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Abstract

Atmospheric fields, and notably wind fields are known to exhibit extreme variability across
wide ranges of space-time scales. This makes them complex to analyse, model and even to ob-
serve. Standard Gaussian tools are not able to deal with such variability and underestimate extreme
fluctuations. However, the ongoing increase of wind power production in energy transition scenar-
ios highlights the need to better characterize and simulate these fields.

Multifractals are an appropriate candidate for this required framework. Indeed, they rely on the
physically based concept of scale invariance retrieved from the governing Navier-Stokes equations.
In this framework, fields are generated through a multiplicative cascade process, where activity is
iteratively transferred from large scales down to dissipation scales, which is of few millimeters in
the case of wind. In the specific framework of Universal Multifractals (UM) only three parameters
with clear physical interpretations are needed to fully characterize the fields’ variability. UM have
been extensively used to characterize and simulate a wide range of geophysical fields such as wind,
rainfall or river flow.

In a first step of this PhD, realistic wind fields are simulated. First, UM analysis were im-
plemented on high-resolution 3D anemometer data collected during the RW-Turb measurement
campaign that took place over 2.5 years on the operational wind farm of Pays d’Othe. A good scal-
ing behaviour between 4 s and 17 min was observed and trends of retrieved UM parameters were
identified depending on average wind. Rapid changes are found up to roughly 4 m/s before reach-
ing a plateau. Then wind fields are simulated relying on existing methods for continuous cascades.
These tools are designed to facilitate the simulation of both scalar and vector geophysical fields,
expanding beyond the constraints of one-dimensional scenarios. They offer the flexibility to extend
their application to spatial, temporal, or spatio-temporal fields, providing a versatile approach to
modeling complex vector fields. Four distinct wind simulation methods are implemented on the
range of scales identified in the analysis. The first one entails the reconstruction of wind fields
from point measurements using scaling laws, although it does involve certain oversimplifications.
The next two methods, are both based on Fractionally Integrated Flux. One directly simulates
wind fields, while the second is tailored to model wind fluctuations and reconstruct wind from
there. Tools to simulate scalars (horizontal wind) or vectors for time series, maps or in a 3D space
plus time framework were developed. Finally, fields were also generated using the commercial
software Turbsim, developed by the US National Renewable Energy Laboratory (NREL). It relies
on Gaussian statistics which are know to exhibit limitations in capturing the true nature of wind
fields. Simulation were analysed in 1D and 2D to confirm validity. It appears that observed wind
properties are best reproduced by direct FIF simulations.

Finally, the wind fields simulated are used to investigate the effects of small-scale wind vari-
ability on the wind turbine torque computation by imputing the simulated vector fields into three
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modelling chains with increasing complexity. The first one only considers the temporal variability,
averaging the wind field and considering it at hub height. The second one is based on the angu-
lar moment definition and allows to consider both spatial and temporal variability by computing
the torque at each blade point and integrating it along the radius for each time step. Finally, the
third one uses the commonly used in research and industry software OpenFAST developed by the
NREL. Overall similar features are observed for three types of simulated time series. UM analysis
implemented on ensemble of simulations enabled to highlight a better ability of the integral method
to account for the small scale wind fluctuations.

keywords: turbulence, multifractals, wind modelling, wind energy, atmospheric variability
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Résumé

Les champs atmosphériques, dont le vent, présentent une variabilité extrême sur une large
gamme d’échelles spatio-temporelles. Cela les rend complexes à analyser, modéliser et même
observer. Les outils gaussiens standard ne permettent pas de prendre en compte cette variabilité et
sous-estiment les fluctuations extrêmes. L’augmentation continue de la production éolienne dans
les scénarios de transition énergétique souligne la nécessité de mieux caractériser et simuler ces
champs.

Les Multifractales Universels (UM) sont un candidat approprié pour ce cadre requis. En ef-
fet, elles reposent sur le concept physique d’invariance d’échelle, hérité des équations de Navier-
Stokes, et sont parcimonieuses avec seulement trois paramètres physiquement interprétables pour
caractériser pleinement la variabilité des champs. Dans ce cadre, les champs sont générés par un
processus de cascade multiplicative, où l’activité est transférée itérativement des grandes échelles
jusqu’aux échelles de dissipation (quelques mm pour le vent). Les UM ont été largement mis en
oeuvre sur large spectre de champs géophysiques.

D’abord, des champs de vent réalistes ont été simulés. Une analyse UM a été mise en œuvre
sur des données d’anémomètres 3D à haute résolution collectées lors de la campagne de mesure
du projet RW-Turb qui a eu lieu pendant 2,5 ans sur le parc éolien des Pays d’Othe. On a observé
un bon comportement invariant d’échelles entre 4 secondes et 17 minutes et identifié des tendances
sur paramètres UM en fonction de la vitesse moyenne du vent. Des changements rapides sont notés
jusqu’à environ 4 m/s avant d’atteindre un plateau. Ensuite, des champs de vent sont simulés en
utilisant des méthodes existantes pour les cascades continues. Ces outils sont conçus pour faciliter
la simulation de champs géophysiques scalaires et vectoriels. Ils offrent la flexibilité d’étendre
leur application à des champs 1D, 2D et 2D+1, fournissant ainsi une approche polyvalente pour la
modélisation de champs vectoriels complexes. Quatre méthodes de simulation du vent sont mises
en œuvre sur la plage d’échelles identifiées dans l’analyse. La première, simpliste, implique la
reconstruction des champs de vent à partir de mesures ponctuelles et de lois d’échelles. Deux autres
sont basées sur les Flux Intégrés Fractionnairement (FIF). L’une simule directement les champs de
vent, tandis que la seconde est adaptée pour modéliser les fluctuations du vent et le reconstruire
à partir de là. Des outils ont été développés pour simuler des scalaires (vent horizontal) ou des
vecteurs pour des séries temporelles, des cartes ou dans un espace 3D avec le temps. Enfin, des
champs ont également été générés en utilisant le logiciel commercial Turbsim, développé par le
NREL (Etats-Unis). Il repose sur des statistiques gaussiennes, dont les limites sont connues pour
le vent. Les simulations ont été analysées en 1D et 2D pour confirmer leur validité. Les propriétés
du vent observées sont mieux reproduites par des simulations FIF directes.

Enfin, les champs de vent simulés sont utilisés pour étudier les effets de la variabilité du vent à
petites échelles sur le couple de l’éolienne en les intégrant dans trois chaînes de modélisation à la
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complexité croissante. La première ne prend en compte que la variabilité temporelle, en moyennant
le vent et en le considérant à la hauteur de la nacelle. La deuxième intègre la contribution de chaque
portion de pale pour calculer à chaque pas de temps le couple global et ainsi prendre en compte à
la fois la variabilité spatiale et temporelle. La troisième utilise le logiciel largement utilisé dans la
recherche et l’industrie, OpenFAST (NREL). Dans l’ensemble, des caractéristiques similaires sont
observées pour les trois types de séries temporelles simulées. L’analyse UM mise en œuvre sur un
ensemble de simulations montre une meilleure capacité de la méthode intégrale à tenir compte des
fluctuations du vent à petite échelle.

Mots clés: turbulence, multifractals, modélisation du vent, énergie éolienne, variabilité atmo-
sphérique.
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Introduction

In recent years, the adoption and advancement of renewable energies such as solar energy,
wind energy, biomass energy, and geothermal energy have emerged as basic strategy for nations
worldwide in addressing the energy crisis and environmental pollution. Among the variety of
renewable energies, wind energy has firmly established itself as a major option (IEA, 2021)

Its widespread use around the world can be attributed to the fact that wind is an inexhaustible
resource with a very low environmental price tag, reducing CO2 emissions with minimal water
consumption. Numerous studies reveal that the total onshore wind resource exceeds 1 trillion kW,
with estimated potential electricity generation from wind amounting to approximately 840 PW-h
(Denny and O’Malley, 2006, McElroy et al., 2009, Council, 2019).

In fact, in the last 25 years, the world’s installed wind power capacity, both onshore and off-
shore, has increased from 7.5 GW in 1997 to 743 GW in 2020 (IEA, 2021, Council, 2021), with
plans for 50% of the EU’s energy demand to be covered by wind power in 2050 (EWEA, 2012).
Specifically, France ranks 4th in Europe in terms of installed onshore capacity with 17 GW, ac-
counting for approximately 7.2% of its total energy consumption (Journal de l’éolien, 2021, Elec-
tricite de France, 2021). In addition, it has scheduled around 3.5GW of offshore projects by the
end of 2026 (France Energie Eolienne, 2022, Kinani et al., 2023).

Despite the rapid development of wind energy, its integration and consumption is not as straight-
forward due to the intermittent nature of wind in both space and time, i.e. wind energy cannot be
generated when and where it is needed (Rao et al., 2013 Yang et al., 2014, Anvari et al., 2016 ,Ren
et al., 2017) whereas energy sources such as thermal, nuclear or hydroelectric power plants can.
This extreme variability in space and time yields to a real impact in different aspects of the energy
system (Ren et al., 2017) such as system reserves, system reliability, CO2 emissions and the costs.

System reserves play a crucial role in balancing power generation and load demand in electric-
ity systems (Bai et al. 2007, Gutiérrez-Martín et al. 2013). However, the intermittent nature of wind
power introduces additional uncertainty that operators must deal with. Often, variations in wind
generation and load demand are opposite, especially during peak hours (Bai et al. 2007, Gutiérrez-
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Martín et al. 2013). This requires more reserves to cover sudden increases in load demand and
decreases in wind generation (Wan and Parsons 1993, Swider and Weber, 2007).

Several studies have investigated the impact of intermittency on reserve capacities. For exam-
ple, the Canadian Wind Energy Association examined reserve requirements under different sce-
narios of intermittent wind power penetration (Energy and Truewind, 2006), i.e. percentage of the
energy cover by wind energy. It was observed that as wind penetration increases, load-following
requirements become more significant. In addition, the increase in load-following reserve require-
ments can exceed the capacity of existing generators when the rated wind power is high. Similar
results have been observed by other studies (Lee and Yamayee 1981, Gross et al. 2006, Brouwer
et al. 2014) demonstrating a linear relationship between the level of intermittent wind power pene-
tration and the additional load-following and back-up requirements.

The reliability of the energy system is composed of two fundamental aspects: system adequacy
and system security. Adequacy is assessed in terms of the system’s ability to cover load demand
during peak load hours, and is expressed as a percentage of peak load demanded. In Europe, this
percentage is around 15-23% while in the United States is around 15% (Cauley et al. 2011, Brouwer
et al. 2014).

Renewable energy sources that exhibit variable power generation can effectively meet peak
electricity demand if their output fluctuations align positively with demand (Yuan et al., 2011).
However, it is noteworthy that intermittent wind power often demonstrates a negative correlation
with demand and this at various scales. For example,in Ontario, peak load demand occurs in
summer meanwhile the wind capacity is higher in winter (Albadi and El-Saadany 2007). Similar
behaviour is observed in daily scales, e.g. in Spain (Gutiérrez-Martín et al. 2013), wind generation
peaks around midnight, while the highest electricity demand transpires between 1:00 PM and 10:00
PM. This variability translates into a negative impact on the adequacy of the system in the face of
the irruption of wind energy.

System security is commonly assessed using risk analysis methods. For example, in George
et al. (2011) the risk associated with wind power intermittency in California is quantified using the
R risk index, which combines the probability of energy shortfalls and the economic impact of such
shortfalls. In Wangdee (2014), the system security is analysed using three states: healthy state,
marginal state and risk state. In both approaches, it was observed that system security deteriorates
with large-scale integration of wind power due to its high spatio-temporal variability.

The variability of wind power has an impact on the actual reduction of CO2 emissions in elec-
tricity systems. Although theoretically it is expected that replacing a conventional power plant unit
with a wind power plant unit will equate to an equivalent reduction in CO2 emissions; in practice
the actual reduction is less (Gross et al. 2006). The intermittent nature of wind power requires con-
ventional power plants to be flexible in order to maintain system balance, which implies frequent
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changes in power output and plant start-up and shut-down. This negatively affects the efficiency of
the plants, as they are often designed to operate at a constant level of output (Cheng 2005, Albadi
and El-Saadany 2010, Gutiérrez-Martín et al. 2013, Brouwer et al. 2014). The resulting reduction
in system efficiency leads to an increase in fuel consumption and thus in CO2 emissions.

However, few studies have explicitly assessed the efficiency reduction in thermal power plants
due to this factor. In Gross et al. (2006) it is estimated that the efficiency reduction can vary
between 0% and 10%. This is in line with the results obtained by Brouwer et al. (2014) and Liik
et al. (2003) where a 4% reduction in electricity efficiency, and an 8-10% increase in emissions
from thermal power plants were observed respectively. A similar impact has also been documented
in Spanish industry (Gutiérrez-Martín et al. 2013).

The impact on the above factors translates into an impact on the economic costs in the wind
energy industry due to the high variability of the wind resource. In fact, it is estimated that the total
balancing costs are between 0.5 /MW h and 6 /MW h (Bach, 2004, Dale et al., 2004, Fabbri et al.,
2005, Swider and Weber, 2007, Notton et al., 2018).

Wind fields are known to be extremely variable across spatio-temporal scales, so the problems
arising from wind intermittency are not restricted to the large-scale problems mentioned in the
previous paragraphs, but small-scale turbulence is another factor that is still not fully accounted for
in terms of its impact on wind power generation (Brand et al. 2011,Van Kuik et al. 2016, Veers
et al., 2019). In recent years, several authors have investigated how turbulence produces a decrease
in the power generated by wind turbines (Lubitz 2014, Evans et al. 2018, Bashirzadeh Tabrizi
et al. 2019, among others). Other authors have studied how turbulence plays a crucial role in
the wake effect within wind farms (Vermeer et al. 2003, Maeda et al. 2017, Kadum et al., 2019
Neunaber 2019, van der Deijl et al., 2022). Extreme wind conditions such as extreme mean wind
speeds, wind speed gusts (i.e. rapid change wind speed), or wind direction gusts (i.e. rapid change
wind direction) can lead to a decrease in the wind energy production (Riziotis and Voutsinas 2000,
and Kanev and van Engelen, 2010), however, in some situations they involve an increase in power
production (Onol and Yesilyurt, 2017). These extreme events are translated into greater mechanical
stresses on turbine components causing fatigue, automatic shutdowns or even damage to some
turbine components (Bierbooms and Cheng 2002, Kanev and van Engelen 2010, Lubitz, 2014).
Gaussian tools commonly used in the industry underestimate those extremes (Calif et al., 2013;
Fitton et al., 2014) resulting in a decrease in the life expectancy of turbines (Riziotis and Voutsinas
2000, Zhou et al. 2018). This highlights the need of non-Gaussian framework.

Other authors such as Mücke et al., 2011 confirm the non-Gaussian nature of the wind field
statistics and its translation to the power production in the form of torque fluctuations. This be-
haviour was further analysed in Schottler et al., 2017 through the analysis of two various wind
flows with similar standard characteristics (mean, turbulence intensity) but difference in the the

25



Introduction

distribution of their velocity increments (one Gaussian and one highly intermittent). They demon-
strated that the intermittency of the wind flow is not mitigate in the power produced by the wind
turbine.

Despite the importance of understanding the effect of turbulence on the performance of wind
generators, international standards only consider turbulence in terms of structural aspects and not
in terms of performance. For example, the IEC 61400-2 (IEC, 2015) standard used for design
sets a limited range of turbulence intensities. Whereas IEC 61400 (IEC, 1999), used to determine
the performance of wind turbines in their environment, does not include any turbulence-related
requirements in relation to the performance of wind power generation.

Indeed, the problem areas of the wind industry highlighted in the state-of-the-art wind resource
assessment report, deliverable D7 (Rodrigo, 2010) are in line with the challenges facing the turbu-
lence field (Marusic et al., 2010), which include: (i) The existence of universal principal models.
(ii) The validity of approximations to Reynolds stresses and whether they represent micro-scale
wind conditions and extremes. (iii) The effect of non-neutral stability effects and complex topo-
graphic features.

To address these challenges, a potential solution could be the implementation of statistical
modeling of turbulence (Fitton, 2013, Van Kuik et al., 2016). However, despite the potential ben-
efits, there is a lack of such approaches in the wind industry. Instead, the industry tends to rely on
the outcomes of numerical simulations from the numerical weather prediction (NWP) community.
The majority of commercial nesting site models are often modified versions of NWP models (as
described by Holmes, 2011), with a truncation of time and space scales in simulations, employing
"turbulence intensity" (TI) parameterizations (Wallbank, 2008). However, these parameterizations
of small-scale velocity fluctuations do not correspond to the scales required for modeling wind
turbines, as evident in studies like Schertzer et al. (2012). We can found an example of this type
of methodology in Gottschall and Peinke (2008) where the estimation of the power curves of wind
turbine was divided in a deterministic part and in a stochastic one improving the accuracy in the
calculus of the power curves.

Traditional numerical approaches attempt to deal with these challenges by transforming partial
differential equations (PDEs) into ordinary differential equations (ODEs) to simplify the solving
process. However, this transformation implicitly imposes assumptions of regularity and homo-
geneity through parameterization methods, leading to a reduction in variability. This discrepancy
questions the relevance of the resulting numerical codes because their range of numerically solved
scales differs from that of the observations.

For the reasons mentioned above there is a need for a theoretical framework that is able to
deal with the high variability of the wind fields. Multifractal tools, specifically the Universal Mul-
tifractals, UM, (Schertzer and Lovejoy, 1987a) offer a scale-independent approach and provide a
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mathematically robust and physically based description of the wind velocity field. These unique
features enable understanding and modeling of spatio-temporal fields extremely variable across a
wide range of scales, accounting for extreme events or gusts.

This thesis is done in the framework of the ANR JCJC Rainfall Wind Turbine or Turbulence
(RW-Turb) project (grant no. ANR-19-CE05-0022). This project aims to quantify the effect of
precipitation on wind turbulence and wind turbine efficiency by combining data analysis set and
numerical simulations. More precisely, RW-Turb is structured around three main tasks: a dedi-
cated high-resolution measurement campaign (Gires et al., 2022b) on an operational wind farm,
data analysis and characterisation of the observed fields which are meteorological ones and power
production (Jose 2023), and finally numerical simulations. This thesis covers the numerical simu-
lations through the development of different modelling chains which use as input spatio-temporal
scalar and vector wind fields to computate of torque time series.

With the aforementioned we can define the objectives of the thesis as:

• How to simulate, from existing theoretical framework, and validate, spatio-temporal wind
fields, both scalar and vector, reproducing multifractal features retrieved from analysis of 3D
wind anemometer time series ?

• What is the effect of the spatio-temporal variability of wind fields on wind power production
through the development and implementation of various modelling chains to simulate torque
time series?

The thesis is structured into three chapters. The first chapter provides an overview of the Uni-
versal Multifractal framework, focusing on its theoretical development. It starts by reminding the
significance of fractal geometry and subsequently delves into multifractals. The chapter further
explores the use of multiplicative cascades for simulating geophysical fields, starting with the basic
β−model that simulates only the occurrence and progressing towards discrete cascades and contin-
uous cascades for various dimensions. Finally, the chapter incorporates the use of fields simulated
obtained with the help of these diverse techniques to illustrate multifractal analysis methods.

The second chapter of the thesis is dedicated to the simulation of wind fields characterized by
realistic spatio-temporal variability. To achieve this, 3D sonic anemometer data obtained from a
high-resolution campaign are utilized. These data serves as the basis for extracting wind multifrac-
tal properties and conducting a comparative analysis of different simulation methods. The chapter
begins with a review of Turbsim, a widely used software in the industry that employs Gaussian
statistics for wind field simulation. However, since Gaussian statistics do not accurately fully
capture the true characteristics of wind fields, three alternative methods based on non-Gaussian
statistics have been developed. The first method, although simplistic, involves reconstructing wind
fields from point measurements using well-established scaling laws. However, this method entails

27



Introduction

several simplifications which are discussed. To address these limitations, two other methods based
on well established Fractionally Integrated Flux (Schertzer and Lovejoy, 1997) have been imple-
mented, yielding promising results. The first method focuses on directly simulating wind fields,
while the second method specifically targets wind fluctuations. Both approaches can be extended
to encompass vector wind fields by combining stable Lévy processes and Clifford algebra. Sub-
sequently, a comparative analysis of all the aforementioned methods is conducted, assessing their
performance and distinctive features. This comprehensive evaluation aims to facilitate the gener-
ation of more realistic wind field simulations, effectively capturing the non-Gaussian variability
observed in real-world scenarios. Such advancements are crucial for enhancing our understanding
and prediction of wind power generation.

In the final chapter of the thesis, the impact of small scale spatio-temporal variability in wind
fields on wind energy production is analyzed through computation of simulated torque time series.
To accomplish this, three distinct modeling chains with increasing complexity have been devel-
oped. The first modelling chain only accounts for the temporal variability of the wind field, using
the average wind speed and considering it at the turbine hub height. The second approach is base
on the concept of angular momentum, enabling the consideration of both spatial and temporal vari-
ability. It calculates the torque at each point along the turbine blade and then integrates these values
radially at each time step. The third approach utilizes the realistic software OpenFAST, developed
by the National Renewable Energy Laboratory (NREL) in the United States. This modeling chain
integrates multiple modules, enabling non-linear aero-hydro-servo-elastic simulations in the time
domain. This comprehensive approach enables considering a wider range of processes involved
in wind turbine power production. To ensure the reliability and accuracy of the modeling chains,
a validation process has been conducted, demonstrating their good performance in the computa-
tion of the torque. Finally, a series of tests has been conducted using simulated vector wind, with a
sensitivity analysis on the various parameters to better grasp their influence on wind energy produc-
tion. These tests aim to gain insights into the interplay between different factors and their effects
on overall energy production.

Overall, the thesis presents a comprehensive study of wind field simulation, the impact of
spatio-temporal variability on wind energy production, and the development of accurate modeling
techniques for better understanding and prediction of wind for power generation.
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Chapter 1

Universal Multifractals

1.1 Introduction

Geophysical fields, like rain and wind, exhibit extreme variability across scales in both space
and time. These fluctuations are particularly challenging to analyze, simulate, or measure due to
their complexity. For instance, during a storm event, you can observe large fluctuations in rainfall,
with heavy rain alternating with periods of no rainfall in a short time span. These fluctuations
also manifest in the spatial distribution of rainfall, with some areas receiving much more rain than
others.

Universal Multifractals (UM, Schertzer and Lovejoy, 1987a, Schertzer and Lovejoy, 1997) is a
powerful tool that allows to characterise and simulate this extreme variability of geophysical fields
across scales with the help of only three parameters with physical interpretation. It is reviewed in
details in following sections.

• The mean intermittency codimension C1, which measures how concentrated is the average
field.

• The multifractality index α , which measures how fast the intermittency evolves when going
away from the average field.

• The degree of non-conservation H

while the 4th, the power a of a conservative flux, is absorbed by the empirical estimation of the
mean singularity over a non-conservative field.

This framework is widely use in the literature for the analysis of the atmospheric fields such
as rainfall. For example in the study conducted by De Lima and Grasman(1999) rainfall data from
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Vale Formoso, Portugal were analyzed using both recording and non-recording rain gauges. The
analysis included 15-minute and daily resolution data. The obtained UM parameters, specifically
C1 = 0.51 and α = 0.49, were found to be similar to those commonly reported in the scientific
literature (e.g., Tessier et al., 1996; Hubert et al., 1993; Ladoy et al., 1991; de Lima, 1998) for
long-term rainfall series.

Comparing the results with other studies, it was observed that the probability of extreme events
in Vale Formoso was higher than what would be predicted by more traditional models, such as the
Gumbel distribution (Ladoy et al., 1991). This finding suggests that the multifractal analysis also
reveals a climatological dependence in the structural characteristics of the rainfall, as highlighted
in previous studies by de Lima (1998) and Svensson et al. (1996).

Furthermore, the 15-minute resolution analysis in De Lima and Grasman (1999) demonstrated
a favorable scaling behavior across a range of scales from 15 minutes up to approximately 11
days. This implies that high rainfall intensities might be underestimated due to undersampling at
larger scales, resulting from the finite size of the sample. Conversely, lower intensities could be
overestimated. In contrast, the analysis of the daily time series in the same study revealed the
existence of two scaling regimes, with a scale break occurring at approximately one week (8 days).

These UM parameters are consistent with the findings of De Lima and De Lima (2009), where
the spatial variation of rainfall in the Madeira archipelago was analyzed. This study examined 10-
minute and daily rainfall data recorded at various meteorological stations across the archipelago for
a period of 3.8 months. They reported lower values of α for the drier southern sector of Madeira
Island and Porto Santo Island. Additionally, the lowest values of C1 were observed in central
Madeira Island, indicating a lower level of intermittency and sparsity in the rain process. It is
worth noting that a non-conservativeness parameter close to 0 was also reported in the literature
Royer et al. (2008).

Both analyzed rainfall series exhibited comparable fractal dimensions across scales, ranging
from 1 day to 16 days for daily resolution, which is consistent with previous studies (e.g. Tessier
et al., 1996; Royer et al., 2008). For the 10-minute data, the scaling behavior was observed from
10 minutes up to approximately 3.6 days, with good scaling observed up to roughly two weeks.
The scaling range was found to be similar across all locations where rainfall data was recorded.
However, the fractal dimension exhibited different patterns in the northern and central parts of the
island, with a higher fraction of events (greater fractal dimension) in the northern region compared
to the southern region. This difference can be attributed to the influence of orography on rainfall
distribution.

The UM analysis is affected by the impact of zero value intervals in the rainfall time series.
de Montera et al. (2009), investigated this impact using rainfall data collected from various regions.
The data were obtained using a dual-beam spectropluviometer (DBS). An event-based analysis was
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carried out, excluding zero values and considering the total time. The analysis aimed to assess the
effect of intermittency on the UM parameters. This study reported different parameter estimates
in their event analysis, namely H ≈ 0.53, α ≈ 1.7, and C1 ≈ 0.13. These values differ from the
estimates discussed earlier in this study. However, when the entire series was analyzed, different
values were observed, specifically H ≈ 0, α ≈ 0.5−0.7, and C1 ≈ 0.4−0.6. These findings align
with those reported by other authors who used low-resolution data. This suggests that the presence
of intermittency leads to changes in the UM parameters.

Furthermore, the study explored the scaling behavior during event analysis and revealed a
scaling regime up to 1/64 Hz, obtained after applying spectral flattening. When analyzing time
series longer than 1 minute, scaling was observed up to approximately 1 hour, with noticeable
variations at larger and smaller scales. These results are consistent with the influence of rain-no-
rain intermittency on the scaling properties of the rainfall data.

However, this type of analysis is not restricted to the analysis of the rainfall time series, since
it is possible to analyse scaling behaviour not only in the temporal dimension but also in the spatial
dimension. Gires et al. (2015) investigated the raindrop distribution structure in space and time
using rainfall data collected with a 2D video disdrometer (2DVD) during four heavy rainfall events
in Ardèche (France). For the analysis, a 11x11x36cm column is reconstructed, and pseudo synthetic
fields with homogeneously distributed drops are also generated for comparison. Reconstructed
snapshot fields showed a scaling regime in the range between 36 and 1m. For smaller scales, the
spectra becomes flat. These behaviours were confirmed through Trace Moments (TM) analysis,
although the scaling regime break is observed close to 0.5 m. For smaller scales, drops could be
homogeneously distributed. In synthetic fields, TM analysis retrieves no scaling in all scales and
flat spectra are observed. These results could mean that the Poisson hypothesis of a homogeneous
drop distribution, commonly used to model rainfall, is incorrect during the heaviest rainfall period.
In the 1 ms rain-rate reconstructed time series for the 24/10/2012 event, it is possible to observe
two scaling regimes with a scaling transition in TM curves, the first one with good scaling in the
smallest scales from 32s up to 1 ms with a monofractal behaviour, a transition regime from few
minutes (2-8 in this event) to 32 seconds with a rather bad scaling, and a last one from 140 min
to few minutes with a good scaling. However, these results could not be confirmed with spectral
analysis in which a good scaling is not reflected. For this reason, results from TM analysis should
not be overestimated. Similar results are obtained in other studies (Schertzer and Lovejoy, 2011,
and Salles et al., 1998).

Other authors use these tools to characterize other properties of rainfall e.g. Valencia et al.
(2010) studied how the rainfall pattern changes in the Ebro River Basin using UM analysis is con-
ducted. The study focused on estimating the UM parameters, including C1, α , and the maximum
singularity (γs). Rainfall data were collected from 14 stations along the river from 1957 to 2002,
divided into two subperiods (1957-1980 and 1981-2002).
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The retrieved UM parameters were found to be similar to those observed in previous analyses
conducted by Labat et al. (2002), Tessier et al. (1996), and García-Marín et al. (2008). When
comparing the two sub-periods, it was observed that α exhibited a more homogeneous spatial
distribution in the second sub-period, with smaller differences between the highest and lowest
values. However, consistently, α remained greater than 1. On the other hand, C1 did not show
significant differences across the stations, except for a small increment in the higher values. The
probability of rainfall occurrence was found to be higher closer to the coast, which aligns with the
findings reported by Gonzalez-Hidalgo et al. (2009) and López and Frances (2010).

Additionally, an analysis of the evolution of UM parameters was conducted using a moving
time window with year breaks. Three distinct patterns were identified. The most frequent pattern
was a steady series on the parameters. The second trend, observed in the station with the lowest
values on the parameter exhibited a decreasing trend until 1989, followed by an increase thereafter.
The third trend is observed in other four stations, where changes in α and C1 occurred simultane-
ously, with an increase in α and a decrease in C1. These results are consistent with the findings
reported by Royer et al. (2008). These trends became more prominent after 1990.

UM analysis is also used to characterize wind fields, obtaining results slightly different; for
example, Fitton et al. (2011) studied the relationship between small and large scales in the boundary
layer using wind data recorded at a wind farm in Corsica, France. The data were obtained from
three 10 Hz sonic anemometers positioned at different heights. The study focused on analyzing the
scaling behavior of the three components of the wind.

It is observed that the three wind components exhibited similar scaling behavior, characterized
by three scaling regimes and two scaling breaks. At higher frequencies, the scaling behavior par-
tially followed the -5/3 Kolmogorov locally isotropic turbulence law (Kolmogorov, 1941). Over
the medium frequencies, the scaling behavior resembled the -1 exponent of wall-bounded the-
ory. However, at higher frequencies, it was challenging to distinguish between the scaling laws of
Bolgiano-Obukhov (BO) (Bolgiano Jr, 1959 and Obukhov, 1959) and Lumley-Shur (Lumley, 1964
and Shur, 1964) due to the sensitivity of the analysis to the data size. Nonetheless, BO scaling was
confirmed in spectral analysis when an intermittency correction was applied.

By examining the integrated energy spectra, it is revealed a change in scaling between the
vertical and horizontal directions. This finding aligns with the semi-theoretical results obtained
for the surface layer. The results indicated that the variance flux of buoyancy force (φ ) played
a role similar to that of the energy flux (ε) but along the vertical direction in three-dimensional
turbulence. This allowed for the definition of anisotropic scaling at all significant scales, rather
than two isotropic regimes separated by a scaling break.

Other example can be found in Fitton et al. (2014, where the impact of wind speed on torque
fluctuations is analyzed. The analysis involved two wind datasets from different locations: the
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Corsica dataset and the Growian wind data, which was obtained using an array of cup anemometers
with a sampling frequency of 2.5 Hz.

The study revealed that the torque fluctuations exhibited a higher value of α , indicating a strong
non-linearity in the scaling moment function. Interestingly, the results showed that the torque
fluctuations and velocity fluctuations had similar values of α . However, the non-conservativeness
parameter, H, doubled in magnitude. Consequently, the critical exponent for torque fluctuations
was halved, leading to larger fluctuations in the empirical statistics for orders greater than 3 as the
sample size increased. This suggests that standard statistical methods underestimate extreme events
in torque fluctuations.

The quantification of fluctuations varies depending on the turbulent process (e.g., KO, BO,
macro weather) associated with each scaling exponent. This implies that, depending on the specific
turbulent process, high-velocity and torque fluctuations may be smoothed according to a factor λ H .

In this chapter, we introduce the Universal Multifractals framework, commencing with a foun-
dation in fractal geometry. We define the fractal dimension and elucidate the motivation for transi-
tioning to multifractality. We delve into the key properties of this multifractal framework. Further-
more, we provide an overview of various simulation methods, including multiplicative cascades
encompassing both discrete and continuous forms. We also extend the simulation to vector fields.
Lastly, we illustrate the analysis techniques through the validation of these simulation methods.

1.2 Theoretical framework

1.2.1 Towards fractal geometry

In nature, some objects such as cauliflowers or clouds are too complex to be represented with
classical Euclidean geometry, because when observed at smaller and smaller scales, more and more
details become visible. However, these objects have similar characteristics at all scales, which
makes it possible to characterise them using a tailored framework called fractal geometry (Mandel-
brot, 1977; Mandelbrot, 1983). In fact, we can define a fractal object as a geometric set of points
that exhibits this scale invariant behaviour.

Let us start by discussing two famous fractal objects for pedagogical purposes, the Cantor set
and Von Koch snowflake. A Cantor set is built by taking a segment and removing the middle part
iteratively, i.e. removing the middle part of each new segment generated (it is shown in Fig. 1.1b).
Von Koch snowflake is created by splitting each side of an equilateral triangle into three equal
segments and using the middle one to create a new triangle in an iterative process (illustrated in
Fig. 1.1a). In this example, it is possible to observe that as the number of iterations increases, the
shape becomes more and more tortuous. It can be showed that the perimeter becomes infinite while
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the area remains bounded with an infinite number of steps.

(a) (b)

Figure 1.1: Examples of fractal objects. (a) the Von Koch snowflake and (b) the Cantor set (adapted
from Gires, 2012).

1.2.2 Fractal Dimension

The concept of the fractal dimension (DF ) was introduced to characterize complex geometric
shapes (Mandelbrot, 1977; Mandelbrot, 1983). In order to describe it, we will first focus on the
traditional concept of Euclidean dimension. For this, we can define the number of non-overlapping
structures (segments in 1D, squares in 2D, cubes in 3D, and so on) of size l required to cover a
space of size L as :

N(l) =
(

L
l

)D
(1.1)

Where D is the dimension of the embedding space (1D for time series, 2D for maps . . . etc).

DF is an extension of this concept where analogously as the previous case, the number of
structures of size l needed to cover a fractal set A of size L can be expressed as:

NA(l)≈
(

L
l

)DF

(1.2)

This expression can be written using the resolution which is defined as the ratio between the
outer scale and observation scale (λ = L/l) as:

Nλ ,A(l)≈ λ
DF (1.3)

DF measures how much space is covered by a fractal object, and, generally, it is not an integer
(see review of Schertzer et al., 2002 for more details). An example of computation of DF can be
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observed in Fig. 1.2a, where the studied field is created using the β -model, which will be presented
later. For computing DF of the set, Nλ is calculated using Eq. 1.3, and it is plotted vs. the resolution
in a log-log plot. If it is a fractal set, the plot will be a straight line whose slope is DF . Fig. 1.2b
illustrates an example of this, showing excellent scaling (i.e., well-aligned points) and a coefficient
of determination (r2) of 0.99, resulting in DF = 1.83.

(a) (b)

Figure 1.2: (a) Field created using the β model with c=0.17 (see section 1.3.2.1) and (b) the com-
putation of its fractal dimension (1.2b)

The fractal dimension can be interpreted in a probabilistic way as the probability that a certain
structure intersects a fractal set in the embedded space of dimension D. This probability is defined
by the ratio between the number of structures needed to cover the fractal set A and the total number
of structures needed to cover the whole space of dimension D:

Pr =
Nλ ,A

Nλ

=
λ DF

λ D = λ
−cF (1.4)

Where cF is the fractal codimension defined by cF = D−DF .

Cantor set defined in Fig. 1.1b is widely use to illustrate this concept of fractal dimension (see
review Schertzer et al., 2002). Fig. 1.3 shows the computation of its fractal dimension obtaining a
fractal dimension DF = log(2)/log(3) ≈ 0.63. Other typical illustration is the analysis of rainfall
events (points) of one year (row) during 45 years in Dedougou present in Fig. 1.4, made by Hubert
et al. (1989). There, it is possible to observe that rainfall events show a fractal behaviour with
DF ∼ 0.8. It is consistent with taking into account the wet season as seven months, which is
commonly observed, 0.8≈ log(7)/log(12).
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Figure 1.3: Explanation of fractal dimension computation for cantor set (from Schertzer et al.,
2002)

Figure 1.4: Rainfall data from Dedougou for a period of 45 years. Each line is a different year,
each point a rainy day (From Hubert et al., 1989)

1.2.3 Towards multifractality

Although it is usually more useful to analyse fields with intensity values at each of their points
rather than those geometrical sets which are only binary, it is interesting to analyse whether the
occurrence of those fields depends on the threshold by which the intensity is made negligible
(Schertzer et al., 2002).

To illustrate the impact of the chosen threshold, we analyze a rainfall event recorded by a
disdrometer located in Champs-sur-Marne (France) on 23/05/2016 (Gires et al., 2018). In Fig.
1.5a, the rainfall event is depicted in black, while two different thresholds are illustrated: 3mm/h
in blue and 7mm/h in orange.
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In the second row of the Fig. 1.5, we calculate the rainfall occurrence using three different
scenarios: no threshold, 3mm/h threshold, and 7mm/h threshold, from left to right respectively.
Finally, the last row presents the computed fractal dimension, denoted DF . It is observed that as
the threshold increases, the computed fractal dimension, DF , decreases. It is important to note that
the quality of the scaling is decreasing with the thresholds (i.e. the points are going away of the
regression line).

Fig. 1.5 shows that a single fractal dimension cannot fully characterize a scaling field, since
each threshold presents a different DF . For that reason, we need an infinite number of fractal
dimensions to characterize the field, one per threshold. This approach is known as multifractal
(Benzi et al., 1984; Parisi et al., 1985).

1.2.4 Multifractal Properties

The use of intensity as a threshold is not appropriate since it has a scale-dependent value. In
order to illustrate that, we can use Nîmes rainfall time series as it is done in Ladoy et al. (1993).
In Fig. 1.6a the rainfall time series are plotted with decreasing time resolution. It can be observed
that the maximum intensity decreases with decreasing resolution from 35 to 0.1 mm/h in this case,
although the intensity peaks keep grouped in the same points .

Therefore, a scale-invariant threshold is needed. We can use the concept of singularity (γ)
which characterize the field intensity at each scale through a power law λ γ . To illustrate this
concept, we can use again Nîmes rainfall time series but using now the singularity time series
displayed in Fig. 1.6b. It is observed that as the time resolution decreases, the vertical scale range
remains similar, i.e between 0 and 0.7 confirming its scale invariant nature.

With the help of the singularity we can generalized Eq. 1.4 obtaining the codimension function
(c(γ)) which can be understood as a representation of the infinite number of fractal (co-)dimensions
(i.e. one per scale-invariant thresholds) required to characterize a multifractal field. It is defined
by the probability of the studied field (ελ , energy flux) of exceeding a scale-invariant threshold λ γ

(Schertzer and Lovejoy, 1987b):

Pr (ελ ≥ λ
γ)≈ λ

−c(γ) (1.5)

If we consider the part of the field which exceed the threshold, we can give also a geometric
interpretation to c(γ) as its fractal codimension. This codimension function is equivalent to the
scaling of the moments of order q (Parisi et al., 1985, Schertzer and Lovejoy, 1987a):

⟨εq
λ
⟩ ≈ λ

K(q) (1.6)
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1.5: (a) Example of rainfall data recorded on 23/05/2026 in Champs-sur-Marne (France)
with 3 mm/h threshold (blue) and 7 mm/h threshold (orange), (b) rain occurrence of the data,
(c) and (d) rain occurrence with the thresholds (3 and 7 mm/h respectively ); and (e),(f) and (g)
computation of the fractal dimension of the previous fields.

which defines the moment scaling function K(q).

We can relate both scaling functions using the Legendre transform (Parisi et al., 1985):
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(a) (b)

Figure 1.6: (a) Observed rainfall rain rate (R with 0.1 mm/h resolution) at Nîmes (1972–1975)
with duration ranging from 1 hour to 1 year. (b) The corresponding singularities computed as
γ = logλ (Rλ ), where Rλ is the normalized rain rate (from Ladoy et al., 1993)

K(q) = max
γ

(qγ− c(γ)) = qγq− c(γq) (1.7)

c(γ) = max
q

(qγ−K(q)) = qγγ−K(qγ) (1.8)

Where γq is calculated with c′(γq) = q, and qγ is calculated with K′(qγ) = γ

With this relation it is possible to obtain a singularity γq for each statistical moment order
q. The reverse process is also true, i.e. it is possible to assign a moment order qγ value to each
singularity γ (see Schertzer et al., 2002 for a fully detailed justification)

1.2.5 Universality

With the help of generalization of the central limit theorem, it is possible to reduce to 2 the
parameters needed to define the scaling functions (Schertzer and Lovejoy, 1987a; Schertzer and
Lovejoy, 1997) since in the UM framework, the full description of the functions is done through
the local description around the mean field (q = 1 and the corresponding singularity γ1 denoted as
C1). It yields for scaling moment function and codimension function:
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c(γ) =


C1

(
γ

C1α ′ +
1
α

)α

α ̸= 1

C1exp
(

γ

C1
−1
)

α = 1

(1.9)

K(q) =


C1

α−1 (q
α −q) α ̸= 1

C1q lnq α = 1
(1.10)

where 1
α
+ 1

α ′ = 1, and C1 and α have the following physical interpretation:

• C1 is the mean intermittency codimension; quantifies how concentrated is the average field.
It is the codimension of the singularity of the mean field for a conservative field. C1 = 0 for
uniform fields.

• α is the multifractality index; it measures how fast the intermittency evolves when going
away from the average field. α = 0 represents a monofractal case (β -model) where all the
singularities possesses the same fractal dimension, and α = 2 represents the upper limit and
it corresponds to a lognormal case.

Grater values of α and C1 corresponds to stronger extremes.

(a) (b)

Figure 1.7: (a) Illustration of scaling function, K(q) and (b) codimension function c(γ), for
15/12/2020 wind data (RW-Turb measurement campaign, see section 2.2).

An illustration of K(q) and c(γ) can be found in Fig. 1.7. It corresponds to a plot with the UM
parameters retrieved for the analysis of 15/12/2020 wind data using trace moment functions which
are reviewed in the following sections.
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Using theoretical properties of the K(q) curve α and C1 may be calculated with the first and
second derivative, i.e.:

C1 = K′(1) and αC1 = K′′(1) (1.11)

1.2.6 Phase transitions

1.2.6.1 Divergence of moments

Although in general, fluxes tend to converge as λ → ∞, there exists a critical moment denoted
as qD where strong fluctuations are no longer dampened, and the flux may even diverge (Schertzer
et al., 2002). As a consequence, it is theoretically expected to observe a fall-off in the probability
distribution (Schertzer and Lovejoy, 1987a; Schertzer and Lovejoy, 1991) which follows a power-
law with an exponent qD defined by:

Pr(ελ ≥ x)≈ x−qD (1.12)

It is illustrated in Fig. 1.8.

In Fig. 1.8b probability distribution function of normalised (with the variance σ ) horizontal
velocity increments (∆u(τ)/σ = u(t + τ)− u(τ)) for different time-scales using data from 2 high
resolution 3D sonic anemometers located on a meteorological mast in a wind farm situated approx-
imately 110 km south-east of Paris (more details of the measurement campaign in the section 2.2).
PDFs "diverge" more from Gaussian distribution (computed with mean and variance of the data)
with increasing resolution due greater presence of extremes.

Due to the divergence of moments, high-order moments (i.e. moments q > qD) result in an
infinite value for the moment scaling function (K(q)). And although it is empirically feasible to
calculate K(q), it should be noted that for q > qD, this computation lacks robustness and stabil-
ity. Additionally, due to the divergence of moments, discontinuities emerge in the first derivative
of K(q). This is why this phenomenon is known as the first-order multifractal phase transition
(Schertzer and Lovejoy, 1987a).

Using Legendre transform, we can compute singularity γD where the condimension function
c(γ) is not reliable since it becomes linear for singularities greater than it.

The effect of the first-order transition is reported in the literature, e.g. De Lima and Grasman
(1999) found divergence of moments from q larger than qD ∼ 3.1 for 15-min resolution and larger
than qD ∼ 3.7 in daily resolution rainfall data, or Fitton (2013) observed 4≤ qD ≤ 5 for wind data
measured at 50 m in two different datasets (Growian and Corsica) and a decreasing qD with the
increase of the anisotropy related to the appearance of wilder extremes.
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(a) (b)

Figure 1.8: (a) Probability distribution function (PDF) of wind data (RW-Turb measurement cam-
paign) and comparison between Gaussian distribution and the probability distribution of the wind
data, qD is shifted for clarity. (b) PDF for different time-scales τ = 2,6,25,160 and 640s respec-
tively, sifted vertical for clarity.

1.2.6.2 Sampling limitation

The size of the sample limits the amount of information that can be extracted by analyzing
a statistical process. In the UM framework this means that the computation of scaling functions
is not possible for singularities and statistical moments of order greater than certain maximum
values (Schertzer and Lovejoy, 1989, Lavallée et al., 1991). We can understand this through the
codimension function for which the maximum value is given by (with Ns the number of samples):

Pr (ελ ≥ λ
γs)Nsλ

D ≈ 1 (1.13)

which yields to compute the maximum singularity γs as:

c(γs) = D+Ds (1.14)

Where Ds is the sampling dimension (Ds = 0 for sample size equal to 1) defined by (Schertzer
and Lovejoy, 1989, Lavallée et al., 1991):

Ns = λ
Ds (1.15)

For γ > γs, the codimension function c(γ) becomes infinite. Through the Legendre transform
Eq. 1.8, it is possible to obtain qs. Analogously to divergence of moments, the computation of
K(q) becomes linear for q > qs. Finite sample size also translates into discontinuities in the second
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derivative of K(q), yields to calling it second order-phase multifractal transition (Schertzer et al.,
2002).

As an illustration, computation of this maximum observable singularity γs was carried out
on climate change scenarios. Royer et al. (2008) performed UM analysis on rainfall time series in
different regions of France simulated by climate model CNRM-CM3 of Météo-France. They found
opposite trends in both UM parameters α (decreasing) and C1 (increasing), so γs was calculated,
obtaining an increase during the XXI century. It means an increase in rainfall extremes.

Computation of this maximum order singularity was also analyzed by Valencia et al. (2010)
studying rainfall patterns in Ebro River basins, where similar results were found obtaining also a
increase of γs, and consequently an increase of the probability of possible extreme precipitation
events.

1.3 Simulation

In this section, we describe the various simulation techniques utilized throughout the thesis.
The initial part (Section 1.3.1) provides an overview of the tools essential for these simulation
methods. Among these tools, we introduce the concept of cascade phenomenology, and delve into
the Lévy subgenerator.

Subsequently, we review the theoretical foundations of discrete cascades (Section 1.3.2), com-
mencing with the β -model and progressing towards the UM discrete cascades. This methodology
is replicated for continuous cascades (Section 1.3.3), where we begin with the theoretical aspects
of the simplest unidimensional case and subsequently expand our exploration to encompass higher
dimensions and the extension to non-conservative fields.

The section culminates with an examination of the simulation of vector fields, reviewing the
Clifford algebra and the description of the Multifractal operators.

Using these existing theoretical tools we adapted and developed Python scripts for the different
simulation methods (reviewed in Appendix D.1 with a dedicated project in gitlab). Full validation
of the simulation scripts is carried out in Section 1.4.3, especially for the vector fields which is not
done in the past.

1.3.1 Simulating tools

1.3.1.1 Introduction to cascade phenomenology

Geophysical fields exhibit extreme variability in both space and time over a wide range of
scales. These fields are governed by a complex set of nonlinear partial differential equations, such
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as the Navier-Stokes equations:

∂u
∂ t

+u∇u =
∇p
ρ

+ν∇
2u+ f = 0 (1.16)

Where u is the velocity field, p is the pressure, ρ is the density, t is the time, f is the forcing
term (representing the boundary conditions), and ν is the kinematic viscosity.

Through the following transformations:

x→ x
λ

t→ t
λ 1−Ht

u→ u
λ H

ν → ν

λ 1+H

f →
f

λ 2H−1

(1.17)

we can define a scale invariant properties associated to relation between two scales λ . Where Ht

corresponds to the anisotropy exponent between space and time, and H corresponds to the degree
of non-conservation. This scale invariant properties are suppose to be common to other sets of
partial differential equations which govern other atmospheric fields (Schertzer and Lovejoy, 1985a,
Lovejoy and Schertzer, 1990, Tessier et al., 1993, Marsan, 1998 or Biaou, 2004 )

In general, geophysical fields are generated via a multiplicative cascade process, as they have
demonstrated the ability to replicate these characteristics at all scales (Yaglom, 1966).

Historically, the concept of the multiplicative cascades was introduced to study turbulence as
described by Richardson (1922) in his famous poem:

Big whorls have little whorls,
Which feed on their velocity ;

And little whorls have lesser whorls,
And so on to viscosity

This cascade phenomenology provides a physical explanation for the framework discussed ear-
lier, which allows for the simulation of geophysical fields. In this approach the energy is distributed
from the largest to the smallest scales splitting the eddies into smaller ones in the form of a multi-
plicative cascade. This cascade process is iteratively repeated until the eddies become so small that
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the energy is dissipated due to viscosity (Marsan, 1998).

we can define the life time of the eddy as:

τl ∼ l/∆ul (1.18)

Where ∆ul represents the variation in the velocity of an eddy of size l.

Since the kinetic energy of the eddy must be transferred during its lifetime, the energy flux
across scales, can be defined as:

εl ≈ ∆u3
l /l (1.19)

And re-writting in the form:

∆ul ≈ ε
1/3
l l1/3 (1.20)

We can determine H = Ht = 1/3.

Because of this scale invariance, the power spectra (E(k)) of wind turbulence is a power law
related with regards to the wavenumber (k) (Mandelbrot, 1983;Schertzer and Lovejoy, 1985a):

E(k)≈ kβ (1.21)

Where β is the spectral slope and it is illustrated in Fig. 1.9.

Kolmogorov (Kolmogorov, 1941) originally posited that the energy flux ε exhibits statistical
isotropy in both space and time at the small scales leading to obtain scaling exponent β of 5/3 for
the energy spectrum. Nevertheless, practical observations reveal significant deviations from this ex-
ponent due to intermittency. Subsequently, Bolgiano (Bolgiano Jr, 1959) and Obukhov (Obukhov,
1959) introduce the buoyancy force variance flux in order to consider the effect of the vertical di-
rection in the large scales yielding a Bolgiano-Obukhov (BO) scaling exponent of -11/5. Later,
Kolmogorov (Kolmogorov, 1962 and Oboukhov, 1962) proposed that energy flux follows a log-
normal distribution in order to accommodate intermittency and introduce variability into the en-
ergy flux. Other models have been proposed to incorporate intermittency, which will be examined
in subsequent sections, including the β -model (Frisch et al., 1978) and, ultimately, the Universal
Multifractals (Schertzer and Lovejoy, 1987a).

To simulate these multiplicative cascades, two types of generators are essential. The first one
generates a random variable that adheres to a specified distribution, referred to as the sub-generator
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Figure 1.9: Illustration of the energy spectra for wind turbulence (adapted fromFitton, 2013)

(as discussed in Section 1.3.1.2). Meanwhile, the second one serves as the generator for the physical
structures within the cascade.

Indeed, we can categorize cascades based on the type of generator used for the physical
structures. This categorization encompasses Self-similar cascades, Self-affine cascades, and, in
a broader sense, General Scale Invariance (GSI).

1.3.1.1.1 Self-similar cascades

Self-similar cascades represent the most fundamental type of cascades(Yaglom, 1966, Schertzer
and Lovejoy, 1985a). These cascades involve an uniformly (isotropic) expansion in all directions.
To illustrate this concept, let’s consider the example of 2-dimensional self-similar cascades, we can
express the scale transformation in matrix form:

Tλ =

[
λ−1 0

0 λ−1

]
(1.22)

This may be denoted as:

Tλ = λ−G (1.23)
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with:

G =

(
1 0
0 1

)
(1.24)

It can be generalised with G as the identity matrix, which has dimensions n×n, where n means
the invariant axis count. (Schertzer and Lovejoy, 1985a, Schertzer and Lovejoy, 1987a).

1.3.1.1.2 Self-affine cascades

Self-affine cascades (Mandelbrot, 1986) represent a basic means of introducing some degree of
anisotropy. Returning to the example from the preceding section, we can quantify the anisotropy be-
tween the two directions using the generator (Schertzer and Lovejoy, 1985a, Marsan, 1998, Biaou,
2004, and Macor, 2007):

G =

(
1 0
0 1−Hy

)
(1.25)

Where Hy is the anisotropy exponent between the two axes.

This translates to an expansion or contraction with distinct values in each direction (λ−1 and
λ 1−Hy in this instance).

1.3.1.1.3 General Scale Invariance (GSI)

General Scale Invariance (GSI) (Schertzer and Lovejoy, 1985b, Schertzer and Lovejoy, 1987a,
Schertzer and Lovejoy, 1997) represents an extension of self-affine cascades that includes non-
orthogonal axes, considering elements outside the diagonal in the generator matrix G. In the case
of 2D fields, it becomes possible to generalize G with the assistance of pseudo-quaternions, such
as Pauli matrices (Okubo, 1978, Schertzer and Tchiguirinskaia, 2015). We can employ the vector
basis as follows:

G=d1+eI+gJ+cK (1.26)

Where 1, I,J,K are the following matrix:

1 =

[
1 0
0 1

]
, I =

[
0 1
−1 0

]
, J =

[
0 1
1 0

]
, K =

[
−1 0
0 1

]
(1.27)
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These matrix follow anti-commutation relations

IJ=-JI=-K; JK=-KJ=I; KI=-IK=-J; (1.28)

and

1=-I2 = J2 = K2 =−IJK (1.29)

In this context, I represents the orthogonal rotation with respect to the origin, J and K give
information about the stratification (Schertzer and Tchiguirinskaia, 2020).

Then, using Eqs. 1.26 and 1.27 leads to write G as:

G=
(

d− c f + e
f − e d + c

)
(1.30)

Where d determines isotropic expansion/contraction, c and f determine the stratification, and
e determines the rotation.

Fig. 1.10 shows an illustration of the GSI for four different scenarios, Fig. 1.10a isotropy, Fig.
1.10b pure stratification, Fig. 1.10c dominant stratification and Fig. 1.10d dominant rotation.

(a)
(b) (c)

(d)

Figure 1.10: Contours of 2D balls Bλ for scale ratio λ ∈ [1/4,5] in steps of 0.2 using a pseudo-
quaternion generator with: (a) d = 1,c = f = e = 0; (b) d = 1,c = 0.2, f = e = 0; (c) d = 1,c =

f = 0.2,e = 0.1; and (d) d = 1,c = f = 0.2,e = 0.7.

1.3.1.2 Lévy sub-generator

The sub-generator follows a process with a Lévy distribution. It is a generalization of the Gaus-
sian distribution where if we consider a set of n independent random variables Xi with statistical
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moment defined up to α , then their normalized sum converges to (Schertzer and Lovejoy, 1987a):

L d
= lim

n→∞

(∑∞
i=1 Xi)

bn
−an (1.31)

With
bn = n1/α (1.32)

and,

an = n⟨Xi⟩−⟨Xi⟩ (1.33)

Where α ∈ [0,2] is the order of divergence and it is known as Lévy index.

These variables represent stable fixed points of hyperbolic variables with a power-law tail in
their probability distribution (Schertzer and Lovejoy, 1987b) defined by :

Pr(|Xi| ≥ s)≈ s−α s >> 1 (1.34)

These Lévy distribution exhibit the following feature:

⟨exp(qL(α))⟩= exp(qα) (1.35)

To construct the Lévy distribution, we begin with white noise and introduce the parameter α .
We employ the method proposed in Chambers et al. (1976), where the highly stable variable γα

with index α is calculated as follows:

γα = sin(α(φ−φ0))

cos(φ)1/α

(
cos(φ−α(φ−φ0))

W

)(1−α)/α

i f α ̸= 1

γα =
2
π

((
π

2
−φ

)
tanφ + ln

(
πW cosφ

π−2φ

))
i f α = 1

(1.36)

Where

φ0 =
π

2

(
1−|1−α|

α

)
(1.37)

φ is an uniform random variable which varies from (−π/2, π/2) and W is an standard expo-
nential variable independent of φ .
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1.3.2 Discrete Cascades

In the scenario of discrete multiplicative cascades, the process consists of splitting each struc-
ture into a smaller ones by dividing the number of structures by a scale factor of λ1 (resolution).
To transfer the activity from the larger to the smaller scales, the intensity is multiplied by a ran-
dom increment of a given probability distribution µε (Schertzer and Lovejoy, 1987a, Lovejoy and
Schertzer, 1990, Marsan, 1998). This process is is illustrated in Fig. 1.11 .

Therefore, to construct a discrete cascade, it is essentially necessary to determine the scale
ratio required to divide the structures (usually is used 2D but the only necessary condition is that
this ratio must be grater than 1) and define which probability distribution use for the multiplicative
increment. These two properties remain constant across all scales.

Consequently, after n steps, the resolution becomes λ n
1 = λn, and the intensity of the field B is

equal to the product of all the increments and the initial value B0 (Schertzer and Lovejoy, 1987a):

Bn,i = B0

n

∏
i=s

µεi (1.38)

1.3.2.1 β -model

The β -model represents the most basic cascade model (Novikov and Stiuart, 1964, Mandelbrot,
1974, Frisch et al., 1978), where there are only two possible states, the structures are either active or
inactive. Consequently, multiplicative increments can be either 0 for the inactive (death structures)
or λ

cβ for active ones (live structures), with a probability of occurrence of:

Pr(µε = λ
cβ

1 ) = λ
−cβ

1 (Alive) (1.39)

Pr(µε = 0) = 1−λ
−cβ

1 (Death) (1.40)

To be sure that the activity is conserved at each step, the energy flux density ε has to be in-
creased by the factor of 1/β , where β = λ

−cβ

1 . This factor represents how the number of active
eddies decreases at each step of the cascade. Therefore, after n steps, there are only two possi-
ble outcomes: the density either diminishes to zero or diverges with a singularity order of cβ (see
review Schertzer et al., 2002 for more details).

Fig. 1.12 shows two examples of fields created using this model. Greater values of cβ mean
more empty fields as is shown in 1.12c and 1.12d.
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(a)
(b)

Figure 1.11: Illustration of a discrete cascade process (a) in 1D and (b) 2D. (From Gires, 2012)
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(a) (b)

(c) (d)

Figure 1.12: Illustration of a β -model with cβ = 0.17 for (a) 1D and (b) 2D; and with cβ = 0.5 for
(c) 1D and (d) 2D
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β−model is widely used in the literature, e.g. Frisch et al. (1978) studied effect of intermit-
tency; Gupta and Waymire (1993), Over and Gupta (1994) and Schmitt et al. (1998), among others,
use it to model rainfall occurrence; or Gires et al. (2021) for the treatment of missing data on the
imperviousness of urban areas.

1.3.2.2 UM discrete cascades

For the UM cascades (Schertzer and Lovejoy, 1987a), the structures are divided following the
process illustrated in Fig. 1.11 using a scale ratio equal to 2D , while the random increment, µε , is
computed following:

µε = exp

[(
C1ln(λ0)

|α−1|

) 1
α

L(α)

]
/λ

C1
α−1

0 (1.41)

Where L(α) is a Lévy-stable random variable of index α which has been re-normalization by
the constant (C1/|α − 1|)1/α to retrieve the proper C1. Proof that UM properties are retrieved is
obtained through:

⟨εq
λ
⟩=

(
n

∏
i=1
⟨exp

[(
C1ln(λ0)

|α−1|

) 1
α

qL(α)

]
⟩

)
/λ

q C1
α−1

0 (1.42)

Using Eq. 1.43, we obtain:

⟨εq
λ
⟩=

(
n

∏
i=1

exp

[(
C1ln(λ0)

|α−1|

) 1
α

qα

])
/λ

q C1
α−1

0 = λ
C1

α−1 (q
α−q) (1.43)

Fig. 1.13 shows an illustration of the process for 1D and 2D. It displays a simulated field with
input parameters α = 1.5, and C1 = 0.1; and 8 cascade steps.

For the simulation of the space-time fields, it is necessary to take into account the anisotropy be-
tween space and time. As it is mentioned in previous sections, it is possible to define the anisotropy
scaling exponent Ht from Eq. 1.19 as Ht = 1/3. This allows us to define the resolution in the time
dimension as λt = λ 1−Ht

x = λ
2/3
x .

To achieve that, we use λx = 3 which leads to λt = 32/3 = 2.08 ≈ 2. Hence at each step, the
structures are divided in 3 in space and 2 in time leading to 18 sub-structures (Biaou, 2004). For
example, Fig. 1.14 shows a simulated field using 5 cascade steps (35×35×25 = 243×243×32)
and input parameters α = 1.5 and C1 = 0.1.
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(a) (b)

Figure 1.13: Illustration of a UM discrete cascades for input parameters α = 1.5 and C1 = 0.1 in
(a) 1D and (b) 2D.

Figure 1.14: Illustration of a 2D+t UM discrete cascades for input parameters α = 1.5 and C1 = 0.1
and 5 cascade steps
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1.3.3 Continuous cascades

The cascades described in the previous sections have many limitations due to their discrete
nature. This translates into the operator which can be only applied to certain scales introducing
artificial geometric structures (squares, cubes, . . . etc.) that are not realistic (see an example Fig.
1.13). To improve the simulations, it is necessary to perform a densification of the cascade process
by considering a continuous construction keeping constant the maximum scale ratio Λ (Schertzer
and Lovejoy, 1987a, Schertzer and Lovejoy, 1991, Schertzer and Lovejoy, 1997, Macor, 2007). We
can define, then, the generator of the cascade ΓΛ as follows:

εΓΛ
= exp(ΓΛ) (1.44)

Since the field εΛ keeps a scale invariance properties it means a log(Λ) divergence in the second
characteristic function of the generator (Macor, 2007), similar as is stated in Eq. 1.6:

⟨εq
ΓΛ
⟩ ≈ Λ

KΓΛ
(q) (1.45)

where the divergence is defined as:

KΓΛ
(q) = K(q)log(Λ) (1.46)

1.3.3.1 Unidimensional case

To construct the generator for continuous cascades, we start with Lévy white noise character-
ized by a Lévy index α . This Lévy noise is then fractionally integrated using the Green function
(G(x)) of a fractional Laplace operator, resulting in a generator with a resolution within logarithmic
divergence (Lovejoy and Schertzer, 2010a, Lovejoy and Schertzer, 2010b). Mathematically, this
can be expressed as:

Γλ (x) =
∫

Dλ

G(x− x′)dγα(x′) (1.47)

with

∫
Dλ

Gα(x)dx = log(λ ) (1.48)
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In this context, Dλ represents the domain, dγα is the Lévy noise, and the Green function is
determined typically as follows:

G(x) = |x|−1/α (1.49)

with |x| ∈ Dλ

This fractional integration is carried out using the theorem of convolution (Bracewell and
Bracewell, 1986). It postulates that the convolution of 2 functions, f (x) and g(x), denoted as
f ∗g is defined by:

f ∗g≡
∫

∞

−∞

f (x′)g(x− x′)dx′ =
∫

∞

−∞

g(x′) f (x− x′)dx (1.50)

This theorem also states that the Fourier transform of the convolution of 2 functions is equiva-
lent to the product of the Fourier transform of each function:

F ( f ∗g) = F ( f )F (g) (1.51)

Where Fourier transform is represented by F

Finally, the UM conservative field ελ is obtained by taking the exponential of the generator Γλ

and making the renormalization to ensure the conservation (⟨ελ ⟩= 1).

Then, we can summarize the process of UM continuous cascades in 4 steps (which are illus-
trated in Fig. 1.15):

1. Generate the sub-generator as extremely asymmetric Lévy white noise with index α (Fig.
1.15a and Eqs. 1.36 and 1.37)

2. Obtain the generator using a fractional integration of the sub-generator (Fig. 1.15b and Eq.
1.50)

3. Calculate the conservative field through the exponential of the generator (Fig. 1.15c and Eq.
1.44)

4. Renormalize the field with parameters α and C1 to ensure the conservation (Fig. 1.15d)

56



1. Universal Multifractal

(a) (b)

(c) (d)

Figure 1.15: Illustration of the UM continuous cascade process in 1D with parameters α = 1.8 and
C1 = 0.1 and length = 512, (a) sub-generator, (b) generator, (c) field, and (d) renormalized field
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1.3.3.2 Extension to multidimensional case

1.3.3.2.1 General case

This method can be expanded to accommodate multidimensional scenarios with the assistance
of the elliptical dimension denoted as Del (Schertzer and Lovejoy, 1987a). We redefine the Green’s
function (as given in Eq. 1.58) in a more comprehensive form (Marsan, 1998) as.

G(x)≈∥ x ∥−Del/α (1.52)

In this context, x denotes the spatial dimension, and ∥ • ∥ represents the Euclidean norm. For
instance, in the case of two spatial dimensions (x and y), ∥ x ∥=

√
x2 + y2. Fig. 1.16 illustrates the

field, showcasing a simulated field with input parameters α = 1.5, C1 = 0.1, and H = 0, comprising
256x256 points.

(a)
(b)

Figure 1.16: Illustration of the 2D UM continuous cascade fields in with parameters α = 1.5 and
C1 = 0.1 over and area of 256x256, 1.16a) for 2D image and 1.16b) for 3D image for visualize the
intermittency of the flux

1.3.3.2.2 Space-time cascades

Space-time cascades must adhere to two essential properties. The first property is an anisotropic
relationship between space and time. The second property is causality, which implies the sub-
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generator only propagates into the future, aided by a retarded Green’s function (see detailed exam-
ples of use in Biaou, 2004, Macor, 2007).

The space-time cascade domain is D+ 1 (where D denotes the spatial dimensions). Then for
this the process consists in an isotropic expansion in space (λ−1) and an anisotropic expansion
related to 1−Ht in time (Schertzer and Lovejoy, 1997). We can illustrate the process for a 2D+1
case with the following generator:

G =

1 0 0
0 1 0
0 0 1−Ht

 (1.53)

So Del = 2+(1−Ht).

To introduce the causality on the generator Γλ (x, t), the sub-generator γα(x, t) is fractionally
integrated we the help of the retarded Green function (Biaou, 2004, Macor, 2007) as:

G(x′, t ′) =


∥ x, t ∥−Del/α t ≥ 0

0 t < 0
(1.54)

Then the generator is obtained as:

Γλ (x, t) =
∫∫
∥x′,t∥∈Dλ

G(x′, t ′)γα(x− x′, t− t ′)dx′dt ′ (1.55)

An example of simulation with this process is displayed in Fig. 1.17, which displays a simu-
lated field with input parameters α = 1.5, C1 = 0.1, and H = 0; and 256x256 points and 256 time
stepts.

1.3.3.3 Extension to non-conservative fields

In the previous sections, the simulating process of the continuous cascades has been described
for the conservative case, however there are many physical processes in which the activity is not
conserved between scales such as the velocity (Oboukhov, 1962). To obtain a non-conservative
field it is necessary to perform a fractional integration over the conservative flow (Schertzer and
Lovejoy, 1987a; Schertzer and Lovejoy, 1997):

ϕλ ≃ λ
−H

ε
a
λ

(1.56)
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Figure 1.17: Illustration of the 2D+t UM continuous cascade field with input parameters α = 1.5
and C1 = 0.1 over and area of 256x256, and 256 time steps.

where ϕλ is the non-conservative field at resolution λ , H measures the degree of non conser-
vation (H = 0 when the field is conservative), and could be either positive or negative. ελ is the
underlying conservative field, and a is the dimensional exponent which implies a change in the
singularities (Marsan, 1998):

To obtain the non-conservative field ϕ we can operate in a similar form as the previous case
where the fractional integration is done through :

ϕλ (x) =
∫
∥x∥∈Dλ

G(x)εa
λ
(x− x′)dx′ (1.57)

with,
G(x) =∥ x ∥−Del+H (1.58)
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This process can be extended to the space-time cascades following the same methodology
explained in the previous sections. An example of this process is illustrated in Fig. 1.18, which
displays a simulated field with input parameters α = 1.5, C1 = 0.1, and H = 0.3; and 256x256
points. The expected features are visible when H is greater than 0, there is a visual effect which
translates in a smoothing of the surface.

1.3.4 Vector fields

1.3.4.1 Theoretical background

In the previous sections, we delved into the concept of cascades, which, in theory, can be
applied also to vectors and not only to scalars, since they only need a structure with addition and
multiplication (Schertzer and Tchiguirinskaia, 2020). However, conventional vector spaces are con-
structed solely using scalar multiplication and do not incorporate vector multiplication operations.
This limitation implies that there are no natural multiplicative cascades for vectors. To address this,
we need a more extensive algebraic framework that includes (multiplicative) operations of vectors
by vectors. The condition of conservation necessitates that the algebra employed has to be a unitary
algebra (Schertzer and Tchiguirinskaia, 2015).

One example of such an algebra can be the set of linear operators. We can define a vector
cascade by utilizing vector operators that act on an homogeneous vector field, following a similar
approach to that outlined in Schertzer and Lovejoy (1995) for the case of a 2D discrete complex cas-
cade. However, discrete operators share limitations akin to those of discrete cascades and introduce
their own set of challenges.

To address these issues, one strategy is to employ a similar process to the one employed in
the continuous cascade section, involving exponential operators. By incorporating exponential op-
erators and exploring the utilization of vector operators, it is possible to overcome the limitations
associated with discrete cascades and advance the concept of cascades for vector fields. This ap-
proach offers the potential for a more comprehensive and realistic representation of multifractal
properties in vector fields (Schertzer and Tchiguirinskaia, 2015, Schertzer and Tchiguirinskaia,
2020).

1.3.4.2 Clifford Algebra

Clifford algebra is a good candidate to use as generator algebra for the simulation of vectors
fields (Schertzer and Lovejoy, 1995, Schertzer and Tchiguirinskaia, 2015, Schertzer and Tchigu-
irinskaia, 2020). This algebra makes it possible to characterise a field with the help of entities of
different dimensions, such as vectors, matrices, quaternions, and other entities of higher dimen-
sions. It expands upon the principles of vector algebra by introducing the concept of the geometric
product, which unifies the inner product (dot product) and the outer product (wedge product) of
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(a)

(b)

(c)

(d)

Figure 1.18: Illustration of the 2D UM non-conservative continuous cascade fields with inputted
parameters α = 1.5, C1 = 0.1, and H = 0.3 over an area of 256x256 pixels. (a) and (b) show the
conservative field while (c) and (c) the non-conservative
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vectors (Lounesto, 2001).

Within the realm of Clifford algebra, the geometric product of two vectors produces a multi-
vector, which can possess components at various levels. These multivectors not only encapsulate
the magnitude and direction of vectors but also incorporate information about their orientation and
geometric attributes in higher dimensions (Clifford, 1871, Clifford, 2007).

Clifford algebra, is defined in a vector space x using a non-degenerate quadratic form Q. The
quadratic form Q(x) is given by:

Q(x)= x2
1 + x2

2 + · · ·+ x2
p− x2

p+1−·· ·− x2
n (1.59)

Where x represents the vector space, within the canonical symmetric matrix with dimensions
n× n, satisfying the condition p+ q = n, being p and q the positive and negative eigenvalues,
respectively. This algebra is characterized by the signature Clp,q of Q determined by the pair (p,q).
In this Algebra is possible to define a vector as a summation of basis vectors which squared to
either +1 or -1 (Renaud, 2020).

Using the properties of this algebra we can define some examples that share an isomorphism
with some traditional sets Schertzer and Tchiguirinskaia, 2015). For example the simplest case
Cl0,0(R) is isomorphic to R, where there are only scalars. Cl0,1(R) is isomorphic to the complex
numbers C where the basis (1,e1) counts with a single vector e1 which squares to -1, (a+be1←→
a+ bi). Cl2,0(R) = Cl1,1(R) correspond to pseudo-quaternions case (section 1.3.1.1.3). Cl0,2(R)
is isomorphic to quaternions H with a basis formed by 1, I2,J2,K2 where I2, J2, and K2 square to
−1, and act as rotations (Schertzer and Tchiguirinskaia, 2018). The case of the quaternion can
be extended to higher values of n, however, for n > 3 some properties are no longer supported
(Schertzer and Tchiguirinskaia, 2015).

1.3.4.3 Multifractal Operators

In this section, we will provide a summary of the mathematical developments in the work by
Schertzer and Tchiguirinskaia (2020) that are essential for the simulation of multifractal vector
processes. They states that it is possible to construct a stochastic generator algebra by mapping the
generators of a specified probability space into the desired type of algebra, in this case the Clifford
algebra. We can illustrate the process with a simpler case, the Gaussian vectors using one of their
main properties such as all their components are, by definition, Gaussian variables. This can also
be interpreted in the opposite way: a vector in which all its components are Gaussian is therefore a
Gaussian vector. (Schertzer and Tchiguirinskaia, 2015, Schertzer and Tchiguirinskaia, 2020).

Using the scalar product definition of Clifford algebra we can define the components (defined
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by the subscript i) of the stochastic generator as:

Γi = ⟨Γ,ei⟩= Γei (1.60)

Where ei is a unitary vector of the basis which squares to ±1

Eq. 1.60 enables us to determine the statistics of the generator along any direction of the
basis in a similar manner as in the scalar case, as long as all of these vectors are part of the same
Clifford algebra. For that, it is employed a process similar to a polar decomposition(Schertzer and
Tchiguirinskaia, 2020). It yields to write Eq. 1.11 as:

Kei(q) =C1(ei)(q2−q) (1.61)

for a Gaussian vector, where the main intermittency codimension C1(ei) is generalized for any
ei direction of the basis. And analogously to the case of continuous cascades (Eq. 1.44), this leads
to obtain the field through the exponential of the generator:

ελ = exp(Γλ ) = λC1(ei)(q2−q) (1.62)

Since Lévy variables generalize Gaussian ones (Section 1.3.1.2), we can think the Lévy vector
also as a generalization of the Gaussian vector where the properties of stability and attractivity of
these variables are kept for all their components (Schertzer and Tchiguirinskaia, 2020). It general-
izes Eq. 1.61 as:

Kei(q) =
C1(ei)
α−1 (qα −q) (1.63)

And consequently,

exp(Γλ ) = λ
C1(ei)
α−1 (qα−q) (1.64)

This expression can be even more generalized considering the stability index (α) as a matrix in-
stead of a scalar. However, this process is only straightforward when the matrix α is diagonalizable
obtaining a stability index for each eigenspace of α:

Kγu(q) =
C1(ei)
αi−1 (q

αi−q) (1.65)
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and,

exp(Γλ ) = λ

C1(ei)
αi−1 (qαi−q) (1.66)

Fig. 1.19a illustrates the process for scalar parameters α = 1.5 and C1 = 0.1 obtaining a com-
plex cascade valued in the Cl(0,1) for a 16x16x512 conservative flux, and Fig. 1.19b illustrates the
process for scalar parameters α = 1.5 and C1 = 0.1 obtaining a quaternion cascade valued in the
Cl(0,2) for a 16×16×16×512 conservative flux.

(a)
(b)

Figure 1.19: (a) Example 2D+1 multifractal vector field obtained by a complex cascade, i.e., with
values of Cl (0,1) and (b) Example of a 3D+1 multifractal vector field obtained by a quaternion
cascade, i.e., with values of Cl (0,2)

1.4 Analysis

Multifractal analysis of a field consists in first assessing the quality of the scaling and second
estimating the scaling functions K(q), and c(γ), as well as the UM parameters α and C1 which
characterize the field. In this section, we review the Trace moment techniques to estimate these
features and also review the spectral analysis.

1.4.1 Trace moments techniques

To calculate UM parameters (C1 and α) Trace moments techniques (Schertzer and Lovejoy,
1987a) are used.
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Figure 1.20: Illustration of a Trace moment technique using a simulated ensemble with input pa-
rameters α = 1.65 and C1 = 0.25, and 100 samples in 1D with size 256

Trace moment (TM) is based on Eq. 1.6. For that the field is upscaled and evaluated for
different statistical moments of order in an iterative process, i.e. at each step:

1. The field (from the field at maximum resolution at step 1) is averaged by the scale ratio λ1

2. The averaged field is evaluated for different statistical moments of order q

This process is plotted against the resolution in a log− log plot. If the field is multifractal, then
the empirical points of the plot are aligned along straight line whose slope is K(q). It received its
name because the trace of moments of the fluxes is equivalent to the empirical statistical moments
(Schertzer et al., 2002).

Based in the fact that C1 and α are theoretically the first and the second derivatives respectively
(Section 1.2.5), a discrete approximation can be used to compute them is:

C1 = K′(1)≈ K(1.05)−K(0.95)
0.1

(1.67)

α =
K′′(1)
K′(1)

≈ 0.1
0.052

K(1.05)+K(0.95)
K(1.05)−K(0.95)

(1.68)

This technique is illustrated in Fig. 1.20, which uses a 1D simulation created with Eq. 1.41 and
input parameters α = 1.7 and C1 = 0.25 and 256 points. In the left part, each statistical moment q vs
λ is plotted for a different values of q, then the slopes of these curves are plotted vs. q, obtaining the
figure on the right. We consider the quality of the scaling based on how well the points fit a linear
regression, considering a good scaling to be values of the linear regression coefficient as close to 1
as possible. We also consider other methods of curve fitting such as Ordinary least squares (OLS)
or Weighted least squares (WLS) but selected the former as we did not see significant differences
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in the result but it increases the computational cost.

The Double Trace moment technique calculates UM parameters directly if the field is conser-
vative and exhibits UM behaviour (Lavallée et al., 1993). For this purpose, the field is renormalized
to the η-power :

ε
(η)
λ

=
ε

η

λ

⟨εη

λ
⟩

(1.69)

And then a TM analysis is performed, which yields:

⟨ε(η)q
λ
⟩= ⟨ε

ηq⟩
⟨εη

λ
⟩q
≈ λ K(ηq)

λ qK(η)
= λ

K(q,η) (1.70)

K(q,η) = K(ηq)−qK(η) (1.71)

In the Universal Multifractal framework we have,

K(q,η) = η
αK(q) (1.72)

Figure 1.21: Illustration of a Double Trace moment technique using a simulated ensemble with
input parameters α = 1.65 and C1 = 0.25, and 100 samples

For each η and q, TM technique is applied to the up-scaled field raised to the power η to
calculate K(q,η), then for a given q (usually q = 1.5), K(q,η) vs. η is plotted in log− log plot
and the slope of the linear part of the graph is α . C1 derived from the intercept b with the equation:

C1 = 10b (α−1)
(q(α)−q)

(1.73)
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as Eq. 1.72 reflects (the 10b comes from the fact that log10 are used in Fig. 1.21.

This technique is illustrated in Fig. 1.21 (using the same simulation as in Fig. 1.20); the left
figure illustrates DTM technique to the up-scaled field for several η . The right figure illustrates
the curve fitting to compute the parameter α . With regards to the upper plateau visible for greatest
η , the explanation lies in the multifractal phase transition associated with maximum observable
singularities as K(q) becomes linear for q > qs:

K(q) = γs(q−qs)+K(qs) (1.74)

With this linear form and Eq. 1.70, a constant value is obtained in K(q,η).

There is also the possibility to observe a plateau for smallest η , for a similar multifractal phase
transition, but associated with the effect of the zeros on the data. Such phenomenon is commonly
observed for rainfall but it is not visible with wind data as studied in this document which do not
contain numerous zeros.

1.4.2 Spectral analysis

Spectral analysis is a second-order statistical analysis to study the scaling behaviour of the
field. It consists in plot Eq. 1.21 in a log-log plot. The statistical properties do not have to be
satisfied by analysing a single sample but are satisfied over the average of several samples, i.e.
as it is a statistical behaviour, it is valid on average over several samples. Hence, it is expected
that quality of scaling will be worse when analysing a single sample. For that reason, degraded
scaling is often observed when only one sample is analysed in multifractal fields. However, the
results are much better when a larger number of samples are used. Fig. 1.22 is an example of this
statistical behaviour. There, better results are shown in 100 samples simulation with r2 close to 1.
Both figures are created with field simulated using discrete cascades and the same set of parameters
α = 1.5 and C1 = 0.1

It is possible estimate H parameter from the spectra using the formula stated in Tessier et al.
(1993):

β = 1+2H−K(2) (1.75)

It means that if the spectral slope β retrieved in the spectral analysis of a time series ϕλ is
different to 1, it indicates that ϕλ is then a non-conservative field (⟨ϕλ ⟩ ̸= 1) and could be written
as states in Eq. 1.75.
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(a) (b)

Figure 1.22: Illustration of a spectral analysis from (a) 1 sample and (b) 100 samples. The data is
created using UM discrete cascades with the same set of parameters α = 1.5 and C1 = 0.1 .

1.4.3 Validation of the simulations

In the following paragraphs, the fluxes simulated in the previous section are used to illustrate
the analysis techniques reviewed. This process is also used to validate the results obtained in
the simulation section. The section is organized as follows. First the sensitivity analysis of the
simulation to the input set of UM parameters and dimension is reported. Then, the effect of the
non-conservativeness parameter in the analysis techniques is discussed.

1.4.3.1 Illustration of the analysis techniques for simulations over various dimensions

To illustrate these techniques, simulation with different dimensions (1D (Fig. 1.23), 2D (Fig.
1.24), and 2D+time (2 spatial dimension and 1 temporal (Figs. 1.25 and 1.26)) are used. The
analysis consists of the spectral analysis (panel(a)), the Trace moment analysis (panel (b)), and the
Double Trace moments analysis (panels (c) and (d)). For the spatio-temporal simulations, we first
performed a spatial analysis and then a temporal one.

We will consider that spectral analysis retrieved good results if it shows a straight line with a
slope approximately to 1 (≈ H = 0). TM retrieved good results if the graph does not show any
scaling break with a correlation coefficient of the linear regression as close as possible to 1. And
for the DTM techniques if it obtains a good scaling, retrieving the same parameters as the inputted
ones.

Figs. 1.23-1.26 show the ensemble analysis for input parameters α = 1.5 and C1 = 0.1 retriev-
ing good results for the spectral analysis in all (a) panels. Good scaling is retrieved for both TM
and DTM graphs where good correlation in the linear regression is shown, except for the case of
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the temporal dimension of the 2D+t where rather good results are found r2 ≈ 0.97 (Figs. 1.26b
and 1.26c). 1D and 2D simulations show good agreement between the inputs and the outputs.
Meanwhile, a small difference appears in C1 for the spatial dimension of the 2D+t and in α for the
temporal one.

(a) (b) (c) (d)

Figure 1.23: Illustration of the analysis techniques in 1D. (a) Spectral analysis (Eq. 1.21 in log-
log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log respectively).
The experiment consists of an ensemble of 100 samples with a length of 512. Input parameters are
α = 1.5 and C1 = 0.1.

(a) (b) (c) (d)

Figure 1.24: Illustration of the analysis techniques in 2D. (a) Spectral analysis (Eq. 1.21 in log-
log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log respectively).
The experiment consists of an ensemble of 100 samples with 512x512 spatial resolution. Input
parameters are α = 1.5 and C1 = 0.1.

Fig. 1.27 shows a summary of the parameters retrieved on the analysis using boxplots, i.e. first
each sample is analysed separately and then the whole ensemble is analysed. This is done to show
the variability of the parameters retrieved using the same set of input parameters. It is important to
note that the statistical properties do not have to be satisfied by analysing a single sample but are
satisfied over the ensemble. All the cases show good agreement between the inputs and the outputs,
with more deviation in 1D and spatial dimension than in the 2D+t case.
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(a) (b) (c) (d)

Figure 1.25: Illustration of the analysis techniques in 2D+time in the spatial dimension. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in
log-log respectively). The experiment consists of an ensemble of 100 samples with 512x512 spatial
resolution and 512 time steps. Input parameters are α = 1.5 and C1 = 0.1.

(a) (b) (c) (d)

Figure 1.26: Illustration of the analysis techniques in 2D+time in the temporal dimension. (a)
Spectral analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70
and 1.72 in log-log respectively). The experiment consists of an ensemble of 100 samples with
512x512 spatial resolution and 512 time steps. Input parameters are α = 1.5 and C1 = 0.1.

(a) (b)

Figure 1.27: Boxplot analysis on the UM parameters retrieved on the ensemble simulation: (a) α

and (b) C1. Input parameters α = 1.5 , C1 = 0.1 and 100 samples.
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1.4.3.2 Sensitivity analysis of the input parameters

Previous section validates the simulations for a given set of parameters, however, in order of
fully validate them we need to carry out similar analysis with other sets of parameters. For this,
we used the ensemble simulation of a 2D field of 512×512 points and 100 samples with different
parameters for that. First, we realise the simulation fixing C1 and increasing α (Fig. 1.28). Panels
(a), (b), and (c) show the boxplot for α , C1, and r2 respectively. Panels (d) and (e) show the absolute
and relative errors for α and C1 on ensemble analysis respectively.

For the first case, we found a good agreement between the α parameter inputted and the results
for both α and C1, especially in the range α = 1.3− 1.7 where most of the atmospheric fields
are included (Schertzer and Lovejoy, 1991). The error on the ensemble analysis varies from -0.06
to 0.08 in α , which is always less than ±10%. For C1, the relative error is in the same range;
meanwhile, the absolute error is one order of magnitude lower.

(a) (b) (c)

(d) (e)

Figure 1.28: Sensitivity analysis of the UM parameters ((a) α and (b) C1) retrieved on the analysis
of 512x512 ensemble field for several inputted α , C1 = 0.1 and 100 samples. The second row
shows the absolute error and relative error (%) on both parameters on ensemble analysis.

We repeat the simulation fixing α and increasing C1 (Fig. 1.29). When C1 increases, however,
the results are moving further and further from the inputs, especially in α . Although the results are
worse than in the case of the sensitivity analysis in α the results are rather good with error < 15%
for the range C1 = 0.05− 0.3 which corresponds to the one most often retrieved on atmospheric
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fields (Schertzer and Lovejoy, 1991).

(a) (b) (c)

(d) (e)

Figure 1.29: Sensitivity analysis of the UM parameters ((a) α and (b) C1) retrieved on the analysis
of 512x512 ensemble field for several inputted C1, α = 1.5 and 100 samples. The second row
shows the absolute error and relative error (%) on both parameters on ensemble analysis.

In both cases the analysis of the ensemble shows a good quality of the scaling with values
close to r2 = 0.99. When single samples are analysed this scaling is worse as we expect due to the
statistical properties of the analysis.

1.4.3.3 Effect of H

When the field analysed is not conservative, some bias is introduced in the analysis. To il-
lustrate this effect, we artificially impose different levels of non-conservativeness parameter H to
the flux of Fig. 1.24 (i.e. ensemble of 100 samples with 512x512 spatial resolution and input
parameters α = 1.5 and C1 = 0.1 ).

When the field shows a positive H (Fig. 1.30 ), as for wind fields, the slope of the spectral
analysis increases (Fig. 1.30a), which is consistent with Eq. 1.75. The values obtained for β and
H (1.61 and 0.51) are close to the theoretical one obtained using Eq. 1.75 (1.6 and 0.4).

It also appears a bias in both trace moment techniques, which is translated into a decrease in
the correlation r2 of the curve fitting (Figs. 1.30b and 1.30c ) and, ultimately, to the computation of
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the UM parameters (1.30d). In this case, the curves of the TM and DTM graphs become "concave",
defining "concavity" as a decrease of the slope with log(λ ).

When the field shows a negative H (Fig. 1.31 ), e.g. wind speed fluctuations, it is possible to
find similar (but inverted) behaviour as the previous case. However, in this case, the spectral slope
decrease (Fig. 1.31a) and the curve of the trace moment techniques become "convex".

(a) (b) (c) (d)

Figure 1.30: Illustration of the effect of positive H on the: (a) Spectral analysis (Eq. 1.21 in log-
log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log respectively). The
experiment consists of an ensemble of 100 samples with 512x512 spatial resolution with α = 1.5,
C1 = 0.1 and H = 0.3.

(a) (b) (c) (d)

Figure 1.31: Illustration of the effect of positive H on the: (a) Spectral analysis (Eq. 1.21 in log-
log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log respectively). The
experiment consists of an ensemble of 100 samples with 512x512 spatial resolution with α = 1.5,
C1 = 0.1 and H =−0.3.

We introduce a simplistic concavity indicator to measure the effect of the H on the TM and
DTM graphs. For that, we divide the graph into two sub-graphs computing both slopes. Then, we
make the difference between them. If the result is positive, we consider the graph "concave", and
if it is negative, we consider it "convex". This indicator is plotted in Fig. 1.32a, and it shows that
as the H of the field moves away from 0, the graph becomes more "concave" (for positive H) or
more "convex" (for negative H). In the same figure, the coefficient of the linear regression (which
is used as an indicator of the quality of the scaling) also decreases when the H moves away from 0.
Fig. 1.32b shows the bias in the UM parameters retrieved when the value of H increases.

74



1. Universal Multifractal

(a) (b)

Figure 1.32: (a) The r2 of Trace moment technique for q = 1.5 in blue, and a concavity indicator
in red for different H values of the field. (b) α in blue and C1 in red for simulated fields with
different H values. Input parameters (α = 1.5 and C1 = 0.1) are dotted in blue and red respectively
for clarity

In their study, Fitton (2013)also investigated the impact of the non-conservativeness parame-
ter, H, in the field. To mitigate the potential bias caused by the effect of H, they recommended
performing fractional integration. However, they found that using the H retrieved with Eq. 1.75
did not resolve the issue, as both the TM and DTM graphs exhibited either "concave" or "convex"
behavior. Instead, they proposed using the H value that maximizes the linear part of these graphs,
i.e. the value which maximize the r2 obtained in linear regression.

Relying on similar ideas, we developed an algorithm that performs iterative fractional integra-
tion to obtain the optimal value of the fractional integration order used in the analysis. The initial
value for the iteration was set as the H value obtained from Eq. 1.75. The algorithm follows the
following process:

1. Analyze the data (spectral analysis, TM and DTM) in order to obtain the quality of the scaling
and the initial H of the field. We consider them as r2

0 and H0 respectively.

2. Perform the fractional integration/differentiation in the data using H0 as the order of integra-
tion.

3. Analyze the new data obtaining H1 and r2
1. If r2

1 is grater than 0.99 then H0 is set as optimal
order of fractional integration/differentiation. If it is lower, there are 2 options:

(a) r2
1 > r2

0, H1 is set as new order of fractional integration/differentiation and we repeat the
process from step 2. Now the quality of scaling used for comparison is r2

1.

(b) r2
1 < r2

0, we keep r2
0 and reduce the value of H0 to introduce in step 2.
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4. This process is repeated iteratively till r2
i > 0.99, setting Hi as the optimum order of frac-

tional integration/differentiation. If the algorithm does not converge after a given number of
iterations (we use 100) then the Hi which gives the greater r2 is set optimum value.

One example of this method is illustrated in Fig. 1.33 where the coefficient of linear regression
increases from r2 = 0.8 before the correction (Fig. 1.33a) to r2 = 0.99 after (Fig. 1.33b).

(a) (b)

Figure 1.33: Illustration of the correction in the TM graphs (a) shows the graph before the correc-
tion and (b) after. The field used is the fluctuations of wind field event recorded in 20/12/2020.

1.4.3.4 Vector fields

For the validation of the simulation of vector fields we use 1D vector fields with two and three
components. We use an ensemble of 100 samples 1024 points with input parameters α = 1.5,
C1 = 0.1, and H = 0 in both cases. Figs. 1.34-1.36 shows the analysis for the two component case.
The two components (Figs. 1.34 and 1.35) and the resultant (Fig. 1.36), i.e. the norm of the vector,
show similar behaviour, with a good scaling (present in panels (b) and (c)) and similar values of
the UM parameters to those inputted (panels (d)). Fig 1.37 shows a summary of the parameters
retrieved on the analysis using boxplots, i.e. first each sample is analysed separately and then the
whole ensemble is analysed. We found a good agreement between inputs and outputs with results
slightly smaller in the second component.

Figs. 1.38-1.41 shows the analysis for the three component case. The three components (Figs.
1.34, 1.35 ,and 1.35) and the resultant (Fig. 1.36) confirm the behaviour observed in the two com-
ponent analysis, with a good scaling (panels (b) and (c)) and similar values of the UM parameters
to those inputted (panels (d)). Fig 1.37 shows again a summary of the parameters retrieved on
the analysis using boxplots. We found a good agreement between inputs and outputs with bigger
results in C1 presented in the analysis of the components separately.

Once the behaviour of the vector field is verified obtaining similar results as in the scalar
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(a) (b) (c) (d)

Figure 1.34: Validation of the simulations of Vector fields for the first component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 2 components. Input parameters are α = 1.5, C1 = 0.1, and H = 0.

(a) (b) (c) (d)

Figure 1.35: Validation of the simulations of Vector fields for the second component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 2 components. Input parameters are α = 1.5, C1 = 0.1, and H = 0.

(a) (b) (c) (d)

Figure 1.36: Validation of the simulations of Vector fields for the resultant component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 2 components. Input parameters α = 1.5, C1 = 0.1, and H = 0.
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(a) (b) (c)

Figure 1.37: Sensitivity analysis on the UM parameters retrieved on the ensemble simulation: (a)
using α , (b) C1 and (c) r2. Input parameters areα = 1.5, C1 = 0.1, and H = 0 with 100 samples,
and 2 components.

(a) (b) (c) (d)

Figure 1.38: Validation of the simulations of Vector fields for the first component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 3 components. Input parameters are α = 1.5, C1 = 0.1, and H = 0.

(a) (b) (c) (d)

Figure 1.39: Validation of the simulations of Vector fields for the second component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 3 components. Input parameters are α = 1.5, C1 = 0.1, and H = 0.
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(a) (b) (c) (d)

Figure 1.40: Validation of the simulations of Vector fields for the third component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 3 components. Input parameters are α = 1.5, C1 = 0.1, and H = 0.

(a) (b) (c) (d)

Figure 1.41: Validation of the simulations of Vector fields for the resultant component. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The experiment consists of an ensemble of 100 samples with 1024 points
and 3 components. Input parameters α = 1.5, C1 = 0.1, and H = 0.

(a) (b) (c)

Figure 1.42: Sensitivity analysis on the UM parameters retrieved on the ensemble simulation: (a)
using α , (b) C1 and (c) r2. Input parameters α = 1.5, C1 = 0.1, and H = 0 with 100 samples, and
3 components.
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case, the extension to more dimensions is straightforward extending the generator to the desired
dimensions. Illustration of 2D+t and 3D+t vector fields can be found in Fig. 1.19. To fully address
this validation a vector analysis technique is needed. However, this tool is not available at the
moment and its development is outside the scope of the thesis.

1.5 Summary

The current chapter provides a comprehensive review of the Universal Multifractal (UM)
framework, encompassing its theoretical foundations and various analysis and simulation tech-
niques. These techniques, which are documented in the literature, have been used to develop a
toolbox for simulation tools, mainly for continuous cascades, in 1D, 2D, and 2D+t scenarios (two
spatial dimensions plus one temporal dimension). These tools were written in Python language.

In a first step, a detailed validation of the written tools was implemented. In order to achieve
this, UM analysis was carried out on ensembles of simulated fields in various dimensions, includ-
ing a sensitivity analysis using different sets of input parameters. As it could be expected for a
theoretical framework already available in the literature, we found a good scaling and a notable
agreement between input and output parameters, with the UM techniques demonstrating consistent
responses across the tests. In addition to validation of developed scripts, which was a required
step, this enabled to get familiar with the wide range of analysis tools available within the UM
framework.

In a second step, we investigated the impact of the degree of non-conservation (H parameter)
on the outputs of these analysis techniques. We found increasing spectral slope at higher values
of H, which was theoretically expected and numerically confirmed. A worsening of the scaling
in TM and DTM is found when H ̸= 0. More precisely, a change in the curvature of the TM
graph is observed, with convex graphs for positive H and concave for negative H. Hence, in order
to retrieve unbiased results from TM and DTM analysis for non-conservative fields a correction
is needed before applying these techniques. An algorithm has been developed to optimize the
correction of analyzed fields based on the quality of scaling, relying on concepts presented by G.
Fitton in his thesis (Fitton, 2013). Basically, the algorithm performs iterative fractional integration
to obtain better scaling (regression coefficient r2 > 0.99) in the analysis. The initial value for the
iteration was set as the H retrieved from the analysis of the original field. The implementation of
the correction algorithm enables to retrieve the inputted UM parameters also for simulations with
H ̸= 0.

Finally, existing theory has been applied to the development of a toolbox for simulating vector
fields combining stable Levy processes and Clifford algebra. Python scripts were developed to
simulate vector fields with 2 or 3 components. Similarly to the scalar case previously discussed,
simulated fields, and more precisely each component and the norm, were analysed using UM tech-
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niques. We found good scaling with a good agreement between inputs and outputs, which enabled
to validate the developed scripts. However, for a complete validation it would be necessary to de-
velop tools tailored to these specific vector processes, i.e. analysis tools directly working on vectors
and not isolated scalar components. This should be done in future investigations and will allow not
only to validate these results but also to better understand this type of processes.

In summary, this chapter has established a robust toolbox for advancing the simulation of real-
istic geophysical fields, allowing for increased versatility and applicability across diverse research
domains.
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Chapter 2

Wind simulation

2.1 Introduction

Wind fields are known to be extremely variable in space and time over a wide range of scales
and, although different measurement techniques exist, each has its own advantages and disadvan-
tages. Eg. it is possible to know the wind data at isolated points, where high resolution sonic
anemometers can be located, but this does not provide any spatial information. Other instruments
such as LIDARs (e.g. Wang et al., 2015 or Shimada et al., 2020) or SODAR (e.g. Khan and Tariq,
2018 or Buzdugan and Stefan, 2020) give some spatial information but with low temporal resolu-
tion. The complexity of wind measurement makes obtaining wind speed at all points in a given
area a major challenge and highlights the need to use simulations.

Computational fluid dynamics (CFD) models can grasp the turbulent properties of the wind
fields but with a huge computational cost . However, parametrization of turbulence at small scales
is still necessary, as viscosity only dissipates energy at the Kolmogorov scale of a few mm, making
it impossible to simulate full turbulence over a wide range of scales in the near future. To reduce
these costs synthetic turbulence models (e.g. Juneja et al., 1994 and Basu et al., 2004 ) are used
for the computations and prediction of the structural loads. Many authors (Sahin and Sen, 2001
and Shamshad et al., 2005 among others) decide to only generate wind time series at hub height
forgetting the idea of simulate 3D fields. But it is with the emergence of spectral models that the
possibility to generate a 3D (or 4D if we take into account the time) full field became a reality.
One example of these models can be found in Veers (1988) and in the software Turbsim which is
reviewed in the following sections.

Classical approaches of synthetic turbulence usually assume Gaussian statistics for the turbu-
lent wind fluctuations (Meneveau, 2019), however, there are many studies which suggest that these
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fluctuations exhibit non-Gaussian statistics (Mücke et al., 2011, Hedevang et al., 2012, Wächter
et al., 2012, Fitton, 2013 and Medina et al., 2015 to cite some examples). Generating 3D vec-
tor fields poses significant challenges, and there are only few examples reported in the literature.
One example relies on the use of multiscale Lagrangian maps (Rosales and Meneveau, 2006 and
Rosales and Meneveau, 2008), which can generate non-Gaussian 3D velocity fields by considering
increments and gradients (Meneveau, 2019). However, these approaches are currently unable to
reproduce temporal fluctuations and are limited to generating static velocity fields.

Another method is based on the use of an auxiliary turbulence simulation (i.e. driver) with
a periodic computational domain. Some examples of turbulent wind simulation can be found in
Spalart (1988) and Lund et al. (1998). However, although it is simpler to implement than synthetic
turbulence, its computational cost is high and there is a problem of spurious periodicity arising
from the periodicity of the current in the conductor simulation (Wu, 2017).

It is also possible to use machine learning as a tool for wind field simulation (Kutz, 2017,
Ling et al., 2016, Gamahara and Hattori, 2017, Angriman et al., 2022), and although the use of
deep learning in fluid dynamics is not a recent development, with studies using neural networks
in the 90s for e.g. turbulent friction drag reduction (Choi et al., 1994, Lee et al., 1997) or flow
field estimation (Milano and Koumoutsakos, 2002), it is in recent years through the boom in big
data and artificial intelligence that it has gained popularity. Because even though these methods
show lower efficiency than CFD methods, they give a rather good response with much shorter
response times (Guo et al., 2016). Some examples can be found in Fukami et al. (2019b) in
which a methodology for generating time-dependent turbulent inflow data with the aid of machine
learning is proposed, or in Fukami et al. (2019a) in which machine learning is used to perform
super-resolution reconstruction of flow field.

Many other authors also use weather forecast models such as Global Forecast System (GFS,
developed by National Centers for Environmental Prediction (NCEP)) or Weather Research and
Forecasting model (WRF, Skamarock et al., 2008) for the simulation wind fields (Carvalho et al.,
2012, Jiménez et al., 2013 or Xu et al., 2021 just to mention some examples). However they cover
range of scales in which we are not focusing for this work.

In this chapter, we investigate different processes to simulate 3D+time vector fields with non-
Gaussian statistics over a grid covering an area corresponding to wind turbine swipe area (a square
of 90m side) using Universal Multifractal framework (see Section 1.2). These ideas go from the
oversimplified isotropic reconstruction from punctual measurement to more realistic wind fields
with the help of UM vector fields using the framework introduced in Schertzer and Tchiguirinskaia
(2015) and Schertzer and Tchiguirinskaia (2020).

The chapter is organized as follows. First a review of the measurement campaign and some
data analysis (Section 2.2), followed by the review of available tools and and the various methods

84



2. Wind Simulation

for non-Gaussian wind field simulation. First method of wind simulation is Turbsim software
developed by NREL, which simulate 3D turbulent wind fields using Gaussian statistics (Section
2.3). We use three non-Gaussian methods, the first is a simplistic approach which reconstructs
the wind field over a given area based on well-establish scaling laws (Section 2.4). The other two
methods are based in the same principles (Fractional Integrated Flux) but differs in their objective
since the first one is focused on the simulation of the direct fields (Section 2.5.1) and the second one
is focus on the simulation of the fluctuations (Section 2.5.2). The chapter ends with an assessment
of the different approaches (Section 2.6), helping in the selection of the most appropriate method
for accurate and realistic wind field simulations.

2.2 Data & analysis

2.2.1 Description of the data

Data used is collected in the framework of high resolution measurement campaign part of the
Rainfall Wind Turbine or Turbulence project (RW-Turb) which is supported by the French National
Research Agency (ANR in French). It is presented in details in Gires et al. (2022a), and only the
main elements are reported here. The campaign was carried out on a meteorological mast (oper-
ated by Boralex https://www.boralex.com/our-projects-50and-sites/) in a wind farm located in Pays
d’Othe, France (roughly 110 km South-East of Paris). There are nine wind turbines operated by
two different companies (Boralex https:// www.boralex.com/ our-projects-and-sites/ and JP Énergie
Environnement https://pays-othe-89.parc-eolien-jpee.fr/) in the wind farm. Location and situation
of the wind farm and meteorological mast is illustrated in Figs. 2.1a and 2.1b respectively.

(a) (b)

Figure 2.1: (a) Illustration of the location and (b) map of the surroundings of the meteorological
mast used on RW-Turb high resolution measurement campaign (from Gires et al., 2022a)

Meteorological mast is equipped with three different types of devices repeated at roughly 45
and 78m height. Fig. 2.2 shows the location of the devices on the mast. First type is a high
resolution 3D sonic anemometer manufactured by ThiesCLIMA (ThiesCLIMA, 2013a) with data
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available at an original sampling frequency of 100 Hz but only can be used at 1 Hz) (see Gires
et al., 2022a for more details). Mini meteorological station, also manufactured by ThiesCLIMA
(ThiesCLIMA, 2013b), which consists of sonic 2D anemometer,a micro-electro-mechanical system
for the pressure measurement, a mini Doppler radar to provide rainfall estimates and four photo
sensors. The meteorological stations provides information about precipitation, air temperature,
relative humidity, wind velocity and direction, and brightness with 1 Hz sampling rate. The last
device is a OTT Parsivel2 disdrometer (OTT Hydromet GmbH, 2014) which provides information
on the size and velocity of the drops passing through its sampling area from which rain rate and
drop size distribution can be estimated.

In this study, we only use the data obtained from the high-resolution 3D sonic anemometers. An
analysis conducted in Gires et al., 2022a revealed a peak in the spectra at 30Hz, which corresponds
to the repetition rate of data measurements by the device. Additionally, the study finds that the
Universal Multifractal (UM) obtained within the scale range of 30Hz to 1Hz suggests that for
resolutions finer than 1Hz the devices exhibit instrumental noise. Hence, to mitigate this noise, our
analysis will be conducted using data with time steps of 1 s (or frequency of 1 Hz).

Figure 2.2: Scheme of the distribution of the devices in the meteorological masts (from Gires et al.,
2022a)
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Figure 2.3: Example of x (towards East) component of the wind speed retrieved from the 3D
anemometer (located at hub height, roughly 78m) in the period December 2020 and May 2021
with 1 s time steps.

2.2.2 Data preparation

All the data used in the subsequent sections is retrieved from the high-resolution 3D anemome-
ters. We have employed data collected between December 2020 and May 2021 (see Fig. 2.3 for
an illustration of the data). Since our objective is to simulate realistic wind fields, it is crucial to
analyze their properties. The initial step involves determining the length of the data to be utilized.
To accomplish this, we performed analyses on different data lengths to select which range was
most suitable for the analysis. Finally, since we are interested in small-scale variability, we decided
to use approximately 1 hour of data (4096 seconds, following what was done in Fitton (2013)) as
a starting point. Upon conducting Trace Moment analysis (see Fig. 2.4), although we observe a
good scaling on the the field (Fig. 2.4a), two different scaling breaks are accounted for to get more
robust estimates (clearly visible in Fig. 2.4b). The first break occurs at 4 seconds, followed by
another break close to 17 minutes. Consequently, we will focus on the interval between 4 seconds
and 17 minutes for the following sections which is in agreement with the time scales over which
the industrial practitioners usually average the wind data.

The next step involves characterizing the UM properties of the wind field. To accomplish this,
we employ the tools outlined in the analysis section (Section 1.4). Furthermore, we have decided
to analyze an ensemble of 100 samples comprising periods of 17 minutes (1024 seconds) each,
grouped according to the average wind speed (starting in 0 ms−1 and using intervals of 0.5 ms−1).
It is important to note that all these analysis are done on the fields without any correction in order
to characterise the behaviour of the fields and to be able to use them for later comparison.

By examining the parameters of the Fig. 2.5, we can observe two distinct trends associated with
the wind speed. Specifically, α , r2, and H (computed using Eq. 1.75) exhibit an increase as the wind
speeds escalate, up until approximately 4 ms−1, beyond which these parameters remain relatively
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(a) (b)

Figure 2.4: Example of TM analysis for 8 m/s. (a) shows the analysis with a single scaling regime
and (b) with three scaling regimes 1s-4s, 4s-∼17min, and ∼17min-∼1h.

stable. Conversely, we observe an inverse trend in the case of C1, where it decreases before reaching
a constant value. These trends are visually depicted in Fig. 2.5. When examining the coefficient
of linear regression of the trace moment (r2, used to quantify the quality of the scaling), we can
observe that it is indicative of a not-good scaling for lower velocities (<4 ms−1) which means
that the estimation of the parameters are not very reliable and should therefore be considered very
cautiously. It suggests that the interval of 4 seconds to 17 minutes may not be suitable for this
range of velocities due to a scaling that is not fully deployed, or to some instrumental limitations.
However, considering the ultimate objective of utilizing this wind data for wind power applications,
it is worth noting that velocities within this range are not utilized due to the turbine’s cut-in speed
(the minimum velocity at which the blades start rotating) as stated in Vestas Wind Systems A/S,
2023. Hence, this issue was not investigated further.

Similarly, we can characterize not only the direct wind field but also its fluctuations in a consis-
tent manner. In this case, the trends observed in the previous analysis are no longer as apparent and
the parameters are rather constant. However, in Figs. 2.6b-2.6d, it is possible to see a decrease trend
in the lowest velocities. It is important to note that the estimates of UM parameters are not very
reliable since the scaling exhibits poor performance, with r2 values lower than 0.8. This finding is
consistent with observations in the literature (e.g., Fitton, 2013) for negative values of H (refer to
the Section 1.4.3.3 for further details).

In addition to serving as input parameters for the simulations, these results also play a crucial
role in validating the wind simulation techniques reviewed in the next sections. By comparing
the simulated wind fields with the characteristics observed in the analyzed data, we can assess the
accuracy and reliability of the simulation methods. This validation process will help ensure that the
simulated wind fields accurately capture the real-world behavior and can be utilized effectively in
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(a) (b)

(c) (d)

Figure 2.5: Evolution of the UM parameters with the average wind speeds retrieved for the analysis
of the direct wind fields. Ensembles of 100 samples for each wind class are used. (a) shows the
evolution of α , (b) shows the evolution of C1, (c) shows the evolution of r2, and (d) shows the
evolution of H.
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(a) (b)

(c) (d)

Figure 2.6: Evolution of the UM parameters with the average wind speeds retrieved for the analysis
of the fluctuations of the wind. Ensembles of 100 samples for each wind class are used. (a) shows
the evolution of α , (b) shows the evolution of C1, (c) shows the evolution of r2, and (d) shows the
evolution of H. It is important to note that the estimation of the parameters is not very reliable since
r2 is very low.
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various applications.

Following the methodology outlined in Section 1.4.3.3, a correction can be applied to achieve
better scaling of the field by removing potential biases associated with H. The results are summa-
rized in Fig. 2.7 for the wind data and in Fig. 2.8 for the fluctuations.

One notable observation is that the wind fields do not require any correction for wind speeds
greater than 3.5 m/s, and the trends depicted in Fig. 2.5 are no longer apparent. That means the
trends are, probably, only an effect of the negative H, which seems to be different for low winds.

However, in the case of the fluctuations, there is a significant difference after the correction.
The values of α now exhibit a consistent value close to 2, suggesting a log-normal distribution
(Schertzer and Lovejoy, 1987a).

Figure 2.7: Evolution of the UM parameters with the average wind speeds retrieved for the anal-
ysis of the wind fields. Original field is plotted in dotted line and the corrected one in solid line.
Ensembles of 100 samples for each wind class are used. (a) shows the evolution of α , (b) shows
the evolution of C1, (c) shows the evolution of r2, and (d) shows the evolution of H.

2.2.3 Comparison with previous studies

The results obtained in the previous section differ from the traditional values reported in the
literature (Schmitt et al., 1994, Lazarev et al., 1994 or Schmitt et al., 1998 among others), where
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Figure 2.8: Evolution of the UM parameters with the average wind speeds for the fluctuations of
the wind. Original field is plotted in dotted line and the corrected one in solid line. Ensembles of
100 samples for each wind class are used. (a) shows the evolution of α , (b) shows the evolution of
C1, (c) shows the evolution of r2, and (d) shows the evolution of H.
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the UM parameters for wind velocities are typically found to be α = 1.4−1.5 and C1 = 0.05−0.2
(Schmitt et al., 1994). However, it should be noted that the data analyzed in that study corresponds
to much higher resolutions, ranging from hundreds of Hz to a few seconds. In that scale range, the
field exhibits a theoretical H = 1/3 (derived from the Kolmogorov -5/3 power law Kolmogorov,
1941), and they obtain the parameters after fractional integration of the field to this order.

If we apply fractional integration to achieve H = 0 as is mentioned before, a scaling break
occurs around 16 seconds, as depicted in Fig. 2.9b. When analyzing the field at smaller scales, the
retrieved parameters (α = 1.43 and C1 = 0.2) are in agreement with the traditional results.

(a) (b)

(c) (d)

Figure 2.9: UM analysis of the ensemble used for the Fig. 2.5 but corrected to obtain H = 0 . (a)
Spectral analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70
and 1.72 in log-log respectively).

Indeed, the results obtained in the previous section (Section 2.2.2) align more closely with
recent studies. For example, in Fitton et al., 2011, a value of α = 1.78 was reported for a similar
range of scales.

2.3 Turbsim

One widely used software tool developed for simulation of turbulent wind fields is the Tur-
bulent Simulator (TurbSim). TurbSim is a stochastic simulator that employs a statistical model
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to generate simulated vector fields over a predefined grid of points. The software is based on the
work of Veers (1988) Kelley (1992) , with subsequent updates and enhancements to the code, spec-
tral models (e.g., defined by the International Electrotechnical Commission), and the inclusion of
coherent turbulent structures (e.g., the Lamar Low-Level Jet Project (LLLJP)).

Researchers across various studies have utilized TurbSim for simulating wind fields over spe-
cific areas. For instance, Ren et al., 2022 employed TurbSim to simulate wind fields over a 145x145
m area under different atmospheric conditions for load analysis in offshore wind turbines. Robert-
son et al., 2017 reconstructed full wind fields using measurement data at specific locations. Simi-
larly, Jonkman, 2007 utilized simulated wind fields with varying mean velocities to analyze wind
turbine control. The use of TurbSim for investigating wind turbine control is widespread, as demon-
strated by studies such as Lackner and Rotea, 2011a, Jafarnejadsani et al., 2013, Lackner and Rotea,
2011b, and Si et al., 2014, among others. Furthermore, TurbSim is also employed to study the dy-
namics of wind turbines, with examples found in Jonkman, 2009b, Jonkman and Matha, 2011, and
Ju, 2022, to name a few.

TurbSim uses a text input file to specify the parameters required for the simulation. These pa-
rameters are organized into different sections, providing flexibility and control over the simulation
settings. For further details, please refer to the Appendix A.1 for an illustrative example of the
input file structure. It is possible to find a full description of all the settings in Jonkman (2009a)
and they are summarized in the following sections.

2.3.1 Runtime options

The "Runtime Options" section of the TurbSim input file serves to initialize the software and
specify the desired outputs.

To initialize the pseudorandom number generator (pRNG), two seed parameters are required.
The first seed is a random number within the range of -2147483648 to 2147483647. The second
seed can be either a random number (between the same numbers) or one of two predefined options:
"RanLux" or "RNSNLW". "RanLux" uses the SNLWIND algorithm (Veers, 1988) to generate
random numbers, while "RNSNLW" utilizes Lüscher’s level 3 "Luxury Pseudorandom Number"
algorithm (Lüscher, 1994). It is recommended to use "RanLux" as the second seed. These random
numbers are used to create random phases for the wind time series. By keeping the seeds constant,
the same random phases can be reproduced in subsequent simulations.

Various outputs can be selected by setting the corresponding options to either "True" or "False"
in the runtime options section of the input file. One of the main outputs is the time series data at hub
heights (HH) in different formats, such as human-readable, AeroDyn, AeroDyn and Bladed, etc.
Additionally, the direction of blade rotation can be specified as either clockwise (True) or not. This
information is essential for the Inflow module of OpenFAST, a widely used wind turbine simulation
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tool.

The last parameter in this section determines how the velocity output in the time domain is
scaled when IEC spectral models (IEC, 1999) are chosen. When set to 0, the generated turbulent
intensity (TI) is lower than the specified value, and the time series data are multiplied by a scaling
factor to account for this discrepancy. When set to "1", each component has a different scaling
factor, but the scaling factor remains constant across all points. On the other hand, when set to
"2", there is independent scaling for each component, resulting in different scaling factors for each
point. For a summary of these scaling options, refer to Table 2.1. Further details can be found in
the appendix A.1.

Input Value Description
0 No scaling
1 Scaling by components
2 Independent scaling

Table 2.1: List of TurbSim ScaleIEC Values, see text for more details (Jonkman, 2009a)

2.3.2 Turbine/Model Specifications

To accurately model the turbulent wind field using TurbSim, several specifications related to
the wind turbine and simulation parameters need to be provided. These include the hub height, grid
dimensions (width and height), and the number of points contained in the grid for both horizontal
and vertical directions. Notably, TurbSim always includes a grid point at the hub height.

In the temporal dimension, the time step size is required to determine the maximum frequency
for the computation of Fast Fourier Transforms (FFT) and inverse FFTs. It is recommended to set
the time step size to 0.05 seconds.

Regarding the length of the simulation, it is essential to distinguish between three concepts:

• The length of analysis (AnalysisTime): This parameter determines the duration of the data
analyzed by TurbSim. It is recommended to be at least 600 seconds and also influences the
frequencies used for generating the output time series.

• The length of the usable time series (UsableTime): This parameter sets the length of the
output data. However, it may differ slightly from the final output length due to that some
software require more data. If all the AnalysisTime is used, the UsableTime parameter should
be set as "ALL."

• The output time, this represents the actual length of the output time series. If UsableTime
is a numerical value, TurbSim adds extra time equal to the width of the grid divided by the
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average wind speed at the hub height. It is important to ensure that the AnalysisTime is
greater than or equal to the OutputTime.

Additionally, TurbSim allows for simulating wind blowing at different angles, including uphill,
downhill, left, or right, both vertically and horizontally.

2.3.3 Meteorological Boundary Conditions

2.3.3.1 General overview

In TurbSim, users have the flexibility to choose from a range of spectral models to simulate
the meteorological boundary conditions. Table 2.2 provides a summary of the input tags and the
corresponding types of spectral models that can be utilized. For more comprehensive information
on these models, more details are available in section 2.3.3.2 and a full explanation can be found in
Appendix G of Jonkman, 2009a .

Character Input Value Description
IECKAI IEC Kaimal
IECVKM IEC von Karman
GP_LLJ NREL Great Plains low-level jet
NWTCUP NREL National Wind Technology Center
SMOOTH Risø smooth terrain
WF_UPW NREL wind farm: upwind
WF_07D NREL wind farm: 7 rotor-diameters downwind
WF_14D NREL wind farm: 14 rotor-diameters downwind
TIDAL Tidal channel turbulence model (water)
API API model for hurricane winds
USRINP User defined using velocity spectra
TIMESR User defined using time-series data
NONE Steady winds (used only for testing)

Table 2.2: List of TurbSim spectral models (Jonkman, 2009a)

Certain spectral models in TurbSim require specific information, such as the IEC turbulence
specification for the von Kármán and von Kármán coherent models, or the file path to user-defined
time-series data or spectra.

The IEC turbulence intensity is determined based on the turbine type, with values of 1, 2, or
3 corresponding to standard cases (IEC, 1999), small turbines (IEC, 2015), and offshore wind tur-
bines (IEC, 2019) respectively. The turbulence category according to the IEC standard (A, B, or C)
can also be specified, with Category A representing the highest turbulence intensity. Alternatively,
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turbulence intensity can be defined as a percentage. Furthermore, TurbSim provides the option to
select the IEC turbulence model, including the Normal Turbulence Model (NTM), Extreme Turbu-
lence Model (ETM), and Extreme Wind Speed Model (EWM) based on a 10-minute average wind
speed and a recurrence period of 1 or 50 years. These models are documented in IEC, 1999.

TurbSim also supports the utilization of various wind profiles. Table 2.3 provides a summary of
the input tags and the corresponding wind profile types. When the "default" argument is specified,
GP_LLJ employs the JET wind profile, TIDAL uses H2L, API uses API, TIMESR uses TS when
multiple points are provided, and PL otherwise. The remaining models employ the IEC wind
profile. More details are given in section 2.3.3.3

Character Input Value Description
PL Power-law wind profile
LOG Diabatic logarithm wind profile
H2L Logarithmic velocity profile for MHK models
JET Low-level jet wind profile
IEC Power-law profile on the rotor disk; logarithmic profile elsewhere
API API (Frøya) wind profile
USR User-defined velocity profile
TS Valid only with the “TIMESR” TurbModel
Default Depend on turbulent spectral model

Table 2.3: List of TurbSim Wind profiles (Jonkman, 2009a)

As in the case of the spectral models, some wind profile models require additional arguments
to be specified. For instance, the power law (PL) wind profile requires the power law exponent to
be provided. The JET wind profile requires the height of the low-level jet, while the USR wind
profile requires the name of the file containing the wind profile data.

Additional parameters in this section include the reference height, surface roughness, and ref-
erence wind speed. The reference height represents the height at which the reference wind speed
is defined. The surface roughness is a parameter that characterizes the roughness of the underlying
terrain and is used in determining the wind speed profile. The reference wind speed is the mean
wind speed over the analysis time period. These default parameter values can be found in Jonkman
(2009a).

2.3.3.2 Spectral models

In TurbSim, wind time series are generated using the modified Sandia method proposed by
Veers (1988). This method simulates the correlated time series based on a spectral matrix S, which

97



2. Wind Simulation

captures the power spectral densities (PSDs) along the diagonal entries and the cross-spectral den-
sities between points j and k along the off-diagonal entries.

The magnitude of the cross-spectrum is defined as follows:

|S j,k|=Coh j,k( fm,∆r j,k,U j,k)
√

S j j( fm)Skk( fm) (2.1)

In this equation, Coh j,k represents the coherence function, which is dependent on the frequency
fm, the distance between points j and k (∆r j,k), and the mean wind speed at those points (U j,k).
Assuming the average phase between two points is zero, the imaginary part of the cross-spectrum
is also zero. As a result, the spectral matrix can be defined solely in terms of the coherence function
and the PSDs.

The spectral matrix can be expressed as the product of a transformation matrix H and its com-
plex conjugate transpose Shinozuka and Jan (1972):

S( fm) = H( fm)H∗T ( fm) (2.2)

Since the spectral matrix S is real, the transformation matrix H is constrained to be real as
well, specifically H = H∗. When H is lower triangular, the computation can be simplified using a
recursive equation, as described by Veers (1988):

H11 = S1/2
11

H12 = S21/H11

H22 = (S22−H2
21)

1/2

H31 = S31/H11

...

H jk = (S jk−
l=1

∑
k=1

H jlHkl)/Hkk

H jk = (S jk−
l=1

∑
k=1

H2
kl)

1/2

(2.3)

It means that the time series simulation is generated by linear combinations of independent
white noise processes. The matrix H acts as a weighting factor matrix for the unitary white noise
inputted. Each row gives the contribution of the inputs to a single point k, and each column gives
the contribution of a single point j to all the outputs.
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The independent white noise inputs are contained in a diagonal matrix X defined as:

X j,k( fm) =

{
eiθk,m i f j = k,

0 i f j ̸= k
(2.4)

Where θkm is the phase angle. It is a uniformly random distributed variable in the range (0,2π)

to ensure that the time series approach a Gaussian process. It depends on the point k and the
frequency m.

Finally, the time series are obtained by the inverse Fourier transform of the complex Fourier
coefficients given by the matrix equation:

V=H X 1 (2.5)

Where 1 is N× 1 vectors of ones (being N the number of output time series). Going to the
summation notation of the Eq. 2.5 we can see that the purpose of this vector is only to make the
operation along each column of H.

This equation can be expressed also as:

v j(tn) = 1
Nm

∑
M
m=1Vj( fm)e2πi fmtn (2.6)

where v j(tn) is the output time series at time tn, Nm is the total number of frequencies, and M
is the number of frequencies to be included in the simulation, and Vj( fm) is the Fourier coefficient
at frequency fm for output time series j.

Turbsim posses different models to obtain the spectral matrix S( f ) described in the following
paragraphs.

The International Electrotechnical Commission (IEC) models, as outlined in IEC 61400-1
(IEC, 1999), assume that turbulent velocity fluctuations follow a stationary random vector field
with zero mean Gaussian statistics in its components. These models are applicable for neutral at-
mospheric stability conditions and include the Von Karman isotropic turbulence model as well as
the Kaimal model for anisotropic turbulence.

The Risø smooth-terrain model (SMOOTH), developed by Højstrup (1982) and Olesen et al.
(1984), provides different equations for neutral/stable and unstable flows defining the velocity spec-
tra through the wind speed at local height. This differs from the IEC models that utilize hub-height
conditions. The NREL spectral models enhance the SMOOTH model by incorporating additional
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information, while the National Wind Technology (NWTCUP) Model computes the spectra by in-
corporating scaled versions of the SMOOTH spectra using data from the NWTC/LIST project. This
project focuses on representing turbulent inflow downstream of a significant mountain, as discussed
in Kelley et al., 2002.

The Great Plains model (GP_LLJ) supplements the SMOOTH spectra by incorporating peaks
based on measurements from a 120 m tower equipped with a sonic detection and ranging (SODAR)
instrument. This model characterizes the stable atmosphere and is detailed in Kelley et al. (2004).

The NREL Wind Farm, Upwind Model (WF_UPW) and Downwind Model (WF_14D) utilize
50 Hz wind speed measurements obtained from a 50 m tower located upwind of a large wind
farm. These measurements are used to calculate corrections that enhance the SMOOTH spectra, as
explained in Kelley (1992) with data from Kelly and Wright (1991). In the WF_14D model, the
data is collected at a distance of approximately 14 rotor diameters from the wind turbine. While,
the NREL Wind Farm, Downwind Model (WF_07D) employs the same approach as WF_14D, but
the data is collected at a distance of 7 rotor diameters instead of 14, as reported in Thomson et al.
(2012).

The tidal model is specifically designed for water turbulence. It supplements the SMOOTH
spectral form with amplitude and shear information obtained from measurements taken in the
tidally-mixed tidal boundary layer, as detailed in Thomson et al. (2012).

The API model incorporates the Frøya model spectral density (Det Norske Veritas, 2010).
This model was originally created for neutral conditions in the water. The utilization of the Frøya
spectrum may not be advisable in scenarios where stability effects exert a substantial influence.

The TIMESR relies on input files and uses time series analysis. It works by extracting the u, v
and w components of the velocity, removing their mean values, and then subjecting them to a fast
Fourier transform (FFT) to calculate spectral amplitudes and phase angles. To obtain the spectral
amplitudes at the desired points, these data are interpolated using phase angles selected from a
uniform distribution. These angles are correlated with those of a reference point obtained from the
input time series.

Finally, the USRINP model generates uniform spectra for each component of the velocity field
using a separate input file. These spectra are then scaled using the scaling factors provided in the
user-defined spectra input file.

2.3.3.3 Wind profiles

This sections describes wind profiles supported by Turbsim.

The first one, the power law wind profile is expressed in Eq. 2.7, where ū(z) is the mean wind
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velocity at height z. ū(zre f ) is the reference velocity, zre f is the reference height, and PLExp is the
input exponent used to calculate this profile.

ū(z) = ū(zre f )

(
z

zre f

)PLExp
(2.7)

The logarithmic profile, defined in Eq. 2.8, uses the surface roughness parameter Z0 and the
stability parameter Richardson number Ψm (defined in Eq. 2.9) to compute the wind velocity.

ū(z) = ū(zre f )
ln(z/Z0)−Ψm

ln(zre f /Z0)−Ψm
(2.8)

Rich =

g
θ

∂ θ̄

∂ z(
∂ ū
∂ z

)2 (2.9)

The IEC wind profile, used in Turbsim, combines the characteristics of both the power law and
logarithmic profiles. It incorporates the power law profile to determine the wind velocity within the
rotor disk, while employing the logarithmic profile for regions outside the disk. It is important to
note that this profile might introduce a discontinuity at the bottom boundary of the rotor disk.

The API wind profile is expressed in Eq. 2.10, with URe f as the reference velocity and Re f Ht
as the reference height.

ū(z) =URe f (1+0.0573
√

1+0.15URe f )ln(z/Re f Ht) (2.10)

Finally, the Low Level Jet (LLJ) wind profile is based on the LLLJP model and uses Chebyshev
polynomials to calculate wind velocity, as expressed in Eq. 2.11. A plot of these wind profiles is
shown in Fig. 2.10, which was generated using the TurbSim software.

ū(z) =
10

∑
n=0

cn ·Tn(z) (2.11)

2.3.4 Non-IEC Meteorological Boundary Conditions

When utilizing a non-IEC wind profile model in Turbsim, certain additional parameters be-
come necessary. These parameters encompass the latitude of the site, crucial for calculating the
Coriolis term. Furthermore, the friction velocity over the rotor disk, the depth of the mixing layer
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Figure 2.10: Example of wind profiles computed in TurbSim (Jonkman, 2009a)

(determined via the method proposed by Dutton et al. (1979), and the Reynolds stress components
(u′v′, u′w′, v′w′) at the hub are also required. These parameters can be designated as "default," and
for more precise values, more details are provided in Jonkman (2009a).

2.3.5 Spatial Coherence Parameters

Turbsim allows users to select from four types of spatial coherence models for each wind
component. The first is the IEC model, which is based on the work of Thresher et al. (1981). The
coherence functions for this model are defined by the expression:

Cohi, j = exp

−ak

√(
f ,r

uhub

)2

+(bk,r)2

 (2.12)

Here, k subscript represents the wind component, f the frequency, r the distance between two
grid points i and j, and uhub represents the mean velocity at hub height. Users can define the
parameters ak and bk or use default values (see Jonkman, 2009a for more details).

The General model extends the IEC model by including the term
(

r
zm

)CohExp
from Solari’s

coherence definition (Solari, 1987), which considers the mean velocities of the points instead of
the hub height velocity. The coherence function for this model is defined by:

Cohi, j = exp

−ak

(
r

zm

)CohExp
√(

f ,r
uhub

)2

+(bk,r)2

 (2.13)

Here, uhub is the mean velocity of the two points, zm is the average height, and CohExp is
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the coherence exponent. If CohExp = 0, the General model simplifies to the IEC model. The
coherence exponent influences the rate at which the coherence function diminishes with distance.
A smaller value of ’CohExp’ leads to a slower decay, whereas a larger value accelerates the decay.
Typically, a value of 0.5 is employed for CohExp corresponding to the -5/3 power-law decay of the
Kolmogorov turbulence spectrum.

The API model, based on Det Norske Veritas (2010) for wind simulations over water, is only
applied to the u component of the wind and is defined by:

Cohi, j = exp

− 1
U0

√√√√ 3

∑
k=1

A2
K

 (2.14)

Here, U0 is the reference wind speed, and Ak is a parameter that depends on the height of the
two points and a set of parameters (see Jonkman, 2009a for more details).

Finally, users can select NONE as the coherence model, which satisfies the coherence condition
with the expression:

Cohi, j =

{
1 i f i = j,
0 i f i ̸= j

(2.15)

2.3.6 Coherent Turbulence Scaling Parameters

The final section of the Turbsim input file pertains to situations where the Richardson number
exceeds 0.05. It specifies the type of coherent events (summarized in Table 2.4) and the path where
the corresponding files are stored.

Character Input Value Description
DNS Direct Numerical Simulation (DNS)
LES Large Eddy Simulation (LES)
Random Randomly chooses between LES and DNS

Table 2.4: List of TurbSim type of coherence events (Jonkman, 2009a)

This section also provides information about the properties and locations of the coherent struc-
tures. The disturbance scale parameter determines the size of the structure relative to the rotor disc,
while the lateral and vertical location parameters determine the position of the structure in space.
The minimum start time parameter specifies the earliest time step at which the structures can occur.
An example of these coherent structures is illustrated in Figure 2.11.
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Figure 2.11: Illustration of coherent structures (Jonkman, 2009a)

2.3.7 Examples of use

In this study, we employ Turbsim for two primary objectives. Firstly, OpenFAST requires wind
input data in a format compatible with the inflow module. For that reason, we utilize Turbsim to
transform the simulated wind fields, whether scalar or vector fields, into a suitable format readable
by OpenFAST. This involves providing Turbsim with the time series data for each point on the grid,
enabling the adaptation of the wind fields to the required format.

Furthermore, as discussed before, Turbsim offers the capability to simulate turbulent wind
fields, which we also explore in this study. Leveraging the available data from the anemometers
located at known positions, we can utilize the time series recorded at these points to reconstruct
the wind fields across the entire area encompassing the swept area of interest. In the following
paragraphs we will investigate the properties of this second objective reconstructing an ensemble
of 100 samples, using the data from the anemometer.

Fig. 2.12 provides an overview of the wind fields simulated using the Turbsim software. In
the runtime options, the selection of "RanLux" for the second random seed and an anti-clockwise
rotation is made. Since input time series are used, the ScaleIEC is not required in this case. Mov-
ing to the Turbine/Model Specifications section, a grid with a size of 27 × 27 points is chosen,
covering a square area with a side length of 90 meters centered at a hub height of 78 meters. The
AnalyseTime and UsableTime are set to 1024 seconds, with a time step of 4 seconds. The vertical
and horizontal angles are computed using the wind components at the hub height. In the Meteoro-
logical Boundary Conditions section, the turbulence model "TIMESR" is selected, which is based
on the anemometer time series. The wind profile used is the PowerLaw, with the reference height
considered to be the hub height. The URef value represents the average velocity at this reference
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12: Example of Wind field simulated with Turbsim. First row is a comparison between
the anemometer data and turbsim data at anemometer height (78m) ((a) u, (b) v, and (c) w), second
row is an example of the spatial distribution of the wind components at time 10s ((d) u, (e) v, and
(f) w), and the last row is the spatial distribution of the average wind speed in time ( (g) u, (h) v,
and (i) w.
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height. For the remaining sections, the default values are selected for simplicity. We use a event
recorded on 20/12/2020 during the RW_Turb measurement campaign (Section 2.2)

One noticeable observation is that the velocity input and the velocity obtained from the software
are consistent for all three components, as depicted in Figs. 2.12a, 2.12b, and 2.12c at hub height.
Examining the other figures, we can observe that all three components exhibit coherent structures
in both space and time as shown in Figs. 2.12d, 2.12e, and 2.12f. The quantitative analysis of these
structures is carried out after using the UM analysis tools presented in Section 2.6. Additionally,
a too smooth wind shear is evident in all three components, with higher values observed at greater
heights, as illustrated in Figs. 2.12g, 2.12h, and 2.12i.

It appears that upon conducting further analysis some limitations become evident in the realism
of the simulated wind fields. The next paragraphs gives a initial illustration of the limitations which
will be addressed in the next section (Section 2.6)

When we study a single point, as shown in Fig. 2.13, it becomes apparent that the scaling of
the field is poor and exhibits a lot of spreading in the spectra. This outcome is typically expected
when using a small number of samples, which is not the case here. It is likely to come from the fact
the simulated points potentially replicate the behavior of the anemometer time series used as input.

We replicate this analysis for the time series of each grid point, in order to observe the spa-
tial distribution of the UM parameters (Fig. 2.14). Although some spatial variability is initially
observed in Fig. 2.14, particularly in the presence of a wind shear trend as seen in Figs. 2.14a
and 2.14b, closer examination reveals that this variability is minimal when the magnitude of the
variation is taken into account.

These observations suggest that there may be limitations in the ability of the Turbsim software
to accurately capture the full spatial variability and scaling behavior of the wind fields. It is im-
portant to consider these limitations when interpreting the results and assessing the realism of the
simulated wind fields for specific applications. Further analysis and evaluation may be necessary
to improve the accuracy and reliability of the simulations.

2.4 Simplistic approach

2.4.1 Theoretical background

The first idea of non-Gaussian wind simulation involves the stochastic reconstruction of the
wind field from a point measurement based on well-established scaling laws(Schertzer and Love-
joy, 1985a, Schertzer and Lovejoy, 1987a, Schertzer and Lovejoy, 1989, Lazarev et al., 1994 among
others), following the methodology presented in Gires et al. (2022b). The wind fields are simulated,
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(a) (b)

(c) (d)

Figure 2.13: Analysis of one of the points of the Fig. 2.14 situated at x=-24m and z=123.31m. (a)
Spectral analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70
and 1.72 in log-log respectively). It consists in an ensemble of 100 samples and 1024 time steps.
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(a) (b)

(c) (d)

Figure 2.14: Spatial distribution of UM parameters retrieved on the analysis of the Turbsim wind
fields. (a) α , (b) C1, (c) r2, and (d) H. The parameters are retrieved on an ensemble of 100 samples
using the anemometers time series recorded on 20/12/2020. See the text for description of the
specifications of the simulation
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in a very simplistic approach (oversimplified, see section 2.4.3 for more details), at any location
adding the product of a prefactor, a random UM fields (both ε and φ ), and the distance increments
raised to the respective scaling exponents to the data obtained from the available anemometer point.
Under these assumptions, the initial 3D wind field model can be expressed as:

u(x+∆x,y+∆y,z+∆z, t) = u(x,y,z, t)+ cεxεx(x+∆x,y+∆y, t)ah∆lHh + cφxφx(z+∆z, t)av∆zHv

v(x+∆x,y+∆y,z+∆z, t) = v(x,y,z, t)+ cεyεy(x+∆x,y+∆y, t)ah∆lHh + cφyφy(z+∆z, t)av∆zHv

w(x+∆x,y+∆y,z+∆z, t) = w(x,y,z, t)+ cεzεz(x+∆x,y+∆y, t)ah∆lHh + cφzφz(z+∆z, t)av∆zHv

(2.16)

Where u, v, and w are the 3D wind components, l =
√

x2 + y2 is the traditional horizontal
distance to the anemometer, ε is the kinetic energy flux with a scaling exponent ah = 1/3 and φ is
the buoyancy force flux density with scaling exponent av = 1/5. Hh and Hv are the anisotrophic
exponents obtained from the literature. In the horizontal case, Hh = 1/3 (Kolmogorov, 1941 and
Obukhov, 1941) and in the vertical case, Hv = 3/5 (Bolgiano Jr, 1959 and Obukhov, 1959). More
details can be found in section 1.3.1.1. For more details about the generator, please refer to the
UM simulation section (section 1.3). Kinetic energy and buoyancy force fluxes are considered
independent.

Initially, we started with the isotropic case adapting the expressions of Eq. 2.16 to:

u(x+∆x,y+∆y,z+∆z, t) = u(x,y,z, t)+ cεxεx(x+∆x,y+∆y,z+∆z, t)ah∆lHh

v(x+∆x,y+∆y,z+∆z, t) = v(x,y,z, t)+ cεyεy(x+∆x,y+∆y,z+∆z, t)ah∆lHh

w(x+∆x,y+∆y,z+∆z, t) = w(x,y,z, t)+ cεzεz(x+∆x,y+∆y,z+∆z, t)ah∆lHh

(2.17)

where l becomes
√

x2 + y2 + z2

Finally as we are interested on the simulation of the wind fields in a grid over a 2D plane which
cover the swept area of the wind turbine blades, we reduce the expressions to a 2D case in Eq. 2.18
using only axis x and z.

u(x+∆x,z+∆z, t) = u(x,z, t)+ cεxεx(x+∆x,z+∆z, t)ah∆lHh

v(x+∆x,z+∆z, t) = v(x,z, t)+ cεyεy(x+∆x,z+∆z, t)ah∆lHh

w(x+∆x,z+∆z, t) = w(x,z, t)+ cεzεz(x+∆x,z+∆z, t)ah∆lHh

(2.18)

where l becomes in this case to
√

x2 + z2
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The kinetic energy flux, ε , is simulated as a UM field using discrete cascades. For that, first we
analyse the data recorded by the two anemometers in the RW-Turb measurement campaign (section
2.2) located at a vertical distance of approximately 33 meters in order to obtain the UM parameters
required as input for the simulation. Specifically, looking at Eq. 2.18 we decide to analyse the
difference between the data from both anemometers since the terms cε and ∆lHh act as a prefactors
and they do not change the properties of the field. Fig. 2.15 shows an example of this analysis.

(a) (b) (c) (d)

Figure 2.15: Illustration of analysis of the differences between the two anemometers. (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The studied data consists of an ensemble of 100 samples with 256 points
covering the range of scales 4-1024s. Input data is a 17 min event recorded on 20/12/2020.

Once the inputs are known we can obtain a field with positive and negative values using a
standard “complex trick” stated in Schertzer and Lovejoy (1995):

X = Real [logX1 + iX2] (2.19)

Where X1 and X2 are two fields simulated using the same properties.

Finally, we use the data of the two anemometers in order to obtain the prefactor cε empirically
reformulating Eq. 2.18 as:

cε =
|u(x+∆x,z+∆z, t)−u(x,z, t)|

εah∆lHh
(2.20)

To select the cε value, we simulate a set of 100 samples of ε fields for different periods (17-
minute intervals). Finally we calculate cε .

To select the value cε , we simulate an ensemble of 100 samples of ε fields for different periods
(intervals of 17 minutes). Finally we calculate cε as the average of the results obtained with Eq.
2.20 using each of the fields and the data of the two anemometers. Fig. shows an illustration of the
temporal evolution of the this parameter. For the following, we set cε = 1.15 which is the average
of the whole time series.

110



2. Wind Simulation

Figure 2.16: Temporal evolution of average cε computed using Eq. 2.20 and 100 samples for each
time interval (17 minutes).

2.4.2 Example of simulations

This methodology enables the simulation of the wind field across all points in a grid. An
example (using a 17 min event recorded on 20/12/2020, with UM parameters α = 1.93, C1 = 0.066
(Fig. 2.15) and cε = 1.15 (as mentioned in previous section) is illustrated in Fig. 2.17, which
displays three consecutive time steps of the wind simulation. It can be observed that each point
in the grid exhibits different values, but there are no extreme differences from one time step to the
next. Moreover, this methodology allows for the generation of an ensemble of wind speed time
series at all points in the grid. Fig. 2.18 provides an example of such an ensemble of 10 samples at
three points located at increasing distances from the anemometer data (centered on the grid). The
points are represented by blue, green, and red lines, corresponding to distances of 3 meters (blue),
24 meters (green), and 45 meters (red), respectively (as the field is isotropic the distance can be
taken in any direction). From this figure, it is visible that as the distance from the anemometer data
increases, the differences between the simulated field and the original data also increases, as it is
expected.

To assess the performance of the model, we conducted an ensemble simulation consisting of
100 samples. For each sample involved, we compute wind time series in each point over a grid
with 27x27 pixels, covering a square area of 90 meters on each side. The length of the simulated
time series was set to 17 minutes, which is close to the typical 10 min average time used in wind
power production industry (Burton et al., 2011, among others).

To validate the model’s performance, we conducted two types of analysis. The first type in-
volved a statistical analysis, calculating the 10th, 50th, and 90th percentiles of the wind velocity
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(a) (b) (c)

Figure 2.17: Spatial distribution of wind field on the 3 consecutive time steps simulated using Eq.
2.18 using a 17 min event recorded on 20/12/2020

and wind increments. Fig. 2.19a and 2.19b provide illustrations of these percentiles. Fig. 2.19
shows that as the distance from the anemometer increases, both the wind increments (Fig. 2.19b)
and the wind velocity (Fig. 2.19a) increase. We compared the average difference between the data
from the two anemometers located at different heights and found approximately 0.78 m.s−1 which
is similar to the 0.8 m.s−1 found for the difference between the anemometer and simulation data
(computed at the distance between the anemometers).

The second type of analysis conducted to validate the model is a UM analysis (section 1.4). For
this analysis, we performed it on the ensemble time series at each pixel of the grid. This approach
allows us to compute the spatial distribution of the UM parameters and compare them with the
parameters obtained from the real data. Results are displayed in Fig. 2.20 for the same event that
started on 20/12/2020 The UM parameters obtained from the anemometer data were α = 1.93 and
C1 = 0.009. The simulated fields showed a maximum difference of 0.02 with respect to α and 0.07
respect to C1. Despite these small differences , it is possible to see a radial trend in the distribution
of the parameters.

2.4.3 Limitations

It is important to acknowledge that while this model serves as a foundation for creating a 3D
wind field model with anisotropy (even if only the isotropic case is used in the previous sections), it
is inherently limited by the numerous simplifications it employs. They are described in Gires et al.,
2022b and are summarized here. Consequently, the model may not capture the full complexity of
real-world wind fields.

In this simplistic simulation, we use a discrete scalar cascade, which introduces its own limita-
tions, notably the non translation invariance issue (Gires et al., 2020). It also forces us to oversim-
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Figure 2.18: Ensemble of 10 wind time series at 3 different distances from available anemometer
location. 3 meters (blue), 24 meters (green), and 45 meters (red) using a 17 min event recorded on
20/12/2020

plify the concept of general scaling invariance (GSI).

The flux density ε is defined only along three independent directions (εx,εy, and εz), which
is a strong assumption because it should be done in all direction with correlated components. In
addition, Eqs. 2.16 to 2.18 replace equalities in distribution with deterministic equalities, oversim-
plifying the dynamics of the system.

Assuming independence between ε and φ introduces a second isotropic scaling, which results
in a linear crossover when changing scales. However, both density fluxes are considered at the
simulation resolution, rather than at the pair resolution scale. This introduces a statistical bias in
the simulation. Additionally, considering them at arbitrary locations (x+∆x,y+∆y, and z+∆z)
introduces an asymmetry that negatively impacts the simulation.

Regarding time scales, all time steps are assumed to be independent, except for the empirical
velocity measured by the 3D anemometer.

The inclusion of scalar anisotropic cascades may address some of these issues, but to overcome
all limitations, an extension to vector fields (Schertzer and Tchiguirinskaia, 2015 and Schertzer and
Tchiguirinskaia, 2020) will be necessary as it is discussed in Section 1.3.4.
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(a) (b)

Figure 2.19: Percentiles 10, 50 and 90% of (a) simulated wind time series and of (b) Wind incre-
ments at different distances from anemometer data using a 17 min event recorded on 20/12/2020

(a) (b)

Figure 2.20: Spatial distribution of the UM parameters retrieved on the analysis of wind fields
simulated with the help of the simplistic approach using a 17 min event recorded on 20/12/2020.
(a) α and (b) C1.
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2.5 The Fractionally Integrated Flux (FIF)

Figure 2.21: Scheme of the process followed to simulate wind fields using FIF approaches

For the simulation of the wind fields, we have developed two different approaches based on the
same principles, in which the wind fields (or their fluctuations) are simulated as non-conservative
fields (as discussed in the section 1.3.3.3 and Schertzer and Lovejoy, 1997). Both approaches start
with the data from the RW-Turb measurement campaign as the initial point. Fig. 2.21 shows a
descriptive scheme of both approaches which detailed in the following sections.

2.5.1 FIF on direct fields

The first approach is traditionally known as Fractionally Integrated Flux (FIF) (Schertzer and
Lovejoy, 1997). First, it is needed to analyse the data (from the anemometer) in order to obtain the
parameters required in the simulation as inputs (α , C1, and, H, while a is set as 1/3 as it is suggested
in Kolmogorov, 1941). Once the field is simulated using those parameters, it is re-normalized to
obtain a field with the desired mean. Fig. 2.22 shows an example of time series of fields simulated
for target velocity equal to 9.5 ms−1.

This methodology allows us to reproduce the properties that were retrieved in the analysis (Fig.
2.5). For the comparison we simulate an ensemble of 100 samples using 256 points in temporal
dimension (to cover the range of scales 4 - 1024 seconds). Fig. 2.23 illustrates the comparison
between the simulation and real data for each average velocity interval. For the correction of the
fields we use the methodology reviewed in Section 1.4.3.3.

One notable observation is the good agreement between the simulated and real data for α and
C1 (Figs. 2.23a and 2.23b), both before and after the correction, specially after the correction, for
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Figure 2.22: Example 5 realisations of five 17-minutes wind fields simulated using FIF approach
for target average wind speed 9.5 ms−1. The input parameters are retrieved from the analysis an
ensemble of 100 samples of wind fields with 9.5 ms−1 average velocity.

all range of velocities. The r2 (Fig. 2.23c) values also exhibit good agreement after the correction,
while before the correction the simulated fields exhibit poor scaling (which is expected for the value
of H inputted in the simulation). Finally the value of H (Fig. 2.23d) presents a better agreement
before the correction (as it is imposed to be), since the simulated fields after the correction present
H ≈ 0 (consistent with theoretical results).

2.5.2 Reconstruction of Fluctuations (RoF)

The second approach is also based in the FIF approach, however, it differs from the first ap-
proach in terms of its objective. While the first approach aims to simulate directly wind fields, the
focus of this second approach is to simulate their fluctuations and subsequently "reconstruct" the
wind fields using these fluctuations. To initiate this approach, the wind field data obtained from
the anemometer is used, and the fluctuations are computed. To ensure that we are working with
a conservative field, a fractional integration is performed on the fluctuations data (Schertzer and
Lovejoy, 1997, Fitton, 2013).

Once the fractional integration is performed, we follow the same methodology as the first
approach. We use the parameters retrieved from the UM analysis of these conservative fluctuations,
and a = 1/3, but in this case, the value of H is set to 0 since the field is conservative. The field
is then fractionally differentiated (with the same order as the integration) to obtain the simulated
fluctuations. In order to simulate a field with positive and negative values we use Eq. 2.19. See
bottom part of Fig. 2.21 and Fig. 2.24 for an illustration of the process

After simulating the fluctuations, we can reconstruct the direct wind fields by applying the
inverse process, i.e. the field at the time t is computing adding the simulated field to the field at
time t− 1 and doing it for all the time steps. However, a crucial aspect is determining the initial
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Figure 2.23: Evolution of the UM parameters with the wind speeds in the simulation using the FIF
approach. Real fields are plotted in blue and simulated one are plotted in orange. Direct fields are
plotted in dashed lines and corrected fields using methodology reviewed in 1.4.3.3 are plotted in
solid lines. Ensembles of 100 samples for each wind class are used. a) shows the evolution of α ,
b) shows the evolution of C1, c) shows the evolution of r2, and d) shows the evolution of H.
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state of the field. Given that the average of the field’s fluctuations is zero by definition, we choose
to initialize the field using the desired average wind speed that we aim to achieve in the simulation.
Fig. 2.24 shows an example of each step of the process for simulating wind fields with 9.5 ms−1

average velocity.

Figure 2.24: Example of each step of the process used for the simulation of the wind field using
RoF approach. In this example a wind fields with 9.5 ms−1 average velocity is used.

Fig. 2.25 presents a comparison between the simulation and the real data, showing a good
agreement between all the parameters with errors lower than 10% (C1 error is bigger due to the
small values of the parameter). This indicates that the second approach is also capable of reproduc-
ing the properties observed in the analysis of the fluctuations of the wind field. It is important to
note that Fig. 2.25c exhibits poor scaling behavior. However, this is actually the expected outcome,
considering that the field was fractionally integrated with a negative value of H (as described in
Section 1.4.3.3) in an attempt to replicate the properties of fluctuations. The poor scaling behavior
in this case is a good agreement between the simulated field and the real field.

For the comparison we use again a 100 samples ensemble of time series with 256 points in
the temporal dimension (as in Section 2.5.1). This comparison is showed in Fig. 2.26 which once
again demonstrates the good agreement between the simulation and the real data after applying the
necessary corrections. This approach shows results slightly worse than with the previous approach.
For parameter α (2.26a), the simulated field exhibits similar values than the real one after 3.5 ms−1

while for C1 (2.26b) there is a good agreement in all range of velocities. The scaling behaviour
(2.26c) is similar to the one found in the FIF approach. Finally the parameter H (2.26d) shows
a higher values for the simulated field, after the correction, again the values tends to 0 (which is
consistent with the simulations). Furthermore, initializing the process with the target average wind
speed enables to retrieve the the desired results as Fig. 2.27 shows.

This methodology can be applied to various applications beyond wind field reconstruction.
For instance, it can be used for stochastic nowcasting extending the existing time series based on
known initial conditions. An example of this functionality is illustrated in Figure 2.28, in the panel
Fig. 2.28a only one example is shown while in the Fig. 2.28b 5 different scenarios are plotted to
illustrate the variability between samples. In this case, the simulated field utilizes the properties
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Figure 2.25: Evolution of the UM parameters with the wind speeds in the simulation of the fluc-
tuations of the wind fields. Real fields are plotted in blue and simulated one are plotted in orange.
Ensembles of 100 samples for each wind class are used. (a) shows the evolution of α , (b) shows
the evolution of C1, (c) shows the evolution of r2, and (d) shows the evolution of H.
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Figure 2.26: Evolution of the UM parameters with the wind velocities in the simulation using the
RoF approach. Real fields are plotted in blue and simulated ones are plotted in orange. Direct fields
are plotted in dashed lines and corrected fields using methodology reviewed in 1.4.3.3 are plotted
in solid lines. Ensembles of 100 samples for each wind class are used. (a) shows the evolution of
α , (b) shows the evolution of C1, (c) shows the evolution of r2, and (d) shows the evolution of H.
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Figure 2.27: Comparison between the average velocity retrieved in the ensemble of the simulated
wind fields and velocity used to initialize the simulation.

obtained from the initial field to generate the subsequent fields since the scaling properties are
preserved. Fig. 2.28b shows that all the samples are close near the transition and after spread
in a different possible scenarios which may confirm a limit in the predictability. However, this
functionality is not explored in details since it is outside the scope of the PhD.

Both methodologies can be extended to the multidimensional case as soon as the simulated
fluxes can be simulated not only in 1D (refer to the section 1.3 more details). Moreover, this
process is not limited to the scalar case, we can extend also to the vector process with help of the
Clifford Algebra adapting the equations to vectors as is mentioned in Section 1.3.4.

2.6 Comparison between the methods

In this final section, we compare the wind field simulations obtained with all the methods
discussed in this chapter. It is therefore important to summarise how they are simulated in order
to better understand the subsequent comparison. The first thing to note is that both the Turbsim
software and the simplistic approach use a single event (located at the centre of the grid) to simulate
the entire wind field on the grid, while both FIFs (which we will distinguish by calling them FIF
and RoF, respectively) use the properties recovered in the analysis of a large number of events with
the same mean velocity.

We conducted two types of analysis. First, given the unavailability of actual data for evaluating
the outcomes produced by different models, we will make the assumption that the UM properties
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(a) (b)

Figure 2.28: Example of extension (i.e. nowcasting) of wind fields. (a) shows the example of the
extension of one field, starting point is 1024. (b) shows 5 different examples to show variability
between samples

of each point on the grid should exhibit similarity in temporal dimension. Consequently, we will
utilize the spatial distribution of these parameters as a basis for comparison, i.e. the parameters
obtained with the analysis of time series of each pixel of the grid. These parameters are plotted in
2D maps (Figs. 2.30- 2.32).

The second method consists of analysis in the spatial dimension, i.e. analyzing 2D samples and
considering each time step as a sample, where we expect to obtain parameters similar to those in the
temporal dimension (taking into account spatio-temporal anisotropy). All analyses are performed
using a set of 100 samples and corrected using the algorithm reviewed in Section 1.3.3.3. To be
consistent Turbsim and simplistic approach use the same event recorded on 20/12/2020 (starting at
approximately 19h 54min) and FIFs methods use fields simulated for the same average velocity as
this event. The UM parameters obtained are α = 1.93, C1 = 0.028 and H = 0.28.

2.6.1 Temporal analysis of each pixel

The fields simulated for this section consist in an ensemble of 100 samples and 27×27×256
where the 27 are the points in space dimensions and 256 are the points in time dimension.

The primary distinction between the models becomes evident in the quality of the scaling as
indicated by the coefficient of determination of the TM graph. Turbsim (Fig. B.2.8i) shows the
worst scaling with values of r2 ∼ 0.97, this is consistent with the behaviour showed in Fig. 2.13
related to the possibility that each point replicates the properties observed in the center of the grid.
This poor scaling is observed also in the center of the grid for the Simplistic approach (Fig. B.2.8i)
but with rather good scaling away from the center which is again expected due to the method of
simulation. The remaining two methodologies exhibit consistent scaling throughout the entire grid,
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finding the best scaling in the FIF since the second approach shows poor scaling at isolated points.

Focusing on the variable α , interesting results can be observed. Although the values are rel-
atively similar in scale, discernible trends in their distribution can be identified, which are closely
related to the simulation method employed.

In the case of the simplistic approach, a radial trend is noticeable, whereas Turbsim exhibits an
increasing trend with height. The remaining two methods display a more random pattern. However,
in Fig. 2.30b, certain structures become apparent, while in Fig. 2.30c, each point appears distinct
from its neighboring points. In simplistic approach, FIF and Turbsim (Figs. 2.30a, 2.30b and 2.30d,
respectively) the difference are minimal with values around 0.02 which less than 1%. In RoF, the
differences are larger but still remain below 10%. All the cases show a good agreement with the
expected values (α = 1.93) for wind fields of 11.2 ms−1.

Similar behavior can be observed in Fig. 2.31 for C1, where the trends described earlier remain
visible. Notably, in the case of Turbsim, the parameter exhibits a decrease with increasing height.
It is worth noting that the differences in this parameter are similar across all the methods. Again
all the methods show a good agreement with the expected value (C1 = 0.028) with an slight under-
estimation observed in the simplistic approach, and overestimation in the other methods. Yet,these
are very small differences in absolute values.

With regards to the parameter H (retrieved in the analysis of the original field), the trends
persist in the simplistic approach but are not apparent in Turbsim. Particularly in this scenario, the
spatial differences are more pronounced in the simplistic approach, and in RoF approach. In terms
of agreement with the expected values (H = 0.28) both FIFs approach show better agreement with
closest results obtained with the help of the direct approach. Simplistic approach (2.29a) shows an
underestimation of this parameters while Turbsim (2.32d) shows an overestimation which can be
understood as over fluctuating fields in simplistic approach and under fluctuating field in Turbsim.

In summary, as an overall observation, Figs. 2.30-2.32 reveal a satisfactory spatial agreement
among the models in terms of the differences observed. It is important to note that the panels related
to Turbsim and the Simplistic approach (in Figs. 2.30-2.32) serve solely as an illustration of the
tendencies observed in the methods. However, we have conducted these analyses over 10 different
wind events, yielding consistent results. For a comprehensive collection of all these figures, please
refer to Appendix B.

2.6.2 Spatial analysis

In the previous section, the number of points available for the analysis of the spatial dimension
was not sufficient. To address this limitation, in this section, we will utilize fields with dimensions
of 128×128×128, where the temporal dimension (i.e. the successive time steps) is employed as
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(a) (b)

(c) (d)

Figure 2.29: Spatial distribution of r2 using different methods of wind simulation. (a) simplistic
approach, (b) FIF approach, (c) RoF approach and, (d) Turbsim.
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(a) (b)

(c) (d)

Figure 2.30: Spatial distribution of α using different methods of wind simulation. (a) simplistic
approach, (b) FIF approach, (c) RoF approach and, (d) Turbsim.
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(a) (b)

(c) (d)
2

Figure 2.31: Spatial distribution of C1 using different methods of wind simulation. (a) simplistic
approach, (b) FIF approach, (c) RoF approach and, (d) Turbsim.
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(a) (b)

(c) (d)

Figure 2.32: Spatial distribution of H using different methods of wind simulation. (a) simplistic
approach, (b) FIF approach, (c) RoF approach and, (d) Turbsim.
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samples. Figs. 2.33-2.36 show an illustration of this analysis and the summary results are collected
in Table 2.5.

(a) (b)

(c) (d) (e)

Figure 2.33: UM analysis in the spatial dimension of an ensemble of 100 samples simulated with
Simplistic approach using the event of 20/12/2020 as input. (a) and (b) Spectral analysis, before
and after the correction respectively (Eq. 1.21 in log-log), (c) TM (Eq. 1.6 in log-log), (d) and (e)
DTM (Eqs. 1.70 and 1.72 in log-log respectively).

Upon examining Table 2.5, one can observe that all the methods demonstrate good scaling
behaviour in the spatial dimension, with r2 = 0.99 in all cases. This finding is further supported by
panels c) and d) of Figs. 2.33-2.36.

Regarding the parameter α , the results obtained align with expectations for FIFs methods and
simplistic approach. The FIF method exhibits a slight underestimation, while the fluctuations ap-
proach and the simplistic method show a slight overestimation. However, in the case of Turbsim,
there is a significant bias from the expected value of α = 1.93 which shows some limitations in the
ability to capture expected spatial structure by this software.

For C1, we obtain a better agreement between the methods. For the expected value we have
to take into account the anisotropy between space and time, in this case C1space = C1time/(1−Ht)

(Schertzer and Lovejoy, 1987a) which yields to a C1space = 0.04. Although the value obtained by
the Simplistic approach is not far from the value, there is a significant difference since the expected
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(a) (b)

(c) (d) (e)

Figure 2.34: UM analysis in the spatial dimension of an ensemble of 100 samples simulated with
FIF using the properties of fields with average velocity 11 ms−1 as input. (a) and (b) Spectral
analysis, before and after the correction respectively (Eq. 1.21 in log-log), (c) TM (Eq. 1.6 in
log-log), (d) and (e) DTM (Eqs. 1.70 and 1.72 in log-log respectively).

Method α C1 r2 H Horiginal

Simplistic 1.98 0.01 0.99 0.11 -0.31
FIF 1.90 0.04 0.99 0.08 0.38
RoF 1.98 0.04 0.99 0.07 -0.41

Turbsim 1.44 0.04 0.99 0.39 0.65

Table 2.5: Summary of the UM parameters obtained in the analysis of the spatial dimension of the
different methods
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(a) (b)

(c) (d) (e)

Figure 2.35: UM analysis in the spatial dimension of an ensemble of 100 samples simulated with
RoF approach using the properties of fields with average velocity 11 ms−1 as input. (a) and (b)
Spectral analysis, before and after the correction respectively (Eq. 1.21 in log-log), (c) TM (Eq.
1.6 in log-log), (d) and (e) DTM (Eqs. 1.70 and 1.72 in log-log respectively).
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(a) (b)

(c) (d) (e)

Figure 2.36: UM analysis in the spatial dimension of a ensemble of 100 samples simulated with
Turbsim using the event of 20/12/2020 as input. (a) and (b) Spectral analysis, before and after the
correction respectively (Eq. 1.21 in log-log), (c) TM (Eq. 1.6 in log-log), (d) and (e) DTM (Eqs.
1.70 and 1.72 in log-log respectively).
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value for the spatial dimension was expected to be greater than the value obtained in the temporal,
yet the obtained value is lower.

For the parameter H, we will consider the values before the correction. In this case, the FIF
method is the only one that retrieves expected results. The Simplistic approach and the RoF ap-
proach yield negative values, which are not in line with expectations. Additionally, Turbsim pro-
vides higher values than expected.

Similar results are obtained for other events.

2.7 Summary

In this chapter we have analysed high-resolution 3D anemometer data, collected in the frame-
work of the RW-Turb project measurement campaign, to retrieve the UM properties which were
needed for the wind simulation. Ensemble analysis of samples with similar mean wind velocity
was implemented. A good scaling is found over the range of scales 4-1024 s (∼ 17 minutes) which
was therefore used for simulations. A trend in the scaling quality (low quality scaling for wind
below 4 m.s−1) and UM parameters (increase of α and H, decrease of C1 up to 4 m.s−1 before
reaching a plateau) with the mean wind velocity is found, but it disappears after applying the data
correction suggesting that only the degree of non-conservation H changes with increasing mean
wind velocity. The results of these analysis were used for two purposes: first to serve as input to
the simulations and second for checking the validity of the simulations by comparing same analysis
results with them.

Using directly the wind fields and/or its retrieved UM properties, four distinct wind simula-
tion methods have been tested. The first method uses the Turbsim software, developed by NREL,
to reconstruct a wind grid over the turbine’s swept area using the time series obtained from a
high-resolution 3D anemometer. However, this method relies on Gaussian statistics that does not
accurately capture the wind’s actual variability across scales. The second method also relies on the
use of a wind time series, but incorporates established scaling laws. More precisely, the wind field
at any location is obtained by adding to the data, the product of a prefactor, a random UM field
and distance increment raised to scaling exponents, allowing for the inclusion of non-Gaussian
statistics. Despite showing promising results, this method involves several too drastic simplifi-
cations. The last two methods are based on the Fractionally Integrated Flux (FIF) principle but
differ in their approach. The first method focuses on directly simulating wind fields. It uses the
UM properties of the wind field (α , 1, and H) to simulate the wind field as a non-conservative
field renormalized to obtain the desired mean. The second method begins by simulating wind’s
fluctuations. It uses the UM parameters obtained in the analysis of the fluctuations, after applying
the appropriate required corrections, to simulate conservative fluctuations converted into synthetic
fluctuations (using a fractional integration) from which the wind fields are reconstructed. Both
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methods exhibit good agreement between the observed properties of real wind and the simulated
fields, with the first method demonstrating slightly superior outcomes. The fields simulated with
all methods were subjected to UM analysis of time series for each pixel over the swept area by
the blade, as well as spatial analysis for each time step. When comparing the different methods,
similar results are observed in the UM parameters maps which shows the temporal analysis of each
pixel of the grid. However, noticeable differences emerge in spatial analysis. After correction, all
non-Gaussian methods exhibit similar properties, but only the FIF simulation yields the expected
results, while the Turbsim results deviate significantly. Consequently, it is concluded that the FIF
direct simulation method yields the most realistic simulated wind fields.
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Chapter 3

Modelling chains

3.1 Introduction

Wind modelling is an important tool for understanding and predicting the behaviour of wind
farms as long as wind turbines extract the wind’s kinetic energy, converting it into mechanical en-
ergy. Mechanical torque is widely used to measure the performance of wind turbines. A better
understanding of the wind fields can improve different important aspects in the wind energy indus-
try (Bilendo et al., 2023), such as the characteristic of wind turbines used in a wind farm (Sohoni
et al., 2016) or the performance of the wind farm, e.g. through capacity factor estimation which
measures the ratio between the maximum power produced by the farm and the average output (Song
et al., 2019. Improving the wind modelling tools also improves the reliability of the power delivery
reducing "overestimation" and "underestimation" of the power (Zeng and Qiao, 2012) caused by
the extreme variability of the wind fields.

Many authors in recent years have reported overestimation in the wind power production be-
tween 10 and 20% due to the effect of the wind turbulence (Pope and Pope, 2000, Barthelmie et al.,
2006, Kaiser et al., 2007, Stival et al., 2017 among other), this is not only reduced to the impact on a
single turbine but also plays a significant role in the wind farms where wind gusts do not impact all
the turbines at the same time (Ackermann, 2005). The intermittent nature of the wind fields causes
that the convectional methods of power production performs in a sub-optimal regimes (Albadi and
El-Saadany, 2010).

However, there is a lack of knowledge on the small scales wind modelling and how the wind
interacts with the wind turbine (Van Kuik et al., 2016, Veers et al., 2019). Several authors have
investigated this interaction by conducting combined analyses of power and wind using numerical
simulations at various scales. Their work has revealed that certain wind characteristics, such as
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intermittency, are transferred to wind power output and can even exert a dominant influence on
turbine loads (Wächter et al., 2012 Milan et al., 2013, Milan et al., 2014, Calif and Schmitt, 2014
). Torque can serve as a turbine controller, as it helps mitigate extreme load conditions and enables
more stable operation with a faster response to aerodynamic changes, such as wind gusts, compared
to other controlling types (Bossanyi, 2003, Zhang et al., 2018).

To investigate the impact of wind field variability on wind power production, we compared
three modeling chains with increasing complexity for calculating the mechanical torque generated.
The first two modeling chains rely solely on wind speed and the geometric properties of the wind
turbine. The first one takes into account only temporal variability and computes torque using the
velocity field at a single point, typically at hub height. This approach is widely used in the literature
(Sørensen et al., 2002; Johnson, 2004; Fan et al., 2009; Manwell et al., 2010; Burton et al., 2011;
Fu et al., 2018; Wu et al., 2019; Gumilar et al., 2020 to mention some examples). The second
modeling chain is based on the angular momentum definition, allowing us to consider both spatial
and temporal variability by computing torque at each point of the blade and then integrating (Dolan
and Lehn, 2006;Burton et al., 2011; Chaudhary et al., 2014; Akbari et al., 2022). The final modeling
chain employs the more realistic software OpenFAST (Jonkman et al., 2022), which integrates
multiple modules, enabling non-linear aero-hydro-servo-elastic simulations in the time domain.

OpenFAST software is widely used in industry and research to simulate operational situations
or to compare analytical results with experimental measurements. To this end, the authors mod-
elled turbines with different geometries and characteristics in OpenFAST, which can be used as a
reference (Rinker and Barter).

Numerous researchers have employed OpenFAST, or its antecedent version, FAST, in various
configurations to establish the dependability of this software under practical initial conditions. For
instance, investigations have been conducted on land-based reference wind turbines (Bortolotti
et al., 2019), offshore wind turbines (Mendoza et al., 2022), and with data obtained from a small
wind farm comprising five 1.5 MW turbines (Shaler et al., 2020). Other researchers, including
Oguz et al., 2018 and Damiani et al., 2018, have evaluated OpenFAST using diverse metrics, such
as the natural periods of pitch and surge, as well as Damage Equivalent Loads (DELs) and extreme
loads, and have established a strong correlation between experimental outcomes and OpenFAST
simulations.

Moreover, sometimes empirical data, which is needed to validate new approaches and tools, is
not available, or is too costly to obtain. In these scenarios OpenFAST is widely used to provide
"pseudo" wind turbine data under "real" operational conditions. Some examples of this type of
use can be found in Golparvar et al., 2021, López-Queija et al., 2022, Moynihan et al., 2022, and
Xiaohang et al., 2022 where this software provides the data required to validate new models and
tools for different applications such as estimation of the forces, measurement of blade deflections
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and performance of offshore wind turbines.

To describe the modelling chains used, we start with theoretical description of the the general
concepts common to the three modelling chains. After that, we describe the particularities of
each modelling chain, starting with the simplest one and increasing in complexity, followed by
a validation. This section will be carried out through several tests to prove the validity of the
modelling chains over different input parameters. Finally we present the results obtained using the
wind fields simulated in the previous chapter.

3.2 Modelling chains

3.2.1 Theoretical background

During the extraction of a portion of its kinetic energy, the wind is slowed down when it passes
through the wind turbine swept area (called the actuator disc from now). Due to the fact that
the wind acts as an incompressible fluid, the effective area must be expanded. Downstream the
wind turbine, the wind gradually slows down with the corresponding increase of the area until the
equilibrium is reached and the static pressure becomes the environmental pressure again. The mass
of air that does not pass through the actuator disc is not affected by this slowdown; hence, it creates
a circular cross-section tube where the airflow is contained (scheme in Fig. 3.1a).

(a) (b)

Figure 3.1: Scheme of the control volume used in the wind turbine, (a) Scheme of circular cross-
section tube, and (b) Lateral section of the tube. Subscript ∞ represents the conditions upstream,
subscript d the conditions at actuator disc, and subscript w the conditions at far wake. (Adapted
from Burton et al., 2011)

3.2.1.1 Conservation of mass

Analyzing the aerodynamic behaviour of the general energy extraction process, we can distin-
guish three relevant zones, an expansion zone where the cross-section expands from the upstream
conditions to the actuator disc, the disc itself, and a gradual expansion zone downstream the actu-
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ator disc called wake zone (see scheme in Fig. 3.1b). Since the mass flow must be constant along
the tube, we have:

ρA∞U∞ = ρAdUd = ρAwUw (3.1)

Where ρ (kg/m3), the air density, is considered constant over the volume (assumption of in-
compressible flow), A (m2) represents the cross section area, and U (m/s) the velocity. Subscript ∞

represents the conditions upstream, subscript d the conditions at actuator disc, and subscript w the
conditions at far wake.

It is generally considered that the actuator disc induces a change in the free stream velocity
related to−U∞ab (Burton et al., 2011) where ab is the axial flow induction factor (or inflow factor).
Then the velocity at the actuator disc can be expressed as:

Ud =U∞(1−ab) (3.2)

3.2.1.2 Momentum theory

In general, when a mass of air crosses a disc, it experiences a change in velocity that results
in a rate of change of momentum equal to this velocity change multiplied by the mass flow rate
(Burton et al., 2011). In this case, the rate of change of momentum undergone in the extraction
process (Fig. 3.1) can be expressed as:

rate o f change o f momentum = (U∞−Uw)ρAdUd (3.3)

Given that the tube is enveloped by air at atmospheric pressure levels, all the change in momen-
tum arises from the pressure difference between the upstream and downstream sides of the disc,
which yields:

(p+d − p−d )Ad = (U∞−Uw)ρAdU∞(1−a) (3.4)

Where p (Pa) is the pressure.

Bernoulli’s equation states that the total energy of the an incompressible flow is constant under
steady conditions along a streamline. It consists of three terms: kinetic energy, static pressure
energy and gravitational energy, so for a unit volume of air we have:

1
2

ρU2 + p+ρgh = constant (3.5)
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This equation allows us to compute the difference of pressure (p+d − p−d ) using Bernoulli equa-
tion both upstream and downstream:

1
2

ρU2
∞ + p∞ +ρgh∞ =

1
2

ρU2
d + p+d +ρghd (3.6)

For upstream conditions, and considering an horizontal wind (h∞ = hd), we have:

1
2

ρU2
∞ + p∞ =

1
2

ρU2
d + p+d (3.7)

With the same reasoning, downstream the wind turbine, we obtain:

1
2

ρU2
d + p−d =

1
2

ρU2
w + p∞ (3.8)

Subtracting these equations:

(p+d − p−d ) =
1
2

ρ(U2
∞−U2

w) (3.9)

And coming back to Eq. 3.4

1
2

ρ(U2
∞−U2

w)Ad = (U∞−Uw)ρAdU∞(1−ab) (3.10)

which yields:

Uw =U∞(1−2ab) (3.11)

3.2.1.3 Power coefficient

We can define the available power for a wind turbine as the maximum power that can be ex-
tracted from the not-disturbed (not affected by the presence of the turbine) wind flow. However,
as shown in the previous section, the actuator disc induces a decrease in the wind speed, which is
translated into a decrease in the power.

Using Eq. 3.4 and Eq. 3.2 we can define the aerodynamic force, F (N), as:

F = (p+d − p−d )Ad = 2ρAdU2
∞ab(1−ab) (3.12)
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With this force, we can define the power extracted from the wind as:

Power extracted = FUd = 2ρAdU3
∞ab(1−ab)

2 (3.13)

Then, the power coefficient is defined as the ratio between this power and the available one:

CP =
Power extracted
Power available

=
2ρAdU3

∞ab(1−ab)
2

1
2ρAdU3

∞

= 4ab(1−ab)
2 (3.14)

However, this coefficient is not fixed but it depends on the operation regimes and blade prop-
erties. To address it, in recent years some authors (Hwas and Katebi, 2012; Fu et al., 2018; Baram-
bones et al., 2019; Sitharthan et al., 2020; among others) modelled Cp value using a empirical
highly non-linear function dependant of the pitch angle of the blade (this angle is measured be-
tween the plane of the disc and aerofoil zero lift line), βb (◦), and the Tip Speed Ratio, which links
wind velocity with angular velocity through Eq. 3.16. For that, they use an empirical simplified
expression (Anderson and Bose, 1983) which is shown in Eq. 3.15 :


Cp = 0.5176

(
116

T SRi
−4β −5

)
e

21
T SRi +0.0068T SR

1
T SRi

= 1
T SR+0.08β

− 0.0035
β 3+1

(3.15)

TSR being defined as:

T SR =
Ωr
U

(3.16)

Where U is the wind speed, Rb (m) is the radius of the blade and, Ω (rad/s) is the angular
velocity.

Fig. 3.2 reflects the evolution of the power coefficient with the TSR for different values of pitch
angle.

Betz limit is a theoretical limit for this coefficient, in honour of the German aerodynamicist
who calculated it in 1919. This limit is not caused by any design problem, but it comes from the
fact that the area of the cross-section taken upwards is smaller (caused by the expansion of the flow)
than the effective area at the actuator disc.

This maximum limit is found when:
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Figure 3.2: Wind turbine power coefficient vs. tip speed ratio at various pitch angles

dCP

dab
= 4(1−ab)(1−3ab) = 0 (3.17)

this gives value of ab = 1/3, and the limit can then be computed as:

CPmax =
16
27

= 0.593 (3.18)

3.2.1.4 Angular momentum theory

Considering that the control volume of Fig. 3.1 rotates with angular velocity of the blades Ω, it
generates angular momentum. As a reaction to this, the flow behind the rotor rotates in the opposite
direction. The appearance of this rotation implies a tangential component in addition to the axial
velocity. All this process occurs across the thickness of the disc (Fig. 3.3). Therefore, if we consider
ω as the angular velocity transmitted to the flow stream, the angular velocity of the air relative to
the blade increases from Ω before the blade to Ω+ω just after, while the axial component keeps
constant (Manwell et al., 2010). With that we can reformulate Eq. 3.4 (see Glauert, 1935 for full
derivation) as :

(p+d − p−d ) = (Ω+
1
2

ω)ρωr2
b (3.19)

It yields to adapt Eq. 3.12 as:
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Figure 3.3: Illustration of how the tangential velocity grows across the blade thickness (Adapted
from Burton et al., 2011).
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F = (p+d − p−d )Ad = (Ω+
1
2

ω)ρωr2
bAd (3.20)

and it allows us to define the tangential induction factor a′b as:

a′b = ω/2Ω (3.21)

This yields to transform Eq. 3.21 into:

F = (1+a′b)2a′bρΩ
2r2

bAd (3.22)

This translates into the fact that before reaching the actuator disc, the induced tangential veloc-
ity is zero. However, immediately after passing through the actuator disc, the tangential velocity
becomes ωr = 2Ωrba′b (Fig. 3.3).

However, the tangential velocity is different along all the radial positions of the actuator disc.
This change in tangential velocity results in a rate of change of angular momentum, ∂Q, equal to the
change in this tangential velocity multiplied by the mass flow rate and the radius on an incremental
annular area (Manwell et al., 2010, Burton et al., 2011):

rate o f change o f angular momentum = ∂Q = 2Ωrba′b × ρUd∂Ad × rb (3.23)

Where the ∂Ad is the area of an annular ring.

This rate of change of angular momentum can be understood as a change of torque such that:

∂P = ∂QΩ (3.24)

Developing this expression with the help of Eq. 3.13 and Eq. 3.23, we obtain:

2ρ∂AdU3
∞ab(1−ab)

2 = 2Ω
2a′bρ∂AdU∞(1−ab)r2

b (3.25)

Hence,

U∞a(1−a) = Ω
2r2

ba′b (3.26)
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and,

a′b =
U∞ab(1−ab)

Ω2r2
b

=
ab(1−ab)

T SR2
r

(3.27)

Where the T SRr =
Ωr
v is the local speed ratio at radius rb, when Rb = rb local speed ratio

becomes the TSR.

3.2.1.5 Vector behaviour

In the previous sections, we treated wind speed as a simple scalar value. However, it is im-
portant to note that wind speed is actually a vector with three components. Fig. 3.4 illustrates this
vector decomposition.

When calculating the torque, only the horizontal components of the wind velocity play a role,
as the vertical component is in the same plane as the swept area and its contribution to the torque
is null. Therefore, we are primarily interested in the resultant of the horizontal components of the
wind velocity.

Additionally, the orientation angle of the turbine plays a role in determining the effective wind
velocity experienced by the turbine. If the turbine is fixed and cannot rotate, then the angle of the
turbine relative to the wind direction varies. We can measure the mismatch between the horizon-
tal resultant of the wind velocity and the turbine’s orientation angle (measured from the North)
with an angle called ϕ . This angle represents the deviation or misalignment between the turbine’s
orientation and the wind direction.

3.2.2 Traditional approach

3.2.2.1 Theoretical description

The first modelling chain (known as the traditional approach in the following sections), the
simplest one, has been extensively reviewed and used in the literature (Sørensen et al., 2002, John-
son, 2004, Manwell et al., 2010, Burton et al., 2011, Fu et al., 2018 among others). It is based on
the assumption that the power extracted from the wind, P (W ), is a product of the (average) torque,
Q (N/m), and angular velocity, Ω (derived from Eqs. 3.23 and 3.24).

P = QΩ (3.28)

Coming back to Eqs 3.12-3.14 we can define the torque as:
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Figure 3.4: Scheme of the vector wind speed decomposition. v represents the wind speed; u, v and
w the wind components in west, north and vertical directions respectively; Vh the resultant in the
horizontal plane; and U∞ the velocity perpendicular to the swept plane of the turbine
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Q =
1
2ρCpAdU3

∞

Ω
(3.29)

U∞ at hub height is typically used because that is where it is generally measured/known. How-
ever, if the wind field over the swept area is known, it is also possible to use the average wind
speed.

This traditional approach does not enable to account for the spatial variability because only an
average wind field is considered. So this method only takes into account the temporal variability of
the field.

3.2.2.2 Tower shadow correction

The term "tower shadow" is employed to examine the impact of wind redirection caused by the
presence of the tower structure. This effect is observable solely in the lower half-plane of rotation,
specifically when the height is below the hub height. It reaches its maximum magnitude when any
of the blades align directly in front of the mast. However, it is important to note that this alignment
does not always result in a decrease in wind speed. This effect is further accentuated when the
blades are positioned closer to the tower (indicated by x distance in Fig. 3.5) (Sørensen et al., 2002;
Dolan and Lehn, 2006; Abo-Khalil et al., 2019). Certain studies, like the one conducted by Fu et al.
(2018), have observed fluctuations in torque of approximately 8% attributable to the tower shadow
effect (Fu et al., 2018).

With these assumptions wind field corrected with tower shadow effect obtained by Sørensen
et al. (2002) using potential flow theory around the tower can be defined as:

v(y,x) =U∞ +U∞m2 y2− x2

(x2 + y2)2 (3.30)

where v(y,x) (m/s) is the corrected wind horizontal field, m (m) is the radius of the tower mast,
y (m) is the lateral distance of the blades, and x (m) is the distance from the blades to the mast, both
y and x distances are defined in Fig.3.5.

Other expressions to model tower shadow effect have been reviewed (Sørensen et al., 2002),
but we selected this because of its ability to model both deceleration near the mast and acceleration
of the wind flow at each side of it.

3.2.2.3 Practical implementation

For the computation of the torque using the traditional approach, we use a wind field as input
(see section 2.5 for more details) grid which covers the area swept by the wind turbine. Other inputs
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Figure 3.5: Geometry of the wind turbine used for the tower shadow correction (Adapted from
Dolan and Lehn, 2006)

required for this model are the radius of the blade, the tip speed ratio and the air density. It is also
possible to add the pith angle to change the value of the power coefficient.

Tower shadow correction is implemented as an option of the model that can be used or not. It
consists in a mask which multiplies the wind field grid before averaging to correct its values. It
requires the geometrical properties of the wind turbine shown in Fig. 3.5.

We simulate the wind field in a point on the center of the pixel and considering it uniform over
all the pixel. So each pixel of the grid contains a wind time series. An illustration of the grid is
shown in the left part of Fig. 3.6.

As the wind velocity is known in several points over the swept area. To calculate the torque,
we averaged the wind speed (considering it at hub-height (see Fig. 3.6) and used it in Eq. 3.29. The
angular velocity is calculated from Eq. 3.16 with the assessed average wind speed. This process
is repeated for the whole time series, which yields a torque time series of the same length as the
original wind time series and at the same time step.

When the input wind field is a vector field we know the three components of the wind field over
the pixels of the grid. Then, before averaging the field over the grid, we compute the perpendicular
velocity in all the pixels as it is done in Fig. 3.4.

Illustration of the scripts developed for this method can be found in Appendix D.3.

3.2.3 Integral approach

The traditional approach helps to obtain a first approximation of the torque calculation. How-
ever, we are interested in the effect of not only the temporal but also the spatial variability of the
wind. To be able to actually account for it, we have to increase the complexity of the modelling
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Figure 3.6: Scheme of traditional approach, points represent the wind speed simulated, squares
the wind speed of the pixel (only in the upper-left corner for clarity). The diamond represents the
average wind speed.
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chain by considering more points along the blades instead of averaging and considering it at the
center of the swept area.

3.2.3.1 Theoretical description

3.2.3.1.1 Blade element theory

Blade element theory states that it is possible to divide the blade into numerous elements where
the aerodynamic forces can be calculated. It uses the 2D airfoil characteristics to compute the forces
only on the cross-sectional plane of the element and neglecting the span-wise direction (Burton
et al., 2011).

The tangential component of the velocity is defined by the composition of the induced tangen-
tial velocity, considered as Ωrba′b in the chord of the blade, cb, and tangential velocity of the blade,
Ωrb, due to the rotation. It varies along the radius of a blade; to compute the aerodynamic forces
of each blade element, it is necessary to define the relative velocity W . Fig. 3.7a illustrates all the
velocities over the blade where α is the angle of attack, i.e. the angle between the relative velocity
and the chord line.

(a) (b)

Figure 3.7: Illustration of velocities (a) and forces (b) presented in airfoil. (Adapted from Burton
et al., 2011)

Using Fig. 3.7a, it is possible to define the relative velocity as:

W =
√

[U∞(1−ab)]2 +[Ωrb(1+a′b)]
2 (3.31)

and,

sinφb =
U∞(1−a)

W
(3.32)
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cosφb =
Ωrb(1+a′b)

W
(3.33)

With the help of the relative velocity, we can define the aerodynamic forces. Lift, L (N), the
force normal to the direction of the relative velocity and drag, D (N), the force parallel to the relative
velocity (see Fig .3.7b for illustration):

∂L =
1
2

ρcbCLW 2
∂ rb (3.34)

∂D =
1
2

ρcbCDW 2
∂ rb (3.35)

Where CL and CD are the airfoil characteristic coefficients. Both are dependant of the angle of
attack.

3.2.3.1.2 Torque computation

The second approach of computation is based on the theoretical definition of the angular mo-
ment as the product of the force and the distance at each point of the blade integrated along the
radius. First, we can define the aerodynamic force T of the blade with the help of the lift and
the drag (Eqs. 3.34 and 3.35) (Dolan and Lehn, 2006;Burton et al., 2011; Chaudhary et al., 2014;
Akbari et al., 2022):

∂T = ∂Lsinφb−∂Dcosφb (3.36)

so the torque becomes,

Q =
∫ Rb

0
rbdT (3.37)

In general Q depends of the length of the blade (Rb) and the pitch angle (βb). However this
angle can be different at each point of the blade. If we consider a fixed βb along the blade, then Q
depends only of Rb as long as the relative velocity (W ) is known at each point of the blade.

To calculate the aerodynamic forces, the relative velocity of each element of the blade is used,
which enables us to take into account the spatial variability of the wind field for each time step.
Therefore this method allows us to account for the spatio-temporal variability of the wind field.
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3.2.3.2 Practical implementation

In addition to the parameters required for the traditional approach, this method needs the num-
ber of blades, the number of elements of each blade, the aerodynamic coefficients CD and CL (usu-
ally given depending on the angle of attack), the pitch angle, the angle of attack and chord of the
blade. Tower shadow correction can be applied using the same methodology as in the traditional
approach.

In contrast to the previous method, here, the blades of the wind turbine are isolated rotating
entities, so it is not only essential to model the wind fluctuations, but it is also necessary to model the
rotation of the blades. As the blades are all fixed to the hub of the turbine, they have same angular
velocity. To compute it, we use Eq. 3.16 using as the velocity the averaged wind speed over the
swept area, which means a simplification considering the change of rotational speed instantaneous
(neglecting any possible inertial effects) when a change in wind speed appears. This allows us to
locate the blades in space at each time step.

Thanks to the blade element theory, we can discretize the blade as a finite number of elements,
and to solve Eq. 3.34-3.37, the velocity at each element is required. As the wind field is not
continuous, we linearly interpolate the velocity of the four nearest grid points of the blade element
to compute it. Fig. 3.8 illustrates the process.

The torque is calculated by computing the discrete integral of the torque for each blade and
adding the value of each blade.

It is possible to take into account the vector behaviour of the velocity field by considering the
reference system over each blade point. This means considering the u and v components of the
wind speed and the resulting wind speed with respect to the geographical angle of the turbine.

Scripts developed for this method can be found in Appendix D.3

3.2.4 OpenFAST

OpenFAST is an open-source software developed by the USA’s National Renewable Energy
Laboratory (NREL). It is based on FAST v8, which enables the simulation and analysis of a wide
range of configurations, including different numbers of blades, types of blade profiles, control
systems (pitch, stall), and structural properties (Jonkman et al., 2022).

OpenFAST utilizes advanced engineering tools by integrating multiple models, enabling the
execution of nonlinear aero-hydro-servo-elastic simulations in the time domain. Fig. 3.9 provides
an overview of the modules available in OpenFAST and their corresponding inputs and outputs.
The aerodynamic models rely on wind-inflow data to calculate aerodynamic loads and rotor-wake
effects. Hydrodynamics, on the other hand, is primarily utilized for addressing offshore configu-
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Figure 3.8: Scheme of Integral approach, points represent the wind speed simulated, squares the
wind speed of the pixel (only in the left-up corner for clarity). The diamonds represent the wind
speed over the blade points (interpolated using four nearest points)
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rations, including diffraction, hydrostatics, radiation, and viscous loads. It also simulates incident
waves and currents. The control and electrical system (servo) dynamics models analyze various
control systems, such as nacelle-yaw and generator-torque control. These models simulate sensors,
actuators, and controller logic devices, along with the operation of electrical system components.
The structural (elastic) dynamics module leverages the results obtained from the previous modules
to simulate the structural elasticity of the wind turbine’s components (Jonkman et al., 2022).

OpenFAST incorporates FAST.Farm, a valuable extension that enables the simulation of wind
farms across various scenarios, including land-based, fixed-bottom offshore, and floating offshore
wind farms. This capability empowers users to make predictions regarding wind farm performance
and assess fatigue loads for each individual turbine within the wind farm.

3.2.4.1 Overview of theoretical description

Full description of the operation can be found in Jonkman et al. (2022) and in Jonkman et al.
(2015) (for aeroDyn module), we summarize here some of their properties.

AeroDyn is the time-domain aerodynamic module employed within OpenFAST to model wind
turbine aerodynamics. It can also operate as a standalone code, enabling the simulation of aero-
elastic behavior in horizontal axis wind turbines. When integrated into OpenFAST, it can be lin-
earized as part of a fully linearized solution. This module extends its capabilities to simulate the
hydrodynamic properties of marine hydrokinetic (MHK) turbines, including specific cavitation ef-
fects that are not applicable to wind turbines.

AeroDyn operates by receiving real-time structural information, encompassing velocities, po-
sitions, and orientation data for blades, the hub, and the tower from analysis nodes. It also takes in
properties of the free stream fluid flow through the driver code. At each time step, AeroDyn calcu-
lates the aerodynamic loads acting on the structures and feeds this information back to OpenFAST.
When used in standalone mode, AeroDyn assumes that the turbine geometry involves a one-, two-,
or three-bladed rotor with a hub and an undeflected, straight, and vertically oriented tower. In this
mode, aerodynamic and elastic inputs are not coupled.

AeroDyn is comprised of four sub-modules, which cover rotor wake/induction, blade airfoil
aerodynamics, the impact of the tower on airflow, and tower drag.

3.2.4.1.1 Wake modelling

Aerodyn models the rotor wake using two different approaches. By default, It uses the Blade
element momentum theory, but it is also possible to use the Generalized Dynamic Wake model.
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Figure 3.9: Scheme of the available modules on OpenFAST (from Jonkman et al., 2022)
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Blade Element-Momentum theory

Blade Element-Momentum theory combines the Blade element and the Momentum theories
(already reviewed in this chapter) with the basic assumption that the change of momentum in a
blade element is only related to the force on this element (Burton et al., 2011). For this, it is also
necessary to assume that there is no interaction between the flows through the contiguous annulus.

It translates into the velocities calculated using momentum theory affecting aerodynamics force
calculated in blade element theory.

The axial component of the aerodynamic force can be written as (following Fig. 3.7b):

∂Lcos(φb)+∂Dsin(φb) =
1
2

ρW 2cbN(CLcosφb +CDsinφb)∂ rb (3.38)

Where N is the number of blade elements. Coming back to Eq. 3.4 and adding the drop in
pressure due to the effect of the radius, then, the axial component of aerodynamic force is equal to:

2ρU2
∞ab(1−ab)∂Ad +

1
2

ρ(2a′bΩr)2
∂Ad (3.39)

where ∂Ad = 2πrb∂ rb

Then equating the two expressions, we obtain:

∂Lcos(φb)+∂Dsin(φb) = 4πρ
[
U2

∞ab(1−ab)+(a′bΩr)
]

rb∂ r (3.40)

Similarly we can define the torque with the help of the Eq. 3.23 and Eq. 3.37 writing the
expression as:

∂Q = (∂Lcos(φb)−∂Dsin(φb))rb =
1
2

ρW 2cbN(CLcosφb−CDsinφb)rb∂ rb = 4πρU∞(Ωr)a′b(1−ab)r2
∂ r

(3.41)

Aerodyn solves Eq. 3.40-3.41 iteratively for induced velocities and forces in each blade ele-
ment, i.e. solving the unknown induction parameters (ab and a′b). However, this method has some
limitations. To face them, Aerodyn uses some corrections to compute the torque:

• The tip-Loss model is used to compensate for the effect of the vortex in wake-induced veloc-
ities; this effect is most significant near the tip, which is the zone with the most significant
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influence on power production. Tip-Loss corrections are based on a Prandtl theory (see
Glauert, 1935 for more details) adding a factor F to Eq. 3.40-3.41. Aerodyn counts with
empirical correction (Xu and Sankar, 2002) based on Navier-Stokes equations (This solution
is based on specific turbine design and may not work for all turbines).

• The hub-Loss model relies on the same principle as Tip-loss but alleviates the vortex effect in
wake-induced velocities near the hub and could be coupled with the Tip-Loss factor to obtain
the Total-Loss effect.

• Glauert correction (Glauert, 1926) is known as an empirical correction in thrust coefficient
to compensate for the propagation of part of flow upstream when it enters in turbulent wake
state (induction factor, a, is more significant than 0.5). This effect usually occurs when
turbines operate with high tip speed ratios (T SR). Corrections developed in more recent
studies (Buhl Jr, 2005) are used in Aerodyn.

Generalized Dynamic Wake

The other form to calculate the effect of rotor wake is the Generalized Dynamic Wake (GDW).
It allows us to model other aspects taken as correction in BEM theory, like dynamic wake effect,
translated as time-lags produced by the effect of shed vorticity from the blades in downstream
induced velocity, tip-losses or skewed wake aerodynamics. GDW is based on a theory of Peters and
He (1991) using a potential flow solution to the Laplace equation. This solution allows computing
pressure distribution equations in the rotor plane. This pressure distribution represents an advantage
to BEM theory.

As occurs in BEM theory, the GWD model also has limitations. When wind turbine behaviour
approaches to turbulent wake state (at low velocities), induced velocities are no longer small com-
pared with free stream flow velocity and leads to instability of the method. AeroDyn switches to the
BEM method at velocities lower than 8 m/s to avoid this computational instability. GDW model
also relies on BEM to solve wake rotation as it cannot solve it alone. Moreover, significant coning
of the blades and aeroelastic are not well modelled because GDW assumes the rotor plane as a flat
disk.

3.2.4.1.2 Blade aerodynamics

The computation of blade aerodynamics in AeroDyn relies on pseudo-2D properties of the local
airfoil. This approach is considered pseudo-2D because it also allows for modifications related to
3D properties, such as aspect ratio and rotational augmentation. AeroDyn provides two available
solutions to calculate these aerodynamics: static airfoil tables and dynamic stall models.
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AeroDyn uses static airfoil solutions in the form of tables for lift, drag, and sometimes pitch
moment coefficients as a function of Reynolds number (RE) and angle of attack. These tables allow
us to compute all the coefficients for a given angle of attack using linear interpolation. Data from
the wind tunnel is extrapolated to increase the range of angles available (i.e completing the range
±180◦), assuming that the airfoil acts like a flat disk at high angles of attack. For this extrapolation,
AeroDyn uses FoilCheck (NREL program developed by Laino and Hansen 2004) based on Viterna
and Janetzke (1982) the equations:

CDmax = 1.11+0.08AR (3.42)

CD =CDmaxsin2
αb +B2 cosαb (3.43)

where,

B2 =
CDs−CDmaxsin2αs

cosαs
(3.44)

Being AR the aspect ratio of the blade, denoting stall (or matching point if stall is not available)
with subscript s, and taking CL as

CL =
CDmax

2
sin2α +A2

cos2αb

sinαb
(3.45)

where,

A2 = (CDs−CDmax sinαs cosαs)
sinαb

cos2αb
(3.46)

Aerodyn enables having a set of airfoil data tables for each element of the blades taking into
account the variation along the blade span; however, all the blades as treated with similar behaviour
(Jonkman et al., 2015).

Tables accepted by Aerodyn use two inputs. One of them must be the angle of attack, but the
other varies from RE to aileron or flap settings. When RE is used, the interpolation is done based
on the RE of each element.

The dynamical stall model is a semi-empirical model that relies on the initial response of airfoil
following theory developed by Leishman and Beddoes (1989). This response produces a normal
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force coefficient (CN), divided into circulatory (CC
N) and non-circulatory (CI

N) components, and
moment force coefficient (CM) as a function of change in angle of attack (∆α). From CC

N in the
Beddoes-Leishman model, it is possible to derive the chordwise force component(CC). Then aero-
dynamical coefficients (CL and CD) are computed with the help of CN and CC as:

CL =CN cosαb +Cc sinαb (3.47)

CD =CN sinαb−Cc cosαb +CD0 (3.48)

Where CD0 is the minimum drag coefficient.

3.2.4.1.3 Tower shadow correction

Aerodyn, and lately OpenFAST, models the effect of the tower on the wind turbine aerodynam-
ics using a different method as we use for the other two approaches (Section 3.2.2.2). This method
uses the potential flow solution dependent on the drag coefficient of the tower, Cd , for downwind
influence and a tower dam model for upwind influence. The model is based on the work on Bak
et al. (2001), and it allows to model both increased velocity around the sides and decrease close to
the tower (schematic illustration in Fig. 3.10)

Figure 3.10: Effect of tower shadow modelled by AeroDyn (From Jonkman et al., 2015 )

Influence of the tower mast upwind could be characterized with :

u = 1− (x+0.1)2− y2

((x+0.1)2 + y2)2 +
Cd

2π

x+0.1
(x+0.1)2 + y2 (3.49)

u = 2
(x+0.1)y

((x+0.1)2 + y2)2 +
Cd

2π

y
(x+0.1)2 + y2 (3.50)

158



3. Modelling Chains

Where u and v represent wind components horizontal x and y directions, x and y represent
normalized distances in both directions.

For downwind influence modelling, equations may be written as:

uwake =
Cd√

d
cos(

π

2
y√
d
)

2
f or |y| ≤

√
d (3.51)

or

uwake = 0 f or |y|
√

d (3.52)

being

d =
√

x2 + y2 (3.53)

Where d is the dimensionless radial distance to center tower.

Finally velocity components at local points with the tower effects are written as

Ulocal = (u−uwake)U∞ (3.54)

Vlocal = (v−uwake)v∞ (3.55)

3.2.4.2 Practical implementation

The inputs required for this model include the wind fields, as well as the necessary files for
the OpenFAST software, as specified in the input section of the .fst file (as shown in Appendix
A). These files are needed for various modules within OpenFAST, such as Aerodyn, ElastoDyn,
BeamDyn, ServoDyn, or Inflow. The rest of the modules are kept unused.

Indeed, to input the wind field simulated in OpenFAST, an intermediate step is required to
adapt the wind format to meet the specific requirements of OpenFAST. In this case, TurbSim is
used to perform this adaptation and generate a file format that is readable by OpenFAST. For that
reason, the drive code of TurbSim, (reviewed in Section 2.3) is also necessary for this process.

Once the formatting is finished, the wind field is now inputted in OpenFAST, which gives as
output, among others, the torque time series. OpenFAST also requires an input file which gives the
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information about the blade properties (required by BeamDyn and Aerodyn modules), the control
system and electric behaviour of the turbine (required by ServoDyn module); and structural proper-
ties of the wind turbine (required by ElastoDyn module). For simplicity, we use the reference wind
turbine of 1.7MW provided by the NREL (Quon and Abbas, 2021), inputting only the simulation
length and the type of wake computation (BEM) for the Aerodyn module.

For this method, we create a Bash script which allows us to run the whole model using as
input the wind field simulated and the length of the simulation. This script also allows us to do an
ensemble of simulations, wherein the number of samples is also needed. It is composed of three
parts, a python script which writes the input file of the TurbSim (.inp file), Turbsim simulation,
which adapts the wind field to OpenFAST (.bts file), and OpenFAST simulation.

3.2.5 Summary

Table 3.1 shows a summary of the inputs required for each of the torque computation methods
review in this chapter. It also summarize the variability they are able to take into account.

Method Input What take into account

Traditional

Wind field
Atmospheric properties (ρ)

Properties of the turbine
(rb, hub height, TSR, βr)

Time variability

Integral

Wind field
Atmospheric properties(ρ)

Properties of the turbine
(rb, hub height, TSR, βb, αb, cb)

Aerodynamic coefficients (CL, CD)

Space-Time variability

OpenFAST
Wind field

Driver codes of Turbsim
Driver codes of all the modules used in OpenFAST

Space-Time variability

Table 3.1: Summary of the input required by the different methods of torque computation and the
type of variability they take into account
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3.3 Validation of modelling chains

3.3.1 Properties of the simulations

Prior to commencing the validation tests, we shall elucidate the atmospheric and geometric
parameters that underpin the torque calculation. The air density (ρ) is set at 1.225 kg,m−3, in ac-
cordance with standard atmospheric conditions. Leveraging data from the RW_Turb measurement
campaign, specifically the Vestas V90 turbine model (A/S, 2010), we incorporate its blade radius
(45m), blade chord (3.5m), and hub height (78m) for the simulation. Conforming to the suggested
value in Yurdusev et al. (2006), we set the Tip-Speed Ratio (T SR) at 7. Furthermore, drawing
insights from Sudhamshu et al. (2016), which posits the optimal pitch angle for the turbine lies
within 5◦ and 20◦ for the speed range under consideration, we establish it at 12◦.

In the context of the integral approach, We divided the blade into 27 equidistant points spanning
from the hub to the tip. It is noteworthy that the airfoils of horizontal axis wind turbines (HAWT)
are typically designed for operation at low angles of attack, attributed to the elevated lift coefficients
and reduced drag coefficients (Manwell et al., 2010). Consequently, an angle of attack of 5◦ is
selected, complemented by aerodynamic coefficients of CL = 1.1 (lift coefficient) and CD = 0.022
(drag coefficient).

In addition, since the Vestas V90 is a 2 MW wind turbine, the 1.7 MW reference wind turbine
provided by NREL (Quon and Abbas, 2021), which has similar characteristics, is used for the
OpenFAST simulations.

3.3.2 First tests with uniform fields

To validate the functioning of the three modelling chains, we fist use as input a uniform wind
field. For this purpose, we reconstructed a grid over the swept area with the time series of x-
component(u) wind speed values recorded on 16/12/2020 during the RW-Turb measurement cam-
paign (see section 2.2 for a complete description of the campaign). We selected this type of wind for
these initial tests because the traditional approach is not able to account for any spatial variability.
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(a) (b)

Figure 3.11: (a) Example of torque time series computed with different methods and (b) normalized
time series (for an event that started on 16/12/2020 at 10h 14min 24s UTC). In 3.11b Traditional
approach and Integral approach are overlapping

Fig 3.11a shows the torque time series calculated with the traditional approach in blue, with the
integral approach in orange and OpenFAST in green for this event (which started on 16/12/2020
at 10h 14min 24s). We found greater values for the traditional approach and similar results for the
integral approach and OpenFAST. However, although the values are different for each modelling
chain, the trends of the time series are similar.

These differences appear because although we use the same wind input and similar wind tur-
bine’s geometrical properties, their modelling principles are not exactly the same and, consequently,
the required parameters for each modelling chain are also different. For the traditional approach the
module varies related to the pitch angle and the tip speed ratio used. For the integral approach the
module further varies with aerodynamic coefficients. Finally, OpenFAST depends on a series of
parameters (grouped in different drive code files) which models the wind turbine’s design in several
aspects (eg. aerodynamic properties, structural properties, electrical system . . . etc.). The trends of
simulated torque time series of these modelling chains are similar because we can group all these
parameters as a prefactor to the wind speed, since they are kept constant over the simulation.

Fig. 3.11b shows normalized torque used to remove the effect of different prefactors on which
we will not focus in this work, as we are focusing on the variability of the fields. A very good
agreement between all the methods is obtained; we found the same values for traditional and inte-
gral approaches and no significant differences between traditional and OpenFAST. We found simi-
lar results over different time series analyzed with a perfect correlation between traditional-integral
and an average correlation of 0.85 with OpenFAST. However in Fig. 3.11b two main difference
are visible. First one is related to the fluctuations at small scales, where OpenFAST present less
pronounced ones. This is fully addressed in section 3.4 through the parameter H. The other is a
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time shift between the first two methods and OpenFAST, which is discussed below.

We repeated this methodology for the validation of the modelling chains using vector wind
field. For that, we used the horizontal components (u, oriented to the West, and v, oriented to the
North Fig. 3.4) for the same day and recorded under the same conditions as the scalar case. Fig.
3.12 shows the normalized torque obtained with the three modelling chains for different angles of
the turbine. Both figures show similar behaviour as in the scalar case but with a small decrease in
the torque obtained when the angle of the turbine is fixed at 50 ◦. It is also translated to the level of
correlation with OpenFAST (∼ 0.82 and 0.77 from left to right).

(a) (b)

Figure 3.12: Example of normalized torque time series (for an event that started on 16/12/2020
at 10h 14min 24s UTC) computed with different methods for (a) a turbine angle of 50◦ and (b) a
turbine of angle 30◦. Traditional and Integral approaches obtain the same value and overlap.

In 3.12 and specially in Fig. 3.11 is possible to see a tiny shift on the torque obtained in
OpenFAST. To measure this effect, we introduce some lag in the torque result to shift the time
series trying to find a better correlation between the various simulated torque series. Table 3.2
summarizes the correlation between OpenFAST and the traditional approach under different lags.
It appears that a 2 s shift on OpenFAST maximises the correlation in both scenarios, suggesting that
this is the real time shift between the first two modelling chains and OpenFAST. This time shift is
likely to be caused by the inertial forces accounted by the realistic model. It means that the change
in tangential velocities are not directly translated into a change in angular velocity as it is done for
the first two modelling chains. Accounting for the time shift yields to increase the correlation from
0.85 to 0.89 between OpenFAST and the other two methods.
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Lag (s) 0 1 2 3 4 5 6 7 8

Correlation
T50 0.82 0.88 0.90 0.87 0.84 0.80 0.76 0.72 0.62
T30 0.77 0.84 0.87 0.86 0.83 0.79 0.74 0.70 0.67

Table 3.2: Correlation between OpenFAST and traditional approach with different Lags. T30 and
T50 represent the angle of the turbine (for an event that started on 16/12/2020 at 10h 14min 24s
UTC).

3.3.3 Test of input parameters

To ensure the correct functioning of the modelling chains these tests are not enough. Due to the
fact that integral approach script is developed from scratch sensitivity tests to the input parameters
are needed to confirm that the modelling chain is working as expected. First, we check how the
wind speed inputted affects the torque computation. For this test we use a 1024s uniform vector
field multiplied by a prefactor. Fig. 3.13 illustrate this test obtaining the expected results, i.e. the
torque increase with the increasing velocity but in a non-linear way, approximately proportional to
v2 (Manwell et al., 2010) as it is shown in Fig. 3.13b where the regression of the torque over v2

wind
is a straight line.

(a) (b)

Figure 3.13: (a) Example of torque time series computed with a uniform vector field (for an event
that started on 16/12/2020 at 10h 14min 24s UTC) with increasing wind speed. (b) Plot of the
computed torque vs. v2

Other important test is how the angle of the turbine affects the computation of the torque. For
that, we prepare two different tests illustrated in Fig. 3.14:

• First, we fix the angle of the wind forcing the two components to be the same (angle=45◦) and
computing the torque changing the angle of the turbine. In Fig. 3.14a we can see that when
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angle of the turbine moves away from the angle of the wind, a decrease on the torque appear.
We can note that the decrease is symmetric with the distance to the angle. It is illustrated in
the figure by pairs (shifted 2.5◦ to avoid overlapping) e.g. red and purple or orange and blue.

• The second one, uses different components of the wind of the same event as in section 3.3.2
(16/12/2020), i.e. the angle of the wind change each time step, and we compute the torque
also changing the angle of the turbine. Fig. 3.14b shows that when the angle of the turbine is
0◦ the torque is proportional to the square of the North component of the wind, analogously
with 90◦ and West component. All the angles in between show the transition from one to the
other component.

(a) (b)

Figure 3.14: Example of torque time series computed with a uniform vector field (for an event that
started on 16/12/2020 at 10h 14min 24s UTC): (a) fixing the angle of the wind and changing the
angle of the turbine; and (b) with wind angle changing each time step and changing the angle of
the turbine

3.3.4 Test with non-uniform fields

In the final test, non-uniform wind fields are used, which are simulated using the FIF method
described in section 2.5.1. These wind fields exhibit spatial variability. Fig. 3.15 illustrates an
example of the normalized torque simulated using UM parameters α = 1.5 and C1 = 0.1, with a
target wind velocity of 11 m/s.

In the figure, a decrease in correlation between the traditional approach and both the integral
approach and OpenFAST can be observed (from 1 and 0.89 to 0.95 and 0.8 respectively). However,
there is good agreement between the trends exhibited by the three methods and the average wind
speed inputted (averaged over the grid).

This test provides a qualitative understanding of the impact of spatial variability on the different
methods. As seen in Fig. 3.15, the integral approach exhibits the strongest fluctuations. However,
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a more detailed quantitative analysis will be carried out in section 3.4 to further evaluate the effects
of wind spatial variability.

Figure 3.15: Example of normalized torque time series computed with different methods using as
input wind fields simulated using the FIF approach and input parameters α = 1.5 and C1 = 0.1, and
target velocity of 11 ms−1.

3.4 Results & discussion

In this section, we will explore how the different methods of torque computation respond to the
variability observed in the wind fields. To conduct this investigation, we will use vector wind fields
simulated using the FIF approach (as described in Section 2.5). These wind fields will be generated
with different sets of parameters, specifically varying α and C1, while keeping H and a equal to
1/3, as these values are commonly observed in the literature (Schmitt et al., 1994, Lazarev et al.,
1994). This approach will allow us to analyze the behavior of the torque computation methods
under different levels of wind field variability.

The input wind fields encompass a square grid with a side length of 90 meters and consist of
27 points in each spatial direction. The temporal dimension of the wind fields spans 1024 seconds.
However, for the analysis, we will focus on a specific time range from 4 seconds to 17 minutes
(since 17 min ∼ 1024s), which is selected based on the wind properties (as discussed in Section
2.2).

Due to the computational demands of the OpenFAST software, we will divide this section into
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two parts. In the first part, we will utilize ensembles of 10 wind field samples and employ the three
methods of computation for analysis. In the second part, we will increase the ensemble size to 100
wind field samples and only use the Traditional and Integral approach.

To gain a comprehensive understanding of the behavior of the torque computation methods,
we will analyze not only the torque time series but also examine the horizontal wind at a specific
point in the grid. Additionally, we will analyze the average wind field across the spatial dimensions
to facilitate a comparison of the results. By considering these additional analyses, we can evaluate
how the different methods respond to the wind field variability and assess their overall performance.

3.4.1 Results using 10 samples

This section consists in analysis with 4 set of parameters, one with the traditional values α =

1.55 and C1 = 0.05, one with greater values of α as α = 1.8 and C1 = 0.05, one with lower values
of α as α = 1.1 and C1 = 0.05 and finally one with greater values of C1 as α = 1.5 and C1 = 0.3.

To avoid redundancy, one example of the analysis will be presented in the main body of the
thesis, specifically in Figs. 3.17 to 3.21. The analysis consist in implementing three different
techniques (see Section 1.4 for a description of the different analysis techniques) for the punctual
velocity, the average velocity, the Traditional approach, the Integral approach, and OpenFAST. In
panels (a), a spectral analysis is visible, from which a good scaling is appreciated for this range
of scales. The slope of this figures the parameter H is computed using Eq. 1.75. In panels (b), a
TM analysis is displayed. We used a correction based on the methodology presented in 1.4.3.3 to
maximize the quality of the scaling. One example is showed in Fig. 3.16 where the coefficient of
linear regression increases from r2 = 0.9 before the correction (Fig. 3.16a) to r2 = 0.99 after (Fig.
3.16b).

Finally panels (c) and (d) display DTM analysis from which the UM parameters are computed.
The figures of the remaining analysis exhibit similar patterns in general and are included in Ap-
pendix C.

Tables 3.3 to 3.6 present the retrieved parameters from the analysis of the five fields. It is
notable that the scaling is generally good for all the methods across the different parameter sets
(once the correction presented in Section 1.4.3.3 is implemented). The quality of the scaling is
illustrate in panels (b) and (c) of Figs. 3.17 to 3.21. In cases where the scaling decreases to r2∼ 0.97
for the punctual velocity, this may be attributed to the reduced number of samples. Indeed, this issue
is resolved in the case of 100 samples, as discussed in Section 3.4.2. It is worth mentioning that the
integral approach consistently yields the best scaling obtaining r2 > 0.99 across all the parameter
sets. These tables show an improvement of the quality of scaling from the original field to the
corrected one.
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(a) (b)

Figure 3.16: Illustration of the correction in torque data TM graphs of (a) before the correction and
(b) after. The field used is the torque computed using Traditional Approach and input parameters
α = 1.55, C1 = 0.05, and a = H = 1/3.

Looking at the values of α , a notable observation is the difference of approximately 0.1 between
the punctual velocity and the average velocity. Similar trends are observed between the traditional
approach and the integral approach. In Tables 3.3 and 3.5, the values obtained by the integral
approach align more closely with the punctual velocity, while the traditional approach aligns better
with the average velocity. In Table 3.4, the integral approach yields values that are closer to the
velocity results. As the simulations involve higher values of C1, a bias becomes evident between
the results of the velocity fields and the torque computation methods. It is possible to see a decrease
of the slope in the curves Fig. 3.22 due to a plateau in the upper right part of them which results in a
smaller value of the parameter α . Furthermore, OpenFAST consistently exhibits lower values of α ,
with an average decrease of around 0.4 compared to the average velocity (except in Table 3.5). This
can be explained in the same way as the plateau of figure 3.21d is larger than in its counterparts
Figs. 3.19d and 3.20d.

Regarding C1, we can observe two different parameters. The first one is the retrieved parameter
from the field, denoted as C1. The second one is the expected value assuming a relationship between
velocity and torque to the power of 2 (Manwell et al., 2010, Fitton et al., 2014), using the expression
C1τ

=C1v2
α (Lavallée et al., 1993).

In the case of C1, we can see similar values between the traditional and integral approaches,
while OpenFAST exhibits much higher values. When comparing to the theoretical results, there
is good agreement between theoretical and empirical results in the integral approach and the tradi-
tional approach (although slightly worse), while OpenFAST obtains higher values than expected.
In order to explain this discordance a deeper analysis of the software operation is needed. How-
ever, a possible explanation could be that, due to inertial forces, some fluctuations are neglected
and changes in trend (i.e. from increasing speed to decreasing speed or vice versa) are delayed
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causing peaks of higher intensity (in both directions) increasing the value of C1. This behaviour
can be seen in Fig. 3.15 where the green line (OpenFAST simulation) experiences less fluctuations
but with more amplitude.

The last parameter to consider is H, for which we use the parameter retrieved before the correc-
tion. In the traditional approach, higher values of H are obtained compared to the punctual velocity,
which is also reported in Fitton et al. (2014). The values obtained by this method are similar to
the average velocity, which is expected due to the torque is computed using the average velocity.
On the other hand, in the integral approach, the values are closer to the punctual velocity. Lastly,
OpenFAST retrieves the highest value of H.

This behavior is expected as the integral approach captures the strongest fluctuations by con-
sidering the spatio-temporal variability of the wind fields, while the traditional approach only con-
siders the temporal variability. The high value of H obtained from the average wind fields may be
attributed to the averaging effect. OpenFAST takes more aspects of wind turbine operation into
account, including inertial forces, which means that the properties of the wind field are not directly
transferred to the torque computation neglecting the fluctuations at small scales (as it is shown in
Fig. 3.15) and increasing the value of H.

(a) (b) (c) (d)

Figure 3.17: Analysis of the horizontal wind field of the center of the grid: (a) Spectral analysis
(Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log
respectively). The analysis is made on an ensemble of 10 samples and input parameters α = 1.55,
C1 = 0.05, and a = H = 1/3 .

3.4.2 Results using 100 samples

To further validate the initial results and obtain more robust findings, we increase the number
of wind field samples, which will lead to more reliable and statistically significant results. Similarly
to the previous section, to avoid redundancy, one example of the analysis is presented in the main
body of the thesis, specifically in Figs 3.23 to 3.26. In this case the OpenFAST is not availble due
to the computational cost of the simulation. The remaining analyses and figures are included in
Appendix C.
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(a) (b) (c) (d)

Figure 3.18: Analysis of the horizontal wind field averaged over the grid: (a) Spectral analysis (Eq.
1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log
respectively). The analysis is made on an ensemble of 10 samples and input parameters α = 1.8,
C1 = 0.05, and a = H = 1/3 .

(a) (b) (c) (d)

Figure 3.19: Analysis of the torque time series computed using Traditional Approach: (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The analysis is made on an ensemble of 10 samples and input parameters
α = 1.1, C1 = 0.1, and a = H = 1/3 .

(a) (b) (c) (d)

Figure 3.20: Analysis of the torque time series computed using Integral Approach: (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72
in log-log respectively). The analysis is made on an ensemble of 10 samples and input parameters
α = 1.5, C1 = 0.3, and a = H = 1/3 .
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(a) (b) (c) (d)

Figure 3.21: Analysis of the torque time series computed using OpenFAST: (a) Spectral analysis
(Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log
respectively). The analysis is made on an ensemble of 10 samples and input parameters α = 1.55,
C1 = 0.05, and a = H = 1/3 .

(a) (b)

Figure 3.22: Effect of C1 on the computation of UM parameters. The analysis is made on an
ensemble of 10 samples and input parameters α = 1.5, C1 = 0.3, and a=H = 1/3 for the traditional
and integral approaches.

Field α C1 C1T h r2 r2
original H

Vpoint 1.58 0.07 - 0.98 0.97 0.33
Vavg 1.68 0.03 - 0.99 0.89 0.66

Traditional 1.64 0.09 0.09 0.99 0.89 0.64
Integral 1.57 0.09 0.09 0.99 0.91 0.23

OpenFAST 1.28 0.34 0.07 0.98 0.88 1.04

Table 3.3: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.55, C1 = 0.05, and a = H = 1/3 and 10 samples. The parameter r2

original is
computed before the correction.
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Field α C1 C1T h r2 r2
original H

Vpoint 1.77 0.06 - 0.97 0.97 0.33
Vavg 1.83 0.03 - 0.98 0.91 0.63

Traditional 1.56 0.15 0.09 0.98 0.92 0.62
Integral 1.79 0.08 0.10 0.99 0.93 0.33

OpenFAST 1.44 0.35 0.08 0.99 0.91 1.14

Table 3.4: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.8, C1 = 0.05, and a = H = 1/3 and 10 samples. The parameter r2

original is
computed before the correction.

Field α C1 C1T h r2 r2
original H

Vpoint 1.21 0.10 - 0.97 0.97 0.33
Vavg 1.39 0.05 - 0.98 0.90 0.66

Traditional 1.32 0.15 0.12 0.98 0.91 0.64
Integral 1.22 0.12 0.12 0.99 0.93 0.23

OpenFAST 1.20 0.25 0.11 0.99 0.83 1.04

Table 3.5: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.1, C1 = 0.1, and a = H = 1/3 and 10 samples . The parameter r2

original is
computed before the correction.

Field α C1 C1T h r2 r2
original H

Vpoint 1.46 0.24 - 0.98 0.94 0.32
Vavg 1.54 0.1 - 0.99 0.89 0.61

Traditional 1.12 0.26 0.21 0.99 0.90 0.60
Integral 1.26 0.22 0.23 0.99 0.93 0.31

OpenFAST 1.02 0.28 0.20 0.97 0.90 1.11

Table 3.6: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.5, C1 = 0.3, and a = H = 1/3 and 10 samples. The parameter r2

original is
computed before the correction.

172



3. Modelling Chains

The trends observed in the previous section (Section 3.4.1) are further confirmed in Tables 3.7
to 3.10, with minor differences. All the methods demonstrate good scaling across the different
parameter sets. In α The differences between the punctual velocity and the average velocity are
smaller compared to the previous section (Section 3.4.1). However, the differences between the
Traditional and Integral approaches keep in the same order, with values around 0.15.

In the case of C1 and H, the analysis in this section confirms the results obtained in the 10-
sample analysis. There is a good agreement between the theoretical results and the retrieved results
for C1.

Similarly, the trends observed for H in the 10-sample analysis are also confirmed in this section.
The traditional approach yields higher values of H compared to the punctual velocity, while the
integral approach tends to align more closely with the punctual velocity. These findings highlight
the influence of spatio-temporal variability on the retrieved values of H.

(a) (b) (c) (d)

Figure 3.23: Analysis of the horizontal wind field of the center of the grid: (a) Spectral analysis
(Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log
respectively). The analysis is made on an ensemble of 10 samples and input parameters α = 1.55,
C1 = 0.05, and a = H = 1/3 .

(a) (b) (c) (d)

Figure 3.24: Analysis of the horizontal wind field averaged over the grid: (a) Spectral analysis (Eq.
1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in log-log
respectively). The analysis is made on an ensemble of 100 samples and input parameters α = 1.5,
C1 = 0.05, and a = H = 1/3 .
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(a) (b) (c) (d)

Figure 3.25: Analysis of the torque time series computed using Traditional Approach: (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in
log-log respectively). The analysis is made on an ensemble of 100 samples and input parameters
α = 1.5, C1 = 0.05, and a = H = 1/3 .

(a) (b) (c) (d)

Figure 3.26: Analysis of the torque time series computed using Integral Approach: (a) Spectral
analysis (Eq. 1.21 in log-log), (b) TM (Eq. 1.6 in log-log), (c) and (d) DTM (Eqs. 1.70 and 1.72 in
log-log respectively). The analysis is made on an ensemble of 100 samples and input parameters
α = 1.5, C1 = 0.05, and a = H = 1/3 .

Field α C1 C1T h r2 r2
original H

Vpoint 1.54 0.05 - 0.99 0.97 0.30
Vavg 1.59 0.02 - 0.98 0.92 0.69

Traditional 1.46 0.07 0.06 0.99 0.92 0.67
Integral 1.56 0.05 0.06 0.99 0.94 0.34

Table 3.7: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.5, C1 = 0.05, and a = H = 1/3 and 100 samples. The parameter r2

original is
computed before the correction.
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Field α C1 C1T h r2 r2
original H

Vpoint 1.82 0.04 - 0.99 0.97 0.30
Vavg 1.84 0.02 - 0.98 0.92 0.67

Traditional 1.65 0.09 0.06 0.98 0.93 0.66
Integral 1.80 0.06 0.07 0.99 0.94 0.33

Table 3.8: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.8, C1 = 0.05, and a = H = 1/3 and 100 samples. The parameter r2

original is
computed before the correction.

Field α C1 C1T h r2 r2
original H

Vpoint 1.14 0.10 - 0.99 0.97 0.33
Vavg 1.33 0.05 - 0.98 0.94 0.69

Traditional 1.17 0.13 0.11 0.99 0.94 0.68
Integral 1.32 0.12 0.12 0.99 0.96 0.28

Table 3.9: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.1, C1 = 0.1, and a = H = 1/3 and 100 samples. The parameter r2

original is
computed before the correction.

Field α C1 C1T h r2 r2
original H

Vpoint 1.51 0.29 - 0.99 0.97 0.31
Vavg 1.4 0.24 - 0.99 0.91 0.67

Traditional 0.83 0.47 0.42 0.99 0.93 0.60
Integral 1.15 0.36 0.53 0.99 0.95 0.23

Table 3.10: Summary of the parameters retrieved in the analysis of the time series simulated with
input parameters α = 1.5, C1 = 0.3, and a = H = 1/3 and 100 samples. The parameter r2

original is
computed before the correction.
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3.5 Summary

In this last chapter, after reviewing their theoretical foundations, we have implemented or de-
veloped three distinct methods for calculating simulated torque series using wind fields generated
with the tools presented in the previous chapter. The first one, which is widely used in the literature,
computes the torque using the average wind speed enabling to take into account only the temporal
variability of the wind. The second one relies in the concept of the angular momentum computing
the torque in each point of the blade and integrating the contribution of each portion along it. This
allows to take into account both spatial and temporal variability. The third one employs the widely
used in research and industry software OpenFAST, which integrates multiple modules enabling
non-linear aero-hydro-servo-elastic simulations in the time domain. To compare these methods,
we used normalized time series to remove the effects of different prefactors on which we were not
focusing in this work, since we are interested in better understanding the the variability the studied
fields, here the torque.

When comparing the results, we observed a high agreement between the time series calculated
with the help of the different methods and the mean velocity on the grid. However, the use of
Universal Multifractal (UM) analysis allowed us to identify and quantify few differences among
the methods. The integral method exhibited stronger fluctuations due to its consideration of both
temporal and spatial variability, resulting in a lower parameter H. In contrast, the traditional method
displayed fluctuations similar to those observed in the wind field. Both methods conformed to
the expected theoretical results, confirming a power-law relationship between wind and torque.
Traditional approach shows lower value of α compared to the Integral one which is consistent with
a decrease in extremes due to averaging.

On the other hand, OpenFAST consistently demonstrated the lowest level of small scale fluctu-
ations which is visible on the fields and quantified through the parameter H which exhibits greater
values. This behavior can be attributed to the occurrence of inertia forces and the coupling between
the software modules, which dampens changes in wind speed and their transfer to torque, contrast-
ing with the instantaneous responses observed in the other two methods. This behaviour might also
bias the computation of C1 yielding greater values than the theoretical expectations.

It is important to note that the analysis using OpenFAST was limited to 10 samples (in each of
the different study scenarios) due to the computational cost of the software. Increasing the number
of samples could provide a more comprehensive understanding of its behavior. Additionally, we
have only used basic OpenFAST’s capabilities in this work, and further investigations could open
up a wide range of possibilities for studying small-scale wind power production.
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This PhD primarily aimed at simulating vector wind fields in space-time to quantify the impact
of small scale wind fluctuations on wind power production.

In a first step, a comprehensive review of the Universal Multifractal (UM) framework has
been conducted, starting by reminding the need for this framework and its theoretical foundations.
A review of the tools available for analysis such as spectral analysis, Trace and Double Trace
Moment techniques has also been carried out. Python scripts to simulate UM fields with continuous
cascades relying on existing methods in the literature have been developed. Scalar fields in 1,
2 and 3 dimension as well as their extension to non-conservative cases were simulated. Then,
existing theory combining stable Levy stochastic processes and Clifford algebra has been applied
to enable simulations of vector fields with two or three components. UM analysis techniques
were implemented on ensembles of simulated fields and sensitivity analysis to input parameters
performed. As expected, all the techniques showed a good scaling with good agreement between
the input and the output UM parameters. Additionally, the effect of the degree of non-conservation
in these analysis techniques has been analyzed, finding a decrease in the quality of the scaling
when H differs from 0. To overcome this difficulty, relying on previous findings, we developed an
algorithm to optimize the correction, i.e. the level of fractional integration implemented prior to
use of TM and DTM analysis, of the analyzed fields based on the quality of the scaling used. These
tools provide the basis for characterising wind fields as well as for realistic stochastic simulations
mimicking the observed properties.

In a second step, a toolbox for four different methods for wind simulation has been developed,
relying on existing theoretical framework, and compared. Wind fields are simulated in space-time
over wind turbine swept area and for duration between 4 s and 17 min. The latter corresponds to
range of scale over which a unique scaling regime was identified using time series acquired from
a high-resolution 3D anemometer deployed on an operational wind farm in the framework of the
RW-Turb project. The first method utilizes Turbsim, developed by NREL, to reconstruct a wind
grid over the turbine’s swept area using a time series acquired from a high-resolution 3D anemome-
ter, but it relies on Gaussian statistics, which do not enable to realistically reproduce extreme wind
variability across scales. To account for non-Gaussian statistics, alternative methods were explored.
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The first one is based on the reconstruction of wind grids from punctual measurements based on
established scaling laws. The last two methods are based on the Fractionally Integrated Flux (FIF)
principle but differ in their approach. The first method focuses on directly simulating wind fields
using the properties retrieved from the analysis of the field, while the second method concentrates
on simulating fluctuations. It uses the parameters obtained in the analysis of the corrected fluctu-
ations to simulate synthetic fluctuations from which the physical wind fields are reconstructed. In
the comparison of the different methods, it is observed that they all exhibit similar results in the
analysis of the time series of all the pixels over the grid. However, the most prominent differences
appear in the spatial analysis. After correction, all non-Gaussian methods show similar scaling fea-
tures, but only the direct FIF simulation yields the expected results, while the results obtained by
Turbsim are far from the expected ones. Therefore, it is concluded that the FIF simulation enables
the most realistic method for wind field simulation.

Utilizing vector fields provides a significant advantage, as it allows for more accurate com-
putations of effective velocities over the turbine blades. This is because it takes into account the
direction of the wind, whereas scalar fields only provide information about the wind’s magnitude.
Using these simulated vector wind fields as input, three different methods with increasing complex-
ity were employed to simulate wind turbine torque time series. First one computes the torque using
the average wind speed enabling to take into account only the temporal variability of the wind. The
second one relies on the concept of the angular momentum computing the torque in each point of
the blade and then integrating over the whole radius. This allows to take into account both spatial
and temporal variability of the wind. The third one, employs the realistic and widely used in the
industry and academia software OpenFAST. To compare these methods, we have used normalised
time series to avoid effects of different prefactors which are not of interest in this work, since we are
focusing on the variability of the torque. The comparison of the results showed a high agreement
between the torque time series calculated by the different methods with perfect correlation between
Traditional and Integral and 0.89 between Traditional and OpenFAST for uniform fields. This cor-
relation decreases to 0.95 and 0.8 respectively when non-uniform fields are used. However, the UM
analysis revealed some differences, which highlights the interest of employing such tools to char-
acterize and analyze torque time series, particularly because of their high fluctuations across scales
which are not accounted for with traditional approaches. The integral method exhibited stronger
fluctuations due to its consideration of both temporal and spatial variability, resulting in a lower H
parameter. The traditional method displayed fluctuations similar to those observed in the wind, and
both methods confirmed the expected power-law relationship between wind and torque. The value
of α was lower in the traditional method, which is consistent with a decrease in extremes due to
averaging. On the other hand, OpenFAST consistently demonstrated the lowest fluctuations, likely
due to the incorporation of inertia forces and coupling between software modules, which dampened
changes in wind speed and their transfer to torque.

Regarding future perspectives, numerous opportunities arise based on the findings presented in
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this work. Firstly, this thesis has laid the foundations for simulations of more realistic geophysical
fields extremely variable over wide range of space-time scales such as rainfall or wind, expanding
beyond the limitations scalar fields and two spatial dimensions. The implemented methods, which
relied on existing theoretical framework, allow for the extension to three spatial dimensions or even
higher dimensions, and also to vector processes. While these extensions require further theoretical
developments in vector analysis tools, they hold promising applications in various fields which are
discussed below.

Expanding the spatial coverage by obtaining data from additional points would allow for results
comparison also in space which is currently missing, and adaptation of the methods to the new
properties identified through the analysis of such data. This would require deployment of networks
of 3D sonic anemometer (Fitton et al., 2011, Fitton et al., 2014) or use of scanning lidars (Wang
et al., 2015 or Shimada et al., 2020). The former offer great temporal resolution but limited spatial
one while it is contrary for the latter. Within such framework, multifractal interpolation tools would
be very useful. Furthermore, while this study has primarily focused on time scales ranging from
4 seconds to 17 minutes, extending the investigations to other time scales will enable to address
wind variability issues not only at that scales but also over longer time intervals or smaller scales.
This would allow broader issues to be addressed. For example, simulation of larger scales can
be used for climate purposes, allowing the simulation of extreme weather events or the impact
of climate change in different scenarios or the integration of wind energy into the energy system.
Smaller scales studies could be useful to better understand differences between wind measurements
obtained at different scales. A challenge associated with working on larger range of space-time
scales will be to introduce scale breaks in simulation, which remains a challenge with continuous
cascades.

High resolution wind simulations offer numerous opportunities for a wide range of applica-
tions, in addition to the effect on torque calculation analysed in this work. For example, it is
possible to use them in the wind turbine interactions in a wind farm with the wake effect. Indeed,
investigations are here limited to single turbine and this could be extended. However its use is not
restricted to the wind energy industry, other examples can be found in city planning, e.g. adaptation
(cooling) of cities in climate change scenarios (Grylls and van Reeuwijk, 2021;Meili et al., 2021),
the impact of extreme events on trees (Bai et al., 2013;Angelou et al., 2022), construction sites with
cranes, or raindrop trajectories in complex turbulent wind field for better accounting wind drift
effect with weather radar measurements (Gires et al., 2022b). Another possible application is the
comparison of turbulence measurements with instruments of various spatial and temporal resolu-
tion (e.g. sonic anemometers and lidars) or also the stochastic downscaling of climate or numerical
weather models to obtain fields at the higher desired resolution. Such effort has been often been
done with rain and seldom with wind ( Deidda, 2000 , Biaou et al., 2003, Gires et al., 2014, Gires
et al., 2020).
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The modeling chains developed in this thesis are based on simplifications of wind turbine
design, considering only a few aspects of its geometry. Increasing the level of complexity and in-
corporating a detailed design of the blades, such as the change of angle of attack and the pitch angle
with distance to the rotor, could lead to a better understanding of the loads on the blades during
extreme wind events such as wind gusts. This enhanced understanding could potentially extend
the lifetime of the turbine, as these events are often underestimated using traditional tools. Addi-
tionally, another possibility is to extend the modeling chains by incorporating interactions between
different turbines in a wind farm, which would enable the study of wake effects. Furthermore, it
is important to note that these modelling chains are currently adapted to onshore wind turbines.
Adapting and extending their functionality to cover offshore wind turbines presents a promising
avenue for future research since offshore environments introduce unique challenges that are not
encountered on land, such as the oscillations caused by waves for floating ones (induced motion on
the turbines) which results in misalignment between the turbine and the wind, coupling structure
turbine or hydrodynamic loads (Henderson and Witcher, 2010, Perveen et al., 2014). The impor-
tance of offshore wind energy has grown exponentially in recent years, making it a critical area for
exploration and development.

Finally, the possibility of using the FIFoF approach for stochastic nowcasting needs to be ex-
plored in more detail, as it can open up many possibilities in this area. Only initial study are
mentioned in this work as it was outside of its initial scope. This approach enables to use the prop-
erties of a given event to simulate an ensemble of realistic future scenarios in which the scaling
properties are preserved, obtaining a stochastic nowcasting. UM tools are used in the literature for
the nowcasting in other geophysical fields such as rainfall (Macor et al., 2007, Paz et al., 2018,
Gires et al., 2023), and their use should be extended to wind.

In summary, this thesis has established a robust framework for the continuation of realistic
geophysical field simulation, enhancing versatility and applicability in various research fields. To
this end, several simulation tools have been developed based mainly on the existing theory of
continuous cascades and vector processes. This thesis also lays the foundation for future research
and improvements in wind field simulation, with the aim of achieving more accurate and realistic
results through the analysis of wind data from a high resolution campaign and the development of
four wind simulation methods that use the properties obtained in the analysis. These simulated wind
fields are used as input for three methods for calculating torque that have proven their effectiveness
and agreement with theory, shedding light on how spatio-temporal wind variability influences wind
energy production. The various approaches used in this study pave the way for further research in
this field, relying on Universal Multifractal framework which enables to properly tackle the extreme
variability observed over wide range of space-time scales.
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Appendix A

Drive codes

In the chapter, the drive codes used to run Turbsim / OpenFAST are inserted.

A.1 Turbsim input File

Example of Turbsim primary input file

---------TurbSim v2.00.* Input File------------------------

for user-defined time series input

---------Runtime Options-----------------------------------

False Echo - Echo input data to <RootName>.ech (flag)

43456 RandSeed1 - First random seed (-2147483648 to
2147483647)

"RanLux" RandSeed2 - Second random seed (-2147483648 to
2147483647) for intrinsic pRNG , or an
alternative pRNG: "RanLux" or "

RNSNLW"

False WrBHHTP - Output hub-height turbulence parameters in
binary form? (Generates RootName.

bin)

True WrFHHTP - Output hub-height turbulence parameters in
formatted form? (Generates RootName
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.dat)

False WrADHH - Output hub-height time-series data in
AeroDyn form? (Generates RootName.hh
)

True WrADFF - Output full-field time-series data in
TurbSim/AeroDyn form? (Generates
RootName.bts)

True WrBLFF - Output full-field time-series data in
BLADED/AeroDyn form? (Generates
RootName.wnd)

False WrADTWR - Output tower time-series data? (Generates
RootName.twr)

False WrFMTFF - Output full-field time-series data in
formatted (readable) form? (
Generates RootName.u, RootName.v,
RootName.w)

False WrACT - Output coherent turbulence time steps in
AeroDyn form? (Generates RootName.cts
)

False Clockwise - Clockwise rotation looking downwind? (used
only for full-field binary files -

not necessary for AeroDyn)
0 ScaleIEC - Scale IEC turbulence models to exact

target standard deviation? [0=no
additional scaling; 1=use hub scale
uniformly; 2=use individual scales]

----------------Turbine/Model Specifications------------------

27 NumGrid_Z - Vertical grid-point matrix dimension

27 NumGrid_Y - Horizontal grid-point matrix dimension

4 TimeStep - Time step [seconds]

1040 AnalysisTime - Length of analysis time series [seconds]

"ALL" UsableTime - Usable length of output time series [
seconds] (program will add GridWidth/
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MeanHHWS seconds unless UsableTime is
"ALL")

90 HubHt - Hub height [m] (should be > 0.5*GridHeight
)

175 GridHeight - Grid height [m]

175 GridWidth - Grid width [m] (should be >= 2*(
RotorRadius+ShaftLength))

0 VFlowAng - Vertical mean flow (uptilt) angle [degrees
]

30.0794 HFlowAng - Horizontal mean flow (skew) angle [degrees
]

--------Meteorological Boundary Conditions-------------------

"TIMESR" TurbModel - Turbulence model ("IECKAI","IECVKM","
GP_LLJ","NWTCUP","SMOOTH","WF_UPW","
WF_07D","WF_14D","TIDAL","API","
USRINP","TIMESR", or "NONE")

"/home/angel/Turbsim/input/run/wind.TimeSer" UserFile - Name of
the file that contains inputs for
user-defined spectra or time series
inputs (used only for "USRINP" and "
TIMESR" models)

1 IECstandard - Number of IEC 61400-x standard (x=1,2, or 3
with optional 61400-1 edition number
(i.e. "1-Ed2") )

"A" IECturbc - IEC turbulence characteristic ("A", "B", "
C" or the turbulence intensity in
percent) ("KHTEST" option with NWTCUP
model , not used for other models)

"NTM" IEC_WindType - IEC turbulence type ("NTM"=normal , "xETM"=
extreme turbulence , "xEWM1"=extreme 1
-year wind , "xEWM50"=extreme 50-year
wind , where x=wind turbine class 1, 2
, or 3)

"default" ETMc - IEC Extreme Turbulence Model "c" parameter
[m/s]
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"default" WindProfileType - Velocity profile type ("LOG";"PL"=power
law;"JET";"H2L"=Log law for TIDAL
model;"API";"USR";"TS";"IEC"=PL on
rotor disk , LOG elsewhere; or "
default")

"unused" ProfileFile - Name of the file that contains input
profiles for WindProfileType="USR"
and/or TurbModel="USRVKM" [-]

90 RefHt - Height of the reference velocity (URef) [m
]

7.9609 URef - Mean velocity at the reference height [ms
-1]

350 ZJetMax - Jet height [m] (used only for JET velocity
profile , valid 70-490 m)

"default" PLExp - Power law exponent [-] (or "default")

"default" Z0 - Surface roughness length [m] (or "default"
)

--------Non-IEC Meteorological Boundary Conditions------------

"default" Latitude - Site latitude [degrees] (or "default")
0.05 RICH_NO - Gradient Richardson number [-]

"default" UStar - Friction or shear velocity [m/s] (or "
default")

"default" ZI - Mixing layer depth [m] (or "default")
"default" PC_UW - Hub mean u’w’ Reynolds stress [m^2/s^2] (

or "default" or "none")
"default" PC_UV - Hub mean u’v’ Reynolds stress [m^2/s^2] (

or "default" or "none")
"default" PC_VW - Hub mean v’w’ Reynolds stress [m^2/s^2] (

or "default" or "none")

--------Spatial Coherence Parameters-------------------------
"default" SCMod1 - u-component coherence model ("GENERAL","

IEC","API","NONE", or "default")

"default" SCMod2 - v-component coherence model ("GENERAL","
IEC","NONE", or "default")
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"default" SCMod3 - w-component coherence model ("GENERAL","
IEC","NONE", or "default")

"5.310901 , 0.000341" InCDec1 - u-component coherence
parameters for general or IEC models
[-, m^-1] (e.g. "10.0 0.3e-3" in
quotes) (or "default")

"2.638217 , 0.001692" InCDec2 - v-component coherence
parameters for general or IEC models
[-, m^-1] (e.g. "10.0 0.3e-3" in
quotes) (or "default")

"1.633211 , 0.005484" InCDec3 - w-component coherence
parameters for general or IEC models
[-, m^-1] (e.g. "10.0 0.3e-3" in
quotes) (or "default")

0 CohExp - Coherence exponent for general model [-]
(or "default")

--------Coherent Turbulence Scaling Parameters-------------------

"/home/angel/CertTurbSim\EventData" CTEventPath - Name of the path
where event data files are located

"les" CTEventFile - Type of event files ("LES", "DNS", or "
RANDOM")

true Randomize - Randomize the disturbance scale and
locations? (true/false)

1 DistScl - Disturbance scale [-] (ratio of event
dataset height to rotor
disk). (Ignored when
Randomize = true.)

0.5 CTLy - Fractional location of tower centerline
from right [-] (looking
downwind) to left side of the
dataset. (Ignored when

Randomize = true.)

0.5 CTLz - Fractional location of hub height from the
bottom of the dataset. [-] (

Ignored when Randomize = true
.)
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10 CTStartTime - Minimum start time for coherent structures
in RootName.cts [seconds]

====================================================
! NOTE: Do not add or remove any lines in this file!
====================================================
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A.2 OpenFAST Drive Code

OpenFAST primary input file

--------------- OpenFAST EXAMPLE INPUT FILE ----------------
FAST Certification Test #26: NREL 5.0 MW Baseline Wind Turbine (Onshore)
------------------ SIMULATION CONTROL ----------------------
True Echo - Echo input data to <RootName>.ech (flag)
"FATAL" AbortLevel - Error level when simulation should abort (

string) {"WARNING", "SEVERE", "FATAL"
}

1040 TMax - Total run time (s)
0.05 DT - Recommended module time step (s)

2 InterpOrder - Interpolation order for input/output time
history (-) {1=linear , 2=
quadratic}

0 NumCrctn - Number of correction iterations (-) {0=
explicit calculation , i.e.,
no corrections}

99999 DT_UJac - Time between calls to get Jacobians (s)
1E+06 UJacSclFact - Scaling factor used in Jacobians (-)

-------------- FEATURE SWITCHES AND FLAGS -----------------
2 CompElast - Compute structural dynamics (switch) {1=

ElastoDyn; 2=ElastoDyn +
BeamDyn for blades}

1 CompInflow - Compute inflow wind velocities (switch) {0
=still air; 1=InflowWind; 2
=external from OpenFOAM}

2 CompAero - Compute aerodynamic loads (switch) {0=None
; 1=AeroDyn v14; 2=AeroDyn
v15}

1 CompServo - Compute control and electrical-drive
dynamics (switch) {0=None;
1=ServoDyn}

0 CompHydro - Compute hydrodynamic loads (switch) {0=
None; 1=HydroDyn}

0 CompSub - Compute sub-structural dynamics (switch) {
0=None; 1=SubDyn; 2=
External Platform MCKF}

0 CompMooring - Compute mooring system (switch) {0=None; 1
=MAP++; 2=FEAMooring; 3=
MoorDyn; 4=OrcaFlex}

0 CompIce - Compute ice loads (switch) {0=None; 1=
IceFloe; 2=IceDyn}

---------------------- INPUT FILES -------------------------
"NRELOffshrBsline5MW_Onshore_ElastoDyn_BDoutputs.dat" EDFile -
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Name of file containing ElastoDyn
input parameters (quoted string)

"../ 5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat" BDBldFile(1) -
Name of file containing BeamDyn input
parameters for blade 1 (quoted

string)
"../ 5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat" BDBldFile(2) -

Name of file containing BeamDyn input
parameters for blade 2 (quoted

string)
"../ 5MW_Baseline/NRELOffshrBsline5MW_BeamDyn.dat" BDBldFile(3) -

Name of file containing BeamDyn input
parameters for blade 3 (quoted

string)
"../ 5MW_Baseline/NRELOffshrBsline5MW_InflowWind_12mps.dat" InflowFile

- Name of file containing inflow
wind input parameters (quoted string

)
"NRELOffshrBsline5MW_Onshore_AeroDyn15.dat" AeroFile - Name of

file containing aerodynamic input
parameters (quoted string)

"NRELOffshrBsline5MW_Onshore_ServoDyn.dat" ServoFile - Name of
file containing control and
electrical-drive input parameters (
quoted string)

"unused" HydroFile - Name of file containing hydrodynamic input
parameters (quoted string)

"unused" SubFile - Name of file containing sub-structural
input parameters (quoted string)

"unused" MooringFile - Name of file containing mooring system
input parameters (quoted string)

"unused" IceFile - Name of file containing ice input
parameters (quoted string)

------------------------ OUTPUT ------------------------------
True SumPrint - Print summary data to "<RootName >.sum" (

flag)
1 SttsTime - Amount of time between screen status

messages (s)
99999 ChkptTime - Amount of time between creating checkpoint

files for potential restart (s
)

"default" DT_Out - Time step for tabular output (s) (or "
default")

0 TStart - Time to begin tabular output (s)
0 OutFileFmt - Format for tabular (time-marching) output

file (switch) {0:
uncompressed binary [<
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RootName>.outb], 1: text
file [<RootName>.out], 2:
binary file [<RootName>.
outb], 3: both 1 and 2}

True TabDelim - Use tab delimiters in text tabular output
file? (flag) {uses spaces if false}

"ES10.3E2" OutFmt - Format used for text tabular output ,
excluding the time channel.
Resulting field should be 10
characters. (quoted string)

---------------------- LINEARIZATION ------------------------
False Linearize - Linearization analysis (flag)
False CalcSteady - Calculate a steady-state periodic

operating point before linearization?
[unused if Linearize=False] (flag)

3 TrimCase - Controller parameter to be trimmed {1:yaw;
2:torque; 3:pitch} [used

only if CalcSteady=True] (-
)

0.001 TrimTol - Tolerance for the rotational speed
convergence [used only if
CalcSteady=True] (-)

0.01 TrimGain - Proportional gain for the rotational speed
error (>0) [used only if

CalcSteady=True] (rad/(rad/s)
for yaw or pitch; Nm/(rad/s)
for torque)

0 Twr_Kdmp - Damping factor for the tower [used only if
CalcSteady=True] (N/(m/s))

0 Bld_Kdmp - Damping factor for the blades [used only
if CalcSteady=True] (N/(m/s
))

2 NLinTimes - Number of times to linearize (-) [>=1] [
unused if Linearize=False]

30 , 60 LinTimes - List of times at which to
linearize (s) [1 to
NLinTimes] [used only when
Linearize=True and
CalcSteady=False]

1 LinInputs - Inputs included in linearization (switch)
{0=none; 1=standard; 2=all
module inputs (debug)} [
unused if Linearize=False]

1 LinOutputs - Outputs included in linearization (switch)
{0=none; 1=from OutList(s)

; 2=all module outputs (
debug)} [unused if
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Linearize=False]
False LinOutJac - Include full Jacobians in linearization

output (for debug) (flag) [unused if
Linearize=False; used only if
LinInputs=LinOutputs=2]

False LinOutMod - Write module-level linearization output
files in addition to output for full
system? (flag) [unused if Linearize=
False]

---------------------- VISUALIZATION -----------------------
0 WrVTK - VTK visualization data output: (switch) {0

=none; 1=initialization
data only; 2=animation; 3=
mode shapes}

2 VTK_type - Type of VTK visualization data: (switch) {
1=surfaces; 2=basic meshes
(lines/points); 3=all
meshes (debug)} [unused if
WrVTK=0]

True VTK_fields - Write mesh fields to VTK data files? (flag)
{true/false} [unused if WrVTK=0]

15 VTK_fps - Frame rate for VTK output (frames per
second){will use closest
integer multiple of DT} [
used only if WrVTK=2 or
WrVTK=3]
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A.3 AeroDyn Drive Code

Examples of AeroDyn input files

------- AERODYN v15 for OpenFAST INPUT FILE ----------------
NREL 5.0 MW offshore baseline aerodynamic input properties.
====== General Options ===================================
False Echo - Echo the input to "<rootname >.AD.ech"?

(flag)
"default" DTAero - Time interval for aerodynamic

calculations {or "default"} (s)
1 WakeMod - Type of wake/induction model (switch) {

0=none , 1=BEMT , 2=DBEMT , 3=
OLAF} [WakeMod cannot be 2
or 3 when linearizing]

2 AFAeroMod - Type of blade airfoil aerodynamics
model (switch) {1=steady
model , 2=Beddoes-Leishman
unsteady model} [AFAeroMod
must be 1 when linearizing]

1 TwrPotent - Type tower influence on wind based on
potential flow around the
tower (switch) {0=none , 1=
baseline potential flow , 2=
potential flow with Bak
correction}

0 TwrShadow - Calculate tower influence on wind based
on downstream tower shadow
(switch) {0=none , 1=Powles
model , 2=Eames model}

True TwrAero - Calculate tower aerodynamic loads? (
flag)

False FrozenWake - Assume frozen wake during linearization
? (flag) [used only when WakeMod=1
and when linearizing]

False CavitCheck - Perform cavitation check? (flag) [
AFAeroMod must be 1 when CavitCheck=
true]

False CompAA - Flag to compute AeroAcoustics
calculation [used only when WakeMod =
1 or 2]

"unused" AA_InputFile - AeroAcoustics input file [used only
when CompAA=true]

====== Environmental Conditions =========================
1.225 AirDens - Air density (kg/m^3)

1.464E-05 KinVisc - Kinematic air viscosity (m^2/s)
335 SpdSound - Speed of sound (m/s)
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103500 Patm - Atmospheric pressure (Pa) [used only
when CavitCheck=True]

1700 Pvap - Vapour pressure of fluid (Pa) [used
only when CavitCheck=True]

0.5 FluidDepth - Water depth above mid-hub height (m) [
used only when CavitCheck=
True]

====== Blade-Element/Momentum Theory Options ============
[unused when WakeMod=0 or 3]

2 SkewMod - Type of skewed-wake correction model (
switch) {1=uncoupled , 2=
Pitt/Peters , 3=coupled} [
unused when WakeMod=0 or 3]

"default" SkewModFactor - Constant used in Pitt/Peters skewed
wake model {or "default" is 15/32*pi}
(-) [used only when SkewMod=2;

unused when WakeMod=0 or 3]
True TipLoss - Use the Prandtl tip-loss model? (flag)

[unused when WakeMod=0 or 3]
True HubLoss - Use the Prandtl hub-loss model? (flag)

[unused when WakeMod=0 or 3]
True TanInd - Include tangential induction in BEMT

calculations? (flag) [unused when
WakeMod=0 or 3]

False AIDrag - Include the drag term in the axial-
induction calculation? (flag) [unused
when WakeMod=0 or 3]

False TIDrag - Include the drag term in the tangential
-induction calculation? (flag) [
unused when WakeMod=0,3 or TanInd=
FALSE]

"Default" IndToler - Convergence tolerance for BEMT
nonlinear solve residual equation {or
"default"} (-) [unused when WakeMod=

0 or 3]
100 MaxIter - Maximum number of iteration steps (-) [

unused when WakeMod=0]
====== Dynamic Blade-Element/Momentum Theory Options ======
[used only when WakeMod=2]

2 DBEMT_Mod - Type of dynamic BEMT (DBEMT) model {1=
constant tau1 , 2=time-
dependent tau1} (-) [used
only when WakeMod=2]

4 tau1_const - Time constant for DBEMT (s) [used only
when WakeMod=2 and
DBEMT_Mod=1]

== OLAF -- (Free Vortex Wake) Theory Options ==============
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[used only when WakeMod=3]
"unused" OLAFInputFileName - Input file for OLAF [used only when

WakeMod=3]
=== Beddoes-Leishman Unsteady Airfoil Aerodynamics Options ===
[used only when AFAeroMod=2]

3 UAMod - Unsteady Aero Model Switch (switch) {1=
Baseline model (Original),
2=Gonzalez ’s variant (
changes in Cn ,Cc ,Cm), 3=
Minnema/Pierce variant (
changes in Cc and Cm)} [
used only when AFAeroMod=2]

True FLookup - Flag to indicate whether a lookup for f
’ will be calculated (TRUE) or
whether best-fit exponential
equations will be used (FALSE); if
FALSE S1-S4 must be provided in
airfoil input files (flag) [used only
when AFAeroMod=2]

====== Airfoil Information ================================
1 AFTabMod - Interpolation method for multiple

airfoil tables {1=1D
interpolation on AoA (first
table only); 2=2D

interpolation on AoA and Re
; 3=2D interpolation on AoA
and UserProp} (-)

1 InCol_Alfa - The column in the airfoil tables that
contains the angle of
attack (-)

2 InCol_Cl - The column in the airfoil tables that
contains the lift
coefficient (-)

3 InCol_Cd - The column in the airfoil tables that
contains the drag
coefficient (-)

4 InCol_Cm - The column in the airfoil tables that
contains the pitching-
moment coefficient; use
zero if there is no Cm
column (-)

0 InCol_Cpmin - The column in the airfoil tables that
contains the Cpmin
coefficient; use zero if
there is no Cpmin column (-
)

8 NumAFfiles - Number of airfoil files used (-)
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"../ 5MW_Baseline/Airfoils/Cylinder1.dat" AFNames - Airfoil
file names (NumAFfiles lines) (quoted
strings)

"../ 5MW_Baseline/Airfoils/Cylinder2.dat"
"../ 5MW_Baseline/Airfoils/DU40_A17.dat"
"../ 5MW_Baseline/Airfoils/DU35_A17.dat"
"../ 5MW_Baseline/Airfoils/DU30_A17.dat"
"../ 5MW_Baseline/Airfoils/DU25_A17.dat"
"../ 5MW_Baseline/Airfoils/DU21_A17.dat"
"../ 5MW_Baseline/Airfoils/NACA64_A17.dat"
====== Rotor/Blade Properties ============================
True UseBlCm - Include aerodynamic pitching moment in

calculations? (flag)
"../ 5MW_Baseline/NRELOffshrBsline5MW_AeroDyn_blade.dat" ADBlFile(1)

- Name of file containing
distributed aerodynamic properties
for Blade #1 (-)

"../ 5MW_Baseline/NRELOffshrBsline5MW_AeroDyn_blade.dat" ADBlFile(2)
- Name of file containing

distributed aerodynamic properties
for Blade #2 (-) [unused if NumBl < 2
]

"../ 5MW_Baseline/NRELOffshrBsline5MW_AeroDyn_blade.dat" ADBlFile(3)
- Name of file containing

distributed aerodynamic properties
for Blade #3 (-) [unused if NumBl < 3
]

====== Tower Influence and Aerodynamics ===================
[used only when TwrPotent/=0, TwrShadow/=0, or TwrAero=True]

12 NumTwrNds - Number of tower nodes used in the
analysis (-) [used only
when TwrPotent/=0, TwrShadow
/=0, or TwrAero=True]

TwrElev TwrDiam TwrCd TwrTI (used only with
TwrShadow=2)

(m) (m) (-) (-)
0.0000000E+00 6.0000000E+00 1.0000000E+00 1.0000000E-01
8.5261000E+00 5.7870000E+00 1.0000000E+00 1.0000000E-01
1.7053000E+01 5.5740000E+00 1.0000000E+00 1.0000000E-01
2.5579000E+01 5.3610000E+00 1.0000000E+00 1.0000000E-01
3.4105000E+01 5.1480000E+00 1.0000000E+00 1.0000000E-01
4.2633000E+01 4.9350000E+00 1.0000000E+00 1.0000000E-01
5.1158000E+01 4.7220000E+00 1.0000000E+00 1.0000000E-01
5.9685000E+01 4.5090000E+00 1.0000000E+00 1.0000000E-01
6.8211000E+01 4.2960000E+00 1.0000000E+00 1.0000000E-01
7.6738000E+01 4.0830000E+00 1.0000000E+00 1.0000000E-01
8.5268000E+01 3.8700000E+00 1.0000000E+00 1.0000000E-01
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8.7600000E+01 3.8700000E+00 1.0000000E+00 1.0000000E-01
====== Outputs ==========================================
True SumPrint - Generate a summary file listing input

options and interpolated properties
to "<rootname >.AD.sum"? (flag)

0 NBlOuts - Number of blade node outputs [0 - 9] (
-)

1, 9, 19 BlOutNd - Blade nodes
whose values will be output

(-)
0 NTwOuts - Number of tower node outputs [0 - 9]

(-)
1, 2, 6 TwOutNd - Tower nodes

whose values will be output
(-)

OutList - The next line(s) contains a list of
output parameters. See
OutListParameters.xlsx
for a listing of

available output
channels , (-)

END of input file (the word "END" must appear in the first 3 columns of
this last OutList line)

----------------------------------------------------------
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Simulations with Turbsim and Simplistic
Approach

In this chapter, the same curves, which are presented and discussed in details in section 2.6.1
for a wind event occurring on 20/12/2020, are displayed, but for other events.

Days of study: (a) 15/12/2020, (b) 14/01/2021, (c) 20/01/2021, (d) 25/01/2021, (e) 01/02/2021,
(f) 10/02/2021, (g) 20/02/2021, (h) 04/03/2021, (i) 10/05/2021. These days have been selected to
cover wind events with different average velocity.

B.1 Turbsim

B.2 Simplistic Approach
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1.1: Spatial distribution of α for different input days simulated with Turbsim. Days are
listed chronologically as mention in the text at the beginning of the section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1.2: Spatial distribution of C1 for different input days simulated with Turbsim. Days are
listed chronologically as mention in the text at the beginning of the section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1.3: Spatial distribution of H for different input days simulated with Turbsim. Days are
listed chronologically as mention in the text at the beginning of the section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1.4: Spatial distribution of r2 for different input days simulated with Turbsim. Days are
listed chronologically as mention in the text at the beginning of the section
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2.5: Spatial distribution of α for different input days simulated with Simplistic approach.
Days are listed chronologically as mention in the text at the beginning of the section
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2.6: Spatial distribution of C1 for different input days simulated with Simplistic approach.
Days are listed chronologically as mention in the text at the beginning of the section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2.7: Spatial distribution of H for different input days simulated with Simplistic approach.
Days are listed chronologically as mention in the text at the beginning of the section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2.8: Spatial distribution of r2 for different input days simulated with Simplistic approach.
Days are listed chronologically as mention in the text at the beginning of the section.
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UM analysis Torque

In this chapter, all the figures corresponding to the multifractal analysis of the simulated wind
and torque time series for various UM parameters input are showed. They are discussed in details
in section 3.4.1 for the "10 samples" case and in section 3.4.2 for the "100 samples" case.

C.1 10 samples

C.2 100 samples
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure C.1.1: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 10 samples and input parameters α = 1.8, C1 = 0.05, and a = H = 1/3. 1st row
is the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque, 4th Integral and,
5th OpenFAST
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure C.1.2: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 10 samples and input parameters α = 1.1, C1 = 0.1, and a = H = 1/3. 1st row is
the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque, 4th Integral and, 5th
OpenFAST.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure C.1.3: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 10 samples and input parameters α = 1.5, C1 = 0.3, and a = H = 1/3. 1st row is
the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque, 4th Integral and, 5th
OpenFAST.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure C.2.4: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 100 samples and input parameters α = 1.8, C1 = 0.05, and a = H = 1/3. 1st row
is the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque and, 4th Integral
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure C.2.5: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 100 samples and input parameters α = 1.1, C1 = 0.1, and a = H = 1/3. 1st row
is the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque and, 4th Integral
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure C.2.6: Analysis of the horizontal wind field of the center of the grid. The analysis is made
in a ensemble of 100 samples and input parameters α = 1.5, C1 = 0.3, and a = H = 1/3. 1st row
is the analysis of the punctual velocity, 2nd avg velocity, 3rd Traditional torque and, 4th Integral
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Scripts

Due to the length of the scripts in this Appendix we review only the main function used, with
the required input and the outputs. The scripts are collected in a dedicated project of gitlab (https:
//gitlab.enpc.fr/auguste.gires/RW_Turb_Toolbox.git)

D.1 UM scripts

continuous_cascade(lamx,lamy,lamz,lamt,Hz,Hy,Ht,alpha,c1,dim,cau,H,a)

Creates a UM field using continuous cascades (full description in Section 1.3.3)

Inputs:

• lamx, lamy, lamz, lamt are the number of points in each dimension (x,y,z,t)

• Hz and Hy are anisotropic exponents for the spatial dimensions x and z respectively

• Ht is anisotropic exponent space-time

• alpha is the multifractality index

• c1 is the mean intermittency codimension

• dim is the dimension of the simulated field

• cau=1 is an index to include zero padding in the convolution

• H is the degree of non conservation

• a is the dimensional exponent

237

https://gitlab.enpc.fr/auguste.gires/RW_Turb_Toolbox.git
https://gitlab.enpc.fr/auguste.gires/RW_Turb_Toolbox.git


Appendix D

Outputs

• Conservative field of size (lamx,lamy,lamz,lamt)

• Non-Conservative field of size (lamx,lamy,lamz,lamt). If H = 0 then the Non-Conservative
field is a field of zeros

vector(lamx,lamy,lamz,lamt,Hz,Hy,Ht,alpha,c1,dim,cau,H,a,nc)

Creates a UM vector field (full description in Section 1.3.4)

Inputs:

• lamx, lamy, lamz, lamt are the number of points in each dimension (x,y,z,t)

• Hz and Hy are anisotropic exponents for the spatial dimensions x and z respectively

• Ht is anisotropic exponent space-time

• alpha is the multifractality index

• c1 is the mean intermittency codimension

• dim is the dimension of the simulated field

• cau=1 is an index to include zero padding in the convolution

• H is the degree of non conservation

• a is the dimensional exponent

• nc number of components

Output

• Vector field of size (lamx,lamy,lamz,lamt,nc). If H ̸= 0 the vector then is a non-conservative
field of degree of non conservation H and dimensional exponent a

frac_intmd(data,f0,po)

Perform the fractional integration (full description in Section 1.4.3.3)

Inputs:

• data is variable to be convoluted (of length 2n)

• f0 is the highest frequency measurement
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• po is the exponent of the kvector (the order of the Fractional integration)

Output

• Convolved field, i.e. the field after FI

find_H(data)

Find the value of H which maximize the regression coefficient performing a fractional integra-
tion of order H (full description in Section 1.4.3.3)

Inputs:

• data to be optimized

• Multifractal toolbox is required to run this function

Output

• The optimum value H to use in the fractional integration

D.2 Wind simulation scripts

simplistic_3D(av,ah,Hv,Hh,alpha,C1,dim,samples,size,grid,Height,cmeant)

Creates a 3D wind field using simplistic approach to simulate the field (full description of the
mathematical process it is found in Section 2.4)

Inputs:

• av and ah scaling exponent in vertical and horizontal

• Hv and Hh are anisotropic exponents for the vertical and horizontal

• alpha is the multifractality index of the analysis of the difference between two heights

• c1 is the mean intermittency codimension of the analysis of the difference between two
heights

• dim is the dimension of the desired field

• samples is the number of samples

• size is the number of steps of the discrete cascades

• Grid gives distances in vertical (heights) and horizontal (distances to the center)
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• Height is the height of the center of the grid

• cmeant is the prefactor computed from the anemometers

Output

• Simulated 3D field (x,z,t)

Reconstruct_field(inp,field,prefactor,npr)

Creates a wind field using FIF approach to simulate the fulcutations and then reconstruct the
field (full description of the mathematical process it is found in Section 2.5.2)

Inputs:

• inp gives the inputs of the simulation (alpha_FI, C1_FI, H_fluct, mean)

• alpha_FI is the multifractality index of the analysis of the corrected fluctuations

• C1_FI is the mean intermittency codimension of the analysis of the corrected fluctuations
heights

• H_fluc is the degree of non-conservation retrieved in the analysis of the fluctuations

• field gives the information about the size of the target field i.e. number of points in each
direction

• Prefactor is the avg value of the absolute fluctuations analysised

• npr is the number of cores used for the paralell process

Output

• reconstructed field

D.3 Torque computation scripts

Torque computation scripts

torque(r,rho,TSR,beta,angle,TS,c,angleb,data,cl,cd,angle_turbine,at,x)

Creates a torque time series (full description of the mathematical process it is found in Section
3.2)
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Inputs:

• r is the radius of the blade

• rho is the air density

• TSR tip speed ratio of the blade

• beta is the pitch angle of the blade

• angle is the angle of attack

• TS is an index to use the tower shadow correction if TS=1 is applied

• c is the length of the chord of the blade

• angleb is the angle between the blades

• data is the input wind field

• cl and cd are the aerodynamic coefficients for lift and drag

• angle_turbine is the angle of the turbine to the north

• at is the distance between the hub and the tower mast

• x is the diameter of the tower mast

Output

• Torque time series computed using traditional approach

• Torque time series computed using integral approach
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Publications

Conference presentations:

• García Gago, Á., Schertzer, D., & Gires, A. (2021, April). Interactions between rainfall
and wind turbulence in a Universal Multifractal framework. In EGU General Assembly
Conference Abstracts (pp. EGU21-10799)., https:// doi.org/ 10.5194/ egusphere-egu21-
10799. Oral presentation.

• García Gago, Á., Gires, A., Veers, P., Schertzer, D., & Tchiguirinskaia, I. (2022, May).
Transfer of small scales space-time fluctuations of wind fields to wind turbines torque com-
putation. In EGU General Assembly Conference Abstracts (pp. EGU22-10583), https:
//doi.org/10.5194/egusphere-egu22-10583. Oral presentation.

• García Gago, Á. (2022, 29 June), Transfer of small scales space-time variability of wind
fields to wind turbine torque computation, oral comunication in Journee scientifique EDSIE,
Champs-sur-Marne.

• García Gago, Á. , Gires, A., Veers, P., Schertzer, D., & Tchiguirinskaia, I. (2022, December).
Transfer of Small Scales Space-Time Variability of Wind Fields to Wind Turbine Torque
Computation using Simulations of 3D Vector Fields. In AGU Fall Meeting 2022, Bibcode:
2022AGUFMNG25B0397G. Poster presentation.

• García Gago, Á., Gires, A., Veers, P., Tchiguirinskaia, I., & Schertzer, D. (2023, May).
Small Scales Space-Time Variability of Wind Fields: Simulations with Vector Fields and
Transfer to Turbine Torque Computation. In EGU General Assembly Conference Abstracts
(pp. EGU-11767), https://doi.org/10.5194/egusphere-egu23-11767. Oral presentation.
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• García Gago, Á. (2023, 29 June), Characterizing and Simulating Small-Scale Wind Vari-
ability for Wind Turbine Torque Calculations, poster comunication in Journee scientifique
EDSIE, Créteil.

• Gires, A., Jose, J., García Gago, Á., Tchiguirinskaia, I., & Schertzer, D. (2023, December).
Small scales space-time variability of rainfall and wind fields and its impact on wind power
production. In AGU Fall Meeting 2023

Seminars given:
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• García Gago, Á.,(2023, 23 March), Variabilidad espacio-temporal del viento a pequeña es-
cala: Simulaciones y transferencia al cálculo del torque en aerogeneradores, framed in “ciclo
de seminarios del Máster de Meteorología y Geofísica”, Universidad complutense, Madrid.

Journal papers (from previous works):

• Díaz-Fernández, J., Quitián-Hernández, L., Bolgiani, P. , Santos-Muñoz, D., García Gago,
Á., Fernández-González, S. , Valero, A. Merino F., García-Ortega E., Sánchez, J. L., et al.
Mountain waves analysis in the vicinity of the madrid-barajas airport using the wrf model.
Advances in Meteorology, 2020:1–17, 2020. https://doi.org/10.1155/2020/8871546

Other activities:

• PhD representative of the HM&Co laboratory in the École des ponts. April 2021-September
2023

• Deputy Early Career Scientist (ECS) representative of the Nonlinear Processes in Geosciences
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– 13 speakers

• Co-convener of the session Non linear dynamic analysis and simulations of complex systems
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