponding SPOT 7 image ©Airbus DS 2021.
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Figure A.5: Annual non-active land (NAAL) map for Koumbia site in 2018, based on
TempCNN generated annual management maps. On the right, zoom-in and corresponding
SPOT 7 image ©Airbus DS 2018.
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Figure A.6: Annual non-active land (NAAL) map for Koumbia site in 2019, based on
TempCNN generated annual management maps. On the right, zoom-in and corresponding
SPOT 7 image ©Airbus DS 2019.
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Figure A.7: Annual non-active land (NAAL) map for Koumbia site in 2020, based on
TempCNN generated annual management maps. On the right, zoom-in and corresponding
SPOT 7 image ©Airbus DS 2020.
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Figure A.8: Annual non-active land (NAAL) map for Koumbia site in 2021, based on
TempCNN generated annual management maps. On the right, zoom-in and corresponding
SPOT 7 image ©Airbus DS 2021.
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Dry season soil map generation procedure

In order to capture the spatial variation linked to soil properties in our study site, we
generated a custom soil map classification employing Sentinel-2 imagery. We conducted
a clustering process using Orfeo Toolbox’s (OTB v7.2.0) Kmeans classification of median
values of Sentinel-2 median soil related indices and the Normalized Difference Vegetation
Index (NDVI). More specifically, we included the Redness Index (RI), Color Index (CI),
Brilliance Index (BI), Brilliance Index II (BI2)(see Tab. 2.2) for year 2017 of Sentinel-2
data between the period January-June. During the period chosen (Jan-Jun), there is a
reduced amount of cloud coverage and low vegetation density, guarantying better visibility
over soil surface. We choose employing a single year of data for avoiding unnecessary data
complexity and considered that a single year soil classification is sufficiently representative
as it is unlikely to vary across time. Moreover, with the purpose of further enhance soil
surface discriminability, a high NDVI mask was employed for reducing Tree influence over
the classification process. The specific NDVI threshold for generating the high NDVI
mask was set by trial an error to 0.72.

The classification job was conducted setting the number of classes to 5 and generated
a first version of dry season soil map (see Fig. A.9)

Figure A.9: Dry season 5-K means soil map calculated with Sentinel-2 imagery for period
Jan-Jun of year 2017. On the right, zoom-in corresponding to highlighted red area (top)
and corresponding SPOT 6 image (bottom) ©Airbus DS 2017.

Resulting map shows thematic sense, based on the fact that large forested areas seem
to be associated to a single soil type class (Soil type 1 ). Moreover, soil types spatial
distribution shows a slight prevalence of Soil type 4 on third quadrant, presence of soil
type 3 concentrated in north area and a more sparse Soil type 0 present in all quadrants.
Soil type 2 is present in small clustered patches accross the entire study site. There is a
generalized presence of salt-and-pepper noise for the entire study site.
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In order to reduce the noise effect, we conducted an object relabelling by soil type
majority of a segmentation procedure. The image segmentation was conducted using the
OTB’s Generic Region Merging using Baatz and Schape criterion and setting the rest of
parameters by test and error for generating compact and visually coherent object, using
the median dry season image built in previous step (10 Sentinel-2 bands, NDVI, RI, CI
,BI and BI2) as input. After reclassifying object according to the most prevalent soil
type class, we obtained the map presented in Fig. A.10. The resulting map was then
employed for hypothesis testing in Chapter 3 (see Sec. 3.3).

Figure A.10: Processed dry season 5-K means soil map calculated with Sentinel-2 imagery
for period Jan-Jun of year 2017. On the right, zoom-in corresponding to highlighted red
area (top) and corresponding SPOT 6 image (bottom) ©Airbus DS 2017.
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Résumé complet en français

Chapitre 1

L’Afrique subsaharienne (ASS) est depuis des décennies au centre de multiples initia-
tives, projets et études de recherche visant à éradiquer la faim et la pauvreté et à pro-
mouvoir le développement durable dans le sous-continent. La région connâıt l’un des
taux de croissance démographique les plus élevés au monde. La production agricole est
principalement assurée par de petits exploitants, qui opèrent dans des contraintes agro-
climatiques et socio-économiques difficiles. Plus précisément, la faiblesse ou l’absence
d’intrants minéraux, de mécanisation et d’une agriculture pluviale exercent une pression
croissante sur le secteur primaire qui a connu une intensification agricole continue. Cette
pression se traduit par l’augmentation de la superficie totale des terres agricoles, ainsi que
par le raccourcissement, voire la suppression, des périodes de jachère.

En Afrique subsaharienne, les petits exploitants pratiquent traditionnellement une
agriculture extensive où de longues périodes de jachère sont utilisées pour restaurer la
fertilité du sol. La littérature relative à la pratique de la jachère montre une grande di-
versité de mise en oeuvre (voir Fig. 1.4). La période d’inactivité (c’est-à-dire la durée de
la période non cultivée) est considérée comme l’un des principaux facteurs déterminant
les différents états ou typologies des terres en jachère. Sous la pression démographique
croissante en Afrique subsaharienne depuis le début des années 60, les auteurs constatent
une intensification des pratiques culturales qui se traduit principalement par un raccour-
cissement des cycles de culture, et donc par une réduction de la durée et de la superficie
en jachère.

L’évolution des surfaces en jachère est très mal connue en Afrique subsaharienne et
dans d’autres régions du Sud global. Récemment, des études ont montré l’intérêt de
l’imagerie satellitaire pour cartographier ces surfaces à grande échelle en utilisant au
préalable un masque de terres cultivées. Malheureusement, dans les régions dominée
par une petite agriculture, les masques de culture sont souvent imprécis. De plus, la
jachère est souvent conçue, d’un point de vue plus ”traditionnel” dans le domain de la
télédétection, comme un “état” saisonnier de la surface terrestre (c’est-à-dire une classe
d’occupation des sols), s’appuyant sur un profil radiométrique très contrasté. L’hypothèse
du profil contrasté est peu vérifiée en Afrique de l’Ouest où végétation naturelle et cultures
pluviales sont un développement synchronisé avec la saison des pluies.

À la lumière des implications de la pratique de la jachère, ou dans un sens plus large,
les terres agricoles non actives (NAAL), sur la sécurité alimentaire et d’autres services
environnementaux connexes, on observe un déficit de système de suivi des jachères dans
le monde, avec contexte radiométrique particulièrement difficile en Afrique de l’Ouest.
Ainsi, l’objectif principal de cette thèse est d’explorer et d’évaluer une stratégie viable
pour discriminer les terres agricoles non actives (NAAL) grâce à l’utilisation de séries
temporelles d’images à haute résolution spatiale, combinées à des algorithmes de classi-
fication d’images d’apprentissage automatique et d’apprentissage profond en Afrique de
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l’Ouest.

À cette fin, nous supposons que les récentes missions satellitaires telles que Sentinel-2
de l’ESA, qui fournissent des acquisitions à haute résolution et à haute fréquence dans le
domaine optique multispectral sur le globe, ont le potentiel pour résoudre certains de ces
problèmes : (i) une résolution spatiale décamétrique, compatible avec la taille moyenne
des champs dans la plupart des agrosystèmes d’Afrique de l’Ouest, ce qui permet de faire
face aux problèmes de fragmentation du paysage, (ii) un temps de revisite de 5 jours qui,
même en tenant compte des problèmes de nébulosité, permet en théorie le suivi de la
croissance de la végétation au cours d’une saison culturale, et (iii) une archive de données
suffisamment longue (à partir de la fin 2015) pour analyser un cycle de jachère complet.

L’approche générale suivie dans cette thèse se base sur des analyses préliminaires
effectuées sur des relevés de terrain et sur des séries temporelles d’images pré-traitées afin
d’identifier les caractéristiques radiométriques potentielles pouvant être associées à des
terres agricoles non actives (chapitre 3). Ensuite, nous utilisons ces connaissances pour
élaborer et tester trois stratégies de classification (chapitres 4, 5 et 6) qui reposent sur
différentes manières de concevoir les terres agricoles non actives, sur des méthodes variées
en termes de traitement de l’information temporelle contenue dans les séries d’images, et
enfin, sur des jeux de données de référence adaptés à chaque méthode.

Chapitre 2

Les analyses menées dans cette thèse se concentrent sur le site d’étude de Koumbia,
dans le sud-ouest du Burkina Faso. La région est caractérisée par un paysage fortement
hétérogène, composé de petits champs de culture (souvent moins de 1 ha). L’agriculture
locale est principalement pluviale, avec le mäıs et le coton comme principales cultures.

Dans cette thèse, les données de référence utilisées pour l’entrâınement et l’évaluation
des modèles de classification d’images, sont issues du jeu de données JECAM-Burkina
Faso (Jolivot et al., 2021). Ce jeu de données contient des informations géo-spatialisées
sur l’occupation et l’utilisation des sols, y compris les cultures, les terres en jachère et
d’autres classes complémentaires de terres non cultivées, pour les années comprises entre
2013 et 2021.

Les donnés radiométriques utilisées sont des séries temporelles d’images Sentinel-2
(SITS) orthorectifiées et avec une interpolation multi-temporelles (gap-filling) de 10 jours,
sur la période 2016-2021. Nous avons aussi inclus une série d’indices radiométriques
dérivés des bandes originales tels que l’indice de végétation par différence normalisée
(NDVI) (voir Tab. 2.2).

Nous avons également utilisé les données pluviométriques mensuelles CHIRPS v2.0
et les données de texture du sol ISDA comme variables complémentaires. Ces dernières
(ISDA) ont été utilisées exclusivement dans le cadre d’une analyse exploratoire menée au
chapitre 3, tandis que les données CHIRPS n’ont été utilisées que dans l’un des essais de
classification d’images du chapitre 5.

Pour la classifications des images satellite, nous avons mobilisé le classificateur Ran-
dom Forest et TempCNN (Pelletier et al., 2019), un algorithme spécialement conçu pour
exploiter la dimension temporelle des séries temporelles d’images satellites. Les détails
du protocole général sont détaillés dans le Chapitre 2, section General model training
protocol. Les résultats ont été évalués par validation croisée 5-fold.
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Chapitre 3

Dans ce chapitre, nous avons exploré l’ensemble de données JECAM et les SITS pour
caractériser la pratique de la jachère d’un point de vue radiométrique. Nous avons analysé
la manière dont cette pratique est liée aux conditions pédoclimatiques locales et analysé les
caractéristiques spectrales, temporelles et spatiales associées afin de mieux comprendre les
problèmes de cartographie de cette pratique. En combinant ces deux sources de données,
nous avons analysé et testé différentes hypothèses qui pourraient potentiellement être
associées à l’utilisation de la jachère, comme celles qui ont été introduites dans le cadre
de l’étude bibliographique de la pratique de la jachère dans le chapitre 1.

L’un des premiers obstacles rencontrés dans ce chapitre a été le manque de cohérence
spatio-temporelle des données de vérité terrain où, en raison d’une effet combiné du pro-
tocole d’échantillonnage utilisé pour la construction de la base de données JECAM et
des pratiques agricoles locales, il a fallu traiter les données de référence pour générer un
ensemble de données harmonisées dans le temps et dans l’espace pouvant être utilisé pour
l’analyse de séries temporelles pluriannuelles (voir Sec.3.1.2). Nous avons élaboré une
procédure pour estimer la proportion de champs JECAM affectés par un processus de
fragmentation/fusion interannuelle qui a montré que cette proportion pouvait atteindre
plus de 20% de la surface agricole disponible en fonction de la paire d’années considérée
(voir Sec.3.1.1).

Dans le cadre de l’analyse spectrale exploratoire, nous avons utilisé des profils d’indice
de végétation par différence normalisée (NDVI) comme variables descriptives des jachères.
Les analyses préliminaires ont indiqué un faible niveau de separabilité des class d’ocupation
des sols lors de la comparaison à l’échelle de l’année (voir Sec.3.2). Quand on étend cette
analyse à l’échelle pluriannuelle, avec des données de terrain harmonisées, les résultats ont
suggéré un effet cumulatif positif, plus perceptible lors des pics saisonniers de NDVI, sur
plusieurs années consécutives de mise en jachère. Néanmoins, la grande hétérogénéité des
surfaces ne permet pas de délimiter clairement la dynamique de la pratique de la jachère
et d’établir un système de discrimination basé sur ces règles.

Enfin, nous avons effectué deux tests complémentaires pour analyser les possibles
relations spatiales avec la pratique de la jachère. Plus précisément, nous avons exploré les
associations entre la pratique de la jachère et (a) les types de sol, et (b) la position relative
de la jachère par rapport aux villages (voir Sec.3.3). Aucun de ces tests n’a donné de
résultats positifs. Il n’est pas clair si cela est lié à un problème de sous-représentation des
champs en jachère dans le jeu des données JECAM et/ou à la taille réduite de la zone
d’étude.

Chapitre 4

Dans ce chapitre, nous avons testé une approche basée sur les données en employant
des stratégies classiques de classification d’images pour détecter les jachères annuelles, en
utilisant des images Sentinel-2 interpolées comme données d’entrée et le jeu de données
JECAM comme données de référence. Nous avons testé une stratégie de classification
automatique supervisée des images et deux classificateurs d’images différents (Random
Forest et TempCNN). Nous avons également testé une méthodologie non supervisée
développée par Tong et al. (2020) spécifiquement pour la cartographie des jachères dans
la bande du Sahel à l’échelle annuelle.

Dans les deux approches, la jachère (fallow) est considérée comme une classe d’occupation
des sols contrastée, au même titre que les classes de cultures (cropped), les forêts à
feuilles persistantes (evergreen) ou l’eau (water). Outre les classes déjà mentionnées,
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nous avons également inclus comme classes annuelles LCLU les surfaces non-végétalisée
(non-vegetated) et la savane herbacée (herbaceous savanna). Tous les tests de classifi-
cation ont donné des résultats médiocres pour la classe de jachère, avec des scores F1
inférieurs à 0.2 (voir Fig. 4.3 et Tab. 4.2). Dans l’approche supervisée, la précision des
cinq autres classes LCLU variait entre 0.6 (non-vegetated) et 0.99 (water). Les modèles
résultants ont montré un manque de pouvoir discriminant par rapport à la classe Jachère,
ce qui indique que les méthodes de cartographie annuelle classique ne sont pas suffisantes
pour discriminer cette classe.

Chapitre 5

Dans ce chapitre, nous avons présenté une stratégie de cartographie des terres agricoles
non actives (NAAL) basée sur l’analyse des trajectoires. Cette méthodologie répond
à certaines des limites liées aux difficultés associées à la cartographie d’une pratique
culturale en mettant en œuvre une nomenclature de gestion plus large et en exploitant des
données de référence pluriannuelles. Une partie des résultats et les conclusions obtenues
ont fait l’objet d’une publication (Castro Alvarado et al., 2023). Dans le manuscrit,
les expériences présentées dans la publication ont été étendues à l’algorithme TempCNN
comme classificateur d’images alternatif.

La méthodologie a consisté en une cartographie NAAL en deux étapes où nous avons
d’abord produit une carte des classes de gestion annuelles (annual management maps) et
puis nous avons analysé les changements de gestion interannuels entre les classes afin de
détecter les NAAL. La première étape s’appuie sur une nomenclature basée sur 4 classes
qui a permis d’obtenir des précisions élevées (score F1 supérieur à 0.7 pour toutes les
classes et années considérées) tout en favorisant la séparabilité des classes de gestion, à
savoir les classes gérées (managed, M), non gérées (unmanaged, U), à feuilles persistantes
(evergreen, E) et non végétalisées (non-vegetated, NV). Cette méthodologie est centrée sur
la détection des changements de la classe gérée à la classe non gérée (M→U) où la classe
gérée est composée des classes de couverture culturales (crop) de JECAM et la classe non
gérée est composée des surfaces en jacheres enregistrées dans la base de données JECAM
ainsi que d’autres espaces herbacés naturellement végétalisés qui peuvent facilement être
confondus avec des jacheres (voir le flux de travail à la Fig. 5.1). La deuxième étape
a été réalisée à l’aide d’un système basé sur des règles qui opèrent au niveau du pixel .
Lorsqu’un pixel géré (M) précédemment classé devient non géré (U), nous le ré-étiquetons
comme NAAL (N).

Étant donné que l’ensemble des données du JECAM n’est pas bien adapté à une anal-
yse pluriannuelle, nous avons pris en charge l’ensemble des données et appliqué différentes
hypothèses pour pallier le manque d’harmonisation spatio-temporelle. Ceci a conduit à
quatre variations du jeu de données original que nous avons utilisées pour vérifier la
précision de notre méthodologie (voir Fig. 5.3).

Les scores F1 obtenus pour la classe NAAL varient entre 0,50 et 0,92 en fonction
de l’année et de l’ensemble de données de validation utilisé. Nous avons détecté des
différences spatiales significatives entre les cartes générées, en fonction de l’outil de clas-
sification (Random Forest ou TempCNN) utilisé. Cette différence a été la plus appréciée
lors de l’inspection des limites des champs et de la confiance des classes du modèle, où
TempCNN s’est démarqué avec une confiance de classe de modèle plus stable dans les
zones où aucune donnée de référence n’était disponible. Dans les deux cas, la qualité
géospatiale des cartes prédites a permis d’identifier des objets ”semblables à des champs”
avec de faibles niveaux d’incertitude de classification dans les limites administratives de
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Koumbia.

Chapitre 6

Dans ce chapitre, nous testerons deux stratégies différentes pour former des modèles de
classification d’images en utilisant plusieurs années consécutives d’images Sentinel-2 (et
leurs indices spectraux associés) qui ciblent deux conceptions différentes de terres agri-
coles non actives. De cette manière, nous avons conçu (i) une approche directe de car-
tographie des jachères sur plusieurs années où nous utilisons la même typologie en six
classes que celle du chapitre 4 en utilisant la base de données JECAM comme données
de référence. Dans cette approche, nous avons testé de multiples combinaisons des séries
temporelles comme données d’entrée. Dans cette approach directe, nous avons imple-
menté trois stratégie differentes: causale (CA), anti-causale (AC) et combinée (CA/AC).
Dans une autre approche pluriannuelle (ii), nous avons élaboré une typologie de trajec-
toire dans laquelle nous avons identifié deux systèmes agricoles contrastés : les ”terres
agricoles dynamiques” (Dynamic Agricultural Land, DAL), où des périodes d’inactivité
telles que la jachère, la savane herbacée ou la forêt sont observées pour des terres agri-
coles (cultivées au moins une fois) au cours de la période 2016-2021, et les terres agricoles
toujours cultivées en continu (Always cropped) pendant la même période. . Nous avons
entrâıné un classificateur d’images en utilisant toutes les images Sentinel-2 disponibles
pour la période 2016-2021 et nous avons utilisé les données de vérité terrain du JECAM
comme données de référence adaptées à cette nomenclature de systèmes de trajectoires.
En plus des deux systèmes agricoles sus-mentionnés, nous avons également cartographié
les forêts à feuilles persistantes (evergreen), les surfaces non-végétalisées (non-vegetated),
la savane herbacée (herbaceous savanna) et l’eau (water). (voir Fig. 6.2).

Les résultats obtenus dans le cadre de l’approche de cartographie des jachères plurian-
nuelles causal/anti-causal ont montré des précisions faibles pour tous les essais considérés,
les essais les plus performants atteignant un score F1 de 0.4 (voir Fig. 6.7). Néanmoins,
en considérant toutes les classes cibles et en regroupant les résultats par essai et par classe
(voir Fig. 6.6), nous avons observé des différences de performance relativement significa-
tives en fonction de la quantité de données incluses (c.-à-d. le nombre d’années d’entrée
de Sentinel-2 SITS), ainsi que de la stratégie employée (c’est-à-dire causal/anti-causal /
combiné). Pour le cas spécifique de la classe de jachère, les résultats suggèrent un poten-
tiel avantage avec l’inclusion de plusieurs années de séries temporelles (SITS) en entrée
de la procédure d’entrainement.

Dans le cas de l’approche basée sur les systèmes de cultures, le score F1 moyen pour la
classe DAL est 0.44, tandis que celui des autres classes varie entre 0.6 et 0.8, à l’exception
de la classe ”non-végétalisée”.

Bien que l’approche fondée sur les systèmes de culture ait permis d’améliorer légèrement
les performances pour la classe cible liée à la jachère par rapport aux stratégies de car-
tographie des jachères directes, elle ne garantit pas un niveau de précision suffisant pour
fournir des estimations fiables des terres en jachère.

Chapitre 7

Dans cette thèse, nous avons exploré différentes manières de modéliser la pratique de la
jachère avec des données de télédétection, en mettant l’accent sur la dimension temporelle
de cette pratique (voir Fig. 7.1).

Cela a abouti aux différentes stratégies de cartographie présentées dans les chapitres
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4, 5 et 6 où la jachère est considérée comme un type d’occupation du sol défini par des
données radiométriques saisonnières (Ch. 4/Ch. 6), défini via la détection de changements
interannuels dans leur gestion (NAAL; Ch. 5) ou bien via la détection de systèmes de
culture (Ch. 4/Ch. 6).

Nos résultats ont montré que les approches pluriannuelles ont un pouvoir discriminant
accru par rapport aux approches de cartographie annuelle des jachères. La stratégie de
cartographie des NAAL basée sur les trajectoires (Ch. 5) s’est avérée être la plus perfor-
mante avec des scores F1 variant entre 0.5 et 0.9 en fonction de l’année et de l’ensemble
de données de validation utilisé (voir la description des différents ensembles de données
de validation à la Sec. 5.1.3). Dans cette thèse, nous fournissons une première preuve
que pour une quantification, même approximative, des surfaces de NAAL, la détection
régulière des terres cultivées actives par rapport aux autres types des surfaces vegetalisé
non gérée peut suffire.

Les difficultés rencontrées lors de l’exploitation des données de référence JECAM, nous
permettent d’émettre un certain nombre de recommandations concernant les protocoles
d’échantillonnage de la vérité terrain. De plus, nos méthodologies doivent encore être
testées dans d’autres régions d’Afrique subsaharienne, où il est probable qu’elles soit con-
frontées à un manque de données de référence. Pour cette raison, nous considérons que
les expériences futures ne devraient pas seulement se concentrer sur des approches super-
visées, mais aussi incorporer les adaptations méthodologiques nécessaires à l’élaboration
d’une méthodologie non supervisée.
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