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Notations

R A rotation matrix ∈ SO(3). 15, 43, 64, 125, 128, 129

t A translation vector ∈ R3. 15, 43, 64, 107, 116, 125, 126, 128, 129

T Expresses a pose (of a lidar, camera) in SE(3). We propagate notations of a pose Tj
i to its

translation trj
i , and rotation Rj

i components. 15, 32, 38, 41, 43, 55–57, 63, 64, 67, 68,
108, 125, 126, 128, 129

RPErot Rotation component of the Relative Pose Error, expressed in percentage of the segment
relative rotation, averaged over all segments. 14, 15

RPEtr Translation component of the Relative Pose Error, expressed in percentage of the seg-
ment length, averaged over all segments. 14, 15, 18

ATE Absolute Trajectory Error, measuring absolute distance between the ground truth and
the estimated poses (in meters). 15, 16, 131

ATEmax Absolute Trajectory Error Max, measuring the maximum absolute distance between
the ground truth and the estimated poses (in meters). 16

RPE Relative Pose Error, measuring drift error averaged over all segments of a given length.
15, 16, 18, 72, 78, 79, 81, 83–87, 91, 109, 110, 112, 113, 115, 131

LO Acronym for 3D LiDAR Odometry. 32, 39, 41

LIO Acronym for 3D LiDAR Inertial Odometry. 32, 35, 39, 41
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Chapter 1

Introduction

Résumé
L’objet de cette thèse est l’étude des algorithmes de SLAM pour les capteurs LiDAR 3D.
Dans ce chapitre d’introduction, nous exposons le contexte de cette thèse, qui a été réalisée
conjointement entre le laboratoire de robotique de l’école d’ingénieurs MINES Paris-PSL, et la
société de logiciel Kitware. Nous présentons brièvement les capteurs LiDAR 3D et les capteurs
IMU, avec lesquels nous travaillons dans cette thèse. Nous décrivons ensuite les motivations et
les principaux enjeux derrière cette thèse, pour conclure par une présentation de l’organisation
générale du manuscrit.
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Introduction

Figure 1.1: Left: a screenshot of OusterStudio, a specialization of LiDARView for Ouster
sensors. Right: 3D reconstruction using the SLAM of LiDAR View developped by Kitware.

Context
This thesis is a joint work between the robotics laboratory of the MINES Paris-PSL engineering
school, and the European antenna of the software company Kitware. Kitware is renowned in-
ternationally for its contribution to open-source, notably by C++ aficionados (which intersects
largely with most robotics practitioners), for its excellent build manager CMake. However,
Kitware also has strong expertise in scientific visualization and computer vision. The Kitware
Europe (KEU) in particular has expertise in 3D Computer Vision, notably for LiDAR ap-
plications. Through their open-source project LiDARView 1.1, they monopolize the market
of LiDAR visualizers and provide solutions for the principal manufacturers such as Ouster
(OusterStudio), Velodyne (VeloView), etc...

On top of this expertise, they already had a strong experience with LiDAR SLAM, having
developed their algorithm, integrated into LiDARView, and which is constantly refined and
improved by the excellent computer vision team I had the honor to join during this thesis. It
all began with a LinkedIn message from a famous influencer of the platform Bastien Jacquet,
which also happened to be at the head of the Computer Vision team of KEU. I then contacted
Jean-Emmanuel Deschaud and François Goulette who happened to be in Korea for a robotics
conference, and we agreed to mount this thesis together, and together contribute to pushing
the boundaries of 3D LiDAR SLAM algorithms.

What is 3D LiDAR SLAM ?
SLAM which stands for Simultaneous Localization And Mapping is an important class of
algorithms in the domain of robotics and computer vision. Given an acquisition platform
equipped with sensors, capturing data moving through an unknown environment, SLAM aims
to solve both the reconstruction of the environment and the localization of the sensor within
this said environment. SLAM is related to many different fields in computer vision, notably
3D reconstruction, mapping, localization, etc... And many of the techniques are common and
regularly exchanged between all these applications. One of the specificities of SLAM is that it is
often used as a building block for larger robotics applications, notably for tasks involving robots
either controlled or autonomous. This often puts constraints, or performance requirements for
the SLAM to run online on a robotic platform, often with limited computation power.

SLAM is a generic term, but in practice, the algorithms adapted for a given application
highly depend on the sensor suite of the hardware setup. In this work, we focus on SLAM for
3D LiDAR sensors. However, there exists SLAMs for a variety of sensors (2D LiDAR, RGB
images, RGB-D, etc..).
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Figure 1.2: Examples of directional (top left), 2D (top right), 3D rotating (bottom left) and 3D
solid-state (bottom right) LiDAR sensors. Images have been taken from the Robotshop website.

Each sensor has its specificities, and notably its weaknesses. To mitigate them, an interesting
approach is to fuse the Data from multiple sensors to improve the performance of SLAM
algorithms. In this work, we also incorporate Inertial Measurement Units (IMU) to improve
the performance of our LiDAR SLAM.

3D LiDAR and IMU sensors
LiDAR sensors have existed for more than 30 years. LiDAR stands for Light Detection And
Ranging, and describes sensors measuring the distance traveled by the light emitted by a
laser within the sensor. This allows measuring accurately the distance between the sensor and
the point of the environment intersecting the ray of the laser. For time-of-flight technologies,
the lasers send impulses that intersect with the environment. For diffusive materials, light is
emitted back to the direction of the sensor and the time-of-flight is estimated by comparing the
received signal with the original impulse, and the distance traveled can then be very accurately
estimated.

Directional LiDARs have exploited this estimation of range for many applications notably
obstacle avoidance. This technology has been integrated on rotating platforms to create 2D
LiDARs. These sensors rotate, capturing a trail of points intersected by their laser during the
rotation. This stream of points localized very precisely in the local frame of the sensor, is often
split into frames or scans. Typically, for rotating sensors, a scan corresponds to the complete
revolution of the mobile unit within the sensor. These sensors have been exploited for more
than 20 years with 2D SLAM algorithms to provide robots with the capacity to create 2D maps
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Figure 1.3: Vacuum Cleaner Robot, possesses a 2D LiDAR which maps to establish the optimal
trajectory to clean it.

of the environments. 2D LiDAR SLAM technologies are very mature, integrated within many
industrial processes, and present in the home of many consumers (see figure 1.3).

2D Maps are interesting for many applications, however many others need to interact with
complex 3D environments, and the ability to navigate in the 3-dimensional space is paramount.
While this had been possible using images for some time, the apparition of 3D LiDAR sensors
allowed the robotics community to push the boundaries in terms of the accuracy of 3D navi-
gation. 3D LiDAR sensors (see figure 1 for examples of the different types of LiDAR sensors)
leverage multiple lasers simultaneously to scan the environment in 3D dimension. Rotating
units such as Ouster OS-0,1,2 or Velodyne VLP-16, HDL-32, HDL-64 sensors have multiple
channels oriented at a different azimuth offset. Each sensor typically outputs frames at a res-
olution of Nchannels ×Nwidth, where Nchannels is the number of channels (16 for VLP-16, 32 for
HDL-32, 64, or 128, etc...), and Nwidth the number of points per channel (typically 1024 or
2048). The frame frequency, also defined by the frequency of a full revolution is typically set
to 10Hz or 20Hz (the latter consuming more power).

Why are LiDAR needed, what are they useful for ? 3D reconstruction and 3D navi-
gation have existed for nearly 20 years already, using cameras and building 3D structures from
motion. So, why is 3D LiDAR getting so much attraction? One of the big drivers for LiDAR
development has been the autonomous vehicle industry. While cameras are very important,
LiDAR has unique complementary properties (signal even in a dark environment, very different
noise model than cameras) which makes them very useful to be used along these cameras. In
particular, images that are passive sensors need to recreate the 3D space from 2D light measure-
ments. While this is perfectly possible using multiple cameras and stereo, more recently deep
learning or a combination of both, the level of noise and precision for those methods cannot be
compared to the accuracy 3D geometry provided by 3D LiDAR.

The field of SLAM is a great witness of this capacity: recently among the SLAMs tested on
platforms with both cameras and LiDARs, the solutions using LiDARs are typically much more
performant than those relying on cameras only. The reason is easy to understand: image-based
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methods need to reconstruct the geometry of the environment, correlate this geometry with
the image intensity/color values, and track changes in the image aspect to refine the geometry
and estimate the motion. In contrast, LiDAR sensors already provide accurate geometry, so
the ”only” challenge is to track iteratively each new frame within the map.

Of course, this simplicity hides real challenges due to the specificity of these: the massive
amount of points to process quickly, a non-negligible rolling shutter effect due to the continuous
acquisition, noise and issues from highly reflective surfaces, etc... In this thesis, we will discover
some of these challenges as we encounter them. But in short, the problem of 3D reconstruction
with LiDAR simplifies to the problem of inserting each frame correctly concerning one another.
This is the reason why sensors helping to estimate the trajectory are very complementary to
LiDAR and are often part of state-of-the-art sensor-fusion solutions.

IMU sensors A Inertial Measurement Unit (IMU), is a sensor that measures values related
to the motion of the platform it is rigidly attached to. A 6-axis IMU is composed of an
accelerometer which measures the linear acceleration, and a gyroscope, measuring the angular
velocity of the sensor. 9-axis IMU also has magnetometers that provide absolute orientation
measurements, but in this thesis, we exclusively used 6-axis IMUs.

At our level, the principal variables determining the quality of the IMU are the measurement
frequency and the level and characteristics of the noise. These two characteristics will determine
the capacity of sensor-fusion systems (ie systems fusing multiple types of sensor information) to
predict accurately the motion and leverage IMUs to put accurate constraints on the trajectory.
Indeed, because IMUs only provide noisy derivatives of the motion of the platform they are
attached to, the motion cannot be recovered from the IMU sensor alone and they are integrated
into such sensor-fusion solutions.

Previously, mobile mapping was dominated by GPS-Inertial solutions. These measured the
trajectory very accurately by fusing only GPS and IMU sensors and used the accurate trajectory
to reconstruct the global point cloud of the environment by replacing scans (see figure 1.4). To
be accurate, however, these platforms needed industrial-grade GPS and IMU sensors, which are
still very expensive. Recently, there has been tremendous progress in Inertial LiDAR-SLAM
solutions, which allow for new, cheaper and more flexible mapping alternatives. This is the
subject of chapter 5.

Why study 3D LiDAR SLAM ?
I was often asked this question during this thesis. There was indeed a belief, perhaps because
so much work had already been published on this subject, that the field was already com-
pletely saturated. Yet every year, more and more methods are still published and accepted in
prestigious robotics conferences, why is that?

For many years, progress indeed seemed to have slowed down, notably due to the lack of
publically available datasets to properly evaluate the research. But in the past couple of years,
the lowering of the cost of LiDAR sensors as well as ambitious research projects have pushed
existing algorithms to their limits and elevated the bar for the requirements of precision and
performance expected of SLAM to unlock many industrial applications. LiDAR SLAM is living
exciting days, and it was a privilege, during this thesis to have had a small part in this.

Contributions of the thesis and publications
In this thesis, we published two articles at top-tier international robotics conferences:

– What’s in my lidar odometry toolbox, accepted at IROS 2021, see chapter 4
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Figure 1.4: L3D2 acquisition platform constructed by the CAOR laboratory of MINES Paris-
PSL. This platform relies on a costly industrial-grade GPS-INSS unit to construct a very
accurate trajectory.

– CT-ICP: Real-time Elastic LiDAR odometry with Loop Closure, accepted at ICRA-2022,
nominated for the Oustanding paper award 3

The main contributions of this thesis, validated by these publications are:

– A detailed comparison of Deep and Hybrid LiDAR odometry. (IROS 2021)

– A state-of-the-art LiDAR odometry, relying on an innovating motion distortion strategy
of LiDAR frames. (ICRA 2022)

Both of these works also present secondary contributions, which will be detailed below.
Furthermore, both have also been open-sourced and have been well-appreciated by the robotics
community. At the time of this writing, the CT-ICP GitHub page 1, and pyLiDAR-SLAM GitHub
page2 where we published our work for the IROS2021 article have respectfully 481 and 225 stars.

Additionally, we are preparing work for publication, which extends CT-ICP as a LiDAR-
Inertial system, and present this work in chapter 5.

Organization of this thesis
This document is organized as follows: First, in chapter 2 we present the methods, and datasets
to evaluate our LiDAR odometry and SLAM methods. Secondly, in chapter 3 we present LiDAR
Odometries, including our work CT-ICP and the related contributions. Then, in chapter 4,
we focus on deep and hybrid LiDAR odometry, and we present the contributions of our article
What’s In My LiDAR Odometry Toolbox. Chapter 5 then presents LiDAR-Inertial odometry,
including our work being prepared for publications.

1https://github.com/jedeschaud/ct_icp
2https://github.com/Kitware/pyLiDAR-SLAM
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Résumé
Beaucoup de travaux ont déjà été proposés dans le domaine des odométries LiDAR 3D. En effet,
depuis le travail séminal de LOAM [135], plusieurs centaines d’articles ont été publiées, chacun
proposant une propre approche singulière pour résoudre ce problème. Cependant, malgré tout
ces travaux, il est souvent difficile d’extraire de fortes convictions sur les raisons sous-jacentes
des performances d’une méthode.

Typiquement, chaque nouvelle méthode publiée évalue ses résultats, soit sur un jeu de
données de référence public, soit sur un dataset privé, ou mis public pour occasion. Jusqu’à
très récemment, il y avait très peu de jeux de données LiDAR 3D publics. Donc la plupart
des méthodes étaient essentiellement évaluées sur le benchmark de KITTI [40], un agrégat de
jeux de données, conçu pour faire avancer la recherche sur un large panel de tâches liées au
véhicule autonome, et notamment l’odométrie LiDAR. Mais avec la forte réduction des prix
des LiDARs, de plus en plus de jeux de données ont été rendus publics. Cela a permis une
meilleure évaluation, du moins plus exhaustive, des odométries LiDARs.

Dans cette section, nous détaillons les méthodes et mesures d’évaluation des odométries
LiDAR que nous utiliserons à pour l’ensemble de ce travail, ainsi que l’ensemble des jeux de
données sur lesquels nous avons évalué nos algorithmes.

Le reste de ce chapitre est organisé de la manière suivante: tout d’abord en section 2.2
nous présentons donc les différentes mesures de précisions sur les trajectoires utilisés dans ce
travail pour évaluer les différentes odométries LiDAR. Puis, dans la section 2.3, nous mention-
nons la manière dont nous évaluons les performances computationnelles de nos algorithmes, et
l’importance de concevoir des algorithmes rapides et efficaces. Finalement, dans la section 2.4
nous détaillons l’ensemble des jeux de données qui seront utilisés dans ce travail.
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2.1 Introduction
As we presented in chapter 1, since the defining work of LOAM [135] in 2016, there has been
a tremendous amount of work in the area of LiDAR odometry. All new methods need to
prove a scientific contribution to be published. To prove these contributions, in the field of
LiDAR SLAM and odometry, the algorithms are run on the sequences of public benchmarks
([40, 44, 136]) and datasets that either provide ground truth [13], scoring platforms, or both.
While these evaluations provide objective results, from an industrial actor, or a researcher,
ranking the relevance of these methods, or components of the methods for their specific use
case remains challenging for multiple reasons.

On the one hand, old benchmarks [40] are saturated by novel methods, with minor perfor-
mance improvements on the benchmark. The performance of these methods, sometimes, does
not generalize well to other datasets, or in other contexts. For example, a SLAM performing
well on KITTI [40], the most popular odometry benchmark for driving scenarios, might not
perform as well when considering a sparser LiDAR (with 16 or 32 channels), or in other scenar-
ios. On the other hand, while each method is supposed to explain its scientific contributions,
in practice, it is extremely difficult to understand how each component of the overall method
contributes to the presented performance. This is notably due to the growing complexity and
refinement of the SLAM and odometry methods over the years. This is especially the case for
a method that does not share its code online, in practice it is next to impossible to reconstruct
a SLAM with on-par performance simply from an article alone, as many important details are
often left out for these methods. The devil is in the details is particularly true when it comes
to LiDAR odometries and SLAM.

Thankfully, as the interest in LiDAR-SLAM grew, so did the open-source methods publically
available online. There is now an abundance of methods available ([25], [123], [84], [125], ...),
which raises new, though much more comfortable problems: How do we select/rank available
methods objectively ?

This is the subject of this chapter, where we aim to go deeper and present the relevant
framework to evaluate the different methods against one another. We will use this framework
to evaluate and compare each method in the remainder of this thesis.

The rest of this chapter is organized as follows, first in section 2.2, we present the different
trajectory metrics used to evaluate slam and odometries, in section 2.3, we speak about the
performance metrics to evaluate the runtime of the algorithms, and finally in section 2.4 the
datasets which will be used to construct our evaluations.
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2.2 Trajectory Precision Metrics
One of the main benefits of a LiDAR SLAM is its inherent precision, notably compared to
visual SLAM. This is often demonstrated by looking at benchmarks such as KITTI’s odometry
Benchmark [40], where the top performing methods are LiDAR SLAM or odometries.

To demonstrate their scientific contributions, previous approaches have often focused on
precision gains [135, 26, 131, 4], which are typically evaluated on standard datasets, predom-
inantly the KITTI odometry benchmark [40]. The KITTI odometry benchmark focuses on
odometry metrics, which aim to measure drift, typically without loop closure which we will
cover in section 2.2.1.

However, for other tasks, it is the overall global accuracy of the trajectory which counts.
This is typically the case for applications in a closed environment, where one typically expects
multiple loop closures during the run of the SLAM. To evaluate the precision of SLAM for
these use cases, global metrics are needed, and we present them in section 2.2.2.

2.2.1 Evaluating the drift: odometry metrics
When exploring open, new and unexplored spaces, all odometries drift over time. Measuring
the amount of drift is paramount, as it gives an idea of the type of applications that a SLAM
system can support. For example, if an odometry system has 500m of drift over a trajectory of
10km, the SLAM system would probably need sophisticated loop detection to close the loop,
while for drift lower than 10m a simple ICP [5] based alignment might suffice. Figure 2.1 shows
the drift accumulating over time.

Figure 2.1: Drift accumulating over time for a LiDAR Odometry. The trajectory of the LiDAR
Odometry (blue) accumulates errors over each frame registered, and this results in iteratively
larger distance to the ground truth (orange) trajectory. Dataset: KITTI-02 (see section 2.4).

The typical strategy to evaluate the drift is to compute a Relative Pose Error (RPE)
over segments of fixed lengths, and average the results over all segments of this length in
the trajectory. More precisely, as the relative pose error can be computed in rotation and
translation, this gives two metrics: RPEtr for the translation, expressed in percentage of the
segment length, and RPErot for the rotation expressed in °/m, defined as follows:
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∀i ∈ Id, Tgt
rel(i) = Tgt

begin(i)−1 ∗Tgt
end(i) (2.1)

∀i ∈ Id, Todo
rel (i) = Todo

begin(i)−1 ∗Todo
end(i) (2.2)

RPEtr = 1
#Id

∑
i∈Id

100
length(i)

· ||tgt
rel(i)− todo

rel (i)||2 (2.3)

RPErot = 1
#Id

∑
i∈Id

|AngularDist(Rgt
rel(i), Rodo

rel (i))|
|length(i)|

(2.4)

Where T∗
∗(i) denotes the pose at a beginning or end (∗begin, ∗end) of a segment i among all

segments (indexed by Id) of size at least d in the LiDAR trajectory, for the odometry or the
ground truth (∗odom, ∗gt).

The scale of the segments d needs to correspond to the relevant scale for the desired dataset.
For mobile robotics, handheld acquisition setups and driving scenarios, the scale of the motion
is typically very different. In section 2.4, we will precise for each dataset the length d of the
segments considered for the evaluation, and we give in figure 2.1 the relevant scales for the
different problems.

Application Driving/Autonomous
Vehicle

Mobile Robotics Indoor, Handheld Sensors

Segment Length (m) 500m 100m 20m

Table 2.1: Segment length for the RPE metrics for the type of SLAM applications

While we provide the two metrics RPEtr and RPErot to evaluate the drift, in practice
RPEtr is mostly sufficient to evaluate and rank odometries, as local rotation errors also lead
to translational drift. So in most cases, we principally present results for the RPEtr metric,
unless the RPErot becomes necessary for finer analysis related to rotations.

2.2.2 Absolute Trajectory metrics
For some problems or use cases, global trajectory metrics are more relevant than relative pose
metrics. This is the case, for example when navigating in closed environments, where we expect
many loops, such as a warehouse, a building, or a taxi circuit.

Thus the typical evaluation for full LiDAR SLAM systems (which also integrates loop
closure), is the Absolute Trajectory Error (ATE), which computes the distance between the es-
timated pose of the LiDAR and the ground truth. As some rotation error in the first few frames
may have a significant impact on these metrics, a typical approach computes an optimal rigid
transform between the ground truth and the LiDAR trajectory by least square minimisation,
and the ATE is computed on this modified trajectory, as follows:

Trigid = argmin
T∈SE(3)

∑
i∈Ilidar

||T ∗ tslam
i − tgt

i ||22 (2.5)

∀i ∈ I lidar, T∗
i = Trigid ∗Tslam

i (2.6)

ATE = 1
#I lidar

∑
i∈Ilidar

||t∗
i − tgt

i ||22 (2.7)

The ATE measures the mean of the absolute pose error for each pose of the LiDAR (which
is typically defined as the pose at the beginning or the end of a LiDAR frame). Also relevant
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is the ATEmax, which expresses the maximum trajectory error between the ground truth and
the corrected trajectory (also in meters). For example, for robots navigating in a warehouse,
the precision specifications for a SLAM system will typically be expressed as a threshold on the
ATEmax rather than the ATE.

Even more than the RPE, the ATE requires accurate ground truth to be informative. If
the ground truth is established with noisy GPS measurements, for example, the ATE will be
directly impacted. By comparison, the noise can be compensated in the RPE by selecting
longer segments (this is notably why the KITTI benchmark averages the RPE over segments
of lengths varying from 100m to 800m). In any case, the precision is a matter of scale. For very
long trajectories over multiple kilometers, a noisy GPS ground truth precise up to 1-5 meters,
might be sufficient to correctly evaluate the quality of the SLAM. Thankfully, there has been
a tremendous effort from the research community to propose benchmarks and datasets with
increasingly accurate ground truth, which will drive the evaluation of our methods, and that
we will present in section 2.4. In this section, we focus on the evaluation of LiDAR odometries,
to evaluate full SLAM (with GPS or loop closure constraints), [59] offers a more comprehensive
approach.

2.3 Performance
In the previous section (2.2), we mentioned the precision metrics for our evaluation of LiDAR
odometry methods. Another important aspect is the runtime performance of the algorithm.
As we mentioned earlier, LiDAR SLAM is often used in live contexts, running on robotics
platforms with computational constraints (such as our small vacuum robot presented in figure
1.3). For these contexts, LiDAR SLAM needs to be fast and precise, though a tradeoff is often
necessary between the two objectives. Thus, in this work, we will also mention as an important
criterion the execution speed of the LiDAR SLAM algorithm we evaluate.

LiDAR sensors provide a stream of LiDAR frames at a certain frequency (typically 10Hz or
20Hz, the latter being highly recommended). Thus, for an algorithm to run live, it needs either
to run at higher frequencies or be tolerant to dropping frames. Indeed, if the LiDAR odometry
runs at a lower frequency than the sensor output, if all frames waiting to be treated were kept
in memory, the memory of the platform would explode over time.

In this work, we will thus focus on the average runtime of our LiDAR odometries, which
gives a good first-order indication of the potential of a method for online use. Indeed, an
average runtime below the frame acquisition time should guarantee that keeping a buffer of
frames waiting to be processed should not explode over time.

To evaluate the runtime of each algorithm, we will use a laptop doted with an Inter Core
i7-9750H CPU@2.50GHz with 6 cores and 12 threads, and equipped with an NVidia 2080
Max-Q graphics card. When evaluating the runtime of LiDAR odometries, we only measure
the runtime of the algorithm and not data loading, or the conversion which can occur. This
includes preprocessing, registration, map updates, etc..

2.4 Datasets
While in previous sections (2.2, 2.3), we detailed the metrics to evaluate our different methods,
we now present the datasets on which they will estimate these metrics.

While for a long time, there has been a shortage of publically available LiDAR datasets,
with the KITTI [40] remaining the main dataset of interest, in recent years, there has been an
emergence of publically available LiDAR Datasets to foster research in multiple domains includ-
ing object detection, segmentation, and also for evaluating odometry and SLAM [136]. Among
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the publically available datasets, we made a selection based on multiple criteria including: the
availability and accuracy of the ground truth, the diversity of the scenarios, environment and
motions, the challenging aspect of the dataset, and finally their popularity.

We grouped the datasets into three main categories, corresponding to the three categories
presented in figure 2.1, and each associated with a relevant distance or segment length. Thus,
we first present in section 2.4.1 the driving datasets we work with. For these datasets, the
sensor placed on a car is moving fast, in open environments, but with relatively slow rotations
and accelerations compared with the sensor acquisition speed.

Then, in section 2.4.2 we present the mobile robotics datasets. This time the sensors are
placed on smaller robots, which typically move in smaller, sometimes closed environments. The
speed of the sensors is typically much slower than a car, but accelerations can be much greater,
especially when considering rotations.

Finally in section 2.4.3 we introduce handheld datasets. The sensors are placed on a platform
that is handheld and moves with the person carrying the platform. This often leads to slow-
moving sensors, but typically even jerkier motions than for mobile robots, with also great
accelerations and fast rotations.

2.4.1 Driving Dataset
The quest for the autonomous vehicle has been a driving factor for the acceleration of both
the industry and the research community’s interest in LiDAR solutions. In this context, the
LiDAR can typically be used for object detection, but also navigation or localization, for which
SLAM and odometry are often important building blocks of much larger complex industrial
data processing pipelines.

Pushed by this desire to accelerate the research for the autonomous vehicle, the KITTI [40]
benchmark has long been a reference for evaluating odometry and SLAM. It is still widely used
today and remains one of the most popular benchmarks, and we present it in section 2.4.1.1.
We selected also a synthetic dataset generated using the CARLA simulator which we present
in 2.4.1.2.

2.4.1.1 The KITTI Odometry Benchmark [40]

Initially published in 2013, by the Karlsruhe Institute of Technology, the KITTI Vision Bench-
mark Suite proposes a series of benchmarks for different relevant tasks in the context of au-
tonomous vehicles. Thanks to a set of sensors mounted on a car, including a Velodyne HDL-64
sensor (see figure 2.2), and multiple cameras, multiple sequences we acquired of varying lengths,
which were then labeled with ground truth for multiple tasks (by hand for segmentation tasks,
object detection, and using GPS data for odometry).

Some of the labeled sequences were made publically available, while for others the labels
are hidden, and are used to rank methods for the series of live benchmarks which are still
open today. Among them, the odometry benchmark is the one relevant for our application and
has been the reference benchmark for evaluating LiDAR odometry and SLAM methods since
LOAM [135] appeared.

The benchmark contains 11 sequences with ground truth and 11 more sequences with hidden
ground truth (used for the benchmark evaluation). Thus, we only consider the sequences for
which we have access to the ground truth, ie the ∼ 20000 frames of the 11 initial sequences.
These acquisitions comport different urban scenarios, mostly in suburban areas, with a sequence
on a highway, the sequence 01.

Another important point is that for KITTI’s benchmark, the LiDAR frames have previously
been distorted to compensate for the motion. For most of the sequences considered (everyone
except the sequence 03), we have access to the raw KITTI frames, ie without distortion. Using
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Property Abbrev. Description

Environment
Rural R Vegetation, linear and flat environments.
Suburbs, Residential S Small buildings, narrow roads,

low driving speed.
City C Tall buildings, narrow or wide streets,

many stop at lights, low driving speed.
Road, Highway H Few geometric features (linear environments),

high driving speed.
Outdoor O Open environments, tree and vegetation,

geometric features with large scale.
Indoor I Indoor environments, geometric features of smaller scale,

entry to unexplored environments, new rooms.
Small Scale Indoor SI

Table 2.2: Table of abbreviations of the different properties of a dataset sequence used in this thesis

these ”raw” point cloud frames, which only have the x, y, z properties, we can approximate the
timestamps of each point by linearly interpolating based azimuth (or yaw value). This will be
important to demonstrate on KITTI the relevance of compensating the motion distortion in
Chapter 3.

More recently, the same team published a new benchmark named KITTI-360 [68], acquired
with the same platform as KITTI’s original benchmark. The benchmark contains 8 additional
sequences with ground truth, with notably some much longer sequences (ranging from 3000 to
15000 frames), for these sequences the motion was not compensated, so similarly to the raw
sequences, we interpolate the timestamps using the azimuth angle.

Finally, it is well known that the LiDAR for KITTI [40] and KITTI-360 [68] have calibration
issues. So for every algorithm, and on each frame from the dataset, we apply the same correction
which we presented in our article [25], and which corrects the calibration of the KITTI LiDAR.

We summarize the content of the dataset in table 2.3.

On KITTI Odometry benchmark’s metric The KITTI odometry benchmark evaluates
algorithms using its metrics trerr, roterr which are variants of the RPE. More precisely, these
metrics are the averages of the RPEtr for different segments lengths ranging from 100m to
800m, (averaged over all segments of all lengths). This rather convoluted metric was designed
to assign a unique score to methods using a sometimes imprecise GPS ground truth. We will
sometimes use this metric (notably in chapter 4), to compare a wide range of methods on
KITTI without running the algorithm again, as most methods present their results using this
metric for better comparison.

2.4.1.2 KITTI-CARLA [27]: A KITTI-like synthetic Dataset

Our second driving dataset was acquired using the CARLA simulator [29]. The CARLA sim-
ulator is designed to advance the research for autonomous vehicles. Constructed on top of the
Game Engine Unreal Engine [34], it is essentially a Video Game, in which a comprehensive set
of sensors is implemented, ranging from realistic RGBD cameras (with photorealistic effects),
LiDAR, radar, event cameras, etc…
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Figure 2.2: KITTI[40] dataset acquisition platform (Top Left). The LiDAR for the acquisition
sensor for the setup is an HDL-64 Velodyne (Top Right), placed in position Autonomous vehicle,
ie with intersecting mostly the ground and points below the sensor. The bottom image shows
an illustrative LiDAR frame colored by the timestamp of each point.
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Sequence Properties Number of Frames

KITTI
00 Suburbs,Outdoor 4541
01 Highway,Outdoor 1101
02 Suburbs,Outdoor 4661
04 Suburbs,Outdoor 271
05 Suburbs,Outdoor 2761
06 Suburbs,Outdoor 1101
07 Suburbs,Outdoor 1101
08 Suburbs,Outdoor 4071
09 Suburbs,Outdoor 1591
10 Suburbs,Outdoor 1201
KITTI-360
00 Suburbs,Outdoor 11501
02 Suburbs,Outdoor 19231
03 Suburbs,Highway,Outdoor 1030
04 Suburbs,Outdoor 11400
05 Suburbs,Outdoor 6723
06 Suburbs,Outdoor 9698
07 Rural,Highway,Outdoor 3161
09 Suburbs,Outdoor 13955
10 Suburbs,Outdoor 3743

Table 2.3: Properties of each sequence of the KITTI and KITTI-360 datasets
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Figure 2.3: Images describing the sensor output of the CARLA dataset. Left: image from
a simulated photorealistic RGB sensor. Middle: a sample LiDAR frame simulated with the
engine. Right: the road layout of the map Town10.

The sensor outputs are accessible via an API and allow the simulation of a parametrizable
sensor suite on top of a vehicle that drives autonomously in one of the 8 maps predefined in
the simulator. Figure 2.3 presents the sensor output and the environment of CARLA.

The great feature of using a synthetic simulator is the access to the exact ground truth (for
the CARLA simulator, this includes ground truth for segmentation data, object detection and
also for poses). However, it does have drawbacks. First of all, currently, the vehicle model does
not describe the accurate physics of vehicles on a road (Jerky movements, aggressive rotations,
no simulation of the wheel’s distortion, etc…). Secondly, the environment in which the vehicle
navigates is extremely simplistic, it consists of repeatable structures, often extremely planar,
with little variation, and of overall small scale for the context of driving (as seen notably by
the largest map available in figure 2.3).

KITTI-CARLA Thus our dataset KITTI-CARLA [27], is therefore constructed with the
CARLA simulator (version 0.9.10) by designing a sensor suite copying almost identically
KITTI’s vehicle setup. The dataset has 7 sequences for 7 of the 8 default maps available in
the simulator (Town01-07). For each sequence, the default autonomous agent is driving in the
map for a total of 5000 frames, with a 64 lasers lidar simulated at 10Hz. The distortion of the
scan due to the motion is simulated, so each point of each frame is timestamped accurately.

2.4.2 Mobile Robotics Dataset
After the autonomous vehicle industry, another area that has been more and more vested in
LiDAR SLAM and mapping is the mobile robotics domain. Robots are becoming more and
more available, and their use in the industry has grown exponentially in recent years. Robots
are revolutionizing the retail industry for the automatic management of warehouses with various
degrees of autonomy, for performing safety inspections, for the Defense area, etc…

For most applications, and as the unit price of LiDAR sensors is decreasing steadily, they
are becoming a viable choice in the localization pipeline of the sensor. We consider a large-scale
mobile robotics dataset in this thesis: NCLT [13] which we present in section 2.4.2.1.

2.4.2.1 NCLT [13]

The dataset was published by the Michigan State University in 2013, to advance localization
in a predefined environment across multiple seasons. It consists of 27 sequences acquired with
a sensor acquisition system built on top of a controllable segway, including a LiDAR, an IMU
and a 360 camera. The complete system is described in figure 2.5.
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The 27 sequences consist of long runs (up to a couple of hours of sensor acquisition), within
the Michigan State University Campus, across multiple seasons. It was designed for study-
ing Long-Term localization, in varying environments (appearance of snow, different lighting
conditions, etc …). Figure 2.4 shows multiple runs of the sensor overlaid on top of each other.

Figure 2.4: Multiple trajectories of NCLT’s[13] platform across the Michigan University Cam-
pus, overlaid on top of each other.

The typical trajectories cross multiple types of environments (Roads surrounded by vegeta-
tion, small buildings, outside of large buildings, parking lots, etc…) This is in itself challenging,
as the localization algorithms need to adapt to environments of different scales. Another diffi-
culty of the dataset is the segway the platform is mounted on. It leads to trajectories with jerky
or awkward motion especially, where each terrain irregularity is felt, with additional strong ro-
tation in roll (during acceleration, or deceleration phases) and yaw (when the segway is turning
around itself).

Finally, the RTK GPS does provide a very accurate ground truth for each of the 27 se-
quences. The sequences will be labeled by their date of acquisition in tables, (for example
2012-01-08 is the first sequence, and 2013-04-05, the last).

2.4.3 Handheld Datasets
The final category of datasets describes a new use case, that of the handheld sensors suite.
Mobile mapping solutions carried by personnel have been around for some time, with projects
such as Google’s Cartographer [45] enabling the use of backpack solutions to map environments
so far only accessible by foot.

Current survey/mapping solutions are long and expensive, as traditionally static scanners
need to stay still until a scan is completed before moving it, mapping an environment one
scan at a time. But 3D LiDARs offer an alternative. Mounted on a device carried by a
person (backpack, stick or handheld), the data can be continuously acquired while crossing the
environments, leading to much faster acquisition time.

In this context, multiple datasets and benchmarks have been proposed to evaluate the
capabilities of LiDAR SLAM. Notably, Oxford University proposed the Newer College Dataset
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Figure 2.5: The Segway platform used for collecting the NCLT dataset [13]. Among the sensors
are present: an RTK GPS (1), a 360 camera (2), an HDL-32 Velodyne 3D LiDAR (3), an IMU
(4) and a consumer-grade GPS (5). On the right, a sample trajectory overlayed on top of a
satelite image of the campus. (Images are from the original article [13]).

[98], we present it in section 2.4.3.1. More recently, the HILTI SLAM Challenge presented
in 2021 at IROS and in 2022 at ICRA for the second edition aimed to evaluate the precision
capacities of state-of-the-art SLAM systems, with very high-quality ground truth. We present
this benchmark in section 2.4.3.2.

2.4.3.1 Oxford Dataset [98]

The Newer College Dataset was acquired within and outside of the Oxford University Campus.
The sensor suite has a 3D LiDAR (an Ouster sensor, with either 64 or 128 lasers), an IMU and
a stereo camera system. The system is mounted at the end of a stick, and held by a human
operator. Figure 2.6 illustrates the whole system with the operator.

The dataset itself consists of multiple runs of the operator across the campus’ courtyard
and neighboring streets. The environment comports different types of areas, including open
and confined and vegetated areas. The sequences themselves have different lengths, often with
loop closures, as the campus itself is rather small.

The challenge resides more with the motion than the environment. The environment itself
is rather simple, but because the system is handheld on a stick, the sequences presented have
irregular, jerky motions and fast rotations. To make the dataset even more challenging, some
sequences were purposefully made difficult by swinging the stick around, to challenge visual
and LiDAR SLAM systems.

The ground truth was computed accurately, using a survey-grade laser scanner to obtain
map with millimetric precision. The ground truth poses were then obtained by registering the
Ouster point cloud within the point cloud map using an Iterative Closest Point algorithm.

2.4.3.2 HILTI Challenges [44, 136]

Presented initially in 2021 at the IROS conference, the goal of the challenge was to test and
advance SLAM and mapping solutions in the construction industry. From HILTI ’s point of
view, the construction sector could tremendously benefit from very accurate mapping solutions,
for building inspections, progress monitoring, site safety verifications, etc…A second edition
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Figure 2.6: The Newer College Dataset. Top Left: the inner courtyard of the Oxford University
campus. Top right: the handheld sensor acquisition setup. Bottom: the reconstructed
ground truth map scanned with survey grade LiDAR. Images are from the dataset’s web page
https://ori-drs.github.io/newer-college-dataset/.

occurred in 2022 with an even more challenging set of sequences, in partnership with Oxford
University [136].

For both competitions, a set of sequences is acquired using a handheld sensor suite compris-
ing a LiDAR, an IMU and a system with multiple cameras. Some of the sequences are provided
with ground truth, and others have a hidden ground truth and are used for ranking methods in
a live benchmark. The ground truth themselves have a millimetric level of precision. Similarly
to the previous dataset (see section 2.4.3.1), a survey-grade fixed LiDAR scanner was used to
generate a highly precise point cloud, and the sensor is placed in millimeter accurate reference
points placed along the trajectory. For the rest of the poses, between the reference points, the
poses were estimated precisely using the reflective targets placed on top of the sensor.

The 2021 dataset contains 12 sequences in varied environments, ranging from empty parking
lots to offices, basements or construction sites. Only 6 sequences have ground truth poses. The
acquisition system for this dataset consists of a 64 laser Ouster sensor, with a directional
Livox sensor for LiDAR sensors, as well as a camera system with an IMU (see figure 2.7). This
dataset had many challenges, including complicated environments, notably open and featureless
environments like empty parking lots.

The 2022 competition was designed to be even more challenging than the previous one. The
setup is different, using a Hesai XT-32, which provides very precise measurements, mounted on
a small platform with a multi-camera system and an IMU. The system is deployed for multiple
sequences in a construction site, and to map both the outside and the inside of the Sheldonian
Theater in Oxford. In total, the dataset comports 16 sequences, 8 for the challenge and the
live leaderboard, and an additional 8 with ground truth poses. Some sequences are particularly
challenging, both because of the environments (long corridors, close confined spaces, stairs,
changing in scale) and because of the motion of the sensor, similarly to previous handheld
datasets is jerky with great acceleration but with relatively low speed.
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These datasets were designed to test Sensor-Fusion SLAM Algorithms, as its sensor suite
includes vision, LiDAR-based and inertial sensors. Interestingly, the results show that the best-
performing methods do not even need to leverage cameras, as Inertial Sensors and LiDAR are
sufficient to dominate both benchmarks. We will mainly use this dataset in chapter 5.

Figure 2.7: The sensor setups for the HILTI 2021 [44] and 2022 [136] competitions. On the
left the Phasma stick of the 2021 competition, carrying an Ouster 64 (3), a Livox (4) and an
Alphasense camera system (2) with an integrated IMU. On the right, the system was reduced
in size for the 2022 competition, to be held in front of the operator, and carries a HESAI XT-
32. Images were taken from the challenge’s web page https://hilti-challenge.com/index.
html.

Figure 2.8: HILTI 2022’s construction environment for sequences exp04,exp05,exp06
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2.5 Conclusion
We presented in the chapter the main tools we will use throughout this thesis to evaluate, rank
and analyze the different odometry and SLAM methods that we will present, either external
methods we will run, or our own. First, in section 2.2 and 2.3, we presented the different
metrics, and values that we shall track and look for in algorithms.

Secondly, we presented a large number of datasets that provide an extensive (though not
exhaustive) test bed to evaluate, compare and rank different methods we will present in a variety
of different conditions, environments and trajectories. While we will not run each algorithm on
each sequence of each dataset and will allow us some shortcuts when relevant, we will exploit
their full range to make the most relevant analyses and comparisons and draw deep insights
and conclusions of the inner workings of a multitude of methods.

Thus, we are now equipped to analyze and understand LiDAR odometries performances,
and we start in the next chapter with classical LiDAR odometry methods.
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Résumé
Les odométries LiDARs forment une partie essentielle de la plupart des systèmes de SLAM et
de mapping pour ces types de capteurs. Nous pouvons définir une odométrie LiDAR comme
un algorithme qui recale itérativement chaque nouveau nuage de point fourni par un capteur
LiDAR (aussi appelé ”frame”) sur une carte reconstruite au fur et à mesure des insertions.
L’aspect important, est qu’une odométrie est la meilleure estimation d’un système en l’absence
de fermeture de boucle, et en l’absence de contraintes absolues sur la trajectoire (type GPS).
Une odométrie est typiquement intégrée dans un système plus global définissant un SLAM, en
fournissant des contraintes de trajectoire relatives entre les frames consécutives. Ces contraintes
peuvent ensuite être intégrées à des modélisations probabilistiques de trajectoire, utilisant typ-
iquement des ”Pose Graph” [61], et fusionnées avec d’autres types de contraintes pour optimiser
globalement la trajectoire.

Dans ce chapitre, nous nous concentrons sur les odométries LiDAR pures. C’est à dire, sur
le problème d’estimation de trajectoire n’utilisant que le flux de nuage de point brut fourni par
un capteur LiDAR, sans référencement GPS, ni fermeture de boucle.

Le reste de ce chapitre est organisé de la manière suivante: Tout d’abord, nous présentons
dans la section 3.3 une odométrie LiDAR de référence, simple, implémentée en python, et qui
fait partie de notre projet open-source pyLiDAR-SLAM. Puis, en section 3.4, nous introduisons
notre méthode CT-ICP: une odométrie LiDAR état de l’art en terme de précision, avec une
efficacité lui permettant d’être utilisée en temps réel. Finalement, dans la section 3.5, nous
présentons une batterie d’expérimentations et d’analyses nous permettant de comprendre avec
précision les raisons des performances, mais aussi des limites des deux méthodes proposées.

Nous détaillons en dessous les contributions principales présentées dans ce chapitre:

Contributions Principales

– Une odométrie LiDAR simple, implémentée en python, atteignant néanmoins l’état-de-
l’art sur KITTI [40].

– Une nouvelle méthode repoussant l’état-de-l’art d’odométrie LiDAR sur un large panel
de jeux de données: CT-ICP.
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3.1 Introduction
LiDAR odometries are an essential building block of many SLAM and mapping systems. A
LiDAR odometry can be defined as the algorithm which iteratively registers LiDAR frames
onto a map built online. Another definition could be the frontend of a LiDAR SLAM sys-
tem without loop closure or absolute positioning information. Indeed, a LiDAR odometry is
typically integrated within a larger SLAM system by providing relative trajectory constraints
to a backend, typically a pose graph [61] or a factor graph [23], which optimizes globally the
trajectory and then the map can be updated if necessary.

While this simple view is true in many cases, in reality for many others, things get a little
more blurry as subsystems can be much more coupled to each other. Indeed, it is not always
possible to properly isolate an odometry component, as the map is sometimes updated after
the pose graph optimization. Others perform a sliding-window-based optimization on multiple
frames or have a tighter coupling between the backend and the frontend. Nevertheless, we will
adopt this view in this work in the interest of clarity.

Thus, this chapter focuses on LiDAR-only Odometries, ie the problem of estimating the
trajectory of the LiDAR sensor given only its stream of outputs, and without any loop closure.
We first present related work in section 3.2. Then we present a first baseline LiDAR-Odometry,
implemented in python as part of our pyLiDAR-SLAM project, in section 3.3. Then we introduce
our state-of-the-art solution: CT-ICP, which is a superior LiDAR odometry method, with
more complexity. CT-ICP’s performance, including on raw sensor data, is notably due to its
motion distortion strategy, and we present this work in extensive details in section 3.4. Finally,
in section 3.5, we experiment thoroughly with both methods and through a detailed ablation
study, clarify the contribution of different aspects to the overall performance of the CT-ICP.

Both the methods proposed in the chapter, allow a locally very precise estimation of the
trajectory, which in turn allows the precise estimation of geometry at a large scale, as illustrated
in figure 3.1. We summarize below the principal contributions presented in this work:

Principal Contributions

– A simple LiDAR Odometry implemented in python, which still reaches state-of-the-art
performance on KITTI [40].

– A state-of-the-art LiDAR Odometry, CT-ICP, for a wide range of datasets, thanks to its
distortion handling procedure.
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Figure 3.1: Dense point clouds reconstructed by aggregating frames using the trajectory esti-
mated by our pyLiDAR-SLAM odometry.
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3.2 Related Work
As previously mentioned, there is a massive body of work focusing on LiDAR odometries.
Early methods such as [114, 10, 82, 14] made the transition from 2D (3DoF) towards full 3D
(6DoF) trajectory estimation, using emerging 3D LiDAR technology, or assembling 3D scans
by integrating 2D lasers mounted on moving structures. This paved the way for modern LiDAR
odometries designed for modern LiDAR sensors, of which LOAM [135] is without contest the
seminal work. Yet, on the one hand, LOAM [135] has been extended and iterated on by
countless other methods [111, 134, 123, 69, 133, 47, 102]. On the other hand, many approaches
have been proposed with significantly different base formulations [26, 4, 30, 84]. But, on a high
level, all methods have essentially the same construction.

Initially, the stream of LiDAR points is cut into frames, each frame has a considerable
amount of points (up to 106 points per second for a HDL-64). For rotating LiDAR sensors
(Velodyne VLP-16, HDL-32 or 64, Ouster sensors, etc..), a frame corresponds typically to a
360° revolution of the unit, for an acquisition frequency of 10 to 20Hz. See figure 3.2 for examples
of frames for the different sensors. This operation is typically done not by the algorithm itself,
but by the driver provided by the manufacturer. So the input of each LiDAR odometry is a
sequence of LiDAR frames.

Each frame is pre-processed to reduce the number of points to handle, and the computation
burden that comes with it (typically this step can include sampling, key points extraction,
semantic classification, etc...). The frame is then registered within the current map using a
variant or extension of the Iterative Closest Point algorithm (ICP) [5]. The output of the
registration is the pose of the new frame located in the world (typically referenced by the pose
of the initial frame when no GPS is involved). Then the frame is inserted in the map, and the
motion model which predicts the initial guess before the registration is also updated. This is
summarized in figure 3.3.

The most significative element of the pipeline is the pair Map/Registration Algorithm. The
two are strongly coupled: if the map stores a set of features, a dense point cloud or distribution
information, the corresponding procedure registration will differ. We first look at the related
work from this perspective in section 3.2.1.

Another important aspect is the trajectory representation. This includes many aspects,
from the motion model to the point cloud distortion or even the registration procedure. We
present the related work through this lens in section 3.2.2.

Finally, in section 3.2.3, we present different acceleration strategies which were proposed to
improve the performances of the SLAM (including the different research structures proposed
for neighborhood computation).

Figure 3.2: Sensor frame for Ouster with 32 channels (left), 64 (middle) and 128 (right).
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Figure 3.3: A prototypical simplified LiDAR odometry pipeline.

3.2.1 Registration and Maps
Map representation and registration methods are intrinsically linked. As mentioned above, and
at the high-level most methods follow a procedure similar to the ICP [5]. More specifically,
for each scan, a pose is estimated by iteratively refining an initial pose estimate. For this
refinement, an optimal step is computed by minimizing a cost function, which is typically the
sum of some type of distance between a sample of points or features from the new scan, and the
map which stores the relevant information extracted from the registered scans to efficiently build
these cost functions. After each step in this iterative procedure, the data association between
points of the scan and the map is updated with the new estimate, before a new optimal step is
computed or convergence criteria are reached.

For performance and precision, many different strategies have been proposed and we detail
in the following sections the principal groups of methods. On a side note, though we cover LIO
methods in chapter 5, we mention some of them here, but with a focus on their registration
procedure.

3.2.1.1 Geometric Feature Based

LOAM and Derived work While not the first 3D LiDAR SLAM, LOAM [135] (see figure
3.4) has certainly been the most influential LO method in the robotics community. The method
processes each scan, and extracts feature points from individual scan lines of a rotating LiDAR
sensor. These feature points correspond to either planar or edge features. Their method is built
in two steps. First, a frame-to-frame alignment produces poses in real-time at 10Hz. Then, a
slower mapping phase produces a more precise pose estimate using a frame-to-map alignment
at 1Hz.

For both the frame-to-frame alignment and the frame-to-model, the registration procedure
minimizes iteratively an optimization cost consisting of the sum of point-to-line and point-to-
plane residuals:

ELOAM(T) =
∑
k∈P

δ2
plane(T ∗ ppl

k , npl
k ) +

∑
l∈E

δ2
edge(T ∗ pe

l , ne
l ) (3.1)
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(a) Block diagram describing the LOAM method.

(b) Reconstruction of environments using the LOAM method.

Figure 3.4: Images taken from the LOAM paper [135], describing the method.

Where p−
k and n−

k designate respectively feature points from the new scan and feature points
from the previous scan or the map. The features of a registered scan are stored in the map
which consists of a dual voxel grid of edge and planar features. The data association for the
”mapping” step is performed by constructing for each scan a kd-tree for all the feature points
in the neighborhood of the new scan’s pose estimate. One of the important reasons for the
success of LOAM is its accuracy (measured in drift). It was indeed one of the first methods to
outperform significantly other camera-based systems, notably on the most popular odometry
benchmark of the time: the KITTI benchmark [40].

Since its publication, many works have extended and improved the original method. No-
tably, Lego-LOAM [111] proposes an additional ground segmentation using an image-based
method [6] on the range image. A ground plane alignment is then used to estimate half of the
pose parameters (Z, θroll and θpitch), and the LOAM keypoints alignment then estimates the
remaining parameters (θyaw, X, Y ). Other works also integrate a similar idea to incorporate
ground constraints such as [71, 63, 133] based on the LOAM algorithm.

V-LOAM [134] uses a camera to estimate the frame-to-frame odometry and estimate poses
at a high frequency (30Hz), and then uses them to distort the LiDAR frame and improve the
pose estimate before the mapping stage.

Since the feature extraction of LOAM was designed for rotating LiDAR sensors with regular
firing patterns, some methods have adapted the algorithm to work for other sensor modalities,
notably for Livox sensors [69, 64] which have non-repetitive scanning patterns. Many more
derived works have been proposed over the years [102, 47, 123, 16], which keep the main
components of LOAM and its specific feature extraction strategy.

Other feature-based method Some approaches have proposed different feature extraction
strategies. For example, MULLS [84] (see figure 3.5) extracts features of the following classes:
facade, pillar, beam and vertex (MULLS is designed for urban scenarios, which contain many
such structures). Their ICP variant solves at each iteration, and after a data association within
feature classes, a multi-metric linear least square objective function, with appropriate costs for
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(a) Single LiDAR frame. (b) Feature points for the frame.

(c) Aggregated point cloud of local map. (d) Map of feature points.

Figure 3.5: Images describing the MULLS [84] map and feature points. Images are from the
original article [84]. The feature points are colored following: (ground, facade, pillars, beams)

each class of feature.
Other approaches extract planes from the point cloud as features [52, 139, 138, 41]. Planes

play an important role in point cloud processing, especially for indoor environments [7, 14].
These methods represent the map as a set of parametrized planes, and will typically update
the poses but also the plane parameters as new scans are registered. Planes extracted from a
new scan, typically with a range-image-based segmentation, are then tracked within the map
[138, 139] and a plane-to-plane or point-to-plane is used for an initial pose estimate. One of
the neat features of the infinite plane parametrization (compared with surfel elements or planar
features for example), is that it makes a batch update for poses and planes more convenient.
So most of these methods present some aspect of Bundle-Adjustment, which we cover in more
detail in section 3.2.1.4.

3.2.1.2 Dense Point Cloud Based

While feature extraction certainly has been relevant, they lead to a loss of information from
the raw point cloud. Other approaches have been proposed and shown to obtain high levels of
precision by keeping a dense point cloud representation of the map [26, 121, 127, 125, 126, 124].
This dense point cloud is obtained from iteratively inserting consecutive scans transformed
with the estimated pose. The challenge of these approaches is to deal efficiently with the sheer
quantity of data returned by the sensor, for which acceleration strategies are needed to reach
the desired runtime.

IMLS-SLAM First to demonstrate the possible precision gains obtained with this approach,
IMLS-SLAM [26] showed that retaining dense point cloud information in the map allows out-
performing LOAM on the KITTI benchmark [40]. IMLS-SLAM implements a frame-to-model
approach, where the model is a dense point cloud, consisting of a sliding window of consecutive
frames. For each frame, a kd-tree is built on the window of aggregated frames, and the normals
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(a) IMLS registration compared to the standard ICP. IMLS’s registration iterates until the key points
are aligned with the implicit surface and not the closest neighbors like the ICP.

(b) Left: sampled key points (red) from a single frame (blue), used to register the frame. Right:
aggregated point cloud using IMLS’s trajectory, shows the precision of the method, through the
precision of the small objects.

Figure 3.6: Description of IMLS [26]’s method.

are computed. Then, a sample of points is selected and registered against the local map by
minimizing the distance to the implicit surface of the point cloud. Figure 3.6 presents the sam-
ple points as well as a schematic comparison of the IMLS’s registration procedure, compared to
the standard ICP. This method, when it was published, reached state-of-the-art results on the
KITTI odometry benchmark [40]. However, it is too slow for real-time application of SLAM
(it runs at 1Hz), the main bottleneck being the construction of the kd-tree and the estimation
of the normal.

Other methods Some LIO methods have also proposed dense point cloud map representa-
tion while keeping real-time performances [127, 125, 126]. Using the optimized search structure
ikd-Tree [12], an iterative kd-tree, they store a dense point cloud, and can query for each key
point neighbors in the map at a high frequency for their registration algorithm, without being
delayed by map updates. We will cover more precisely their registration method, which is
intrinsically linked to their LiDAR-Inertial framework in chapter 5.
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Figure 3.7: Dense point cloud (left), point cloud sampled (middle) Images are taken from ikd-
tree [12].

3.2.1.3 Probabilistic distribution/Surfel variants

While dense point cloud approaches have tried to obtain improved accuracy by keeping more
information within the map, other approaches have taken a different road and decided to lower
the quantity of data to handle while maintaining information by modelling the surface of the
environment with probabilistic distributions [39, 58, 56, 131, 132, 83, 99] or surfel elements
[8, 11, 32, 87, 86, 31, 30, 95, 4, 17].

Surfel-based representation Though linked through the representation of the environment
as a set of surfaces, surfel elements differ from an infinite plane representation [52] presented
in section 3.2.1.1. Surfels are indeed small and localized surface elements as seen in figure 3.9
and model a small region of the environment for a much lesser cost than the set of individual
points they were constructed from. Surfel maps are often built from and stored in voxel grids
[8, 11, 32, 87, 86, 31, 30, 95]. A surfel is typically constructed from the covariance of a cluster
of points and thus summarizes the information for this cluster. SuMA [4] stands out by using
projective data association to compute neighborhoods as well as point clusters. It stores surfels
on the GPU and uses rasterization to construct a projective-based point association between
surfel elements from the map and the new scan.

Depending on the method, each scan can either be summarized as a surfel map [95], or
directly registered with a point cloud to surfel map alignment. In the first case, a surfel map to
surfel map alignment is performed. While the other is obtained by minimizing a point-to-plane
distance between points and their associated surfel elements [4, 17, 86].
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Figure 3.8: The Litamin map (on the right), summarizes the dense point cloud (on the left) as
a voxel grid of distributions. Image taken from the original article [132].
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Figure 3.9: Surfel map (b) representation from a single scan (a), and surfel map (d) from a
dense map (c) generated and stored within a voxel grid by [95]. All pictures are from the
original article [95].

Distributions: point to distribution, distribution to distribution Another strategy
to summarize the surface information is the probabilistic approach. Instead of flattening the
covariance like surfels, the information within a region of a map or scan is summarized as a
probabilistic distribution [39, 58, 56, 131, 132, 83, 99]. A first approach uses a normal distribu-
tion transform (NDT) [76] as a scan registration strategy. The NDT approach splits the space
using voxels and stores within each voxel the mean (µ) and covariance (Σ) of the corresponding
point cluster, and models with a normal distribution p(x) ∼ N (µ, Σ) the distribution of points
within the voxel. This map (M) is then used to register a scan (S) using a point-to-distribution
approach. Data association is performed using the voxel grid, and iteratively a pose estimate
is refined by maximizing the log-likelihood of the points belonging to the selected voxels:

argmax
T∈SE(3)

logP(S, T|M) = argmax
T∈SE(3)

−
∑

i

(T ∗ pi − µi)T Σ−1
i (T ∗ pi − µi) (3.2)

This 3D NDT scan registration is directly used by multiple methods to construct LiDAR
Odometries [56, 39, 16].

Another popular approach is based on the Generalized-ICP [108] registration method. This
approach generalizes both the original ICP [5], which minimizes a point-to-point distance be-
tween points, and its point-to-plane extension. In its original formulation, each measurement
both from the point cloud to register and the reference point cloud is modeled as sampled from
a normal distribution. So, for a point cloud PCA to be registered on a point cloud PCB, the
Generalized ICP refines poses by solving the following objective:

argmax
T∈SE(3)

P(PCA, T|PCB) = argmax
T∈SE(3)

logP(PCA, T|PCB) (3.3)

= argmin
T∈SE(3)

∑
i

(T ∗ µA
i − µB

i )T (ΣB + TT ΣAT)−1(T ∗ µA
i − µB

i ) (3.4)
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The Generalized ICP is a framework to register point clouds. Though in their original
paper, they present an enhanced plane-to-plane method, with a specific noise model of the
covariance, other models of the covariance could be used. Implemented within the Point Cloud
Library (PCL) [103], and facilitated by the library’s ROS integration, the Generalized ICP has
been the basis of multiple LO and LIO odometries [83, 99, 110, 100].

Recently [58] proposed a voxelized variant of GICP. This algorithm essentially combines
the NDT and GICP algorithms for faster execution. GICP relies on the costly nearest neigh-
bor association to determine each point covariance, while the NDT summarizes per voxel the
distribution. In their approach, VGICP combines the two. A preprocessing step extract for
each scan of the covariance for each point, using an efficient and parallel implementation of a
kd-tree. Then, the average covariance of each point is saved within each voxel (which ensures
that even for voxels with only one point, the covariance is not degenerate). This essentially
allows keeping more information from the raw point cloud, without the cost of an expensive
nearest neighbor search for each scan registration.

This is particularly helpful in the context of LO, as this leads to easier map updates within
the map after a scan is registered. Some very efficient LO have been built on top of this
registration [131, 132]. Figure 3.8 shows a representation of the LiTAMIN map as a grid of
distributions.
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3.2.1.4 Local Bundle Adjustment (BA)

As we saw in previous sections, there is a large variety of registration methods and map rep-
resentation, each with its specificities, strengths and weaknesses, and will study some of them
in section 3.5. Most odometry methods presented above have however one thing in common
after a scan is registered, the corresponding geometry of the map is never modified by the
odometry module, but only after loop closure, typically by modifying the map after pose graph
updates. This means that registration errors or approximations are never updated in light of
new measurements, which leads to the accumulation of drift which is typically never corrected
before loop closure.

Some approaches have been proposed to address this problem by proposing methods inspired
by Bundle Adjustment formulation of visual SLAM and structure from motion [72, 139, 49,
138, 35]. Compared to Pose Graph optimization, which optimizes a set of poses by minimizing
constraints on relative poses, bundle adjustment approaches optimize poses by minimizing
geometric constraints between poses and the environment. This allows them to refine poses
while staying faithful to the geometry, which a pose-graph only allows through covariance
estimations. Figure 3.10 shows an example of a LiDAR Bundle Adjustment formulation from
the article [72].

BALM [72], built on a LOAM framework, optimizes on a sliding window the poses for
20 scans, by minimizing edge and planar constraints between features observed from multiple
scans. Other approaches have focused on planar features [138, 35], and from a set of planar
constraints optimize a window of poses by maximizing the planarity of those planes. Very
recently, [28] proposes a unified LiDAR and RGBD Bundle Adjustment, which performs on par
or better than current state-of-the-art SLAM and BA approaches.

Figure 3.10: Visual Bundle Adjustment vs LiDAR Bundle Adjustment Formulation proposed
by BALM [72]. Image is taken from [72] original paper.

3.2.1.5 Conclusion

Though we tried to present a detailed picture of the principal LiDAR odometries approaches,
we have not been completely exhaustive. Other interesting approaches have presented more
complex map representation using volumetric representation with a large scale TSDF [60], an
implicit representation [48], or using a mesh representation for the map [120]. And many more
variations exist within the presented categories. We refer to [50] for a more detailed survey of
existing LiDAR odometries.

In section 3.5 we selected a few of the publically available methods to construct benchmarks
on the wide range of datasets presented in chapter 2.
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3.2.2 Trajectory Representation/Motion Model
After the pair registration method/map representation, another important aspect of LiDAR
Odometries is their trajectory representation and motion model. The motion of the vehicle
or robot carrying the LiDAR sensor is continuous, yet it is parametrized by a discrete set of
parameters. Furthermore, the LiDAR stream is often split into individual point cloud frames
(this is typically done at the driver level, for all LiDAR sensors), and the task for SLAM and
LO approaches is to output poses for the frame at the same frequency than the frames.

Though this is true for all types of sensors, including for cameras, this is particularly sig-
nificant for LiDAR due to the slow acquisition time of these sensors. Indeed, most LiDARs
produce scans at a frequency of 10 to 20 Hz. During this time the sensor is typically moving,
and possibly at a high speed by comparison to this frequency. This creates a distortion of
the LiDAR measurements, also called the ”rolling shutter effect” (referencing cameras’ rolling
shutter), which needs to be compensated for optimal registration and odometry quality. While
some approaches simply ignore this problem [131, 132], aided notably by the KITTI benchmark
which produces motion compensated frames [40], there is a large body of work focusing on this
problem [81, 8, 11, 30].

We can separate the problem into three components. First, the motion model, which we
present in section 3.2.2.1 describes how the motion is initialized before registration. This is a
very important, yet often overlooked aspect, as ICP-based registration typically has very small
convergence radiuses, and easily falls into local minimums. Secondly, comes the question of
how the trajectory is represented, modeled and parameterized (see figure 3.11). We present a
review of the approaches in section 3.2.2.2. Finally, using both the motion and the trajectory
representation, we present the different strategies for handling the distortion of the LiDAR
frame in section 3.2.2.3.

3.2.2.1 Motion Model/Initialization

As mentioned above, ICP-based methods, which rely on point association between two clouds,
need good initializations not to fall in local minimums. Strategies to predict the motion of
future frames based on the past registered trajectory is often called the motion model for the
platform. A motion model can also be used to define additional constraints on the registration
procedure, to force coherence with the model [25, 111].

Most LO methods rely on the constant velocity (CV) model [135, 25, 24, 123, 121, 8, 93,
139, 49]. This simple model simply considers the velocity as fixed between consecutive frames,
and thus initializes the pose Tinit

i+1 for a new frame by applying the previously estimated relative
pose T∗

i,i+1 to the pose of the previous scan T∗
i as follows:

Tinit
i+1 = T∗

i ∗T∗
i,i+1 (3.5)

The constant velocity model is particularly relevant in the context of road vehicles, which
have high inertia, and high-speed but slow angular acceleration. Though it is still relevant, as
shown recently in some challenging mobile robotics contexts [25, 121], when the motion has
fast acceleration, notably high angular acceleration (notably for handheld datasets [44, 136]).

For these scenarios, an Inertial Measurement Unit (IMU) is often considered necessary. As
presented in chapter 2, IMU sensors measure linear acceleration and angular velocity, typically
at a much higher frequency than LiDAR frames. This information is integrated by LIO methods
to predict the motion, and put constraints on the optimization procedure, and it typically
removes the need for a motion model altogether. LIO is the focus of chapter 5, so we do not
detail further these methods here.
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(a) Rigid poses trajectory model.

(b) Constant velocity trajectory model, implemented by linear interpo-
lation between rigid poses.

(c) B-Spline continuous trajectory model, parametrized by discretized
knots.

Figure 3.11: Representation of the different trajectory models for robotics application. Black
dots represent parameter poses and the lines, the estimated trajectory.
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Figure 3.12: Elevation-Image registration based, motion initialization method presented in [24].
The image represents two consecutive scans projected on the z-axis aligned using a geometrically
verified 2D image based alignment.

Other approaches have been proposed, instead of, or completing the constant velocity
model. Notably, LOAM [135] initializes the motion with a frame-to-frame alignment before
its precise registration procedure (called ”mapping” in the original article). This approach has
been extended by [16], which proposes an NDT-based frame-to-frame registration before calling
LOAM’s scan-to-map registration.

In our work, [24], where we study the performance of different initialization strategies,
we propose a novel Elevation-Image based alignment strategy. This strategy estimates the
2D motion of the sensor, by projecting consecutive scans on the z-axis, and using an image
matching technique to estimate the 2D rotation (in yaw) and the 2D motion (see figure 3.12).
We present this work in more detail in section 3.3.1.

On a similar note, LeGO-LOAM [111] uses a ground detection to constrain the motion.
As noted above, their registration procedure approach estimates the 6D motion in two steps.
First estimating the z-axis and roll and pitch angles of the rotation using a ground alignment
procedure, before estimating the remaining parameters with the standard LOAM optimization.

3.2.2.2 Representation/Parametrization of the trajectory

Most methods model the trajectory as a set of poses, where one pose corresponds exactly to the
pose of the sensor at the time of a single scan acquisition ([135, 84, 24, 111, 123, 26, 83]...). This
approach is convenient in the context of SLAM, as it integrates easily within the Pose Graph
framework. If poses are needed at higher rate, notably to distort the LiDAR frame [123], they
are typically sampled at a higher frequency with a linear interpolation between the reference
frames. More specifically, given a pose TA = (RA, tA) at a time tA and a pose TB = (RB, tB)
at a time tB, a linear interpolation allows to estimate a pose at a time t ∈ [tA, tB] with:

tα = t− tA

tB − tA

∈ [0, 1] (3.6)

t(t) = tα · tB + (1− tα) · tA (3.7)
R(t) = Slerp(Quat(RA), Quat(RB), tα) (3.8)
T(t) = (R(t), t(t)) (3.9)

We note here Slerp(.) the Spherical Linear Interpolation operation on quaternions, and
Quat(.) the operator which transforms a rotation to a representative unit quaternion.

43



Chapter 3: LiDAR(-only) Odometry

B-spline trajectory representation While this representation has the advantage of sim-
plicity, one thing to notice is that it is not continuously differentiable. Thus, it is not ideal to
model smooth trajectories, which are often relevant, notably in driving scenarios or for mobile
robotics. More complex modelization of trajectories is sometimes needed, notably when accu-
rate trajectory positions are needed at a high frequency, for example when fusing data with
higher frequency sensors like IMU or cameras. This has motivated a large body of work to
propose alternate and more complex representations, allowing more precise pose estimations at
high sampling rates. A popular solution is to use B-splines [8, 11, 32, 106, 30, 95, 97] to model
the trajectory, and build a continuous and differentiable trajectory representation.

A general B-spline (or basis spline) of order n, is a piecewise polynomial function of degree
n − 1 in a variable t, which serves as a basis function to define spline functions. Given m + 1
knots t0, t1, ..., tm+1, a B-spline of order n is defined (recursively and by construction) as:

Bi,1(t) :=
{

1 if ti ≤ t < ti+1

0 otherwise
(3.10)

Bi,n(t) := t− ti

ti+n − ti

Bi,n−1(t) + ti+n+1 − t

ti+n+1 − ti+1
Bi+1,n−1 (3.11)

These basis functions are used to define more complex interpolation, notably to define
smooth continuous curves. Given m + 1 control points P0, P1, ..., Pm ∈ Rd (for each of the
m+1 knots), the spline of order n supported by the B-spline and these control points is defined
as:

Sn(t) =
m−n∑
i=0

Bi,n(t) ·Pi, defined for t ∈ [tn, tm−n] (3.12)

Because a B-spline of degree n is a polynomial of degree n − 2, it belongs to the class
Cn−2. Thus to obtain a twice continuously differentiable function, an order of 4 is necessary.
This definition is not directly applicable to model trajectories due to the non-additive nature
of SO(3). To resolve this, the rotation and translation are often decoupled [113, 92, 42], and
the translation component can be expressed using equation 3.12. The rotation component is
typically expressed using cumulative B-spline curve (CuBsp) [113, 92, 42]. The idea stems from
a reformulation of equation 3.12 using cumulative basis functions:

Sn(t) = P0 +
m∑

i=1

∼
Bi,n(t)(Pi −Pi−1) (3.13)

∼
Bi,n(t) =

m∑
j=i

Bj,n(t) (3.14)

This equation can be applied to SO(3) and its associated Lie algebra. For X0, X1, ..., Xm ∈
SO(3)m+1, and given the logarithm log : SO(3)→ R3 and exponential map exp : R3 → SO(3),
[55] proposed the following formula to define a curve in SO(3) using the cumulative B-spline
functions:

Sn(t) = X0

m∏
i=1

exp[
∼
Bi,n(t)log(Xi−1

−1 ∗Xi)] (3.15)

This approach was optimized by [113, 92], and we refer the reader to these approaches for
more details on the method. Figure 3.13 shows an illustration of the usage of B-Spline by CLins
[75], a LiDAR-Inertial Odometry method.
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Figure 3.13: CLins [75] uses a B-Spline to represent a continuous trajectory. They optimize
Knots parameters on a sliding window. This continuous modeling, notably allows them to
construct IMU residuals using the derivatives of the trajectory. Images from [75].
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3.2.2.3 Handling the distortion of the LiDAR

The final aspect of the trajectory representation is how the distortion of the point cloud is
handled. As we will show in section 3.5, the choice of strategy to handle this motion distortion
has a strong effect on the precision of odometries. The principal reason is that the motion
distortion can create bad point associations, which leads to convergence towards a bad objective
by ICP methods.

Despite its importance, this singular problem has often only been proposed as a small feature
within a more global system and rarely studied in itself. Many methods, indeed, notably those
essentially evaluated on KITTI which provides motion corrected frames[135, 84, 39, 57], do not
consider this problem.

Typically, there are currently four approaches. The first approach is to treat this as a
preprocessing problem. Given an initial estimation of the motion, using a constant velocity
model or if available the prediction from an IMU, the point cloud is undistorted using this
estimate, and then registered as is in the map [139, 112]. Other approaches use a two-step
method, where after an initial undistortion is applied and after the scan is registered, the
distortion is updated using the novel, refined estimate [123, 49]. While this method corrects
the distortion given a better estimate, the registration itself uses the same initial distortion,
even after the pose is updated at the end of an iteration, before a new data association is
performed. To go one step further, the distortion can be corrected at the end of each iteration
of the registration procedure before the data association is updated [93].

All of the above approaches use linear interpolation to perform the distortion of the point
cloud (though, if an IMU is available, the poses can be sampled at higher frequency [97]).
However, the registration remains a rigid transformation, and the distortion is not modeled
in the optimization objective. So the final step is to model the continuous trajectory with
an extended set of parameters and optimize the objective on these parameters. This is the
approach taken by many methods modeling the trajectory with B-splines [11, 32, 106, 30].
These methods typically estimate trajectory segments corresponding to multiple scans with a
small set of control points, which tends to smooth the trajectory [96]. In our work [25], which
we present in section 3.4, we propose an alternative distortion method, notably inspired by [9].
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3.2.3 Acceleration strategies
For many robotics applications, SLAM algorithms need to be fast. As the computational
resources often need to be shared by multiple processes for multiple tasks (path planning,
object recognition, obstacle avoidance, etc...), there is also an incentive for low memory, power
and computation consumption. This is typically a challenge, notably due to the immense
quantity of data typically received from the sensors. For reference, the Velodyne Alpha Prime
with its 128 channels, produces around 4.8 million points per second, which amounts to at least
54Mo per second (using 32bit floating point representation).

Using all this information should lead to more precise algorithms, however, in practice, to
construct real-time SLAM solutions fed with this data some acceleration strategies are required.
One key aspect of the different strategies we present in this section is to choose an advantageous
tradeoff between on the one hand the loss of information and the loss of precision associated
with it and on the other the performance gains. Counterintuitively perhaps, this tradeoff is
not always straightforward, as often the precision is not always associated with the quantity of
information available, but rather with selecting the useful information.

In this section, we present the most important strategies to gain performance in LiDAR
SLAM. First, reducing the amount of data in the LiDAR frame is necessary, the challenge
is to adopt strategies losing the least amount of information for a performance requirement.
We present these sampling and summarization techniques in section 3.2.3.1. Another typically
costly operation is the point association. In the context of an ICP-based registration, point
associations are updated after each inner iteration of the algorithm. Thus to accelerate the
nearest neighbor search, some data structures are necessary, and we present some work focusing
on this aspect in section 3.2.3.2.

3.2.3.1 Sampling and Summarizing

We already mentioned multiple summarization strategies in section 3.2.1, some of which are
intrinsically linked with the associated registration method (e.g. surfel extraction, features
extraction LOAM [135], voxelization NDT [76]). Summarizing and sampling can occur at two
stages, first as a general pre-processing step, to lower the number of points to process, and then
during the registration procedure, by selecting a smaller amount of key points to register.

Features Sampling We already mention LOAM-based methods in 3.2.1. One of the goals
of this dual feature extraction is to reduce the computational load. This preprocessing step
selects points in the input scan which have either high (planar points) or low (edge points)
local smoothness. In the original paper [135], points are grouped by scan lines, we note p(m,n)

the nth point of the mth scan line. The local smoothness is computed as follows, where N (m,n)

denotes the surrounding neighbor points of p(m,n):

σ(m,n) = 1
#N (m,n)

∑
p(m,j)∈N (m,n)

(||p(m,j) − p(m,n)||22) (3.16)

Two thresholds σedge and σplanar control the number of edge and planar features extracted.
The performance gains from this sampling occur mainly from limiting the size of the optimiza-
tion problem to solve (measured by the number of residuals to evaluate) and of the neighbor
association step in the ICP.
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(a) Original frame (b) Regular sampling of 104 points.

(c) Random sampling of 104 points. (d) Grid sampling with voxel of 0.5m

Figure 3.14: Geometric sampling for different strategies.

Geometric Sampling Outside of LOAM-based methods, notably for dense point cloud align-
ment methods (see 3.2.1.2), the most popular strategy is to sample points to have a satisfying
distribution of points in space. The goal of some strategies is to correct the resolution gap
between the vertical and horizontal axes. Rotating 3D LiDARs sweep the environment at high
frequency, using N laser (with N laser ranging from 16 to 128 depending on the sensor). So for
each frame, they produce a point cloud organized as a 2D tensor of dimension N laser ×N fire,
where N fire typically equals 1024 or 2048. Thus, a strategy is to reduce the number of the
horizontal dimension of the laser, this can either be done by projecting the laser in a smaller
range image [4, 24], or by subsampling columns from the tensor image.

While this approach has many advantages, including simplicity, speed, and the capacity to
be parallelized (notably on the GPU [4, 24, 15]), it does not adapt to the geometry captured. A
typical problem is that it can suppress points far away while retaining many points belonging to
surfaces close to the sensor. So a final possibility is to sample points with a fixed size voxel grid
[121, 25, 49]. For each frame, a single point is kept per voxel, so the quantity of information
retained depends on the selected voxel size. Figure 3.14 shows different sampling strategies
of LiDAR Frames implemented in CT-ICP. One of the problems of this approach is that the
number of points depends on the environment. In large and open environments, this leads to a
significantly larger sample, and thus slower processing time (both for the registration and map
management). We investigate this in section 3.5.

Finally, a simpler method is to sample points randomly with a uniform distribution. This
approach is notably used in LOCUS [83] which keeps only around 10% of the points of incoming
frames.
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Summarizing A last alternative we already mentioned above is to summarize each frame
using a voxelized distribution. This is the approach selected by [131, 132], where each frame is
voxelized, and the mean and covariance of points falling in the voxel are stored for each voxel.
Similarly, surfel methods can transform each frame into a surfel map, by computing the surfel
parameters from the mean and covariance of points attached to each surfel (for example using
a voxel grid) [95].
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3.2.3.2 Neighbor association and search data structure

A costly step, in terms of runtime and computations, is the neighbor association. In an ICP-
based scheme, each point association is recomputed at each iteration, typically by finding its
nearest neighbor in the map. This typically requires using spatial query acceleration schemes,
to avoid iterating through all the points of the map.

Kd-Tree, Octree The most popular approach is to use space partition data structures, such
as kd-trees or octrees. Both of these approaches partition the space, though differently. A kd-
tree [38, 81] is a balanced tree that splits the space at the median for a given axis, iteratively
permuting axes for each node. The construction has a complexity of O(nlog(n)) (in the 3D
case), and the expected complexity of nearest-neighbor queries is in O(log(n)) [38].

By contrast, an octree [33] splits the space into regular grids, and depending on the point’s
repartition in space, is often not balanced. Traversing the tree requires O(K) operation, where
K is the number of subdivisions. Most methods relying on octrees typically set a minimum
resolution (0.001m for LOCUS 1.0 [83], and from 0.1m to 0.001m for LOCUS 2.0 [99]). Figure
3.15 illustrates the different division of space of the two methods

Figure 3.15: Separation of space for a Kd-Tree (left) and an Octree (right). Both tree data
structures separate the space to accelerate spatial queries. But use different methods to do so:
the octree splits the space equally at each node, while a kdtree computes the optimal separating
plane to tidy points. Images from [12] and [107].

The issue with these two data structures is that they are not designed for a dynamic 3D
environment such as the ones created by SLAM algorithms. To be efficient, SLAM algorithms
need to perform map management operations such as removing old data or duplicated data
or updating the structure after a trajectory update. To get around this problem, multiple
strategies were employed, some more or less efficient.

LOAM and derived work [135, 123], store the point cloud map in a voxel grid. When a scan
is registered against the map, a set of features in the surrounding environment of the scan is
extracted, and a kd-tree is built specifically for these features. It is then used by the registration
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algorithm and destroyed when it finishes. Similarly, IMLS-SLAM [26] iteratively constructs a
new kd-tree for the previous N = 50 frames for each scan registration, which negatively impacts
the runtime in this case.

Recently, ikd-Tree [12] proposed an iterative kd-Tree which augments a static kd-Tree with
thread-safe management operations (insertion, deletion, downsampling) in O(log(n)). The data
structure management operates on a separate thread, and tree rebalancing is triggered each time
an update operation is required. Following this, LOCUS 2.0 [99] proposed a multi-threaded
octree and achieves similar performances as [12]. The system maintains an octree centered
around the robot, with regular insertions. And periodically, the construction of a novel octree
is triggered and computed on a separate thread. Once the computation terminates, the two
octrees are simply swapped at the end of the construction.

Projective association One of the problems of tree structures, is the limit in their paral-
lelization capacities for a single query, as tree traversal cannot be parallelized. By contrast,
projections are very parallelizable, and thus can efficiently be exploited by GPU for parallel
processing. This is the strategy adopted by SuMA [4, 17] to produce an odometry that processes
high-resolution scans (with a resolution of 900 × 64) in real-time. The point association for
their point-to-plane approach is performed by pixel-wise association within a spherical image.
More precisely, the surfel map is projected in the same spherical image as the input cloud.
Points of the new scan are associated with surfel falling in the same pixel for a point-to-plane
alignment. Another approach, [109], also uses a projective data association within a registration
procedure inspired by GICP[108] and NDT[76]. In our work [24] we also exploit this projective
data association, and present it in section 3.3.

Voxel Hashing Another increasingly popular acceleration strategy is to use voxel hashing
[78, 126, 121]. The general idea is to store voxels in a hash table, and for the neighbor associ-
ation, to find neighboring occupied voxels using hash comparisons in the table. We detail this
approach in section 3.4, when we present our work [25] which incorporates this data structure.

3.2.4 Conclusion
In this section, we presented in detail the most important aspects of a LiDAR-only odometry
pipeline. As we saw, there is a large variety of approaches for each step of the pipeline, and
though most new methods make some effort to isolate the proposed contributions of each new
component through ablation studies, it is still difficult to extrapolate statements outside of
the specific LiDAR Odometry pipeline presented. For example it is impossible to say which
registration method is fundamentally the best based on the current related work alone, there
is no consensus on which sampling strategy is better, which method to handle the distortion
works best, etc... In section 3.5, we aim to help answer some of these questions by performing
a deep and detailed analysis both between systems and within our LiDAR Odometry system,
through a large variety of benchmarks.

But before this, we present the two LiDAR Odometry pipelines we developed during this
thesis in section 3.3 and 3.4.
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3.3 pyLiDAR-SLAM: A basic classical pipeline
In our work [24], we performed a detailed comparison of multiple LiDAR Odometry approaches,
focusing on the difference between deep and classical LiDAR odometries, which we present in
section 4.3. This comparison is made possible by the implementation of a classical pipeline,
which serves as a reference to derive our analysis. In this section, we detail this classical pipeline,
which was designed to be a simple implementation of point-to-plane LiDAR odometry. Yet,
despite its simplicity, this method nonetheless obtains near state-of-the-art results on the KITTI
odometry benchmark.

This work is integrated within the modular python toolbox pyLiDAR-SLAM. This toolbox is
designed by breaking the LiDAR Odometry into different modules, each module having mul-
tiple implementations, including deep learning blocks, which can be combined into different
pipelines. Figure 3.16 presents an overview of the modular pipeline, and the different modules
implemented. In green are all the classical modules we address in this section. The tool-
box is publicly available on GitHub at https://github.com/Kitware/pyLiDAR-SLAM/wiki/
SLAM-LiDAR-Toolbox.

So, in the remaining of this section, we present this work, which will serve as a good baseline
when we later introduce our main work CT-ICP in section 3.4.

Detailed Contributions The contributions of the work presented in this section are the
following:

• The implementation of a modular point-to-plane odometry package, which reaches near
state-of-the-art performance on KITTI despite its simplicity.

• The use of elevation images to initialize the 2D motion of the sensor.

• A novel projective frame-to-model odometry, though assembled from existing components.

• A lazy computation of the map normals for better performance.
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Figure 3.16: Overview of the pyLiDAR-SLAM python package. The toolbox is designed as
a modular pipeline, where each module has multiple implementations, which allows testing
different combinations of modules.
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3.3.1 Motion Initialization and Preprocessing
First, before a frame is given to the odometry module, a preprocessing step is applied and an
initial pose is estimated. The importance of each of these two steps was already mentioned in
depth in section 3.2.

Motion Initialization (NI,CV,EI) Additionally to the basic common approaches of us-
ing a Constant Velocity model (CV), or no initialization (NI), we introduce a novel Elevation
Image (EI) based initialization procedure. Elevation images have already been used notably
in loop closure context [74], and overall we will see in section 3.5 that it does not yield signi-
ficative improvements over other methods. Using elevation-based alignment in this context is
nonetheless, to the best of our knowledge, a new approach that achieves similar goals as the
two steps alignments of Lego-LOAM [111] presented above.

For each new frame, we project into a 2D occupancy grid along the z-axis (this projection
assumes that the sensor is oriented vertically with respect to the ground, which is typically
the case for a sensor on a vehicle for instance). The grid has a resolution of 800 × 800, where
each pixel represents a 30cm × 30cm patch of the ground for driving scenarios (though this
parameter should be adapted in other contexts). The grid is then treated as an image, ORB
[101] features are extracted (we chose ORB features for their efficiency and rotation invariance).
To estimate the motion of the new frame, we perform a 2D image alignment between the new
frame and the previous frame. Using the RANSAC algorithm [36], we fit an image homography,
and if a threshold number of inliers is reached, the motion is initialized with the 2D transform
computed from the homography. See figure 3.12 for an illustration of the elevation image
registration process. This method, within the pyLiDAR-SLAM framework slightly outperforms
other models CV, NI as we will show in section 3.5.

Preprocessing (Grid Sampling, Distortion) As a preprocessing step, we apply either a
grid sampling step or a spherical image based sampling (which were already presented in the
above section 3.2.3.1), followed by a distortion procedure. By default, we proposed in our work
[24] a voxel size of 0.4m for the grid sampling, and a resolution of 64 × 720 for the spherical
sampling. However, in section 3.5 we present the effect of each of these parameters on the
performance of the algorithm.

3.3.2 Registration procedure
After the motion initialization and the frame new frame is preprocessed, we register it within
the map using a point-to-plane variant of the ICP algorithm [5]. A prototypical ICP algorithm
is presented in Algorithm 1. The ICP is an iterative procedure that computes incremental pose
updates, by minimizing the distance between the transformed point cloud and a reference point
cloud. The distance in question depends on the variant, as was seen above in section 3.2.1. In
this work, we used the point-to-plane [88] variant and detail it below.

Another crucial point of the registration is the type of point association used. In our case,
for the point-to-plane variant, we need to compute at each iteration the nearest neighbor and
its normal in the point cloud. We present in section 3.3.3 the strategies considered in this work.

Point-to-plane Error As presented in algorithm 1, incremental pose updates are obtained
by minimizing the distance between key points of the preprocessed frame, and the point cloud
of the map. In this work, we estimate increments by minimizing the distance between a key
point and the tangent plane of the environment supporting its closest neighbor. Keeping the
same notations as Algorithm 1, where PC1 is the target point cloud, and PC2 the map point
cloud, and ni the normal of the tangent plane passing through qi, the error minimized is defined
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Figure 3.17: Point-to-plane error between two surfaces. Image is from the technical report [73].

as the sum of point-to-plane residuals for the set of appariements N1,2 := {(pi, qi)}. This error,
which we note Ept-to-pl(T), is expressed as follows:

Ept-to-pl(T ∈ SE(3)) = 1
2

#N N 1,2∑
i=1

ρ((|T ∗ pi − qi) · ni|2) = 1
2

#N N 1,2∑
i=1

ρ(r2
i ) (3.17)

The point-to-plane is often preferrable to the original point-to-point distance [4, 17, 78, 26].
The intuition behind this is that a point-to-plane metric allows the scan to slide on the dominant
planes, which leads to larger convergence areas (ie larger areas in the parameter space which
leads to correct convergence).

Robust Estimator In the equation 3.17, ρ denotes a robust loss function that is used to
mitigate the effect of outliers. Outliers occur when points association fail to associate a key
point to a point (or a plane) which will bring it closer to its real position on the map. This occurs
for multiple reasons, relatively large initial motion, mobile objects, or simply due to the specific
geometry of the environment. Robust estimators will cancel the quadratic contributions in a
standard least-square scheme of wrong associations which have residual growth as the solution
gets closer to the real value.

We can solve equation 3.17 with a least square solver, by introducing the weights wi =√
ρ′(r2

i ). Then, minimizing 3.17 is, with some approximations, equivalent to minimizing (which
we show below):

EW LS
pt-to-pl(T) = 1

2

#N N 1,2∑
i=1

w2
i · ri(T)2 (3.18)

This least-square expression is non-linear due to the rotation component of the pose pa-
rameters. Thus to minimize it, an iterative least-square solver is required. At each step,
of the iteration, an optimal step δT∗ is computed, and then residuals and weights are up-
dated. While many popular robust estimators exist, in this work we used the Cauchy estimator
ρcauchy(r2, σ) = σ2log(1 + r2

σ2 ), parameterized by the distance parameter σ. For this estima-
tor, ρ′

cauchy(r2, σ) = 1
1+r2/σ2 . This estimator, which is asymptotically logarithmic allows us to
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Figure 3.18: Cauchy loss function for different values of σ, compared to the function square
(without robust estimators). For residuals far from zero (where the ”far” is controlled by σ),
the error contribution to the objective is logarithmic.

strongly eliminate large outliers without clamping, and thus we found, leads to more refined
estimates. Figure 3.18 shows the Cauchy loss function for different values of σ.

Gauss-Newton In this work, we use the Gauss-Newton algorithm to minimize the expression
above. First, we show that solving 3.17 and 3.18 is equivalent. From the taylor expansion of
equation 3.17, we have:

Ept-to-pl(δT ∗T) = Ept-to-pl(T) + J(T) ∗ δT + 1
2
· δTT ∗HE(T) ∗ δT + o(∥δT∥2) (3.19)

Where J(T) ∈ R6 and HE(T) ∈ R6×6 are respectively the jacobian and hessian of Ept-to-pl
with respect to T. Minimizing this expression can be done by setting the derivatives to zero,
which leads to:

J(T) + H(T) ∗ δT∗ = 0 (3.20)
δT∗ = −HE(T)−1 ∗ J(T) (3.21)

This is the expression of the Newton algorithm, of which the Gauss-Newton is an approxi-
mation. For equation 3.17, the jacobian and hessian are expressed as:

J(T) = 1
2

∑
k

∂ρ(r2
k)

∂T = 1
2

∑
k

2rk · ρ′(r2
k) · ∂rk

∂T =
∑

k

rk · ρ′(r2
k) · ∂rk

∂T (3.22)

HE(T) = 1
2

(∑
k

∂2ρ(r2
k)

∂ωi∂ωj

)
ij

= 1
2

∑
k

(
∂2ρ(r2

k)
∂ωi∂ωj

)
ij

(3.23)

=
∑

k

(
ρ′(r2

k) · ∂rk

∂ωi

∂rk

ωj
+ ρ′(r2

k) · rk · ∂2rk

∂ωi∂ωj
+ 2ρ′′(r2

k) · r2
k · ∂rk

∂ωi

∂rk

ωj

)
ij

(3.24)

For EW LS
pt-to-pl of equation 3.18, we apply the standard Gauss-Newton derivation from the

Taylor expansion, starting from the lifted form of the error expressed using residual vectors:
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EW LS
pt-to-pl(T) = 1

2
·R(T)T ∗R(T), where R(T) =

(
wi · ri

)
i

(3.25)

EW LS
pt-to-pl(δT ∗T) = 1

2
·R(T)T ∗R(T) + ·R(T)T ∗ JR(T) ∗ δT (3.26)

+ 1
2

(δTT ∗ JR(T)T ∗ JR(T) ∗ δT + 2 ·R(T)T ∗HR(δT, δT)) + o(∥δT∥2)

Where HR(δT, δT) is the hessian of the residual vector R(T), and JR(T) its jacobian. The
Gauss-Newton method consists of approximating HEW LS to JR(T)T ∗ JR(T), then we optimal
step for the minimization of EW LS is:

δTW LS = −[JR(T)T ∗ JR(T)]−1 ∗ [R(T)T ∗ JR(T)] (3.27)
replacing: JR(T) =

(
wi · ∂ri

∂T

)
i

=
(√

ρ′(ri) · ∂ri

∂T

)
i
, leads to: (3.28)

δTW LS =
(∑

k
ρ′(rk)∂rk

∂ωi

∂rk

∂ωj

)−1

ij
∗ [

(√
ρ′(rk)rk

)T

k
∗

(√
ρ′(rk)∂rk

∂T

)
k
] (3.29)

= −
(∑

k
ρ′(rk)∂rk

∂ωi

∂rk

∂ωj

)−1

ij
∗ [

∑
k

ρ′(rk) · ∂rk

∂T ] (3.30)

Looking more closely at (3.24) we note that if we make the following approximations (which
are often made on the assumption of small residuals):

ρ′(r2
k) · rk ·

∂2rk

∂ωi∂ωj

≈ 0 (3.31)

2ρ′′(r2
k) · r2

k ·
∂rk

∂ωi

∂rk

ωj

≈ 0 (3.32)

Then we see that the optimal steps (3.27) and (3.21) are equal, which justifies our reformu-
lation as a weighted least square problem.

Algorithm 1: Prototypical ICP Algorithm.
Input : PC1, PC2, T1→2 ∈ SE(3)
Output: T ∈ SE(3) ; /* The optimized pose */
T← T1→2
Kpts← T ∗ PC1
k ← 0
while k ≤ Nmax or Convergence Criterion Reached do
NN 1,2 ← Nearest Neighbors of Kpts in PC2 ; /* Neighbor Association */
NN 1,2 = {(pi ∈ Kpts, qi ∈ NN 1,2),∀i ∈ [0, #Kpts]}

δT∗ = argmin
δT∈SE(3)

#N N 1,2∑
i=1

Dist(δT ∗ pi, qi) ; /* Pose Optimization */

T← δT∗ ∗T ; /* Pose Update */
Kpts← T ∗ PC1; /* Keypoints Update */
k ← k + 1;

end
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3.3.3 Point Association and Neighborhood construction
As mentioned above, a critical step of the registration procedure is the neighbor association
method. As our work is a point-to-plane based association, and as seen in algorithm 1, for
each iteration of the ICP, for each keypoint we need to compute the nearest neighbor and its
associated normal in the map. This requires giving the map a point-association method, and
in this work, we used two of them, which we compare against each other. First a classical
kd-tree-based method (similar to [135, 26]), and then a spherical projection data association.
We detail both methods here.

Kd-Tree In this work, and similarly to [26], at each iteration the map consists of the point
cloud obtained by the concatenation of n consecutive frames, and a Kd-Tree is built on the
concatenated point cloud. Then for a given query point, the exact nearest neighbor in the
map is found by descending through the graph structure [38], which take O(log(Nmap)) where
Nmap is the number of points in the map. Additionally, for the point-to-plane association, we
need to build the normal for each query point. For a given point of the map, the normal is
estimated using its neighborhood’s covariance. More precisely, for a point pmap of the map a
neighborhood N (pmap) of its k nearest points in the map are selected, and the normal nmap is
set as the eigenvector with smallest eigenvalue of the covariance matrix:

Σ(pmap) =
∑

pk∈N (pmap)
(pk − pmap)T · (pk − pmap) ∈ R3×3 (3.33)

nmap = argmin
v∈R3,∥v∥2=1

∥Σ(pmap) · v∥2 = e3, where (3.34)

Σ(pmap) · e3 = λ3e3, and 0 ≤ λ3 ≤ λ2 ≤ λ1 are the eigen values of Σ(pmap) (3.35)

In IMLS-SLAM [26] this operation is precomputed for every point of the map, at each
insertion in the map, and is a particularly costly operation responsible for the long execution
time of the algorithm. However, due to the coarseness of the sampling of IMLS-SLAM, most
neighbors in the map are not even considered during the registration procedure, which results
in a lot of wasted computation time. By contrast, in this work, we use a lazy approach. We
compute normals during the registration procedure, for the nearest neighbor selected, and store
this normal in the map. For the following iterations of the ICP, the normal computation is only
performed for the queried nearest neighbors which have not yet been computed. This simple
lazy approach considerably improves the run-time compared to the naive strategy used in [26],
as we show in section 3.5.

Projective Another approach is to use a projective data association. The general idea of
this approach is to project the 3D point cloud of both the map and the target into an image
and associate target points and map points by pixel association. This idea is similar to SuMa
[4], though they projected a surfel map into an image instead of a point cloud. The image
generated, which stores in each voxel the x, y, z coordinates is called a vertex map (VM) and
is constructed using a spherical projection SP , as follows (also described in figure 3.20):

SP : p = (x, y, z)T ∈ R3 \ {0} → pxn(p) ∈ [0, 1]2, where
FoV = |FoVdown|+ |FoVup| (3.36)

r = ∥p∥2, θ = −arctan(y/x), ϕ = arcsin(z/r) (3.37)

pxn
y = 0.5 ∗ (θ/π + 1.0), pxn

x = 1.0− (ϕ + FoVdown)
FoV

(3.38)
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Figure 3.19: Vertex Map (top) and Normal Map (bottom) computed from a single scan of
KITTI’s dataset (top).

Figure 3.20: Figure describing the vertex map construction process. Image from the LO-Net
[65] article.

Here pxn = (pxn
x, pxn

y ) describes the normalized coordinates of the projection. We obtain
the pixel coordinates of a VM of resolution Height × Width by multiplying the normalized
pixels by the resolution : pxx = ⌊pxn

x ×Height⌋, pxy = ⌊pxn
y ×Width⌋. Here, we considered

360 rotating lasers and thus restricted the field of view only vertically using parameters FoVup

and FoVdown. Figure 3.20 describes this VM formation process. Given a vertex map VM, we
compute a normal map NM following [2]’s fast method for range images, using a box filter.
Figure 3.19 shows a vertex map computed on a single frame from KITTI’s dataset.

This method gives inexact neighbor association, and approximate normal (compared to
using a Kd-Tree), but the interest of this method lies only in its computational efficiency.
Not only does it require only O(1) operations per query, it can be parallelized efficiently on a
GPU, which is impossible for tree traversal. And while SuMa used OpenGL shaders to compute
efficiently the projection on the GPU, we used the PyTorch library with pyLiDAR-SLAM package.
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(a) 10 frames (b) 20 frames

(c) 50 frames (d) 100 frames

Figure 3.21: Aggregated maps for different sliding window sizes.

3.3.4 Map management
Once the registration is completed, the frame is inserted into the map. In this work we adopt
a simple scheme similar to [26]. Our map is set as a sliding window of the N previous frames,
so an insertion first requires the addition of the new frame to the sliding window along the
associated pose, and the removal of older frames. The frames inserted are themselves sampled
according to the problem’s scale.

After each addition, each frame is put in the reference frame of the last inserted pose and
then the neighbor association model is updated. For the projective association, this implies pro-
jecting the map into a vertex map, while for the Kd-Tree model, a new Kd-Tree is constructed
and stored in the map.

The density of the map point cloud depends on the size of the sliding window, the larger
the window, the higher the density. To be more precise, the density of the point cloud depends
on the motion of the sensor. As the sensor moves its lasers intersect unseen parts of the
environment and add information to the map, while a static sensor always intersects the same
points. To mitigate this, we only add frames to the map if the cumulated distance from the
last insertion is at least 50cm or 10° in driving scenarios, and 10cm for other scenarios.

Globally, a higher density leads to more information and thus should lead to a higher
precision of the registration. We show in figure 3.21 the aggregated point cloud for different
sizes of sliding windows. However a larger map also leads to a larger memory footprint and
runtime, and as no voxelization is performed, duplicate information is stored in the map when
very close points are inserted. The performance of the map depending on its parameters
(sliding window size, preprocessing’s sampling size) are studied in section 3.5. We show a
representation dense point cloud reconstructed by this odometry and show a local map for the
KD-Tree registration procedure in figure 3.22.
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(a) Aggregated point cloud constructed with pyLiDAR-SLAM’s odometry.

(b) Local map for pyLiDAR-SLAM odometry, colored by normal direction

Figure 3.22: Aggregated point cloud, and map for pyLiDAR-SLAM odometry.
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3.3.5 Conclusion
In this section, we presented the classical LiDAR Odometry pipeline implemented within
pyLiDAR-SLAM. We will show section 3.5 that despite the simplicity of its design this LiDAR
odometry reaches near state-of-the-art performance on the KITTI dataset.

The work presented here, and the associated experiments (see section 3.5) was also part of
the work, published at the IROS-2021 international robotics conference: What’s In My LiDAR
Odometry Toolbox?. Notably, the classical pipeline presented above serves as a baseline classical
approach to compare with hybrid and deep methods. We present the other and principal aspects
of this work in chapter 4.

The classical pipeline we just introduced, serves as a good introduction to point-cloud-based
LiDAR odometry approaches. Still, this approach has some issues preventing its practical use
in real-life scenarios. The first problem is the overall precision of the method on real data. We
mentioned that this approach has near-state results on KITTI. However, the KITTI dataset is a
particularly easy dataset for LiDAR odometry, notably, because it removes the frame distortion
problem by providing motion-compensated scans, also because the environment presents very
few challenges, except for one or two sequences (e.g. sequence 01). When texting in different
contexts we show unsatisfactory results for this method.

The last problem is the overall runtime performance of our approach. We are limited in
this work, by the map management approach but also by the python language, which prevents
us to treat each point individually, and restricts us to batch operations implemented in the
standard linear algebra libraries (numpy, pyTorch).

For these reasons, we proposed a novel LiDAR Odometry method, CT-ICP, implemented
in C++ which addresses all these points. We present this work in the next section.
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3.4 CT-ICP: State-Of-The-Art Real-Time Odometry
Following the limitations of pyLiDAR-SLAM’s LiDAR Odometry presented above, and of Jean-
Emmanuel Deschaud’s IMLS-SLAM [26], we propose a novel real-time, state-of-the-art LiDAR
Odometry.

This new approach notably builds on [26], which was when it was written already a state-
of-the-art method on KITTI [40], though with very slow runtime (1Hz). This work by contrast,
additionally to setting a new state-of-the-art, is faster than real-time, on a personal computer.
Key to the precision of this approach is the novel method to handle the frame distortion of
CT-ICP. Furthermore, the code is released in open-source with a publically permissive license,
and available at https://github.com/jedeschaud/ct_icp.

The remainder of the section is organized as follows: first in section 3.4.2 we present our
principal contribution, the elastic registration procedure which compensates during the opti-
mization of the frame distortion. Then in section 3.4.3 the neighborhood construction process
and the map management are proposed. And finally in section 3.4.4 we present the initialization
and sampling approach proposed in CT-ICP.

3.4.1 Contributions
The list contributions of this work are the following:

• A novel method to handle the distortion of a point cloud, based on an elastic registration
procedure presented in section 3.4.2.

• A state-of-the-art performant LiDAR Odometry method tested on a large variety of
datasets.

• An open-source implementation made publically available.

• A neighborhood construction with an on-the-fly normals computation.

• A two-step grid-sampling approach, which significantly improves the speed of the odom-
etry, without sacrificing the quality of the registration.

3.4.2 Continuous-Time Registration
We previously presented the necessity of handling the distortion of the point cloud, as well
as the different methods existing in section 3.2.2.3. Our registration method aims to propose
an alternative solution to this issue. The general idea is to formulate a cost function that
will encourage the distortion of a frame to adhere to the environment’s structure. The crucial
difference between our method and the previous ones evoked in section 3.2.2.3 is that we set
the distortion as an objective of the optimization step, rather than as a preprocessing or post-
processing step.

The way we do this is by introducing 6 additional degrees of freedom which provide the
frame’s elasticity, and model the trajectory continuously. The resulting 12 degrees of freedom
correspond to a pair of the 6 parameters of SE(3). More precisely, introducing X = (Tb, Te) ∈
SE(3)2, and provided each key point of the new frame PCkpts has accurate timestamps, our
formulation estimates, for each residual, the pose at a given timestamp αi ∈ [0, 1] by linearly
interpolating between Tb : αi = 0 and Te : αi = 1. So the overall geometric cost function,
which essentially incorporates the distortion to a point-to-plane cost, is as follows:
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ECT-ICP(X) = 1
2

∑
i

ρ(r2
i (X)), where (3.39)

ri(X) = ai · (pW
i (X)− qW

i ) · ni (3.40)
pW

i (X) = Rαi(X) ∗ pL
i + tαi(X) (3.41)

Rαi(X) = Slerp(Rb, Ra, αi) (3.42)
tαi(X) = (1− αi)tb + αi ∗ te (3.43)

qi
W := Nearest neighbor of pW

i in the map (3.44)
ai := Weight defined from neighborhood’s covariance (3.45)

We incorporate the weight ai = (σ2−σ3)/σ1 where σi is the ith square root of the eigen value
of pW

i ’s neighborhood in the map. This weight, already introduced in [25] favors planar neigh-
borhoods, and mitigates linear (e.g. small posts) of volumic (e.g. vegetation) neighborhoods
which negatively impact the point-to-plane error.

While this is rarely the case, this error alone can lead to divergence during the optimization.
Indeed, for points having a timestamp around the middle of the frame αi ≈ 0.5, a continuous
pair of poses (Tb, Te) can be interpolated to give the same pose Ti for time αi. Thus when a
frame is in an environment where there are no strong geometric constraints for points at the
beginning and end of the frame, this can cause some problems. To mitigate this, we introduce
some additional constraints on the trajectory Cloc(X), Cvel(X) which are defined as follows:

Cloc(X) = ∥tb − tprev
e ∥1

2 (3.46)
Cvel(X) = ∥(te − tb)− (tprev

e − tprev
b )∥2

2 (3.47)

Where tprev
∗ is the respective translation component of the previous pose. So the overall

optimization objective of CT-ICP is:

δX∗ = (δT∗
b , δT∗

e) = argmin
δX

ECT-ICP(δX ∗X) + Cloc(δX ∗X) + Cvel(δX ∗X) (3.48)

In this work, we solve this objective using the Gauss-Newton algorithm, similarly as pre-
sented above in section 3.3.2. The overall registration algorithm, the optimization apart, is
identical to the ICP-based algorithm presented in section 3.3.2: iteratively, the neighbor as-
sociations are updated, and the above error cost is minimized. To compute the neighbor
associations, each point is expressed with the same linearly interpolated pose as presented in
equation 3.41. Figure 3.23 presents a schema of the registration procedure within the odometry.

Why not set Tb to Tprev
e ? Taking a step back from our method, it appears counter-intuitive

not to set the pose at the beginning of the new frame (ie Tb) to the pose at the end of the
previous frame (ie Tprev

e ). In this case, only 6 degrees of freedom would be necessary for
registration. Indeed, the trajectory is continuous, so these two should be equal if no wrong
insertions were made.

This is however by design. Through experiments, we found that when if we fix the initial
pose in this manner, progressively as frames are registered, translational errors introduced
get overcompensated with the optimized pose of the beginning of the frame. This leads to
trajectory divergence, with poses oscillating above and below the ground. Instead, we found
that allowing the trajectory some discontinuity between frames allowed the algorithm to correct
errors introduced, and globally led to more robustness.
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Figure 3.23: Image describing the main contribution of our work [25]: the elastic registration
procedure consisting of a continuous scan matching, with allowed discontinuity between scans
allowing for some error corrections.
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Figure 3.24: Voxel hashing scheme description. Points of the world’s surface are assigned to a
voxel block using a hash table.

3.4.3 Neighborhood Construction & Map Management
As mentioned above, the principal bottleneck of the approach proposed in [26] and [24] is the
map management selected. Similarly to these approaches, our map is a dense point cloud
augmented with a spatial query acceleration structure. We use a voxel hashing scheme [78] for
this. The point cloud is stored in a voxel hash-mapM. For each voxel (ie the key in the map),
we store a voxel block as a value, which is simply an array of the inserted points falling into
the voxel. The voxel hash map is parametrized by the voxel size σ.

Insertion Given a point cloud PCW to insert in the map, for each point pi = (x, y, z) ∈ PCW ,
we compute its voxel coordinates as follows:

vi = (vx, vy, vz) = (⌊x/σ⌋, ⌊y/σ⌋, ⌊z/σ⌋) ∈ Z3 (3.49)

The point is then inserted in the array in the hash map for the key vi, which is allocated if
it does not yet exist. To control the memory, we limit the number of points in the map to Nvox,
and to avoid inserting duplicate information we only insert points if their minimum distance
with another point in a voxel is at least dmin.

Neighborhood Construction At each ICP iteration, and for every key point, we compute
its nearest neighbor in the map, and estimate the associated normal. To do this, we construct a
local neighborhood for each key point by searching through the Nr = (2r+1)3 voxels neighboring
the key point. Here r is the voxel radius and is typically set to 1 to explore the direct neighbors
of the key point’s voxel, so we explore the Nr = 27 neighbors.

We test each entry in the hash map, using the following hash function on voxels to quickly
test existence in the hash maps:

hash(vx, vy, vz) = p1 ∗ vx + p2 ∗ vy + p3 ∗ vz (3.50)
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Where p1, p2, p3 are the following prime numbers which guarantee good hash function with
few intersections:

p1 := 73856093 (3.51)
p2 := 19349669 (3.52)
p3 := 83492791 (3.53)

So exploring the Nr entries in the map amounts to testing the Nr neighboring voxels hashes
in the map:

∀(δx, δy, δz) ∈ [−r, r]3, test if hash(vx + δx, vy + δy, vz + δz) ∈M

Going through the Nr voxels, we keep the set of the Nn closest points to the key point from
which we extract the closest point and the normal from the covariance similarly to 3.34. This
neighborhood construction is fast, and what’s more, it does not depend on the size of the map.
Indeed, the construction has essentially a complexity in O(1) (or O(Nn ×Nr) at a finer scale),
as the complexity of accessing an entry in a hash map is a O(1) operation.

Voxel removal The interest of this data structure, in addition to the speed of queries, is
the simplicity of management, ie of insertion and deletion operations. To remove a voxel, we
simply erase the corresponding entry in the hash map. In this work, we simply remove voxels
far from the current sensor location at each insertion. Like all parameters of the hash map,
the appropriate distance depends on the scale of the problem. We explore the impact of the
parameter values for the different configurations in more detail in section 3.5.

3.4.4 Initialization, Preprocessing and Sampling
Lastly, we present the remaining aspects of our SLAM which differentiates from [26] and [24]:
the initialization of the new pose estimate before registration (initial distortion, motion model,
etc...), and our sampling procedure.

Initialization The initialization of the motion in our algorithm requires some care, due to
our distortion compensation. Initially, we do not assume any motion prior, thus we have no
way of applying a correct distortion to the frame before inserting it into the frame. Thus if a
vehicle or robot is already in motion, this necessarily introduces some errors in the map as we
insert a distorted frame in the map.

The second frame is then registered against this map, ie the initial frame set in the absence
of prior knowledge at a pose equal to the identity. For this second frame, we use a rigid
registration with only 6 degrees of freedom (instead of the 12 of CT-ICP’s continuous time
registration), because if the vehicle is moving, the frame distortion between the two first frames
should be similar (under constant velocity assumption). The distortion of this frame, in the
constant velocity model, should match that of the initial frame, which would render the rigid
registration valid. Then we apply the distortion to the new frame before inserting it into the
map and removing the initial frame.

At this point, our map has a valid corrected frame, and we can initialize the pose parameters
of the new frame using the constant velocity model, as follows. Noting Xk = (Tk

b , Tk
e) the pose

parameters of the kth frame registered, we thus have the following initialization procedure for
the constant velocity model:
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X0
init = (IdSE(3), IdSE(3)) (3.54)

X1
init = (IdSE(3), IdSE(3)) (3.55)

∆Tk = (Tk−1
b )−1 ∗Tk

b (3.56)
Xk+1

init = (Tk
b ∗∆Tk, Tk

e ∗∆Tk) (3.57)

Note that we do not use the frame distortion’s relative transformation to initialize the
relative motion (ie, (Tk

b )−1 ∗ Tk
e ), but instead use the relative transformation between two

consecutive begin poses (see equation 3.56). This helps not to propagate distortion errors
during the initialization phase. As a preprocessing step for the kth, we initialize the distortion
of the new frame using the estimated poses (Tk

init,b, Tk
init,e). These estimates are then refined

by the continuous time registration described in section 3.4.2.

Sampling In this work, we adopt a two-step grid-sampling approach. First, each new frame
is sampled with a grid sample at a resolution of cglobal. The purpose of this sample is to filter
out finer information that would not be relevant to the scale of the problem when inserted in
the map.

After this sampling, a new sampling is performed at a coarser resolution ckpts before the
registration. This sampling selects the key points to register, and its main purpose is to reduce
the computation load during the registration. Indeed, we can express the processing time of
the registration τICP as:

τICP ≈ Kiters · (Nkpts · τneigh + τLS) (3.58)
Kiters := Number of ICP iterations (3.59)
Nkpts := Number of key points selected (3.60)

τLS := Time of solving the least-square problem (3.61)
τneigh := Time of constructing the neighborhood of a point (3.62)

Equation 3.58 clearly shows the relevance of limiting the number of key points via a coarse
sampling to accelerate the processing time of a frame. Note that sampling leads to loss of
information. As mentioned before, this leads to a tradeoff between the quantity of information
preserved and the accuracy of the algorithm. We investigate in section 3.5 this tradeoff for
different values of cglobal and ckpts.

3.4.5 Conclusion
In this section, we presented the different components of CT-ICP, our real-time LiDAR odom-
etry. In figures 3.25,3.26 and 3.27, we show point cloud aggregated using CT-ICP’s odmetry.
This illustrates qualitatively, the quality of dense 3D reconstruction which is possible using 3D
LiDAR. Even more impressive, is the speed at which this reconstruction is obtained, typically
faster than real time on a cpu. By comparison, photogrammetry methods, ie the methods com-
paring light intensities between multiple frames to build the geometry, can reconstruct dense
geometry from images, however, these operations are extremely computation-expensive, and
are very slow (multiple hours with GPUs for reconstructions of that scale).

In the next section, we prove through thorough experiments, across multiple datasets, the
claims we made above, concerning both methods presented.
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(a) Aggregated point cloud frames, using CT-ICP’s trajectory on sequence 2012-01-08 of the NCLT
dataset.

(b) Aggregated point cloud frames, using CT-ICP’s trajectory on sequence exp01 of the NCD dataset.

Figure 3.25: Point cloud assembled using CT-ICP’s odometry on mobile robotics (Top) and
handheld (Bottom) datasets. Illustrates the quality of the point cloud obtained by CT-ICP.
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(a) Aggregated point cloud frames, using CT-ICP’s trajectory on sequence 00 of the KITTI dataset.

(b) Aggregated point cloud frames, using CT-ICP’s trajectory on sequence Town02 of the KITTI-
CARLA dataset.

Figure 3.26: Point cloud assembled using CT-ICP’s odometry on driving datasets. Illustrates
the quality of the point cloud obtained by CT-ICP.
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Figure 3.27: Aggregated point cloud frames, using CT-ICP’s trajectory on the highway sequence
(01) of the KITTI dataset.
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3.5 Experiments and Benchmark
In this section, we finally prove the claims we made above, concerning our two LiDAR Odome-
tries. These claims were:

– pyLiDAR-SLAM’s simple LiDAR Odometry pipeline is near-state-of-the-art on the KITTI
dataset [40].

– CT-ICP sets a new state-of-the-art on KITTI and multiple other datasets.

– CT-ICP has very good performances on a wide range of scenarios.

– CT-ICP obtained these precise results faster than real-time.

– CT-ICP’s distortion handling helps improves the accuracy of our method.

Additionally to these claims, we study different components of CT-ICP using abblation
studies, to give even more insight into the performance of the algorithm.

The rest of the section is organized as follows: first, in section 3.5.1, we present the main
results table of the CT-ICP algorithm presented in section 3.4, and compare it to some other
state-of-the-art methods, and show the CT-ICP did set a new state-of-the-art in terms of pre-
cision. Then in section 3.5.2 we take a deeper dive and leverage all our datasets to showcase
the strengths and weaknesses of our algorithm. This is done through multiple ablation studies,
and by isolating some components of the odometry to study its impact on the overall perfor-
mance. Finally, in section 3.5.3 we offer a detailed performance and robustness analysis of the
odometry, and show its potential use for embedded platforms.

3.5.1 pyLiDAR-SLAM (near) state-of-the-art, CT-ICP state-of-the-art
To benchmark our odometries, we evaluate both our methods on the set of datasets presented
in chapter 2. Both methods, as we will explain in more details at the end of this chapter were
published in 2021 (pyLIDAR-SLAM) and 2022 (CT-ICP). Since then, we continuously refined
CT-ICP (using the Cauchy instead of a truncated loss, cleaning the initialization procedure,
and with smaller implementation details which improved drastically the performance). So in
the experiments below, we show two results: CT-ICP(paper), corresponding to the results at
the time of publication, while CT-ICP(now) describes the version presented above. In contrast,
pyLiDAR-SLAM did not change at all, so we have only one entry for it.

As described in chapter 2, we identified in the datasets we presented three categories:
Driving, Mobile Robotics, and Handheld. For each category, we associated a relevant scale
to measure the RPE (see table 2.1). CT-ICP only needs, however, two sets of parameters, one
for driving Dr, and one for mobile robotics and handheld MB&H datasets.

We present in section 3.5.1.1 the choice of parameters, for both CT-ICP and pyLiDAR-SLAM.
Then we present and analyze the results in section 3.5.1.2, and show that they demonstrate
some of our claims. The rest of them will be shown in section 3.5.2.
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(a) KITTI-00

(b) KITTI-02

(c) KITTI-07

Figure 3.28: Slam trajectories (blue) for a selection of datasets, compared with ground truth
(orange) (1/3).
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Table 3.1: Parameters of pyLiDAR-SLAM, for the best results on the KITTI dataset.

Parameter Value Description

Preprocessing:

Grid Sampling size 0.3m The voxel size of the grid sampling to reduce the dimensionality of the point cloud.

CV Distortion 3 Applies Constant Velocity distortion as a preprocessing step.

Initialization:

Motion Model CV Constant Velocity: motion model used to initialize the motion. CV means Constant Velocity.

Map Managemenet

Local window size 20 Number of point clouds in the local window

Registration Type Kd The type of neighbor association (either Projective Pr or Kd-Tree based Kd).

Registration Parameters

Robust Loss Cauchy The robust loss function scheme used

Sigma(σ) 0.3m The robust loss function parameter controlling the resistance to outliers.

3.5.1.1 Parameters and configurations

Our algorithms, like most LiDAR SLAMs, does not have a single set of parameters fitting all
scenarios and use cases. As mentioned in chapter 2, each scenario comes with multiple inherent
scales. And like most others, our algorithms are not designed to adapt to these different scales
online, and we need to set some fixed parameters adapted for each desired scenario.

In the case of CT-ICP, and to clarify the role of parameters, we do not optimize the pa-
rameters of the SLAM for each sequence of each dataset. Instead, we propose two distinct
parameter profiles, for the three scenarios presented above, which we now detail.

Parameters of pyLiDAR-SLAM We present the parameters for the Kd-Tree based LiDAR
Odometry only, for clarity, as it is the method which obtains the best results on KITTI [40]
but also for the widest range of datasets (while the Projective version has important drops in
performance less outside of driving datasets). The parameters are summarized in table 3.1. We
selected this set of parameter to obtain the best performance on KITTI, without sacrificing
too much other datasets. Some of these parameters control the runtime performance of the
algorithm, such as the Local window size, Grid Sampling. The others (σ, Motion Model)
control the precision and robustness.

Parameters of CT-ICP The principal parameters of our algorithm CT-ICP are summarized
in table 3.2. The first group of parameters is described as Geometric parameters. This
includes the voxel sizes for the initial preprocessing grid sampling, the key points selection and
for the resolution of the voxel map. For the driving profile (Dr), we have for all of them a larger
value (resp. 0.5m, 1.5m and 1.0m) than for Mb&H (resp. 0.3m, 0.8m, 0.8m). The rationale
behind this choice is related to the scales both of the environment and the relative motion
between consecutive frames. In driving scenarios, the environment is typically larger than for
the two other scenarios, thus a larger sampling size will not lose too much information about
the environment in contrast with mobile robotics or handheld environments. So the relevant
level of details for the registration is typically larger than for other scenarios. And thus, a larger
sampling size helps enforce a coarser level of detail than a smaller sampling size.

This is counterintuitive. Indeed, at a high level, the sampling size should be seen as a
tradeoff between precision and performance: the larger the sampling the fewer points need
to be processed (and thus the faster the SLAM), but the more information is lost. Zooming
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(a) KITTI-01 (b) KITTI-08

(c) KITTI CARLA-Town01 (d) KITTI CARLA-Town07

Figure 3.29: Slam trajectories (blue) for a selection of datasets, compared with ground truth
(orange) (2/3).
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(a) KITTI-360-00

(b) NCD-01

Figure 3.30: Slam trajectories (blue) for a selection of datasets, compared with ground truth
(orange) (3/3).
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Table 3.2: CT-ICP Parameters description and values for the two different parameter profiles: Dr
(Driving) and Mb&H (Mobile robotics and Handheld).

Parameter Dr Mb&Hd Description

Sampling parameters

Sample Size 0.5 0.3 Voxel size for the initial grid sampling preprocessing step.

Keypoints Sample Size 1.5 0.8 Voxel size for the grid sampling for the key points selection.

Map parameters

Size voxel map 1.0 0.8 Voxel size of the voxel hash map, where the dense point cloud is stored.

Min distance points 0.15 0.1 Min distance between two points in the map.

Max points per voxel 30 30 The maximum number of points per voxel.

Motion Model Parameters

Motion model CV None The motion model to initialize the motion before registration.

Optimization parameters

ICP iters 10 20 The maximum number of iteration of the ICP.

Tr threshold 0.01 0.01 Stop criterion of translation difference (in meter) for the ICP iterations.

Rot threshold 0.1 0.1 Stop criterion of rotation difference (in degrees) for the ICP iterations.

Sigma(σ) 0.1 0.05 The parameter of the Cauchy outlier rejection scheme.

in, however, the sampling size also has a regularization feature managing the noise (due to
the sensor or registration errors) and brushes off smaller irrelevant details. And thus larger
sampling size in the context of driving scenarios does improve the precision of our SLAM, while
this is not the case for other scenarios. These detail these relationships through ablation studies
in section 3.5.2. This rationale also explains the minimum distance between two points stored
within the map.

The choice of the motion model is pretty straightforward, as a car typically adheres very well
to the constant velocity model, while handheld devices typically do not and present very large
accelerations. Mobile scenarios are typically in-between the two, but using the constant-velocity
model was satisfying for all our experiments.

The second group of parameters regroups the Optimization parameters. They control
the effort made within the ICP to obtain the most precise results possible. At each iteration,
an optimal step is computed, if the ICP is successful, this step should converge to smaller
values at each iteration. CT-ICP uses a stop criterion to qualify the convergence, using a
threshold for the translation component (1cm) and of the rotation component (0.1°) of the
optimal step. Additionally, we limit the maximum number of iterations in cases where the
algorithm does not fully converge. Though we have the same stop criterion for all profiles,
we set a smaller maximum amount of iterations for the ICP for the driving scenario. Driving
scenarios are typically much easier, and the motion model is typically much more valid than
the other scenarios.

The parameters we presented in table 3.2 are the principal parameters of the CT-ICP
algorithm. However, in section 3.5.2, we present alternative configurations which will allow
us to play not only on parameters, but also design choices of the algorithm, through relevant
ablation studies.

77



Chapter 3: LiDAR(-only) Odometry

Table 3.3: KITTI’s Relative Pose Error (RPE), which is the relative pose error averaged for all
segments of length (from 100m to 800m) in the trajectory. We compare the results of multiple state-
of-the-art methods on multiple driving sequences and demonstrate the precision of our method.

DRIVING PROFILE

KITTI-
corrected⋆

00 01 02 X 04 05 06 07 08 09 10 AVG ∆T

IMLS-SLAM [26] 0.50 0.82 0.53 0.68 0.33 0.32 0.33 0.33 0.80 0.55 0.53 0.55 1250ms
MULLS [84] 0.56 0.64 0.55 0.71 0.41 0.30 0.30 0.38 0.78 0.48 0.59 0.55 80ms
LOAM [135] 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 - -
pyLiDAR F2M [24] 0.51 0.79 0.51 0.64 0.36 0.29 0.29 0.32 0.78 0.46 0.57 0.53 175ms
CT-ICP (paper) 0.49 0.76 0.52 0.72 0.39 0.25 0.27 0.31 0.81 0.49 0.48 0.53 60ms

KITTI-raw 00 01 02 X 04 05 06 07 08 09 10 AVG ∆T

IMLS-SLAM [26] 0.79 0.86 0.76 0.51 0.48 0.62 0.67 0.97 0.70 0.75 0.71 1070ms
MULLS [84] 1.43 3.12 1.01 0.57 1.93 1.60 0.69 1.28 1.49 0.71 1.41 80ms
pyLiDAR F2M [24] 2.20 0.98 1.55 0.45 1.46 0.69 1.72 1.60 1.28 1.18 1.61 530ms
CT-ICP (paper) 0.51 0.81 0.55 0.43 0.27 0.28 0.35 0.80 0.47 0.49 0.55 65ms
CT-ICP (now) 0.52 0.68 0.51 0.37 0.26 0.30 0.34 0.81 0.47 0.52 0.52 59ms

KITTI-360 00 02 03 04 05 06 07 09 10 AVG ∆T

IMLS-SLAM [26] 0.65 0.63 0.64 0.89 0.63 0.70 0.54 0.67 0.79 0.68 1060ms
MULLS [84] 1.60 1.29 0.87 1.64 1.27 1.48 6.25 1.28 0.88 1.55 90ms
pyLiDAR F2M [24] 1.79 1.25 0.90 1.60 1.26 1.38 0.69 1.72 1.39 1.46 475ms
CT-ICP (paper) 0.41 0.38 0.34 0.65 0.39 0.42 0.34 0.45 0.69 0.45 70ms

KITTI-CARLA Town01 Town02 Town03 Town04 Town05 Town06 Town07 AVG ∆T

IMLS-SLAM [26] 0.03 0.05 0.16 0.20 0.06 4.90 0.25 0.81 780ms
MULLS [84] 1.39 0.77 0.69 1.24 1.13 0.98 0.97 1.04 70ms
pyLiDAR F2M [24] 16.25 7.92 37.16 10.06 9.11 73.29 2.69 23.84 530ms
CT-ICP (paper) 0.03 0.04 0.03 0.03 0.02 0.04 0.41 0.09 65ms
CT-ICP (now) 0.011 0.012 0.013 0.049 0.010 0.017 0.084 40ms

Table 3.4: Relative Pose Error RPE averaged over all segments of 100m for each trajectory. This
table shows the high performance of CT-ICP over concurrent methods.

MOBILE ROBOTICS PROFILE

NCLT 2012-01-08 2012-04-29 2012-01-15 2012-05-11 ∆T

pyLiDAR F2M [24] 1.89 1.78 - - 460ms
CT-ICP (paper) 1.17 1.09 - - 180ms
CT-ICP (now) 1.12 1.07 1.16 1.34 180 ms

Hardware Setup We ran all experiments on a laptop with an Intel Core i7-9750 CPU
@2.60GHz with 12 threads, and 64Gb of RAM. We present in the experiments below the average
runtime for each run, but we present in section 3.5.3 a deeper analysis of the performance, and
hardware requirements.

3.5.1.2 Results and Analysis

We now present a first pass of results for the CT-ICP algorithm on the dataset we presented
above. These results demonstrate our claim that CT-ICP is a state-of-the-art real-time LiDAR
odometry, which is a contribution presented in our work.

In table 3.3 we show the results using KITTI’s RPE for the driving datasets. While the
KITTI metric is less intuitive than RPE presented in chapter 2, it can be used to compare
our method to the previous body of work. In tables 3.4 and 3.5 we describe the RPE at the
relevant scales (resp. 100m and 20m) for the mobile robotics and handheld sensors.

We also show the trajectory of CT-ICP for a selection of sequences in figures 3.28, 3.29
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Table 3.5: Relative Pose Error RPE averaged over segments of 20m for each trajectory of each
handheld dataset with ground truth.

HANDHELD PROFILE

Newer College Dataset exp01 exp02 exp05 ∆T

pyLiDAR F2M [24] 1.94 3.72 7 437ms

CT-ICP (ours) 1.13 1.21 7 33ms

and 3.30.
A first look at the table, and we see globally that two of our important claims were demon-

strated: pyLiDAR-SLAM is a near-state-of-the-art LiDAR Odometry on KITTI [40], and CT-ICP
is a state-of-the-art LiDAR Odometry operating in real time. Indeed, pyLiDAR-SLAM functions
even better than MULLS [84] (previous state-of-the art on KITTI) and LOAM [135], the base-
line method for LiDAR SLAM. We see however, that to obtain this performance, pyLiDAR-SLAM
must operate just below 200ms, or twice the speed of acquisition of the sensor. By contrast,
CT-ICP runs at a higher-frequency than the 10Hz of the sensor. Which makes it compatible
for online use. It can run even faster if we select the right parameters, as we show in section
3.5.3.1.

We will not discuss further the performance of pyLiDAR-SLAM. Instead, and it was designed
for this purpose, we use it as a basis of comparison with other methods. In this section, we
compare it essentially with CT-ICP, but in chapter 4, we use it to compare also deep and hybrid
LiDAR odometries.

Below, we take a deeper dive into the performance of our principal contribution of this
thesis: CT-ICP.

Driving datasets performance There has been a tremendous amount of effort invested
LiDAR SLAM for driving scenarios from the LiDAR SLAM community. The space has been
saturated with new methods since the release of the KITTI odometry benchmark. Yet we
see that our method still performs better than other state-of-the-art methods on KITTI as
demonstrated by table 2. One of the explications is that we tested, unlike the KITTI-odometry
benchmark, on sequences where timestamp information is available. Our method, which has a
fined distortion handling than other non-inertial methods, proved superior over other state-of-
the-art methods of the time. And this will appear more clearly in section 3.5.2 when we isolate
this contribution.

One thing limits the interpretability of the results on the KITTI and KITTI-360 dataset,
that is the limit due to the nature of ground truth. Figure 3.31 shows the ground truth trajectory
and the estimated slam poses for a section of KITTI’s first sequence (00), and illustrates that
the loss of GPS signal is compensated by a simple interpolation which adds significant noise
on the results. This has an important impact on the score as the plot in figure 3.31 illustrates:
every sharp peak of the graph corresponds to a ground truth problem, which results in a large
error contribution, and there is a large gap between the mean error (0.44%) and the median
(0.36%). Still, the relative result between methods can indicate better performance, though
one must be careful about methods overfitting their parameter set on each sequence (this is for
example the case of MULLS which proposes one set of parameters per sequence of the KITTI
dataset).
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(a) Ground truth trajectory for the KITTI-00 se-
quence.

(b) Slam trajectory, for the same section. It is
locally much faithful to the motion of the sensor.

Figure 3.31: An illustration of KITTI’s ground truth problems. The ground truth (left) has
errors of interpolation, probably due to the loss of GPS signal. This leads to artificial error
terms in the evaluation of LiDAR odometries.

Mobile and Handheld datasets performance The mobile and handheld datasets pre-
sented are particularly challenging, due to high-frequency rotations, rotation around the z axis
(for the NCLT dataset), etc... Yet CT-ICP does perform well in these challenging scenarios.

In the different tables, we presented the results for the method presented in our paper and
the latest available version. We considerably improved the runtime of our method for the mobile
and handheld scenarios, as well as the precision. Though the approach remains the same, a
better implementation did lead to these significant improvements. And since the article, our
method has gained robustness and efficiency, as demonstrated by the tables 3.4 and 3.5.

Why is our method this precise ? As shown above, our method reached at the time of
its publication a state-of-the-art status. Yet, it is by essence a very simple method, based on
a point-to-plane ICP algorithm, so the interesting question to ask candidly is What makes it
state-of-the-art ? While we investigate in detail many components through ablation studies in
section 3.5.2, we can provide here a high-level answer.

Our LiDAR Odometry is the most precise because we only make very precise point cloud
insertions in the map. Two aspects allow this to happen. First, and this is our main contribu-
tion, is our elastic distortion method which is very precise, and ensures that the scan deforms
itself very precisely onto the map. Second, is the structure of our map. Indeed, because we
limit the number of points in each voxel, each voxel keeps in memory the oldest points observed.
This means that the points of newer scans falling within a voxel are associated with the oldest
points possible, which ensures long-term consistency.

The two combined allow each insertion of points to be very precise and thus prevent the
addition of noise and pollution to the map. As we will see in section 3.5.3, herein lies also the
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vulnerability of our method. If noise and pollution are indeed added to the map, then neighbor
associations will be corrupted, which will deteriorate future registrations.

3.5.2 Understanding CT-ICP through ablation studies.
In the previous section, we proved our claim that we set a new state-of-the-art of LiDAR
odometry. Here, we demonstrate other claims, through ablation studies which allow us to
study components in isolation, and better understand the importance of parameters and design
choices in the performance of the algorithm. First, we focus on our core contribution, namely
the distortion handling, and study the performance of different alternatives in section 3.5.2.1.
Then, in section 3.5.2.2 we study the impact of the principal parameters.

3.5.2.1 Frame distortion

In our related work, we presented 4 motion compensation algorithms, which, adding our novel
method results in five methods to test. We summarize them in table 3.6. Note that we study
only the frame distortion, so we keep each of the other parameters as defined in table 3.2. We
selected one sequence of each dataset to perform this experiment and present the results in
table 3.7.

Table 3.6: Different motion compensation strategies implemented in the ablation study.

Strategy Description

NONE No distortion is applied to the point cloud before registration.

CV The point cloud is distorted once before registration using the previous relative pose.

TWO STEPS Similar to CV but the distortion is refined after registration.

ITERATIVE Before each iteration of the ICP, the distortion is corrected with the best estimate.

CONTINUOUS The ICP computes at each iteration the 12 degrees of freedom of an elastic registration.

First, these results demonstrate the importance of distortion handling for the performance
of our LiDAR Odometry. Indeed, we see the large gap of the RPE between the strategy
NONE and every other strategy, for each sequence. Without the correction of the distortion,
points are added to the map at the wrong position, which adds noise and leads to less precise
registrations.

Secondly, we see that our novel CONTINUOUS method obtains consistently the best
results, for each sequence. This proves the relevance of this new method, which is our principal
contribution.

Comparing the different strategies, we can separate our analysis between driving scenarios
on the one hand and mobile robotics with handheld scenarios on the other hand. For driving
scenarios, the motion model is very consistent with the scenario, and the constant velocity
model is a good predictor of motion. Thus, for driving sequences, the difference in performance
between the different methods is less important than with the no-distortion scenario. Still, we
can see that more complex methods like the ITERATIVE and CONTINUOUS methods
show improvements over the CV of TWO STEPS methods.

Outside of driving scenarios, the gap between the CONTINUOUS approach and the
others is even greater. Our mobile robotics and handheld datasets have irregular motions,
with fast rotation (fast compared to the sensor acquisition frequency) which are particularly
challenging to handle. In those cases, the CONSTANT VELOCITY model is not very well
suited, and the errors in the undistortion of the scan lead to map pollution with noise, which in
turn leads to unprecise registration. Figure 3.33 shows the map obtained for the ITERATIVE
distortion strategy vs the CONTINUOUS strategy.
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(a) Without correction (Red), the aggregated point cloud has a shift of 1-2m from the true point cloud
(Green). (Dataset KITTI-01)

(b) Point cloud aggregated without correction (Red), and with correction (Green). If the distortion
is not compensated, the aggregated point cloud is noisy. (Dataset NCLT-2012-01-08)

Figure 3.32: Illustrations of the impact of frame distortion on the quality of the aggregated
point cloud. The green point cloud is the point cloud corrected for distortion and the red is
without correction.
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Figure 3.33: Map for the sequence NCLT-2012-01-08 for the ITERATIVE (left) vs the CON-
TINUOUS (right) strategy. The incorrect handling of the distortion leads to poor insertions
of scans in the map, which leads to the map pollution observed on the right. On the right, each
frame inserted is properly distorted and keeps the map clean.

One question remains to be addressed: Why does our method handle the distortion better
than the others? In figure 3.34, we present a segment of the trajectory for each distortion
method. We see that for the CV and TWO STEPS the trajectories present an oscillating
pattern. This pattern illustrates the compensation which typically occurs when errors in the
distortion are not corrected: If an error is introduced that leads the ground to be elevated, the
registration will compensate by predicting a pose that is lower than it should be. In certain
conditions, this phenomenon, though it leads to imprecise maps, is not fatal. However, when
the motion is too hard or violent, and the environment featureless this can degenerate, and
lead to catastrophic SLAM failures (see NCLT-2012-01-08 for the TWO STEPS method), or
high levels of noise as shown in figure 3.33.

Table 3.7: RPE on a sequence (for multiple datasets) of the different motion distortion strategies. A
7 symbol means that the sequence failed. The RPE is given at the relevant scale for each sequence.

Sequence NONE CV TWO STEPS ITERATIVE CONTINUOUS

Driving: Consistent motion model

KITTI-raw - 00 1.0398 0.59 0.65 0.44 0.41

KITTI-360 - 00 0.86 0.70 0.91 0.64 0.63

KITTI-CARLA - Town01 0.38 0.036 0.035 0.039 0.034

Mobile Robotics and Handheld: Inconsistent or irregular motion model

NCLT - 2012-01-08 4.2 2.3 7 2.22 1.5

NCD - exp_01 3.4 2.01 2.1 1.87 1.21

In this section, we presented the experiments which demonstrated our principal contribution
and clearly showed the relevance of our distortion-handling method. We need, however, to
nuance the analyses presented in this section. While the high-level message: ”Proper Handling
Distortion is important for precision” remains true outside of this particular algorithm, the
extent and the performance of each distortion strategy does depend on LiDAR Odometry
method. In particular, our method while highly precise, because we keep a dense point cloud
representation of the map, isn’t robust to noise and map pollution. Other methods, notably
the sparser method or probabilistic method can typically be more robust to map pollution.
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(a) CV (b) TWO STEPS

(c) ITERATIVE (d) CONTINUOUS

Figure 3.34: Segment of the trajectory for the sequence KITTI-00 obtained for the different
motion compensation methods: CV (top left), TWO STEPS (top right), ITERATIVE
(bottom left) and CONTINUOUS (bottom right).

3.5.2.2 Study of parameters impact

We now study the impact of the parameters on the performance of the algorithm. We selected
the principal parameters, and though we could not be completely exhaustive, this study helps
to give a clear picture to explain the performance of the algorithm.

Motion model First, we study the importance of the motion model for the different config-
urations proposed. As we treated the impact of the distortion handling in section 3.5.2.1, here
we only focus on the initialization or the so-called motion prediction. We present the RPE for
the different motion strategies in table 3.8.

The results show the importance of the motion model for the performance of the LiDAR
Odometry, especially when considering driving scenarios. Indeed, if we look at the first three
sequences, we see a clear degradation of the RPE between the NI (No Initialization) model and
the CV (Constant Velocity) model (see figure 3.8). The mechanism for this degradation is very
similar to the one presented in the previous section: bad registrations lead to map pollution
which leads to the degradation of the precision of the SLAM.

The origin of this degradation however is different. When considering distortion errors, the
registration algorithm does converge to the optimal solution of the problem and finds the best
alignment between the distorted point cloud and the map. Here, the problem lies with the fact
that the registration algorithm sometimes falls into a local minimum, because the initial pose
was too far from the global minimum.

Note that the choice of the motion model for the Mobile Robotics and Handheld scenarios
has less impact on the performance of our LiDAR Odometry. Their main reason is that the
scale of the relative translation between two frames is much smaller for both scenarios than for
the driving scenario. Thus, from this point of view, there are fewer differences between the two
models, in contrast with road vehicles.

The problem with the constant velocity model, for such sequences, is that when a regis-
tration error occurs, it tends to propagate much quicker in the constant velocity model. The
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NI however, in such cases is more tolerant to registration approximations, thanks to the error
correction mechanism of our elastic registration.

Table 3.8: RPE on a selection of sequences (for multiple datasets) of multiple motion models. NI
stands for no initialization and CV for constant velocity.

Sequence Type NI CV

Driving: Consistent motion model

KITTI - 00 Driving 4.39 0.41

KITTI-360 - 00 Driving 1.73 0.63

KITTI-CARLA - Town01 Driving 0.063 0.034

Mobile Robotics and Handheld: Inconsistent or irregular motion model

NCLT - 2012-01-08 Mobile Robotics 1.47 1.48

NCD - exp_01 Handheld 1.34 1.35

Voxel Map resolution Another important aspect explaining the performance of our SLAM
is our map. The sparse voxel map data structure allows for fast neighborhood computation and
is perfectly adapted for map management tasks. As we set a limit to the maximum amount of
points allowed per voxel to 20, the voxel resolution of the map also sets its sparsity, as figure
3.35 illustrates. Furthermore, the voxel size also defines the maximum radius to construct
neighborhoods. Indeed, for efficiency, we limit the search radius to the 27 neighboring voxels,
and a larger neighborhood considerably increases the runtime.

Thus, we now investigate how impactful is this parameter on the performance of our SLAM.
We run our SLAM on a selection of sequences for different voxel sizes and present the results in
table 3.9. As expected, this table shows that globally, the smaller the voxels the more precise
the LiDAR Odometry.

There is, however a limit to this. As we can see, for a voxel size of 0.25m and when visiting
only the 27 nearest voxels, most sequences have catastrophic failures. These failures are due
to the radius of the neighborhood which is too short and prevents the scan from sliding as
efficiently. When considering the 125 nearest neighbors, however, we find the highest level of
precision for many sequences though there is a great cost for the runtime. This is a limit of
our voxel hash map data structure. While we can also control the density of the point cloud by
controlling the maximum number of points per voxel, given a voxel size, augmenting the size
of the neighborhood leads to an exponentially increasing number of voxels to visit.

While we study in more detail the performance and bottlenecks of our method in section
3.5.3, it is interesting to note that the density of the point cloud of the map is not directly
correlated with the performance of the algorithm.

Table 3.9: RPE(%) / Average Runtime (ms) of CT-ICP on a selection of datasets, for different
voxel sizes of the map. For the 0.25m∗ column, the neighborhood construction visits the 53 = 125
neighboring voxels instead of the 33 = 27 nearest. The mark 7 means that a catastrophic failure
happened.

Sequence / Voxel Size 0.25m 0.25m∗ 0.5m 0.8m 1.2m 1.6m

KITTI - 00 7 0.42%/82ms 0.44%/41ms 0.46%/38ms 0.51%/34ms 0.61%/40ms

KITTI-360 - 00 7 0.81%/88ms 0.65%/49ms 0.64%/36ms 0.62%/41ms 0.79%/42ms

KITTI-CARLA - Town01 7 0.013%/50ms 0.027%/39ms 0.044%/29ms 0.09%/65ms 0.09%/35ms
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Figure 3.35: Point cloud of the map of CT-ICP running on the sequence KITTI-00, for different
voxel resolutions: 0.5m (top left), 0.8m (top right), 1.2m (bottom left) and 1.6m (bottom right).
The point cloud is colored by the direction of the normal at each point.

Sampling strategy Finally, we analyze the performance of the algorithm for different sam-
pling strategies. We retain four strategies which we present in table 3.10. They are the principal
strategies used in different odometries, and we presented some of them in the related work of
section 3.2. Our method uses a double sampling approach, one as an initial step to reduce the
computation burden, and another one for the key points selection step. We present in the table
3.11 the RPE as well as the runtime for different pairs of sampling strategies for a selection of
sequences from our datasets.

Table 3.10: Description of the different sampling strategies used in this ablation study.

Sampling Strategy Abbrev Description

No Sampling NS No initial sampling is performed, all the points are added to the map.

Random: Nmax R(Nmax) Random selection of Nmax points from the new frame.

Grid: Vgrid G(Vgrid) Grid selection with a voxel size of Vgrid meters.

Regular Sample: Nmax RS(Nmax) Regular sampling of Nmax points by sampling regularly each laser independently.

Looking at the results of table 3.11, the first thing to note is the importance of the sampling
strategy. If no sampling is applied to the key points, the runtime is an order of magnitude
(559ms instead of 51ms) longer than without this sampling. The impact on the performance
of the frame sampling is much smaller, as the only operations applied to this point cloud are
the transformation of the points once the optimal pose is computed and then the insertion in
the map. It is furthermore mitigated by the fact that the map does introduce a ”sampling” of
its own, as it restricts the number of points inserted per voxel. Yet it is still noticeable if we
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compare it with the grid sampling proposed in the default configuration of CT-ICP.

Table 3.11: Table presenting the mean RPE, runtime and the average number of points and key points
sampled for multiple sampling strategies for both the initial preprocessing step and the key points
selection. FS describes the frame sampling strategy, KS the key points strategy, ∆T the average
runtime, and #Points /#Key Points respectively the average number of points and key points
processed by the algorithm. We present the result on a selection of sequences from our datasets.

Sequence FS KS RPE (%)/∆T(ms) #Points /#Key Points

No Sampling

KITTI - 00 NS NS 0.56%/559ms 12.0 × 104/12.0 × 104

KITTI - 00 NS G(1.m) 0.56%/51ms 12.0 × 104/2.4 × 103

Default Grid Sampling

KITTI - 00 G(0.5m) G(1.m) 0.52%/37ms 7.0 × 103/2.4. × 103

KITTI-360 - 00 G(0.5m) G(1.m) 0.79%/40ms 8.0 × 103/2.9 × 103

KITTI-CARLA - Town01 G(0.5m) G(1.m) 0.032%/31ms 9.1 × 103/3.5 × 103

Finer Grid Sampling

KITTI - 00 G(0.25m) G(0.5m) 0.51%/52ms 1.81 × 104/7. × 103

KITTI-360 - 00 G(0.25m) G(0.5m) 0.80%/55ms 2.0 × 104/7.9 × 103

KITTI-CARLA - Town01 G(0.25m) G(0.5m) 0.032%/52ms 2.0 × 104/9.1 × 103

Coarser Grid Sampling

KITTI - 00 G(1.m) G(1.5m) 0.55%/27ms 4.4 × 103/2.0 × 103

KITTI-360 - 00 G(1.m) G(1.5m) 0.83%/30ms 2.8 × 103/1.3 × 103

KITTI-CARLA - Town01 G(1.m) G(1.5m) 0.08%/21ms 3.5 × 103/1.8 × 103

Regular Sampling

KITTI - 00 RS(2.104) RS(3.103) 0.63%/30ms 2.104/3.103

KITTI-360 - 00 RS(2.104) RS(3.103) 0.99%/36ms 2.104/3.103

KITTI-CARLA - Town01 RS(2.104) RS(3.103) 0.09%/29ms 2.104/3.103

Random Sampling

KITTI - 00 R(2.104) RS(2.104) 0.62%/33ms 2.104/3.103

KITTI-360 - 00 R(2.104) RS(3.103) 1.0%/33ms 2.104/3.103

KITTI-CARLA - Town01 R(2.104) RS(3.103) 0.09%/33ms 2.104/3.103

If we now compare the Default Grid Sampling group with the Finer Grid Sampling,
we notice very few differences in terms of RPE. While the Finer Grid Sampling requires
more effort (as evidenced by the increased runtime), it offers few improvements. Comparing
the two to the Coarser Grid Sampling, we see here the expected drop in precision (and the
gain in runtime). Given the number of points sampled, however, it is surprising that the drop is
so low, especially when compared with the other sampling methods which all keep much more
points.

Indeed, when focusing on the Regular Sampling or Random Sampling, it is clear that
despite several points kept comparable to the Finer Sampling, the RPE shows a significant
decrease compared to the different Grid Sampling methods. In figure 3.36 we show a point
cloud sampled for different sampling strategies. One thing that appears clearly, is that the
spatial repartition of points greatly differs from grid sampling methods on the one hand, and
the two others on the other hand. More precisely, the Random Sampling and Regular
Sampling keep much more points near the sensor compared to the different grid sampling
which have systematically a homogeneous spatial repartition of points. This illustrates that
the precision of our SLAM depends strongly on the association of points on the map with points
distant from the sensor.
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(a) NS (b) G(0.25m)

(c) G(0.5m) (d) G(1.0m)

(e) RS(103) (f) RS(3× 103)

(g) R(103) (h) R(3× 103)

Figure 3.36: Frame sampled with different strategies (see table 3.10).
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3.5.3 Performance and Failure Analysis
So far, we only analyzed our algorithm through the lens of the desired precision of the trajec-
tory produced by the SLAM. However, many design choices made in its design were made to
minimize the runtime of our algorithm. In this final section of this chapter, we provide some
elements to analyze the performance of CT-ICP.

First, in section 3.5.3.1, we present a precise runtime analysis of the algorithm. This will
give us some idea of the bottleneck of the algorithm. We then study the performance/precision
tradeoff available by changing the parameters in our algorithm CT-ICP. Finally, we focus on
failure cases for our algorithm and discuss how to detect or avoid them.

3.5.3.1 Runtime Analysis

Many robotics projects use LiDAR SLAMs as a building block within a larger system. They
require the SLAM not only to be performant but also to minimize its consumption of the
platform resource. Our method, as we saw, depending on the parameters chosen can reach
an average runtime as low as 33ms. However, we saw that for other parameter sets, the
runtime can increase to 50ms or more. So in this section, we present in more detail what are
the contributions of the different stages of our algorithm to the runtime, and what are the
bottlenecks of our method.

Our LiDAR Odometry is separated into three main stages:

• The initialization, which accounts for the sampling, the motion initialization and the
initial transformation of key points.

• The iterative registration algorithm.

• The update of the map. It is obtained by inserting new points in the point cloud.

We present in table 3.12 the average runtime for these three stages on two typical sequences,
for the multithreaded and non-multithreaded version. For these experiments, we used the
default parameters presented in table 3.2. Looking at the results, the first thing to notice is
that the multithreaded version is capable in both cases to run online ie at a frequency below
the LiDAR acquisition frequency of 10Hz. Furthermore, it could also perfectly run online if the
sensor is set at a frequency of 20Hz. This is important, as for SLAM application, unless power
consumption is an issue, setting the sensor at a frequency of 20Hz greatly reduces the problem
of the distortion problem.

Table 3.12: Runtime (in ms) detailed by stage of the SLAM, averaged over the trajectory, for a
selection of sequences of the dataset.

Sequence #Threads ∆Tinit ∆Ticp ∆Tmap ∆T total

KITTI-360 00 8 9ms 18ms 6ms 34ms
KITTI-360 00 1 9ms 66ms 5ms 80ms

NCLT 2012-01-08 8 6ms 32ms 5ms 44ms
NCLT 2012-01-08 1 5ms 124ms 6ms 133ms

Secondly, we can see that with the single-threaded version, the driving scenario (KITTI-360)
still has a runtime below 100ms, while this is not the case for the mobile robotics one (NCLT).
The difference can be explained by the different choices of parameters. Indeed, looking at the
table 3.2, we see that the voxel size for the key points sampling is 0.8m. This means that per
frame, the average number of key points (which is 2991 for this sequence) is much greater than
for driving scenarios with a voxel size of 1.5m which is, on average, 1619 points. Thus every
iteration of the ICP is slower on average than for driving scenarios.
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Another important parameter is the maximum number of iterations. It is set to 20 for
mobile robotics and 10 for driving scenarios. Yet, if we look at the average number of ICP
iterations, it is 5.53 for the KITTI-360 sequence and 4.14 for this NCLT sequence. This is because
our convergence criterion often leads to early terminations of the registration algorithm. But
lowering this number, especially for the NCLT sequence is dangerous, as it prevents proper
handling of the edge cases where the motion model is a bad predictor of the actual motion. In
those rare cases, the registration needs to make more effort.

Looking more closely at the contributions of each stage, we can see that the runtime is
dominated by the registration algorithm. However, as we can see, the speedup for this stage
is important, and we can leverage multithreading to accelerate greatly the runtime of this
stage. For multithreaded applications, especially for the driving scenario, the contribution of
the sampling and the map update is not negligible. Concerning the sampling, this is notable
because our grid sampling is relatively costly, and necessitates the costly creation of a hash
map of voxels filled with the points of the original frame. There are however alternative sets
of parameters that can improve the runtime at the cost of lower precision. And we study this
tradeoff in the next section.

3.5.3.2 Tradeoff between Runtime and Precision

There are many ways to optimize the runtime of our algorithm if we allow ourselves concessions
in terms of precisions. We saw already in table 3.11 that there is a relation between the runtime
and the precision of our SLAM. The relation is however deeply nontrivial, and in this section,
we explore this relationship a bit.

Looking at the table 3.11, we saw that one of the lever we can use is the sampling of the
point cloud, which removes the number of points and key points to process, to accelerate the
SLAM. However, there are other levers to impact the runtime:

• Sampling policy: Keypoints sampling, Frame sampling

• Map parameters: Number of points per voxel, voxel size.

• Convergence criterion: Threshold on translation and rotation increments.

In table 3.13 we propose for a few sequences a choice of parameters to optimize the runtime
of these sequences. First, we show for a selection of sequences the variation of both runtime
and precision by varying the different levers independently. Then we provide for the selected
sequences the optimal results in terms of runtime on the one hand, and precision on the other.

The methodology to establish this table was to search for the parameters which minimized
the runtime without presenting any catastrophic failures. These choices of parameters are much
less robust than the default parameters presented in table 3.2, which guarantees the lack of
catastrophic failures on every one of the sequences tested. However, they provide some good
intuitions on how to try and improve the runtime of these algorithms.

The first thing to notice is the large variety of potential runtime for the different sets of
parameters. When wanting to optimize runtime instead of precision, our SLAM can run at
∼100Hz for driving scenarios, and 50Hz for mobile robotics, without critical failures. There
is, in those cases a non-negligible drop in performance, but for many scenarios, notably if
integrated with loop closure or GPS measurements, this could well be sufficient. Furthermore,
this illustrates the versatility of our SLAM, which can not only reach a very high level of
precision but also, by modifying the parameters, very high performances.

Secondly, by far the most important tool to reduce the runtime is the reduction of the
convergence criterion. This criterion impacts the average number of iterations the registration
has to perform. So for a criterion set to 0.005m and 0.05ř, the ICP performs an average of 9.5
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Table 3.13: Table presenting RPE (%) and runtime (ms) for the different parameters used as a lever
to influence the precision/performance tradeoff. We select three levers: the sampling (frame sampling
FS and keypoints sampling KS), the map parameters (voxel size Svox, number of points per voxel
Nvox

pts and the min distance between points dmin
pts ). For each set of parameters, we present the runtime

∆T and the Relative Pose Error RPE at the scale corresponding to each sequence.

Sequence FS/KS τtr(m)/τrot(ř) Svox(m)/Nvox
pts /dmin

pts RPE (%)/ ∆T(ms)

Using Convergence Criterion as leverage

KITTI 00 G(0.5)/G(1.5) 0.005m/0.05° 1m/20/0.15m 0.4543%/41ms

KITTI 00 G(0.5)/G(1.5) 0.01m/0.1° 1m/20/0.15m 0.4586%/32ms

KITTI 00 G(0.5)/G(1.5) 0.03m/0.3° 1m/20/0.15m 0.4520%/21ms

KITTI 00 G(0.5)/G(1.5) 0.05m/0.5° 1m/20/0.15m 0.4640%/19ms

Using Sampling as leverage

NCLT 2012-01-08 G(0.3)/G(0.8) 0.01m/0.1° 0.8m/30/0.15m 1.19%/55ms

NCLT 2012-01-08 G(0.4)/G(1.2) 0.01m/0.1° 0.8m/30/0.15m 1.02%/49ms

NCLT 2012-01-08 G(0.5)/G(1.5) 0.01m/0.1° 0.8m/30/0.15m 1.19%/44ms

NCLT 2012-01-08 RS(10k)/RS(2k) 0.01m/0.1° 0.8m/30/0.15m 1.17%/38ms

NCLT 2012-01-08 RS(20k)/RS(3k) 0.01m/0.1° 0.8m/30/0.15m 1.02%/48ms

NCLT 2012-01-08 RS(40k)/RS(4k) 0.01m/0.1° 0.8m/30/0.15m 1.02%/76ms

Using map parameters as leverage

NCLT 2012-01-08 G(0.4)/G(1.2) 0.01m/0.1° 0.8m/40/0.10m 1.02%/56ms

NCLT 2012-01-08 G(0.4)/G(1.2) 0.01/0.1 1m/20/0.15m 1.19%/45ms

NCLT 2012-01-08 G(0.4)/G(1.2) 0.01/0.1 1.5m/20/0.20m 1.18%/43ms

Parameters for fastest execution without critical failures

KITTI 00 RS(10k)/RS(1.5k) 0.03m/0.3° 1.5m/20/0.15m 0.75%/10ms

KITTI-360 00 RS(8k)/RS(1.5k) 0.03/0.3 1.0m/20/0.15m 0.91%/11ms

NCLT 2012-01-08 RS(8k)/RS(1.5k) 0.03/0.3 1.m/20/0.15m 1.17%/18ms

Parameters optimizing for precision

KITTI 00 G(0.4)/G(1.2) 0.01m/0.1° 0.8m/40/0.10m 0.449%/56ms

NCLT 2012-01-08 G(0.4)/G(1.2) 0.01/0.1 0.8m/20/0.15m 1.02%/56ms
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iterations against 1.6 when setting it to 0.05m and 0.5°. Another way to control the average
number of iterations is by thresholding the maximum number of iterations. In this work, we
set a limit rather high as it allows us to better handle edge cases, and control the runtime with
this convergence criterion.

The second most powerful lever to control the runtime is sampling. The grid sampling G
is the most costly sampling method. A sampling G(0.3m)/G(0.8m) adds in average 9ms per
frame due to the sampling, against 1.2ms for a sampling RS(20k)/RS(3k). The sampling also
influences the time to update the map, as a finer frame sampling leads to more points to insert
into the map.

The final lever is less impactful, though it becomes important when looking to find extremely
efficient performances. To reduce the time of each iteration of the ICP, we can limit the number
of points in each voxel to visit, and we leveraged this to reach 100Hz performance in driving
scenarios. The two ways to control them are by setting the threshold on the number of points
per voxel, or by modifying the minimum distance between two points in each voxel. The
risk, however, is to lose too much information, which can lead to imprecise neighborhoods and
increase registration errors.

On a concluding note, one can notice again that the relationship between performance and
the choice of parameters is not only nontrivial but also very much nonlinear. One thing that
is also hidden from the table, is that a set of parameters can lead to catastrophic failures in a
specific sequence and not in others. So to clarify this, in the next section, we focus on failures
and the limitations of our algorithm.
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3.5.3.3 Examples of failure

In this chapter, we mentioned on multiple occasions the mechanisms for our SLAM to fail. We
focus on this aspect in this section and present different failure cases of our SLAM algorithm.
There are three principal reasons for our SLAM to fail: registration errors, map pollution and
complicated environments. The three are of course intrinsically linked, as registration errors
lead to map pollution, complicated environments to map pollution, etc...

In figure 3.37 we present multiple cases of registration failures, with explanations for these
failures. We use the following weak criteria to catch some failures:

• The relative translation greater than 3m.

• The relative rotation greater than 3°.

• The number of key points smaller than 100.

These criteria allow us to catch many failures. In figure 3.37 we show the map before a
failure is detected. These illustrate multiple scenarios where the SLAM fails. The first one is
a long corridor which is a perfect example of a tunnel effect: for the default parameters, our
SLAM fails due to the ill-constrained problem. For our SLAM to reconstruct this sequence,
we need to use a set of parameters that allows it to catch smaller discriminative details. This
means augmenting the resolution of the map and augmenting the number of key points by
lowering the grid size.

The second is typical of a featureless flat environment. The geometry is even more ill-
constrained than the corridor. Our SLAM has a critical failure on this sequence.

The third case is a typical case of map pollution. Here, the trail of points captures the
observer carrying the handheld platform (from the HILTI dataset). These points add noise,
which adds noise to the map. This noise, along with the difficulty to navigate in small confined
spaces (See the third picture) lead to critical failures of the SLAM for this sequence.

Luckily, in all the cases above the error manifest itself by an ill-constrained problem that
diverges significantly and thus can be caught with our criteria. However, very often failures are
not detected which is very problematic, as it requires manual supervision to assess the quality
of a SLAM when no ground truth information is present. We give in figure 3.38 examples of
failures that were not detected immediately. As we can see, bad insertions of even a single
frame can create double-wall effects. The following frames then are often registered onto this
wrongly inserted point cloud creating a cascade of bad insertions which can be seen on the right
image. This lack of error detection is a clear shortcoming of our method.
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Figure 3.37: Situations leading to catastrophic failures caught by our criterion. From top to
bottom, left to right: 1: Failure due to the tunnel effect of a corridor. 2: Error due to a
featureless environment (empty parking lot). 3: Error caused by map pollution (trail of the
point cloud from the handheld sensor). 4: Error caused due to very small interior spaces.
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(a) Double wall effect (left) caused by a single bad insertion, can lead to a cumulation of bad insertions
(right).

(b) This can lead to such catastrophic failures, which are not currently detected.

Figure 3.38: Example of failures caused by bad insertions, resulting in a catastrophic failure.
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3.6 Conclusion
In this chapter, we presented the principal contribution of our thesis: the state-of-the-art real-
time LiDAR odometry method CT-ICP. After a deep analysis of the related work, and the
description of both the methods pyLiDAR-SLAM and CT-ICP, we proposed a detailed
experimental analysis of CT-ICP which help illustrate its strengths and performance.

As mentioned above, the work pyLiDAR-SLAM is part of the publication What’s In My
LiDAR Odometry Toolbox ? [24], accepted at the international conference IROS 2021. CT-
ICP has also been published and accepted for the conference ICRA 2022, where it received a
nomination for the Oustanding Paper Award. In this chapter, however, we went deeper in our
analysis, and evaluated our method on a wider range of datasets. This work will be part of a
journal publication in preparation.

We also presented in the last section 3.5.3.3 challenges common to all LiDAR Odometries.
When starting the thesis, a field started to emerge, promising to address these challenges with
Deep Learning approaches. Indeed, as we saw, it is difficult to establish the failure or success
of LiDAR Odometries. These methods arrive with a original perspective: if it is difficult, why
not learn how to do it? We investigate these approaches in more details in chapter 4.

96



Chapter 4

Deep and Hybrid LiDAR odometries

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 PoseNet-based and other End-to-End LiDAR odometries . . . . . . . 100
4.2.2 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 What’s In My LiDAR Odometry Toolbox . . . . . . . . . . . . . . . 104
4.3.1 Deep & Hybrid LiDAR Odometry . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

97



Chapter 4: Deep and Hybrid LiDAR odometries

Résumé
En parallèle des progrès réalisés par les odométries LiDAR classiques ces dernières années (que
nous avons présentés dans le chapitre 3), des méthodes de Deep Learning essayant de résoudre
plusieurs types de problèmes géométriques sont apparues. En effet, le Deep Learning a été
proposé comme outil pour résoudre un large éventail de tâches telles que la localisation, avec
des réseaux de type PoseNet [54], des méthodes non-supervisées de prédictions d’images de pro-
fondeur (à partir de flux d’images monoculaires avec SfM-Learner[140]), pour de l’appariement
de points d’intérêts[104], etc…De plus, de nombreuses représentations Deep pour nuages de
points sont apparues avec des architectures telles que PointNet [89], KPConv [116] ou utilisant
des structures de voxel éparses efficaces [22].

Ces méthodes illustrent bien qu’il existe un potentiel d’utilisation du Deep Learning pour
résoudre, ou aider à résoudre le problème d’odométrie LiDAR. Cherchant à exploiter ce poten-
tiel, diverses méthodes de type ”boîte noire” sont notamment apparues, prédisant directement
la trajectoire du LiDAR. Ces méthodes cherchent à résoudre la complexité du SLAM LiDAR
en ”apprenant” à prédire le mouvement du capteur, en comparant deux nuages de points suc-
cessifs fournis par le LiDAR. Elles visent donc à répondre à plusieurs problèmes que nous avons
observé dans le précédent chapitre: le coté arbitraire du choix des paramètres des algorithmes
de SLAM classiques, l’adaptabilité aux différentes échelles d’environnement et de mouvement,
etc…Dans ce chapitre, nous évaluons ces méthodes de type boîte noire plus en détail, et nous
regardons notamment si elles peuvent permettre d’améliorer les odométries classiques. Pour le
faire, nous produisons une analyse comparative approfondie entre plusieurs classes d’odométries
LiDAR classiques, hybrides et pure Deep Learning.

Le reste de ce chapitre est organisé de la manière suivante: tout d’abord nous présen-
tons l’état de l’art dans la section 4.2, puis dans la section 4.3 nous présentons notre analyse
comparative étendue.

Les contributions présentées dans ce chapitre sont les suivantes:

– Une analyse comparative de méthodes classiques, deep et hybrides d’odométrie LiDAR.

– Une implémentation publique de méthodes deep et hybrides d’odométries LiDAR, inté-
grées au projet pyLiDAR-SLAM.
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4.1 Introduction
Along with the progress in classical LiDAR odometry which we presented in chapter 3, recent
years have seen the emergence of deep learning methods attempting to solve geometric problems.
Deep learning methods have been proposed for a large variety of such tasks such as localization
with PoseNet [54], unsupervised depth prediction from monocular images with SfM-Learner
[140], feature matching [104], etc ... In parallel, there has been rapid progress in recent years in
deep learning representations for point cloud with neural architectures such as PointNet [89],
KPConv [116] or efficient sparse voxel grid convolutions [22].

Thus there is a lot of potential for integrating Deep Learning methods to solve, or at least,
help solve LiDAR odometries. Notably, end-to-end deep learning methods have appeared,
which directly predict the trajectory of the sensor. These methods promise to answer multiple
problems observed in the previous chapter, notably the arbitrary choice of parameters of clas-
sical SLAM pipelines, their capacity to adapt to different environments or scenarios, etc…The
goal of this chapter is to evaluate the relevance of these methods, against or combined with
classical LiDAR odometry methods.

The rest of this chapter is organized as follows: first, we present the related work in section
4.2, then in section 4.3, we present our extended comparative analysis of end-to-end methods.

4.2 Related Work
The use of deep learning to solve geometric tasks has been growing for years. The intrinsic
relevance of learning approaches resides in their capacities to learn from example, from real
data collected. As we saw in chapter 3, classical SLAM(s) are sophisticated machines often
with a large number of parameters, carefully tuned and non-trivially adaptable to different
environments. Deep Learning promises to remove this problem by providing algorithms that
can be trained in an environment. This removes the complexity of hand-tuning parameters for
specific usage but offers different challenges.

First, deep learning methods need to be trained on a large volume of data. Thus, in contrast
with classical methods, they typically require an initial effort of collecting data and then training
on it, before a model can be used for inference. For supervised methods, the data collected also
needs to be labeled. So if a task requires a large volume of data to obtain the desired levels
of precision, this is typically a very costly operation. In the context of SLAM the collection
of labeled data, though less painful than semantic labeling, requires some additional effort.
Benchmarks such as [99] compute accurate ground truths by registering scans in ground truth
maps obtained from scanning with high-precision survey-grade LiDAR sensors. The benchmark
KITTI [40] uses GPS measurements to provide the ground truth. The first method is costly
in time and equipment, and the second cannot work in GPS-denied environments and requires
costly material to obtain comparable levels of precision.

The second challenge is the capacity of deep learning methods to generalize on data outside
of the training dataset. The real world is extremely diverse, and to work properly the inference
data should match as closely as possible the training data. Note that for SLAM applications
to work properly, this can be challenging, as one of the goals of SLAM is to explore new and
unseen environments. So to hope of generalizing to a wide range of environments, massive
amounts of data are typically required.

Finally, in the context of LiDAR odometry, an additional problem is the nature of the
data. In contrast with images, and up until recently, point cloud representation was lacking.
Methods such as PointNet [89] unlocked many learning applications on point cloud data, and
later convolutional operators such as Kpconv [116] or Sparse Tensor Convolutions [22] provided
the point cloud’s equivalent of images’ convolutional operator which was lacking until now. Still,
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Figure 4.1: Architecture and description of PoseNet for image localization. In this approach
from [119], which builds on the original PoseNet [54], uses one network to predict relative poses
between two frames, and another one to predict absolute poses for image localization.

even with high-end GPUs many of such representations are too slow and costly for many real-
time applications. So few LiDAR odometry methods have incorporated such representations in
their pipeline so far.

Despite these challenges, different approaches to addressing LiDAR odometry with deep
learning have been proposed, and we present the most relevant in this section. The remainder
of the section is organized as follows: in section 4.2.1 we present end-to-end LiDAR odometries
proposed, then in section 4.2.2 hybrid methods which integrate deep learning within a classical
pipeline.

4.2.1 PoseNet-based and other End-to-End LiDAR odometries
A first class of method proposes end-to-end deep LiDAR odometries, ie they propose a neural
network architecture which takes as input LiDAR frames and directly regresses as outputs
pose parameters. All these methods typically use a similar prototypical neural architecture but
typically differ both in architectural details and most importantly in their training methods.
This prototypical architecture was initially proposed by the image-based localization method
PoseNet [54] and is composed of a feature extraction module (either constructed using a series
of convolutional layers, or deep point cloud feature extraction modules) that transforms a
tensor into a feature vector, and a Multi-Layer Perceptron (MLP) head which regresses pose
parameters from the feature vector as presented in figure 4.1. In the remainder of this work,
we also name PoseNet this prototypical neural architecture and thus consider all the neural
architectures derived from this prototype as flavors of the original PoseNet.

In the original paper, PoseNet [54], the neural network was trained to output absolute poses
based on specific images. The goal is to train the network on a given site, with a sequence
of images of these sites labeled with ground truth poses, and to be able to estimate for new
images of this same site the pose of each image. Thus the task solved here is Absolute Pose
Regression (APR). This method has generated a lot of interest, and many work have followed
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its tracks: [119, 18, 77, 129, 1]. We show in figure 4.1 a description of the ”PoseNet” for image
localization from [119].

For odometry and SLAM, however, the goal is to navigate in new and unknown environ-
ments. To this end, the same architectures are trained to predict relative poses, ie to solve
the task of Relative Pose Regression (RPR). The typical approach to this end is to train the
same network architecture to predict for pairs of consecutive frames (images or LiDAR frames
projected with a spherical projection) the RPR.

The first LiDAR method to use such an end-to-end approach is Lo-Net [65], which proposes
a hybrid method (see section 4.2.2) with notably a PoseNet module predicting RPR at a high
frequency. This approach is supervised and thus requires ground truth for the relative poses of
each consecutive frame of the dataset. The method was only trained on the sequences of the
KITTI odometry benchmark [40] containing the ground truth.

DeepLO [19] was proposed the following year, with for the first time an unsupervised learn-
ing method to train PoseNet for RPR. In their method, presented in figure 4.2, the parameters
of the PoseNet network are trained by differentiating a point-to-plane loss, which is constructed
using the predicted pose. This loss (which is essentially the energy minimized by LiDAR odom-
etry) is small near the optimum and thus provides them with a supervision signal which allowed
them to reach precision levels on KITTI, with notably much better generalization than Lo-Net.
Following DeepLO, [20] proposed an additional term to the loss to improve the precision of the
odometry, proposing an additional plane-to-plane loss to the loss proposed by DeepLO.

In this work, as we implement a version very much similar to DeepLO [19], we present in
much more detail the method in section 4.3.1.

End-to-end methods released since the publication of our work Since the publication
of our work, new end-to-end approaches have been proposed. UnDeepLIO [118] have pro-
posed a LiDAR-Inertial end-to-end odometry, which fuses DeepLO’s PoseNet with the initial
predictions of poses from IMU signal constructed using LSTM [46] recurrent neural networks.
This work is trained with a similar unsupervised to DeepLO. Selfvoxelo [128] uses 3D convo-
lutions, and thus does not rely on the spherical image projection of DeepLO. They propose a
complex loss construction, which notably uses the standard ICP as a more precise pose super-
vision signal. Another work [79] uses PointNet++[90] as a siamese network as an alternate
feature extraction module, while keeping the MLP head. Finally, PWCLO-Net [122], uses
an iterative three stages warp-refinement approach greatly inspired by 2D flow networks. This
work, which has the more complex architecture is supervised with the ground truth poses.

These works have iterated over the previous end-to-end approaches which are considered
in this chapter for our analysis. Using more sophisticated feature extraction, more adapted
for point clouds, some do present improvements both in terms of generalization [128, 122] and
capacity to learn, over the simpler DeepLO. However, as will be detailed in section 4.4, they
do not change the conclusions of our analysis.

4.2.2 Hybrid Methods
As we will see in section 4.3.2, by themselves, and though promising, end-to-end approaches,
(ie the approaches that directly regress poses presented in the previous section) compare poorly
to state-of-the-art classical odometry methods. However, they can be integrated as components
of hybrid LiDAR odometry pipelines. This is the first type of hybrid method and those which
are the focus of this work.

More precisely, we will use in this work the methods [65, 80] as a basis for comparing
our approach. For both of these methods, a hybrid LiDAR odometry is constructed by using
PoseNet end-to-end odometry (presented in the previous section) to initialize a more costly
mapping procedure.
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Figure 4.2: DeepLO method as described in the original article [19].

Detailing the first category a bit further, Lo-Net [65] (see figure 4.3) proposes its mapping
procedure, which is a classical point-to-plane frame-to-model registration algorithm. Addition-
ally, it uses the normals computed for each frame on the frame’s spherical image as described
in section 3.3.3. On the other hand, [80] directly uses LOAM [135]’s mapping procedure.

Essentially, both of these approaches replace the frame-to-frame registration of an algorithm
like LOAM [135], with an estimate provided by a PoseNet architecture. Both methods evaluate
the precision of their end-to-end odometries by comparing them to frame-to-frame ICP-based
alignment. And appear to have better performance. We mitigate these conclusions in section
4.3. Broadly, we consider that to properly evaluate these methods, they need to be treated
as initialization strategies (constant velocity model, elevation images and frame-to-frame reg-
istration) and see if they provide some real benefits within SLAM pipelines. These different
strategies were presented in the section 3.2.2.1 above.

We evaluate these different deep and hybrid LiDAR odometry methods in detail in section
4.3.2.

There exists a second category of Hybrid methods, which operate on pairs of frames (like
end-to-end approaches presented in the previous section). However, these methods do not
regress pose parameters in an end-to-end fashion. Instead, they use DeepLearning to construct
an intermediary step, which is fused with a frame-to-frame classical geometric method. ap-
proaches but does share the pitfalls observed with these methods which we will describe below.
Some, for example, learn how to perform point cloud association [67, 117], or learn feature
description, and then use an SVD to predict the motion. We show in figure 4.4 a description of
the hybrid method DMLO[67]. Differently, LodoNet [137] uses an image-based feature match-
ing technique on spherical images, before regressing the pose using an MLP.
These approaches are beyond the scope of this work, where we focus on the first category of
method.
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Figure 4.3: Description of LoNet [66] method, a Hybrid method which combines an end-to-end
deep LiDAR odometry, with a classical frame-to-model mapping approach. The operation Π
fuses the previous global pose with the Deep Odometry for initialization. Then, the operation
Θ iteratively refines the pose using a standard point-to-plane based ICP (see chapter 3).

Figure 4.4: Description of DMLO[67]’s method. DMLO has a hybrid approach, where it learns
to do point association between two consecutive frames. The resulting matching is combined
with a differentiable SVD to predict poses, which allows to backpropagate the poses to the
parameters of the network. This work uses a supervised loss comparing the prediction to
ground truth poses.
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4.3 What’s In My LiDAR Odometry Toolbox
While studying in detail deep and hybrid LiDAR odometries, we found strong limits to the
potential these methods seem to have. First, we found that some of the advantages presented
in these approaches were, either small compared to classical equivalents, or not sufficiently
proven.

This motivated the work we now present, in which we analyze and compare the previous
deep and hybrid methods presented in section 4.2.2, to their classical counterparts. In it, our
goal was not to propose a new methodological contribution, nor did we aim to obtain state-of-
the-art accuracy on KITTI [40]. Instead, the contribution of this work lies in the analysis itself,
and the conclusion drawn, which helps to better understand the limits of these end-to-end and
hybrid approaches compared to classical algorithms.

This work is integrated within the python package pyLiDAR-SLAM, which contains publicly
available implementations for deep, hybrid and classical odometries. We presented in section
3.3 the classical pipeline which is part of this work, and the minor contributions which came
along. In this section, we first present the deep and hybrid methods proposed and implemented
in detail in 4.3.1 and 4.3.1.3, and finally our analysis in section 4.3.2. We present in table 4.1
for clarity common abbreviations used in this chapter.

Table 4.1: Abbreviations used in this chapter. These abbreviations can be combined, so for example
P-F2F denotes a classical frame-to-frame registration algorithm using a projective data association,
CV-Kd-F2M, an odometry using the constant velocity model, a Kd-Tree for data association between
a frame and a model, etc...

Abbreviation Name Description

Registration types

F2F Frame-to-Frame Registration algorithm/odometry using only the previous frame to estimate the
relative transform of a new scan. (ie without a model or a map).

F2M Frame-to-Model Describes registration/odometry algorithm registering new frames
on a model constructed from multiple consecutive frames
(also called a map in standard SLAM terminology).

Initialization types

NI None No initialization, ie the pose is initialized with the previously inserted pose.

EI Elevation Images Uses a 2D alignment on elevation images to estimate the 2D motion,
as described in section 3.2.2.1.

CV Constant Velocity An initialization which assumes that the model has constant velocity,
ie the frame is initialized by applying the previous relative transform.

Neighbor Association types

P Projective Projective data associations: neighbors computed with pixel neighborhoods
on spherical images.

Kd Kd-Tree Kd-Tree data associations: nearest neighbors are computed using a Kd-Tree
constructed on the map point cloud.

Error metrics

RPE Relative Pose Error KITTI’s[40] trajectory error as described in section 2.4.1.1.

Pose Regression

RPR Relative Pose Regression Deep Learning objective: interprets the output of a network
as the parameters of a relative pose of SE(3) between two frames

APR Absolute Pose Regression Deep Learning objective: interprets the output of a network
as the parameters of an absolute pose of SE(3) within a global frame.
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Contributions The principal contributions of this work are the following:

– Comparative analysis of deep, hybrid and classical LiDAR odometries

– Publicly available implementation of deep and hybrid LiDAR odometries within the
pyLiDAR-SLAM python package

Figure 4.5: Description of the modules of pyLiDAR-SLAM (already shown in section 3.3). We
highlighted the Deep Odometry module presented in this section.
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Figure 4.6: Neural Architecture for the original DeepLO [21] (above), and our simplified im-
plementation (below)

4.3.1 Deep & Hybrid LiDAR Odometry
The end-to-end deep LiDAR odometry in this article is essentially the same as DeepLO [21],
though some implementation details lead to differences in the loss formulation and training
procedure, they are minor enough not to be considered real contributions in our view. So in
this section, while we present this work more carefully, we will mention the stages where our
method differs from the original paper.

As can be seen in figure 4.2, the PoseNet of this method expects two consecutive Vertex
Maps (VM), which are obtained by projecting a LiDAR frame in a spherical image as described
in section 3.3.3. These two vertex maps are treated as 2D tensors of dimension H ×W × C
(for Height×Width× Channel) and concatenated along the axis of the channel.

4.3.1.1 Network Architecture

The network architecture used in this work is a simplified version of DeepLO [21], and we
present the differences below. Figure 4.6 illustrates how our architecture is constructed. Our
architecture uses a ResNet18 backbone [43] to learn the feature representations from a pair
of consecutive frames, concatenated along the channel dimension. The backbone outputs a
feature vector of size 1024, which is passed to two distinct linear layers to predict respectively
the 3 rotation parameters and 3 translation parameters of the relative pose. Each MLP head
is a single linear layer with 512 parameters.

Differences with DeepLO: As figure 4.6 illustrates, our architecture differs from DeepLO,
which uses two separate ResNet18 backbones for a pair of consecutive normal maps on the one
hand and a pair of vertex maps on the other hand. The two resulting vectors are then added
before passing through the MLP heads. In our experiments, we found that using these two
backbones did not make any noticeable difference compared to using only one on the vertex
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maps. We tested with the two backbones, one for normal maps and one for vertex maps, and
found very similar results. In section 4.3.2, our study provides insights into the learning power
of these networks, which makes it clearer why this is the case.

A final difference is the rotation representation used. In DeepLO’s original approach, they
proposed a normalized quaternion representation, ie they interpret the 3 rotation parameters
as qx, qy, qz. The unit quaternion is then computed as (qx, qy, qz, 1/(1 − ∥(qx, qy, qz)∥2)) from
which they compute the rotation. On the other hand, we use the Euler representation and
interpret the parameters as θyaw, θpitch, θroll. Despite claims made in the original method, and
through experimenting with different rotation representations (we tested the same regression of
quaternions, as well as the regression of the angle-axis parametrization), we found no significant
difference in performance or training capacity of using either representation.

4.3.1.2 Training & Losses

Similarly to DeepLO [21] we implemented two distinct training strategies: a supervised strategy
and an unsupervised strategy. A supervised strategy requires ground truth poses, which, as
explained above is often a costly operation. On the other hand, unsupervised training presents
the promise of learning directly from the data, by only providing consistency constraints which
is much more interesting and relevant for many applications. In our SLAM context, an unsu-
pervised strategy would allow estimating poses for an unknown set of frames during training,
providing the added benefit (additionally to the inference power of the network) of an offline
mapping algorithm. There are however limitations to this view, which we present in section
4.3.2, but we first detail the two training strategies.

Supervised The PoseNet network outputs separately rotation parameter ω ∈ R3 and trans-
lation parameters t ∈ R3. Our supervised loss Lsup compares these parameters to the pa-
rameters of the real pose (ωGT , tGT ) ∈ R6. Doing a naive loss scheme such as Lsup =
∥ω − ωGT∥2

2 + ∥t − tGT∥2
2 results in unstable training. This is because relative rotations and

translations do not have the same inherent scale. In our implementation, the rotation output
of the network is expressed in radians and the translation in meters. So typically the relative
translation output from the network is orders of magnitude greater (in norm) than the relative
rotation.

While other strategies would propose a fixed parameter rescaling in the loss component, we
follow [19]’s strategy of using a learnable rescaling, and define the supervised loss as follows:

Lt := ∥t− tGT∥1 (4.1)
Lω := ∥ω − ωGT∥1 (4.2)

Lsup(ω, t) := Lt exp(−st) + Lω exp(−sω) + sω + st (4.3)

This introduces two additional scale parameters st, and sω, which are trained and can evolve
during training. This approach to learning the scaling of parameters was first introduced to
balance rotations and translation loss components for training PoseNet networks in the context
of image-based localization in [119].

Unsupervised More interesting in our opinion, is the unsupervised training method. With-
out ground truth poses, the network is trained by constructing a loss Lunsup(ω, t) encoding
geometric constraints that the estimated pose must verify. In our context, the natural loss is
a registration loss (or ICP Loss as named in [21]), which is similar to the objective minimized
by a classical ICP-based registration procedure (see section 3.3.2 for more details).
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Given two consecutive vertec maps VMn,VMn+1, the forward propagation produces the
pose Tn,n+1. The points of VMn+1 are transformed using this pose and reprojected into the
spherical image VMn,n+1. Then, as described in section 4.3.2, the points of VMn and VMn,n+1

are associated by pixel association. Indexing by I all the pixels for which this association is
valid, and given the normal map NMn, the loss is expressed as:

Lunsup(Tn,n+1) =
∑
p∈I

w(p) · ∥(VMn[p]− VMn,n+1[p]) · NMn[p]∥1 (4.4)

=
∑
p∈I

w(p) · ∥(VMn[p]−Tn,n+1 ∗ VMn+1[p]) · NMn[p]∥1 (4.5)

w(p) = exp(−(∥VMn[p]− VMn,n+1[p]∥2
2)/σ2) (4.6)

Note again that this is the standard point-to-plane error minimized by classical lidar-
odometry (see chapter 3). We add only a single weight for each residual w(p), which, and
this is important, is detached from the gradient backpropagation.

In DeepLO’s original paper, an additional loss term Lfov was incorporated, to prevent
divergence during training. This divergence can easily occur, which leads the network to predict
large and wrong pose parameters. In this case, very few points are projected back into the
spherical image, which leads to singular loss functions. However, our weighting scheme was
enough to prevent divergence, by providing a more robust frame-to-frame registration objective,
compared with the one proposed by DeepLO.

4.3.1.3 Hybrid LiDAR Odometry

Our hybrid approach adopts a strategy similar to Lo-Net [66] and [80], ie we use a PoseNet as
an initialization strategy. More precisely, the PoseNet model is trained as a primary offline step
and exclusively with the unsupervised training strategy presented above. For each new frame,
our hybrid SLAM algorithm first initializes the pose with the PoseNet network, by predicting
the relative pose between the previously inserted frame to the new one. Then, the new pose
estimate is used within our frame-to-model registration procedure presented in section 3.3.

Note, that we can combine this initialization approach with the two registration procedures
implemented within pyLiDAR-SLAM, the Kd-Tree based frame-to-model approach (Kd-F2M)
and the projective frame-to-model approach (P-F2M). Essentially resulting in two distinct
hybrid algorithms based on PoseNet.

4.3.2 Experiments
We conducted a large campaign of experiments of the different modules implemented within
pyLiDAR-SLAM, which we present in this section. These experiments will serve as a basis of
our comparative analysis in section 4.3.3. First, we present the datasets and metrics used in
this experiment in 4.3.2.1, which differ slightly from the one used in the LiDAR-Odometry
chapter 3. Then we present our main results in section 4.3.2.2, and show that we reach near
state-of-the-art performance, which legitimates our analysis in the next section.

4.3.2.1 Datasets & Metrics

In this work, we use principally the KITTI dataset [40], which we already presented in section
2.4.1.1. As mentioned above, this driving dataset is the most popular public benchmark to
evaluate LiDAR odometries, and all the existing hybrid and deep LiDAR odometries [66, 19, 80]
evaluate and compare themselves on this dataset. For this reason, we mainly focus on this
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dataset for the core of our analysis. From this dataset, we only retain the first 11 sequences for
which the ground truth poses are provided and evaluate all the methods proposed on this set
of sequences.

To train PoseNet for our hybrid and deep odometries, we split these sequences between a
training and test set. Though we experimented with multiple test sets as we explain below, our
principal split use sequences 00-08 as training sequences and 09,10 as test sequences, similarly
to [21].

Ford Campus [85] is another driving, which consists of 9996 frames acquired on the Ford
Campus of Dearborn Michigan, with another HDL-64 LiDAR rotating at 10Hz, and similarly
to KITTI, the LiDAR is installed in autonomous driving configuration (ie with the rotation
axis of the sensor perpendicular with the ground-plane).

The motion of the car in this dataset is much simpler than KITTI’s (far fewer turns, long
stops at red lights, and long straight lines). However, it offers new environments such as
parking lots, and typically American small buildings, with some additional challenges (many
mobile objects).

Thus this dataset is a great addition for studying the generalization capacities of PoseNet
between similar datasets, and we use it mostly to this effect in our analysis. The dataset, which
in terms of size is roughly half the size of KITTI, contains 2 sequences (short and long). For
training, we use the long sequence as the training sequence, and the short sequence as the
test sequence.

NCLT [13] is used lastly, to test the capabilities of the network outside of the context of
autonomous driving, and with different sensor configurations. As presented in section 2.4.2.1,
this dataset was acquired with a Velodyne HDL-32 mounted on a segway, traveling through
Michigan University’s North Campus. This dataset contains much more sequences, much longer
than KITTI’s, so we used sequences 2012-01-08 for testing and 10 other sequences for training
(sequences 2012-01-22 to 2012-03-31).

Metric For each method and each dataset, we use KITTI’s Relative Pose Error (RPE)
as a sole metric, which allows us to compare efficiently our method with other state-of-the-
art methods evaluated on KITTI. Already mentioned in section 2.2, this metric averages the
translation errors over all segments of a given trajectory over multiple lengths (100m to 800m).

4.3.2.2 Results

The deep and hybrid odometries presented in section 4.3.1 were implemented in Python us-
ing the PyTorch library. The networks were trained using the Adam optimizer with default
parameters, for 100 epochs, with an initial learning rate of 10−4 divided by 2 every 20 epochs.

For the classical LiDAR odometry (presented in section 3.3), the local map is built from
the last 30 point clouds registered. As a preprocessing step for the Kd-Tree-based classical
frame-to-model LiDAR odometry (Kd-F2M) implemented in pyLiDAR-SLAM, we perform a
grid sample with a voxel size of 0.4m. For the projective classical frame-to-model odometry
(P-F2M), the preprocessing step is only the projection in a 64 × 720 spherical image. This
resolution is the same as that of the input vertex maps of the PoseNet network and acts as a
sampling procedure that reduces the initial frame resolution (which was 64× 1024).

We present the odometry results in terms of the RPE metric in table 4.2. It shows that
we obtain near state-of-the-art results for our tree-based LiDAR odometry (Kd-F2M) and even
better results than the published projective methods with our projective method (P-F2M). And
similarly for our PoseNet with the weighted L2 loss and in the hybrid LiDAR odometry. The
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Table 4.2: Relative Pose Error (RPE) as a percentage of distance traveled for KITTI’s Dataset,
comparing Published LiDAR Odometries and the Proposed Methods (italic) / EI=”Elevation Image”,
CV=”Constant Velocity”, F2M=”Frame-to-Model”, * are training sequences for PoseNet.

00* 01* 02* 03* 04* 05* 06* 07* 08* 09 10

Classical Tree-Based LiDAR odometries

IMLS-SLAM [26] 0.5 0.82 0.53 0.68 0.33 0.32 0.22 0.33 0.8 0.55 0.53
LOAM [135] 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79

EI + Kd-F2M 0.53 0.79 0.52 0.69 0.45 0.34 0.31 0.36 0.79 0.54 0.51
CV + Kd-F2M 0.51 0.79 0.51 0.64 0.36 0.29 0.29 0.32 0.78 0.46 0.57

Projective LiDAR Odometries

SuMA [4] 0.68 1.70 1.20 0.74 0.44 0.43 0.54 0.74 1.20 0.62 0.72

EI + P-F2M 0.57 0.67 0.62 0.83 0.51 0.37 0.36 0.32 0.93 0.60 1.01
CV + P-F2M 0.57 0.71 0.62 0.82 1.12 0.37 0.37 0.33 0.93 0.61 1,01

Unsupervised Deep LiDAR Odometries

DeepLO [21] 1.90 37.83 2.05 2.85 1.54 1.72 0.84 0.70 1.81 6.55 7.74
Self-supervised LO [80] - - - - - - - - - 6.05 6.44

PoseNet + ICP loss 1.33 7.11 1.81 3.09 0.93 1.38 1.43 0.84 2.27 6.31 8.99
PoseNet + Weighted ICP (W-ICP) loss 1.36 1.88 1.46 2.33 0,97 1.26 1.05 1.07 2.05 6.79 7.6

Hybrid LiDAR Odometries

LO-Net [66] 0.78 1.42 1.01 0.73 0.56 0.62 0.55 0.56 1.08 0.77 0.92

PoseNet (W-ICP loss) + P-F2M 0.60 0.67 0.68 0.85 0.56 0.41 0.39 0.34 0.96 0.69 1.07
PoseNet (W-ICP loss) + Kd-F2M 0.55 0.85 0.58 0.74 0.44 0.34 0.36 0.33 0.88 0.61 0.83

goal of this work was not to propose state-of-the-art LiDAR odometries (by contrast with our
work CT-ICP, presented in section 3.4). Instead, we show here that the performances of our
methods justify the analyses we present in the next section.

Yet, we can already make some observations from the results presented in section 4.2.
Notably, we see that the tree-based method offers superior accuracy than projective methods.
This is natural, as tree-based methods generally offer more precise neighbor associations, at the
cost of slower execution. Yet in the context of autonomous driving, the difference is not very
important, and we can see for example that our projective frame-to-model obtains better results
than LOAM’s original results. Additionally, it appears clearly that PoseNet as an initialization
strategy and as part of hybrid methods offers only very marginal gains compared to other
strategies, and we study this more in detail in section 4.3.3.3. Finally, it is also clear in the
table, that there is still a large gap between classical frame-to-model (F2M) LiDAR odometries
and unsupervised deep learning-based odometries. And one of the goals of this work was to
study the potential of deep LiDAR odometries and answer the question: can LiDAR odometries
become practically useful and help improve classical LiDAR odometries ? We give some answers
to this question in the next section.

4.3.3 Comparative Study
We now present the main contribution of this work, the comparative analysis of deep, hybrid
and classical LiDAR odometries. The original idea behind this analysis was to understand the
strengths and weaknesses of each method and understand how they could complement each
other.

First, we investigate the claim made by several papers that PoseNet outperforms frame-to-
frame (F2F) ICP-based odometries in section 4.3.3.1, and essentially show that it is relatively
easy to build a classical F2F odometry contradicting this claim. Then, in section 4.3.3.2, we
take a closer look at PoseNet and show the limits of its generalization capacity. Essentially, we
show that further research is needed before any practical or industrial use of these methods.
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And this leads us to study PoseNet as an initialization strategy, and how it compares to other,
simpler initialization strategies; this is the subject of section 4.3.3.3. Finally, we expose in
section 4.3.3.4 the weaknesses and failure cases of classical LiDAR odometries which reveal
scenarios where PoseNet could theoretically be useful.

4.3.3.1 PoseNet vs Classical Frame-to-Frame Odometry

In other approaches, PoseNet is often compared to the default F2F ICP registration [19, 80]
(with either a point-to-plane or a point-to-point metric). We, on the other hand, consider the
comparison unfair and show that very little effort is required to build a decent frame-to-frame
LiDAR odometry, which can obtain comparable, and even slightly better precision on both the
training and test sets. We show the results of running a frame-to-frame LiDAR odometry on
KITTI for different initialization strategies in table 4.3.

First, it confirms the result of previous approaches, that using a naïve point-to-plane reg-
istration with no initialization (NI) leads to worse performances than PoseNet (rows 3 and 6
of the table). However, using very simple initialization methods such as the constant velocity
model (CV), or the elevation image alignment (EI), both presented in section 3.3.1, we already
obtain results much better than PoseNet on the training set, and significantly better and the
test set. In a way, this is normal and even reassuring, as a P-F2F alignment is precisely the
supervision signal used to train PoseNet. Yet, the mechanism of construction of the pose is very
different for PoseNet and an ICP-based method. While an ICP iteratively refines an original
estimate until convergence, PoseNet maps features extracted from a pair of consecutive scans
to a relative pose, by a series of nonlinear deformations of space parametrized and optimized
with the training data. Thus, the precision of the pose, and this mechanism, is limited by
the representative power of the network, the capacity to extract accurate and discriminative
features and the volume of training data. While the former method’s precision simply depends
on noise, the richness of the environment, and the ability to make correct neighbor associations.
On a side note, these parameters are also important for training PoseNet in the unsupervised
setting.

But the table 4.3 still hints at a potential utility for PoseNet: when the motion cannot be
properly initialized (either due to abrupt motion, or initializing in rotations), PoseNet can use all
the data of the training set as a regularizer and obtain in some cases decent enough predictions,
which explains why they outperform the standard frame-to-frame with no initialization NI-
F2F. Still, in this rather ”niche” case, to train a PoseNet supervision is required, but if the
strategy considered is the unsupervised setting, the supervision signal is precisely the classical
method P-F2F. Thus we have the following paradox: when this signal is possible, classical
methods typically perform well (as shown with KITTI’s example).

4.3.3.2 Understanding the limitations of PoseNet for RPR

Studying PoseNet, we found that the idea that PoseNet as a Relative Pose Regression (RPR)
estimator learns to find optimal pose between consecutive frames is a false promise. A previous
work [105] already showed the limitations of PoseNet for Absolute pose regression (in the con-
text of localization), and notably showed that the behavior of such networks was much closer
to image retrieval techniques than the desired geometric understanding of a scene. Without
this geometric understanding, it is clear why PoseNet has poor generalization capacities. And,
in this section, we show that this conclusion is also true for PoseNet for RPR and we ex-
plore the limits of PoseNet generalization to unknown motion (which corresponds to the label
distribution) or unknown environments (corresponding to input distribution).
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Table 4.3: Relative Pose Error (RPE) on KITTI: compares PoseNet to different Frame-to-Frame
(F2F) methods / NI =”No Initialization”, EI=”Elevation Images”, CV=”Constant Velocity” /
P=”Projective” and Kd=”Kd-Tree” for the respective data associations. ”*” Denotes training se-
quences

KITTI Training Sequences KITTI Test Sequences

{00-08}* {09-10}

PoseNet (ICP loss) 2.24 7.65

PoseNet (Weighted ICP loss) 1.49 7.19

NI + P-F2F 40.1 30.4

CV + P-F2F 1.46 1.7

EI + P-F2F 1.47 1.9

NI + Kd-F2F 24.18 14.04

CV + Kd-F2F 1.41 1.84

EI + Kd-F2F 1.41 1.87

Generalization to unobserved motion We already saw in table 4.2 and 4.3, the difference
in accuracy between training and testing for PoseNet. Additionally, we examine the behavior
of PoseNet on motion unobserved during training. To achieve this, we use KITTI’s sequence 01
(highway), which is unique among the KITTI dataset which is mainly composed of residential
and city environments (sequence {00,02-10}). The test split {11-21} also contains several
road sequences but with a maximum speed of 90km/h.

We present in figure 4.7 the distribution of the motion (using the ground truth) and the
PoseNet prediction for this split. We also trained PoseNet using all the sequences but the 01,
resulting in the split {00,02-21}(city, suburbs, roads), and present the trajectory errors for
both splits in the table 4.4.

We can see that both training splits lead to poor generalization capacity of PoseNet to the
unobserved motion of sequence 01. The scale of the motion predicted by PoseNet does not leave
the distribution observed during the training set as is clearly shown in figure 4.7. Interestingly,
when faster roads are added to the training set (split 00,02-21), PoseNet can relate the motion
of sequence 01 to the motion of the roads (with speeds up to 80km/h), but cannot interpolate
further. This illustrates the same behavior as for absolute pose regression: essentially PoseNet
associates a pair of frames with the closest motion observed in the dataset.

Generalization between datasets After showing poor generalization to unknown output
distributions, we now show the limitations of PoseNet’s capacity to generalize to different
but comparable datasets. Essentially, we show that currently PoseNet networks have poor
generalization between datasets. To do this, we trained a PoseNet on KITTI and tested it on the
Ford Campus dataset (and reciprocally). The results are shown in figure 4.4. For both datasets,
we find that PoseNet obtains decent results on the training sequences, however, obtains poor
results on the other dataset. This is underwhelming, as both datasets were acquired using the
same LiDAR, in the same driving configuration, using the same spherical projection parameters
to build the PoseNet inputs. Thus, it generally, shows the limited generalization capacities of
PoseNet, even for comparable scenarios. And shows that work is required before PoseNet
becomes pertinent as a network used for inference in real conditions.

4.3.3.3 Initialization Strategies

We now study the last application potential of the network: ie PoseNet as an initialization
procedure. This approach was already introduced by LO-Net [66] as a supervised network
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Table 4.4: Relative Pose Error (RPE) on sequence 01 of KITTI shows that PoseNet fails to infer
unobserved motion during training / CV=”Constant Velocity”, P-F2F=”Projective Frame-to-frame”.
”*” Denotes training sequences.

Target KITTI Sequences

KITTI {00, 02-10} KITTI 01

PoseNet (KITTI {00, 02-10}*) 1.51 56.04

PoseNet (KITTI {00, 02-21}*) 1.63 13.46

CV + P-F2F 1.52 2.17

Table 4.5: Relative pose Error (RPE) shows Poor Generalization of PoseNet between KITTI and
Ford Campus datasets. ”*” Denotes training sequences.

Target Datasets

Ford Campus KITTI {00-10}

PoseNet (Ford Campus)* 3.94 73.42

PoseNet (KITTI {00-21})* 71.56 1.54

CV + P-F2F 4.32 1.52

CV + P-F2M 2.04 0.69

Figure 4.7: Distribution of the speed (scaled in km/h) for KITTI’s agglomeration sequences
({00, 02-10} in blue) and highway (01 in red) computed from the ground truth (Top) and from
PoseNet’s prediction (light blue and light red) for the training split {00, 02-10} (Bottom). The
PoseNet incapacity to generalize well to motion unobserved during training is demonstrated.

predicting a motion estimate before mapping, and was extended in [80] with unsupervised
training for PoseNet.

This approach is meaningful, as initialization is a crucial step for a successful F2M odom-
etry, due to the small convergence radius of ICP methods. However, for a deeper complete
analysis, it is interesting to compare it to simpler approaches in isolation, as well as in more
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challenging settings. This is the topic of this section.

KITTI and Ford Campus: Two training strategies are relevent for PoseNet + F2M, yet
carry different meanings. The first strategy uses all available data for training, using the
regularizing effect of the data to improve the PoseNet prediction. It can be relevant when the
LiDAR odometry is used offline, for example as a mapping algorithm. The second strategy uses
only data unobserved during training and evaluates the capacity of PoseNet to be used online as
an initialization method. To evaluate both scenarios, we train PoseNet on two different splits
of KITTI, sequence 00-21 for the mapping scenario and 11-21 for the online scenario. We
show the results in table 4.6. We see that PoseNet does improve P-F2M slightly, compared to
the simpler EI and CV approaches, when running on data observed during training (see rows
1 and 3 on KITTI). Yet, this is not the case when unobserved data is considered, which leads
to poorer performances. We can make the connection with the analysis of section 4.3.3.2: due
to PoseNet’s bad generalization capacities when the motion or environment at inference differs
from the training distributions. Still, the gains obtained using test data are very marginal for
the complexity of using PoseNet and are very likely null for more precise LiDAR odometry such
as CT-ICP.

NCLT: We now study LiDAR odometries in another context than driving scenarios where
both classical and hybrid LiDAR odometry are very good, precisely because the motion is easily
predicted, as the vehicle mostly has a straight trajectory with occasional turns. This leads to
simple registration and high map qualities. We now test a method with the more challenging
NCLT dataset. The LiDAR is sparser (only 32 channels) and suffers from abrupt rotations
in the yaw (around its axis) and pitch angles (the acceleration/deceleration motion leads to
inclinations of the segway).

As mentioned above, we trained PoseNet on 10 sequences in both supervised and unsuper-
vised settings (for more than 200k frames of the same environment). The results for the sequence
2012-01-08 (test) and 2012-01-22 (train) are presented in table 4.7, and the corresponding
trajectories in figure 4.8. They show very poor performances for CV as an initialization method
compared to EI. This illustrates well the importance of proper initialization for classical meth-
ods. EI provides a better good first estimate of the 2D motion (notably the rotation around
the z axis), which allows correct registration and thus keeps the map clean. In contrast, the
CV here fails to provide a good enough initialization to ensure convergence of the F2M and
quickly leads to poor map qualities due to inaccurate registrations.

Secondly, we can compare P-F2M and Kd-F2M in a more challenging registration setting.
We see that our Kd-F2M behaves better than the P-F2M implementation. This is expected
as the projective alignment leads to less precise neighbor associations. What’s more, the P-
F2M is even more sensitive to abrupt rotations, which can lead to large pixel distances between
neighbors. However, the most important difference here does lie in the initialization strategy.
And we see that with the appropriate initialization strategy, even P-F2M as correct results,
with reasonable drift, as can be seen in figure 4.8.

On a last note, we see that PoseNet behaves poorly on the dataset in supervised and
unsupervised settings, for both the training and test sets. This again illustrates the limited
representative power of our current PoseNet for more challenging motions. Despite using 10
times more data than for KITTI in a repeating environment, PoseNet is unable to learn a
mapping from pair of frames to relative poses at a precision interesting enough to allow correct
registrations. Due to the abrupt rotations, the motion of the sensor is located in a much greater
volume of the parameters space than for driving motions. Thus, further research is required to
allow neural network architectures to address these more challenging settings.
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Figure 4.8: Trajectories of sequence 01/08 of the NCLT dataset obtained by the proposed Kd-
F2M for different initialization strategies. The figure shows that the constant velocity (CV)
(green) model is less appropriate for this dataset than our 2D registration-based estimator (EI).
Ground Truth (GT) is in red.

Table 4.6: Relative Pose Error (RPE) on KITTI and Ford Campus for different initialization
strategies, followed by P-F2M / P-F2M=Projective Frame-to-Model / CV=”Constant Velocity”,
EI=”Elevation Image”.

Target Datasets

Ford Campus KITTI {00-10}

PoseNet 00-21* + P-F2M - 0.66

PoseNet 11-21* + P-F2M - 0.81

PoseNet Ford Campus* + P-F2M 2.41 -

CV + P-F2M 2.04 0.69

EI + P-F2M 2.11 0.69

Table 4.7: Relative Pose Error (RPE) on sequences 2012-01-08 and 2012-01-22 of the NCLT dataset,
shows the importance of the selection of the initialization for LiDAR odometries.

NCLT Target Sequences

2012-01-08 (test) 2012-01-22* (train)

PoseNet (supervised) + Kd-F2M 35.5 37.5

PoseNet (unsupervised) + Kd-F2M 48.7 46.3

CV + Kd-F2M 11.49 18.7

EI + Kd-F2M 1.84 3.73

EI + P-F2M 4.32 5.21
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Table 4.8: Number of failures over driving datasets. ”*” Denotes training sequences.

Target Datasets

Ford Campus KITTI {00-10}

PoseNet (KITTI {00-21})* - 0

PoseNet (KITTI {11-21})* - 0

PoseNet (Ford Campus)* 261 -

NI + P-F2F 1494 3286

EI + P-F2F 270 257

NI + Kd-F2F 1127 1845

EI + Kd-F2F 261 0

Number of Frames 9996 23201

4.3.3.4 Weaknesses of Geometric LiDAR Odometries

So far, we prove that F2M LiDAR odometries obtain superior results when a rich and dense
map is constructed and when the new scan to be registered is moved into the small convergence
domain of the mapping algorithm with a good initialization. The challenges remaining are then
the construction of this precise map and the prediction of the initial motion. This provides
hints of weaknesses of the classical methods: elements deteriorating the quality of the map
(such as mobile objects, featureless regions, and bad scan registration) as well as rapid and
unpredictable motion (see chapter 3).

Another weakness we can mention here is the initial construction of the map. For the
first two frames, F2M is equivalent to F2F without motion initialization. Bad initial map
construction can be recovered for methods using a sliding local map (e.g. IMLS-SLAM [26]),
which can forget badly registered scans, but the trajectory and map constructed will only be
correct locally and not globally. It is even more problematic for methods relying on a global
map (such as LOAM [135]).

To illustrate this sensitivity in the driving datasets KITTI and Ford Campus, we count
the number of failures to align two consecutive frames (without any motion priors). More
precisely, given a predicted pose location tpred = (tx, ty, tz) and Euler angles epred = (ex, ey, ez)
and the corresponding ground truth pose (tpred, epred), we consider the prediction to be a failure
if ∥tpred− tgt∥2 > 1m or ∥epred−egt∥2 > 3°. We report in table 4.8, the number of such failures
of the F2F for KITTI and the Ford Campus dataset. This table shows the known limitation
of classical ICP based F2F alignments, which have many failures, notably in the projective
case. Yet, we see that our EI initialization performs well in these outdoor datasets, and has
few failure cases.

Finally, we see that for this metric, PoseNet performs well both on training data (rows 1 and
3 of table 4.8), and on unobserved data (row 2). Thus despite its weak generalization properties,
and when it can be trained, PoseNet can provide a good enough initial estimate and limits the
number of absurd registrations which can occur with ICP-based F2F, as PoseNet essentially
outputs poses observed during training. In contrast, the ICP outside of its convergence region
can move in any direction of the parameter space. So in a sense, PoseNet encodes the motion
model of the training dataset.
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4.4 Conclusion
In this chapter, we presented a detailed analysis of the strength and weaknesses of deep and
hybrid LiDAR Odometries. This work shows the strong limitations that deep and hybrid
LiDAR odometries have compared to their classical counterparts. Broadly speaking, they offer
no or very coincidental improvements over classical odometries, they require training and tend
to generalize poorly to new conditions. So in practice, no advantage of these methods over
classical methods has been proven. This work has been published in the article What’s In
My LiDAR Odometry Toolbox [24], which has been accepted at the conference IROS 2021.
It is made freely available online, and the associated GitHub project, pyLiDAR-SLAM (https:
//github.com/Kitware/pyLiDAR-SLAM) has more than 200 stars as of today.

As mentioned in the related work (section 4.2), different methods have been published since
ours, proposing new deep [118, 128, 79, 122] or hybrid odometries [67, 117]. They have improved
the performance of deep and hybrid odometries, notably (and this is the most important metric)
in terms of generalization. One of the determining factors for this is the use of point-cloud-
friendly feature encoders, instead of image-based CNNs. Still, the conclusion of this chapter
remains mostly unchanged: none have yet proven a real advantage over classical methods.

Thus, in this chapter, we showed clearly that these types of approaches were not yet satisfy-
ing enough to help us address the problems of classical LiDAR Odometries identified in chapter
3, despite some early promises. In the next chapter we investigate a different domain, which
we will see, is much more pertinent to improve LiDAR-Only odometries, by fusing LiDAR with
inertial measurements.

Taking a step back, let us be clear that our work here is not a rejection of Deep Learning
for the context of LiDAR SLAM. It is clear that Deep Learning has its place in LiDAR SLAM
pipelines and is currently very underused. As we saw, in chapter 3, classical SLAM pipelines
have shortcomings that are difficult to address using handwritten rules. Semantic segmentation
could be very interesting to remove mobile objects from the points to insert in the map, which
would help pollution. Weighting residuals based on classes (Vegetation, potentially mobile
objects, etc...), or for straight error detection, could also be very promising approaches. For
point-cloud-based loop detection and place recognition, there is also a lot of work to be done.
But trying to replace classical LiDAR odometries with end-to-end deep odometry now seems a
fool’s errand, as it is, in effect, trying to replace the one thing that LiDAR SLAM does work
very well already.

Note that it didn’t prevent us from trying...
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Résumé
Dans le chapitre 3, nous avons montré que CT-ICP est une odométrie LiDAR très précise,
particulièrement pour des scénarios de conduite automobile. Cependant, nous avons identifié
différentes catégories de cas d’échecs. Nous avons exploré dans le chapitre 4 les méthodes
d’odométries LiDAR deep et hybrides, et nous avons montré que ces méthodes n’offrent aucun
bénéfice sur les méthodes classiques. Donc, dans ce chapitre, nous explorons une nouvelle
approche: fusionner des capteurs LiDAR et inertiels.

Les IMU (Inertial Measurement Units) mesurent les dérivées du mouvement de la trajectoire
(vélocité angulaire, accélération linéaire), à une fréquence de sortie souvent beaucoup plus
importante que le LiDAR. Pour des IMU de type MEMS, leurs fréquences de sorties sont souvent
comprises entre 100Hz et 400Hz. Ces types de capteurs ont des informations complémentaires:
les LiDARs donnent des informations géométriques sur l’environnement, alors que les IMUs
contraignent directement la trajectoire.

Les systèmes LiDAR Inertiel sont donc de parfaits candidats pour résoudre les échecs des
odométries LiDAR dus à des mouvements rapides et saccadés. Il existe bien entendu un large
corpus de méthodes proposant diverses manières pour fusionner ces deux types de données.
Nous en présentons une liste non exhaustive dans la section 5.2.

Dans ce chapitre, nous prenons une approche singulière. Nous partons de notre odométrie
LiDAR CT-ICP, et graduellement, nous augmentons ces capacités en proposant des méthodes
de plus en plus raffinées.

Nous montrons notamment, qu’en utilisant uniquement les mesures brutes du gyroscope, et
sans même recourir à des modèles d’estimation d’état compliqués, nous pouvons améliorer les
performances de CT-ICP, et notamment mieux gérer différents cas d’échecs de cette méthode.
Dans la section 5.3, nous présentons les différentes étapes de notre approche, et dans la section
5.4, les expérimentations qui nous permettent de démontrer la pertinence de chaque étape.

Contributions: Les contributions présentées dans ce chapitre sont les suivantes:

– Une approche graduelle pour améliorer CT-ICP en utilisant les mesures de gyroscope.

– La démonstration des gains de chaque amélioration à travers une série d’expérimentations.
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5.1 Introduction
We saw in chapter 3 that CT-ICP is a very precise LiDAR-Only odometry, especially for driving
scenarios. However, we also saw different categories of failure cases. We tried in chapter 4
to explore end-to-end LiDAR Odometries to address them but showed that, currently, such
methods offer no benefits over classical methods. Thus, in this chapter, we explore another
approach: fusing LiDAR with Inertial Measurements.

Inertial Measurement Units (IMU) measure derivatives of the trajectory’s motion (angular
velocity, linear acceleration) often at a much higher frequency than the LiDAR (typically for
the MEMS-based IMU, at a frequency between 100Hz and 400Hz). Both types of sensors have
complementary information: LiDAR provides geometric information about the environment,
while IMUs provide trajectory constraints.

Thus LiDAR-Inertial methods are the perfect candidates to address the failures of LiDAR
Odometries which are due to abrupt motion. There exists a large body of work proposing novel
methods on the topic, of which we present a list non-exhaustive in section 5.2.

In this chapter, we take a singular approach, where we start from our LiDAR-Odometry
CT-ICP, and gradually augment its capacities with iteratively more refined approaches. We
show, notably, that, leveraging only the raw gyroscope measurements, without state-estimation
models, we drastically improve the performance of CT-ICP, and handle many failure cases of
the method. We present the different stages of this approach in section 5.3, and present in
section 5.4 the experiments which demonstrate the relevance of each stage.

Contributions: The contributions presented in this chapter are the following:

– A gradual approach to improve CT-ICP using gyroscope measurements.

– Experiments demonstrating the improvements for each step.
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Figure 5.1: Description of LIO-SAM’s approach [112] method. LIO-SAM uses a Factor Graph to
integrate multiple sources of constraints to estimate the trajectory (GPS, IMU, Loop-Closure).
The registration of LIO-SAM is however, loosely coupled, as IMU measurements are only used
to distort the point cloud and initialize the motion.

5.2 Related Work
In this section, we present the principal methods which have been proposed to fuse LiDAR and
inertial measurements. We presented in section 3.2 the different types of LiDAR odometries,
and already presented some LIO methods, but through the perspective of registration. Thus,
here, we focus only on the mechanisms to fuse IMU and LiDAR measurements.

Similarly to LO, there is a large body of work in this field and many different approaches
to integrate IMU measurements into LiDAR Odometries. The first approach is to decouple
the registration from the integration of IMU measurements. This approach uses a conventional
registration procedure, similar to those presented in section 3, but preprocesses the point cloud
and initializes the motion using the IMU measurements. We present work of this category in
section 5.2.1.

A second type of methods, which is typically called Tightly Coupled Approaches, use IMU
measurements within the registration procedure, typically as constraints that are designed to
improve the performance of the registration procedure. We present this type of method in
section 5.2.2.

5.2.1 Loosely-Coupled Approaches
Loosely-Coupled methods separate the fusion of IMU and LiDAR measurements in two different
stages. Typically, a probabilistic model of the trajectory predicts accurately the motion when
IMU measurements arrive at a high frequency. This allows a very precise initialization of
the LiDAR frame. The corrected motion is then used to update and refine the model. The
representation of the trajectory is typically modeled as a Pose Graph or a Factor Graph,
which allows the integration of multiple trajectory constraints (including loop closure, odometry
constraints, GPS constraints, etc ...). Libraries such as GTSAM [23] or G2O [61] have been a
great help to the robotics community, providing frameworks to construct and optimize efficiently
such models. For a factor graph representation, [37] proposed a practical method to pre-
integrate IMU measurements. This method, which is implemented within GTSAM, allows
adding IMU measurement constraints within Factor Graphs, at the same frequency as the
LiDAR poses, allowing to constrain the trajectory model with IMU measurements. This work
has been instrumental to construct Loosely-coupled approaches [112, 83, 99, 115].

The LiDAR-Odomety stage of loosely-coupled approaches is essentially always a standard
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LiDAR odometry step, initialized with a precise trajectory estimate. During the accumulation
of the LiDAR frame (at a frequency of 10 to 20Hz), the IMU measurements collected allow
the trajectory model to predict the pose more accurately than the standard motion models
seen in previous sections. LOAM [135] proposed an optional IMU module for their odometry
(see section 3.2 for more details on the method). For their approach, they use a simple linear
Kalman filter to estimate the relative motion of a scan with the IMU measurements. They
then use the estimated relative motion to pre-distort the scan before forwarding it to their
main odometry module.

LIO-SAM [112], uses [37] method implemented in GTSAM to build a factor graph allowing
them to estimate the IMU biases and predict the relative motion within a frame. This motion
is used to distort the frame, using only the gyroscope measurements (thus correcting only the
distortion due to the relative rotation within the frame), and initialize the registration. The
registration uses the standard LOAM [135] approach, and the optimized pose is then used to
refine the factor graph responsible for the IMU preintegration. Additionally, they model their
global trajectory with a separate Factor Graph, which receives absolute measurements from
GPS, LiDAR odometry and IMU to refine globally the trajectory.

Part of the solution of the CoStar team for the Subterranean challenge relies on a loosely-
coupled LIO. They proposed LOCUS [83, 99] which is a standard generalized-ICP [108] based
LiDAR odometry, which uses IMU measurements to distort the point cloud frames of their
platforms as a preliminary step. The modeling of the trajectory also relies on GTSAM, and is
presented in their work [115].

5.2.2 Tightly-Coupled Approaches
Another type of approach fuses directly IMU and LiDAR measurements within the Pose Es-
timation problem. These Tightly-Coupled approaches, can either keep a probabilistic state-
estimation approach with filtering or smoothing formulations. Or simply integrate IMU mea-
surements within an optimization objective, either as a prior, or additional residuals to optimize.

Filtering Approaches Filtering approaches maintain only a single state which is updated
constantly with new measurements. The seminal approach to probabilistic state estimation is
the Kalman filter [53]. In this work, the state estimation is separated between a prediction state
(based on the model), and an update step which corrects the model given new measurements,
by comparing the predictions to the measurements.

For geometric pose estimation problems, the relationship between the model and mea-
surements is not linear. Thus extensions of the Kalman filter are preferable, such as the
extended Kalman filter (EKF) using first-order linearization, Unscented/Sigmapoint Kalman
Filter (SKF) which, or iterative approaches which perform the update step in multiple itera-
tions. An in-depth introduction to the subject can be found in [3].

The filtering approach has been widely used in recent years to build LiDAR Inertial odome-
tries [91, 127, 125, 126, 70, 51].

LINS [91] is built on the LOAM framework, but proposes a filtering approach based on the
Error State Kalman Filter (ESKF). In this work, each IMU measurement is used in a predict
step to estimate the trajectory at the frequency of the IMU. Then, the update step iteratively
minimizes a least-square objective formulated as the standard LOAM objective (expressed
with the error state parameters), to which a prior is added, expressing the uncertainty of
the prediction. At each step, similarly to most LiDAR-Only odometries, the neighborhood
association is updated.

Similarly, Fast-LIO [127, 125] and Faster-LIO [126] also use an iterative Extended Kalman
Filter, using a tangent space linearization, and thus represent the uncertainty in the tangent
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Figure 5.2: FAST-LIO2’s [125] system overview .

space of the state estimate. The prediction is similar to [91], and at each iteration of the update
step, the neighborhood association is updated, then an objective adding the prior residual
to the sum of the measurements residuals is optimized to derive the optimal error-state, and
propagate the uncertainty. The difference is that these latter methods use a dense point cloud
registration procedure, with point-to-plane residuals constructed.

These approaches typically allow for very fast odometries. Note that they are very similar to
the LiDAR-Only odometries methods proposed in section 3.2. However, the filtering approach
allows them to better model the uncertainty, and thus construct better priors which significantly
helps the performance of the algorithm. Thus, filtering approaches are essentially equivalent to
LiDAR-Only odometries with good priors and better initializations.

Smoothing / Batch Optimization Approaches Filtering approaches, only optimize one
state at a time. Smoothing approaches, by contrast, keep a memory of previous states, and
optimizes the new state and the previous states simultaneously. In probabilistic formulation,
filtering only estimates current states given past measurements while smoothing estimates each
state given all the available measurements.

LIO-Mapping [130] proposes a new fixed-lag smoothing approach that keeps only a sliding
window of states optimized simultaneously. The map estimation of the vector of states opti-
mized together is estimated by the least-square minimization of a sum of LiDAR measurement
residuals, prior residuals and imu residuals. The LiDAR residuals are constructed by associat-
ing features between each frame in the window and a pivot frame. The IMU residuals, similarly
to [94], are constructed by pre-integrating IMU measurements between relevant time frames.

In2Laama [62], builds a global factor graph containing both LiDAR and IMU factors to-
gether. And optimizes all state variables in a full batch optimization.

Optimization-Constraints Lastly, IMU measurements can also be integrated directly within
optimization objectives, as optimization constraints.

One category of method notably uses a continuous trajectory modelization to compare
derivatives of the trajectory to IMU measurements. Using notably a representation with B-
Splines (cf section 3.2) [97, 75] construct constraints on the derivatives of the trajectory, by
comparing them to the raw IMU measurements. This allows them to skip the preintegration
step, and thus constrain the set of knots optimized together.

An alternative approach is to use the pre-integrated measurements as constraints. This is
notably the case of [15] which uses a pre-integrated gyroscope measurement as a prior for the
registration of the scan.
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Figure 5.3: Aggregated point cloud reconstructed using CLINS [75] (Top). This LiDAR-Inertial
Odometry uses B-Splines to estimate the trajectory. Using both LiDAR and IMU measure-
ments, they can approximate very well the derivatives of the trajectory, as shown in the graph
(Bottom), where the blue line corresponds to the model’s angular velocity and linear accelera-
tion, and the red line, the corresponding IMU measurements.
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5.3 Improving CT-ICP with Inertial Measurements
We saw in the previous section, the different strategies to fuse IMU and LiDAR measurements
existing in the related work. In this work, we propose to extend our LiDAR-Only odometry CT-
ICP (see section 3.4) with a tightly-coupled, model-less optimization approach. More precisely,
we propose two novel loosely-coupled extensions of CT-ICP using inertial measurements and
compare them with the lidar-only method.

The section is organized as follows: first, we present the kinematics of the LiDAR-Inertial
system 5.3.1. Then in section 5.3.2, we present the motivation for using inertial measurements in
the context of LiDAR odometry, by studying failure cases of LiDAR-Only odometries. Finally,
we present our proposed methods in section 5.3.3.

Our main contributions in this work are the proposed extensions of CT-ICP, and the demon-
stration in section 5.4 of their performance and improvement over CT-ICP.

5.3.1 IMU Measurement model / Notations
In this section, we describe the kinematics notations and the measurement model of the IMU
sensor. We only work with 6-axis IMU sensors, which provide measurements of the linear
acceleration and angular velocity of the sensor in the sensor frame.

To model the motion of the IMU sensor, we introduce the following notations:

Timu(t) := The pose of the IMU sensor at time t in an inertial frame (5.1)
Timu(t) = (Rimu(t), timu(t)) (5.2)

T(t) := The angular velocity of the IMU sensor at time t in the sensor frame (5.3)
a(t) := The linear acceleration of the IMU sensor at time t in the sensor frame (5.4)

The relationship between the motion derivatives and the pose is expressed as follows (see
[3] for the derivation of the kinematics robotics applications):

·
Rimu(t) = Rimu(t)T∧(t) (5.5)

·
timu(t) = Rimu(t)T a(t) + g (5.6)

IMU sensors provide at high-frequency noisy measurements of the angular velocity
∼
T(ti) and

linear acceleration ∼
a(ti) of the sensor. The measurement noise is often modeled as a Gaussian

with quantities bω and ba representing the bias of the sensor:

∼
T(ti) = T(ti) + bω ∼ N(0, Σω) (5.7)
∼
a(ti) = a(ti) + ba ∼ N(0, Σa) (5.8)

In this work, we only consider gyroscope measurements and ignore accelerometers alto-
gether. Furthermore, we assume that the gyroscope bias is very small and can be neglected.
We see the limits of this assumption in the next section, but we design the methods proposed
in this chapter based on these assumptions.

We will often integrate gyroscope measurements, and we simply use Euler equations as
follows, by assuming an angular velocity constant between ti and ti+1:

R(ti+1) = R(ti) exp(T(ti)(ti+1 − ti)) (5.9)
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5.3.2 Motivation for using inertial measurements
We already examined in chapter 3 failure cases for our LiDAR Odometry CT-ICP. There are
different scenarios of failures, but the one we will detail in this section is due to the limitation of
our constant-velocity motion model. CT-ICP’s handling of the distortion relies on the constant-
velocity motion model assumption. While this assumption is valid for most of the datasets we
presented in chapter 2, as demonstrated by the results of section 3.5. However, when this
assumption does not hold, badly distorted point clouds inserted in the map will pollute it and
lead to catastrophic failures of the LiDAR Odometry.

The HILTI challenge datasets presented in section 2, will help us illustrate this quite clearly.
These datasets provide centimetric-precision ground truth for multiple sequences. Using this
ground truth, we can reconstruct the aggregated point cloud using different models of contin-
uous trajectory to distort each scan inserted.

First, we use the constant-velocity model (which is the model assumed by CT-ICP), in this
model the ground truth trajectory is sampled at the frequency of LiDAR frames; then we use a
linear interpolation between the poses at the beginning and end of the frame to distort the point
cloud, similar to the one proposed in section 3. We call this method of distortion GT-CV1 :

pi
raw := Point in the sensor frame (5.10)

ti := Timestamp of the point (5.11)
pi

world := Point in the world frame (5.12)
(Tb, Te) := The poses at the beginning and end of the frame (5.13)

ti
α := (ti − tb)/(te − tb) (5.14)

RCV (ti) = Slerp(Quat(Tb), Quat(Te), ti
α) (5.15)

tCV (ti) = (1.− ti
α)tb + ti

αte (5.16)
pi

world = RCV (ti)pi
raw + tCV (ti) (5.17)

Then, we use the raw gyroscope measurements to distort the point cloud frames: as de-
scribed in section equation 5.9, we integrate the gyroscope measurements to estimate poses at
the frequency of the gyroscope. For a given frame, starting at time tb and ending at time te,
the estimate poses at the instants τ0 = tb, ..., τk = te of the gyroscope measurements received
by only integrating gyroscope measurements. Then, for each point, we interpolate the pose
between the two temporally closest poses τi and τi+1, and transform the point in the world
frame using this interpolated pose. We call this method of distortion GT-Gyro.

Finally, we reincorporate the constant velocity model for the translation to the GT-Gyro
presented just above. This leads to the final distortion method GT-Gyro-CT.

In figure 5.4 we show the point cloud aggregated for these different methods on the sequence
exp06 of the HILTI 2022 dataset [136]. We can see that the Constant Velocity model (GT-
CV) leads to highly polluted aggregated point clouds, compared to the other two. The HILTI
2022 handheld dataset is particularly challenging, and we selected a sequence where the carrier
makes particularly abrupt motions. In this context, thus we see that the error due to the
constant velocity model in terms of rotation estimation leads to the most significant distortion
errors of the point cloud. This demonstrates, that even if we estimated perfectly the trajectory
with our algorithm CT-ICP, we would still introduce significant map pollutions, to which we
know our algorithm is particularly sensitive.

We proposed the GT-Gyro as it is often used in the literature to distort point clouds
[112, 83], thus neglecting the distortion errors due to the translation between two frames. While

1Here CV applies to the modelization of the trajectory, not to be mistaken to the initialization method
presented in chapters 3 and 4
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(a) GT-CV (b) GT-Gyro

(c) GT-Gyro (d) GT-Gyro-CT

Figure 5.4: Comparison of the different distortion methods GT-CV, GT-Gyro, GT-Gyro-
CT on the sequence exp06 of the HILTI 2022 dataset. We first compare the aggregated
point cloud obtained with GT-CV and GT-Gyro (Top), and then (for a different part of
the trajectory), GT-Gyro and GT-Gyro-CT (Bottom). The figure shows that the constant
velocity distortion leads in these cases to high levels of noise in the aggregated point cloud,
even when using the ground truth (GT-CV). Using gyroscope (GT-Gyro) measurements
helps reduce the noise of the point cloud, and using a linear interpolation of the translation
(GT-Gyro-CT) helps even more.
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this might be valid for certain contexts, figure 5.4 shows that neglecting this effect still leads
to map pollution errors. In this sequence, this is particularly noticeable when the user puts the
platform down to the ground or lifts it. For these two scenarios, the translation between two
frames ranges between 20 to 30 cm over 3 or 4 frames. Neglecting to consider this distortion
does lead to problematic pollution.

These observations have the benefit of making the roadmap for improving CT-ICP clear:
ie using gyroscope measurements to pre-distort the point cloud and use the constant velocity
model to distort the translation. We detail this approach in the next section.

5.3.3 Proposed methods
In this section, taking into consideration the observations of the previous section, we construct
a model-less approach to improve CT-ICP. More precisely, we propose gradually more precise
extensions following the motion models exposed in the previous section. This will allow us
to compare these approaches in section 5.4, and confirm quantitatively the analysis presented
above.

CT-ICP-Gyro Our starting point is our method CT-ICP presented in section 3.4. This
method implements a constant velocity model and uses 12 degrees of freedom accompanied by
constraints to refine the distortion during the optimization. Thus, a first natural extension,
using the gyroscope measurements, is to propose a new set of constraints using the integrated
gyroscope measurements.

More specifically, this method, which we call CT-ICP-Gyro, is different from CT-ICP
from two aspects: initialization and trajectory constraint. First, the initialization is performed
using the integrated gyroscope measurement to predict the relative rotation of the new frame:

Tk+1
b,ini = Tk

e,ini (5.18)
Rk+1

e,ini = Tk+1
b,ini ∗Rk,k+1

gyro (5.19)
Rk,k+1

gyro =
∏

l=1..n

exp[T∧(τl) ∗ (τl+1 − τl)] (5.20)

tk,k+1
e,ini = tk

b,ini (5.21)

Then, we add a different set of constraints to the registration algorithm (recalling equation
3.39), which leads to the following registration error EReg(X) to optimize at each iteration of
the ICP:

X = [Tb, Te] = [(Rb, tb), (Rb, tb)] ∈ SE(3)2 (5.22)
EReg(X) = ECT-ICP(X) + EC(X) (5.23)

EC(X) = βgyro · ∥RT
b ∗Re ∗ (Rk,k+1

gyro )T − 13∥2
F (5.24)

+ Cloc(X) + Cvel(X)

Where Cloc(X) and Cvel(X) are the same constraints defined in equations 3.46 and 3.47,
and βgyro is a weight parameter. These constraints enforce the constant velocity model and add
a prior to the estimation of the relative rotation.

As we showed in the previous section, this model might be invalid for abrupt rotations.
Thus we propose next a popular approach: use the gyroscope measurements to pre-distort the
point cloud.
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ICP-DistGyro Following many popular approaches [112, 83], in this approach, we use only
gyroscope measurements to apply a distortion of the point cloud as a preprocessing step. Im-
portantly, we distort the point cloud (similarly to GT-Gyro presented in the previous section)
at the frequency of the gyroscope measurements. This allows us to correct abrupt rotations
much more precisely than the previous approach.

More precisely, we transform the point of the incoming frame, and express them in the
reference frame of the end pose of the frame, as follows:

pi
raw(ti) := Point in the sensor frame at time ti (5.25)

pi,dist
raw (ti) = RT

e ∗Rgyro(ti) ∗ pi
raw(ti) (5.26)

Rgyro(ti) = Slerp(Quat(τk), Quat(τk+1),
ti − τk

τk+1 − τk

), ti ∈ [τk, τk+1[ (5.27)

Then, our registration algorithm does not need to correct the distortion during the opti-
mization. Thus, we only optimize the 6 degrees of freedom of a standard point-to-plane rigid
transformation:

X = Te = (Re, te) ∈ SE(3) (5.28)

We keep however the prior constraints on the relative rotation similar to equation 5.23.
The main reason that this approach is popular, even among state-estimation models (such

as [112]), is that angular velocity measurements, contrary to linear acceleration, do not need
an absolute orientation estimation to be correctly integrated. This means that for a trajectory
that has drifted in orientation, the prediction of the relative orientation will still be valid, while
this might not be the case for the relative translation.

However, when the relative translation between two frames is significant, we saw that this
approach still introduces noise due to bad distortions. Which motivates our last iteration.

ICP-DistGyro-CT-Trans So finally, our final approach combines the two previous ap-
proaches. CT-ICP did prove the superior performance obtained using 12 degrees of freedom
when the constant velocity model was valid, see section 3.5 for more details. Thus, compared
to ICP-DistGyro, we reintroduce the 3 degrees of liberty which allow our ICP to estimate
the distortion due to the translation during the optimization. Thus in total 9 parameters are
optimized at each iteration of the ICP:

X = (tb, Re, te) ∈ R3 × SE(3) (5.29)

The rotation from the gyroscope is still applied as a preprocessing step, similar to the pre-
vious method. The initialization is also identical. In the next section, we demonstrate the
gradual improvements each of these methods provides. But before this, we show in figure 5.5
point clouds aggregated using the ICP-DistGyro-CT-Trans method. They provide qualita-
tive results of our LiDAR Inertial Odometry on the HILTI sequences.
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(a) Aggregated point cloud using (ICP-DistGyro-CT-Trans). Dataset: HILTI 2022, exp01

(b) Aggregated point cloud using (ICP-DistGyro-CT-Trans). Dataset: HILTI 2022, exp21

Figure 5.5: Aggregated point clouds using our best LiDAR-Inertial Odometry, ICP-DistGyro-
CT-Trans.
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Figure 5.6: ICP-DistGyro (Blue), ICP-DistGyro-CT-Trans(Orange) and ground truth
poses (Green). Dataset HILTI-2022, exp06

5.4 Experiments
In this work, we use the sequences from the NCLT [13], HILTI 2022 [136] and NCD [98] datasets,
which were all presented in chapter 2. For the NCLT and NCD datasets, we use the Relative
Pose Error (RPE) metric, as the acquisition is made within a large environment, thus with a
trajectory prone to drift. For the HILTI dataset, however, we use the absolute trajectory error
(ATE) because the sequences we consider are acquired in confined spaces, thus less prone to
drift.

We present the trajectory errors for the three methods on these three datasets in figure 5.1.
There are two aspects to focus on: first, the robustness of the method, ie whether it fails on
some of the sequences. And, secondly, the overall precision achieved by the method.

The first thing to notice is that the default version of CT-ICP but also CT-ICP-Gyro
fail on two sequences (HILTI-exp06 and NCD-05). These two sequences were designed to be
challenging, and the operator moves the handheld device abruptly, to test the robustness of
SLAM methods. The sequence exp06 is specifically the sequence presented in figure 5.4, and
the failure does occur when the motion is so abrupt that the constant-velocity model does
not distort the point clouds well enough. This leads to map pollution and then catastrophic
failures. Thus, we see that the second class of method ie ICP-GyroDist and ICP-GyroDist-
CT-Trans is more robust than using the constant velocity model of CT-ICP. Performing the
distortion as a preprocessing step here does correct the distortion of the point cloud at a high
enough frequency that no bad insertions are performed in the map. Thus, these two methods,
provided that the accuracy of the gyroscope is satisfying, are more robust than CT-ICP to
dynamic motions.
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Table 5.1: Trajectory errors for the different improvements of CT-ICP on a set of sequences from
LiDAR-Inertial datasets.

NCLT (RPE(%) per sequence)

2012-01-08 2012-04-29 2012-05-11

CT-ICP 0.89 0.87 0.92

CT-ICP-Gyro 0.87 0.89 0.90

ICP-GyroDist 0.87 0.87 0.89

ICP-GyroDist-CT-Trans 0.88 0.86 0.87

HILTI-2022 (ATE(m) per sequence)

exp04 exp05 exp06

CT-ICP 0.08 0.09 7

CT-ICP-Gyro 0.07 0.08 7

ICP-GyroDist 0.06 0.07 0.06

ICP-GyroDist-CT-Trans 0.04 0.05 0.05

NCD (RPE(%) per sequence)

01 02 05

CT-ICP 1.13 1.21 7

CT-ICP-Gyro 1.10 1.15 7

ICP-GyroDist 1.12 1.16 1.32

ICP-GyroDist-CT-Trans 1.11 1.13 1.27

Secondly, looking at the performance of each method, we first notice that the gain between
each layer of complexity, though it is noticeable, is marginal. CT-ICP is already by itself a
very precise odometry, and adding the gyroscope for the distortion does improve the robustness
of the method as it prevents failure cases, but does little to improve the precision.

Comparing ICP-GyroDist to ICP-GyroDist-CT-Trans, we see that again if the gain
of the latter is still marginal, it is more noticeable on the HILTI 2022 dataset. This is because
the method better handles the translation distortion occurring when the sensor is lifted from
or put down on the ground. Still, the gain is only 1 or 2 cm on average over the trajectory.

Finally, inspecting the precision of CT-ICP on HILTI-2022, where the acquisition is per-
formed in a confined area (see figure 5.4), we see that the range of the absolute error is 5 cm
on average. While this is a high level of precision, professional solutions obtained 2 cm average
errors on the HILTI-2022 benchmark.

We conjecture that the road to higher levels of precision will come from combining both
geometry and more sophisticated motion models. That is, in our current approach, we do not
model the noise of the sensor (which typically ranges between 2 and 5 cm for the LiDAR we
presented). This noise is added to the map, and we neither refine the model of the surface of
the map nor model this noise in our optimization. Thus, to leverage more complicated trajec-
tory models (such as B-Spline or Iterative Kalman filters), we believe that strong geometric
constraints are needed, with finer management of the noise, both at the map level and for the
objective of the registration minimized.
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5.5 Conclusion
In this chapter, we presented an extension of our method CT-ICP (see chapter 3), to integrate
IMU measurements. Compared to different approaches, presented in section 5.2, our method
uses a model-less and naive approach. However, we showed that despite its simplicity, this
approach does improve CT-ICP, and helps compensate for one of the shortcomings presented
above: the limitations of the constant velocity model.

We took a layered approach where each layer slightly improves our base LiDAR-Odometry,
CT-ICP. Yet, we saw that the principal gain of these approaches is in robustness, rather than
in precision (as the precision gains were marginal). This illustrates again that CT-ICP is a
solid backbone for precise odometry.

As we saw in the related work, many different strategies exist to fuse LiDAR with IMU
measurements, and most could easily be integrated within CT-ICP to try and improve it even
further, and we let this for future work. Another strategy would be to set the frequency of the
LiDAR at 20Hz (which is available by most 3D LiDAR). This would reduce greatly the need
for IMU measurements, such that the standard CT-ICP would remain a valid option.

This work is part of a publication in preparation, where we extend and improve CT-ICP,
as previously mentioned in the conclusion of Chapter 3.

133



Conclusion

The work in this thesis proposed a panoramic view of LiDAR Odometry methods. The pre-
sented contributions aimed to clarify, and build upon the excellent previous work which was,
and continues to be produced in this area. To achieve this goal, we presented a range of meth-
ods of LiDAR odometries, from classical to Deep-Learning based, and also a step toward the
fusion with inertial sensors. We aimed to focus on producing profound analyses, rather than
producing obscure novelties, to build a solid foundation, on which such novelties could be built
later if desired.

In Chapter 2 of this thesis, we presented evaluation methods which we used in the rest of this
thesis to evaluate and compare different LiDAR odometries. Then, in Chapter 3, we presented
a classical LiDAR odometry pipeline, implemented in pyLiDAR-SLAM, including a naive, but
precise point-to-plane, which achieves near state-of-the-art precision on public benchmarks. We
also produced a novel state-of-the-art LiDAR odometry, CT-ICP which sets a novel state-of-
the-art level of precision on public benchmarks. This work was analyzed in depth, on a wide
variety of datasets, and we produced an extensive ablation study to understand the impact of
each contribution on the overall performance of the method. In Chapter 4, we investigated
deep and hybrid LiDAR odometries. More precisely, we focused on Deep end-to-end LiDAR
odometries, and their relevance compared to classical approaches, both by themselves or as
part of a hybrid LiDAR odometry pipeline. We showed that, as of today, such methods show
no real relevance compared to classical LiDAR odometries. We repeat here, that we do not
disavow Deep Learning in general in the context of LiDAR SLAM, and believe that it does
have a place. Finally, in chapter 5, we proposed a natural extension of our reference odometry,
CT-ICP, by incorporating Inertial measurements. We showed in this work, that we could
improve CT-ICP, notably in terms of robustness using a better distortion model thanks to
gyroscope measurements. This approach, though naive, and only a first step towards making
a proper LiDAR-Inertial Odometry out of CT-ICP, is promising, and illustrates even further
the precision and potential of our work CT-ICP.

The content of this work has already been published in two international conferences, and
a third publication is in preparation at the time of this writing. Much of this work has been
released as open-source: first pyLiDAR-SLAM1 a python module for LiDAR odometry, and then
CT-ICP 2. Throughout this thesis, we have made consistent efforts to improve the quality of
this work, which has been well-received by the robotics community. Multiple works have been
built on top of, or motivated by CT-ICP ([121]).

1https://github.com/Kitware/pyLiDAR-SLAM
2https://github.com/jedeschaud/ct_icp
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MOTS CLÉS

SLAM LiDAR. Odométrie. Localisation. Reconstruction 3D.

RÉSUMÉ

Les LiDARS 3D se sont largement démocratisés ces dernières années, poussés notamment par le développement des
véhicules autonomes, et la nécessité de redondance et de sécurité. Contrairement aux caméras, les LiDAR 3D four-
nissent des mesures 3D de l'environnement très précises. Cela a conduit au développement de différents algorithmes de
cartographie et de SLAM (Simultaneous Localization and Mapping), utilisant ces nouvelles modalités. Ces algorithmes
ont vite dépassé les capacités des systèmes basés sur les caméras. Un élément crucial de ces systèmes est le prob-
lème d'odométrie LiDAR, qui désigne le problème d'estimation de trajectoire du capteur, en utilisant uniquement le flux
continu de mesures LiDAR. Ce travail se concentre sur ce problème. Plus précisément, dans ce manuscrit nous visons
à repousser les performances des odométries LiDAR.
Pour atteindre cet objectif, nous explorons d'abord les méthodes classiques (ou géométriques) d'odométrie LiDAR. Nous
proposons notamment deux nouvelles méthodes d'odométrie LiDAR dans le chapitre 3. Nous en montrons les forces et
les faiblesses. Pour tâcher de répondre à ces limites, nous regardons de plus près les méthodes d'odométrie utilisant le
Deep Learning dans le chapitre 4, en nous concentrant notamment sur les méthodes de type "boîte noires". Finalement,
dans le chapitre 5 nous fusionnons les mesures LiDAR et les mesures inertielles pour rechercher encore plus de précision
et de robustesse.

ABSTRACT

3D LiDARs have become increasingly popular in the past decade, notably motivated by the safety requirements of au-
tonomous driving requiring new sensor modalities. Contrary to cameras, 3D LiDARs provide direct, and extremely precise
3D measurements of the environment. This has led to the development of many different mapping and Simultaneous Lo-
calization And Mapping (SLAM) solutions leveraging this new modality. These algorithms quickly performed much better
than their camera-based counterparts, as evidenced by several open-source benchmarks. One critical component of
these systems is LiDAR odometry. A LiDAR odometry is an algorithm estimating the trajectory of the sensor, given only
the iterative integration of the LiDAR measurements. The focus of this work is on the topic of LiDAR Odometries. More
precisely, we aim to push the boundaries of LiDAR odometries, both in terms of precision and performance.
To achieve this, we first explore classical LiDAR odometries in depth, and propose two novel LiDAR odometries, in chapter
3. We show the strength, and limitations of such methods. Then, to address to improve them we first investigate Deep
Learning for LiDAR odometries in chapter 4, notably focusing on end-to-end odometries. We show again the limitations
of such approaches and finally investigate in chapter 5 fusing inertial and LiDAR measurements.
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