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Résumé 

 

Dans le contexte des bioraffineries, le choix d'un solvant approprié est crucial pour des processus de 

séparation durables et économiquement viables. Une approche globale intégrant des critères tels que 

l'Analyse du Cycle de Vie, l'analyse de la toxicité, la régénération énergétiquement efficace du solvant, des 

pertes minimales de solvant et une haute sélectivité est nécessaire. Cependant, le choix devient complexe 

lorsqu'il s'agit des solvants eutectiques profonds (Deep Eutectic Solvents - DES) en raison du manque de 

données expérimentales complètes, en particulier concernant les propriétés thermodynamiques et 

physiques telles que l'équilibre de phases, la masse volumique, la viscosité, la capacité thermique, la 

conductivité thermique, la solubilité, et autres. Pour combler cette lacune, cette étude propose de générer 

des données expérimentales essentielles (telles que la masse volumique, la viscosité et les propriétés 

d'équilibre de phases) pour optimiser les modèles théoriques. De plus, ce travail propose une approche de 

sélection de solvant basée sur la modélisation des propriétés thermodynamiques en utilisant le modèle 

COSMO-SAC (COnductor-like Screening MOdel segment activity coefficient). L'étude vise à améliorer le 

modèle COSMO-SAC en examinant les variables computationnelles, établissant une base de données de 

profils sigma PSL et affinant les prédictions grâce aux contributions enthalpiques, entropiques et 

intermoléculaires. Malgré les défis rencontrés dans la prédiction précise des coefficients d'activité en 

dilution infinie (IDAC) pour les systèmes DES, une approche d'optimisation réduit considérablement les 

écarts, offrant ainsi une voie prometteuse pour la sélection précise du solvant dans les processus de 

bioraffinerie. 
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Abstract 

 

In the context of biorefineries, selecting an appropriate solvent is crucial for sustainable and economically 

viable separation processes. A comprehensive approach integrating criteria like Life Cycle Assessment, 

toxicity analysis, energy-efficient solvent regeneration, minimal solvent losses, and high selectivity is 

required. However, the choice becomes challenging when considering Deep Eutectic Solvents (DES) due 

to a lack of comprehensive experimental data, particularly regarding thermodynamic and physical 

properties like phase equilibrium, density, viscosity, heat capacity, thermal conductivity, solubility, and 

more. To bridge this gap, this study proposes generating essential experimental data (such as density, 

viscosity and phase equilibrium properties) to optimize theoretical models. Moreover, this work proposes 

a solvent screening approach based on modeling thermodynamic properties using the (COnductor-like 

Screening MOdel segment activity coefficient (COSMO-SAC) model. The study aims to enhance the 

COSMO-SAC model by investigating computational variables, establishing a PSL sigma-profile database, 

and refining predictions through enthalpic, entropic, and intermolecular contributions. Despite 

encountering challenges in accurately predicting activity coefficients at infinite dilution (IDAC) for DES 

systems, an optimization approach significantly reduces deviations, offering a promising route for precise 

solvent selection in biorefinery processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

14 

 

 

 

 

 

 

Introduction  

Environmental context and issues  

Contexte environnemental et problématiques 

 



 

 

15 

 

Résumé 

 

Dans le contexte environnemental et des problèmes liés à la consommation d'énergie et aux émissions de 

gaz à effet de serre, on observe clairement une transition de la consommation d'énergie à l'échelle 

mondiale. Cette transformation se traduit par un déplacement de la domination du pétrole et du charbon 

vers un intérêt croissant pour les sources d'énergie renouvelable, une évolution motivée par les 

préoccupations environnementales et le désir de réduire les émissions de gaz à effet de serre. La hausse 

alarmante des niveaux de dioxyde de carbone (CO2) et sa corrélation historique avec les variations de 

température mondiale et changement climatique sont élucidées. 

De multiples conséquences résultant du changement climatique, liées à l’augmentation des températures, 

sont abordées : incluant l'augmentation du niveau de la mer, les phénomènes météorologiques extrêmes, 

le dégel du permafrost, entre autres. Nous soulignons la nécessité d'entreprendre des efforts d'atténuation 

et d'adaptation pour réduire au minimum les impacts variés sur l'environnement et la société. 

De plus, la répartition des émissions mondiales de gaz à effet de serre par secteur est présentée en mettant 

l'accent sur le rôle dominant du secteur de l'énergie et l'importance des innovations dans divers secteurs 

pour réduire les émissions de CO2 et atteindre la neutralité carbone. L'engagement de l'Union Européenne 

dans la lutte contre le changement climatique et ses politiques "Fit for 55" visant à réduire les émissions 

de gaz à effet de serre est également présenté.1 

Cette mise en avant de la question environnementale nous amène à souligner l'importance croissante des 

matières premières à base de biomasse en tant qu'alternative renouvelable et durable aux ressources 

fossiles. Enfin, nous introduisons le concept de bioraffinerie, en mettant l'accent sur l'efficacité et la 

durabilité de l'utilisation des ressources, présentant cette approche comme pivot dans le traitement de la 

biomasse. Nous soulignons également l'importance de la sélection de solvants respectueux de 

l'environnement dans les processus de bioraffinerie, pour garantir la durabilité environnementale et la 

viabilité économique. 

Dans ce contexte, l'objectif général de cette thèse est le suivant : 

• Développer une méthodologie de sélection de solvants basée sur le calcul des propriétés 

thermodynamiques des fluides pour soutenir la sélection de solvants dans la bioraffinerie, en 
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mettant l'accent sur les solvants verts, en particulier les solvants eutectiques profonds (DES). Le 

modèle choisi à cette fin était le modèle COSMO-SAC (COnductor like Screening MOdel segment 

activity coefficient). 

Le modèle COSMO-SAC utilise les résultats de calculs de mécanique quantique sur les molécules 

individuelles pour prédire les propriétés thermodynamiques des mélanges de ces molécules, par exemple 

le coefficient d'activité. Pour comparer les résultats obtenus et optimiser le modèle, les objectifs spécifiques 

de cette thèse sont, les suivants : 

• Étudier le rôle des variables de calcul en mécanique quantique sur les performances du modèle 

COSMO-SAC, en combinant une investigation théorique et expérimentale. 

• Créer une base de données (nommée « PSL sigma-profile ») de nombreux composants chimiques 

pour alimenter le modèle COSMO-SAC. 

• Optimiser les prédictions du modèle COSMO-SAC en étudiant les contributions enthalpiques et 

entropiques et introduisant une contribution intermoléculaire basée sur le modèle de coefficient 

d'activité de Margules. 

• Examiner les solvants eutectiques profonds pour l'extraction de composés furaniques (5-

hydroxyméthylfurfural (HMF), furfural (FF) et acide lévulinique (LA)) produits par déshydratation 

du fructose et de la xylose. 

Ce manuscrit, est organisé en sept chapitres : 

Chapitre 1 présentera le concept de la bioraffinerie ainsi que les avantages et les inconvénients de certaines 

matières premières à base de biomasse. La discussion se concentre sur la biomasse lignocellulosique. Une 

revue de la littérature sur le prétraitement de la biomasse sera présentée. Ensuite, une discussion sur 

l'application industrielle des produits chimiques à valeur ajoutée (HMF et FF) issus de la pyrolyse de la 

biomasse sera présentée. Une vue d'ensemble des principaux procédés de séparation utilisés dans 

l'industrie sera discutée, en particulier, l'extraction liquide-liquide est les facteurs clés dans la sélection des 

solvants. La dernière partie se concentre sur les DES et leurs propriétés. 

Chapitre 2 couvrera la partie expérimentale de la thèse et décrira le protocole de synthèse et de 

caractérisation des DES et des mélanges. Les équipements expérimentaux et les protocoles seront discutés 

en détail mettant l'accent sur l'acquisition de données de coefficient d'activité à dilution infinie (IDAC) par 

la méthode de « gas stripping » et de données d'équilibre liquide-vapeur par la méthode synthétique. 
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Chapitre 3 se concentrera sur les fondements de la modélisation thermodynamique commençant par la 

fugacité et la définition de l'activité et décrivant les deux approches pour le calcul de l'équilibre en deux 

phases dans un système binaire (approches - et -) et l'algorithme PT-Flash. Une revue sera présentée 

des modèles de coefficient d'activité existants développés au cours des dernières décennies. La discussion 

se centre en particulier sur le modèle COSMO-SAC. 

Chapitre 4 présentera les principales méthodes de mécanique quantique non relativiste utilisées tout au 

long de cette thèse. L'équation de Schrödinger et l'approximation de Born-Oppenheimer seront introduites 

en premier suivies des méthodes de la théorie de la fonctionnelle de la densité (DFT). La dernière partie 

présentera les modèles de solvatation en continu en mettant l'accent sur l'approche COSMO. 

Chapitre 5 présentera une analyse expérimentale des DES en incluant leurs propriétés pures telles que la 

masse volumique, la viscosité et la tension de vapeur. De plus, nous avons exploré le comportement de 

l'équilibre liquide-vapeur des DES dans les alcools en utilisant la méthode synthétique. Les résultats 

obtenus ont été comparés aux résultats prédictifs obtenus avec le modèle COSMO-SAC-dps proposé par 

Hsieh (2014) révélant que le modèle n'est pas adapté aux DES. De plus, une étude le coefficient d'activité 

à dilution infinie (IDAC) des DES a été réalisée en utilisant la méthode de « gas stripping ». Cependant, il 

convient de noter que cette méthode n'était pas optimale pour l'étude de l'IDAC dans les fluides à haute 

viscosité tels que les DES. 

Chapitre 6 sera consacré à l'exploration de l'impact des variables informatiques sur les performances du 

modèle COSMO-SAC. Un processus de benchmarking approfondi (englobant diverses méthodes 

théoriques et variables informatiques) a été mené pour comprendre leur influence sur la précision des 

prédictions à l'aide du modèle COSMO-SAC. En tant que résultat significatif de cette étude, nous avons 

développé la base de données de profil sigma PSL. Le modèle COSMO-SAC a été appliqué en utilisant le 

profil sigma PSL pour les prédictions de coefficient d'activité. De plus, ces prédictions ont été comparées 

à des modèles de coefficient d'activité établis, notamment NRTL, UNIFAC et Scatchard-Hildbrand. 

Chapitre 7 examinera la contribution combinatoire et de dispersion au sein du modèle COSMO-SAC 

pour la prédiction de l'IDAC dans les DES. Les enseignements tirés de cette étude ont servi de base à 

l'amélioration des capacités prédictives du modèle COSMO-SAC grâce à des contributions innovantes 

inspirées du modèle Scatchard-Hildebrand. Celles-ci comprennent les contributions de Dispersion, 

d'Excentricité et de Solubilité spécifiques aux interactions DES. Ces contributions novatrices ont été 

intégrées dans le modèle nouvellement proposé connu sous le nom de modèle COSMO-SAC-DES, qui 

promet d'offrir une précision prédictive accrue des interactions soluté-solvant dans les systèmes DES. 
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Environmental context and issues  

 

Energy is a key source of economic growth, and its consumption is an important thermometer of 

economic development. Without energy, a country fails to run all types of activities to produce goods and 

services like heat or climatization, transportation, etc. In 1965, Global energy consumption2,3 (Figure 1) 

was dominated by petroleum and coal as primary sources (42% and 37%, respectively). Nearly 55 years 

later, by 2020, petroleum was still the first primary source, followed by natural gas, renewables were third 

and coal dropped to fourth place. An increasing interest in renewable energy has grown from 20% to 28% 

of global energy consumption from 2011 to 2021 due to the need to reduce greenhouse gas emissions 

contributing to global climate change. However, renewable energies have not replaced fossil energies but 

have been added. Long-term projections for 2050 from International Energy Outlook4 estimated that 

renewable sources will represent over 30% of global energy consumption.  

  

(a) (b) 
Figure 1 – Long-term historic energy transition: Primary energy consumption by source (data from Our World 

in Data2 and prediction from International Energy Agency3). 

Greenhouse gases (GHG) absorb infrared radiation, trapping heat in the atmosphere and warming the 

planet. The world emits around 50 billion tons of GHG each year5. At the global scale, the key GHG 

directly emitted by human activities include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

and several trace gases such as fluorine-containing halogenated substances (HFCs, PFCs, SF6, and NF3) 

(pie chart in figure 2). In which, the primary GHG emitted is the CO2, representing 75% of the total of 

GHG emitted by the world in 2020. Followed by methane with 17%. Global CO2 emissions have 

significantly increased and show an average decadal growth rate of 1%, 3%, and 2% for the last three 
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decades (Figure 2). CO2 levels today are higher than at any point in human history and are currently at 

nearly 412 ppm and rising.  

The last time CO2 amounts were so high was during the interval between 3.35 and 3.15 million years ago 

(the mid-Pliocene) when the global surface temperature was about 2 to 3°C warmer globally on average6 

and the sea level was about 20 meters higher7 than during the pre-industrial era. Consequently, the mid-

Pliocene warm period serves as a valuable reference point for understanding the potential consequences 

of climate change, particularly in terms of sea level rise, and it helps scientists refine climate models and 

assess the impacts on the ecosystems. By studying this geological period, researchers can gain critical 

insights into how our planet’s climate system responds to higher temperatures and greenhouse gas 

concentrations8–11.  

As temperatures rise, more water from the Earth's surface (oceans, rivers, lakes, and land) evaporates into 

the atmosphere. Warmer air can hold more water vapor, so this leads to an increase in the amount of water 

vapor in the atmosphere. The increased water vapor in the atmosphere enhances the greenhouse effect, 

leading to further warming of the planet. This, in turn, can lead to more evaporation, perpetuating the 

cycle. 

 
Figure 2 – Long-term trend of global carbon emissions and temperature. (Data from Our World in Data2 and 

prediction from International Energy Agency3). 
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Some actions are required to control global warming and prevent severe climate change, such as the need 

to rapidly reduce global GHG. In 2015, 196 Parties adopted the climate change treaty, called by Paris 

Agreement12. One of the Paris Agreement's goals is to limit the temperature increase to well below 2 ºC, 

preferably to 1.5 ºC, compared to pre-industrial levels. According to Net Zero Emissions by 2050 Scenario 

report (NZE)13, the carbon intensity of primary energy is projected to decrease globally by about 8% yr-1 

between 2020 to 2050 in modeled scenarios that limit warming to 1.5 ºC.  

Higher temperatures, driven by climate change, have a wide range of significant effects. They include 

melting polar ice, rising sea levels, more extreme weather events, ocean acidification, disrupted ecosystems, 

heatwaves, impacts on agriculture and water resources, increased disease spread, loss of biodiversity, 

economic cost, migration and displacement, national security concerns, threats to water resources social 

inequality and cultural heritage loss14–17. Extreme weather events, such as hurricanes, storms, heat waves, 

floods, and droughts, is one of the most notable effects of higher temperature18. Another one is the 

thawing of permafrost. As the global temperature rise, the permafrost in many regions is gradually warming 

and thawing. This process can release large amounts of greenhouse gases that have been trapped in the 

frozen ground for thousands of years19. Some diseases, like those transmitted by mosquitoes (e.g., malaria, 

dengue, Zika), can be influenced by temperature because it affects the breeding and survival of the vector 

(the mosquito in this case)15. Addressing climate change through mitigation and adaptation efforts is crucial 

to minimize these impacts on the environment and society.  

To figure out how it can effectively reduce emissions and what emissions can and can’t be eliminated with 

the current technologies. Firstly, it is important to know where the emissions are coming from. Figure. 3 

shows the breakdown of global emissions of 2016 by sector in one diagram of three levels. Global GHG 

emissions can be roughly traced back to four categories (first level of the diagram in figure 3): energy, 

agriculture, industry, and waste. Each one contributes to CO2 emissions in 73.2%, 18.4%, 5.2%, and 3.2%, 

respectively5.  
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Figure 3 – Global greenhouse gas emissions by sector for the year 2016 (total of 49.4 billion tones CO2 eq). (Data 

from Our World in Data5). 

The energy sector is responsible for emitting around three‐quarters of GHG today due to the use of fossil 

fuels (oil, coal, and natural gas). The energy sector can be divided into six categories (second level of the 

diagram in figure 3): agriculture and fish, fugitive emission from energy production, transport, buildings, 

and industry-related energy consumption, which the last one can account for 24.2% of global GHG 

emissions.  

The third level in figure 3, within industry-related energy consumption, can be divided into 7 subcategories, 

such as iron and steel (7.2%), chemical and petrochemical (3.6%), food and tobacco (1%), non-ferrous 

metals (0.7%), paper and pulp (0.6%), machinery (0.5%) and other industry (10.6%). It is clear from figure 

3 that to reduce CO2 emissions and reach net-zero emissions the world needs innovations across many 

sectors.  

In Transport related to energy consumption, innovations to achieve efficient engines and the deployment 

of electric vehicles will transform cars and trucks to zero or low carbon emissions. In the Energy sector, 

an aggressive energy efficiency strategy combined with the ramping up of renewables to replace fossil fuels 

will rapidly shift towards zero or low-carbon sources of energy by 2030. Renewable technologies, including 
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solar, wind, hydro, biofuels, and others, are at the center of the transition to a less carbon-intensive and 

more sustainable energy system. 

Following the climate targets set in the Paris Agreement, the European Union aims to lead in climate 

action, working towards becoming the first climate-neutral continent by 2050. The European Green Deal 

(EGD)1, established at the end of 2019, represents the first strategy to combat climate change and achieve 

this ambitious goal. Initial targets were proposed to be achieved by 2030. On July 14, 2021, they introduced 

"Fit for 55," a comprehensive set of policies aimed at implementing the EGD. "Fit for 55" targets a 

substantial reduction of greenhouse gas emissions by at least 55% by 2030, in comparison to levels 

recorded in 1990. President Macron emphasized, in September of this year, that this requires an 

acceleration of efforts, describing the need to progress "twice as fast" as in previous years. He also affirmed 

that France plans to halt operations and transition the two-remaining coal-burning plants to biomass 

energy, generated by burning wood, plants, and organic materials, by the year 2027.20  

In this context of reducing or eliminating the reliance on fossil fuel, biomass feedstocks are indeed gaining 

increasing attention as a renewable and sustainable alternative to fossil resources for various purposes, 

including the production of biofuels21 (such as, biodiesel, ethanol, butanol, and hydrogen), high-value-

added chemicals22,23 (like furfural, sugar alcohols), and various bioproducts. Biomass feedstocks utilized 

for these productions include energy crops, agricultural biomass residues, forest biomass, and food-based 

biomass waste24. This shift towards biomass utilization is driven by environmental concerns, the desire to 

reduce greenhouse gas emissions, and the need for more sustainable resource management. 

One way to make biomass processing more profitable in the economic aspect is by applying the biorefinery 

concept, i.e., many products are produced instead of one25. In another words, biorefinery concept is a 

sustainable approach to resource utilization and industrial processes that takes inspiration from the 

traditional petroleum refinery but uses biological and renewable feedstocks instead of fossil fuels. It aims 

to maximize the value extracted from biomass materials, such as agricultural residues, energy crops, forest 

biomass, and food-based waste, by converting them into a variety of products including not only biofuels, 

but also a range of high-value chemicals, materials, and bioproducts, such as biodegradable plastics, and 

bio-based materials for construction and textiles. This approach enhances resource efficiency, reduces 

waste, and supports sustainability goals while contributing to more diverse and less carbon-intensive 

economy. Biorefineries play a crucial role in the transition to a bio-based, circular economy that minimizes 

environmental impacts and reduces dependence on fossil resources. 

Chemical and thermochemical conversion processes in biorefineries encompass the transformation of 

lignocellulosic biomass24. These methods, such as pyrolysis, hydrothermal conversion, gasification, 



Environmental context and issues 

 23 

combustion and/or liquefaction, play a crucial role in efficiently extracting energy and materials from 

biomass. Subsequently, separation and purification process steps are employed to refine and extract the 

desired products from the mixtures generated during the conversion, ensuring the quality, purity, and 

suitability of these products for various applications26.   

The solvent selection used in the separation process design for biorefinery application plays an important 

role to define the environmental sustainability and economic viability of the process. Generally, ‘green’ 

solvents are attractive due to their low toxicity, economic value, and biodegradability27.  

In this context, the general objective of this thesis is:  

• Develop a methodology for solvent screening based on calculating thermodynamic properties of 

mixed fluids to support solvent selection in the biorefinery, focusing on green solvents, specifically 

Deep Eutectic Solvents (DES). The model chosen for this aim was the COSMO-SAC (COnductor 

like Screening MOdel segment activity coefficient).  

The COSMO-SAC model uses results from quantum mechanical calculations on individual molecules to 

predict thermodynamic properties of mixtures of these molecules, for example, activity coefficient. To 

compare the results obtained here, and optimize the model, the specific objectives of this thesis are: 

• Study the role of computational variables in quantum mechanical calculations on the performance 

of the COSMO-SAC model, combining a theoretical and experimental investigation. 

• Create a free database (named by PSL sigma-profile database) of quantum mechanical calculations 

of many components to feed the COSMO-SAC model.  

• Optimize the COSMO-SAC predictions by studying the enthalpic and entropic contributions, and 

introducing an intermolecular contribution based on Margules activity coefficient model.  

• Screen Deep Eutectic Solvent for the extraction of furanic compounds (5-hydroxymethylfurfural 

(HMF) and furfural (FF), and levulinic acid (LA)) produced by dehydration of fructose and xylose. 

This manuscript is organized into seven chapters:  

Chapter 1 will present the biorefinery concept, advantages, and disadvantages of some biomass 

feedstocks. The discussion is centered on the lignocellulosic biomass. A literature review of the pre-

treatment of the biomass will be presented. Then, the industrial application of the value-added chemicals 

(HMF and FF) issue of the pyrolysis of the biomass, studied here in this thesis, will be presented. An 

overview of the main separation processes used in the industry will be discussed. In particular, the key 
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factors in the selection of the solvents for the liquid-liquid extraction. The last part focuses on the Deep 

Eutectic Solvents (DES) and their properties. 

Chapter 2 covers the experimental part of the thesis and will describe the synthesis protocol and 

characterization of DES and mixtures. All the experimental equipment and protocols will be discussed in 

detail: focusing on acquisition of limiting activity coefficient data through gas stripping method and vapor 

liquid equilibrium data through synthetic method.  

Chapter 3 will focus on the fundamentals of thermodynamic modeling, starting from the fugacity and 

activity definition and describing the two approaches to the calculation of two-phase equilibrium in a 

binary system: - and - approaches and PT-Flash algorithm. A review will be presented of some 

existing activity coefficient models developed in the last decades. The discussion is centered particularly 

on the COSMO-SAC model.  

Chapter 4 will overview the main non-relativistic Quantum Mechanical methods used throughout this 

thesis. Schrödinger equation and the Born-Oppenheimer approximation will be introduced first, followed 

by the Density Functional Theory (DFT) methods. The last part will present Continuum solvation models, 

focusing on the COSMO approach. 

Chapter 5 will present an experimental analysis of Deep Eutectic Solvents (DES), encompassing their 

inherent properties such as density, viscosity, and vapor pressure. Additionally, we have explored the 

behavior of vapor-liquid equilibrium of DES in alcohols, employing a synthetic method. The results were 

compared with the predictive ones obtained using the COSMO-SAC-dps model proposed by Hsieh 

(2014), revealing that the model is not suitable for deep eutectic solvents. Furthermore, an examination of 

the IDAC of DES was conducted using the gas stripping method. However, it should be noted that this 

method was not optimally suited for studying IDAC in fluids with high viscosity, such as DES. 

Chapter 6 is dedicated to exploring the impact of computational variables on the performance of the 

COSMO-SAC model. An extensive benchmarking process, encompassing various theoretical methods 

and computational variables, has been conducted to comprehend their influence on the accuracy of 

predictions using the COSMO-SAC model. As a significant outcome of this study, we have developed the 

PSL sigma-profile database. The COSMO-SAC model has been applied using the PSL sigma-profile for 

activity coefficient predictions. Furthermore, these predictions have been compared with established 

activity coefficient models, including NRTL, UNIFAC, and Scatchard-Hildbrand. 
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Chapter 7 investigates the combinatorial and dispersion contribution within the COSMO-SAC model for 

predicting IDAC in DES. The insights derived from this study served as the foundation for enhancing the 

predictive capabilities of the COSMO-SAC model through innovative contributions inspired by the 

Scatchard-Hildebrand model. These include the Dispersive, Eccentricity, and Solubility contributions 

specific to DES interactions. These novel contributions were integrated into the newly proposed model 

known as the COSMO-SAC-DES model, which promises to offer enhanced predictive accuracy of solute-

solvent interactions in DES systems.  
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Separation process in the biorefinery 

Processus de séparation dans la bioraffinerie 
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Résumé 

 

Les installations de bioraffinerie (similaires aux raffineries pétrolières) utilisent des sources de biomasse au 

lieu de sources fossiles pour produire de l’énergie, carburant et produits chimiques. La pyrolyse est un 

processus clé pour transformer les déchets en produits à valeur ajoutée impliquant la décomposition de la 

biomasse organique à haute température en produits liquides (bio-huile), gazeux (syngaz) et solides 

(biochar). Différentes sources de biomasse incluent les cultures énergétiques, les résidus agricoles, les 

déchets alimentaires et la biomasse forestière. La biomasse est une source d'énergie renouvelable majeure 

en France, contribuant à réduire la dépendance aux combustibles fossiles.  

À l'horizon 2050, le gisement de gaz renouvelable injectable estimé 460 TWh pourrait couvrir entièrement 

la demande de gaz en France. Cette évaluation est basée sur une étude réalisée et publiée par l'Agence de 

la Transition Écologique (ADEME), Gaz Réseau Distribution France (GRDF) et Gaz Réseau Transport 

(GRTgaz)28. Cette étude a exploré la faisabilité technico-économique d’un gaz 100 % renouvelable. La 

pyrogazéification de la biomasse lignocellulosique issue des forêts est une option prometteuse. 

La biomasse lignocellulosique (LC) est le matériau végétal le plus abondant qui peut servir de substitut aux 

combustibles fossiles dans la production et l'approvisionnement durable en biocarburants liquides. La 

biomasse LC est composée principalement de trois biopolymères (environ 40 % de cellulose, 25 % 

d'hémicellulose et 25 % de lignine) et d’environ 10 % d'autres éléments et de composants mineurs. 

Pour accéder à tous ces polysaccharides très appréciés dans la production de biocarburants et produits 

chimiques à valeur ajoutée, un processus de séparation est nécessaire.  En raison de plusieurs facteurs tels 

que la structure complexe des constituants de la paroi cellulaire dans la biomasse LC, l'hétérogénéité 

structurale, la cristallinité de la cellulose et le degré de lignification, la séparation de la cellulose et de la 

lignine est un grand défi. Pour surmonter ces facteurs, le processus de prétraitement devient une étape 

significative pour réduire le degré de polymérisation, dégrader l'hémicellulose et rompre la gaine de lignine, 

perturbant ainsi la structure récalcitrante de la lignocellulose. Cela peut réduire la consommation réactive 

chimique, les coûts et la demande énergétique et améliorer la production de monomères de sucre lors de 

l'hydrolyse. 

Les techniques de prétraitement des diverses sources lignocellulosiques peuvent être regroupées en quatre 

catégories principales : physiques, chimiques, physico-chimiques , et biologiques. Le choix de la méthode 
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de prétraitement dépend du type de biomasse LC utilisé, puisque la composition en cellulose, hémicellulose 

et lignine varie. Certaines méthodes de prétraitement et leurs effets sur la séparation des composants 

complexes de différentes sources lignocellulosiques seront discutées. 

Les technologies de conversion des biomasses lignocellulosiques en produits de valeur et sources d'énergie 

se répartissent en deux catégories principales : la conversion thermochimique et la conversion 

biochimique. Ce chapitre se concentrera sur la technologie thermochimique : la pyrolyse. 

La pyrolyse est un terme couramment utilisé pour décrire la dégradation thermique de la matière première 

en l'absence d'oxygène, généralement à des températures comprises entre 300 et 600 °C. Ce processus crée 

du charbon solide (également appelé biochar), du bio huile, et de la vapeur de pyrolyse. La distribution et 

les propriétés de ces produits de pyrolyse sont influencées par plusieurs facteurs physiques et chimiques, 

notamment le type de biomasse, la taille des particules, la température, la pression, la vitesse de chauffage, 

le temps de résidence, etc.  

D'un point de vue thermique, la pyrolyse de la biomasse se déroule en quatre étapes distinctes : séchage, 

dévolatilisation de la biomasse, dévolatilisation étendue et dévolatilisation secondaire des biohuiles.29–31 La 

pyrolyse peut être classée en cinq types principaux (la classification étant déterminée par les combinaisons 

particulières de taux de chauffage, de températures et de durée du processus): pyrolyse lente, pyrolyse 

rapide, pyrolyse humide (ou carbonisation hydrothermale), pyrolyse hydrique (ou liquéfaction 

hydrothermale) et pyrolyse douce (torréfaction). Elles seront discutées en détail dans ce chapitre. 

Actuellement, le processus de pyrolyse est principalement utilisé pour produire la fraction liquide, c'est-à-

dire le bio huile, qui sert de carburant pour la production d'énergie via des cogénérateurs ainsi que des 

produits chimiques à valeur ajoutée. 

Les molécules plates désignent des composés chimiques clés obtenus à partir de le bio-huile. Ces molécules 

servent de blocs de construction fondamentaux pour la synthèse d'une variété de produits chimiques à 

valeur ajoutée tels que des plastiques, des résines, des solvants et des produits pharmaceutiques. Deux 

molécules plates essentielles (le 5-hydroxyméthylfurfural et le furfural) sont obtenues à partir de la 

déshydratation du fructose et de la xylose et constituant des intermédiaires cruciaux dans la synthèse de 

nombreux produits chimiques industriels. 

Des étapes de séparation et de purification seraient nécessaires pour obtenir tous les produits d'intérêt. Le 

choix du solvant utilisé dans la conception du processus de séparation pour l'application en bioraffinerie 

joue un rôle important dans la définition de la durabilité environnementale et de la viabilité économique 
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du processus. Dans ce cadre, cette thèse explore les progrès et le développement des solvants verts en 

particulier les solvants eutectiques profonds pour l'extraction de composés furaniques (FF, 5-

hydroxyméthylfurfural (HMF) et acide lévulinique (LA)) produits par déshydratation du fructose et du 

xylose. 

Les bioraffineries utilisent divers procédés de séparation notamment la distillation, l'extraction liquide-

liquide, l'adsorption, l'absorption et les séparations par membrane. Le choix du solvant est crucial pour 

l'extraction liquide-liquide et ses propriétés physico-chimiques telles que la solubilité, la viscosité, la masse 

volumique, etc. influent sur l'efficacité de la séparation. Le recyclage des solvants peut réduire les coûts 

énergétiques, et favoriser la durabilité. 

L'efficacité d'un solvant dépend de son coefficient d'activité à dilution infinie, de sa capacité de solvatation 

et de sa sélectivité. Le choix du solvant peut considérablement affecter l'efficacité globale du processus de 

séparation. Les solvants alternatifs plus respectueux de l'environnement suscitent un intérêt croissant en 

tenant compte de l'impact de la pollution, de la consommation d'énergie et des préoccupations 

environnementales. 

Dans ce contexte, cette thèse se concentre sur les DES, qui sont une catégorie de solvants formés en 

mélangeant divers composants, généralement constitués d’un donneur de liaison hydrogène (tel qu'un sel 

d'ammonium quaternaire) et d’un accepteur de liaison hydrogène (comme un chlorure métallique). 

Lorsqu'ils sont mélangés en proportions spécifiques, ces composants créent un mélange eutectique qui se 

comporte comme un liquide à des températures relativement basses souvent en dessous des points de 

fusion des composants individuels. Les DES suscitent plus un intérêt en tant qu'alternatives durables et 

respectueuses de l'environnement que les solvants organiques traditionnels et les liquides ioniques. 

Fondamentalement, en se concentrant sur les propriétés physico-chimiques des DES, il convient de noter 

que la conception et l'amélioration du processus de séparation dépendent de propriétés thermodynamiques 

et de transport précises et facilement disponibles. 

En résumé, le Chapitre 1 aborde les aspects de la bioraffinerie, examine les avantages et les inconvénients 

des matières premières à base de biomasse, en mettant l'accent sur la biomasse lignocellulosique. Il offre 

une revue de la littérature sur le prétraitement de la biomasse. De plus, il présente l'application industrielle 

des produits chimiques à valeur ajoutée (HMF et FF) obtenus par pyrolyse de la biomasse. Il explore 

également les principaux procédés de séparation industrielle, en mettant l'accent sur les facteurs 

déterminants dans le choix des solvants pour l'extraction liquide-liquide. Enfin, il se penche sur les DES 

et leurs caractéristiques. 
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1. Separation process in the biorefinery 

 

1.1. Biorefinery  

The biorefinery facilities are analogous to the oil refineries, which instead of using fossil sources (oil & 

gas) to convert into energy, fuel, and chemicals, use biomass sources. In a linear economy, the products 

are used by human activities, and in the end, wastes are disposed of in the environment, or incinerated. 

To reduce waste and its impact on our environment, the biorefinery concept came as a sustainable method 

of recycling and reusing waste by a process called by pyrolysis and turning it into value-added products 

(Figure 1.1). Pyrolysis is a thermochemical conversion process in which organic materials, such as biomass 

residue and organic waste, are subjected to high temperature in an inert atmosphere with limited oxygen. 

Pyrolysis can also be done by hydrothermal conversion, also known as hydrothermal carbonization (HTC) 

or wet pyrolysis. In this method, organic materials, are subjected to elevated temperatures and pressures 

in the presence of water. As result, of pyrolysis processes, the organic material breaks down into various 

products, including liquid (bio-oil), gaseous fractions (syn-gas) and solid (biocarbon or biochar), with 

different proportions of the obtained gaseous, liquid and solid phases, depending on the conditions of 

pyrolysis and on the nature of biomass. These products can be used directly or after processing as fuel, 

electricity, and heat. Biocarbon and bio-oil can also be utilized to produce chemicals and value‐added 

products.  

  

Figure 1.1 – Schematic diagram of a promising closed-loop sustainable  
waste reutilization to develop value-added green products from biomass.  
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Biomass can be obtained or produced from almost unlimited renewable sources. In the next section, 

various types of biomass materials will be compared. 

1.1.1. Comparison of biomass feedstock 

Energy crops are specifically grown to produce biofuels or directly exploited for their energy contents. 

Renewable sources can be grains of food crops, such as corn, sugarcane, sugar beet, sweet sorghum, etc. 

Nonfood crops can be used to make biofuel production more sustainable because they are not in direct 

competition with food production. Examples of nonfood crops are poplar trees, switchgrass, miscanthus, 

kenaf, etc. Most of the current biofuel production uses so-called conventional feedstocks, such as corn, 

and sugarcane to produce bioethanol. The United States of America is the world's largest producer of 

ethanol, having produced over 15.4 billion gallons in 2022. Brazil is the second one, with an output of 7.5 

billion gallons that same year. Together, the United States and Brazil produce 82% of the world’s ethanol. 

European Union is the third one, having produced about 1.5 billion gallons in the same year. France is the 

largest producer of fuel ethanol in European Union. In 2022, the country had a production volume of 

over 369.5 million gallons, i.e., 25% of the European Union production. The U.S.A.  ethanol production 

majority uses corn as feedstock, while Brazil primarily uses sugarcane. In Europe, the main crops to 

produce bioethanol are starch crops (such as common wheat) and sugar beet.4  

Agricultural biomass residues from production chains are important sources of low-cost feedstock.  

Agricultural biomass includes bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. These 

can provide a substantial amount of biomass to produce a wide range of value‐added products without 

increasing the amount of land used for agriculture.  

Food biomass waste from post-industrial, such as residues and byproducts, and post-consumer can be 

used as a biomass energy source. Food waste can include oil residues, nuts hulls, peanuts shells, corn 

stover, rice hull/husk, and other grain biomass residues. 

Forest biomass is the largest source of lignocellulosic (LC) biomass that can be a good candidate to 

replace fossil fuels in the production of energy and other value‐added products at relatively low cost. 

Forest biomass includes trunks, crowns, and branches, unused wood from forests and wood 

manufacturing, and processing residues. The composition of the LC biomass depends on the type of the 

tree, deciduous (hardwood) or coniferous trees (softwood). The wastes from wood industries are sawdust, 

off‐cuts, trims, and shavings. The high costs of harvesting and transportation are the main challenges to 

use these biomass materials as feedstocks. On the other hand, forest biomass has been widely used directly 

to produce heat by the combustion process.  
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Table 1.1 summarizes the advantages and disadvantages of biomass materials for utilization as raw 

materials to produce value‐added products.  

Table 1.1 – Comparison of biomass materials to produce value‐added products.23  

Biomass 
Material    

 Advantages                                                            Disadvantages 

Switchgrass           - Abundant and widely grown.  - Lower energy content. 
                       - Requires less fertilizer, water, and energy for production.           - Requires suitable soil and climate conditions. 
                       - Perennial nature, reducing the need for replanting each year.       - May compete with food crops for land. 

                      
 - Potential for use in bioenergy, bioproducts, and as a feedstock 
for various industrial applications. 

 

Miscanthus            - High biomass productivity (more biomass than switchgrass).  - Initial establishment costs can be relatively high. 
                      - Requires less fertilizer, water, and energy for production.          - May be invasive in some regions. 
                       - Perennial nature, reducing the need for annual replanting.        - Regional suitability and adaptability may vary. 

                      
 - Versatile applications, including bioenergy, bioplastics, and 
animal bedding. 

 

Kenaf                 - Rapid growth (in tropical and subtropical regions).        - Not well-suited for temperate or cold climates. 
                       - Requires less water, fertilizer, and pesticides for production.   - Limited commercialization and awareness. 

                      
 - Versatile uses in paper production, fiberboards, textiles, and 
biodegradable products.  

 - Requires suitable soil conditions and management for 
optimal growth. 

Corn                  - Abundant and well-established crop.   - Competition with food markets. 
                       - Relatively low-cost source of starch, primarily used for   - High water and fertilizer requirements. 
                       ethanol production.  - Seasonal nature, requiring replanting each year. 

Sugarcane            
 - High sugar content, making it a valuable source for bioethanol 
and other bio-based products.  

 - Restricted to tropical and subtropical regions. 

                       - Efficient photosynthesis and low fertilizer requirements.           - Concerns about deforestation and land-use change. 

                      
 - Utilizes waste product (bagasse) for additional value-added 
products.  

 - Water-intensive crop, requiring substantial irrigation. 

Sweet 
Sorghum        

 - Requires less fertilizer compared to some other crops.               
 - Limited flexibility in harvesting due to the need to 
process the juice immediately. 

                      
 - High sugar content in the juice, suitable for bioethanol and other 
value-added products.  

 - Requires suitable climate conditions for optimal growth. 

                      
 - Potential for dual-use: grain production and value-added use of 
the stalks for bioenergy.  

 - Challenges in transportation due to the rapid 
deterioration of harvested stalks. 

Poplar Trees          - Fast growth rates and high biomass productivity.                    
 - Long growth cycle before commercial harvest (3-10 
years). 

                       - Suitable for bioenergy, pulp and paper, and construction.   - High initial investment and land preparation costs. 

                       - Erosion control and carbon sequestration benefits. 
 - Potential environmental concerns if not managed 
sustainably. 

Cereal Straw         
 - Abundant and widely available as a byproduct of cereal crops like 
rice, wheat, and corn.  

 - Lower energy content compared to dedicated energy 
crops. 

                      
 - Provides an additional revenue stream for farmers and reduces 
waste from primary crop harvests.  

 - Requires efficient collection and handling to minimize 
losses and maintain quality. 

                      
 - Suitable for use in bioenergy, animal bedding, and soil 
amendment applications.  

 - Seasonal availability tied to primary crop harvests. 

Corn Stover          
 - Abundant and widely available as a byproduct of corn 
cultivation.    

 - May compete with other uses of corn stover (e.g., 
livestock bedding). 

                      
 - Increases overall economic value for farmers by utilizing the 
entire corn plant.  

 - Requires efficient collection and handling to minimize 
losses and maintain quality. 

                      
 - Suitable for use in bioenergy, animal bedding, and soil 
amendment applications.  

 - Seasonal availability tied to corn harvests. 

Food Biomass 
Wastes  

 - Large and consistent supply of biomass generated from food 
processing and waste.  

 - Challenges in sorting and processing to remove 
contaminants and enhance purity. 

                      
 - Potential for conversion into bioenergy, biochar, and other 
value-added products.  

 - Variability in composition and quality of food waste 
biomass. 

                      
 - Addresses waste management and environmental concerns 
associated with food waste.  

 - Potential concerns related to food security and resource 
allocation. 

Forest 
Biomass       

 - Largest source of lignocellulosic biomass, providing abundant 
raw material for bioenergy and bioproducts.  

 - High costs associated with harvesting, transportation, and 
processing. 

                       - Carbon-neutral or carbon-negative if managed sustainably.         
 - Ecosystem and biodiversity concerns if not managed 
sustainably. 

                      
 - Potential for improved forest management and waste utilization 
to reduce wildfire risks.  

 - Limited suitability for certain bioconversion processes 
like gasification and fermentation. 
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In France, biomass is the main source of renewable energy in France, representing over 55% of final 

energy production and significantly contributing to reducing our consumption of fossil fuels.32 Biomass 

produces energy for various uses such as heat, electricity, biogas, or fuels. This biomass comes from the 

forest, agriculture (dedicated crops, crop residues, intermediate crops, and livestock effluents), waste 

(green waste; household biowaste; waste from catering, distribution, agri-food industries, and fishing; 

wood waste; sludge from wastewater treatment plants; etc).  

In the projected scenario for the year 2050, the gas demand of 276 to 361 TWh can be met with renewable 

gas.28 This assessment is based on a study that explored the techno-economic viability of 100% renewable 

gas, conducted and published by the Agency for Ecological Transition (ADEME), Gaz Réseau 

Distribution France (GRDF), and Gaz Réseau Transport (GRTgaz). According to this study, the potential 

of renewable gas of 460 TWh, has the capability to completely meet the gas requirements of France by the 

year 2050. The study examines three primary renewable pathways for renewable gas production: 

methanization (30% of the potential), pyrolysis (40%), and power-to-gas (30%). It's important to note that 

the technical evaluations are rooted in available resources that do not interfere with food and raw material 

usage. Among non-edible biomass, forest biomass is a promising feedstock. The French Forest is the 4th 

largest forest in Europe, growing from 1.8 to 2.8 billion cubic meters between 1985 and today, the volumes 

of wood in our forests have also increased significantly over the past 30 years.33  

The perspective presented here leads into the broader discussion on biomass, particularly related to 

lignocellulosic biomass within the context of forests, as elaborated in the subsequent section. 

Lignocellulosic biomass refers to plant-based biomass primarily composed of three major components: 

cellulose, hemicellulose, and lignin. These components are essential structural elements found in the cell 

walls of plants, including trees, grasses, agricultural residues, and other woody materials. In the upcoming 

section, a detailed examination of lignocellulosic biomass will be provided. 

1.1.2. Lignocellulosic biomass 

LC biomass is the most abundant plant material that can be a substitute for fossil fuels in the production 

and sustainable supply of liquid biofuels. The compositions of some LC biomass types are presented in 

Table 1.2.  
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Table 1.2 – The major chemical composition of various LC biomasses34. 

Compound Cellulose (%) Hemicellulose (%) Lignin (%) 

Hardwood 40-55 24-40 18-25 

Softwood 45-50 25-35 25-35 

Sugarcane Straw 33-40 21-32 19-32 

Sugarcane Bagasse 36-45 25-35 19-32 

Wheat Straw 33-40 20-25 15-20 

Rice Straw 28-36 23-28 12-14 

Wastepaper 60-65 4-13 1-2 

LC biomass is composed roughly of three biopolymers, such as about 40% of cellulose, 25% of 

hemicellulose, 25% of lignin, and about 10% of other elements and some minor components. All these 

three biopolymers, cellulose, hemicellulose, and lignin are the main constituents of plant cell walls and will 

be better described above. 

Cellulose is a polysaccharide linear homopolymer. It consists of several hundred to many thousands of 

β-1,4-glycosidic linked D-glucopyranose units (Figure 1.2). Cellulose has been recognized as being a highly 

useful polymer since it can be depolymerized into D-glucose monosaccharides units. D-glucose (C6) 

contains six carbon atoms and an aldehyde group and can be used to produce alcohol or other chemicals 

using different chemical methods. 

 

Figure 1.2 – Cellulose chemical structure. 

Hemicellulose is a polymer consisting of short linear chains and branched saccharide polymers.  Unlike 

cellulose, hemicelluloses are composed of diverse five-carbon sugars (D-xylose and D-arabinose), six-

carbon sugars (D-glucose, D-galactose, D-mannose), and sugar acids. In contrast, cellulose is derived 

exclusively from D-glucose (Figure 1.3). 
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D-Glucose D-Xylose D-arabinose 

   

  
 

D-mannose D-galactose b-D-glucuronic acid 

Figure. 1.3 – Hemicelluloses monosaccharide. 

Lignin is a collection of highly heterogeneous polymers derived from a handful of precursor monolignols 

namely p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol (Figure 1.4).  

 

Sinapyl alcohol  Coniferyl alcohol p-Coumaryl alcohol 

Figure 1.4 – Lignols. 

The lignin and hemicelluloses form a cross-linked matrix that covers the cellulose fibers, as depicted in 

figure 1.5, and thereby forms a tight and compact structure providing the plant cell walls strength and 

hydrophobic and indigestible properties. 



Chapter 1 – Separation process in the biorefinery 

 36 

 

Figure 1.5 – Structure of lignocellulosic biomass.34 

To access all these polysaccharides which are highly valued in the production of biofuels such as bioethanol 

and biogas, various organic acids, phenols, and aldehydes, a separation process is required. However, the 

presence of lignin in LC biomass is the main obstacle to the biomass being resistant to biological and 

chemical breakdown and releasing their sugars. Due to multiple factors, such as the complex structure of 

cell wall constituents in LC biomass, structural heterogeneity, crystallinity of cellulose, and degree of 

lignification, the separation of cellulose and lignin is a big challenge. To overcome these factors, the 

pretreatment process becomes a significant step to the reduced degree of polymerization, degradation of 

hemicellulose, and breakage of lignin sheath, upsetting the recalcitrant structure of lignocellulose. Which, 

it can reduce chemical reactive consumption, cost, and energy demand, and enhance the production of 

monomers of sugar during hydrolysis. 
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1.1.3. Pre-treatment Lignocellulosic biomass 

Pretreatment techniques of various lignocellulosic sources can be divided into four major categories: 

physical, chemical, physicochemical, and biological. Among the several pretreatments processes the 

preference for the convenient one depends on the type of LC biomass used as the composition of 

cellulose, hemicellulose, and lignin varies. Some of the pretreatment and its effects on the separation of 

the complex components of various lignocellulosic sources are discussed in Table 1.3.  

Table 1.3 – Summary of lignocellulosic pretreatment methods.35  

Pre-

treatment 

method 

Process Principles Critical view point Ref. 

Physical Milling, chipping, 

grinding  

Easier handling and increased surface area to 

volume ratio which facilitates reactivity. 

Decreased degree of lignocellulose crystallinity.  

First step in multiple pre- 

treatment processes. High power 

consumption.  

36–38  

Irradiation  The energy breaks the hydrogen bonds of the 

cellulose crystalline structure and makes it 

prone to enzymatic digestion  

Efficient in the presence of lignin. 

Expensive and not convenient for 

large scale application  

39,40  

Hydro-thermal  Uses water at high temperature and pressure 

that dissolves most of the lignin and 

hemicelluloses which in turn facilitates the 

hydrolysis of the cellulosic fraction  

Generates acetic acid and other 

organic acids  

41,42 

Pyrolysis  Use of high temperature to disrupt the 

lignocelluloses  

Efficient when carried out in the 

presence of oxygen  

43  

Physio-

chemical 

Explosion e.g. 

steam explosion, 

ammonia fiber 

explosion, CO2 

explosion  

Alters the structure of 

cellulosic biomass to make it more accessible. 

Exposes biomass to high temperature and 

pressure followed by a sudden pressure fall to 

make an explosive decomposition  

Steam explosion is the most 

commonly used method for 

the pretreatment of 

lignocellulosic biomass  

44–47  

Chemical  Acid  Increases the biomass porosity by removing the 

hemicelluloses and altering the lignin structure, 

and this facilitates enzymatic digestibility  

Accompanied with aldehyde 

formation. Consumes significant 

energy for pretreatment and 

product recovery  

41,47  

 

Alkali  Removes lignin, acetyl and various uronic acid 

substitutions from the biomass by 

saponification that breaks the intermolecular 

ester bonds. This improves enzymatic 

digestibility of the biomass  

Utilize lower temperatures and 

pressures compared to other 

pretreatment methods  

48–50 

Wet oxidation  Treatment of biomass in the presence 

oxygen/air and water at high temperature and 

pressure opens the crystalline structure of 

cellulose  

All biomass fractions are affected. 

Hemicelluloses degrade 

substantially  

51–53  

 

Ozonolysis  Targets lignin degradation by attacking and 

cleavage of aromatic rings structures  

The cellulose and hemicellulose 

fractions remain intact  

54,55  

Solvent extraction  Use solvents to remove lignin and some 

hemicelluloses to facilitate enzymatic hydrolysis 

of lignocellulosic biomass. Often accomplished 

at moderately high temperature  

Requires removal of the solvent 

from the treated biomass  

56–58  

Biological  Micro- biological  Micoorganisms (often fungi) degrades lignin 

and hemicelluloses  

Long process but low in energy 

consumption and requirement.  

59  
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Biomass valorization is the process of converting dried plant waste into a variety of valuable bio-chemicals. 

This conversion process involves two main phases. The first phase is biomass pretreatment, discussed in 

this section. It aimed at overcoming the complex lignocellulosic structure and facilitating the conversion 

of biomass into valuable products like fuel, food, and chemical building blocks. The second phase involves 

either biological (metabolic) or thermochemical (gasification, liquefaction, pyrolysis, and combustion) 

processing. 

1.1.4. Conversion technologies of lignocellulosic biomass 

Conversion technologies to transform lignocellulosic biomass into valuable products and energy sources 

encompass two primary categories, as presented in Table 1.4: thermochemical and biochemical 

conversion. Thermochemical processes, which include combustion, pyrolysis, gasification, and 

hydrothermal conversions, are perceived to be more efficient in converting waste biomass to energy and 

value-added products than biochemical processes. This section will focus on the thermochemical 

technology: the pyrolysis. 

Table 1.4 – Conversion technologies.60 

 Conversion Technology           Corresponding Products          

 Thermochemical Conversion       Combustion                     Heat and Electricity              

  Pyrolysis                      Bio-oil, Syngas and Char         

  Gasification                   Syngas, liquid fuels and Char             

  Hydrothermal conversions                   Liquid Fuels, Chemicals, Syngas 

 Biochemical Conversion         Anaerobic Digestion            Biogas, Liquid fuels, Electricity 

  Fermentation                   Ethanol, Butanol               

1.1.4.1. Pyrolysis  

Pyrolysis is a term commonly used to describe the thermal degradation of feedstock in the absence of 

oxygen, typically occurring at temperatures within the range of 300 to 600 ºC.29 The typical scheme of the 

biomass pyrolysis process is illustrated in figure 1.6. 
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Figure 1.6 – Biomass pyrolysis scheme. 60 

This process leads to the creation of solid char, also known as biochar, tar, or bio-oil, and pyrolysis vapor. 

The pyrolysis vapor is then condensed to obtain bio-oil and producer gas. The distribution and properties 

of these pyrolysis products are influenced by several physical and chemical factors, including the type of 

biomass, particle size, temperature, pressure, heating rate, residence time, and more. The impact of 

temperature on the distribution, yield, and quality of pyrolysis products stands as the most notable factor 

among those mentioned. 31 

From a thermal perspective, biomass pyrolysis proceeds through four distinct stages. Initially, in the drying 

stage, occurring at low temperatures, unbound moisture within the biomass evaporates. Subsequently, in 

the second stage, known as biomass devolatilization, a gradual process occurs within the temperature range 

of 100 to 200 °C, releasing low-molecular-weight gases like N2, CO, CO2, and small quantities of acetic 

acid and methanol. The third stage is characterized by extensive devolatilization at higher temperatures 

ranging from 200 to 600 °C. During this stage, large biomass molecules decompose into char, condensable 

gases (such as ketones, aldehydes, phenols, esters), and non-condensable gases. Finally, in the last stage, 

secondary devolatilization of tars takes place, converting them into secondary char and non-condensable 

gases (such as H2, CO, CH4, CO2, etc.) at temperatures typically between 300 to 900 °C. 30 
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Pyrolysis can be categorized into five primary types, with classification determined by the particular 

combinations of heating rates, temperatures, and process duration: slow or conventional pyrolysis, fast 

pyrolysis, wet pyrolysis (referred as hydrothermal carbonization), hydrous pyrolysis (or hydrothermal 

liquefaction), and mild pyrolysis (also known as torrefaction). 

Slow pyrolysis is a thermal decomposition process where biomass materials are gradually heated, usually 

at temperatures around 500 °C, without the presence of oxygen or with limited oxygen supply.61,62 This 

method involves a relatively moderate heating rate compared to faster pyrolysis processes. During slow 

pyrolysis, the biomass undergoes extended residence times due to the moderate temperature, resulting in 

the formation of three main fractions: biochar (a solid carbon-rich residue), bio-oil (in liquid form), and 

gas. These fractions are typically obtained in approximately equal proportions. Biochar, a stable carbon-

rich solid product, is a significant output of slow pyrolysis. The bio-oil produced during this process may 

vary in composition and properties, often requiring further refining or upgrading before it can be used as 

a fuel or chemical feedstock. 

Fast pyrolysis is a rapid thermal decomposition process involving the swift heating of biomass materials 

at high temperatures, typically within the range of 500 to 650 °C, in an environment with limited or no 

oxygen.61 This method employs significantly higher heating rates and shorter residence times compared to 

slow pyrolysis, allowing for the quick gasification of the biomass. A prominent outcome of fast pyrolysis 

is the substantial production of bio-oil, constituting a significant portion, usually around 60-70%, of the 

initial biomass input. In addition to bio-oil, fast pyrolysis also yields char and gases, with the gas fraction 

typically accounting for about 20% of the biomass input. The efficiency and higher energy density of the 

bio-oil make fast pyrolysis an attractive technology for biomass conversion. 

Wet pyrolysis or Hydrothermal carbonization (HTC) is an advanced thermochemical process that 

transforms wet biomass and organic waste materials into a carbon-rich substance called hydrochar.63 This 

conversion takes place in an aqueous environment at elevated temperatures (usually between 180 and 250 

°C) and high pressures (typically between 10 and 60 bar). Water is a vital component in HTC, acting as 

both a reactant and a medium for the reactions that occur. The organic compounds in the biomass undergo 

a series of complex reactions, including hydrolysis, dehydration, polymerization, and carbonization, 

resulting in the formation of hydrochar. 

Hydrous pyrolysis or Hydrothermal liquefaction (HTL) is an advanced thermochemical process that 

transforms various types of biomass or organic feedstocks into a liquid-like substance, often referred to 

as biocrude or bio-oil.64 This conversion occurs under elevated temperatures, typically ranging from 150 

to 450 °C in the absence of oxygen under high pressures (>1 MPa) and in the presence of water. During 



Chapter 1 – Separation process in the biorefinery 

 41 

the HTL process, the biomass undergoes liquefaction, resulting in the production of a bio-oil that shares 

characteristics with crude oil. This bio-oil can serve as a valuable renewable liquid fuel and holds potential 

for further refining to obtain high-quality transportation fuels. One of the primary objectives of HTL is 

the efficient production of bio-oil, making it a promising avenue in renewable energy. 

Mild pyrolysis or Torrefaction (also known as carbonization), represents a thermochemical process that 

involves heating biomass in the absence of oxygen, typically within the temperature range of 200 to 300°C. 

This process is designed to partially carbonize the biomass, resulting in a dry, energy-dense, and stable 

product known as torrefied biomass or biochar.60 Notably, torrefaction occurs at lower temperatures and 

shorter residence times compared to conventional pyrolysis, thus maintaining the solid structure of the 

biomass. The process includes initial drying to remove moisture content, followed by the release of volatile 

components as the temperature rises. The remaining solid biomass is then transformed into a stable, 

carbon-rich material with improved energy content and reduced reactivity. The resulting torrefied biomass, 

or biochar, exhibits enhanced properties such as higher energy content, improved grindability, 

hydrophobicity, and extended shelf life compared to the original biomass. 

Currently, the pyrolysis process is primarily utilized to produce the liquid fraction, i.e., bio-oil, which serves 

as fuel for energy production through co-generators, and value-added chemicals. 60,65 

1.1.5. Value-added chemicals: platform molecules  

Platform molecules refer to key chemical compounds that are obtained from bio-oil, a product of the 

pyrolysis process. These molecules act as fundamental building blocks or intermediates for the synthesis 

of a diverse range of value-added chemicals. They serve as starting points for intricate chemical reactions 

and processes, enabling the creation of a wide spectrum of valuable substances such as plastics, resins, 

solvents, pharmaceuticals, and more. 

In Figure 1.7, the dehydration process of fructose and xylose is illustrated. This process leads to the 

production of essential value-added derived chemicals commonly referred to as platform molecules, 

namely 5-Hydroxymethylfurfural and furfural. The conversion of fructose and hemicellulose into these 

platform molecules is a significant step in biomass transformation.66–68 These platform molecules, 5-

Hydroxymethylfurfural and furfural, serve as crucial intermediates in the synthesis of a wide array of value-

added chemicals with diverse industrial applications. 



Chapter 1 – Separation process in the biorefinery 

 42 

 

Figure. 1.7 – Dehydration of fructose and hemicellulose. 

The multistep acid-catalyzed dehydration of hexoses is an effective method for the preparation of 5-

Hydroxymethylfurfural (HMF).67 Hexoses, including cellulose, glucose, fructose, sucrose, starch, inulin, 

and various raw biomass materials like wheat straw, serve as active substrates in this process. 

Carbohydrates such as cellulose can undergo a three-step reaction to yield HMF. The process involves the 

hydrolysis of cellulose to glucose, isomerization of glucose to fructose. Subsequent, the dehydration of 

fructose by removing three water molecules to obtain HMF (as illustrated in left side of figure 1.7). It's 

worth noting that different types of hexoses exhibit varying levels of selectivity in HMF formation. 

Fructose and other ketoses demonstrate the highest selectivity for HMF production, while glucose and 

other aldoses exhibit a lower selectivity in this regard. 

5-Hydroxymethylfurfural (HMF) derived from fructose, is a top value-added biomass-derived 

chemical, which can be transformed into various important chemicals and fuels because of the presence 

of C=O, C-O, and furan ring functional groups. One of the chemicals that are obtained from the HMF is 

the 2,5-Furancarboxylic acid (FDCA) by the oxidation of the C=O and C-O groups of the side chains. 

FDCA (furan dicarboxylic acid) is the key building block for the biopolymer polyethylene furanoate (PEF). 

Another derivative of the HMF is the 2,5-dimethylfuran (DMF) obtained by the hydrogenolysis of the 
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C=O and C-O groups of the side chains. DMF has similar properties to commercial gasoline. As well as 

ethoxymethylfurfural, furfuryl alcohol, dimethylfuran, and 2,5-diformylfuran. These chemicals serve as the 

building blocks of diverse commodities including pharmaceuticals, polymers, resins, solvents, fungicides, 

and biofuels.  

 

Figure 1.8 - 5-Hydroxymethylfurfural (HMF) platform molecules.66 

In contrast to cellulose, characterized by its crystalline structure and robust resistance to hydrolysis, 

hemicellulose possesses an amorphous, disordered structure with lower strength. It is susceptible to 

hydrolysis, particularly under the influence of dilute acid or base. When aiming to obtain furfural from 

hemicellulose, a multistep process involving an acidic catalyst is employed.66 In this multistep process, the 

acidic catalyst initiates the breakdown of pentose sugars, making xylans within hemicellulose more 

susceptible to hydrolysis. This process transforms xylans into xylose through hydrolysis. The resulting 

xylose, formed during acid hydrolysis, can then undergo cyclodehydration to obtain furfural. The acidic 

catalyst not only facilitates the hydrolysis of xylans but also promotes the subsequent conversion of xylose 

into furfural, an important compound widely used in various industrial applications. 

Furfural (FF) is an important organic chemical. Furfural itself has many applications, such as oil refining, 

as a bonding agent in grinding and abrasive wheels, in pharmaceuticals, and the manufacture of phenolic 

resins. FF has been addressed as one of the most important biomass-derived chemicals because the two 

functionalities (aldehyde group and the aromatic ring) that make it high chemical reactive. Biofuels and 

Furfural resins can be derived either directly from FF or from any of the chemicals obtained from it (see 

https://www.sciencedirect.com/topics/chemical-engineering/phenolic-resins
https://www.sciencedirect.com/topics/chemical-engineering/phenolic-resins
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figure 1.9). Furfuryl alcohol (FFOL) is the most important chemical derived from FF by hydrogenation 

and is primarily used to produce resins.  

 

Figure 1.9 – Furfural-derived platform molecules and biofuels.67 

Separation and purification process steps would be required to obtain all the products of interest. The 

solvent selection used in the separation process design for biorefinery application plays an important role 

to define the environmental sustainability and economic viability of the process. In this framework, this 

thesis explores the progress and development of green solvents, specifically the Deep Eutectic Solvents, 

for the extraction of furanic compounds (FF, 5-hydroxymethylfurfural (HMF), and levulinic acid (LA)) 

produced by dehydration of fructose and xylose. 

In recent years, DESs have emerged as promising media for the dehydration of hexoses (such as fructose) 

and pentoses (such as xylose) to furanic derivatives like 5-hydroxymethylfurfural (HMF) and furfural.69–73 

These furanic derivatives are valuable compounds used in various industrial applications. Several strategies 

have been explored to effectively convert hexoses into HMF using DESs, shown in Table 1.5. 
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Table 1.5 – Catalytic dehydration of hexoses to HMF in various DESs. 

DES Catalyst Carbohydrate T (°C) 
HMF 

Yield (%) 
Reference 

 ChCl/urea      FeCl3, AlCl3, CrCl3 fructose 100 <30 74 

 ChCl/citric acid  - fructose 80 70-80  

ChCl/citric acid - fructose 120 62 75 

ChCl/oxalic acid - fructose 120 59  

 ChCl/citric acid  - inulin 80 51 76 

 ChCl/oxalic acid  - inulin 80 56  

 ChCl/p-TSA       fructose 80 90 77 

 ChCl/fructose  
FeCl3, CrCl2, CrCl3, p-TSA, 

Sc(OTf)3, amberlyst-15 
montmorillonite K-10 

- 100 40-70 

78 
 ChCl/glucose - 100 15-45 

 ChCl/inulin    - 100 35-60 

 ChCl/sucrose   - 100 25-60 

 ChCl/fructose  (C6H15O2N2)2HPW12O40 - 110 92 79 

 ChCl/fructose  CO2 (4 MPa) - 120 73 80 

 ChCl/inulin    CO2 (4 MPa) - 120 41 81 

Hu and Ilgen74,78 studied the catalytic conversion of fructose to HMF within DESs, particularly ChCl and 

urea based. However, initial attempts showed low HMF yields, mainly due to side reactions between 

fructose and urea. Further research improved HMF yields by using DESs based on ChCl citric and oxalic 

acid. These variations significantly enhanced the yield of HMF, reaching up to 76% when the reaction was 

heated at 80°C for 1 hour. Similar success was achieved in promoting fructose dehydration to HMF using 

DESs composed of ChCl and p-toluene sulfonic acid (p-TSA).77 Such DESs could dissolve fructose and 

facilitate its dehydration to HMF at 80°C with a 90% yield after 1 hour of reaction. These findings were 

especially promising when using a low content of fructose (2.5 wt%), with the HMF yield dropping as the 

fructose content increased. 

Furthermore, researchers extended this concept to the production of furfural from xylan or xylose within 

DES, presented in Table 1.6.  

Table 1.6 – Catalytic dehydration of pentoses to FF in various DESs. 

DES Catalyst Carbohydrate T (°C) 
FF Yield 

(%) 
Reference 

 ChCl/oxalic acid AlCl3·6 H2O xylan 140 38 
82 

 ChCl/ oxalic acid AlCl3·6 H2O xylose 140 60 

 ChCl/citric acid  AlCl3·6 H2O xylan 140 54 
83 

 ChCl/citric acid  AlCl3·6 H2O xylose 140 59 

ChCl/formic acid 
SnCl4·5H2O, AlCl3, 
CeCl3·7H2O, ZrCl4 

xylose 120 32-60 84 

ChCl/ glycerol water xylose 120 60 85 

ChCl/ ethylene glycol water xylose 180 76 86 

ChCl/ malic acid water xylan 150 75 87 
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The reactions within ChCl/citric acid containing AlCl3·6 H2O conducted at 140 °C for 15 to 25 minutes 

resulted in furfural yields of 54% to 59% from xylan and xylose, respectively.83 

The use of DESs for biomass conversion offers significant advantages. They can produce highly 

concentrated solutions of carbohydrates, sometimes even liquid at near-room temperature. DESs' unique 

ability to stabilize furanic derivatives enhances the conversion of carbohydrates to HMF and furfural with 

high selectivity. However, extracting furanic derivatives from DESs remains a challenge due to unfavorable 

partition coefficients. 

Despite this challenge, DESs offer a novel strategy to convert furanic derivatives in situ to chemicals that 

can be more easily extracted through distillation, precipitation, or liquid–liquid phase extraction for 

optimal utilization in the biorefinery industry. 

1.2. Separation and purification process 

Separation and purification processes in biorefineries typically use traditional technologies derivatives from 

the classic refinery (i.e., petrochemical industry), such as distillation, extraction, adsorption, absorption, 

membranes, crystallization, etc. Some of these techniques, such as distillation, can indeed be energy-

intensive due to component vaporization, while others, like membrane filtration, can be less energy-

intensive. While many of these traditional processes can be energy-intensive, it's important to note that 

not all of them rely solely on the vaporization enthalpy of chemical components. Some of these techniques 

may use other mechanisms for separation. Emerging technologies, as illustrated in Figure 1.10, are 

generally more energy-efficient, particularly when they avoid energy-intensive vaporization processes.  

 

Figure 1.10. Examples of thermal separation processes (higher energy use) and nonthermal separation processes 
(lower energy use).88 

 

Many separations are still being performed by using distillation (reported to account for 80% of industrial 

separations), which is the most energy intensive. Distillation in the bio(refineries) can account for 40-50% 

of the total operation cost in the industry89 and generate large waste streams that are expensive to manage. 
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This cost can represent in terms of energy consumption 10–15% of the world's energy consumption90. 

For those reasons, a successful design, and operation improvement of these processes are economically 

critical to developing a sustainable chemical facility and can reduce energy use.  

This section gives an overview of the separation processes in biorefineries, conveniently grouped here 

according to energy consumption.  

1.2.1. Distillation 

Distillation is a process for separating chemical compounds of a liquid mixture by boiling and collecting 

condensed vapors. Two prerequisites must be satisfied simultaneously to ensure that distillation can take 

place: the relative volatility as a driving force and the separation equipment. In the biorefinery, the 

distillation processes are used for the separation and dehydration of alcohols (bioethanol and biobutanol), 

biodiesel purification, isolation of volatility organic compounds (essential oils) and phytochemicals from 

biomass (extract), the concentration of chemicals in pyrolysis oil and separated in various fractions 

(alcohols, aldehydes, ketones, acids, phenolics, and sugar).  

1.2.2. Liquid-liquid extraction 

Liquid-liquid extraction, also known as solvent extraction, is a common method used in chemistry and 

industry. Its main purpose is the separation of a solute from a mixture. In this process, the solute can be 

originally dissolved in a selective way in a solvent, the diluent. Subsequently, the solute can be transferred 

into another solvent, the extractant, to accomplish the separation. This process typically involves three 

steps. First, an immiscible or partially miscible extractant is added to the diluent, allowing the solute to 

dissolve in the extractant.  The second step involves through mixing of these two solvents to facilitate the 

transfer of the solute from the diluent to the extractant phase. The ability of a solute to preferentially 

dissolve in one of two immiscible or partially miscible solvents (the extractant and diluent) based on 

differences in its solubility in these solvents is called by selectivity. The final step involves layering the two 

solvents, allowing for the physical separation of the solute by isolating the extractant from the diluent. 

After this separation, the solute can be recovered from the extractant using various methods such as 

distillation or simple evaporation. In the biorefinery, Liquid-liquid extraction is used for separating biofuels 

(bioalcohols) and chemicals (carboxylic acid) from dilute mixtures (fermentation broths), extraction of 

acetic acid from biomass hydrolysates using mixed solvents, extraction of HMF from an aqueous reaction 

solution using methyl isobutyl ketone as a solvent, chemicals extraction (aqueous extraction, or extraction 

using hydrophobic-polar solvent) of fast pyrolysis bio-oils.26 One of the main advantages of solvent 
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extraction is the recovery of components that are boiling at high temperatures than water boiling 

temperature.  

1.2.3. Other separation processes 

Other separation processes can be used in biorefineries, such as adsorption, absorption, and membrane 

separations.  

Adsorption is a technique where solid adsorbents, such as activated carbon or zeolites, are used to 

selectively capture specific components from a mixture. It is effective as purification method, for removing 

impurities and can be employed in biorefineries to separate and purify valuable compounds. In the 

biodiesel production process, absorption can play a crucial role in removing impurities from the raw 

biodiesel. This includes the removal of glycerol, methanol, free fat acids, soap, catalyst, metals, water, and 

glycerides. These impurities must be effectively eliminated to meet biodiesel quality standards and ensure 

the fuel’s optimal performance.  

Absorption involves the transfer of one or more components from a gas phase into a liquid phase. This 

process is often used for gas purification and the capture of volatile compounds, such as CO2, from biogas 

or fermentation off-gases. In the production of methanol and diesel fuel from syngas the presence of 

impurities such as H2S, CO2, and NH3 can poison catalysts and negatively impact product quality. 

Absorption units are utilized to selectively capture these impurities, ensuring a cleaner syngas feed for 

further conversion process.  

Membranes separation processes, including microfiltration, ultrafiltration, nanofiltration, and reverse 

osmosis, rely on semi-permeable membranes to separate components based on size, charge, or other 

properties. These processes are widely used in biorefineries for the separation of proteins, enzymes, and 

other biomolecules, as well as the concentration and purification of bio-based products. Moreover, 

membrane separation finds specific applications in biorefineries such as the separation of hemicelluloses 

from biomass hydrolysates, lignin recovery, biomass pre-hydrolysis, and the separation and purification of 

biodiesel, exemplifying its versatility and importance in the bio-based industry.  

1.3. Solvent selection 

The solvent selection is the first and basic consideration for achieving an optimal liquid-liquid extraction.91  
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1.3.1. Physico-chemical properties 

Solubility data is a critical piece of information that guides the selection of a suitable solvent for a given 

application. It enables engineers and chemists to make informed decisions about the solvent’s ability to 

dissolve the solute effectively and achieve the desired process outcomes. In simpler terms, solubility 

represents the ability of a solvent to dissolve a given solute or substance efficiently, which is fundamental 

in various chemical and industrial processes. 

Dynamic and kinematic viscosity influences the transfers of mass, heat, and momentum within fluids, 

significantly impacting these processes. High-viscosity solvents have higher viscosity values, which directly 

affects the Reynolds number (Re) through its presence in the Re equation. The increased viscosity results 

in greater viscous resistance, making it more challenging to move the fluid, which requires more energy 

for mixing, pumping, and maintaining desired flow rates. Furthermore, higher viscosity can lead to changes 

in the mass transfer rate, affecting the efficiency of processes like mixing and mass transport within the 

fluid. In the domain of fluid dynamics and mass transfer analyses, Sherwood number (Sh) is a relationship 

commonly used to describe the mass transfer rate. It is expressed as Sh = f (Re, Sc), with Sc representing 

the Schmidt number. The Schmidt number is a measure of the relative importance of momentum transport 

and depends on the viscosity, density, and diffusivity of the solute in the fluid.  

Density can influence phase separation in extraction or separation processes. Differences in density 

between solvent phases can enhance or hinder separation. 

Interfacial tension also can influence mass transfer properties, in which low values can allow the 

disruption of solvent droplets with low agitation and is also associated with emulsion formation in two-

phase liquid systems.  

Boiling point defines the physical state of the solvent at the temperature used for the extraction. The 

boiling point should be suitable for the process conditions. Solvents with low boiling points are easily 

removed by distillation, while high-boiling solvents may require more energy for recovery. 

Flash Point represents the minimum temperature at which the solvent's vapors can ignite when exposed 

to an open flame or spark. A low flash point could pose fire hazards. Choosing solvents with appropriate 

flash points helps prevent fire hazards and ensures the safety of personnel and the environment. 

Chemical compatibility ensures that the solvent is chemically compatible with the solute and other 

materials in the process, such as equipment and catalysts. By choosing a chemically compatible solvent, 
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engineers and chemists can avoid potential complications, unwanted side reactions that could degrade the 

solvent, the generation of impurities, and oxidation reactions. Solvents with minimal or no reactivity with 

the solute are highly desired to maintain the purity and integrity of the intended chemical or industrial 

process, thereby ensuring the success of the desired process and the quality of the final product. 

Polarity can enhance the efficiency and selectivity of the separation process by matching the polarity of 

the solvent to the solute. Polar solvents dissolve polar compounds, while nonpolar solvents are better 

suited for nonpolar compounds. Some processes may require a solvent with intermediate polarity. 

Toxicity of the solvent is another relevant aspect that is considered in solvent selection to ensure the 

safety of workers, protect the environment, comply with regulations, and promote responsible and 

sustainable chemical practices. Substituting hazardous solvents with less harmful alternatives is a key 

strategy in enhancing safety and minimizing health and environmental risks. 

1.3.2. Economic and environmental aspects 

The choice of solvent could considerably reduce the overall energy requirements and the separation 

process costs. Solvent recyclability can significantly impact the overall cost and sustainability of a process. 

Alternative solvents, as a more environmentally friendly substitute to petrochemical solvents, have 

attracted interest from researchers due to a growing awareness of the impact of solvents on pollution, 

energy usage, and contributions to air quality and climate change. Green solvents represent a significant 

portion of research in alternative solvents. Providing benefits in terms of resource efficiency, minimal 

health & safety concerns, and being environmentally friendly. 

1.3.3. Efficacity 

The Activity coefficient at Infinite Dilution (IDAC, 𝛾𝑖
∞) is a parameter that describes the behavior of one 

solute molecule surrounded by solvent molecules, showing the higher nonideality of the mixture. 

Therefore, is an important parameter used in chemical engineering to design of the separation process, 

helping the selection of the solvent by its capacity and selectivity. The selectivity is represented by the 

solvation power92,93, Sp, and can be obtained by  

where Mi and Msolv are the molar mass of solute and solvent, respectively.  

𝑆𝑝 =
1

𝛾𝑖
∞

𝑀𝑖

𝑀𝑠𝑜𝑙𝑣
  

(1.1) 
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Solvation power has been used in the development of the methodology to select solvents, here in this 

work. 

1.4. Deep eutectic solvents  

Deep Eutectic Solvents (DESs) have emerged as a groundbreaking class of solvents, characterized by their 

formation from a mix of two or more solid or liquid components. Typically, this mix involves a hydrogen 

bond donor (HBD), such as a quaternary ammonium salt, and a hydrogen bond acceptor (HBA), like a 

metal chloride. When these components are combined in precise proportions, they form a eutectic mixture 

that remains liquid at temperatures often below the melting points of the individual components. This 

unique characteristic has positioned DESs as sustainable and environmentally friendly alternatives to 

traditional organic solvents and ionic liquids (IL), heralding a new era in green chemistry. 

The literature investigation into DESs, although relatively nascent compared to classical ILs research, has 

seen a significant surge in interest. The Scopus search reveals approximately 6,000 journal articles on 

DESs, indicating a robust and growing body of research since the first paper was published in 2001. This 

literature spans a diverse array of fields, including chemistry, chemical engineering, physics and astronomy, 

engineering, material science and computer science, reflecting the interdisciplinary appeal of DESs (see 

figure 1.11). Notably, the past decade has witnessed an exponential growth in DES publications, with 

research efforts concentrated on metal processing and synthesis media. DESs have been identified as 

promising alternative media for metals that are traditionally challenging to plate or process and for 

synthesis applications where environmentally hazardous processes are involved.  

 

Figure 1.11 -. Number of publications with DES as key word per year. 
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In the investigation of DES, exemplified by the Reline system comprising choline chloride as a hydrogen 

bond acceptor (HBA) and urea as a hydrogen bond donor (HBD) in a 1:2 ratio, the phase diagram assumes 

a central role to elucidate their unique characteristics. This phase diagram presented in the Figure 1.12 

offers a pivotal depiction of the intricate interplay between temperature and composition within the 

mixture. At the heart of this representation lies the eutectic point, a critical feature that captures the 

conditions under which the DES undergoes a phase transition. The chosen composition, with choline 

chloride and urea in a 1:2 ratio, gives rise to the specific DES named Reline.  

The phase diagram presented in the Figure 1.12 serves as a comprehensive tool, elucidating both ideal and 

real scenarios. In the ideal case (gray line), the eutectic point represents the composition at which the 

mixture achieves its theoretically melting point. The hydrogen bonding interactions, with choline chloride 

acting as the hydrogen bond acceptor and urea as the hydrogen bond donor, play a pivotal role in charge 

delocalization, contributing to the reduction in the melting point of the mixture. 

Conversely, real-world scenarios (black line) introduce complexities, such as non-ideal behavior, which 

deviate from the idealized case. The real eutectic point, reflecting the actual conditions at which the DES 

undergoes a phase transition. This nuanced understanding, coupled with the distinctive characteristics of 

the Reline system, is crucial for tailoring DES formulations to specific applications, contributing to 

advancements in the effective utilization of Deep Eutectic Solvents across diverse fields. 

 
Figure 1.12 – Choline Chloride:Urea (1:2) phase diagram. 

 

DESs represent a pivotal innovation in green chemistry, offering a sustainable alternative to traditional 

solvents. Common DES formulation, such as the mixture of choline chloride with urea, ethylene glycol, 
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and glycerol, exemplify the versatility and environmental compatibility of the solvents. Their applications 

span a vast array of fields, from green chemistry to pharmaceutical and nutraceutical industries, and even 

into the realms of metal processing and biomass conversion.  

In the context of green chemistry, DESs are celebrated for their non-toxic and biodegradable nature, 

providing an eco-friendly medium for various chemical reactions, catalysis, and extraction processes. For 

instance, DESs have been employed in extracting bioactive compounds from natural sources such as 

plants, algae, and marine organisms, showcasing their potential in pharmaceutical and nutraceutical 

industries.  

In metal processing, DESs offer considerable advantages over conventional solvents. Their application in 

metal plating, for instance, has demonstrated not only improved plating quality but also a reduction in the 

environmental impacts typically associated with such processes. This aligns with the broader goals of 

reducing hazardous waste and enhancing sustainability within the industry. 

Furthermore, the role of DESs in biomass processing and conversion is increasingly recognized. Their 

effectiveness in biomass pretreatment, cellulose dissolution, and catalytic conversion processes contributes 

significantly to the development of sustainable bio-based industries. This includes facilitating more 

efficient and environmentally friendly methods for converting biomass into valuable chemicals and fuels. 

The versatility and potential of DESs across these diverse applications underscore their capacity to driving 

innovation towards more sustainable and eco-friendly practices in various sectors. As research and 

development in the field of DESs continue to expand, their integration into industrial process is poised to 

offer significant advancements in environmental sustainability and green chemistry. 

1.4.1. Physico-chemicals properties  

Physical characteristics of DES can vary depending on their composition and the specific components 

used to create them. However, some common physical characteristics and properties of DES include: 

Lower Melting Point compared to the individual components used to create them. This property allows 

them to remain in liquid form at relatively low temperatures. 

Viscosity can vary depending on their composition. Some DESs have low viscosity, like that of traditional 

organic solvents, while others may have higher viscosities.  
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Solubility of specific substances in a DES may vary depending on the nature of the solute and the DES 

composition. DESs can dissolve a wide range of organic and inorganic compounds. 

Polarity can have variable polarity depending on the choice of components. This tunability of polarity 

makes them suitable for a range of applications, from polar to nonpolar solvents. 

Density can vary depending on the composition, and it may be different from that of individual 

components.  

Thermal stability at moderate temperatures, although this can vary depending on the specific 

components used.  

Environmentally Friendly than traditional solvents due to their lower toxicity, reduced volatility, and 

potential for recycling. 

Refractive Index of a DES may vary depending on its composition and can affect optical properties and 

applications. 

Interesting Phase Behavior, including the ability to form biphasic systems with water or other solvents, 

which is useful in certain extraction and separation processes. (some DESs can exhibit it). 

1.4.2. Applying DES in a processes 

When considering the use of a DES in a process, it's crucial to gather the following important properties 

and information. This data serves as the foundational framework for informed decision-making and 

optimized procedural outcomes. 

First and foremost, an understanding of the chemical composition of the DES is important. These solvents 

are typically composed of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA). To 

establish a robust process design, it is essential to discern the precise identity of these components and 

their respective molar ratios. Additionally, the eutectic composition of the DES is of great significance. 

This represents the specific ratio of HBD to HBA that yields the lowest melting point and is often critical 

for achieving the desired properties.  

Thermal properties, such as stability, melting point, and boiling point must be gathered to delineate the 

permissible operating temperature range of the process. Understanding the solubility and selectivity of the 

DES is crucial, particularly in relation to the targeted solutes or reactants. DESs exhibit unique solvation 
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properties, necessitating a thorough comprehension of the compounds amenable to effective dissolution 

or reaction. 

Physico-chemicals properties, such as viscosity and density are also important. The viscosity of the DES 

should be measured as it can significantly influence mixing, flow dynamics, and handling throughout the 

process. Elevated viscosity may necessitate specialized equipment or adjustments to process parameters. 

Density, too, warrants determination as it can impact volume measurements, especially when transitioning 

to larger-scale processes. 

DESs are not inherently hygroscopic. Whether a particular DES exhibits hygroscopic properties depends 

on its specific chemical composition. Some DESs may contain components that are hygroscopic, while 

others may not. Hygroscopicity is generally associated with substances that have a strong affinity for water 

and readily absorb moisture from the surrounding environment. If a DES includes hygroscopic 

components, it may exhibit hygroscopic behavior to some extent. However, the overall hygroscopicity of 

a DES will depend on the balance of its constituent components and their interactions. It's essential to 

assess the hygroscopic properties of a specific DES by considering its chemical composition and 

conducting experiments or tests to determine its moisture absorption characteristics under the relevant 

environmental conditions. 

Investigate the compatibility of the DES with the reactants or compounds integral to the process. Ensuring 

that reactions progress as anticipated and that undesirable side reactions are averted is paramount. 

The environmental implications of DES usage must be considered, encompassing aspects such as 

biodegradability and toxicity. Compliance with environmental regulations may be mandatory. The 

acquisition of safety data is essential for a comprehensive risk assessment. Information pertaining to 

flammability, toxicity, and safe handling procedures should be obtained, with the implementation of 

suitable safety measures. Verify compliance with regulatory requirements and any restrictions pertinent to 

DES utilization within the designated application. This is particularly pertinent in industries subject to 

rigorous regulations such as food and pharmaceuticals. 

Conducting a comprehensive cost analysis is advisable to gauge the economic feasibility of employing 

DESs in the process. This entails factoring in expenses related to raw materials, recycling, and disposal. 

When transitioning from lab-scale to industrial-scale processes, evaluate how the properties and behavior 

of the DES may evolve at larger volumes. This assessment is essential to ensure seamless scalability. 
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Finally, preliminary experiments or lab-scale trials should be conducted to validate the suitability of the 

DES for the specific process, providing valuable insights into its performance characteristics. 

1.5. Conclusion 

In summary, this chapter emphasizes the significant dependence on crude oil for energy and highlights 

the need to explore sustainable alternatives for energy production. Biomass feedstocks have emerged as a 

promising renewable and sustainable option. The chapter has elucidated the essence of the biorefinery 

concept, presenting its potential advantages while acknowledging the limitations associated with various 

biomass feedstocks. 

Lignocellulosic biomass, as a pivotal component, has been thoroughly discussed, highlighting its central 

role in transitioning to sustainable energy resources. The discussion extensively covered the essential 

separation and purification processes necessary for effective biomass conversion. Traditional technologies 

rooted in conventional refinery practices were introduced, focusing notably on the extraction process. 

The chapter emphasizes solvent selection as a critical factor in achieving optimal liquid-liquid extraction, 

addressing key considerations such as physico-chemical properties, economic aspects, and selectivity. 

Additionally, focused attention was given to green solvents, particularly deep eutectic solvents (DES), 

revealing their substantial potential through a thorough examination of their physico-chemical 

properties.In essence, focusing on the physico-chemical properties of Deep Eutectic Solvents (DES), it’s 

important to highlight that the design and optimization of the separation process rely on accurate and 

accessible thermodynamic and transport properties data. However, a significant challenge arises from the 

lack of experimental data for DES systems. A critical objective of this thesis is to address this scarcity by 

generating experimental data to refine and optimize theoretical models. The subsequent chapter will 

comprehensively describe the experimental methods applied to achieve this objective, providing valuable 

insights into the methodologies utilized. 

In conclusion, this work represents a pioneering initiative within our research group, utilizing the expertise 

and technology available at the CTP lab to explore the realm of DES. Overcoming the challenges posed 

by the high viscosity properties inherent to DES, adapting laboratory equipment for testing purposes was 

a significant obstacle that we effectively addressed. This study can serve as a valuable contribution 

advancing knowledge in this field, highlighting the significance of innovation in addressing emerging 

scientific challenges. Moving forward, our findings provide a solid foundation for further exploration and 

advancement in the understanding and application of deep eutectic solvents. 
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Résumé 

 

Le manque de données thermodynamiques sur les mélanges contenant des solvants eutectiques profonds 

(DES) constitue un défi important. La complexité des compositions des DES ainsi que leurs propriétés 

contribuent à ce problème. Les DES sont généralement formés en mélangeant deux ou plusieurs 

composants qui peuvent inclure un donneur de liaison hydrogène (HBD) et un accepteur de liaison 

hydrogène (HBA). Ces composants peuvent varier en type, concentration et ratio conduisant un grand 

nombre de formulations DES possibles. Chaque combinaison peut présenter des comportements 

thermodynamiques différents. La complexité des compositions DES rend impraticable la réalisation de 

mesures expérimentales pour chaque combinaison possible.  

Pour résoudre partiellement ce problème et combler le manque d'information, les chercheurs ont employé 

des approches théoriques telles que les simulations moléculaires et les modèles de contribution de groupe 

pour prédire le comportement de phase des systèmes d'intérêt. Cependant, il est important de souligner 

que la fiabilité de ces prédictions dépend de la similarité du système avec la base de données utilisée pour 

ajuster les nombreux paramètres d'interaction de groupe. En d'autres termes, plus le système que l'on 

étudie est semblable à la base de données qui ont servi à paramétrer le modèle, plus les prédictions sont 

fiables. D'un autre côté, ne s'appuyant que sur des méthodes de prédiction (telles que la théorie de la 

fonctionnelle de la densité (DFT) ou une équation d’état) sans vérification expérimentale peut conduire à 

une conception peu fiable qui peut être coûteuse pour l'industrie chimique.  

Une partie importante de cette thèse est dédiée à la génération des données expérimentales essentielles 

pour optimiser les modèles théoriques. `À cette fin, nous avons choisi trois DES en basant sur leur 

application pour la déshydratation d'hexoses (comme le fructose) et de pentoses (comme la xylose) en 

dérivés furaniques tels que le 5-hydroxyméthylfurfural (HMF) et le furfural. 

Une partie importante de cette thèse est dédiée à la génération de données expérimentales essentielles. À 

cette fin, nous avons choisi 

Ces DES sont: 

• Chlorure de choline : Éthylène Glycol (1 :2), également connu sous le nom en anglais « 'Ethaline ». 
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• Chlorure de choline : Glycérine (1 :2), également appelé en anglais « Glycaline ». 

• Chlorure de choline : Fructose (2 :1), connu sous le nom en anglais de « Fructaline ». 

Fructaline a fait l'objet d'études de la part de certains auteurs dans le processus de déshydratation du 

fructose en DMF. De plus, Ethyline et Glycaline ont été examinés pour leur rôle dans la déshydratation 

de la xylose en furfural. Ces DES ont montré des résultats promettants pour faciliter la conversion des 

sucres en composés furaniques et leur potentiel d’utilisation dans ces processus de déshydratation est 

exploré par divers chercheurs. 

Ce chapitre présente les aspects pratiques de ce travail. Nous décrirons le protocole de synthèse des DES 

ainsi que l’équipement et les protocoles expérimentaux utilisés dans ce travail pour les caractériser les DES 

ainsi que leurs mélanges. Couvrant des propriétés clés telles que la masse volumique, la viscosité 

dynamique, l'indice de réfraction, et notamment, l'acquisition de données de coefficient d'activité à dilution 

infinie par « gas stripping » ainsi que de données d'équilibre liquide-vapeur par une méthode synthétique. 
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2. Experimental study  

 

2.1. Introduction 

A successful design and optimization of separation processes in the chemical industry rely on the 

availability and accuracy of thermodynamic and transport properties data. These two aspects are 

fundamental for the development of thermodynamic models.  

Thermodynamic data, such as Solid-Liquid Equilibrium (SLE), Vapor-Liquid Equilibrium (VLE), Liquid-

Liquid Equilibrium (LLE), Vapor-Liquid-Liquid Equilibrium (VLLE), infinite dilution activity coefficients 

(IDAC) data, provide essential information about the composition and phase behavior of mixtures at 

different conditions. This data is crucial for designing separation processes like distillation, liquid-liquid 

extraction, and crystallization. Specific heat capacity (Cp) data helps in understanding how a substance’s 

temperature changes as heat is added or removed. It’s vital for calculating the heat requirements or heat 

removal in separation processes, especially in processes involving temperature changes, like distillation and 

heat exchangers. Furthermore, the enthalpy of mixing is crucial for understanding the energy changes that 

occurs when different components are mixed. This data is essential in processes like mixing, dissolution, 

and crystallization. Enthalpy of Vaporization quantifies the amount of energy required to convert a liquid 

into vapor at given temperature and pressure. It is a fundamental property in vaporization processes, such 

as distillation and evaporation.  

Transport properties, such as density, diffusion coefficients, and viscosity, play an important role in the 

design of separation processes, such as the sizing of distillation columns, reactors, pumps, and pipes. 

Accurate data are necessary to ensure that equipment operates as intended and meets safety and 

environmental standards. 

One of the difficulties often faced by chemical and process engineers is the scarcity of experimental data 

in the literature for specific systems. While these data are easily accessible for conventional solvents, and 

well known in the literature, for unconventional solvents the databases are limited. Moreover, even when 

experimental data are available, it often lacks important information about the experimental procedure 

applied, uncertainty, and consistency. These details are critical for assessing the reliability of the data and 

for comparing them with data from other sources.  
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The lack of thermodynamic data on mixtures containing DES is a significant challenge, and the complexity 

of DES compositions, as well as their unique properties, contribute to this issue. DESs are typically formed 

by mixing two or more components, which can include a hydrogen bond donor (HBD) and a hydrogen 

bond acceptor (HBA). These components can vary in type, concentration, and ratio, leading to a vast 

number of possible DES formulations. Each combination may exhibit different thermodynamic 

behaviors. The complexity of DES compositions makes it impractical to conduct experimental 

measurements for every possible combination. Additionally, DESs are known for their intricate network 

of hydrogen bonds and other non-covalent interactions. These interactions can lead to the formation of 

various phases, including solid precipitates or multiple liquid phases, depending on the composition and 

conditions. Predicting the thermodynamic behavior of multicomponent DES mixtures requires a detailed 

understanding of these interactions, which can be challenging to model accurately. Furthermore, DESs 

often have higher viscosities compared to conventional solvents, which can impede the measurement of 

thermodynamic properties. High viscosity can affect the accuracy of experimental techniques and may 

require specialized equipment and methodologies. 

To (partially) resolve this problem and fill the information gap, industries have employed theoretical 

approaches, such as molecular simulations and group contribution models, to predict phase behavior for 

systems of interest, and more details will be explained in chapter 3. However, it is important to highlight 

that the reliability of these predictions depends on the similarity of the system with the database used to 

adjust hundreds of group interaction parameters. On the other hand, relying only on prediction methods, 

such as density functional theory (DFT) or equation of state, without experimental verification can lead 

to an unreliable design which can be costly for the chemical industry concerned.  

One important part of this thesis is dedicated to bridging the gap between theory and reality by generating 

essential experimental data to optimize theoretical models. This chapter presents the practical aspects of 

this work. Within this chapter, we will describe the synthesis protocol for DES. Additionally, we will 

describe the experimental equipment and protocols used in this work to characterize them and their 

mixtures. Covering key properties such as density, dynamic viscosity, refractive index, and notably, the 

acquisition of activity coefficient at infinite dilution data through gas stripping, and vapor-liquid 

equilibrium data via a synthetic method.  

Three DES were selected based on the recent tendency of their application for the dehydration of hexoses 

(such as fructose) and pentoses (such as xylose) to furanic derivatives like 5-hydroxymethylfurfural (HMF) 

and furfural.  

These DES are: 
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• Choline chloride: Ethylene Glycol (1:2), also known as Ethaline. 

• Choline chloride: Glycerol (1:2), also referred to as Glycaline. 

• Choline chloride: Fructose (2:1), known as Fructaline. 

Fructaline has been the subject of investigation by certain researchers for its role in the dehydration of 

fructose in dimethylformamide (DMF). Furthermore, Ethyline and Glycaline have been explored for their 

potential in the dehydration of xylose into furfural. 

Fructaline has been investigated by some researchers for its effectiveness in dehydrating fructose in 

HMF.79–81 Additionally, Ethyline86 and Glycaline85 have been explored for the dehydration of xylose in 

furfural. These DES have demonstrated promise in facilitating the conversion of sugars into valuable 

furanic compounds, and their potential applications in these dehydration processes are being explored by 

various researchers. 69–73 

2.2. Materials and methods 

All the chemicals used during this work are listed in table 2.1. 
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Table 2.1 – Chemical used for experimental work. 

GC: Gas Chromatograph 
a Apparatus: Anton Paar ABBEMAT 300 Refractometer (=589 nm). Standard uncertainties: refractive index u(nD) = 6 
x 10-5, temperature u(T) = 0.02 K and pressure u(P) = 0.029 kPa) 
b Value from Simulis thermodynamics95. 
 

In this work, two DESs based on choline chloride have been studied. The physical and thermodynamic 

properties of two pure DES have been performed and summarized in table 2.2.  

  

Chemical 

name 

 

CAS 

Molar 

Mass 

(g/mol

) 

Purity 

(GC) 

(%wt) 

Suplier 

Refractive index  

 

Formula 

Measureda 
at 298.15 

K and 
101.325 

kPa 

Lit.b 

Furan 

(stabilized)  

110-00-9 68.08 ≥ 99.0 SIGMA 

ALDRIC

H 

1.4217 1.417

8 

Cyclohexa

ne 
 

110-82-7 84.16 ≥ 99.0 SIGMA 

ALDRIC

H 

1.4263 1.423

5 

Choline 

Chloride 
 

67-48-1 139.62 ≥ 99.0 SIGMA 

ALDRIC

H 

-  - 

Ethylene 

Glycol 
 107-21-1 62.07 ≥ 99.0 SIGMA 

ALDRIC

H 

1.4428 1.438

5 

Glycerol  

 

56-81-5 92.09 ≥ 99.0 SIGMA 

ALDRIC

H 

1.4705 1.472

2 

Ethanol  64-17-5 46.07 ≥ 99.0 SIGMA 

ALDRIC

H 

1.3745 1.361

4 

Isopropan

ol  

67-63-0 60.10 ≥ 99.0 SIGMA 

ALDRIC

H 

1.3826 1.377

2 

Phenol 

 

108-95-2 94.11 ≥ 99.0 SIGMA 

ALDRIC

H 

-  - 

n-Hexane   101-54-3 86.18 ≥ 99.0 Alfa 

Aesar 

1.3725 1.372

3 

https://tools.wmflabs.org/magnustools/cas.php?cas=110-82-7&language=fr&title=Cyclohexane
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Table 2.2 – Pure properties measurement. 

DES Short name Measurement Technique/Apparatus T (K) 

Choline chloride: 

Ethylene Glycol (1:2) 
Ethaline 

Density 
Oscillating U-tube 

densimeter 
293 - 333 

Viscosity Rolling ball viscosimeter 293 - 333 

Choline chloride: 

Glycerol (1:2) 
Glycaline Vapor pressure Synthetic method 303 - 333 

 

Therefore, VLE, LLE, SLE and IDAC measurements of pseudo binary mixture have been studied and 

are summarized in table 2.3. To prepare the mixtures, an empty 20 cm3 glass bottle is air-tight closed with 

a septum and then put under vacuum using a vacuum pump wherein a needle is introduced through the 

septum. The empty bottle is weighed, and then the less volatile component, freshly degassed, is introduced 

by means of a syringe. After weighing the bottle loaded with the first component, the more volatile one is 

added similarly and then the bottle is weighed again. All weightings are performed using an analytical 

balance with 10-4 g accuracy and hence the uncertainty is estimated to be lower than 2x10-5 for mole ratio. 

Table 2.3 – Pseudo binary mixture properties measurement. 

Solvent Solute Measurement Technique/Apparatus condition 

Ethaline 

Ethanol 
Density Oscillating U-tube densimeter 

393 K – 

333 K 

Viscosity Rolling ball viscosimeter 
293 K – 

333 K 

Isopropanol Phase equilibrium 

(VLE) 
Synthetic method 

303 K – 

333 K 

Glycaline 

Ethanol 
Density Oscillating U-tube densimeter 

303 K – 

333 K 

Viscosity Rolling ball viscosimeter 
303 K – 

333 K 

Isopropanol Phase equilibrium 

(VLE) 
Synthetic method 

303 K – 

333 K 

Fructaline  
Gas stripping 

(IDAC) 
Exponential Dilutor technique 

303 K – 

333 K 
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In the following sections, the different experimental techniques used in this work are described.  

2.3. Preparation of Deep Eutectic Solvent 

The preparation process for mixing the DES based on choline chloride is described in detail, emphasizing 

the critical steps and conditions for achieving a high-quality solvent. 

2.3.1. Pre-treatment  

Before beginning the DES synthesis, it is essential to pre-treat hygroscopic solids, such as choline chloride, 

to remove any water content. This is achieved by drying the solids at 110°C overnight to make it water 

free. Alternatively, a shorter drying period of at least 6 hours at 80°C may be used, although the overnight 

drying at 110°C is the preferred method for achieving optimal dryness.  

2.3.2. DES Preparation 

The DES mixing process begins with the dried choline chloride and the chosen hydrogen-bond donor 

(HBD) component. The mixing process is done by combining the two components in the desired ratio 

based on the specific DES formulation, as presented in table 2.4 and figure 2.1. The synthesis should be 

conducted under the following conditions: 

• Maintain continuous stirring at approximately 400 revolutions per minute (rpm). This ensures the 

complete mixing of the components during the entire process. 

• The temperature for the synthesis should be set at 80°C, which is a critical parameter for achieving the 

desired eutectic mixture. 

• Continue stirring and heating for a duration of 6 hours or until a homogeneous and stable liquid is 

formed. 

The formation of a homogeneous liquid with no visible precipitates is a key indicator of a successful DES 

synthesis. 

Table. 2.4 – DES nomenclature. 

HBA HBD Molar ratio Abbreviation Name 

Choline Chloride Fructose 2:1 ChCl-Fru Frutaline 

Choline Chloride Glycerol 1:2 ChCl-Gly Glycaline 

Choline Chloride Ethylene glycol  1:2 ChCl-EG Ethaline 
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Figure 2.1. Frutaline, Glycaline and Ethalyne. 

2.4. Mixture preparation 

This section provides a detailed procedure for preparing mixtures of DES and solvents to ensure precise 

and accurate measurements of the components' weights and mole fractions. All the mixture were prepared 

in the empty 20 cm3 glass bottle airtight sealed with a septum. Before introducing the components, the 

glass bottle was put under vacuum using a vacuum pump wherein a needle is introduced through the 

septum, to eliminate any traces of air or gas. The empty bottle was weighed, and the initial weight was 

recorded. Then, the less volatile component, freshly degassed, was introduced using a syringe. The bottle 

was weighed again with the less volatile component added and this weight was recorded. Similarly, the 

more volatile component was introduced into the bottle using a syringe. The bottle was weighted once 

more with both components now present. Like the previous component, it was ensured that it was also 

freshly degassed. All weight measurements were conducted using a high-precision analytical balance, 

providing an accuracy of 10-4 g accuracy. Correspondingly, the uncertainty in determining the mole 

fractions was estimated to be less than 2x10-5 (details are presented in appendix A).  

2.5. Characterization of Deep Eutectic Solvent and mixtures 

2.5.1. Density 

The density, ρ, was measured as a function of temperature with a digital density meter known as the Anton 

Paar DSA 5000M,96 which operates based on the oscillating U-tube principle. The heart of the equipment, 

represented in figure 2.2 is composed of a gas cylinder filled with gas, a piezo element, a reference 

oscillator, a U-shaped borosilicate glass tube, and optical pick-ups. To measure the density, the samples 

were inserted into a U-shaped tube. The tube was then electronically excited to oscillate at its characteristic 

frequency, causing it to move up and down. During this oscillation, optical pick-ups detected and recorded 

period of these oscillations.  
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Figure 2.2 – Digital density meter: Anton Paar DSA 5000M (modified from Anton Paar97). 

The oscillating period or frequency changes depending on the density of the filled sample. This data was 

used to calculate the density of the samples at various temperatures. Eq. 2.1 correlate the density, ρ, of the 

fluid with the corresponding oscillating period, τ (1 divided by frequency of oscillation, f). 

𝜌 = 𝐴 + 𝐵𝜏2 (2.1) 

where A and B are constants to be adjusted. A calibration has been done by using two reference fluids 

with known densities: bi-distilled and degassed water, and dry air at 293.15 K.  

Uncertainty on measured density is estimated to be lower than 10-5 g.cm-3after calibration. One platinum 

resistance thermometer with 0.01 K accuracy is inside of the equipment for temperature measurements. 

The sample densities are then measured at thermal equilibrium for various temperatures (293 K to 363 K). 

This density meter permits also the measurement of the speed of sound with an accuracy of 0.5 m.s-1. 

2.5.2. Viscosity 

The viscosity is an important property in the design of separation process, as it provides insights into the 

thickness and flow behavior of mixtures. To obtain viscosity data, a rolling ball viscosimeter, specifically 

the Anton Paar LOVIS 2000 ME,98 was used. Figure 2.3 illustrates the operational principle of a falling 
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ball viscometer. This instrument allows for the accurate determination of viscosity by measuring the rate 

at which a ball falls through a sample.  

 

Figure 2.3 – Rolling-ball principle showing the main forces acting on the descending ball. FG: Effective portion of 
gravitational force, FB: Effective portion of buoyancy force, and FV: Viscous force.97 

The equipment used for viscosity measurements is composed of a glass capillary tube, which comes in 

two diameters, 1.59 mm and 1.8 mm, into which the sample is introduced. The capillary tube is equipped 

with a steel ball that is placed in a temperature-controlled capillary block. The block can be adjusted to 

vary its inclination angle, according to the calibration performed. 

The experimental method is based on Höppler`s falling ball principle99, where the steel ball rolls through 

the capillary tube filled with the sample at a defined angle. Three inductive sensors precisely measure the 

rolling time it takes for the ball to roll between predefined marks. The determination of sample density 

involves considering the net forces acting on the sphere, ensuring a balance between the gravitational force 

(FG), buoyancy (FB), and fluid drag force (FD) equal to zero. Based on the formula for drag force 𝐹𝐷 =

6𝜋𝜂𝑟𝑏𝑣𝑏, gravitational force 𝐹𝐺 = 𝑉𝑏𝜌𝑏𝑔 and buoyancy 𝐹𝐵 = 𝑉𝑏𝜌𝑏𝑔, and considering the velocity of the 

ball 𝑣𝑏 = 𝑠/𝑡, the dynamic viscosity η of a liquid is calculated as Eq. 2.2.  

η =
2

9𝑠
𝑟𝑏

2𝑔(𝜌𝑏 − 𝜌𝑠)𝑡 
(2.2) 
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where 𝜂 is the dynamic viscosity of the sample solution (mPa.s); 𝑟𝑏is the radius of the ball (cm); 𝑠 is the 

distance traveled (cm); 𝑉𝑏is the volume of the ball; g is the acceleration of the gravity; 𝜌𝑏 is the ball density 

(g.cm-3); 𝜌𝑆 is the sample density (g.cm-3), measured by the instrument; and 𝑡 is the rolling time in seconds. 

The elements in front of the parenthesis can be combined to form a constant. The drag force used in this 

equation is based on Stokes’ law100, which assumes an infinitely extended vessel where the wall of the 

vessel has no impact on the sphere's sinking. However, in practice, the vessel is not infinitely extended, 

and the wall of the vessel does influence the sphere's motion. To account for this, the manufacturer 

corrects the constant for each sphere as part of a calibration process. The modified equation, incorporating 

the ball constant (K) obtained from the manufacturer's test protocol, is Eq. 2.3. 

η = 𝐾(𝜌𝑏 − 𝜌𝑠)𝑡 (2.3) 

The estimate of viscosity uncertainty depends on the uncertainty of density. The calculation of the 

uncertainty is given by Eq. 2.4.  

𝑢 = √(
𝑢𝐵

√3
)

2

+ (
𝑠

√𝑁
)

2

 

(2.4) 

𝑢𝐵 , linked to the accuracy of the instrument, is equal to the 0.5% given by the Manual of Lovis. The 

second term is the standard deviation (𝑠) of the average of three different measurement cycles (considered 

3 cycles). When just one cycle of measurements is performed, the uncertainty of the experimental data 

corresponds to the uncertainty of the instrument used (𝑢𝑅𝐵). More details concerning the estimation of 

uncertainty are given in section 2.6 of this chapter. 

2.5.3. Refractive index 

The refractive index of the sample was determined using a refractometer from Anton Paar ABBEMAT 

300101 with a wavelength of 589 nm. In this method, based on the critical angle method, the sample is in 

direct contact with the surface of the refractometer prism, which possesses a precisely known refractive 

index. A light source located within the refractometer emits light, which then illuminates the interface 

between the prism and the sample. By carefully controlling the angle at which light enters the sample and 

monitoring the intensity of the transmitted light, the critical angle at which total internal reflection occurs 

is measured. This critical angle, along with the known refractive index of the prism, is used to calculate the 

refractive index of the sample. The accuracy of measurement equal to +/- 0.0001.  
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All measurement was conducted at a temperature of 293.15 K. Additionally, atmospheric pressure during 

the measurement was determined using a GE Druck DPI 142 Barometric Indicator, with an uncertainty 

of 0.029 kPa. 

2.5.4. Vapor-liquid Equilibrium for pure compounds 

The variable volume cell technique, as illustrated in Figure 2.4, based on “static-synthetic” method102–104 

was used for the determination of equilibrium properties of the pure DESs. The equilibrium cell is 

equipped with a high-temperature pressure transmitter (35XHTC series from Keller 0-5 bar). Temperature 

is given to the Pt100 Platinum Resistance Thermometer probe located at the top of the cell. An internal 

stirring system with an external motor reduced the time required to reach equilibrium. Fig. 2.4 presents 

the equilibrium cell. 

 
 

Figure 2.4 – Flow diagram of the synthetic apparatus: DAU: data acquisition unit; DS: degassed solution; DT: 
displacement transducer; EC: equilibrium cell; LB: liquid bath; PN: pressurized nitrogen; PP: Platinum probe; PT: 

pressure transducer; S: stirrer; SD: stirring device; TR: thermal regulator; Vi: valve; VP: vacuum pump; VVCS: 
variable volume cylinder (modified from Coquelet et al. (2020)104. 
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Calibration of temperature sensors: The equilibrium cell temperature is measured using a Pt100 

Platinum Resistance Thermometer (PRT) probe, calibrated against a reference PRT, specifically the STHP-

BP 25 Ohms model from TINSLEY. It's noteworthy that the reference PRT has been calibrated by LNE 

(Laboratoire national de métrologie et d'essais), further ensuring the accuracy and traceability of 

temperature measurements. The accuracy for temperature is estimated not higher than ± 0.02 °C by the 

temperature range. 

Calibration of pressure transducer: The pressure transducer has been calibrated against a low-pressure 

numerical reference standard model 24610 from Desgranges & Huot (Figure 2.5), covering the range from 

0 to 5 absolute bars. The principle of operation is based on a fundamental principle of pressure 

measurement, often referred to as the piston-cylinder principle. The core of the device consists of a piston 

and cylinder arrangement. The piston is positioned inside the cylinder, and there is no friction between 

them. When pressure is applied to the system, it exerts a force on the piston. This force is directly 

proportional to the pressure and the surface area of the piston by the fundamental equation P = F/A. 

(The instrument has two chambers, one under vacuum and the other pressurized to the desired calibration 

pressure, with the piston assembly located in between. By measuring the force and knowing the piston's 

surface area, it calculates and displays pressure digitally. Atmospheric pressure has to be taken into account. 

This mechanical measurement principle provides superior reliability and stability over time, eliminates 

most risks of measurement error, and reduces calibration uncertainties. The expended standard uncertainty 

in pressure measurements was estimated to be ±0.1 mbar. 

  

Figure 2.5 – Low-pressure numerical reference standard model 24610 from Desgranges & Huot. 
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a. Viscous component 

The equilibrium cell (Figure 2.4) is weighed empty before assembling it on the apparatus. Then, the viscous 

component degassed is introduced directly to the cell using a syringe and weighed again. The mole number 

of the viscous component is calculated by Eq. 2.5.  

𝑛𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝑚

𝜌(𝑇)
 

(2.5) 

Once the equilibrium cell has been loaded with the viscous component, it is then assembled onto the 

apparatus. Subsequently, the cell undergoes a degassing process achieved by applying a vacuum to remove 

the air inside of the cell. This precautionary step taken few seconds to minimize the risk of unintentionally 

removing the main component. Once the liquid and vapor of the pure viscous component achieve 

equilibrium, the temperature and vapor pressure of the pure viscous component is read by a data 

acquisition unit and recorded. The equilibrium cell, once installed on the apparatus, undergoes a brief 

degassing process for a few minutes to prevent the inadvertent removal of any components. 

b. Non-viscous component  

The component is stored and compressed in a volumetric pump, composed of a variable volume cell 

(VVC) with an internal diameter of 30.04 ± 0.01 mm, a piston connected to one optical-electronic 

displacement transducer (model LS 406 C, digital display ND 221 from Heidenhain) with a precision of 

± 0.003 mm and a pressurizing circuit by nitrogen. The volumetric pump allows controlled injections of 

the component into the equilibrium cell. A vacuum is obtained inside the equilibrium cell before loading 

the component. An amount of the component is introduced into the equilibrium cell, and the temperature 

of the volumetric pump and the piston displacement is read by a data acquisition unit and recorded. The 

mole number of components introduced is calculated by Eq. 2.6.  

𝑛𝑠𝑜𝑙𝑣𝑒𝑛𝑡 = 𝜌(𝑇) 𝜋 𝑟2𝛥𝑙 (2.6) 

 

Where l is the piston displacement (accuracy ±0.01 mm), and r is the radius of the piston. Once the 

liquid and vapor of the component achieve equilibrium, the temperature and vapor pressure of the pure 

component is recorded. 
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2.5.5. Vapor-liquid equilibrium for binary mixtures 

The same apparatus (Figure 2.4) as previously was used for the determination of the VLE of a mixture of 

different DESs with alcohols. Calculation is based on a mass balance. Once the cell is loaded with the first 

component following the procedure explained before, the second component is introduced into the cell 

through successive loadings. For each injection of the second component, the piston displacement and 

temperature of the volumetric pump are recorded. The mole number of the second component is 

calculated by Eq. 2.6. Having the mole number of the first and second components, the global 

composition, zi, is determined using Eq. 2.7. 

𝑧𝑖 =
𝑛𝑖

∑ 𝑛𝑖
𝑁𝐶
𝑖=1

 
(2.7) 

Considering no excess volume, the volume of the liquid (Eq. 2.8) phase is obtained by the mass of 

compounds and their density at the temperature of measurement.  

𝑉𝐿 = ∑
𝑚𝑖

𝜌𝑖(𝑇)

𝑁𝐶

𝑖=1
 

(2.8) 

Consequently, the volume of the vapor phase (Eq. 2.9) is calculated by the difference between the total 

volume of the cell and the volume of the liquid phase. 

𝑉𝑉 = 𝑉𝑇 − (𝑉𝐿 + 𝑉𝑠𝑡𝑖𝑟𝑟𝑒𝑟) (2.9) 

Volume of liquid phase can also be estimated visually by Eq. 2.10. 

𝑉𝐿 = 𝜋𝑟𝑐𝑒𝑙𝑙
2 ℎ𝑙𝑖𝑞 − 𝑉𝑠𝑡𝑖𝑟𝑟𝑒𝑟 (2.10) 

where rcell is the radius of the equilibrium cell, hliq is the measured level of the vapor-liquid interface and 

Vstirrers is the volume of the magnetic stirrer. 

Assuming the global composition zi is equal to the liquid composition xi, as a first guess, and using a 

gamma-phi approach, the bubble pressure is predicted using Eq. 2.21. 

𝑃𝑐𝑎𝑙 = ∑ 𝑥𝑖𝛾𝑖φi
SatPi

Sat𝑃𝑜𝑦𝑖 φi
Vap

⁄

𝑁𝐶

𝑖=1

 

(2.11) 
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where γi is the activity coefficient of compounds i in the liquid phase, Pi
Sat is the vapor pressure of the pure 

compound, i
Sat is the fugacity coefficient at the saturated conditions, and the Poyi is the Poynting 

correction which considers the pressure effect, here assumed to be equal one. The vapor phase is 

considered as an ideal gas, and consequently the fugacity coefficients are assumed to be equal to unity. An 

activity coefficient model (non-random two-liquid, NRTL, or Wilson) was applied with interaction 

parameters to represent the liquid phase. The parameters of the model are minimized by the objective 

function of the pressure (Eq. 2.12).  

𝑂𝐹 =
1

𝑁𝑑𝑎𝑡𝑎 − 𝑁𝛾 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
∑ (

|𝑃𝑘
𝑐𝑎𝑙 − 𝑃𝑘

𝑒𝑥𝑝|

𝑃𝑘
𝑒𝑥𝑝 )

2𝑁𝑃

𝑘=1

 

(2.12) 

Number of mols of vapor phase is given by Eq. 2.13 and the molar volume of vapor phase is given by Eq. 

(2.14). 

𝑛𝑉 = 𝑉𝑉𝜌𝑉(𝑇𝑐𝑒𝑙𝑙, 𝑃) =
𝑉𝑉𝑅 𝑇𝑐𝑒𝑙𝑙

𝑃𝑠𝑜𝑙𝑢𝑡𝑒
 

(2.13) 

𝑣𝑉 =
𝑃

𝑅𝑇𝑐𝑒𝑙𝑙
 

(2.14) 

And we consider Eq. 2.15 to calculate the liquid molar volume. 

𝑣𝐿 = ∑ 𝑥𝑖𝑣𝑖
𝐿

𝑁𝐶

𝑖=1

 

(2.15) 

Eq. 2.16 is solved to calculate the vapour phase mole number. 

0 = 𝑉𝑐𝑒𝑙𝑙 − [𝑣𝐿(𝑛𝑇- 𝑛𝑉) + 𝑣𝑉𝑛𝑉] (2.16) 

The mole number in the liquid phase is determined by considering Eq. 2.17. 

𝑛𝐿 = 𝑛𝑇 − 𝑛𝑉 (2.17) 

Considering the composition of each phase at equilibrium (bubble point), the mole number of each species 

in the liquid phase is calculated by considering the global composition of the mixture (z) and the 

composition of the vapor phase (y), Eq. 2.18. 

𝑛𝑖
𝐿 = 𝑧𝑖𝑛

𝑇 − 𝑦𝑖𝑛𝑉 (2.18) 
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The solubility is determined with Eq. 2.19. 

𝑥𝑖 =
𝑛𝑖

∑ 𝑛𝑗
 

(2.19) 

The calculation ends when a non-evolution of composition of liquid phase is observed. Fig. 2.5 

summarizes the calculation to predict VLE in a flowchart. 

 

 
Figure 2.5 – Flowchart to predict VLE using the static synthetic method. 

 

2.5.6. Apparent Henry’s law constant and infinite dilution coefficient activity  

Apparent Henry’s law constant and infinite dilution activity coefficient (IDAC) were measured using a gas 

stripping method using a dilutor and a saturator cell (Figure 2.6).  The experimental procedure, fully 

described by Richon et al.105,106 , is based on the variation of vapor phase composition when the highly 

diluted solute of the liquid mixture in an equilibrium cell is stripped from the solution by a flow of inert 

gas (helium). The composition of the gas leaving the cell is periodically sampled and analyzed by gas 

chromatography. The peak area, S, of the solute decreases exponentially with the volume of inert gas 

flowing out from the cell. 
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Figure 2.6 – Flow diagram of the equipment: BF, bubble flow meter; C, gas chromatograph; D, dilutor; d.a.s., data 
acquisition system; He, helium cylinder; E1, E2, heat exchangers; FE, flow meter electronic; FR, flow regulator; L, 

sampling loop; LB, liquid bath; O, O-ring; PP, platinum resistance thermometer probe; S, saturator; SI, solute 
injector; Sp, septum; SV, sampling valve; TR, temperature regulator; VSS, variable speed stirrer (from Coquelet et 

al.107) 
 

In this method, two cells (Dilutor :D and Saturator :S) are immersed inside a liquid bath (LB) regulated 

within 0.01 K. The carrier gas from the helium cylinder (He) gets into the system with a flow rate settled 

by a flow regulator (FR) and measured by a flowmeter (FE). Then, it passes through a heat exchanger (E1) 

to control to the experimental temperature. The temperature is controlled by liquid bath (LB). The flowrate 

of the carrier gas is additionally measured by a soap bubble flowmeter (BF) placed in the end of the 

apparatus. A platinum probe (PP), in contact with the liquid phase of the dilutor cell (D) connected to an 

electronic display, is used for temperature readings. Temperature accuracy was estimated to be ±0.2 K.  

In this experiment, 40 cm3 of Fructaline was introduced into the “saturator cell”, while about 50 cm3 of 

the solvent were introduced into the dilutor cell and few mL of solute (n-Hexane) were also added. Both 

cells are fitted with thin stainless-steel capillaries though the carrier gas is introduced into the cells. A 

constant stripping gas “helium” flow adjusted to a given value by means of a mass flow regulator was 

bubbled through the stirred liquid phase and stripped the volatile solute into the vapor phase. The D cell 

contains a PP, a septum (Sp) and a magnetic stirrer driven by a variable speed stirrer (VSS). The 

composition of the gas leaving the dilutor cell was periodically sampled and analyzed by gas 

chromatography using a gas sampling valve (SV).  
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Equilibrium must be reached between the gas leaving the cell and the liquid phase in the cell. This can be 

checked by verifying that the measured activity coefficient value does not depend on the eluting gas 

flowrate. The peak area of the solute decreases exponentially with time if the analysis is made in the linearity 

range of the detector. 

The Apparent Henry’s Law coefficient, Hi (Pa), of solute i is calculated by means of Eq 2.20 with the 

assumption that the equilibrium has been reached between the gas leaving the cell and the liquid phase 

residing inside the cell.  

P ∙ 𝑦𝑖 = 𝐻𝑖 ∙ 𝑥𝑖 (2.20) 

Eq. 2.21 is obtained considering mass balance around the equilibrium cell concerning the solute.  

𝐻𝑖 =  −
1

𝑡 
ln (

𝑆𝑖

(𝑆𝑖)𝑡=0
).  

𝑅𝑇𝑁

𝐷

1 −  
𝑃𝑠𝑜𝑙𝑣

𝑠𝑎𝑡

𝑃

+
𝑉𝐺

𝑡 ln (
𝑆𝑖

(𝑆𝑖)𝑡=0
)
 

(2.21) 

where D is the carrier gas flow rate (m3.s-1); N  is the total number of moles of solvent inside the dilutor 

cell; VG (m3) is the volume of the vapor phase inside the dilutor cell; Si is the chromatograph solute i peak 

area; t (s) is the time; T (K) is the temperature inside the cell;  P  is the pressure inside the cell (around 

atmospheric pressure); Psat
solv (Pa) is the saturation pressure of the solvent; and R (J.mol-1.K-1) is the ideal 

gas constant. Uncertainty concerning the Henry’s law coefficient is estimated to be within 15 %. This 

estimation comes from propagation of errors on the uncertainty of the solute i peak area determination, 

the uncertainties on the flow, the uncertainties related to the temperature and pressure, number of moles 

of solvent and accuracy of the approach (mass balance and hypothesis, see Hajiw et al. (2017)93). 

IDAC, i
, is calculated through Eq. 2.22: 

𝛾𝑖
∞ =

𝐻𝑖 

𝑃𝑠𝑜𝑙𝑣
𝑠𝑎𝑡  

(2.22) 

2.6. Uncertainty  

There are two main sources of uncertainties: uncertainties due to calibration and uncertainty due to 

repeatability. The uncertainty due to calibration is of Type B. It means that after calibration we do not 

directly get the uncertainty but the accuracy. A statistic distribution must be chosen. In term of probability, 

it is common to consider a rectangular statistic distribution. The rectangular distribution is given as 
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𝑢𝑐𝑎𝑙𝑖𝑏(𝜃) =
𝑏

√3
. b is defined as the half-width between the upper and lower error limits (so the value of 

the accuracy). This value is obtained after polynomial regression between value given by the sensor and 

the reference value. For a normal distribution, ± u encompasses about 68 % of the distribution; for a 

rectangular distribution, ± u encompasses about 58 % of the distribution. 

The electronic balance used in this work for weigh the chemical products was the Mettler Toledo model 

XS205 with an uncertainty of 𝑢𝑐𝑎𝑙𝑖𝑏= 0.01 mg. 

The platinium probe Pt100  was calibrated using a device composed by a reference probe 25 Ohms Hart 

Scientific on a HP 34420A central. The uncertainty after calibration was 0.01 K.  

During an experiment, to determine the value of one quantity (T, P or mole numbers) we have to consider 

all values acquired. It follows a calculation of average values and standard deviation . The averaging of 

repeated readings yields a mean avg with a standard deviation . As before, this can be statistically 

converted to an uncertainty due to repeatability of the measurements, via Eq. 2.23 

𝑢𝑟𝑒𝑝(𝜃) =
𝛿

√𝑛
√

1

𝑛(𝑛 − 1)
∙ ∑(𝜃𝑖 − 𝜃𝑎𝑣𝑔)

2
𝑛

𝑖=1

 

(2.23) 

where, 𝜃𝑎𝑣𝑔 =
1

𝑛
∑ 𝜃𝑖

𝑛
𝑖=1 and n is the number of repeated quantity measurements. A Gaussian type of 

distribution is the likely behavior here, since the repeated readings are likely to fall close to the mean (with 

maybe one or two values falling from the mean). This is known as a type A evaluation (systematic 

uncertainty), where only statistical methods are required to interpret the uncertainty. Eq. (2.24) presents 

the combined standard temperature uncertainty, uc (T). 

𝑢𝑐(𝜃) = √𝑢𝑐𝑎𝑙𝑖𝑏(𝜃)2 + 𝑢𝑟𝑒𝑝(𝜃)2 
(2.24) 

with subscripts calib, rep denoting that of calibration, repeatability.  

The determination of the uncertainty of the composition required the uncertainty of each mole numbers. 

The uncertainty of the mole fraction is determined after calibration of the GC detectors (Equations 2.25 

and 2.26).  
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𝑥𝑖 =
𝑛𝑖

√∑ 𝑛𝑖
𝑛𝑐𝑜𝑚𝑝
𝑖

 
(2.25) 

𝑢(𝑥𝑖) = √ ∑ (
𝜕𝑥𝑖

𝜕𝑛𝑖
)

2

𝑖≠𝑗

𝑛𝑐𝑜𝑚𝑝

𝑖

𝑢2(𝑛𝑖) 

(2.26) 

For example, for a binary system, one can calculate 𝑢(𝑥1) = 𝑥1(1 − 𝑥1)√(
𝑢(𝑛1)

𝑛1
)

2

+ (
𝑢(𝑛2)

𝑛2
)

2

. 

Uncertainty on apparent Henry’s law constant can be calculated from uncertainty on mole fraction (both 

vapor and liquid phases) and uncertainty on pressure. Eq. 2.27 details the expression. 

𝑢(𝐻𝑖) = 𝐻𝑖 ∙ √(
𝑢(𝑃)

𝑃
)

2

+ (
𝑢(𝑥𝑖)

𝑥𝑖
)

2

+ (
𝑢(𝑦𝑖)

𝑦𝑖
)

2

 

(2.27) 

2.7. Conclusion 

In conclusion, this chapter explores the experimental study, covering the synthesis and characterization of 

DES and mixtures. It outlines the methodology, materials, and procedures involved in creating these 

solvents, emphasizing essential properties such as density, viscosity, refractive index, and vapor-liquid 

equilibrium. The chapter also highlights the critical aspect of uncertainty in the data obtained, laying the 

foundation for a comprehensive exploration of DES properties and behaviors. 

In the described methodology for obtaining Vapor-Liquid Equilibrium (VLE) data through the static-

synthetic method, an activity coefficient model should be employed, with interaction parameters to 

represent the liquid phase. Fine-tuning these parameters with the experimental data is crucial to improve 

the accuracy of the model. Activity coefficient models thus become indispensable tools, enabling the 

prediction of thermodynamic properties and aiding optimization of separation processes.  

Within this study, a specific activity coefficient model will serve as the central focus of the methodology 

proposed for solvent selection. The forthcoming chapter will delve deeply into the realm of 

thermodynamic modeling, placing specific emphasis on activity coefficient models. Moreover, it will offer 

a comprehensive overview of the model chosen for this study: the COSMO-based models (COnductor-

like Screening MOdel).
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Chapter 3 

Thermodynamic modeling  

Modélisation thermodynamique 
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Résumé 

 

Lorsqu'il s'agit de traiter les DES et du défi d'obtenir des données expérimentales, diverses approches 

théoriques peuvent être employées pour modéliser et prédire les propriétés de ces solvants. Ces approches 

peuvent contribuer à combler le manque d'information et à fournir des perspectives précieuses pour les 

applications scientifiques et en ingénierie. Une grande variété d'approches de modélisation a été 

développée pour répondre à ce besoin et elles sont largement classées en quatre catégories distinctes en 

fonction des principes directeurs de leurs cadres théoriques. Ces catégories sont les modèles empiriques 

(c'est-à-dire les corrélations), la thermodynamique classique (c'est-à-dire la méthode de contribution de 

groupe, les équations d'état classiques et les modèles de coefficients d'activité), la thermodynamique 

statistique (c'est-à-dire la simulation moléculaire et les équations d'état moléculaires) et les modèles basés 

sur la chimie quantique (c'est-à-dire le modèle COSMO).  

Le choix de l'approche de modélisation dépend des objectifs de recherche spécifiques, des ressources 

informatiques disponibles et de l'objectif de représenter et de prédire avec précision les comportements, 

les propriétés ou les phénomènes souhaités du système.  

Avant d'introduire les approches de modélisation qui sont basées sur des modèles thermodynamiques, ce 

chapitre aborde les notions fondamentales essentielles de la thermodynamique de l'équilibre des phases. 

Les équations fondamentales de l'équilibre des phases, exprimées en termes de potentiel chimique (μi) qui 

joue un rôle central dans la compréhension des conditions d'équilibre, seront présentées. Les deux 

grandeurs thermodynamiques proposées par Lewis et appelées fugacité (f) et activité (a) seront présentées 

dans ce chapitre. La fugacité sert à prendre en compte les écarts par rapport à l'état de gaz idéal dans la 

phase vapeur tandis que l'activité permet de tenir compte de la non-idéalité d'un mélange. Ces deux 

grandeurs, fournissent ainsi une base théorique solide pour la modélisation et la compréhension des 

équilibres de phases grâce à leur coefficient de fugacité et celui d'activité. 

De plus, ce chapitre explique deux approches classiques de modélisation des mélanges réels en équilibre 

de phases : l'approche résiduelle (basée sur le coefficient de fugacité - ϕ) et l'approche d'excès (basée sur 

le coefficient d'activité - γ). L'approche résiduelle quantifie les écarts par rapport au comportement du gaz 

idéal en utilisant des équations d'état tandis que l'approche d'excès se concentre sur les fonctions d'excès 

et en particulier pour les mélanges liquides ayant des interactions moléculaires fortes. 
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Ces méthodes sont utilisées pour représenter à la fois les phases gazeuses et liquides : approche γ-ϕ et 

approche ϕ-ϕ. L'approche γ-ϕ combine l'utilisation des coefficients de fugacité pour décrire la phase 

vapeur (γ) et les coefficients d'activité pour décrire la phase liquide (ϕ). Les relations d'équilibre sont 

présentées et des équations sont données pour calculer les coefficients de fugacité et d'activité. Ces 

coefficients sont cruciaux pour résoudre des problèmes d'équilibre et sont particulièrement précis pour les 

calculs à basse et moyenne pression. En revanche, dans l'approche ϕ-ϕ, les phases vapeur et liquide sont 

décrites à l'aide des coefficients de fugacité. 

Ce chapitre se concentre sur les modèles de coefficients d'activité qui sont classés en trois catégories : 

modèles empiriques, semi-prédictifs et prédictifs. Un aperçu historique du développement des modèles de 

coefficients d'activité sera présenté. Ce chapitre fournit des descriptions approfondies des modèles 

importants y compris les modèles de Scatchard-Hildebrand, de Wilson, de NRTL, d'UNIFAC et ceux 

basés sur COSMO (COnductor-like Screening Model) 

Les méthodes basées sur COSMO reposent sur le calcul chimique quantique et la thermodynamique 

statistique. Il s'agit notamment de COSMO-RS (COSMO for real solvents) et de COSMO-SAC (COSMO 

segment activity coefficient). Dans ces modèles, les éléments clés représentant le lien entre le calcul 

chimique quantique et la thermodynamique statistique sont décrits par le « sigma-profile ». L'accent de ce 

chapitre est mis sur une explication détaillée de la partie de thermodynamique statistique de ces modèles. 
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3. Thermodynamic modeling  
 

3.1.  Introduction 

As previously mentioned, when dealing with DESs and the challenge of obtaining experimental data, 

various theoretical approaches can be employed to model and predict the properties of theses solvents. 

These approaches can help to fill the information gap and to provide valuable insights for engineering and 

scientific applications. Over the years, a large variety of modeling approaches has been developed to 

address this need and broadly classified into four distinct categories based on the governing principles of 

their theoretical frameworks. These categories are empirical models (i.e., machine learning and 

correlations), classical thermodynamics (i.e., group contribution method, classical equation of states (EoSs) 

and activity coefficients models), statistical thermodynamics (i.e., molecular simulation and molecular 

EoSs), and quantum chemistry-based models (i.e., COSMO-model). Figure 3.1 shows these categories, 

types of thermodynamics models, and their contribution to modeling pure DESs and their 

multicomponent mixtures. 

 
Figure 3.1 – Approaches to modeling DES (modified from Alkhatib et al.108 ). 

The choice of modeling approach depends on the specific research objectives, available computational 

resources, aiming to accurately represent and predict the desired system behaviors, properties, or 

phenomena. In this chapter, we will explore two important categories of theoretical modeling techniques 

for DESs: classical thermodynamics and quantum chemistry-based models, with a focus on COSMO-

based approaches. Classical thermodynamics, rooted in equilibrium principles, offer insights into DES 
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behavior through EoS and phase equilibrium models, enabling predictions of phase behavior, solubility, 

and thermodynamic interactions. On the other hand, COSMO-model is a widely used continuum solvation 

model that combines quantum chemistry with classical thermodynamics to describe the solvation behavior 

of molecules in solution.  

3.2. Thermodynamic fundamentals of phase equilibrium  

In a system consisting of both liquid and one vapor phase, component i in the liquid phase exhibits a 

tendency to escape into the vapor phase. Simultaneously, the same component i in the vapor phase tends 

to condense into the liquid phase. The driving force mass behind these mass transfer processes is the 

chemical potential (i).  When the chemical potential is higher in one phase than in other, the component 

will tends to move from the phase with the higher chemical potential to the one with the lower chemical 

potential. The system reaches a state of equilibrium a given temperature when these two mass transfers 

processes become equal, resulting in the establishment of a constant vapor pressure known as the 

equilibrium pressure. The fundamental equation for describing this phase equilibrium phenomenon is 

expressed in terms of the equality of the chemical potential between the coexisting phases (𝜇𝑖
𝐿 = 𝜇𝑖

𝑉). 

The chemical potential can be described in terms of partial molar Gibbs energy using (Eq. 3.1): 

𝜇𝑖 = 𝑔̅𝑖 = [
 𝜕𝐺

𝜕𝑛𝑖
]

𝑇,𝑃, 𝑛𝑗≠𝑖

  
(3.1) 

where ni, and nj represent the mole numbers. 

The partial differential of molar Gibbs energy is related to the temperature and pressure of a given 

substance i by (Eq. 3.2): 

𝑑𝐺𝑖 = 𝑉𝑖𝑑𝑃 − 𝑆𝑖𝑑𝑇 + ∑ 𝜇𝑖

𝑖=1

𝑑𝑛𝑖   
(3.2) 

where Vi and Si are the molar volume and the molar entropy of pure substance i, respectively.  

Using the definition for internal energy (U) and chemical potential, the fundamental equation in terms of 

U is represented by Eq. 3.3. 

𝜇𝑖 = 𝑑𝑈 + ∑ 𝜇𝑖

𝑖=1

𝑑𝑛𝑖 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + ∑ 𝜇𝑖

𝑖=1

𝑑𝑛𝑖   
(3.3) 
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By integration at constant temperature and composition the Eq. 3.3, and then differentiation of this 

equation gives the Eq. 3.4.  

𝜇𝑖 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑃𝑑𝑉 − 𝑉𝑑𝑃 + ∑ 𝜇𝑖

𝑖=1

𝑑𝑛𝑖 + ∑ 𝑛𝑖

𝑖=1

𝑑𝜇𝑖 
(3.4) 

The combination of Eq. 3.3 and 3.4, leads to the Gibbs-Duhem equation (Eq. 3.5) which is fundamental 

in thermodynamics of solutions.  

𝑆𝑑𝑇 − 𝑉𝑑𝑃 + ∑ 𝑛𝑖

𝑖=1

𝑑𝜇𝑖 = 0 
(3.5) 

By integrating the Gibbs-Duhem equation, the chemical potential can therefore be expressed from a 

reference state by Eq. 3.6.  

𝜇𝑖(𝑇, 𝑃) = 𝜇𝑖(𝑇0, 𝑃0) − ∫ 𝑠̅𝑖𝑑𝑇
𝑇

𝑇0

+ ∫ 𝑣̅𝑖𝑑𝑃
𝑃

𝑃0

 
(3.6) 

Using the ideal gas law for an isothermal pressure variation from P0 to P, we obtain the Eq. 3.7. 

𝜇𝑖(𝑇, 𝑃) = 𝜇𝑖(𝑇0, 𝑃0) + 𝑅𝑇 ∙ ln
𝑃

𝑃𝑜
 

(3.7) 

Where the superscript, 0 is used to identify a selected reference state or ideal gas.  

Since Eq. 3.7 is true only for a pure and ideal gas, Lewis109,110 proposed two new thermodynamic quantities, 

called fugacity and activity. The fugacity is to consider the deviation from the ideal gas state in the vapor 

phase and the activity is to consider the non-ideality of a mixture. These two concepts will be presented 

in the following section and are essential tools in thermodynamics for characterizing deviations from ideal 

behavior in real systems, providing a solid theoretical basis for modeling and understanding phase 

equilibria. 

3.3.  Fugacity and Activity 

Approximately about 120 years ago, Lewis stated that for any chemical component i in any phase (either 

a gas, a liquid or a solid) pure, or mixed, ideal, or non-ideal, the change in chemical potential during an 

isothermal transition from fugacity fi
o to fugacity fi is written as Eq. 3.8. 

𝜇𝑖
𝐼𝑀(𝑇, 𝑃, 𝑥𝑖) − 𝜇𝑖

0(𝑇, 𝑃, 𝑥𝑖) = 𝑅𝑇 ∙ ln
𝑓𝑖

𝐼𝑀(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
0(𝑇, 𝑃)

 
(3.8) 
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The fugacity is equal to the pressure for pure ideal gas: fi 
0 = P. For an ideal mixture, the fugacity of i is 

equal to the partial pressure of this gas: fi 
IM = xi P. Thus, the ratio is represented by Eq. 3.9. 

𝑓𝑖
𝐼𝑀(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
0(𝑇, 𝑃)

= 𝑥𝑖 
(3.9) 

Since both pure ideal gases and ideal mixtures approach the behavior of ideal gases at very low pressures, 

the following limits (Eq. 3.10 and Eq. 3.11) are adopted to complete the definition of fugacity: 

lim
𝑃→0

𝑓(𝑇, 𝑃)

𝑃
= 1 

(for ideal gas) (3.10) 

and 

lim
𝑃→0

𝑓𝑖
𝐼𝑀(𝑇, 𝑃, 𝑥𝑖)

𝑃 ∙ 𝑥𝑖
= 1 

(for ideal mixtures) (3.11) 

Finally, for a non-ideal mixture (noted real), it is necessary to correct the partial pressure by a factor 

quantifying the non-ideality (or deviation from the ideal). While considering ideal gas as reference, the 

Eq. 3.8 becomes 3.12a and it becomes 3.12b while considering ideal mixture as reference.  

𝜇𝑖
𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖) − 𝜇𝑖

0(𝑇, 𝑃) = 𝑅𝑇 ∙ ln
𝑓𝑖

𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
0(𝑇, 𝑃)

 
(3.12a) 

𝜇𝑖
𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖) − 𝜇𝑖

𝐼𝑀(𝑇, 𝑃, 𝑥𝑖) = 𝑅𝑇 ∙ ln
𝑓𝑖

𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
𝐼𝑀(𝑇, 𝑃, 𝑥𝑖)

 
(3.12b) 

The factor quantifying the non-ideality was also introduced by Lewis and is called fugacity coefficient () 

and activity (a). In which fugacity coefficient is defined as the fugacity ratio of the real fugacity with 

respect to the ideal gas one, and activity is the ratio of real fugacity with respect to the ideal mixture, as 

presented in Eq. 3.13. 

𝑓𝑖
𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
0(𝑇, 𝑃)

= 
𝑖
       and       

𝑓𝑖
𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖)

𝑓𝑖
𝐼𝑀(𝑇, 𝑃, 𝑥𝑖)

= 𝑎𝑖 
(3.13) 

The following equation (Eq. 3.14) shows that the activity allows a difference in chemical potential to be 

expressed at a fixed temperature (isothermal):  

𝜇𝑖
𝑟𝑒𝑎𝑙(𝑇, 𝑃, 𝑥𝑖) − 𝜇𝑖

𝐼𝑀(𝑇, 𝑃, 𝑥𝑖) = 𝑅𝑇 ∙ ln 𝑎𝑖 (3.14) 

In the case of an ideal mixture, it takes the form of Eq. 3.15. 
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𝑎𝑖 = 𝑥𝑖 (3.15) 

In the case of a real mixture, the Eq. 3.15 will be corrected, and presented as Eq. 3.16 with a new parameter 

that is called activity coefficient (i.). 

𝑎𝑖 = 𝑥𝑖 ∙ 𝛾𝑖 (3.16) 

Substitution of Eq. 3.16 into Eq. 3.14, for a non-ideal mixture gives Eq. 3.17. 

𝜇𝑖 − 𝜇𝑖
𝑜 = 𝑅𝑇 ∙ ln 𝑥𝑖𝛾𝑖 (3.17) 

3.4. Calculation of thermodynamic properties 

Two classical approaches to model a real mixture in phase equilibrium:  

• Residual approach or phi: the ideal gas is selected as the reference state,  

• Excess approach or gamma: the ideal mixture is selected as the reference state.  

In the first approach, deviations from ideal gas behavior are typically quantified using an EoS, and 

adjustments of the fugacity are made using the fugacity coefficient. This method is extensively employed 

for representing fluids, both gas and liquid phase (Eq. 3.18): 

𝑓𝑉(𝑇, 𝑃, 𝑥𝑖) = P ∙ 𝑥𝑖
𝑉 ∙ 

𝑖
𝑉          or          𝑓𝐿(𝑇, 𝑃, 𝑥𝑖) = P ∙ 𝑥𝑖

𝐿 ∙ 
𝑖

𝐿   (3.18) 

Where superscript V and L denoted gas and  liquid phase, respectively. 

Conversely, the second approach centers on the calculation of deviations from ideality using excess 

functions, primarily proposed for modeling liquid mixtures characterized by strong molecular interactions. 

The activity coefficient is used to characterize deviations from ideality, as in Eq. 3.19. 

𝑓𝐿(𝑇, 𝑃, 𝑥𝑖) = 𝑓𝑖
0𝐿 ∙ 𝑥𝑖

𝐿 ∙ 𝛾𝑖
𝐿   (3.19) 

where 𝑓𝑖
0𝐿

 is the fugacity in liquid phase of pure component i. 

The fugacity function has been introduced because its relation to the Gibbs energy makes it useful in phase 

equilibrium calculation. Phase equilibrium is expressed by the equality of fugacity, at constant temperature 

and pressure in the two phases (Eq. 3.20): 
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𝑓𝐼(𝑇, 𝑃, 𝑥𝑖, 𝑦𝑖) = 𝑓𝐼𝐼(𝑇, 𝑃, 𝑥𝑖 , 𝑦𝑖) (3.20) 

Since this equation follows directly the equality of molar Gibbs energy in each phase equilibrium, it can be 

used as criteria for equilibrium. This equilibrium problem can be solved by two different approaches: 

“gamma-phi” or “phi-phi”. 

3.4.1. The - approach 

In the classical approach, called “gamma-phi”, the definition of the fugacity coefficient is used to describe 

the vapor phase, and the activity coefficient is used to describe the liquid phase. The following equilibrium 

relation can be written as Eq. 3.21. 


𝑖

𝑉 ⋅ 𝑃 ⋅ 𝑦𝑖 = 𝛾𝑖 ⋅ 𝑥𝑖 ⋅ 𝑓𝑖
0𝐿

 (3.21) 

Integration of Eq. 3.13 at a constant temperature from vapor pressure Psat to pressure P leads to Eq. 3.22. 

𝑓𝑖
0𝐿 = 𝑃𝑖

𝑠𝑎𝑡 ⋅ 
𝑖

𝑠𝑎𝑡 ⋅ exp (∫ (
𝑉̅𝑖

𝐿

𝑅𝑇
) 𝑑𝑃

𝑃

𝑃𝑉𝑎𝑝

) 
(3.22) 

Where i
sat is the fugacity coefficient at the saturated conditions at the same T and P. The exponential on 

the right side is called the Poynting factor (Poy). The integral in the Poynting factor is simplified if we make 

the approximation that 𝑉̅𝑖
𝐿
 is independent of pressure. We obtain then the approximate relation by Eq. 

3.23. 

𝑓𝑖
0𝐿 = 𝑃𝑖

𝑠𝑎𝑡 ⋅ 
𝑖

𝑠𝑎𝑡 ⋅
1

𝑅𝑇
exp (

𝑉̅𝑖
𝐿

(𝑃 − 𝑃𝑖
𝑠𝑎𝑡)

𝑅𝑇
) 

(3.23) 

Substitution of Eq. 3.23 into 3.21, leads to Eq. 3.24. 

(
𝑖
𝑉 ⋅ 𝑃 ⋅ 𝑦𝑖)

𝑉
= (𝛾𝑖 ⋅ 𝑥𝑖 ⋅ 𝑃𝑖

𝑠𝑎𝑡 ⋅ 
𝑖

𝑠𝑎𝑡 ⋅ 𝑃𝑜𝑦)
𝐿
 (3.24) 

The fugacity coefficient can be calculated by an equation of state and the activity coefficient by a model 

of solution. This method can be applied to a wide variety of mixtures and is accurate for low to moderate 

pressure calculations. The “gamma-phi” approach has been used to solve most of the equilibrium 

problems of this study. Furthermore, activity coefficient models have been extensively studied and will be 

presented in the section 3.4. 
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For liquid-liquid equilibria, where the same standard state is used in both phases, we obtain the Eq. 3.25. 

(𝛾𝑖 ⋅ 𝑥𝑖)𝐿1 = (𝛾𝑖 ⋅ 𝑥𝑖)
𝐿2 (3.25) 

3.4.2. The - approach 

The “phi-phi” approach, for every component i, the equation for vapor-liquid equilibrium is represented 

as Eq. 3.26. 

𝑦𝑖 ⋅ 
𝑖

𝑉𝑃 = 𝑥𝑖 ⋅ 
𝑖

𝐿𝑃 (3.26) 

and for liquid-liquid equilibrium is presented as Eq. 3.27. 

(𝑥𝑖 ⋅ 
𝑖

𝐿)
𝐿1

= (𝑥𝑖 ⋅ 
𝑖

𝐿)
𝐿2

 (3.27) 

3.4.3. PT-Flash algorithm  

Flash calculations are used for processes with VLE. A typical process that requires flash calculations is 

when a feed stream F (with composition zi) is separated into a vapor product V (with composition yi) and 

liquid product L (with composition xi); see figure 3.2.  

 
Figure 3.2 – Flash tank. 

A successive substitution algorithm has been implemented for flash calculation. For each of the Nc 

components, we can write a component material balance as Eq. 3.28. 

𝑦𝑖 ⋅ 𝛽 + 𝑥𝑖 ⋅ (1 − 𝛽) = 𝑧𝑖 (3.28) 

In addition, the vapor and liquid are assumed to be equal to Eq. 3.29. 
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𝑦𝑖 = 𝐾𝑖 ⋅ 𝑥𝑖 (3.29) 

With Ki equilibrium constant function of T, P, x and y. 

Once, the approach is defined to solve VLE problems, two possibilities are encountered: either a bubble 

point or a dew point must be calculated. Then, K-factors were calculated based on fugacity coefficients as 

expressed in the Eq. 3.30 and used as a convergency criterium.  

𝐾𝑖 =  
𝜑𝑖

𝑙

𝜑𝑖
𝑣         𝑜𝑟        𝐾𝑖 =  

𝛾𝑖
𝑙

𝜑𝑖
𝑣 

(3.30) 

Substitution of Eq. 3.29 into 3.28, and solution with respect to xi gives Eq. 3.31. 

𝑥𝑖 =  
𝑧𝑖

1 − 𝛽 + 𝛽 ⋅ 𝐾𝑖
 

(3.31) 

Here, we cannot directly calculate xi because 𝛽 is not known. To get 𝛽 , we may use the relationship Eq. 

3.32 which will lead to the so-called Rachford-Rice equation (Eq. 3.33) 

∑ 𝑦𝑖 − 𝑥𝑖

𝑁𝑐

𝑖=1
=  0 

(3.32) 

∑
𝑧𝑖 ⋅ (𝐾𝑖 − 1)

1 − 𝛽 + 𝛽 ⋅ 𝐾

𝑁𝑐

𝑖=1
=  0 

(3.33) 

The successive substitution algorithm for the PT flash problem is summarized in the scheme presented in 

the figure 3.3. 
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Figure 3.3 – Scheme of successive substitution algorithm for the PT flash problem for phi-phi approach. 

3.5. Activity coefficient 

From a mathematical point of view, the activity coefficient is a factor to account for deviations from the 

ideal mixing of chemical substance. Ideal behavior in a solution occurs when the interactions between 

molecules are the same (or very close) for molecules of the same component and for molecules of different 

components. For example, this can be the case for two hydrocarbons like n-pentane and n-hexane when 

they are in equilibrium at fixed temperature and pressure. In other words, in an ideal solution, there are 

no variation in the strength of forces between the components, including neither van-der-Waals 

(dispersive) nor Coulomb forces. This uniformity of interactions characterizes the ideal behavior. Under 

this condition, the activity coefficient is equal to 1, and the solution follows Raoult's law. 

However, when dealing with non-ideal solution, various forces act on mixtures of chemical substances. 

For example, intermolecular forces between solute and solvent molecules may be stronger or weaker than 

those between similar molecules. In these non-ideal situations, the activity coefficient deviates from 1. 

Typically, polar substance solutions exhibit higher activity coefficient values.  In contrast, activity 

coefficients are close to 1 in a mixture of non-polar substances, such as a mixture of light hydrocarbons. 
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The relatively weak intermolecular forces and similar molecular structures in non-polar mixtures lead to a 

scenario where the actual behavior closely aligns with ideal expectations.  

In the presence of significant molecular associations or interactions, the activity coefficient can indeed be 

less than 1, a characteristic frequently observed in solutions with molecules exhibit strong attractions or 

bonds. This deviation indicates a reduction in the effective concentration or activity of the substance 

compared to what would be expected in an ideal solution scenario. In the case of electrolyte solutions, this 

behavior is especially evident due to the pronounced solvation of ions by surrounding water molecules. 

The strong ion-solvent interactions markedly decrease the effective ion concentration, resulting in an 

activity coefficient below 1. 

The activity coefficient is mainly temperature and composition-dependents. For simplification to a single 

compositional point, the activity coefficient at diluted concentration can be considered. At this point, the 

activity coefficient is known as the infinite dilution activity coefficient (IDAC) and describes the behavior 

of one solute molecule surrounded by solvent molecules, showing the higher nonideality of the mixture. 

Therefore, IDAC can be used to find the maximum separation performance of a solvent and investigate 

solvents in terms of capacities and selectivity. Whereas these values are required to screen potential solvent 

to separation processes and to design them, such as extractive distillation and liquid-liquid extraction 

methods.  

Measurements of IDAC are quickly conducted for a wide range of solutes by gas chromatographic111, 

ebulliometer112, or gas stripping methods113 (well described in the chapter 2, section 2.3.2). On the other 

hand, it is hard to predict them, and usually, the models predict by extrapolation to composition equal to 

zero. IDAC values can be used to evaluate the performance of activity coefficient models.  

3.6. Activity coefficient models  

Activity coefficients are obtained from excess Gibbs energy. In thermodynamics, the relationship between 

the excess enthalpy and the excess entropy is given in eq. 3.34. The excess enthalpy considers energetic 

interactions called residual (dispersive, dipole, association) and the excess entropy considers the entropic 

contribution (size of molecules) called configurational.  

𝐺𝐸 = 𝐻𝐸 − 𝑇𝑆𝐸 (3.34) 

Three cases arise based on the comparison of excess entropy and excess enthalpy: 
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Regular Solution is referred to when the excess entropy is significantly smaller than the excess enthalpy. 

Energetic interactions (like dispersive, dipole, or association forces) dominate over the entropic 

contributions (arising from molecular size or configurational aspects). 

Athermal Solution is referred to when the excess enthalpy is notably smaller than the excess entropy. 

The entropic contributions, particularly associated with molecular size or configuration, play a more 

significant role compared to energetic interactions. 

Balanced Contributions are scenarios where neither excess enthalpy nor excess entropy can be 

neglected. Both energetic interactions and entropic effects are equally significant, and their combined 

influence on the system cannot be ignored. 

There are three categories of thermodynamic activity coefficient models: empirical, semi-predictive, and 

predictive models. 

Empirical correlations are mathematical or statistical models derived from empirical data and 

observations rather than being based on theoretical principles or underlying scientific laws. These models 

are built to describe and represent the relationships observed in the data, without a direct link to the 

fundamental mechanisms governing the phenomena. 

Semi-predictive Models require adjustable parameters that are typically determined through regression 

or fitting to experimental data. These parameters are adjusted to match model predictions with 

experimental observations with a theoretical basis. 

Predictive Models aim to calculate activity coefficients without the need for adjustable parameters 

derived from experimental data. These models are based on fundamental principles and molecular 

interactions based on molecular models, or quantum chemistry. 

More than one hundred years ago, most chemical engineering thermodynamics was based on experimental 

data and some “blind” empirical correlation without any physical meaning. Few correlations were done 

on a theoretical basis till that time, if any. Just in 1895, Margules114 correlated isothermal binary VLE with 

a power series of the mole fractions to represent the natural logarithm of the activity coefficient of 

component 1. Then, the activity coefficient of component 2 is obtained from the Gibbs-Duhem equation 

without adding any parameter. Margules correlation is better known as the Margules activity coefficient 

model. 
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In 1910 van Laar115 derived his excess model from van der Waals’s equation of state, assuming that the 

isothermal entropy of the mixing at constant volume is equal to that for an ideal solution. Therefore, van 

Laar considered the excess entropy and excess volume is equal to zero. 

About 20 years after van Laar, Scatchard, and Hildebrand116 (independently) also derived their equation 

for excess Gibbs energy like that of van Laar. However, instead of van der Waals’s a-parameter, they 

introduced the concept of cohesive energy density, which is the energy required to vaporize a liquid per 

unit liquid volume. The square root of this cohesive energy density is the solubility parameter δ, which has 

been determined for many solvents, see Hansen117. Flory-Huggins proposed their equation for segmented 

molecules, otherwise like the Scatchard-Hildebrand equation. 

Until about 1964, chemical engineering applications of activity coefficient were either based on Margules 

or the van Laar activity coefficient model. However, these models often have some limitations due to their 

temperature-dependent parameters. Moreover, it gives unsatisfactory predictions for complex systems 

containing strongly polar and hydrogen bonding components, e.g., alcohol and hydrocarbons (mainly, 

when applied to multicomponent LLE systems). Furthermore, extending them to multicomponent 

systems is difficult, in which these models are applicable up to ternary systems. These limitations are 

problematic in solving difficulties at the industrial level, e.g., in multicomponent distillations, where the 

distillation is typically performed at constant pressure and varying temperatures throughout the column 

(from plate to plate). Thus, employing a model with temperature-independent parameters or an in-built 

temperature dependency (such as the local composition models that will be presented later) is 

advantageous. 

The revolution in activity coefficient models or solution theories came in 1964 when Wilson proposed the 

concept of local compositions or non-random mixing. Wilson originally derived his model based on the 

Flory-Huggins equation using local composition fractions instead of the traditional segment or volume 

fractions used in the Flory-Huggins model. Despite, Wilson’s model still has (like Margules and van Laar) 

two parameters having theoretical significance. More importantly, the model has an in-built temperature 

dependency. The Wilson model was the first of its kind and more satisfactory models using the same local-

composition concept were proposed later, e.g., NRTL and UNIQUAC. In those models, the data are 

expressed in a mathematical function suggested by classical thermodynamics and correlated to the 

experimental data.  

Comparing UNIQUAC with Wilson model, both models have a combinatorial and a residual term. In 

Wilson, it is a Flory-Huggins term based on volume fractions, while in UNIQUAC, it is a modified Flory-

Huggins based on segment and surface area fractions. The second part of the combinatorial term of 
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UNIQUAC (Staverman-Guggenheim term) does not usually contribute much to the activity coefficient 

compared to the Flory-Huggins term. The residual terms of the two models are similar, but the Wilson 

one is based on volume fractions, while the UNIQUAC one is based on surface area fractions. Both 

models have two interaction parameters that must be estimated from experimental phase equilibrium data. 

Wilson’s equation only applies to fully miscible systems, but NRTL and UNIQUAC are applied to both 

fully and partially miscible systems. 

In 1968, Renon and Prausnitz proposed NRTL model. Unlike Wilson, NRTL has three parameters.  This 

includes the non-randomness parameter, denoted as , which has values between 0.20 and 0.47 in most 

cases. In instances where the data is lacking, it can be arbitrarily set equal to 0.3. When the non-randomness 

parameter is zero, the mixture is completely random, and the NRTL reduces to the two-suffix (one 

parameter) Margules equation. 

In 1975, Fredenslund and Prausnitz published one of the most successful activity coefficient models based 

on group contribution methods, the UNIFAC. This model is highly parameterized using a large amount 

of experimental data, such as VLE, to fine-tune their group interaction parameters. Consequently, their 

accuracy depends on the availability and similarity of experimental data with the concerned system.  

In the mid-1990s, a valuable (and semi-empirical) alternative to these models was developed by applying 

quantum mechanics (QM) to calculate thermodynamic properties. Klamt developed a model called 

COnductor-like Screening MOdel for real solvents (COSMO-RS).  The COSMO segment activity 

coefficient model (COSMO-SAC) proposed by Lin and Sandler118 is a reimplementation of COSMO-RS, 

filling the information gaps in the equation that were not fully described in the original model proposed 

by Klamt in 1995119. Both models use surface charges for molecules that depend on the atom and the 

identity of other atoms in the same molecule. That method has attracted significant attention due to its 

simplicity and low computational requirements.  

Figure 3.4 presents the annual number of publications about the COSMO model, including articles, 

conference papers, book chapters, reviews, and conference reviews covering the 1999 – 2022 periods. The 

keyword employed for the literature search was COSMO-RS, or COSMO-SAC, and it was performed 

using the Scopus search. For that period, 3196 works were published, and the main subject areas where 

they had been classified were chemistry, chemical engineering, physics and astronomy, engineering, 

material science, and computer science. A growing number of research publications have been noticed in 

the last ten years, going from 100 in 2012 to 488 in 2022.  
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Figure 3.4 – Several publications about the COSMO model, including articles, conference papers, book chapters, 
reviews, and conference reviews covering the 1999 – 2022 periods. Green: COSMO-SAC and yellow: COSMO-

RS. 

 

In the following sections, important models for understanding this manuscript will be well described, such 

as Scatchard-Hildebrand, Wilson, NRTL, UNIFAC, and COSMO models. 

3.6.1. Scatchard-Hildebrand model 

The regular solution model developed by Scatchard and Hildebrand introduced the concept of cohesive 

energy density, leading to Eq. 3.35. 

Where 𝜐i is the molar volume of the subcooled liquid pure compound i, Φ1 is the volume fraction of i 

defined by: Φ1 = x1υ1 x1υ2 + x1υ2⁄ , and 𝛿i is called the solubility parameter. 

The solubility parameter (Eq. 3.36) is defined by the relationship between the enthalpy of vaporization 

and the molar liquid fraction. 
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This model does not require any parameters other than the solubility parameters, which can be calculated 

or easily found in databases. 

3.6.2. WILSON 

Wilson introduced the local composition concept in relation to thermodynamic excess free energy function 

to develop his thermodynamic model. He suggested that the local fraction xij of type i molecules and the 

local fraction xji of type j molecules which are in the immediate vicinity of a type i molecule can be related 

in terms of the overall mole fractions and two Boltzmann factors as Eq. 3.37. 

where the -gjiand -gii are energies of interaction between molecules of types j and i, and two types i 

molecules, respectively. 

The generalized form of Wilson’s expression for a binary mixture is Eq. 3.38. 

𝑔𝐸

𝑅𝑇
= − ∑ 𝑥𝑖 𝑙𝑛 (∑ 𝑥𝑗𝛬𝑖𝑗

𝑗

)

𝑖

 

(3.38) 

Where Aij is: 

𝛬𝑖𝑗 =
𝑣2 

𝑣1  
𝑒(−

𝑔𝑖𝑗−𝑔𝑗𝑖

𝑅𝑇
)
 

(3.39) 

It is important to highlight that Wilson model is primarily used for describing non-ideal behavior in VLE 

and is not suitable for predict LLE. 

3.1.1. NRTL 

The NRTL model is described by equation (3.40). 

𝑙𝑛𝛾𝑖 =
∑ (𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖)𝑐

𝑖=1

∑ (𝐺𝑘𝑗𝑥𝑘)𝑐
𝑖=1

+ ∑ [
(𝑥𝑗𝐺𝑖𝑗)

∑ (𝐺𝑘𝑗𝑥𝑘)𝑐
𝑘=1

(𝜏𝑖𝑗 −
∑ (𝑥𝑘𝜏𝑘𝑗𝐺𝑘𝑗

𝑐
𝑘=1

∑ 𝐺𝑘𝑗𝑥𝑘
𝑐
𝑘=1

)]

𝑐

𝑗=1

 
(3.40) 

With 𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗) and 𝜏𝑖𝑗 =
𝑔𝑖𝑗−𝑔𝑗𝑗

𝑅𝑇
. where 𝑔𝑖𝑗 − 𝑔𝑗𝑗 is the binary interaction parameter. The 

temperature dependence is evaluated according to the following expressions (Eq. 3.41 and Eq. 3.42) 

included in the Simulis Thermodynamic™ software:  

𝑥𝑗𝑖

𝑥𝑖𝑖
=

𝑥2𝑒(−
𝑔𝑗𝑖

𝑅𝑇
) 

𝑥1 𝑒(−
𝑔𝑖𝑖
𝑅𝑇

) 
 

(3.37) 
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𝑔𝑖𝑗 − 𝑔𝑗𝑗 = 𝐶𝑖𝑗
0 + 𝐶𝑖𝑗

𝑇(𝑇 − 273.15) (3.41) 

𝛼𝑖𝑗 = 𝛼𝑖𝑗
0 + 𝛼𝑖𝑗

𝑇(𝑇 − 273.15) (3.42) 

The parameter 𝛼𝑖𝑗 are the non-randomness parameters. In this work, 𝛼𝑖𝑗
0 can be set from 0.2, 0.3, 0.4, 

and 0.47 as recommended by Renon and Prausnitz (1968)120 and compared with an optimized one.  

The binary interaction parameters of the NRTL are adjusted with the experimental data using the following 

objective function Eq. 3.43 for a Flash(P, T) type calculation. 

𝑂𝐹 = ∑ (
𝑥𝑘

𝑒𝑥𝑝 − 𝑥𝑘
𝑐𝑎𝑙

𝑢(𝑥)
)

2𝑁

𝑘=1

+ ∑ (
𝑦𝑘

𝑒𝑥𝑝 − 𝑦𝑘
𝑐𝑎𝑙

𝑢(𝑦)
)

2𝑁

𝑘=1

 

(3.43) 

Where 𝑥𝑘
𝑒𝑥𝑝

and 𝑥𝑘
𝑐𝑎𝑙are the experimental and calculated mole fractions of liquid (and y for the mol fraction 

of vapor) for each component over the coexistence line for the kth value, respectively. N is the number 

of points in the data set. u(x) corresponds to the uncertainty of measured composition.  

3.6.3. UNIFAC 

The activity coefficient is represented by two contributions as in Eq. 3.44. 

The combinatorial term (Eq. 3.45), given by the Staverman-Guggenheim121,122 contribution, is represented 

by the entropic effects from the molecular volume and surface area (obtained in the first step of the 

model). 

𝛾𝑖/𝑆
𝑐𝑜𝑚𝑏 = ln

Φ𝑖

𝑥𝑖
+

𝑧

2
𝑞𝑖𝑙𝑛

θ𝑖

Φ𝑖
+ 𝑙𝑖 −

Φ𝑖

𝑥𝑖
∑ 𝑥𝑗𝑙𝑗

𝑗

 

(3.45) 

The molecular volume parameter is given by Φ𝑖 = 𝑟𝑖𝑥𝑖 ∑ 𝑟𝑗𝑥𝑗𝑗⁄ , the surface area fraction is given by θ𝑖 =

𝑞𝑖𝑥𝑖 ∑ 𝑞𝑗𝑥𝑗𝑗  ⁄ , and 𝑙𝑖 = 𝑧 2⁄ (𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1). 

The residual contribution is represented by Eq. 3.46. 

𝑙𝑛𝛾𝑖/𝑆 = 𝑙𝑛𝛾𝑖/𝑆
𝑐𝑜𝑚𝑏 + 𝑙𝑛𝛾𝑖/𝑆

𝑟𝑒𝑠 (3.44) 
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𝛾𝑖/𝑆
𝑟𝑒𝑠 = 𝑞𝑖 [1 − 𝑙𝑛 (∑ 𝜃𝑗𝜏𝑗𝑖

𝑗

) − ∑
𝜃𝑗𝜏𝑗𝑖

∑ Φ𝑘𝜏𝑗𝑖𝑘
𝑗

] 

(3.46) 

 

3.7. COSMO-based model 

In the COSMO-based methods (COSMO-RS and COSMO-SAC), the key elements representing the link 

between the quantum chemical computations and the thermodynamic quantities are described by the so-

called sigma-profile. The process to obtain the sigma-profile begins with a Quantum Chemistry (QC) 

calculation, which usually is performed using Density Functional Theory (DFT) method. In this calculation 

the electronic structure of the molecule in the presence of an isotropic solvent represented by a polarizable 

continuum media is determined. The electrostatic contribution to the solvation free energy is then 

computed using apparent surface charges located at the interface between the molecular cavity and the 

dielectric media. These charges are generated by the polarization induced by the molecule (solute) on the 

dielectric media (solvent). The result of this calculation is the screening charge density. Chapter 4 will 

provide a detailed explanation of DFT methods. 

The screening charge density (σ(s)) is a perfect local qualitative measure of the molecular polarity and can 

be used to quantify and color-code molecular polarity on the surface. Figure 3.5 shows the color-coded 

sigma surfaces of (a) water, (b) furan, and (c) n-butanol which red areas represent strongly negative parts 

of the molecular surface and hence a strongly positive value of σ. On the other hand, deep blue areas 

represent strongly positive surface regions, and a strongly negative value of σ and green areas represent 

the nonpolar surface. 

 
(a) 

 
(b) 

 
(c) 

 
Screening Charge Density, σ (e/Ǻ2) 

Figure 3.5 – COSMO surface of (a) Water, (b) Furan, and (c) n-butanol color-coded by the screening charge 
density. 
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3.7.1. Sigma-profile 

Starting from the polarizable continuum model calculations, the screening charge is averaged by Eq. 3.47. 

𝜎𝑚 =

∑ 𝜎𝑛
∗

𝑟𝑛
2𝑟𝑒𝑓𝑓

2

𝑟𝑛
2 + 𝑟𝑒𝑓𝑓

2 𝑒𝑥𝑝 (−𝑓𝑑𝑒𝑐𝑎𝑦
𝑑𝑚𝑛

2

𝑟𝑛
2 + 𝑟𝑒𝑓𝑓

2 )𝑛

∑
𝑟𝑛

2𝑟𝑒𝑓𝑓
2

𝑟𝑛
2 + 𝑟𝑒𝑓𝑓

2 𝑒𝑥𝑝 (−𝑓𝑑𝑒𝑐𝑎𝑦
𝑑𝑚𝑛

2

𝑟𝑛
2 + 𝑟𝑒𝑓𝑓

2 )𝑛

 

   (3.47) 

Where 𝜎𝑛
∗is the original surface charge of the nth segment and 𝑟𝑛 is radius of the segment n, both taken 

from the COSMO file. The 𝑑𝑚𝑛 is the distance (in Å) between the centers of the surface segments n and 

m calculated by Eq 3.48. All the parameters used to the sigma-profile construction are defined in table 3.1. 

𝑑𝑚𝑛 = √(𝑥𝑚 − 𝑥𝑛)2 + (𝑦𝑚 − 𝑦𝑛)2 + (𝑧𝑚 − 𝑧𝑛)2    (3.48) 

Position data of all segments are given in atomic units and can be converted to the Angstrom by 

multiplying with the conversion factor 0.52917721067 Å/a.u. 

Table 3.1 – Parameters used in the sigma-profile calculation. 

Parameters 

𝑎𝑒𝑓𝑓 7.5 Å2 effective area for averaging 

𝑟𝑒𝑓𝑓 = √𝑎𝑒𝑓𝑓 𝜋⁄  effective radius for averaging 

𝑓𝑑𝑒𝑐𝑎𝑦 3.57 empiric parameter 

Once the screening charge averaged has been obtained for each segment m, the sigma-profile, pi(σ), is 

created. This involves considering the probability of finding a specific segment with a given value of 𝜎, 

multiplied by the surface area of the molecule i. as defined by Eq. 3.49. 

𝑝𝑖(𝜎) =
𝐴𝑖(𝜎)

𝐴𝑖
 

  (3.49) 

Where Ai(σ) represents the surface cavity area with charge density σm of the i molecule, Ai is the total cavity 

surface area. Lin and Sandler have defined Ai(σ) = aeff ni(σ), where aeff is the effective surface area of a 

standard surface segment. This effective surface represents the contact area between different molecules, 

e.g. a theoretical bonding site. Klamt set this adjustable parameter to 7.1 Å2. In this work we set to 7.5 Å2 

, as indicated in Table 3.1. 
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Once the sigma-profile is established for pure compounds, it is then assessed for mixtures by calculating 

the weighted sums of contributions from all pure components (Eq. 3.50). 

𝑝𝑠(𝜎) =
∑ 𝑥𝑖𝑛𝑖𝑝𝑖(𝜎𝑖 )

∑ 𝑥𝑖𝑛𝑖𝑖
=

∑ 𝑥𝑖𝐴𝑖𝑝𝑖(𝜎𝑖 )

∑ 𝑥𝑖𝐴𝑖𝑖
 

    (3.50) 

The values of 𝜎 vary in a range of -0.025 to +0.025 e/Å2 and in increments of 0.001 e/Å2, forming a set 

of 51 points.  

This histogram is called sigma-profile (σ-profile) (Figure 3.6) and describes three interaction regions; 

hydrogen bond (HB) acceptor, hydrogen bond donor, and nonpolar region, and it could be a qualitative 

measure of the molecular polarity. The non-polar region shows peaks between -0.01 and +0.01 e/Ǻ2, the 

HB donor region shows peaks on the extreme left, and the HB acceptor shows peaks on the extreme right 

of figure 3.7. 
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Figure 3.6 – Sigma-profile of Furan for different exchange-correlation Functionals using 6-311G(2df,p) as a basis 
set in comparison with the VT 2005 Sigma Profile Database. 

 

From the σ-profile, the chemical potentials of species in solution can be predicted, which can be used, 

through a thermodynamic approach, for evaluating several properties,, including IDACs. 
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3.7.2. COSMO-SAC – activity coefficient prediction 

In this second step of the model, the activity coefficient is calculated by combining the two contributions, 

as in the UNIFAC and modified UNIFAC, the combinatorial and the restoring contribution (Eq. 3.51).  

𝑙𝑛𝛾𝑖/𝑆 = 𝑙𝑛𝛾𝑖/𝑆
𝑐𝑜𝑚𝑏 + 𝑙𝑛𝛾𝑖/𝑆

𝑟𝑒𝑠 (3.51) 

The combinatorial term, given by the Staverman-Guggenheim121,122 contribution (Eq. 3.52), is represented 

by the entropic effects from the molecular volume and surface area (obtained in the first step of the 

model). 

𝛾𝑖/𝑆
𝑐𝑜𝑚𝑏 = ln

Φ𝑖

𝑥𝑖
+

𝑧
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𝑞𝑖𝑙𝑛

θ𝑖

Φ𝑖
+ 𝑙𝑖 −

Φ𝑖

𝑥𝑖
∑ 𝑥𝑗𝑙𝑗

𝑗

 

(3.52) 

The molecular volume parameter is given by Φ𝑖 = 𝑟𝑖𝑥𝑖 ∑ 𝑟𝑗𝑥𝑗𝑗⁄ , the surface area fraction is given by θ𝑖 =

𝑞𝑖𝑥𝑖 ∑ 𝑞𝑗𝑥𝑗𝑗  ⁄ , and 𝑙𝑖 = 𝑧 2⁄ (𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1). Where 𝑥𝑖 is the molar fraction of component i, 𝑟𝑖 and 

𝑞𝑖are the volume and surface area for i normalized to a standard volume of 66.69 Å3, 123 and surface area 

of 79.53 Å2, 123 respectively. z is the coordination number, usually taken to be 10 and the summation is 

over all the species in the mixture. 

The restoring free energy of a solute molecule i from the ideal conductor to the real solvent is obtained as 

the summation over the segment activity coefficients (Eq. 3.53 and 3.54). 

Δ𝐺𝑖/𝑆
∗𝑟𝑒𝑠

𝑅𝑇
= 𝑛 ∑ 𝑝(𝜎𝑚)𝑙𝑛Γ𝑆(𝜎𝑚)

𝜎𝑚

 
  (3.53) 

𝑙𝑛Γ𝑆(𝜎𝑚) = −𝑙𝑛 {∑ 𝑝𝑠(𝜎𝑛)Γ𝑠(𝜎𝑛)𝑒𝑥𝑝 [
Δ𝑊(𝜎𝑚, 𝜎𝑛)

𝑘𝑇
]

𝜎𝑛

} 

  (3.54) 

Δ𝑊 is the exchange energy, and k is the Boltzmann constant. 

n = Ai/aeff  is the number of segments in the molecule, which is the ratio of the total surface area of a single 

molecule i (Ai) to the area of the standard surface of segments (aeff).  

𝑝(𝜎𝑚) is a two-dimensional histogram.  
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Finally, the combinatorial sum and the restoring contribution are used to obtain the activity coefficient, as 

shown in Eq. 3.51 Figure 3.7 summarizes the steps of the model COSMO-based approach. 

 

 
Figure 3.7 – COSMO-SAC steps 

 
 

3.8. Conclusion 

In summary, this chapter has provided a comprehensive exploration of thermodynamic modeling in the 

context of phase equilibrium and thermodynamic properties calculation. Furthermore, the chapter delved 

into the concept of activity coefficient and its models. Several widely used activity coefficient models 

(including the Scatchard-Hildebrand model, WILSON, NRTL, UNIFAC and COSMO-based model) 

were elucidated. The detailed explanation of the COSMO-SAC model, encompassing its sigma-profile and 

how the model predicts activity coefficient, enriched the understanding of this model, focus of this these.  

At the heart of the COSMO-based model are the sigma-profiles, acting as a crucial link between quantum 

chemical calculations and thermodynamic properties. These profiles are generated through quantum 

chemical calculations, typically using Density Functional Theory (DFT). The upcoming chapter will 
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elucidate the foundational principles of quantum chemistry approaches and their integration with 

COSMO-based models. 
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Résumé 

 

Ce chapitre se concentre sur les modèles basés sur COSMO (en particulier COSMO-SAC) et leurs 

intégrations avec des approches basées sur la chimie quantique. Au cœur du modèle basé sur COSMO se 

trouve le profil sigma, un lien essentiel qui relie les calculs de chimie quantique aux propriétés 

thermodynamiques. Ce profil provient des calculs de chimie quantique, généralement effectués à l'aide de 

la théorie de la fonctionnelle de la densité (Density Functional Theory : DFT). 

Dans le cadre de la DFT, les caractéristiques d'un système à plusieurs électrons sont plutôt déterminées 

par la densité électronique que par les fonctions d'onde des électrons individuels ; simplifiant ainsi les 

calculs et fournissant des résultats précis pour une large gamme de systèmes. Cette approche facilite la 

prédiction et l'analyse de diverses propriétés (notamment les aspects électroniques, structuraux et 

thermodynamiques des matériaux et des molécules). La DFT est souvent considérée comme une méthode 

précise pour résoudre le problème de la mécanique quantique à plusieurs corps indépendants du temps. 

Avant d'examiner la structure formelle de DFT, nous introduirons d'abord les principes fondamentaux de 

la chimie quantique (Quantum Chemistry : QC). La chimie quantique est dédiée à la description des 

systèmes atomiques, moléculaires et étendus en résolvant l'équation de Schrödinger. À mesure que le 

nombre d'électrons augmente, la complexité de l'équation de Schrödinger augmente, limitant la 

disponibilité de solutions analytiques aux cas plus simples tels que l'hydrogène et l'hélium. Pour les 

systèmes multiélectroniques, des approximations deviennent nécessaires telle que l'approximation de 

Born-Oppenheimer qui permet de séparer la dynamique électronique et nucléaire. L'hamiltonien 

électronique (dérivé de l'hamiltonien à plusieurs corps) caractérise la fonction d'onde électronique et 

l'énergie. 

Pour construire des fonctions d'onde multiélectroniques, on utilise des orbitales moléculaires. Les 

électrons, en tant que fermions, respectent le principe d'exclusion de Pauli qui exige une antisymétrie dans 

leurs fonctions d'onde. Alors que le produit de Hartree ne parvient pas à satisfaire cette exigence, 

l'introduction du Déterminant de Slater résout ce problème satisfaisant mathématiquement le principe 

d'antisymétrie. Il existe deux principales catégories de méthodes pour résoudre l'équation électronique : la 

méthode de Hartree-Fock (HF) et la DFT. HF est basée sur la théorie des orbitales moléculaires et repose 

sur la construction d’une fonction d'onde approchée en utilisant un unique déterminant de Slater. Tandis 

que la DFT est une approche qui se concentre sur la densité électronique elle-même, en reformulant le 
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problème des nombreux corps en termes de densité électronique. Cette dernière utilise les théorèmes de 

Hohenberg, Kohn and Sham pour déterminer les propriétés de l'état fondamental du système. Suivant la 

méthode de Kohn-Sham, la densité est exprimée le plus souvent en fonction d’un déterminant de Slater 

d’orbitales moléculaires (monoélectroniques). Ces orbitales de Kohn-Sham ne sont pas identiques aux 

orbitales HF : ce sont celle d’un système fictif d’électrons sans interaction, mais possédant la même densité 

que le système réel. Dans cette étude, nous nous basons principalement sur des méthodes en DFT. 

Les fondements de la DFT reposent sur les Théorèmes de Hohenberg-Kohn. Le premier théorème établit 

que la densité électronique dicte de manière unique l’Hamiltonien, englobant le potentiel et l'ensemble des 

propriétés du système. Cette relation fonctionnelle de la densité est exprimée à travers la fonctionnelle de 

l'énergie (un opérateur mathématique qui associe la densité électronique à l'énergie totale du système). Le 

deuxième théorème (connu sous le nom de théorème de variation) facilite la détermination de l'énergie 

électronique de l'état fondamental. En commençant par une densité électronique approximative, on peut 

appliquer des principes de variation pour trouver la densité qui minimise l'énergie de l'état fondamental. 

Pour calculer l'énergie dans le cadre de la DFT, la méthode de Kohn-Sham est couramment employée. 

Elle répartit l'énergie totale en composantes d'énergie cinétique, d'interaction électron-électron, 

d'interaction nucléaire-électron et d'énergie d'échange-corrélation. L'énergie d'échange-corrélation est un 

élément clé de la DFT et sa formulation précise reste un défi redoutable. Diverses approximations sont 

utilisées notamment les approximations de la densité locale, celles corrigées par gradient et les 

fonctionnelles hybrides, chacune offrant des niveaux de précision variables. De plus, le choix de la base 

d’orbitales joue un rôle essentiel dans les calculs de la DFT. 

Les bases sont des ensembles de fonctions utilisées pour décrire les orbitales électroniques, et elles peuvent 

être classées en bases minimales et en bases à valence séparée, avec ajout de fonction de polarisation ou 

de fonctions diffuses. La taille de la base influe considérablement sur la précision des calculs, les ensembles 

plus volumineux offrant une plus grande précision au prix de ressources computationnelles accrues. 

En chimie computationnelle, la prise en compte les effets du solvant est essentiel pour comprendre 

comment les solvants influencent la structure électronique et les caractéristiques d'un système. Deux 

approches principales sont utilisées : les modèles de solvatation explicites et implicites. Les modèles 

explicites incluent la représentation directe des molécules de solvant dans le cadre computationnel, offrant 

une description détaillée des interactions soluté-solvant spécifiques, au prix de ressources 

computationnelles substantielles. Les modèles implicites considèrent le solvant comme un milieu continu 

avec une constante diélectrique, approximant sa polarisabilité. Ces modèles divisent l'énergie de solvatation 

en composantes électrostatiques et non électrostatiques, incluant la répulsion de Pauli, la dispersion, la 
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liaison hydrogène et l'énergie de cavitation. Les modèles implicites utilisent l'équation de Poisson pour 

calculer le potentiel électrostatique et font appel à des surfaces de cavité, souvent définies par des sphères, 

pour décrire les interactions du soluté avec le solvant. Les cavités de soluté peuvent être classées comme 

empiriques ou non empiriques avec diverses techniques pour construire des surfaces de cavité. 

Une approche courante consiste à utiliser des sphères centrées sur les atomes en se basant sur les rayons 

de van der Waals. Le Modèle de Screening de Type Conducteur (COSMO) ou le modèle du Continuum 

Polarisable type Conducteur (C-PCM) est une méthode de solvatation implicite largement utilisée, 

incorporant des facteurs d'ajustement tels que les rayons de Klamt pour différents éléments. Dans les 

calculs, la surface de la cavité est subdivisée en de plus petits éléments de surface appelés « tesselles », qui 

fournissent une approximation de la surface moléculaire. 

Ce qui distingue le modèle COSMO des autres modèles est son traitement unique du milieu diélectrique 

comme un conducteur. Les conducteurs se caractérisent par une permittivité relative infinie (ε = +∞), 

simplifiant le problème électrostatique en éliminant les gradients de potentiel au sein du milieu. Dans le 

modèle COSMO, la densité de charge de surface (σ∞(s)) sur la surface de la cavité est directement 

déterminée par le potentiel électrostatique généré par la densité de charge du soluté, puis elle est ajustée à 

l'aide d'une fonction basée sur la permittivité relative réelle du solvant (f(ε)) pour obtenir la densité de 

charge appropriée (σ(s)). 

La procédure du modèle COSMO commence par optimiser la géométrie de la molécule dans le vide, puis 

la place dans une cavité entourée d'un conducteur virtuel. Ce modèle décompose la surface de la cavité 

moléculaire en segments plus petits et la densité électronique du soluté à l'intérieur de la cavité induit une 

polarisation dans le milieu diélectrique, dans le continuum et dans le solvant. En conséquence, le soluté 

lui-même se polarise, ce qui modifie sa distribution électronique. La densité de charge résultant de cette 

polarisation sur les segments de surface est ensuite calculée, permettant l'analyse de la polarité moléculaire 

et sa conversion en profil sigma. 

 

 
 



 

109 

 

4. COSMO Solvation model and the Quantum 
Chemistry 

 

4.1. Introduction 

The COSMO-based models, particularly COSMO-SAC, constitute a central focus of this work.  These 

models, including COSMO-SAC and COSMO-RS have demonstrated their efficacy in predicting phase 

equilibrium and thermodynamic properties through a two-step calculation process that intricately 

combines quantum chemistry (QC) and statistical thermodynamics. This chapter is dedicated to 

investigating the integration of COSMO-based model with quantum chemistry-based approaches. 

At the heart of the COSMO-based model lies the σ-profile, a critical link connecting quantum chemical 

calculations to thermodynamic properties. This profile originates from QC computations and is typically 

conducted using Density Functional Theory (DFT). These computations focus on the molecular electronic 

structure within a polarizable continuum, simulating an isotropic solvent using a solvation model. 

The COSMO solvation model, which represents the QC step, is implemented in several quantum chemical 

computational packages, such as Gaussian. Belonging to the family of dielectric continuum solvation 

models (CSM)s, the COSMO solvation model is based on an implicit approach. It does not explicitly 

introduce solvent molecules into the chemical system being analyzed. Instead, it views the solvent as a 

homogeneous, polarizable medium characterized by its dielectric constant (ε). The solute is placed within 

a cavity created within this medium. The electron density of the solute inside the cavity induces polarization 

in the dielectric, continuum, and the solvent, in turn, polarizes the solute, modifying its electron 

distribution. The electrostatic contribution to the solvation Gibbs energy is evaluated, in this reciprocal 

polarization process.  

In DFT, the properties of a many-electron system are determined by the electron density rather than the 

wave functions of individual electrons, simplifying than the calculations while providing accurate results 

for a wide range of systems. This approach allows the prediction and analysis of various properties 

(including electronic, structural, and thermodynamic aspects of materials and molecules). DFT is often 

considered as an exact approach to solve the time-independent many-body problem. Before reviewing the 

formal framework of DFT and CSMs, we introduce the many-body problem.  

 



Chapter 4 – COSMO Solvation model and Quantum Chemistry 

 110 

4.2. Theoretical Background  

Quantum chemistry (QC) aims to provide comprehensive descriptions of atomic, molecular, and extended 

systems, enabling the prediction of their properties from fundamental principles. This is accomplished by 

solving the non-relativistic, time-independent Schrödinger equation124 for a given system containing N 

electron (Eq. 4.1). 

Where Ĥ is the Hamiltonian operator, Ψ (x1,··· ,xN ) is the many-body wave function, which contains all 

information on the quantum state of the system, and E is the total energy of the system in state Ψ.  

For a system of M nuclei and N electrons, the non-relativistic Hamiltonian operator is written as a sum of 

kinetic and potential energies (Eq. 4.2). 

Where 𝑇̂𝑒 and 𝑇̂𝑁 are the operators for the kinetic energy of electrons and nuclei, respectively. Terms 

denoted by 𝑉̂ are the electrostatic term, representing the Coulomb attraction between electrons and nuclei 

(𝑉̂𝑁𝑒), the electron-electron repulsion (𝑉̂𝑒𝑒), and internuclear repulsion (𝑉̂𝑁𝑁). If we assume the nuclei and 

electrons to be point masses and if we neglect spin-orbit and other relativistic interactions, the atomic or 

molecular Hamiltonian can be written by Eq. 4.3. 

Where subscripts i and j (α and β) run over all electrons (nuclei); q and me (Z and M) are the charge and 

mass of an electron (nucleus); r is the inter-particle distance as shown in figure 4.1; ħ is the Plank’s constant 

divided by 2π and ∇2 is the Laplacian differential operator. The restriction j > i ( > ) avoids the double 

counting of the same interelectronic (internuclear) repulsion and the counting of the self-repulsion. 

𝐻̂𝛹(𝑥1, … , 𝑥𝑁) = 𝐸𝛹(𝑥1, … , 𝑥𝑁) (4.1) 

𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑁 + 𝑉̂𝑁𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂𝑁𝑁 (4.2) 
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(4.3) 
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Figure 4.1 – A molecular coordinate system: i and j = electrons; α and β = nuclei. 

Atomic unit (a.u.) is system of natural units commonly used in quantum physics and chemistry. When 

dealing with expressions involving several small-valued constants, such as the electron mass (me) and 

reduced Planck's constant (ħ), this unit system simplifies calculations by setting a selected group of 

constants equal to 1. Table 4.1. summarize the constants expressed in atomic units (a.u.) and their 

respective values in the international system (SI) are provided for reference.  

Table 4.1 – Fundamental constants in atomic unit.125 

Quantity Set Equal to 1 Constant Expression 
Value in International  

system unit (SI) 

Mass of an Electron me = 1 9.1093835 × 10-3 kg 

Elementary Charge e = 1 1.6021765 × 10-19 C 

Reduced Planck's Constant (ħ) ħ = 1 1.0545716 × 10-34 J·s 

Coulomb Constant 
𝑒2

4𝜋ℇ0
 = 1 8.98755179 × 109 N·m²/C² 

Bohr Radius 𝑎𝑜 =
4𝜋ℇ0ħ2

𝑚𝑒𝑒2  = 1 5.2917721 × 10-11 m 

Hartree Energy 
𝑚𝑒𝑒4

(4𝜋ℇ0)2ħ3 = 1 4.3597446 × 10-18 J 

Time for one electron tavel one 

period in the first Bohr orbit 

(4𝜋ℇ0)2ħ3

𝑚𝑒𝑒4  = 1 2.4188843 × 10-17 s 

Permittivity of a vacuum times 4π 4π ε₀ = 1 1.112650 × 10-12 C2/(J.m) 

This choice simplifies mathematical expressions, allowing for a more compact and elegant form of the 

Hamiltoniana (Eq. 4.4).  
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The complexity of the Schrödinger equation increases dramatically with the number of electrons in the 

system, and thus the analytical solution of this equation is only possible for hydrogen and helium atoms 

and simple molecules such as H2. However, it can be solved for multi-electron systems by applying some 

approximations.  

The many-body Hamiltonian in Eq. 4.3 describes both the motion of the electrons and that of the nuclei. 

However, electrons and nuclei dynamics happening on a very different timescale. In fact, due to the smaller 

mass electrons move much faster than nuclei, we can solve only the electronic Schrödinger equation for a 

given fixed nuclear geometry thus separating out the nuclear wave function, by virtue of the so-called 

Born-Oppenheimer (BO) approximation126. The many-body Schrödinger electronic equation can thus be 

written as follows:  

where 𝐻̂𝑒𝑙 is the electronic Hamiltonian, Ψel is the electronic wave function, and Eel is the total electronic 

energy.  

Therefore, the Hamiltonian to be solved reduces to the electronic Hamiltonian is expressed by Eqs. 4.6 

and 4.7.  

The total energy of the system is thus expressed as the sum of the electronic and the nuclear repulsion 

energy (Eq. 4.8).  

From the Eq. 4.7, the two first terms (the electronic kinetic energy, and nuclear repulsion) can be calculated 

directly. While the third one, the electron-electron repulsion, cannot be solved exactly for the many-

electron system. Over the years, different methods have been developed to solve Schrödinger's electronic 

equation, referring to different types of approximations. These methods can be divided into two categories 

methods based on Hartree-Fock127 and methods following the DFT. The studies presented in this study 

have been conducted using methods rooted in the second.  
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(4.4) 

𝐻̂𝑒𝑙𝛹𝑒𝑙 = 𝐸𝑒𝑙𝛹𝑒𝑙 (4.5) 
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(4.6) 

𝐻̂ = 𝑇̂𝑒 + 𝑉̂𝑁𝑒 + 𝑉̂𝑒𝑒 (4.7) 

𝐸𝑡𝑜𝑡 = 𝐸𝑒𝑙 + 𝐸𝑁𝑁 (4.8) 
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4.2.1. Slater determinants 

The molecular orbitals are used to construct the multi-electronic wave function of the system. Since the 

electrons are fermions particles, they obey the Pauli exclusion principle. According to this principle, a wave 

function describing a collection of fermions must exhibit anti-symmetry when exchanging the coordinates 

of two electrons. The Hartree Product, which is a product of single-electron wave functions, fails to satisfy 

this anti-symmetry requirement. In response to this limitation, Fock and Slater introduced a solution128,129: 

they replaced the Hartree Product with the Slater Determinant. The Slater Determinant, defined by Eq. 

4.9, forms the polyelectronic wavefunction and mathematically represents the anti-symmetry required by 

the Pauli principle. The polyelectronic wavefunction (Ψ) for a system of N electrons is written as a 

determinant of N mono-electronic wavefunctions ():  

The mono-electronic functions expressed in Eq. 4.10 are called spin-orbitals. 

which depends on both the spatial coordinates (r) and the spin coordinates (s) of an electron. The spatial 

orbital, φ(r), describes the spatial distribution of an electron, while the spin function, σ(s), indicates the 

electron's spin (which can be either alpha or beta). It's important to note that, in principle, a wavefunction 

could be composed of a linear combination of several Slater determinants using multi-reference methods. 

However, many commonly used methods, especially those discussed here, rely on single-reference 

methods. In this approach, the ground state is described by a single Slater determinant. 

4.3. Density Functional Theory 

In a system composed of N particles, the Schrödinger equation can be exactly written considering the 

Coulombic interactions between electrons (figure 4.2a.) The dimensionality of the quantum state space 

increases dramatically by the number of particles. For each particle N, we need three coordinates (x, y, z) 

to describe its position in three dimensions. Therefore, the dimensionality of the entire system's 

wavefunction is 3N. Consequently, finding an analytical solution to this general N-particle Schrödinger 

equation is exceedingly challenging from a computational perspective. This is where approximations like 

DFT become essential to allow the description of the electronic structure of molecular systems.  

Ψ𝑆𝑙𝑎𝑡𝑒𝑟(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

√𝑁!
[

𝜑1(𝑥1) ⋯ 𝜑𝑁(𝑥1)
⋮ ⋱ ⋮

𝜑1(𝑥𝑁) ⋯ 𝜑𝑁(𝑥𝑁)
] 

(4.9) 

𝜑𝑖(𝑥) = 𝜑𝑖(𝑟)𝜎(𝑠) (4.10) 
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In this theory, instead of dealing with wavefunctions, the energy and the properties of every N electron 

(N: total number of electrons) system are described using electronic density as the main variable. This is 

demonstrated in figure 4.2b. This methodology simplifies a problem dependent on 3N cartesian 

coordinates for a system of N electrons into a unique electronic density problem, defined by only three 

spatial coordinates (x,y,z) represented by r.  

 

(a)                 (b) 

Figure 4.2 – (a) Schematic representation of electrons denoted by black circles with arrows illustrating Coulomb 
interactions between some electrons. (b) Illustration of a mean-field DFT approach, where DFT quasiparticles are 

depicted as white circles moving within a background field generated by the electric field of other particles. 

The electronic density (r) and the wave function are linked by Eq. 4.11. 

N is directly correlated to the electron density by the integration of the above defined density over all 

space (Eq. 4.12).:  

The rigorous formulation for this theory came from Hohenberg and Kohn in 1964. Their theorems 

provide the mathematical consistency which has contributed to confer DFT’ s position as one of the most 

used approaches in theoretical chemistry. 

  

𝜌(𝑟) = 𝛹∗(𝑟)𝛹(𝑟) = |𝛹2(𝑟)| (4.11) 

𝑁 = ∫ 𝜌(𝑟)𝑑𝑟 
(4.12) 
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4.3.1. Hohenberg-Kohn Theorems  

Theorem 1: “Two N-electron systems defined by two Hamiltonians with external potentials differing by 

more than one constant cannot have ground states with the same electronic density, i.e., the external 

potential is defined by the electron density of the ground state.”  

In this first theorem, also known as the existence theorem, Hohenberg, and Kohn130 demonstrated that 

the electron density of an N-electron system, with a given electronic interaction, uniquely determines the 

Hamilton operator, i.e., the potential and thus all properties of the system. The electronic energy of a 

chemical system can be expressed (Eq. 4.13) as a functional of the density. Functional in quantum 

mechanics is a mathematical operator that takes a function (e.g., a density function or a wave function) as 

input and maps it to a scalar, typically representing a physical quantity. For instance, the electron density 

function (which gives the probability of finding an electron at each point in space) is transformed by the 

functional into the total energy of the system (which is a function of the electron density function). 

Te(), Vee(), and VNe() are the kinetic energy, the electron-electron repulsion and the nucleus-electron 

attraction potential energies, respectively. 

 The potential generated by the nuclei can be considered as an external potential, vext, from which the 

electrons are affected. Therefore, it is possible to generalize the Eq. 4.13 in the form of the Eq. 4.14. 

FHK() represents the Hohenberg-Kohn functional and incorporates both the kinetic energy of the 

electrons and their interactions. The last term is the contribution from the external potential generated by 

the nuclei. This term represents the potential energy due to the interaction of electrons with the nuclei. 

The Hohenberg-Kohn functional is often referred to as “universal functional” because it is independent 

from the external potential and therefore, it depends only on the electrons.  

Theorem 2 (called the variational theorem): “Any approximate trial electronic density (r), which defines 

completely the vext and a trial wave function Ψ, can be used to determine variationally the electronic density 

that minimizes the energy of the ground state”.  

This second theorem applies the variational principle of quantum mechanics as a resolution procedure to 

calculate the ground state electronic energy, E0[]. Starting with an approximate density, its own external 

𝐸[𝜌(𝑟)] = 𝑇𝑒[𝜌(𝑟)] + 𝑉𝑒𝑒[𝜌(𝑟)] + 𝑉𝑁𝑒[𝜌(𝑟)] (4.13) 

𝐸[𝜌(𝑟)] = 𝐹𝐻𝐾[𝜌(𝑟)] + ∫ 𝑣𝑒𝑥𝑡(𝑟)𝜌(𝑟)𝑑𝑟 
(4.14) 
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potential vext(r) can be determined and hence, its associated wavefunction Ψ. The variational principle 

allows the selection of the electronic density (E0[]) that closely approximates the true density by 

minimizing the total energy of the system. This selection aims to satisfy the following property (Eq. 4.15).  

Where ground state energy (E0) corresponding to the Hamiltonian in Eq. 4.7 can be mathematically 

expressed as Eq. 4.16. 

The energy of a system is a priori exact thanks to the knowledge of universal functional (FHK) and of the 

electronic density only. However, is not possible to know the analytic formula of the universal functional, 

as the exact formula of the electronic kinetic energy (Te()) and electron-electron repulsion potential 

energies (Vee()) are not known.  

To overcome the principal drawback of expressing the universal functional, Kohn and Sham proposed an 

exact method to determine the ground state electron density of a system and consequently, the energy. 

4.3.2. Kohn-Sham method 

In the DFT, the Kohn and Sham131 energy functional (EHK-KS) can be expressed as the sum of four terms 

given in Eq. 4.17.  

Tns is the kinetic energy of a non-interacting electron of a given density can be exactly expressed analytically 

by Eq. 4.18 

The subscript ns means non-interacting system. The electron-electron interaction term is represented by 

the classical electrostatic term plus a non-classical one J (Eq. 4.19). 

And the external potential is given by Eq. 4.20. 

⟨𝜓(𝜌)|𝐻̂|𝜓(𝜌)⟩ = 𝐹𝐻𝐾[𝜌(𝑟)] + ∫ 𝑣𝑒𝑥𝑡(𝑟)𝜌(𝑟)𝑑𝑟 = 𝐸[𝜌(𝑟)] > 𝐸0[𝜌0(𝑟)] 
(4.15) 

𝐸0[𝜌0(𝑟)] = 𝑚𝑖𝑛𝜓⟨𝜓(𝜌)|𝐻̂|𝜓(𝜌)⟩ (4.16) 

𝐸𝐻𝐾−𝐾𝑆[𝜌] = 𝑇𝑛𝑠[𝜌] + (𝑇[𝜌] − 𝑇𝑛𝑠[𝜌]) + 𝑉𝑒𝑒[𝜌] + (𝑉𝑒𝑒[𝜌] − 𝐽[𝜌])+𝑉𝑛𝑒[𝜌] (4.17) 

𝑇𝑛𝑠[𝜌(𝑟)] = ∑ ⟨𝜓𝑖|
1
2 ∇𝑖

2|𝜓𝑖⟩

𝑁

𝑖

 

(4.18) 

𝑉𝑒𝑒[𝜌(𝑟)] = ∑ ⟨𝜓𝑖| ∫
𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′|𝜓𝑖⟩ +

𝑁

𝑖

𝐽[𝜌(𝑟)] 
(4.19) 
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The use of molecular orbitals, as introduced in the section before, is essential for construct the multi-

electronic wavefunction of a non-interacting system. This wavefunction is trivially represented by a Slater 

determinant, as described in Eq. 4.21.  

In Eq. 4.21 where the single particle orbitals are a set of orthonormal orbitals, each one is a solution of a 

set of N Schrödinger equation (Eq. 4.22).  

The electronic Hamiltonian is written as monoelectronic Hamiltonian (Eq. 4.23). 

The first term of the KS Hamiltonian (Eq. 4.23) accounts for the kinetic energy, the second represents the 

coulomb interaction between the electrons and the third term is the static coulomb repulsion between the 

nuclei and the electron. Finally, the last term (vXC) represents the exchange correlation potential, which is 

gathering all the corrections that are not known and need approximation to be estimated. It can be defined 

as the exchange correlation energy functional derivative to the electron density given by Eq. 4.24.  

The exchange correlation energy functional accounts for the kinetic energy correction of non-interacting 

electrons and considers non-classical interactions between electrons (Eq. 4.25).  

Thus, Eq. 4.17 can be rewritten (Eq. 4.26): 

Kohn and Sham have thus devised a method for calculating the energy of a system in its ground state. The 

exact ground state energy can be calculated if the true expression of the Exc functional was known. Since 

𝑉𝑁𝑒[𝜌(𝑟)] = ∑ ⟨𝜓𝑖| ∫
𝑍𝑎

|𝑟 − 𝑅𝑎|
𝑑𝑟|𝜓𝑖⟩

𝑁

𝑖

 

(4.20) 

Ψ𝑆𝑙𝑎𝑡𝑒𝑟(𝑟1, 𝑟2, … , 𝑟𝑁) =
1

√𝑁!
[

𝜓1(𝑟1) ⋯ 𝜓𝑁(𝑟1)
⋮ ⋱ ⋮

𝜓1(𝑟𝑁) ⋯ 𝜓𝑁(𝑟𝑁)
] 

(4.21) 

𝐻𝐾𝑆𝜓𝑖 = 𝜀𝑖𝜓𝑖  (4.22) 

𝐻𝐾𝑆 = −
1

2
∇𝑖

2 + ∫
𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ − ∫

𝑍𝑎

|𝑟 − 𝑅𝑎|
𝑑𝑟 + 𝑣𝑋𝐶[𝜌(𝑟)] 

(4.23) 

𝑣𝑋𝐶[𝜌(𝑟)] =
𝛿𝐸𝑋𝐶[𝜌(𝑟)]

𝛿𝜌(𝑟)
 

(4.24) 

𝐸𝑋𝐶[𝜌(𝑟)] = (𝑇[𝜌(𝑟)] − 𝑇𝑠[𝜌(𝑟)]) + (𝑉𝑒𝑒[𝜌(𝑟)] − 𝐽[𝜌(𝑟)]) (4.25) 

𝐸𝐻𝐾−𝐾𝑆[𝜌(𝑟)] = 𝑇𝑛𝑠[𝜌(𝑟)] + 𝑉𝑒𝑒[𝜌(𝑟)]+𝑉𝑛𝑒[𝜌(𝑟)] + 𝐸𝑋𝐶[𝜌(𝑟)] (4.26) 



Chapter 4 – COSMO Solvation model and Quantum Chemistry 

 118 

the exact exchange-correlation functional expression is not known, different approximations have been 

developed to estimate it. Consequently, the accuracy of DFT calculations depends on the accuracy of 

exchange-correlation functional. However, compared to the other energetic terms, it is relatively small, 

thus, yielding quite realistic results. 

Before introducing the exchange-correlation functional to perform DFT calculations on molecules, it is 

necessary to define the space where the molecular wavefunction extends. This is done by the conversion 

of the canonical differential equations into algebraic equations introducing a set of variable functions, 

called atomic basis set.  

4.3.3. The atomic basis set 

The molecular orbitals are built by a Linear Combination of Atomic Orbitals (LCAO) of monoelectronic 

wave functions (Eq. 4.27), called basis functions 125,132 (Atomic Orbitals: AO) and centered on each atom.  

(r), is the molecular orbital, ciq is the coefficient representing the weight of the atomic orbital χq(r). The 

set of χq(r) atomic orbitals constitutes the atomic basis set. Decomposed on these set of functions, the 

electronic Schrödinger equation assumes a matrix representation, and can be solved by linear-algebric 

matrix techniques. Two main types of functions are used to described the AO, either Slater-type orbitals 

(STO) or Gaussian-type orbitals (GTO). 125,132 

Slater-Type Orbitals (STO): are expressed by the following function obtained from the exact solutions 

of the Schrödinger equation for the hydrogen atom and have an exponential form (Eq. 4.28). 

Where x, y, and z are the molecular cartesian coordinates. Naq is the normalization constant, aq is the orbital 

angular moment, rq is the atomic center and q is the exponent. STOs have the advantage that they closely 

mimic the orbital shape of a hydrogen atom thanks to the linear dependence on the distance at the 

exponent. However, the computation of the two-electron integrals at different centers cannot be 

performed analytically.  

𝜙𝑖(𝑟) = ∑ 𝑐𝑖𝑞𝜒𝑞(𝑟)

𝐾

𝑞=1

 

(4.27) 

𝜒𝑞
𝑆𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁𝑎𝑞

𝑥𝑎𝑞,𝑥𝑦𝑎𝑞,𝑦𝑧𝑎𝑞,𝑧𝑒−𝛼𝑞|𝑟−𝑟𝑞| (4.28) 
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Gaussian-Type Orbitals (GTO): use a linear combination of GTO to reproduce as close as possible the 

overall form of a given STO. Since they are simple to integrate, they are commonly employed, and their 

general form is given by Eq. 4.29. 

Due to the quadratic dependence in the exponential term |r-rq|
2, gaussian functions are less similar to the 

orbital shape of a hydrogen atom. They do not peak at the nuclear center, and they decay more rapidly. 

To overcome these limitations, it is typically used to retain some of the Gaussian Primitives (PGTO) in 

fixed linear combinations, and this procedure is called contraction. 

Contracted Gaussian-Type Orbitals (CGTO): is a linear combination of primitive GTO used for 

building Contracted Gaussian-Type Orbitals (CGTO) according to Eq. 4.30. 

These primitive functions are combined using contraction coefficients, denoted as dd,k, allowing control 

on the overall shape of the CGTO. Different contraction procedures exist125,132: a general contraction 

involves combining multiple primitive Gaussian functions (each centered on the same atom or nucleus) 

into a single contracted orbital. This contraction is achieved by linearly combining the primitive Gaussians 

with contraction coefficients. By using general contractions, the electronic structure of molecules can be 

described in a computationally efficient manner retaining a high level of accuracy in representing the wave 

functions of the system.  

The selection of the atomic basis set holds significant importance. A larger basis set provides a more 

accurate description of the system but comes at the cost of increased computational time. Hence, choosing 

an appropriate basis set involves addressing the trade-off between accuracy and computational effort. Basis 

sets can be categorized into: 

Minimal basis set represents the smallest set of functions required to describe the electron orbitals for 

an atom adequately. Each orbital essential for describing the atom's electrons is represented by a single 

function in this basis set. For instance, in a hydrogen atom, only one orbital is required, constituting the 

minimal basis set for hydrogen. On the other hand, a carbon atom demands five orbitals (1s, 2s, 3px, 2py, 

and 2pz) to accurately depict its electron orbitals, even with one of the p orbitals remaining unoccupied. 

Consequently, the minimal basis set for carbon comprises five functions to represent these orbitals. 

𝜒𝑞
𝐺𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁𝑎𝑞

𝑥𝑎𝑞,𝑥𝑦𝑎𝑞,𝑦𝑧𝑎𝑞,𝑧𝑒−𝛼𝑞|𝑟−𝑟𝑞|
2

 
(4.29) 

𝜒𝑞
𝐺𝑇𝑂(𝑥, 𝑦, 𝑧) = ∑ 𝑑𝑞,𝑘

𝑁𝑔

𝑘=1

𝜒𝑞
𝐺𝑇𝑂 

(4.30) 
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The most common minimal basis set is called Slater Type Orbitals approximated by n Gaussian functions 

(STO-nG). Where n is an integer that represents the contraction length and can vary from 2 to 6. Despite 

their tendency to yield less accurate results, these sets are widely used due to their low computational cost, 

making them valuable for quick qualitative insights. The most common is the STO-3G, which accounts 

for three Gaussian primitives per basis function. As we seek to improve accuracy without excessive 

computational cost, we arrive at the Split-valence basis set.  

Split-valence basis set: In this basis set, the core electrons are approximated using a single contracted 

basis function containing n Gaussian primitives. On the other hand, valence orbitals are described using 

two (double-ζ), or three (triple-ζ) basis functions, each one characterized by Gaussian primitives denoted 

as a, b, c. The symbol "ζ" (zeta) signifies the exponent determining the spatial decay and extent of Gaussian 

or Slater-type orbitals. The categorization of these basis sets follows Pople's nomenclature.133 In practical 

application, consider the 3-21G basis set for a carbon atom: 

• 1s Orbital: Described by simple-ζ with n = 3 Gaussian primitives. 

• 2s, 2px, 2py, and 2pz Orbitals: Described by a = 2 Gaussian primitives (first STO of the double-

ζ), and b = 1 Gaussian function in the second STO double-ζ. 

The split valence basis set allows orbitals to adapt in size without altering their shape. Advancements have 

led to the development of polarized basis sets.  

Polarized basis sets address the limitation of shape by introducing functions with higher angular 

momentum than valence electrons. These higher angular momentum functions are denoted by specific 

letters:  

d Representing higher angular momentum functions for elements of the second row. 

f Indicating higher angular momentum functions for heavy atoms. 

p signifying higher angular momentum functions for hydrogen. 

Another critical enhancement emerges to describe electron behavior, particularly when electrons are 

relatively far from the nucleus. 

Diffuse functions allow orbitals to occupy larger regions of space, providing a more accurate 

representation of electron density distribution. This is especially important for systems involving lone 

pairs, negatively charged species, excited states, or those with low ionization potential. These functions are 

symbolized by a “+”, denoting the addition of extra functions. The first “+” indicates that extra functions 
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are added to heavy atoms, and the second “+” adds extra functions to hydrogen atoms. This addition 

expands the functionality of the basis set, enabling a more comprehensive and precise description of 

electron behavior. 

The notation of a basis set can be represented in a compact form using the following equation (Eq. 4.31).  

This equation provides a representation of the basis set notation following Pople's nomenclature, including 

the presence of diffuse and polarized functions when applicable. Table 4.2 provides a comprehensive 

overview of the nomenclature regarding these basis sets, defining its symbols and presenting common 

values. 

Table 4.2 – Nomenclature for basis sets. 

Basis 
set 

Value Description 

n 3 or 6 Gaussians primitive in the core orbital 

a 2 or 3 Gaussians primitives in the inner valence shell 

b 1 Gaussian primitive in the outer valence shell (valence orbital duplicated)  

c 0 or 1 Gaussian primitive in the outer valence shell (valence orbital triplicate) 

+ 
++ 

 
 

Diffuse functions on heavy atoms or  

Diffuse functions in both, heavy and hydrogen atoms 

d 0 to 3d d-type polarization functions 

f 0 to 3f f-type polarization functions on heavy atoms 

p 0 to 3p p-type polarization function on hydrogen atoms 

4.4. The Exchange-Correlation energy 

As mentioned previously, the main problem in the DFT is finding the appropriate form of the exchange-

correlation energy (EXC) which contains all information about the many-body system of interacting 

electrons. Currently, we do not know the exact form of this functional, however, many approximations 

have been proposed. These approximate models can roughly be divided into three classes: 

Local Density Approximations (LDA) consider the exchange-correlation energy at each point in space 

as a functional of the local electron density at that point. 

n-abc+G(df, p) (4.31) 
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Gradient-Corrected Approximations (GGA) incorporate not only the local electron density but also its 

gradient. 

Hybrid functionals combine a fraction of Hartree-Fock exchange with exchange and correlation terms 

from either LDA or GGA.  

Perdew134 proposed a general classification of the different approximations called “Jacob’s ladder of 

density functional approximation” (see figure 4.3). Where the bottom represents the Hartree world, the 

top corresponds to the “heaven” of chemical accuracy with the highest level of accuracy. The level of 

density accuracy is intricately linked to the chosen model approximation, particularly the exchange-

correlation (XC) functional which is a key component in DFT. Different XC functionals make varying 

approximations to the true exchange and correlation effects within the electron system. Each rung of the 

ladder represents the XC functional. As you climb the "Jacob's ladder of density functional approximation" 

and use more sophisticated XC functionals, hence their accuracy. The circles in figure 4.3 represent the 

relative density differences with respect to coupled cluster singles and doubles (CCSD)135,136 for the 

beryllium atom across the four different groups of density functionals. The beryllium atom is a convenient 

and representative test case to evaluate the accuracy and performance of density functionals due to its 

well-known properties, sensitivity to different approximations, computational feasibility, and relevance in 

understanding fundamental principles of electronic structure.  

       

Figure 4.3 – Graphical representation of the Jacob’s ladder of chemical accuracy. For each rung in the ladder an 
indication of the accuracy is given according to the heat map shown. Adapted from reference137. 
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4.4.1. Local density approximation 

Local Density Approximation (LDA)131 is the simplest approach to approximate XC functional, in which 

approximates the real electron density to a homogeneous electron gas. In other words, LDA assumes that 

the electron density varies very slowly with the position r, thus the density can be considered constant 

anywhere in the space. Furthermore, LDA considers the value of the electron density for a given point to 

compute the energy density at that point, therefore the functional is local (Eq. 4.32):  

EXC[] is the exchange-correlation energy per electron that has a constant density . Furthermore, it can 

be separate (Eq. 4.33) into two contributions: exchange and correlation.  

The exchange energy (EX) can be computed analytically by the Dirac equation (Eq. 4.34). 

On the other hand, the correlation energy (EC) is not known exactly. Therefore, an approximation 

expression can be obtained based on a complex function depending on parameters fitted by Monte-Carlo 

simulations for the energy of the homogeneous electron.  

This functionals LDA can describe systems characterized by slowly varying electronic density (i.e., metals) 

with certain accuracy. On the other hand, inefficient for materials with many highly delocalized electrons. 

4.4.2. Generalized gradient approximation  

The electron density in atoms, molecules, or metals is typically not homogeneous and varies significantly 

from one point to another. To overcome the limitation in the use of LDA functionals, a second generation 

of approximate functionals introduced a dependency not only on the local density value but also on its 

gradient and called Generalized gradient approximation (GGA)138. Usually, these functionals are 

constructed by adding a correction term to the LDA functional, in the form of Taylor series expansion 

(Eq. 4.35).  

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝑟)] = ∫ 𝜌(𝑟) ⋅ 𝐸𝑋𝐶[𝜌(𝑟)]𝑑𝑟 

(4.32) 

𝐸𝑋𝐶[𝜌(𝑟)] = 𝐸𝑋[𝜌(𝑟)] + 𝐸𝐶[𝜌(𝑟)] (4.33) 

𝐸𝑋𝐶[𝜌(𝑟)] = −
3

4
√

3𝜌(𝑟)

𝜋

3

 

(4.34) 
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GGA can be improved considering also the second derivative of the electron density (2) known as the 

kinetic energy density. Those functionals are called meta-GGA functionals139 and takes the form given by 

Eq. 4.36. 

These functionals can be divided into two classes: empirical, and semi-empirical functionals and presented 

in Table 4.3. Empirical functionals are parameter-free functionals and are known for their general 

applicability giving accurate results for a wide range of systems, such as BP86, PW91 developed by Perdew 

and Wang and PBE by Perdew, Burke, and Ernzerhof. Instead, semi-empirical functionals use adjusted 

parameters by fitting experimental data, such as atomic energies. Some examples are LYP by Lee, Yang, 

and Par, or BLYP when including Becke exchange functional with the LYP. Where the last one, BLYP, 

containing only one parameter, fits the exact Hartree-Fock exchange energies of a wide variety of atomic 

systems with remarkable accuracy, surpassing the performance of previous functionals containing two 

parameters or more.  

Table 4.3 – meta-GGA functionals. 

 Type               Name              Description                                             Reference                                

 Empirical          
          
          

 BP86                    
 General-purpose, accurate for a wide range 
of systems   Perdew and Wang                          

 PW91                     General-purpose, provides accurate results             Perdew and Wang                          

 PBE                      General-purpose, widely used and accurate             
 Perdew, Burke, and 
Ernzerhof138              

 Semi-
Empirical     
    

 LYP                      Uses adjusted parameters based on fitting               Lee, Yang, and Par                       

 BLYP                     Adjusted parameters with Becke exchange                Becke and Lee                            

More accurate functionals are obtained when including fractions of the exact Hartree-Fock Exchange in 

a GGA functional and are called hybrid functionals.  

4.4.3. Hybrid functionals 

LDA and GGA are affected by different sources of error. Among the known problems, the self-interaction 

error comes from the fact that the residual self-interaction in the Coulomb part and in the exchange part 

do not cancel each other exactly. Calculations performed with these methods tend to over-delocalize the 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌(𝑟)] = 𝐸𝑋𝐶

𝐿𝐷𝐴[𝜌(𝑟)] + [
∇𝜌

𝜌
4
3(𝑟)

] 

(4.35) 

𝐸𝑋𝐶
𝑚𝑒𝑡𝑎−𝐺𝐺𝐴[𝜌(𝑟)] = ∫ 𝜌(𝑟) ⋅ 𝐸𝑋𝐶[𝜌(𝑟), ∇𝜌, ∇2𝜌]𝑑𝑟 

(4.36) 
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electronic structure to minimize this unphysical self-interaction. To overcome this drawback and remove 

the self-interaction error, the strategy is to incorporate a portion of exact exchange from the Hartree-Fock 

theory with the DFT one. This inclusion may be justified through the so-called adiabatic connection; a 

fundamental concept that establishes a link between the non-interacting and interacting systems of 

electrons in a many-body quantum system. The basic idea behind this connection relies on the fact that 

when the Slater determinant is built with the occupied Kohn-Sham orbitals, rather than the density, can 

give an exact solution in the case of the non-interacting system. Since the exchange-correlation energy 

arises from electron-electron interaction, a functional that accounts for this interaction should include a 

part of the exchange energy.  

Drawing this connection between the interacting and non-interacting systems forms the basis for what are 

known as hybrid density functionals. These two systems can be expressed by the exchange-correlation 

potential as a function of parameter  (Eq. 4.37). This results in a polynomial function of degree n-1 and 

depends on . This parameter is varying from zero to one and the electron-electron interaction is switched 

off when  is equal to zero and switched on when  is equal to one. The integer n controls the speed with 

which the correction brought to DFT is canceled when  tends toward the unit. 

Integration of the equation 4.37 over the interval   [0,1] gives (Eq. 4.38): 

One can derive that exchange-correlation energy can be computed by eq. 4.39. 

B3LYP is an example of this group of functionals, which contains additional empirical parameters to 

improve the computation of the total exchange-correlation energy. B3LYP incorporates 20% of exact 

exchange from HF theory (with a=0.20), and 72% of GGA exchange functional developed by Becke, 

𝐸𝑋
B88 (with b=0.72), and 81% of GGA correlation functional developed by Lee, Yang, and Par, 𝐸𝐶

LYP (with 

c=0.81), combining with the LDA exchange-correlation functional according to the Eq. 4.40. 

𝑣𝑋𝐶
 [𝜌(𝑟)] = 𝐸𝑋𝐶

DFT[𝜌(𝑟)] + (𝐸𝑋
HF + 𝐸𝑋

DFT[𝜌(𝑟)])(1 − λ)𝑛−1 (4.37) 

𝐸𝑋𝐶[𝜌(𝑟)] = ∫ 𝑣𝑋𝐶
 [𝜌(𝑟)]𝑑λ

1

0

= 𝐸𝑋𝐶
DFT[𝜌(𝑟)] +

1

𝑛
(𝐸𝑋

HF + 𝐸𝑋
DFT[𝜌(𝑟)]) 

(4.38) 

𝐸𝑋𝐶[𝜌(𝑟)] = ∫ ⟨𝜓(λ)|𝑉𝑒𝑒(λ)|𝜓(λ)⟩
1

0

− 𝐽[𝜌(𝑟)] 
(4.39) 

𝐸𝑋𝐶
B3LYP = 𝐸𝑋

LDA + 𝑎𝐸𝑋
HF + 𝑏𝐸𝑋

B88 + (1 − 𝑐)𝐸𝐶
LDA + 𝑐𝐸𝐶

LYP (4.40) 
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PBE0 proposed by Adamo et al. in 1999 is another hybrid functional widely known. This functional is 

constructed using the parameter-free PBE, combining 25% of the HF exchange. PBE0 functional (Eq. 

4.41) is considered a parameter-free global hybrid functional, since the Hartree-Fock exchange was 

proposed by Perdew on purely theoretical considerations and the PBE does not contain empirical 

parameters. 

4.4.4. Range-separated hybrid functionals  

Range-separated hybrid (RSH) functionals are a subgroup of hybrid functionals in which the ratio of HF 

exchange varies with the inter-electronic distance. These functionals have been developed since at short 

distances the dominant interaction is the dynamic correlation, whereas at large distances, the non-

Coulombic interaction is dominant (well described with HF approach). Therefore, the ratio of HF 

exchange should not be considered constant. Thus, in the RSH functional the Coulomb operator split into 

short- and long-range components by Eq. 4.42. 

r12 is the inter-electronic distance,  and  are parameters determined empirically. ω is a constant that 

determines how the Coulomb operator is separated into short-range and long-range components as a 

function of the inter-electronic distance (r₁₂).. 

As in the case of global hybrids, the usual procedure is fitting a standard benchmark set of molecules to 

experimental thermochemical data and the obtained values are then used for all systems. The first term 

accounts for the short-range interaction, while the second the long-range one. The error functions (erf) 

link the short- and the long-range of the Coulomb operator under an attenuation factor, .  

CAM-B3LYP is an example of a range-separated hybrid functional. This functional combines the 

Coulomb-attenuating method (CAM) and the global hybrid B3LYP. Whereas at long-range, it considers 

65% of exact HF exchange and at short-range, it considers 19% of inter-electronic interactions. This 

functional is thus qualified for long-range corrected functional. The parameters of the Coulomb operator 

(Eq. 4.42), ,  and  are set to 0.19, 0.46 and 0.33 respectively. 

 

𝐸𝑋𝐶
PBE0 = 𝐸𝑋

PBE + 𝐸𝐶
PBE +

1

4
(𝐸𝑋

HF − 𝐸𝑋
PBE) 

(4.41) 

1

𝑟12
=

1 − [𝛼 + 𝛽erf (𝜔𝑟12)]

𝑟12
+

𝛼 + 𝛽erf (𝜔𝑟12)

𝑟12
 

(4.42) 
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4.5. Modeling solvent effect 

In computational chemistry, modeling the solvent effect is crucial for understanding how a solvent 

influences the electronic structure (at the molecular level) and overall properties of a system (at the 

macroscopic level). This is important in studying chemical reactions, molecular interactions, and various 

processes that occur in a solvent environment.  

To describe the interaction between solvent and solute in the context of quantum chemistry, two main 

approaches are used to account for solvent effect: explicit solvation models and implicit (or continuum) 

models.  

  

(a) (b) 

Fig. 4.4 – Representations of (a) Explicit and (b) Implicit solvation models. 
 

4.5.1. Explicit solvation models  

Explicit models involve representing the solvent molecules explicitly in the computational model. Solvent 

molecules are typically represented by a set of atoms or molecules, within a simulation box, interacting 

directly with the solute, as illustrated in figure 4.4a. In this approach, the solute interacts directly with the 

explicitly included solvent molecules, allowing for a detailed description of specific solute-solvent 

interactions, such as hydrogen bonds. As the position of solvent molecules are explicitly defined, this 

approach provides a more realistic representation of the polarity around the solute. 

4.5.2. Implicit Solvation models 

Implicit models describe the solvent molecules as a continuum medium rather than representing them 

individually, as illustrated in figure 4.4b. Unlike explicit models where solvent molecules are explicitly 

considered, implicit models approximate the solvent's effect on the solute through a continuum 

description. This continuum is often represented by a dielectric constant (ε), which allows the evaluation 
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of how much the solvent is polarized due to the solute presence. In turn, the electronic cloud of the solute 

is affected by the solvent’s polarization, enabling an understanding of their mutual influence without 

representing each solvent molecule explicitly, as ε implicitly represents this effect. The dielectric constant 

(ε) is a dimensionless quantity equal to the electric permittivity relative to the vacuum and ranging from 

around 2 for nonpolar solvents like benzene and hexane to higher values like 78 for water and even up to 

110 for formamide.  

In implicit solvation models, the solvation energy ∆Gsol of a solute in a fixed conformation is usually 

separated between two contributions: ∆Gel  (the electrostatic contribution) and ∆Gne (the non-electrostatic 

contribution) (Eq. 4.43).  

The electrostatic contribution to solvation energy is a result of the work needed to polarize the solute-

solvent system. At both electronic and nuclear levels, the solute's charge density induces a polarization 

effect in the surrounding solvent. This polarization, known as the Reaction-Field (RF), creates an electric 

field in the solvent. RF is responsible for the initial polarization of the solute charge density, reflecting 

short-range and long-range electrostatic responses of the solvent to the solute. Furthermore, this initial 

polarization initiates a self-consistent process of mutual polarization between the solute and the solvent, 

known as the Self-Consistent Reaction Field (SCRF). 

On the other hand, the non-electrostatic contribution to the solvation energy in implicit solvent models 

includes a diverse range of physical phenomena beyond charge interactions. It consists of several 

components that account for different types of interactions and effects between the solute and the solvent. 

These components are as follows: 

• ∆Grep - Short-range Pauli repulsion:  accounts for the energy associated with the repulsive 

interactions between electrons in the solute and the surrounding solvent due to the Pauli exclusion 

principle.  

• ∆Gdis - Dispersion interactions: arise from van der Waals forces and account for the attractive 

forces between a solute and surrounding solvent molecules.  

• ∆Ghb - Hydrogen-bonding: specific interactions between a solute and solvent molecule involving 

the sharing of a hydrogen atom. 

• ∆Gcav - Cavitation energy: accounts for the energy required to form a cavity when a solute is 

introduced into the solvent.  

∆𝐺𝑠𝑜𝑙 = ∆𝐺𝑒𝑙 + ∆𝐺𝑛𝑒 (4.43) 
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Each of these components contributes uniquely to the overall non-electrostatic solvation energy, as 

schematically shown in Fig. 4.2 and expressed by the Eq. 4.44. 

In the figure 4.5, Wel stands for the electrostatic work needed to polarize the dielectric media. ∆Gcav has 

been considered separate from ∆Gne (gray) to point out the cavity (yellow) formation within the dielectric 

media (blue).  

 
Figure 4.5 – Thermodynamic cycle depicting the solvation free energy decomposition into contributions.  

 

4.5.2.1. The solution of the electrostatic problem  

The main assumption of most implicit solvation models is that the electric behavior of a medium can be 

simplified and described by a macroscopic polarization defined by a dipole density, denoted as P(r). In the 

presence of a dielectric medium, the conventional electric field E(r) in vacuum is replaced by the electric 

displacement field, denoted as D(r). The electric displacement field accounts for the influence of the 

dielectric medium, altering how electric forces are distributed and experienced within the medium by the 

Eq. 4.45. 

𝐷(𝑟) = 𝜀(𝑟)𝐸(𝑟) = 𝐸(𝑟) + 4𝜋𝑃(𝑟) (4.45) 

In Eq. 4.45, the permittivity ε(r) is presented as a scalar-valued function rather than a simple dielectric 

constant. Given a charge density (r), including both nuclei and electrons for the solute, Maxwell's 

equation for the displacement field D(r) is deduced accordingly Eq. 4.46. 

∇ ∙ 𝐷(𝑟) = 4𝜋𝜌(𝑟) (4.46) 

∆𝐺𝑛𝑒 = ∆𝐺𝑟𝑒𝑝 + ∆𝐺𝑑𝑖𝑠 + ∆𝐺ℎ𝑏 + ∆𝐺𝑐𝑎𝑣 (4.44) 
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This equation can be reformulated in the familiar form of Poisson's by considering the relation between 

the electric field and the negative gradient of the potential (𝐸(𝑟) = −∇𝜙(𝑟)) as Eq. 4.47. 

∇[𝜀(𝑟) ∙ ∇𝜙(𝑟)] = −4𝜋𝜌(𝑟) (4.47) 

When explicit solvent molecules are replaced with a dielectric medium, the clear boundary between the 

solute and the solvent, often resulting from Pauli repulsion, disappears. To address this, an arbitrarily 

defined surface denoted as Γ is introduced. This surface acts as the interface between the region where 

atoms of the solute are explicitly considered, denoted as Ωinner, and the region where the solvent is 

substituted with the dielectric medium, denoted as Ωouter, as illustrated in figure 4.6. The introduction of 

this surface requires defining ε(r) as a step function. Specifically, it takes on the values εinner and εouter when 

r is situated within the inner Ωinner or outer Ωouter region, according to relationship in Eq. 4.48. 

𝜀(𝑟) = {
𝜀𝑖𝑛𝑛𝑒𝑟    if 𝑟 is ∈  Ω𝑖𝑛𝑛𝑒𝑟

𝜀𝑜𝑢𝑡𝑒𝑟    if 𝑟 is ∈  Ω𝑜𝑢𝑡𝑒𝑟
 

(4.48) 

 

 
Figure 4.6 – Solute Cavity. Blue region: dielectric medium (εouter). White region: solute region (εinner=1). Yellow: 

solute-solvent interface (Γ). 

In QM calculations, a typical practice is to set the relative permittivity εinner to 1 for the inner region Ωinner 

(representing vacuum), while for the outer region Ωouter (representing the solvent), εouter is assigned the 

relative permittivity of the solvent. 

Poisson's equation is foundational in continuum electrostatics, relating the electric potential (r) to charge 

density (r). In this context, starting with (r) from electronic structure calculations, Poisson's equation is 

solved to find (r) across space. The potential is then separated into two parts (Eq. 4.49): 

𝜙(𝑟) = 𝜙𝜌(𝑟) + 𝜙𝑅𝐹(𝑟) (4.49) 



Chapter 4 – COSMO Solvation model and Quantum Chemistry 

 131 

Where (r) is the potential of the charge density of the solute (r), originally responsible for the 

polarization of the dielectric media and the appearance of an additional charge term pol(r) acting as source 

term of the reaction-field potential RF(r). Once  (r) is derived from Schrödinger's equation and  (r) is 

obtained by solving Eq. 4.47, the electrostatic solvation energy can be expressed as Eq. 4.50. 

𝐸𝑅𝐹 =
1

2
∫ 𝜙𝑅𝐹(𝑟)𝜌(𝑟)𝑑𝑟 =

1

2
∫ 𝜙𝑝(𝑟)𝜌𝑝𝑜𝑙(𝑟)𝑑𝑟 

(4.50) 

The presence of the factor 1/2 in Eq. 4.50 signifies that the interaction energy is decreased by exactly half 

its initial value. This adjustment considers the energy needed to polarize the surrounding environment. 

The reaction-field potential RF(r) is a fundamental component shared by all Apparent Surface Charge 

(ASC) methods. ASC methods effectively utilize this potential to model the polarization effects induced 

by charges originating from the solute within a solvent by Eq. 4.51. 

𝜙𝑅𝐹(𝑟) = ∫
𝜎(𝑠)

|𝑠 − 𝑟|
𝑑𝑠

⬚

𝑠 ∈ Γ

 
(4.51) 

This equation (Eq. 4.51) describes the potential at a point r inside the volume, as a result of the integration 

overall points s on the cavity surface. To calculate the potential at a specific point within the volume RF(r) 

it is only necessary to discretize the cavity surface Γ rather than the whole of three-dimensional space and 

should be consider the statement (Eq. 4.52). 

{
𝜙𝑖𝑛𝑛𝑒𝑟 (𝑟) = 𝜙𝑜𝑢𝑡𝑒𝑟 (𝑟)

𝜀𝑖𝑛𝑛𝑒𝑟𝑛 ∙  ∇𝜙(𝑟)|𝑖𝑛𝑛𝑒𝑟 = 𝜀𝑜𝑢𝑡𝑒𝑟𝑛 ∙  ∇𝜙(𝑟)|𝑜𝑢𝑡𝑒𝑟
 

(4.52) 

4.5.2.2. Cavity definition 

The solute cavities can be roughly categorized into empirical cavities, which are based on empirical van 

der Waals radii or the molar volume of the solute, and non-empirical cavities, which rely on an isodensity 

surface derived from the electronic density of the solute obtained through quantum mechanical (QM) 

calculations. In the context of initial electrostatic models developed by Born, Onsager, Kirkwood, and 

others, a common and straightforward solute cavity type is a simple spherical cavity surrounding the solute 

charge density. The radius for such cavity was suggested to be (Eq. 4.53): 

R = (
3𝑉𝑚

4𝜋𝑁𝑎
)

1/3

 
(4.53) 
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where Vm is the molar volume of the solute and Na is the Avogadro's constant.  

Figure 4.7 is an illustrative representation of various approaches to construct cavity surfaces. The 

foundational method considers a union of atom-centered spheres, commonly denoted as a van der Waals 

(vdW) cavity surface. These spheres are defined using empirically obtained radii. The most popular is the 

one defined by Bondi.140 The vdW-based solute cavity serves as the initial step in defining another surface, 

which shares a similar premise: simplifying the solvent molecule into a sphere with a volume equivalent to 

the van der Waals volume of the solvent by using a scaling factor. These constructed surfaces are known 

as Solvent-Accessible Surfaces (SAS). Both the vdW surface and the SAS exhibit characteristic cusps at 

the intersections of atomic spheres. These cusps are effectively eliminated in the solvent-excluded surface 

(SES), which is generated as a probe sphere rolls over the vdW surface, as illustrated in Figure 4.7. 

 

Figure 4.7 – 2D example of a SAS in green and a SES solute cavity in yellow, with Solvent Probe in orange, and 
vdW surfaces and sphere in black and gray, respectively.  

The Conductor-like Screening Model (COSMO) or C-PCM (C for conductor) are ASC method. In 

COSMO model, a scaling factor of f = 1.17 is employed and commonly used to obtain the Klamt radii. 

Subsequently, factors around f ≈ 1.1 – 1.2 have become widely accepted, as the one from UFF universal 

forcefield, presented in Table 4.4. 

   Table 4.4 – Atomic radius in angstrom. 

Element Bondi UFF Klamt 

C 1.70 1.925 2.000 

C-(H) 1.20 1.443 1.300 

O 1.52 1.750 1.720 

N 1.55 1.729 1.830 

P 1.80 1.487 2.106 

F 1.47 1.552 1.720 

Cl 1.75 1.697 2.050 

Br 1.85 1.905 2.160 
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4.5.2.3. The tessellation of the cavity surface 

Once the set of spheres that define the chosen surface have been selected, the cavity surface is divided 

into a grid of surface elements. This grid construction employs methodologies, such as the Geometria 

Polihedro (GEPOL) algorithm141. The goal of GEPOL is to discretize the molecular cavity, transforming 

it into a polyhedral shape that can be more easily handled for computational calculations. GEPOL 

algorithm approximates a sphere to a polyhedron with 60 triangular faces, such as an icosahedron. This 

polyhedron is circumscribed around the molecule, providing a discrete representation of the cavity. The 

surface of this polyhedron is divided into smaller triangular surface elements, referred to as tesserae, utilizing 

a tessellation process. Each one of these triangles approximates a portion of the molecular surface. The 

areas of these triangular surface elements are calculated based on the surface of the polyhedron and the 

number of faces it has. These areas are then used for subsequent calculations and analyses. 

4.5.3. The polarizable continuum model  

The ASC has become nearly synonymous with the term Polarizable Continuum Model (PCM) in 

contemporary computational chemistry. The PCM represents the most frequently employed approach for 

modeling the solute-solvent interaction, and encompasses such variants as the COSMO, also known as C-

PCM (C for conductor),, as well as the integral equation formalism (IEF-PCM). The solute molecules are 

placed into a cavity with a continuous dielectric medium representing the solvent. The shape of the cavity 

must reproduce as well as possible the solvent molecular shape and it is constructed by placing interlocked 

spheres centered on each heavy (non-hydrogen) atom of the molecule. These spheres define a solvent-

accessible surface and a solvent-excluded surface. The cavity surface is split into small elements called 

tesserae, at the center of which there are point charges representing the electrostatic polarization of the 

solute electron density.  

4.5.3.1. COSMO  

The COSMO or C-PCM (C for conductor) are ASC method that stand in sharp contrast to other implicit 

solvation models as they replace the dielectric media with a conductor. The advantage of this approach is 

that conductors are characterized by an infinite relative permittivity ε = +∞ and thus, no potential exists 

within the media simplifying the electrostatic problem due to the lack of boundary conditions.  

The surface charge density over the cavity surface of the conductor σ∞(s) is determined directly from the 

electrostatic potential generated by the solute charge density and is later scaled down by a function of the 

real relative permittivity of the solvent f(ε) to obtain the proper charge density σ(s) (Eq. 4.54). 
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σ(s) = f(ε)σ∞(s) (4.54) 

The scaling function f(ε) is empirically determined as Eq. 4.55. 

f(ε) =  
ε − 1

ε + 𝓍
    

(4.55) 

Where ε is the macroscopic dielectric constant and the empirical scaling x is equal to 0.5 in the original 

publication of COSMO.  

. 

4.3.5. Calculation using COSMO model  

The main task of the model is solving the non-relativistic time-independent Schrödinger equation through 

an exact procedure that bypasses the calculation of the n-electron wavefunction by using the electron 

density. One first calculation is done to optimize the molecule geometry in a vacuum (Fig 4.9a). Then, the 

molecule optimized is embedded in a molecule-shaped cavity surrounded by a virtual conductor (ε = ∞) 

(Fig 4.9b). The cavity is constructed based on the element-specific atomic radii, typically in the 1.2 times 

Bondi radii range. In such an environment, the surface of the molecular cavity is discretized in finite 

surface segments with an area (called tesserae). The molecule induced a polarization charge density on its 

cavity surface segments (Fig 4.9c). These finite segments are small enough to consider the polarization 

charge density almost constant inside each segment. As a result, one obtained the three-dimensional 

geometric distribution of the polarization charges on the surface, also called screening charge density, σ(s) 

(Fig 4.9d).  
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Figure 4.9 – Steps of the DFT calculation 

4.6. Conclusion 

DFT emerged as a central theoretical framework, offering a pathway to efficiently predict molecular 

properties. We elucidated the Hohenberg-Kohn Theorems and the Kohn-Sham method, providing 

essential insights into the theoretical underpinnings critical for accurate electronic structure calculations. 

The discussion extended to the atomic basis set, a fundamental component in electronic structure 

modeling. Addressing approximations of the exchange-correlation energy, we explored various levels of 

approximation, including the local density approximation, generalized gradient approximation, hybrid 

functionals, and range-separated hybrid functionals. 

Understanding the influence of solvation on molecular systems is important. Among of the modeling 

approaches presented, the PCM stood out as a powerful tool to account for solvation effects in a 

computationally efficient manner. 

As for all the PCM models, the cavity plays a significant role in the COSMO approach. It is built starting 

from interlocking atomic spheres, whose radii de facto represent a computational parameter. Indeed, cavity 

size modulates the strengths of the solute/solvent interactions: large cavity corresponding to weaker 

reaction fields and vice-versa. Therefore, it is not surprising that several recipes for their evaluation have 

been proposed to improve PCM performances. Typically, these radii are determined upon error 

minimization of some thermodynamics quantities, such as free energy of solvation (ΔGsolv). In the original 

COSMO-RS model, the optimization of the model parameters, including atomic radii, was done 

considering a set of 217 molecules and six thermodynamic properties, including free energy of hydration, 
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ΔGhydro, vapor pressure, and some partition coefficients. IDACs were, therefore, not part of the training 

set. However, the COSMO-SAC variant optimized most of the model parameters and retains the same 

optimized radii of the first COSMO-RS parameterization.  

It should be noticed that UFF radii are significantly larger than those used by Klamt or even traditional 

vdW values. These radii are then scaled by a factor of 1.1. Instead, the standard COSMO procedure 

reported in Gaussian uses the Klamt radii 17% (± 2) larger than the Bondi radii, another standard widely 

used in chemical engineering). These radii, Klamt or UFF, are then used to compute a van der Waals cavity 

as the sum of the interlocked spheres, using the GEPOL algorithm141, as in standard COSMO-based 

approaches. 



 

137 

 

 

 

 

 

 

Chapter 5  

Experimental results 

Résultats expérimentaux 

 



 

138 

 

Résumé 

Dans ce chapitre, l'accent est principalement mis sur la présentation des résultats expérimentaux relatifs 

aux DES, avec une attention particulière portée à deux types de DES à base de chlorure de choline (ChCl) 

l'Ethaline (composé de ChCl et d'éthylène glycol) et le Glycaline (composé de ChCl et de glycérol). Le 

chapitre englobe une exploration des propriétés essentielles telles que la masse volumique, la viscosité, la 

tension de vapeur. 

De plus, cette étude explore comment les DES interagissent avec des alcools en examinant leur 

comportement à l'équilibre entre la phase liquide et la phase vapeur. Cette étude repose sur une méthode 

synthétique (détaillé dans le chapitre 2) comprenant la mesure de la pression d'équilibre d'un mélange 

multiphasique avec une composition globale connue à température constante. Cette méthode facilite la 

détermination des compositions de phases grâce à l'application des principes de bilan de matière et à 

l'utilisation de modèles thermodynamiques tels que NRTL et Wilson. Le mélange d'Ethaline et 

d'isopropanol présente une forte concordance entre les données expérimentales et les prévisions du 

modèle à 303 et 313 K, le modèle Wilson montre une meilleure cohérence avec l’augmentation de la 

température. En revanche, dans le cas du mélange de Glycaline et d'éthanol, les données se situent 

constamment en dessous des prévisions de tous les modèles, notamment à 323 et 333 K. De plus, les 

données obtenues pour le mélange de Glycaline et d'isopropanol soulignent l'importance d'une 

modélisation précise, le modèle Wilson montre une performance remarquable à des températures élevées. 

Le chapitre conclut que le modèle Wilson démontre une concordance supérieure, en particulier avec 

l'augmentation de la température, ce qui signifie son efficacité dans la modélisation du comportement des 

DES. Cependant, une observation cruciale est faite concernant les mesures de pression. Les faibles valeurs 

de pression relevées au cours des expériences introduisent des sources potentielles d'incertitude dans les 

résultats. Pour remédier à ce problème, la recommandation est formulée d'utiliser des capteurs de pression 

spécifique étalonnés pour les mesures de basse pression, améliorant ainsi la précision et la résolution des 

données de pression. Cette suggestion revêt une importance particulière lorsqu'il s'agit de systèmes à basse 

pression. 

De plus, le chapitre examine la compatibilité du modèle COSMO-SAC-dps (tel que proposé par Hsieh en 

2014) avec les DES. Il est constaté que le modèle n'est pas adéquat pour décrire ces solvants puisqu’ il 

prédit des coefficients d'activité inférieurs à un pour le mélange de Glycaline et d'isopropanol, impliquant 
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une déviation par rapport à la loi de Raoult. Néanmoins, les résultats expérimentaux contredisent ces 

prédictions, révélant une disparité entre les valeurs modélisées et les valeur expérimentale. 

Ce chapitre offre des perspectives précieuses sur le comportement des DES à base de ChCl et souligne 

l'importance cruciale de la précision dans les techniques de modélisation et de mesure pour leur application 

efficace dans les processus de bioraffinerie. De plus, le chapitre explore l'utilisation de la méthode de « gas 

stripping » pour prédire le IDAC de l'Ethaline. Bien que la méthode de « gas stripping » soit une technique 

largement utilisée offrant des informations pratiques pour estimer le IDAC et comprendre les interactions 

soluté-solvant, il est noté que cette méthode pourrait ne pas être idéale pour étudier le IDAC dans des 

fluides à haute viscosité. Des méthodologies alternatives ou modifiées pourraient être nécessaires pour 

garantir des résultats fiables et significatifs dans de tels contextes. 
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5. Experimental results 
 

This chapter is dedicated to presenting the experimental results for the properties of DES, both in the 

pure form and when mixed with alcohols. We have investigated two Choline Chloride-based (ChCl-based) 

DES. The ChCl and Ethylene Glycol (Ethaline) and ChCl and Glycerol(Glycaline). The properties 

examined include density, viscosity, vapor pressure, and VLE. These properties are fundamental in 

assessing the behavior and suitability of DES as solvents in biorefinery processes. Understanding how 

DES behave under different conditions is essential for making informed decisions regarding their potential 

as eco-friendly and efficient alternatives in biorefinery processes. The experimental measurements and 

subsequent analysis of density, viscosity, and vapor pressure are imperative for identifying optimal DES 

candidates for specific applications within the biorefinery domain. The VLE isotherms, solubility 

parameters and activity coefficients obtained in this study are foundational elements that will play a crucial 

role in shaping our solvent selection methodology. This methodology will be introduced and 

comprehensively discussed in the final chapter. 

 

5.1. Pure properties  

The pure properties of DES are fundamental due to their direct impact on a wide array of applications 

and processes, as elaborated in Chapter 1. A thorough understanding and characterization of these 

properties offer crucial insights into the behavior and applicability of DES. Specifically, the density, 

viscosity, and vapor pressure of Ethaline and Glycaline will be presented in the subsequent section. We 

will illustrate how this data enables us to predict the solubility parameter, a key factor in determining 

solvation power and the compatibility of the DES in various applications. This prediction will significantly 

contribute to the optimization of the COSMO-SAC model. 

5.1.1. Density and Viscosity 

In Table 5.1, data for distinct batches of DES is presented, each formulated with different molar ratio of 

ChCl in combination with either Ethylene Glycol (EG) or Glycerol (Gly). The molar ratio represents the 

ratio of moles of ChCl (a hydrogen-bond acceptor, HBA) to moles of the respective co-solvent (EG or 

Gly) acting as the hydrogen bond donor (HBD). 
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Table 5.1 – DES properties. 

 HBA HBD Batch Molar ratio Molar mass u(xi) 

Ethaline ChCl  Ethylene Glycol #1 1: 2.04 87.5794 0.0839 

   #2 1: 2.03 87.6807 0.0056 

   #3 1: 2.00 87.9162 0.0023 

   #4 1: 2.28 85.6786 0.0112 

   #5 1: 2.01 87.8279 0.0077 

   #6 1: 2.00 87.9302 0.0002 

   #7 1: 2.00 87.9089 0.0014 

Glycaline ChCl Glycerol #1 1: 2.00 107.9257 0.0041 

   #2 1: 2.00 107.9248 0.0041 

Figure 5.1 illustrates the experimentally measured densities of ethaline (left) and glycaline (right) in function 

of the temperature. As expected, an evident reduction in density is noted for both solvents with increasing 

temperature. This inverse relationship between temperature and density underscores a fundamental 

principle: higher temperatures result in lower densities for ethaline and glycaline.  

 

 

Figure 5.1 – Density in function of the temperature of ChCl:EG (left) and ChCl:Gly (right). 

Conversely, in examining the viscosity trend for both ethaline and glycaline as a function of temperature, 

there is a noticeable decrease in viscosity for both solvents, as illustrated in Fig. 5.2. This outcome aligns 

with the general behavior of liquids, where higher temperatures lead to reduced viscosity.  
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Figure 5.2 – Viscosity in function of the temperature of ChCl:EG (left) and ChCl:Gly (right). 
 

5.1.2. Vapor pressure 

The vapor pressure data was obtained based on the experimental measurements using the variable volume 

cell technique, as detailed in Chapter 2. This well-established and reliable technique involves a controlled, 

closed system with a known volume, where pressure and temperature are monitored. The method involved 

loading the equilibrium cell with the viscous components and ensuring that the liquid and vapor phases of 

the pure viscous component achieve equilibrium prior to data acquisition. The equilibrium cell was 

carefully assembled within the experimental apparatus. To facilitate accurate measurements and prevent 

any potential loss of components, the cell was degassed for a few minutes. Upon achieving equilibrium, 

the temperature and vapor pressure of the pure DES were meticulously measured using a data acquisition 

unit. The experimental data, representing the equilibrium state, was recorded, and presented in table 5.3 

and 5.4. These data were further subjected to regression analysis. This regression analysis allowed for the 

formulation of  the Clausius-Clapeyron equation (Eq. 5.1),  a fundamental relation that links vapor pressure 

to temperature and the enthalpy of vaporization. The equation is expressed in a linear form as: 

ln 𝑃 = −
∆𝐻𝑣𝑎𝑝

𝑅𝑇
+ 𝑏 

(5.1) 

Where ΔHvap is the enthalpy of vaporization and represents the energy required to transform a substance 

from the liquid phase to the vapor phase at a given temperature; P is the vapor pressure; R is the universal 
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gas constant (8.314J/mol K); and T is the temperature in Kelvin. In this linear form, the slope of the line 

in a plot of ln P versus 1/T is −
∆𝐻𝑣𝑎𝑝

𝑅
.  

For ethaline and glycaline, the estimated ΔHvap values are 42.53 kJ/mol and 133.17 kJ/mol, respectively. 

Clausius-Clapeyron correlation can be derived from the regression analysis enhanced the dataset, enabling 

the prediction of vapor pressure at temperatures beyond those experimentally measured. This expansion 

of the dataset through correlation gives an accuracy of around 15% and the parameters are presented in 

table 5.4. 

     Table 5.2 – Vapor pressure Ethaline. 

Experiments Regressed 

Batch 
T 

(K) 
P 

(bar) 
T 

(K) 
P 

(bar) 

#1 303.25 3.48 303 3.70 

#2 303.26 4.27 304 3.91 

#3 303.23 2.58 306 4.37 

#1 313.26 6.85 309 5.13 

#2 313.27 10.60 312 6.02 

#3 313.26 4.18 315 7.04 

#1 323.27 24.78 318 8.20 

#2 323.20 19.30 321 9.53 

#3 323.27 9.49 324 11.05 

#1 333.31 11.73 327 12.77 

#2 333.30 19.54 330 14.72 

#3 333.29 8.70 333 16.93 
      u(T)=0.02 K, u(P)=0.1 mbar, accuracy = 15% 

Table 5.3 -Vapor pressure Glycaline. 

Experiments Regressed 

Batch T (K) 
P 

(bar) 
T (K) P (bar) 

#1 303.23 0.30 303 0.34 

#2 303.24 0.22 307 0.68 

#1 313.28 3.05 311 1.32 

#2 313.23 4.22 315 2.55 

#1 323.30 6.99 319 4.82 

#2 323.27 6.53 323 8.97 
u(T)=0.02K, u(P)=0.1 mbar, accuracy = 15% 

Figure 5.3 presents the vapor pressure of Ethaline as a function of temperature. The black symbols 

represent the experimental data points, measured at various temperatures. The green symbols signify the 
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regressed data obtained through a regression analysis, allowing for predictions of vapor pressure beyond 

the experimentally measured. The area inside of the dash lines outlines the error range associated with the 

data points.  

 
Figure 5.3 – Vapor pressure of Ethaline. Black symbols: experiments, green symbols: regressed, dash lines area: 

error range. 

Figure 5.4 presents the vapor pressure of glycaline as function of the temperature. The black symbols 

effectively capture the experimental data points, measured across a range of temperatures. In addition, the 

green symbols represent regressed data, extrapolated through the regression analysis. The area enclosed 

by the dash lines signifies the error range associated with the data points, further emphasizing the precision 

and reliability of both experimental and regressed results. 
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Figure 5.4 – Vapor pressure of Glycaline. Black symbols: experiments, green symbols: regressed, dash line area: 

error range. 

The Hildebrand solubility parameter 116 (δ) is a measure of the cohesive energy density of a substance, 

providing insights into material compatibility and miscibility. It can be estimated using the ΔHvap obtained 

through the Clausius-Clapeyron equation. The Hildebrand solubility parameter is defined as the square 

root of the cohesive energy density and is related to ΔHvap by the equation: 

𝛿 = (𝐸𝑐𝑜ℎ)1/2 = (
∆𝐻𝑣𝑎𝑝 − 𝑅𝑇

𝑉𝑚
)

1/2

 
(5.2) 

where Vm the molar volume of the solvent, which can be calculated using the molar mass and the density. 

In table 5.4, we present the obtained Hildebrand solubility parameter at 298 K for ethaline and glycaline, 

along with the molar volume and the ΔHvap.  

   Table 5.4 – Hildebrand solubility parameter at 298 K. 

 
molar volume ΔHvap b δ (MPa0.5) 

 
cm3/mol kJ/mol kJ/mol This work literature142 

Ethaline 78.7 42.5 0.0113 22.6 24.5 

Glycaline 86.1 133.2 0.0449 39.0 26.8 
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5.2. Vapor-liquid Equilibrium data 

The vapor pressure of the mixture with ethaline and glycaline was measured using the synthetic method. 

This involves measuring the equilibrium pressure of a multiphase mixture with a known overall 

composition at constant temperature which allows deducing phase compositions using material balance 

principles. Without phase sampling, the static-synthetic method relies on thermodynamic models to carry 

out material balance calculations, and the selection of these models can potentially impact the outcomes 

of the experimental measurements.  This calculation will be featured in the subsequent section. 

5.2.1. Data treatment  

Upon establishing the global composition, to initiate the data treatment, an initial assumption is made, in 

which the global composition (zi) is presumed to be equivalent to the liquid composition (xi). This 

assumption sets the first guess for predicting the bubble pressure using Equation 5.3.  

𝑃𝑐𝑎𝑙 = ∑ 𝑥𝑖𝛾𝑖Pi
Sat

𝑁𝐶

𝑖=1

 

(5.3) 

where γi is the activity coefficient of component i in the liquid phase, Pi
Sat is the vapor pressure of the pure 

compound. An activity coefficient model (such as non-random two-liquid, NRTL, or Wilson) is selected 

to represent the liquid phase. The parameters of the model are minimized by the objective function of the 

pressure (Eq. 5.4).  

𝑂𝐹 =
1

𝑁𝑑𝑎𝑡𝑎 − 𝑁𝛾 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
∑ (

|𝑃𝑘
𝑐𝑎𝑙 − 𝑃𝑘

𝑒𝑥𝑝|

𝑃𝑘
𝑒𝑥𝑝 )

2𝑁𝑃

𝑘=1

 

(5.4) 

The entire procedure was presented in detail in chapter 2, section 2.5.5. The procedure presented in the 

flowchart is repeated until the change in both the vapor and liquid phases’ mole numbers (or composition) 

are below the tolerance. In this work, a deviation lower than 10-8 is applied. 

5.2.2. Results and discussion  

In Figure 5.5, VLE data at temperatures of 303, 313, 323 and 333 K for ethaline (1) and ethanol (2) mixture 

are illustrated. The experimental data is represented by these symbols, providing validation that the 

predictions align well with the experimental data. The solid black lines correspond to the Wilson model, 

while the dashed lines correspond to the NRTL model. A zoomed-in view at low concentrations is 
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presented to provide a detailed analysis of this critical section of the isotherms. This focused perspective 

is crucial in evaluating the accuracy of the predictions.  

The two isotherms at the bottom of Figure 5.5 correspond to the temperatures of 303 K and 313 K. At 

these temperatures, both the NRTL and Wilson models demonstrate a similar level of predictive accuracy. 

However, as the temperature increases, a slight deviation from the experimental values is observed for 

both models. 

 

 

 

 

 

 

 

 

Figure 5.5 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K, and (♦) 333 K. for Ethaline (1) and Ethanol (2) 
mixture. Symbols: Experimental data. Black lines: Wilson. Dash lines: NRTL. 

In Figure 5.6, VLE data at 303, 313, 323 and 333 K of ethaline (1) and isopropanol (2) are presented. 

Upon a more detailed analysis, it becomes apparent that at lower temperatures, the isotherms present a 

good agreement with the experimental data. Interestingly, as the temperature increase, particularly at 323 

K and 333 K, the Wilson model demonstrates better agreement with the experimental data, showcasing 

its enhanced performance compared to the NRTL model. 

 Figure 5.7 presents VLE data for glycaline (1) and ethanol (2) mixture at 303, 313 and 323K. It is 

noteworthy to emphasize that at all studied temperatures, a significant observation is that all computational 

models consistently demonstrate a systematic tendency to underestimate the pressure when compared 

with the experimental data. 
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Figure 5.8, VLE data at 303, 313 and 323 K for glycaline (1) and isopropanol (2) mixture are illustrated. 

At 303 K, both models predict with remarkable accuracy, showcasing a good match with the experimental 

data. However, as the temperature increases to 313 and 323 K, the performance of the Wilson model is 

better than NRTL. However, it consistently underestimates the pressure values compared to the 

experimental data. Conversely, the isotherms prediction for this system using the NRTL model exhibits 

the least accurate results among the isotherms presented. 

 
Figure 5.6 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K, and (♦) 333 K of Ethaline (1) and Isopropanol 

(2). Symbols: Experimental data. Black lines: Wilson. Dash lines: NRTL. 
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Figure 5.7 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Ethanol (2). Symbols: 

Experimental data. Black lines: Wilson. Dash lines: NRTL. 

 

 
Figure 5.8 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Isopropanol (2). Symbols: 

Experimental data. Black lines: Wilson. Dash lines: NRTL. 
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5.3. COSMO-SAC predictions 

The experimental results obtained in this study were compared with predictions made using the COSMO-

SAC-dps model proposed by Hsieh (2014).123 It's important to highlight that the COSMO-SAC-dps model 

is not well-suited for making predictions involving deep eutectic solvents. Moreover, the COSMO-SAC 

model predicts activity coefficients lower than one for the system under investigation, specifically for the 

Glycaline and Isopropanol mixture (figure 5.9). The negative deviation from Raoult's law, as predicted by 

the COSMO-SAC model, was not observed in the experiments performed. 

 

Figure 5.9 – VLE isotherms at 303 K of Glycaline (1) and Isopropanol (2). Symbols: Experimental data. Black 
lines: Wilson. Dash lines: NRTL and green lines: COSMO-SAC-dps. 

5.4. Infinite Dilution Activity Coefficient (IDAC) of DES 

We used the gas stripping method to predict the IDAC of Ethaline, aiming to provide valuable insights 

into its behavior under different conditions. The gas stripping method, a widely employed technique, 

offers a practical approach to estimate IDAC and understand the solute-solvent interactions in this specific 

context. 

Figure 5.9 presents results (peak area as function of time) at 323 K for Ethaline (1) and Ethanol (2) mixture 

at various flow rates, aiming to determine the IDAC of DES. The experimental data is represented by 

symbols, and a black line describes the linear regression. However, the results remain inconclusive due to 

the significant viscosity of the solvent. The gas stripping method employed was not specifically designed 
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for highly viscous solvents, contributing to the challenges in obtaining conclusive data for the IDAC in 

this scenario. 

In this context, the regression obtained in the three graphs, each varying the flow rate, is expected to the 

same slope. This slope is crucial as it allows us to determine the Apparent Henry’s Law coefficient (H i). 

The relationship is represented by Equation 2.21 in chapter 2, where the slope of the regression lines is a 

fundamental parameter in calculating Hi.  

According to Equation 2.22 in chapter 2, the IDAC is calculated using the Hi. Ideally, at the same 

temperature and varying flow rates, the obtained IDAC values should remain consistent and unchanged. 

However, as observed in Table 5.5, if the IDAC values differ significantly. It's essential to investigate and 

rectify these inconsistencies to ensure accurate and reliable results in the study. 

  
(a)                                          (b)                                          (c) 

Figure 5.9 – Peak area as function of time at different flowrates (a: 22.5, b: 34.5 and c: 47.2 mL/min) and at 323 K 
for Ethaline (1) and Ethanol (2) mixture. Symbols: Experimental data. Black line: linear regression. 

The observed discrepancies in IDAC values (detailed in Table 5.4) are directly influenced by the high 

viscosity of the solvent. High viscosity in a fluid implies a resistance to flow or movement due to internal 

friction between its molecules and is liked with number of Reynolds(. In the context of the gas stripping 

method applied, this high viscosity significantly alters the dynamics of bubble formation and behavior. 

The increased resistance to diffusion resulting from the elevated viscosity, and related to the Sherwood 

number, leads to low mass transfer. Moreover, it was observed the formation of smaller bubbles during 

the gas stripping process. In which, this viscosity-induced effect can cause irregularities in the breakage 

and coalescence of bubbles, leading to unpredictable vapor liberation patterns. These combined effects 

contribute to the observed variations in the IDAC values obtained.  
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  Table 5.5 – IDAC of DES and Ethanol for different flowrate at 323 K. 

Flowrate 
(mL/min) IDAC ln(IDAC) 

22.5 14.5 2.67 
34.5 12.8 2.55 
47.2 1.88 0.634 

The similar observations regarding bubble dynamics due to high viscosity were also evident in the 

experiments with ethaline in pentanol, illustrated in Figure 5.10. In which present the isotherms at 323 K 

under various flow rates. The distinctive features associated with high-viscosity solvents persisted, 

influencing bubble formation, size, and behavior during the gas stripping process. These effects were 

reflected in the irregularities and variations seen in the isotherms.  

 
   (a)                                                                 (b) 

Figure 5.10 – Peak area as function of time at different flowrates (a: 47.4 and b: 61.2 mL/min) and at 323 K for 
Ethaline (1) and Pentanol (2). Symbols: Experimental data. Black line: linear regression. 

In conclusion, the findings from the presented experiments, notably highlighted in Figures 5.9 to 5.10, 

bring attention to the challenges posed by high viscosity when utilizing the gas stripping method. The 

observed irregularities and variations in isotherms, as well as discrepancies in IDAC values, underscore 

the limitations imposed by high viscosity in this context. Consequently, it can be concluded that the gas 

stripping method may not be optimally suited for studying IDAC in fluids with high viscosity. Alternative 

or modified methodologies may be necessary to ensure reliable and meaningful results in such scenarios. 

5.5. Conclusion 

In summary, figures 5.6 to 5.9 offer a comprehensive insight into the VLE data for 4 studied mixtures, 

encompassing various temperature and substance combinations. The isotherms for ethaline and ethanol 

validate the precision of predictive models, as evidenced by the close correspondence between model 

predictions and experimental data. It's noteworthy that the Wilson model showcases better agreement as 

temperatures increase, underscoring its efficacy compared to the NRTL model.  
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Analyzing the experiments reveals a critical aspect concerning pressure measurements. The observed low-

pressure values present a potential source of uncertainty in the results. Given that the pressure transducer 

is calibrated for a range of 1 to 5 bar, employing a specialized transducer designed for low-pressure 

measurements could enhance the accuracy and resolution of pressure data. This consideration is crucial, 

especially when dealing with systems where the pressure values fall within a very low range. 

In the isotherms for ethaline and isopropanol mixture, good agreement of the experimental data with the 

predictions at temperatures of 303 and 313 K. As temperatures rise, the Wilson model exhibits better 

agreement than NRTL. For glycaline and ethanol mixture, the data are underestimated across all models, 

particularly at temperatures of 323 and 333K. Lastly, the data obtained for gycaline and isopropanol 

mixture reaffirm the importance of accurate modeling, with the Wilson model performing notably well at 

higher temperatures. 

The study compared experimental data with predictions made using the COSMO-SAC-dps model, 

confirmed that the model is not suitable for deep eutectic solvents, and predicted activity coefficients 

below one for the Glycaline and Isopropanol mixture. This suggested a negative deviation from Raoult's 

law. However, experimental results did not confirm this deviation, highlighting a discrepancy between the 

predictions and experimental data. In the upcoming chapter, a more in-depth exploration of predictions 

using a COSMO-based model will be undertaken. 
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Chapter 6 

Phase equilibrium prediction 

Prédiction de l'équilibre de phase 
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Résumé 

Ce chapitre se concentre sur l'équilibre des phases des DES, en particulier sur l'équilibre liquide-vapeur 

(ELV) et sur l'application du modèle COSMO-SAC-dps proposé par Hsieh et al. (2014). Ce modèle que 

comprend la contribution dispersive est présenté au chapitre 5. Cependant, il est noté que ce modèle sous-

estime souvent la pression d’ELV pour les mélanges de DES. Pour explorer l'influence des variables de 

calcul sur la performance du modèle, une étude préliminaire a été menée sur des solvants conventionnels 

avant d'aborder les mélanges de DES. Cette étude sert de base à l'établissement de la base de données des 

profils sigma PSL. Elle effectue un benchmark complet des méthodes théoriques et des variables de calcul 

pour comprendre leur impact sur la précision des prédictions du modèle COSMO-SAC. 

L'étude commence avec l'utilisation du furane dans un solvant apolaire comme référence pour évaluer 

l'influence de la base sur la précision du modèle COSMO-SAC dans la prédiction du IDAC du furane dans 

le toluène. Les calculs de DFT utilisent la fonctionnelle hybride PBE0 et neuf bases de valence fractionnée 

de complexité variable sont testées. Les résultats mettent en évidence la sensibilité des prédictions de 

l'IDAC à la complexité de la base. Les bases plus avancées, telles que la base triple-ζ : 6-311G(2df,p), 

permettent d'obtenir une précision prédictive accrue, une déviation de la moyenne absolue (MAD) plus 

faible et un pourcentage MAD (%MAD) plus bas. L'inclusion de fonctions de polarisation supplémentaires 

contribue à une meilleure précision, tandis que les bases de diffusion entraînent une MAD plus élevée. En 

conséquence, la base 6-311G(2df,p) est choisie comme la plus adaptée sur la base de cette étude. 

Après avoir sélectionné la base 6-311G(2df,p), une étude ultérieure vise à évaluer l'impact de différentes 

fonctionnelles de DFT sur la précision des prédictions de l'IDAC. Cette étude utilise le furane dans un 

solvant apolaire comme référence et inclut des fonctionnelles de DFT telles que B3LYP, PBE0, M06-2X 

et CAM-B3LYP, représentant les familles de fonctionnelles hybrides générales et hybrides à séparation de 

portée. PBE0 et M06-2X se distinguent avec les valeurs de %MAD les plus faibles (respectivement 0,4% 

et 0,5%), ce qui indique leur grande précision prédictive pour les prédictions de l'IDAC concernant le 

furane dans le toluène. Cette étude s'étend à la comparaison de l'IDAC du furane dans le cyclohexane avec 

les prédictions à l'aide de l'approche COSMO-SAC. Notamment, PBE0 est reconnue comme la 

fonctionnelle la plus performante parmi les options sélectionnées, malgré une déviation aussi élevée que 

30%. La deuxième meilleure performeuse, M06-2X, présente une erreur significative de 44%. 
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Sur la base des connaissances acquises grâce à ces études, la fonctionnelle PBE0 et la base 6-311G(2df,p) 

sont choisies pour effectuer les calculs de DFT nécessaires à l'établissement de la base de données des 

profils sigma PSL. Cette base de données est appliquée dans le modèle COSMO-SAC pour prédire l'IDAC 

dans des solvants conventionnels et ces prédictions sont comparées avec le modèle UNIFAC(Do) modifié. 

L'étude examine les mélanges binaires de 46 composants classés en 10 combinaisons principales de 

familles. Un total de 356 points de données a été analysé en utilisant la MAD comme principale métrique. 

La conclusion générale est que le modèle UNIFAC(Do) surpasse généralement le COSMO-SAC-dps dans 

la prédiction de l'IDAC pour la plupart des systèmes, avec des prédictions hautement précises observées 

uniquement pour les solvants aromatiques dans les alcanes et les alcools dans les cycloalcanes. 

L'étude examine également la définition d'une cavité dans le contexte des profils sigma, impliquant la 

spécification des rayons de cavité. Les profils sigma UD utilisent généralement des rayons Klamt, tandis 

que d'autres logiciels comme Gaussian utilisent des rayons UFF basés sur le modèle de force universelle 

(UFF). De manière significative, les résultats montrent que le COSMO-SAC avec la base PSL (rayons 

Klamt) offre de meilleures performances que la base UD et même la base PSL (rayons UFF) surpasse 

légèrement les rayons Klamt, bien qu'elle sous-estime légèrement les valeurs de l'IDAC. 

Le chapitre présente également une évaluation des prédictions des coefficients d'activité en utilisant 

différents modèles et bases de profils sigma. Les résultats montrent que le modèle UNIFAC(Do) atteint 

une bonne précision pour la plupart des systèmes, tandis que les performances du COSMO-SAC varient 

en fonction de la base de profils sigma utilisée. Enfin, l'étude discute de l'évolution des coefficients 

d'activité pour trois systèmes représentatifs et compare la performance de différents modèles pour chacun 

d'entre eux. Le choix du modèle le plus performant dépend du système spécifique et de la température. 
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6. Phase equilibrium prediction 
 

6.1. Introduction 

The phase equilibrium of DESs (i.e., VLE) were performed, analyzed and predicted using the COSMO-

SAC-dps proposed by Hsieh et al. (2014)123 including dispersive contribution. These results have been 

presented in Chapter 5. Nevertheless, the COSMO-SAC-dps model underestimated the VLE for the DES 

mixture. The precision of thermodynamic calculations in COSMO-based models heavily depends on the 

molecule-specific sigma-profiles. To investigate and comprehend how computational variables (used to 

generate these profiles) influence the performance of the model, we conducted an initial study using 

conventional solvents before examining the DES mixture. This study forms the foundation for 

establishing the PSL sigma-profile database (Fig. 6.1). PSL refers to Université Paris Sciences & Letters 

and is named following the nomenclature of other profiles such as VT-2005 Sigma-profile developed by 

Mullins under the supervision of Liu’s group at the University of Virginia Tech and the UD database, 

created by Sandler's group at the University of Delaware. 

 
Figure 6.1 – PSL sigma-profile. 

A sigma-profile (derived from QM calculations using solvation models), represents the molecular-specific 

distribution of surface charge density. It provides a detailed representation of how the charge is distributed 

over a molecule's surface. This crucial information forms the core of the model and enables precise 

calculations and predictions of phase equilibria and various properties. However, it's important to note 

that QM calculations, particularly DFT, constitute the most time-consuming and computationally 

expensive aspect of COSMO-based models. 

In this chapter, we introduce the PSL sigma-profile database (an open accessible to both academic and 

non-commercial users). A comprehensive benchmarking of various theoretical methods and 
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computational variables has been conducted to comprehend their impact on prediction accuracy using the 

COSMO-SAC model. Furthermore, these predictions have been compared with established activity 

coefficient models including NRTL, UNIFAC, and Scatchard-Hildbrand for a comprehensive assessment.  

6.2. PSL sigma-profile 

6.2.1. Setting the basis set 

In this section, we initiate our investigation by using furan in an apolar solvent as a benchmark. Our 

primary objective is to assess the basis set dependence of the accuracy of COSMO-SAC model to predict 

IDAC of furan in toluene143. To achieve this, DFT calculations were conducted following the procedure 

already described in chapter 4, section 4.3.5. Specifically, the hybrid functional PBE0, proposed by Adamo 

et al. (1999)144, was employed as a theoretical level to assess the influence of nine different split-valence 

basis set. This study has been published (see the article of G. Miyazaki et al. 145 entitled “Role of 

Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and 

Experimental Investigation”.  

Errors were evaluated using the mean absolute deviation (MAD) between the experimental and theoretical 

logarithm of IDACs: 

𝑀𝐴𝐷 =
1

𝑁
∑|ln(𝛾𝑖,𝑒𝑥𝑝

∞ ) − ln(𝛾𝑖,𝑡ℎ
∞ )|

𝑁

𝑖=1

    (6.1) 

The %MAD is then defined as 

%𝑀𝐴𝐷 = ∑ |
ln(𝛾𝑖,𝑒𝑥𝑝

∞ ) − ln(𝛾𝑖,𝑡ℎ
∞ )

ln(𝛾𝑖,𝑒𝑥𝑝
∞ )

|

𝑁

𝑖=1

    (6.2) 

The nine selected split-valence basis sets vary in complexity, ranging from the fundamental 6-31G(d) to 

the most sophisticated 6-311++G(2df,p), illustrating a diverse range of basis set variations. As explained 

previously, a split-valence basis set is a type of basis, where the basis functions for each atomic center are 

divided into two groups: core and valence. Common split-valence basis sets include the popular family of 

basis sets developed by Pople and co-workers146–148 such as the 6-31G(d) and 6-311G(d) basis sets. The 

notation "6-31G(d)" signifies that each inner shell (1s orbital) is represented using a linear combination of 

6 primitive Gaussians and the valence shell is split into an inner part (described by 3 primitives) and an 

outer part (described by 1 primitive). Additionally, d-type polarization functions are included to improve 

accuracy in describing electronic behavior in the valence shell. Table 6.1. summarizes Pople's nomenclature 
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for basis sets( detailing the number and types of functions for different electronic shells and polarization 

functions). 

Table 6.1 – Pople's nomenclature for basis sets. 

Basis set Description 

6 Gaussians primitive in the core orbital 
3 Gaussians primitives in the inner valence shell 
1 Gaussian primitive in the outer valence shell (valence orbital duplicated)  
1 Gaussian primitive in the outer valence shell (valence orbital triplicate) 

+  or ++ Diffuse functions on heavy atoms or  
Diffuse functions in both, heavy and hydrogen atoms 

2df 2 additional d-type polarization functions and one f-type functions on heavy atoms 
p One set of p-type polarization function on hydrogen atoms 

Table 6.2 exemplifies the significant impact of basis sets on accurately predicting IDAC for furan in 

toluene. The results demonstrate the sensitivity of IDAC predictions to the complexity of the basis set, 

where employing a more sophisticate the basis set leads to lower MAD and %MAD. There is a notable 

enhancement in predictive accuracy, attributed to the inclusion of additional basis functions such as 

polarization functions.  

Table 6.2 – MAD of IDAC predictions of furan in toluene. 

basis set MAD %MAD 

6-31G(d) 0.012 1.1 

6-311G(d) 0.005 0.4 

6-31G(d,p) 0.012 1.1 

6-31G(2df,p) 0.003 0.3 

6-311++G(d) 0.007 6.4 

6-31++G(d,p) 0.036 3.5 

6-31++G(2df,p) 0.026 2.5 

6-311G(2df,p) 0.004 0.4 

6-311++G(2df,p) 0.017 1.7 
       All data were computed using PBE0. 

The addition of the diffusion basis sets led to higher MAD. Specifically, the split-valence double-ζ basis 

set 6-31G(d,p),the triple-ζ basis sets 6-311G(d) and 6-311G(2df,p) exhibited superior results. 

Consequently, based on this study, the triple-ζ basis set with lower MAD( 6-311G(2df,p)) was selected. 

6.2.2. Setting the level of theory 

Once the basis set 6-311G(2df,p) was chosen, a secondary investigation was conducted to assess the 

influence of the theoretical level on the accuracy of IDAC predictions. This assessment utilized furan in 

an apolar solvent as the benchmark. In chapter 4, section 4.2.3, DFT functionals were presented, each 
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distinguished by its exchange-correlation (XC) contribution to the total energy. Among these options, 

specific functionals were selected, including B3LYP149, PBE0144, M06-2X150, and CAM-B3LYP151. The 

findings from this investigation have been published in our paper 145. These chosen functionals represent 

the most significant and commonly used families of DFT functionals, namely the general hybrid 

functionals family (B3LYP, PBE0, M06-2X) and the Range-separated hybrid functionals family (CAM-

B3LYP). 

Table 6.3 summarizes the MADs of computed IDAC for furan in toluene across various temperatures 

using different functionals. Among the functionals listed, the two with the lowest % MAD are PBE0 

(0.4%) and M06-2X (0.5%) indicating that they have the best predictive accuracy for the IDAC predictions 

of furan in toluene. 

Table 6.3 – IDAC of furan in toluene, experimental and predicted with COSMO-SAC-dps123. 

T (K) 
IDAC 

experimental143 
B3LYP CAM-B3LYP M06-2X PBE0 

293.15 1.037 1.078 1.044 1.039 1.030 

298.15 1.033 1.075 1.042 1.037 1.029 

303.16 1.034 1.072 1.039 1.036 1.027 

308.19 1.025 1.070 1.037 1.034 1.026 

313.17 1.022 1.067 1.036 1.033 1.025 

318.12 1.028 1.064 1.034 1.031 1.023 

323.09 1.026 1.062 1.032 1.030 1.022 

MAD  0.040 0.008 0.005 0.004 

%MAD  3.9 0.8 0.5 0.4 
           All data were computed using 6-311G(2df,p) basis set. 

Once the first two computational parameters were validated, IDAC of furan in cyclohexane were 

compared with those predicted using the COSMO-SAC approach. The comparison results are 

summarized in Table 6.4. Notably, PBE0is identified as the top performer among the selected functionals 

and displayed a deviation as high as 30%. On the other hand, the second-best performer (M06-2X) 

exhibited a substantial error of 44%. 

  



Chapter 6 – Phase equilibrium prediction  

 161 

Table 6.4 – IDAC of furan in cyclohexane, experimental and predicted with COSMO-SAC-dps123. 

T 
IDAC 

experimental145. 
M062X PBE0 

283.59 2.284 3.15 2.894 

288.55 2.257 3.043 2.801 

293.55 2.068 2.943 2.715 

298.2 2.017 2.856 2.64 

303.35 1.973 2.767 2.562 

308.48 1.916 2.684 2.490 

313.41 1.835 2.610 2.426 

318.36 1.763 2.540 2.366 

MAD  0.897 0.598 

%MAD  44.5 29.7 

Based on the findings from these studies, the PBE0 functional and the triple-zeta basis set 6-311G(2df,p) 

were selected for conducting the DFT calculations necessary to build the PSL sigma-profile database. 

6.3. IDAC predictions in conventional solvents  

The performance assessment of COSMO-SAC model was conducted by studying the IDAC predictions 

for conventional solvents, comparing them with the group contribution model modified UNIFAC(Do). 

In this evaluation, binary mixtures of 46 components were investigated and systematically categorized into 

10 primary family combinations (as outlined in Table 6.5). This comprehensive study resulted in the 

examination of 356 data points152. To quantify the accuracy of each prediction method, the MAD was 

calculated and will be discussed in detail below. 

Table 6.5 – Main family structure studied. 

Figure 6.2a illustrates the Mean Absolute Deviation (MAD) for various combinations of solvent families 

and solutes using the COSMO-SAC-dps model. The horizontal axis represents solvent families, and the 

vertical axis represents solutes. Different colors in the figure represent the range of MAD values, and only 

Family members examples 

n-Alkanes 16 n-pentane, n-hexadecane, n-eicosane 

R-Alkanes 3 methyl cyclopentane, methyl cyclohexane, ethylcylohexane 

Alkenes 5 2-pentene, 1-hexene, 1-octene 

Alcohols 6 methanol, ethanol, n-propanol 

Cycloalkanes 2 cyclohexane, cycloheptane 

Cycloakenes 4 cyclopentene, cyclohexene, cycloheptene, cyclooctene 

Carboxylic Acid 2 acetic acid, proionic acid 

Ketone 4 acetone, 2-butanone, 3-pentanone, 5-nonanone 

Amide 1 dimethylformamide 

Aromatic 3 benzene, toluene, phenol 
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main families with available data are presented. Figure 6.2b does the same analysis but focuses on the 

modified UNIFAC (Do) model. 

The general conclusion drawn from these figures is that, overall, the modified UNIFAC(Do) model 

outperforms the COSMO-SAC-dps model in predicting IDAC for most systems. Only two combinations 

of solvent families and solutes showed highly accurate predictions with a slight advantage for the COSMO-

SAC-dps model. These combinations were aromatic solvents in alkanes and alcohols in cycloalkanes. 

Several other combinations produced good predictions with the COSMO-SAC-dps model, while others 

yielded reasonably accurate predictions. However, some combinations, particularly involving n-alkanes in 

alcohols, carboxylic acids as solutes, and mixtures containing amides, resulted in less accurate predictions 

according to the COSMO-SAC-dps model. These include alcohols in alkanes, cycloalkanes, R-cycloalkanes 

in aromatics, and n-alkanes and cycloalkanes in carboxylic acids. However, some combinations, 

particularly involving alkanes in ketones and aromatics, ketones in alkenes and alcohols, cycloalkanes in 

alcohols, and cycloalkenes in amides, resulted in less accurate predictions according to the COSMO-SAC-

dps model. including. 

These figures (Figure 2a and Figure 2b) collectively offer a detailed assessment of the COSMO-SAC-dps 

model's performance in predicting IDAC and highlight the specific scenarios where it excels or falls short 

in representing experimental data. 

 

     (a)                 (b) 

Figure 6.2 – Mean absolute deviation MAD for infinite dilution activity coefficients of conventional mixture 
combinations for COSMO-SAC-dps (a) and modified UNIFAC(Do) (b). 
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Due to the significant number of representative data points, the combination of aromatic solvents in 

alkanes, where the COSMO-SAC-dps model demonstrated superior predictive performance compared to 

UNIFAC, was chosen for a thorough examination of another computational parameter: cavity radii. The 

results of this analysis will be detailed in the upcoming section. This analysis will be presented in the 

subsequent section. 

6.3.1. Cavity radii investigation  

In this study, we compared the IDAC predictions obtained using COSMO-SAC-dps with the PSL sigma-

profile against those utilizing the UD sigma-profile. It's important to highlight that the UD sigma-profile 

is an extension derived from the openly accessible VT-2005 database. The computational approach of the 

UD sigma-profile involves utilizing the Generalized Gradient Approximation (GGA), the VWN-BP153 

functional (which combines the Vosko, Wilk and Nusair exchange functional (VWN)153 and the Becke 

exchange functional (BP)149). The basis set is a double-ζ with polarization functions (DNP). In contrast, 

for the PSL sigma-profile, we utilized a hybrid functional (PBE0) and a split valence triple-ζ basis set with 

polarization functions (6-311G(2df,p)). 

The definition of a cavity in the context of sigma-profiles involves specifying the radii of the cavity. In the 

UD sigma-profiles, the typical cavity radii are based on the Klamt radii. These radii originate from the 

traditional Bondi’s van der Waals radii scaled by a factor of 1.17. Conversely, in computer codes like 

Gaussian that implement PCM-like models, different radii (referred to as UFF radii) are often used. These 

UFF radii are defined based on the Universal Force Field (UFF); a widely used parameterization for 

molecular mechanics calculations. They are easily generated for a wide range of elements, following 

straightforward rules. Particularly, in implementations of PCM like that in the Gaussian code, these UFF 

radii are used. 

Figures 6.3 and 6.4 show benzene and toluene's IDAC in n-alkanes using different sigma-profiles, 

respectively. The results obtained using PSL database (Klamt radii) are better than UD database. 

Moreover, PSL database (UFF radii) are better than Klamt radii even if IDAC values is underestimated. 
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Figure 6.3 – IDAC of Benzene in n-Alkanes using COSMO-SAC with different sigma-profiles (grey: UD, orange: 

PSL-Klamt and green: PSL-UFF). 

 

 
Figure 6.4 – IDAC of Toluene in n-Alkanes using COSMO-SAC with different sigma-profiles (grey: UD, orange: 

PSL-Klamt and green: PSL-UFF). 
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6.4. Phase equilibrium predictions in conventional solvents 

Activity coefficients for aromatics + n-hydrocarbons have been correlated from VLE isotherms data at 

low pressure (below 500 kPa) (Table 6.6) using the thermodynamic equation (6.3) and assuming the vapor 

phase as an ideal gas and neglecting the Poynting correction factor.  

𝑥𝑖  𝛾𝑖  𝑃𝑖
𝑠𝑎𝑡 = 𝑦𝑖  𝑃 (6.3) 

Where 𝑥𝑖 is the mole fraction in the liquid phase, 𝛾𝑖 is the activity coefficient, 𝑃𝑖
𝑠𝑎𝑡

is the vapor pressure, 

𝑦𝑖 is the mole fraction in the vapor phase, and P is the total equilibrium pressure. The pure component 

vapor pressure is correlated from the DIPPR (Design Institute for Physical Properties) database.154 The 

correlation and the parameters used are presented in Table 6.7.  

Table 6.6 – Literature data of aromatic and n-alkane binary system. 

System 
(1)                 (2) 

Number 
of 

points 

Temperature 
range (K) 

Mole fraction range 
(1) 

reference max. min. max. min. 

o-xylene n-heptane 57 348 368 0.054 0.993 155–157 

o-xylene n-octane 13 308.09  0.050 0.950 157 

p-xylene n-heptane 28 348.13  0.052 0.958 157 

m-xylene n-heptane 27 348.13  0.082 0.972 155 

m-xylene n-decane 33 373 393 0.004 0.995 158 

toluene n-heptane 159 298 362 0.047 0.971 159–162 

toluene n-octane 18 333.15  0.047 0.953 163 

toluene n-decane 34 373 393 0.047 0.957 158,164 

benzene n-hexane 65 333 343 0.028 0.972 165–167 

benzene n-heptane 182 293 488 0.021 0.994 168–176 

benzene n-octane 66 328 348 0.183 0.957 177 

benzene n-dodecane 38 333 353 0.122 0.890 178 

Activity coefficients correlated from VLE experimental data have been used to compare the accuracy of 

four models: NRTL, Scatchard-Hildebrand, modified UNIFAC(Do) and COSMO-SAC-dps. 

The Simulis thermodynamic software developed by Prosim (France) was used to correlate the data using 

NRTL and fit the NRTL model parameters. The PSL sigma-profiles were obtained based on these 

DFT/COSMO calculations considering two types of radii: Klamt and UFF.  
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Table 6.7 – Obtained NRTL parameters.  

System T (K) 
Number 
of points 

𝛼𝑖𝑗
0 

regressed 

AAE% calculated by a series of 𝛼𝑖𝑗
0 

0.2 0.3 0.4 0.47 regressed 

o-xylene n-heptane 348.13 23 0.502 0.30 0.16 0.13 0.13 0.07 

o-xylene n-heptane 358.08 11 0.823 0.51 0.41 0.36 0.32 0.24 

o-xylene n-heptane 348.08 12 0.800 0.79 0.62 0.72 0.54 0.51 

o-xylene n-heptane 368.28 11 0.349 0.56 0.47 0.45 0.43 0.43 

o-xylene n-octane 308.09 13 3.335 0.16 0.35 0.34 0.34 0.09 

p-xylene n-heptane 348.13 28 1.410 0.34 0.33 0.31 0.27 0.11 

m-xylene n-heptane 348.13 27 0.810 0.25 0.21 0.16 0.14 0.06 

m-xylene n-decane 348.13 11 0.247 1.24 1.25 1.25 1.25 1.25 

m-xylene n-decane 393.67 10 0.832 0.97 0.95 0.95 0.94 0.92 

m-xylene n-decane 383.57 12 0.350 1.60 1.60 1.60 1.60 1.60 

toluene n-heptane 298.14 49 0.72 0.71 0.70 0.72 0.69 0.72 

toluene n-heptane 303.14 44 0.70 0.67 0.65 0.64 0.63 0.70 

toluene n-heptane 313.14 25 0.53 0.58 0.49 0.49 0.47 0.53 

toluene n-heptane 322.99 15 0.79 0.79 0.77 0.76 0.52 0.79 

toluene n-heptane 332.98 15 0.82 0.78 0.74 0.70 0.75 0.82 

toluene n-heptane 362.98 14 8.56 8.43 8.31 8.21 7.44 8.56 

toluene n-heptane 347.98 17 0.81 0.78 0.74 0.71 0.57 0.81 

toluene n-heptane 302.99 13 1.06 1.05 1.01 0.99 0.85 1.06 

toluene n-octane 333.15 18 0.39 0.35 0.32 0.29 0.13 0.39 

toluene n-decane 373.47 12 1.60 1.61 1.60 1.60 1.60 1.60 

toluene n-decane 383.57 10 2.48 2.47 2.46 2.46 2.46 2.48 

toluene n-decane 393.67 10 3.53 3.41 3.46 3.51 3.41 3.53 

benzene n-hexane 333.13 32 0.605 1.60 1.89 1.80 1.71 1.66 

benzene n-hexane 343.12 7 0.417 0.23 0.19 0.21 0.23 0.24 

benzene n-heptane 333.12 15 0.994 0.25 0.96 0.87 0.79 0.73 

benzene n-heptane 353.12 26 1.146 0.27 0.64 0.59 0.54 0.51 

benzene n-heptane 348.12 8 1.414 0.20 1.07 1.02 0.96 0.92 

benzene n-heptane 293.14 22 1.562 0.25 0.81 0.68 0.60 0.57 

benzene n-heptane 488.11 9 0.629 7.34 7.59 7.53 7.47 7.43 

benzene n-heptane 458.11 10 0.652 0.59 0.60 0.59 0.59 0.59 

benzene n-heptane 473.11 10 0.639 0.62 0.63 0.63 0.62 0.62 

benzene n-heptane 443.11 10 3.354 0.26 0.54 0.53 0.53 0.52 

benzene n-heptane 428.11 9 2.720 0.40 0.83 0.82 0.80 0.79 

benzene n-heptane 413.12 9 1.621 0.30 0.59 0.57 0.55 0.53 

benzene n-heptane 383.12 17 0.647 0.96 1.14 1.11 1.07 1.04 

benzene n-heptane 318.14 15 0.860 0.34 1.07 0.97 0.86 0.78 

benzene n-octane 328.14 27 1.491 0.59 1.58 1.49 1.41 1.35 

benzene n-octane 348.13 13 1.510 0.49 0.90 0.86 0.82 0.79 

benzene n-octane 338.13 26 1.731 0.48 1.57 1.51 1.44 1.40 

benzene n-dodecane 333.13 11 0.721 2.23 2.24 2.23 2.23 2.23 

benzene n-dodecane 313.14 8 0.669 2.37 2.54 2.50 2.47 2.44 

benzene n-dodecane 353.13 16 0.572 2.46 2.46 2.46 2.46 2.46 
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The results of predicted activity coefficient compared with experimental values using the semi-empirical 

NRTL and the predictive model UNIFAC(Do) are presented in Fig. 6.5. Comparing to predictions 

obtained using NRTL, it is evident that UNIFAC(Do) demonstrates notable accuracy across the systems 

and temperature investigated in this study, outperforming predictions obtained using NRTL. Notably, for 

all systems studied, the errors (AAE%) remain under 15, with global errors of 3.06% and 4.05% for NRTL 

and UNIFAC(Do) respectively. Which are  considered reasonable levels of accuracy. It observed that the 

NRTL model fails the prediction near the infinite dilution, giving activity coefficient values larger than 

1015 or tending towards infinity. This discrepancy can be attributed to the correlation of the binary 

interaction parameters with experimental data from the VLE, without considering IDAC. Consequently, 

NRTL proves insufficient for accuralety predicting IDAC.  

 

 

(a) Xylenes + n-alkanes (b) Benzene + n-alkanes 

 

(c) Toluene + n-alkanes 
Figure 6.5 – Experimental vs. predicted activity coefficient of aromatics in n-alkanes using () NRTL and () 

UNIFAC Do. The dash line represents a margin of error of 15%. 
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Two approaches were considered regarding the prediction of activity coefficient using the Scatchard-

Hildebrand model (SH). The first one, activity coefficients were predicted considering the contribution of 

the SH term. The second one has included the combinatorial term given by the Staverman-Guggenheim 

equation (SG) like UNIFAC and COSMO-SAC model. The volume and surface area were taken from the 

DFT calculation performed in this work. Figure 6.6 compares the experimental activity coefficient values 

with the predicted one using the SH model and SH model + SG term. After including the combinatorial 

term, the SH model was improved for benzene and toluene systems and performed equally for xylene 

systems. Moreover, the global errors obtained in those predictions were 3.97% and 3.82% for the SH 

model and SH+SG, respectively.  

  

(a) Xylenes + n-alkanes (b) Benzene + n-alkanes 

 

(c) Toluene + n-alkanes 
Figure 6.6 – Experimental vs. predicted activity coefficient of aromatics in n-alkanes using () Scatchard-

Hildebrand (green: no combinatorial term; deep blue: with combinatorial term of Staverman-Guggenheim). The 
dash line represents a margin of error of 15%. 
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Concerning the COSMO-SAC predictions, three databases of -profiles were considered: UD database 179 

(an extension of the freely available VT database) and two databases generated in this study consider two 

types of radii: Klamt and UFF (called PSL-Klamt and PSL-UFF databases). Detailed procedure of 

generating the PSL -profiles database by DFT/COSMO calculations were described in our previous 

paper145. Figure 6.7 compares the experimental activity coefficient values with the predicted one using the 

COSMO-SAC model with UD, PSL-Klamt, and PSL-UFF -profile database. For almost all systems, 

COSMO-SAC using the PSL-UFF database performs better than using the UD database for the studied 

systems. Except for xylene systems, COSMO-SAC using the PSL-Klamt database performs better than 

PSL-UFF.  

 

 

(a) Xylenes + n-alkanes (b) Benzene + n-alkanes 

 

(c) Toluene + n-alkanes 
Figure 6.7 – Experimental vs. predicted activity coefficient of aromatics in n-alkanes using (●) COSMO-SAC 2010 
with different sigma-profiles database (grey: UD; orange: PSL (Klamt radii) and green: PSL (UFF radii)). The dash 

line represents a margin of error of 15%. 
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However, the global error obtained in those predictions were 5.41%, 4.68% and 4.07% for UD, PSL-

Klamt, and PSL-UFF databases, respectively. Thus, we can conclude that the level of theory considered 

in the UD database, in contrast to the level of theory and basis set considered in the PSL database (this 

study), impacts activity coefficient predictions using the COSMO-SAC model. Moreover, comparing the 

COSMO-SAC model with a semi-empirical (i.e., NRTL model), we can conclude that this model has very 

good accuracy for all the systems studied in this study.  

A more general representation of experimental activity coefficient values with all models used to predict 

it in this work is presented in figure 6.8. 

  

(a) Xylenes + n-alkanes (b) Benzene + n-alkanes 

 

(c) Toluene + n-alkanes 
Figure 6.8 – Experimental vs. predicted activity coefficient of aromatics in n-alkanes using different models.●: for 

COSMO-SAC 2010 using sigma-profiles database (grey: UD; orange: PSL (Klamt radii) and green: PSL (UFF 

radii)); : for NRTL and : for UNIFAC(Do) and : for Scatchard-Hildebrand (green: no combinatorial term; 
deep blue: with combinatorial term of Staverman-Guggenheim). The dash line represents a margin of error of 

15%. 
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In the evaluation of activity coefficient predictions for several binary liquid-liquid systems, Table 6.8 

presents Average Absolute Error percentage (AAE%) values for different thermodynamic models. High 

errors for all models were found for the system o-xylene + n-octane. The source of those errors is probably 

from the accuracy of experimental data, which shows the unexpected fluctuation of the activity coefficient 

among the molar fractions. This same behavior was observed for the systems xylene + n-decane, benzene 

+ n-dodecane, and toluene + n-decane, which is notorious the impact on the errors found for all models.  

In the context of the o-xylene + n-heptane system, the SH+SG model provided activity coefficient 

predictions with an error of 2.44%, closely followed by the SH model with an error of 2.34%. The NRTL 

model demonstrated superior accuracy with an error of 1.31%. UNIFAC Do. reported an error of 3.77%, 

while COSMO-SAC (PSL-Klamt) and COSMO-SAC (PSL-UFF) exhibited errors of 2.02% and 2.90%, 

respectively. Lastly, COSMO-SAC (UD) had an error of 1.77%. 

For the benzene + n-heptane system, the NRTL model outperformed other models, achieving an error 

of 3.25%. In comparison, the SH+SG and SH models both had errors of 4.14%. COSMO-SAC (PSL 

UFF) resulted in an error of 3.77%, UNIFAC had an error of 3.16%, COSMO-SAC (PSL-Klamt) reported 

an error of 4.63%, and COSMO-SAC (UD) exhibited the highest error at 6.97%. 

In the case of toluene + n-heptane, the NRTL model once again provided the most accurate activity 

coefficient predictions with an error of 1.82%. Following closely, COSMO-SAC (PSL-Klamt) reported an 

error of 4.22%, COSMO-SAC (UD) had an error of 3.86%, SH yielded an error of 1.92%, SH+SG had 

an error of 1.82%, COSMO-SAC (PSL-UFF) exhibited an error of 2.82%, and UNIFAC Do. showed an 

error of 2.84%. 

These values in Table 6.8 offer critical insights into the relative performance of different thermodynamic 

models in predicting activity coefficients for specific binary systems.  

Table 6.8. AAE% values of activity coefficient for different thermodynamic models. 

  

Number 
of 

points 
COSMO-
SAC UD 

COSMO-
SAC PSL 

Klamt 

COSMO-
SAC PSL 

UFF NRTL UNIFAC SH SH+SG 

o-xylene 
n-heptane 57 2.68% 2.16% 4.23% 2.22% 6.47% 3.39% 3.44% 

n-octane 13 13.32% 11.17% 7.01% 1.22% 4.03% 9.94% 9.18% 

p-xylene  n-heptane 28 1.77% 2.02% 2.90% 1.91% 3.77% 2.34% 2.44% 

n-heptane 27 4.18% 3.11% 4.48% 2.86% 5.24% 3.26% 3.29% 
m-
xylene 

n-decane 33 5.03% 4.76% 6.00% 5.27% 7.61% 4.80% 5.83% 

global 158 5.01% 4.39% 4.78% 3.02% 5.29% 4.38% 4.59% 

toluene 

n-heptane 192 3.86% 4.22% 2.82% 1.98% 2.84% 1.92% 1.82% 

n-octane 18 5.58% 3.98% 2.00% 1.20% 1.80% 0.82% 1.32% 

n-decane 32 7.72% 7.06% 7.91% 5.93% 8.08% 6.83% 6.45% 
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global 242 4.60% 4.27% 2.85% 2.11% 2.88% 2.10% 1.95% 

benzene 

n-hexane 39 3.90% 3.29% 3.64% 2.07% 2.28% 3.81% 3.31% 

n-heptane 160 6.97% 4.63% 3.77% 3.25% 3.16% 5.13% 4.14% 

n-octane 66 5.39% 4.69% 2.64% 2.26% 1.97% 2.93% 2.27% 

n-dodecane 35 11.09% 14.56% 14.73% 14.79% 14.69% 14.88% 17.68% 

global 300 5.42% 4.20% 3.35% 2.53% 2.47% 3.96% 3.24% 

The evolution of the activity coefficient as a function of the composition is presented in figure 6.9 for 

three representative systems:  o-xylene + n-heptane at 348.13 K, benzene + n-heptane at 353.12 K, and 

toluene + n-heptane at 347.98 K.   

  

(a) o-xylenes + n-heptane at 348.13 K (b) benzene + n-heptane at 353.12 K 

 

(c) toluene + n-heptane at 332.98 K 

 
Figure 6.9 – Evolution of activity coefficient in function of the mole faction for different thermodynamic models: 
grey lines: COSMO-SAC (UD); orange lines: COSMO-SAC (PSL-Klamt); green lines: COSMO-SAC (PSL-UFF ); 

blue lines: NRTL; light blue lines: UNIFAC(Do); light green lines: SH and(deep blue lines: SH+SG. 
●:experimental values. 
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6.4. Conclusion 

This study serves as the foundation for creating the PSL sigma-profile database, initiated by investigating 

conventional solvents to understand how computational factors impact model performance. The 

investigation began with a benchmark using furan in an apolar solvent to assess the basis set's impact on 

the accuracy of predicting IDAC. The choice of basis set and DFT functional was found to significantly 

affect accuracy. A sophisticated basis set, 6-311G(2df,p), and the PBE0 functional were identified as the 

most suitable options. 

Using these insights, the PSL sigma-profile database was established. This chapter presented predictions 

of IDAC in conventional solvents compared to the UNIFAC(Do) model. Overall, UNIFAC(Do) 

outperformed the COSMO-SAC-dps model, especially for most systems. COSMO-SAC-dps 

demonstrated high accuracy only in predicting IDAC for two specific combinations. 

The chapter also explored different sigma-profile databases and models for predicting activity coefficients. 

UNIFAC(Do) outperformed NRTL, which was found unsuitable for predicting Infinite Dilution Activity 

Coefficients (IDAC). The Scatchard-Hildebrand model was also considered, and the inclusion of a 

combinatorial term (Staverman-Guggenheim) improved its predictions for certain systems. 

Finally, the COSMO-SAC model was compared using different sigma-profile databases. The PSL-UFF 

database yielded better results compared to PSL-Klamt and UD for most systems. The chapter provided 

a comprehensive assessment of the models' performance in predicting IDAC. 
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Résumé 

Le chapitre commence par aborder la création de la base de données des profils sigma PSLen mettant 

l'accent sur les DES composés de deux ou trois substances. L'optimisation de la géométrie a été réalisée 

dans le but d'identifier les structures moléculaires les plus stables pour les systèmes DES, en mettant 

particulièrement l'accent sur le système BMIMCl : Gly dans un ratio de 2:1. Le choix de la géométrie 

optimale repose sur les énergies d'interaction, et l'étude souligne le rôle essentiel du choix des méthodes 

théoriques et des ensembles de base dans ces prédictions. Deux approches distinctes pour la génération 

de profils sigma sont explorées : les méthodes AB et A+B. Dans l'approche AB, les profils sigma sont 

créés en prenant en compte la géométrie impliquant l'ensemble des molécules. Dans l'approche A+B, les 

profils sigma sont dérivés en additionnant les sigmas en fonction du ratio de chaque composé pour former 

le profil sigma du DES lui-même. 

En résumé, l'étude fournit des informations précieuses sur l'importance du choix des méthodes théoriques 

et des ensembles de base appropriés pour les calculs de mécanique quantique, en particulier lors de la 

génération de profils sigma pour les DES. Elle met également en évidence l'importance de l'identification 

de géométries stables pour les structures DES et la distance entre les ions émergeant comme un facteur 

critique. 

Un modèle de solvant implicite appelé le modèle COSMO (également appelé modèle CPCM) a été utilisé 

pour obtenir une compréhension approfondie de la géométrie moléculaire optimisée dans un solvant. Ce 

modèle implique le placement de molécules (considérées comme solutés) dans une cavité d'un milieu 

diélectrique continu qui représente le solvant. En utilisant la forme de la cavité et les rayons atomiques, le 

modèle calcule des charges ponctuelles à la surface de la cavité. Les informations clés extraites de ce calcul 

comprennent le volume et la surface de la cavité, la position des noyaux, la densité de charge et la position 

des éléments de la cavité. 

Un aspect crucial de cette approche est la représentation des résultats à l'aide d'une densité de charge de 

surface représentée par un code couleur. Par exemple, la densité de charge de surface de l'ion 1-butyl-3-

méthylimidazolium est représentée avec des régions rouges indiquant des zones fortement négatives 

(surfaces acceptant l'hydrogène), du bleu profond indiquant des surfaces fortement positives (surfaces 

donnant de l'hydrogène) et du vert représentant des régions neutres (surfaces non polaires). L'analyse de 

cette densité de charge de surface est essentielle pour comprendre l'énergie d'interaction calculée dans les 

sections précédentes et pour sélectionner les positions les plus stables pour les ions. 
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L'étude explore également le calcul de la densité de charge de surface pour différents conformères et 

identifie les régions favorables pour l'ion chlorure de 1-butyl-3-méthylimidazolium. Cette analyse 

contribue à déterminer la position la plus stable pour l'ion chlorure dans le système de solvant. 

De plus, l'étude décrit la génération de profils sigma pour les DES. Ce processus implique la normalisation 

des données à partir du fichier de résultats COSMO et le calcul des distances par paires entre les noyaux. 

Les profils sigma générés permettent de représenter la polarité moléculaire, et deux approches distinctes, 

AB et A+B, sont utilisées pour créer des profils sigma pour un DES spécifique BMIMCl : Gly dans un 

ratio de 2 :1. 

Les défis computationnels liés au calcul de la densité de charge de surface sont également abordés et 

souligne que le calcul de mécanique quantique est l'aspect le plus intensif en calcul du modèle COSMO-

SAC. 

Enfin, l'étude plonge dans la prédiction des IDAC dans les DES. Cette propriété thermodynamique est 

cruciale pour les applications industrielles. Les données expérimentales d'IDAC sont utilisées pour 

optimiser le modèle COSMO-SAC, en mettant principalement l'accent sur la contribution de dispersion 

basée sur le modèle de Margules à un paramètre. Différentes approches et versions du modèle COSMO-

SAC pour prédire l'IDAC dans différents systèmes DES sont utilisées fournissant des références pour les 

sources de données d'IDAC. 

En résumé, l'impact des différentes approches de profil sigma (AB et A+B) sur les prédictions de l'IDAC 

dans les solvants eutectiques profonds en utilisant le modèle COSMO-SAC est examiné. Le modèle 

COSMO-SAC traditionnel n'est pas adapté aux prédictions DES en raison des propriétés structurales 

uniques des DES. Cependant, une version améliorée, COSMO-SAC-dps(DES0), réduit considérablement 

la déviation relative moyenne (ARD), en particulier pour les alcanes et les alcools. L'approche de profil 

sigma A+B est préférée pour son rapport coût-efficacité et sa précision modérée. L'optimisation des 

paramètres pour la contribution combinatoire dans les modèles basés sur COSMO est faite soulignant 

l'importance de paramètres personnalisés pour différentes familles de solvants. De plus, l'impact de la 

contribution de dispersion (aDES0) sur les prédictions de l'IDAC dans diverses combinaisons de solvants 

DES est examiné montrant des niveaux de précision variables (le modèle prédit bien les IDAC pour les 

aromatiques mais rencontre des défis pour prédire les IDAC pour les alcanes et les alcools). La dépendance 

à la taille en matière de précision est mise en évidence et l’introduction d'une nouvelle contribution pour 

résoudre les complexités des interactions des alcanes dans les systèmes DES est suggérée. 
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Le modèle COSMO-SAC-DES est considéré comme une variante du modèle COSMO-SAC-dps121, 

spécialement conçu pour prédire les IDAC dans les DESs. Ce modèle intègre les profils sigma A+B 

obtenus grâce à des calculs de la DFT à partir de la base de données des profils sigma PSL.  
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7. Sigma-profile and COSMO-SAC approach for solvent 
selection  

 

Thermodynamic calculation based on COSMO-based models relies on the sigma-profiles specific to each 

molecule. A sigma-profile is a molecular-specific distribution of the surface charge density, which is 

obtained by quantum mechanical (QM) calculation based on solvation models (see sections 3.4.5.2 and 

4.3.4 from Chapters 3 and 4, respectively). This information is the heart of the model and is used to 

calculate and predict phase equilibria and other properties, through a solvation thermodynamic approach. 

Whereas the QM calculation represents the most time-consuming and computationally expensive part of 

the COSMO-based models.  

The commonly used QM calculation is Density Functional Theory (DFT), with its theoretical method and 

basis set. The main challenge of this calculation is to find theoretical method and basis set that gives a 

good balance between desired accuracy – as high as possible - and computational effort. For that, a 

benchmark of different levels of theoretical methods, and their computational variables have been 

investigated to understand their role in the performance of the predictions using the COSMO-SAC model. 

Based on this benchmark, PSL sigma-profile database has been created. Considering DES, which is 

generally composed of two or three substances, two distinct approaches to obtain the sigma-profile are 

investigated in this work. 

Two approaches to generate the sigma-profile for DES, the geometry optimization in the gas phase is 

described. 

7.1. Geometry optimization 

The way how the total energy of a system varies with small changes in its structure is described by its 

potential energy. The potential energy of a system of two atoms depends only on the distance between 

them and is described by a 2D graph based on the Lennard-Jones potential model (Figure 6.1). At large 

distances, the energy is zero, which means that there is no interaction between them. At short distances, 

attractive forces are dominant, whereas at very close distances repulsive forces appear, causing the energy 

to rise. 
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Figure 7.1 – A potential energy curve for the covalent bond in a H2 molecule. The distance r is the distance 
between the nuclei of the two H atoms180. 

On the other hand, for large systems, the potential energy has as many dimensions as there are degrees of 

freedom in the molecule. The plots of the potential energy create a surface that can be used to theoretically 

explore the properties of structures, such as the potential energy of the ozone molecule represented by 

Fig 7.2, where each point corresponds to different values for the various bond distances, bond angles, and 

dihedral angles. The global energy minimum shows the lowest energy point anywhere on the potential 

surface and represents the equilibrium structure of a molecular system. Geometry optimization usually 

attempts to locate minima on the potential energy surface, thereby predicting the most stable geometry of 

a molecular system. In this work, all the geometries have been first optimized using the GAUSSIAN 16 

program package. A vibrational analysis was performed on all calculations to ensure the absence of 

negative vibrational frequencies and verify the existence of a true minimum. 

 

Figure 7.2 – Potential energy surface of the ozone molecule varying the O-O distance (from 1.0 to 1.4 A) and the 
O-O-O angle (from 55º to 125º)181 



Chapter 7 – Sigma-profile and COSMO-SAC approach for solvent selection  

 181 

The geometry optimization of the DES, which is generally composed of two or three substances, has been 

optimized considering a geometry including the ensemble of molecules. In this work, the geometry of the 

molecules giving the deep eutectic solvent with the chemical name of (BMIMCl: Gly, ration 2:1) have been 

studied. The structure of the hydrogen-bond acceptor compound, BMIMCl, was considered as an ion-par 

in a meta geometry. Two conformers (C1 and C2), and five favorable regions for the ion Cl- at the 

neighborhood of the imidazolium ring have been considered (Fig. 7.3) 

  

(a) conformer C1 (b) conformer C2 

Figure 7.3 – 1-butyl-3-methylimidazolium (BMIM+1) conformers and their five favorable regions for chloride ion. 
 

Table 7.1 – Optimized structures of 1-butyl-3-methylimidazolium chloride, calculated at PBE0/6-

311G(d,f) level.  

Favorable regions for Cl- ion and their ion pairs' name 

1 2 3 4 5 

 

 

 

 

  

BMIMCl_C1R1 BMIMCl_C1R2 BMIMCl_C1R3 BMIMCl_C1R4 BMIMCl_C1R5 

 

 

. 
 

 

BMIMCl_C2R1 BMIMCl_C2R2 BMIMCl_C2R3 BMIMCl_C2R4 BMIMCl_C2R5 
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In this study, the total energy has been calculated to find the optimal geometry. The first row of Table 7.1 

shows the optimized conformers C1 geometry, and the second row shows the conformers C2. 

The interaction energy has been considered to compare the different levels of theoretical methods and 

basis set.  

The interaction energies are shown in Table 7.2. Large absolute values of the interaction energies indicate 

a favorable affinity of chloride ion with the cation BMIM+, resulting in more stable geometries. Instead, 

low absolute values of the interaction energies indicate unfavorable interaction of the ions. Generally, the 

structure where the chloride ion- interacts with the two hydrogen atoms attached to the imidazolium ring 

(favorable region 4) is the least stable. On the other hand, interactions where the chloride ion interacts 

with the C3-H (in regions 1 and 2) exhibit relatively lower energies, indicating the most stable geometries.  

Furthermore, the different conformations have little effect on the interaction energies of the ion pairs. For 

example, no difference was found in the energy between the BMIMCl_C1R1 and BMIMCl_C2R1 at the 

PBE0/6-311G(2df,p) level, and only 6.22 kJ/mol at the PBE0/6-31++G(d,p) level. On the other hand, 

the position of the chloride ion significantly affects the interaction energies. For example, comparing the 

energy from regions 1 and 4, for the C1 conformer the difference found is 63.63 kJ/mol, and for C2, the 

difference is 58.61 kJ/mol. Moreover, when we observe the interactions of the chloride ion in region 1, 

the hydrogen bonds that it forms is more stable than the one that it forms in region 4. This is due to the 

position of the group butyl that envelops the ion (stabilizing it). This conclusion is completely in agreement 

with the results presented in Table 7.2, where the interaction energy of the BMIMCl_C1R1 is much lower 

than the BMIMCl_C1R4. Based on the results obtained from this study, we can select region 1 as the most 

active region, resulting in more stable geometries.  

  

Δ𝐸 = Δ𝐸𝐵𝑀𝐼𝑀𝐶𝑙 − (Δ𝐸𝐵𝑀𝐼𝑀+ + Δ𝐸𝐶𝑙−) (7.1) 
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Table 7.2 – Interaction energy in kJ/mol. 

Ion pairs 

BMIMCl 

PBE0 

6-31G(d) 

PBE0 

6-31++G(d,p)  

PBE0 

6-311G(2df,p) 

B3LYP 

6-31G(d) 

B3LYP 

6-31++G(d,p) 

B3LYP 

6-31G(d)(a) 

B3LYP 

6-31++G(d,p) (a) 

C1R1 -383.34 -376.45 -388.36 -375.25 -368.08 -405.86 -452.44 

C1R2 -382.29 -375.79 -388.08 -374.05 -367.93 -405.23 -452.55 

C1R3 -352.19 -345.07 -357.63 -344.33 -337.39 -374.65 -421.51 

C1R4 -315.72 -345.07 -357.63 -309.83 -337.39 -340.97 -392.54 

C1R5 -346.24 -340.83 -352.76 -339.34 -334.29 -370.11 -418.85 

C2R1 -383.34 -376.45 -388.36 -375.25 -368.08 -409.45 -450.13 

C2R2 -379.15 -379.38 -384.83 -370.24 -364.14 -403.97 -446.85 

C2R3 -350.48 -343.50 -355.18 -341.94 -334.80 -374.46 -416.67 

C2R4 -350.48 -343.50 -338.57 -307.07 -334.80 -341.51 -388.15 

C2R5 -345.30 -339.78 -351.67 -337.54 -332.25 -370.50 -414.50 

(a) From Wang et. al. (2005). 

According to all results presented in Table 7.2, the predictions of interaction energies are slightly sensitive 

to the level of the theoretical method used. The average difference between PBE0 and B3LYP levels is 

about 5.36 kJ/mol. For the same geometry, PBE0 always found the local minimum energy lower than the 

B3LYP. On the other hand, we can see that the predictions using either PBE0 or B3LYP as a level of the 

theoretical method are highly sensitive to the basis set used. Globally, the interactions energy predicted at 

the 6-31G(d) basis set are smaller than that predicted by 6-31++G(d,f) and 6-311++G(d,f) basis set. It is 

important to emphasize that the basis set 6-311G(df,p), 6-31++G(d,f) and 6-31G(d) has 483, 303, and 

199 basis functions to describe the orbitals, respectively. It can be observed that the average difference 

between 6-31++(d,p) and 6-311G(df,p) using PBE0 as a level of theoretical method is 86.67 kJ/mol. This 

difference can be explained by the fact that a bigger basis set can envelop better the structure using diffused 

orbitals, in turn, can describe better hydrogen bonds (e.g., this structure). These results illustrate the 

importance of the selection of a basis set for the prediction of the interaction energy using DFT and for 

the study of the ion pairs, for which in turn a large basis set is essential.  

The interaction energy predicted in this work using the same level of theoretical method and basis set is 

bigger than the results obtained by Wang et. al. (2005). However, it was noticed that he found a large 

difference in changing the basis set. For example, comparing the C1 conformer with the chloride in region 

4, he obtained -340.97 kJ/mol for 6-31G(d) basis set and -392.54 kJ/mol for 6-31++G(d,f), arising in a 

difference of 51.57 kJ/mol in magnitude. On the other hand, repeating the same calculation we obtained 

a difference of 6.94 kJ/mol (Table 7.3). It is noteworthy that the calculation presented here follows a trend 



Chapter 7 – Sigma-profile and COSMO-SAC approach for solvent selection  

 184 

with a low difference between the 6-31G(d) and 6-31++G(d,f) basis set for most of the positions of the 

chloride ion, except for position 4 (least stable geometry). The same behavior was not observed in the 

results of Wang et. al. (2005). Probably they carried out single point calculations at the 6-31G(d) structures. 

Table 7.3 – Difference between 6-31G(d) 

and 6-31++G(d,f) in terms of interaction 

energy in kJ/mol. 

Ion pairs 
  |6-31G(d) | - |6-

31++G(d,f)|  

BMIMCl PBE0 B3LYP B3LYP(a) 

C1R1 6.89 7.17 -46.58 

C1R2 6.5 6.12 -47.32 

C1R3 7.12 6.94 -46.86 

C1R4 -29.35 -27.56 -51.57 

C1R5 5.41 5.05 -48.74 

C2R1 6.89 7.17 -40.68 

C2R2 -0.23 6.1 -42.88 

C2R3 6.98 7.14 -42.21 

C2R4 6.98 -27.73 -46.64 

C2R5 5.52 5.29 -44 

(a) From Wang et. al. (2005). 

In summary, the interaction patterns between the chloride ion and imidazolium ring were studied in detail. 

The large interaction energies between the chloride ion and imidazolium ring suggest that the hydrogen 

bond is by far the most important contribution to the total energy in DES. Furthermore, results obtained 

allow us to investigate not just the favorable region of the ion, but the influence of the level of theoretical 

method and basis set in the predictions of interaction energy.  

To conclude, considering all the key factors discussed here, the C1 conformer and the favorable region 1 

have been selected as the more representative geometry, which shows relatively lower energies, in turn, 

gives the most stable geometry. 

The next step for geometry optimization considering DES is to include the hydrogen bond donner (HBD) 

compound. In the case of the BMIMCl:Glycerol (ratio 2:1), first the Glycerol has been optimized by itself. 
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And then, in a second step, this optimized geometry is inserted into the HBA-optimized one. For that, 

some probable regions have been considered (Fig. 7.4).  

   

(1)  (2)  (3)  

   

(4)  (5)  (6)  

Figure 7.4 – Possible geometries for 1-butyl-3-methylimidazolium chloride:glycerol (ration 2:1) -BMIMCl:Gly. 

In geometry 1 and 2, the two ions-pairs BMIMCl are placed in the same plan of the glycerol. In geometry 

3, 4 and 5, the molecules are placed in a 3D arrange. And in geometry 6, the molecules are presented in 

three layers, where the BMIMCl ion-pair is on the first layer, the glycerol on the middle, and the second 

BMIMCl on the third layer, as a sandwich.  

According to results presented in Table 7.4, the bigger is the distance between the ions, the more stable is 

the structure. Considering, of course, that the electrostatic attraction of the ions with the glycerol and 

BMIM+cations is favorable. In agreement with this point of view, the most stable structure was found 

considering the bigger distance between the ions, studied here, i.e., geometry 4. Furthermore, it was 

observed that even with a big distance between the chloride ions, the molecule placed in the same plan is 

less stable than the one in a 3D arrangement. Considering geometry 6, the total energy of the structure is 

bigger than the sum of the total energy of each ion. This result shows the second less stable geometry, 

giving a positive interaction energy. This means that geometry 6 requires more energy to be in that 

structured shape than separated as ions. The same behavior was observed for geometry 5, however, 

because this geometry shows smaller distances between the chloride ions.  
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Table 7.4 – Interaction energy in kJ/mol. 

Geometry Chloride ions distance 

(angstroms) 

Interaction 

energy (kJ/mol) 

1 7.488 -720.18 

2 6.728 -915.51 

3 6.275 -913.19 

4 7.495 -937.42 

5 6.309 248.24 

6 6.540 3.28 

It is important to point out that, optimizing this type of metastructure is computationally expensive. To 

solve the calculation for geometry 4, it takes 9 days 1 hour, and 27 minutes. In contrast, to solve the 

calculation for the BMIMCl_C1R1, it takes 5 hours and 21 minutes, and for glycerol, it takes33 minutes.  

7.2. Surface charge density 

Now that, the geometry is optimized in the gas phase, it’s time to examine its behavior  on the solvent. In 

this step, an implicit solvent model is applied to obtain the surface charge density, the COSMO model, 

also known as the CPCM model. As explained in Chapter 4, the solute molecules are placed into a cavity 

with a continuous dielectric medium representing the solvent. The shape of the cavity is constructed based 

on the cavity algorithm and the atom radii, set on the calculation. Then, the cavity surface is split into small 

elements called tesserae, where the point charges are calculated. Each one represents the electrostatic 

polarization of the solute electron density. This calculation generates the COSMO result file, and the 

important information that can be extracted from there are: 

• Volume and surface area of the cavity. 

• Position of all nuclei. 

• Charge density, area, and location of each element that forms the cavity. 

The surface charge densities can be represented in a color-coded surface, e.g., surface charge density of 

the 1-butyl-3-methylimidazolium ion studied here (Fig 7.5). The areas colored in red represent the strongly 

negative parts of the ion, and hence hydrogen-accepting surfaces. On the other hand, areas colored in 

deep blue represent strongly positive surface regions and hydrogen-donating surfaces. While areas colored 

green represent the neutral regions, i.e., nonpolar surfaces. Considering the favorable regions for the 

chloride ion suggested in this work, the surface charge density of the BMIM+ presented in Fig. 7.5 cannot 

give a conclusive clue about the more stable position of the chloride ion. In contrast, the interaction energy 
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calculated for each region allow us to select the most stable position of the chloride ion. The area around 

the C-H bonded to the two nitrogen of the ring represents the more negative surface of the ion. Around 

light blue areas we can find the hydrogens located adjacent to the nitrogen, and they give positive surfaces, 

hence negative values of surface charge density. These regions are hydrogen-donating surfaces. The 

hydrogens found close to these light blue areas and nearby the area colored in red (R1 and R2) can do 

stronger bonds with the chloride ion than the hydrogens nearby the area colored in deep blue (R3 and 

R5). Around R4, a neutral surface is found and it is expected that hydrogen bonds there be quite weak, 

resulting in an unfavorable region to find the chloride ion.  

 

Figure 7.5 – Surface charge of the [1-butyl-3-methylimidazolium]+1 ion. 

Analyzing the surface charge density of the two conforms and their five favorable regions of the 1-butyl-

3-methylimidazolium chloride, we can observe the behavior of the surface charge density when we include 

the chloride ion and change its position (Figure 7.6).  

In summary, the surface charge density can give us a local qualitative measurement of the molecular 

polarity and allow us to understand the interaction energy calculated in the previous sections, arising on 

the same conclusion that the region R1 and R2 are more favorable to finding the chloride ion.  
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BMIMCl_C1R1 BMIMCl_C1R2 BMIMCl_C1R3 BMIMCl_C1R4 BMIMCl_C1R5 

  

  

 

BMIMCl_C2R1 BMIMCl_C2R2 BMIMCl_C2R3 BMIMCl_C2R4 BMIMCl_C2R5 

Figure 7.6 – Surface charge of the two conformers of 1-butyl-3-methylimidazolium and the five positions of the 
chloride ion. 

The surface charge density of the DES has been calculated considering the same structure of the BMIMCl: 

Gly (ratio 2:1) studied on the gas phase and presented in the previous section. The color-coded surface 

charge density (Figure 7.7) shows more green regions than when the BMIMCl ion is alone (Figure 7.6), 

due to the neutral regions formed when all the ions were considered and interacts with each other. Strong 

negative parts, and hence positive surface charge density are observed nearby the chloride ions.  

 
Figure 7.7 – Surface charge of the BMIMCl: Gly (ratio 2:1) (geometry 4). 

In general, the surface charge density calculated using CPCM model converges faster than using IEFPCM 

model. The more complex structure, geometry 4 of the BMIMCl: Gly (ratio 2:1) converged in 2 hours and 

40 minutes (in cpu time). In contrast, to solve the calculation for the BMIMCl_C1R1 and for glycerol, it 

takes 45 minutes, and 14 minutes, respectively. Globally, the quantum mechanical calculation is so far the 

more computationally expensive part of the COSMO-SAC model. At least, these calculations just need to 

be done once. 



Chapter 7 – Sigma-profile and COSMO-SAC approach for solvent selection  

 189 

As the COSMO result file is a text file of non-standardized format containing all the results of this 

calculation, a normalization should be done, resulting in the sigma-profile that can be stored in a database. 

However, building a sigma-profile database of DES considering a meta-structure as presented before will 

be extensive and computationally expensive. This is due to the complexity of the structure of the DES 

and the many combinations that can be proposed (changing the HBD:HBA ratio, the HBA molecule, and 

even the family of the HBD). To overcome this issue, an approach to obtain the sigma-profile of DES 

has been proposed and will be present in the next section.  

7.3. Approaches to generate the sigma-profile of DES 

To normalize the data from the COSMO result file to build the sigma-profile, first the position of all nuclei 

has been converted to the Ångstrom scale by multiplying with the conversion factor 0.52917721067 Å 

(Bohr radius). Then, the pairwise distance between each pair of nuclei m and n, in Å, is calculated using 

Eq. (3.39) cited in chapter 3, and the screening charge is averaged by Eq. (3.38). Once the screening charge 

averaged has been obtained for each segment m, the sigma-profile, pi(σ), is generated considering the 

probability of finding a given segment with a specified value of σ multiplied by the surface area of the 

molecule i. Generally, the values of σ vary in a range of -0.025 e/Å2 to 0.025 e/Å2, considering increments 

of 0.001 e/Å2, the sigma-profile is formed in a set of 51 points. Two approaches have been studied to 

generate the sigma-profile of deep eutectic solvents: AB and A+B (Fig. 7.8). 

The sigma-profile of the DES: BMIMCl: Gly (ratio 2:1) following the AB approach is presented in Fig 

7.8a and has been generated considering the geometry including the ensemble of molecules. Where the 

black line represents the non-hydrogen bond profile, and the grey is the hydrogen bond profile. 
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Figure 7.8 – Sigma-profile of the BMIMCl: Gly (ratio 2:1). (a) AB approach and (b) A+B approach. Black lines: 
non-hydrogen bond profile, and grey lines: hydrogen bond profile. 

The sigma-profile of 1-butyl-3-methylimidazolium chloride and glycerol have been generated separately. 

Then, following the A +B approach, a sum of the sigmas in a ratio of two BMIMCl to one glycerol has 

been considered to generate the sigma-profile of the DES itself: BMIMCl: Gly (ratio 2:1) presented in Fig 

7.8b. Where the black line represents the non-hydrogen bond profile, and the grey is the hydrogen bond 

profile. 

In the two profiles, we can observe the same big central pick with two small shoulders on the left side, 

which represents the nonpolar part of the molecule. On the other hand, the pick on the right side is higher 

in the A+B profile. These picks represent the hydrogen bond due to the three hydroxyl groups of the 

glycerol. This difference was expected because, in the case of AB profile, part of the electric charge of 

hydroxyl groups was neutralized inside the molecule. The same behavior was found for the hydrogen bond 

profile in grey, which is more pronounced in the A+B profile, for the same reason explained here.  

The cavity volume and surface area are bigger in the case of the A+B profile than the AB profile, in which 

a part of the surface of the BMIMCl and the glycerol is hidden inside of the cavity created around the 

meta structure, as observed in Tab 7.5. 

Table 7.5 – Cavity volume and surface area of BMIMCl:Cly (2:1). 

BMIMCl:Gly Cavity volume (Å3) Surface area(Å2) 

A+B (2:1) 547.93 609.29 

AB (2:1) 535.06 528.43 

7.4. Prediction of infinite dilution activity coefficient in DES 

IDAC are important thermodynamic properties and are commonly used for pre-screening solvents for 

industrial applications. IDAC measurements are both difficult and expensive. Nevertheless, activity 

coefficient data are helpful for testing the applicability and development of the theoretical models 

describing interactions on a physical basis.  

Few papers have reported experimental data of IDAC comprising DES. In this work, these data have been 

used to optimize the COSMO-SAC model including the parameter ADES0 to the dispersion contribution 

of the COSMO-SAC model based on the one-parameter Margules model.  
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𝐺𝐸,𝑑𝑠𝑝

𝑅𝑇
= 𝐴𝐷𝐸𝑆0𝑥1𝑥2 

(7.2) 

And  

ln 𝛾1
𝑑𝑝𝑠 = 𝐴𝐷𝐸𝑆0𝑥2

2 (7.3) 

ln 𝛾2
𝑑𝑝𝑠 = 𝐴𝐷𝐸𝑆0𝑥1

2 (7.4) 

With 

Which A is original dispersive term from COSMO-SAC-dps model, and is expressed by: 

The average relative deviations (ARDs) minimized as objective functions (OFs) were used to obtain the 

adjustable parameters aDES0 of dispersion contribution. 

𝑂𝐹 = 𝑚𝑖𝑛 {
1

𝑁
∑ |

𝛾𝑖
∞,𝑒𝑥𝑝

− 𝛾𝑖
∞,𝑐𝑎𝑙

𝛾𝑖
∞,𝑒𝑥𝑝 |

𝑁

𝑖

} 

(7.7) 

Two approaches to obtain the sigma-profile and different versions of COSMO-SAC cite have been used 

to predict IDAC in different DESs, listed in Tab. 7.6.  

Table 7.6 – Bibliographic references of IDAC data in DES. 

 
HBA HBD ratio Abbv. Ref. 

DES1 1-butyl-3-methylimidazolium chloride glycerol (2:1) BMIMCl:Gly 182 

DES2 1-butyl-2,3-dimethylimidazolium chloride ethylene glycol (1:3) BDMIMCl:EG 183 

DES3 Choline chloride glycerol (1:1) ChCh:Gly_1 184 

DES4 Choline chloride glycerol (1:2) ChCl:Gly_2 184 

DES5 Tetramethylammonium chloride 1,6 hexanediol (1:1) TMACl:C6ol 185 

DES6 Tetramethylammonium chloride ethylene glycol (1:2) TMACl:EG 186 

 

  

𝐴𝐷𝐸𝑆0 = 𝐴 ∙ 𝑎𝐷𝐸𝑆0 (7.5) 

𝐴 = 𝜀𝑟 ∙ 𝑤 ∙ [
1

2
(𝜀1 + 𝜀2) − √𝜀1𝜀2] 

(7.6) 
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7.4.1. Investigation of sigma-profiles on COSMO-SAC predictions: AB versus A+B approaches  

Predictions of IDAC in BMIMCl: Gly (2:1), hereafter referred to as DES1, have been used as reference 

to investigation of the different approaches to obtain the sigma-profile and their impact in the accuracy of 

the COSMO-SAC based model. The table 7.7 presents the ARD of the predictions using COSMO-SAC-

dps(DES0) models. COSMO-SAC-dps(DES0) represents the COSMO-SAC including the Margules term 

described in the equation 7.3 and its parameter aDES0. 

Table 7.7 – ARD of IDAC of conventional solute in BMIMCl + Glycerol and its parameter aDES0. 

 

 

COSMO-SAC-dps(DES0) 

ARD 

aDES0. 

AB 

Alkanes 57.3% 18.05 

Cyclo 20.4% 20.52 

Aromatics 37.7% 18.30 

Alcohols 7.7% -2.83 

A+B 

Alkanes 49.1% 15.45 

Cyclo 20.4% 16.91 

Aromatics 25.3% 16.63 

Alcohols 46.1% 12.51 

COSMO-SAC-based model is not particularly suitable for calculations with DES. When the COSMO-

SAC model is applied to predict IDAC for the solute (alkanes, cycloalkanes, aromatics and alcohol) in 

DES systems (such as butylmethylimidazolium-based), the ARD between the prediction and experimental 

data is high as 99%. This indicates that if the parameters in COSMO-SAC model obtained from 

conventional compound systems are directly extended to predict the thermodynamic properties of DES 

systems, large deviations between experiments and predictions often arise. A significant contributing factor 

to the substantial disparities in the predictions considering DES can be attributed to the formation of 

nano-segregated structures in DES (polar networks interspersed with non-polar domains), already 

observed in ionic liquids187, which is completely different from the solvation properties of molecular 

solutes in conventional solvents at the microscopic scale. Parametrization of the model based on 

experimental data of DES is essential to improve the predictions and will be better discussed in the next 

section. 

Nonetheless, a significant improvement in the predictions using the COSMO-SAC-dps(DES0) is 

observed, in which the ARD between the prediction and experimental data decreased to 57% in the worst 
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case (alkanes), and surprisingly 8% to alcohols, in the better case. These predictions have been used to 

evaluate the sigma-profiles approaches (AB and A+B) and is presented in detail on the Fig. 7.9, 7.10, and 

7.11.   

The Fig. 7.9 compares the predicted and experimental IDAC of n-alkanes and n-alkenes in DES1 using 

COSMO-SAC-dps(DES0) model using two approaches to obtain the sigma-profile (AB and A+B). The 

Fig. 7.10 shows the results for cyclo and aromatics hydrocarbons. In all these cases, the COSMO-SAC-

dps(DES0) model overpredicts the IDAC, and A+B approach shows better results. The only exception is 

observed in the Fig. 7.11, in which represent the results for alcohols. This deviation is explained by the 

fact that with the AB sigma-profile, certain intermolecular interactions are hidden within the cavity, unlike 

the A+B sigma-profile where all interaction sites are explicitly considered. 

Based on the results presented in this section and balancing the computer time consumption of the AB 

and A+B sigma-profiles and their accuracy, the A+B sigma-profile was chosen as less expensive and giving 

a moderate accuracy.  

  

(a) (b) 

Figure 7.9 – Experimental vs. predicted IDAC of (a) n-alkanes and (b) n-alkenes in BMIMCl: Gly (ratio 2:1). Solid 
symbols represent results using sigma-profile AB, and hollow symbols sigma-profile A+B. Dash lines represent 

15% of the error from bisector. 
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(a) (b) 

Figure 7.10 – Experimental vs. predicted IDAC of (a) cyclo-hydrocarbons and (b) aromatics hydrocarbons in 
BMIMCl: Gly (ratio 2:1). Solid symbols represent results using sigma-profile AB, and hollow symbols sigma-

profile A+B. Dash lines represent 15% of the error from bisector. 

 

Figure 7.11 – Experimental vs predicted IDAC of alcohols in BMIMCl: Gly (ratio 2:1). Solid symbols represent 
results using sigma-profile AB, and hollow symbols sigma-profile A+B. Dash lines represent 15% of the error 

from bisector. 

The total computational cost to generate the A+B sigma-profile takes about 6 hours in contrast to 9 days 

to obtain the AB sigma-profile. Futhermore, using the A+B sigma-profile can give the user the flexibility 

to combine different HBD and HBA and easily change the composition ratio. This A+B approach has 

been used in this work to build the PSL sigma-profile and all the further calculations presented in this 

work were based on it. 
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7.4.2. Investigation of combinatorial contribution  

In COSMO-based models, the activity coefficient is given by the product of two contributions 

(combinatorial and residual) and can also include a third one (dispersive) (see Chapter 3). It is widely 

recognized that the residual contribution can be orders of magnitude larger than the combinatorial 

contribution. Since the model is based on the two contributions, poor performance in the prediction of 

the combinatorial term can directly affect the accuracy of the model. 

The combinatorial contribution should consider differences in size, shape, and free volume. Once the 

COSMO quantum mechanical step calculation generates the cavity comprising the molecule, the size, and 

the shape of the molecule can be obtained without any additional calculation.  

In the COSMO-RS proposed by Klamt et al. the combinatorial contribution is represented by the simple 

expression (Eq.7.8).  

ln 𝛾𝑖/𝑆
𝑐𝑜𝑚𝑏 = λ ln

𝐴𝑠

𝐴𝑖
 

(7.8) 

where λ is a parameter estimated by the authors as 0.14, As is the mean cavity surface area of all 

components, and Ai is the cavity surface area of component i.  

In the COSMO-SAC 2002 proposed by Lin and Sandler, and in several COSMO-SAC 

implementations123,188,189, the combinatorial term is given by the Staverman-Guggenheim121,122 (SG) 

equation (Eq.7.9).  

ln 𝛾𝑖
𝑐𝑜𝑚𝑏 = ln Φ𝑖 + 1 − Φ𝑖 −

𝑧

2
𝑞𝑖 (𝑙𝑛

Φ𝑖

θ𝑖
+ 1 −

Φ𝑖

θ𝑖
) 

(7.9) 

The molecular volume parameter is given by Φ𝑖 = 𝑟𝑖𝑥𝑖 ∑ 𝑟𝑗𝑥𝑗𝑗⁄ , the surface area fraction is given by θ𝑖 =

𝑞𝑖𝑥𝑖 ∑ 𝑞𝑗𝑥𝑗𝑗  ⁄ . Where 𝑥𝑖 is the molar fraction of component i; z is the coordination number, usually taken 

to be 10; 𝑟𝑖 = 𝑉𝑖/𝑟 and 𝑞𝑖 = 𝐴𝑖/𝑞 are the normalized volume and surface area, respectively; Ai is the cavity 

surface area and Vi is the cavity volume;  q and r are universal parameters of the model. 

Analyzing the equations above, it is clear that i and i are independent of the parameters q and r. 

Moreover, the SG equation is independent of r. Assuming the coordination number equal to 10, the only 

adjustable parameter of the model is q.  
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A modified SG equation has been proposed by Kikic et al.190 based on the research of Donohue and 

Prausnitz191. According to Zhong192, this is the one of the most important improvements in this equation. 

Specifically, Kikic et al.190 modified the Flory-Huggins part of the SG combinatorial equation by replacing 

the volume fraction i' with the Eq.7.10.  

Φ𝑖
′ =

𝑟𝑖
𝑝𝑖𝑥𝑖

∑ 𝑥𝑗𝑟
𝑗

𝑝𝑗
𝑗

 
(7.10) 

Where pi is a parameter and has the value between 0 and 1.  

Thus, SG expression modified, which is used in modified UNIFAC implementations with a single value 

for pi = p, is given by (Eq.7.11).  

𝑙𝑛 𝛾𝑖
𝑐𝑜𝑚𝑏 = ln Φ𝑖

′ + 1 − Φ𝑖
′ −

𝑧

2
𝑞𝑖 (𝑙𝑛

Φ𝑖

θ𝑖
+ 1 −

Φ𝑖

θ𝑖
) 

(7.11) 

It is well-known that the combination of SQ expression modified with the residual part of group 

contribution methods, such as UNIFAC, resulted in much improved predictions of activity coefficient in 

mixtures containing saturated hydrocarbons. In this work the performance of modified SQ equation is 

investigated. A component-independent exponent p0 is considered, likewise adopted in modified 

UNIFAC. Thus, there are only two parameters to be optimized: p0 and q0. 

The experimental data group consisting of 358 data points of IDAC of conventional solutes in DES was 

taken on as the training set to optimize the two adjustable parameters in the combinatorial term.  

Table 7.8 presents the parameters optimized based on the experimental data of the 6 types of conventional 

solutes studied in this work. 
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Table 7.8 – ARD of IDAC of conventional solute in DES and its parameter p0 and q0. 

 
n points p0 q0/Å2 ARD 

Alkanes 

130 1.0000 79.53 77.1% 

 
0.6370 124.00 74.0% 

 
0.2774 79.53 72.5% 

 
0.2331 23.87 72.3% 

Alcohols 

85 1.0000 79.53 73.5% 

 
0.6370 124.00 93.1% 

 
1.3330 79.53 63.7% 

 
1.6216 4.54801 57.2% 

Aromatics 

82 1.0000 79.53 78.3% 

 
0.6370 124.00 70.5% 

 
0.4228 79.53 69.1% 

 
0.7004 1.692 55.2% 

Cyclo 

30 1.0000 79.53 86.7% 

 
0.6370 124.00 114.2% 

 
1.4440 79.53 72.8% 

 
1.4664 1.617 72.0% 

Ketones 

25 1.0000 79.53 138.8% 

 
0.6370 124.00 196.1% 

 
1.8374 79.53 83.0% 

 
1.8321 1428.98 80.3% 

all data 

358 1.0000 79.53 81.0% 

 
0.6370 124.00 90.2% 

 
1.2685 79.53 78.9% 

 
1.2982 32.39 78.9% 

Accordingly with the results presented in the Table 7.8, it can be concluded that the performance of the 

COSMO-SAC model can be improved by changing the parameters p0 and q0 of the combinatorial 

contribution. In these calculations, the residual and dispersive contributions have been considered as the 

one implemented in COSMO-SAC-dps. The results presented in the first line of Table 7.8 (p0=1 and 

q0=79.53 Å2) are the values suggested by Wang and Sandler (2007)193, and implemented in most COSMO-

SAC models. The results presented in the second line (p0=0.637 and q0=124.00 Å2) are the values 

optimized by Soares (2011)194 based on experimental data for the logarithm of infinite dilution activity 
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coefficients of linear and branched alkanes ranging from C4 to C36. As expected, the ARD of IDAC for 

alkanes as solutes indicates an improvement in model accuracy when utilizing the values recommended by 

Soares (2011).In contrast, the ARD of IDAC of alcohols, cyclo-alkanes, and ketones as solutes were higher 

when Soares (2011) parameters were employed. Basically, because these parameters were not optimized 

considering these classes of solvent. Comparing these two predictions and considering that the second 

one was optimized considering only one class of solvent, it is evident the dependence of these parameters 

on the accuracy of the model. Furthermore, the data set used to optimize the parameters cannot be 

neglected and the results suggest that personalized parameters for each solvent family improve much more 

the accuracy of the model.  

Comparing the optimization of the combinatorial term done in this work, shown in the third and fourth 

lines of tab. 7.8, superior results were achieved when p0 and q0 were optimized simultaneously. In contrast, 

the results for a scenario where p0 was optimized while maintaining a fixed q0 value, similar to the 

approach used in the COSMO-SAC 2010 implementation, are presented. The fourth row of the table 7.8 

indicates that IDAC predictions are more accurate compared to those based on Soares's parameters but 

are on par or slightly less accurate than when p0 and q0 are optimized simultaneously. 

7.4.3. Investigation of dispersive contribution  

In this section, an investigation into the dispersive term, based on equation 7.3 and considering the aDES0 

parameter is conducted to better understand its role in predicting infinite dilution activity coefficients 

(IDAC) within deep eutectic solvents (DES) using the COSMO-SAC model. Table 7.9 provides a 

comprehensive overview of the average relative deviation (ARD) for various DES-solute combinations, 

offering valuable insights into the accuracy and reliability of the COSMO-SAC model's predictions in 

comparison to experimental data. Each aDES0 value is specifically tailored to interactions between a 

particular DES and a solvent family, reflecting the unique strengths and natures of dispersion forces 

involved in different combinations. The ARD values, ranging from approximately 3% to over 98%, 

highlight the varying predictive capabilities of the model for different systems. Lower ARD values signify 

a closer alignment between model predictions and experimental data, emphasizing the critical role of 

precise aDES0 determination to enhance the accuracy of predicting IDAC. This analysis emphasizes the 

necessity for a comprehensive understanding of dispersion contribution and its role in accurately modeling 

the behavior of DES. 
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Table 7.9 – ARD of IDAC of conventional solutes in different DESs and its parameter aDES0. 

 

n 

points aDES0 ARD 

n 

points aDES0 ARD 

n 

points aDES0 ARD 

 Alkanes Alcohols Aromatics 

BMIMCl:Gly 20 11.36 59.0% 16 4.950 56.5% 24 14.184 24.3% 

BDMIMCl:EG 50 1.208 48.3% 19 -19.07 26.7% 30 0.688 27.4% 

ChCl:Gly 6 

-

0.6121 45.9% 10 26.01 57.3% 4 2.535 27.6% 

ChCl 3 10.25 32.9% 5 5.552 70.9% 2 14.891 12.3% 

TMAC:C6diol 16 12.56 13.8% 14 1.237 45.4% 12 7.452 11.6% 

TMAC:EG 16 11.08 48.8% 16 8.566 60.8% 8 1.000 11.7% 

 
Cyclo Ketones all data 

BMIMCl:Gly 8 21.123 20.5% 4 255.322 3.0% 88 15.7994 48.0% 

BDMIMCl:EG 
10 0.072 34.0% 5 

-

357.385 22.4% 114 2.94395 57.8% 

ChCl:Gly 2 4.704 27.9% - - - 22 18.4326 44.2% 

ChCl - - - - - - 10 7.11719 65.4% 

TMAC:C6diol 4 13.769 7.6% 8 85.223 47.5% 54 -0.8607 75.6% 

TMAC:EG 4 8.145 1.3% 8 515.536 38.2% 52 7.23418 63.5% 

The ARD of IDAC for alkanes range from 13.8% to 59.0% across various DES. For instance, interactions 

with BMIMCl:Gly, BDMIMCl:EG and TMAC:EG show relatively high average ARD (59.0%, 48.3% and 

48.8%, respectively) show up challenges in accurately predicting alkane behavior. Conversely, the 

TMAC:C6diol exhibits a lower ARD (13.8%). 

IDAC values for the specified DES exhibit distinct magnitude range: 60 to 1200 for BMIMCl:Gly, 6 to 

440 for BDMIMCl:EG, 300 to 1400 to ChCl:Gly, 200 to 1800 for TMAC:EG and 50 to 130 for 

TMAC:C6diol. The observed trend of increasing IDAC values with the size of the alkane molecule is 

consistent with expectations, considering larger molecules tend to have weaker interactions within a 

solvent. However, the model underestimates the high IDAC values for alkanes. This discrepancy could be 

due the model not fully capturing the intricate molecular interactions leading to higher IDAC values, 

potentially related to dispersion forces or other molecular complexities present in larger alkane molecules. 

Fig. 7.12 presents a comparative analysis between the experimental versus predicted IDAC using the 

COSMO-SAC(DES0) model, incorporating the optimized dispersion contribution discussed in this 
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section, and the COSMO-SAC-dps p0 q0 model with the combinatorial contribution optimized in the 

preceding section (7.4.2 of this chapter) . 

 

Figure 7.12 – Experimental vs. predicted IDAC of alkanes in DES. Black symbols represent the results of 
COSMO-SAC-dps with combinatorial term optimized, and blue symbols COSMO-SAC-dps(DES0). Dash lines 

represent 15% of the error from bisector. 

The ARD of IDAC for alcohols range from 26.7% to 70.9% across various DES. For instance, interactions 

with ChCl and TMAC:EG show relatively high average relative deviation (ARD) percentages (70.9% and 

60.8%, respectively) underscore challenges in accurately predicting alcohols behavior. Conversely, the 

BDMIMCl:EG exhibits a lower ARD (26.7%). Despite the majority of IDAC values for alcohols falling 

within the range of 0.1 to 3 (as illustrated in Fig. 7.13), the COSMO-SAC-dps(DES0) model demonstrates 

limitations in accurately predicting these values. 
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Figure 7.13 – Experimental vs. predicted IDAC of alcohols in DES. Black symbols represent the results of 
COSMO-SAC-dps with combinatorial term optimized, and blue symbols COSMO-SAC-dps(DES0). Dash lines 

represent 15% of the error from bisector. 

Among the various solvent families, the COSMO-SAC model demonstrated its best predictive 

performance for the aromatic. This was evident from the ARD values, ranging from 11.60% to 27.60%. 

These results indicate that the COSMO-SAC model, with the optimized dispersive contribution with the 

aDES0 parameter, was more accurate in predicting IDAC for aromatics. In general, the COSMO-SAC model 

was recognized in the chapter 3 and 4 for its relatively good accuracy in predicting thermodynamic 

properties when applied to aromatic solvents. Fig. 7.14 illustrates a comparison between experimental and 

predicted IDAC for aromatic solutes in DES.  
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Figure 7.14 – Experimental vs. predicted IDAC of aromatics in DES. Black symbols represent the results of 
COSMO-SAC-dps with combinatorial term optimized, and blue symbols COSMO-SAC-dps(DES0). Dash lines 

represent 15% of the error from bisector. 

In the context of cycloalkanes in DES, the provided data shows the dispersion contribution (aDES0) and 

associated accuracy of the COSMO-SAC model in IDAC. Notably, the model displayed varying levels of 

precision across different DES-cycloalkane combinations. For instance, an ARD of 20.5% is showcased 

in BMIMCl:Gly, indicating a moderate deviation from experimental data, while in BDMIMCl:EG, a higher 

ARD (34.0%) is revealed, suggesting notable discrepancies. On the other hand, a low ARD (1.3%) is 

obtained in TMAC:EG, demonstrating a relatively accurate prediction The absence of data for ChCl makes 

it challenging to assess its predictive performance. Figure 7.15 provides a clear illustration of the significant 

improvement achieved by optimizing the dispersion contribution compared to predictions where only the 

combinatorial term was optimized. The refined dispersion contribution, integrated into the COSMO-SAC 

model, notably enhances the accuracy of predicted thermodynamic properties, minimizing the deviation 

from experimental data.  
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Figure 7.15 – Experimental vs. IDAC of cyclohydrocarbons in DES. Black symbols represent the results of 
COSMO-SAC-dps with combinatorial term optimized, and blue symbols COSMO-SAC-dps(DES0). Dash lines 

represent 15% of the error from bisector. 

The ARD of IDAC of ketones, notably in BMIMCl:Gly and BMIMCl:EG exhibited lower values 3.0% 

and 22.4%respectively, indicating a relatively closer agreement between the model and experimental data. 

On the contrary, a higher ARD (47.5%) is obtained in TMAC:C6diol, suggesting a notable deviation from 

experimental results. In Figure 7.16, a graphical representation is provided, comparing experimental IDAC 

with predicted values for ketones within DES. 
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Figure 7.16 – Experimental vs. IDAC of ketones in DES. Black symbols represent the results of COSMO-SAC-
dps with combinatorial term optimized, and blue symbols COSMO-SAC-dps(DES0). Dash lines represent 15% of 

the error from bisector. 

In summary, this section conducted an in-depth investigation into the role of the dispersion contribution 

within the COSMO-SAC model for predicting IDAC in DES. The challenges encountered in accurately 

predicting IDAC for alkanes and alcohols highlighted the complexity of these solutes within different 

DES. Notably, the model excelled in predicting IDAC for aromatic solvents, underscoring its precision 

and applicability within this solute family. This provides valuable insights for refining the model and 

enhancing IDAC predictions across diverse DES systems. Nevertheless, despite the optimization, the 

COSMO-SAC model continues to have difficulties in accurately characterizing interactions involving 

alkanes. The observed relationship between the error and molecular size suggests that the model 

encounters challenges in predicting interactions proportional to the size of the alkane molecule and the 

affinity between the molecules. In this regard, a new contribution has been proposed and will be 

introduced. 
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7.5. COSMO-SAC-DES model 

The model proposed in this work, called by COSMO-SAC-DES, is a new variant of COSMO-SAC-dps123, 

that extends from our prior examination of how each parameter affects the precision of predicting IDAC 

within DESs. Additionally, the model utilizes the A+B sigma-profile available in the PSL sigma-profile 

database. These profiles were generated through a meticulous study conducted at the quantum mechanical 

level using DFT calculations, presented in the preceding section. All parameters, except for the residual 

contribution, have been meticulously optimized using experimental data specific to DES. The essence of 

this model lies in tailoring the predictions for DES by introducing a novel contribution, which will be 

thoroughly elucidated in the upcoming section. 

7.5.1. Dispersive, eccentricity, and solubility contribution 

To enhance the predictive power of the COSMO-SAC model, a contribution inspired by the Scatchard-

Hildebrand model has been integrated. The Scatchard-Hildebrand model, as comprehensively elucidated 

in Chapter 3, is a widely recognized tool used for estimating the interaction energy or affinity between a 

solute and a solvent in a range of systems. Furthermore, this contribution incorporates the acentric factor 

(𝜔), a representation of a molecule's polarity and shape. Within this contribution, two parameters, aDES0 

and aDES1, are included, and their optimization is a key aspect of this enhancement.  

The parameter ADES, introduced in the preceding section, now takes the form of a function involving the 

dispersive term from the original COSMO-SAC-dps, the solubility parameters of each compound,(𝛿𝑖) 

and 𝜔. This relationship is expressed by Equation 7.12. 

 

Where AD is the original dispersive term suggested by Hsied and AES is  

 

 

In this context, the newly introduced contribution, named henceforth as the Contribution of Dispersive, 

Eccentricity, and Solubility or simply DES contribution, is expressed as follows: 

ln 𝛾1
𝑑𝑒𝑠 = 𝐴𝐷𝐸𝑆𝑥2

2 (7.14) 

ln 𝛾2
𝑑𝑒𝑠 = 𝐴𝐷𝐸𝑆𝑥1

2 (7.15) 

𝐴𝐷𝐸𝑆 =∙ 𝐴𝐷 ∙ 𝐴𝐸𝑆 (7.12) 

𝐴𝐸𝑆 = (𝑎𝐷𝐸𝑆0+𝜔 ∙ 𝑎𝐷𝐸𝑆1) ∙ (𝛿1 − 𝛿2) (7.13) 
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Finally, the COSMO-SAC-DES predicts the activity coefficient using the following expression: 

𝑙𝑛𝛾𝑖𝑗 = 𝑙𝑛𝛾𝑐𝑜𝑚𝑏 + 𝑙𝑛𝛾𝑟𝑒𝑠 + 𝑙𝑛𝛾𝑑𝑒𝑠 (7.16) 

where the DES contribution considers dispersive interactions, solute eccentricity through the acentric 

factor, and molecular affinity via the solubility parameter. 

Parameters aDES0 and aDES1 were optimized using the experimental data of 84 data points of IDAC of 

conventional solutes in BMIMCl:Gly (ratio 2:1). The optimization was carried out based on the defined 

objective function (Eq. 7.7). 

The 𝛿𝑖, was obtained from Abboud et al. (1999)195, while 𝜔 of the solute was obtained from NIST 

database196 and is presented in Table 7.10.  

Table 7.10 – Constants for pure component. 

 
n points  δ MPa1/2 ω 

Alkanes 36 n-pentane 14.5 0.2506 

n-hexane 14.9 0.3003 

n-heptane 15.2 0.3497 

n-nonane 15.6 0.4482 

n-decane 15.8 0.4878 

1-pentene 14.5 0.2359 

1-hexene 15 0.2885 

1-heptene 15.3 0.3419 

1-decene 15.8 0.4717 

Cyclo 8 Cyclohexene 17.3 0.2198 

Cyclohexane 16.8 0.2101 

Aromatics 24 Benzene 18.8 0.2101 

Toluene 18.2 0.265 

Ethylbenzene 18 0.3035 

m-xylene 18 0.3271 

p-xylene 18 0.3232 

o-xylene 18.4 0.3125 

Alcohols 16 Methanol 29.4 0.5614 

Ethanol 26.5 0.6427 

1-Propanol 24.6 0.6157 

1-Butanol 23.2 0.5948 

Glycerol 34.2 1.51 
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Experimentally determining solubility parameters for non-volatile solvents like ionic liquids and DESs, 

can be challenging, and only a few experimental values are available in the literature197,198. As a result, some 

researchers use Molecular Dynamics (MD) simulations to compute these parameters142,199. The solubility 

parameter of BMIMCl was estimated to be 35 MPa1/2 by Abbott et al.200 By considering the contribution 

of the solubility parameter of each molecule that comprises the DES, and weighting them by the ratio, the 

solubility parameter for BMIMCl:Gly (2:1) was estimated to be 34.4 MPa1/2 in this work. 

7.5.2. Investigation of the DES contribution  

The investigation in this section explores the DES contribution within the COSMO-SAC-DES model, 

aiming to enhance prediction accuracy for a variety of solute families. Tab. 7.11 provides a comprehensive 

view of the Average Relative Deviation (ARD) and the fine-tuned parameters aDES0 and aDES1 for different 

solute groups. Notably, the ARDs obtained for alkanes, cycloalkanes, aromatics, and alcohols are 

significantly reduced compared to the previous one-parameter aDES0 optimization. Specifically, alkanes 

demonstrate an ARD of 18.2% (previously 49.1%), cycloalkanes showcase 14.2% (previously 20.4%), 

aromatics achieve 4.0% (previously 25.3%), and alcohols exhibit a 20% ARD (previously 46.1%).  

Table 7.11 – ARD of IDAC in DES using COSMO-SAC-DES models.  

 COSMO-SAC-dps(DES0) COSMO-SAC-DES 

Conventional 

Solute 
ARD aDES0 ARD aDES0 aDES1 

Alkanes 49.1% 15.45 18.2% 0.1571 2.2159 

Cyclo 20.4% 16.91 14.2% 2.6241 -7.7351 

Aromatics 25.3% 16.63 4.0% 0.5993 1.4187 

Alcohols 46.1% 12.51 20% -97.87 178.8 

Figure 7.17 illustrates the three optimizations studied in this work. The first optimization, considering the 

parameters p0 and q0 in the combinatorial contribution, is referred to as COSMO-SAC-dps* and is 

represented by the black symbols. The second optimization, incorporating the one-parameter aDES0 in the 

dispersive term, is referred to as COSMO-SAC-dps-DES0 and is depicted by the blue circles. Finally, the 

optimization presented in this section, considering the novel contribution that considers dispersive, 

eccentricity, and solubility in two parameters, aDES0 and aDES1, is referred to as COSMO-SAC-DES, and is 

represented by green stars. The zoomed-in view on the right of Fig. 7.17 provides a closer look at the 

comparison, revealing the improved accuracy achieved through optimization. 
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Figure 7.17 – Left: Experimental vs. predicted IDAC of conventional solute in BMIMCl:Gly (ratio 2:1). Dash 
lines represent 15% of the error. Right: zoomed-in view. 

Figure 7.18 categorizes the obtained results by solute group. In Fig. 7.18a, predicted and experimental 

IDACs of alkanesin BMIMCl:Gly are represented, while Fig. 7.18b,c and d showcase theses IDACs of 

cyclohydrocarbons, aromatics, and alcohols, respectively. 
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(c) Aromatics (d) Alcohols 

Figure 7.18 – Experimental vs. predicted IDAC of conventional solute in BMIMCl:Gly (ratio 2:1). Dash lines 
represent 15% of the error from bisector.  

In conclusion, this section was dedicated to a detailed investigation of the dispersive, eccentricity, and 

DES solubility contribution within the COSMO-SAC-DES model, aiming to refine predictions of IDAC 

for diverse solute families in DESs. Through meticulous parameter optimization and refinement, the 

model demonstrated enhanced accuracy in predicting IDAC across various solute groups, including 

alkanes, cyclohydrocarbons, aromatics, and alcohols. The tailored parameters aDES0 and aDES1, optimized 

based on experimental data, underscored the model's precision and its ability to account for the dispersion 

interactions and molecular interactions specific to different solute-solvent combinations. The comparative 

analysis of the three optimization approaches, COSMO-SAC-dps*, COSMO-SAC-dps-DES0, and 

COSMO-SAC-DES, showcased notable improvements in prediction accuracy, emphasizing the 

significance of the refined DES contribution in the model. Overall, this section significantly contributes 

to advancing the understanding and predictive capabilities of the COSMO-SAC-DES model for a wide 

array of solutes in DES. In the next section, the focus will be on evaluating Vapor-Liquid Equilibrium 

(VLE) predictions using the COSMO-SAC-DES model.  

7.5.3. Vapor-liquid equilibrium predictions 

Figures 7.19 and 7.20 illustrate the vapor-liquid equilibrium (VLE) isotherms for the mixture of Glycaline 

(1) in alcohols, particularly Ethanol (2) and Isopropanol (2), across various temperatures. Three specific 

temperatures are examined: 303 K, 313 K, and 323 K. In these figures, the symbols represent experimental 

data points, providing a direct comparison with the model predictions.  
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For a comprehensive evaluation of the model's predictions, both figures incorporate various lines and 

color codes. The black lines correspond to the Wilson model. Additionally, the dashed lines represent 

predictions made using the NRTL model. These results are covered in chapter 5 and are contrasted with 

the original predictions generated by the COSMO-SAC-dps model. It's crucial to highlight that the original 

COSMO-SAC-dps model predicted the activity coefficient of this mixture to be lower than 1, which can 

have significant implications for the understanding of the mixture's behavior.  

To enhance predictions, when dealing with DES, COSMO-SAC-DES has been evaluated. This model is 

assessed through two different approaches, each with its own significance. First, the dash orange lines 

represent predictions made with parameters optimized exclusively using IDAC data. Second, the orange 

lines signify predictions made with parameters fine-tuned using all gamma values derived from VLE data 

predicted using the NRTL model. The contrast between these two sets of predictions showcases the 

impact of parameterization on the accuracy of the COSMO-SAC-DES model. 

 

Figure 7.19 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Ethanol (2). Symbols: 
Experimental data. Black lines: Wilson. Dash lines: NRTL. Orange: COSMO-SAC-DES: parameters optimized 

with IDAC data (dash orange lines) and optimized with all gammas from VLE data predicted with NRTL (orange 
lines). 
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Figure 7.20 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Isopropanol (2). Symbols: 
Experimental data. Black lines: Wilson. Dash lines: NRTL. Orange: COSMO-SAC-DES: parameters optimized 

with IDAC data (dash orange lines) and optimized with all gammas from VLE data predicted with NRTL (orange 
lines). 

In summary, Figures 7.19 and 7.20 provide a comprehensive visual representation of VLE isotherms for 

Glycaline in alcohols at different temperatures. It allows for a comparative assessment of model 

predictions, highlights the influence of parameterization on the COSMO-SAC-DES model.  

7.5.3.1. Margules two-parameters for enhanced predictions 

Recognizing the need for continual improvement in predicting VLE isotherms, a two-parameter Margules 

model has been explored to enhance accuracy. This model specifically incorporates the DES contribution 

(presented in the sections 7.5.2) with two parameters. The tuning of these parameters follows a two-step 

approach, with the first parameter, ADES in the Eq. (7.17) is fine-tuned exclusively using data at infinite 

dilution. The DES contribution takes the form of Eq. (7.17). 

ln 𝛾ij
𝑑𝑒𝑠 = (𝑎𝐷𝐸𝑆2 + 2 ∙ (𝐴𝐷𝐸𝑆 − 𝑎𝐷𝐸𝑆2) ∙ 𝑥1) ∙ 𝑥2

2 (7.17) 

Figures 7.21 and 7.22 are presented in a manner analogous to the preceding illustrations (7.19 and 7.20), 

however using the 2-margules DES contribution. These figures focus on VLE isotherms for the mixture 
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of Glycaline (1) in two different alcohols: Ethanol (2) in Figure 7.21 and Isopropanol (2) in Figure 7.22. 

Three distinct temperatures are examined, 303 K, 313 K, and 323 K. 

Symbols in both figures represent experimental data points, providing a valuable benchmark for evaluating 

the model predictions. Where black lines denote the Wilson model, while dashed lines signify predictions 

using the NRTL model. The Margules 2-parameters model is introduced in this context, with its 

predictions portrayed through blue lines. 

 

Figure 7.21 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Ethanol (2). Symbols: 
Experimental data. Black lines: Wilson. Dash lines: NRTL. Blue: 2-parameters COSMO-SAC-DES. 
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Figure 7.22 – VLE isotherms at (●)303 K, (■) 313 K, (▲) 323 K of Glycaline (1) and Isopropanol (2). Symbols: 
Experimental data. Black lines: Wilson. Dash lines: NRTL. Blue: 2-parameters COSMO-SAC-DES. 

It is imperative to note the significance of the Margules 2-parameters model in addressing the limitations 

of the original COSMO-SAC-dps model, which predicted activity coefficients below 1. This refinement is 

crucial for a more accurate understanding of the mixture's behavior and has broader implications in 

practical applications. 

To optimize the second parameter of the Margules 2-parameters model, a meticulous process was 

undertaken. The optimization involved utilizing 20 points from the VLE dataset, and the errors were 

evaluated for optimization conducted with 2 until 20 points. The results of this optimization process are 

elucidated in Figure 7.23. 
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Figure 7.23 –Margules 2-parameters optimization: Illustrating the evolution of prediction error with increasing 
optimization points (optimal 10 points). 

Figure 7.23 provides a clear representation of the errors associated with different numbers of points used 

for optimization. Notably, the graph reveals that using 10 points from the VLE dataset yields a favorable 

level of accuracy. This finding is instrumental in determining an optimal balance between computational 

efficiency and predictive precision. 

In conclusion, Figures 7.21 and 7.22 offer an insightful visual representation of VLE isotherms for 

Glycaline in alcohols at different temperatures. The inclusion of the Margules 2-parameters model allows 

for a thorough comparative assessment of model predictions, shedding light on the influence of 

parameterization on its accuracy. The optimization process, as demonstrated in Figure 7.23, underscores 

the practicality of utilizing 10 points for achieving a favorable level of accuracy in the Margules 2-

parameters model. 

The methodology presented in this section, utilizing IDAC and VLE predicted with the COSMO-SAC-

DES model, holds promise for screening solvents in the context of biorefinery applications. Particularly, 

it offers a targeted approach for selecting suitable DESs. The subsequent section will elaborate on how 

this methodology can be effectively applied to optimize DES selection. 

  

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25

E
rr

o
r

n points



Chapter 7 – Sigma-profile and COSMO-SAC approach for solvent selection  

 215 

7.6. Solvents selection 

As described in Chapter 1, selectivity stands as a fundamental parameter for the effective selection of a 

solvent, based on its affinity with the solute. This critical aspect of selectivity is reflected in the solvation 

power (Sp), as defined by Equation 1.1 introduced in the initial chapter. To reiterate, the equation is 

presented as follows: 

𝑆𝑝 =
1

𝛾𝑖
∞

𝑀𝑖

𝑀𝑠𝑜𝑙𝑣
 

(7.18) 

where Mi and Msolv are the molar mass of solute and solvent, respectively.  

The Sp value provides a qualitative measure of the affinity between the solvent and the solute. A higher 

solvation power indicates a stronger affinity. It serves as a rapid and efficient tool for screening solvents 

based on their interactions with the solute, allowing for a quick and effective assessment of potential 

solvents. 

In Figure 7.24, the solvation power values predicted by the COSMO-SAC-DES model and the 

corresponding experimental values of BMIMCl:Gly for conventional solvents are illustrated. Remarkably, 

the predicted and experimental results are in close agreement, underscoring the accuracy and reliability of 

the COSMO-SAC-DES model. Upon qualitative analysis of the results, a trend emerges where most of 

the studied solutes exhibit low solvation power values, indicating a poor affinity of BMIMCl:Gly towards 

them. Lower solvation power values may suggest immiscibility, highlighting the limited interaction and 

compatibility between BMIMCl:Gly and these solutes. 

Exceptionally high solvation power values were observed for alcohols, e.g. 649% for ethanol and 402% 

for isopropanol (not represented in the figure), suggesting a notably strong affinity between BMIMCl:Gly 

and this solvent family. These elevated solvation power values indicate a potent compatibility and 

interaction between BMIMCl:Gly and alcohols, indicating their potential suitability for various applications 

where a strong affinity with BMIMCl:Gly is desirable. 
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Fig. 7.24 – Solvation power predicted and experimental of BMIMCl:Gly for conventional solutes. 

In summary, Figure 7.25 presents the solvation power of all the studied DESs, color-coded indicates the 

affinity between solvent and solute (red color is denoting lower affinity and green color is indicating higher 

affinity). This color scheme helps visualizing the different levels of compatibility between DES and the 

studied solute. 

 

Figure 7.25 - Solvation power values (Sp) of several DES for conventional solutes. 
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7.7. Conclusion 

In summary, this chapter investigated the role of the dispersion contribution within the COSMO-SAC 

model for predicting IDAC in DES. The challenges faced in accurately predicting IDAC for alkanes and 

alcohols elucidate the complexities of these solutes within different DES. Notably, the model displayed 

remarkable competence in predicting IDAC for aromatic solvents, underscoring its precision and 

suitability for this solute family. These findings offer valuable insights for refining the model and 

improving IDAC predictions in various DES systems. Nevertheless, despite optimization efforts, the 

COSMO-SAC-dps model continues to face challenges in accurately characterizing interactions involving 

alkanes. The observed relationship between errors and molecular size suggests that the model encounters 

difficulties in predicting interactions proportional to the size of the alkane molecule and the affinity 

between molecules. To address this, a new contribution has been proposed. 

A comprehensive investigation of the dispersive, eccentricity, and DES solubility contributions within the 

COSMO-SAC-DES model, aiming to enhance predictions of IDAC for diverse solute families in DESs. 

Through meticulous parameter optimization and refinement, the model demonstrated improved accuracy 

in predicting IDAC across various solute groups, including alkanes, cyclohydrocarbons, aromatics, and 

alcohols. The two parameters aDES0 and aDES1, optimized based on experimental data, underscored the 

model's precision and its ability to account for dispersion interactions and molecular interactions specific 

to different solute-solvent combinations. The comparative analysis of the three optimization approaches, 

COSMO-SAC-dps*, COSMO-SAC-dps-DES0, and COSMO-SAC-DES, highlighted significant 

improvements in prediction accuracy, emphasizing the importance of the refined DES contribution in the 

model.  

Furthermore, the evaluation of VLE predictions using the COSMO-SAC-DES model was conducted. 

Two methodologies were presented, which use IDAC or VLE data to fine-tune parameters to predict 

activity coefficient with the COSMO-SAC-DES model. This approach shows great potential for the 

efficient screening of solvents in the context of biorefinery applications. It provides a targeted approach 

for selecting suitable DESs. This methodology provides a targeted and efficient means of selecting suitable 

DESs. A methodology for effectively optimizing DES selection was presented, grounded in the solvation 

power of all the studied DESs. This color-coded scheme aids in visualizing the diverse levels of 

compatibility between DES and the studied solute. 
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8. Conclusion et perspectives (Français) 

 

8.1. Conclusion (Français) 

Cette thèse débute en mettant en évidence la dépendance mondiale au pétrole brut pour l'énergie et la 

nécessité de trouver des alternatives durables. Les matières premières issues de la biomasse sont présentées 

comme une option renouvelable, et le concept de bioraffinerie est exploré, notant ses avantages et limites. 

Le rôle central de la biomasse lignocellulosique dans l'énergie durable est souligné, en mettant l'accent sur 

les processus de séparation et de purification pour la conversion de la biomasse. Le choix du solvant, une 

décision cruciale dans l'extraction liquide-liquide en tant que partie du processus de séparation, est reconnu 

comme essentiel. Il prend en compte divers facteurs, y compris les propriétés physico-chimiques, les 

considérations économiques et la possibilité d'atteindre la sélectivité. Dans ce contexte, les solvants 

respectueux de l'environnement ou "verts" sont particulièrement attrayants en raison de leurs qualités telles 

que la faible toxicité, le coût abordable et la biodégradabilité. Par conséquent, ce travail s'est principalement 

concentré sur l'exploration des liquides ioniques profonds (DES) à ces fins. 

Ce travail explore les aspects expérimentaux, se concentrant spécifiquement sur la synthèse et la 

caractérisation des liquides ioniques profonds (DES) et de leurs mélanges, la pression de vapeur, les 

données d'équilibre liquide-vapeur à l'aide de la méthode statique-synthétique, et le coefficient d'activité à 

dilution infinie (IDAC) par la méthode de stripping gazeux. 

En résumé, les données d'équilibre liquide-vapeur pour quatre mélanges étudiés à différentes températures. 

Les isothermes pour l'éthaline dans l'éthanol valident l'exactitude des modèles prédictifs, montrant une 

étroite correspondance entre les prédictions du modèle et les données expérimentales. Notamment, le 

modèle Wilson montre une meilleure concordance à mesure que les températures augmentent, surpassant 

les performances du modèle NRTL. Une idée cruciale issue des expériences est la source potentielle 

d'incertitude due aux mesures de basse pression. Les valeurs de basse pression enregistrées pourraient 

avoir un impact sur l'exactitude des résultats. Pour atténuer cela, l'utilisation d'un transducteur spécialisé 

conçu pour les mesures de basse pression est suggérée, en particulier dans les cas où les valeurs de pression 

se situent dans une plage très basse. 

Pour le mélange d'éthaline et d'isopropanol, une bonne concordance est observée entre les données 

expérimentales et les prédictions à des températures de 303 et 313 K. À mesure que les températures 

augmentent, le modèle Wilson continue à surpasser le modèle NRTL. Cependant, pour le mélange de 
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glycaline et d'éthanol, les données se situent constamment en dessous des prévisions de tous les modèles, 

en particulier à des températures de 323 et 333 K. Dans le cas du mélange de glycaline et d'isopropanol, 

une modélisation précise est mise en avant comme étant cruciale, le modèle Wilson se comportant 

particulièrement bien à des températures élevées. 

L'étude a également comparé les données expérimentales aux prédictions obtenues en utilisant le modèle 

COSMO-SAC-dps. Les résultats indiquent que le modèle n'est pas adapté aux liquides ioniques profonds 

(DES). 

Dans cette étude, les bases pour la création de la base de données de profil sigma PSL ont été posées par 

le biais d'une enquête sur les solvants conventionnels, dans le but de comprendre comment les facteurs de 

calcul influencent les performances des modèles prédictifs. L'enquête a commencé par une étude de 

référence en utilisant le furane dans un solvant apolaire pour évaluer l'influence de l'ensemble de base sur 

la précision de la prédiction de l'IDAC. Il a été découvert que le choix de l'ensemble de base et du niveau 

de théorie dans les calculs DFT affecte significativement la précision des prédictions. Les options les plus 

adaptées ont été identifiées comme l'ensemble de base 6-311G(2df,p) et la fonctionnelle PBE0. 

Sur la base de ces connaissances, la base de données de profil sigma PSL a été établie. Elle a présenté des 

prédictions de l'IDAC dans les solvants conventionnels et les a comparées au modèle UNIFAC(Do). Dans 

l'ensemble, UNIFAC(Do) a surpassé le modèle COSMO-SAC-dps, en particulier pour la plupart des 

systèmes. COSMO-SAC-dps a démontré une grande précision uniquement dans la prédiction de l'IDAC 

pour des combinaisons spécifiques. Nous avons également exploré différentes bases de données de profils 

sigma et modèles pour la prédiction des coefficients d'activité. 

Cette étude a examiné cinq modèles de coefficients d'activité, NRTL, UNIFAC(Do), Scatchard-

Hildebrand (SH), et SH avec terme combinatoire (Staverman-Guggenheim) et le modèle COSMO-SAC, 

pour prédire l'équilibre liquide-vapeur et l'IDAC des alcanes dans les solvants conventionnels. Il a été 

observé que le modèle UNIFAC(Do) surpasse le modèle NRTL, qui s'est révélé inadapté pour la 

prédiction de l'IDAC. Le modèle SH a également été évalué, et ses prédictions ont été améliorées pour 

certains systèmes en incluant un terme combinatoire, le modèle Staverman-Guggenheim. De plus, l'étude 

a comparé les performances du modèle COSMO-SAC en utilisant différentes bases de données de profils 

sigma. La base de données PSL-UFF a donné des résultats supérieurs par rapport à PSL-Klamt et UD 

pour la plupart des systèmes. 
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En résumé, l'étude de recherche a présenté plusieurs conclusions et contributions clés : 

Importance des méthodes théoriques et des ensembles de base : L'étude a souligné le rôle crucial de 

la sélection de méthodes théoriques appropriées et d'ensembles de base pour les calculs de mécanique 

quantique lors de la génération de profils sigma pour les liquides ioniques profonds (DES). 

Création de la base de données de profil sigma PSL : L'étude a décrit la création de profils sigma pour 

les DES, essentiels pour représenter la polarité moléculaire. Elle a utilisé deux approches distinctes, AB et 

A+B, pour créer des profils sigma pour des systèmes DES spécifiques. 

Prédictions de l'IDAC : La recherche s'est concentrée sur la prédiction de l'IDAC dans les liquides 

ioniques profonds (DES) en utilisant le modèle COSMO-SAC. Elle a constaté qu'un modèle COSMO-

SAC traditionnel n'est pas adapté aux prédictions pour les DES, mais une version améliorée, le COSMO-

SAC-DES, montre des perspectives. L'approche A+B pour les profils sigma a été préférée pour son coût 

abordable et sa précision modérée. 

Modèle COSMO-SAC-DES : L'étude a introduit le modèle COSMO-SAC-DES, adapté pour prédire 

l'IDAC dans les DES. Il a incorporé diverses contributions, telles que les interactions dispersives, 

l'excentricité du soluté et l'affinité moléculaire, pour améliorer les prédictions. Les paramètres ont été 

optimisés sur la base de données expérimentales. 

Prédictions d'équilibre liquide-vapeur (VLE) : La recherche a étendu la méthodologie pour prédire le 

comportement de l'équilibre liquide-vapeur (VLE) dans les DES, en mettant l'accent sur l'influence de la 

paramétrisation sur le modèle COSMO-SAC-DES. 

Méthodologie de sélection des solvants : L'étude a analysé le pouvoir de solvatation de divers DES 

pour des solutés conventionnels, fournissant des informations sur l'affinité entre les solvants et les solutés. 

En conclusion, cette étude contribue à une meilleure compréhension des systèmes DES, de leurs 

interactions moléculaires et de la prédiction de propriétés thermodynamiques importantes comme l'IDAC. 

Le modèle COSMO-SAC-DES offre une approche prometteuse pour un criblage efficace des solvants, en 

particulier dans les applications de bioraffinerie, avec le potentiel d'améliorer la sélection et la conception 

de systèmes DES pour divers processus industriels. 
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8.2. Perspective (Français) 

Les perspectives pour les futures recherches consistent à étendre l'application de la méthodologie 

COSMO-SAC-DES développée à un large éventail de solvants. Alors que ce travail s'est principalement 

concentré sur les DES, il existe un potentiel pour élargir cette approche à divers types de solvants. Cette 

expansion peut être cruciale pour répondre à divers besoins industriels et scientifiques. Elle implique 

d'adapter le modèle et les paramètres pour convenir aux caractéristiques spécifiques de différents solvants, 

qu'il s'agisse de liquides ioniques, de solvants organiques ou d'autres familles. 

La simplicité de l'approche proposée, qui combine des calculs de chimie théorique et l'IDAC expérimental 

pour évaluer les corrections et faciliter la génération de diagrammes de phases ou la sélection de solvants, 

offre un grand potentiel pour les applications industrielles. La transition de l'université à des scénarios 

industriels pratiques est une réalisation significative. En perspective, cette intégration implique une 

collaboration avec des partenaires industriels et l'application de la méthodologie à des processus industriels. 

Cela peut fournir des solutions plus durables et plus efficaces pour la sélection de solvants, l'optimisation 

des processus et la réduction de l'impact environnemental. 

Au-delà de l'IDAC, il existe un potentiel pour élargir le champ d'application afin de prédire un éventail 

d'autres propriétés thermophysiques à l'équilibre. Cela comprend les propriétés de transport, telles que la 

diffusivité et la viscosité, ainsi que les densités et la tension superficielle. 

Pour illustrer, les hypothèses selon lesquelles les phases bulk et de surface sont en équilibre, et la surface 

partielle molaire du composant i est la même que la surface molaire de i, conduisent à l'équation de Sprow 

et Prausnitz201,202 pour la prédiction de la tension superficielle. Dans cette équation, la tension superficielle 

est déterminée en fonction du coefficient d'activité de chaque composant. Une alternative intéressante 

consiste à utiliser COSMO-SAC-DES pour prédire le coefficient d'activité, plutôt que de s'appuyer sur des 

modèles comme UNIFAC. 

Étant donné que les processus industriels impliquent souvent des systèmes multi-composants, il est 

important d'évaluer la faisabilité et la précision de la méthode proposée dans de tels scénarios. Cela 

implique de comprendre comment la méthode se comporte dans la prédiction du comportement des 

phases, notamment la solubilité et la sélectivité, lorsque plusieurs composants sont impliqués. 

En résumé, les perspectives de ce travail incluent l'expansion de la méthodologie à un éventail plus large 

de solvants, son intégration dans les pratiques industrielles, la prédiction des propriétés thermophysiques 

et la résolution des défis posés par les systèmes multi-composants. Ces orientations ont le potentiel 
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d'améliorer notre compréhension des équilibres de phase et de contribuer à des processus plus durables et 

plus efficaces dans divers domaines scientifiques et industriels. 
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Conclusion and perspectives (English) 

 

8.3. Conclusion (English) 

This thesis begins by highlights the global dependence on crude oil for energy and the need for sustainable 

alternatives. Biomass feedstocks are introduced as a renewable option, and the concept of biorefinery is 

explored, noting its advantages and limitations. Lignocellulosic biomass's central role in sustainable energy 

is emphasized, with a focus on separation and purification processes for biomass conversion.  

The process of solvent selection, a crucial decision in liquid-liquid extraction as part of the separation 

process, is recognized as essential. It considers various factors, including physico-chemical properties, 

economic considerations, and the ability to achieve selectivity. In this context, environmentally friendly or 

'green' solvents are particularly attractive due to their qualities such as low toxicity, cost-effectiveness, and 

biodegradability. As a result, this work primarily centered around the exploration of DES for these 

purposes. 

This work explores the experimental aspects, specifically focusing on the synthesis and characterization of 

Deep Eutectic Solvents (DES) and their mixtures, vapor pressure, and VLE data using the static-synthetic 

method, and IDAC by gas stripping method. 

In summary, VLE data for four studied mixtures across various temperature. The isotherms for ethaline 

in ethanol validate the accuracy of predictive models, showing close alignment between model predictions 

and experimental data. Notably, the Wilson model demonstrates better agreement as temperatures 

increase, surpassing the NRTL model's performance. A crucial insight from the experiments is the 

potential source of uncertainty due to low-pressure measurements. The recorded low-pressure values 

could impact result accuracy. To mitigate this, the use of a specialized transducer designed for low-pressure 

measurements is suggested, especially in cases where pressure values fall within a very low range. 

For the ethaline and isopropanol mixture, good agreement is observed between experimental data and 

predictions at temperatures of 303 and 313 K. As temperatures increase, the Wilson model continues to 

outperform the NRTL model. However, for the glycaline and ethanol mixture, the data consistently falls 

below the predictions across all models, particularly at temperatures of 323 and 333 K. In the case of the 

gycaline and isopropanol mixture, accurate modeling is highlighted as crucial, with the Wilson model 

performing notably well at higher temperatures. 
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The study also compared the experimental data with predictions obtained using the COSMO-SAC-dps 

model. The findings indicate that the model is not suitable for DES. 

In this study, the foundation for the creation of the PSL sigma-profile database was laid through an 

investigation into conventional solvents, aiming to understand how computational factors impact the 

performance of predictive models. The investigation began with a benchmark study using furan in an 

apolar solvent to evaluate the influence of the basis set on the accuracy of predicting IDAC. It was 

discovered that the choice of basis set and the level of theory in DFT calculations significantly affects the 

accuracy of predictions. The most suitable options were identified as the 6-311G(2df,p) basis set and the 

PBE0 functional. 

Based on these insights, the PSL sigma-profile database was established. It was presented predictions of 

IDAC in conventional solvents and compared them to the UNIFAC(Do) model. Overall, UNIFAC(Do) 

outperformed the COSMO-SAC-dps model, especially for most systems. COSMO-SAC-dps 

demonstrated high accuracy only in predicting IDAC for specific combinations. We also explored different 

sigma-profile databases and models for predicting activity coefficients. 

This study examined five activity coefficient models, NRTL, UNIFAC(Do), Scatchard-Hildebrand (SH), 

and SH with combinatorial term (Staverman-Guggenheim) and COSMO-SAC model, for predict VLE 

and IDAC of alkanes in conventional solvents. It was observed that UNIFAC(Do) was found to 

outperform NRTL, which was deemed unsuitable for predicting IDAC. The SH model was also evaluated, 

and its predictions were improved for certain systems by including a combinatorial term, the Staverman-

Guggenheim model. Furthermore, the study compared the performance of the COSMO-SAC model using 

different sigma-profile databases. The PSL-UFF database yielded superior results compared to PSL-Klamt 

and UD for most systems.  

In summary, the research study presented several key findings and contributions: 

Importance of theoretical methods and basis sets: The study emphasized the critical role of selecting 

appropriate theoretical methods and basis sets for quantum mechanical calculations when generating 

sigma-profiles for DESs. 

Sigma-Profile PSL database generation: The study described the generation of sigma-profiles for DES, 

which are vital for representing molecular polarity. It employed two distinct approaches, AB and A+B, 

for creating sigma-profiles for specific DES systems. 
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IDAC predictions: The research focused on predicting IDAC in DES using the COSMO-SAC model. 

It found that a traditional COSMO-SAC model is not well-suited for DES predictions, but an improved 

version, COSMO-SAC-DES, showed promise. The A+B sigma-profile approach was preferred for its 

cost-effectiveness and moderate accuracy. 

COSMO-SAC-DES model: The study introduced the COSMO-SAC-DES model, adapted for predicting 

IDAC in DES. It incorporated various contributions, such as dispersive interactions, solute eccentricity, 

and molecular affinity, to improve predictions. Parameters were optimized based on experimental data. 

VLE predictions: The research extended the methodology to predict VLE behavior in DES, emphasizing 

the influence of parameterization on the COSMO-SAC-DES model. 

Methodology to select solvent: The study analyzed the solvation power of various DESs for 

conventional solutes, providing insights into the affinity between solvents and solutes. 

In conclusion, this study contributes to a better understanding of DES systems, their molecular 

interactions, and the prediction of important thermodynamic properties like IDAC. The COSMO-SAC-

DES model offers a promising approach for efficient solvent screening, particularly in biorefinery 

applications, with the potential to improve the selection and design of DES systems for various industrial 

processes. 

8.4. Perspectives (English) 

As perspectives for future research is expand the application of the developed methodology COSMO-

SAC-DES to a wide type of solvents. While this work has primarily focused on DES, there is potential to 

extend this approach to encompass various types of solvents. This expansion can be crucial for addressing 

diverse industrial and scientific needs. It involves adapting the model and parameters to suit the specific 

characteristics of different solvents, be they ionic liquids, organic solvents, or any other family. 

The simplicity of the proposed approach, which combines theoretical chemistry calculations and 

experimental IDAC to assess corrections and facilitate phase diagram generation or solvent selection, 

holds significant promise for industrial applications. The transition from the academia to practical 

industrial scenarios is a significant achievement. As perspective, this integration involves collaborating with 

industry partners and applying the methodology to industrial processes. This can provide more sustainable 

and efficient solutions for solvent selection, process optimization, and environmental impact reduction. 
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Beyond IDAC, there is potential to expand the scope to predict a range of other thermophysical properties 

at equilibrium. These include transport properties, such as diffusivity and viscosity, as well as densities and 

surface tension.  

To illustrate, the very assumptions that bulk and surface phases are in equilibrium, and the partial molar 

area of the component i is the same as the molar area of i lead to the Sprow and Prausnitz201,202 equation 

for prediction of surface tension. In this equation the surface tension is determined based on the activity 

coefficient of each component. An interesting alternative is to use COSMO-SAC-DES to predict the 

activity coefficient, rather than relying on models like UNIFAC.  

As industrial processes often involve multicomponent systems, it's important to assess the feasibility and 

precision of the proposed method in such scenarios. This involves understanding how the method 

performs in predicting phase behavior, including solubility and selectivity, when multiple components are 

involved.  

In summary, the perspectives for this work include expanding the methodology to a wider range of 

solvents, integrating it into industrial practices, predicting thermophysical properties, and addressing the 

challenges of multicomponent systems. These directions hold the potential to further enhance our 

understanding of phase equilibria and contribute to more sustainable and efficient processes in various 

scientific and industrial domains. 
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9. Appendix A 

A.1. Liquid-liquid equilibrium  

The LL equilibrium was correlated to obtain the activity coefficient solving a set of two liquid-liquid 

equilibrium equations at a fixed temperature and pressure: 

 

{
𝑥1

𝐿1 ∙ 𝛾1
𝐿1 =  𝑥1

𝐿2 ∙ 𝛾1
𝐿2                                                     

⬚
(1 − 𝑥1

𝐿1) ∙ 𝛾2
𝐿1 = (1 − 𝑥1

𝐿2) ∙ 𝛾2
𝐿2                               

 

(7) 

(8) 

 

Where 𝑥1
𝐿1 and 𝑥1

𝐿2 are the mole fractions of component 1in each of the two liquid phases in equilibrium 

and 𝛾𝑖  is the activity coefficient of component i in a liquid phase.  

To prediction of LLE, it was considered a liquid mixture with molar fraction xi across the entire range 

composition can be split into two coexistence liquid phases in equilibrium (L1 and L2). The LL 

compositions necessary to correlate the experimental data obtained were obtained by application of the 

Cox and Herington equation203. The phase-equilibrium problem can be solved numerically by Eq. 10 and 

11 given initial estimates for 𝑥1
𝐿1 and 𝑥1

𝐿2 until a convergence criterion is reached.  

A.1.1. Cox Herington plot for coexistence data  

Cox and Herington showed that the two arms of the coexistence data curves could be represented over a 

large range of temperature by the equations: 

(𝑇 − 𝑇𝑐)𝛽 = 𝐴𝐿1 log
𝑥1

𝐿1

1 − 𝑥1
𝐿1

+ 𝐵𝐿1 𝑓𝑜𝑟 𝑥1
𝐿1 >  𝑥1

𝑐 
(9) 

(𝑇 − 𝑇𝑐)𝛽 = 𝐴𝐿2 log
𝑥1

𝐿2

1 − 𝑥1
𝐿2

+ 𝐵𝐿2 𝑓𝑜𝑟 𝑥1
𝐿2 >  𝑥1

𝑐 
(10) 

The superscripts L1 and L2 denote the two arms of the coexistence curves less and greater than the critical 

composition (𝑥1
𝑐), respectively. Where 𝑥𝑖 is molar composition, and the two constants A and B are two 

correlating parameters. In this equation 𝐵=𝐴 𝑙𝑜𝑔(
1−𝑥𝑐

𝑥𝑐 ), so that an expansion of logarithm near-critical 
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composition leads the approximate form for representation of equilibrium composition as a function of 

temperature: 

𝑥1
𝐿1 − 𝑥1

𝑐 = 𝐾𝐿1(𝑇 − 𝑇𝑐)𝛽 (11) 

𝑥1
𝐿2 − 𝑥1

𝑐 = 𝐾𝐿2(𝑇 − 𝑇𝑐)𝛽 (12) 

Where the exponent 𝛽 justifies the linearity of the Cox-Herington plot and usual is considered equal 1/3. 

However, it can be varied to the best fit of data. The parameters obtained are represented in table 4. 

A.2 Solid-liquid equilibrium 

The solid-liquid equilibrium was obtained by the thermodynamic relationship between solubility and 

activity coefficients, which was not considered the difference of the molar heat capacities of the pure 

component due to the temperature range of the solid-liquid equilibrium for phenol and n-hexane is not 

so far from the melting point of pure components.  

 

ln(𝑥𝑖𝛾𝑖) = [
∆𝐻𝑚,𝑖

𝑅𝑇𝑚,𝑖
⋅ (1 −

𝑇𝑚,𝑖

𝑇
)] 

(13) 

where 𝑇𝑚,𝑖is the melting point of the pure component and ∆𝐻𝑚,𝑖 is the molar enthalpy of melting. The 

∆𝐻𝑚,𝑖 of phenol is 11,510.0 J/mol, which was taken from Inozemtsev et al. (1972)204. Activity coefficients 

were predicted using two activity coefficient models: NRTL model and COSMO-SAC (2010). First the 

activity coefficients were obtained considering a melting temperature sufficiently close to that of the 

optimal solution. Then, given those activity coefficients and the composition, the temperature was 

calculated using the Eq. 13 and minimized by the square of the absolute deviation between the 

experimental temperature and the calculated one. 

SLE and LLE have been determined for phenol and n-hexane at atmospheric pressure. Results were 

correlated with two different models (i.e., NRTL, PR EoS) determining the activity coefficients. Moreover, 

all results were compared with the predictive model COSMO-SAC.  Predictions of activity coefficient 

using COSMO-SAC can accurately represent SLE and. For LLE diagrams, COSMO-SAC shows a shift 

in the phenol-rich phase and seems to be a competitive model for representing the LLE diagram.  
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(a) (b) 

Figure A1 – (a) SLE and (b) activity coefficient of Phenol (1)/n-Hexane (2) at atmospheric pressure. (a) Black 
circle: experiments values (this work), Black dot-line: NRLT, Orange dot-line: COSMO-SAC. (b) black: NRTL 

and orange: COSMO-SAC (2010) and PSL sigma-profile (Klamt radii). 
 

 

 

Figure A2 – LLE of Phenol (1)/n-Hexane at atmospheric pressure. Black circle: experiments values (this work), 
white circle: critical point, back line: Cox-Herington, black dot-line: NRTL, Orange dot-line: COSMO-SAC. 
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10. Appendix B 
 

Table B1 – NRTL parameters for 𝛼𝑖𝑗
0 = 0.3 . 

index des constituants NP T (K) cij0 cji0 AAE% 

o-xylene n-heptane 23 348.1 260.6 1.6 0.16% 

o-xylene n-heptane 11 358.1 253.1 2.1 0.41% 

o-xylene n-heptane 12 348.1 247.7 0.0 0.62% 

o-xylene n-heptane 11 368.3 139.5 97.0 0.47% 

o-xylene n-octane 13 308.1 85.9 0.0 0.35% 

p-xylene n-heptane 28 348.1 197.5 0.0 0.33% 

m-xylene n-heptane 27 348.1 213.3 1.8 0.21% 

m-xylene n-decane 11 348.1 104.6 0.9 1.25% 

m-xylene n-decane 10 393.7 174.4 0.1 0.95% 

m-xylene n-decane 12 383.6 64.8 2.7 1.60% 

toluene n-heptane 49 298.1 297.5 16368.9 0.58% 

toluene n-heptane 44 303.1 280.6 23139.0 0.77% 

toluene n-heptane 25 313.1 293.0 19631.9 0.58% 

toluene n-heptane 15 323.0 220.9 23521.2 0.79% 

toluene n-heptane 15 333.0 280.8 54301.7 0.78% 

toluene n-heptane 14 363.0 209.3 27334.4 8.43% 

toluene n-heptane 17 348.0 259.2 28751.1 0.78% 

toluene n-heptane 13 303.0 244.1 21578.8 1.05% 

toluene n-octane 18 333.2 228.6 55996.8 0.35% 

toluene n-decane 12 373.5 21.0 26964.4 1.61% 

toluene n-decane 10 383.6 110.6 35129.2 2.47% 

toluene n-decane 10 393.7 495.3 244124.0 3.41% 

benzene n-hexane 32 333.1 349.8 50083.6 2.99% 

benzene n-hexane 7 343.1 306.0 20016.4 0.21% 

benzene n-heptane 15 333.1 330.8 40768.7 0.67% 

benzene n-heptane 26 353.1 281.6 52350.5 0.64% 

benzene n-heptane 8 348.1 283.2 54301.7 1.02% 

benzene n-heptane 22 293.1 419.3 27250.8 0.68% 

benzene n-heptane 9 488.1 133.0 48461.9 7.53% 

benzene n-heptane 10 458.1 110.2 54400.6 0.59% 

benzene n-heptane 10 473.1 132.8 56005.6 0.63% 

benzene n-heptane 10 443.1 145.1 45688.2 0.53% 

benzene n-heptane 9 428.1 165.0 45524.1 0.82% 

benzene n-heptane 9 413.1 248.7 48927.7 0.87% 

benzene n-heptane 17 383.1 281.2 165137.2 1.11% 

benzene n-heptane 15 318.1 343.7 33359.5 0.97% 

benzene n-octane 27 328.1 306.1 33345.4 1.49% 

benzene n-octane 13 348.1 243.7 33763.5 0.86% 

benzene n-octane 26 338.1 265.6 33352.7 1.51% 

benzene n-dodecane 11 333.1 38.7 33342.9 2.23% 

benzene n-dodecane 8 313.1 158.5 33342.4 2.50% 

benzene n-dodecane 16 353.1 0.0 1777806831378 2.52% 
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11. Appendix B 
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u(T) = 0.02K u(z)=0.01 u(P)=0.002 bar

Table 4.  VLE of Ethaline (1) and Ethanol (2). 

T = 303 K T = 323 K 

z2 P exp/bar x2 
y2 
wilson 

Pcal /bar 
Wilson y2 nrtl 

Pcal 
/bar 
NRTL 

ERR% 
(P)  
Wilson 

ERR% 
(P)      
NRTL z2 P exp/bar x2 y2 wilson 

Pcal/bar 
Wilson y2 nrtl 

Pcal /bar 
NRTL 

ERR % 
(P)     
Wilson 

ERR % 
(P)     
NRTL 

0.000 0.003 0.000 0.000 0.005 0.000 0.005 11.69    11.69    0.000 0.025 0.000 0.000 0.025 0.000 0.025 0.00    0.00    

0.123 0.027 0.123 0.846 0.027 0.846 0.027 0.01    0.01    0.119 0.056 0.119 0.681 0.069 0.688 0.071 4.98    6.61    

0.195 0.038 0.195 0.898 0.038 0.898 0.038 0.00    0.00    0.216 0.094 0.216 0.808 0.102 0.803 0.101 0.73    0.55    

0.307 0.053 0.307 0.935 0.052 0.935 0.052 0.02    0.01    0.354 0.139 0.354 0.887 0.146 0.877 0.138 0.23    0.00    

0.388 0.061 0.388 0.949 0.061 0.949 0.061 0.02    0.02    0.455 0.170 0.455 0.919 0.175 0.910 0.164 0.10    0.14    

0.493 0.071 0.493 0.961 0.070 0.961 0.070 0.01    0.02    0.552 0.194 0.552 0.940 0.200 0.932 0.187 0.12    0.14    

0.598 0.079 0.598 0.969 0.078 0.969 0.078 0.02    0.04    0.596 0.204 0.596 0.947 0.211 0.941 0.197 0.11    0.13    

0.700 0.087 0.700 0.976 0.085 0.976 0.084 0.04    0.07    0.703 0.228 0.703 0.962 0.235 0.960 0.222 0.10    0.06    

0.799 0.095 0.799 0.982 0.091 0.982 0.090 0.18    0.23    0.794 0.248 0.794 0.973 0.254 0.974 0.244 0.05    0.03    

0.855 0.099 0.855 0.986 0.095 0.986 0.094 0.19    0.23    0.894 0.275 0.894 0.985 0.273 0.987 0.269 0.00    0.05    

1.000 0.110 1.000 1.000 0.105 1.000 0.105 0.19    0.19    1.000 0.303 1.000 1.000 0.296 1.000 0.296 0.05    0.05    

T = 313 K T = 333 K 

0.000 0.007 0.000 0.000 0.004 0.000 0.004 14.26    14.26    0.000 0.012 0.000 0.000 0.007 0.000 0.0067 18.27    18.27    

0.098 0.038 0.098 0.898 0.038 0.898 0.038 0.00    0.02    0.132 0.094 0.132 0.945 0.114 0.948 0.1083 4.34    2.16    

0.204 0.067 0.204 0.948 0.067 0.948 0.067 0.01    0.00    0.253 0.167 0.253 0.972 0.180 0.970 0.1506 0.55    0.99    

0.299 0.089 0.299 0.964 0.088 0.964 0.088 0.01    0.01    0.370 0.228 0.370 0.981 0.229 0.979 0.2040 0.00    1.12    

0.398 0.106 0.398 0.973 0.105 0.973 0.105 0.01    0.01    0.437 0.259 0.437 0.985 0.254 0.983 0.2364 0.03    0.74    

0.488 0.119 0.488 0.978 0.118 0.978 0.118 0.01    0.01    0.525 0.295 0.525 0.988 0.286 0.986 0.2746 0.09    0.48    

0.593 0.133 0.593 0.982 0.131 0.982 0.131 0.02    0.02    0.599 0.324 0.599 0.990 0.312 0.989 0.3117 0.13    0.14    

0.700 0.145 0.700 0.986 0.143 0.986 0.142 0.03    0.04    0.643 0.340 0.643 0.991 0.328 0.990 0.3483 0.13    0.06    

0.799 0.157 0.799 0.990 0.153 0.990 0.153 0.06    0.08    0.750 0.380 0.750 0.993 0.367 0.993 0.3855 0.12    0.02    

0.895 0.172 0.895 0.994 0.165 0.994 0.165 0.16    0.17    0.848 0.423 0.848 0.996 0.405 0.996 0.4078 0.19    0.14    

1.000 0.182 1.000 1.000 0.180 1.000 0.180 0.01    0.01    1.000 0.480 1.000 1.000 0.443 1.000 0.470 0.006 0.000 
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Table 5. VLE of Ethaline(1)+Isopropanol(2). 

T = 303 K 

z2 P exp/bar x2 
y2 
wilson 

Pcal /bar 
Wilson y2 nrtl 

Pcal /bar 
NRTL 

ERR% (P)  
Wilson 

ERR% (P)      
NRTL 

0.000 0.0026 0.009 0.000 0.0066 0.000 0.0026 0.0041 0.0000 

0.078 0.0277 0.063 0.908 0.0765 0.887 0.0213 0.0488 0.0064 

0.153 0.0423 0.126 0.945 0.1247 0.938 0.0361 0.0824 0.0062 

0.206 0.0493 0.216 0.956 0.1510 0.953 0.0450 0.1018 0.0043 

0.260 0.0545 0.225 0.963 0.1728 0.962 0.0527 0.1183 0.0017 

0.307 0.0581 0.242 0.966 0.1883 0.967 0.0583 0.1302 0.0003 

0.346 0.0606 0.269 0.969 0.1991 0.970 0.0623 0.1385 0.0017 

0.397 0.0643 0.278 0.971 0.2112 0.973 0.0665 0.1469 0.0022 

0.439 0.0666 0.289 0.973 0.2196 0.975 0.0693 0.1530 0.0026 

0.495 0.0698 0.298 0.974 0.2294 0.977 0.0722 0.1595 0.0024 

0.539 0.0727 0.307 0.976 0.2358 0.978 0.0738 0.1631 0.0010 

0.595 0.0755 0.316 0.977 0.2431 0.979 0.0751 0.1676 0.0004 

0.647 0.0765 0.322 0.978 0.2490 0.979 0.0757 0.1725 0.0008 

0.701 0.0760 0.329 0.978 0.2547 0.979 0.0760 0.1787 0.0000 

0.759 0.0770 0.337 0.979 0.2607 0.979 0.0760 0.1837 0.0010 

0.818 0.0770 0.345 0.980 0.2670 0.980 0.0762 0.1900 0.0008 

0.869 0.0780 0.394 0.981 0.2730 0.980 0.0764 0.1950 0.0016 

1.000 0.0810 0.394 1.000 0.2960 1.000 0.0810 0.2150 0.0000 

 
 
T = 313 K 

0.000 0.0042 0.000 0.000 0.004 0.000 0.0042 0.0000 0.0000 

0.074 0.0439 0.073 0.909 0.043 0.888 0.0350 0.0007 0.0089 

0.121 0.0611 0.119 0.938 0.061 0.928 0.0519 0.0003 0.0092 

0.160 0.0725 0.158 0.950 0.073 0.944 0.0645 0.0000 0.0080 

0.201 0.0820 0.199 0.957 0.083 0.955 0.0764 0.0006 0.0056 

0.354 0.1030 0.352 0.970 0.106 0.972 0.1087 0.0032 0.0057 

0.392 0.1068 0.391 0.971 0.110 0.974 0.1143 0.0032 0.0075 

0.531 0.1195 0.531 0.975 0.119 0.979 0.1272 0.0000 0.0077 

0.585 0.1248 0.585 0.977 0.122 0.980 0.1298 0.0028 0.0050 

0.647 0.1317 0.647 0.978 0.125 0.981 0.1317 0.0070 0.0000 

0.757 0.1375 0.757 0.980 0.129 0.981 0.1330 0.0089 0.0045 

0.868 0.1405 0.868 0.984 0.133 0.983 0.1346 0.0075 0.0059 

1.000 0.1420 1.000 1.000 0.140 1.000 0.1401 0.0019 0.0019 
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Table 5. VLE of Ethaline(1)+Isopropanol(2) (continuation). 

T = 323 K 

0.000 0.0095 0.000 0.000 0.0095 0.009 0.0095 0.0000 0.0000 

0.108 0.1016 0.100 0.914 0.1011 0.877 0.0705 0.0005 0.0311 

0.209 0.1466 0.204 0.944 0.1466 0.120 0.1203 0.0000 0.0263 

0.417 0.1799 0.413 0.960 0.1837 0.180 0.1797 0.0037 0.0003 

0.520 0.1912 0.517 0.964 0.1932 0.196 0.1957 0.0021 0.0045 

0.623 0.2012 0.621 0.967 0.2012 0.206 0.2061 0.0000 0.0049 

0.686 0.2076 0.685 0.969 0.2060 0.211 0.2108 0.0016 0.0032 

0.753 0.2153 0.752 0.972 0.2114 0.215 0.2153 0.0038 0.0000 

0.801 0.2217 0.800 0.975 0.2157 0.219 0.2185 0.0060 0.0032 

0.893 0.2354 0.893 0.982 0.2254 0.226 0.2265 0.0100 0.0089 

1.000 0.2413 1.000 1.000 0.2380 1.000 0.2380 0.0034 0.0034 

T = 333 K 

0.000 0.0087 0.000 0.000 0.0087 0.000 0.0087 0.0000 0.0000 

0.036 0.0628 0.035 0.866 0.0628 0.819 0.0468 0.0000 0.0160 

0.092 0.1296 0.089 0.936 0.1262 0.919 0.0986 0.0034 0.0310 

0.150 0.1800 0.215 0.966 0.2165 0.963 0.1933 0.0365 0.0133 

0.235 0.2269 0.232 0.968 0.2246 0.965 0.2033 0.0023 0.0236 

0.278 0.2433 0.274 0.971 0.2424 0.970 0.2266 0.0009 0.0167 

0.362 0.2683 0.359 0.975 0.2695 0.976 0.2644 0.0012 0.0039 

0.395 0.2764 0.392 0.976 0.2779 0.978 0.2764 0.0015 0.0000 

0.445 0.2874 0.443 0.978 0.2891 0.980 0.2922 0.0017 0.0048 

0.493 0.2966 0.491 0.979 0.2980 0.981 0.3042 0.0014 0.0076 

0.545 0.3069 0.544 0.980 0.3069 0.983 0.3153 0.0000 0.0084 

0.603 0.3169 0.602 0.982 0.3156 0.984 0.3250 0.0013 0.0081 

0.649 0.3255 0.649 0.983 0.3224 0.985 0.3316 0.0031 0.0061 

0.692 0.3342 0.692 0.984 0.3288 0.986 0.3373 0.0054 0.0031 

0.745 0.3462 0.745 0.985 0.3370 0.987 0.3440 0.0092 0.0022 

0.800 0.3580 0.799 0.987 0.3450 0.988 0.3500 0.0130 0.0080 

0.851 0.3650 1.002 1.000 0.3943 1.000 0.3943 0.0293 0.0293 

0.905 0.3750 1.002 1.000 0.3945 1.000 0.3945 0.0195 0.0195 

0.942 0.3800 1.002 1.000 0.3945 1.000 0.3945 0.0145 0.0145 

1.000 0.3868 1.000 1.000 0.3936 1.000 0.3936 0.0068 0.0068 

u(T) = 0.02K u(z)=0.01 u(P)=0.002 bar 
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Table 6. VLE of Glycaline(1) + Ethanol(2). 

T = 303 K 

z2 
P exp 
bar x2 

y2 
Wilson 

Pcal /bar 
Wilson 

y2 
NRTL 

Pcal /bar 
NRTL 

ERR% 
Wilson 

ERR% 
NRTL 

0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.053 0.030 0.068 0.999 0.0275 0.9990 0.0274 0.0029 0.0030 

0.092 0.042 0.116 0.999 0.0420 0.9994 0.0423 0.0004 0.0000 

0.138 0.054 0.172 1.000 0.0548 0.9995 0.0556 0.0004 0.0013 

0.196 0.066 0.241 1.000 0.0664 0.9996 0.0680 0.0001 0.0017 

0.244 0.073 0.296 1.000 0.0733 0.9997 0.0746 0.0000 0.0012 

0.294 0.078 0.352 1.000 0.0789 0.9997 0.0799 0.0006 0.0015 

0.337 0.082 0.398 1.000 0.0825 0.9997 0.0831 0.0002 0.0008 

0.393 0.086 0.458 1.000 0.0864 0.9997 0.0862 0.0000 0.0001 

0.446 0.089 0.512 1.000 0.0890 0.9998 0.0881 0.0000 0.0009 

0.530 0.093 0.595 1.000 0.0922 0.9998 0.0902 0.0006 0.0026 

0.598 0.096 0.660 1.000 0.0940 0.9998 0.0914 0.0018 0.0045 

0.649 0.098 0.707 1.000 0.0953 0.9998 0.0923 0.0031 0.0061 

0.693 0.101 0.746 1.000 0.0962 0.9998 0.0931 0.0043 0.0074 

0.742 0.102 0.790 1.000 0.0972 0.9998 0.0942 0.0043 0.0074 

         

1.000 0.110 1.000 1.000 0.0160 1.0000 0.0160 0.0940 0.0940 

T = 313 K 

0.000 0.003 0.000 0.000 0.0028 0.000 0.0028 0.0000 0.0000 

0.066 0.048 0.083 0.948 0.0485 0.942 0.0440 0.0008 0.0037 

0.126 0.078 0.156 0.969 0.0779 0.967 0.0731 0.0000 0.0048 

0.189 0.101 0.231 0.978 0.1006 0.977 0.0973 0.0008 0.0041 

0.228 0.114 0.304 0.982 0.1171 0.982 0.1157 0.0031 0.0017 

0.303 0.128 0.361 0.984 0.1274 0.984 0.1272 0.0003 0.0005 

0.330 0.132 0.390 0.985 0.1318 0.985 0.1321 0.0003 0.0000 

0.380 0.139 0.444 0.986 0.1390 0.987 0.1399 0.0000 0.0009 

0.427 0.144 0.492 0.987 0.1442 0.988 0.1454 0.0003 0.0015 

0.485 0.149 0.551 0.988 0.1498 0.989 0.1509 0.0009 0.0020 

0.537 0.153 0.602 0.989 0.1538 0.989 0.1545 0.0008 0.0015 

0.581 0.156 0.643 0.989 0.1565 0.990 0.1568 0.0006 0.0009 

0.679 0.163 0.734 0.991 0.1619 0.991 0.1611 0.0007 0.0015 

0.724 0.166 0.774 0.991 0.1642 0.991 0.1630 0.0019 0.0031 

0.791 0.172 0.832 0.992 0.1673 0.992 0.1658 0.0049 0.0064 

0.903 0.179        
1.000 0.180        
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Table 6. VLE of Glycaline(1) + Ethanol(2) (continuation). 

 T = 323 K 

z2 
P 
exp/bar x2 y2 Pcal /bar Wilson 

Pcal /bar 
NRTL 

ERR% 
Wilson 

ERR% 
NRTL 

0.000 0.007 0.000 0.000 0.0066 0.000 0.0066 0.0000 0.0000 

0.050 0.047 0.050 0.883 0.0540 0.866 0.0475 0.0070 0.0005 

0.091 0.098 0.091 0.929 0.0858 0.921 0.0772 0.0118 0.0204 

0.150 0.150 0.150 0.953 0.1231 0.950 0.1147 0.0269 0.0353 

0.205 0.170 0.205 0.963 0.1506 0.962 0.1442 0.0194 0.0258 

0.242 0.185 0.242 0.968 0.1660 0.967 0.1616 0.0193 0.0237 

0.293 0.202 0.293 0.972 0.1838 0.972 0.1821 0.0184 0.0201 

0.345 0.216 0.345 0.975 0.1987 0.976 0.1996 0.0169 0.0161 

0.407 0.228 0.407 0.978 0.2133 0.979 0.2166 0.0150 0.0117 

0.444 0.234 0.444 0.979 0.2206 0.980 0.2249 0.0134 0.0091 

0.504 0.243 0.504 0.981 0.2308 0.982 0.2360 0.0123 0.0071 

0.542 0.249 0.542 0.982 0.2362 0.983 0.2415 0.0126 0.0072 

0.595 0.254 0.595 0.983 0.2430 0.984 0.2481 0.0107 0.0056 

0.645 0.259 0.645 0.984 0.2487 0.985 0.2530 0.0104 0.0061 

0.695 0.264 0.695 0.985 0.2540 0.985 0.2573 0.0099 0.0066 

0.748 0.269 0.748 0.986 0.2595 0.986 0.2616 0.0099 0.0078 

0.797 0.275 0.797 0.987 0.2646 0.987 0.2656 0.0105 0.0094 

0.847 0.282 0.847 0.989 0.2703 0.989 0.2705 0.0120 0.0118 

0.943 0.290 0.943 0.994 0.2840 0.993 0.2838 0.0064 0.0066 

1.000 0.303 1.000 1.000 0.2960 1.000 0.2960 0.0065 0.0065 

u(T) = 0.02K u(z)=0.01 u(P)=0.002 bar 
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Table 7. VLE of Glycaline (1)+ Isopropanol (2). 

T = 303 K 

z2 P exp/bar x2 y2 
Pcal /bar 
Wilson y2 

Pcal /bar 
NRTL 

ERR% 
Wilson 

ERR% 
NRTL 

0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0002 0.0002 

0.049 0.022 0.034 0.999 0.0203 0.998 0.016 0.0016 0.0061 

0.100 0.043 0.124 0.999 0.0486 0.999 0.043 0.0054 0.0003 

0.191 0.061 0.233 1.000 0.0626 1.000 0.061 0.0011 0.0000 

0.269 0.068 0.323 1.000 0.0679 1.000 0.069 0.0000 0.0008 

0.295 0.069 0.351 1.000 0.0691 1.000 0.070 0.0000 0.0011 

0.350 0.071 0.411 1.000 0.0709 1.000 0.072 0.0002 0.0015 

0.445 0.073 0.510 1.000 0.0727 1.000 0.073 0.0001 0.0006 

0.497 0.073 0.562 1.000 0.0734 1.000 0.073 0.0000 0.0001 

0.544 0.074 0.608 1.000 0.0739 1.000 0.073 0.0000 0.0007 

0.595 0.074 0.657 1.000 0.0743 1.000 0.073 0.0001 0.0014 

0.648 0.075 0.706 1.000 0.0747 1.000 0.073 0.0000 0.0021 

0.700 0.075 0.752 1.000 0.0751 1.000 0.073 0.0004 0.0028 

0.790 0.077 0.831 1.000 0.0762 1.000 0.074 0.0007 0.0032 

0.850 0.078 0.881 1.000 0.0765 1.000 0.074 0.0011 0.0032 

1.000 0.080 1.000 1.000 0.0793 1.000 0.079 0.0009 0.0009 

T = 313 K 

0.000 0.0042 0.000 0.000 0.0028 0.000 0.0028 0.0015 0.0015 

0.090 0.0704 0.111 0.967 0.0762 0.950 0.0495 0.0058 0.0209 

0.192 0.1066 0.233 0.978 0.1066 0.975 0.0871 0.0000 0.0195 

0.247 0.1157 0.296 0.980 0.1145 0.979 0.1015 0.0012 0.0141 

0.300 0.1208 0.355 0.981 0.1195 0.982 0.1123 0.0012 0.0085 

0.351 0.1238 0.411 0.982 0.1229 0.984 0.1202 0.0009 0.0036 

0.396 0.1255 0.459 0.983 0.1251 0.985 0.1255 0.0004 0.0000 

0.444 0.1268 0.509 0.983 0.1269 0.986 0.1295 0.0000 0.0027 

0.491 0.1275 0.556 0.983 0.1283 0.987 0.1322 0.0008 0.0047 

0.556 0.1288 0.619 0.984 0.1297 0.987 0.1342 0.0009 0.0054 

0.601 0.1298 0.662 0.984 0.1306 0.987 0.1349 0.0008 0.0051 

0.652 0.1308 0.709 0.985 0.1317 0.988 0.1350 0.0008 0.0042 

0.697 0.1318 0.750 0.985 0.1324 0.988 0.1350 0.0006 0.0032 

0.800 0.1352 0.839 0.986 0.1341 0.987 0.1350 0.0011 0.0002 

0.850 0.1387 0.881 0.987 0.1354 0.988 0.1355 0.0033 0.0032 

0.886 0.1397 0.910 0.988 0.1363 0.988 0.1359 0.0034 0.0038 

1.000 0.1415 1.000 1.000 0.1418 1.000 0.1418 0.0003 0.0003 
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Table 7. VLE of Glycaline (1)+ Isopropanol (2) (continuation). 

T = 323 K 

0.000 0.007 0.000 0.000 0.0066 0.000 0.0066 0.0001 0.0001 

0.050 0.065 0.124 0.951 0.1223 0.936 0.0921 0.0573 0.0271 

0.101 0.122 0.353 0.973 0.1951 0.974 0.1879 0.0727 0.0655 

0.150 0.150 0.471 0.976 0.2086 0.979 0.2119 0.0586 0.0619 

0.200 0.175 0.579 0.978 0.2158 0.981 0.2229 0.0408 0.0479 

0.299 0.203 0.652 0.979 0.2195 0.982 0.2262 0.0163 0.0230 

0.409 0.212 0.747 0.980 0.2233 0.982 0.2273 0.0114 0.0154 

0.515 0.216 0.835 0.982 0.2277 0.983 0.2288 0.0122 0.0132 

0.591 0.218 0.879 0.983 0.2300 0.984 0.2300 0.0120 0.0120 

0.695 0.223 0.909 0.985 0.2315 0.985 0.2311 0.0086 0.0082 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

In the context of biorefineries, selecting an appropriate solvent is crucial for sustainable and economically 

viable separation processes. A comprehensive approach integrating criteria like Life Cycle Assessment, 

toxicity analysis, energy-efficient solvent regeneration, minimal solvent losses, and high selectivity is 

required. However, the choice becomes challenging when considering Deep Eutectic Solvents (DES) due to 

a lack of comprehensive experimental data, particularly regarding critical thermodynamic and physical 

properties like phase equilibrium, density, viscosity, heat capacity, thermal conductivity, solubility, and more. 

To bridge this gap, this research proposes generating essential experimental data (such as density, viscosity, 

and phase equilibrium properties) to optimize theoretical models. Moreover, this work proposes a solvent 

screening approach based on modeling thermodynamic properties using the (COnductor-like Screening 

MOdel segment activity coefficient (COSMO-SAC) model. The study aims to enhance the COSMO-SAC 

model by investigating computational variables, establishing a PSL sigma-profile database, and refining 

predictions through enthalpic, entropic, and intermolecular contributions. Despite encountering challenges in 

accurately predicting activity coefficients at infinite dilution (IDAC) for DES systems, an optimization approach 

significantly reduces deviations, offering a promising route for precise solvent selection in biorefinery 

processes. 

 

MOTS CLÉS 

 
Bioraffinerie, Modèle COSMO, Solvant Eutectique Profond, DFT. 

RÉSUMÉ 

 
Dans le contexte des bioraffineries, le choix d'un solvant approprié est crucial pour des processus de 

séparation durables et économiquement viables. Une approche globale intégrant des critères tels que 

l'Analyse du Cycle de Vie, l'analyse de la toxicité, la régénération énergétiquement efficace du solvant, des 

pertes minimales de solvant et une haute sélectivité est nécessaire. Cependant, le choix devient complexe 

lorsqu'il s'agit des solvants eutectiques profonds (Deep Eutectic Solvents - DES) en raison du manque de 

données expérimentales complètes, en particulier concernant les propriétés thermodynamiques et physiques 

critiques telles que l'équilibre de phase, la densité, la viscosité, la capacité thermique, la conductivité 

thermique, la solubilité, et autres. Pour combler cette lacune, cette recherche propose de générer des 

données expérimentales essentielles (telles que la densité, la viscosité et les propriétés d'équilibre de phase) 

pour optimiser les modèles théoriques. De plus, ce travail propose une approche de sélection de solvant 

basée sur la modélisation des propriétés thermodynamiques en utilisant le modèle COSMO-SAC 

(COnductor-like Screening MOdel segment activity coefficient). L'étude vise à améliorer le modèle COSMO-

SAC en examinant les variables computationnelles, en établissant une base de données de profils sigma 

PSL et en affinant les prédictions grâce aux contributions enthalpiques, entropiques et intermoléculaires. 

Malgré les défis rencontrés dans la prédiction précise des coefficients d'activité en dilution infinie (IDAC) pour 

les systèmes DES, une approche d'optimisation réduit considérablement les écarts, offrant ainsi une voie 

prometteuse pour la sélection précise du solvant dans les processus de bioraffinerie. 

 

KEYWORDS 

 
Biorefinery, COSMO Model, Deep Eutetic Solvent, DFT. 


