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de l’École des Ponts ParisTech

Criticality calculations in
neutronics: model order reduction
and a posteriori error estimators
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Abstract

For some applications involving loading optimization for nuclear reactor cores, such as
irradiation experiments on Materials Testing Reactors (MTRs), or optimizing fuel assem-
bly loading patterns, the challenge is to reduce the computational time of the simulation
of the reactor state, while controlling calculation biases and errors. A reduced-basis ap-
proach is a natural candidate to meet this constraint.

In the context of reduced bases, we build an approximation space associated with a par-
tial differential equation that depends on parameters encoding the loading pattern. The
construction of this approximation space involves a phase of exploration of the parameter
space, in which it is important to quantify the error between the solution obtained from
the approximation space (under construction) and the solution obtained with a standard
high-fidelity calculation (fine discretization). This crucial step enables the certification of
the reduced basis construction via a posteriori error estimates. Recent works have been
carried out to obtain a computable error estimate for symmetric eigenvalue problems.
In the context of neutronics, we are interested in generalized non-symmetric eigenvalue
problems (criticality calculations).

Thus, in this work, we extend the a posteriori estimation for eigenvalue problems to
the non-symmetric case. Then, a reduced basis method, based on the greedy algorithm
and using the a posteriori error estimates that were developed is first implemented in a
mock-up code, in order to validate and certify the method through simple and illustrative
test cases. Then, the implementation of such a reduced-order model is carried out in the
APOLLO3®code, developed at CEA.

Keywords: Model Order Reduction (ROM), reduced basis method, non-symmetric
eigenvalue problems, criticality, a posteriori error estimation
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Résumé

Titre de la thèse en français: Calculs critiques en neutronique: réductions de
modèles et estimateurs d’erreur a posteriori.

Pour certaines applications concernant l’optimisation du chargement du coeur d’un
réacteur nucléaire, telles que les expériences sur les réacteurs d’irradiation technologique
(Materials Testing Reactors), ou l’optimisation du placement des assemblages, une dif-
ficulté majeure est de pouvoir réduire le temps de calcul de l’état du réacteur, tout en
mâıtrisant les biais et les erreurs de calcul. Une approche de type ”bases réduites” est un
candidat naturel pour répondre à cette contrainte.

Dans le cadre des bases réduites, nous construisons un espace d’approximation as-
socié à une équation aux dérivées partielles dépendant de paramètres qui encodent le
chargement du coeur. La construction de cet espace d’approximation comporte une
phase d’exploration de l’espace des paramètres dans laquelle il est important de quantifier
l’erreur entre la solution obtenue à partir de l’espace d’approximation (en construction) et
la solution obtenue avec un calcul standard (discrétisation fine). Cette étape cruciale per-
met de certifier la construction de la base réduite via des estimateurs d’erreur a posteriori.
Récemment, des travaux ont été menés pour obtenir un estimateur d’erreur calculable sur
des problèmes aux valeurs propres symétriques. Dans le contexte de la neutronique, on
s’intéresse à des problèmes aux valeurs propres généralisés non symétriques (problèmes
de criticité).

Par conséquent, dans cette étude, nous généralisons les estimateurs d’erreur a poste-
riori pour les problèmes aux valeurs propres au cas non symétrique. Ainsi, une méthode
des bases réduites, reposant sur l’algorithme greedy et utilisant les estimateurs d’erreur a
posteriori ayant été développés, est d’abord implémentée dans une maquette, et permet de
valider et certifier le modèle réduit obtenu sur cas tests simples et illustratifs. Puis, nous
présentons l’implémentation d’un tel modèle réduit dans le code APOLLO3®, développé
au CEA.

Mots-clés: Réduction de modèles, méthode des bases réduites, problèmes aux valeurs
propres non symétriques, criticité, estimation a posteriori

ii



Acknowledgments

First of all, I would like to express my gratitude to all of you who have helped me,
supported me, and contributed, directly or indirectly, to my thesis, through this very spe-
cific doctoral process. We have come a long way together, and none of this work would
have been achieved without you all.

To begin with, I would like to thank warmly my thesis director, Tony Lelièvre, and
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Introduction

In the field of nuclear reactors, Materials Testing Reactors (MTRs) are research reac-
tors which aim at carrying out experiments on materials or fuel elements of power reactors,
as it is is notably the case for reactors exploited at EDF (Électricité de France), at the
end of nuclear fuel cycles. At CEA, it is the case of the OSIRIS reactor at CEA/Saclay
(shut down in 2015), as well as the Jules Horowitz reactor (RJH), still under construction
at CEA/Cadarache. These nuclear reactors have the ability to run several irradiation
experiments inside the nuclear core, or at the scale of the neutron reflector, and ensure,
as well, the radioisotope production for medical purposes, especially the Technetium-99m
(99mTc). Nevertheless, such reactors present numerous heterogeneities. The acute man-
agement of fuel elements using enriched uranium (20%), as well as the respect of the
requirements for the different irradiation experiments are major issues in the optimal use
of fuel elements in the reactor. The main challenge of these experiments is to guarantee
the expected performance by minimizing the fuel consumption while meeting all safety
requirements.

More generally, the operation of both research reactors and EPRs consists of simi-
lar experiments, which notably introduce the loading pattern optimization problem, and
consists of studying criticality inside the core, which amounts to solving a non-symmetric
eigenvalue problem. The resolution of this high-fidelity problem comes with a certain
computational cost, which is high when it comes to optimization problems, like the load-
ing pattern optimization problem. Such a multi-query problem indeed requires to solve in
many high-fidelity computations associated with different core configurations. To perform
these computations, there exists various codes at CEA, such as APOLLO3®. This de-
terministic neutron transport code provides functionalities and advanced methods which
enable the bias reduction without penalizing the computational times, in comparison
with the two-step calculation scheme provided by second-generation codes, such as the
APOLLO2 transport code with the CRONOS2 core calculation code. Undergoing works
at CEA aim at developing a ”best-estimate” calculation scheme using the APOLLO3®

functionalities, in order to support neutron studies of first loading cores for RJH.

However, such an advanced calculation scheme in APOLLO3®will not meet the need
of an operating tool for the fuel and the core irradiation, in the context of real-time
monitoring or irradiation campaigns based on the different fuel irradiation states. For
a given evaluation scheme, the main challenge is to run inexpensive calculations while
preserving or monitoring bias and calculation errors. Indeed, the key element is to run
inexpensive loading core calculations, while being able to update calculations in the case
of hazards during exploitation. For example, an unexpected removal of an experiment
may occur during the cycle. In the case of the OSIRIS reactor, one fuel cycle calculation
takes a few minutes.

In this context, a reduced-basis approach is proposed. It consists of the development
and implementation of a Reduced-Order Model (ROM) for criticality calculations in neu-
tronics, via the development and use of error estimates, based on an a posteriori analysis
for non-symmetric generalized eigenvalue problems, which allow to quantify the approxi-
mation error.

The outline of this manuscript reads as follows. In Chapter 1, we recall and describe
the standard high-fidelity discretization techniques for core calculation and criticality
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problems in neutronics. Chapter 2 then aims at establishing computable and inexpensive
a posteriori error estimates for non-symmetric generalized eigenvalue problems. It no-
tably reminds the state-of-the-art error estimates that were developed in the symmetric
case and the link between error estimation and the spectral gap for eigenvalue problems.
An a priori error analysis apprehends the construction of a reduced-order model in the
non-symmetric case via a Galerkin projection method and indicates how important it is
to consider both left and right eigenvectors in our approach. Then, the key difficulty is to
propose reliable, efficient and computable error estimates. To do so, we develop residual-
based error estimates which all exhibit multiplicative parameter-dependent prefactors in
the error upper bounds. The deployment of a heuristic approach enables the estimation
of the prefactors, as they are not computable in practice, but hold key information in the
error behavior. Afterwards, in Chapter 3, an efficient implementation of a reduced-basis
method, using the a posteriori error estimates developed in the previous chapter, is de-
tailed, in the case of an affine decomposition of the high-fidelity matrices with respect
to their parameter dependency. Based on a greedy algorithm, it consists of a two-step
offline/online procedure and a Galerkin projection of the high-fidelity problem on a well-
chosen reduced space. Chapter 4 illustrates the achievements of such a reduced-basis
method on two-group neutron diffusion mock-up codes through several numerical tests.
A first test case on a non-physical small nuclear core highlights the necessity of considering
the whole upper bound in the error estimation for the certification of the reduced-order
model. The second test case, namely the Minicore, shows to what extent the model order
reduction provides a reliable model in very small computational times. At last, the third
test case numerically explains the rationale behind the choice of including both direct and
adjoint eigenvectors in the error estimation. Then, Chapter 5 introduces the preliminary
implementation of the reduced-basis method in the APOLLO3® code. While, at this
stage, the complexity of the Galerkin projection step dominates the computational cost
of a greedy procedure, a Proper Orthogonal Decomposition (POD) approach is proposed
in this context, and provides promising results, notably with the use of the error estimates
that were developed and used in the previous chapters. Finally, in Chapter 6, we give a
direct industrial application of a POD-type reduced-order model in the context of state
estimation and data assimilation for criticality calculations. Note that this last chapter
is a published proceeding of the CEMRACS 2021 research session.

In summary, our main contributions are as follows:

• the development of a posteriori error estimates for non-symmetric eigenvalue prob-
lems;

• the analysis of the parameter-dependency of the so-called prefactors in the error
bounds with respect to the spectral norm, and the development of numerical meth-
ods taking these prefactors into account in the implementation of the residual-based
error estimates;

• the efficient construction of a reduced-order model for non-symmetric eigenvalue
problems, via a greedy algorithm and using a posteriori error estimates in order to
select specific basis functions to add in the reduced basis, under the assumption of
parametric affine decomposition of the high-fidelity matrices;

• the pioneering implementation of a reduced-basis method and associated error esti-
mates in the APOLLO3® neutron code for industrial purposes.
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Chapter 1

An overview of classical
discretization techniques for the
steady-state Boltzmann equation

This chapter was written based on the following references:

• [40] M. Coste-Delclaux, C. Diop, A. Nicolas, and B. Bonin, Neutronique,
CEA Saclay; Groupe Moniteur, 2013.

• [97] O. Mula, Some contributions towards the parallel simulation of time de-
pendent neutron transport and the integration of observed data in real time, PhD
thesis, Paris VI, 2014.

• [62] L. Giret, Numerical analysis of a non-conforming domain decomposition for
the multigroup SPN equations, PhD thesis, Université Paris-Saclay (ComUE), 2018.

• [78] D. Labeurthre, Development and comparison of high-order finite element
bases for solving the transport equation on hexagonal meshes, PhD thesis, Université
Grenoble Alpes, 2022.

We start with a general overview of discretization techniques for the Boltzmann equa-
tion. In Section 1.1, we first recall the time-dependent neutron transport equation, which
gives a general model for neutronics dynamics in a nuclear reactor core. In Section 1.2,
we introduce the criticality problem, which can be derived from the stationary neutron
transport equation, and defines the generalized eigenvalue problem of interest in this
work. In Section 1.3, some standard discretization techniques of the continuous problem
are recalled. Finally, in Section 1.4, we motivate the idea of approximating the neutron
transport model, in particular by the neutron diffusion model.

1.1 The neutron transport equation

1.1.1 The phase space

In neutronics, the Boltzmann equation is used to describe the neutron population dy-
namics in a nuclear reactor core R. The solution to the Boltzmann equation is described
over the phase space, namely the position and the velocity. In neutronics, it is common to
represent the velocity v⃗ by the pair (ω⃗, E), where ω⃗ is the direction and E is the energy.

3



1.1. THE NEUTRON TRANSPORT EQUATION

Note that the velocity v⃗ of a neutron of mass m is totally determined by its direction ω⃗
and its energy E, as ω⃗ = v⃗/|v⃗| and E = m|v⃗|2/2. Hence, we consider the following four
variables:

• the time variable t ∈ [0, T ], where T > 0 is some characteristic time;

• the space variable r ∈ R; we assume that R is a bounded, connected and open
subset of R3, with a piecewise regular Lipschitz boundary ∂R;

• the angular variable, or direction, ω⃗ ∈ S2, where S2 stands for the unit sphere, which
indicates the direction of the neutron;

• the energy E ∈ [Emin, Emax] of the neutron, with 0 < Emin < Emax.

The generic observed data is the total neutron density n (t, r, ω⃗, E) of velocity distribu-
tion v⃗ ∈ V , inside a reactor core, in the phase space D = R×V , with V = S2×[Emin, Emax]
at time t ∈ [0, T ]. In fact, the neutron population inside the studied system is totally
described by the neutron angular flux defined as

ψ (t, r, ω⃗, E) = n (t, r, ω⃗, E) |v⃗|, (1.1)

associated with a transport problem. At the core scale, the transport problem may be
approximated by a diffusion problem. We further discuss this problem in Section 1.4.

1.1.2 The time-dependent neutron transport equation

The evolution of the neutron population inside a reactor core is described by the Boltz-
mann equation, i.e., a balance between the neutrons that disappear and the neutrons that
are created in the nuclear core R. The neutron transport equation over [0, T ]×D can be
written as

1

|v⃗|
∂tψ (t, r, ω⃗, E) + Lψ (t, r, ω⃗, E) = Hψ (t, r, ω⃗, E) + Fpψ (t, r, ω⃗, E) +

L∑
l=1

Fd,lCl(t, r)

∂tCl(t, r) + λlCl(t, r) =

∫ Emax

Emin

βl(t, r, E
′)(νΣf )(t, r, E

′)ϕ (t, r, E ′) dE ′, ∀l ∈ J1, LK,

ψ (t = 0, r, ω⃗, E) = ψ0(r, ω⃗, E),

(1.2)
introducing the operators of

• advection: it describes the pure transport inside the system, as well as the loss of
neutrons from interaction with any nucleus. It is then linked to the probability of
interaction between neutrons, modeled by the macroscopic total cross section Σt.
The advection operator is defined by

Lψ (t, r, ω⃗, E) = ω⃗.∇ψ (t, r, ω⃗, E) + Σt(t, r, E)ψ (t, r, ω⃗, E) ; (1.3)

• scattering: it describes the collisions that neutrons undergo, implying changes of
direction and/or energy. The probability of a neutron to transition from a direction
ω⃗′ and an energy E ′ to a direction ω⃗ and an energy E by collision is modeled by
the macroscopic scattering cross section Σs. The scattering operator is defined by

Hψ (t, r, ω⃗, E) =

∫ Emax

Emin

∫
S2
Σs

(
t, r, (ω⃗′, E ′)→ (ω⃗, E)

)
ψ
(
t, r, ω⃗′, E ′

)
dω⃗′dE ′;

(1.4)
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CHAPTER 1. AN OVERVIEW OF CLASSICAL DISCRETIZATION TECHNIQUES FOR THE
STEADY-STATE BOLTZMANN EQUATION

• prompt fission: it describes the creation of new neutrons among the population by
fission of a heavier particle, which is likely to take place under some probability of
fission modeled by the macroscopic fission cross section Σf . The average number of
neutrons created by this reaction is given by ν(t, r, E), and we denote by χp(t, r, E)
the prompt spectrum. The prompt fission operator is defined by

Fpψ (t, r, ω⃗, E) =
χp(t, r, E)

4π

∫ Emax

Emin

(1− β(t, r, E ′))(νΣf )(t, r, E
′)

∫
S2
ψ (t, r, ω⃗, E ′) dω⃗dE ′

(1.5)

=
χp(t, r, E)

4π

∫ Emax

Emin

(1− β(t, r, E ′))(νΣf )(t, r, E
′)ϕ (t, r, E ′) dE ′,

where β(t, r, E) =
L∑
l=1

βl(t, r, E) is the total delayed neutron fraction and

ϕ (t, r, E) =

∫
S2
ψ (t, r, ω⃗, E) dω⃗, (1.6)

is the neutron scalar flux;

• delayed fission: it describes the creation by fission of radioactive isotopes, namely
the precursors. Each precursor l ∈ {1, . . . , L} is characterized by its radioactive
decay constant λl, delayed neutron fraction βl(t, r, E), delayed fission spectrum
χd,l(t, r, E) and concentration Cl(t, r). The delayed fission operator for the pre-
cursor l writes

Fd,lCl(t, r) =
λl
4π
χd,l(t, r, E)Cl(t, r). (1.7)

We provide the Boltzmann equation with vacuum boundary conditions

ψ (t, r, ω⃗, E) = 0, on Γ−, (1.8)

with

Γ− = {(r, ω⃗, E) ∈ ∂R× V , ω⃗.n⃗(r) < 0} ,

where n⃗ is the outward unit normal vector to the boundary of the core ∂R. We refer
to Section 1.1.3 of [97] and Chapter XXI, Section 3.1 of [42] to discuss the existence,
uniqueness and positivity of Problem (1.2) with boundary conditions (1.8). This is the
type of boundary conditions that we take into account throughout our studies. Among
other boundary conditions for Problem (1.2), we find in the literature:

• non-homogeneous boundary conditions: it is particularly the case of an incoming
angular flux ψin, i.e.,

ψ (t, r, ω⃗, E) = ψin (t, r, ω⃗, E) , ∀(r, ω⃗, E) ∈ Γ−;

• reflective boundary conditions:

ψ (t, r, ω⃗, E) = ψ
(
t, r, ω⃗′, E ′

)
, with ω⃗′ = ω⃗ − 2(ω⃗.n⃗)n⃗, ∀(r, ω⃗, E) ∈ Γ−;
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• albedo boundary conditions:

ψ (t, r, ω⃗, E) =

∫ t

t′=0

∫
Γ+

β0(t
′, r′, ω⃗′, E ′, t, r, ω⃗, E)ψ

(
t′, r′, ω⃗′, E ′

)
dΓdt′, ∀(r, ω⃗, E) ∈ Γ−,

where the quantity β0(t
′, r′, ω⃗′, E ′, t, r, ω⃗, E) is related to the flux that, at time t,

enters the domain R at r ∈ ∂R with velocity (ω⃗, E) as a result of the interaction of
a unit flux of particles with the external media, and, at time t′, exits the domain at
(r′, ω⃗′, E ′) ∈ Γ+, with Γ+ = {(r, ω⃗, E) ∈ ∂R× V , ω⃗.n⃗(r) > 0};

• periodic boundary conditions: for example for R = [0, L]3, with L > 0,

ψ (t, r, ω⃗, E) = ψ (t, r + Le⃗i, ω⃗, E) , ∀(r, ω⃗, E) ∈ Γ−, ∀i = {1, 2, 3},

where, (e⃗i)i=1,2,3 is the canonical basis of R3.

1.2 The steady-state neutron transport equation: a

generalized eigenvalue problem

The steady-state neutron transport equation may be formulated in two different ways as
the k-, or α-eigenproblem [15]. The α-eigenproblem originates from the Laplace transform
of the time-dependent neutron transport equation (1.2). It yields the following eigenvalue
problem:

Find (ψ, α) such that
α

|v⃗|
ψ (r, ω⃗, E) + (L0 −H0)ψ (r, ω⃗, E) = Fp,0ψ (r, ω⃗, E) +

L∑
l=1

λj
λj + α

Fd,l,0ϕ(r, E), in D

ψ (r, ω⃗, E) = 0, on Γ−,

(1.9)

where

L0ψ (r, ω⃗, E) := ω⃗.∇ψ (r, ω⃗, E) + Σt(r, E)ψ (r, ω⃗, E) , (1.10)

H0ψ (r, ω⃗, E) :=

∫ Emax

Emin

∫
S2
Σs

(
r, (ω⃗′, E ′)→ (ω⃗, E)

)
ψ
(
r, ω⃗′, E ′

)
dω⃗′dE ′, (1.11)

Fp,0ψ (r, ω⃗, E) :=
χp(r, E)

4π

∫ Emax

Emin

(1− β(r, E ′))(νΣf )(r, E
′)ϕ (r, E ′) dE ′, (1.12)

Fd,l,0ϕ(r, E) :=
χd,l(r, E)

4π

∫ Emax

Emin

βl(r, E
′)(νΣf )(r, E

′)ϕ (r, E ′) dE ′. (1.13)

The k-eigenproblem is also called the criticality problem. We strictly focus on the latter
in this manuscript. It yields the following eigenvalue problem:

Find (ψ, keff) such that keff is an eigenvalue with maximal modulus andL0ψ (r, ω⃗, E)−H0ψ (r, ω⃗, E) =
1

keff
F0ψ (r, ω⃗, E) , in D

ψ (r, ω⃗, E) = 0, on Γ−,
(1.14)
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where

F0ψ (r, ω⃗, E) :=
χ(r, E)

4π

∫ Emax

Emin

(νΣf )(r, E
′)ϕ (r, E ′) dE ′, (1.15)

with χ denoting the so-called total spectrum. Problem (1.14) is a generalized eigen-
value problem equivalent to

Find (ψ, λeff) such that λeff is an eigenvalue with minimal modulus and{
(L0 −H0)ψ (r, ω⃗, E) = λeffF0ψ (r, ω⃗, E) , in D
ψ (r, ω⃗, E) = 0, on Γ−.

(1.16)

with

λeff :=
1

keff
. (1.17)

1.2.1 Physical interpretation

The eigenvalue keff is called the effective multiplication factor, or k-effective, of the reactor
core. This specific eigenvalue indicates whether the advection and scattering, or the fission
dominates inside the core. Three main scenarios can asymptotically describe the reactor,
depending on the value of keff:

• if keff < 1, the fission reaction is not the prevailing phenomenon, hence the to-
tal number of neutrons tends towards zero along time; the reactor is said to be
subcritical;

• if keff = 1, both creation and absorption of neutrons prevail with same importance
inside the system; the reactor is said to be critical;

• if keff > 1, the fission dominates the absorption phenomenon, therefore a chain
reaction phenomenon takes place inside the system, and the total number of neutrons
increases at an exponential rate, the system then tends to collapse; the reactor is
said to be supercritical.

1.2.2 The Krein–Rutman theorem: existence and uniqueness of
the solution to the criticality problem

As we are interested in the smallest eigenvalue in modulus of Problem (1.16), the Krein–
Rutman theorem [77] ensures the existence and uniqueness of the solution. We start with
a series of assumptions on the cross sections.

Assumption 1.2.1. Let us recall the velocity variable v⃗ such that ω⃗ = v⃗/|v⃗| and E =
1

2
m|v⃗|2. We assume that:

• |v⃗|Σt ∈ L∞(R× S2 × [Emin, Emax]);

• fs

(
r, v⃗′, v⃗

)
:= m

|v⃗′|
|v⃗|

Σs

(
r, (ω⃗′, E ′)→ (ω⃗, E)

)
and

ff

(
r, v⃗′, v⃗

)
:= m

|v⃗′|
|v⃗|

χ(r, E)(νΣf )(r, E
′) are real, nonnegative and measurable over

v⃗ and v⃗′;

7
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• There exists α > 0 such that,
|v⃗|Σt(r, v⃗)−

∫
fs

(
r, v⃗′, v⃗

)
dv⃗′ ≥ α,

|v⃗′|Σt(r, v⃗′)−
∫
fs

(
r, v⃗′, v⃗

)
dv⃗ ≥ α,

a.e in (r, v⃗) ∈ D;

• There exists β, β′ > 0 such that,
∫
ff

(
r, v⃗′, v⃗

)
dv⃗ +

∫
fs

(
r, v⃗′, v⃗

)
dv⃗ ≤ β,∫

ff

(
r, v⃗′, v⃗

)
dv⃗′ +

∫
fs

(
r, v⃗′, v⃗

)
dv⃗′ ≤ β′,

in D;

Theorem 1.2.2 (Krein–Rutman theorem, Theorem 1 of Appendix in Chapter VIII
of [42]). Let (X , ∥·∥) be a real Banach space. Let K ⊂ X be a salient closed cone1 satisfying
X = K −K, of non-empty interior K̊. Let B be a compact operator, strongly positive on
K, i.e., for all v ∈ K, v ̸= 0, Bv ∈ K̊. Let B∗ be the dual operator of B. Then, its spectral
radius ρ(B) is a simple eigenvalue of B and B∗, and is associated with a unique eigenvec-
tor u ∈ K̊ that satisfies ∥u∥ = 1 (respectively u∗ ∈ K̊∗ = {v∗ ∈ X ∗ | ∀v ∈ K, ⟨v∗, v⟩ ≥ 0}
that satisfies ∥u∗∥ = 1).

The application of Theorem 1.2.2 to the criticality problem yields the following result.

Theorem 1.2.3 (Theorem 1.2.1 of [12]). Let 1 < p < ∞. Under Assumption 1.2.1,
Problem (1.16) has a countable number of eigenvalues and eigenvectors. The eigenvectors
are elements of the Banach space

Wp := {u ∈ Lp(D), v⃗.∇u ∈ Lp(D)} .

Furthermore, if ff is positive, there exists a unique positive unit eigenvector of Prob-
lem (1.16) associated with the smallest eigenvalue λeff in modulus, which is simple and
positive.

1.3 Discretization of the steady-state neutron trans-

port equation

The goal of this section is to consider some classical discretization of Problem (1.16) for
the variables of energy E, direction ω, and space r.

1.3.1 Energy discretization

We start with the energy variable E ∈ [Emin, Emax]. A standard technique to discretize the
energy variable is the so-called multigroup approximation, which enables the system
to be described over G different energy groups or intervals, defined by the energy values

E0 = Emax > E1 > . . . > EG−1 > EG = Emin, such that [Emin, Emax] =
G⋃
g=1

[Eg, Eg−1].

Over each interval Ig = [Eg, Eg−1], the flux and cross sections are determined along mean

1i.e. K satisfies the three following properties: 0 ∈ K; u, v ∈ K =⇒ αu + βv ∈ K, ∀α, β ≥ 0; v ∈ K
and −v ∈ K =⇒ v = 0.
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evaluations. Indeed, suppose that there exists, for all g ∈ {1, . . . , G}, a function of energy
hg(E) and a multigroup angular flux ψg (r, ω⃗) such that

ψ (r, ω⃗, E) ≈ hg(E)ψg (r, ω⃗) , ∀E ∈ Ig, (1.18)

with ∫
Ig
hg(E)dE = 1.

It is far from trivial to determine such functions hg (1 ≤ g ≤ G) in order to get reliable
results with the multigroup approximation. We refer to [95] for studies on that matter. A
main challenge is to take into account the strong oscillating behavior of the cross sections
with respect to the energy, as illustrated in Figure 1.1. This phenomenon is modeled by
so-called self-shielding techniques, developed in [39], for example. These methods involve
homogenization of the cross sections in a medium with strong spatial and geometrical
simplifications.
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Figure 1.1: Total microscopic cross section Σt of Uranium-238 isotope as a function of
the energy. Source: International Atomic Energy Agency (IAEA).

For all 1 ≤ g ≤ G, we define

Σg
t (r) =

∫
Ig
hg(E)Σt(r, E)dE,

Σg′→g
s

(
r, ω⃗′ → ω⃗

)
=

∫
Ig
hg(E)dE

∫
Ig′

Σs

(
r, (ω⃗′, E ′)→ (ω⃗, E)

)
hg

′
(E ′)dE ′,

(νΣf )
g(r) =

∫
Ig
hg(E)(νΣf )(r, E)dE,

χg(r) =

∫
Ig
hg(E)χ(r, E)dE.
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The multigroup approximation of Problem (1.16) yields

Find
(
ψ = (ψ1, . . . , ψG), λ

)
such that λ is an eigenvalue with minimal modulus,{

Lgψg (r, ω⃗)−Hgψ (r, ω⃗) = λFgψ (r, ω⃗) , in R× S2, for all 1 ≤ g ≤ G,

ψg (r, ω⃗) = 0, on Γ−
0 ,

(1.19)

with

Γ−
0 = {(r, ω⃗) ∈ ∂R× S2, ω⃗.n⃗(r) < 0} ,

and where, for all 1 ≤ g ≤ G, and for all E ∈ Ig,

Lgψg (r, ω⃗) = ω⃗.∇ψg (r, ω⃗) + Σg
t (r)ψ

g (r, ω⃗) , (1.20)

Hgψ (r, ω⃗) =
G∑

g′=1

∫
S2
Σg′→g
s

(
r, ω⃗′ → ω⃗

)
ψg

′
(r, ω⃗′)dω⃗′, (1.21)

Fgψ (r, ω⃗) =
1

4π

G∑
g′=1

χg(r)(νΣf )
g′(r)

∫
S2
ψg

′
(r, ω⃗)dω⃗. (1.22)

Among other approaches for the discretization of the energy variable, we note the
probability table method [104] which is more accurate than the multigroup approximation,
as it takes the variations of the cross sections on each interval Ig into account. An
example of an application of the probability table method is the 1D neutron transport code
SN1D [88]. Another discretization technique is the method of finite elements [4], mostly
with a Galerkin projection of the angular flux along high-dimensional polynomial bases, so
that the high-oscillating behavior in the cross sections’ variations are taken into account.
This approach generally implies expensive computational cost and a very large number of
degrees of freedom in the resulting system. In addition to that, a wavelet Galerkin method
has recently been carried out as it allows to solve sparse systems (see [116, 80, 53]).

1.3.2 Angular discretization

Throughout the rest of the document, we assume the isotropic scattering hypothesis,
meaning that neutrons are scattered with no preferred direction, and the scattering cross
section Σs only depends on the cosine of the incidental and scattered direction, i.e.,

Σs(r, ω⃗′ → ω⃗) ≈ Σs(r, ω⃗′.ω⃗), (1.23)

where we specifically omit the energy variable. As the quantity ω⃗′.ω⃗ ranges the interval
[−1, 1] over S2, it is standard to expand the scattering cross section along the basis of
Legendre polynomials (Pl)l≥0, i.e.,

Σs(r, ω⃗′.ω⃗) =
1

4π

∞∑
l=0

(2l + 1)Σs,l(r)Pl(ω⃗′.ω⃗), (1.24)

where

Σs,l(r) = 2π

∫ −1

−1

Σs(r, θ)Pl(θ)dc

is the Legendre moment of order l of the scattering cross section.
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To complete the discretization in the angular variable ω⃗, we expand the unit sphere S2

along the basis of spherical harmonics (Yl,m)l≥0,−l≤m≤l and we introduce the flux moments,
defined, for all l ≥ 0, and all m ∈ {−l, . . . , l}, by

ϕgl,m(r) =

∫
S2
ψg (r, ω⃗)Yl,m(ω⃗)dω⃗, for all 1 ≤ g ≤ G. (1.25)

Hence, using expressions (1.24) and (1.25), and the addition theorem2, the multigroup
neutron transport equations (1.19) result in solving the approximate problem

ω⃗.∇ψg (r, ω⃗)+Σg
t (r)ψ

g (r, ω⃗)−
G∑

g′=1

N∑
l=0

Σg′→g
s,l (r)

l∑
m=−l

ϕg
′

l,m(r)Yl,m(ω⃗) = λFgψ (r, ω⃗) , (1.26)

for all 1 ≤ g ≤ G, where N is a given positive integer. We discuss here two standard
methods to solve Problem (1.26): the SN method [28] and the PN method [85].

The SN method

This first method relies on an approximation of integrals over the unit sphere S2 using
a quadrature formula over D = N(N + 2) directions. More specifically, one discretizes
the unit sphere S2 into the set of directions {ω⃗d, 1 ≤ d ≤ D} associated with the weights
{wd}1≤d≤D. For any measurable function f over S2, it holds∫

S2
f(ω⃗)dω⃗ ≈

D∑
d=1

wdf(ω⃗d).

Hence, the SN approximation of Problem (1.26) writes

Find
((
ψ1
1, . . . , ψ

1
D, . . . , ψ

G
1 , . . . , ψ

G
D

)
, λ
)
such that λ is an eigenvalue with minimal modulus,

and for all 1 ≤ g ≤ G, for all 1 ≤ d ≤ D,

ω⃗d.∇ψgd(r) + Σg
t (r)ψ

g
d(r)−

G∑
g′=1

D∑
d′=1

wd′ψ
g′

d′ (r)Θ
g′→g
N (ω⃗d′ , ω⃗d)

=
λ

4π

G∑
g′=1

χg(r)(νΣf )
g′(r)

D∑
d′=1

wd′ψ
g′

d′ (r), in R,

Θg′→g
N (ω⃗d′ , ω⃗d) =

N∑
l=0

Σg′→g
s,l (r)

l∑
m=−l

Yl,m(ω⃗d′)Yl,m(ω⃗d),

ψgd(r) = 0, on ∂R−
d = {r ∈ ∂R, ω⃗d.n⃗(r) < 0}.

(1.27)

We refer to [9, 115, 101] for discussions on the convergence of such an angular discretiza-
tion. Note that the choice of a quadrature rule on the unit sphere S2 remains a complex
issue. We refer to [1] for recent advances on this topic. Several properties are targeted:

• the use of positive weights for stability and convergence issues;

• the ability of considering as many spherical harmonics as possible;

2It writes Pl(ω⃗′.ω⃗) =
4π

2l + 1

l∑
m=−l

Y ∗
l,m(ω⃗′)Yl,m(ω⃗).
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• an even distribution of the directions;

• the rotational invariance under some symmetry group in the set of directions.

The PN method

This method relies on the expansion of any function in L2(S2) along the basis of
spherical harmonics (Yl,m)l≥0,−l≤m≤l. Then, for any 1 ≤ g ≤ G, a truncated expansion of
the neutron angular flux ψg at the order N reads as

ψg (r, ω⃗) ≈
N∑
l=0

l∑
m=−l

ϕgl,m(r)Yl,m(ω⃗), (1.28)

where (ϕgl,m(r))l≥0,−l≤m≤l are the flux moments defined in (1.25).
Projections of Equation (1.26) onto each spherical harmonic Yl,m are carried out. Using

expression (1.28) in (1.26), and the orthogonality of the spherical harmonics, the following
(N + 1)2 coupled equations are obtained

Find
((
ϕgl,m

)
1≤g≤G,0≤l≤N,−l≤m≤l , λ

)
such that λ is an eigenvalue with minimal modulus,

and for all 1 ≤ g ≤ G, all 0 ≤ l ≤ N , and all −l ≤ m ≤ l,

N∑
l′=0

l′∑
m′=−l′

(∫
S2
ω⃗Yl′,m′(ω⃗)Yl,m(ω⃗)dω⃗

)
.∇ϕgl′,m′ (r) + Σg

t (r)ϕ
g
l,m (r)−

G∑
g′=1

Σg′→g
s,l (r)ϕg

′

l,m(r)

= λ
G∑

g′=1

χg(r)(νΣf )
g′(r)δl,0δm,0ϕ

g′

0,0(r), in R, (1.29)

supplemented with boundary conditions on ∂R.
A simplified version of the PN method, called the SPN method [56], also enables the

discretization of the angular variable under some hypotheses. It was first considered to
decrease the computational complexity in the resolution of the PN equations. It is based
on the diffusion approximation theory (see Section 1.4), and on the assumption that the
solution to the transport equation is locally planar, and thus, can be computed by solving
1D slab problems. We also note the existence of finite element discretizations for the unit
sphere S2 [14] (see Section 1.3.3 for an introduction to the method).

1.3.3 Spatial discretization

In this section, we consider the mono-energetic neutron transport equation for an energy
group g ∈ J1, GK along a direction ω⃗d ∈ S2 which reads

Find ψgd ∈ V0 such that{
ω⃗d.∇ψgd(r) + Σg

t (r)ψ
g
d(r) = qgd(r), in R,

ψgd(r) = 0, on ∂R−
d ,

(1.30)

where

V0 =
{
v ∈ L2(R), ω⃗d.∇v ∈ L2(R), v|∂R−

d
= 0
}
,
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and, in the case of an angular discretization with the SN method as in (1.27),

qgd(r) :=
G∑

g′=1

D∑
d′=1

wd′ψ
g′

d′

N∑
l=0

Σg′→g
s,l (r)

l∑
m=−l

Yl,m(ω⃗d′)Yl,m(ω⃗d)

+
λ

4π

G∑
g′=1

χg(r)(νΣf )
g′(r)

D∑
d′=1

wd′ψ
g′

d′ ,

and the boundary condition applies over ∂R−
d = {r ∈ ∂R, ω⃗d.n⃗(r) < 0}, where n⃗ is

the outward unit normal vector on ∂R. Finally, in order to discretize along the space
variable r ∈ R, we use a Galerkin projection of Problem (1.30). The finite element method
(FEM) [50] aims at projecting onto the sapce of piecewise polynomials. It is well-known
that continuous finite elements raise stability issues because of the advection term [51,
Chapter 61]. In order to alleviate this issue, a discontinuous Galerkin (DG) finite element
method has been introduced in the case of the neutron transport equation [83] (see also
Chapter 60 of [51]). This method also easily enables local mesh refinement due to the
absence of the continuity assumption between two elements. Convergence analysis of the
DG method is discussed in [82, 83, 73, 100].

Let TN be an affine simplicial mesh of the reactor core R, such that R =
⋃

K∈TN

K. We

define the finite element approximation space VN by

VN =
{
vN ∈ L2(R), ∀K ∈ TN , vN|K ∈ Pk

}
, (1.31)

where Pk stands for the space of polynomials of degree at most k ∈ N, and thus, N stands
for the dimension of VN . We set

FN =
⋃

K∈TN

∂K, and, v±(r) = lim
ε→±0

v(r + εω⃗d), ∀r ∈ FN ,

with the convention that v±(r) is zero whenever r is at the boundary ∂R and that the
limit is taken outside the domain.

A DG method has been introduced in [83]. For Problem (1.30), the discrete formula-
tion writes

Find ψN ∈ VN such that∑
K∈TN

∫
K

(
ω⃗d.∇ψN + Σg

tψ
N ) vN +

∫
FN \∂R

(ω⃗d.n⃗)
(
ψN
+ − ψN

−
)
vN+ =

∫
R
qgdv

N , ∀vN ∈ VN .

(1.32)

We give more details and we exhibit the whole discretization with finite elements for
the resolution of the multigroup neutron diffusion equations in Section 1.4.2. Note that
for the diffusion equation, we use a particular Discontinuous Galerkin method, namely
the Symmetric Interior Penalty Galerkin method (SIPG) [46, Chapter 4].

Among other discretization methods for the space variable, we find the finite difference
method [65] and the finite volume method [84]. If the former suffers from slow convergence
rates and struggles to be generalized to non-cartesian and hexagonal geometries, the latter
lacks some underlying mathematical framework to enable defining an associated adjoint
problem. Another method used in the codes for neutronics is the method of characteristics.

13



1.4. TRANSPORT AND DIFFUSION

It is based on an exact integration of Problem (1.30) along a trajectory generated by the
direction ω⃗d. While it gives quite reliable approximations, the main challenge of this
method is the memory imprint, especially in the case of complex geometries. We refer
to [13, 66, 68] for applications of the method to deterministic codes in neutronics.

1.4 Transport and Diffusion

As we detailed in Section 1.3, the discretization of Problem (1.16) along the angular
variable is not trivial and implies expensive calculations in terms of computational time
and memory imprint. In real-world applications, it is usual to approximate the transport
model by the diffusion problem, which results in a much less expensive discretized prob-
lem than the discretized transport problem. In this section, we introduce the diffusion
problem, we show to what extent it is an asymptotic limit of the transport problem, and
we provide physics-motivated arguments to illustrate the derivation of this model.

1.4.1 The diffusion approximation

Mathematical derivation On the one hand, some assumptions on the cross sections
enable an asymptotic model for the transport problem. We consider here the time-
dependent mono-energetic neutron transport equation with isotropic scattering which
writes over [0, T ]×R× S2

∂ψ

∂t
(t, r, ω⃗) + ω⃗.∇ψ (t, r, ω⃗) + Σt(r)ψ (t, r, ω⃗)− Σs,0(r)

4π

∫
S2
ψ (t, r, ω⃗) dω⃗ = 0, (1.33)

where we make the assumption that the cross sections Σt and Σs do not evolve in
time, and the scattering cross section Σs is expanded at the order 0 as in (1.24). We
supplement the equation with vacuum boundary conditions and an initial condition ψ0.
Let us introduce a small parameter ε > 0 and we assume that there exist Σ̃t, Σ̃s,0 and Σ̃a,
bounded functions over R such that

Σt(r) =
Σ̃t(r)

ε
,

Σs,0(r) =
Σ̃s,0(r)

ε
,

Σ̃t(r) = Σ̃s,0(r)− ε2Σ̃a(r).

Therefore, under these assumptions, the following theorem [42, Chapter XXI, Section
5.2, Theorem 1] refers to the diffusion problem as an asymptotic limit of the transport
problem.

Theorem 1.4.1 (Convergence of the diffusion problem in L∞-norm). Let R be a bounded
open subset of R3 with a regular boundary. For any k ∈ N and α ∈ ]0, 1], we denote by
Ck,α the Hölder space of functions with continuous derivatives up through order k and such
that the k-th partial derivatives are α-Hölder continuous. Let us assume the following:

• ∃β, β′ > 0, β ≤ Σ̃s,0(r) ≤ β′, over R;

• ∃α ∈ ]0, 1[, Σ̃s,0 ∈ C3,α(R), Σ̃a ∈ C2,α(R).
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Let ε > 0. Then, there exists a symmetric positive definite matrix D = (Dij)1≤i,j≤3 such
that, for any initial condition ψ0 which satisfies

ψ0 ∈ C4,α(R), ψ0
∣∣
∂R = 0, and

3∑
i=1

3∑
j=1

∂

∂xi

(
Dij

∂ψ0

∂xj

)∣∣∣∣
∂R

= 0,

the solution ψε in C ([0,+∞[, L∞(R× S2)) of the transport problem

∂ψε
∂t

(t, r, ω⃗) +
1

ε
ω⃗.∇ψε (t, r, ω⃗)− Σ̃a(r)ψε (t, r, ω⃗)

+
Σ̃s,0(r)

ε2

(
ψε (t, r, ω⃗)−

1

4π

∫
S2
ψε

(
t, r, ω⃗′

)
dω⃗′
)

= 0, in [0,+∞[×R× S2,

ψε (t, r, ω⃗) = 0, on Γ−, for t > 0,

ψε(0, ·) = ψ0,

(1.34)

and the solution ϕ in C ([0,+∞[, L∞(R)) of the diffusion problem
∂ϕ

∂t
(t, r)−

3∑
i=1

3∑
j=1

∂

∂xi

(
Dij

∂ϕ

∂xj
(t, r)

)
− Σ̃a(r)ϕ(t, r) = 0, in [0,+∞[×R,

ϕ(t, r) = 0, on ∂R, for t > 0,

ϕ(0, ·) = ψ0

(1.35)

verify, for all t ≥ 0,

∥ψε(t, ·)− ϕ(t, ·)∥L∞(R×S2) ≤ Cψ0εeδt(1 + t),

where δ = sup
r∈R

Σ̃a(r) and Cψ0 is a positive constant independent of ε.

Physical derivation On the other hand, a physical argument actually allows to char-
acterize the matrix (Dij)1≤i,j≤3 as a single positive coefficient D > 0. Let us consider the
P1 expansion of the angular flux as in (1.28)

ψ (r, ω⃗) ≈ ϕ0,0(r)Y0,0(ω⃗) + ϕ1,−1(r)Y1,−1(ω⃗) + ϕ1,0(r)Y1,0(ω⃗) + ϕ1,1(r)Y1,1(ω⃗). (1.36)

Using the explicit expressions of the spherical harmonics, then there exists a so-called
current vector J⃗ such that

ψ (r, ω⃗) ≈ ϕ(r)

4π
+

3

4π
ω⃗.J⃗(r). (1.37)

Then, substituting expression (1.37) into the P1 equations (see Section 1.3.2), we
obtain

divJ⃗(r) + (Σt(r)− Σs,0(r))ϕ(r) = 0. (1.38)

We also assume that the so-called Fick’s law holds, i.e.,

J⃗(r) = −D(r)∇ϕ(r), (1.39)

which states that the neutrons go from regions of high concentration to regions of low
concentration with magnitude D > 0 that is proportional to the concentration gradient
∇ϕ. Combining (1.38) and (1.39), we obtain the diffusion problem.
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1.4.2 The multigroup neutron diffusion equations

As for the neutron transport model, we can apply the same discretization techniques
for the diffusion model, such as the multigroup approximation for the energy variable,
and the finite element method for the spatial variable. The multigroup neutron diffusion
equations [48, Chapter 7] write

Find
(
ϕ = (ϕ1, . . . , ϕG), λeff

)
∈ H1

0 (R)G × R
such that λeff is an eigenvalue with minimal modulus, and for all 1 ≤ g ≤ G,
− div (Dg∇ϕg) +

G∑
g′=1

Σgg′ϕg
′
= λeffχ

g

G∑
g′=1

(νΣf )
g′ϕg

′
in R,

ϕg = 0, on ∂R,

(1.40)

where, for all g, g′ ∈ J1, GK:

• Dg : R → R+ is the diffusion coefficient of group g;

• Σgg′ : R → R with Σgg′ =

{
Σg
t − Σg→g

s,0 if g = g′,

−Σg′→g
s,0 otherwise;

• Σg
t : R → R is the total cross section of group g;

• Σg′→g
s,0 : R → R is the scattering cross section of anisotropy order 0 from group g′ to

group g;

• χg : R → R is the neutron total spectrum of group g;

• νg : R → R is the average number of neutrons emitted per fission of group g;

• Σg
f : R → R is the fission cross section of group g.

Note that in the equations above, we used the short-hand notation (νΣf )
g to refer to the

product νgΣg
f , for g ∈ J1, GK.

Assumption 1.4.2. We assume that, for all g, g′ ∈ J1, GK:

• The coefficients Dg, Σgg′, χg, (νΣf )
g are all functions of L∞(R);

• ∃(Dg)∗, (D
g)∗ > 0, ∀k ∈ J1, KK, (Dg)∗ ≤ (Dg)|Rk

≤ (Dg)∗;

• ∃(Σgg)∗, (Σ
gg)∗ > 0, ∀k ∈ J1, KK, (Σgg)∗ ≤ (Σgg)|Rk

≤ (Σgg)∗;

• ∃0 ≤ α ≤ G− 1, |Σgg′| ≤ αΣgg, a.e. in R;

• (νΣf )
g ≥ 0, a.e. in R.

We also assume that there exists g̃, g̃′ ∈ J1, GK such that χg̃(νΣf )
g̃′ ̸= 0 ∈ L∞(R).

Under Assumption 1.4.2, Problem (1.40) is well-posed [62, Theorem 2.12] if it is sup-
plemented with a normalization condition on the multigroup flux ϕ = (ϕ1, . . . , ϕG).
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STEADY-STATE BOLTZMANN EQUATION

The two-group neutron diffusion equations

Throughout our study, we mostly focus on the two-group neutron diffusion equations,
that is Problem (1.40) with G = 2. The latter writes

Find
(
ϕ = (ϕ1, ϕ2), λeff

)
∈ H1

0 (R)2 × R
such that λeff is an eigenvalue with minimal modulus,
− div

(
D1∇ϕ1

)
+ Σ11ϕ1 + Σ12ϕ2 = λeffχ

1
(
(νΣf )

1ϕ1 + (νΣf )
2ϕ2
)

in R,
− div

(
D2∇ϕ2

)
+ Σ21ϕ1 + Σ22ϕ2 = λeffχ

2
(
(νΣf )

1ϕ1 + (νΣf )
2ϕ2
)

in R,
ϕg = 0, on ∂R, for g = {1, 2}.

(1.41)

The two-group neutron diffusion equations: the weak formulation

We define the bilinear forms a : H1
0 (R)2×H1

0 (R)2 −→ R and b : H1
0 (R)2×H1

0 (R)2 −→
R by

a(ψ, ϕ) :=

∫
R

(
D1∇ψ1

)
· ∇ϕ1 +

∫
R
Σ11ψ1ϕ1 +

∫
R
Σ12ψ2ϕ1

+

∫
R

(
D2∇ψ2

)
· ∇ϕ2 +

∫
R
Σ21ψ1ϕ2 +

∫
R
Σ22ψ2ϕ2, (1.42)

b(ψ, ϕ) :=

∫
R
χ1
(
(νΣf )

1ψ1 + (νΣf )
2ψ2
)
ϕ1

+

∫
R
χ2
(
(νΣf )

1ψ1 + (νΣf )
2ϕ2
)
ϕ2, (1.43)

for all ψ = (ψ1, ψ2) ∈ H1
0 (R)2, ϕ = (ϕ1, ϕ2) ∈ H1

0 (R)2.

Therefore, the weak form (or variational form) of Problem (1.41) writes

Find
(
ϕ = (ϕ1, ϕ2), λeff

)
∈ H1

0 (R)2 × R
such that λeff is an eigenvalue with minimal modulus,

a
(
(ϕ1, ϕ2), (φ1, φ2)

)
= λeffb

(
(ϕ1, ϕ2), (φ1, φ2)

)
, ∀(φ1, φ2) ∈ H1

0 (R)2. (1.44)

We also introduce the associated adjoint problem that reads

Find
(
ϕ∗ = (ϕ∗,1, ϕ∗,2), λeff

)
∈ H1

0 (R)2 × R
such that λeff is an eigenvalue with minimal modulus,

a
(
(φ1, φ2), (ϕ∗,1, ϕ∗,2)

)
= λeffb

(
(φ1, φ2), (ϕ∗,1, ϕ∗,2)

)
, ∀(φ1, φ2) ∈ H1

0 (R)2. (1.45)

The two-group neutron diffusion equations: the discrete form

We discretize the spatial domain R with finite elements as introduced in Section 1.3.3.
To do so, we consider a shape-regular mesh TN of R and an associated conformal finite
element approximation space ṼN of dimension Ñ . We also define by VN := (ṼN )2 which

has dimension N = 2Ñ . We assume that the mesh is such that the cross sections are
regular on each element.
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The discrete variational formulation associated with Problem (1.44) writes

Find
(
ϕN , λN

)
∈ VN × R such that λN is an eigenvalue with minimal modulus,

a
(
ϕN , φN ) = λN b

(
ϕN , φN ) , for all φN ∈ VN , (1.46)

as well as the discrete variational formulation associated with Problem (1.45) writes

Find
(
ϕ∗,N , λN

)
∈ VN × R such that λN is an eigenvalue with minimal modulus,

a
(
φN , ϕ∗,N ) = λN b

(
φN , ϕ∗,N ) , for all φN ∈ VN . (1.47)

The two-group neutron diffusion equations: the matrix form

Let us denote by (θk)1≤k≤N a basis of VN . Let u := (uk)1≤k≤N ∈ RN be the coordinates
of ϕN in the basis (θ1, . . . , θN ) so that

ϕN =
N∑
k=1

ukθk. (1.48)

Let us define the matrices A := (a(θj, θi))1≤i,j≤N and B := (b(θj, θi))1≤i,j≤N . Then,
Problem (1.46) is equivalent to the following generalized eigenvalue problem: Find (u, λ) ∈
RN × R such that λ is an eigenvalue with minimal modulus and

Au = λBu. (1.49)

Likewise, we expand the adjoint discrete flux ϕ∗,N along the basis (θ1, . . . , θN ) so that

ϕ∗,N =
N∑
k=1

u∗kθk, (1.50)

where u∗ := (u∗k)1≤k≤N ∈ RN are the coordinates of ϕ∗,N in the basis (θk)1≤k≤N . Therefore,
Problem (1.47) can be formulated as: Find (u∗, λ) ∈ RN ×R such that λ is an eigenvalue
with minimal modulus and

ATu∗ = λBTu∗. (1.51)

***

In this chapter, we presented the standard techniques that are used to discretize
eigenvalue problems arising in neutronics. The parametric dependency of the problem
motivates the use of a posteriori error estimators for optimization purposes, for instance,
when one needs to solve the eigenvalue problem of interest for a very large number of
parameter values. In particular, to avoid considerable computational costs, one may
consider to solve a cheaper approximate problem instead. Thus, these estimators can
quantify the error of approximation without necessarily solving the problem of reference.
Next section is dedicated to the development of these estimates in the case of a generalized
non-symmetric eigenvalue problem.
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Chapter 2

A posteriori error estimates for
parameter-dependent non-symmetric
generalized eigenvalue problems

In this chapter, we derive a posteriori error estimates for non-symmetric generalized eigen-
value problems. A posteriori error analysis of symmetric eigenvalue problems naturally
relies on residuals with respect to the operator-induced energy norm. Our main goal here
is to generalize the state-of-the-art a posteriori estimates to the case of non-symmetric
generalized eigenvalue problems, such as the multigroup neutron diffusion equations, pre-
sented at the end of the previous chapter. We particularly exhibit a parameter-dependent
prefactor in the error upper bound that must be taken into account in order to get reli-
able estimates. Computing an accurate and optimal value of this prefactor is not an easy
task, compared to the case of symmetric eigenvalue problems where it can be expressed
by means of the spectral gap of the considered operator.

We start, in Section 2.1, with recalling an a priori error result between eigenvalue error
and left and right best approximation eigenvector errors, by I. Babuška and J. Osborn [11],
in the case of Galerkin approximations of a generalized non-symmetric eigenvalue problem.
In Section 2.2, we remind some classical residual-based a posteriori error estimates for
both symmetric and non-symmetric eigenvalue problems. We then derive, in Section 2.3,
some error bounds on the left and right eigenvectors, as well as on the eigenvalue, in the
case of a generalized non-symmetric eigenvalue problem. As we need computable and
reliable a posteriori error estimates that take the information contained in the prefactors
into account, we propose, in Section 2.4, a practical heuristic method to estimate these
prefactors. To do so, we provide some elements of theoretical analysis to illustrate the
close link between the obtained expression of the prefactor and its well-known counterpart
in the case of symmetric eigenvalue problems.

2.1 A priori analysis of Galerkin approximations of

generalized eigenvalue problems

In this section, we remind some crucial results on the Galerkin approximation of an eigen-
value problem, introduced by I. Babuška and J. Osborn [11] in 1989. They emphasized
the close link between eigenvalue error and best approximation error in the eigenvectors.
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2.1. A PRIORI ANALYSIS OF GALERKIN APPROXIMATIONS OF GENERALIZED
EIGENVALUE PROBLEMS

Here, we remind the results and their proofs in the case where we only consider finite-
dimensional spaces. Let V be a real Hilbert space of finite dimension N , equipped with
an inner product ⟨·, ·⟩V and associated norm ∥ · ∥V . Let us consider the following discrete
eigenvalue problem of reference

Find (u, λ) ∈ V × R such that

a(u, v) = λb(u, v), ∀v ∈ V, (2.1)

where a(·, ·) and b(·, ·) are two bilinear forms on V × V . The associated adjoint problem
writes

Find (u∗, λ) ∈ V × R such that

a(v, u∗) = λb(v, u∗), ∀v ∈ V. (2.2)

Let VN be a linear subspace of V of dimension N < N . We consider the following
eigenvalue problem on VN

Find (uN , λN) ∈ VN × R such that

a(uN , vN) = λNb(uN , vN), ∀vN ∈ VN , (2.3)

and the associated adjoint problem on VN

Find (u∗N , λN) ∈ VN × R such that

a(vN , u
∗
N) = λNb(vN , u

∗
N), ∀vN ∈ VN . (2.4)

From the bilinear form a(·, ·), we define the following operators:

A : V −→ V

u 7−→ Au ∈ V such that for all v ∈ V , a(u, v) = ⟨Au, v⟩V ,

AT : V −→ V

u 7−→ ATu ∈ V such that for all v ∈ V , a(v, u) = ⟨v,ATu⟩V ,

A−T : V −→ V

u 7−→ A−Tu ∈ V such that for all v ∈ V , a(v,A−Tu) = ⟨v, u⟩V .

We respectively refer to (u, λ) and (u∗, λ) as solutions to (2.1) and (2.2), and we define

ũ∗ = ATu∗.

Similarly, we respectively refer to (uN , λN) and (u∗N , λN) as solutions to (2.3) and (2.4),
and we define

ũ∗N = ATuN .

Assumption 2.1.1. Let us assume the following:

1. We assume that λ is a simple eigenvalue of Problem (2.1), and therefore of Problem
(2.2), and that ∥u∥V = ∥ũ∗∥V = 1; we also assume that ⟨u, ũ∗⟩V ̸= 0;

2. We assume that λN is a simple eigenvalue of Problem (2.3), and therefore of Prob-
lem (2.4), and that ⟨uN , ũ∗N⟩V ̸= 0;
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3. The bilinear forms a : V × V −→ R and b : V × V −→ R are continuous, i.e. there
exists two positive constants Ca and Cb such that

|a(u, v)| ⩽ Ca∥u∥V ∥v∥V , ∀u, v ∈ V, (2.5)

|b(u, v)| ⩽ Cb∥u∥V ∥v∥V , ∀u, v ∈ V, (2.6)

noting that the continuity is here immediate since V is a finite-dimensional space;

4. The bilinear form a(·, ·) admits the inf-sup condition on V

inf
u∈V

sup
v∈V

|a(u, v)|
∥u∥V ∥v∥V

⩾ γ > 0; (2.7)

5. The bilinear form a(·, ·) admits the inf-sup condition on VN

inf
uN∈VN

sup
vN∈VN

|a(uN , vN)|
∥uN∥V ∥vN∥V

⩾ γN > 0. (2.8)

We define the operator T on V by

T : V −→ V

f 7−→ Tf ∈ V such that a(Tf, v) = b(f, v), ∀v ∈ V .

Its adjoint operator T ∗ is defined by

T ∗ : V −→ V

f ∗ 7−→ T ∗f ∗ ∈ V such that a(v, T ∗f ∗) = b(v, f ∗), ∀v ∈ V .

Note that T (resp. T ∗) has k = 1
λ
as a simple eigenvalue, associated with the eigen-

vector u (resp. ũ∗). We introduce the operator TN : u ∈ V 7−→ (TNu) ∈ VN and its
associated adjoint T ∗

N such that

∀u ∈ V, a (TNu, vN) = b(u, vN), ∀vN ∈ VN , (2.9)

∀u ∈ V, a (vN , T
∗
Nu) = b(vN , u), ∀vN ∈ VN . (2.10)

Let C be a closed curve in the complex plane that encloses both k and kN := 1
λN

, for

all N ∈ J1,N K, which lies in
{
z ∈ C | (z − T )−1 and (z − TN)−1 exist

}
. We assume that

C encloses neither any other points from the spectrum of T , nor any other points from
the spectrum of TN . Let us define the spectral projectors Π and Π∗ respectively onto
E = Span{u} and E∗ = Span{ũ∗} by

Π =
|u⟩⟨ũ∗|
⟨u, ũ∗⟩

=
1

2πi

∫
C
(z − T )−1 dz

Π∗ =
|ũ∗⟩⟨u|
⟨u, ũ∗⟩

=
1

2πi

∫
C
(z − T ∗)−1 dz,

see Lemma 2.3.4 to justify the definition, as well as the projectors ΠN and Π∗
N respectively

onto EN = Span{uN} and E∗
N = Span{ũ∗N}, defined by

ΠN =
|uN⟩⟨ũ∗N |
⟨uN , ũ∗N⟩

=
1

2πi

∫
C
(z − TN)−1 dz

Π∗
N =

|ũ∗N⟩⟨uN |
⟨uN , ũ∗N⟩

=
1

2πi

∫
C
(z − T ∗

N)
−1 dz.
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Assumption 2.1.2. There exists an integer 1 ⩽ Nδ < N such that

∀N ⩾ Nδ, ∥Π− ΠN∥ < 1/2. (2.11)

The general result to consider in this section is the following.

Theorem 2.1.3 (A priori error analysis for generalized eigenvalue problems, Theorem
8.2 of [11], p. 695). Let (u, λ) and (u∗, λ) respectively be solutions to (2.1) and (2.2). Let
(uN , λN) and (u∗N , λN) respectively be solutions to (2.3) and (2.4). Then, under Assump-
tions 2.1.1 and 2.1.2, there exists a constant C > 0 independent of N such that

|λN − λ| ⩽ C
1

γN
εNε

∗
N ,

where

εN := inf
vN∈VN

∥u− vN∥V ,

ε∗N := inf
vN∈VN

∥u∗ − vN∥V .

In order to apprehend the proof of Theorem (2.1.3), we include in the following a series
of technical lemmas (see Section 7 of [11], pp. 685-691).

Lemma 2.1.4. Let the V -orthogonal projectors onto E = Span{u} and EN = Span{uN}
be respectively denoted by πE and πEN

. We set

δ̂(E,EN) := max (∥u− πEN
u∥ , ∥uN − πEuN∥) .

Then, under Assumptions 2.1.1 and 2.1.2, there exists two constants C > 0 and C∗ > 0
independent of N such that, for N ⩾ Nδ,

δ̂(E,EN) ⩽ C
∥∥∥(T − TN)|E∥∥∥ ,

δ̂(E∗, E∗
N) ⩽ C∗

∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ ,
and thus,

∥Π− ΠN∥ ⩽ C
∥∥∥(T − TN)|E∥∥∥ ,

∥Π∗ − Π∗
N∥ ⩽ C∗

∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ .
Proof. As ∥u∥ = 1, we have

∥u− πEN
u∥ ⩽ ∥u− ΠNu∥

⩽ ∥(Π− ΠN)u∥
⩽ ∥Π− ΠN∥ .

Using (2.11), it holds that ∥u− πEN
u∥ < 1/2, for N ⩾ Nδ. V is a finite-dimensional

Hilbert space, then, for N ⩾ Nδ,

∥uN − πEuN∥ ⩽
∥u− πEN

u∥
1− ∥u− πEN

u∥
, (cf. Theorem 6.1 of [11])

⩽ 2 ∥u− πEN
u∥ ,
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and hence

δ̂(E,EN) ⩽ 2 ∥u− πEN
u∥ .

Moreover, we have

∥u− ΠNu∥ = ∥Πu− ΠNu∥

=

∥∥∥∥ 1

2πi

∫
C

[
(z − T )−1 − (z − TN)−1]u dz∥∥∥∥

=

∥∥∥∥ 1

2πi

∫
C
(z − TN)−1 [(z − TN) (z − T )−1 − I

]
u dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

∫
C
(z − TN)−1 [(z − TN)− (z − T )] (z − T )−1 u dz

∥∥∥∥
=

∥∥∥∥ 1

2πi

∫
C
(z − TN)−1 (T − TN) (z − T )−1 u dz

∥∥∥∥ .
Let us recall that E is invariant for T , then

∥u− ΠNu∥ ⩽
|C|
2π

sup
z∈C

∥∥(z − TN)−1
∥∥∥∥∥(T − TN)|E∥∥∥ sup

z∈C

∥∥(z − T )−1
∥∥ ∥u∥.

Therefore, it holds

δ̂(E,EN) ⩽ C
∥∥∥(T − TN)|E∥∥∥ ,

with C =
|C|
π

max
Nδ⩽N⩽N

(
sup
z∈C

∥∥(z − TN)−1
∥∥) sup

z∈C

∥∥(z − T )−1
∥∥.

We prove similarly that

δ̂(E∗, E∗
N) ⩽ C∗

∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ .
This proof also shows that

∥Π− ΠN∥ ⩽ C
∥∥∥(T − TN)|E∥∥∥ ,

∥Π∗ − Π∗
N∥ ⩽ C∗

∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ .

Lemma 2.1.5. Under Assumptions 2.1.1 and 2.1.2, there exists a constant C > 0 such
that for N ⩾ Nδ,

|kN − k| ⩽ |⟨ũ∗, (T − TN)u⟩|+ C
∥∥∥(T − TN)|E∥∥∥∥∥∥(T ∗ − T ∗

N)|E∗

∥∥∥ .
Proof. From (2.11), for N ⩾ Nδ, using that ∥u∥ = 1, there holds

1− ∥ΠNu∥ = ∥Πu∥ − ∥ΠNu∥ ⩽ ∥Π− ΠN∥ < 1/2.

Then, we have

∥ΠNu∥ ⩾ 1/2.
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Let us consider the operator
(
ΠN|E

)−1

: EN −→ E, that is well defined since Assump-

tion 2.1.2 holds. Therefore, the quantity

∥∥∥∥(ΠN|E

)−1
∥∥∥∥ is bounded, as

∥∥∥∥(ΠN|E

)−1
∥∥∥∥ ⩽ 1/2.

Let us simply denote the operator
(
ΠN|E

)−1

by Π−1
N . We now define the operators

T̂ = T|E : E −→ E,

T̂N =
(
Π−1
N TNΠN

)
|E : E −→ E.

Using TNΠN = ΠNTN and Π−1
N ΠN|E = I|E,

k − kN = trace(T̂ − T̂N)

= ⟨ũ∗,
(
T̂ − T̂N

)
u⟩

= ⟨ũ∗, Tu− Π−1
N TNΠNu⟩

= ⟨ũ∗,Π−1
N ΠN (T − TN)u⟩

= ⟨ũ∗, (T − TN)u⟩+ ⟨ũ∗,
(
Π−1
N ΠN − I

)
(T − TN)u⟩.

Let LN := Π−1
N ΠN . There holds Ran(LN) = E and Ker(LN) = Ker(ΠN) = (E∗

N)
⊥. In

other terms, LN is the projection onto E along (E∗
N)

⊥. Let L∗
N be the dual of LN , i.e.

the projection onto E∗
N along E⊥. Thus, since Π∗ũ∗ = ũ∗, and (L∗

N − I)Π∗
N ũ

∗ = 0, then

⟨ũ∗,
(
Π−1
N ΠN − I

)
(T − TN)u⟩ = ⟨(Π∗ − Π∗

N) ũ
∗, (LN − I) (T − TN)u⟩.

Since ∥LN∥ ⩽

∥∥∥∥(ΠN|E

)−1
∥∥∥∥ ∥ΠN∥ ⩽ 1/2, LN is bounded in norm for N ⩾ Nδ. Then,

using Lemma 2.1.4, there exists a constant C > 0 such that for N ⩾ Nδ,∣∣⟨ũ∗, (Π−1
N ΠN − I

)
(T − TN)u⟩

∣∣ ⩽ ( max
1⩽N⩽N

∥LN − I∥
)∥∥∥(T − TN)|E∥∥∥∥∥∥(Π∗ − Π∗

N)|E∗

∥∥∥ ∥ũ∗∥ ∥u∥
⩽ C

∥∥∥(T − TN)|E∥∥∥∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ .
Thus, it yields, for N ⩾ Nδ,

|kN − k| ⩽ |⟨ũ∗, (T − TN)u⟩|+ C
∥∥∥(T − TN)|E∥∥∥∥∥∥(T ∗ − T ∗

N)|E∗

∥∥∥ .
Lemma 2.1.6. Under Assumptions 2.1.1 and 2.1.2, where it is recalled that γN is the
constant from the inf-sup condition of the bilinear form a(·, ·) on VN , and

εN = inf
vN∈VN

∥u− vN∥V ,

ε∗N = inf
vN∈VN

∥u∗ − vN∥V ,

there exists a constant C > 0 independent of N such that∥∥∥(T − TN)|E∥∥∥ ⩽ C
1

γN
εN ,

and ∥∥∥(T ∗ − T ∗
N)|E∗

∥∥∥ ⩽ C
1

γN
ε∗N .
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Proof. First, since E is invariant for T , then for all u ∈ E,

inf
vN∈VN

∥Tu− vN∥ = inf
vN∈VN

∥∥∥∥ Tu

∥Tu∥
− vN
∥Tu∥

∥∥∥∥ ∥Tu∥
= εN ∥Tu∥

inf
vN∈VN

∥Tu− vN∥ ⩽ εN∥T∥∥u∥. (2.12)

On the one hand, according to Céa’s lemma, as γN ⩽ Ca, where Ca is defined in (2.5),
for all v ∈ V ,

∥(T − TN) v∥V ⩽

(
1 +

1

γN

)
inf

vN∈VN
∥Tv − vN∥V ⩽

(Ca + 1)

γN
inf

vN∈VN
∥Tv − vN∥V . (2.13)

On the other hand, it holds that for all v ∈ V ,

a(Tv, Tv) = b(v, Tv).

Using (2.6) and (2.7),

a(Tv, Tv) ⩾ γ∥Tv∥2V ,

and

b(v, Tv) ⩽ Cb∥v∥V ∥Tv∥V ,

hence

∥T∥ ⩽ Cb
γ
. (2.14)

Therefore, using (2.12), (2.13) and (2.14),∥∥∥(T − TN)|E∥∥∥ ⩽ sup
u∈V

∥(T − TN)u∥V
∥u∥V

⩽
Cb
γ

(Ca + 1)

γN
εN .

We then proceed similarly for the adjoint operators.

Proof of Theorem (2.1.3). Let us write, for all vN ∈ VN ,

|⟨ũ∗, (T − TN)u⟩| =
∣∣a ((T − TN)u,A−T ũ∗

)∣∣
=
∣∣a ((T − TN)u,A−T ũ∗ − vN

)∣∣
⩽ Ca ∥(T − TN)u∥V ∥u

∗ − vN∥V
⩽ Ca

∥∥∥(T − TN)|Eh

∥∥∥ ∥u∗∥ε∗N ,
with u∗ = A−T ũ∗. Using Lemma 2.1.5 and Lemma 2.1.6, there exists a constant C > 0
independent of N such that for N ⩾ Nδ,

|kN − k| ⩽ C
1

γN
εNε

∗
N .

This concludes the proof.

We write a similar result for the eigenvectors of Problems (2.1) and (2.2).
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Theorem 2.1.7. Let (u, λ) and (u∗, λ) respectively be solutions to (2.1) and (2.2). Let
(uN , λN) and (u∗N , λN) respectively be solutions to (2.3) and (2.4) such that

⟨u, uN⟩V ≥ 0,

⟨u∗, u∗N⟩V ≥ 0.

Let εN and ε∗N as defined in Theorem (2.1.3). Then, under Assumptions 2.1.1 and 2.1.2
listed above, there exists two constants C > 0 and C∗ > 0 independent of N such that

∥uN − u∥V ⩽ CεN ,

∥u∗N − u∗∥V ⩽ C∗ε∗N .

2.2 State-of-the-art a posteriori error estimation for

eigenvalue problems

We review in this section some existing results on a posteriori error estimation for both
symmetric and non-symmetric eigenvalue problems. We remind Problem (2.1) as our
reference eigenvalue problem, as well as Problem (2.2) as the associated adjoint problem.
Note that the problem of interest actually depends on a parameter µ ∈ P (e.g., see
Problem (1.40)), P ⊂ Rp, for some p ≥ 1, which is omitted in this section, as only one
parameter value µ is considered. We respectively refer to (u, λ) and (u∗, λ) as solutions
to (2.1) and (2.2), where λ is the smallest eigenvalue in modulus, which assumed to be
simple and positive. Let (θ1, . . . , θN ) be a basis of V , we also consider the matrix forms
of Problems (2.1) and (2.2), which respectively write

Find (u, λ) ∈ RN × R such that

Au = λBu, (2.15)

and

Find (u∗, λ) ∈ RN × R such that

ATu∗ = λBTu∗, (2.16)

where
A := (a(θj, θi))1≤i,j≤N , and B := (b(θj, θi))1≤i,j≤N .

We make the assumption that A is invertible and B is nonnegative.

2.2.1 In the symmetric case

Let us first focus on the case of symmetric eigenvalue problems. In a more general context,
upper bounds on the eigenvalue error, based on the perturbation theory, emerged at the
beginning of the 1950s, notably with the Kato–Temple theorem [74, 113], which gives
a residual-based error estimate of second-order in the residual norm. In the case of a
diagonalizable matrix, F. L. Bauer and C. T. Fike suggested, in 1960, a weaker upper
bound of first-order in the residual norm, stating that the sensitivity of the eigenvalues is
proportional to the norm of the residual vector and the condition number of the matrix
of eigenvectors.

In the context of finite element approximation theory, the main case study is the
Laplace eigenvalue problem, where error bonds were derived in [29] and [86]. Neverthe-
less, these error estimates loose accuracy if the diameter of the largest mesh element does
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not tend to zero. Both eigenvalue and eigenvector error bounds have been derived for
nonconforming methods, e.g. in [41] for nonconforming finite elements, in [59] for discon-
tinuous Galerkin finite elements, and in [49, 72] for mixed finite elements. However, all
these estimates present either unknown, solution-dependent, or non-computable terms.

In the context of reduced bases, a first residual-based a posteriori error estimate on
the smallest eigenvalue of a symmetric parametrized eigenvalue problem was developed at
the end of the 1990s by Y. Maday and A. Patera, in their pioneering work [92], and was
used to certify an associated reduced-basis approximation [89]. Then, a posteriori error
estimates for multiple eigenvalues were developed in [70] and [69] for similar reduced-order
applications.

Let us consider a(·, ·) and b(·, ·) be two symmetric positive-definite bilinear forms.
Then, their associated matrices A and B are both symmetric and positive-definite. Prob-
lem (2.1) is then equivalent to (2.2), and Problem (2.15) is equivalent to (2.16). The
eigenvalues are all real and positive and can be ordered as

0 < λ < λ2 ≤ . . . ≤ λN .

We start with some algebraic (in RN ) error estimates, for the case where B = I,
discussed in [106]. The first one is an immediate consequence of the Kato–Temple theo-
rem [74, 113].

Proposition 2.2.1 (Corollary 3.4 of [106]). Let A be a symmetric positive definite matrix,
and B = I. Let uN ∈ RN , such that ∥uN∥2 = 1, and λN := ⟨AuN , uN⟩. We define the
residual vector RN

RN = AuN − λNuN ,

and the gap

δ = min
2≤i≤N

|λi − λN | .

Then,

|λ− λN | ≤
∥RN∥22
δ

.

An associated a posteriori error estimate for the eigenvector writes as follows.

Proposition 2.2.2 (Theorem 3.9 of [106]). Let us consider the same assumptions as in
Proposition 2.2.1. Let us consider two scalars α, β ∈ [0, 1] such that uN = αu + βu⊥,
where u⊥ is an orthogonal vector to u. Then,

β⟨u, uN⟩ ≤
∥RN∥2
δ

.

We continue with the works of T. Horger, et al. [69] and S. Giani, et al. [60] which
aimed at estimating multiple eigenvalues, and not only the smallest one, as it was also
investigated in [27, 26]. These error estimates were carried out with respect to a so-
called energy norm, induced by the symmetric positive-definite operator, associated with
the eigenvalue problem. Although their results were derived with respect to an infinite-
dimensional space V , we rewrite them to consider V of finite dimension N ∈ N∗, and
target only the smallest eigenvalue.
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Proposition 2.2.3 (Theorem 3.1 and Remark 3.2 of [69], Theorem 2.2 of [60]). Let a(·, ·)
be a symmetric positive definite bilinear form on V × V . Let

b(u, v) := ⟨u, v⟩V , ∀(u, v) ∈ V × V.

Let u, uN ∈ V satisfy the following normalization condition

b(u, u) = 1, and b(uN , uN) = 1.

We assume that λN := a(uN , uN) ≥ λ. Let define the residual

ResN(v) := a(uN , v)− λNb(uN , v), ∀v ∈ V.

We denote by resN ∈ V the Riesz representation of ResN such that

a(resN , v) = ResN(v), ∀v ∈ V.

Let λ2 be the closest eigenvalue to λN , aside from λ, and let λ̃2 be the eigenvalue which
satisfies

max
2≤i≤N

∣∣∣∣ λi
λi − λN

∣∣∣∣ =
∣∣∣∣∣ λ̃2

λ̃2 − λN

∣∣∣∣∣ .
Then,

|λ− λN | ≤
∣∣∣∣ λ2
λ2 − λN

∣∣∣∣2 ∥ResN∥2−a,
|λ− λN | ≤

∣∣∣∣∣ λ̃2

λ̃2 − λN

∣∣∣∣∣
2

∥ResN∥2−a,

where ∥ResN∥−a = ∥resN∥a, and ∥ · ∥a := a(·, ·)1/2.
Moreover, if we denote by Πu the L

2-orthogonal projection onto Span{u}, the following
error estimates hold

∥uN − ΠuuN∥2a ≤
∣∣∣∣ λ2
λ2 − λN

∣∣∣∣2 ∥ResN∥2−a,
and

sup
vN∈Span{uN}

∥vN − ΠuvN∥2a
∥vN∥2a

≤

∣∣∣∣∣ λ̃2

λ̃2 − λN

∣∣∣∣∣
2
∥ResN∥2−a

λN
.

Remark 2.2.4. Let uN be an approximation of u and let us consider the residual vector

RN = AuN − λNBuN .

Then, the residual norm ∥ResN∥2−a introduced in Proposition 2.2.3 would write

∥ResN∥2−a = RT
NA

−1RN .

As a consequence, computing the residual norm would then require the computation of
the matrix A−1, which becomes tedious in the case where the operation needs to be car-
ried out for a very large number of parameters µ. In addition to that, if A exhibits an
affine decomposition along the parameter µ (see Section 3.2), its inversion would break
the offline/online decomposition, as the inverse operation is neither linear nor affine.
We then must consider the residual with respect to a norm that is independent of any
parameter-dependent operator (see Section 2.3).
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2.2.2 In the non-symmetric case

In the early stages of a posteriori error analysis for non-symmetric eigenvalue problems,
we note here a pioneering work from S. Giani, A. Miȩdlar, et al. [61], who developed
error estimates based on Kato’s square root theorem [10, 75]. It states that any maximal
accretive operator A (which is the case for all convection-diffusion-reaction operators)
admits a unique maximal accretive operator A1/2 which solves Z2 = A. Furthermore, as
the eigenvectors do not provide immediate orthogonality properties, we use the properties
of spectral projectors, that are defined in the result below. Note that their approach was
limited to the case where b(·, ·) is symmetric (and positive definite), which is not the case
for eigenvalue problems arising in neutronics (cf. Problem (1.40)). Let us start with the
following estimates for the eigenvector errors.

Proposition 2.2.5 (Proposition 4 of [61]). Let A and its associated adjoint AT be the
maximal accretive operators defined as

a(u, v) = ⟨Au, v⟩V = ⟨u,ATv⟩V , ∀(u, v) ∈ V × V.

Let us denote by A1/2 (resp. (AT )1/2) the square root of the operator A (resp. AT ). Let

b(u, v) := ⟨u, v⟩V , ∀(u, v) ∈ V × V.

Let uN , u
∗
N ∈ V and λN ∈ R with corresponding residuals

ResN(v) = a(uN , v)− λNb(uN , v), ∀v ∈ V,
Res∗N(v) = a(v, u∗N)− λNb(v, u∗N), ∀v ∈ V,

and the following residual norms

∥ResN∥AT ,−1/2 :=
∥∥A1/2uN − λNA−1/2uN

∥∥ ,
∥Res∗N∥A,−1/2 :=

∥∥(AT )1/2u∗N − λN(AT )−1/2u∗N
∥∥ .

Moreover, let us define the following so-called spectral projectors

Πint =

∫
Cλ
(z −A)−1dz, and Π∗

int =

∫
Cλ
(z −AT )−1dz,

where Cλ is a curve in the complex plane which encloses both λ and λN , and no other
eigenvalues of A and AT . Then,

inf
v∈Span{u}

∥v − uN∥ ≤
∥∥∥A1/2

(
λN −A|(Span{u})⊥

)−1
(I − Πint)

∥∥∥ ∥ResN∥AT ,−1/2 ,

inf
v∗∈Span{u∗}

∥v∗ − u∗N∥ ≤
∥∥∥∥(AT )1/2 (λN −AT|(Span{u∗})⊥)−1

(I − Π∗
int)

∥∥∥∥ ∥Res∗N∥A,−1/2 .

An associated a posteriori estimate of the eigenvalue error reads as follows.

Proposition 2.2.6 (Theorem 14 of [61]). Let us consider the same assumptions as in
Proposition 2.2.5. We assume that b(uN , u

∗
N) ̸= 0 and we set

λN =
a(uN , u

∗
N)

b(uN , u∗N)
.
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Under some additional assumptions1, there exists a constant CN > 0 such that

|λ− λN | ≤
CN |λ|

|b(uN , u∗N)|
∥ResN∥AT ,−1/2

∥uN∥
∥Res∗N∥A,−1/2

∥u∗N∥
.

Note that in the estimates presented above, no specific assumptions are made on
how the approximate eigenfunctions are chosen, although most of their applications deal
with finite element or reduced basis approximations. Furthermore, most of these results
analytically provide reliable a posteriori estimates. Nevertheless, the major drawback of
the use of these estimates in practice lies in their implementation and, if applicable in the
context of parameter dependent eigenvalue problems, the associated cost, as illustrated
below. In particular, the residual norm ∥Resµ,N∥Aµ

T ,−1/2 introduced in Proposition 2.2.5
cannot be directly used in practical calculations.

2.3 A posteriori error estimation

The goal of this section is to build a posteriori error bounds on the error between the
solutions of the eigenvalue problems (2.15) and (2.16), denoted by (u, u∗, λ), and their
approximations, denoted by (uN , u

∗
N , λN). Again, to simplify notation, the subscript µ

is omitted in this section. In all the following, RN is equipped with the Euclidean inner
product2 denoted by ⟨·, ·⟩ and associated norm ∥ · ∥. We assume that

∥u∥ = ∥u∗∥ = ∥uN∥ = ∥u∗N∥ = 1.

We also make the following additional assumption which is satisfied in the problems we
are eventually interested in for neutronics applications.

Assumption 2.3.1. A is invertible and there exists a positive eigenvalue λ which realizes
the smallest modulus solution to (2.15). Moreover, the eigenvalue λ is simple.

As in neutronics, one quantity of interest is the k-effective which is the inverse of the
smallest eigenvalue (see (1.17)), we introduce the scalars

k :=
1

λ
, and kN :=

1

λN
.

Lemma 2.3.2. Under Assumption 2.3.1, ⟨u∗, Au⟩ ≠ 0.

Proof. Given A invertible, we consider the matrix M = A−1B, and we set v∗ = ATu∗.
Then, k is an eigenvalue of M associated with the right eigenvector u and the left eigen-
vector v∗. We have

⟨u∗, Au⟩ = ⟨u,ATu⟩ = ⟨u, v∗⟩.

Let us then show that u /∈ Span{v∗}⊥.
We first show that Span{v∗}⊥ is invariant by M . We denote by (e1, . . . , eN−1) an

orthonormal basis of Span{v∗}⊥. For all i ∈ J1,N − 1K, we have

⟨Mei, v
∗⟩ = ⟨ei,MTv∗⟩ = k⟨ei, v∗⟩ = 0,

1We refer to Theorem 14 of [61] for more details on these assumptions which are not trivial to write
in our context.

2It is easy to generalize the results presented here to any Hilbertian norm.
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hence, Mei ∈ Span{v∗}⊥ = Span{e1, . . . , eN−1}⊥.
Therefore, if we write the matrixM with respect to the basis

(
e1, . . . , eN−1, eN = v∗

∥v∗∥

)
,

the last row of the matrix M is then (0, . . . , 0, k), as we have

MeN =
N∑
i=1

⟨MeN , ei⟩ei,

and
⟨MeN , eN ⟩ = ⟨eN ,MT eN ⟩ = k.

As k is a simple eigenvalue of M , the restriction M|Span{v∗}⊥ does not have k as an
eigenvalue, therefore, u /∈ Span{v∗}⊥.

Remark 2.3.3. Note that without Assumption 2.3.1, it is possible that ⟨u∗, Au⟩ = 0.

Indeed, a simple example is to take A =

(
1 −1
0 1

)
and B =

(
1 0
0 1

)
. Let u = (1, 0) and

u∗ = (0, 1). Equations (2.15) and (2.16) are satisfied with λ = 1 while ⟨u∗, Au⟩ = 0.

Therefore, our goal now is to derive bounds for the quantities ekN := |k − kN |, euN :=
∥u − uN∥, and eu

∗
N := ∥u∗ − u∗N∥. In order to estimate these errors, we first define the

following residual vector quantities

RN = (B − kNA)uN , (2.17)

R∗
N =

(
BT − kNAT

)
u∗N . (2.18)

Moreover, we introduce the vector

ũ∗ =
ATu∗

∥ATu∗∥
, (2.19)

and the matrix
M = A−1B, (2.20)

which is well-defined since A is invertible from Assumption 2.3.1. Note that it then holds
that

Mu = ku, MT ũ∗ = kũ∗.

2.3.1 Error estimates on the eigenvectors

Let P ∈ RN×N and P ∗ ∈ RN×N be the matrices associated with the spectral projection
operators onto Span{ũ∗}⊥ and Span{u}⊥, respectively. More precisely, P and P ∗ are
defined as

P = I − u(ũ∗)T

⟨u, ũ∗⟩
, (2.21)

P ∗ = I − ũ∗uT

⟨u, ũ∗⟩
, (2.22)

where I denotes the identity matrix in RN×N . Before presenting the a posteriori error
estimates, we first collect a few useful auxiliary lemmas.

Lemma 2.3.4. The spectral projector onto the eigenspace of M associated with the simple
eigenvalue k is I − P , where P is defined by (2.21).
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Proof. Let us introduce the spectral projector Pint ∈ RN×N of M associated with the
eigenvalue k, i.e.,

∀v ∈ RN , Pintv =

∫
Ck
(z −M)−1v dz,

where Ck is a closed contour in the complex plane such that k is the only eigenvalue of

M contained inside the contour. Let us show that Pint =
u(ũ∗)T

⟨u, ũ∗⟩
. As the eigenvalue

k is simple, it holds that Ran Pint = Span{u}, and P T
intũ

∗ = ũ∗ by noting that P T
int

is the spectral projector associated with MT and the eigenvalue k. Let us show that
Ker Pint = (Span{ũ∗})⊥. Indeed, for all v ∈ RN ,

Pintv = 0 ⇐⇒ ⟨ũ∗, v⟩ = ⟨P T
intũ

∗, v⟩ = ⟨ũ∗, Pintv⟩ = 0.

As Ran Pint + Ker Pint = RN , we have Span{u} + [Span{ũ∗}]⊥ = RN . The identity
Pint = I − P is then an immediate consequence of this decomposition.

Lemma 2.3.5. There holds

(i) P 2 = P ;

(ii) Ker P = Span{u}, Ran P = [Span{ũ∗}]⊥ and these two spaces are invariant by P
and M ;

(iii) MP = PM .

Proof. (i) Let v ∈ RN . Noting that Pu = 0, there holds

P 2v = P

(
v − ⟨v, ũ

∗⟩
⟨u, ũ∗⟩

u

)
= Pv − ⟨v, ũ

∗⟩
⟨u, ũ∗⟩

Pu = Pv,

hence P 2 = P .

(ii) The proof of the fact that Ker P = Span{u} and Ran P = [Span{ũ∗}]⊥ is immediate
from the proof of the previous lemma. The fact that Ker P is invariant by P and
M is also obvious. Now, let v ∈ Span{ũ∗}⊥, i.e. such that ⟨ũ∗, v⟩ = 0. Then

⟨ũ∗, Pv⟩ = ⟨ũ∗, v⟩ − ⟨ũ∗, v⟩⟨ũ
∗, u⟩
⟨ũ∗, u⟩

= 0,

and

⟨ũ∗,Mv⟩ = ⟨MT ũ∗, v⟩ = k⟨ũ∗, v⟩ = 0.

Therefore Pv ∈ Span{ũ∗}⊥ and Mv ∈ Span{ũ∗}⊥.

(iii) It is obvious that for all v ∈ Ker P , PMv =MPv = 0. Besides, for all v ∈ Ran P ,
it holds that Pv = v, and Mv ∈ Ran P from (ii) so that PMv = Mv. As a
consequence, PMv =Mv =MPv for any v ∈ RN , hence the desired result.

It is easy to check that the following Lemma holds for P ∗, using similar arguments as
in the proof of Lemma 2.3.5.
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Lemma 2.3.6. There holds

(i) (P ∗)2 = P ∗;

(ii) Ker P ∗ = Span{ũ∗}, Ran P ∗ = [Span{u}]⊥ and these two spaces are invariant by
P ∗ and MT ;

(iii) MTP ∗ = P ∗MT .

Let us introduce some additional notation. By Lemma 2.3.5, the operator PMP−kNI
leaves Ran P = [Span{ũ∗}]⊥ invariant. Moreover, provided that kN /∈ σ

(
PMP |[Span{ũ∗}]⊥

)
,

the operator (PMP − kNI) |[Span{ũ∗}]⊥ is invertible, since it is an operator from [Span{ũ∗}]⊥
onto [Span{ũ∗}]⊥. We can thus define the Moore–Penrose inverse of this operator, denoted
by (PMP − kNI)+ as follows

∀v ∈ [Span{ũ∗}]⊥, (PMP − kNI)+ v = (PMP − kNI) |−1
[Span{ũ∗}]⊥v,

∀v ∈ Span{u}, (PMP − kNI)+ v = 0.

We define in a similar way the operator
(
P ∗MTP ∗ − kNI

)+
.

Proposition 2.3.7 (Eigenvector error estimates). Let uN , u
∗
N ∈ RN \ {0} and let kN ∈

R such that kN /∈ σ((PMP )|[Span{ũ∗}]⊥) and kN /∈ σ((P ∗MTP ∗)|[Span{u}]⊥. Then, the
following estimates hold:

inf
v∈Span{u}

∥uN − v∥ ≤ Cu
N∥RN∥, (2.23)

inf
v∗∈Span{u∗}

∥u∗N − v∗∥ ≤ Cu∗

N ∥R∗
N∥, (2.24)

with

Cu
N :=

∥∥P (PMP − kNI)+ PA−1
∥∥ ,

Cu∗

N :=
∥∥∥A−TP ∗ (P ∗MTP ∗ − kNI

)+
P ∗
∥∥∥ .

Here and in what follows, with a slight abuse of notation, we denote by ∥ · ∥ the
operator norm associated with the vector norm ∥ · ∥ on RN .

Remark 2.3.8. The notations Cu
N and Cu∗

N allow to introduce prefactors in the upper
bound of the error on the eigenvectors u and u∗, respectively.

Remark 2.3.9. Note that uN , u
∗
N and kN do not have to be respectively related to u, u∗

and k for the above estimates to hold. However, in practice, uN will be an approximation
of u, u∗N will be an approximation of u∗ and kN will be an approximation of k, so that the
norms of the residuals ∥RN∥ and ∥R∗

N∥ will be small.

Remark 2.3.10. The results obtained in Proposition 2.3.7 match those of [61, Proposition
4] for k = 0, with a slightly different definition of the residual to take into account the
generalized eigenvalue problem.

Proof of Proposition (2.3.7). First,

inf
v∈Span{u}

∥uN − v∥ ≤ ∥PuN∥ .
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Second, let us show that P (PMP − kNI)+ (PMP − kNI)P = P . Indeed for v ∈
Span{u},
P (PMP − kNI)+ (PMP − kNI)Pv = 0 and Pv = 0. Moreover, for v ∈ [Span{ũ∗}]⊥, Pv =
v, and (PMP − kNI)Pv ∈ [Span{ũ∗}]⊥ from Lemma 2.3.5 (ii). As a consequence,
since kN /∈ σ((PMP )|[Spanũ∗]⊥ , (PMP − kNI) is invertible on [Span{ũ∗}]⊥. Hence for
v ∈ [Span{ũ∗}]⊥,

P (PMP − kNI)+ (PMP − kNI)Pv = P (PMP − kNI) |−1
Span{ũ∗} (PMP − kNI) |Span{ũ∗}Pv

= Pv.

We conclude this part of the proof by noting that RN = Span{u}+ [Span{ũ∗}]⊥.
Then using Lemma 2.3.5 (iii), we have

PuN = P (PMP − kNI)+ (PMP − kNI)PuN
= P (PMP − kNI)+ P (M − kNI)uN .

Using (2.17), we obtain

PuN = P (PMP − kNI)+ PA−1RN . (2.25)

Thus,

∥PuN∥ ⩽
∥∥P (PMP − kNI)+ PA−1

∥∥ ∥RN∥. (2.26)

To show the second bound, we first note that

P ∗ (ATu∗N) = ATu∗N −
⟨u,ATu∗N⟩
⟨u, ũ∗⟩

ũ∗,

so that (2.19) and (2.22) yield

inf
v∗∈Span{u∗}

∥u∗N − v∗∥ = inf
v∗∈Span{u∗}

∥∥A−T (ATu∗N − ATv∗)∥∥
= inf

ṽ∗∈Span{ũ∗}

∥∥A−T (ATu∗N − ṽ∗)∥∥
⩽
∥∥A−TP ∗ATu∗N

∥∥ .
Now, using Lemma 2.3.6 (iii) and similar arguments as above, we get

P ∗ (ATu∗N) = P ∗ (P ∗MTP ∗ − kNI
)+ (

P ∗MTP ∗ − kNI
)
P ∗ATu∗N

= P ∗ (P ∗MTP ∗ − kNI
)+
P ∗ (MT − kNI

)
ATu∗N

= P ∗ (P ∗MTP ∗ − kNI
)+
P ∗ (B − kNA)T u∗N .

Hence

P ∗ (ATu∗N) = P ∗ (P ∗MTP ∗ − kNI
)+
P ∗R∗

N . (2.27)

Then, ∥∥A−TP ∗ATu∗N
∥∥ ⩽

∥∥∥A−TP ∗ (P ∗MTP ∗ − kNI
)+
P ∗
∥∥∥ ∥R∗

N∥,

which proves (2.24).
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2.3.2 Error estimate on the eigenvalue

We now provide an estimate for the eigenvalue error.

Proposition 2.3.11 (Eigenvalue error estimate). Let uN , u
∗
N ∈ RN . Under Assump-

tion 2.3.1 and the fact that kN :=
⟨u∗N , BuN⟩
⟨u∗N , AuN⟩

is such that kN /∈ σ((PMP )|[Span{ũ∗}]⊥) and

kN /∈ σ((P ∗MTP ∗)|[Span{u}]⊥, there holds

|kN − k| ≤ Ck
Nη

k
N , (2.28)

where

ηkN :=
∥RN∥∥R∗

N∥
|⟨u∗N , AuN⟩|

, (2.29)

and

Ck
N :=

∥∥∥[P ∗ (P ∗MTP ∗ − kNI
)+
P ∗]T (M − kI)P (PMP − kNI)+ PA−1

∥∥∥ . (2.30)

Remark 2.3.12. The notations Ck
N and ηkN allow to respectively refer to a prefactor in

the upper bound and a residual-based error estimator for the eigenvalue k.

Remark 2.3.13. Note that in this result, the vectors uN and u∗N may not be solutions
of a reduced eigenvalue problem of the form (3.6) or (3.7). The only requirement of
Proposition 2.3.11 is that kN has to be related to uN and u∗N by the formula stated in the
proposition.

Proof of Proposition 2.3.11. For any α, β ∈ R,

⟨AT (u∗N − αu∗) , (M − kI) (uN − βu)⟩ = ⟨ATu∗N ,MuN⟩ − β⟨ATu∗N ,Mu⟩ − α⟨ATu∗,MuN⟩
+ αβ⟨ATu∗,Mu⟩ − k⟨ATu∗N , uN⟩+ βk⟨ATu∗N , u⟩
+ αk⟨ATu∗, uN⟩ − αβk⟨ATu∗, u⟩.

Noting that Mu = ku, MTATu∗ = kATu∗ and recalling that M = A−1B, we obtain

⟨AT (u∗N − αu∗) , (M − kI) (uN − βu)⟩ = ⟨ATu∗N ,MuN⟩ − k⟨u∗N , AuN⟩
= (kN − k) ⟨u∗N , AuN⟩.

According to Lemma 2.3.2, we can set

α =
1

∥ATu∗∥
⟨ATu∗N , u⟩
⟨ũ∗, u⟩

, β =
⟨uN , ũ∗⟩
⟨u, ũ∗⟩

,

and show that

kN − k =
1

⟨u∗N , AuN⟩
⟨P ∗ (ATu∗N) , (M − kI)PuN⟩.

Using (2.25) and (2.27) finishes the proof.
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2.4 Practical a posteriori error estimators

In view of Proposition 2.3.7 and Proposition 2.3.11, it is natural to estimate the actual
errors ekN = |k − kN |, euN = ∥uµ,N − uµ∥ and eu

∗
N =

∥∥u∗µ,N − u∗µ∥∥ by the quantities respec-
tively defined as follows,

∆k
N := C

k

Nη
k
N , ∆u

N := C
u

N∥RN∥, ∆u∗

N := C
u∗

N ∥R∗
N∥, (2.31)

where C
k

N , C
u

N and C
u∗

N are some constants which are good estimates of the efficiencies
ekN

ηkN(µ)
,

euN
∥RN(µ)∥

, and
eu

∗
N

∥R∗
N(µ)∥

. For example, one could use practical (computable)

estimations of the constants Ck
N , C

u
N and Cu∗

N appearing in Proposition 2.3.7 and Propo-
sition 2.3.11.

For the applications we are interested in, as will be illustrated in Section 4.1, we
observe that the operators are perturbations of symmetric operators. This is why we
investigate in Section 2.4.2 the links between the prefactor Ck

N introduced above and its
well-known counterpart in the symmetric case. However, this does not yield practical for-
mulas for estimating/computing the prefactors. This is why, in Section 2.4.3, we propose

a practical heuristic approach to compute some prefactors C
k

N , C
u

N and C
u∗

N in the reduced
basis context, that we will use in the numerical results to build practical a posteriori error
estimators in the greedy algorithm to select the reduced space (see Section 3.3). This
heuristic approach gives very interesting numerical results for neutronics applications as
will be illustrated in Chapter 4.

Let us briefly go back to the symmetric case, i.e. in the case where A is a positive
definite symmetric matrix, and B = I, i.e., M = A−1. In this case, all the eigenvalues of
M are real and positive, with k being a largest one. We still assume that k is a simple
eigenvalue of M and denote by k2 the second largest eigenvalue of M so that k > k2.
Note that in the symmetric case, u = u∗ and P = P ∗ = P T . As a consequence, for a

given vector uN and the value kN =
⟨uN , BuN⟩
⟨uN , AuN⟩

> 0, we have (from (2.30))

Ck
N =

∥∥[P (PMP − kNI)+ P ]T (M − kI)P (PMP − kNI)+ PA−1
∥∥

=
∥∥P (PMP − kNI)+ P (M − kI)P (PMP − kNI)+ PA−1

∥∥ .
In the spirit of Proposition 2.2.3, we get the following result.

Proposition 2.4.1. Let A be symmetric positive definite and B = I. Let k be the largest
eigenvalue of M = A−1, let us assume that it is simple, and let us denote by k2 its second
largest eigenvalue. Let us also assume that

k > kN > k2 > 0. (2.32)

Then,

Ck
N =

k2(k − k2)
(kN − k2)2

=
∥PA−1∥∥M − kI∥

dist(kN , σ((PMP )|Span{u}⊥))2
. (2.33)

Proof. Let k(1) = k > k(2) = k2 ≥ · · · ≥ k(N ) denote the eigenvalues of M = A−1 and
u(1), u(2), . . . , u(N ) be corresponding eigenvectors,

A−1 =M =
N∑
i=1

k(i)u(i)u(i)
T

,
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and

P =
N∑
i=2

u(i)u(i)
T

.

Then, using functional calculus, there yields

P (PMP − kNI)+ P (M − kI)P (PMP − kNI)+ PA−1 =
N∑
i=2

k(i)(k − k(i))
(kN − k(i))2

uiu
T
i .

Since the operator norm is associated with the Euclidean vector norm, the operator norm
corresponds to the largest eigenvalue of the (symmetric) operator, such that

Ck
N = max

2≤i≤N

k(i)(k − k(i))
(kN − k(i))2

=
k2(k − k2)
(kN − k2)2

.

Since ∥PA−1∥ = k2, ∥M−kI∥ = k−k2 using (2.32), and dist(kN , σ((PMP )|Span{u}⊥))2 =
(kN − k2)2, we easily obtain the second equality.

The constant Ck
N is therefore strongly linked to the spectral gap between the first and

second eigenvalue ofM in this particular symmetric case. However, this notion of spectral
gap is not clear in the non-symmetric context and we provide two points of view which
enable to draw a comparison between the symmetric and non-symmetric case.

2.4.1 Numerical range

In this section, we prove that in the general non-symmetric case, the value of the prefac-
tor Ck

N can be estimated using the so-called numerical range [99] of the non-symmetric
operator. In this work, the computation of the numerical range was not investigated, but
we refer to [22] for some guidelines. Let us first define the notion of numerical range.

Definition 2.4.2 (Numerical range). Let Q ∈ RN×N . The numerical range of the matrix
Q is defined by

Num(Q) = {⟨v,Qv⟩, ∥v∥ = 1}.

Lemma 2.4.3. Let Q ∈ RN×N let and z /∈ σ(Q). Then,∥∥(Q− zI)−1
∥∥ ⩽

1

dist (z,Num (Q))
.

Proof. Let w ∈ RN be a unit vector. Then,

dist (z,Num (Q)) ⩽

∣∣∣∣z − ⟨w,Qw⟩∥w∥2

∣∣∣∣
⩽
|⟨w, (Q− zI)w⟩|

∥w∥2

⩽
∥(Q− zI)w∥
∥w∥

.

Taking u = (Q− zI)w, then,∥∥(Q− zI)−1
∥∥ ⩽

1

dist (z,Num (Q))
.
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Proposition 2.4.4. Under the same assumptions as in Proposition 2.3.11,

Ck
N ≤

∥M − kI∥∥PA−1∥
dist(kN ,Num((PMP )|[Span{ũ∗}]⊥)) dist(kN ,Num(P ∗MTP ∗)|[Span{u}]⊥))

Note that the bound given in Proposition 2.4.4 is exactly equal to the value of
the prefactor in the symmetric case since, when M is symmetric and non-negative,
Num((PMP )|[Span{ũ∗}]⊥) = Num(P ∗MTP ∗)|[Span{u}]⊥ = [k2, kN ] where k > k2 ≥ . . . ≥ kN
are the ordered eigenvalues of M .

Proof. Starting from (2.30), it holds that

Ck
N ≤

∥∥∥P ∗ (P ∗MTP ∗ − kNI
)+
P ∗
∥∥∥ ∥M − kI∥∥∥P (PMP − kNI)+ P

∥∥ ∥PA−1∥.

Using Lemma 2.4.3, this completes the proof.

The upper bound on Ck
N derived in Proposition 2.4.4 goes to infinity if kN (which is

supposed to be an approximation of k) gets close to Num((PMP )|[Span{ũ∗}]⊥) or
Num(P ∗MTP ∗)|[Span{u}]⊥ , which can be seen as an underlying spectral gap condition.

2.4.2 A perturbative approach

The aim of this section is to propose another connection between the estimation of the
prefactor Ck

N in the non-symmetric case with its well-known expression in the symmetric
case. In all this section, we assume that{

A := Aε = S + εT with ST = S, T T = −T, ε > 0,

B := I.
(2.34)

In other words, the matrix A is a perturbation of a symmetric positive definite matrix
S ∈ RN×N , since ε > 0 is intended to be a small parameter. We still assume here that
B = I for the sake of simplicity.

We also assume that the positive definite symmetric matrix S has a simple posi-
tive lowest eigenvalue λS, and that uS is an associated eigenvector. We then denote by
λS < λS,2 ≤ . . . ≤ λS,N all the eigenvalues of S. We also define kS := 1

λS
and kS,i :=

1
λS,i

for 2 ≤ i ≤ N . By a perturbative argument, for any ε > 0 small enough, there exists a
simple nonzero eigenvalue λε of smallest modulus of Aε, and we denote by uε an associated
right eigenvector, u∗,ε an associated left eigenvector, ũ∗,ε defined as in (2.19) and kε := 1

λε
.

For the sake of simplicity of the perturbative analysis, we assume that the approximate
value kN is independent of ε. This for example makes sense if one uses a reduced-order
model constructed from the one-dimensional reduced space V = Span{uS}. In that case,
uN = u∗N = uS and thus kN = kS.

In this section, using obvious notation, we would like to study the convergence of the
prefactor

Ck,ε
N :=

∥∥∥[P ∗,ε (P ∗,ε(M ε)TP ∗,ε − kNI
)+
P ∗,ε]T (M ε − kεI)P ε (P εM εP ε − kNI)+ P ε(Aε)−1

∥∥∥
to the value

Ck,sym
N =

kS,2(kS − kS,2)
(kN − kS,2)2

(2.35)

as ε goes to 0.
We first perform a first-order expansion of the eigenvectors and eigenvalues in ε (cf.

Chapter 2 of [76]).

38



CHAPTER 2. A POSTERIORI ERROR ESTIMATES FOR PARAMETER-DEPENDENT
NON-SYMMETRIC GENERALIZED EIGENVALUE PROBLEMS

Lemma 2.4.5. Let us assume (2.34) and

∥uε∥2 = ∥uS∥2 = 1 and ⟨uε, uS⟩ > 0. (2.36)

Then, as ε goes to 0,

λε = λS +O(ε2),

kε = kS +O(ε2),

uε = uS − ε (S − λSI)−1
|Span{uS}⊥ TuS +O(ε2),

u∗,ε = uS + ε (S − λSI)−1
|Span{uS}⊥ TuS +O(ε2),

ũ∗,ε = uS + ε (S − λSI)−1
|Span{uS}⊥ TuS +O(ε2).

Proof. Using the results of [76, Chapter 2], we decompose λε, uε, and u∗,ε at first order
as

λε = λA,0 + ελA,1 +O(ε2),

uε = uA,0 + εuA,1 +O(ε2),

u∗,ε = u∗A,0 + εu∗A,1 +O(ε2).

Using this decomposition, the eigenvalue problem writes

SuA,0 + ε(SuA,1 + TuA,0) = λA,0uA,0 + ε(λA,0uA,1 + λA,1uA,0) +O(ε2).

At order 0 in ε, we obtain uA,0 = uS and λA,0 = λS. Then, at first order,

SuA,1 + TuA,0 = λA,0uA,1 + λA,1uA,0. (2.37)

Using (2.36), one can write

∥uε∥2 = ∥uA,0∥2 + ε(⟨uA,0, uA,1⟩+ ⟨uA,1, uA,0⟩) +O(ε2),

which implies that

⟨uA,0, uA,1⟩ = 0. (2.38)

Using the latter and projecting (2.37) onto uA,0 gives

⟨SuA,1, uA,0⟩+ ⟨TuA,0, uA,0⟩ = λA,1⟨uA,0, uA,0⟩ = λA,1.

As T is skew-symmetric, it holds ⟨TuA,0, uA,0⟩ = 0, so that

⟨SuA,1, uA,0⟩ = ⟨uA,1, SuA,0⟩ = λA,0⟨uA,1, uA,0⟩ = 0.

Hence λA,1 = 0. Then (2.37) transforms into

(S − λSI)uA,1 = −TuS.

The latter has a solution since TuS ∈ Span{uS}⊥ and (Ker (S − λSI))⊥ = Ran (S − λSI) .
Hence

uA,1 = − (S − λSI)−1
|Span{uS}⊥ TuS. (2.39)
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We can apply the same procedure for the adjoint eigenvector to obtain the result. Finally,

ũ∗,ε :=
(Aε)Tu∗,ε

∥(Aε)Tu∗,ε∥

=
(S − εT )(uS − εuA,1)
∥(S − εT )(uS − εuA,1)∥

+O(ε2)

=
λSuS − ε(SuA,1 + TuS)

∥λSuS − ε(SuA,1 + TuS)∥
+O(ε2)

=

(
uS −

ε

λS
(SuA,1 + TuS)

)(
1 +

ε

λS
⟨uS, (SuA,1 + TuS)⟩

)
+O(ε2)

= uS − εuA,1 +O(ε2),

which concludes the proof.

We now provide first-order expansions of operators which will be needed in the sub-
sequent estimation of the prefactor.

Lemma 2.4.6. Let us assume (2.34) and (2.36). Then, as ε goes to 0,

P ε = PS + εPT +O(ε2), and P ∗,ε = PS − εPT +O(ε2),

where

PS = I − uSuTS , and PT = uA,1u
T
S − uSuTA,1,

uA,1 being defined in (2.39).

Proof. We have

P ε = I − uε(ũ∗,ε)T

⟨uε, ũ∗,ε⟩
,

= I − (uS + εuA,1 +O(ε2))(uS − εuA,1 +O(ε2))T

= I − uSuTS + ε(uA,1u
T
S − uSuTA,1) +O(ε2).

Similarly,

P ∗,ε = I − ũ∗,ε(uε)T

⟨uε, ũ∗,ε⟩
= I − (uS − εuA,1 +O(ε2))(uS + εuA,1 +O(ε2))T

= I − uSuTS + ε(−uA,1uTS + uSu
T
A,1) +O(ε2).

This concludes the proof.

We now provide a first order expansion of the operator entering the prefactor in (2.30),
namely

Mε = [P ε (P εM εP ε − kNI)+ P ε](M ε − kεI)P ε (P εM εP ε − kNI)+ P ε(Aε)−1. (2.40)

Lemma 2.4.7. Let us assume (2.34) and (2.36). Then, as ε goes to 0,

Mε =M0 + εM1 +O(ε2), (2.41)
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with

M0 = ΓS(S
−1 − kSI)ΓSS−1,

M1 = −ΓSS−1TS−1ΓSS
−1 + ΓS(S

−1 − kSI)ΓTS−1

− ΓS(S
−1 − kSI)ΓSS−1TS−1 + ΓT (S

−1 − kSI)ΓSS−1,

and

ΓS = PS
(
PSS

−1PS − kNI
)+
PS,

ΓT = PS
(
PSS

−1PS − kNI
)+
PT + PT

(
PSS

−1PS − kNI
)+
PS

− PS
(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

)(
PSS

−1PS − kNI
)+
PS.

Proof. First,
M ε = (Aε)−1 = S−1 − εS−1TS−1 +O(ε2).

Therefore, as we have P ε = PS + εPT +O(ε2), there holds

P εM εP ε =
(
PS + εPT +O(ε2)

) (
S−1 − εS−1TS−1 +O(ε2)

) (
PS + εPT +O(ε2)

)
=
(
PSS

−1 − εPSS−1TS−1 + εPTS
−1 +O(ε2)

) (
PS + εPT +O(ε2)

)
= PSS

−1PS − εPSS−1TS−1PS + εPTS
−1PS + εPSS

−1PT +O(ε2)

= PSS
−1PS + ε

(
PSS

−1TS−1PS + PTS
−1PS + PSS

−1PT
)
+O(ε2).

Using a first-order expansion of the pseudo-inverse in ε, there holds

(P εM εP ε − kNI)+ =
[(
PSS

−1PS − kNI
)
+ ε

(
PSS

−1TS−1PS + PTS
−1PS + PSS

−1PT
)

+O(ε2)
]+

=
(
PSS

−1PS − kNI
)+

− ε
(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

) (
PSS

−1PS − kNI
)+

+O(ε2).

Hence, one can write

P ε (P εM εP ε − kNI)+ P ε = PS
(
PSS

−1PS − kNI
)+
PS + ε

[
PS
(
PSS

−1PS − kNI
)+
PT

− PS
(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

)
×
(
PSS

−1PS − kNI
)+
PS + PT

(
PSS

−1PS − kNI
)+
PS

]
+O(ε2).

Defining

Γε := P ε (P εM εP ε − kNI)+ P ε,

we have just obtained that

Γε = ΓS + εΓT +O(ε2).
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Using that

Mε = Γε(M ε − kεI)Γε(Aε)−1 =
(
ΓS + εΓT +O(ε2)

) (
S−1 − kSI − εS−1TS−1 +O(ε2)

)
×
(
ΓS + εΓT +O(ε2)

) (
S−1 − εS−1TS−1 +O(ε2)

)
,

we easily obtain (2.41).

We then estimate the prefactor Ck
N in the perturbative case using the previous results.

Proposition 2.4.8. Let us assume (2.34) and (2.36). Let us also assume that

kS ≥ kN > kS,2 > 0, (2.42)

and that kS,2 is not degenerate. Then, for ε > 0 sufficiently small,

Ck,ε
N = Ck,sym

N +O(ε2),

where Ck,sym
N is defined as in (2.35).

Proof. Starting from (2.41), let us first note thatM0 = ΓS(S
−1−kSI)ΓSS−1 has the same

spectral decomposition as S, that is eigenvectors uS,i with corresponding eigenvalues{
0 for i = 1
(kS,i−kS)kS,i
(kS,i−kN )2

for 2 ≤ i ≤ N .

From this, we deduce that

∥M0∥ = max
2≤i≤N

|kS,i − kS|kS,i
|kS,i − kN |2

=
|kS,2 − kS|kS,2
|kS,2 − kN |2

= Ck,sym
N .

Note that the same holds for ΓS with eigenvalues{
0 for i = 1

1
kS,i−kN

for 2 ≤ i ≤ N .

Then, since kS,2 is a simple eigenvalue, we can write down the Taylor expansion of the
spectral norm as

Ck,ε
N = ∥M0 + εM1 +O(ε2)∥ = ∥M0∥+ εuTM,0M1uM,0 +O(ε2),

where uM,0 the unit eigenvector corresponding to the largest eigenvalue of M0, that is
uM,0 = ±uS,2. For simplicity, let us choose uM,0 = uS,2.

Then

uTM,0M1uM,0 = −uTM,0ΓSS
−1TS−1ΓSS

−1uM,0 + uTM,0ΓS(S
−1 − kSI)ΓTS−1uM,0

− uTM,0ΓS(S
−1 − kSI)ΓSS−1TS−1uM,0 + uTM,0ΓT (S

−1 − kSI)ΓSS−1uM,0

= −
k3S,2

(kS,2 − kN)2
uTM,0TuM,0 +

kS,2(kS,2 − kS)
kS,2 − kN

uTM,0ΓTuM,0

−
k2S,2(kS,2 − kS)
(kS,2 − kN)2

uTM,0TuM,0 +
kS,2(kS,2 − kS)
kS,2 − kN

uTM,0ΓTuM,0

= 0,

where we used the fact that the matrices T and ΓT are skew-symmetric. This concludes
the proof.
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We now illustrate the above bounds on a toy numerical example. Let us introduce the
following matrices S, T ∈ R4×4 :

S =


2000 0 0 0
0 1500 0 0
0 0 1000 0
0 0 0 0.02

 , T =
∥S∥
∥T0∥

T0, with T0 =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 .

It then holds that kS = 50 and kS,2 = 0.001. Let us consider kN = kS. A second-order

convergence of the difference |Ck,ε
N − C

k,sym
N | as a function of ε is depicted in Figure 2.1.

This is a strong indication that the estimate of Proposition 2.4.8 is sharp.
In our practical applications of interest, we will indeed observe that the operator of

reference is a perturbation of a symmetric operator, but the estimate of the prefactor Ck,ε
N

by Ck,sym
N is not sufficiently good over a large range of the values of the parameters µ,

in particular because the spectral gap (see Assumption (2.42)) is not uniformly bounded
from below (see Section 4.1 for a discussion). This is why we will resort to a practical
heuristic method to approximate the prefactor, as explained in the next section 2.4.3.

Figure 2.1: |Ck,ε
N − C

k,sym
N | as a function of ε

2.4.3 Heuristic estimation of prefactors

The aim of this section is to present a heuristic algorithm to estimate the prefactors Ck
N ,

Cu
N and Cu∗

N defined in Proposition 2.3.11 and Proposition 2.3.7 respectively. The algo-

rithm then yields approximations of these constants, denoted by C
k

N , C
u

N and C
u∗

N , which
are then used to build a posteriori error estimates for the greedy algorithm presented in
Chapter 3.

This heuristic procedure is based on the use of a set of parameters values Ppref ⊂
P , containing a finite number of elements, which does not contain any values of the
parameters belonging to the training set Ptrain, in the context of a reduced-basis approach,
as detailed in Chapter 3, i.e., Ppref is chosen such that Ptrain ∩ Ppref = ∅.
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Let us introduce the efficiency ratios, i.e., for all µ ∈ P ,

EkN(µ) :=
|kµ,N − kµ|
ηkN(µ)

, EuN(µ) :=
∥uµ,N − uµ∥
∥RN(µ)∥

and Eu∗N (µ) :=

∥∥u∗µ,N − u∗µ∥∥
∥R∗

N(µ)∥
. (2.43)

By definition, for all µ ∈ P ,

EkN(µ) ≤ Ck
N(µ), EuN(µ) ≤ Cu

N(µ) and Eu∗N (µ) ≤ Cu∗

N (µ). (2.44)

Our heuristic approach aims at estimating the constants Ck
N(µ), C

u
N(µ) and Cu∗

N (µ)
for all µ ∈ P by their maximum values over Ppref . More precisely, defining

C
k

N := max
µ∈Ppref

EkN(µ), C
u

N := max
µ∈Ppref

EuN(µ), and C
u∗

N := max
µ∈Ppref

Eu∗N (µ), (2.45)

the practical a posteriori error estimates that are used in the greedy reduced basis method,
introduced in the next chapter, are then defined by

∆k
N(µ) := C

k

Nη
k
N(µ), ∆u

N(µ) := C
u

N∥RN(µ)∥, and ∆u∗

N (µ) := C
u∗

N ∥R∗
N(µ)∥.

(2.46)
The efficiency of this practical approach will be illustrated in Chapter 4, where nu-

merical results obtained in neutronics applications are presented.

***

In this chapter, we developed residual-based a posteriori error estimates for a given
non-self-adjoint generalized eigenvalue problem. These estimates all exhibit parameter-
dependent prefactors that are too expensive to compute in practice for a large number
of parameters. Therefore, we first provided some elements of theoretical analysis to illus-
trate the close link between the obtained expression of the prefactor and its well-known
counterpart in the case of symmetric eigenvalue problems. Particularly, we have consid-
ered perturbative arguments to give a first order development of the prefactor when the
operator is a small perturbation of a symmetric operator, as is the case of eigenvalue
problems arising in neutronics, although it is more complex in practice, as we must tackle
a generalized eigenvalue problem that does not satisfiy all the assumptions that we raised.
We finally came up with a data-driven heuristic approach to estimate the prefactor, as-
suming that its parametric dependency can be disregarded. The derivation of a posteriori
error estimates for non-symmetric generalized eigenvalue problems is a crucial step in the
development of an inexpensive reduced basis method. In that context, these estimates
enable an efficient construction of the approximation space over an iterative procedure,
and also certify the accuracy of the solutions to the reduced problem.
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Chapter 3

Implementation of an iterative
reduced basis method based on a
posteriori error estimates for
parameter-dependent non-symmetric
generalized eigenvalue problems

Model order reduction methods such as reduced basis (RB) techniques [21, 67, 102] are
useful to accelerate the computation of approximate solutions of parameterized problems.
In the context of neutronics, parameterized problems naturally occur when optimizing
the loading pattern of a nuclear core [44, 47, 114]. Mathematically, this amounts to opti-
mizing an objective function which involves the solution to a generalized non-symmetric
eigenvalue problem. The aim of this chapter is then to set up a methodology for the
implementation of an offline/online reduced basis procedure for parameter-dependent
non-self-adjoint generalized eigenvalue problems in this context. It can be seen as a gen-
eralization of [69, 54, 20], where reduced basis methods for symmetric eigenvalue problems
have been developed. To do so, we rely on the practical a posteriori error estimates devel-
oped in the previous chapter, which allow, in the offline stage, to build the reduced space
with the greedy algorithm [25], by breaking the dependence on the high-fidelity solver,
unlike POD procedures (see [16] for a general introduction), for instance; in the online
stage, these estimates certify the approximation and enable a convergence analysis of the
reduced problem. To do so, we consider a particular situation where the linear operators
exhibit an affine expansion along their parametric dependency. This should be consid-
ered for the iterative reduced basis to compete with POD. This gives an example of RB
implementation where quantities of interest are efficiently assembled along the parameter
in a generic way.

In Section 3.1, we introduce the reduced (RB) eigenvalue problem as a Galerkin ap-
proximation of the high-fidelity (HF) eigenvalue problem. In Section 3.2, we consider
the affine parametric expansion of the high-fidelity matrices, and we explain how this
key assumption enables an efficient implementation of the reduced basis method and
the a posteriori error estimates. Section 3.3 details the offline stage of the RB proce-
dure, through a greedy algorithm, and shows how the reduced space is thoroughly built.
Section 3.4 presents the online stage of the RB procedure that consists of the Galerkin
projection onto the reduced space, and assembling the algebraic quantities of interest
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3.1. THE HIGH-FIDELITY AND THE REDUCED PROBLEM

along the parameters.

3.1 The high-fidelity and the reduced problem

Let us recall the parametrized generalized eigenvalue problem for which we wish to build
a reduced-order problem. Let N ∈ N∗ be a large positive integer. As before, RN is
equipped with the Euclidean inner product1 denoted by ⟨·, ·⟩ and associated norm ∥ · ∥.
For all values of the vector of parameters µ ∈ P ⊂ RK , for some K ≥ 1, we consider
two matrices Aµ and Bµ in RN×N and the following generalized eigenvalue problem: Find
(uµ, λµ) ∈ RN × C with λµ of the smallest modulus such that:

Aµuµ = λµBµuµ, ∥uµ∥ = 1. (3.1)

We refer to Problem (3.1) as the high-fidelity (HF) problem. Imposing Assump-
tion 2.3.1 on Problem (3.1), it yields a uniquely defined (up to a sign) uµ, and real
and strictly positive λµ. Moreover, it ensures a spectral gap between λµ and the
other eigenvalues of Problem (3.1), a property that was essential in the a posteriori
analysis developed in Chapter 2. The associated HF adjoint problem then reads: Find
(u∗µ, λµ) ∈ RN × R+ \ {0} such that

ATµu
∗
µ = λµB

T
µ u

∗
µ, ∥u∗µ∥ = 1. (3.2)

Remark 3.1.1. Let us mention here that, for any A ∈ RN×N , the adjoint matrix AT ∈
RN×N is defined relatively to the inner product ⟨·, ·⟩ as follows:

∀u, v ∈ RN , ⟨v, Au⟩ = ⟨ATv, u⟩.

Similarly, for any column vector u ∈ RN , we denote by uT the unique row vector of RN

such that
∀v ∈ RN , uTv = ⟨u, v⟩.

Let us notice that, from Assumption 2.3.1, the eigenvectors uµ and u∗µ can indeed be
chosen to be vectors with real components. In practice, the solutions to (3.1) and (3.2)
are approximated by the inverse power method [23, Chapter 4], described in Algorithm 2,
with A = Aµ and B = Bµ for the right eigenproblem, and with A = ATµ and B = BT

µ for
the left eigenproblem. We also define, for all µ ∈ P , the so-called effective multiplication
factor

kµ :=
1

λµ
,

such that

kµ =
⟨u∗µ, Bµuµ⟩
⟨u∗µ, Aµuµ⟩

. (3.3)

Remark 3.1.2. On the one hand, Assumption 2.3.1 holds for instance if Aµ is invertible
and the matrix A−1

µ Bµ coming from Problem (3.1) satisfies the assumptions of the Perron–
Frobenius theorem [3]. Note that under the assumption that Aµ is invertible, λµ is solution
to (3.1) if and only if kµ is an eigenvalue associated with the matrix A−1

µ Bµ. On the
other hand, in the context of neutronics applications detailed in Chapters 4 and 5, (3.1)
is obtained as an appropriate discretization of a continuous problem where the associated

1It is easy to generalize the results presented below to any Hilbertian norm.
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resolvent operator satisfies the assumptions of the Krein–Rutman theorem (Theorem 1.2.2)
and thus admits a simple real largest eigenvalue in modulus denoted kexµ . Since 1/kexµ is
solution to the continuous problem, the smallest eigenvalue of (3.1) in modulus is also
expected to be simple and positive for fine enough discretization, i.e. large enough N .

We are interested in situations where one has to solve the reference high-fidelity prob-
lem (3.1) quickly and for many values of µ. The idea is to build a reduced basis using
some HF solutions of (3.1) (so-called snapshots) computed offline, and to use a Galerkin
method to project Problem (3.1) onto this reduced basis. This requires a posteriori es-
timators, developed in Chapter 2, to wisely select the parameters µ used to build the
reduced basis, as well as to certify the numerical results obtained online using the re-
duced basis.

Let us now present the reduced-order model obtained from a given reduced basis
to get an approximation of (3.1). Let us consider a reduced linear subspace V of RN of
dimension N much smaller than N , built in such a way that any solution of Problem (3.1)
can be accurately approximated by an element of the space V (the construction of such a
subspace will be discussed in Section 3.3). A reduced-order model for Problem (3.1) can
then be obtained from the reduced space V as follows. Let (ξi)1⩽i⩽N be an orthonormal
basis of V . The reduced matrices Aµ,N ∈ RN×N , Bµ,N ∈ RN×N are defined as follows: for
all 1 ≤ i, j ≤ N ,

(Aµ,N)ij := ⟨ξi, Aµξj⟩, (3.4)

(Bµ,N)ij := ⟨ξi, Bµξj⟩. (3.5)

The reduced-order model is then used to solve the following problem: Find (cµ,N , λµ,N) ∈
RN × C such that λµ,N is an eigenvalue with smallest modulus of

Aµ,Ncµ,N = λµ,NBµ,Ncµ,N , uµ,N =
N∑
i=1

ciµ,Nξi, and ∥uµ,N∥ = 1, (3.6)

where for all 1 ≤ i ≤ N , ciµ,N is the ith component of the vector cµ,N . We refer to
Problem (3.6) as the reduced (RB) problem. Similarly as for the HF problem (see As-
sumption 2.3.1), we make the following assumption.

Assumption 3.1.3. For any parameter µ ∈ P, the matrix Aµ,N is invertible and there
exists a unique positive eigenvalue λµ,N which is the smallest modulus solution to (3.6).
Moreover, the eigenvalue λµ,N is simple.

Under this assumption, cµ,N and uµ,N are uniquely defined up to a sign and λµ,N is real.
Endowing the space RN with the canonical Euclidean inner product ⟨·, ·⟩ℓ2 , we can consider
the solution to the associated reduced adjoint problem: Find (c∗µ,N , λµ,N) ∈ RN×R+ \{0}
such that the eigenvalue λµ,N is the smallest in modulus and

ATµ,Nc
∗
µ,N = λµ,NB

T
µ,Nc

∗
µ,N , u∗µ,N =

N∑
i=1

c∗,iµ,Nξi, and ∥u∗µ,N∥ = 1. (3.7)

where for all 1 ≤ i ≤ N , c∗,iµ,N is the ith component of the vector c∗µ,N and ATµ,N and

BT
µ,N are respectively the transpose of the matrix Aµ,N and Bµ,N . Moreover, under this
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assumption, we have ⟨c∗µ,N , Aµ,Ncµ,N⟩ℓ2 = ⟨u∗µ,N , Aµuµ,N⟩ ̸= 0 (see Lemma 2.3.2), and we
define

kµ,N =
⟨c∗µ,N , Bµ,Ncµ,N⟩ℓ2
⟨c∗µ,N , Aµ,Ncµ,N⟩ℓ2

=
⟨u∗µ,N , Bµuµ,N⟩
⟨u∗µ,N , Aµuµ,N⟩

. (3.8)

In practice, we use the inverse power method described in Algorithm 2 to solve (3.6)
and (3.7). If both algorithms converge, we refer to the outputs cµ,N and c∗µ,N as the right
and left eigenvectors of the reduced problem. If one of the sequences does not converge,
the reduced basis is enriched using the high-fidelity left and right eigenvectors for the
considered parameter value (see the construction of the reduced space in Section 3.3).
Note that the power methods applied to (3.6) and (3.7) (resp. to (3.1) and (3.2)) are
guaranteed to converge if Assumption 3.1.3 (resp. Assumption 2.3.1) is satisfied. In the
numerical examples presented in Chapter 4, we observe that both algorithms (for the right
and left reduced eigenvalue problems) indeed converge and that ⟨c∗µ,N , Aµ,Ncµ,N⟩ℓ2 ̸= 0 as
soon as the reduced space has a sufficiently large dimension (typically N ≥ 4 is sufficient
in the numerical results presented in Chapter 4).

3.2 The affine expansion and an efficient implemen-

tation of a posteriori error estimates

Before presenting the RB methodology, let us discuss some elements which allow an
efficient implementation of the procedure, by taking advantage of the decomposition of
the HF matrices along their parametric dependency. Indeed, we assume that P ⊂ RK ,
for some K ≥ 1, and that there exists two non-zero integers PA and QB such that, for all
µ = (µ1, . . . , µK) ∈ P , the matrices Aµ and Bµ write

Aµ =
K∑
k=1

PA∑
p=1

fp(µk)Ak,p +Mbc, (3.9)

Bµ =
K∑
k=1

QB∑
q=1

gq(µk)Bk,q, (3.10)

where, for all 1 ≤ k ≤ K, 1 ≤ p ≤ PA and 1 ≤ q ≤ QB, fp(µk) ∈ R and gq(µk) ∈ R, and
Ak,p ∈ RN×N , Bk,q ∈ RN×N and Mbc ∈ RN×N are µ-independent matrices.

Remark 3.2.1. In neutronics applications, such as the ones presented in Chapter 4,
the dimension K of the parameter space P stems from a partition of the core R; the
vectors f and g contain the parameter-dependent coefficients of the equations, i.e. the
coefficients D1,Σ11,Σ12, D2,Σ21,Σ22, χ1, χ2,Σ1

f ,Σ
2
f (PA = 6, QB = 4) for the two-group

neutron diffusion equations (see Section 1.4.2); Mbc comes from the discretization of the
boundary conditions, and therefore does not depend on µ.

As a consequence, the parameter-independent matrices Ak,p, Bk,q (1 ≤ k ≤ K, 1 ≤
p ≤ PA, 1 ≤ q ≤ QB) and Mbc can be pre-computed in order to efficiently assemble the
Galerkin projection of the matrices Aµ and Bµ online, and the residuals RN(µ) and R

∗
N(µ)

defined in (2.17) and (2.18). Indeed, thanks to the affine decomposition of the matrices
Aµ and Bµ above, the residual norm is easily computable online (see Section 3.3), as it
only requires algebraic operations over vectors of the size of the (small) reduced basis,
which is N .
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3.3 The offline stage: the greedy algorithm

Let us start with the offline stage of the RB procedure, which is dedicated to the con-
struction of the reduced space. In this section, the parametric exploration is restricted
to the parametric subspace denoted by Ptrain ⊂ P , namely the training set. In practice,
the reduced space V used in the reduced-order model described in Section 3.1 is built
following the standard procedure of the reduced basis technique [93]. We first initialize
the reduced space V0 as a very low-dimensional space spanned by a few snapshots of the
direct and adjoint HF problems. A sequence of parameter values (µn)n≥1 is then selected
from a greedy procedure [25] described below, from which nested reduced spaces (Vn)n≥1

are built as follows:

∀n ≥ 1, Vn = V0 + Span
{
uµ1 , . . . , uµn , u

∗
µ1
, . . . , u∗µn

}
. (3.11)

In the following, we denote by Nn := dimVn and by uµ,Nn , u
∗
µ,Nn

, λµ,Nn and kµ,Nn the
solutions of the RB problems described in the Section 3.1, for V = Vn.

The choice made in (3.11) to enrich the sequence of reduced spaces with both the
eigenvector of the direct and of the adjoint HF problem stems from the a priori error
analysis of Galerkin approximations of generalized eigenvalue problems (see Section 2.1).
Hence, it appears natural when it comes to the design of a greedy procedure in the present
reduced basis context to enrich the Galerkin approximation space with snapshots of both
direct and adjoint eigenvalue problems, in order to at least get the reference solution for
the reduced problem when considering the parameter µ ∈ Ptrain.

In the greedy procedure, the parameters (µn)≥1 need to be selected satisfying some
specific criteria. In practice, we select snapshots over Ptrain maximizing some error sur-
rogate ∆Nn for the error between solutions of the HF model and the RB model, as is
described in Algorithm 1. In an ideal greedy procedure, we would choose the exact error
as the error surrogate ∆Nn . In that case, two possible choices for the definition of ∆Nn

would be:

a) either the eigenvalue error: ∆Nn(µ) := ekNn
(µ)

b) or the eigenvector errors: ∆Nn(µ) := euNn
(µ) + eu

∗
Nn

(µ)

with

euNn
(µ) := ∥uµ − uµ,Nn∥, eu

∗

Nn
(µ) := ∥u∗µ − u∗µ,Nn

∥ and ekNn
(µ) := |kµ − kµ,Nn|.

However, these quantities are of course not available in general, so one has to resort
to a posteriori error estimates for an efficient greedy algorithm. Therefore, the strategies
developed in Chapter 2 allow to define an a posteriori error estimator ∆Nn(µ) in order to
obtain an estimation of the errors on the eigenvalues and the eigenvectors for any reduced
space V without having to compute the solutions of the HF eigenvalue problem.

3.3.1 Initialization of the reduced basis

The idea is to start with a very low-dimensional space V0 ⊂ RN such that

V0 = Span
{
uµ̂1 , . . . , uµ̂ns

, u∗µ̂1 , . . . , u
∗
µ̂ns

}
,

where {µ̂1, . . . , µ̂ns} ⊂ Ptrain, with ns ∈ N∗ small.
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Algorithm 1 Greedy Algorithm for building the reduced subspace

Input: Ptrain ⊂ P : training set of parameters, τ > 0 : error tolerance threshold,
V0 ⊂ RN : initial reduced space
N0 := dimV0
τ0 := max

µ∈Ptrain

∆N0(µ)

n := 0
while τn > τ do
µn+1 := argmax

µ∈Ptrain

∆Nn(µ)

Compute uµn+1 and u∗µn+1
.

Vn+1 := Vn + Span{uµn+1 , u
∗
µn+1
}

Nn+1 := dimVn+1

τn+1 := max
µ∈Ptrain

∆Nn+1(µ)

n := n+ 1
end while
Output: Reduced space V := Vn ⊂ RN

Remark 3.3.1. We may start the greedy iterative procedure with only one parameter, i.e.
with V0 = Span{uµ̂1 , u∗µ̂1}, µ̂1 ∈ Ptrain. However, we observe in practice that the greedy
algorithm may suffer from stability issues in the first steps of the procedure, which are
crucial, as the initial reduced space is not rich enough and thus does not ensure a good
enough convergence.

To do so, we apply a Singular Value Decomposition (SVD) [110] to the so-called matrix
of snapshots composed of left and right eigenvectors

S =
(
uµ̂1 |u∗µ̂1| · · · |uµ̂ns

|u∗µ̂ns

)
∈ RN×2ns ,

to obtain an X-orthonormal basis of V0, where X stands for the Gram matrix of size
N × N for the considered inner product ⟨·, ·⟩, e.g., X = I if ⟨·, ·⟩ denotes the Euclidean
inner product.

We compute the SVD of S̃ = X1/2S which writes

S = UΣZT ,

U =
(
ξ̃1| . . . |ξ̃N

)
∈ RN×N ,

Σ = diag
(
σ1, . . . , σmin(2ns,N )

)
,

Z =
(
ψ̃1| . . . |ψ̃2ns

)
∈ Rns×2ns ,

where the σi are the singular values of S̃, sorted in decreasing order, and U and Z are
two orthogonal matrices. We then choose

V0 = Span
{
X−1/2ξ̃1, . . . ,X−1/2ξ̃N0

}
,

with 1 ≤ N0 ≤ 2ns.

Finally, in order to get reliable and computable a posteriori estimates, as those de-
veloped in Chapter 2, which enable an efficient greedy algorithm, the prefactors in the
obtained upper bounds lead us to compute the HF solutions (uµ, u

∗
µ, kµ) to (3.1) and (3.2),

for µ ∈ Ppref , where Ppref ⊂ P is small enough not to penalize the cost of the offline stage,
and such that Ptrain ∩ Ppref = ∅.
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3.3.2 An iteration of the greedy algorithm: searching for the
next basis function

Let us assume that n iterations of the greedy algorithm have successfully been completed,
and let us denote by Vn the reduced space built so far. In this section, we detail the
procedure for one iteration, i.e. how to get an updated reduced space Vn+1 from Vn.
Let (ξ1, . . . , ξNn) be an orthonormal basis of Vn (for the inner product ⟨·, ·⟩), and let
Vn ∈ RN×Nn be the matrix containing the coordinates of the basis (ξ1, . . . , ξNn) in the
canonical basis of RN .

Step #1: Compute the parameter-independent matrices

We use the µ-affine expansion of the HF matrices Aµ and Bµ (see Section 3.2) in
order to prepare the computation of the RB matrices Aµ,Nn and Bµ,Nn , defined in (3.4)
and (3.5), as they also exhibit an affine decomposition along the parameter µ. Hence, for
all 1 ≤ k ≤ K, 1 ≤ p ≤ PA, 1 ≤ q ≤ QB, we compute the following reduced matrices of
dimension Nn ×Nn

ANn
k,p := V T

n Ak,pVn,

BNn
k,q := V T

n Bk,qVn,

and

MNn
bc := V T

n MbcVn.

Remark 3.3.2. In the case of the resolution of the G-group neutron diffusion equations
(see Section 1.4.2 for an introduction; Chapter 4 for applications), for k ∈ J1, KK, the
matrices Ak,p and Bk,q are local stiffness and mass matrices, and thus, each matrix Bk,q

corresponds to a certain matrix Ak,p. Even after projecting onto Vn, the same applies
to the matrices BNn

k,q . Therefore, we have to pre-compute K × G stiffness matrices and
K × G2 mass matrices, that is in total K × (G + G2) matrices independent of µ of size
Nn ×Nn.

Step #2: Prepare the computation of the residual norm

As discussed in Section 3.2, the residual norm can also be computed along an of-
fline/online strategy. To do so, we compute, for 1 ≤ k ≤ K, 1 ≤ p ≤ PA, 1 ≤ q ≤ QB,

ÂNn
k,p := Ak,pVn,

B̂Nn
k,q := Bk,qVn,

and

M̂Nn
bc :=MbcVn.

Then, we compute, for 1 ≤ k, l ≤ K, 1 ≤ p, p′ ≤ PA, 1 ≤ q, q′ ≤ QB, the following reduced
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matrices of dimension Nn ×Nn

DNn

k,l,p,p′ := (ÂNn
k,p)

TX−1ÂNn

l,p′

ENn
k,l,p,q := (ÂNn

k,p)
TX−1B̂Nn

l,q

FNn

k,l,q,q′ := (B̂Nn
k,q )

TX−1B̂Nn

l,q′

DNn
bc,k,p := (M̂Nn

bc )TX−1ÂNn
k,p

ENn
bc,k,q := (M̂Nn

bc )TX−1B̂Nn
k,q

FNn
bc := (M̂Nn

bc )TX−1M̂Nn
bc ,

where X stands for the Gram matrix of size N ×N for the considered inner product ⟨·, ·⟩
(X = I if ⟨·, ·⟩ denotes the Euclidean inner product).

Remark 3.3.3. As the reduced spaces (Vn)n≥1 are nested, we do not need to compute from
scratch the reduced matrices above at each step of the algorithm. Indeed, in the case where
the relation Vn = (Vn−1 | ξn | ξ∗n) (i.e. Vn is the addition of the two column basis vectors ξn
and ξ∗n to the previous reduced matrix Vn−1) holds, the computation of one matrix DNn

k,l,p,p′

is carried out as follows

v1,k,p := Ak,p [ξn, ξ
∗
n]

v2,k,p := ÂNn
k,p

w1,k,p := X−1v1,k,p

w2,k,p := X−1v2,k,p

DNn

k,l,p,p′ =

(
D
Nn−1

k,l,p,p′ vT2,k,pw1,k,p′

vT1,k,pw2,k,p′ vT1,k,pw1,k,p′

)
,

and we update
Â
Nn+1

k,p ← [v2,k,p, v1,k,p] .

The computation of the matrices ENn
k,l,p,q, F

Nn

k,l,q,q′ , D
Nn
bc,k,p, E

Nn
bc,k,q, F

Nn
bc then follow similar re-

currence relations.

Then, the following steps #3 and #4 are carried out for all µ ∈ Ptrain.

Step #3: Solve the RB problem

From the parameter-independent matrices computed in Step #1, we first assemble on-
line the reduced matrices Aµ,Nn and Bµ,Nn of sizeNn×Nn as in (3.4) and (3.5) respectively.
For µ ∈ Ptrain, the computation of these reduced matrices then reads as

Aµ,Nn =
K∑
k=1

PA∑
p=1

fp(µk)A
Nn
k,p +MNn

bc , (3.12)

Bµ,Nn =
K∑
k=1

QB∑
q=1

gq(µk)B
Nn
k,q . (3.13)

We then solve the RB problems (3.6) and (3.7), using Algorithm 2. Here, two cases
arise:
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• if both iterative procedures converge, then we get the reduced outputs cµ,Nn , c
∗
µ,Nn

,
kµ,Nn , and we check that the relation (3.8) holds,

kµ,Nn =
⟨c∗µ,N , Bµ,Ncµ,N⟩ℓ2
⟨c∗µ,N , Aµ,Ncµ,N⟩ℓ2

;

• if one of the iterative procedures does not converge, then we break the iteration,
and we choose µn+1 = µ.

Step #4: Compute the residual norm

Let µ ∈ Ptrain. We use the independent-parameter matrices computed in Step #2 to
assemble online the residual norm as

∥RNn(µ)∥ := ∥ (Bµ − kµ,NnAµ)uµ,Nn∥ =
√
cTµ,Nn

Gµ,Nncµ,Nn ,

with

Gµ,Nn = |kµ,Nn|2
(

K∑
k,l=1

PA∑
p,p′=1

fp(µk)fp′(µl)D
Nn

k,l,p,p′ +
K∑
k=1

PA∑
p=1

fp(µk)
(
DNn
bc,k,p + (DNn

bc,k,p)
T
)
+ FNn

bc

)

− kµ,Nn

(
K∑

k,l=1

PA∑
p=1

QB∑
q=1

fp(µk)gq(µl)
(
ENn
k,l,p,q + (ENn

k,l,p,q)
T
))

+
K∑
k=1

QB∑
q=1

gq(µk)
(
ENn
bc,k,q + (ENn

bc,k,q)
T
)
+

K∑
k,l=1

QB∑
q,q′=1

gq(µk)gq′(µl)F
Nn

k,l,q,q′ .

A similar construction is readily possible for ∥R∗
Nn

(µ)∥.
In practice, the residual norm ∥RNn(µ)∥ is computed as follows. Define:

r1 =
K∑

k,l=1

QB∑
q,q′=1

gq(µk)gq′(µl)c
T
µ,Nn

FNn

k,l,q,q′cµ,Nn ,

r2 =
K∑

k,l=1

PA∑
p=1

QB∑
q=1

fp(µk)gq(µl)c
T
µ,Nn

ENn
k,l,p,qcµ,Nn ,

r3 =
K∑

k,l=1

PA∑
p,p′=1

fp(µk)fp′(µl)c
T
µ,Nn

DNn

k,l,p,p′cµ,Nn ,

r4 =
K∑
k=1

QB∑
q=1

gq(µk)c
T
µ,Nn

ENn
bc,k,qcµ,Nn ,

r5 =
K∑
k=1

PA∑
p=1

fp(µk)c
T
µ,Nn

DNn
bc,k,pcµ,Nn ,

r6 = cTµ,Nn
(FNn

bc )T cµ,Nn .

We then have

∥RNn(µ)∥2 = r1 − 2× (r2 + r4)× kµ,Nn + (r3 + 2r5 + r6)× |kµ,Nn|2. (3.14)
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Remark 3.3.4. Note that some rounding errors may occur while assembling (3.14), be-
cause of the large number of terms in the sum (there are K2(P 2

A+Q
2
B+PAQB)+K(PA+

QB) + 1 inner products of size Nn × Nn). In that case, we may get ∥RNn(µ)∥2 < 0, in
which case we set ∥RNn(µ)∥ = 0.

Remark 3.3.5. In the case of the resolution of the G-group neutron diffusion equations
(cf. Remark 3.3.2), we need to compute a total of K2(G + G2)2 +K(G + G2) + 1 inner
products of size Nn ×Nn.

We may also use the quantity defined in (2.29) as

ηkNn
(µ) :=

∥RNn(µ)∥∥R∗
Nn

(µ)∥∣∣⟨c∗Nn
, Aµ,NncNn⟩

∣∣ . (3.15)

Step #5: Compute the a posteriori error estimate

We compute the a posteriori error estimate ∆Nn using the residual norm computed
in the previous step, as well as the prefactor estimations (see Section 2.4.3) from the
pre-computed HF solutions in Section 3.3.1. We first compute, for all µ ∈ Ppref , the

efficiency ratios defined in (2.43), in order to get practical prefactors C
k

Nn
, C

u

Nn
and C

u∗

Nn

as in (2.45). Then, two possible choices for ∆Nn are:

a) ∆Nn(µ) := ∆k
Nn

(µ)

b) ∆Nn(µ) := ∆u
Nn

(µ) + ∆u∗
Nn

(µ)

with

∆k
Nn

(µ) = C
k

Nn
ηkNn

(µ), (3.16)

∆u
Nn

(µ) = C
u

Nn
∥RNn(µ)∥, (3.17)

∆u∗

Nn
(µ) = C

u∗

Nn
∥R∗

Nn
(µ)∥. (3.18)

(3.19)

Step #6: Select the next basis function

We then select the parameter µn+1 ∈ Ptrain that maximizes the error estimate ∆Nn :

µn+1 = argmax
µ∈Ptrain

∆Nn(µ).

As discussed in Step #3, there might exist a parameter µ ∈ Ptrain which yields non-
convergence of the reduced problem. Also, it may be possible that various parameters in
Ptrain realize the maximum value of ∆Nn . In that case, the parameter µn+1 is chosen by
the following order of priority:

1. if the reduced problem does not converge for a parameter µ, we choose µn+1 = µ;

2. otherwise, if for example, µ1 and µ2 both realize the maximum value of the error
surrogate ∆Nn , there is no preferred choice, and we either consider µn+1 = µ1, or
µn+1 = µ2.
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Step #7: Enrich the reduced space

To do so, we need to compute the HF solutions uµn+1 , u
∗
µn+1

and kµn+1 by solving the
HF problems (3.1) and (3.2), for µ = µn+1. Then, the idea is to orthogonalize the vectors
uµn+1 and u∗µn+1

to the basis (ξ1, . . . , ξNn) of Vn. We then apply a Gram–Schmidt process
and we compute the quantities

ΠGS := uµn+1 − VnV T
n Xuµn+1 ,

Π∗
GS := u∗µn+1

− VnV T
n Xu∗µn+1

.

Let us denote by εGS a very small tolerance parameter for the Gram–Schmidt or-
thogonalization procedure. If ∥ΠGS∥ < εGS (resp. ∥Π∗

GS∥ < εGS), we do not take the
contribution of uµn+1 (resp. u∗µn+1

) into account in the next reduced space Vn+1. Other-
wise, we compute

ξn+1 :=
uµn+1 − VnV T

n Xuµn+1∥∥uµn+1 − VnV T
n Xuµn+1

∥∥ ,
ξ∗n+1 :=

u∗µn+1
− VnV T

n Xu∗µn+1∥∥u∗µn+1
− VnV T

n Xu∗µn+1

∥∥ ,
and we build

Vn+1 =
(
Vn | ξn+1 | ξ∗n+1

)
,

so that
Vn+1 = Vn + Span{uµn+1 , u

∗
µn+1
}.

3.3.3 The stopping criterion

Let us consider a given tolerance threshold τ > 0. The idea is to let the greedy iterative
procedure keep running as long as the maximum error (on the eigenvalue and/or the
eigenvectors, depending on the most relevant quantity of interest) does not overcome
τ . Therefore, the choice of the error surrogate ∆N is crucial regarding the quality of
the reduced space V as an output of the algorithm, in the case it is endowed with such a
stopping criterion. Note that we could just choose a given maximum number of iterations,
denoted by nmax and then expect to get the reduced space Vnmax , but without having any
idea on the quality of approximation brought by the space Vnmax .

Let us consider the space Vn built after n ≥ 1 iterations of the greedy algorithm, with
Nn = dimVn. A criterion for the quality of the approximation brought by Vn is to verify
that

τn := max
µ∈Ptrain

∆Nn(µ) ≤ τ.

Otherwise, we search for a next parameter µn+1 in order to enrich the reduced space, until
the criterion is satisfied.

3.4 The online stage: solving the reduced problem

Once the greedy algorithm generates a reduced space V , the associated reduced-order
model can be tested as we assemble and solve, in an online stage, the reduced prob-
lems (3.6) and (3.7), for all µ ∈ Ptest, where Ptest ⊂ P is a parameter subspace, namely
the test set, given as an input by the user at the beginning of the procedure, and which
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verifies Ptest ∩ Ptrain = ∅.

Let µ ∈ Ptest, and N = dimV . First, from the matrices ANk,p, B
N
k,q, M

N
bc computed of-

fline, we compute the reduced matrices Aµ,N and Bµ,N of size N×N as in (3.12) and (3.13)
respectively, with complexity of O(N2). Then, we solve Problems (3.6) and (3.7) using
Algorithm 2, as described below.

Algorithm 2 Inverse power method - solve Au = λBu

Input: A ∈ RM×M , B ∈ RM×M , τu: acceptance criterion for the eigenvector, τλ:
acceptance criterion for the eigenvalue
Choose a random positive unit vector u0 and k0 ̸= 0
Set i = 0 and STOP=false
while (STOP==false) do
Solve Avi+1 = Bui

ui+1 =
vi+1

∥vi+1∥
ki+1 = ⟨vi+1, ui⟩

STOP=

[
∥ui+1 − ui∥
∥ui∥

≤ τu and
|ki+1 − ki|
|ki|

≤ τλ

]
i = i+ 1

end while
Output: (u, λ) =

(
ui,

1
ki

)
We then compute the residual norms ∥RN(µ)∥, ∥RN(µ)∥ and the quantity ηkN(µ),

respectively defined in (2.17), (2.18) and (2.29), as in Steps #2 and #4 of the offline
stage (see Section 3.3).

***

Thanks to the practical a posteriori error estimates developed in Chapter 2, we im-
plemented a reduced basis routine for the resolution of a generalized non-symmetric and
parameter-dependent eigenvalue problem. Based on the greedy algorithm, and under the
assumption that the matrices of the high-fidelity problem exhibit an affine decomposition
along the parameter, it enables an efficient implementation of the reduced basis method
which provides a reduced model whose computational cost competes with other reduced
basis methods, such as Proper Orthogonal Decomposition (POD) methods. The use of
a posteriori error estimates also allows a certification of the obtained reduced model and
provides an adaptative approach in the construction of the RB basis.
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Chapter 4

Numerical experiments with a
greedy reduced basis approach for
the resolution of affine-parametrized
two-group neutron diffusion
problems on mock-up codes

The aim of this chapter is to illustrate the behavior of the proposed reduced basis method,
detailed in the last chapter, on examples arising from neutronics applications. We consider
the two-group neutron diffusion equations, defined in (1.41), and under the same assump-
tions presented in Section 1.4.2. We focus our study on three test cases. In Section 4.1, we
propose a first application of the reduced basis method to a two-dimensional simplistic core
made of four material regions, endowed with non-physical properties and cross-sections.
It enables a fast computational analysis of the RB method via prefactor-free a posteri-
ori error estimates. In Section 4.2, a more realistic rectangular core example, namely
the Minicore, challenges the RB method and uses practical a posteriori error estimates.
Finally, in Section 4.3, we highlight the importance of considering the adjoint problem
in the construction of the reduced basis with quick calculations on a three-dimensional
Pressurized Water Reactor (PWR) benchmark.

For the two first examples, calculations and implementations are carried out on a
mock-up code, written in Python 3.6. The high-fidelity discretization along the space
variable is generated using the methods from the open-source FEniCS Project. For the
third and last example, we use a POD code written in MATLAB [57], based on the finite
element library deal.II [8], and the GMSH mesh generator [58].

In the following numerical tests, the domain R is chosen as [0, L]2 for some L > 0.
We introduce a partition (Rk)

K
k=1 of the domain R and the parameter functions in the

definition of Problem (1.41) are assumed to be piecewise constant on each Pk for 1 ≤
k ≤ K. The parameter µ is thus a K-dimensional vector of either scalars or vectors
(containing macro-parameters such as the material, the burn up, the fuel temperature,
or the boron concentration for example), which allows to set the values of the coefficients
D1,Σ11,Σ12, D2,Σ21,Σ22, χ1, χ2,Σ1

f ,Σ
2
f on the domain Rk, for each 1 ≤ k ≤ K. Note

that for all µ ∈ P , the matrices Aµ and Bµ admit an affine decomposition as in (3.9)
and (3.10).

The eigenvalue solver, for both high-fidelity and reduced-order models, is selected as
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the inverse power method given in Algorithm 2. In our experiments, we consider relative
error tolerances set to τu = 10−6 and τλ = 10−7.

In order to ensure a positive high-fidelity flux, we assume the positivity conditions

N∑
j=1

ujµ ≥ 0,
N∑
j=1

u∗,jµ ≥ 0.

Then, to define properly the reduced flux, we choose

⟨uµ, Bµuµ,N⟩ ≥ 0,

⟨u∗µ, Bµu
∗
µ,N⟩ ≥ 0,

with vectors uµ, u
∗
µ, uµ,N , u

∗
µ,N normalized with respect to the matrix Bµ, such that

⟨uµ, Bµuµ⟩ = ⟨u∗µ, Bµu
∗
µ⟩ = 1,

⟨uµ,N , Bµuµ,N⟩ = ⟨u∗µ,N , Bµu
∗
µ,N⟩ = 1.

Let us introduce the following notations

ekN(µ) = |kµ − kµ,N | , ek,relN (µ) =
|kµ − kµ,N |
|kµ|

,

euN(µ) = ∥uµ − uµ,N∥ℓ2 , eu,relN (µ) =
∥uµ − uµ,N∥ℓ2
∥uµ∥ℓ2

, eu,relN,L2(µ) =
∥uµ − uµ,N∥L2

∥uµ∥L2

,

eu
∗

N (µ) = ∥u∗µ − u∗µ,N∥ℓ2 ,

where the ℓ2 norm is the Euclidean norm, and L2 refers to the L2 functional norm applied
to the functions in the space VN built from the vectors in RN through (1.48). Moreover, we
denote by tHF and tRB the mean computational times for one run (for a given parameter)
of the high-fidelity and reduced solvers respectively.

4.1 The toy problem

The reduced basis method is first applied to a simple test case where L = 60 (we use here
reduced units) modeled with N = 2 × 841 degrees of freedom along K = 4 subdomains.
Figure 4.1 shows the mesh used for the test case as well as the decomposition of R into
four subdomains. Here, we set Bµ = I for all µ ∈ P .

The training and test sets Ptrain and Ptest are constructed using the following random
sampling scheme: in each subdomain Rk, for 1 ≤ k ≤ K, the values of the coefficients
are independently distributed according to the following laws:

• Σi→j
s,0 : uniform law on [0, 0.15] , 1 ≤ i, j ≤ 2;

• Σ1
t and Σ2

t : uniform law on [2(Σ1→2
s,0 + Σ2→1

s,0 ), 0.7];

• Di =
1

3Σ1
t

, i = 1, 2;

• χiνΣ
j
f = δij, 1 ≤ i, j ≤ 2.
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Figure 4.1: Domain of calculation for the two-group toy example with its associated
mesh

The coefficients are chosen so that the coercivity of Problems (1.44) and (1.45) are
ensured. The parametric spaces Ptrain and Ptest are selected following the random sampling
procedure described above so that

#Ptrain = 300

#Ptest = 50

Ptrain ∩ Ptest = ∅.

In the offline stage, the greedy algorithm is performed using the a posteriori estimator

∆N(µ) = ηkN(µ)

defined in (2.29) for all µ ∈ P (in other words, we choose here C
k

N(µ) = 1 for all µ,
following the notation (2.31)).

4.1.1 Convergence analysis and computational cost of the RB
method

The left part of Figure 4.2 depicts the fast convergence of the reduced basis method with
respect to the size of the reduced space. The relative errors on the eigenfunctions eu,relN (µ)
and eu,relN,L2(µ) follow the same trend. The relative error ek,relN (µ) between the high-fidelity
solution and the reduced basis solution on the multiplication factor kµ reaches the order of
10−5 for N = 100. Moreover, this error decreases by 4 orders of magnitude from N = 10
to N = 100. As expected, the error on the eigenvalue decreases twice faster than the error
on the eigenvector. Moreover, we checked that the value of the a posterior error estimator
ηkN(µ) stays below 10−12 for the selected parameters, as expected.

In terms of computational time, the right part of Figure 4.2 shows that, in the chosen
setting, while the high-fidelity solution is computed in about 5.8s, the reduced solution
is computed within up to 0.09s, which is overall 60 up to 115 times faster than the high-
fidelity solver to obtain a relative error of order 10−4 to 10−5 on the eigenvalue.
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Figure 4.2: (Left) Mean relative errors over Ptest; (Right) Relative time saving factor
tHF

tRB

as a function of the dimension of the reduced space N .

4.1.2 Certification of the RB method via prefactor-free a pos-
teriori error estimates

It is also interesting to look at the behavior of the implemented a posteriori error esti-
mators. The relation between the error ekN(µ) and the estimator ∆N(µ) = ηkN(µ) we used
here can be first analyzed by looking at the prefactor Ck

N(µ), defined in (2.30). The value
of Ck

N(µ) on the test set Ptest is presented in Figure 4.3. In that particular case, we fall
into the framework developed in Section 2.4.2. Indeed, when we compute the perturbation
magnitude εµ as

εµ =

∥∥∥Aµ−AT
µ

2

∥∥∥∥∥∥Aµ+AT
µ

2

∥∥∥ , (4.1)

we observe that εµ varies between 3×10−7 and 3×10−6 for µ ∈ Ptest. Therefore, we expect

Ck,sym
N (µ) defined in (2.35) to be a a good approximation of Ck

N(µ). Unfortunately, this
is not always the case as we observe on the left plot of Figure 4.3. Actually, in the cases
where the prefactors differ a lot, we observe that condition (2.42) in Proposition (2.4.8)
is not satisfied, which explains why the perturbative expansions may not be sharp.

Figure 4.4 compares the behavior of the simple a posteriori error estimators ∥RN(µ)∥,
∥R∗

N(µ)∥ and ηkN(µ) defined in (2.29), with the corresponding errors euN(µ), e
u∗
N (µ), and

ekN(µ) over the dimension of the reduced space. The plots of the true errors and the
corresponding estimators are parallel for N ≥ 20, illustrating the similar convergence
rate for the computed a posteriori estimators as the associated real errors. Actually, the
quantity ηkN(µ) seems to be a reliable and efficient a posteriori estimate of the true error
up to roughly a constant multiplicative factor over a large range of parameter values, as
Figure 4.3 illustrates.

In terms of absolute value, for N = 100, the estimator ηkN(µ) for the multiplication
factor is about 10−2 while the true error is approximately 10−4: this illustrates the im-

portance of introducing prefactors C
k

N(µ), C
u

N(µ) and C
u∗

N (µ) to estimate the true errors,
see (2.31), and in particular to stop the greedy procedure once the real error is below a
given threshold (see Section 3.3.3). This will be discussed in the next test case below.
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Figure 4.3: (Left) Variations of the prefactor Ck
N(µ) and C

k,sym
N (µ) over Ptest for

N = 100. (Right) Parametric variations of the real eigenvalue error ekN(µ)
(in blue) and the associated a posteriori error estimator ηkN(µ) (in orange)

over Ptest, for N = 100.

Figure 4.4: Mean values for errors and associated a posteriori error estimators over
Ptest. (Left) e

u
N and ∥RN∥; (Middle) eu

∗
N and ∥R∗

N∥; (Right) ekN and ηkN .

4.2 The Minicore problem

We now provide a second, more challenging, test case calledMinicore. The core is modeled
as a square of side length L = 107.52 cm. As Figure 4.5 shows, it is constructed out ofK =
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25 assemblies (1 fuel assembly composed of a mix of uranium dioxyde and Gadolinium
oxyde denoted UGD12 + 8 fuel assemblies composed of uranium dioxyde labeled UO2 +
16 radial reflector assemblies named REFR), each being 21.504 cm long. It is discretized
into N = 2602 degrees of freedom. Here, Bµ ̸= I, and the Dirichlet boundary condition
in Problem (1.41) is replaced by a Robin-type vacuum boundary condition

Di(r, µ)∇ϕi(r, µ).n⃗+
1

2
ϕi(r, µ) = 0 on ∂R, 1 ≤ i ≤ 2,

where n⃗ is the outward unit normal vector to ∂R.

UGD12
UO2

Reflector

Vacuum

Vacuum

Vacuum

Vacuum

Figure 4.5: Median cross-sectional view of the Minicore

In this test case, the parameter µ contains five values which determine all the physical
parameters entering (1.41). More precisely, by recalling the partition (R)Kk=1 of the domain
R, the parameter set P is the 5K dimensional vector space

P =
{
µ = (µ1, . . . , µK) , ∀1 ≤ k ≤ K, µk ∈ R5

}
,

such that µk contains the following information attached to the subdomain R:
• the nature of the material in Rk;

• the burnup value, in MWd/ton;

• the fuel temperature, in K;

• the boron concentration, in particle per million (ppm);

• the moderator density.

The parametric sets Ptrain and Ptest are randomly generated in P such that
#Ptrain = 1000

#Ptest = 50

Ptrain ∩ Ptest = ∅.

Regarding the offline stage, in order to avoid any stability issue, a POD procedure
over a reduced space of dimension 10 (generated from 5 direct plus 5 adjoint eigenvectors
snapshots) is used to initialize the greedy procedure (see Section 3.3.1). Then, the greedy
procedure is performed using the a posteriori estimator ∥RN∥+ ∥R∗

N∥, as the quantity of
interest here is the two-group flux (ϕ1, ϕ2) as well as its adjoint (ϕ∗,1, ϕ∗,2).
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4.2.1 Convergence analysis and computational cost of the RB
method

The left part of Figure 4.6 depicts mean relative errors ek,relN , eu,relN,L2 , and e
u,rel
N as a function

of the dimension of the reduced basis. The relative error on the multiplication factor is of
the order of 10−5 for N = 80. Typically, as the left part of Figure 4.7 shows, for a certain
µ0 ∈ P and for N = 100, the maximum point-wise error on the associated first-group flux
does not exceed 3.2 × 10−4; as for the second group, the right part of Figure 4.7 shows
that the flux error is locally gathered in an area of low flux, quite far from the hot spot.

Figure 4.6: (Left) Mean relative errors over Ptest; (Right) Relative time saving factor
tHF

tRB

as a function of the dimension of the reduced space N .

Figure 4.7: (Left) Plots of the first energy group of high-fidelity (upper right) and
reduced (lower right) solutions uµ0 and uµ0,N , and their error (left)

|uµ0 − uµ0,N |, for N = 100 and for µ0 ∈ Ptest.
(Right) Plots of the second energy group of high-fidelity (upper right) and

reduced (lower right) solutions uµ0 and uµ0,N , and their error (left)
|uµ0 − uµ0,N |, for N = 100 and for µ0 ∈ Ptest

Importantly, the reduced method enables the solution to be computed faster than
the high-fidelity approach, which typically takes about 4.56 s to be computed for the
present test case. The right part of Figure 4.6 illustrates that the relative saving time
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factor is a decreasing function of the dimension of the reduced space N , and exhibits
a large computational gain compared to the high-fidelity solver. It is observed that for
a relative error on keff ranging from 10−4 to 10−6, the reduced solution can be obtained
with a computational time from 50 up to 300 times smaller than the high-fidelity solution.

Finally, we gather in Table 4.1 the measured computational times for several quantities
of interest and main stages obtained using Python. Overall, the reduced basis method
is very useful when the number p of solutions that must be computed is very large, such
as in an optimization process. Roughly, if toffline denotes the computational time of the
offline stage, tHF the high-fidelity solver computational time, and tRB the reduced solver
computational time, the reduced basis method becomes relevant when

toffline + p× tRB < p× tHF,

that is

p >
toffline

tHF − tRB

.

For this test case, this corresponds to p > 1743 parameter values.

Mean computational time
Offline stage (toffline) ≈ 11 hours

Assembling residual norm (offline part) 49.19 s
Assembling residual norm (online part) 5.03 s
Solving the high-fidelity problem (tHF) 14.71 s
Solving the reduced problem (tRB) 0.44 s

Table 4.1: Mean computational times for the Efficient Greedy reduced basis method
applied to the 2D two-group Minicore in Python, for N = 100

4.2.2 Certification of the RB method via practical a posteriori
error estimates

We now study the certification of the method performed by the a posteriori error esti-
mator. Figure 4.8 shows that, although the residuals display similar values as those for
the real eigenvector errors, for the eigenvalue, the order of magnitude of the a posteriori
estimator is roughly 10 times larger than the real error, for N ≥ 30. Despite the fairly
good parametric variations of the estimate, illustrated in Figure 4.9, the gap between real
error and estimator must be corrected in order to implement a relevant stopping criterion
in the greedy algorithm. This points out a certain variation of the prefactor Ck

N(µ) over
the dimension of the reduced space N . In order to bring a correction to the model, the
practical efficiency of the estimator proposed in Section 2.4.3 is computed. The right plot
of Figure 4.9 shows that the efficiency EkN defined in (2.43) levels off for N = 100 at the
order of magnitude of 10−1, and does not depend too much on the parameter µ. Therefore,
we propose to apply the procedure outlined in Section 2.4.3 to build a posteriori error

estimators of the form (2.46), with constants C
k

N , C
u

N and C
u∗

N approximated by (2.45).
This requires to choose a set Ppref, that we randomly chose in P such that{

#Ppref = 10

Ppref ∩ Ptrain ∩ Ptest = ∅.
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As a result of this procedure, Figure 4.10 shows that the order of magnitude of the
modified estimator corresponds to the one of the real error, showing that the new a
posteriori estimator can be used as an optimal stopping indicator.

Figure 4.8: Mean values for errors and associated a posteriori error estimators over
Ptest. (Left) e

u
N and ∥RN∥; (Middle) eu

∗
N and ∥R∗

N∥; (Right) ekN and ηkN .

Figure 4.9: (Left) Parametric variations of the real eigenvalue error ekN(µ) (in blue)
and its associated a posteriori error estimator ηkN(µ) (in orange) over Ptest,

for N = 100; (Right) Parametric variations of the practical efficiency
EkN(µ) over Ptest, for N = 100.
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Figure 4.10: Maximum values for errors and associated a posteriori error estimators
over Ptest. Upper left: e

u
N , ∥RN∥ and ∆u

N ; upper right: e
u∗
N , ∥R∗

N∥ and
∆u∗
N ; lower: ekN , η

k
N and ∆k

N .
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4.3 A 3D PWR core with homogenized fuel assem-

blies

Many thanks are addressed to Prof. J. Ragusa for providing this test case as well as the
associated codes.

We consider a quarter of a PWR core in the three dimensions, that corresponds to
benchmark BSS-11 published in the Argonne (ANL) Benchmark Problem Book [81]. The
geometry of the core is depicted in Figure 4.11.

Figure 4.11: Cross-sectional views of BSS-11.
Source: [57]

The core is made of five material regions and it is endowed with reflective boundary
conditions along the symmetry planes, and a Marshak-type vacuum boundary condition
elsewhere at the border of the core. The high-fidelity discretization yields N = 2× 36632
degrees of freedom, and it is performed by the RESOLVED (Reduced Eigenvalue SOLVEr
for Diffusion) code [57]. The parametrization of the core lies in a ± 20% variation of the
cross-sections values given in [81].

The training space Ptrain = {µ1, . . . , µN} consists of N = 10 parameter sets, generated
via Latin Hypercube Sampling (LHS). We set here Ptest = Ptrain as sanity check. The
goal here is to compare two ROM approaches: a first approach, that was notably tested
in [57], named the ”Direct” method, which consists in the reduced space

V1 = Span{uµ1 , . . . , uµN},

and a second method, which takes over our strategy to consider both direct and adjoint
problems in the construction of the reduced space, and therefore named ”Direct+Adjoint”,
which then consists in the reduced space

V2 = Span{uµ1 , u∗µ1 . . . , uµN , u
∗
µN
}.
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Each reduced space comes from a Singular Value Decomposition (SVD) of the asso-
ciated family of eigenvectors. We gather in Table 4.2 the different errors on the effective
multiplication factor for both ”Direct” and ”Direct+Adjoint” reduced-basis methods.

ekN (in pcm) V1 V2
µ1 9463.78 2.66454× 10−10

µ2 7.10543× 10−10 4.21885× 10−10

µ3 6.66134× 10−10 5.77316× 10−10

µ4 18946.9 3.35132× 10−10

µ5 6126.34 5.1561× 10−10

µ6 3.51501× 10−5 4.00065× 10−5

µ7 19194.3 8.17124× 10−8

µ8 1.75082× 10−8 7.21645× 10−9

µ9 9773.44 4.59022× 10−7

µ10 2.66454× 10−10 1.77636× 10−10

Table 4.2: Eigenvalue errors for both ”Direct” (V1) and ”Direct+Adjoint” (V2)
reduced order models

It is obvious that the ”Direct+Adjoint” approach yields better results, as the eigen-
value error remains below 10−9 overall, while the naive ”Direct” approach yields spurious
eigenvalues for half of the parameters, with gigantic errors of the order of magnitude of
10−2, or even 10−1, when errors close to zero are expected. This example is the proof that
the a priori error analysis introduced at the beginning of Chapter 2 is a key element in
our study.

***

The three test cases presented in this chapter illustrate the ability of the newly pro-
posed RB method to provide an inexpensive, reliable and certified reduced-order model
for the neutron diffusion equations. The two first test cases show that the proposed RB
model is able to give the k-effective of the HF model at the order of the pcm (1 pcm
= 10−5), within a computational time of the order of the millisecond, while it confirmed
that the heuristic approach in the development of reliable a posteriori error estimates
yields acceptable error surrogates for this problem. At last, the POD approach for the
PWR benchmark illustrates the necessity of including the contribution of the adjoint
problem in the RB model, in order to get a reliable reduced-order model.
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Chapter 5

Towards an application of reduced
basis methods to core computation
in APOLLO3®

In this chapter, we are interested in the parameterized neutron diffusion equation, when
it is solved multiple times for different values of the parameters, e.g. in optimization
problems. This is often called a ”multi-query context”. Let us focus on the multigroup
approximation over an energy range [Emin, Emax] = [EG, EG−1] ∪ . . . ∪ [E1, E0], where G
stands for the given number of neutron energy groups. Given a parameter µ, the steady-
state neutron diffusion equation [48, Chapter 7] (see Section 1.4.2) seeks the multigroup
neutron scalar flux ϕµ =

(
ϕ1
µ, . . . , ϕ

G
µ

)
associated with the multiplication factor keff,µ (the

largest eigenvalue in modulus) inside the nuclear reactor core R such that

Lgdiff,µϕ
g
µ −Hg

diff,µϕµ =
1

keff,µ
Fgdiff,µϕµ, ∀g = {1, . . . , G}, in R, (5.1)

and vacuum boundary conditions (as the ones used in Section 4.2) on ∂R where R is a
bounded and open subset of R3. The advection operator Lgdiff,µ, the scattering operator
Hg

diff,µ and the fission operator Fgdiff,µ are defined by

• Lgdiff,µϕgµ = −div
(
Dg
µ∇ϕgµ

)
+ Σg

t,µϕ
g
µ;

• Hg
diff,µϕµ =

G∑
g′=1

Hg′→g
µ ϕg

′

µ , where Hg′→g
µ ϕg

′
µ := Σg′→g

s,0,µ ϕ
g′
µ ;

• Fgdiff,µϕµ =
G∑

g′=1

Fg′,gµ ϕg
′

µ , where Fg′,gµ ϕg
′
µ := χgµ(νΣf )

g′
µ ϕ

g′
µ ;

where Dg
µ, Σ

g
t,µ, χ

g
µ, ν

g
µ and Σg

fµ
are respectively, for the group g, the diffusion coefficient,

the total cross-section, the total spectrum, the average number of neutrons emitted per
fission, the fission cross-section, and Σg′→g

s,0,µ is the Legendre moment of order 0 of the
scattering cross-section from group g′ to group g. We introduce a partition (Rm)

M
m=1 of

the domain R with M ∈ N∗ so that for all 1 ≤ m ≤ M , Rm is a domain with Lipschitz,
piecewise regular boundaries. For g, g′ ∈ [1, . . . , G], the coefficients Dg

µ, Σ
g
t,µ, Σ

g′→g
s,0,µ , χ

g
µ,

(νΣf )
g
µ are assumed to be piecewise regular on each domain Rm for 1 ≤ m ≤M .

Several reduced-order models have been proposed in this context [57, 87, 24]. In this
work, we propose a reduced basis (RB) approach, see [102] for a general introduction
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and [32, 107] for applications in neutronics. The method relies on an approximation of
the manifold of solutions using a Proper Orthogonal Decomposition (POD) approach. As
in the RB methodology described in Chapter 3, the method is composed of two stages. In
the offline stage, we build a reduced space which approximates the manifold. In the online
stage, for any given new set of parameters, we solve a reduced problem on the reduced
space within a much smaller computational time than the required time to solve the high-
fidelity problem (5.1). Here, we focus on the development in the project APOLLO3® [96],
a shared platform among CEA, FRAMATOME and EDF, which includes different de-
terministic solvers for the neutron transport equation. Particularly, we are interested in
the MINARET solver [79] in the diffusion approximation, discretized with discontinuous
finite elements.

5.1 The MINARET solver and the high-fidelity core

computation

MINARET [79] is a deterministic solver for reactor physics calculations developed in the
project APOLLO3® code [109]. MINARET can solve either the multigroup neutron
transport or diffusion problem from Problems (1.19) and (1.40). The numerical scheme
to compute the multiplication factor keff is based on the inverse power method (see, e.g.,
[71]). MINARET uses the SN discrete ordinate method to deal with the angular vari-
able, and Discontinuous Galerkin Finite Elements to solve spatially the neutron transport
equation [103]. It applies the Symmetric Interior Penalty Galerkin method (SIPG) [46,
Chapter 4] for the discretization of the neutron diffusion equation (1.40). In all cases, the
solver uses cylindrical meshes devised by extrusion of a 2D triangular mesh.

The high-fidelity (HF) problem which stems from the discretization of Problem (5.1)
by the MINARET solver reads as

Find (uµ, kµ) ∈ RN × R such that

Aµuµ =
1

kµ
Bµuµ, (5.2)

where kµ is the largest eigenvalue in modulus, µ ∈ P stands for the parametric depen-
dence of the problem with P a compact set of Rd, d ≥ 1, Aµ is an invertible non-symmetric
matrix, namely the discretized diffusion operator, or disappearance matrix, Bµ is a non-
negative non-symmetric matrix, namely the discretized fission operator, or production
matrix, and N is the total number of degrees of freedom of the considered high-fidelity
discretization. Typically, for multigroup neutron diffusion calculations, if we denote by
NR the total number of spatial degrees of freedom, we have N = G×NR. In this context
and in the numerical applications detailed below, the high-fidelity discretization is such
that N > 105.

Note that the multiplication factor kµ is also solution to the following adjoint problem

Find (u∗µ, kµ) ∈ RN × R such that

ATµu
∗
µ =

1

kµ
BT
µ u

∗
µ, (5.3)

where kµ is the largest eigenvalue in modulus.
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The goal of the offline is to find a linear space of dimension n << N , denoted by Vn,
such that any solution in the manifold

M = {(uµ, kµ);µ ∈ P}

can be well-approximated in the space Vn.

5.2 The offline stage

To build such a reduced space, we use the information contained in a training space
Ptrain = {µ1, . . . , µns} of ns parameters. The classical a priori error analysis exhibits an
upper bound on the eigenvalue error which depends on the error on the left and right
eigenvectors [11, 19] (see Section 2.1). Following this insight, the reduced space Vn is
built such that

Vn ⊆ Span
(
uµ, u

∗
µ; µ ∈ Ptrain

)
. (5.4)

In order to give the best n-rank approximation of the manifoldM, we first compute
a Singular Value Decomposition (SVD) to the so-called matrix of snapshots composed of
right eigenvectors

S =
(
uµ1| · · · |uµns

)
∈ RN×ns , (5.5)

which writes

S = UΣZT , (5.6)

U = (ξ1| . . . |ξN ) ∈ RN×N ,

Σ = diag
(
σ1, . . . , σmin(ns,N )

)
,

Z = (ψ1| . . . |ψns) ∈ Rns×ns ,

where the σi ∈ R+ are the singular values of S, sorted in decreasing order, and U and
Z are two orthogonal matrices. The reduced space associated with the right eigenvectors
comes from a Proper Orthogonal Decomposition (POD) and it is obtained by

V right = (ξ1| . . . |ξn1) , (5.7)

where 1 ≤ n1 ≤ ns, which minimizes the 2-norm error between each snapshot and its
orthogonal projection onto the subset of dimension n1 spanned by the columns of V right.
The integer n1 comes from a truncation of the SVD with respect to a given tolerance
criterion related to the singular values. We then proceed similarly to approximate the
adjoint manifold {(u∗µ, kµ);µ ∈ P}. We perform a SVD to the matrix of snapshots S∗ of
left eigenvectors, and the POD gives the adjoint reduced space

V left =
(
ξ∗1 | . . . |ξ∗n2

)
, (5.8)

where 1 ≤ n2 ≤ ns. The resulting reduced space Vn is defined as the sum of spaces V right

and V left, using an orthonormalization procedure to obtain a basis, the integer n being
the dimension of Vn (n ≤ n1 + n2).

Remark 5.2.1. Note here that the ultimate goal is actually to implement a greedy reduced
basis method, such as detailed in Chapter 3, for the offline stage. However, at the actual
stage of this work, we only rely on POD, as an efficient implementation of the greedy
procedure has not been investigated yet.
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5.3 The online stage

5.3.1 Assembling the reduced matrices and the reduced prob-
lem

Let Vn be a matrix containing an orthonormal basis of the reduced space Vn as columns.
A Galerkin projection of Problem (5.2) is obtained by constructing, for any µ ∈ P , the
reduced n× n matrices

Aµ,n = V T
n AµVn, (5.9)

Bµ,n = V T
n BµVn. (5.10)

Assembling such matrices is not trivial, since the high-fidelity sparse matrices Aµ and Bµ

are not fully assembled. Indeed,

Aµ =


A1,1
µ A1,2

µ · · · A1,G
µ

A2,1
µ A2,2

µ · · · A2,G
µ

...
...

. . .
...

AG,1µ AG,2µ · · · AG,Gµ

 , Bµ =


B1,1
µ B1,2

µ · · · B1,G
µ

B2,1
µ B2,2

µ · · · B2,G
µ

...
...

. . .
...

BG,1
µ BG,2

µ · · · BG,G
µ

 (5.11)

where, for g′ ̸= g, the block matrices Ag,g
′

µ and Bg,g′
µ are sparse NR × NR matrices, for

g, g′ = {1, . . . , G}, and the diagonal blocks Ag,gµ are directly accessible in memory. There-
fore, if we decompose the reduced matrix Vn = (ξ1| . . . |ξn) along its G group components

such that Vn =

ξ
1
1 · · · ξ1n
...

...
ξG1 · · · ξGn

, then we have

(Aµ,n)i,j := (V T
n AµVn)i,j =

G∑
g=1

(ξgi )
TAg,gµ ξgj −

G∑
g,g′=1
g′ ̸=g

(ξgi )
THg′→g

µ ξg
′

j , (5.12)

(Bµ,n)i,j := (V T
n BµVn)i,j =

G∑
g,g′=1

(ξgi )
TFg′,gµ ξg

′

j . (5.13)

In terms of complexity, the computation of the reduced matrices Aµ,n and Bµ,n as
in (5.12) and (5.13) respectively, is then O(N 2). Note that in the approach detailed
in Chapter 3, we had a complexity of O(n2), thanks to the affine decomposition of the
high-fidelity matrices.

For a given parameter µ ∈ P , the reduced problem is then the following:

Find (cµ,n, kµ,n) ∈ Rn × R such that

Aµ,ncµ,n =
1

kµ,n
Bµ,ncµ,n, (5.14)

where kµ,n is the largest eigenvalue in modulus. We then obtain uµ,n = Vncµ,n, as the
approximated right eigenvector written in the high-fidelity space RN . The associated
adjoint problem writes,

Find (c∗µ,n, kµ,n) ∈ Rn × R such that

ATµ,nc
∗
µ,n =

1

kµ,n
BT
µ,nc

∗
µ,n, (5.15)
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where kµ,n is again the largest eigenvalue in modulus. Similarly, we obtain u∗µ,n = Vnc
∗
µ,n,

as the approximated left eigenvector written in the high-fidelity space RN . In order
to solve the reduced problem, we use the power method described in Algorithm 2 (see
Section 3.4) with given relative error tolerances and a maximum number of iterations.

5.3.2 Computing errors and error estimates

In order to quantify the approximation error induced by projecting Problems (5.2) and (5.3)
on the reduced Vn of dimension n ∈ N∗, we first normalize all high-fidelity and reduced
multigroup fluxes so that ∥uµ∥2 = ∥u∗µ∥2 = ∥uµ,n∥2 = ∥u∗µ,n∥2 = 1. Note that uµ,n and u

∗
µ,n

are defined up to a sign, and to preserve positivity of the flux, we choose the convention
that

⟨uµ,n, uµ⟩2 ≥ 0,

⟨u∗µ,n, u∗µ⟩2 ≥ 0.

Then, we define the respective following ℓ2-errors on the eigenvectors and ℓ2-error on the
eigenvalue

euµ,n := ∥uµ − uµ,n∥2, (5.16)

eu
∗

µ,n := ∥u∗µ − u∗µ,n∥2, (5.17)

ekµ,n := |kµ − kµ,n|. (5.18)

Let us respectively define the residuals on the direct and adjoint flux by

Rµ,n := (Bµ − kµ,nAµ)uµ,n, (5.19)

R∗
µ,n := (BT

µ − kµ,nATµ )u∗µ,n. (5.20)

In the following, we will consider the error estimates ∥Rµ,n∥2, ∥R∗
µ,n∥2 and ηkµ,n :=

∥Rµ,n∥∥R∗
µ,n∥

⟨c∗µ,n, Aµ,ncµ,n⟩
respectively on the reduced direct flux uµ, the reduced adjoint flux u∗µ,

and the reduced multiplication factor kµ,n [37]. As in the heuristic approach detailed in
Section 2.4.3, we also introduce the prefactors Cu

n , C
u∗
n and Ck

n defined by

Cu
n := max

µ∈Ppref

euµ,n
∥Rµ,n∥2

, (5.21)

Cu∗

n := max
µ∈Ppref

eu
∗
µ,n

∥R∗
µ,n∥2

, (5.22)

Ck
n := max

µ∈Ppref

ekµ,n
ηkµ,n

, (5.23)

where Ppref ⊂ P such that Ppref ∩ Ptrain = ∅.

5.4 Numerical applications to multigroup diffusion

core calculation

5.4.1 Convergence analysis of the POD method on benchmark
calculations

The POD reduced-basis approach, as implemented in the APOLLO3®code, is first tested
on Model 1 Case 1 of Takeda neutronics benchmarks [112]. We refer the reader to Chap-

73



5.4. NUMERICAL APPLICATIONS TO MULTIGROUP DIFFUSION CORE CALCULATION

ter 6 for an associated work, which carried out state estimation techniques, on this test
case using a POD reduced basis from power maps [38]. The considered geometry, as shown
in Figure 5.1, is a 3D quarter core in the domain {(x, y, z) ∈ R3, 0 ≤ x ≤ 25 cm; 0 ≤ y ≤
25 cm; 0 ≤ z ≤ 25 cm}. The MINARET solver is run with G = 2 energy groups and
NR = 3× 105 spatial degrees of freedom. For this high-fidelity solver, we provide a max-
imum of 500 outer iterations, with relative L2-error tolerances of 10−7 and 10−8 on the
two-group flux and on the effective multiplication factor, respectively. The reduced solver
runs a power iteration method with respectively relative ℓ2-error tolerances of 10−8 and
10−9 on the reduced eigenvector and the reduced eigenvalue.
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Figure 5.1: Cross-sectional view of the core (z = 0 cm)

Here, the parameter µ lies in the 5-dimensional subset [0.8, 1.2]5, and then enables a
±20% variation in the equation coefficients such that, for µ = (µ1, . . . , µ5) ∈ [0.8, 1.2]5,(
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where, for g, g′ ∈ {1, 2}, Σg
a = (Σg

t − Σg→g
s,0 ), and the values for the coefficients Dg, Σg

a,
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s,0 , (νΣf )
g and χg are given in Appendix 3 of [112].

We generate a training set Ptrain of ns = 100 parameters with a Latin Hypercube
Sampling (LHS) over [0.8, 1.2]5. We then compute the SVD of the 2ns snapshot matrix
as defined in (5.5). The singular values are shown in Figure 5.2. The fast decrease of the
singular values illustrates the ability of the training set to approximate the manifold of
high-fidelity solutions with a reduced basis of small dimension. Here, for example, the 10
first singular values range from 104 to 10−1.

The SVD truncation at the order n then provides a reduced space, and the reduced
basis method is tested on the parameter µtest = (1, 1, 1, 1, 1) which does not belong to the
training set in order to determine to what extent the reduced solver is able to compute a
good approximation of the two-group flux and effective multiplicative factor of the Takeda
benchmark. The relative errors are depicted in Figure 5.3. For n = 5, the reduced solver
already returns the same keff at the order of the pcm (per cent mille) (10−5), and then the
error levels off at the order of magnitude of 10−7, as the order of convergence is limited by
the convergence criterion of the high-fidelity solver. The solution for the test parameter
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Figure 5.2: Singular values from the SVD of Takeda snapshots, for ns = 100. Left:
direct eigenvectors; Right: adjoint eigenvectors.

is thus particularly well represented by the training space, which explains that the error
on the keff already reaches the order of the pcm, for n = 5.

Figure 5.3: Relative errors on the two-group flux and the keff with respect to the
dimension n of the reduced space Vn, for µ = µtest

5.4.2 Computational time reduction on a burnup parametrized
nuclear core

We now test the POD-RB method on a small nuclear core, namely the MiniCore problem
(see Section 4.2). The nuclear core geometry is shown in Figure 4.5. It is a 3D nuclear
core and the domain is {(x, y, z) ∈ R3, 0 ≤ x ≤ 107.52 cm; 0 ≤ y ≤ 107.52 cm; 0 ≤ z ≤
468.72 cm}. The MINARET solver runs with G = 2 energy groups and NR = 108800
degrees of freedom. For this high-fidelity solver, we provide a maximum of 1000 outer
iterations, with relative L2-error tolerances of 10−7 and 10−8 on the two-group flux and
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on the effective multiplication factor, respectively. An example of high-fidelity solution is
depicted in Figure 5.4.

Figure 5.4: Median cross-sectional view of a high-fidelity core calculation with the
MINARET solver (z = 234.36 cm). Upper left: first-group flux; upper

right: second-group flux; lower: power map.

The reduced solver runs a power iteration method with respectively relative ℓ2-error
tolerances of 10−8 and 10−9 on the reduced eigenvector and the reduced eigenvalue.

The problem is parametrized by the burnup value for the 9 fuel assemblies (one UGD12
and eight UO2). Here, we generate ns = 100 parameters with a Latin Hypercube Sampling
(LHS) over the 9-dimensional space

Ptrain ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 ∈ [0, 72000]; µ2, . . . , µ9 ∈ [0, 30000]

}
,

where µ1 is the burnup value of the UGD12 assembly and µ2, . . . , µ9 are the burnup values
of the UO2 assemblies, in MWd/ton. Figure 5.5 shows an example of SVD with such a
training set with ns = 100. As in the previous test case, a reduced order model can be
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obtained for the considered snapshot family as the 25 first singular values range from the
order of magnitude of 104 to 101.

Figure 5.5: Singular values from the SVD of MiniCore snapshots, for ns = 100. Left:
direct eigenvectors; Right: adjoint eigenvectors.

Figure 5.6: An example of burnup map for the MiniCore. Values in MWd/tU.
Left: µ ∈ Ptrain; Right: µ ∈ Ptest.

The reduced basis is tested on 10 burnup maps chosen along a LHS over the test space

Ptest ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 = 30000; µ2, . . . , µ9 ∈ [0, 15000]

}
.

Figure 5.6 illustrates an example of a burnup map for both training and test sets. Fig-
ure 5.7 illustrates the convergence of the RB method, as well as the ability for the a
posteriori error estimates to quantify the approximation. We can see that for n > 45,
the errors on the direct and adjoint flux and on the keff are respectively below 10−3 and
10−5. Regarding the estimates, their convergence, although they are not at the same rate
as those of the real errors, are relevant to their potential use in the construction of such
an approximation space. In terms of computational cost, the cost of the offline stage
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here highly depends on the high-fidelity MINARET solver’s cost, as we need to compute
high-fidelity solutions for all µ ∈ Ptrain. For the MiniCore, one high-fidelity calculation of
the keff runs in nearly 59.15 s, whereas computing the reduced eigenvalue kµ,n requires a
computational time of the order of the millisecond, as Figure 5.8 shows. Note that the
procedure that consists of the two SVDs and the orthogonalization of the basis runs in
138 s. Computing the residual norm online takes about 0.03 s. Nevertheless, in order
to assemble the reduced problem, one needs to compute the reduced matrices, which is
particularly expensive in the current naive implementation, as Figure 5.9 shows, as the
associated time increases exponentially with respect to the dimension n of the reduced
space. Indeed, the complexity is here O(N 2). Any affine exploitation, as detailed in Chap-
ter 3, would enable a much faster assembling of the reduced matrices, with complexity of
O(n2). However, the structure and the design of the code does not allow an immediate
use of this approach. To overcome this cost online, we could instead use an interpolation
method, such as GEIM [90, 30].

In order to get more reliable a posteriori error estimates, we define the set Ppref such
that

Ppref ⊂
{
µ = (µ1, . . . , µ9) ∈ R9; µ1 ∈ [0, 72000]; µ2, . . . , µ9 ∈ [0, 30000]

}
,

#Ppref = 5, and Ppref ∩ Ptrain ∩ Ptest = ∅.

We then consider the a posteriori error estimates

∆u
µ,n := Cu

n∥Rµ,n∥2, (5.24)

∆u∗

µ,n := Cu∗

n ∥R∗
µ,n∥2, (5.25)

∆k
µ,n := Ck

nη
k
µ,n, (5.26)

where the constants Cu
n , C

u∗
n and Ck

n are defined as in (5.21), (5.22) and (5.23) respectively.
Figure 5.10 shows that the estimates defined right below are more reliable as they remain
of the same order of magnitude as the real errors, independently of the value of n.

***

The two test cases that were developed highlight the possibility of a reduced basis
method implementation in the APOLLO3®code, in terms of accuracy and computational
time reduction. Note that a posteriori error estimators in the reduced basis context may
be applied in a greedy approach in the offline stage [25, 106, 61], as done in Chapter 3,
so that it minimizes calls to the high-fidelity solver, or in an online certification of the
reduced model. To do so, we should investigate on how to compute the reduced matrices
by breaking, as much as possible, their parameter dependency. We could, for example,
consider a General Empirical Interpolation Method (GEIM) [90, 30]. This will be the
subject of future works.
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Figure 5.7: Mean errors and their associated error estimates with respect to the
dimension n of the reduced space Vn, over Ptest. From left to right: error
ekµ,n and ηkµ,n; error e

u
µ,n and residual norm ∥Rµ,n∥2; error eu

∗
µ,n and residual

norm ∥R∗
µ,n∥2.

Figure 5.8: Mean computational time for the power method of the reduced solver, over
Ptest, as a function of the dimension n of the reduced space
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Figure 5.9: Mean computational time for the assembling of the reduced matrices Aµ,n
and Bµ,n, over Ptest, as a function of the dimension n of the reduced space

Figure 5.10: Maximum errors and their associated error estimates with respect to the
dimension n of the reduced space Vn, over Ptest. From left to right: error
ekµ,n, η

k
µ,n and ∆k

µ,n; error e
u
µ,n, residual norm ∥Rµ,n∥2 and ∆u

µ,n; error e
u∗
µ,n,

residual norm ∥R∗
µ,n∥2 and ∆u∗

µ,n.
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Chapter 6

Impact of physical model error on
state estimation for neutronics
applications

This chapter comes at the end of this manuscript to offer another illustrative example of
Model Order Reduction application to neutronics. It suggests a distinct ROM from the
one detailed from Chapters 2 to 5, since it is based on experimental measurements, and
aims at reconstructing the power map inside a nuclear reactor.

It is a published proceeding from the MOCO project of the CEMRACS 2021 research
session dedicated to data assimilation and reduced modeling for high dimensional prob-
lems. Its reference in the manuscript is:

[38] Y. Conjungo Taumhas, D. Labeurthre, F. Madiot, O. Mula, and T.
Taddei, Impact of physical model error on state estimation for neutronics applications,
ESAIM: Proceedings and Surveys, vol. 73 (2023), pp. 158–172.
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Abstract In this paper, we consider the inverse problem of state estimation of nuclear
power fields in a power plant from a limited number of observations of the neutron flux. For
this, we use the Parametrized Background Data Weak approach. The method combines
the observations with a parametrized PDE model for the behavior of the neutron flux.
Since, in general, even the most sophisticated models cannot perfectly capture reality, an
inevitable model error is made. We investigate the impact of the model error in the power
reconstruction when we use a diffusion model for the neutron flux, and we assume that
the true physics are governed by a neutron transport model.

Introduction

In the field of nuclear engineering, numerical methods play a crucial role at several stages:
they are involved in important assessments and decisions related to design, safety, energy
efficiency, and reactor loading plans. In this paper, we focus on the task of providing
real time information about the spatial distribution of the nuclear power generated by a
nuclear reactor from a limited number of measurement observations. We combine this
data with physical models in order to provide a complete spatial reconstruction of the
power field. This task is a state estimation problem, and we work with the Parametrized
Background Data Weak (PBDW), originally introduced in [91]. The method has the
appealing feature of providing very fast reconstructions by leveraging techniques from
model order reduction of parametric Partial Differential Equations (PDEs). We refer
to [17, 45, 33, 34] for theoretical analysis of the method, optimal recovery results and
nonlinear extensions. A recent overview may be found in [98].

The main ideas of the above state estimation methodology have been applied to the
field of nuclear physics for applications connected to neutronics (see [7, 6, 5]). We could
also cite other works such as [108, 63, 31, 57, 87] which study the forward reduced modeling
problem for neutronics (compared to these works, note that there is a salient difference
in the nature of the task that we consider, which is inverse state estimation). In this
paper, we again consider neutronics but our goal is to study the impact of inaccuracies
in the physical model that is involved in the reconstruction algorithm, and which is
often assumed to perfectly describe reality. This assumption goes beyond the present
application on neutronics but studying it for this particular topic has the advantage that
we have two very well identified models with different levels of accuracy, thereby allowing
to examine synthetically what one can expect when working in a real application scenario.

In neutronics, the most accurate physical model is the so-called neutron transport
equation which describes the evolution of the neutronic population in a reactor core by
expressing it in the form of a balance between produced and lost neutrons [71]. This
model is often approximated at the reactor core scale by a neutron diffusion model to save
computing time. This is why in this work, we explore the impact of model inaccuracies
by applying a reconstruction based on a diffusion model for the neutron flux, and then
assuming that the true physical system is governed by a neutron transport model.

The paper is organized as follows. Section 6.1 is devoted to presenting inverse state
estimation problems and the PBDW method. Section 6.2 details the application of the
methodology to the reconstruction of nuclear power. Section 6.3 provides some numerical
results.

82



CHAPTER 6. IMPACT OF PHYSICAL MODEL ERROR ON STATE ESTIMATION FOR
NEUTRONICS APPLICATIONS

6.1 Inverse State Estimation with PBDW

In this section, we introduce the problem of state estimation, and the Parametrized Back-
ground Data Weak method which combines measurement observations and reduced mod-
els from parametric PDEs. We refer the reader to [98] for an overview of inverse problem
algorithms using these elements.

Let R be a fixed given domain of Rd with dimension d ≥ 1, and let V be a Hilbert
space defined over R. In our application, R will be defined as the nuclear reactor domain.
The space V is endowed with an inner product ⟨·, ·⟩ and induced norm ∥ · ∥. The choice
of V must be relevant for the problem under consideration: typical options are L2, H1;
for pointwise measurements, a Reproducing Kernel Hilbert Space should be considered.

Our goal is to recover an unknown function u ∈ V from m measurement observations

yi = ℓi(u), i = 1, . . . ,m, (6.1)

where the ℓi are linearly independent linear forms from the dual V ′. Note that we have
assumed that experimental observations are perfect; however, the methodology could be
extended to deal with noisy measurements (see, e.g., [111, 64, 52]). In practical applica-
tions, each ℓi models a sensor device which is used to collect the measurement data ℓi(u).
In the applications that we present in our numerical tests, the observations come from
sensors for the neutron flux which are placed in the reactor.

We denote by ωi ∈ V the Riesz representers of the ℓi. They are defined via the
variational equation

⟨ωi, v⟩ = ℓi(v), ∀v ∈ V.
Since the ℓi are linearly independent in V ′, so are the ωi in V and they span an m-
dimensional space

Wm = span{ω1, . . . , ωm} ⊂ V.

When there is no measurement noise, knowing the observations yi = ℓi(u) is equivalent
to knowing the orthogonal projection

ω = PWmu. (6.2)

In this setting, the task of recovering u from the measurement observation ω can be viewed
as building a recovery algorithm

A : Wm 7→ V

such that A(PWmu) is a good approximation of u in the sense that ∥u − A(PWmu)∥ is
small.

Recovering u from the measurements PWmu is a very ill-posed problem since V is
generally a space of very high or infinite dimension so, in general, there are infinitely
many v ∈ V such that PWmv = ω. It is thus necessary to add some a priori information
on u in order to recover the state up to a guaranteed accuracy. In the following, we work
in the setting where u is a solution to some parameter-dependent PDE of the general form

P(u, µ) = 0,

where P is a differential operator and µ is a vector of parameters that describe some
physical property and belong to a given set D ⊂ Rp. For every µ ∈ D, we assume that
the PDE has a unique solution u = u(µ) ∈ V . Therefore, our prior on u is that it belongs
to the so-called solution manifold

M := {u(µ) ∈ V : µ ∈ D}. (6.3)
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In practical applications, the PDE model P might not be known exactly or might be too
expensive to evaluate: we should thus rely on a surrogate approximate model to perform
state estimation.

Performance Benchmarks: The quality of a recovery mapping A is quantified in two
ways:

• If the sole prior information is that u belongs to the manifoldM, the performance
is usually measured by the worst case reconstruction error

Ewc(A,M) = sup
u∈M
∥u− A(PWmu)∥ . (6.4)

• In some cases u is described by a probability distribution p on V supported onM.
This distribution is itself induced by a probability distribution on D that is assumed
to be known. When no information about the distribution is available, usually the
uniform distribution is taken. In this Bayesian-type setting, the performance is
usually measured in an average sense through the mean-square error

E2
ms(A,M) = E

(
∥u− A(PWmu)∥2

)
=

∫
V

∥u− A(PWmu)∥2dp(u) , (6.5)

and it naturally follows that Ems(A,M) ≤ Ewc(A,M).

PBDW algorithm: In this work, we resort to the Parametrized-Background Data-Weak
algorithm (PBDW, [91]) to estimate the state u. Other choices would of course be possible
but the PBDW algorithm is relevant for the following reasons:

• Simplicity and Speed: It is easily implementable and it provides reconstructions
in near-real time.

• Optimality: It has strong connections with optimal linear reconstruction algo-
rithms as has been studied in [17, 33].

• Extensions: If required, the algorithm can easily be extended to enhance its recon-
struction performance (see [34, 55]). In particular, it is shown in [34] that piecewise
PBDW reconstruction strategy can deliver near-optimal performance. The PBDW
algorithm can also be easily adapted to accommodate noisy measurements (see
[111, 64]) and some easy-to implement extension to mitigate the model error ex-
ist (in the following however, we assume the PDE model is perfect for the sake of
simplicity).

Since the geometry ofM is generally complex, optimization tasks posed onM are difficult
(lack of convexity, high evaluation costs for different parameters). Therefore, instead of
working with M, PBDW works with a linear (or affine) space Vn of reduced dimension
n which is expected to approximate the solution manifold well in the sense that the
approximation error of the manifold

δ(wc)n := sup
u∈M

dist(u, Vn) , or δ(ms)
n := E

(
dist(u, Vn)

2
)1/2

(6.6)

decays rapidly if we increase the dimension n. It has been proven in [35] that it is possible
to find such hierarchies of spaces (Vn)n≥1 for certain manifolds coming from classes of
elliptic and parabolic problems, and numerous strategies have been proposed to build
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the spaces in practice (see, e.g., [25, 105] for reduced basis techniques and [35, 36] for
polynomial approximations in the µ variable).

Assuming that we are given a reduced model Vn with 1 ≤ n ≤ m, the PBDW algorithm

A(pbdw)
m,n : Wm → V

gives for any ω ∈ Wm a solution of

A(pbdw)
m,n (ω) ∈ argmin

u∈ω+W (R)⊥
dist(u, Vn). (6.7)

The minimizer is unique as soon as n ≤ m and β(Vn,Wm) > 0, which is an assumption
to which we adhere in the following. The quantity β is defined as follows. For any pair
of closed subspaces (E,F ) of V , β(E,F ) is defined as

β(E,F ) := inf
e∈E

sup
f∈F

⟨e, f⟩
∥e∥ ∥f∥

= inf
e∈E

∥PF e∥
∥e∥

∈ [0, 1]. (6.8)

We can prove that A
(pbdw)
m,n is a bounded linear map from Wm to Vn ⊕ (Wm ∩ V ⊥

n ).
In practice, solving problem (6.7) boils down to solving a linear least squares mini-

mization problem whose cost is essentially of order n2+m, and we can compute β(Vn,Wm)
by finding the smallest eigenvalue of an n × n matrix. We refer, e.g., to [98, Appendix
A, B] for details on how to compute these elements in practice. It follows that, since in
general m is not very large, if the dimension n of the reduced model is moderate, the
reconstruction with (6.7) can take place in close to real-time.

For any u ∈ V , the reconstruction error is bounded by

∥u− A(pbdw)
m,n (ω)∥ ≤ β−1(Vn,Wm)∥u− PVn⊕(Wm∩V ⊥

n )u∥ ≤ β−1(Vn,Wm)∥u− PVnu∥, (6.9)

where we have omitted the dependency of the spaces on R in order not to overload
the notation, and we will keep omitting this dependency until the end of this section.
Depending on whether Vn is built to address the worst case or mean square error, the
reconstruction performance over the whole manifoldM is bounded by

e(wc, pbdw)
m,n := Ewc(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm)max

u∈M
dist(u, Vn⊕(V ⊥

n ∩Wm)) ≤ β−1(Vn,Wm) δ
(wc)
n ,

(6.10)
or

e(ms, pbdw)
m,n := Ems(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm)E

(
dist(u, Vn ⊕ (V ⊥

n ∩Wm))
2
)1/2

≤ β−1(Vn,Wm) δ
(ms)
n . (6.11)

Note that β(Vn,Wm) can thus be understood as a stability constant. It can also be
interpreted as the cosine of the angle between Vn and Wm. The error bounds involve the
distance of u to the space Vn ⊕ (V ⊥

n ∩Wm) which provides slightly more accuracy than
the reduced model Vn alone. This term is the reason why it is sometimes said that the
method can correct model error to some extent. In the following, to ease the reading
we will write errors only with the second type of bounds (6.11) that do not involve the
correction part on V ⊥

n ∩Wm.
An important observation is that for a fixed measurement space Wm (which is the

setting in our numerical tests), the error functions

n 7→ e(wc, pbdw)
m,n , and n 7→ e(ms, pbdw)

m,n

reach a minimal value for a certain dimension n∗
wc and n

∗
ms as the dimension n varies from

1 to m. This behavior is due to the trade-off between:
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• the improvement of the approximation properties of Vn as n grows (δ
(wc)
n and δ

(ms)
n →

0 as n grows)

• the degradation of the stability of the algorithm, given here by the decrease of
β(Vn,Wm) to 0 as n→ m. When n > m, β(Vn,Wm) = 0.

As a result, the best reconstruction performance with PBDW is given by

e
(wc, pbdw)
m,n∗

wc
= min

1≤n≤m
e(wc, pbdw)
m,n , or e

(ms, pbdw)
m,n∗

ms
= min

1≤n≤m
e(ms, pbdw)
m,n .

Noise and Model Error: To account for measurement noise and model bias in the
above analysis, let us assume that we get noisy observations ω̃ = ω+ η with ||η|| ≤ εnoise.
Suppose also that the true state u does not lie in M but satisfies dist(u,M) ≤ εmodel.
We can prove that the error bound (6.9) should be modified into

∥u− A(pbdw)
m,n (ω̃)∥ ≤ β−1(Vn,Wm)(∥u− PVnu∥+ εnoise + εmodel).

Thus (6.10) and (6.11) become

e(wc, pbdw)
m,n := Ewc(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) (δ

(wc)
n + εnoise + εmodel), (6.12)

and

e(ms, pbdw)
m,n := Ems(A

(pbdw)
m,n ,M) ≤ β−1(Vn,Wm) (δ

(ms)
n + εnoise + εmodel). (6.13)

Note that the estimation accuracy benefits from decreasing the model error, and the
noise. Since both errors have the same additive effect on the reconstruction accuracy,
model error could be understood as measurement error and vice-versa. However, since
the underlying physical reasons leading to model and measurement error are entirely
different, it is preferable to clearly keep both concepts separately. Note further that the
computational complexity of the method is not affected by these errors. This is in contrast
to Bayesian methods for which small noise levels induce computational difficulties due to
the concentration of the posterior distribution.

Sensor modeling error: Another error that can occur comes from our choice of the
observation functions ωi which are built to mimic the response of the sensor devices.
Suppose that we work with imperfect functions ω̃i that deviate from the exact one ωi
with ∥ωi − ω̃i∥ ≤ ρ for some ρ > 0. Then noiseless observations can be written as

yi = ℓi(u) = ⟨ωi, u⟩ = ⟨ω̃i, u⟩+ ⟨ωi − ω̃i, u⟩ .

The right hand side tells us that by working with the inexact ω̃i, we are introducing a
term of noise which is ⟨ωi − ω̃i, u⟩. The noise has level ρ∥u∥. It follows that working
with an inexact representation of the sensor response can be understood as introducing
additional noise to the observations.

6.2 Application to the reconstruction of nuclear power

In this work, we apply the above general framework to reconstruct the nuclear power P
generated in a nuclear reactor core defined on a convex domain R. The power P is a
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real-valued function in R, P : R → R+, and in the following we reconstruct it by viewing
it as a function in the space

V = L2(R).
The nuclear power P we want to rebuild always comes from the neutron transport

model. However, the spaces used to reconstruct P will be divided into two cases. One
space is made up of solutions of the transport model while the other is made up of solutions
of the diffusion model as discussed in the following sections.

6.2.1 The neutron transport model

We assume that the reactor is in a stationary state where the neutron population ψ,
usually called the angular flux, depends on (r, ω, E), namely the spatial position r ∈ R ⊂
Rd, the direction of propagation ω ∈ Sd where Sd is the unit sphere of Rd, and the kinetic
energy E ∈ R+. We work with a multi-group approach where we consider a discrete set
of energies EG < · · · < E0, and we denote

ψ(r, ω, [Eg, Eg−1]) := ψg(r, ω), ∀(r, ω) ∈ R× Sd, ∀g ∈ {1, . . . , G}.

With this notation, the neutron transport equation is a generalized eigenvalue problem
in which we search for a multigroup flux ψ = (ψg)Gg=1, and a generalized eigenvalue λ ∈ C∗

(see [43])

{
Lgψg(r, ω) = Hgψ(r, ω) + λF gψ(r, ω) in R× S2, ∀g ∈ {1, . . . , G}
ψ(r, ω) = 0 on ∂Γ− := {(r, ω) ∈ ∂R× Sd : n(r) · ω < 0},

(6.14)
where

Lgψg(r, ω) := (ω · ∇+ Σg
t (r))ψ

g(r, ω) is the advection operator,

Hgψ(r, ω) :=
G∑

g′=1

∫
S2
Σg′→g
s (r, ω′ · ω)ψg′(r, ω′)dω′ is the scattering operator,

F gψ(r, ω) :=
χg(r)

4π

G∑
g′=1

(νΣf )
g′(r)

∫
S2
ψg

′
(r, ω)dω is the fission operator.

In the listed terms, Σg
t (r) denotes the total cross-section and Σg′→g

s (r, ω′ ·ω) is the scatter-
ing cross-section from energy group g′ and direction ω′ to energy group g and direction ω,
Σg
f (r) is the fission cross-section, νg(r) is the average number of neutrons emitted per fis-

sion and χg(r) is the fission spectrum. We suppose that all the coefficients are measurable
bounded functions of their arguments.

Under certain conditions (which we assume to be satisfied in the following), the
eigenvalue λmin with the smallest modulus is simple, real and strictly positive. We
refer to [2, Theorem 2.2] for the sketch of the proof detailed in [12, Theorem 2.1.1,
p 92]. The associated eigenfunction ψ belongs to the Hilbert space W 2(R)G where
W 2(R × S2) = {ψ ∈ L2(R × S2) s.t. ω · ∇ψ ∈ L2(R × S2)}, is also real and positive
at almost every (x, ω) ∈ R× S2. With this model, once the neutron flux is computed by
solving (6.14) numerically, the nuclear power is given by

P (r) :=
G∑

g′=1

(κΣf )
g′
∫
S2
ψg

′
(r, ω) dω, ∀r ∈ R a.e,
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where κg ∈ L∞(R) is the released energy per fission and since ψ ∈ (W 2(R × S2))
G, we

have that P ∈ V .

6.2.2 The neutron diffusion equations

In this work, the neutron flux ϕ is modeled with the two-group neutron diffusion equation
with null flux boundary conditions. So ϕ has two energy groups ϕ = (ϕ1, ϕ2). Index 1
denotes the high energy group and 2 the thermal energy one. The flux is the solution to
the following eigenvalue problem (see [71])

Find (λ, ϕ) ∈ C× (H1(R)×H1(R)) such that,{
−∇ (D1∇ϕ1) + Σ1

aϕ
1 − Σ2→1

s,0 ϕ2 = λ (χ1(νΣf )
1ϕ1 + χ1(νΣf )

2ϕ2) , in R,
−∇ (D2∇ϕ2) + Σ2

aϕ
2 − Σ1→2

s,0 ϕ1 = λ (χ2(νΣf )
1ϕ1 + χ2(νΣf )

2ϕ2) , in R,
(6.15)

with

Dg∇ϕg · n(r) + 1

2
ϕg = 0 on ∂R, for g = 1, 2.

The coefficients involved are the following:

• Dg is the diffusion coefficient of group g with g ∈ {1, 2}.

• Σg
a is the macroscopic absorption cross section of group g.

• Σg′→g
s,0 is the macroscopic scattering cross section of anisotropy order 0 from group

g′ to g.

• χg is the fission spectrum of group g.

We assume that they are either constant of piecewise constant in R so we can view them
as functions from L∞(R).

The generated power is

P := (κΣf )
1ϕ1 + (κΣf )

2ϕ2, (6.16)

and since ϕ1 and ϕ2 ∈ H1(R), we have P ∈ V .
We next make some comments on the coefficients and recall well-posedness results of

the eigenvalue problem (6.15). First of all, the first five coefficients (Dg, Σg
a, Σ

1→2
s,0 , Σ2→1

s,0

and (νΣf )
g) might depend on the spatial variable. In the following, we assume that they

are either constant or piecewise constant so that our set of parameters is

µ = {D1, D2,Σ1
a,Σ

2
a,Σ

1→2
s,0 , (νΣf )

1, (νΣf )
2, χ1, χ2}. (6.17)

By abuse of notation, in (6.17) we have written Dg to denote the set of values that this
coefficient might take in space and similarly for the other parameters.

Under some mild conditions on the parameters µ, the eigenvalue λmin with the smallest
modulus is simple, real and strictly positive (see [43, Chapter XXI]). The associated
eigenfunction ϕ is also real and positive at almost every point x ∈ R and it is what is
classically called the flux. In neutronics, it is customary to work with the inverse of λmin,
which is called the multiplication factor

keff := 1/λmin. (6.18)
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Therefore keff is not a parameter in our setting because, for each value of the parameters
µ, keff is determined by the solution to the eigenvalue problem.

If the parameters of our diffusion model range in, say,

D1 ∈ [D1
min, D

1
max], D

2 ∈ [D2
min, D

2
max], . . . , χ

2 ∈ [χ2
min, χ

2
max],

then
D := [D1

min, D
1
max]× · · · × [χ2

min, χ
2
max], (6.19)

and the set of all possible states of the power is given by

Mdiff = {P (µ) : µ ∈ D} ⊂ V, (6.20)

which is the manifold of solutions of our problem.

6.3 Numerical Examples

6.3.1 Description of the test case and the numerical solver

The test-case: We consider Model 1 Case 1 of the well-known Takeda neutronics bench-
mark [112] to build our test case. The geometry of the core is three-dimensional and the
domain is {(x, y, z) ∈ R3, 0 ≤ x ≤ 25 cm; 0 ≤ y ≤ 25 cm; 0 ≤ z ≤ 25 cm}. This test
is defined with G = 2 energy groups and isotropic scattering and we set κg = 1 MeV
for g = 1, 2. The reactor core geometry is depicted in Figure 6.1. In the following, we
implicitly refer to the cross-sections and the other coefficients of this test case. Our goal

Reflector
Core
Void

Reflexion

Reflexion

Vacuum

Vacuum

Figure 6.1: Cross-sectional view of the core (z = 0 cm).

is to reconstruct in real time the spatial power field of the reactor. We assume that the
neutron transport equation perfectly describes reality, and the set of all possible states is
given by the manifold

Mtr = {P tr(µ) : µ ∈ D} ⊂ V.

The set of solutions of the neutron diffusion equation is

Mdiff = {P diff(µ) : µ ∈ D} ⊂ V.
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It is an imperfect description of the true states given byMtr.
The parameter set µ from equation (6.17) is generated by the mapping

µ : [0.8, 1]5 ⊂ R5 → R9

α 7→ µ(α)

(
D1

α1

,
D2

α2

, α1Σ
1
a, α2Σ

2
a, α3Σ

1→2
s,0 , α4(νΣf )

1, α5(νΣf )
2, χ1, χ2

)
.

We can thus view the parameter set either as the 5 dimensional tensorized subset [0.8, 1]5

where α ranges, or as a 5-dimensional surface manifold from R9 where the 9 coefficients
µ of the neutronic model live.

We work with m = 54 measurements observations that are placed uniformly in the
reactor. They are defined as local averages over small subdomains Ri ⊂ R

ωi(x) =
1

|Ri|
1Ri

(x), ∀x ∈ R, i = 1, . . . ,m. (6.21)

We compare two cases:

1. Perfect physical model: We apply PBDW using reduced models from the trans-
port manifold which represents the true reality in our experiments.

2. Imperfect physical model: We assume that a perfect model is out of reach and
we use the diffusion manifold. The reconstruction will thus be affected by a model
bias.

The solver: To generate the snapshots and the reduced models, we have worked with
MINARET [79], a deterministic solver for reactor physics calculations developed in the
framework of the APOLLO3® code [109] (see Section 5.1). For our simulations, we work
with a level-symmetric formula of order N = 8 for the SN quadrature, and the spatial
approximation uses discontinuous P1 finite elements of a uniform mesh. The physical
output power map is post-processed on an approximation space of dimension Nh = 540
(Nh degrees of freedom).

6.3.2 Case 1: Reconstruction with a perfect physical model

Here we assume that we have access to a perfect description of the physics, and we work
with the neutron transport manifoldMtr.

In order to create a reduced space Vn of small dimension n≪ Nh, we apply a Proper
Orthogonal Decomposition (POD) based on the training set

Ptraining = {P tr(µ(α)), α ∈ {0.8, 0.9, 1}5} ⊂ Mtr

of power maps obtained from solutions of the transport neutron equations, also called
snapshots.

We measure the relative approximation error δ̃
(wc)
n as defined in Equation (6.6). For

this, we define a collection of power maps of reference

Ptest = {P tr(µ(α)) , α ∈ {0.85, 0.95}5}. (6.22)

Figure 6.2 shows that the training space is well approximated with a few POD modes. For
n ≥ 30, the relative error between one power map and its projection onto Vn is smaller
than 10−6.

We next study the ability to reconstruct the power field with measurement observa-
tions, and the PBDW method, as Figure 6.3 shows in the 3D space. For this, we compute
for 1 ≤ n ≤ m:

90



CHAPTER 6. IMPACT OF PHYSICAL MODEL ERROR ON STATE ESTIMATION FOR
NEUTRONICS APPLICATIONS

Figure 6.2: Relative approximation error δ̃
(wc)
n of the transport manifoldMtr with

respect to the dimension n of the reduced space. Here the reduced space is
a POD computed using the same manifoldMtr.

• The relative reconstruction error given by ẽ
(wc, pbdw)
m,n = maxu∈M̃tr

∥u− A(pbdw)
m,n (ω)∥
∥u∥

,

• The upper bound of the reconstruction error given by β−1(Vn,Wm)δ̃
(wc)
n , as given in

Equation (6.11).

Figure 6.4 shows that the upper bound is about two orders of magnitude above the
actual reconstruction error. This gap is expected to decrease if we use more functions in
the test set. The second observation is that the reconstruction accuracy reaches a mini-
mum for a dimension n∗ ≈ 25. If we work with the optimal dimension n∗, an important
result is that we can recover the power field from measurement observations at almost
the same accuracy (≈ 10−6, see Figure 6.2) as the one given by the orthogonal projection
onto Vn (to see this, compare the errors at n∗ in Figures 6.2 and 6.4).

The behavior of the reconstruction error with the dimension n is connected to a loss
of stability illustrated in Figure 6.5. It warns about a compromise to find between the
approximation error of the manifold and the stability in order to optimize the accuracy
of the power map reconstruction. One strategy to mitigate stability problems is to find
locations for the sensor measurements that span spaces Wm maximizing the value of
β(Vn,Wm) (see, e.g., [18]).

6.3.3 Case 2: Reconstruction of the power map from diffusion
snapshots

We now consider the diffusion neutron equations as the best available model while the
true states are given by the neutron transport model. They are therefore members of
Mtr.

Similarly as done in Section 6.3.2, we apply a POD over a collection

Ptraining = {P diff(µ(α)) : α ∈ {0.8, 0.9, 1}5} ⊂ Mdiff,
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Figure 6.3: 3D representation of the power map P tr(µ(α)) with α = {0.85}5 (upper
left), the algebraic reconstruction error by PBDW (upper right) and the

m = 54 measurements

to create a reduced space Vn of dimension n ≪ Nh. The main difference lies in the fact
that the snapshots are obtained from the neutron diffusion equations, as we consider that
the transport model cannot be computed in this section.

Figure 6.6 shows that the approximation error of the transport manifold Mtr is less
accurate than in the previous case due to the bias between the two models. Typically,
for n = 50, we approximate the manifold at the accuracy of 6 × 10−3, whereas the
approximation with the transport model was about 103 times better (compare Figure 6.6
and Figure 6.4). Therefore, the reconstruction error will have a similar order of magnitude
to those observed for the approximation error.

Similarly, we compute for 1 ≤ n ≤ m:

• The relative reconstruction error given by ẽ
(wc, pbdw)
m,n = maxu∈M̃tr

∥u− A(pbdw)
m,n (ω)∥
∥u∥

,

• The upper bound of the reconstruction error given by β−1(Vn,Wm)δ̃
(wc)
n , as given in

Equation (6.11).

As done before, the PBDW reconstruction procedure is then performed by extracting
measurements over the collection power maps of reference defined in (6.22). Figure 6.7
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Figure 6.4: Relative reconstruction error ẽ
(wc, pbdw)
m,n (in blue) and error estimate

β(Vn,Wm)
−1δ̃

(wc)
n (in yellow) with respect to the dimension n of the

reduced space

Figure 6.5: Stability constant β(Vn,Wm) with respect to the dimension n of the
reduced space (m = 54)
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Figure 6.6: Relative approximation error δ̃
(wc)
n of the transport manifoldMtr with

respect to the dimension n of the reduced space. Here the reduced space is
a POD computed using the diffusion manifoldMdiff.

illustrates that the minimum for the reconstruction error reaches about 1.5 × 10−2 for
n∗ ≈ 35. The gap between the reconstruction error and its estimate here is bigger as the
stability plays a secondary role. Hence, the reconstruction error is only led by the model
bias.

Figures 6.8 shows that the stability constant presents the same behavior as in the case
of Vn built with transport snapshots.
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Figure 6.7: Relative reconstruction error ẽ
(wc, pbdw)
m,n (in blue) and error estimate

β(Vn,Wm)
−1δ̃

(wc)
n (in yellow) with respect to the dimension n of the

reduced space

Figure 6.8: Stability constant β(Vn,Wm) with respect to the dimension n of the
reduced space (m = 54)
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From the numerical experiments, it follows that the PBDW algorithm can reconstruct
data very efficiently when the physical model is perfect. An interesting fact is that there
are optimal values n∗ for the dimension in the reduced models Vn used in the PBDW
algorithm which make the reconstruction with measurement observations comparable with
the approximation accuracy by projection on Vn (see, e.g., Figures 6.2 and 6.4).

In presence of model error, the conclusions are analogous. However, the approximation
accuracy by direct projection is degraded by the presence of the model error as the
comparison between Figure 6.2 and Figure 6.6 shows. This degradation may be reduced if
some snapshots are computed with the transport model. The selection of these snapshots
may be based on a posteriori estimators devised specifically for the model error.

In principle, the PBDW is expected to be able to correct to some extent the model
error due to fact that reconstructions lie in Vn ⊕ (W ∩ V ⊥

n ) and not only in Vn. There,
if the model is biased and yields a reduced model Vn which is not perfectly appropriate,
the component (W ∩ V ⊥

n ) is expected to help to correct this inaccuracy. However, our
results tend to indicate that this correction component has a very limited effect in our
case. This may be due to the poor approximation properties of the observation space W ,
which is, in our case, spanned by functions that are very localized in space (see equation
(6.21) for the definition of the ωi). This behavior could be improved by working with
parametrized families of spaces such as Reproducing Kernel Hilbert spaces (see [94]).
In that case, we could try to find an appropriate space for which the ωi would better
enhance the final reconstruction quality. Another option would be to consider purely
data-driven corrections on top of the PBDW reconstruction, making use of supervised
learning techniques and feed forward neural networks. These ideas will be the starting
point of future works in mitigating the effect of model error in state estimation.
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Conclusion

Throughout this study, we managed to raise techniques and approaches from the field
of Model Order Reduction and a posteriori analysis to answer several problems that
arise from core calculations in neutronics. We quickly tackled the complexity behind
the modeling of neutron dynamics inside a nuclear core, as it exists many discretization
techniques for associated mathematical problems; different physical models, that involve
model bias, are even considered in order to compute core calculations, as it notably resides
in the link between transport and diffusion models. Furthermore, the non-self-adjointness
of the differential operator appearing in the equations challenges the implementation of
inexpensive reduced models for such high-fidelity problems, especially in the case of multi-
query optimization problems.

An a priori error analysis and developments of a posteriori error estimates in the case
of non-symmetric eigenvalue problems, as it is the case for criticality problems in neutron-
ics, enabled a state-of-the-art approach for the construction of an associated reduce-order
model. Several approaches were presented in order to ensure that the error estimates
were reliable, efficient and allow an inexpensive, efficient at most, implementation of the
reduced basis method. To do so, one crucial point was to examine and try to under-
stand the information contained in the prefactors that appear in the error bounds for the
eigenvalue and eigenvectors of the problems.

A key argument in the design of an inexpensive reduced basis method for criticality
problems, as well as for any non-symmetric eigenvalue problem that shares similar math-
ematical properties, was to first consider the case where the high-fidelity problem offers
an affine decomposition of the matrices along the parametric dependency. In that case,
we implemented an efficient and inexpensive reduced basis method based on the greedy
algorithm along with an offline/online procedure, which used the robust a posteriori er-
ror estimates that we developed. A few test cases provided showed that the considered
reduced basis method exhibits satisfying convergence rates and computational cost, while
they drew attention to the significance of the adjoint problem in the construction of the
reduced-order model.

The urge of engineers and researchers in the nuclear field to have reliable optimization
codes for multiple applications, such as loading pattern problems, naturally motivated the
work of implementation of a reduced-order model in the code APOLLO3®, developed at
CEA. Furthermore, reduced-order models are key elements in many studies in the field of
neutronics, such as in data assimilation problems, as it is the subject of the last chapter
of this manuscript.

While a first implementation of a reduced basis method must provide some of the
deterministic solvers of APOLLO3®with an associated reduced-order model, it remains
difficult to rely on an immediate efficient implementation of the reduced basis method
based on the greedy algorithm, described in this manuscript, in the state-of-the-art and
already existing deterministic neutron transport codes, due to the complexity behind
assembling, in practice, the reduced matrices of the problem.

We may try to take advantage of any offline/online affine decomposition in the ma-
trices to assemble, even though it is not guaranteed in most cases. Otherwise, in order to
get an efficient computation of the Galerkin projection of the matrices, we may call some
interpolation methods, such as the Generalized Empirical Interpolation Method (GEIM),
but in that case, note that an additional bias in the calculations would need to be studied.
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At last, a direct, even naive, application of the reduced-order model to optimization
algorithms is still expected to provide results which compete with actual orders of com-
putational times in the nuclear industry.
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Mathématique, 90 (2003), pp. 1–12.

99



BIBLIOGRAPHY
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[63] H. Gong, W. Chen, C. Zhang, and G. Chen, Fast solution of neutron diffu-
sion problem with movement of control rods, Annals of Nuclear Energy, 149 (2020),
p. 107814.

[64] H. Gong, Y. Maday, O. Mula, and T. Taddei, PBDW method for state
estimation: error analysis for noisy data and nonlinear formulation, arXiv e-prints,
(2019), p. arXiv:1906.00810.

[65] C. Grossmann, Numerical treatment of partial differential equations, Springer,
2007.

[66] M. Halsall, Cactus, a characteristics solution to the neutron transport equations
in complicated geometries, tech. rep., UKAEA Atomic Energy Establishment, 1980.

[67] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Meth-
ods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics,
Springer, 2016.

[68] S. G. Hong and N. Z. Cho, Crx: a code for rectangular and hexagonal lattices
based on the method of characteristics, Annals of Nuclear Energy, 25 (1998), pp. 547–
565.

[69] T. Horger, B. Wohlmuth, and T. Dickopf, Simultaneous reduced basis ap-
proximation of parameterized elliptic eigenvalue problems, Esaim Math. Model. Nu-
mer. Anal., 51 (2017), pp. 443–465.

[70] D. B. P. Huynh, D. J. Knezevic, and A. T. Patera, A static condensation
reduced basis element method: approximation and a posteriori error estimation,
ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), pp. 213–251.

103



BIBLIOGRAPHY
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Résumé étendu en français

Dans le domaine de l’énergie nucléaire, les réacteurs d’irradiation technologique (Ma-
terials Testing Reactors) sont des réacteurs de recherche visant à réaliser des expériences
sur les matériaux ou les éléments combustibles des réacteurs de puissance, à la fin de leur
cycle, comme c’est notamment le cas des réacteurs exploités par EDF. Au CEA, c’est le
cas du réacteur OSIRIS du site de Saclay (arrêté en 2015), ainsi que du réacteur Jules
Horowitz (RJH), toujours en construction au CEA/Cadarache. Ces réacteurs nucléaires
ont la capacité de réaliser plusieurs expériences d’irradiation à l’intérieur du cœur, ou à
l’échelle du réflecteur de neutrons, et assurent également la production de radio-isotopes
à des fins médicales, en particulier le technétium 99m (99mTc). Néanmoins, ces réacteurs
présentent de nombreuses hétérogénéités. La gestion fine des éléments combustibles util-
isant de l’uranium enrichi (de l’ordre de 20 %), ainsi que le respect des exigences pour les
différentes expériences d’irradiation sont des enjeux majeurs pour une utilisation optimale
des éléments combustibles dans le réacteur. Le principal défi de ces expériences est de
garantir les performances attendues en minimisant la consommation en combustible, tout
en respectant les exigences de sûreté.

Plus généralement, l’exploitation des réacteurs de recherche et des EPR (European
Pressurized Reactors, ou plus récemment Evolutionary Power Reactors) consiste en des
expériences similaires, qui introduisent notamment le problème de l’optimisation des plans
de chargement, et consistent à étudier la criticité à l’intérieur du cœur, ce qui revient à
résoudre un problème aux valeurs propres non symétrique. La résolution de ce problème
de haute fidélité (high-fidelity) s’accompagne d’un certain coût de calcul, qui devient très
élevé lorsqu’il s’agit de problèmes d’optimisation, comme le problème d’optimisation du
plan de chargement. Un tel problème nécessite en effet d’être résolu par de nombreux
calculs de haute fidélité associés à différentes configurations du cœur. Pour effectuer ces
calculs, il existe plusieurs codes au CEA, dont APOLLO3®. Ce code de calcul neutronique
déterministe offre des fonctionnalités et des méthodes avancées qui permettent de réduire
le biais de la modélisation sans pénaliser les temps de calcul, contrairement au schéma
de calcul en deux étapes fourni par les codes de deuxième génération, tels que le code de
transport APOLLO2 avec le code de calcul de cœur CRONOS2. Les travaux en cours au
CEA visent à développer un schéma de calcul ”best-estimate” utilisant les fonctionnalités
d’APOLLO3®, en support aux études neutroniques des premiers cœurs de démarrage
pour le RJH.

Cependant, un tel schéma de calcul avancé dans APOLLO3®ne répondra pas au besoin
d’un outil d’exploitation pour l’irradiation du combustible et du cœur, dans le contexte
d’un suivi en temps réel, ou dans celui de campagnes d’irradiation basées sur les différents
états d’irradiation du combustible. Pour un schéma d’évaluation donné, le principal défi
consiste à effectuer des calculs peu coûteux tout en préservant ou en contrôlant les biais
de modélisation et les erreurs de calcul. En effet, l’élément clé consiste à effectuer des
calculs de cœur peu coûteux, tout en étant capable de les réactualiser en cas d’aléas au
cours de l’exploitation. Par exemple, un retrait inattendu d’une expérience peut survenir
au cours du cycle. Dans le cas du réacteur OSIRIS, un calcul de cycle de combustible
prenait quelques minutes.
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Dans ce contexte, une approche type ”bases réduites” est proposée. Elle consiste
à développer et à mettre en œuvre un modèle d’ordre réduit (ROM) pour les calculs
de criticité en neutronique, via le développement et l’utilisation d’estimateurs d’erreurs,
basés sur une analyse a posteriori pour les problèmes aux valeurs propres généralisés et
non symétriques, qui permettent entre autres de quantifier l’erreur d’approximation.

Le plan de ce manuscrit est le suivant.

Dans le Chapitre 1, nous rappelons et décrivons les techniques classiques de discrétisation
pour le calcul du cœur et les problèmes de criticité en neutronique.

Le Chapitre 2 vise ensuite à établir des estimateurs d’erreur a posteriori implémentables
et peu coûteux pour les problèmes aux valeurs propres généralisés non symétriques. Ce
chapitre reprend notamment l’état de l’art sur les estimateurs d’erreur développés dans
le cas symétrique et le lien existant entre l’estimation d’erreur et le gap spectral pour les
problèmes aux valeurs propres. Une analyse d’erreur a priori appréhende la construction
d’un modèle d’ordre réduit dans le cas non symétrique via une méthode de projection
de Galerkin, et indique à quel point il est important de considérer les vecteurs propres à
gauche et à droite dans notre approche. Ensuite, la principale difficulté consiste à pro-
poser dans ce contexte des estimateurs d’erreur fiables, efficaces et implémentables. Pour
ce faire, nous développons des estimateurs d’erreur basées sur les résidus qui présentent
tous des préfacteurs multiplicatifs dépendant des paramètres dans les bornes d’erreur.
Le déploiement d’une approche heuristique permet l’estimation de ces quantités, sous
certaines hypothèses, car elles ne sont pas calculables en pratique, mais contiennent des
informations clés dans le comportement de l’erreur.

Ensuite, dans le Chapitre 3, nous détaillons la mise en œuvre d’une implémentation
”efficace” d’une méthode de base réduite, utilisant les estimateurs d’erreur a posteriori
développés dans le chapitre précédent, dans le cas d’une décomposition affine des ma-
trices de haute fidélité en ce qui concerne leur dépendance paramétrique. Basée sur un
algorithme ”gloûton” (greedy, en anglais), elle consiste en une procédure en deux étapes
offline/online et en une projection de Galerkin du problème de haute fidélité sur un espace
réduit bien choisi.

Le Chapitre 4 illustre les performances d’une telle méthode de base réduite sur des
codes-maquettes de diffusion de neutrons à deux groupes d’énergie, à travers plusieurs
tests numériques. Un premier test sur un petit cœur de réacteur nucléaire non physique
met en évidence la nécessité de prendre en compte l’ensemble de la borne supérieure dans
l’estimation de l’erreur pour la certification du modèle d’ordre réduit. Le deuxième cas
test, qu’on appelle le Minicore, montre dans quelle mesure la méthode de base réduite
fournit un modèle fiable dans des temps de calcul très courts. Enfin, le troisième cas test
justifie numériquement le raisonnement qui soulève la pertinence d’inclure à la fois les
vecteurs propres directs et adjoints dans l’estimation de l’erreur.

Ensuite, dans le Chapitre 5, nous présentons une première implémentation d’une
méthode de réduction de modèles dans le code APOLLO3®. Bien qu’à ce stade, la com-
plexité liée à l’implémentation de la projection de Galerkin des matrices de haute fidélité
relève une difficulté non négligeable pour l’implémentation ”efficace” d’une procédure de
type greedy, une méthode de décomposition orthogonale aux valeurs propres (POD) est
proposée dans ce contexte. Celle-ci fournit des résultats prometteurs, notamment avec
l’utilisation des estimateurs d’erreur, qui ont été développés et utilisés dans les chapitres
précédents, dans la certification du modèle réduit alors construit.

Enfin, dans le Chapitre 6, nous donnons une application industrielle d’un modèle
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d’ordre réduit issu de la POD dans le contexte de l’estimation d’état et de l’assimilation
de données pour la reconstruction de la nappe de puissance dans le cœur, à partir de
mesures expérimentales. À noter que ce dernier chapitre est un proceeding publié issu de
la session de recherche de l’école d’été CEMRACS 2021.

Chapitre 1.

Ce chapitre a été rédigé en se basant sur les références ci-dessous :

• [40] M. Coste-Delclaux, C. Diop, A. Nicolas, and B. Bonin, Neutronique,
CEA Saclay; Groupe Moniteur, 2013.

• [97] O. Mula, Some contributions towards the parallel simulation of time de-
pendent neutron transport and the integration of observed data in real time, PhD
thesis, Paris VI, 2014.

• [62] L. Giret, Numerical analysis of a non-conforming domain decomposition for
the multigroup SPN equations, PhD thesis, Université Paris-Saclay (ComUE), 2018.

• [78] D. Labeurthre, Development and comparison of high-order finite element
bases for solving the transport equation on hexagonal meshes, PhD thesis, Université
Grenoble Alpes, 2022.

Nous commençons par un aperçu général des techniques de discrétisation pour l’équation
de Boltzmann. Dans la Section 1.1, nous rappelons d’abord l’équation de transport des
neutrons dépendant du temps, qui donne un modèle général pour la dynamique de la
neutronique dans le cœur d’un réacteur nucléaire. Dans la Section 1.2, nous introduisons
le problème de criticité en neutronique, qui découle de l’équation de transport de neu-
trons stationnaire, et qui est le problème généralisé aux valeurs propres qui nous intéresse
dans ce travail. Dans la Section 1.3, nous rappelons quelques techniques standards de
discrétisation du problème continu. Enfin, dans la Section 1.4, nous évoquons la motiva-
tion de l’approximation du modèle de transport des neutrons, par le modèle de diffusion
neutronique.

Dans ce chapitre, nous avons donc présenté les techniques classiques utilisées pour
discrétiser un tel problème aux valeurs propres dérivé de la neutronique. La dépendance
paramétrique du problème motive l’utilisation d’estimateurs d’erreur a posteriori à des fins
d’optimisation, par exemple, dans le cas où l’on doit résoudre le problème aux valeurs pro-
pres pour un très grand nombre de valeurs de paramètres (cf. le problème d’optimisation
du plan de chargement). Dans ce cas particulier, afin d’éviter des coûts de calcul con-
sidérables, on peut envisager de résoudre un problème approximatif moins coûteux. Ainsi,
ces estimateurs peuvent quantifier l’erreur d’approximation sans nécessairement résoudre
le problème de référence. La section suivante est consacrée au développement de ces es-
timateurs dans le cas d’un problème aux valeurs propres généralisé et non symétrique.
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Chapitre 2.

Dans ce chapitre, nous proposons des estimateurs d’erreur a posteriori pour les problèmes
aux valeurs propres généralisés non symétriques. Dans le cadre des problèmes aux valeurs
propres symétriques, l’analyse d’erreur a posteriori repose naturellement sur des résidus
quantifiés selon une norme d’énergie induite par l’opérateur. Nous devons ici généraliser
ces estimateurs a posteriori dans le cas des problèmes aux valeurs propres généralisés
non symétriques, tels que celui de la diffusion neutronique multigroupe, présenté à la
fin du chapitre précédent. Pour les problèmes aux valeurs propres non généralisés, nous
montrons l’existence, dans la borne supérieure de l’erreur, d’un prefacteur dépendant du
paramètre qui doit être pris en compte afin d’obtenir des estimateurs fiables. Le calcul
d’une valeur précise et optimale de ce préfacteur n’est pas une tâche facile, contrairement
au cas des problèmes aux valeurs propres symétriques où il peut être exprimé au moyen
du gap spectral de l’opérateur considéré.

Nous commençons, dans la Section 2.1, par revoir la relation spécifique, soulevée par
I. Babuška et J. Osborn [11] dans une analyse a priori, entre l’erreur sur valeur propre
et les erreurs sur les vecteurs propres de meilleure approximation à gauche et à droite,
dans le cas des approximations de Galerkin d’un problème aux valeurs propres généralisé
non symétrique. Dans la Section 2.2, nous rappelons quelques estimateurs d’erreur a
posteriori classiques basés sur les résidus pour les problèmes aux valeurs propres. Nous
dérivons ensuite, dans la Section 2.3, certaines bornes d’erreur sur les vecteurs propres à
gauche et à droite, ainsi que sur la valeur propre, dans le cas d’un problème aux valeurs
propres généralisé et non symétrique. Comme nous avons besoin d’estimateurs d’erreur
a posteriori calculables et fiables qui tiennent compte des informations contenues dans
les préfacteurs, nous proposons, dans la Section 2.4, une méthode heuristique pratique
pour estimer ces quantités. Pour ce faire, nous fournissons quelques éléments d’analyse
théorique pour illustrer le lien étroit entre l’expression obtenue du préfacteur et son ex-
pression bien connue dans le cas des problèmes aux valeurs propres symétriques.

Dans ce chapitre, nous avons élaboré des estimateurs d’erreur a posteriori basés sur
les résidus pour un problème aux valeurs propres généralisé et non symétrique donné.
Ces estimateurs présentent tous des préfacteurs dépendant des paramètres qui sont trop
coûteux à calculer en pratique pour un grand nombre de paramètres. Par conséquent,
nous avons d’abord fourni quelques éléments d’analyse théorique pour illustrer le lien
étroit entre l’expression obtenue du préfacteur et son expression bien connue dans le cas
des problèmes aux valeurs propres symétriques. En particulier, nous avons soulevé des
arguments perturbatifs pour donner un développement au premier ordre du préfacteur
lorsque l’opérateur est une petite perturbation d’un opérateur symétrique, comme c’est
le cas avec les problèmes aux valeurs propres dérivés de la neutronique, bien que ce soit
plus complexe en pratique, car nous devons nous attaquer à un problème aux valeurs
propres généralisé, qui ne rassemble pas toutes les hypothèses que nous avons émises.
Nous avons finalement proposé une approche heuristique basée sur la donnée pour es-
timer le préfacteur, en supposant que sa dépendance paramétrique peut être ignorée. Le
développement d’estimateurs d’erreur a posteriori pour les problèmes aux valeurs propres
généralisés non symétriques est une étape cruciale dans le développement d’une méthode
de base réduite peu coûteuse. Dans ce contexte, ces estimateurs permettent une con-
struction ”efficace” de l’espace d’approximation via une procédure itérative, et certifient
également la précision des solutions au problème réduit.
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Chapitre 3.

Les méthodes de réduction de modèles telles que les méthodes de bases réduites
(RB) [21, 67, 102] sont utiles lorsqu’il s’agit d’accélérer le temps de calcul de solutions
approximatives à des problèmes paramétrés. Dans le contexte de la neutronique, ces
problèmes sont naturellement issus de l’optimisation du plan de chargement d’un cœur
de réacteur nucléaire [44, 47, 114]. Mathématiquement, cela revient à optimiser une fonc-
tion ”objectif” qui implique la solution d’un problème aux valeurs propres généralisé non
symétrique. Le but de ce chapitre est donc d’établir, dans ce contexte, une méthodologie
pour la mise en œuvre d’une méthode de base réduite, en deux phases (offline et on-
line), pour les problèmes aux valeurs propres généralisés non symétriques, dépendant
de paramètres. Elle peut être considérée comme une généralisation de [69, 54, 20], où
des méthodes de bases réduites pour les problèmes aux valeurs propres symétriques
ont été développées. Pour ce faire, nous nous appuyons sur les estimateurs d’erreur
a posteriori pratiques développés dans le chapitre précédent, qui permettent, dans la
phase offline, de construire l’espace réduit avec un algorithme greedy [25], en rompant
la dépendance vis-à-vis du solveur de haute fidélité, contrairement aux procédures type
POD (voir [16] pour une introduction générale), par exemple ; dans la phase online, ils
certifient l’approximation et permettent une analyse de convergence du problème réduit.
Ici, nous considérons une situation particulière dans laquelle les opérateurs linéaires
présentent une dépendance affine en le paramètre. Cette situation doit être prise en
compte pour que la base réduite itérative puisse rivaliser avec la POD. Cela donne un
exemple d’implémentation de la méthode où les quantités d’intérêt sont assemblées de
manière ”efficace”, en online, en fonction du paramètre.

Dans la Section 3.1, nous présentons le problème réduit (RB) aux valeurs propres
comme une approximation de Galerkin du problème aux valeurs propres de haute fidélité
(HF). Dans la Section 3.2, nous considérons la décomposition affine des matrices de haute
fidélité en le paramètre, et nous expliquons comment cette hypothèse clé permet une
implémentation ”efficace” de la méthode de base réduite et des estimateurs d’erreur a
posteriori. La Section 3.3 détaille la phase offline de la procédure RB, qui s’appuie
sur l’algorithme greedy, et montre comment l’espace réduit est minutieusement construit.
La Section 3.4 présente la phase online de la procédure RB qui consiste en la projec-
tion de Galerkin sur l’espace réduit, et l’assemblage du problème réduit et des quantités
algébriques d’intérêt le long des paramètres.

Grâce aux estimateurs d’erreur a posteriori pratiques développés dans le Chapitre 2,
nous avons mis en œuvre une méthodologie d’implémentation de la méthode de base
réduite pour la résolution d’un problème aux valeurs propres généralisé non symétrique
et dépendant d’un paramètre. Basée sur l’algorithme greedy, et sous l’hypothèse que
les matrices du problème de haute fidélité présentent une décomposition affine le long
du paramètre, elle permet une implémentation ”efficace” de la méthode de base réduite,
qui fournit un modèle réduit dont le coût de calcul rivalise avec d’autres méthodes de
réduction de modèles, telles que les méthodes de décomposition orthogonale aux valeurs
propres (POD). L’utilisation d’estimateurs d’erreur a posteriori permet également une
certification du modèle réduit obtenu et fournit une approche adaptative dans la con-
struction de la base réduite.

112



BIBLIOGRAPHY

Chapitre 4.

Le but de ce chapitre est d’illustrer le comportement de la méthode de base réduite
détaillée dans le chapitre précédent, sur des exemples provenant d’applications en neu-
tronique. Nous considérons ici les équations de la diffusion neutronique à deux groupes
d’énergie, définies en (1.41), et dotées des mêmes hypothèses que celles présentées en
Section (1.4.2) de ce manuscrit. Nous concentrons notre étude sur trois cas tests. Dans
la Section 4.1, nous proposons une première application de la méthode de base réduite
à un cœur de récateur simpliste en 2D composé de quatre régions de matériaux, doté
de propriétés et de sections efficaces non physiques. Cet exemple permet une analyse
computationnelle rapide de la méthode de base réduite par le biais d’estimateurs d’erreur
a posteriori, dans le cas où l’on choisit de ne pas considérer dans ceux-ci le fameux
préfacteur. Dans la Section 4.2, un cœur rectangulaire plus réaliste, nommé le Minicore,
met en avant les prouesses de la méthode de base réduite en termes de temps de calcul et
de convergence, grâce à l’implémentation d’estimateurs d’erreurs a posteriori pratiques,
qui cette fois-ci prennent en compte une estimation heuristique du préfacteur. Enfin,
dans la Section 4.3, nous soulignons l’importance de considérer le problème adjoint dans
la construction de la base réduite avec des calculs rapides sur un benchmark neutronique
de réacteur à eau pressurisée (REP) en 3D.

Pour les deux premiers exemples, les calculs et les implémentations sont effectués sur
un code maquette, écrit en Python 3.6. La discrétisation de haute fidélité le long de la
variable d’espace est générée en utilisant les méthodes du projet open-source FEniCS.
Pour le troisième et dernier exemple, nous utilisons un code POD fourni par le professeur
Jean Ragusa, écrit en MATLAB [57], basé sur la bibliothèque d’éléments finis deal.II [8],
et le générateur de maillage GMSH [58].

Les trois cas tests présentés dans ce chapitre mettent en évidence la capacité de la
méthode de base réduite à fournir un modèle d’ordre réduit peu coûteux, fiable et certifié
pour les équations de la diffusion neutronique. Les deux premiers cas tests montrent que
le modèle réduit implémenté est capable de donner le facteur de multiplication (valeur
propre) du modèle de haute fidélité à l’ordre du pcm (à 10−5 près), dans un temps de
calcul de l’ordre de la milliseconde, tout en confirmant que l’approche heuristique dans le
développement des estimateurs d’erreur a posteriori définit des représentants de l’erreur
fiables et acceptables pour ce problème. Enfin, l’approche POD pour le benchmark dans
le dernier cas test illustre la nécessité d’inclure la contribution du problème adjoint dans
le modèle réduit, afin d’obtenir un modèle fiable d’ordre réduit.

Chapitre 5.

Dans ce chapitre, nous nous intéressons à l’équation de diffusion des neutrons paramétrée,
lorsqu’elle est résolue plusieurs fois pour différentes valeurs des paramètres, comme c’est
le cas par exemple dans le problème d’optimisation du plan de chargement du cœur. Nous
nous concentrons sur l’approximation multigroupe sur un intervalle d’énergie [Emin, Emax] =
[EG, EG−1] ∪ . . . ∪ [E1, E0], où G représente le nombre de groupes d’énergie considéré.
Étant donné un paramètre µ, l’équation de la diffusion multigroupe en régime station-
naire [48, Chapitre 7] (voir Section 1.4.2) recherche le flux scalaire de neutrons multigroupe
ϕµ =

(
ϕ1
µ, . . . , ϕ

G
µ

)
associé au facteur de multiplication keff,µ (la valeur propre de plus grand
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module) à l’intérieur du cœur du réacteur nucléaire.

Dans ce travail, nous proposons une méthode reposant sur une approximation de
l’espace de l’ensemble des solutions à l’aide d’une décomposition orthogonale aux valeurs
propres (POD). Comme dans la méthodologie base réduite décrite dans le Chapitre 3, la
méthode se décrit en deux phases. Dans la phase offline, nous construisons un espace
réduit qui approche l’espace des solutions du problème de diffusion multigroupe. Dans la
phase online, pour tout nouvel ensemble de paramètres donné, nous résolvons un problème
réduit sur l’espace réduit dans un temps de calcul beaucoup plus court que le temps de
calcul lié à la résolution du problème de haute fidélité (5.1). Dans ce chapitre, nous
nous concentrons sur le développement de la méthode dans le projet APOLLO3® [96],
une plateforme partagée entre le CEA, FRAMATOME et EDF, qui comprend différents
solveurs déterministes pour l’équation de transport et de diffusion des neutrons. Nous
nous intéressons particulièrement au solveur MINARET [79] dans l’approximation de la
diffusion, discrétisé avec des éléments finis discontinus.

Les deux cas tests qui ont été développés mettent en évidence la possibilité et la
pertinence d’implémenter une méthode de base réduite dans le code APOLLO3®, en
termes de précision et de réduction du temps de calcul. Il convient de noter que les
estimateurs d’erreur a posteriori dans le contexte des bases réduites peuvent être appliqués
dans une approche de type greedy lors de la phase offline [25, 106, 61], comme cela est
fait dans le Chapitre 3, de manière à minimiser les appels au solveur de haute fidélité,
ou dans une certification online du modèle réduit. Pour ce faire, nous devrions étudier
la manière de calculer les matrices réduites en se défaisant, autant que possible, de leur
dépendance paramétrique. Nous pourrions, par exemple, envisager d’utiliser une méthode
d’interpolation empirique, comme GEIM [90, 30]. Cela fera l’objet de futurs travaux.

Chapitre 6.

Ce chapitre vient à la fin de ce manuscrit pour offrir un autre exemple illustratif de
l’application d’une réduction de modèles dans le cadre de la neutronique. Il propose un
modèle réduit distinct de celui détaillé dans les Chapitres 2 à 5, puisqu’il se base sur des
mesures expérimentales, et vise à reconstruire la nappe de puissance à l’intérieur d’un
réacteur nucléaire.

Il s’agit d’une publication sous forme de proceeding, issue du projet MOCO de la ses-
sion de recherche de l’école d’été CEMRACS 2021, consacrée à l’assimilation de données
et à la réduction de modèle pour les problèmes de très haute dimension. Sa référence dans
le manuscrit est :

[38] Y. Conjungo Taumhas, D. Labeurthre, F. Madiot, O. Mula, and T.
Taddei, Impact of physical model error on state estimation for neutronics applications,
ESAIM: Proceedings and Surveys, vol. 73 (2023), pp. 158–172.

Dans ce travail, nous examinons le problème inverse d’estimation d’état du champs de
puissance nucléaire dans un réacteur d’une centrale électrique à partir d’un nombre limité
d’observations du flux de neutrons. Pour ce faire, nous utilisons une méthode nommée
PBDW (Parametrized Background Data Weak). Cette méthode combine les observations
avec un modèle d’EDP paramétrée pour le comportement du flux de neutrons au sein
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du réacteur. Comme en général, même les modèles les plus sophistiqués ne peuvent pas
reproduire parfaitement la réalité, une biais de modélisation est inévitable. Nous étudions
l’impact du biais de modèle dans la reconstruction de la nappe de puissance lorsque nous
utilisons un modèle de diffusion pour le flux de neutrons et que nous supposons que la
véritable physique est régie par un modèle de transport de neutrons.

En conclusion.

Bien qu’une première implémentation d’une méthode de base réduite soit suffisante
pour fournir à certains des solveurs déterministes d’APOLLO3®un modèle d’ordre réduit
associé, il reste difficile de compter sur une implémentation efficace (au sens peu coûteuse)
immédiate de la méthode de base réduite basée sur l’algorithme greedy, décrite dans ce
manuscrit, dans les codes de transport de neutrons déterministes de pointe déjà existants,
en raison de la complexité de l’assemblage, en pratique, des matrices réduites du problème.

Nous pouvons essayer de tirer parti de toute décomposition affine offline/online dans
les matrices à assembler, même si cela n’est pas garanti dans la plupart des cas. Autrement,
afin d’obtenir un calcul efficace de la projection de Galerkin des matrices de haute fidélité,
nous pouvons faire appel à certaines méthodes d’interpolation, telles que la méthode
d’interpolation empirique généralisée (GEIM), mais dans ce cas, il convient de noter
qu’un biais supplémentaire dans les calculs devra être étudié.

Enfin, une application directe, même näıve, du modèle d’ordre réduit aux algorithmes
d’optimisation des plans de chargement devrait encore fournir des résultats qui rivalisent
avec les ordres de grandeur des temps de calcul dans l’industrie nucléaire.
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