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ment qu’humainement. Merci Frédéric pour ton soutien, ton optimisme
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Abstract

This thesis studies the concept of kernels in directed graphs, defined as subsets of vertices
which are “independent” (meaning they don’t contain adjacent vertices) and “absorbing”
(every vertex outside the subset has at least one outneighbor in the subset). Kernels
form a fundamental concept of digraph theory. Initially introduced by von Neumann and
Morgenstern for game theory, they have also found applications in economics and logic.
The existence of kernels in a digraph is not systematic (consider the directed cycle of
length three) and is even NP-complete to decide. The first part of this thesis aims to
explore the challenges and theoretical aspects of kernels.

The notion of quasi-kernels, which was introduced by Chvátal and Lovász in 1974,
derives from a slight modification in the definition of kernels. A quasi-kernel is a subset
of vertices that is independent and such that there is a directed path of length at most
two from every vertex to that subset. Any digraph has a quasi-kernel that can be found
in polynomial time. The research about quasi-kernels focuses on a conjecture called the
“small quasi-kernel conjecture.” It suggests that a sink-free digraph (where every vertex
has a positive outdegree) has a quasi-kernel of size at most half of the vertex set. However,
this conjecture is only confirmed for specific classes of digraphs. The second half of the
thesis focuses on quasi-kernels, particularly on their algorithmic aspect, which has not
been extensively explored yet.
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Résumé étendu en français

Dans un graphe orienté, un sous-ensemble de sommets est indépendant s’il ne contient
pas de sommets adjacents et absorbant si tout sommet est dans cet ensemble ou a un
voisin sortant dans cet ensemble. Un noyau est un sous-ensemble de sommets qui est
indépendant et absorbant. Formellement, un noyau d’un graphe orienté D est un sous-
ensemble S de V (D) qui est indépendant et tel que V (D) \ S = N−(S). Les figures 5 et
6 fournissent des exemples de noyaux (en rouge), l’un dans un cycle orienté de longueur
quatre et l’autre dans un graphe quelconque. La figure 7 représente un cycle orienté de
longueur trois, lequel n’a pas de noyau.

La notion de noyau est fondamentale en théorie des graphes orientés. Elle a été intro-
duite par von Neumann et Morgenstern pour l’étude des stratégies gagnantes en théorie
des jeux [74], et possède désormais des applications dans d’autres domaines, comme en
économie ou en logique. Les noyaux ont été activement étudiés et sont encore au coeur
de nombreuses questions scientifiques.

Nous avons vu que certains graphes orientés n’avaient pas de noyaux et c’est en fait
NP-complet de décider si un graphe orienté a ou non un noyau [27]. Pour cette raison, la
recherche autour des noyaux se concentre surtout sur des conditions suffisantes d’existence.

La première partie de cette thèse a pour but d’explorer ces différentes questions.
Chvátal et Lovász [26] ont montré en 1974 qu’une petite modification dans la définition

de noyau assurait son existence systématique : ils ont prouvé que tout graphe orienté a
un sous-ensemble indépendant Q de sommets tel que tout sommet n’appartenant pas à
Q a un chemin orienté de longueur au plus deux vers un élément de Q. Un tel sous-
ensemble est un quasi-noyau. Leur preuve fournit d’ailleurs un algorithme polynomial
pour en trouver un dans tout graphe orienté (d’autres preuves simples existent [17]). Un
noyau est évidemment un cas particulier de quasi-noyau. L’exemple de la figure 6 est donc,
en particulier, un exemple de quasi-noyau d’un graphe orienté quelconque, et la figure 8
est un exemple d’un autre quasi-noyau dans le même graphe orienté. Contrairement aux
noyaux, les quasi-noyaux ne possèdent pas encore d’applications, et la motivation de leur
étude est purement théorique. Cependant, le domaine est actif (plusieurs papiers d’auteurs
différents ont été publiés au cours de ce doctorat) avec une conjecture principale qui mène
presque toute l’activité autour du sujet, la conjecture des petits quasi-noyaux, énoncée en
1976 par Erdős et Székely [41].
Conjecture (“Conjecture des petits quasi-noyaux”). Tout graphe orienté sans puits D a
un quasi-noyau de taille au plus 1

2 |V (D)|.
Cette conjecture n’a été prouvée que pour certaines classes de graphes orientés. La

seconde partie de cette thèse concerne l’étude des quasi-noyaux, et plus particulièrement
de leurs aspects algorithmiques, sujet qui n’avait pas été traité précédemment.

Noyaux
Comme cela a déjà été évoqué, une partie importante de la recherche concernant les
noyaux a été consacrée à chercher des conditions suffisantes d’existence. Le chapitre 1 est
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Figure 1 : Exemple d’un noyau dans un cycle orienté de longueur quatre.

Figure 2 : Exemple d’un noyau dans un graphe orienté quelconque.

Figure 3 : Un cycle orienté de longueur trois n’a pas de noyau.

Figure 4 : Exemple d’un quasi-noyau dans un graphe orienté quelconque.
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une brève introduction à la notion de noyaux. Il passe en revue les résultats classiques
d’existence, mais aussi les principales applications et quelques questions ouvertes. En
particulier, on y voit que les noyaux ont un lien particulier avec deux domaines différents,
la théorie des jeux et l’étude des graphes parfaits.

Motivés par ce lien avec les graphes parfaits, Berge et Duchet ont introduit en 1983 [10]
la notion de graphes orientés noyaux-parfaits. Un graphe orienté est noyau-parfait si
tout sous-graphe orienté induit a un noyau (le graphe lui-même y compris). Une célèbre
conjecture de Berge et Duchet, maintenant connue sous le nom du théorème de Boros et
Gurvich [18], établit que sous certaines conditions sur l’orientation, la noyau-perfection
cöıncide avec la perfection.

Théorème (Boros et Gurvich [18]). Toute orientation clique-acyclique d’un graphe parfait
a un noyau.

Le chapitre 2 commence par introduire le sujet de noyau-perfection et y contribue
de deux manières différentes. D’abord, il traite d’une remarque de Boros et Gurvich qui
laisse croire que deux sous-classes de graphes orientés — les “noyaux-solvables“ et les
“M -noyaux-solvables” sont distinctes. Cependant, comme prouvé dans la section 2.1, cela
ne peut être vrai avec une telle définition de la M -noyau-solvabilité. En effet ils affirment
que toute M−orientation clique-acyclique simple d’un anti-trou C7 a un noyau, ce qui
ne peut être vrai avec la définition classique de M−orientation qui inclut les orientations
clique-acyclique, comme le prouve l’obervation suivante.

Observation. L’anti-trou C7 a une orientation clique-acyclique simple sans noyau.

On la répare partiellement en montrant qu’il existe des graphes simple-noyau-solvables
qui ne sont pas noyau-solvables.

Théorème. Soit D une orientation simple clique-acylique d’un anti-trou impair C2k+1.
Si k ⩾ 4, alors D a un noyau.

La classe des graphes orientés M -noyaux-solvables est une sous-classe des graphes
orientés simple-noyaux-solvables, mais la question de l’égalité ou non de ces deux classes
reste ouverte. Ensuite, le théorème fournit des versions algorithmiques des théorèmes de
Blidia et al. [13] concernant des opérations de graphes préservant l’existence de noyaux
(théorème 2.3.1 et proposition 2.3.3). Le théorème suivant est sûrement aussi important
que celui de Boros et Gurvich.

Théorème (Galeana-Sánchez et Neumann-Lara [44]). Si tous les cycles orientés impairs
ont deux cordes avec des têtes consécutives, il y a un noyau.

Une version courte de la preuve de ce théorème est présentée au chapitre 3, avec une
généralisation immédiate, les aspects algorithmiques de ce théorème, et la possibilité de
vérifier les conditions et de calculer un noyau efficacement sont également discutés.

Il existe un autre théorème assurant l’existence d’un noyau. Il s’agit d’une généralisation
du célèbre théorème de Gale-Shapley sur les mariages stables. On peut le formuler en
termes de graphe orienté avec des arcs bleus et rouges comme suit.

Théorème (Sands, Sauer et Woodrow [71]). Soit D un graphe orienté dont les arcs sont
colorés en bleu et en rouge, de telle manière que la restriction à chaque couleur forme un
graphe transitif ; alors D admet un noyau.

Dans le chapitre 4, nous proposons des extensions et des variantes de ce théorème.
Deux généralisations du théorème Sands–Sauer–Woodrow sont présentées.
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Théorème. Soit D un graphe orienté dont les arcs sont colorés en rouge et bleu, tel que
les deux conditions suivantes sont satisfaites :

• Si (u, v) et (v, w) sont des arcs bleus, alors (u, w) est un arc bleu ou (w, u) et (w, v)
sont des arcs rouges.

• Si (u, v) et (v, w) sont des arcs rouges, alors (u, w) est un arc rouge ou (v, u) et
(w, u) sont des arcs bleus.

Alors D a un noyau et il possible de le trouver en temps polynomial.

Théorème. Soit D un graphe orienté dont les arcs sont colorés en bleu et rouge tel que
les conditions suivantes sont satisfaites :

• Il n’y a pas de cycle dirigé monochromatique.

• Si ((v1, v2), (v2, v3), (v3, v4)) est un chemin dirigé (ouvert ou fermé) tel que (v1, v2)
est un arc rouge et (v3, v4) est un arc bleu alors ses sommets induisent au moins un
autre arc ne terminant pas en v2.

Alors D a un noyau.

Pour chacune d’entre elle, nous essayons de pousser aussi loin que possible la technique
de démonstration du théorème original. Pour l’une, nous obtenons même un algorithme
en temps polynomial pour calculer un noyau. Pour cet algorithme, certains résultats
élémentaires sur les posets (plus précisément, sur les posets d’antichâınes) jouent un rôle
crucial ; voir la section 4.2.1.

En Annexe A se trouve un tableau résumant les complexités des principaux problèmes
de complexité liés aux noyaux et un tableau répertoriant les principales conditions connues
assurant l’existence d’un noyau.

Quasi-noyaux
Cette partie est le résultat d’un travail en collaboration avec Romeo Rozzi. Le chapitre 5
est une courte introduction aux quasi-noyaux et commence par deux preuves de l’existence
d’un quasi-noyau dans tout graphe orienté. Comme évoqué précédemment, la conjecture
des petits quasi-noyaux est la principale motivation de l’étude des quasi-noyaux. Elle reste
encore ouverte à ce jour, et les résultats connus sont listés en section 5.2. En fait, même
si la conjecture est formulée avec un ratio de 1/2, l’existence d’un quasi-noyau avec tout
autre ratio plus grand n’est pas connue. Dans le chapitre 6, nous contribuons à l’étude de
cette question en prouvant le théorème suivant.

Théorème. Tout split graphe orienté sans puits D a un quasi-noyau de taille au plus
3
4 |V (D)|.

Dans ce même chapitre, nous prouvons également la conjecture avec un ratio asymp-
totiquement nul pour une sous-classe des splits.

Théorème. Soit D une orientation d’un split graphe complet. Si D a un puits, alors il y
a un unique quasi-noyau de taille minimum, composé des puits du graphe orienté. Si D
n’a aucun puits, alors il a un quasi-noyau de taille au plus deux.

Un des objectifs de cette thèse est d’initier l’étude algorithmique des quasi-noyaux. Le
principal résultat établi est le suivant.
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Théorème. Décider si un graphe orienté a deux quasi-noyaux disjoints est un problème
NP-complet.

Ce résultat est motivé par une conjecture de Gutin et al. [47] – maintenant réfutée –
affirmant que tout graphe orienté sans puits admet deux quasi-noyaux disjoints. L’exis-
tence de tels quasi-noyaux implique en particulier que l’un d’entre eux a une taille d’au
plus la moitié des sommets. Un autre de nos résultats montre que calculer un quasi-noyau
de taille minimale est difficile, même dans des graphes orientés très simples. Par exemple,
on peut citer les deux résultats suivants.

Théorème. Décider si une orientation d’un graphe split a un quasi-noyau de taille au
plus k est un problème W[2]-complet.

Théorème. Décider si une orientation acyclique d’un graphe biparti a un quasi-noyau
de taille au plus k est un problème W[2]-complet.

Ces résultats, ainsi que leurs preuves, sont présentés dans le chapitre 7.
Selon le théorème de Courcelle [29], le calcul d’un quasi-noyau de taille minimale peut

être effectué en temps polynomial pour les orientations de graphes ayant une largeur ar-
borescente bornée, ainsi que pour le problème de décider s’il existe k quasi-noyaux deux
à deux disjoints dans un graphe orienté. La complexité des algorithmes obtenus par une
application directe du théorème de Courcelle est polynomiale, mais comporte un facteur
constant élevé dépendant de la largeur arborescente. Nous démontrons que nous pou-
vons en réalité obtenir une complexité polynomiale avec un facteur constant raisonnable,
avec les théorèmes suivants, sachant qu’une bonne décomposition arborescente peut être
trouvée efficacement.

Théorème. Si une bonne décomposition arborescente (T,X ) d’un graphe orienté de lar-
geur w est donnée, trouver un quasi-noyau peut être fait en temps O(25w|V (T )|).

Théorème. Si une bonne décomposition arborescente (T,X ) d’un graphe orienté de lar-
geur w est donnée, trouver deux quasi-noyaux disjoints s’ils existent peut être fait en
temps O(252w|V (T )|).

Ce travail a été réalisé en collaboration avec Julien Baste et Antoine Castillon, et est
présenté à la fin du chapitre 7.

En Annexe B se trouve un tableau résumant les complexités des principaux problèmes
de complexité liés aux quasi-noyaux et un tableau répertoriant les principales conditions
connues assurant l’existence d’un petit quasi-noyau.
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Introduction

This thesis focuses on digraphs (directed graphs). We assume basic knowledge in this
topic. Some terminology and notation are given at the end of this introduction. For those
not defined in the latter, we refer the reader to the book by Bang-Jensen and Gutin [8].
As done in this book, the vertex set of an undirected graph G is denoted by V (G) and
its edge set by E(G), and the vertex set of a digraph D is denoted by V (D) and its arc
set by A(D).

In a digraph, a subset of vertices is independent if it does not contain adjacent vertices,
and it is absorbing if every vertex is either in the subset or has an outneighbor in it. A
kernel is a subset of vertices that is both independent and absorbing. Formally, a kernel of
a digraph D is a subset S of V (D) that is independent and such that V (D) \S = N−(S).
Figure 5 and Figure 6 illustrate examples of kernels represented in red, one in a directed
cycle of length four and the other in an arbitrary graph. Figure 7 represents the example
of the directed cycle of length three, which admits no kernel.

Kernels form a fundamental topic of the theory of digraphs. Introduced by von Neu-
mann and Morgenstern in the context of board games analysis [74], they have found
applications in other areas like economy and logic. They have been the subject of many
research works and there are still several challenges about them. We have seen that there
are graphs with no kernel, and actually it is even NP-complete to decide whether a di-
graph admits a kernel [27], that is why theoretical research about kernels mostly focuses
on sufficient conditions for their existence.

The first half of the thesis aims at exploring a bit further these challenges.
Chvátal and Lovász [26] have shown in 1974 that a slight modification in the definition

of kernel ensures its existence: they proved that any digraph has an independent subset
Q of vertices such that every vertex not in Q has a directed path of length at most two
to an element of Q. Such a subset is a quasi-kernel. Their proof provides a polynomial-
time algorithm to find one in any digraph (alternate simple proofs exist [17]). Clearly, a
kernel is a special case of a quasi-kernel. The example of Figure 6 is then a particular
example of a quasi-kernel in an arbitrary digraph, and Figure 8 is an example of another
quasi-kernel in the same digraph. Contrary to kernels, there are no known applications
of quasi-kernels, and their motivation is essentially theoretical. Yet, it is a quite active
topic (with several papers published by various authors during this PhD), with a main
conjecture that drives almost all the activity around them, namely the small quasi-kernel
conjecture formulated in 1976 by Erdős and Székely [41]. This conjecture states that a
sink-free digraph D (i.e., every vertex of D has positive outdegree) has a quasi-kernel
of size at most 1

2 |V (D)|. So far, this conjecture is only confirmed for narrow classes of
digraphs.

The second half of the thesis is about quasi-kernels, in particular about their algorith-
mic aspect, something that has not been investigated before this thesis.

We provide now more details about the organization of the thesis and our main con-
tributions.
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Figure 5: Example of a kernel in a directed cycle of length four.

Figure 6: Example of a kernel in an arbitrary digraph.

Figure 7: A directed cycle of length three has no kernel.

Figure 8: Example of a quasi-kernel in an arbitrary digraph.
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Kernels
As mentioned above, an important stream of research about kernels has dealt with suffi-
cient conditions for their existence. Chapter 1 aims at being a gentle introduction to the
topic of kernels, which reviews the classical existence results, but also their main appli-
cations and some important open questions about them. We will in particular see there
that kernels have strong connections with two somehow independent areas, namely game
theory and perfect graphs.

Motivated by this relation with perfect graphs, Berge and Duchet have introduced
in 1983 [10] the notion of kernel-perfect digraphs. A digraph is kernel-perfect if each
induced subgraph admits a kernel. A celebrated conjecture of Berge and Duchet, now
a theorem by Boros and Gurvich [18], states that some simple necessary conditions for
kernel-perfectness are also sufficient if a graph is perfect. Chapter 2 provides a brief dis-
cussion on some aspects of kernel-perfection, and also contributes to that topic in two
different ways. First, it deals with a statement by Boros and Gurvich [19] suggesting
that two subclasses of kernel-perfect graphs—“kernel-solvable” and “M -kernel-solvable”
(defined in Section 2.1)—are distinct. Yet, as we show in Section 2.1, it cannot be true
with this definitions. We partially fix it by showing that there are “simple-kernel-solvable”
graphs that are not kernel-solvable (Proposition 2.1.2). M -kernel-solvable graphs form
a subclass of simple-kernel-solvable graphs, but it remains open whether it is a strict
subclass. Second, it provides some algorithmic versions of theorems by Blidia et al. [13]
on graph operations preserving the existence of kernels (Theorems 2.3.1 and Proposi-
tion 2.3.3).

There is another theorem ensuring the existence of a kernel. It is due to Galeana-
Sánchez and Neumann-Lara [44] and ensures the following: If every odd directed cycle
has two chords with consecutive heads, then there is a kernel. We propose in Chapter 3
a short version of their proof, together with immediate generalizations, and discuss a few
algorithmic aspects of their theorem, namely, the possibility of checking the condition and
of computing a kernel efficiently.

Another theorem ensuring the existence of a kernel is the Sands–Sauer–Woodrow
theorem [71], which is actually a generalization of the celebrated Gale–Shapley theorem
(about stable marriages). It can be stated in terms of a digraph with blue and red arcs: Let
D be a directed graph whose arcs are colored in blue and red and such that the restriction
to each color forms a transitive digraph; then D admits a kernel. In Chapter 4, we discuss
and propose extensions and variations of this theorem. We obtain two generalizations of
the Sands–Sauer–Woodrow theorem (Theorems 4.1.1 and 4.1.2). For each of them, we
try to push as far as possible the proof technique of the original theorem. For one of
the generalizations, we even get a polynomial-time algorithm for computing a kernel. For
this result, some elementary (but new?) results on posets (more precisely, about posets
of antichains) play a crucial role; see Section 4.2.1.

In Appendix A, one can find a table summarizing the complexities of the main
complexity-related problems associated with kernels, and a table listing the main known
conditions ensuring the existence of a kernel.

Quasi-kernels
This part results from a collaboration with Romeo Rizzi. Chapter 5 is a brief introduction
to quasi-kernels and starts with two distinct proofs of the existence of a quasi-kernel in any
digraph. As emphasized above, the small quasi-kernel conjecture is the major motivation
for the study of quasi-kernels. It is still wide open and the known results are listed in
Section 5.2. Actually, even if the conjecture is stated with a ratio 1/2, the existence of a
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quasi-kernel within any other larger fixed ratio is not known. In Chapter 6, we contribute
to that question by showing that in every sink-free orientation of a split graph, there is a
quasi-kernel of size 3/4 of the total number of vertices (Theorem 6.1.6). In this chapter,
we also prove that if the split graph is complete, then there is a quasi-kernel of size at
most two (Theorem 6.2.2). These two results, together with a few complementary results,
are the content of the following paper, written in collaboration with my supervisors and
Romeo Rizzi:

Hélène Langlois, Frédéric Meunier, Romeo Rizzi, and Stéphane Vialette, Quasi-
kernels in split graphs, to be submitted.

One of the starting objectives of this thesis was to provide the first contributions to
the algorithmic aspects of quasi-kernels. This objective has been fulfilled. In the following
paper, with the same collaborators,

Hélène Langlois, Frédéric Meunier, Romeo Rizzi, and Stéphane Vialette, Al-
gorithmic aspects of small quasi-kernels, International Workshop on Graph-
Theoretic Concepts in Computer Science, Springer, 2022, pp. 370–382.

we prove two main results. The first one establishes that deciding whether a digraph
admits two disjoint quasi-kernels is NP-complete. This result is motivated by a conjecture
of Gutin et al. [47]—now disproved—stating that every sink-free digraph admits two
disjoint quasi-kernels. Note that the existence of such quasi-kernels implies in particular
that one of them is of size at most half of the vertices. The second implies that computing
a minimum-size quasi-kernel is hard, even in very simple digraphs. For instance, it is W[2]-
hard to compute a quasi-kernel of minimum size in orientations of split graphs, and also
in acyclic orientations of bipartite graphs. These results with their proof are given in
Chapter 7.

By Courcelle’s theorem [29], computing a quasi-kernel of minimum size can be done in
polynomial-time for orientations of graphs with bounded treewidth, and similarly for the
problem of deciding whether there are k pairwise disjoint quasi-kernels in a digraph. The
complexity of the algorithms obtained by a direct application of Courcelle’s theorem is
polynomial but has a huge constant factor depending on the treewidth. We prove that we
can actually get a polynomial complexity with a reasonable constant factor. This work
has been done in collaboration with Julien Baste and Antoine Castillon, and is given at
then end of Chapter 7.

In Appendix B, one can find a table summarizing the complexities of the main complexity-
related problems associated with quasi-kernels, and a table listing the main known con-
ditions ensuring the existence of a small quasi-kernel.

Definition and notation
In this thesis all digraphs are finite and do not contain parallel arcs, namely arcs with the
same head and tail. This way, an arc is identified with an ordered pair of vertices.

We consider a digraph D. A vertex v is an inneighbor (resp. outneighbor) of a vertex
u if the arc (u, v) (resp. (v, u)) exists in the digraph. The set of all inneighbors (resp.
outneighbors) of v is denoted by N−(v) (resp. N+(v)) and is the inneighborhood (resp.
outneighborhood) of v. The closed inneighborhood (resp. outneighborhood) of v, denoted
by N−[v] (resp. N+[v]), is defined as N−(v) ∪ {v} (resp. N+(v) ∪ {v}). The second
inneighborhood of v, denoted by N−−(v), is defined as N−(N−(v)) \ {v}. The second
outneighborhood could be defined analogously but will not be used in this thesis.
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The inneighbors (resp. outneighbors) of a set S is N−(S) := {N−(v) : v ∈ V (D)} \ S
(resp. N+(S) := {N+(v) : v ∈ V (D)} \ S) and the closed inneighbordhood of S, denoted
by N−[S] (resp. N+[S]), is defined as N−(S) ∪ S (resp. N+(S) ∪ S). The second
inneighbordhood of S, denoted by N−−(S), is defined as N−(N−(S)) \ N−[S]. A vertex
v is a sink (resp. source) if it has no outneighbhor (resp. inneighbor). A walk in D
is a sequence v1v2 . . . vk of vertices of D such that (vi, vi+1) ∈ A(D). If the vertices
v1, v2, . . . , vk−1 are distinct, and v1 = vk, then the walk is a cycle. The length of a walk is
the number of its arcs. A digraph D is strongly connected if for every pair a, b ∈ V (D),
there is a directed path from a to b. A set of vertices C ⊆ V (D) is a strongly connected
component of D if D[C] is strongly connected and maximal for inclusion with this property.

An hence-and-forth pair of arcs is of the form ((u, v), (v, u)). (v, u) ∈ A(D). A digraph
D is an orientation of a graph G if V (D) = V (G) and for every a, b ∈ E(G), (a, b), (b, a)
or both are in A(D). An orientation D is simple if there is no hence-and-forth pair of
arcs.

We define the (directed) distance d(v, w) from a vertex v to a vertex w as the minimum
length of a directed path from v to w.
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Part I

Kernels
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Chapter 1

Kernels in a nutshell

We have already mentioned that it is NP-complete to decide whether a digraph admits
a kernel [27]. However, many sufficient conditions have been proposed in the literature.
This chapter, which aims at being a gentle introduction to the topic, presents the most
famous conditions (Section 1.1), provides various applications (Section 1.2), and discusses
the main challenges of this topic (Section 1.3).

1.1 Main conditions ensuring existence of a kernel
This section, aiming at presenting the main sufficient conditions from the literature ensur-
ing the existence of a kernel, is subdivided into three subsections, each collecting sufficient
conditions with a similar flavor:

• Conditions based on acyclicity of the digraph or on odd cycles.

• Conditions relying on the perfection of the underlying undirected graph.

• Conditions expressed in terms of a partition of the arc set into “red” and “blue”
arcs.

It is worth emphasizing that all these conditions are about classes closed under taking
induced subgraph. We are not aware of any sufficient condition from the literature that
does not possess this property.

1.1.1 Acyclicity and odd cycles
1.1.1.1 Existence results

Among the most famous results on kernels, several ones ensure the existence of a kernel
under a condition on cycles, and especially odd cycles. In this section, we aim at presenting
the most important. We also proposed for most of them a short proof based on the notion
of semi-kernel. (The idea of systematizing the use of semi-kernels for this kind of results
goes back to the work of Galeana-Sánchez and Neumann-Lara [45].) A semi-kernel is
a subset S of vertices that is independent and such that N+(S) ⊆ N−(S). Note that
a kernel is a semi-kernel, and that the empty set is also a semi-kernel. Its relevance is
formalized by the following lemma.

Lemma 1.1.1. If every non-empty induced subdigraph of a digraph D has a non-empty
semi-kernel, then D has a kernel.
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Proof. We prove the result by induction on the number of vertices. Let D be a digraph
whose non-empty induced subdigraphs all have a non-empty semi-kernel. If D has exactly
one vertex, it has a kernel. So, suppose D has at least two vertices. By the assumption,
D itself has a non-empty semi-kernel, which we denote by S. If S is a kernel, we are
done. Otherwise, the digraph D−N−[S] is a non-empty induced subdigraph of D, which
implies that all its induced subdigraphs have also a non-empty semi-kernel. By induction,
D −N−[S] has a kernel. This kernel forms with S a kernel of D.

The first theorem ever stated on kernels is the following.

Theorem 1.1.2 (Von Neumann and Morgenstern [74]). Every acyclic digraph has a
kernel.

Proof. Consider an acyclic digraph. Every non-empty induced subdigraph has a sink,
which is a semi-kernel of the subdigraph. Lemma 1.1.1 leads to the conclusion.

This theorem has been generalized in many different ways. The next theorem is an
example of such a generalization.

Theorem 1.1.3 (Duchet [36]). Every digraph such that each directed cycle has at least
one hence-and-forth pair of arcs has a kernel.

Proof. Let D be a digraph such that each directed cycle has at least one of hence-and-
forth pair of arcs. Let D′ be a non-empty induced subdigraph of D. Remove from D′

all its hence-and-forth pairs of arcs. This leads to a (non-empty) acyclic digraph. Pick
any sink of this acyclic digraph. It is a semi-kernel of D′. Lemma 1.1.1 leads to the
conclusion.

From now on, all results of this subsection involves conditions on odd directed cycles.
The next theorem is due to Richardson and generalizes Theorem 1.1.2. Originally, it was
not stated in terms of kernels, but it is now considered as one of the most fundamental
results about kernels.

Theorem 1.1.4 (Richardson [67]). Every digraph with no odd directed cycle has a kernel.

The proof will require the following lemma.

Lemma 1.1.5. Every strongly connected digraph with no odd directed cycle is bipartite.

Proof. Let D be a strongly connected digraph with no odd directed cycle. Let us prove
the underlying graph of D has no odd cycle. By contradiction, consider C = v1, . . . , vm

an odd cycle in the underlying graph and for each i, let Wi be a minimum walk from vi to
vi+1. For each i, either (vi, vi+1) ∈ A(D) and Wi has length one or (vi+1, vi) ∈ A(D) and
the length of Wi is odd (otherwise Wi together with (vi+1, vi) would be an odd directed
cycle in D). Finally W1W2 . . . Wm is an odd directed closed walk because each Wi is
odd and m is odd as well. Consider the smallest directed closed walk of odd length. By
minimality, this walk is a cycle. A contradiction.

Proof of Theorem 1.1.4. Assume that D has no odd directed cycle. Let D′ be a non-
empty induced subdigraph of D. Let B ⊆ V (D′) be a strongly connected component of
D′ such that N+(B) = ∅. According to Lemma 1.1.5, D′[B] is bipartite. Pick any side of
this bipartite graph. It is a semi-kernel of D′. Lemma 1.1.1 leads to the conclusion.

There is an “odd directed cycle” version of Theorem 1.1.3.

Theorem 1.1.6 (Duchet [36]). Every digraph such that each odd directed cycle has at
least two hence-and-forth pairs of arcs has a kernel.
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Proof. Let D be a digraph such that each odd directed cycle has at least two hence-and-
forth pairs of arcs. Let D′ be a non-empty induced subdigraph of D. Remove from D′ all
its hence-and-forth pairs of arcs. Let B ⊆ V (D′) be a strongly connected component of
D′ such that N+(B) = ∅. According to Lemma 1.1.5, D′[B] is bipartite. Pick any side S
of this bipartite graph. No pair of hence-and-forth pairs of arcs in D′ has both endpoints
in S since otherwise there would be an odd directed cycle with only one hence-and-forth
pair of arcs. Therefore S is a semi-kernel of D′. Lemma 1.1.1 leads to the conclusion.

The following theorem is probably the most powerful result in this stream of research.
A quite short proof will be given in Chapter 3. Notably, it uses again semi-kernels in a
way similar to what has been done for the results of the present section.

Theorem 1.1.7 (Galeana-Sánchez and Neumann-Lara [44]). Let D be a digraph. Suppose
that in D each odd directed cycle has at least two chords with consecutive heads. Then D
has a kernel.

1.1.1.2 Algorithmic considerations

We do not know whether it is possible to check in polynomial time the condition of
Theorem 1.1.7. This will be further discussed in Chapter 3. Notice however that the
conditions of all other theorems of this section can be checked in polynomial time. For
Theorems 1.1.2 and 1.1.3, it is obvious. For Theorem 1.1.4, it can be done by checking that
all strongly connected components are bipartite (see Lemma 1.1.5). For Theorem 1.1.6,
remove all hence-and-forth pairs of arcs, and then check as for Theorem 1.1.4 if the
remaining digraph together with any hence-and-forth pair of arcs contains an odd directed
cycle.

Regarding the computation of a kernel itself, apart from Theorem 1.1.7, all proofs
provide directly polynomial algorithms to compute a kernel.

1.1.2 Perfect graphs
For an undirected graph G, we denote by ω(G) its clique number (the maximum size of
a clique) and by χ(G) its chromatic number (the minimum number of colors in a proper
coloring). A graph G is perfect if ω(G′) = χ(G′) for each induced subgraph G′ of G (the
graph G included). They form one of the most important graph classes, which is also a
central notion in combinatorial optimization and information theory; see [72] for a survey.
The strong perfect graph theorem, conjectured originally by Berge in 1961 [9] and proved
by Chudnovsky et al. in 2006 [25], claims that a graph is perfect if and only if it does not
contain an induced odd hole (chordless odd cycle of length at least 5) or an induced odd
anti-hole (complement of an odd hole). The conjecture by Berge has lead to an intensive
research activity around perfect graphs.

A directed graph is clique-acyclic if every directed cycle in a clique has at least one
hence-and-forth pair of arcs. This condition is equivalent to require that every clique
admits a kernel (i.e., a vertex absorbing all other vertices). Berge and Duchet [10] conjec-
tured that every clique-acyclic orientation of a perfect graph admits a kernel. In Chapter 2,
this conjecture will be further discussed, in particular for its relation with the notion of
“kernel-perfection.” This conjecture has been proved by Boros and Gurvich in 1996 [18]. A
family of clique-acyclic orientations that plays an important role in the theory of kernels is
formed by the M -clique-acyclic orientations. It has been introduced by Meyniel according
to Duchet [37]. An orientation is an M-clique-acyclic orientation if every directed cycle
of length three has at least two hence-and-forth pairs of arcs; see Figure 1.1. It is an easy
fact that M -clique-acyclic orientations are indeed clique-acyclic. In this section, we state
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Figure 1.1: Every directed triangle looks like this in an M -clique-acyclic orientation.

formally the theorem of Boros and Gurvich and partial results about subclasses of perfect
graphs and M -clique-acyclic orientations obtained before the resolution of the conjecture.
We also briefly address some algorithmic aspects, which will anyway be more thoroughly
discussed in Chapter 2.

1.1.2.1 Existence results

The next theorem is probably the most celebrated one in the area of kernels. Its original
formulation was in terms of stable matchings in a bipartite graph. It is detailed in
Section 1.2.3. The formulation below is obtained by translating the statement on the line
graph of this bipartite graph. The line graph H of a graph G is a graph the vertices of
which correspond to the edges of G, any two vertices of H being adjacent if and only if
the corresponding edges of G are adjacent. It can easily be shown that line graphs of
bipartite graphs are perfect [72].

Theorem 1.1.8 (Gale and Shapley [42] 1962). Every simple clique-acyclic orientation of
the line graph of a bipartite graph admits a kernel.

Maffray later found the following existence result generalizing the previous one.

Theorem 1.1.9 (Maffray [64] 1992). Every M-clique-acyclic orientation of a perfect line
graph admits a kernel.

Later on, different results have been found about the existence of kernels in particular
orientations on different families of perfect graphs.

We cite here some main examples of existence results for orientations of perfect graphs.
A graph G is a comparability graph if there exists an orientation D of G such that if

(a, b) ∈ A(D) and (b, c) ∈ A(D), then (a, c) ∈ A(D). A graph G is perfectly orderable
if there exists an acyclic orientation D of G with no induced P4 abcd in G such that
(a, b) ∈ A(D) and (d, c) ∈ A(D).

Comparability graphs form a subclass of perfectly orderable graphs, which are perfect
graphs [65].

Theorem 1.1.10 (Champetier [22] 1989). Every M-clique-acyclic orientation of a com-
parability graph admits a kernel.

Theorem 1.1.11 (Blidia and Engel [14] 1992). Every M-clique-acyclic orientation of a
perfectly orderable graph admits a kernel.

A graph is Meyniel if every cycle of odd length at least 5 has at least two chords.
Meyniel graphs form one of the most important subclasses of perfect graphs. A graph is
parity if any two induced paths joining the same pair of vertices have the same parity. A
parity graph is a Meyniel graph. Indeed, any odd cycle can be partitioned into two non-
trivial paths of different parities. In a parity graph, there exists then a chord. Partitioning
the cycle into two paths between the endpoints of this chord, this implies the existence
of another chord.

Blidia proved the existence of a kernel in any M -clique-acyclic orientation of a parity
graph [12]. This result has then been generalized as follows.
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Theorem 1.1.12 (Blidia, Duchet, and Maffray [15] 1994). Every M-clique-acyclic ori-
entation of a Meyniel graph admits a kernel.

A graph is i-triangulated if every cycle of odd length at least five has at least two non
crossing chords. An i-triangulated graphs is clearly a Meyniel graph. The following result
is not included in the previous one, because of the more general orientation.
Theorem 1.1.13 (Maffray [63] 1986). Every clique-acyclic orientation of an i-triangulated
graph admits a kernel.

All the previous theorems are included in the following result established in 1996.
Theorem 1.1.14 (Boros and Gurvich [18] 1996). Every clique-acyclic orientation of a
perfect graph admits a kernel.

1.1.2.2 Algorithmic considerations

Deciding whether a graph is perfect can be done in polynomial time [23]. Deciding
whether a graph belongs to any of the subclasses of perfect graphs mentioned in the
theorems of Section 1.1.2.1, except for the perfectly orderable for which it is an NP-
complete problem [50], can also be done in polynomial time:

• Line graph: linear [70].

• Comparability graph: O(|E(G)|a(G)) where a(G) is the arboricity of G [61].

• Parity graph: linear [21].

• Meyniel graph: O(|E(G)|2) [20].

• i-triangulated graph: O(|V (G)||E(G)|) [69].
Deciding whether a simple orientation is clique-acyclic is clearly polynomial. Same thing
for M -clique-acyclic orientations. This shows that the conditions of Theorems 1.1.8, 1.1.9,
1.1.10, and 1.1.12 can all be checked in polynomial time.

We are left with the two theorems stated for all clique-acyclic orientations. The condi-
tion of Theorem 1.1.14 is unlikely to be checked in polynomial time because checking that
an orientation of a perfect graph is clique-acyclic is coNP-complete [7]. The complexity
of checking the condition of Theorem 1.1.13 is not known.

Regarding the computation of a kernel, it is known to be polynomial for some special
cases, which will be discussed in Chapter 2. We emphasize that no polynomial result
is known for computing a kernel in a digraph satisfying the condition of the theorem of
Boros and Gurvich (Theorem 1.1.14).

1.1.3 “Red-blue” conditions
1.1.3.1 Existence result

The following theorem is a famous generalization of the Gale–Shapley theorem (Theo-
rem 1.1.8), each color corresponding to one side of the bipartite graph. The original
statement was even more general since it was formulated for infinite digraphs.
Theorem 1.1.15 (Sands, Sauer, Woodrow [71]). Let D be a directed graph whose arcs
are colored with two colors. Then there is an independent set S of vertices of D such that,
for every vertex x not in S, there is a monochromatic path from x to a vertex of S.

This theorem has received many generalizations. Moreover, the proof technique was
also fruitfully re-applied, as done for instance by Champetier to establish his theorem
about comparability graphs (Theorem 1.1.10) or by Blidia and Engel for their theorem
about perfectly orderable graphs (Theorem 1.1.11).
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1.1.3.2 Algorithmic considerations

The condition of Theorem 1.1.15 can obviously be checked in polynomial time. A ker-
nel can be computed in polynomial time by adapting the technique used by Abbas and
Saoula [1] for their algorithmic version of Champetier’s theorem.

1.2 Main applications

1.2.1 Board games analysis
The notion of a kernel was originally introduced by von Neumann and Morgenstern [74] as
an abstract generalization of a concept of solution for strategic games. Kernels represent
winning strategies in a Nim game, a strategic game in which two players remove objects
turn by turn. On each turn, a player must remove at least one object. Depending on the
version being played, the goal of the game is either to avoid or to take the last object.

As an example, consider a simple Nim game, the “matches game.” There are n matches,
each player removes one, two, or three matches turn by turn and the player removing the
last one looses. The number of states in the game is finite. There are n different states
n, n− 1,. . . , or 1 representing the number of remaining matches.

Let find a winning strategy for the example of the matches game with n = 12.
The goal is to leave one matche on the table, to force the adversary to take the last

one. To arrive at this state, the precedent winning state is to leave exactly five matches
on the table, so the other player leaves between four and two matches and it is always
possible to leave only one match. A step further, the precedent winning state is to leave
nine matches, so the other player would leave between eight and six matches and it is
possible to leave exactly five matches on the table. This analysis leads to the conclusion
that if a player starts, he can be sure to win, and the strategy consists of starting by taking
three matches, leaving then nine matches on the table, then leaving five and finally only
one match.

A way to model a Nim game as a graph consists in considering the digraph where
each vertex represents a state and there is an arc from a vertex to another if a valid move
in the game leads one state to another. Starting from an initial state, represented by a
source, the game evolves to a final state, represented by a sink.

In the example of the matches game, each vertex corresponds to the number of matches
remaining on the table and each arc represents the removal of matches from the game, as
represented in Figure 1.2.

A kernel in such a graph determines a winning strategy. If the player can achieve a
state such that the corresponding vertex is in the kernel, he can win. By stability, the
other player will move to a state not in the kernel, and by absorbance, it is then possible
to make a move back to the kernel.

Any kernel in a graph modeling a Nim game corresponds to a winning strategy to the
game.

1.2.2 Economics and Game Theory
In cooperative game theory, a hedonic game is a game that models the formation of
coalitions of players when players have preferences over which group they belong to.
Formally, it is a pair (N, (≼i)i∈N) of a finite set N of players, and a complete order relation
over {S ⊆ N : i ∈ S} for each player i ∈ N of possible coalitions the player i belongs to.
Hedonic games are well studied in economics, modeling human activities such as political
organizations, and the focus lies on identifying sufficient conditions for the existence of
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Figure 1.2: Graph corresponding to the matches game with 12 matches, where the kernel
is represented in blue.

stable outcomes, i.e., such that there is no subset such that each member would improve its
situation by making this subset a new coalition. It is possible to consider the influence of
communications between players by defining the model of a hedonic game with a restricted
communication structure. A hedonic game with a restricted communication structure is a
triple (N, (≼i)i∈N ,F) where (N, (≼i)i∈N) is a hedonic game, and F is a feasible coalition
system on N , i.e., a family of subsets of N such that {i} ∈ F for all i ∈ N and ∅ ̸∈ F . A
partition π of players into subsets of F is core stable if no other subset of F can strictly
improve the position of all the members of the new subset in its poset. Existence results
about core stable outcomes for hedonic games can be formulated as existence results about
kernels, as done by Igarashi [51].

Given a hedonic game Γ, we can define a digraph DΓ with V (DΓ) = F and A(DΓ) =
{(S, T ) : ∃i ∈ S ∩ T, S ≽i T}. The core stable feasible partitions of a hedonic game Γ
are then the kernels of this digraph DΓ, and the existence and complexity results about
finding a core stable feasible partition arise from those about kernels.

1.2.3 Stable matchings
We have already mentioned the stable matching problem in Section 1.1.2.1 It can be
stated as follows: given n men and n women, where each person has ranked all members
of the opposite sex in order of preference, marry the men and women together such that
there are no two people of opposite sex who would both marry each other rather than
being married with their current partners. When there are no such pairs of people, the
set of marriages is deemed stable. Note that this can be seen as a special case of a hedonic
game.

Algorithms designed to address the stable marriage problem find practical use in many
real-world scenarios, with one of the most notable examples being their application in
matching graduating medical students with their hospital. The original algorithm has
been designed in 1962 by David Gale and Lloyd Shapley [42], who established that it
is always possible to find a solution to the stable marriage problem and to ensure the
stability of all marriages, but its real-world relevance was not recognized until much later.
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The study of the very practical allocation problem of assigning hospital to newly examined
doctors has been made by Alvin Roth in the 1980’s [68]. In 2012, the Nobel Memorial
Prize in Economic Sciences was awarded to Lloyd Shapley and Alvin Roth “for the theory
of stable allocations and the practice of market design” [28].

The algorithm, known as the Gale–Shapley algorithm, proceeds through a sequence
of rounds as follows:

In the first round, each unengaged man proposes to its favorite woman. Then, each
woman responds with a “maybe” to her preferred suitor and a “no” to all others. She
becomes provisionally engaged to her favorite candidate at that point, and reciprocally,
he becomes provisionally engaged to her.

In subsequent rounds, each unengaged man proposes to the most-preferred woman he
has not yet approached, independently from her current engagement status. The woman
responds with a “maybe” if she is not engaged yet or if she prefers this new candidate
over her current provisional partner. In the latter case, she rejects her current partner,
making him unengaged. This process continues until all individuals are engaged.

This algorithm is not only efficient but also guarantees a stable marriage. Its com-
plexity is O(n2), with n the number of men or women involved in the matching process.

Maffray [64] was the first to recognize that a stable matching is actually the kernel of
a digraph. His reformulation of the Gale–Shapley theorem in term of kernels is given in
Theorem 1.1.8. The digraph is constructed as follows. Consider the complete bipartite
graph B = (W, M ; W ×M), where W represents the set of women and M the set of men.
Call L the line graph of B. Each woman w corresponds to a clique Cw of L consisting of
all vertices (m, w) with m ∈ M ; each man m corresponds to a clique Cm of L consisting
of all vertices (m, w) with w ∈ W . Now we orient L as follows: for each woman we orient
the edges within Cw according to the preference of the woman, i.e., if she prefers man m1
to man m2, we orient the edge from vertex (w, m2) to vertex (w, m1) and so on.

A kernel in this orientation of L corresponds to a perfect stable marriage. Indeed, a
kernel K in L corresponds to a maximal matching (and then maximum) in B and if there
were an unstable couple in K then the corresponding vertex would have no successor in
K, which contradicts the definition of a kernel.

1.2.4 Logic
Kernels have applications in two subfields of logic, namely symbolic logic and default
logic. In both cases, kernels correspond to relevant objects of the subfield.

1.2.4.1 Symbolic logic

In symbolic logic, a theory is a set of sentences in a formal language. A model refers
to an interpretation or a way of assigning meaning to the symbols and statements of a
theory. As presented in a paper of Micha l Walicki [75], from a theory it is possible to
build a digraph such that there is a bijection between models of the theory and kernels
of the digraph. In particular, a theory has no model, i.e., is paradoxal if and only if the
corresponding digraph has no kernel. This has permitted to establish new results about
paradoxes. Two examples of theories and their corresponding digraphs are provided in
Example 1.2.1. Note that because a kernel is an independence set, a vertex a such that
(a, a) ∈ A(D) cannot be in any kernel.

Example 1.2.1 (Walicki [75]). Let Θ1 be the following theory:
a. This and the next statement are false. a⇔ ¬a ∧ ¬b
b. The next statement is false. b⇔ ¬c
c. The previous statement is false. c⇔ ¬b.
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a b c

Figure 1.3: The digraph corresponding to the theory Θ1

a b c d

Figure 1.4: The digraph corresponding to the theory Θ2

Making b true and a and c false is the only model so that Θ1 involves no paradox. Its
corresponding digraph is the one depicted in Figure 1.3. The singleton composed of vertex
b is the only kernel of the digraph. Adding the statement
d. This and the previous statement are false. d⇔ ¬d ∧ ¬c

to Θ1 gives another theory Θ2. In the latter, paradox is unavoidable. Its corresponding
digraph, depicted in Figure 1.4, has no kernel.

1.2.4.2 Default logic

Default logic is a logic system used, for example, in artificial intelligence. It extends
classical logic by allowing for the representation of default rules, which express statements
that are assumed to be true by default but can be overridden by additional information.
In default logic, there is a distinction between normal rules and default rules, with the
latter serving as a kind of “default assumption.” A default theory consists of a set of
propositions, which can be believed beyond any doubt and a set of default rules, which
provide a mechanism to jump to conclusion when there is no conflicting information
available. As an example, the default rule formalizing that everything which is not a
penguin 1 can be assumed to fly is written ¬penguin∧ fly/fly. The central idea in default
logic revolves around the concept of an “extension” of a default theory, which essentially
represents what one can reasonably believe while staying in line with the default theory’s
principles.

In 1994, Yannis Dimopoulos and Vangelis Magirou [33] noticed the connection be-
tween the notions of extension and of kernel. Indeed, from a default theory, they build a
digraph such that there is a kernel in it if and only if the default theory has an extension.
An example is provided in Example 1.2.2. This result has been used to prove the NP-
completeness of finding extensions and to build algorithm providing extensions in special
cases.

Example 1.2.2 (Dimopoulos and Magirou [33]). Consider the default theory ∆ with the
set of default rules D = {d1 = a1/a1, d2 = a2 ∧ ¬a1/a2, d3 = a3 ∧ ¬a1 ∧ ¬a4/a3, d4 =
a4 ∧ ¬a2 ∧ ¬a6/a4, d5 = a5 ∧ ¬a3/a5, d6 = a6 ∧ ¬a5/a6} The digraph corresponding to
this default theory is represented in Figure 1.5. The kernels of this digraph ({d1, d4, d5}
and {d2, d3, d6}) correspond to the extensions of ∆ (conclusions of d1, d4, and d5, i.e.,
{a1, a4, a5} and conclusions of d2, d3, and d6, i.e., {a2, a3, a6}).

1La traduction française de “penguin” est “manchot.” En effet, comme rappelé dans le livre “Le
manchot qui en avait marre d’être pris pour un pingouin” de Nicolas Digard et Christine Roussey, les
manchots, contrairement aux pingouins, ne volent pas.
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d1 d2 d4

d6d5d3

Figure 1.5: The digraph corresponding to the theory default theory ∆

1.2.5 Dinitz
A nice application of kernels in graph theory is the following theorem, which was originally
conjectured by Jeff Dinitz in the seventies [40]. It was not solved until the nineties. The
original problem has been formulated in terms of a latin square problem but can be
reformulated into a graph theory problem.

Given a graph G and a set C(v) of “allowed” colors for each vertex v (called a list),
a proper list coloring is a choice function that maps every vertex v to a color in the list
C(v) such that the resulting coloring is proper.

The list chromatic number of a graph G, denoted by χℓ(G), is the minimum k such
that if every color set C(v) has size k, then a proper list coloring exists.

Theorem 1.2.3 (Dinitz theorem [46]). The list chromatic number of the complete bipar-
tite graph Kn,n is n.

The following easy statement relates colorings of a graph and kernels in some orienta-
tions. Combined with the Gale–Shapley theorem (Theorem 1.1.8), it is a key step in the
proof of Theorem 1.2.3.

Lemma 1.2.4. Let D be a directed graph, and suppose for all v ∈ V (D) there is a color
set C(v) such that |C(v)| ⩾ |N+(v)| + 1. Then, if every induced subdigraph of D has a
kernel, G has a proper list coloring with respect to (C(v))v.

The proof of Theorem 1.2.3 can be turned into a polynomial-time algorithm.

1.3 Main challenges
Clearly, the next two questions are the main current challenges of the theory of kernels.
In the two cases, the existence of kernel is ensured by a theorem, but a way to compute
efficiently such a kernel is not known. Note that the well-posedness of the questions can
be debated since for the first one, it is not known whether the condition can be checked
in polynomial time, and for the second, it is a coNP-complete problem (Section 1.1.2.2
above). These aspects of the questions are discussed a bit further in Chapters 2 and 3.

Open question 1.3.1. What is the complexity of computing a kernel in a digraph satis-
fying the condition of the theorem Galeana-Sánchez–Neumann-Lara (Theorem 1.1.7)?

Open question 1.3.2. What is the complexity of computing a kernel in a clique-acyclic
orientation of a perfect graph?

There are many special cases that are still open such as:

• What is the complexity of computing a kernel in a digraph such that every odd
directed cycle has at least two crossing consecutive chords (defined in Chapter 3)?
(Special case of open question 1.3.1.)
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• What is the complexity of computing a kernel in a clique-acylic orientation of a
perfectly orderable graph? (Special case of open question 1.3.2.)

There are other open questions regarding the complexity of computing kernels not
requiring clique-acylicity, and thus no result of Section 1.1.2.2 applies on such a digraph.
Some of them look accessible, like the following one.

Open question 1.3.3. What is the complexity of deciding whether an orientation of an
interval graph admits a kernel?

Andres and Hochstättler have asked the same question for the more general class of
perfect graphs, but, as far as we know, even for the very special case of interval graphs,
the answer is not known. However, when the orientation is simple, deciding the existence
of a kernel and computing one if it exists can be done in polynomial time for interval
graphs, and even for chordal graphs [52].
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Chapter 2

Some thoughts about
kernel-solvability

A notion related to that of kernel-perfection is that of kernel-solvability. It involves clique-
acyclic orientations, which have been defined in Section 1.1.2. For sake of convenience,
we recall the definition: a digraph is clique-acyclic if every clique admits a kernel (i.e.,
a vertex absorbing all other vertices of the clique). A graph is kernel-solvable if every
clique-acyclic orientation admits a kernel. The reader can refer to Figures 2 for the
correspondence between these notions.

Kernel-solvable graphs

M -kernel-sovable graphs

Simple-kernel-solvable graphs

Simple-clique-acyclic orientations

M -clique-acyclic orientations

Clique-acyclic orientations

Figure 2.1: Inclusions between different graphs and orientations.

The conjecture by Berge and Duchet, mentioned in the Introduction, states that a
graph is perfect if and only if it is kernel-solvable. It is an easy exercise to show that
kernel-solvability is a property closed under taking induced subgraphs. Hence, a graph is
kernel-solvable if and only if every clique-acyclic orientation is kernel-perfect.

The conjecture of Berge and Duchet is now proved, and this shows that a deep relation
exists between perfection and kernel-perfection.

The ‘if’ direction is a consequence of the strong perfect graph theorem. Indeed, it is
not too hard to check that there exist clique-acyclic orientations of odd holes and of odd
anti-holes with no kernel. This will be further discussed in Section 2.1. It is worth noting
that no other proof of that direction of the conjecture is known.

The ‘only if’ direction is the following theorem.

Theorem 1.1.14 (Boros and Gurvich [18]). Every clique-acyclic orientation of a perfect
graph admits a kernel.
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Figure 2.2: A simple clique-acyclic orientation of C7 with no kernel.

Boros and Gurvich proved their theorem with advanced notions of game theory. A
simpler proof based on Scarf’s lemma was later proposed by Aharoni and Holzman [2]
and then simplified by Király and Pap [57] using Sperner’s lemma. However, none of
these proofs provides algorithms for computing a kernel. This raises the question of the
complexity of kernel computation in a clique-acyclic orientation of a perfect graph. This
question is further discussed in Section 2.2.

Actually, since every class appearing in Section 1.1.2.1 is closed under taking induced
subdigraphs, the mentioned theorems imply the kernel-perfection of the digraphs of these
classes.

Several graphs operations are known to preserve perfection and the proof of the strong
perfect graph theorem relies on such operations. Similarly, Blidia et al. [13] showed that
some of these operations preserve kernel-perfection. We will see in Section 2.3 that some
also preserve the polynomiality of computing a kernel.

2.1 Kernels and odd anti-holes
We start with the following observation.

Observation 2.1.1. The odd anti-hole C7 admits a simple clique-acyclic orientation with
no kernel.

Proof. Let D be the digraph with vertex set V (D) := Z7, and with the following arcs set:

A(D) := {(i, i + 2), (i, i + 4): i ∈ Z7} .

This is a simple clique-acyclic orientation of C7. See Figure 2.2. This digraph has no
kernel since every maximal independent set is a pair of the form {i, i + 1}, which does not
absorb i + 2.

We believe that Observation 2.1.1, although very simple, may be helpfull. Actually
Boros and Gurvich [19, Observation 3.13] wrote that every M -clique-acyclic orientation of
C7 (and thus in particular every simple clique-acyclic orientation) admits a kernel. This
makes them claim that kernel-solvability and kernel-M -solvability are distinct. András
Sebo actually noticed that even though they putted the common definition of M -clique-
acyclic orientation in their paper, they were actually using a more constrainted one,
requiering for the orientation that every non-directed cycle of length three has at least
hence-and-forth pairs of arcs. In this manuscript, we will not use this other definition.
Kernel-solvability has been defined in the beginning of that chapter. A graph is M-
kernel-solvable if every M -clique-acylic orientation admits a kernel. This notion has been
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introduced by Duchet [37]. To this notions, we add the following one: a graph is simple
kernel-solvable if every simple clique-acylic orientation admits a kernel. The connection
between the previous notions is represented in Figure 2.

With the help of the strong perfect graph theorem, it is not too difficult to see that
kernel-solvable graphs are perfect [19]. The key element here is to exhibit for every odd
anti-hole a clique-acyclic orientation with no kernel. The next theorem shows that there
is no hope to achieve the same result for simple clique-acyclic orientations, and that
kernel-solvability and simple kernel-solvability are distinct notions, as implicitly claimed
by Boros and Gurvich. We emphasize that the exact location of kernel-M -solvability with
respect to simple kernel-solvability and kernel-solvability remains to investigate.

Theorem 2.1.2. Let D be a simple clique-acyclic orientation of an odd anti-hole C2k+1.
If k ⩾ 4, then D admits a kernel.

Before giving the proof, we need preliminary lemmas.
In the next statement, any path has distinct endpoints.

Lemma 2.1.3. Let C be a Hamiltonian cycle of a clique Kn with n > 4. Consider a
subgraph L of Kn formed by pairwise vertex-disjoint paths and sharing no edge with C.
Then it is possible to add edges to L to get a single path P sharing no edge with C and
of length at least n− 2. In case it is not possible to get a single path of length n− 1, it is
possible to ensure that the vertex missed by P is adjacent on C to both endpoints of P .

Proof. We prove it by (decreasing) induction on the number of edges in L. The maximal
number of edges L can have is n− 1. So suppose that L has n− 1 edges. In this case, it
covers all vertices by one single path of length n − 1. Suppose now that L has less than
n− 1 edges.

If it is formed by two paths or more, then it is possible to find one endpoint from one
path and another endpoint from another path that are not adjacent on C. In that case,
it is then possible to add an edge (not in C) to L between these endpoints so that the
new subgraph is still formed by pairwise vertex-disjoint paths and shares no edge with C,
and induction applies.

If it is formed by a single path, but misses at least two vertices of Kn, then one
endpoint at least is not adjacent to a missed vertex on C. In that case again, it is then
possible to add an edge (not in C) to L between these vertices so that it is still formed
by a single path and shares no edge with C, and induction applies.

If it is formed by a single path, but misses exactly one vertex of Kn, either this missed
vertex is adjacent to both endpoints of the path, and we are done, or we can add an edge
(not in C) between this missed vertex and an endpoint of the path, so that we get a single
path covering all the vertices.

Lemma 2.1.4. Let Γ be a directed cycle of length at least 7 in a simple clique-acyclic
orientation of the odd anti-hole C2k+1 with k ⩾ 4. Then Γ has at least two chords with
consecutive heads.

Proof. Let ℓ ⩾ 3 be such that the length is 2ℓ+1. Denote by H the (undirected) subgraph
of C2k+1 induced by the vertices of Γ.

Suppose first that ℓ = k. Then the chords of H form a (2ℓ − 4)-regular graph with
V (H) as vertex set (because the non-edges form a Hamiltonian cycle). Consider the arcs
A′ in D corresponding to the edges of this regular spanning subgraph of H. There are
two consecutive vertices on Γ that are heads of arcs in A′ (otherwise, we could locate
(ℓ− 2)(2ℓ + 1) heads among at most (2ℓ− 4)ℓ possible locations).
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Suppose then that ℓ < k. Then we apply Lemma 2.1.3 with n = 2ℓ + 1, with C being
the underlying undirected cycle of Γ, and with L being the non-edges of C2k+1 with both
endpoints on C. In that case, there are three possibilities.

First possibility, it is possible to complete L with edges from E(H) \ E(C) so as to
get a path of length n − 1, with endpoints that are non-adjacent on C. Then again the
chords of H contain a (2ℓ−4)-regular graph with V (H) as vertex set (because L can then
even be completed so as to get a cycle of length n, by adding the edge of H between the
endpoints of L).

Second possibility, it is possible to complete L with edges from E(H) \ E(C) so as
to get a path of length n − 1, with endpoints that are adjacent on C. The chords of
H contain then a graph with 2ℓ − 1 vertices of degree 2ℓ − 4 and 2 vertices of degree
2ℓ−3 adjacent on C. Consider the arcs A′ in D corresponding to the edges of this regular
spanning subgraph of H. There are two consecutive vertices on Γ that are heads of arcs
in A′ (otherwise, we could locate (ℓ− 2)(2ℓ− 1) + 2ℓ− 3 = 2ℓ2 − 3ℓ− 1 heads among at
most (ℓ− 1)(2ℓ− 4) + 2ℓ− 3 = 2ℓ2 − 4ℓ + 1 possible locations).

Third possibility, it is possible to complete L with edges from E(H) \ E(C) so as to
get a path of length n− 2, with both endpoints adjacent on C to the vertex missed by L
in H. The chords of H contain then a graph with 2ℓ− 2 vertices of degree 2ℓ− 4 and 2
vertices of degree 2ℓ− 3, both adjacent on C to one vertex of degree 2ℓ− 2. Consider the
arcs A′ in D corresponding to the edges of this regular spanning subgraph of H. There
are two consecutive vertices on Γ that are heads of arcs in A′ (otherwise, we could locate
(ℓ−2)(2ℓ−2)+2ℓ−3+ℓ−1 = 2ℓ2−3ℓ heads among either at most (ℓ−1)(2ℓ−4)+2ℓ−2 =
2ℓ2−4ℓ+2 possible locations, or at most (ℓ−2)(2ℓ−4)+2(2ℓ−3) = 2ℓ2−4ℓ+2 possible
locations).

Proof of Theorem 2.1.2. Denote by v1, . . . , v2k+1 the vertices of the odd anti-hole, so that
vivi+1 is a non-edge for all i (and with 2k + 2 := 1).

We will apply the proof technique of the Galeana-Sánchez–Neumann-Lara theorem 1.1.7,
but we choose in addition the vertex u with an extra property. To do so, we first establish
that there is a vi such that the edges vivi−2 and vivi+2 are both oriented towards vi.

Suppose for a contradiction that for every i, the arc (vi, vi−2) or the arc (vi, vi+2)
exists. Without loss of generality, we can assume that the arc (v1, v3) exists. Then
(v3, v5), (v5, v7), ..., (v2k+1, v2), (v2, v4), etc. exist as well, i.e., (vi, vi+2) exists for all i.
Since the orientation is clique-acyclic, we get that (vi, vi+4) exists for all i. Repeating this
argument, we get that an edge vivj with i < j and 2 ⩽ j − i ⩽ 2k − 1 is oriented (vi, vj)
precisely when j − i is even. Since k ⩾ 4, the arc (v1, v7) exists in D. The arcs (v7, v4)
and (v4, v1) also exist; this contradicts the simple clique-acyclic orientation of D.

Let u be the vertex vi such that the edges vivi−2 and vivi+2 are both oriented towards
vi. We know that D − N−[u] admits a kernel K, because C2k+1 is minimally imperfect
and the Boros–Gurvich theorem applies. We follow now exactly the proof of the Galeana-
Sánchez–Neumann-Lara theorem, up to the step where it is shown that u does not belong
to S.

So, suppose for a contradiction that u belongs to S. We keep the definition of P and
v, and we still have that P together with (u, v) is a directed cycle Γ of odd length. By
Lemma 2.1.4, if Γ is of length at least 7, then Γ has two chords with consecutive heads,
which is not possible as detailed in the proof of the Galeana-Sánchez–Neumann-Lara
theorem. The cycle Γ cannot be of length 3 by the clique-acyclicity of D.

We are left with the case when Γ is of length 5. Denote by H the (undirected) subgraph
of C2k+1 induced by the vertices of Γ. Note that H is formed by the underlying undirected
cycle of Γ, plus chords. If it has two chords with consecutive heads, we are done, as above.
Actually, an easy case-checking shows that if it has two chords, the clique-acyclic condition
does imply that there are consecutive heads. Since there is at least one chord (otherwise,
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k = 2), there is exactly one chord. The complement of H is thus a path of length 4. The
vertices of H are therefore of the form vj, vj+1, . . . , vj+4. Without loss of generality, the
arcs of Γ are

(vj+2, vj), (vj, vj+3), (vj+3, vj+1), (vj+1, vj+4), (vj+4, vj+2),

and the chord is (vj+4, vj) by the clique-acyclicity of D. Since by definition u = vi has no
outneighbor among {vi−2, vi+2}, the vertex u is necessarily vj or vj+1. Assume first that
u = vj. By construction of Γ, we have vj+3 and vj+4 in K. But vj+4 ∈ N−(u) contradicts
the definition of K. Then, assume that u = vj+1. By construction of Γ, we have vj+4 and
vj in K. But this contradicts the fact that K is an independent set.

This shows that u does not belong to S. Finishing exactly as in the proof of the
Galeana-Sánchez–Neumann-Lara theorem, we get that S is a semi-kernel of D. Since
C2k+1 is minimally imperfect, every proper subdigraph of D also admits a semi-kernel,
because it admits a kernel by the Boros–Gurvich theorem. Lemma 1.1.1 shows then that
D admits a kernel.

2.2 Computing kernels in clique-acyclic orientations
of perfect graphs

The theorem of Boros and Gurvich raises the question of the computation of a kernel in a
clique-acyclic orientation of a perfect graph. This question has been identified as one the
main questions about kernels at the end of Chapter 1 (Open question 1.3.2). As mentioned
there, a formal definition of such a computational task is problematic because, even if
deciding perfection is polynomial [24], deciding whether an orientation of a perfect graph
is clique-acyclic is coNP-complete [7]. Therefore, a clique-acyclic orientation of a perfect
graph cannot be a polynomial-time recognizable instance of a computational problem
(assuming P ̸= NP). Even finding a polynomial certificate of the correctness of such an
instance is probably not possible because it is unlikely that a coNP-complete problem is
in NP. However, deciding whether an orientation is an M -clique-acyclic orientation is
obviously in P, which makes the following a well-posed open question.

Open question 2.2.1. What is the complexity of computing a kernel in an M-clique-
acyclic orientation of a perfect graph?

Since the theorem of Boros and Gurvich ensures that a kernel always exists for such
digraphs, this computational problem belongs to TFNP. As it has been noted in the
introduction of the chapter, none of the known proofs provides a concrete algorithm. It is
not even known whether the problem belongs to one of the studied subclasses of TFNP.
The proofs based on Scarf’s lemma and Sperner’s lemma might indicate at first glance
a membership to the PPAD class. This is actually correct, but only if the cliques have
bounded size; see [56], keeping in mind that a strong fractional kernel in a perfect graph
can be turned into a kernel in polynomial time. (In the general case, the reduction to
End-Of-Line implied by those proofs does not allow polynomial moves.)

For some subclasses of perfect graphs, the problem has been proved to be polynomial.
Here are the known results. When the most general case of clique-acyclic orientations is
covered, the result is stated at that level of generality.

• Clique-acyclic orientations of chordal graphs [52]. (In this case, such orientations
can be recognized in polynomial time.)

• Simple clique-acylic-orientations of perfect claw-free graphs [52]. Line graphs of
bipartite graphs are a special case (which coincides stable marriages).
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• Clique-acylic orientations of bipartite graphs (easy result).

• Clique-acylic orientations of DE graphs [32, 52]. In this case, such orientations can
be recognized in polynomial time.

• M -clique-acyclic orientations of comparability graphs [1].

2.3 Graph operations preserving the existence of ker-
nels

At least four graph operations are known to preserve kernel-perfection: disjoint union
(trivial), addition of a pending vertex (easy), clique-sum, and join. For the clique-sum,
this is a result by Jacob [53], and for the join, this is a result by Blidia et al. [13]. For this
latter operation, there is an extra (but natural) condition regarding the orientation of the
new arcs. The first three operations preserve the polynomiality of kernel computation. By
this, we mean that given a classD0 of kernel-perfect digraphs for which kernel computation
is polynomial, its closure D by the operation is still a class of kernel-perfect digraphs for
which kernel computation is polynomial. Again, for the disjoint union and the addition
of a pending vertex, this is easy. For the clique-sum, this is a result by Pass-Lanneau
et al. [52]. We establish a similar polynomiality result for the join operation. This work
benefits from preliminary results of a research project done by Benjamin Pyryt and Marie
Temple-Boyer at École des Ponts ParisTech in 2020.

The join of two vertex-disjoint (undirected) graphs G1, G2 is the (undirected) graph,
denoted by G1 ∗G2, such that

V (G1 ∗G2) := V (G1) ∪ V (G2)
E(G1 ∗G2) := E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)} .

A join of two vertex-disjoint digraphs D1 and D2 is an orientation D of the join of the
underlying undirected graphs of D1 and D2 such that D[V (D1)] = D1 and D[V (D2)] =
D2.

Theorem 2.3.1. Let D0 be a family of kernel-perfect digraphs for which the computation
of a kernel can be done in polynomial time. Let D be the family of digraphs obtained from
D0 by repeated join and disjoint-union operations, with the following condition on the join
operation: every directed cycle of length three intersecting both operands of the join has
at least two hence-and-forth pairs of arcs.

Then D is a family of kernel-perfect digraphs for which the computation of a kernel
can be done in polynomial time.

Proof. Blidia et al. [13] have actually shown the following. Let D1 and D2 be two
kernel-perfect digraphs, and D be a join of D1 and D2 satisfying the condition of the
statement on the length three directed cycle. Let K1 be a kernel of D1. Define Y :=
{v ∈ V (D2) : V (D1) ⊆ N−(v)}, and let KY be a kernel of D2[Y ] and KZ be a kernel of
D2

[
V (D2) \N−[KY ]

]
. (We keep the notation from Blidia et al.) Then K1 or KY ∪KZ is

a kernel of D.
Suppose that the complexity of computing a kernel in a digraph from D0 is O(nα) with

α ⩾ 3, where n is the number of vertices. We prove by induction on n that the complexity
of computing a kernel in a digraph from D is O(nα). Since finding two graphs such that
its join form D (just consider the complement of the components of the complement of D)
and computing Y can be done in quadratic time, denote C the constant such that those
operations are doable in less than Cn2 operations. We denote by f(n) the complexity of
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finding a kernel in a graph of D of size n and by n1 (resp. n2 and y) the size of D1 (resp.
D2 and Y ). For every digraph of D0, by definition, f(n) ⩽ Cnα. By induction, consider
a digraph of size n in D, we have then the following:

f(n) ⩽ Cn2 + f(n1) + f(y) + f(n2 − y)
⩽ Cn2 + Cnα

1 + Cyα + C(n2 − y)α

⩽ Cn2 + Cnα
1 + Cnα

2

⩽ C(2n2
1 + 2n2

2) + Cnα
1 + Cnα

2

⩽ C(αnα−1
1 + αnα−1

2 ) + Cnα
1 + Cnα

2

⩽ C(n1 + n2)α.

A direct application of the previous theorem is the following corollary about tree-
cographs. A graph is a tree-cograph if it can be constructed from trees by disjoint union
and complement operations.

Corollary 2.3.2. A kernel in an M-clique-acyclic-orientation of a tree-cograph can be
computed in polynomial time.

Proof. The class of tree-cographs is closed under taking induced subgraphs and the class
can be obtained from trees and complement of trees by repeated join and disjoint union.
Since a tree is acyclic and the stable sets of a complement of a tree are of size at most two,
it is clearly polynomial to compute a kernel in any orientation of a tree or a complement
of a tree. Using Theorem 2.3.1, we get the result.

In their paper, Blidia et al. [13] also consider the duplication operation, which is an
important operation of graphs. Duplicating a vertex u in a (undirected) graph G consists
in adding a new vertex v with N(v) := N(u). When an edge uv is moreover added, then
we talk about adjacent duplication. Otherwise, it is a non-adjacent duplication.

It is not clear how a directed version of duplication would preserve kernel-perfection.
Blidia et al. [10] have shown that non-adjacent duplication preserves kernel-solvability and
that adjacent duplication of a kernel-solvable graph leads to a graph with a kernel up to
an extra condition on the orientation. Now that Theorem 1.1.14 has been proved, these
results are just a consequence of the identification between kernel-solvable graphs and
perfect graphs. However, their proof technique is relevant to establish some preservation
of polynomial-time computation of kernels by duplication. We use it in the proof of the
following result. A graph is distance-hereditary if it can be constructed from a single vertex
by pending (operation consisting in adding a vertex adjacent to exactly one other vertex)
and duplicating (operation consiting in adding a vertex having the same neighbourhood
as an other vertex) operations. Distance-hereditary graphs are perfect graphs [62].

Proposition 2.3.3. A kernel in a simple clique-acyclic-orientation of a distance-hereditary
graph can be computed in polynomial time.

Proof. Consider a clique-acyclic orientation of a distance-hereditary graph D. The fol-
lowing polynomial recursive procedure provides a kernel in D. Check if D is the result of
a pending or a adjacent or non-adjacent duplicating operation.

Suppose the existence of a pending vertex v ∈ V (D). If v is a sink, then consider K
a kernel of D−N−[v], and K ∪ {v} is a sink of D. Else, consider K a kernel of D− {v}.
If K ∩N+(v) ̸= ∅, K is a kernel of D, otherwise K ∪ {v} is a kernel of D.

Suppose now the existence of a duplication v ∈ V (D) of a vertex w ∈ V (D). Adapting
the proofs of Blidia et al. [13] in the special case of simple orientations, we partition the set
N−(v)∪N+(v)(= N−(w)∪N+(w)) into X1 = N+(v)∩N+(w) and X2 = N−(v)∪N−(w).
Let us distinguish the cases of adjacent and non-adjacent duplications.
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If the duplication is non-adjacent, consider the digraph D′ obtained from D− {v} by
reorienting every arc between w and X2 so that every vertex in X2 in an outneighbor of
w. We claim that D′ is clique-acylic. Indeed, by contradiction, consider a new directed
triangle. It is necessarily a directed triangle with x ∈ X1, y ∈ X2, and w resulting from
the reorientation of the arc between y and w. This implies that (y, v) ∈ A(D) and the
vertices y, v and x form a directed triangle in D, which contradicts the definition of D.
Consider then a kernel K of D′. If w ∈ K, one can check that K ∪ {v} forms a kernel of
D, and if w ̸∈ K, necessarily K ∩X1 ̸= ∅ and K is a kernel of D.

Now, without loss of generality, suppose that (v, w) ∈ A(D). Then, by assumption
on the orientation of D, every vertex y in X2 is such that (y, w) ∈ A(D). Consider now
D′ = D − {v} and a kernel K of D′. One can check that K is a kernel of D.
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Chapter 3

The “two-chord” condition for odd
directed cycles

The main contribution of this chapter is a streamlined version of the proof of the Galeana-
Sánchez–Neumann-Lara theorem. This theorem was already introduced in Section 1.1 of
Chapter 1. We state here again for sake of readability.

Theorem 1.1.7 (Galeana-Sánchez and Neumann-Lara [44]). Let D be a directed graph.
Suppose that in D each directed cycle of odd length has at least two chords with consecutive
heads. Then D has a kernel.

A special case of this condition is the “two crossing consecutive chords-condition.”
Two chords in a directed cycle are crossing consecutive if they are of the form (u1, u3),
(u2, u4) with the vertices u1, u2, u3, u4 being consecutive in this order on the cycle. Before
Galeana-Sánchez and Neumann-Lara have proved their theorem, Duchet and Meyniel [38]
have established an intermediary generalization of Richardson’s theorem (Theorem 1.1.4),
which states that a directed graph in which every odd cycle has “two crossing consecutive
chords” admits a kernel.

On the contrary, we could also look for generalizations of Theorem 1.1.7. Our simpli-
fication of the original proof will make clear that there are indeed such generalizations.
This is done in Section 3.2, where we gather these generalizations in Theorem 3.2.1. Con-
jecturing that the existence of two chords in every odd directed cycle is enough to ensure
the existence of a kernel is very tempting, and Meyniel formulated it in 1976. This con-
jecture has been then disproved by Galeana-Sánchez [43]. She actually established the
following result, with an explicit construction.

Proposition 3.0.1 (Galeana-Sánchez [43]). For every k ⩾ 2, there exists a digraph with
no kernel and such that each odd directed cycle has at least k chords.

The construction for k = 2 is given in Figure 3.1.

3.1 Proof
Proof of Theorem 1.1.7. The proof works by induction on the number of vertices.

The theorem is obviously correct for the graph reduced to a single vertex. Assume now
that D has at least two vertices, and let u be any vertex of D. By induction, D \N−[u]
has a kernel K, and set K ′ = K ∪ {u}. If K does not contain any vertex of N+(u), then
K ′ is a kernel of D.

We can thus assume that K contains at least one vertex of N+(u), and we denote by
I the set K ∩ N+(u). Notice that I is an independent set. Let S be the set of vertices
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Figure 3.1: The counterexample of Meyniel’s conjecture.

v of K ′ such that there exists a directed path from a vertex in I to v that satisfies the
following two conditions:

(i) the path alternates between vertices in K ′ and vertices not in K ′.

(ii) for all vertices w and w′ such that w comes before w′ on the path and such
that w′ is not the end vertex of the path, if w ∈ N+(w′), then w ̸∈ K ′.

Note that S is non-empty and contains in particular I. We claim that S is actually a
semi-kernel.

To show this, we first prove that u is not an element of S. Suppose for a contradiction
that u belongs to S. Then there is a directed path P from I to u satisfying the two
conditions (i) and (ii). Choose such a path of minimum length and denote by v its origin.
It is of even length because of condition (i). Together with the arc (u, v), the path P
forms a directed cycle of odd length. This cycle has two chords with consecutive heads by
assumption. In particular, it has a chord whose head is in K ′. The tail is not in K: if the
head is u, it is by definition of K; if the head is not u, it is by independence of K. The
tail is not u either: it would contradicts the minimality of P . Moreover, the tail cannot
come before the head on P since this would contradict the minimality of P . Therefore,
the tail comes after the head, which is in K. This contradicts condition (ii).

We show now that S is a semi-kernel. Since S does not contain u, it is a subset of
K and is thus an independent set. Consider now a vertex s of S with an outneighbor w.
Note that w is not in K and is distinct from u. By definition of s, there is a directed path
Q from I to s satisfying the two conditions (i) and (ii). If w is in N−(u), then there is
an arc from w to a vertex of V (Q) ∩K since otherwise the path obtained by appending
(s, w) and (w, u) to Q would satisfy the two conditions (i) and (ii) and this would imply
that u belongs to S (indeed, by independence of K, no arc forbidden by (ii) can begin at
s). If w is not in N−(u), then there is an arc from w to a vertex t in K, because this latter
set is a kernel of D \N−[u]. Either there is such a t on Q and then t ∈ S, or considering
any such t and appending (s, w) and (w, t) to Q satisfies the two conditions (i) and (ii),
so t ∈ S. In any case, there is an arc from w to an element of S, and S is therefore a
semi-kernel.
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We have proved that D has a semi-kernel. By induction, every proper induced sub-
digraph of D admits a kernel, and thus a semi-kernel. Lemma 1.1.1 leads to the conclu-
sion.

3.2 Another result
The same proof actually shows that the following generalization of Theorem 1.1.7 is also
true.

Theorem 3.2.1. Let D be a digraph. Suppose that in D each odd directed cycle has

• two chords with consecutive heads, or

• two non-crossing chords of odd length “in the same direction” (see Figure 3.2), or

• two crossing chords, one being short and the other of odd length (see Figure 3.3).

Then D has a kernel.

Proof. The only part in the proof of Theorem 1.1.7 where the condition about odd directed
cycles is used is when we show that u does not belong to S. This is the part that we are
going to adapt.

We still suppose for a contradiction that u belongs to S, and we keep the same defi-
nition for P and v. In the proof of Theorem 1.1.7, we have checked that the odd directed
cycle formed by P and (u, v) cannot have two chords with consecutive heads. So, we are
left with the possibilities offered by the two other items. Both involve an odd chord.

Consider such an odd chord (w, w′) of the odd directed cycle formed by P and (u, v).
The vertex w is distinct from u since otherwise this would contradict the minimality of
P . The vertex w′ is also distinct from u for the same reason. Moreover, the vertices
w, w′, and u cannot be in this order on the directed cycle, again for the same reason of
minimality of P .

Thus, the vertices w and w′ are such that w, u, and w′ are distinct and in this order
on the cycle. This shows that we cannot be in the possibility offered by the second item:
we cannot have two non-crossing chords of odd length in the same direction. Moreover,
the configuration of w and w′ with respect to u makes that w and w′ are both outside
K ′. But then any short crossing chord as in Figure 3.3 would connect two elements of
K ′, which is impossible.

It would be interesting to see whether we could further generalize Theorem 3.2.1 by
adding to the list of possibilities for an odd directed cycle that of Theorem 1.1.6 (two
hence-and-forth pairs of arcs).

3.3 Algorithmic considerations

3.3.1 Checking the condition
As mentioned in Section 1.1.1.2, we do not know whether the condition of the Galeana-
Sánchez–Neumann-Lara theorem can be checked in polynomial time. However, we can
prove that the less general condition of the special case by Duchet and Meyniel can be
checked in polynomial time.

Proposition 3.3.1. Deciding whether every odd directed cycle has two crossing consecu-
tive chords can be done in polynomial time.
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Figure 3.2: An odd directed cycle having two chords in the same direction of odd length.

Figure 3.3: Odd directed cycles having two crossing chords, one short and the other of
odd length.
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Proof. Consider a digraph D and build D′ as follows: Each quadruplet of vertices (a, b, c, d)
in D such that there is a path of length three a → b → c → d without crossing chords
becomes a vertex in D′; Put an arc between two vertices x, y in D′ if and only if the last
three vertices corresponding to x are the first three vertices corresponding to y.

Then, each odd directed cycle of D has at least two crossing consecutive chords if and
only if D′ has no odd directed cycle. Using Lemma 1.1.5 (which is actually an equivalence),
it is sufficient to test if each strongly connected component is bipartite. This can be done
by greedily trying to color with two colors.

3.3.2 Computing a kernel
The question of whether a kernel can be computed in polynomial time when the directed
graph satisfies the condition of Theorem 1.1.7 (or the special case of the crossing consec-
utive chords) is still open. In this thesis, this has been identified as one of the main open
questions about kernels (see Section 1.3). It is not clear how to derive an efficient algo-
rithm from the proof of that theorem (neither the original proof, nor the shorter one we
propose). Yet, one of the crucial steps of the proof—namely, building a semi-kernel from
a kernel in some subgraph—can be performed in polynomial time. An odd directed cycle
not having two chords with consecutive heads will be called a bad cycle. The following
algorithm takes a digraph D, a vertex u and a kernel in D − u and returns a subset S of
V (D). As stated in Proposition 3.3.3, if D has no bad cycle it returns a semi-kernel in
polynomial time.

Algorithm 1 Algorithm for computing a semi-kernel when we have almost a kernel
Require: a digraph D, a vertex u, a kernel K of D − u;
Ensure: S is a non-empty semi-kernel of D or there is a bad cycle;

1: K ′ ← K ∪ {u};
2: if N+(u) ∩K ̸= ∅ then
3: S ← K;
4: return S;
5: if N−(u) ∩K = ∅ then
6: S ← K ′;
7: return S;
8: U ← {u};
9: while N+(U ∩K ′) \N−(U ∩K ′) ̸= ∅ do

10: Pick v ∈ N+(U ∩K ′) \N−(U ∩K ′);
11: U ← U ∪ {v} ∪ (N+(v) ∩K ′);
12: S ← U ∩K ′;
13: if N−(u) ∩ U ∩K ̸= ∅ then
14: return “There is a bad cycle”;
15: else
16: return S;

Denote by vi the vertex picked at line 10 at iteration i of Algorithm 1.
Lemma 3.3.2. If N−(u)∩K ̸= ∅ and N+(u)∩K = ∅, then, at the end of Algorithm 1,
there exist for every vertex w in U ∩ K a sequence i1 < i2 < · · · < iℓ and vertices
w1, w2, . . . , wℓ = w in U ∩K such that u, vi1 , w1, vi2 , w2, . . . , wℓ−1, viℓ

, wℓ is a directed path
of D.
Proof. Assume N−(u)∩K ̸= ∅ and N+(u)∩K = ∅. If the “while” loop is not executed
at all, it means that S = U ∩K ′ = {u} at the end of the algorithm, which implies that
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U∩K = ∅. We can thus assume that the “while” loop is executed at least once. We prove
by induction that the property is true at every iteration. Since the set U is non-decreasing
along the execution of the algorithm, the property will also be satisfied at the end of the
algorithm.

Consider iteration 1 of the “while” loop, and let w be a vertex of K added to U . It
cannot be the vertex v1, which does not belong to K. It is thus a vertex of N+(v1), and
there is a directed path u, v1, w in D, as required.

Now, consider an iteration i, and suppose that the property is satisfied up to iteration
i− 1. Let w be a vertex of K added to U . It cannot be vi, which does not belong to K.
It is thus a vertex of N+(vi). The vertex vi is by construction in the outneighborhood
of a vertex w′ of U ∩ K ′, which has been added to U ′ at an iteration i′ < i. If w′ = u,
then u, v1, w1 = w is the desired directed path. Suppose thus w′ ̸= u. The vertex w′

belongs to U ∩K. By induction, there exist a sequence i1 < i2 < · · · < iℓ′ and vertices
w1, w2, . . . , wℓ′ = w′ in U ∩ K such that u, vi1 , w1, vi2 , w2, . . . , wℓ′−1, viℓ′ , wℓ′ is a directed
path of D. The sequence u, vi1 , w1, vi2 , w2, . . . , wℓ′−1, viℓ′ , wℓ′ , vi, w is the desired directed
path of D.

Proposition 3.3.3. Consider a digraph D satisfying the condition of Theorem 1.1.7, a
vertex u ∈ V (D), and a kernel K of D− u. Algorithm 1 computes a semi-kernel of D in
polynomial time.

Proof. Note the algorithm terminates after at most |V (D)| iterations because we cannot
have twice the same vertex v at line 10. It remains to prove that the subset S returned
is always a semi-kernel of D. If N+(u) ∩ K ̸= ∅, then K is a kernel of D (and thus a
semi-kernel) If N+(u) ∩ K = ∅ and N−(u) ∩ K = ∅, then K ′ = K ∪ {u} is a kernel
of D (and thus a semi-kernel). So we assume from now on that N+(u) ∩ K ̸= ∅ and
N−(u) ∩K ̸= ∅. Denote by vi the vertex v added by the algorithm at iteration i at line
10. Note that vi is never a vertex of K since this latter set is an independent set and
N+(u) ∩K = ∅. We consider now two cases in turn.
• N−(u)∩U ∩K ̸= ∅ at the end of the algorithm. Pick w in N−(u)∩U ∩K. According

to Lemma 3.3.2, there exist a sequence i1 < i2 < · · · < iℓ and vertices w1, w2, . . . , wℓ in K
such that u, vi1 , w1, vi2 , w2, . . . , wℓ−1, viℓ

, wℓ, u is a directed cycle (with wℓ = w). Choose
ℓ as small as possible. The length of the cycle is odd. Consider any chord of the cycle.
It does not connect two vertices wk since K is an independent set of D. It is not of the
form (vik

, wk′) with k < k′ by minimality of ℓ. For k > k′, the vertex wk′ is added to
U at iteration ik′ or before and since the vertex vik

is not in N−(U ∩K) at iteration ik,
there is no chord of the form (vik

, wk′) with k > k′ either. Therefore, the two heads of the
crossing chords are u and vi1 . By minimality of the of ℓ, the tail of the chord of u can not
be an element of K and by definition, it can not be one of the v′

is. This proves that the
cycle is bad.

• N−(u)∩U ∩K = ∅ at the end of the algorithm. In this case, S is set to U ∩K ′, and
no vertex of U ∩K has u as outneighbor. Thus S is an independent set. Moreover, since
the “while” loop has been left, we have N+(S) ⊆ N−(S).

Note that this proof provides a slightly different technique for finding the semi-kernel
than the one used in the proof of Theorem 1.1.7. It is not clear how to make this latter
polynomial.
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Chapter 4

Blue/red arcs

One of the most celebrated generalizations of the Gale–Shapley theorem is the following
theorem.

Theorem 1.1.15 (Sands, Sauer, and Woodrow [71]). Let D be a directed graph whose
arcs are colored with two colors. Then there is an independent set S of vertices of D such
that, for every vertex x not in S, there is a monochromatic path from x to a vertex of S.

An equivalent formulation of this theorem is the following: Let D be a directed graph
whose arcs are colored with two colors such that the restriction to each color forms a
transitive digraph; then D admits a kernel.

In this chapter we discuss and propose extensions and variations of this theorem.
For two vertices a, b, we denote by a

b→ b (resp. a
r→ b) the existence of a blue (resp.

red) arc from a to b.

4.1 Main results
Our first result consists in replacing the condition of Theorem 1.1.15 by the one depicted
in Figure 4.1. The original condition is obtained by restricting each implication to its first
alternative. It is also a generalization of Theorem 1.1.10 by Champetier ensuring that
an M -clique-acyclic orientation of a comparability graph always admits a kernel, and of
a theorem by Abbas and Saoula [1] that states the polynomiality of computing such a
kernel under the same condition. Indeed, considering another orientation certifying that
the graph is a comparability graph, we can color each arc in blue if the two orientations
match and in red otherwise (as done by Champetier [22]), and it is easy to check that the
condition of our result is satisfied.

Figure 4.1: The condition in Theorem 4.1.1
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Figure 4.2: The forbidden induced structures of the second condition in Theorem 4.1.2

Theorem 4.1.1. Let D be a digraph whose arcs are colored in blue and red, such that the
following conditions are both satisfied (see Figure 4.1):

(i) If (u, v) and (v, w) are blue arcs, then (u, w) is a blue arc, or (w, u) and
(w, v) are red arcs.

(ii) If (u, v) and (v, w) are red arcs, then (u, w) is a red arc, or (v, u) and (w, u)
are blue arcs.

Then D has a kernel, and it is possible to compute such a kernel in polynomial time.

Our second result is in the same vein as the previous one.

Theorem 4.1.2. Let D be a digraph whose arcs are colored in blue and red, such that the
following conditions are both satisfied (see Figure 4.2 for the forbidden structures):

(i) There is no monochromatic directed cycle.

(ii) If ((v1, v2), (v2, v3), (v3, v4)) is a (closed or open) directed path such that
(v1, v2) is red and (v3, v4) is blue, then its vertices induce at least another
arc not ending at v2.

Then D has a kernel.

There is no implication between the two statements. Indeed, a digraph of size three
such that every vertex has a blue arc to every other vertex satisfies conditions of Theo-
rem 4.1.1 but has a monochromatic directed cycle. Also, a directed blue path of length
two respects the conditions of Theorem 4.1.2 but not those of Theorem 4.1.1. Note that
the proof of Theorem 4.1.2, even though it is very similar to the proof of Theorem 4.1.1,
does not provide any efficient algorithm. The problem of finding a kernel in polynomial
time in digraphs respecting conditions of Theorem 4.1.2 is still open.

4.2 Proof of Theorem 4.1.1

4.2.1 The poset of antichains
The following way of extending a partial order on antichains will be useful in the proof
of Theorem 4.1.1. Let (P ,≼) be a poset. Let A be the collection of all antichains of this
poset. We extend ≼ on A by setting α ≼ α′ for two antichains α, α′ ∈ A whenever for
each element x in α, there exists an element x′ in α′ such that x ≼ x′. We believe this
construction and the following lemma are well-known but we have not been able to find
any reference in the literature.

Lemma 4.2.1. With this extended definition, ≼ is a partial order on A.

43



Proof. Reflexivity and transitivity are immediate. We establish antisymmetry. Suppose
for a contradiction that there exist two antichains α ̸= α′ such that α ≼ α′ and α′ ≼ α.
Since α ̸= α′, we can assume without loss of generality that there exists x ∈ α such that
x /∈ α′. Since α ≼ α′, there exists x′ ∈ α′ such that x ≺ x′. Since α′ ≼ α, there exists
x′′ ∈ α such that x′ ≼ x′′, and thus such that x ≺ x′′; a contradiction.

The next lemma will be useful to establish the polynomiality of the computation of the
kernel. Actually, only the upper bound on the size of a chain is needed for the proof but
we establish the existence of a chain matching the upper bound for sake of completeness.

Lemma 4.2.2. If P is finite, then the maximal size of a chain in (A,≼) is |P|+ 1.

Proof. Let α1 ≺ α2 ≺ · · · ≺ αℓ be a chain of (A,≼). For every i ∈ {2, . . . , ℓ}, there
exists xi ∈ P such that xi ∈ αi \ αi−1. We claim that all xi’s are distinct. Suppose for a
contradiction that there exist j < k such that xj = xk. Let y ∈ αk−1 be such that xj ≼ y.
Note that since xk does not belong to αk−1, we have actually xj ̸= y. Moreover, there
exists z ∈ αk such that y ≼ z. We have thus xk ≺ z, with both elements belonging to αk;
a contradiction. This shows that every chain in (A,≼) is of size at most |P|+ 1.

We prove now by induction on |P| that there exists a chain in (A,≼) of size |P|+ 1.
This is obviously true if P = ∅. Assume now that P ≠ ∅. Let x be a maximal element of
P . By induction, A possesses a chain of size |P| such that none of its elements contains
x. Let α be the maximal antichain of (P ,≼) in this chain of (A,≼). Add x to α, and
remove from it all elements y such that y ≼ x. This leads to a new antichain α′ such that
α ≺ α′, showing that there exists a chain in (A,≼) of size |P|+ 1.

4.2.2 Two lemmas
Consider a digraph D as in Theorem 4.1.1. Such a digraph satisfies some properties,
which we state as lemmas since they will be useful in the proof of Theorem 4.1.1.

Lemma 4.2.3. There is a vertex v such that the implication v
r→ w =⇒ w → v holds

for all vertices w.

Proof. Consider the set R of red arcs (v, w) such that the arc (w, v) does not exist (i.e.,
the set of red arcs (v, w) that witness the fact the v does not satisfy the implication).
We claim that the restriction of D to arcs in R is acyclic. Suppose for a contradiction
that there is a cycle, and consider such a cycle of minimal length. It cannot be of length
2 because this would contradict the definition of R. It is thus of length at least 3. By
(ii) and by minimality of the length, there is an arc of the cycle whose reverse arc exists
in blue in the digraph. Such an arc contradicts the definition of R, this proves the
acyclicity. The restriction to arcs in R has thus a sink. Such a sink necessarily satisfies
the implication.

Lemma 4.2.4. If there is a blue dipath from a vertex u to a vertex v, then u
b→ v or

v
r→ u.

Proof. Consider a minimum-length blue dipath P from a vertex u to a vertex v. If it is
of length 1, then u

b→ v. So suppose that the length of P is at least 2. By (i) and by
minimality of the length of P , there exists a red dipath from v to u that uses vertices of P
in the opposite order as that induced by P . Note that if P is of odd length, the existence
of such a path requires to use a red arc that is the reverse of an arc of P . Let Q be such
a red dipath of minimal length. By (ii) and by minimality of the length of both P and
Q, the dipath Q is of length 1 and we have v

r→ u.
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4.2.3 The proof
Proof of Theorem 4.1.1. Let Db be the digraph obtained from D by keeping only the blue
arcs and denote by Kb the collection of its strongly connected components. Let K ≼ K ′

holds for K, K ′ ∈ Kb if there is a blue dipath from K to K ′. This makes (Kb,≼) a poset.
We extend the definition of ≼ on the antichains of this poset as in Section 4.2.1. By
Lemma 4.2.1, ≼ is a partial order on these antichains. By Lemma 4.2.4, the strongly
connected components of Db intersected by an independent set I of D form an antichain
of (Kb,≼), which we denote by αI .

Let I be the set of independent sets I of D such that I
r→ w =⇒ w → I holds for all

vertices w. By Lemma 4.2.3, I is non-empty (and an element from I can be determined
by simply scanning the vertices of D). We describe now a procedure to modify such a
I ∈ I when it is not a kernel, in order to get a new element I ′ in I such that αI ≺ αI′ .
By finiteness, this will show the existence of a kernel. With Lemma 4.2.2, this will even
imply the polynomiality of the method.

Suppose that I ∈ I is not a kernel and let U := V (D) \ (I ∪ N−(I)). This is the
set of all vertices that are neither in I nor absorbed by I. Since I is not a kernel, U is
non-empty. According to Lemma 4.2.3 applied on D[U ], there exists a vertex v ∈ U such
that v

r→ w =⇒ w → v holds for all vertices w ∈ U . (Again, determining such a v can
be done simply by scanning the vertices of D.)

If I ̸→ v, then adding v to I leads to I ∪{v} ∈ I such that αI ≺ αI∪{v}. Suppose now
that I → v. Define I ′ by removing from I all vertices in N−(v) and by adding v. The set
I ′ is independent since v ̸→ I by definition of v and all vertices of I with an arc to v have
been removed from I. Moreover, let w be any vertex such that I ′ r→ w. We claim that
w → I ′. Three cases have to be considered.

• w → I \N−(v). Then w → I ′ since I \N−(v) ⊆ I ′ by definition.

• w → I ∩N−(v). Let u be a vertex in I ∩N−(v) such that w → u. We have u
b→ v

because v ̸→ I. If w
b→ u, then (i) implies w

b→ v because v ̸→ I and we are done. So,
suppose that w

r→ u, and let v′ ∈ I ′ such that v′ r→ w. By (ii), we have w
b→ v′ (here, we

use the fact that v′ ̸ r→ u, which holds either because v′ ∈ I or because v′ = v and v ̸→ I).
Therefore, in this case, whatever is the color of the arc (w, u), we have w → I ′.
• w ̸→ I. This means that v

r→ w. Since w does not belong to I ′, it is distinct from v.
Since v ̸→ I, the vertex w does not belong to I ∩N−(v). Therefore, the vertex w belongs
to U and by definition of v we have w → v, which implies w → I ′.

Therefore, I ′ ∈ I. Moreover, no vertex of I ∩N−(v) is in the same strongly connected
component of Db as v: indeed, the existence of a blue dipath from v to I ∩N−(v) would
imply by Lemma 4.2.4 v

b→ I or I
r→ v, both situations contradicting the fact that v

belongs to U . Therefore, αI ≺ αI′ .

4.3 Proof of Theorem 4.1.2
The proof is very similar to the proof of Theorem 4.1.1 but does not require any result
about the poset of antichains.

Proof of Theorem 4.1.2. Let I be the set of independent sets I ⊆ V (D) such that I
r→

w =⇒ w → I holds for all vertices w. We define ≼ on I such that I ≼ I ′ whenever for
each element x in I, there exists a blue dipath from x to I ′. Condition (i) ensures that ≼
defines an order on I.

45



I is not empty (just take a sink of the digraph obtained from D by keeping only the
red arcs). We describe now a procedure to modify such a I ∈ I when it is not a kernel,
in order to get a new element I ′ ∈ I such that I ≺ I ′. By finitness, this will show the
existence of a kernel.

Suppose that I ∈ I is not a kernel and let U := V (D) \ (I ∪ N−(I)). This is the
set of all vertices that are neither in I nor absorbed by I. Since I is not a kernel, U is
non-empty. Take v a sink of the digraph obtained from D[U ] by keeping only the red arcs.
If I ̸→ v, then adding v to I leads to a I ∪ {v} ∈ I such that I ≺ I ∪ {v}. Suppose now
that I → v. Define I ′ by removing from I all vertices in N−(v) and by adding v. The
set I ′ is independent since v ̸→ I by definition of v and all vertices of I with an arc to v
have been removed from I. Moreover, let w ∈ V (D) and v′ ∈ I ′ be any vertex such that
v′ r→ w (with possibly v′ = v). We claim that w → I ′. Three cases have to be considered.

• w → I \N−(v). Then w → I ′ since I \N−(v) ⊆ I ′ by definition.

• w → I ∩N−(v). Let u be a vertex in I ∩N−(v) such that w → u. We have u
b→ v

because v ̸→ I. Condition (ii) implies w → v or w → v′, so in every case w → I ′.
• w ̸→ I. This means that v

r→ w. Since w does not belong to I ′, it is distinct from v.
Since v ̸→ I, the vertex w does not belong to I ∩N−(v). Therefore, the vertex w belongs
to U but this is a contradiction with the definition of v.

Therefore, I ′ ∈ I. Moreover, every vertex u in I \ I ′ is in N−(v) and since v ̸→ I,
u

b→ v, therefore I ≺ I ′.

We could not find any polynomial bound on the number I considered in the previous
proof. As a result, we do not known whether any complexity result for finding a kernel
in graphs satisfying conditions of Theorem 4.1.2 can be derived from the proof.
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Part II

Quasi-kernels
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Chapter 5

Quasi-kernels in a nutshell

This chapter is intended to be a brief but complete introduction to quasi-kernels. The
first section presents two distinct proofs of the existence of a quasi-kernel in any digraph
(Section 5.1). After providing the formal statement of the small quasi-kernel conjecture,
we review then the current knowledge about this conjecture (Section 5.2). Then, we
collect a series of results about the simultaneous existence of more than one quasi-kernel,
a topic that has attracted some attention since the nineties (Section 5.3).

5.1 Existence of a quasi-kernel
We establish here in two different ways the existence of a quasi-kernel in any digraph D.
These are classical proofs.

Original proof by Chvátal and Lovász [26]. By induction on the vertices of D. Consider
a vertex v ∈ V (D) and a quasi-kernel Q of D −N−[v]. If Q ∩N+(v) ̸= ∅, then Q forms
a quasi-kernel of D. Otherwise, Q ∪ {v} is a quasi-kernel.

The next proof relies in an interesting way to the von Neumann–Morgenstern theorem.

Thomassé’s proof [17]. Partition D into two acyclic digraphs (this is standard and can be
done by locating the vertices on a line). The first one admits a kernel by Theorem 1.1.2.
This kernel induces in the second digraph another acyclic digraph, which admits also a
kernel, again by Theorem 1.1.2. This latter kernel is a quasi-kernel of D.

Note that both proofs ensure that a quasi-kernel can be computed in polynomial time.

5.2 The small quasi-kernel conjecture
The main conjecture about quasi-kernels has been proposed by Erdős and Székely [41] in
1976, and can be stated as follows.

Conjecture (“Small quasi-kernel conjecture”). Every sink-free digraph D admits a quasi-
kernel of size at most 1

2 |V (D)|.

So far this conjecture is still open but has been shown for a few special cases.
A semicomplete multipartite digraph is an orientation of a complete multipartite graph.

A quasi-transitive digraph D is such that for every three vertices a, b, c ∈ A(D) such that
(a, b) ∈ A(D) and (b, c) ∈ A(D) then (a, c) ∈ A(D) or (c, a) ∈ A(D). A locally semi-
complete digraph is an orientation of a graph such that for every vertex v, the underlying
graph of the restriction to N−[v] ∪N+[v] forms a complete graph.
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Theorem 5.2.1 (Heard and Huang [49] 2008). The small quasi-kernel conjecture is sat-
isfied by semicomplete multipartite digraphs, by quasi-transitive digraphs, and by locally
semicomplete digraphs.

Kostochka, Luo, and Shan have recently proved that 4-colorable digraphs—and in
particular planar digraphs—satisfy the small quasi-kernel conjecture. Actually, they have
established the following more general result.
Theorem 5.2.2 (Kostochka, Luo and Shan [59] 2020). The small quasi-kernel conjecture
is satisfied by digraphs whose vertex set can be partitioned into two subsets, each inducing
a kernel-perfect digraph.

This theorem relates the existence of a small quasi-kernel to the existence of kernels.
Such relation is even more striking in the next theorem, whose proof is actually very
simple (see [3, 39] for a streamlined version of the original proof).
Theorem 5.2.3 (van Hulst [73] 2021). The small quasi-kernel conjecture is satisfied by
digraphs admitting a kernel.

We finish with very recent results, showing that there is still activity around the small
quasi-kernel conjecture.
Theorem 5.2.4 (Erdős, Győri, Mezei, Salia, and Tyomkyn [39] 2023). The small quasi-
kernel conjecture is satisfied by digraphs containing a kernel in the second outneighborhood
of a quasi-kernel and also by orientations of unicyclic graphs.

A directed anti-claw is a digraph isomorphic to D with V (D) = {v1, v2, v3, v4} and
A(D) = {(v1, v4), (v2, v4), (v3, v4)}. A digraph is anti-claw-free if it contains no induced
directed anti-claw.
Theorem 5.2.5 (Ai, Gerke, Gutin, Yeo, Zhou [3] 2023). The small quasi-kernel conjecture
is satisfied by anti-claw-free digraphs.

In Chapter 6, we contribute to the conjecture by proving the conjecture for particular
cases. Actually, it is not known whether every sink-free digraph has a quasi-kernel of size
at most α|V | for any α ⩾ 1

2 , so we start by proving that every sink-free split digraph has
a quasi-kernel of size at most 3

4 |V (D)|. We also prove the conjecture for subclasses of
split digraphs such as splits avoiding a particular structure and complete split digraphs.
Then, we establish the conjecture on complete bipartite graphs before considering a refor-
mulation of the small quasi-kernel conjecture. In the chapter, we also discuss equivalent
conjectures.

5.3 Simultaneous quasi-kernels
Jacob and Meyniel [54] proved that if a digraph does not have a kernel then it must
contain at least three (not necessarily disjoint) quasi-kernels. Digraphs with exactly one
and two quasi-kernels have been characterized by Gutin et al. [48]. It follows from this
characterization that if a digraph has precisely two quasi-kernels then these two quasi-
kernels are actually disjoint.

In 2001 Gutin et al. [47] conjectured that every sink-free digraph has two disjoint
quasi-kernels (this stronger conjecture implies the original small quasi-kernel conjecture).
In 2004, in an update of their paper, the authors constructed a counterexample, a split
digraph with 14 vertices [48].

Note that, whereas the small quasi-kernel conjecture is true for planar sink-free di-
graphs [59], no sink-free planar digraph without two disjoint quasi-kernels is known so far
(the counterexample constructed by Gutin et al. [48] does contain a directed K7).
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5.4 Algorithmic considerations
Surprisingly enough, quasi-kernels have almost not been studied from an algorithmic point
of view. The only result of this kind from the literature is the following: deciding whether
there exists a quasi-kernel that contains a specified vertex is NP-complete [30].

In Chapter 7, we initiate the study of the problem of finding a quasi-kernel of minimum
size problem which we call Quasi-Kernel. This problem is computationally hard, even
for simple digraph classes, as shown for example by Theorem 7.2.1 in the case of acyclic
orientations of cubic graphs, or by Theorem 7.2.2 in the case of acyclic orientations of
bipartite graphs. Also, we investigate the problem of finding two disjoint quasi-kernels.
As we shall prove in Section 7.1, not only sink-free digraphs occasionally fail to contain
two disjoint quasi-kernels, but it is actually computationally hard to distinguish those
that do from those that do not. In the restricted case of sink-free bounded degree planar
digraph, deciding whether it has three disjoint quasi-kernels is NP-complete, as proved in
Theorem 7.1.4.

For those two problems, we provide polynomial algorithms in the case of digraphs with
bounded treewidth in Section 7.5.
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Chapter 6

Structure

Sections 6.1 and 6.2 form a paper that is about to be submitted to a journal.

In this chapter, we study upper bounds for the size of the smallest quasi-kernel in
different classes of digraphs with a particular focus on split digraphs.

We denote by S(D) the sinks of a digraph D.

6.1 Split
A split graph is a graph whose vertices can be partitioned into a clique and an independent
set. We extend this notion to digraphs by requiring that the underlying undirected graph
is a split graph. For a split digraph D, we denote by K(D) the set of vertices of the clique-
part and by I(D) the set of vertices of the independent-part. One of the motivations is
the construction by Gutin et al. [48] using a split digraph for refuting their conjecture
about the existence of two disjoint quasi-kernels in every sink-free digraph [47]. A split is
one-way if if contains no arc from K(D) to I(D).

6.1.1 Optimality of the 1/2 ratio
We describe two infinite families of split digraphs for which the minimum size of the
quasi-kernel tends to 1

2 |V (D)|. The first family is formed by one-way split digraphs. The
second family does not contain one-way split digraphs and shows that, if the ratio 1/2 is
correct for split digraphs, one-way split digraphs are not the only reason for tightness.

Consider the one-way split digraph Dn defined by

K(Dn) := {k0, . . . , k2n}, I(Dn) :=
{
sij : 0 ⩽ i ⩽ 2n, 1 ⩽ j ⩽ n

}
, and

A(Dn) :=
{

(ki, ki+j) : 0 ⩽ i ⩽ 2n, 1 ⩽ j ⩽ n
}
∪

{
(sij, ki) : 0 ⩽ i ⩽ 2n, 1 ⩽ j ⩽ n

}
,

where the sum i + j is understood modulo 2n + 1 (i.e., i + j = i + j−2n−1 if i + j > 2n).

Proposition 6.1.1. Denote by Qn a smallest quasi-kernel of Dn. Then

lim
n→+∞

|Qn|
|V (Dn)| = 1

2 .

Proof. Since Dn is one-way, Qn intersects K(Dn) in a single vertex. Assume that this
vertex is k0. This is without loss of generality because of the symmetry of Dn. For every
i ∈ {1, . . . , n}, the shortest ki-k0 path is of length two. On the other hand, there is an arc
(ki, k0) for every i ∈ {n + 1, . . . , 2n}. Therefore Qn = {k0} ∪

{
sij : i, j ∈ {1, . . . , n}

}
and

|Qn| = n2+1. The convergence result is then a consequence of |V (Dn)| = 2n2+3n+1.
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Consider now the split digraph D′
n defined by

K(D′
n) := K(Dn), I(D′

n) := I(Dn), and
A(D′

n) := A(Dn) ∪ {(k0, sij) : 1 ⩽ i ⩽ 2n, 1 ⩽ j ⩽ n}.

It is not a one-way split digraph but a strongly connected split digraph.

Proposition 6.1.2. Denote by Q′
n a smallest quasi-kernel of D′

n. Then

lim
n→+∞

|Q′
n|

|V (D′
n)| = 1

2 .

Proof. Since every path from k1 to I(D′
n) is of length at least 3, the quasi-kernel Q′

n

intersects necessarily K(D′
n) in a single vertex. This vertex cannot be k0 since the shortest

path from s11 to k0 is of length 3 and of length 4 to I(D′
n). Then, Q′

n ∩K(D′
n) = {kℓ}

with ℓ ∈ {1, . . . , 2n}, and Q′
n = {kℓ}∪ {s(ℓ+h)j : 1 ⩽ h ⩽ n, 1 ⩽ j ⩽ n} \ {s0j : 1 ⩽ j ⩽ n}.

Therefore, n2 + 1 ⩾ |Q′
n| ⩾ n(n − 1) + 1 and the convergence result is a consequence of

|V (Dn)| = 2n2 + 3n + 1.

6.1.2 A 3/4-bound for sink-free split digraphs
The fact that one-way split digraphs satisfy the small quasi-kernel conjecture has been
noticed by several persons. We provide a short proof for sake of completeness. See [3] for
a stronger version. The proof uses an easy preliminary lemma.

Lemma 6.1.3. For every tournament T with positive weights wv on the vertices, the
following holds:

max
v∈V (T )

w(N−[v]) ⩾ 1
2w(V (T )) .

Proof. We have ∑
v∈V (T ) wvw

(
N−(v)

)
= ∑

v∈K(D) wvw
(
N+(v)

)
, just because both quanti-

ties are equal to the sum ∑
(u,v) wuwv taken over the arcs of T . Thus there exists a vertex

v̄ such that w(N−(v̄)) ⩾ w(N+(v̄)), which implies w(N−[v̄]) ⩾ 1
2w(V (T )).

Proposition 6.1.4. Every sink-free one-way split digraph has a quasi-kernel of size at
most 1

2 |V (D)|.

Proof. Set wv := |N−(v) ∩ I(D)|+ 1 for every vertex v ∈ K(D). Let v∗ be a vertex such
that w(N−[v∗] ∩K(D)) is maximal. We first check that v∗ is a quasi-kernel of D[K(D)].
Let v ∈ K(D). By definition of v∗ and since wv > 0, we have w(N−[v∗] ∩ K(D)) >
w(N−(v) ∩K(D)), which means that N−[v∗] ∩N+[v] is nonempty.

Define now Q := ({v∗} ∪ I(D)) \
(
N−(v∗) ∪ N−−(v∗)

)
. The set Q is independent.

Every vertex of K(D) is at distance at most two from v∗ because v∗ is a quasi-kernel
of D[K(D)]. Every other vertex is either in Q or at distance at most two of v∗. By
construction, every vertex of Q ∩ I(D) is in the inneighborhood of K(D) \ N−[v∗]. If
K(D) \ N−[v∗] is empty, then the size of Q is exactly one; otherwise, it is at most
w(K(D) \ N−[v∗]) = w(K(D)) − w(N−[v∗] ∩ K(D)) ⩽ 1

2w(K(D)), by Lemma 6.1.3.
Therefore, in any case the size of Q is at most 1

2(|I(D)|+ |K(D)|) = 1
2 |V (D)|.

Lemma 6.1.5. Let X and Y be two disjoint subsets of a set V , and let Y ′ be a subset of
Y such that |Y ′| ⩽ 1

2 |Y |. If |X| ⩽ 1
2 |V |, then |X ∪ Y ′| ⩽ 3

4 |V |.

Proof. We have |X| + |Y | ⩽ |V | since X and Y are disjoint. Thus |X| + 2|Y ′| ⩽ |V |.
Adding |X| on the left-hand side and 1

2 |V | on the right-hand side, and then dividing by
2 leads to the desired inequality.
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Using the previous results, we prove the following theorem, thereby proving a weaker
version of the small quasi-kernel conjecture for split digraphs.

Theorem 6.1.6. Every sink-free split digraph D admits a quasi-kernel of size at most
3
4 |V (D)|.

Proof. We assume that K(D) and I(D) are both non-empty since otherwise there is
nothing to prove. Let Vi be the set of vertices at distance exactly i of I(D). Notice that
V0 is equal to I(D). Consistently, V+∞ is the set of vertices v of D for which there is
no directed path from v to an element of I(D). We denote by imax the largest index
i ∈ Z+ ∪ {+∞} such that Vi is non-empty. Since K(D) is non-empty, we have imax ⩾ 1.
Note that the sets Vi that are non-empty form a partition of V (D), and that if Vi is
non-empty (for finite i ⩾ 1), then Vi−1 is non-empty as well. The proof considers in turns
the possible values of imax.

• Case imax = +∞.
The digraph D[V+∞ ∪ (N−(V+∞) ∩ I(D))] is a one-way split digraph, which admits a

small quasi-kernel Q according to Proposition 6.1.4. By definition, no vertex of V+∞ is
the origin of an arc ending in Vi for some i < +∞. Every vertex in K(D) \ V+∞ is thus
at distance one of every vertex in V+∞, which implies that Q is a small quasi-kernel of D
as well.

• Case imax ∈ {1, 2}.
For every vertex v in V1, pick an arbitrary vertex in N+(v) ∩ I(D). This provides a

subset I+ ⊆ I(D) such that N+(v) ∩ I+ ̸= ∅ for every v ∈ V1 and |I+| ⩽ |V1|. Notice
that when imax = 1, the set I+ is a small quasi-kernel of D, and therefore we assume that
imax = 2. Let U :=

(
N−(V2) ∩ I(D)

)
\ I+.

− Subcase |U | ⩽ 1
2 |V (D)|.

Let X := U , Y := V1 ∪ I+, and Y ′ := I+.
The two sets X and Y are disjoint. Since I+ is disjoint from V1, and smaller, we

have |Y ′| ⩽ 1
2 |Y |. Lemma 6.1.5 with V := V (D) shows then that |X ∪ Y ′| ⩽ 3

4 |V (D)|.
Since X and Y ′ are both included in I(D), the set X ∪ Y ′ is independent. Every

vertex in V1 is at distance exactly one of Y ′ and every vertex not in X ∪ Y ′ is at
distance at most one of V1. Therefore, X ∪ Y ′ is a quasi-kernel of D of size at most
3
4 |V (D)|.
− Subcase |U | > 1

2 |V (D)|.
Let X := I(D)\ (N−(V2)∪I+) and Y := V (D)\X. The digraph D[V2∪U ] is a one-

way split digraph and admits a small quasi-kernel Q′ according to Proposition 6.1.4.
Let Y ′ := Q′∪

(
I+ \N−(Q′)

)
. Note that Y ′ is disjoint from X and thus included in Y .

We have |I+| ⩽ 1
2 |V1∪I+| and |Q′| ⩽ 1

2 |V2∪U |. Since V1∪I+ and V2∪U are disjoint
and Y = (V1 ∪ I+) ∪ (V2 ∪ U), we have |Y ′| ⩽ 1

2 |Y |. Lemma 6.1.5 with V := V (D)
shows then that |X ∪ Y ′| ⩽ 3

4 |V (D)|.
There is no arc from Q′ to I+: indeed, the only vertex of Q′ in K(D) (which exists

because D[V2 ∪ U ] is a one-way split digraph) belongs to V2 and can thus not be the
origin of an arc ending in I+. There is no arc from I+ \ N−(Q′) to Q′ by definition.
Hence, the set Y ′ is independent. The set X is independent by definition. The arcs
leaving X all end in V1. Since Y ′ ∩K(D) ⊆ V2, there is no arc from X to Y ′ and no
arc from Y ′ to X either. The set X ∪ Y ′ is therefore independent.

Every vertex in I+ is at distance at most one of Y ′ and every vertex in V1 is at
distance one of I+. Thus, every vertex in V1 is at distance at most two of Y ′. Every
vertex in V2∪U is at distance at most two of Y ′ as well because this latter set contains
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Q′. A vertex of I(D) that is neither in X nor in Y ′ is in U ∪ I+. Therefore, X ∪ Y ′ is
a quasi-kernel of D of size at most 3

4 |V (D)|.

• Case 3 ⩽ imax < +∞.
Let W := Vimax−1 ∩ N+(Vimax) and P := I(D) \ N−(K(D) \W ) (every arc leaving P

ends in W ).
− Subcase |P | ⩽ 1

2 |V (D)|.
Let X := P , Y := Vimax∪(N−(Vimax)∩I(D)), and Y ′ be a small quasi-kernel of D[Y ]

(which exists by Proposition 6.1.4 because the latter graph is a one-way split digraph).
The set X is included in I(D) and no vertex in X is the origin of an arc ending

in Vimax . Thus, X and Y are disjoint, and Lemma 6.1.5 with V := V (D) shows that
|X ∪ Y ′| ⩽ 3

4 |V (D)|.
Each of X and Y ′ is independent by definition. Moreover, there is no arc from X to

Y ′ by definition, and no arc from Y ′ to X since Y ′ ∩K(D) ⊆ Vimax . Therefore, X ∪ Y ′

is independent.
Since D[Y ] is a one-way split digraph, Y ′ has a non-empty intersection with Vimax .

Every vertex in Vi for i ∈ {1, 2, . . . , imax − 2} is the origin of an arc ending at the
vertex of Y ′ ∩ Vimax . This implies that every vertex in Vi for i ∈ {1, 2, . . . , imax − 2} is
at distance at most one of Y ′ and that every vertex in Vimax−1 ∪ Vimax is at distance at
most two of Y ′. Every vertex in I(D) \ P is the origin of an arc ending in K(D) \W .
Since every vertex in this latter set is the origin of an arc ending at the vertex of
Q′∩Vimax , every vertex in I(D)\P is at distance at most two of Y ′. Therefore, X ∪Y ′

is a quasi-kernel of D of size at most 3
4 |V (D)|.

− Subcase |P | > 1
2 |V (D)|.

Let X := I(D) \N−(Vimax ∪W ), Y := Vimax ∪W ∪ (N−(Vimax ∪W )∩ I(D)), and Y ′

be a small quasi-kernel of D[Y ] (which exists by Proposition 6.1.4 because the latter
graph is a one-way split digraph).

The set X is included in I(D) and no vertex in X is the origin of an arc ending in
Vimax ∪W . Thus, X and Y are disjoint. The sets X and P being disjoint, we have
|X| ⩽ 1

2 |V (D)|, and Lemma 6.1.5 with V := V (D) shows then that |X∪Y ′| ⩽ 3
4 |V (D)|.

Each of X and Y ′ is independent by definition. Moreover, there is no arc from X to
Y ′ by definition, and no arc from Y ′ to X since Y ′∩K(D) ⊆ Vimax−1∪Vimax . Therefore,
X ∪ Y ′ is independent.

Since D[Y ] is a one-way split digraph, Y ′ has a non-empty intersection with Vimax ∪
W . Every vertex in Vi is at distance one of every vertex in Vimax for i ∈ {1, 2, . . . , imax−
2}. Similarly, every vertex in Vimax−1 \W is at distance one of every vertex in Vimax .
Since every vertex in W is the end of an arc originating in Vimax , every vertex in K(D)
is at distance at most two of Y ′, whether Y ′ have a non-empty intersection with Vimax

or with W . The vertices in I(D) are either in X or in Y . Therefore X ∪ Y ′ is a
quasi-kernel of D of size at most 3

4 |V (D)|.

6.1.3 Split digraphs with sinks
Kostochka, Luo, and Shan [59] proposed the following conjecture, which they proved to
be equivalent to the small quasi-kernel conjecture. Recall that we denote by S(D) the set
of sinks of a digraph D.

Conjecture 1. Every digraph D admits a quasi-kernel of size at most 1
2(|V (D)|+|S(D)|−

|N−(S(D))|).

The next proposition shows that the equivalence between the small quasi-kernel con-
jecture and Conjecture 1 still holds when restricted to split digraphs: if we were able to
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prove the small quasi-kernel conjecture for all split digraphs, then Conjecture 1 would
also be satisfied for all split digraphs. Moreover, this holds for weaker versions of the
conjectures as well, where the 1/2-ratio is replaced by a larger ratio.

Proposition 6.1.7. The small quasi-kernel conjecture and Conjecture 1 are equivalent
for split digraphs, even with the ratio 1/2 being replaced by a larger one.

Proof. If Conjecture 1 is true for split digraphs, then the small quasi-kernel conjecture
is clearly true for split digraphs as well. So, we prove just the reverse implication. We
assume from now on that the small quasi-kernel conjecture is true for split digraphs, for a
fixed ratio α ⩾ 1/2. We prove by induction on the number of vertices that in every split
digraph D, there exists a quasi-kernel of size at most α(|V (D)|+ |S(D)| − |N−(S(D))|).

If there is only one vertex, the existence of the desired quasi-kernel is obvious. Now,
suppose there are at least two vertices. If the underlying undirected graph is not con-
nected, then we apply induction on every component. If the graph has no sink, then we
apply Conjecture 5.2 (version for split digraphs, and ratio α). If S(D) is a quasi-kernel
of D, then we are done because it is of size at most α (|V (D)|+ |S(D)| − |N−(S(D))|).

We are left with the case where the underlying undirected graph of D is onnected,
|V (D)| ⩾ 2, |S(D)| ⩾ 1, and S(D) is not a quasi-kernel of D, which we deal with now.
Let X0 := S(D), X1 := N−(S(D)), X2 := N−−(S(D))∩ I(D), and D′ := D[V (D) \ (X0 ∪
X1 ∪ X2)]. Since S(D) is not a quasi-kernel, D′ has at least one vertex. By induction,
D′ admits a quasi-kernel Q′ of size at most α(|V (D′)| + |S(D′)| − |N−(S(D′))|). Let
Q := Q′ ∪ S(D). The set Q is an independent set by construction. Since every vertex in
X1 ∪X2 is at distance at most two to S(D), the set Q is a quasi-kernel of D.

We finish the proof by checking the size of Q. The construction of D′ implies |S(D′)| ⩽
1 because any sink of D′ must necessarily lie in K(D). Note that if N−(S(D′)) = ∅, then
D′ is reduced to a single vertex, and since S(D) is not a quasi-kernel of D and the vertex of
D′ is not a sink of D, the set X2 is not empty. This implies that |S(D′)|− |N−(S(D′))| ⩽
|X2|. We have thus

|Q| ⩽ α
(
|V (D′)|+ |S(D′)| − |N−(S(D′))|

)
+ |S(D)|

⩽ α (|V (D)| − |X0| − |X1|) + |S(D)|
= α

(
|V (D)| − |N−(S(D))|

)
+ (1− α)|S(D)|

⩽ α
(
|V (D)|+ |S(D)| − |N−(S(D))|

)
,

as required. (The last inequality comes from 1 − α ⩽ α, which we have because α ⩾
1/2.)

In addition to Conjecture 1, we consider another version of the conjecture about small
quasi-kernels in digraphs with sinks.

Conjecture 2. Every digraph D admits a quasi-kernel of size at most 1
2(|V (D)|+|S(D)|).

The previous conjecture seems weaker than Conjecture 1. However, we prove that it
is actually also equivalent to the small quasi-kernel conjecture.

Proposition 6.1.8. Conjecture 2 and the small quasi-kernel conjecture are equivalent.

Proof. Consider a digraph D beeing a counterexample to Conjecture 2 and D′ a copy
of D where each sink is replaced by a directed cycle of length two. See Figure 6.1 for
an example. With this construction, D′ is a counterexample to the small quasi-kernel
conjecture. Indeed, suppose that D′ has a quasi-kernel Q of size k. Then, contract every
cycle of length two that arrive from sinks in the process of construction. Consider the
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D D′

Figure 6.1: Example of the construction presented in the proof of Proposition 6.1.8.

set induced leads to a quasi-kernel of D of size k. Then, since for every quasi-kernel
of D of size k we have 1

2(|V (D)| + |S(D)|) ⩽ k, so every quasi-kernel of D′ is of size
k ⩾ 1

2(|V (D)|+ |S(D)|) = 1
2(|V (D′)| − |S(D)|+ |S(D)|) = 1

2 |V (D′)|.

6.1.4 Split digraphs without a particular 3-cycle
Considering orientations of split digraphs forbidding a certain pattern, we obtain the small
quasi-kernel conjecture for this particular class, as shown by the following proposition.

Proposition 6.1.9. Let D be a sink-free split digraph. If there is no 3-cycle v1 → v2 →
v3 → v1 with v1 ∈ N−(I(D)), v2 ∈ I(D), and v3 ̸∈ N−(I(D)), then D has a quasi-kernel
of size at most 1

2 |V (D)|.

Proof. Define K1 := N−(I(D)) and K2 := K(D) \ N−(I(D)). Consider the set Q1
obtained by picking one vertex in N+(v) ∩ I(D) per vertex v in K1. Let I1 := (I(D) ∩
N−(K1)) ∪ Q1. Then Q1 forms a quasi-kernel of K1 ∪ I1 and |Q1| ⩽ 1

2(|K1| + |I1|).
Consider Q2 a quasi-kernel of K2 ∪ (I(D) \ I1) (from Proposition 6.1.4 since it forms
a one-way split) of size |Q2| ⩽ 1

2(|K2| + |I(D) \ I1|). Then Q := Q1 ∪ Q2 is of size
|Q| = |Q1|+ |Q2| ⩽ 1

2(|K(D)|+ |I(D)|).
Now, note that if there are two vertices x, y ∈ Q such that x → y, then x ∈ Q1 and

y ∈ Q2 ∩K2 (because Q1 and Q2 are independent sets, Q1 ⊂ I(D), I(D) is independent,
and K2 ̸→ I(D)). Keep removing vertices x from Q1 that have vertices in Q2 in their
outneighborhood. We eventually get an independent set Q′ of size at most 1

2(|K(D)| +
|I(D)|). This set Q′ is a quasi-kernel of D since every vertex is at distance at most two
to Q1 ∪ Q2, and thus at distance two to Q′: consider a vertex x ∈ Q1 that has been
removed because x→ y for some y ∈ Q2 ∩K2; by the condition of the forbidden 3-cycle,
the inneightborhood of x is included in the inneighborhood of y.

6.2 Complete split graphs
A complete split graph is a split such that there is an edge between every pair of vertices
in the clique-part and the independent-part.
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Lemma 6.2.1. Let D be an orientation of a complete split graph with no quasi-kernel of
size one. Let x be a vertex with the maximum number of inneighbors in the clique-part.
Denote by L the set of vertices with the same inneighborhood as x (including x). Then,

• the set L is included in the independent-part.

• every vertex v in L forms a quasi-kernel of D[(V (D) \ L) ∪ {v}].

Proof. Suppose, aiming for a contradiction, that there is a vertex v in K(D) with the
maximum number of inneighbors in K(D). Then {v} is a quasi-kernel because every
vertex in N+(v) has an outneighbor in N−(v), by the maximality of v; a contradiction
with D having no quasi-kernel of size one. This proves the first item.

Consider a vertex v in L and a vertex u not in L. Suppose first that u is in K(D). We
have just seen that u has fewer inneighbors in K(D) than v. Thus, u has an outneighbor
in N−(v)∪{v}. Suppose now that u is in I(D). Since u is not in L, it has an outneighbor
in N−(v). In any case, there is a path of length at most two from u to v. This proves the
second item.

Theorem 6.2.2. Let D be an orientation of a complete split graph. If D has a sink, then
there is a unique minimum-size quasi-kernel, which is formed by all sinks. If D has no
sink, then it has a quasi-kernel of size at most two.

Proof. Observe that in an orientation of a complete split graph, if a vertex is a sink, then
there is a path of length two from every other non-sink vertex to this sink. Thus, if D
has at least one sink, then there is a unique inclusion-wise minimal quasi-kernel, which is
formed by all sinks. Assume from now on that D has no sink and no quasi-kernel of size
one. We are going to show that D has a quasi-kernel of size two.

Let x be a vertex maximizing |N−(x) ∩ K(D)|. We know from Lemma 6.2.1 that
x is in I(D). Suppose now, aiming for a contradiction, that every vertex v in I(D) is
such that N+(x) ⊆ N+(v). Choose any vertex y in N+(x). The singleton {y} is no
quasi-kernel of D[K(D)], since otherwise it would be a quasi-kernel of D of size one. A
well-known consequence of the proof of Chvátal and Lovász is that in a digraph every
vertex is in a quasi-kernel or has an outneighbor in a quasi-kernel. Thus, there exists
a vertex z in N+(y) ∩ K(D) that forms a quasi-kernel of D[K(D)]. The singleton {z}
is then a quasi-kernel of D as well since every vertex of I(D) has y as outneighbor; a
contradiction.

Hence, there is a vertex t in I(D) with N+(x)∩N−(t) ̸= ∅. We claim that {x, t} is a
quasi-kernel of D. It is an independent set. Let L be the set of vertices having the same
inneighborhood as x. Consider a vertex v in V (D) \ {x, t}.

If v is in L, then by definition of t there is a directed path of length two from v to t.
If v is in V (D) \ L, Lemma 6.2.1 ensures that there is a directed path of length at most
two from v to x.

6.3 Complete bipartite graphs
We focus now on a class of graph which is not included in the class of split digraphs, the
class of complete bipartite digraphs. A complete bipartite digraph is an orientation of a
complete bipartite graph.

Proposition 6.3.1. Let D be a complete bipartite digraph with no sink and denote by V1
and V2 its two parts. Then there exists a quasi-kernel of size at most max

(
⌈log2(|V1|)⌉,

⌈log2(|V2|)⌉
)

+ 1.
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Proof. We prove by induction on |V1| and |V2| that D has a quasi-kernel of size at most
⌈log(|V1|)⌉+ 1 included in V2 or a quasi-kernel of size at most ⌈log(|V2|)⌉+ 1 included in
V1.

Let k = |V1| and ℓ = |V2|. If k = 2 and ℓ = 2, then the proposition is true. Consider
now D with k, ℓ ⩾ 3.

The digraph D has a vertex on a side whose inneighborhood is at least half of the
size of the opposite side. Without loss of generality, D has a vertex v in V2 with at least
k/2 inneighbors. Consider D − (v ∪ N−(v)). If it has sinks, then the set formed by v
and any sink of D − (v ∪ N−(v)) is a quasi-kernel of D of size two. If it has no sink,
by induction, D − (v ∪ N−(v)) has (first case) a quasi-kernel included in |V1| of size at
most ⌈log2(ℓ − 1)⌉ + 1 or (second case) a quasi-kernel included in |V2| of size at most
⌈log2(k/2)⌉+ 1 = ⌈log2(k)⌉.

In the first case: this quasi-kernel is included in N+(v) by hypothesis so it is a quasi-
kernel of D and it size is at most ⌈log2(ℓ)⌉ + 1. In the second case: we add v to the
quasi-kernel and it forms a quasi-kernel of D of size at most ⌈log2(k)⌉+ 1.
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Chapter 7

Complexity

Sections 7.1, 7.2, and 7.3 form a paper that has been published at the conference WG
2022 [60]. Section 7.5 results from a collaboration with Julien Baste and Antoine Castil-
lon.

In this chapter, we focus on the size of quasi-kernels in digraphs with an algorithmic
point of view. Indeed, contrary to kernels, the existence of quasi-kernels is systematic.
The question about the size of quasi-kernels is then very natural. The small quasi-kernel
conjecture leads to other natural questions such as the complexity of finding a small-
est quasi-kernel or of finding two disjoint quasi-kernels. We prove that the problem is
computationally hard even for small classes of graphs. Finally we provide polynomial
algorithms to find a smallest quasi-kernel and disjoint quasi-kernels in orientations of
bounded treewidth.

7.1 Disjoint quasi-kernels
In 2011 Gutin et al. [47] conjectured that every sink-free digraph has two disjoint quasi-
kernels. This conjecture implies the small quasi-kernel conjecture, since if a digraph has
two disjoint quasi-kernels, at least one has less than half of the vertices of the digraph.
In 2004, the same authors constructed a counterexample to this stronger conjecture with
14 vertices [48] depicted in Figure 7.1. As the following theorem proves, not only sink-
free digraphs occasionally fail to contain two disjoint quasi-kernels, but it is actually
computationally hard to distinguish those that do from those that do not.
Theorem 7.1.1. Deciding if a digraph has two disjoint quasi-kernels is NP-complete,
even for digraphs with maximum outdegree six.

Figure 7.1: A split digraph having no two disjoint quasi-kernels.
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Figure 7.2: Proof of Theorem 7.1.1: Connecting the gadgets for clause c = xi ∨ xj ∨ ¬xk.
Red (resp. Blue) vertices denote vertices in Q1 (resp. Q2). Shown here is the case φ(xi) =
true, φ(xj) = false and φ(xk) = false (i.e., ti ∈ Q2, fj ∈ Q2 and fk ∈ Q2). Note that
fj /∈ Q2 and tj /∈ Q2 implies φ(xj) = false.

Proof. Given a Boolean expression F in conjunctive normal form (CNF) where each clause
is the disjunction of at most three distinct literals, 3-SAT asks to decide whether F is
satisfiable. We reduce from 3-SAT, which is known to be NP-complete [55].

Consider an instance of 3-SAT. Let X = {x1, x2, . . . , xn} be its variables, and let
F = C1 ∨ C2 ∨ · · · ∨ Cm be its CNF-formula. We construct a digraph D as follows.

• We start with the gadget D0 shown on the top part of Figure 7.2 which contains
the specified vertex b′.

• For every Boolean variable xi ∈ X we introduce the gadget Di shown in the middle
part of Figure 7.2 which contains two specified vertices fi and ti. Furthermore, we
connect Di to D0 with two arcs (fi, b′) and (ti, b′).

• For every clause C = ℓi ∨ ℓj ∨ ℓk of F we introduce the gadget DC shown in the
bottom part of Figure 7.2 which contains one specified vertex kC,1. Furthermore,
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we connect DC to the gadgets Di, Dj, Dk with three arcs (kC,1, λi), (kC,1, λj) and
(kC,1, λk), where λi = ti (resp. λj = tj and λk = tk) if ℓi (resp. ℓj and ℓk) is a
positive literal, and λi = fi (resp. λj = fj & λk = fk) if ℓi (resp. ℓj and ℓk) is a
negative literal.

Note that for every clause C of F , the digraph DC is the counterexample constructed
by Gutin et al. [48]. It has the important property that any two distinct vertices of
{kC,i : 1 ⩽ i ⩽ 7} have a common outneighbor in {kC,i : 1 ⩽ i ⩽ 7}.

It is clear that |V (D)| = 14m + 6n + 6 and |A(D)| = 31m + 11n + 9. Moreover, D
has maximum outdegree six (but it has unbounded indegree; see vertex b′). We claim
that the Boolean formula F is satisfiable if and only if the digraph D has two disjoint
quasi-kernels.

Suppose that the Boolean formula F is satisfiable and consider any satisfying assign-
ment φ. Construct two subsets Q1, Q2 ⊆ V as follows.

• The elements of Q1 are the following vertices: the vertices b and b′ from D0, the
vertex A′

i from Di for every variable xi ∈ X, and the vertices kC,6, sC,1, sC,3 and
sC,7 from DC for every clause C of F .

• The elements of Q2 are the following vertices: the vertices c and c′ from D0, the
vertices A′′

i and ti from Di for every variable xi ∈ X with φ(xi) = true, or the
vertices A′′

i and fi from Di with φ(xi) = false and the vertices kC,7, sC,2 and sC,4
from DC for every clause C of F .

It is a simple matter to check that Q1 and Q2 are disjoint and that both Q1 and Q2
are independent subsets. Furthermore, we claim that Q1 and Q2 are two quasi-kernels
of D. The claim is clear for Q1. As for Q2, it is enough to show that, for every clause
C, the vertex sC,1 is at distance at most two of some vertex in Q2. Indeed, let C =
ℓi ∨ ℓj ∨ ℓk be a clause where ℓi, ℓj and ℓk are positive or negative literals. Since φ is a
satisfying assignment, there exists one literal, say ℓi, that evaluates to true in the clause
C. Therefore, if φ(xi) = true then ti ∈ Q2 and (kC,1, ti) ∈ A, and if φ(xi) = false then
fi ∈ Q2 and (kC,1, fi) ∈ A.

Conversely, suppose that there exist two disjoint quasi-kernels Q1 and Q2 in D. We
first observe that Q1∩{a, b, c} ≠ ∅ and Q2∩{a, b, c} ≠ ∅. Then it follows that a′ /∈ Q1∪Q2
(by independence), and hence b′ ∈ Q1 ∪Q2. Without loss of generality, suppose b′ ∈ Q1.
Define an assignment φ for the Boolean formula F as follows: for 1 ⩽ i ⩽ n, if ti ∈ Q2
then set φ(xi) = true; otherwise set φ(xi) = false. Let us show that φ is a satisfying
assignment.

By independence, we have ti /∈ Q1 and fi /∈ Q1 for 1 ⩽ i ⩽ n.
We need the following claim.

Claim 7.1.2. We have {kC,1, kC,2, kC,3, kC,5} ∩ (Q1 ∪Q2) = ∅ for every clause C of F .

Proof. We only prove kC,1 /∈ Q1∪Q2 (the proof is similar for kC,2 /∈ Q1∪Q2, kC,3 /∈ Q1∪Q2
and kC,5 /∈ Q1∪Q2.) Suppose, aiming at a contradiction, that kC,1 ∈ Q1∪Q2. Without loss
of generality we may assume kC,1 ∈ Q1 (the argument is symmetric if kC,1 ∈ Q2). Then
it follows that {sC,2, sC,3, sC,5} ⊆ Q1, and hence {sC,2, sC,3, sC,5} ∩ Q2 = ∅. But, for any
vertex kC,i, 2 ⩽ i ⩽ 7, we can easily check that either d(sC,2, kC,i) > 2, or d(sC,3, kC,i) > 2,
or d(sC,5, kC,i) > 2. Hence Q2 is not a quasi-kernel of D. This is the sought contradiction.

Claim 7.1.3. We have sC,1 ∈ Q1 for every clause C of F .
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Figure 7.3: Example of the construction presented in the proof of Theorem 7.1.4.

Proof. Suppose, aiming at a contradiction, that sC,1 /∈ Q1. Combining Claim 7.1.2 with
ti /∈ Q1 and fi /∈ Q1 for 1 ⩽ i ⩽ n, we conclude that no vertex in Q1 is at distance at
most two from sC,1. Therefore, Q1 is not a quasi-kernel of D. This is a contradiction.

Let C = ℓi ∨ ℓj ∨ ℓk be a clause. According to Claim 7.1.3, we have sC,1 ∈ Q1.
Furthermore, according to Claim 7.1.2, {kC,1, kC,2, kC,3, kC,5} ∩ Q2 = ∅. Then it follows
that {λi, λj, λk} ∩ Q2 ̸= ∅ where λi = ti (resp. λj = tj and λk = tk) if ℓi (resp. ℓj and
ℓk) is a positive literal, and λi = fi (resp. λj = fj and λk = fk) if ℓi (resp. ℓj and ℓk) is a
negative literal. Therefore φ is a satisfying assignment.

Even though is it known that the small quasi-kernel conjecture is true for planar
sink-free digraphs [59], no sink-free planar digraph without two disjoint quasi-kernels is
known so far (the counterexample constructed by Gutin et al. [48] does contain a directed
K7). Whether such a planar graph exists is not known, we show that deciding whether a
sink-free bounded degree planar digraph has three disjoint quasi-kernels is NP-complete.

Theorem 7.1.4. Deciding if a digraph has three disjoint quasi-kernels is NP-complete,
even for planar digraphs with maximum degree four.

Proof. Given a planar graph with maximum degree four, 3-Coloring asks to decide
whether there exists a proper vertex coloring of G with three colors (i.e., a labeling of the
vertices with three colors such that no two distinct vertices incident to a common edge
have the same color). We reduce 3-Coloring which is known to be NP-complete for
planar graphs with maximum degree four [31].

Let G be a planar graph with n vertices, m edges and maximum degree four. We
denote by v1, v2, . . . , vn the vertices of G. Without loss of generality, we assume that G
has no isolated vertex. We construct a digraph D as follows. For every 1 ⩽ i ⩽ n, we
introduce Ci an oriented cycle of length three which contains a specified vertex wi. For
every edge vivj ∈ E(G), we connect the two gadgets Ci and Cj with two arcs (wi, wj) and
(wj, wi) to D. More formally, we have

V (D) ={wi : 1 ⩽ i ⩽ n} ∪ {zi,j : 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ 2} ,

A(D) ={(wi, wj), (wj, wi) : vivj ∈ E(G)} ∪ {(wi, zi,1), (zi,1, zi,2), (zi,2, wi) : 1 ⩽ i ⩽ n} .

It is clear that |V ′| = 3n, |A| = 2m+3n and that the digraph D is planar. Moreover, D
has maximum indegree five and maximum outdegree five. See Figure 7.3 for an example.
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We claim that G has a proper 3-coloring if and only if D has three distinct quasi-
kernels.

Suppose first that G has a proper 3-coloring. Let C = {c1, c2, c3} be the three colors.
Consider the 3-coloring of D defined as follows: if vi is colored with color c1 (resp. c2
& c3) in G, then color wi with color c1 (resp. c2 & c3), zi,1 with color c2 (resp. c3 & c1),
and zi,2 with color c3 (resp. c1 & c2) in D. It is clear that the 3-coloring of D is proper.
Moreover, for each color c and every vertex v there exists a directed path of length at
most two from v to a vertex colored with color c. Then it follows that the 3-coloring of
D induces three disjoint quasi-kernels in D. (Note that these three disjoint quasi-kernels
actually form a partition of the vertices of D.)

Conversely, suppose that the digraph D has three disjoint quasi-kernels Q1, Q2, and
Q3. We have wi ∈ Q1 ∪ Q2 ∪ Q3 for every 1 ⩽ i ⩽ n. Indeed, {zi,1} ∪ N+(zi,1) ∪
N+(N+(zi,1)) = {zi,1, zi,2, wi}. Thus a quasi-kernel necessarily contains one vertex in
{zi,1, zi,2, wi}, which implies that one of the three disjoint quasi-kernels contains wi. Fur-
thermore, each subset Q1, Q2, and Q3 is independent because it is a quasi-kernel. There-
fore, the three quasi-kernels Q1, Q2, and Q3 induce a proper 3-coloring of G.

7.2 Acyclic digraphs
In this section, we address the complexity status of Quasi-Kernel for acyclic orien-
tations of various classes of graphs. The next two theorems show that there is not so
much room for extending the positive result about orientations of graphs with bounded
treewidth that will be shown in Section 7.5.

We recall that a cubic graph is a graph in which every vertex has degree three.
Theorem 7.2.1. Quasi-Kernel is NP-complete, even for acyclic orientations of cubic
graphs.
Proof. Given a Boolean expression F in conjunctive normal form where each clause is
the disjunction of three distinct literals and each literal occurs exactly twice among the
clauses, (3,B2)-SAT asks to decide whether F is satisfiable. We reduce (3,B2)-SAT
which is known to be NP-complete [11].

Consider an instance of (3,B2)-SAT. Denote by x1, x2, . . . , xn its variables, and let
F = C1 ∨ C2 ∨ · · · ∨ Cm be its formula. For every Boolean variable xi occurring in F
we introduce a copy Dxi

of the gadget shown in Figure 7.4a which contains two specified
vertices xi and ¬xi. For every clause Cj of F we introduce a copy DCj

of the gadget shown
in Figure 7.4b which contains three specified vertices Cj,1, Cj,2, and Cj,3. Furthermore,
for every clause Cj of F and every 1 ⩽ k ⩽ 3, we introduce a copy DCj,k

of the gadget
shown in Figure 7.4c which contains one specified vertex C ′′

j,k.
If the literal xi (resp. ¬xi) occurs in clause Cj as the k-th literal (k = 1, 2, 3), we

add the directed path {(Cj,k, C ′
j,k), (C ′

j,k, xi)} (resp. {(Cj,k, C ′
j,k), (C ′

j,k,¬xi)} and the arc
(C ′′

j,k, C ′
j,k) as shown in Figure 7.5. Let D denote the resulting digraph. We observe that D

is an orientation of a cubic graph (since every literal occurs twice) with 14n+21m+18m =
14n + 39m vertices.

We claim that F is satisfiable if and only if the digraph D has a quasi-kernel of size
8m + 4n.

Suppose first that F is satisfiable and consider a satisfying assignment φ. Construct
a subset Q of vertices of D as follows.

• For 1 ⩽ j ⩽ m, if the clause Cj is satisfied by its first (resp. second and third)
literal, add the vertices Cj,2 and Cj,3 (resp. Cj,1 and Cj,3, and Cj,1 and Cj,2) to Q.
In case the clause Cj is satisfied by more than one literal, we choose one satisfying
literal arbitrarily. Furthermore, add the three vertices tj, t′

j, and t′′
j to Q.
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Dxi

¬xixi

di,2 di,3

di,1

di,4

(a) Gadget Dxi for
Boolean variable xi.

DCj

Cj,2Cj,1

Cj,3
tj

t′
j

t′′
j

(b) Gadget DCj for clause Cj .

DCj,k

si,k

C ′′
i,k

(c) Gadget DCj,k
for the k-th literal of clause

Cj .

Figure 7.4: The gadgets in the proof of Theorem 7.2.1.

• For 1 ⩽ i ⩽ n, if φ(xi) = true (resp. φ(xi) = false) add the vertices xi and di,3
(resp. ¬xi and di,2) to Q. Furthermore, add the two vertices di,1 and di,4 to Q.

• For 1 ⩽ j ⩽ m and 1 ⩽ k ⩽ 3, add sj,k to Q.

We check at once that |Q| = 8m + 4n. It is now a simple matter to check that Q is a
quasi-kernel of D.

Conversely, let Q be a quasi-kernel of D of size 8m + 4n. We first observe that Q
contains at least five vertices of each gadget DCj

and one vertex from each gadget DCj,k
.

We also observe that Q contains at least four vertices of each gadget Dxi
. Then it follows

that Q contains exactly five vertices of each gadget DCj
, and exactly 4 vertices of each

gadget Dxi
. Note that we have actually shown that no mid-vertex of a path of length two

connecting some gadget DCj
to some gadget Dxi

is in Q. Furthermore, while we have a
fair degree of flexibility in the way the vertices are selected, all sinks have to be in Q (by
definition). In particular, for each j, the three sinks tj, t′

j, and t′′
j are in Q, and for each i,

the two sinks di,1 and dj,4 are in Q as well. We now turn to defining a truth assignment φ
for the variable of F . As Q contains exactly four vertices in every gadget Dxi

, we are left
to consider the three possibilities depicted in Figure 7.6, where the red vertices denote
the vertices in Q. The truth assignment φ is defined as follows: φ(xi) = false if and
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DCj

Cj,2Cj,1

Cj,3

Dxi1

¬xi1xi1

Dxi2

¬xi2xi2

Dxi3

¬xi3xi3

Figure 7.5: Proof of Theorem 7.2.1: connecting gadget DCj
to gadgets Dxi1

, Dxi2
and

Dxi3
for clause Cj = xi1 ∨ ¬xi2 ∨ ¬xi3 . Shown here is the assignment φ(xi1) = true,

φ(xi2) = true and φ(xi3) = false, and the clause Cj is satisfied by its first literal.

Dxi

¬xixi

Dxi

¬xixi

Dxi

¬xixi

Figure 7.6: Proof of Theorem 7.2.1: truth selection.

only if ¬xi ∈ Q. We claim that φ is a satisfying assignment. Indeed, consider any clause
Cj. Combining the observation that tj, t′

j, and t′′
j are in Q together with the fact that Q

contains exactly five vertices of the gadget DCj
, we conclude that one of Ci,1, Cj,2, and

Cj,3 is not in Q, and that there exists a directed path of length two from this vertex to
some vertex xi or ¬xi in Q. (Note that φ(xi) = true if and only if xi ∈ Q yields another
satisfying assignment for the proposed construction.)

Assuming FPT ̸= W[2], our next result shows that one cannot confine the seemingly
inevitable combinatorial explosion of computational difficulty to an additive function of
the size of the quasi-kernel, even for restricted digraph classes.
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Theorem 7.2.2. Quasi-Kernel is W[2]-complete when the parameter is the size of the
sought quasi-kernel, even for acyclic orientations of bipartite graphs.

Proof. Membership to W[2] is easy.
Given F a family of sets over a universe U and a positive integer k, Set Cover

consists in deciding if there exists a subfamily F ′ ⊆ F of size at most k such that F ′

covers U . We prove hardness by reducing from Set Cover which is known to be W[2]-
complete [35].

Let F = {F1, F2, . . . , Fm} be a family of sets over some universe U = {u1, u2, . . . , un}
and k be a positive integer. Without loss of generality, we may assume U = ⋃

1⩽j⩽m Fj.
We show how to produce a digraph D such that F has a set cover of size at most k if
and only if D has a quasi-kernel of size at most k′ = k + 1. The digraph D is defined as
follows:

V (D) = F ∪ U ∪ {s, t} ,

A(D) = {(ui, Fj) : Fj ∈ F and ui ∈ Fj} ∪ {(Fj, s) : Fj ∈ F} ∪ {(s, t)} .

It is clear that |V (D)| = m + n + 2 and that |A(D)| = m + 1 + ∑
1⩽j⩽m |Fj|.

Suppose that there exists a subfamily F ′ ⊆ F of size at most k such that F ′ covers
U . It is clear that F ′ ∪ {t} is a quasi-kernel of D of size k′ = k + 1.

Conversely, suppose that there exists a quasi-kernel of D of size at most k′ = k + 1.
Observe that t ∈ Q since t is a sink, and s /∈ Q (by independence). Among these quasi-
kernels, choose one Q that minimizes |Q ∩ U |. We show that Q ∩ U = ∅. Indeed,
suppose, aiming at a contradiction, that Q∩U ̸= ∅ and let ui ∈ Q∩U . Furthermore, let
Fj ∈ N+(ui) and U ′ = N−(Fj). Since s /∈ Q we have Q′ = (Q \ U ′)∪{Fj} is a quasi-kernel
of D of size at most k′ with |Q′ ∩ U | < |Q ∩ U |. This contradicts our assumption, and
hence Q ∩ U = ∅. Then it follows N+(ui) ∩ Q ̸= ∅ for every ui ∈ U , and hence Q ∩ F
yields a set cover of size k′ − 1 = k.

We finish the section with a series of propositions providing complementary evidence
for the versatile hardness of computing small quasi-kernels.

Recall that a kernel is a quasi-kernel. Actually we have more: a kernel is an inclusion-
wise maximal quasi-kernel. Inclusion-wise minimal quasi-kernels are easy to find with a
greedy algorithm. Though, finding a minimum-size quasi-kernel included in a kernel is
hard as shown by the following result, whose proof is identical to the one of Theorem 7.2.2
(F ∪ {t} is actually a kernel of the digraph D).

Proposition 7.2.3. Let D be an acyclic orientation of a bipartite graph, K ⊆ V (D) be
a kernel of D and k be a positive integer. Deciding whether there exists a quasi-kernel
included in K of size k is W[2]-complete for parameter k.

Dinur and Steuer [34] have shown that Set Cover cannot be approximated in poly-
nomial time within a factor of (1 − ε) ln(|U |) for some constant ε > 0 unless P = NP.
Moreover, they built an instance of Set Cover where the number of subsets is a polyno-
mial of the universe size. Therefore, the construction used in the proof of Theorem 7.2.2
allows us to state the following inapproximability result.

Proposition 7.2.4. Quasi-Kernel cannot be approximated in polynomial time within
a factor of (1 − ε) ln(|V (D)|) for some constant ε > 0 unless P = NP, even for acyclic
orientations of bipartite graphs.

Our last result focuses on another restricted classes of digraphs, namely acyclic di-
graphs with bounded indegrees. We actually do not know if the problem is in APX for
digraphs with unbounded indegrees. We need a preliminary lemma which we state for
general digraphs.
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Lemma 7.2.5. Quasi-Kernel belongs to APX for digraphs with fixed maximum inde-
grees.

Proof. Let D be a digraph and Q ⊆ V (D) be a quasi-kernel. It is clear that (d2 +
d + 1)|Q| ⩾ |V (D)|, where d is the maximum indegree of D. Then it follows that any
polynomial-time algorithm that computes a quasi-kernel (such as the natural algorithm
from the proof Chvátal and Lovász, see Section 5.1) is a (d2 + d + 1)-approximation
algorithm.

Proposition 7.2.6. Quasi-Kernel is APX-complete for acyclic digraphs with maximum
indegree three and maximum outdegree two.

Proof. Membership in APX for acyclic digraphs with fixed indegrees follows from Lemma 7.2.5.
Specifically, Quasi-Kernel for acyclic digraphs with maximum indegree three can be
approximated in polynomial time within a factor of 13.

To prove hardness, we L-reduce from Vertex Cover in cubic graphs which is known
to be APX-complete [4]. As defined in [66], letting P and P ′ be two optimization prob-
lems, we say that P L-reduces to P ′ if there are two polynomial-time algorihtms f, g,
and constants α, β > 0 such that for each instance I of P : algorithm f produces an
instance I ′ = f(I) of P , such that the optima of I and I ′, OPT (I) and OPT (I ′), respec-
tively, satisfy OPT (I ′) ⩽ αOPT (I) and given any solution of I ′ with cost c′, algorithm
g produces a solution of I with cost c such that |c− OPT (I)| ⩽ β|c′ − OPT (I ′)|. Let f
be the following L-reduction from Vertex Cover in cubic graphs to Quasi-Kernel
with maximum indegree three. Given a cubic graph G with V (G) = [n] and m edges, we
construct a digraph D as follows:

V (D) = {wi, w′
i, w′′

i : 1 ⩽ i ⩽ n} ∪ {ze, z′
e : e ∈ E(G)} ,

A(D) = {(wi, w′
i), (w′

i, w′′
i ) : 1 ⩽ i ⩽ n} ∪ {(z′

e, ze), (ze, wi), (ze, wj) : e = ij ∈ E(G)} .

Note that the vertices w′′
i are sinks in D. It is clear that |V ′| = 3n + 2m, |A| = 2n + 3m

and, since G is a cubic graph, that every vertex has maximum indegree three in D. We
also observe that the maximum outdegree is two in D. See Figure 7.7 for an example.

Consider a quasi-kernel Q ⊆ V (D) of D = f(G). We claim that it can be transformed
in polynomial time into a vertex cover C ⊆ V (G) of G such that |C| ⩽ |Q|. To see this,
observe first that Q can be transformed in polynomial time into a quasi-kernel Q′ ⊆ V (D)
such that (i) |Q′| ⩽ |Q| and (ii) z′

e /∈ Q′ and ze /∈ Q′ for every e ∈ E(G). Indeed, repeated
applications of the following two procedures enable us to achieve the claimed quasi-kernel.

• Suppose that there exists z′
e ∈ Q for some e = ij ∈ E(G). Then it follows that

ze /∈ Q (by independence). Furthermore, we have w′′
i ∈ Q and w′′

j ∈ Q, and hence
w′

i /∈ Q and w′
j /∈ Q. Therefore, wi ∈ Q or wj ∈ Q (possibly both). On account of

the above remarks, Q′ = Q \ {z′
e} is a quasi-kernel of D and |Q′| < |Q|.

• Let Zi ⊆ Q stand for the set of vertices ze ∈ Q, where e is an edge incident to the
vertex i in G. Suppose that there exists some set Zi ̸= ∅. Then it follows that
wi /∈ Q (by independence). Furthermore, we have w′′

i ∈ Q, and hence w′
i /∈ Q.

On account of the above remarks, Q′ = (Q \ Zi) ∪ {wi} is a quasi-kernel of D and
|Q′| ⩽ |Q|.

From such a Q′, construct then a vertex cover C ⊆ V (G) of G as follows: for 1 ⩽ i ⩽ n,
add the vertex i to C if wi ∈ Q′. By construction, C is a vertex cover of G of size
|C| = |Q′| − |V (G)|

Finally, it is easy to see that from a vertex cover C ∈ V (G) of G we can construct a
quasi-kernel Q ⊆ V (D) of D = f(G) of size exactly |C| + |V (G)|: for every 1 ⩽ i ⩽ n,
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Figure 7.7: Example of the construction presented in the proof of Proposition 7.2.6.

add w′′
i to Q and add wi to Q if i ∈ C. Since G is a cubic graph, we have |C| ⩾ |V (G)|/4,

and hence |Q| = |C|+ |V (G)| ⩽ |C|+ 4|C| = 5|C|.
Thus opt(f(G)) ⩽ 5 opt(G) and we have shown that f is an L-reduction with param-

eters α = 5 and β = 1.

7.3 Orientations of split graphs
In this section, we focus on orientations of split graphs. A split is a whose vertices can be
partitioned into a clique and an independent set. This class seems to play an important
role in the study of small quasi-kernels since the only examples of oriented graphs having
no two disjoint quasi-kernels contain the orientation of a split graph constructed by Gutin
et al. [48].

We first show that one cannot confine the seemingly inevitable combinatorial explosion
of computational hardness to the size of the sought quasi-kernel.

Proposition 7.3.1. Quasi-Kernel is W[2]-complete when the parameter is the size of
the sought quasi-kernel even for orientations of split graphs.

Proof. Membership in W[2] is clear. Given a digraph D and an integer q, Directed
Dominating Set is the problem of deciding if there exists a dominating set of size q,
i.e., a subset L ⊆ V (D) of size q such that every vertex v ∈ V (D) is either in L or has an
outneighbor in L. Directed Dominating Set is W[2]-complete for parameter q [?].
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We reduce Directed Dominating Set to Quasi-Kernel. Let D be a digraph
and q be a positive integer. Let n := |V (D)|, m := |A(D)|, and b := 2q + 3. Consider
moreover an arbitrary total order ≼ on A(D). Define the following split digraph D′:

V (D′) := {s} ∪ S1 ∪ S2 ∪K1 ∪K2

A(D′) := As ∪ AS1 ∪ AS2 ∪ AK1 ∪ AK2

where

S1 =
{
s1

v : v ∈ V (D)
}

S2 =
{
s2

i : 1 ⩽ i ⩽ b
}

K1 =
{
k1

a : a ∈ A(D)
}

K2 =
{
k2

i : 1 ⩽ i ⩽ b
}

and

As =
{(

s, k1
a

)
: a ∈ A(D)

}
∪

{(
k2

i , s
)

: 1 ⩽ i ⩽ b
}

AS1 =
{(

s1
v, k1

(v,v′)

)
: (v, v′) ∈ A(D)

}
∪

{(
k1

(v,v′), s1
v′

)
: (v, v′) ∈ A(D)

}
AS2 =

{(
s2

i , k2
i

)
: 1 ⩽ i ⩽ b

}
AK1 =

{(
k1

a, k1
a′

)
: a, a′ ∈ A(D), a ≺ a′

}
∪

{
(k1

a, k2
ℓ ) : a ∈ A(D), 1 ⩽ ℓ ⩽ b

}
AK2 =

{
(k2

i , k2
j ) : 1 ⩽ i < j ⩽ b, i = j mod 2

}
∪

{
(k2

j , k2
i ) : 1 ⩽ i < j ⩽ b, i ̸= j mod 2

}
.

Clearly, D′ is an orientation of a split graph (i.e., {s}∪S1 ∪S2 is an independent set and
K1∪K2 induces a tournament), |V (D′)| = n+m+2b+1, and |A(D′)| =

(
m+b

2

)
+3m+2b.

We claim that there exists a dominating set of size at most q in D if and only if D′

has a quasi-kernel of size at most q + 1.
Suppose first that there exists a dominating set L ⊆ V (D) of size at most q in D.

Define Q = {s}∪{s1
v : v ∈ L}. We note that Q ⊆ {s}∪S1, and hence Q is an independent

set. Furthermore, by construction, the vertex s is at distance at most two from every
vertex in S2 ∪ K1 ∪ K2. Since L is a dominating set, it is now clear that Q is a quasi-
kernel of D′ of size at most q + 1.

Conversely, suppose that there exists a quasi-kernel Q ⊆ V (D′) of size at most q + 1
in D′. By independence of Q, we have |Q ∩ (K1 ∪K2)| ⩽ 1. We first claim that s ∈ Q.
Indeed, suppose, aiming at a contradiction, that s /∈ Q. Let X = S2\Q. By construction,
N+(X) = {k2

i ∈ K2 : s2
i ∈ X}. On the one hand, we have |X| > |S2|− |Q| ⩾ b− (q + 1) =

q + 2 (note that S2 cannot contain the whole set Q), and hence |N+(X)| > q + 2. On the
other hand, |X| being positive, there exists k2

j ∈ K2∩Q such that N+(X) ⊆ N−[k2
j ]∩K2.

But, according to the definition of AK2 , we have |N−[k2
j ] ∩ K2| ⩽ ⌈b/2⌉ ⩽ q + 2 for all

k2
i ∈ K2 and in particular for k2

j . This is a contradiction and hence s ∈ Q. We now observe
that k1

a ∈ N+(s) for every k1
a ∈ K1 and s ∈ N+(k2

i ) for every k2
i ∈ K2. Combining this

observation with s ∈ Q and the independence of Q, we obtain Q ∩ (K1 ∪K2) = ∅. We
have thus |S1 ∩Q| ⩽ q. We now turn to S1. It is clear that s is at distance three from
every vertex s1

v ∈ S1. Therefore, by definition of quasi-kernels, for every vertex s1
v ∈ S1\Q,

there exists one vertex s1
v′ ∈ S1∩Q such that (s1

v, k1
(v,v′)) ∈ A(D′) and (k1

(v,v′), s1
v′) ∈ A(D′).

Note that, by construction, (s1
v, k1

(v,v′)) and (k1
(v,v′), s1

v′) are two arcs of D′ if and only (v, v′)
is an arc of D. Then it follows that L = {v : s1

v ∈ Q} is a dominating set in D of size at
most q.
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Proposition 7.3.2. Quasi-Kernel for orientations of split graphs is FPT for parameter
|K(D)| or parameter k + |I(D)|, where k is the size of the sought quasi-kernel.

Proof. Let D be an orientation of a split graph, and write n = |K(D) ∪ I(D)|. Let
M be the adjacency matrix of D. It is clear that, after having computed M2, one can
decide in linear time if any given subset Q ⊆ K(D) ∪ I(D) is a quasi-kernel of D. This
preprocessing step is O(n3) time (a better running time can be achieved by fast matrix
multiplication but is not relevant here). Furthermore, by independence of quasi-kernels,
we have |Q ∩K(D)| ⩽ 1 for every quasi-kernel Q of D. This straightforward observation
is the first step of the two algorithms.

Algorithm for parameter |K(D)|. Select (including none) a vertex of K(D). Define
the equivalence relation ∼ on I as follows: s ∼ s′ if and only if N−(s) = N−(s′) and
N+(s) = N+(s′). The key point is to observe that in any minimum cardinality quasi-
kernel Q of D, for every equivalence class I ′ ∈ I(D)/ ∼, either I ′ ∩Q = ∅, I ′ ⊆ Q or any
vertex of I ′ is in Q. For any combination, check if the selected vertices of I(D) together
with the selected vertex of K(D) (if any) is a quasi-kernel of D of size k. The size of
I(D)/ ∼ is bounded by 4|K(D)| since each equivalence class is determined by its out and
inneighborhood. The algorithm is O(n3 + k |K(D)| 3|I(D)/∼|) = O(n3 + k |K(D)| 3(4|K(D)|))
time.

Algorithm for parameter k + |I(D)|. Select (including none) a vertex of K(D). For
every subset I ′ ⊆ I(D) of size k − 1 (or k, if no vertex of K is selected), check if I ′

together with the selected vertex of K(D) is a quasi-kernel of D. The algorithm is
O(n3 + k |K(D)|

(
|I(D)|

k

)
) time.

7.4 Orientations of 4-partite complete graphs

In the section we provide a last hardness result about Quasi-Kernel. An immediate
corollary of Theorem 6.3.1 is the existence of an algorithm to find a quasi-kernel of min-
imum size in any orientation of a complete bipartite graph. The next theorem ensures
that the problem becomes hard for 4-partite graphs. The question about 3-partite graphs
is still open.

Theorem 7.4.1. Quasi-Kernel is W[2]-complete, even of orientations of complete 4-
partite graphs.

Proof. Given S a family of sets over a universe X and a positive integer k, Hitting Set
consists in deciding if there exists a subfamily X ′ ⊆ X of size at most k such that every
set in S intersects X ′. We prove hardness of Quasi-Kernel for orientations of complete
4-partite graphs by reducing from Hitting set which is known to be W[2]-complete [35].

Let S = {S1, S2, . . . , Sm} be a family of sets over some universe X = {x1, x2, . . . , xn}
and k be a positive integer. Without loss of generality, we may assume X = ⋃

1⩽j⩽m Sj

and ⋂
1⩽j⩽m Sj = ∅. We show how to produce a digraph D such that S has a hitting set

of size at most k if and only if D has a quasi-kernel of size at most k. The digraph D is
defined as follows:

V (D) := S ∪ X ∪B ∪ C,
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where

B := {bi : 1 ⩽ i ⩽ k + 1}
C := {ci : 1 ⩽ i ⩽ k + 1}

A(D) := {(Sj, xi) : xi ∈ Sj, Sj ∈ S, xi ∈ X} ∪ {(xi, Sj) : xi /∈ Sj, Sj ∈ S, xi ∈ X}
∪ {(Sj, bi) : Sj ∈ S, bi ∈ B} ∪ {(Sj, ci) : Sj ∈ S, ci ∈ C}
∪ {(xi, bj) : xi ∈ X , bj ∈ B} ∪ {(ci, xj) : ci ∈ C, xj ∈ X )}
∪ {(bi, cj) : bi ∈ B, cj ∈ C} .

Clearly, D is an orientation of a complete 4-partite graph.
Suppose that there exists a subfamily X ′ ⊆ X of size at most k such that every set in

S intersects X ’. It is clear that X ′ is a quasi-kernel of D of size k, since every vertex in X
has an outneighbour in S and every vertex in B ∪ C is at distance at most two to every
vertex in X .

Conversely, suppose that there exists a quasi-kernel Q of D of size at most k. Neces-
sarily, Q is included in S,X , B, or C. Observe that Q ̸⊆ S since B is a distance three to
S. Suppose Q ⊆ B, then Q = B since every vertex bi ∈ B is at distance three to B \ {bi}
but this contradicts the size of Q. The same contradiction occurs if we suppose Q ⊆ C.
Then, Q ⊆ X and Q forms a hitting set of size k.

7.5 Exponential algorithm
This section provides two polynomial algorithms for digraphs with bounded treewidth, one
deciding the size of a minimum quasi-kernel and the other deciding if there are two disjoint
quasi-kernels. Courcelle’s theorem [29] ensures that those problems are polynomial-time
solvable for orientations of graphs with bounded treewidth, but it is known that the
complxity has a huge factor depending on the treewidth (as far as we understand from
the paper of Kneis and Langerabout [58] the complexity would be of order 222tw2

). This
motivated the search for a direct approach of the polynomial result. In this section we
provide polynomial algorithms with reasonable constant factors.

7.5.1 Preliminaries about treewidth
Let G be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T )) where T is a
tree and X is a collection of subsets of V (G) such that

• ⋃
t∈V (T ) Xt = V (G),

• for every uv ∈ E(G), there is a t such that {u, v} ∈ Xt, and
• for every v ∈ V (G), T [{t : v ∈ Xt}] is connected.

The vertices of T are the nodes and the sets in X are the bags of the tree decomposition
(T,X ). The width of (T,X ) is equal to max{|Xt| − 1: t ∈ V (T )} and the treewidth of G
is the minimum width over all tree decompositions of G. We denote the treewidth of a
graph G by tw(G) and by extension tw(D) the treewidth of the underlying graph of a
digraph D.

Let D = (T,X ) be a tree decomposition of G, r be a node of T , and G = {Gt : t ∈
V (T )} be a collection of subgraphs of G, indexed by the nodes of T . We say that the
triple (D, r,G) is a nice tree decomposition of G if the following conditions hold:

• T is rooted at node a,
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• Xa = ∅ and Ga = G,

• each node of D has at most two children in T ,

• for each leaf t ∈ V (T ), Xt = ∅, and Gt is such that V (Gt) = ∅ and E(Gt) = ∅.
Such t is a leaf node,

• if t ∈ V (T ) has exactly one child t′, then either

– Xt = Xt′ ∪{vinsert} for some vinsert ̸∈ Xt′ and Gt is such that V (Gt) = V (Gt′)∪
{vinsert} and E(Gt) = E(Gt′). The vertex t is an introduce vertex node and the
node vinsert is the insertion vertex of Xt,

– Xt = Xt′ and Gt is such that V (Gt) = V (Gt′) and E(Gt) = E(Gt′) ∪ {einsert}
where einsert is an edge of G with endpoints in Xt. The node t is an introduce
edge node and the edge einsert is the insertion edge of Xt, or

– Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is a forget
vertex node and vforget is the forget vertex of Xt.

• for every e ∈ E(G), there exists a unique node t such that e is the insertion edge of
Xt, and

• if t ∈ V (T ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , V (Gt) =
V (Gt′) ∪ V (Gt′′), E(Gt) = E(Gt′) ∪ E(Gt′′) and E(Gt′) ∩ E(Gt′′) = ∅. The node t
is a join node.

Claim 7.5.1. For every graph G with bounded treewidth, it is possible to find a nice tree
decomposition with O(tw(G)|V (G)|) vertices of width O(tw(G)) in polynomial time.

Indeed, as discussed by Althaus and Ziegler [5], given a tree decomposition (T,X ) of
width w, we can compute in time O(w2(|V (T )|+ |V (G)|)) a nice tree decomposition of G
of width w with at most O(w|V (G)|) nodes. Moreover, by Bodlaender et al. [16] we can
find in time 2O(tw)n a tree decomposition of width O(tw) of any graph G.

In this section, we consider problems on digraphs and we use tree decompositions of
their underlying graph to find polynomial-time algorithms.

For each t ∈ V (T ), we denote by Vt the set V (Gt).

7.5.2 Results
Theorem 7.5.2. If a nice tree decomposition (T,X ) of a digraph of width w is given,
Quasi-Kernel can be solved in time O(25w|V (T )|).

Theorem 7.5.3. If a nice tree decomposition (T,X ) of a digraph of width w is given,
deciding if it has two disjoint quasi-kernels can be solved in time O(252w|V (T )|).

Actually the proof of Theorem 7.5.3 can very easily be adapted to prove that deciding
if a digraph has k disjoint quasi-kernels can be solved in O(25kw|V (T )|).

7.5.3 Proof of Theorem 7.5.2
We define, for each t ∈ V (T ), the set

It =
{

(S0, S1V , S1N , S2V , S2N) : S0 ∪ S1V ∪ S1N ∪ S2V ∪ S2N = Xt,

∀a ̸= b ∈ {0, 1V, 1N, 2V, 2N}, Sa ∩ Sb = ∅
}
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and a function rt : It → Z+. For each t ∈ V (T ), an element of It represents a partition of
Xt into the vertices in the potential quasi-kernel (S0), vertices that we know are inneigh-
bors of the potential quasi-kernel (S1V ), vertices that are intended to be inneighbors of
the futur quasi-kernel but are not yet (S1NV ), vertices that we know are inneighbors of
-potential- inneighbors of the potential quasi-kernel and the remaining vertices, which are
intended to be at distance two to the futur quasi-kernel (S2NV ).

For each t ∈ V (T ), we define rt recursively from the r′
t for each children t′ of t. The

definition depends on the type of node of t.

• Leaf: rt := 0.

• Introduce vertex: If v is the insertion vertex of Xt and t′ is the child of t, then for
each (S0, S1V , S1NV , S2V , S2NV ) ∈ It,

rt(S0, S1V , S1N , S2V , S2N) :=


r′

t(S0 \ {v}, S1V , S1N , S2V , S2N) + 1 if v ∈ S0.
r′

t(S0, S1V , S1N \ {v}, S2V , S2N) if v ∈ S1N .
r′

t(S0, S1V , S1N , S2V , S2N \ {v}) if v ∈ S2N .
+∞ otherwise.

• Forget vertex: If v is the forget vertex of Xt and t′ is the child of t, then for each
(S0, S1V , S1N , S2V , S2N) ∈ It,

rt(S0, S1V , S1N , S2V , S2N) := min{(rt′(S0 ∪ {v}, S1V , S1N , S2V , S2N),
(rt′(S0, S1V ∪ {v}, S1N , S2V , S2N),
(rt′(S0, S1V , S1N , S2V ∪ {v}, S2N)}.

• Introduce edge: If {u, v} is the introduced edge of Xt and that (u, v) in an arc in
the digraph and t′ is the child of t, then for each (S0, S1V , S1NV , S2V , S2NV ) ∈ It,

rt(S0, S1V , S1N , S2V , S2N) :=



min
(
rt′(S0, S1V \ {u}, S1N ∪ {u}, S2V , S2N),

rt′(S0, S1V , S1N , S2V , S2N)
)

if u ∈ S1V

and v ∈ S0.

min
(
rt′(S0, S1V , S1N , S2V \ {u}, S2N ∪ {u}),

rt′(S0, S1V , S1N , S2V , S2N)
)

if u ∈ S2V

and v ∈ S1V ∪ S1N .
+∞ if u, v ∈ S0.
rt′(S0, S1V , S1N , S2V , S2N) otherwise.

• Join: If t′ and t′′ are the children of t, then for each (S0, S1V , S1N , S2V , S2N) ∈ It,
rt(S0, S1V , S1N , S2V , S2N) :=

min
S2N =S′

2N ∩S′′
2N

S1N =S′
1N

∩S′′
1N

S0=S′
0=S′′

0
S2V =S′

2V
∪S′′

2V
S1V =S′

1V
∪S′′

1V
S′

2V
∪S′

2N
=S′′

2V
∪S′′

2N
S′

1V
∪S′

1N
=S′′

1V
∪S′′

1N

rt′(S ′
0, S ′

1V , S ′
1N , S ′

2V , S ′
2N) + rt′′(S ′′

0 , S ′′
1V , S ′′

1N , S ′′
2V , S ′′

2N)− |S0|.

Lemma 7.5.4. For each t ∈ V (T ) and (S0, S1V , S1N , S2V , S2N) ∈ It, the quantity
rt(S0, S1V , S1N , S2V , S2N) is the minimum k such that there exists a set Ŝ ⊆ V (Gt) that
satisfies simultaneously:
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(i) Ŝ is independent,

(ii) |Ŝ| ⩽ k,

(iii) Ŝ ∩Xt = S0,

(iv) for every v ∈ V (Gt) \Xt, d(x, Ŝ) ⩽ 2 or d(v, S1V ∪ S1N) ⩽ 1,

(v) S1V ⊆ N−
Gt

(Ŝ), and

(vi) S2V ⊆ N−
Gt

(S1N) ∪N−−
Gt

(Ŝ).

Such a set Ŝ is called the witness of (S0, S1V , S1N , S2V , S2N).

Proof of lemma 7.5.4. Consider t ∈ V (T ) and (S0, S1V , S1N , S2V , S2N) ∈ It. We prove the
result by induction by assuming the result true for every child of t. Let us distinguish
different cases depending on the type of t.

• Leaf.
V (Gt) = ∅ and It = {(∅,∅,∅,∅,∅)} so the witness of (∅,∅,∅,∅,∅) is ∅, of size

zero.

• Introduce vertex.
Let v be the insertion vertex of Xt. Consider (S0, S1V , S1N , S2V , S2N) ∈ It. Let us

prove that rt((S0, S1V , S1N , S2V , S2N)) = k if and only if there exists Ŝ a witness of
(S0, S1V , S1N , S2V , S2N) of size k.

First, suppose rt((S0, S1V , S1N , S2V , S2N)) = k. By definition, if v ∈ S0 then r′
t(S0 \

{v}, S1V , S1N , S2V , S2N) = k−1. By induction, there exists a witness Ŝ ′ of (S0\{v}, S1V , S1N ,
S2V , S2N) of size k−1. Just adding the vertex v to Ŝ ′ provides a witness of (S0, S1V , S1N , S2V ,
S2N) of size k. Indeed, since v is the insertion vertex of Xt, it is independent from ever
other vertex in V (Gt), so condition (i) is fulfilled, conditions (ii) and (iii) are straightfor-
ward and every other condition is true exactly by induction hypothesis.

One can check that similar arguments works if v ∈ S1N or v ∈ S2N .
Conversely, let (S0, S1V , S1N , S2V , S2N) ∈ It and Ŝ be a witness of size k. If v ∈ Ŝ,

consider Ŝ \ {v}. This forms a witness of (S0 \ {v}, S1V , S1N , S2V , S2N) of size k − 1.
Indeed, conditions (i), (ii), and (iii) are clear and since v is the insertion vertex of Xt is
it independent from every other vertex in V (Gt), conditions (iv), (v), and (vi) are still
fulfilled.

By induction, rt′(S0 \ {v}, S1V , S1N , S2V , S2N) = k − 1 and then, by definition of rt for
t an introduce vertex, rt(S0, S1V , S1N , S2V , S2N) = k.

One can check that similar arguments work if v ∈ S1N or v ∈ S2N .

• Forget vertex.
Let v be the forget vertex of Xt and t′ be the child of t. Consider (S0, S1V , S1N , S2V , S2N) ∈

It.
First, suppose rt((S0, S1V , S1N , S2V , S2N)) = k. By definition of rt with t a forget vertex,

one quantity among rt′(S0∪{v}, S1V , S1N , S2V , S2N), rt′(S0, S1V , S1N ∪{v}, S2V , S2N), and
rt′(S0, S1V , S1N , S2V , S2N∪{v}) equals k. Consider the case rt′(S0∪{v}, S1V , S1N , S2V , S2N) =
k. By induction, there exists a witness Ŝ of (S0 ∪ {v}, S1V , S1N , S2V , S2N) of size k. Then
Ŝ forms a witness of (S0, S1V , S1N , S2V , S2N) of size k. Indeed, conditions (i),(ii), (v), and
(vi) are clear, condition (iii) is true since v is not in Xt, and condition (iv) is true because
x ∈ Ŝ so d(x, Ŝ) = 0.

Similar arguments work for rt′(S0, S1V , S1N∪{v}, S2V , S2N) = k and for rt′(S0, S1V , S1N ,
S2V , S2N ∪ {v}) = k.
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Conversely, let (S0, S1V , S1N , S2V , S2N) ∈ It and Ŝ be a witness of size k.
If v ∈ Ŝ, then Ŝ forms a witness of (S0 ∪ {v}, S1V , S1N , S2V , S2N) of size k. Indeed,

condition (iii) is clear and every other condition is fulfilled because Ŝ is a witness of
(S0, S1V , S1N , S2V , S2N). This implies rt′(S0 ∪ {v}, S1V , S1N , S2V , S2N) = k by induction,
and rt(S0, S1V , S1N , S2V , S2N) ⩽ k by definition of rt for a forget vertex.

Similar arguments show that if v ∈ N−(Ŝ) or v ∈ N−−(Ŝ) ∪ N−(S1V ∪ S1N), then
rt(S0, S1V , S1N , S2V , S2N) ⩽ k.

• Introduce edge.
Let {u, v} be the introduced edge of Xt such that (u, v) is an arc of the digraph and t′

the child of t. Consider (S0, S1V , S1N , S2V , S2N) ∈ It.
Suppose rt(S0, S1V , S1N , S2V , S2N) = k and consider the case where u ∈ S1N and v ∈ S0.

By definition, rt′(S0, S1V ∪ {u}, S1N \ {u}, S2V , S2N) = k and by induction, there exists
a witness Ŝ ′ of (S0, S1V ∪ {u}, S1N \ {u}, S2V , S2N) of size k. The same set forms a
witness of (S0, S1V , S1N , S2V , S2N) of size k. Indeed, condition (v) is weaker for a witness
of (S0, S1V , S1N , S2V , S2N) than for one of (S0, S1V ∪ {u}, S1N \ {u}, S2V , S2N) and every
other condition remain the same.

Similar arguments work for every other cases.
Conversely, let (S0, S1V , S1N , S2V , S2N) ∈ It and Ŝ be a witness of size k of (S0, S1V , S1N ,

S2V , S2N). If u ∈ S1N and v ∈ S0, then Ŝ forms a witness of (S0, S1V ∪ {u}, S1N \
{u}, S2V , S2N) of size k. Indeed, condition (v) is fulfilled because u ∈ N−(v) and v ∈ Ŝ
and every other condition is clear. By induction, rt′(S0, S1V ∪{u}, S1N \{u}, S2V , S2N) = k
and then, by definition, rt(S0, S1V , S1N , S2V , S2N) = k.

One can check that similar arguments work in every other case.

• Join.
Suppose rt(S0, S1V , S1N , S2V , S2N) = k. Consider the sets S ′

0, S ′
1V , S ′

1N , S ′
2V , S ′

2N , S ′′
0 ,

S ′′
1V , S ′′

1N , S ′′
2V , S ′′

2N reaching the minimum in the definition of rt(S0, S1V , S1N , S2V , S2N)
and denote k′ = rt′(S ′

0, S ′
1V , S ′

1N , S ′
2V , S ′

2N), k′′ = rt′′(S ′′
0 , S ′′

1V , S ′′
1N , S ′′

2V , S ′′
2N), l = |S0|. By

definition we have k′ + k′′ − l = k.
By induction, there exists Ŝ ′ witness of (S ′

0, S ′
1V , S ′

1N , S ′
2V , S ′

2N) of size k′ and Ŝ ′′ witness
of (S ′′

0 , S ′′
1V , S ′′

1N , S ′′
2V , S ′′

2N) of size k′′. Ŝ ′ ∪ Ŝ ′′ forms a witness of (S0, S1V , S1N , S2V , S2N)
of size k′ + k′′− l. Indeed, by definition of rt for a join node, S0 = S ′

0 = S ′′
0 which ensures

condition (i) and (iii). Condition (ii) is clear, and the other conditions are true because
of conditions in the min of the definition.

Conversely, let (S0, S1V , S1N , S2V , S2N) ∈ It and Ŝ be a witness of size k. Consider
Ŝ ′ = Ŝ ∩ V (Gt′) and Ŝ ′′ = Ŝ ∩ V (Gt′′). Denote k′ = |Ŝ ′|, k′′ = |Ŝ ′′| and l = |S0|.
Notice that by construction k′ + k′′ − l = |Ŝ| = k. Consider then S ′

0 = S ′′
0 = S0,

S ′
1V = Xt′ ∩ N−(Ŝ ′) and S ′′

1V = Xt′′ ∩ N−(Ŝ ′′). Notice that S1V = S ′
1V ∪ S ′′

1V . Denote
S ′

1N = (S1V ∪ S1N) \ S ′
1V , S ′′

1N = (S1V ∪ S1N) \ S ′′
1V , S ′

2V = N−−(Ŝ ′) ∪ N−(S ′
1V ∪ S ′

1N),
S ′′

2V = N−−(Ŝ ′′) ∪ N−(S1V )′′. Finally, consider S ′
2N = (S2N ∪ S2V ) \ S ′

2V and S ′′
2N =

(S2N ∪ S2V ) \ S ′′
2V . Note that the previous sets respect the conditions of the minimum in

the definition of rt(S0, S1V , S1N , S2V , S2N).
Then Ŝ ′ is a witness of (S ′

0, S ′
1V , S ′

1N , S ′
2V , S ′

2N) and Ŝ ′′ is a witness of (S ′′
0 , S ′′

1V , S ′′
1N , S ′′

2V , S ′′
2N).

Indeed, condition (i) and (iii) come trivially from the fact that S0 = S ′
0 = S ′′

0 , condition (ii)
is true by construction, and the other conditions are true by the condition in the min in
the definition.

By induction we have rt′(S ′
0, S ′

1V , S ′
1N , S ′

2V , S ′
2N) = k′ and rt′′(S ′′

0 , S ′′
1V , S ′′

1N , S ′′
2V , S ′′

2N) =
k′′. By definition, this leads to rt(S0, S1V , S1N , S ′

2V , S ′
2N) = k′ + k′′ − l = k.

For a nice tree decomposition rooted at node a of a digraph D, we have then ra(∅,∅,∅,∅,∅)
the size of a smallest quasi-kernel in D. Indeed, a witness forms a quasi-kernel since con-
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ditions (iii), (v), and (vi) turn to be empty and conditions (i) and (iv) are the definition
of a quasi-kernel.

Proof of Theorem 7.5.2. Using Lemma 7.5.4, we just need to analyze the running time of
the algorithm computing the functions rt recursively.

For each t ∈ V (T ), , we have |It| ⩽ 5|Xt| since (S0, S1V , S1NV , S2V , S2NV ) is a partition
of Xt. If t is a leaf, then rt can be computed in O(1). If t is an introduce vertex, a forget
vertex, or an introduce edge, and t′ is the child of t, then rt can be computed in time
O(|I ′

t|). If t is a join node, and t′ and t′′are the two children of t, then rt can be computed
in time O(|I ′

t||I ′′
t |). The algorithm runs in 25tw(D)|V (T )|.

7.5.4 Proof of Theorem 7.5.3
We define, for each t ∈ V (T ), the set

It =
{

(S0, S1V , S1N , S2V , S2N) : S0 ∪ S1V ∪ S1N ∪ S2V ∪ S2N = Xt,

∀a ̸= b ∈ {0, 1V, 1N, 2V, 2N}, Sa ∩ Sb = ∅
}

and a function rt : I2
t → {0, 1}.

For each t ∈ V (T ), an element of It represents a partition of Xt into the vertices in
the potential quasi-kernel (S0), vertices that we know are inneighbors of the potential
quasi-kernel (S1V ), vertices that are intended to be inneighbors of the futur quasi-kernel
but are not yet (S1NV ), vertices that we know are inneighbors of inneighbors or potential
inneighbors of the futur quasi-kernel and the remaining vertices, which are intended to
be at distance two to the futur quasi-kernel (S2NV ).

For each t ∈ V (T ), we define rt recursively from the r′
t for each children t′ of t. The

definition depends on the type of node of t.

• Leaf : we can assume It = ∅, and then rt ≡ 1.

• Introduce vertex : If v is the insertion vertex of Xt and t′ is the child of t, then for
each
U = (S0, S1V , S1NV , S2V , S2NV ), (T0, T1V , T1NV , T2V , T2NV )) ∈ I2

t ,

rt(U) :=


0 if v ∈ S0 ∩ T0
0 if v ∈ S1V ∪ S1N ∪ S2V ∪ S2N

rt′((S0 \ {v}, S1V , S1N \ {v}, S2V , S2N \ {v}),
(T0 \ {v}, T1V , T1N \ {v}, T2V , T2N \ {v})) else.

• Forget vertex : If v is the forget vertex of Xt and t′ is the child of t, then for each
U = (S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) ∈ I2

t :

rt(U) := max
{
rt′((S ′

0, S ′
1V , S1N , S ′

2V , S2N), (T ′
0, T ′

1V , T1N , T ′
2V , T2N)) :

S ′
0, S ′

1V , S ′
2V disjoints, S ′

0 ∪ S ′
1V ∪ S ′

2V = S0 ∪ S1V ∪ S2V ∪ {v},
T ′

0, T ′
1V , T ′

2V disjoints and T ′
0 ∪ T ′

1V ∪ T ′
2V = T0 ∪ T1V ∪ T2V ∪ {v}

}
.

• Introduce arc: If (u, v) is the introduced arc of Xt and t′ is the child of t, then for
each
((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) ∈ I2

t ,
if u, v ∈ S0 or u, v ∈ T0, rt((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) = 0.
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Else, rt((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) is the higher value between
0,

rt′((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) and the following :

– if (u, v) ∈ ((S1V ∪ S1N)× S0) ∩ ((T2V ∪ T2N)× (T1V ∪ T1N)):
rt′((S0, S1V ∪ {u}, S1N \ {u}, S2V , S2N), (T0, T1V , T1N , T2V ∪ {u}, T2N \ {u})) .

– if (u, v) ∈ ((S2V ∪S2N)×(S1V ∪S1N))∩((T1V ∪T1N)×T0): rt′((S0, S1V , S1N , S2V ∪
{u}, S2N \ {u}), (T0, T1V ∪ {u}, T1N \ {u}, T2V , T2N))

)
.

– if (u, v) ∈ ((S2V ∪ S2N)× (S1N ∪ S1V )) ∩ ((T2V ∪ T2N)× (T1V ∪ T1N)):
rt′((S0, S1V , S1N , S2V ∪ {u}, S2N \ {u}), (T0, T1V , T1N , T2V ∪ {u}, T2N \ {u})).

– if (u, v) ∈ (T1V ∪ T1N) × T0 : rt′((S0, S1V , S1N , S2V , S2N), (T0, T1V ∪ {u}, T1N \
{u}, T2V , T2N)).

– if (u, v) ∈ (T2V∪T2N)×(T1V∪T1N): rt′((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V∪
{u}, T2N \ {u})).

– if (u, v) ∈ (S1V∪S1N)×S0) : rt′((S0, S1V∪{u}, S1N\{u}, S2V , S2N), (T0, T1V , T1N , T2V , T2N))
– if (u, v) ∈ ((S2V ∪ S2N) × (S1N ∪ S1V )) : rt′((S0, S1V , S1N , S2V ∪ {u}, S2N \
{u}), (T0, T1V , T1N , T2V , T2N)).

• Join: If t′ and t′′ are the children of t then for each ((S0, S1V , S1N , S2V , S2N),
(T0, T1V , T1N , T2V , T2N)) ∈ I2

t ,
rt((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) =

max
S2N =S′

2N ∩S′′
2N ,T2N =T ′

2N ∩T ′′
2N

S1N =S′
1N

∩S′′
1N

,T1N =T ′
1N

∩T ′′
1N

S0=S′
0=S′′

0 ,T0=T ′
0=T ′′

0
S2V =S′

2V
∪S′′

2V
,T2V =T ′

2V
∪T ′′

2V
S1V =S′

1V
∪S′′

1V
,T1V =T ′

1V
∪T ′′

1V
S′

2V
∪S′

2N
=S′′

2V
∪S′′

2N
,T ′

2V
∪T ′

2N
=T ′′

2V
∪T ′′

2N
S′

1V
∪S′

1N
=S′′

1V
∪S′′

1N
,T ′

1V
∪T ′

1N
=T ′′

1V
∪T ′′

1N

rt′((S ′
0, S ′

1V , S ′
1N , S ′

2V , S ′
2N), (T ′

0, T ′
1V , T ′

1N , T ′
2V , T ′

2N)).

Lemma 7.5.5. For each t ∈ V (T ), (S0, S1V , S1N , S2V , S2N) ∈ It, and (T0, T1V , T1N , T2V , T2N) ∈
It the quantity rt((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)) equals 1 if and only if
there exist Ŝ, T̂ ⊆ V (Gt) that satisfies simultaneously:

1. Ŝ ∩ T̂ = ∅,

2. Ŝ ∩Xt = S0,

3. for every v ∈ Gt \Xt, d(v, Ŝ) ⩽ 2 or d(v, S1V ∪ S1N) ⩽ 1,

4. S1V ⊆ N−
Gt

(Ŝ),

5. S2V ⊆ N−
Gt

(S1N) ∪N−−
Gt

(Ŝ).

6. T̂ ∩Xt = T0,

7. for every v ∈ Gt \Xt, d(v, T̂ ) ⩽ 2 or d(v, T1V ∪ T1N) ⩽ 1.

8. T1V ⊆ N−
Gt

(T̂ ), and

9. T2V ⊆ N−
Gt

(T1N) ∪N−−
Gt

(T̂ ).

Such a pair (Ŝ, T̂ ) is called the witness of ((S0, S1V , S1N , S2V , S2N), (T0, T1V , T1N , T2V , T2N)).
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For a nice tree decomposition rooted at node a of a digraph D, we have then
ra((∅,∅,∅,∅,∅), (∅,∅,∅,∅,∅)) the boolean answer to the question: does D admits
two disjoint quasi-kernels.

Proof of Theorem 7.5.3. Using Lemma 7.5.5, we just need to analyze the running time of
the algorithm computing the functions rt recursively. For each t ∈ V (T ), we have |It| ⩽
(25)|Xt| since (S0, S1V , S1NV , S2V , S2NV ) and (T0, T1V , T1NV , T2V , T2NV ) are partitions of
Xt. If t is a leaf, then rt can be computed in O(1). If t is an introduce vertex, a forget
vertex, or an introduce edge, and t′ is the child of t, then rt can be computed in time
O(|I ′

t|). If t is a join node, and t′ and t′′are the two children of t, then rt can be computed
in time O(|I ′

t||I ′′
t |). The algorithm runs in 252tw(D)|V (T )|.
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Appendix A

Tables - Kernels

Problem Complexity
Deciding of the existence of a kernel NP-complete [27]
Deciding if an orientation of a perfect graph is clique-acyclic coNP-complete [6]
Finding a kernel in a clique-acylic orientation of a PPAD [56]
perfect graph with cliques of bounded size
Finding a kernel in simple clique-acyclic orientations of perfect Polynomial [52]
claw-free graphs
Finding a kernel in clique-acylic orientations of DE-graphs Polynomial [32, 52]
Finding a kernel in M -clique-acylic orientations of comparability graphs Polynomial [1]
Finding a kernel in M -clique-acylic orientations of tree-cographs Polynomial

(Corollary 2.3.2)
Finding a kernel in simple clique-acylic orientations of Polynomial
distance-hereditary graphs (Proposition 2.3.3)
Finding a kernel in a digraph with the conditions depicted in Figure 4.1 Polynomial

(Theorem 4.1.1)
Deciding if a digraph has at least two crossing consecutive chords Polynomial
in each odd directed cycle (Proposition 3.3.1)
Finding a kernel in clique-acylic orientations of chordal graphs Polynomial [52]
Finding a kernel in a clique-acylic orientation of Open
a perfect graph
Deciding if a digraph has at least two chords with Open
consecutive heads in each odd directed cycle

Conditions ensuring the existence of a kernel Reference
Every directed cycle has at least one hence-and-forth pairs of arcs [36]
Each odd directed cycle has at least two hence-and-forth pair of arcs [36]
Each odd directed cycle has two chords with consecutive heads [44]
Each odd directed cycle has two chords with consecutive heads or Theorem 3.2.1
two non-crossing chords of odd length in the same direction or
two crossing chords, one short and the other of odd length
Clique-acyclic orientation of a perfect graph [18]
Digraph respecting the conditions depicted in Figure 4.1 Theorem 4.1.1
Digraph colored in two colors with no monochromatic directed Theorem 4.1.2
cycle avoiding structures depicted in Figure 4.2
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Appendix B

Tables - Quasi-kernels

Problem Complexity
Deciding the existence of a quasi-kernel containing NP-complete [30]
a specified vertex
Finding the smallest quasi-kernel in acyclic orientations NP-complete
of cubic graphs (Theorem 7.2.1)
Deciding the existence of two disjoint quasi-kernels NP-complete

(Theorem 7.1.1)
Deciding the existence of three disjoint quasi-kernels in NP-complete
sink-free bounded degree planar digraphs (Proposition 7.1.4)
Finding the smallest quasi-kernel in orientations of split graphs W[2]-complete

(Proposition 7.3.1)
Finding the smallest quasi-kernel in orientations of complete W[2]-complete
4-partite graphs (Theorem 7.4.1)
Finding the smallest quasi-kernel of acyclic orientations W[2]-complete
of bipartite graphs (Theorem 7.2.2)
Finding the minimum quasi-kernel for digraphs with fixed APX-complete
maximumm indegrees (Proposition 7.2.6)
Finding the smallest quasi-kernel in digraphs with Polynomial
bounded treewidth
Deciding the existence of k disjoint quasi-kernels Polynomial
for any k in digraphs with bounded treewidth

Conditions ensuring the existence of a small quasi-kernel Reference
Semicomplete multipartite digraph [49]
Quasi-transitive digraph [49]
Locally semicomplete digraph [49]
Digraph whose vertex vertex can be partitioned into two kernel-perfect digraphs [59]
Digraph admitting a lernel [73]
Digraph containing a kernel in the second outneighbhorhood of a quasi-kernel [39]
Orientation of unicyclic graph [39]
Anti-claw-free digraph [3]
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[40] Paul Erdős, Arthur Rubin, and Herbert Taylor, Choosability in graphs, Congr. Numer
26 (1979), no. 4, 125–157. 26
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