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Titre : Contrôle de phase et façonnage d’impulsion de la diffraction de Bragg pour l’optique atomique
quantique
Mots clés : Hélium métastable, Condensat de Bose-Einstein, Inégalités de Bell, Interférométrie ato-
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Résumé : La mécanique quantique prédit le phé-
nomène d’intrication, qui prévoit que pour un sys-
tème de deux particules dites intriquées, on observe
de très fortes corrélations entre les propriétés des
particules.

Une façon de caractériser un système intriqué
est de réaliser un test d’inégalité de Bell. Le projet
décrit dans cette thèse se propose de mettre en
place un interféromètre de Bell mettant en jeu des
atomes d’hélium métastables intriqués en impul-
sion. A partir d’atomes préparés dans un condensat
de Bose-Einstein, des paires d’atomes fortement
corrélées sont émises à des impulsions différentes
par le processus de mélange à quatre ondes, puis
les atomes sont envoyés dans un interféromètre à
deux particules et quatre modes d’impulsion. Pour
cela, on utilise la diffraction de Bragg, pour trans-
férer de l’impulsion aux atomes de façon cohérente

et ainsi former des miroirs et séparatrices à atomes.
Dans cette thèse, on étudie en détails la dif-

fraction de Bragg et son influence dans la réalisa-
tion d’un interféromètre de Bell. On propose une
méthode originale pour contrôler la différence de
phase imprimée sur les atomes entre les deux dou-
blets d’impulsion en jeu, en modulant temporel-
lement l’amplitude de la pulsation de Rabi. Cette
technique est également mise à profit pour façon-
ner le profil temporel des miroirs et séparatrices
Bragg afin d’améliorer leurs propriétés de réflec-
tivité et de phase. De premiers tests interféro-
métriques sont reportés (interféromètres de type
Mach-Zehnder, Ramsey, Hong-Ou-Mandel), vali-
dant la technique de contrôle de phase notamment
et donnant des résultats prometteurs quant à la
réalisation prochaine d’un test de Bell.

Title : Phase control and pulse shaping in Bragg diffraction for quantum atom optics
Keywords : Metastable helium, Bose-Einstein Condensate, Bell’s inequality, Atom interferometer,
Bragg diffraction

Abstract : Quantum mechanics predicts the phe-
nomenon of entanglement, which predicts thatthat
for a system of two entangled particles, very strong
correlations can be observed.

One way to characterize an entangled system is
to perform a Bell inequality test. The project des-
cribed in this thesis aims to set up a Bell interfe-
rometer involving metastable helium atoms entan-
gled in momentum. Starting with atoms in a Bose-
Einstein condensate, pairs of highly correlated
atoms are emitted at different momenta through
the four-wave mixing process. These atoms are
then sent through a two-particle, four-momentum
mode interferometer using Bragg diffraction to co-
herently transfer momentum to the atoms and

create atom mirrors and beam splitters.
In this thesis, we study in detail Bragg dif-

fraction and its influence on the realization of a
Bell interferometer. We propose an original me-
thod to control the phase difference imprinted on
the atoms between the two involved momentum
doublets by temporally modulating the amplitude
of the Rabi frequency. This technique is also used
to shape the temporal profile of Bragg mirrors
and beam splitters to improve their reflectivity and
phase properties. Initial interferometric tests are re-
ported (Mach-Zehnder, Ramsey, Hong-Ou-Mandel
interferometers), validating the phase control tech-
nique in particular and showing promising results
for the upcoming realization of a Bell test.
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découvrir l’intrication et les inégalités de Bell !
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ensemble, de nos débuts prudents sur la manip (qui ont notamment consisté à déployer
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aux grandes réflexions sur la mise en évidence des corrélations ou la nature de l’intrication.
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également aux deux Thomas, à Vincent, Alain et tous les étudiants que j’ai pu côtoyer
pendant quatre ans.

Merci beaucoup à l’ensemble des services techniques (infra, méca, élec, optique) et
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et Avotra, à Lyna et au Mag, et à tous les autres, pour tous ces beaux souvenirs en votre
compagnie.

Enfin, j’aimerais adresser des remerciements particuliers à ma famille, qui m’a toujours
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Résumé

La mécanique quantique prédit que pour un système de deux particules dites intriquées,
on ne peut pas décrire chaque particule indépendamment : la mesure d’une observable
physique sur une particule affecte également l’autre, quelle que soit la distance entre les
particules, donnant lieu à l’observation de très fortes corrélations. Une façon de mettre
en évidence un système intriqué consiste à réaliser ce qu’on appelle un test d’inégalité
de Bell, dont le principe est de mettre en évidence des interférences à deux particules en
pilotant les corrélations entre ces particules à l’aide d’un paramètre de contrôle. La théorie
quantique prévoit l’observation de corrélations très fortes, plus fortes que ce qu’on pourrait
obtenir avec la théorie classique. Ainsi, si le contraste de l’interférence est suffisant, alors
non seulement le système est intriqué, mais en plus il n’existe aucune théorie physique
qui puisse expliquer l’observation de corrélations aussi fortes tout en faisant l’hypothèse
de localité, selon laquelle des actions effectuées à un endroit de l’espace ne peuvent pas
influencer instantanément un autre endroit de l’espace. On dit alors qu’il y a violation
d’inégalité de Bell.

Si des violations d’inégalité de Bell, dont le principe est rappelé dans le chapitre 1
de ce manuscrit, ont été mises en évidence sur différents types de systèmes depuis les
années 1980 (sur des photons intriqués en polarisation, des particules massives intriquées
en spin, ou encore des photons intriqués en impulsion), il n’existe à ce jour aucune preuve
expérimentale d’une violation d’inégalité de Bell avec des particules massives intriquées
en impulsion. L’étude de tels systèmes représente un enjeu important, car ils font di-
rectement intervenir l’intrication, propriété purement quantique, et la masse, propriété
gravitationnelle. Observer une violation d’inégalité de Bell avec des particules massives
intriquées via un tel degré de liberté externe constituerait une première étape vers la
réalisation d’expériences visant à établir les liens entre mécanique quantique et gravita-
tion. Dans cette optique, le projet décrit dans cette thèse se propose de mettre en place
un interféromètre de Bell mettant en jeu des atomes d’hélium métastables intriqués en
impulsion.

Pour cela, l’idée consiste à s’inspirer de l’interféromètre réalisé en 1990 par J. Rarity et
P. Tapster qui a donné lieu à une violation d’inégalité de Bell avec des photons intriqués en
impulsion. Pour adapter ce dispositif avec des atomes, plusieurs éléments sont nécessaires :
une source de paires d’atomes, des miroirs et séparatrices à atomes avec un paramètre
de contrôle permettant de piloter les corrélations, et un dispositif de détection d’atomes
uniques permettant de calculer les impulsions des atomes détectés et leurs corrélations.

L’équipe Optique atomique quantique du Laboratoire Charles Fabry, dans laquelle j’ai
effectué ma thèse, est spécialisée dans la réalisation de condensats de Bose-Einstein avec
des atomes d’hélium dans son premier état excité, état métastable dont la grande énergie
interne permet d’arracher des électrons à une surface métallique, et donc de détecter des
atomes uniques. Grâce à un système de détection ingénieux constitué d’une galette de
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micro-canaux et de lignes à retard, il est possible de déterminer la position et le temps
d’arrivée des atomes d’hélium qui tombent (par gravité) sur le détecteur, placé sous le site
du piégeage des atomes. Comme le détecteur est suffisamment éloigné du piège initial, on
peut alors calculer les impulsions initiales des atomes avant leur chute sur la galette (mesure
par temps de vol). Ce dispositif expérimental, présenté dans le chapitre 2, constitue ainsi
la plateforme idéale pour réaliser des mesures de corrélations en impulsion entre atomes
individuels.

Le condensat constitue le réservoir d’atomes cohérent à partir duquel des paires d’atomes
fortement corrélées sont émises à des impulsions différentes par le processus de mélange
à quatre ondes (analogue à un processus de conversion de fréquence dans un cristal non
linéaire en optique). Les paires émises doivent vérifier les conditions d’accord de phase, qui
correspondent à la conservation de l’impulsion et de l’énergie. Pour émettre des paires de
façon accordable, on place le condensat dans un potentiel périodique à l’aide d’un réseau
optique mobile, de façon à exploiter le diagramme de bande du réseau et ainsi ajuster les
impulsions des paires émises en pilotant la vitesse du réseau. Comme il n’y a pas con-
servation stricte de l’énergie (on applique le réseau optique pendant une durée finie), on
obtient alors une source multimode émettant plusieurs doublets d’impulsion, de manière à
ce que l’état du système corresponde à une superposition d’états comprimés à deux modes
d’impulsion. Si la population par mode est suffisamment faible, alors on peut utiliser cet
état comme état d’entrée d’un interféromètre de Bell.

Cette méthode est utilisée dans l’équipe depuis une dizaine d’années et a donné lieu
à l’observation de fortes corrélations entre les paires créées. Suite à divers problèmes
expérimentaux, il a été nécessaire pendant ma thèse de paramétrer et caractériser à nou-
veau ce dispositif d’émission de paires, en termes d’amplitude de corrélation locale et
croisée, de largeur de mode, de population par mode. Ainsi, l’étude de la fonction de
corrélation d’ordre 2 et une analyse statistique du nombre d’atomes détectés, présentées
dans le chapitre 3, ont permis de caractériser un mode d’impulsion et de mettre en évidence
des corrélations entre paires. Pour de faibles populations par mode, nous avons mis en
évidence une variance de la différence du nombre d’atomes sub-poissonienne et une vio-
lation d’inégalité de Cauchy-Schwarz, qui sont des signatures de corrélations quantiques
fortes entre modes d’impulsion de différentes paires.

On peut considérer en bonne approximation que la source émet deux atomes jumeaux,
soit dans les modes dénotés p et −p, soit dans les modes q et −q. Cette superposition
quantique des états à deux particules |p,−p〉 et |q,−q〉 constitue l’état intriqué dont on va
chercher à piloter les corrélations à l’aide d’un interféromètre. Pour cela, on va mélanger
des atomes issus de chaque paire pour les faire interférer. On formera ainsi deux sous-
parties de l’interféromètre, appelées boucles, l’une mélangeant les atomes des modes p
et −q (boucle B), et l’autre mélangeant les atomes des modes q et −p (boucle A). En
pilotant la différence de phase entre les atomes de chaque boucle, la mécanique quantique
prévoit que l’on observe une interférence à deux atomes, c’est-à-dire une oscillation de
la probabilité de mesurer simultanément un atomes dans un mode de la boucle A et un
atome dans un mode de la boucle B.

On réalise ainsi des miroirs et des séparatrices à atomes en effectuant des transferts
cohérents d’impulsion aux atomes à l’aide de la diffraction de Bragg. On peut ainsi
transférer aux atomes d’une certaine classe d’impulsion p une impulsion 2~k, fixée par
la longueur d’onde du laser et l’angle entre les faisceaux. Ce processus de transfert peut
être modélisé comme un système à deux niveaux couplé par une pulsation de Rabi à
deux photons. On sélectionne le doublet résonant (p, p+ 2~k) en ajustant la différence de
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fréquence entre les faisceaux. Un tel couplage permet ainsi de contrôler les populations
dans les deux modes couplés pour former des miroirs et des séparatrices à atomes. De
plus, lors d’une séparatrice Bragg, la différence de phase entre les atomes transmis et
réfléchis est égale à la différence de phase entre les faisceaux lasers. C’est ce processus
d’impression de phase qui va permettre de contrôler la phase imprimée entre les deux
doublets d’impulsion A et B couplés par diffraction de Bragg dans l’interféromètre de
Bell, et donc jouer le rôle de paramètre de contrôle des corrélations. Un contrôle précis
de la réflectivité, de la sélectivité et de la phase imprimée par la diffraction de Bragg est
nécessaire à la bonne réalisation d’un test de Bell. Étudier l’influence de ces paramètres
sur le signal de Bell et vérifier que l’on est capable de les contrôler a été au coeur de mon
travail de thèse, présenté dans ce manuscrit.

Au cours de ma thèse, la diffraction de Bragg et son influence dans la réalisation
d’un interféromètre de Bell ont ainsi été étudiées en détails. Le chapitre 4 présente le
schéma de principe de l’interféromètre à deux particules et quatre modes que l’on cherche
à réaliser. Le dispositif est comparé avec un autre interféromètre récemment rapporté
dans la littérature par un autre groupe de recherche, qui a observé des interférences à deux
atomes mais dont le contraste n’était pas suffisant pour qu’il y ait violation d’inégalité de
Bell. Dans notre cas, l’objectif principal est de parvenir à imprimer deux phases différentes
sur les deux doublets qui forment l’interféromètre de Bell, ce qui constitue la difficulté ma-
jeure de notre dispositif. Pour ce faire, le chapitre 4 détaille le formalisme de transition
à deux photons qui décrit la diffraction de Bragg, et ce formalisme est appliqué aux in-
terféromètres atomiques dans le but de déterminer les phases en jeu dans l’interféromètre
de Bell.

Dans le chapitre 5 est décrite la stratégie originale que nous avons élaborée afin
d’assurer le contrôle de la phase relative entre les deux doublets A et B. Le principe
consiste à utiliser le fait que les deux doublets couplés par la diffraction de Bragg n’ont
pas la même fréquence de résonance. De cette façon, lors de la séparatrice, une modula-
tion de la pulsation de Rabi à deux photons permet d’être résonant avec deux doublets,
dont l’écart est fixé en choisissant la fréquence de la fonction de modulation. Une même
séparatrice Bragg joue alors le rôle de deux séparatrices, chacune résonante avec un dou-
blet. On peut alors, en ajoutant une phase à l’origine à cette pulsation de Rabi à deux
photons, piloter la différence de phase imprimée entre les deux doublets. Un point impor-
tant est que cette différence de phase est le paramètre de contrôle qui permet de piloter
les interférences à deux particules de l’interféromètre de Bell. Ainsi, en modifiant la phase
à l’origine de la fonction de modulation, on peut contrôler cette différence de phase entre
les deux doublets et ainsi piloter les corrélations entre les particules détectées.

En utilisant les mêmes faisceaux pour les deux doublets, cette stratégie de contrôle de
phase assure que la différence de phase imprimée entre les deux doublets ne dépend pas
de la différence de phase entre les lasers. Cette réjection de mode commun constitue un
avantage pour l’observation d’une interférence avec un bon contraste, car l’interféromètre
est ainsi, par construction, insensible aux fluctuations de phase relatives entre les faisceaux
Bragg, susceptibles de diminuer le contraste des interférences.

On peut résoudre l’équation de Schrödinger numériquement pour ces séparatrices
Bragg modulées afin d’estimer le contraste des interférences Bragg que l’on peut chercher à
obtenir. En prenant en compte l’influence de la classe de vitesse sur le profil de réflectivité,
on trouve que l’oscillation du paramètre de Bell, qui quantifie la force des corrélations,
n’est pas maximale. En effet, les séparatrices résonantes avec chacun des deux doublets
ne sont pas indépendantes du fait du profil de réflectivité évasé de chaque séparatrice en
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fonction de la classe de vitesse. Pour améliorer ce contraste, on montre qu’il est possible de
réaliser des séparatrices et des miroirs dont le profil temporel a une forme de sinus cardinal.

Dans le chapitre 6, on décrit la mise en place expérimentale des impulsions Bragg
en forme de sinus cardinal, qui nécessite un asservissement de la puissance des faisceaux
ainsi qu’un dispositif appelé phase shifter qui permet d’ajouter des phases de π entre les
faisceaux lasers de façon contrôlée. Pour démontrer notre capacité à contrôler la phase
imprimée sur les atomes, on réalise une expérience de Ramsey, qui consiste à faire interférer
sur le MCP deux condensats qui ont la même impulsion mais qui ne sont pas tombés de la
même hauteur. La figure d’interférence ainsi observée peut alors être décalée en ajustant
la tension dans le phase shifter.

On réalise alors des impulsions Bragg façonnées, en forme de sinus cardinal, ou modulées
sinusöıdalement, que l’on caractérise en détails. Les résultats démontrent notre capacité
à contrôler très finement la classe de vitesse sélectionnée pour le transfert Bragg, et vali-
dent le principe des séparatrices modulées pour avoir deux fréquences de résonance. En
réalisant une interférence de Ramsey avec de telles séparatrices modulées, on montre que
les interférences se décalent dans des sens opposées entre les doublets A et B quand on
fait varier la phase à l’origine de la fonction de modulation, ce qui valide la stratégie de
contrôle de phase puisqu’on arrive bien à imprimer une phase opposée sur chaque doublet.

Enfin, on réalise une expérience d’interférences à deux particules de type Hong-Ou-
Mandel à l’aide de la source de paires, de façon à déterminer les temps auxquels on doit
appliquer les impulsions Bragg pour l’expérience de Bell. Réalisée pour la première fois
avec des impulsions en forme de sinus cardinal, cette expérience permet en effet de repérer
à quel moment on doit appliquer la séparatrice de Bragg pour que les particules soient
indiscernables. Après cette calibration, présentée dans le chapitre 7, l’expérience de Bell a
été lancée mais n’a pas donné lieu à l’observation de corrélations à deux atomes. Depuis,
des causes probables ont été identifiées pour expliquer pourquoi le signal de Bell n’a pas
été observé. Les résultats sont encourageants, et notre capacité à contrôler très finement
la diffraction de Bragg constitue une étape importante vers la réalisation prochaine d’un
nouveau test de Bell.
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Introduction

A brief history of entanglement

In the 1920s, a group of physicists embarked on the development of quantum theory
to explain certain perplexing observations that defied classical models. It was M. Planck
in 1900 who initially introduced the concept of quantized energy to account for blackbody
radiation[1]. Subsequently, A. Einstein proposed a model in 1905 to explain the photo-
electric effect[2], employing the idea of light particles and building on Planck’s notion of
energy quantization. In 1913, N. Bohr incorporated energy quantization into his renowned
atomic model[3], aiming to elucidate atomic spectra.

Gradually, a mathematical framework emerged to describe a quantum system, char-
acterize its evolution and properties, and account for experimental observations. E.
Schrödinger and W. Heisenberg significantly contributed to formalizing quantum me-
chanics in complementary ways around 1925, with Heisenberg using matrix notation and
Schrödinger employing a wave function formulation defined in a complex vector space
called a Hilbert space, and governed by the equation now bearing his name. Schrödinger
demonstrated the equivalence of their two formalisms, and with the contribution of M.
Born in 1926, they established that observables in quantum mechanics are represented by
Hermitian operators, and the squared modulus of the wave function can be interpreted as
measurement probabilities. Shortly thereafter, J. von Neumann formulated a first axiom-
atization of quantum mechanics and Dirac introduced the bra-ket notation, simplifying
the mathematical description of quantum concepts.

Thus, a quantum system is represented by a state defined in a Hilbert space, and its
evolution is determined by a Hamiltonian, a Hermitian operator that describes the en-
ergies involved between the system and its environment. Very importantly, in quantum
mechanics, not only does the measurement result of an observable have a certain probabil-
ity, equal to one of the eigenvalues of the measured observable, but also the measurement
projects the state of the system onto the associated eigenstate. The future evolution of
the system is described by the Schrödinger equation, but now with the system’s state that
has been projected by the measurement.

The establishment of this formalism by the physicists now recognized as the pioneers of
quantum mechanics was marked not only by a constant concern to account for experimen-
tal results but also by a determination to draw implications from this nascent theory. One
of its strengths lies in its ability to predict experimental outcomes. It is indeed possible to
describe sometimes very simply the evolution of a simple quantum system subject to con-
straints characterized by a potential term in the system’s Hamiltonian, which represents
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INTRODUCTION

its energy. Numerous experiments have confirmed predictions of quantum theory, such as
the Stern–Gerlach experiment (1922) which demonstrated the quantization of the spatial
orientation of angular momentum, and which has allowed, through the measurement of a
particle’s spin, for the verification of quantum theory predictions related to the projection
of a quantum state by measurement.

One of the most striking results of quantum mechanics is the phenomenon of entan-
glement, which occurs when a system of two (or more) particles cannot be independently
described but must be considered as an inseparable whole, regardless of the distance be-
tween them. An important consequence is that the measurement result of an observable on
one of these particles will be correlated with the measurement result on the other particle,
sometimes perfectly correlated. This means that, for an entangled system, measuring an
observable on only one of the two particles affects the entire system. This can lead to the
observation of very strong correlations in the measurements of the physical properties of
both particles, so strong that they cannot be explained classically.

In 1935, A. Einstein, B. Podolsky, and N. Rosen published a paper[4] in which they
emphasized the inherently counterintuitive nature of this theory, in which the result of a
measurement is intrinsically probabilistic. They gave the example of entangled particles (a
term introduced shortly afterward by Schrödinger): if one measures the position of one of
the two particles, then one can predict with certainty the position of the other, and likewise
if one measures the momentum of one, one can predict the momentum of the other, as
if the information about the measurement could be instantaneously transmitted from one
particle to the other, which would violate the principle of special relativity, according to
which no information can propagate faster than the speed of light. They drew important
consequences regarding the very nature of quantum theory: either it is incomplete and
there exist hidden variables to which we do not have access and which would allow for
deterministic predictions of measurement outcomes, or the theory is complete, but one
must abandon the assumption of locality, meaning the idea that changes made in one
region of space cannot instantaneously influence another distant region. This gave rise to
a famous debate between Einstein and Bohr, advocates of the first and second options,
respectively.

The debate remained solely philosophical and a matter of interpretation until 1964
when J. Bell mathematically proved that the assumption of locality is inherently incom-
patible with the predictions of quantum theory[5]. This breakthrough paved the way for
experiments that could settle the dispute between Einstein and Bohr, known as Bell tests.
The idea is, of course, to use a system of entangled particles and highlight correlations so
strong that even a hidden-variable model would not be able to explain them. To achieve
this, one should determine a quantity (called the Bell parameter), from measurements of
correlation properties of the system, that has a limit for local theories but which can be ex-
ceeded by quantum mechanics. It is then said that there is a violation of the Bell inequality.

It is noteworthy that while quantum mechanics can, in specific cases, lead to a violation
of the Bell inequality, this is generally not the case. It is not straightforward to demonstrate
quantum measurements outcomes that do not verify the Bell inequality, and special efforts
are required to achieve it. Following an article by J. Clauser, M. Horne, A. Shimony, and
R. Holt[6], which formulates a Bell inequality in a practical form for experimental testing,
the first Bell tests were conducted using photons in the 1970s in the United States by J.
Clauser[7], and E. Fry[8], yielding early results that tended to confirm the non-local nature
of quantum mechanics. However, these tests had shortcomings, and it was only with the
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experiments conducted by A. Aspect in Orsay from 1975 to 1982[9][10], using a high flux
source of entangled photons, that the experimental results highlighted a violation of the
Bell inequality by 40 standard deviations.

Following a scheme initially introduced by D. Bohm, the experiment involves generat-
ing two photons with entangled polarization degrees of freedom. The photons then move
away from each other, and correlations between the polarization measurements of one
photon and the other are studied. With quantum mechanics, it can be shown that the
joint probabilities of measuring both photons in the same polarization state (for instance)
varies sinusoidally with the angle between the two polarizers used for the measurement.
To ensure the fundamentally non-local nature of the measurement result, it is crucial to
separate the two measurement sites by a space-like interval. To do so, the time between
the choice of measurement parameters and the measurement itself must be shorter than
the time it takes for light to travel from one site to the other. To achieve this, Aspect
and his team implemented an ultra-fast switch which would change the polarizer’s angles
so that the choice of the measurement angle could be made during the time of flight of
the photons[11]. They exhibited a Bell violation by 6 standard deviations, providing, for
the first time, solid experimental evidence for the non-local nature of the measurement,
as predicted by quantum mechanics.

Over time, with scientific and technological advancements, it became possible to con-
duct further experiments to confirm this result, using particles other than photons and
exploring different degrees of freedom for entanglement. Let us mention, for example, the
experiment conducted by J. Rarity and P. Tapster[12] in 1990, who successfully performed
a Bell inequality test involving pairs of photons with the same polarization but following
four different optical paths, following an interferometric scheme proposed by M. Horne, A.
Shimony, and A. Zeilinger[13]. In this experiment, the photons are entangled in momen-
tum, marking the first Bell test involving an external degree of freedom of the particles.
In 1998, the team of Zeilinger conducted a Bell test similar to the one of Aspect, but
using a quantum process to randomize the choice of the measurement during the time of
flight, definitely closing the so-called locality loophole[14]. This progress continued until
2015 when three independent experiments[15][16][17] provided evidence of Bell inequality
violations that ruled out any loopholes. The current consensus is that quantum theory,
never proven wrong so far, has successfully challenged the principle of locality in space-
time through the strong correlation properties inherent in entangled states. Beyond being
mere subjects of study, these states have such unique properties that they can be harnessed
in technological applications, ranging from quantum cryptography to quantum computing.

The ideas of quantum mechanics have progressed, and simultaneously the properties
of quantized light have been studied and used, leading to the emergence of quantum
optics, and to technological developments such as the laser. Not only do we now have a
better understanding of how to prepare, control, and detect photons, but there is also an
improved understanding of the interaction mechanisms between light and matter. This
has paved the way for atomic physics, involving the manipulation of atoms and the study
of their quantum properties. The laser cooling of atoms resulted in the observation in 1995
of a phenomenon predicted by A. Einstein and S. Bose, a phase transition of a bosonic
atomic gas at very low temperature into a state of matter where almost all atoms are in
the same quantum state[18]. This state, known as the Bose-Einstein condensate, enables
the formation of a coherent reservoir of atoms in a specific quantum state, making it
possible to conduct experiments that were once merely thought experiments during the
development of quantum theory in the 1920s and 30s.
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Similar to photons, it is then possible to study the quantum properties of atoms, in-
cluding entanglement. But observing non-classical correlations with atoms remains an
experimental challenge, especially when attempting to do so using an external degree of
freedom for entanglement. While successful Bell tests have been conducted with atoms
using their spin, it has not been the case with atoms entangled in momentum, as originally
envisioned by Einstein, Podolsky, and Rosen.

Description of the thesis project

This historically rich context is the framework of my thesis project. The Quantum
Atomic Optics team at the Charles Fabry Laboratory of the Institute d’Optique, that I
joined in March 2020, is specialized in manipulating ultra-cold metastable helium atoms.
These atoms possess the unique feature of having high internal energy, allowing their de-
tection when they collide onto a metallic surface, thereby extracting electrons from it.
An ingenious detection system, called a microchannel plate, then amplifies the detection
signal using an electron cascade. Coupled with the use of so-called delay lines[19], this
system not only enables the detection of individual atoms but also allows retrieving the
particle velocities before their impact on the plate. This detailed knowledge of the momen-
tum distribution of helium atoms can be leveraged to study their correlation properties.
The experimental platform thus makes it feasible to conduct experiments historically per-
formed with photons, but this time using atoms: this is what is called quantum atomic
optics.

For the past few years, the team has been able to create pairs of twin atoms with differ-
ent momenta from a Bose-Einstein condensate using a process called four-wave mixing[20].
These atom pairs have led to the observation of non-classical correlations[21], suggesting
that momentum modes are entangled. The goal of my thesis is to implement a Bell in-
terferometer, inspired by the scheme of Rarity and Tapster, to demonstrate a violation of
the Bell inequality with atoms entangled in momentum.

While this experiment is situated in a context with significant implications for the non-
local nature of spacetime, we will not delve into such considerations here. The stringent
experimental constraints do not allow closing the locality loophole. Nevertheless, demon-
strating a violation of the Bell inequality remains an important objective, serving both as
a test for quantum mechanics and as a clear affirmation that the system subjected to the
Bell interferometer is entangled and exhibits correlations stronger than what could be ob-
tained classically. Such a result would pave the way for a new generation of experiments,
which could further close loopholes and verify the possibility of violating Bell inequalities
with entangled massive particles via an external degree of freedom. This aspect also sparks
the curiosity of another scientific community, aiming to study and conduct experiments in-
volving both entanglement and gravity to analyze gravitational decoherence mechanisms,
aiming to develop a theory unifying quantum physics and gravity[22].

My work has involved setting up a Bell interferometer, an objective pursued by the
team for several years but delayed due to technical issues and breakdowns in the exper-
imental platform, which has been in place for many years. I contributed to the upgrade
and modernization of the experiment, aiming to achieve a stable Bose-Einstein conden-
sate to facilitate the reliable and reproducible execution of interferometric experiments.
Subsequently, our team gradually implemented the necessary components for constructing
the interferometer: the atom pairs emission process and the study of their correlations,
followed by the setting up of atom mirrors and beam splitters. I particularly contributed
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to the development of the latter, involving the realization of two-photon transitions to
transfer momentum to atoms through a coherent process known as Bragg diffraction. The
initial interferometric results for testing these mirrors and splitters yielded conclusive out-
comes detailed in this thesis. A first Bell test was conducted in October 2023, but no
correlation signal was observed. Encouraging avenues to explain this and continue our
quest for Bell inequality violation will be discussed at the end of this manuscript.

Outline of the manuscript

This manuscript is divided into 7 chapters.

1. Quantum atom optics experiments as probes of non-classical correlations

This introductory chapter presents the framework within which this thesis is situated.
We introduce the concept of correlation in quantum systems along with suitable tools for
their study. The principle of a Bell test is presented using the example of photons, as
this experiment is designed to highlight correlations so strong that they constitute the
signature of the purely quantum phenomenon of entanglement. We show that the recent
developments of quantum atom optics, in particular with metastable helium, make it pos-
sible to perform a similar test with momentum correlated atoms.

2. Experimental setup: preparation of a metastable Helium Bose-Einstein Condensate

In this chapter, we present the experimental setup through which a Bose-Einstein
condensate of metastable helium can be obtained, marking the initial step towards the
realization of a Bell test. The use of a microchannel plate (MCP) combined with delay
lines makes it possible to have a three-dimensional single-atom detector, which enables
the determination of the momentum of each detected atom before their fall on the MCP,
as detailed in this chapter. Additionally, we provide some characteristics of the obtained
condensates through an analysis of the clouds after time of flight.

3. Emission of momentum pairs of atoms

In order to emit pairs of correlated atoms, we use the interactions between atoms in
the condensate, which we subject to an optical lattice. We exploit the dispersion relation
of atoms in the lattice to generate pairs of atoms, emitted from the condensate at different
momenta. This phenomenon, known as four-wave mixing, is presented in this chapter,
along with the results obtained during this thesis to characterize the emitted pairs and to
highlight correlations between coupled momentum modes.

4. Interferometer theory: from Bragg diffraction to Bell tests

In this chapter, we delve into greater detail regarding the strategy adopted to set up
a Bell interferometer with momentum correlated atoms, which involves the use of mir-
rors and beam splitters that transfer momentum to atoms by Bragg diffraction. After
discussing a recent test conducted in another configuration, we provide a presentation of
Bragg diffraction. An important aspect of our setup consists in exploiting the fact that
the two momentum doublets involved in the Bell interferometer do not have the same
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resonance frequency, thus we place particular importance on the spectral dimension of the
Bragg mirrors and beam splitters. To calculate the phase involved in the Bell interferom-
eter, we present basic concepts of atom interferometry allowing for the general calculation
of phase shifts that occur in interferometers, due to the propagation of wavepackets along
with the interaction with light. The results are applied to the well-known case of the
Mach-Zehnder interferometer before being applied to the case of the Bell interferometer.

5. Bragg pulses shaping and phase control for a Bell test

A preliminary step towards the realization of a Bell test is to perform of a Hong-
Ou-Mandel (HOM) interferometer, which allows for the detection of the interferometer
closure. It turns out that, thanks to our multimode source, we can simultaneously im-
plement Bell interferometers alongside an HOM interferometer. Despite the fact that the
Bell phase cannot be controlled, it can provide useful information regarding the possibility
of observing Bell correlations. In this chapter, we use this idea along with the formalism
developed in the previous chapter to discuss past results obtained within the team, be-
fore detailing the strategy adopted to control the Bell phase in a genuine Bell test, which
involves imprinting on the atoms a tunable phase by modulating the amplitude of the
Bragg beam splitter pulse. We also show that it is possible to enhance the Bell correlation
signal by realizing sinc-shaped Bragg pulses. These discussions are based on the results of
simulations I developed during the thesis, which consist in numerically solving the Bragg
coupling equations between momentum states.

6. Experimental preparation of the Bragg pulses: interferometric experiments

In this chapter, we describe the experimental setup of the Bragg pulses and provide
proof of principle of their proper functioning. Using a power feedback control and a phase
shifter, we can shape a Bragg pulse into any desired form, resulting in a Rabi frequency
that can be negative or even complex. To ensure that we control the phase imprinted on
the atoms as desired, we interfere two condensates using a Ramsey-type interferometer,
demonstrating that we can shift the observed interference pattern in a controlled and re-
producible manner. Additionally, we present the results obtained with sinc-shaped pulses,
which we employ in a Mach-Zehnder interferometer in an attempt to measure the value
of gravity.

7. Hong-Ou-Mandel experiment and Bell inequality test

Finally, this last chapter describes the preliminary results recently obtained for an
HOM interferometer realized with sinc-shaped Bragg pulses. A HOM dip has been ob-
served, and its characteristics are discussed. Following these encouraging results, a first
Bell test was conducted in October 2023 but did not lead to the observation of Bell corre-
lations. Several possible explanations are provided to try to explain the absence of signal
as several potential sources of errors have been identified since then.
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CHAPTER 1. QUANTUM ATOM OPTICS EXPERIMENTS AS PROBES OF NON CLASSICAL CORRELATIONS

In this chapter, we will introduce the concepts and tools developed by quantum optics
to study light sources and their properties. It will be demonstrated that these tools can also
be employed to describe atomic sources, and we will justify the significance of conducting
quantum optics experiments with atoms.

1.1 Correlations in classical and quantum optics

1.1.1 Correlations in classical optics

Interferences in classical optics

Let us consider a light source that we use as an input in an interferometric device,
whether it be a Michelson interferometer (using amplitude division) or a Young’s double-
slit interferometer (using wavefront division). A light detector, capable of measuring light
intensity, is placed at a fixed location in the interference zone (Figures 1.1 and 1.2).

Figure 1.1: Scheme of a Michelson interferometer. A light source sends light onto a 50/50
beam splitter. The two resulting beams are each reflected off a mirror and then recombined at the
beam splitter. A photodetector collects the resulting light.

Figure 1.2: Scheme of a Young interferometer. Two light rays originating from the same
source are diffracted by two slits. A detector collects the beams emanating from the two slits.

The total electric field at the detector is the sum of the two electric fields originating
from the two secondary sources permitted by the interferometric device. Let’s assume a
non-zero path length difference between the two light paths, resulting in a time delay τ
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between the interfering waves. The electric intensity at the detector is then expressed as:

I = 〈|E(t) + E(t+ τ)|2〉 (1.1)

where 〈. . .〉 corresponds to the time averaging of the detector. Expanding this expression,
we obtain

I = 〈|E(t)2|〉+ 〈|E(t+ τ)|2〉+ 2 Re 〈E(t)E∗(t+ τ)〉 (1.2)

For a stationary source for which 〈|E(t)2|〉 = 〈|E(t+ τ)|2〉 = 〈|E|2〉 = I0, this can be
rewritten:

I = 2I0

[
1 + Re

(
g(1)(τ)

)]
(1.3)

where

g(1)(τ) =
〈E(t)E∗(t+ τ)〉

〈|E|2〉 (1.4)

This function g(1) is called the normalized first order correlation function, and contains
crucial information for characterizing the coherence properties of the source. For inter-
ference to occur, it is necessary for g(1) to be different from 0. If E(t) and E(t + τ) are
independent random variables, then 〈E(t)E(t+ τ)〉 = 〈E(t)〉 〈E(t+ τ)〉 and so g(1) = 0.
This highlights the fact that the first order correlation function thus quantifies the tem-
poral correlation between these two quantities.

Note that g(1) is directly related to the spectral properties of the light source. Indeed, if
we consider a source containing multiple spectral components, there is complete blurring
of interferences beyond a certain delay τ , which occurs more quickly as the source is
spectrally rich in spectral components. This is the Wiener-Khintchine theorem, which
expresses the first order correlation function as the Fourier transform of the normalized
spectral density s(ω) through the relationship:

g(1)(τ) =

∫ +∞

−∞
s(ω) eiωτdω (1.5)

Thus, by using only a light sensor and detecting the intensity resulting from an in-
terference signal, one can measure correlation properties related to the amplitude of the
electric field. This allows the deduction information about the coherence of the source.

The Hanbury Brown and Twiss experiment

Now, it is possible to go even further by looking at intensity correlations, involving
four values of the electric field. This method, introduced by R. Hanbury Brown in order to
measure the angular diameter of stars, involves two detectors and enables the probing of
higher-order correlations. Together with R. Twiss, they conducted a famous experiment,
now known as the Hanbury Brown and Twiss (HBT) experiment[23], to demonstrate the
validity of the idea.

The principle of the experiment is as follows. One studies the light from a star,
considered as an incoherent source with a certain spatial extent. Using filters, the light
signal is made monochromatic. A beam splitter is used to divide the light beam into
two, directed towards two separate detectors. The light intensity is then measured at two
points, r1 and r2, as close to each other than one wants (Figure 1.3).
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Figure 1.3: Scheme of the Hanbury Brown and Twiss setup. A spatially extended source
emits light onto a 50/50 beam splitter. The intensity is collected at each output of the beam splitter,
and a detection system allows access to the correlation signal between these two intensities.

The electrical signals from these two detectors are then combined, providing access to
the second-order correlation function, defined as:

G(2)(r1, r2) = 〈I(r1)I(r2)〉 = 〈E(r1)E∗(r1)E(r2)E∗(r2)〉 (1.6)

To describe the light emitted by the star, one can use the Fraunhofer integral, which
characterizes the electric field emitted by a collection of incoherent sources when the
observation distance D is much greater than the wavelength λ and the size S of the
source:

E(r) =

∫
S
E(s) e

iπ
λD
|r−s|2ds (1.7)

where s designates a point from the star, which is assumed to be uncorrelated with the
others. It is then possible to apply the central limit theorem to show that the total electric
field at each point r results from a Gaussian random process. As a result, G(2)(r1, r2) can
be rewritten1

G(2)(r1, r2) = 〈I(r1)〉 〈I(r2)〉+ 〈E(r1)E∗(r2)〉 〈E(r2)E∗(r1)〉 (1.8)

From the second term, we can identify the spatial analogue of the first-order correlation
function defined earlier. Using 1.7, we get:

G(1)(r1, r2) = 〈E(r1)E∗(r2)〉 =

∫∫
S
〈E(s1)E∗(s2)〉 e− iπ

λD (|r2−s2|2−|r1−s1|2)ds1ds2 (1.9)

Using the fact that each point has no phase relation with another due to the source
incoherence, we have 〈E(s1)E∗(s2)〉 = I(s1) δs1,s2 , so that

G(1)(r1, r2) =

∫
S
I(s1) e−

2iπ
λD

(r2−r1).s1ds1 (1.10)

This is the van Cittert–Zernike theorem, which expresses the first-order spatial cor-
relation function as the Fourier transform of the spatial intensity profile. Similarly to
the temporal case, the first order correlation function contains the information about the

1Using the Gaussian Moment Theorem for this fourth order correlation function in terms of electric
field.

25



CHAPTER 1. QUANTUM ATOM OPTICS EXPERIMENTS AS PROBES OF NON CLASSICAL CORRELATIONS

coherence of the source. Indeed, for a homogeneous source intensity, G(1)(r1 − r2) decays
on a scale `c called the correlation length of the source, inversely proportional to its size
L.

The expression of the second order correlation function can be normalized by the
product 〈I(r1)〉 〈I(r2)〉 of the mean intensities, which defines the normalized second-order
correlation function, given by:

g(2)(r1, r2) = 1 + |g(1)(r1, r2)|2 (1.11)

The shape of g(2)(r1 − r2) is depicted in Figure 1.4. When r1 = r2, it reaches 2,
and decreases gradually as r1 − r2 increases. When r1 − r2 ≥ `c, then g(2) = 1. The
Hanbury Brown and Twiss method thus provides a means to access information about
the spatial coherence of the source. By varying the position of the detectors, one can
obtain the coherence length of the star and consequently deduce its size, which they used
to successfully measure the diameter of Sirius.

1 2

1

2

0

∆r

`c

g(2)(∆r)

Figure 1.4: Shape of the second order correlation function g(2) as a function of the detec-
tors position difference ∆r = r1 − r2 in the HBT experiment.

1.1.2 Entanglement and correlations in quantum optics

Quantum interpretation of the Hanbury Brown and Twiss effect

In the 1950s, the HBT experiment faced significant skepticism[24] due to its surpris-
ing interpretation in terms of photons. With the advent of light detectors based on the
photoelectric effect, it was now possible to treat the current received by a sensor as the
probability of detecting a photon, so that I(r) ∝ P(r), where P(r) designates the prob-
ability of measuring one photon at position r. Thus, we can reinterpret the second-order
correlation function in the form:

g(2)(r1, r2) =
P(r1, r2)

P(r1)P(r2)
(1.12)

where P(r1, r2) is the joint probability to detect simultaneously one photon at position r1

and one photon at position r2.
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Surprisingly, when r1 = r2, as we showed that g(2) = 2, this would mean that the
probability of detecting two photons at the same position is two times greater than the
probability of detecting them independently, suggesting that the photons “come in pairs”.
This can seem false at first, since photons emitted at different, possibly very distant, points
of a star, would be a priori considered to be independent.

An explanation of this phenomenon was provided in 1961 by U. Fano[25], using a
simple model consisting of only two points from the source, noted A and B. Two photons
are considered to be emitted from these two source points. When a particle is detected
by one of the two sensors, it is impossible to know which path it took; it could have been
emitted by A or B (Figure 1.5).

Figure 1.5: Input and ouput modes of the beam-spitter.

To account for this, the two-particle state at the detector level must be written as the
superposition of both possibilities, namely:

|ψ〉 =
1√
2

(|A,B〉+ |B,A〉) (1.13)

In this two-particle basis, |A,B〉 = |A〉1 ⊗ |B〉2 means that particle 1 was emitted by
source A while particle 2 was emitted by source B. Note that the expression of the state
1.13 is directly related to the indistinguishability of the two particles. Since photons are
bosons, the state must be symmetric with respect to the interchange of the particles, which
justifies the + sign between the two terms (it would be a − sign for fermions).

The probability of detecting atoms in both detectors noted D1 and D2 is therefore
P(D1, D2) = | 〈D1, D2|ψ〉 |2 so that

P(D1, D2) =
1

2

(
| 〈D1, D2|A,B〉 |2 + | 〈D1, D2|B,A〉 |2

+ 2 Re 〈D1, D2|A,B〉 〈D1, D2|B,A〉)
(1.14)

We observe the emergence of an interference term, which depends on the phase rela-
tionship between the particles. If the two photons are statistically independent, then this
term vanishes when averaging over all the points from the source and we have:

Pind(D1, D2) = P(D1)P(D2) =
1

2

(
| 〈D1, D2|A,B〉 |2 + | 〈D1, D2|B,A〉 |2

)
(1.15)

If the two photons are coherent and the distance between the detectors is small enough,
then the interference term is not zero but depends on the distance between the two detec-
tors. When this distance is zero, we get 〈D1, D2|B,A〉 = 〈D1, D2|A,B〉, so the interference
is constructive and we obtain

P(D1 = D2) = | 〈D1, D2|A,B〉 |2 + | 〈D1, D2|B,A〉 |2 = 2Pind(D1, D2) (1.16)
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which is the result we found using a classical reasoning by treating light as a wave.

With this simple two-photon interference model, we can understand the HBT result
as a consequence of the bosonic nature of the two-particle state, leading to what is known
as a bosonic bunching effect. Thermal bosons tend to be emitted in pairs, resulting in sig-
nificant correlations. This correlation is related to expressing the two-particle state as the
sum of two inseparable terms, leading to interference. Such a state corresponds, in fact,
to what is commonly referred to as an entangled state. This example highlights the im-
portance of entangled states when studying the correlation properties of quantum systems.

Second quantization formalism

To demonstrate this effect by treating light in a quantum manner, it is possible to
use the formalism of second quantization by introducing the creation and annihilation
operators â† and â. By modeling the process of photodetection as the transition of an
electron from a bound state to a continuum state in a semiconductor material, it is possible
to show, using the Hamiltonian of the light-atom interaction and Fermi’s golden rule, that
the mean transition rate w (and thus the associated photocurrent) for a given state of
light |ψ〉 is given by[26]:

w ∝ 〈â†â〉 = 〈ψ|â†â|ψ〉 (1.17)

Here, the notation 〈. . .〉 designates the quantum measurement, i.e., the quantum average of
an operator over a state |ψ〉. Note that w is actually the quantum version of the normalized
first order correlation function g(1) for the annihilation operator, which ultimately involves
counting the number of photons received by a detector, as it can be observed by introducing
the number operator N̂ = â†â.

Similarly, the joint measurement of photons in two detectors 1 and 2 is related to the
normalized second order correlation function, defined as

g(2)(1, 2) =
〈â†1â†2â2â1〉
〈â†1â1〉 〈â†2â2〉

(1.18)

where â†i and âi are the creation and annihilation operators of a photon in detector i,
respectively.

This is the formalism developed by R. Glauber to describe the HBT experiment[27].
More generally, he introduced normalized n-th order correlation functions as

g(n)(1, 2, . . . , n) =
〈â†1â†2 · · · â†n−1â

†
nânân−1 · · · â2â1〉

〈â†1â1〉 〈â†2â2〉 · · · 〈â†nân〉
=

G(n)(1, 2, . . . , n)

〈â†1â1〉 〈â†2â2〉 · · · 〈â†nân〉
(1.19)

where G(n)(1, 2, . . . , n) is the non normalized n-th order correlation function.

Let us conclude on the Hanbury Brown and Twiss experiment. When the two detectors
are at the same position (r1 = r2), the second order correlation function is

g(2)(r1, r2 = r1) =
〈â†â†ââ〉
〈â†â〉2

(1.20)
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Using the commutation relation for bosons [ââ†] = 1, we get

g(2)(r1, r2 = r1) =
〈â†(ââ† − 1)â〉
〈â†â〉2

=
〈N̂2〉 − 〈N̂〉
〈N̂〉2

= 1 +
σ2
N − 〈N̂〉
〈N̂〉2

(1.21)

where σ2
N is the variance of the number of photons. We can see that g(2) depends on the

distribution statistics of the source. For a thermal light following Planck’s distribution, it
can be shown that the variance is

σ2
N = 〈N〉2 + 〈N〉 (1.22)

By inserting this in equation 1.20, we find the bosonic bunching relation:

g(2)(r1, r2 = r1) = 2 (1.23)

Note that, for a laser, the number of photons follows a Poisson law for which σ2
N = 〈N̂〉,

so that g(2)(r1, r2) = 1.

Notion of entanglement

Let us briefly present and discuss the concept of entanglement, previously introduced
to describe the bosonic state of two particles. We consider a physical system with two
degrees of freedom, denoted as A and B[28]. The space in which to describe the system
is a tensor product Hilbert space, denoted as E = EA ⊗ EB. The factorized state

|ψ〉 = |α〉 ⊗ |β〉 (1.24)

belongs to this space. This means that sub-system A is in state α and sub-system B is in
state β. Due to the properties of the Hilbert space, the following state

|ψ〉 =
1√
2

(|α1〉 ⊗ |β1〉+ |α2〉 ⊗ |β2〉) =
1√
2

(|α1, β1〉+ |α2, β2〉) (1.25)

also represents a state of the system (where the 1/
√

2 factor is just a normalization factor).
This remark may appear trivial, but its consequences are of utmost significance. Indeed,
this state results in very strong correlations between the degrees of freedom A and B.

Indeed, if we measure both the degrees of freedom A and B, we find either α1 for A
and β1 for B, with a probability of 1/2, or α2 for A and β2 for B, with a probability of
1/2, but the probability of measuring α1 for A and α2 for B is zero:

P(α1, β1) = | 〈α1, β1|ψ〉 |2 =
1

2

P(α2, β2) = | 〈α2, β2|ψ〉 |2 =
1

2

P(α1, β2) = | 〈α1, β2|ψ〉 |2 = 0

P(α2, β1) = | 〈α2, β1|ψ〉 |2 = 0

(1.26)

Note that the probability of measuring α1 is given by:

P(α1) = P(α1, β1) + P(α1, β2) =
1

2
(1.27)
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and so on for the other probabilities of measuring α2, β1, β2. Now, it is important
to highlight that the conditional probability of measuring β1, given that α1 has been
measured, is equal to

P(β1|α1) =
P(α1, β1)

P(α1)
= 1 (1.28)

This mathematically evident result nevertheless has very important consequences. In-
deed, if we now consider that the two degrees of freedom are two different particles, possibly
widely separated from each other, it is striking to note that, regardless of the outcome
of the measurement on one of the two particles, the result of the other particle can be
predicted with a probability of 1. This very strong correlation, inherent to the entangled
state in quantum mechanics, lies at the heart of the discussions that took place between
Einstein and Bohr.

As a consequence, one sub-system cannot be described independently from the other,
the system must be considered as an inseparable whole. This non-separability is proper
to quantum mechanics and can be taken as a definition for entanglement.

1.2 Experimental evidence of non classical correlations in optics

There are different ways of demonstrating that the correlations in systems of multiple
particles cannot be explained by classical physics. We will mention just a few of them,
which will be of particular importance in the subsequent sections of this manuscript.

1.2.1 Sub-shot-noise measurements

Let us consider a classical source of light, characterized by a Poissonian distribution
law, like a laser. Light can be described as a coherent state |α〉, where α is the parameter
of the Poissonian distribution. Recall that |α〉 is an eigenstate of the annihilation operator
â.

Due to the distribution statistics of the source, when using a photodetector to detect
its light, the rate of photon detection will change from one realization to the other. Its
mean value w is

w = 〈â†â〉 = 〈α|â†â|α〉 = |α|2 (1.29)

This is, by definition, the value of the mean number of photons 〈N〉 involved in the
measurement. On the other hand, the variance of w is

V (w) = (σw)2 = 〈(â†â)2〉 − 〈â†â〉2 = 〈â†â†ââ+ â†â〉 − |α|4 = |α|2 (1.30)

where σw is the standard deviation of the intensity measurement. Therefore, the relative
precision of a measurement of w is:

σw
w

=
1

|α| =
1√
〈N〉

(1.31)

As we can see, the precision is limited by the square root of the number of detected
photons. Even the most stable classical flux exhibits such noise. This intrinsic limitation
is called shot noise.
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Figure 1.6: Scheme of a source emitting particles in two opposite directions.

Similarly, let us consider a classical system emitting particles in two different directions,
on which we place two detectors A and B (Figure 1.6).

In each direction, an average of 〈N〉 particles are emitted. The source follows a Pois-
sonian distribution law, so that the variance of the particles number in each beam is also
equal to 〈N〉, as shown previously. If we consider the photon difference ∆N = NA −NB

measured between the two detectors, the variance of this observable is equal to the sum of
the two variances of the particles number detected in both beams, so V (∆N) = N +N =
2N . Again, this boundary is due to shot noise because of the intrinsic fluctuations of the
number of photons emitted by the source.

In quantum mechanics, some highly quantum states make it possible to surpass this
classical limit, leading to the observation of what is called a sub-shot noise variance. Let
us consider for instance the twin-Fock state

|ψ〉 = |N〉A ⊗ |N〉B = |N,N〉 (1.32)

for which there are exactly N photons in beam A and N photons in beam B. For this
state, the average photon number difference is obviously

〈∆N̂〉 = 〈N̂A〉 − 〈N̂B〉 = N −N = 0 (1.33)

but more importantly, its variance is

V (∆N̂) = 〈∆N̂2〉 − 〈∆N〉2 = 〈N̂2
A〉 − 2 〈N̂AN̂B〉+ 〈N̂2

B〉 = 0 (1.34)

The variance then drops to zero (for a detector with a perfect quantum efficiency), which
clearly beats the classical limit.

In practice, achieving such a state is experimentally challenging. However, it is possible
to create states that are linear combinations of Fock states[29][30]. They can be expressed
in the form:

|ψ〉 =

+∞∑
n=0

γn |n, n〉 (1.35)

Such states are called two-mode squeezed state. Like twin-Fock states, they lead to
a variance equal to zero for perfect detectors. Note that, in general, it is possible to
reduce the fluctuation in the number of atoms thanks to what is referred to as squeezing,
which consist in reducing the range of variation in the number of atoms. Such states
have many applications in metrology, since they enable better-than-classical precision
measurements[31][32].

A criterion to determine whether a two-particle state beats the shot-noise limit in this
situation is to look at the normalized variance Ṽ (∆N) of the photon difference:

Ṽ (∆N) =
〈∆N̂2〉 − 〈∆N〉2

〈N̂A + N̂B〉
(1.36)
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The limit for a classical source is therefore

Ṽ ≥ 1 (1.37)

If Ṽ < 1, this is the evidence of a non classical correlation.

1.2.2 Cauchy-Schwarz inequality violation

Let us express the normalized variance in terms of correlation functions. To do so,
we will consider again that both beams are equivalent, so that they have the same mean
number of photons (〈N̂A〉 = 〈N̂B〉) and the same variance (〈N̂2

A〉 = 〈N̂2
B〉). We have

therefore

Ṽ (∆N) =
〈(N̂A − N̂B)2〉 − (〈N̂A〉 − 〈N̂B〉)2

〈N̂A + N̂B〉
=
〈N̂2

A〉 − 〈N̂AN̂B〉
〈N̂A〉

(1.38)

Note that it can be expressed in terms of second-order correlation function. Indeed,
we have shown previously that

G(2)(A,A) = 〈â†Aâ
†
AâAâA〉 = 〈N̂2

A〉 − 〈N̂A〉 (1.39)

using the commutation relation of âA and â†A for bosons. This is the auto-correlation
function for beam A.

Now, the cross second-order correlation function between the two beams is, when
A 6= B,

G(2)(A,B) = 〈â†Aâ
†
B âB âA〉 = 〈N̂AN̂B〉 (1.40)

since the creation and annihilation operators of A and B commute.

The apparent asymmetry between the two formulas 1.39 and 1.40 arises from consid-
ering the order of operators in the definition of the correlation functions. When A = B,
this results in subtracting a term from the correlation, which is actually equal to the shot
noise. A general way to express correlation functions in terms of number operators is to
specify the preservation of the order of operators, which is written as:

G(2)(A,B) = 〈: N̂AN̂B :〉 (1.41)

where the notation 〈: · · · :〉 indicates the normal ordering of the creation and annihilation
operators.

Finally, it can be easily shown that

Ṽ (∆N) =
〈N̂2

A〉 − 〈N̂AN̂B〉
〈N̂A〉

= 1 +
G(2)(A,A)−G(2)(A,B)

〈N̂A〉
(1.42)

which can be written:

Ṽ (∆N) = 1 + (1− C)G
(2)(A,A)

〈N̂A〉
(1.43)

where

C =
G(2)(A,B)

G(2)(A,A)
=

G(2)(A,B)√
G(2)(A,A)G(2)(B,B)

(1.44)
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Thus, having a sub-shot noise variance is equivalent to having a coefficient C > 1,
which corresponds to satisfying the inequality:

G(2)(A,B) >
√
G(2)(A,A)G(2)(B,B) (1.45)

This is what is referred to as a violation of the Cauchy-Schwarz inequality. Indeed,
in classical physics, if we consider two random variables XA and XB, then we necessarily
have:

〈XAXB〉 ≤
√
〈X2

A〉 〈X2
B〉 (1.46)

which, in terms of correlation functions, is equivalent to

G(2)(A,B) ≤
√
G(2)(A,A)G(2)(B,B) (1.47)

With a classical model, it cannot be explained that the cross-correlation is greater than
the square root of the auto-correlations product. A violation of this inequality is then a
signature of a purely quantum effect[33][34].

Note that exhibiting a violation of the Cauchy-Schwarz inequality or a sub-shot noise
variance, despite the fact that this means that the correlation is stronger than classical, is
actually not sufficient to claim that the state at play is entangled, as discussed in reference
[35] where the authors formulate the Busch-Parentani criterion of entanglement: apart
from exhibiting a violation of the Cauchy Schwarz inequality, one should also show that
the statistics of the system is Gaussian on the one side, and that 〈â†AâB〉 = 〈â†B âA〉 = 0.

1.2.3 Hong-Ou-Mandel effect

As discussed in the introduction, another way to probe the correlations of a system is to
perform interference experiments. Thus, there are interferometers which make it possible
to exhibit purely quantum interferences, meaning that the amplitude of the correlation
cannot be explained by classical physics. Among them, one can mention, for example, the
Hong-Ou-and Mandel (HOM) experiment.

Principle

Figure 1.7: Four equiprobable possibilities in a classical point of view.

The Hong-Ou-Mandel effect is a two-particle interference phenomenon that occurs
when two indistinguishable bosons are sent into the two input modes of a 50/50 beam
splitter. From a classical point of view, the four possibilities represented in Figure 1.7 are
equiprobable, and one would expect the probability of measuring two particles in differ-
ent output modes to be equal to the probability of measuring two particles in the same
mode. However, quantum theory can predict a result contrary to classical expectations:
the output modes of the particles will always be identical, meaning that the two bosons
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will emerge from the same output port. In this case, if one measures the probability of
detecting two particles simultaneously at detectors placed on each output port, this prob-
ability must go to zero.

This effect was first experimentally observed by Hong, Ou, and Mandel in 1987[36]
with pairs of photons emitted by parametric down-conversion (Figure 1.8). The experi-
ment was designed so that the indistinguishability of the two emitted photons could be
tuned by controlling the optical path of the photons with the position of the beam splitter.
If the photons do not overlap on the beam splitter, the particle’s paths are distinguish-
able. Therefore, by plotting the coincidence count rate in the output ports as a function
of the beam-splitter position, the authors observed a dip in the coincidence count rate,
which approaches zero when the photons are indistinguishable, a result now known as the
HOM dip. The width of the dip is directly related to the temporal width of the photon
wavepacket, which was what the authors aimed at measuring.

Figure 1.8: Original scheme of the classical HOM experiment (left) and result of the
number of coincidence count as a function of the position of the beam splitter (right).
Taken from [36].

Since this historic experiment, the HOM effect has become a textbook example of
quantum interference that cannot be explained by a classical or semi-classical model.

Simple two-particle model

Figure 1.9: Input and ouput modes of the beam-spitter.

Let us consider the situation illustrated in Figure 1.9, where two identical particles in
the two input modes a and b are mixed on a 50/50 splitter. Two detectors are places at
the ouput modes of the beam splitter, written c and d. The input state is

|Ψin〉 = â†b̂† |0, 0〉 (1.48)
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where |0, 0〉 denotes the vacuum and â† (respectively b̂†) is the particle creation operator
in the mode a (respectively b).

In accordance with the second quantization formalism, one can establish a relationship
between input and output modes using the beam splitter matrix:(

ĉ†

d̂†

)
= Ŝ

(
â†

b̂†

)
with Ŝ =

1√
2

(
1 ieiφ

ie−iφ 1

)
(1.49)

The unitary character of the matrix Ŝ reflects the conservation of the particle number
between the input and output states. By inverting Ŝ, the input modes can be expressed
in terms of ĉ† and d̂†:(

â†

b̂†

)
= Ŝ−1

(
ĉ†

d̂†

)
=

1√
2

(
1 −ieiφ

−ie−iφ 1

)(
ĉ†

d̂†

)
(1.50)

where Ŝ−1 is equal to the conjugate transpose of Ŝ as it is a Hermitian matrix. The final
state of the two-particle system after passing the beam splitter can be expressed as follows:

|Ψout〉 =
1

2

(
ĉ† − ieiφd̂†

)(
−ie−iφĉ† + d̂†

)
|0, 0〉

from which we get

|Ψout〉 =
1

2

(
−ie−iφĉ†ĉ† + ĉ†d̂† − d̂†ĉ† − ieiφd̂†d̂†

)
|0, 0〉 (1.51)

So far, we have not taken into account the fermionic or bosonic nature of the considered
particles. However, at this stage, it is crucial to note that the commutation relations
differ depending on whether the particles are bosons or fermions. For bosons, we have
ĉ†d̂† = d̂†ĉ†, so the crossed terms cancel out and equation 1.51 can be rewritten

|Ψout〉 =
1

2

(
−ie−iφĉ†ĉ† − ieiφd̂†d̂†

)
|0, 0〉 (1.52)

The output state is therefore

|Ψout〉 = − i√
2

(
e−iφ |2, 0〉+ eiφ |0, 2〉

)
(1.53)

From this expression, it is immediately apparent that the probability of measuring both
particles in two different modes is zero, since the remaining terms are squared creation
operators: this is the destructive interference known as the HOM effect.2 The number of
joint coincidences in modes c and d can be determined using the second-order correlation

function G
(2)
cd , for which we have :

G
(2)
cd = 〈ĉ†d̂†d̂ĉ〉 = 0 (1.55)

2In the case of fermions, Pauli’s exclusion principle prohibits two particles from occupying the same
mode. The commutation relations are then given by

ĉ†ĉ† = d̂†d̂† = 0 and ĉ†d̂† = −d̂†ĉ†

and equation 1.51 becomes:

|Ψout〉 = ĉ†d̂† |0, 0〉 (1.54)

As expected for fermions, and contrarily to what is observed for bosons, the output particles are never
in the same mode. This effect was observed experimentally with single electrons[37] in 2013.
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Indistinguishability

In the previously presented model, the indistinguishability of the two particles is
slightly hidden in the way we express the input state â†b̂† |0, 0〉, without distinguishing
particle 1 from particle 2.

Now, suppose that the input particles, for example photons, have orthogonal polariza-
tions denoted as H (for the particule in mode a) and V (for the particule in mode b). In
this case, they are no longer indistinguishable because we have introduced an additional
degree of freedom that would allow us to differentiate them after measurement. In this
case, the input state would be â†H b̂

†
V |0, 0〉, leading to

|Ψout〉 =
1

2

(
−ie−iφĉ†H ĉ

†
V + ĉ†H d̂

†
V − d̂

†
H ĉ
†
V − ieiφd̂†H d̂

†
V

)
|0, 0〉 (1.56)

The crossed terms ĉ†H d̂
†
V and d̂†H ĉ

†
V no longer commute, and we do not observe the

destructive interference leading to the Hong-Ou-Mandel effect.

Alternatively, we can highlight the distinguishable or indistinguishable character of the
particles by using the formalism of first quantization. Again, let us note a and b the input
modes. At the output of the beam splitter, the one-particle input states |a〉 and |b〉 are
transformed into output states through the matrix relationships

Ŝ |a〉 =
1√
2

(|a〉+ ieiφ |b〉)

Ŝ |b〉 =
1√
2

(ie−iφ |a〉+ |b〉)
(1.57)

Now, let us write the two-particle input state in the form:

|Ψdis
in 〉 = |a〉1 ⊗ |b〉2 = |a, b〉 (1.58)

where the indices 1 and 2 correspond to the considered particles. This input state corre-
sponds to the distinguishable case, since we know without any ambiguity that the particle
1 is in mode a and particle 2 is in mode b. The output state writes :

|Ψdis
out〉 = Ŝ |a〉1 ⊗ |b〉2 =

1

2
(|a〉1 + ieiφ |b〉1)(ie−iφ |a〉2 + |b〉2)

therefore

|Ψdis
out〉 =

1

2
(ie−iφ |a, a〉+ |a, b〉 − |b, a〉+ ieiφ |b, b〉) (1.59)

where |a, b〉 and |b, a〉 represent two different physical situations: particle 1 in mode a and
particle 2 in mode b on one hand, and particle 1 is in mode b and particle 2 is in mode
a on the other hand. Here, we retrieve the four equiprobable situations corresponding to
the classical intuition.

Similarly, we get

Ŝ |b〉1 ⊗ |a〉2 =
1

2
(ie−iφ |a, a〉 − |a, b〉+ |b, a〉+ ieiφ |b, b〉) (1.60)

Now, let us consider the case of indistinguishable particles. The states |a, b〉 and |b, a〉
are equiprobable. For bosons, the wavefunction must be symmetric under the exchange
of the two particles, so that the input state is

|Ψbos
in 〉 =

1√
2

(|a〉1 ⊗ |b〉2 + |b〉1 ⊗ |a〉2) =
1√
2

(|a, b〉+ |b, a〉) (1.61)
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The output state is equal, up to a normalization factor, to the sum of equations 1.59
and 1.60, so in the case of bosons, we find:

|Ψbos
out〉 =

1√
2

(ie−iφ |a, a〉+ ieiφ |b, b〉) (1.62)

We see that the two particles are always in the same output mode. Writing the input
state as a bosonic wavefunction of indistinguishable particles made it possible to retrieve
the Hong-Ou-Mandel effect.3

This formalism highlights well both the indistinguishability and the bosonic nature of
the Hong-Ou-Mandel effect.

Classical limit

In this paragraph, we will compare the HOM effect, so far regarded as a purely quan-
tum phenomenon, with a classical model. We have previously seen that a naive model
featuring two incoming classical particles on a beam splitter results in four equiprobable
situations, and consequently, no observed decrease in the number of coincidences between
the two output modes. However, we will demonstrate that such a decrease can actually
be predicted with a classical wave model, up to a certain point. Indeed, let’s consider two
incident waves on the beam splitter, with amplitudes denoted as Ea and Eb, such as

Ea = E0 eiφa and Eb = E0 eiφb (1.64)

where φa and φb are random phases. The amplitude of the outcoming waves is

Ec =
1√
2

(Ea + ieiφsEb) and Ed =
1√
2

(ie−iφsEa + Eb) (1.65)

The intensity at the output ports, averaged over the random phases φa and φb, is then

〈Ic〉 = 〈Id〉 = I0 (1.66)

while the product intensity is

〈IcId〉 =
I2

0

2
(1.67)

This shows that the amplitude of the product intensity is smaller than the square of
the output intensity from one of the two ports of the beam splitter. This implies that
such a classical wave model allows for the observation of a decrease in the joint detection
probability on channels c and d.

To quantify this destructive interference, we introduce the visibility V of the HOM
signal detection, defined as

V = 1−
G

(2)
cd,Ind

G
(2)
cd,Dis

(1.68)

3For fermions, the wavefunction must be antisymmetric under the exchange of the two particles, leading
to

|Ψfer
in 〉 =

1√
2

(|a, b〉 − |b, a〉) and |Ψfer
out〉 =

1√
2

(|a, b〉 − |b, a〉) (1.63)
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The quantum model with two indistinguishable bosons ensures that G
(2)
cd,Ind = 0, hence

V = 1: the visibility of the HOM dip is maximal. In the previous classical model, we have:

V = 1− 〈IcId〉
〈Ic〉 〈Id〉

= 1− I2
0/2

I2
0

= 0.5 (1.69)

Therefore, the visibility of the HOM dip with this classical model cannot exceed 0.5,
establishing a classical threshold: an experiment exhibiting visibility greater than 0.5 en-
sures the quantum nature of the input state.

In chapter 7, we will generalize the quantum HOM effect for an input state which can
be written in the basis of twin-Fock states. We will see that the visibility of the dip can
actually be related to the Cauchy-Schwarz inequality, such that having C > 1 is equivalent
to getting V > 0.5: this is again an evidence of a stronger-than-classical correlation. Still,
the most effective way to claim that a quantum state is entangled consists in exhibiting a
violation of Bell inequality.

1.3 Bell tests

The intrinsically probabilistic nature of quantum mechanics has consistently sparked
debates among the pioneers of this theory. In particular, starting from a two-particle
entangled state, it is possible to highlight strong correlation between sub-systems, so that
each system cannot be described independently, leading to a famous debate between A.
Einstein and N. Bohr.

1.3.1 EPR argument

In 1935, Einstein, Podolsky, and Rosen published a famous article untitled “Can
Quantum-Mechanical Description of Physical Reality be Considered Complete?” In this
article, they used the formalism of quantum mechanics to highlight a particularly per-
plexing aspect of this theory, known now as the “EPR paradox.” In the following, we
will quickly present the EPR argument in its version formulated by D. Bohm[38]. The
following discussion was inspired by a talk by A. Aspect[39].

Figure 1.10: Scheme of the Einstein-Podolsky-Rosen-Bohm experiment. A source emits
polarized photons in two opposite directions. Polarizers placed along each photon’s path allow
measurement of its polarization relative to the polarizers’ axes. The detection system makes it
possible to determine the coincidence rates between measurement outcomes on both sides.
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Let us consider a source that emits two linearly polarized photons νA and νB in two
different directions, such that the state of the system is given by:

|ψ〉 =
1√
2

(|H,H〉+ |V, V 〉) (1.70)

where the system is defined in a Hilbert space E = EA ⊗ EB and H and V represent two
orthogonal linear polarization orientations (horizontal and vertical). As seen previously,
this is an entangled state, since none of the two particles has a well-defined polarization
state.

In each direction, a polarizer makes it possible to measure the polarization of each pho-
ton (Figure 1.10). Let a and b denote the polarization axes of each polarizers. Depending
on its polarization, the photons will then follow a different path after the polarizers, de-
noted as +1 if the photon polarization is found parallel to the axis of the polarizer, or −1
in the other case. Therefore, it is possible to measure the probabilities of single or joint
detections in the output channels of the polarizers. Using the notations defined in Figure
1.11, a simple projection gives

|+〉a =
1√
2

(cos θa |H〉+ sin θa |V 〉)

|−〉a =
1√
2

(− sin θb |H〉+ cos θb |V 〉)
(1.71)

|H〉

|V 〉

|+〉a

|+〉b
|−〉a

θa
θb

θa

Figure 1.11: Orientation of the polarizers axes.

The joint probability of measuring +1 in A and +1 in B is

P++(a,b) = | 〈+ + |ψ〉 |2 (1.72)

where

|++〉 =
1

2
(cos θa |H〉+ sin θa |V 〉)⊗ (cos θb |H〉+ sin θb |V 〉)

=
1

2
(cos θa cos θb |H,H〉+ cos θa sin θb |H,V 〉+ sin θa cos θb |V,H〉+ sin θa sin θb |V, V 〉)

(1.73)

Therefore, we get

P++(a,b) =
1

2
| cos θa cos θb + sin θa sin θb|2 =

1

2
cos2(θa − θb) =

1

2
cos2(a,b) (1.74)
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Similarly, we find 
P++(a,b) = P−−(a,b) =

1

2
cos2(a,b)

P+−(a,b) = P−+(a,b) =
1

2
sin2(a,b)

(1.75)

One can also deduce that the single probability of measuring +1 in A is

P+(a) = P++(a,b) + P+−(a,b) =
1

2
(1.76)

and similarly 
P+(a) = P−(a) =

1

2

P+(b) = P−(b) =
1

2

(1.77)

It is worth noting that, while an individual polarization measurement yields a random
outcome, there is a clear correlation between the measurements on A and B, which depends
on the relative angle between both polarizers.

Again, this can be explained by the fact that when a polarization measurement is made
at A, the state of the system is immediately projected onto the corresponding eigenstate.
As a result, the polarization measurement at B is then directly determined.

In this whole scheme, the distance between the two measurements does not play any
role. This means that, according to quantum theory, theses results hold true even if the
polarizers are separated by a space like interval. In a way, the instantaneous quantum
projection of the state leads to wonder if the information of the measurement travelled
faster than light between both detectors. This idea was rejected by Einstein, who saw in
this picture an incompatibility with relativity.

In order to overcome this paradox, Einstein’s proposed explanation asserts that the
state vector does not contain all the necessary information for the system’s description.
According to this concept, often referred to as a hidden variables theory, there would be
parameters that are inaccessible to us, determining the outcomes of a measurement (deter-
mined for instance when the photons pair is created). This would restore the idea that the
result of a measurement is deterministic, while quantum theory is intrinsically probabilis-
tic, but, as proposed by EPR, incomplete. Additionally, it would explain the correlation
between measurement outcomes on two different sub-systems, akin to two celestial objects
whose trajectories are linked by initial conditions. To reconcile the observed results with
the probabilities predicted by quantum mechanics, it is then sufficient to average over the
additional variables.

1.3.2 Bell inequality

Although N. Bohr responded to EPR by rejecting the idea that quantum mechanics
is incomplete, he did not provide conclusive proof. He pointed out that the assumption
of local realism had to be dropped out, so that it can happen that the measurement on
one sub-system can affect the other, no matter the distance between the two. For a few
decades, the debate remained a matter of opinion and interpretation, as EPR arguments
do not invalidate the predictions of quantum mechanics but rather attempt to provide an
explanation for the nature of the observed results.
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But this changed in 1964 when J. Bell found a way to experimentally highlight a con-
tradiction between quantum mechanics and a hidden variables theory[5].

Demonstration of a Bell inequality

We introduce a set of parameters denoted as λ for hidden variables, in the sense of EPR,
which would thereby ensure that the theory predicting measurement outcomes satisfies the
locality assumption. These parameters are characterized by a probability density ρ(λ),
defined such that ∫

ρ(λ)dλ = 1 (1.78)

The result of a polarization measurement in A for instance is then given by a function
A(a, λ, λa), which is entirely determined by the parameters a, λ, and λa, which respectively
represent the orientation of the polarizer, a hidden variable linking A and B, and an
additional hidden variable related to the detector that could influence the measurement
outcome. The function A(a, λ, λa) can take the values +1, −1, or 0 in the case of a
measurement failure that does not yield a result. Performing the measurement of an
observable involves averaging the function A over the hidden variables, weighted by their
density. Thus, by first averaging over the variables λa associated with the detector, we
get

Ā(a, λ) =

∫
ρa(λa)A(a, λ, λa)dλa (1.79)

Noticeably, as ρa is a probability density, one can deduce the following inequality

|Ā(a, λ)| ≤ 1 (1.80)

Similarly, the same reasoning being applied in B, we have

B̄(b, λ) =

∫
ρb(λb)B(b, λ, λb)dλb and |B̄(b, λ)| ≤ 1 (1.81)

and consequently
|Ā(a, λ)B̄(b, λ)| ≤ 1 (1.82)

One way of characterizing the correlation between the measurements outcomes in A
and B is to define the Bell correlator E as

E(a,b) = 〈A ·B〉 (1.83)

So that we get immediately

E(a,b) =

∫
ρ(λ)Ā(a, λ)B̄(b, λ)dλ (1.84)

Let us consider a second set of orientations of the polarizers a′ and b′. It is interesting
to look at the quantity s(λ,a,a′,b,b′), defined as

s(λ,a,a′,b,b′) = Ā(a, λ)B̄(b, λ)− Ā(a, λ)B̄(b′, λ) + Ā(a′, λ)B̄(b, λ) + Ā(a′, λ)B̄(b′, λ)

= Ā(a, λ)
[
B̄(b, λ)− B̄(b′, λ)

]
+ Ā(a, λ)

[
B̄(b, λ) + B̄(b′, λ)

]
(1.85)
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Since Ā(a, λ) and B̄(b, λ) range between -1 and +1 (which is also true for a′ and b′),
then the last expression of s leads to the inequality

−2 ≤ s(λ,a,a′,b,b′) ≤ 2 (1.86)

This inequality is also verified by the average S of s over the hidden variables λ:

−2 ≤ S(a,a′,b,b′) =

∫
ρ(λ)s(λ,a,a′,b,b′)dλ ≤ 2 (1.87)

Let us name S the Bell parameter. Using equation 1.84, it can be expressed as a
function of the Bell correlators

S(a,a′,b,b′) = E(a,b)− E(a,b′) + E(a′,b) + E(a′,b′) (1.88)

This demonstration allows us to show that if the outcome of a measurement can be
predicted by a local hidden variable theory, then the result of the measurement of S for
any quadruplet of angles (a,a′,b,b′) must necessarily satisfy the inequality:

−2 ≤ S(a,a′,b,b′) ≤ 2 (1.89)

Thus, any experiment yielding a Bell parameter that violates this inequality serves to
verify that the result is not dictated by a local hidden variable theory. Any experiment
aimed at demonstrating a violation of this inequality is then referred to as a Bell test.

It is noteworthy that we have demonstrated here a certain form of Bell inequality
derived by J. Clauser, M. Horne, A. Shimony, and R. Holt[40] (often referred to as the
CHSH version of the Bell inequality), but there exist other versions, involving different
observables. An experimenter may choose to employ a Bell inequality version that is more
favorable given the experimental constraints, as discussed in the thesis of Q. Marolleau[41],
former PhD student in the team.

Violation of Bell inequality predicted by quantum theory

Let us use the definition 1.83 of the Bell correlator to calculate what quantum me-
chanics predicts:

E(a,b) = 〈A ·B〉
= (+1) · (+1) · | 〈+ + |ψ〉 |2 + (−1) · (+1) · | 〈−+ |ψ〉 |2

+ (+1) · (−1) · | 〈+− |ψ〉 |2 + (−1) · (−1) · | 〈− − |ψ〉 |2
= P++(a,b) + P−−(a,b)− P+−(a,b)− P−+(a,b)

(1.90)

We showed earlier the expressions of the joint probabilities of detection (equation 1.75)
from which we get easily:

E(a,b) = cos(2(a,b)) = cos(2(θa − θb)) (1.91)

where θa and θb are the angles corresponding to the orientations of the polarizers a and
b. If we take the following angles:

θa = 0 θb =
π

8
θa′ =

π

4
θb′ =

3π

8
(1.92)

then we obtain
S(θa, θa′ , θb, θb′) = 2

√
2 (1.93)
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This means that quantum mechanics predicts a violation of the Bell inequality by more
than 40%. This highlights the highly non local character of quantum theory.

The experiments conducted by A. Aspect[9][10][11] experimentally demonstrated a
clear violation of Bell’s inequality with a setup similar to the one previously presented. The
most famous one is certainly the experiment reported in 1982[11], during which the Orsay
team implemented a device making it possible to choose the orientation angle of polarizers
during the flight time of photons, in order to separate the two polarization measurements at
A and B by a space-like interval. Thus, relativity prohibits the transmission of information
between A and B: if there is a violation of Bell’s inequality, then it definitively implies
that the results of the experiment cannot be associated with a theory assuming locality,
and this is precisely what was observed at that time.

Note that the choice of the polarizers angles was not fully random, introducing a poten-
tial bias in the experiment. The experiment has been reiterated and improved upon since
then, notably in Innsbruck in 1998, where genuine random number generators were uti-
lized, resulting in a violation of Bell’s inequality by several tens of standard deviations[42].

1.3.3 The momentum degree of freedom: Rarity-Tapster experiment

The setup described in the previous sections involves pairs of photons whose polar-
ization degree of freedom is entangled. It is worth noting that the Bell test involves four
detection modes: two (+1 and −1) for the measurement in A, and two others (+1 and
−1) for the measurement in B. Here, a mode is any possible value taken by a degree of
freedom for a single-particle wavefunction. The + and − modes for A and B are distinct
because they involve different subsystems, making the modes distinguishable.

In this regard, the system designed to demonstrate a violation of Bell’s inequalities
differs from the one that would be used to highlight the HOM effect or a violation of
Cauchy-Schwarz inequalities. Although these experiments also involve two-particle inter-
ference, they only involve two modes, which do not stress out the contradiction between
quantum mechanics and relativity. A two-particle Bell test must involve a two-dimensional
space on each side for each particle, as the measurement should allow the choice between
two non-commuting observables.4

While the Orsay experiments used a source of pairs of correlated photons generated by
non-linear laser excitations of an atomic radiative cascade[44], technological advancements
have led to the emergence of new efficient sources of entangled photons. For instance, non-
linear splitting of ultraviolet photons has been employed to produce pairs of correlated
photons by optical parametric down conversion[45]. These sources have enabled the im-
plementation of Bell tests on continuous variables[46].

In 1989, M. Horne, A. Shimony, and A. Zeilinger[13] proposed a new scheme of Bell
test involving the momentum of photons instead of an internal degree of freedom like
polarization. The corresponding experiment was successfully conducted shortly thereafter
by J. Rarity and P. Tapster[12], who observed a violation of Bell’s inequality by several
standard deviations (S = 2.21 ± 0.02). The principle of the experimental setup will be
briefly discussed in the following.

In this setup (Figure 1.12), the idea is that all photons have the same polarization, but
their optical paths are different. A source emits pairs of photons through parametric down

4Note that this is only true for a system of two particles, as shown in reference [43].
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Figure 1.12: Scheme of the Rarity-Tapster setup for a Bell experiment with momentum
entangled photons. A source emit two pairs of photons (p, p′) and (q, q′). The photons from a
pair are directed to two different beam splitter, where they are mixed with the photons from the
other pair, forming loops A and B. Photodetectors are placed at each output of the beam splitters
and make it possible to measure the coincidence count rates. In each loop, a phase plate can add
a tunable path length difference.

conversion, where the phase-matching conditions (momentum and energy conservation)
implies that the created pairs have different momenta, denoted as p and p′ on one hand,
and q and q′ on the other hand (as mentioned earlier, a Bell test must involve four modes).
In this configuration, the input state is expressed as follows:

|ψ〉 =
1√
2

(
|p, p′〉+ |q, q′〉

)
(1.94)

Then, photons from each pair are made to interfere with photons from the other pair
at two beam splitters, spatially separated. Therefore, there are two loops in the inter-
ferometers, denoted as A and B. These loops are equivalent, except that a phase plate is
added to each loop, inducing a path length difference. After that, a detection system and
correlation counter makes it possible to measure the joint probabilities of detection and
then to compute the Bell signal.

As we will see later in this manuscript with a similar setup using atoms, it is easy
to demonstrate that if one looks at the correlations between two modes within the same
loop (for example, p and q), then there is no interference signal observed. However, if one
examines the joint detection probabilities between two modes from two different loops,
then the latter oscillates based on the phase difference between the two loops:

Pp,q(φA, φB) = P−p,−q(φA, φB) =
1

2
cos2(φA − φB)

Pp,−q(φA, φB) = Pq,−p(φA, φB) =
1

2
sin2(φA − φB)

(1.95)

In the same manner that tuning the relative orientation of the polarizers leads to a
two-particle interference involving polarization, here the relative phase difference between
the two loops of the interferometer plays the same role with the momentum degree of free-
dom and leads to the oscillation of the Bell correlator. These are two analogous systems,
for which quantum mechanics predicts that they can demonstration a violation of Bell’s
inequality.
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Let us summarize the key elements necessary for setting up experimental platforms
that can lead to the observation of Bell inequalities.

• Firstly, a source of two-particle entangled pairs is required.5

• Secondly, an interferometric set up is needed to observe four-mode correlations, along
with a tunable parameter to control the interference.

• Finally, single-particle detectors are required to calculate the correlations between
the different output ports of the experiment.

These are the three elements that we will need to bring together to conduct a Bell
experiment involving atom pairs entangled in momentum.

1.3.4 From photons to atoms

Following the pioneer experiments with photons, Bell tests have been conducted with
massive particles, leading to the observation of Bell inequality violations. One can for
instance mention Bell inequality violation with mesons in 1999[49], ions in 2001[50], com-
posite systems consisting of an atom and a photon in 2004 [51], atoms in 2007[52] and
nitrogen-vacancy (NV) defects in diamond in 2011[53]. All these experiments involve
internal degrees of freedom of the particles.

Beyond discussing the question of the local or non-local nature of spacetime, which is
increasingly clear since the loophole-free tests of 2015[15][16][17], Bell tests now provide
an effective way to study the correlations properties of two-particle quantum sources.
Observing a violation of Bell’s inequality implies that the system’s state is non-separable,
indicating that the involved modes are entangled. This represents the strongest way to
demonstrate non-classical correlations.

This becomes particularly interesting when involving external degrees of freedom of
entangled massive particles, as they are subject to gravity. This opens the way to exper-
iments involving both entanglement and gravitation. Some theoreticians indeed suggest
that gravitational interaction induces a decoherence phenomenon leading to the disap-
pearance of entanglement[22][54]. An experimental test of this theory involves the use of
systems with a mass much greater than that of two atoms. However, performing a Bell
test with a pair of momentum entangled atoms would represent a significant milestone.

1.4 Quantum atom optics with metastable helium

In this section, we will focus on the experimental realization of the elements necessary
for the Bell interferometer. We will demonstrate that the metastable helium experiment
on which I worked is an ideal experimental platform for conducting so-called quantum
atomic optics experiments, which consist in carrying out with atoms experiments that
were historically performed with photons.

1.4.1 Bose-Einstein condensation and single atom detection

Before creating entangled pairs of atoms, it is essential to have a source of atoms that
can serve as a coherent reservoir of particles in a well-defined momentum state. Having
such a source is a fundamental building block when manipulating quantum states. Thanks

5It is worth noting that it is possible to use systems with more than two particles to demonstrate a
violation of Bell’s inequality, and there are Bell inequalities specifically designed for such cases [47][48].
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to laser cooling and trapping and evaporative cooling methods developed from the 1980s
onward, it is now possible to form a state of matter called a Bose-Einstein condensate
(BEC) from bosonic atoms[55]. In a BEC, the typical size of the wave function of a
particle is of the same order of magnitude as the typical distance between these particles,
forming a macroscopically degenerate wave function for all particles. This phase transition
to a state with purely quantum properties occurs when the de Broglie wavelength λdB

associated with each particle and the atoms density n satisfy the relationship

nλ3
dB ≈ 1 (1.96)

with

λdB =
h√

2πmkBoltzT
(1.97)

where m is the mass of the particles, kBoltz the Boltzmann constant and T the temperature.

Under standard temperature and pressure conditions, this parameter is on the order of
10−8 to 10−6 for a gas. Thus, one has to decrease the temperature while ensuring that the
density remains sufficiently low to avoid the formation of condensed phases. To achieve
this, laser cooling methods are employed, using the radiation pressure exerted by photons
to slow down atoms.

Thus, the choice of the atomic species to be cooled determines the laser cooling setup,
as one needs to select one (or more) atomic transition for efficient atom-light interac-
tion. Depending on the physical phenomena one aims to study, the choice of atom can
vary. Rubidium is particularly easy to cool and is widely used in the ultracold atom
community. Other alkali atoms possess what is known as Feshbach resonances, allowing
control of atomic interactions by manipulating a magnetic field, making them particularly
interesting[56].

The atom chosen by the team for conducting quantum atomic optics experiments is
the helium atom 4He in its 23S1 metastable state. In addition to having atomic transitions
suitable for laser cooling and trapping, this state of helium has a very high internal energy
of 19.82 eV, which is sufficient to extract an electron from a metallic surface when an
atom falls onto it. With an amplification system, it becomes possible to detect individual
atoms. This is the principle behind detectors known as Micro-Channel Plates (MCPs),
which are used to detect energetic particles in various contexts, particularly in high-energy
physics[57].

Under the MCP, it is possible to place conductive lines called delay lines. These
lines transform the electric pulse amplified by the MCP into four signals, whose time
of propagation in each line is recorded. This allows determining the arrival time and
position of the detected particle. By knowing the atom’s fall time, one can then calculate
its momentum values in all three spatial directions, as time can be converted into a vertical
position in the free-falling cloud.

Thus, with this detector developed in the early 2000s by the team led by C. Westbrook,
D. Boiron, and A. Aspect at the Laboratoire Charles Fabry of the Institut d’Optique, there
is now a detection technique capable of resolving the momentum of each detected atom.
This makes it an efficient experimental platform for studying the correlation properties in
momentum of quantum systems composed of multiple particles.

Although helium is more challenging to cool compared to other alkali atoms, the team
successfully achieved a metastable helium condensate in 2001[58]. This quickly led to the
study of correlations in quantum systems, such as a Hanbury-Brown and Twiss experiment,
where a bunching effect was observed in a thermal gas but not in a coherent BEC[59].
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Several other experimental platforms have also succeeded in forming helium Bose-
Einstein condensates, at the École Normale Supérieure in Paris[60], in Harvard[61], in
Vienna [62], in Canberra[63], and a second experiment at the Institut d’Optique[64] in the
team led by D. Clément. The experiments still in use aim at studying systems exhibiting
quantum correlations.

1.4.2 Pairs emission and non-classical correlations

Now that we have described how to get a reservoir of atoms in a specific momentum
state thanks to the helium BEC (more details about our experimental setup are provided
in Chapter 2), the next step is to generate momentum-correlated pairs of atoms if we want
to use them as the input state for a Bell interferometer. There are various ways to gener-
ate such pairs and to demonstrate quantum correlations on momentum degrees of freedom.

In the C. Regal group, two independent atoms are cooled and trapped in optical
tweezers, enabling control of their momentum[65]. If the optical tweezers are brought
close enough, the resulting double-well trapping potential acts as a beam splitter for the
atoms due to tunnel coupling. This setup was used to demonstrate a Hong-Ou-Mandel
effect with independently prepared massive bosons[66], by measuring the number of atoms
in each well after the tweezers were separated again.

According to a protocol from the group of J. Schmiedmayer, it is possible to per-
form a similar experiment by adding an additional degree of freedom in order to have
a two-particle four-mode state[67]. Indeed, twin atoms can be emitted at opposite mo-
menta due to collisions from a 1D BEC in the quasicondensate regime subjected to phase
fluctuations[68]. By putting this system in a double-well potential where tunnel coupling
occurs, a two-particle interference was observed when studying the correlations between
atoms with opposite momenta. Such a two-particle, four-mode state could theoretically
lead to a violation of Bell inequality[69], however the observed signal was not significant
enough.

A recent paper by the team of C. Klempt in Hannover[70] reports the creation of
entangled momentum pairs starting from entangled spin pairs of rubidium atoms. An
entanglement transfer[71] is achieved using a two-photon Raman transition that selects
atoms in one of the two entangled magnetic sublevels and transfers them momentum,
thus converting a spin-entangled pair into a momentum-entangled pair. This setup has
exhibited sub-shot noise correlations but, to our knowledge, has not yet been attempted
for a Bell test. Note that they work in a regime with a lot of atoms and do not detect
single particles.

More recently, the group of T. Esslinger in Zürich demonstrated a new way of emitting
momentum pairs, by coupling atoms from a BEC via a superradiant photon-exchange pro-
cess in an optical cavity[72]. The emitted pairs are correlated both in spin and momentum
and the process is reported to be fast and tunable. The authors showed a good correlation
between the emitted modes, although without exhibiting a purely quantum correlation.

Another approach involves performing parametric excitation, which means periodically
varying the intensity of the trapping laser at a certain frequency to modulate the trapping
frequencies[73][74]. This technique induces the creation of pairs of phonons with opposite
momenta from the BEC and constitutes an acoustic analogue to the dynamic Casimir
effect. This technique, first demonstrated in our team in 2012[73], has been employed
again in recent years as part of a project that will not be described in this manuscript but
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in the one of V. Gondret, also a PhD student in the team.

Another way of creating pairs is to perform so-called four-wave mixing. This is a pro-
cess similar to parametric down conversion, often used with photons to generate entangled
pairs[75]. The principle behind these techniques is to use a nonlinear process (a χ(2) or
χ(3) nonlinearity for light) to generate entanglement. Whereas parametric down conver-
sion requires only a single pump photon to generate two correlated photons, four-wave
mixing[76], first used with photons in 1985 to generate squeezed states[30], requires two
pump photons to generate two correlated photons.

The four-wave mixing process in a Bose-Einstein condensate will be discussed in more
detail in Chapter 3. Nevertheless, it is possible at this point to identify two distinct
regimes of use for this process, which, like parametric down conversion, must verify en-
ergy conservation and momentum conservation, commonly referred to as phase-matching
conditions. For a process involving four atoms, with momenta denoted as pA and pB for
the atoms in the BEC, and p1 and p2 for the twin atoms emitted by the process, the
following equations must be satisfied:{

pA + pB = p1 + p2 Momentum conservation

E(pA) + E(pB) = E(p1) + E(p2) Energy conservation
(1.98)

Consider a BEC in an optical dipole trap, for instance. All atoms are in the same
momentum state, i.e., pA = pB = p0. When turning off the trap, the atoms in the
BEC are in free fall. Apart from gravity, the only energy involved is their kinetic energy
E = p2/2m. The phase-matching conditions can then be expressed as follows:

p0 + p0 = p1 + p2

p2
0

2m
+

p2
0

2m
=

p2
1

2m
+

p2
2

2m

(1.99)

Under these conditions, it is obvious that p1 = p2 = p0, and the four-wave mixing
is a trivial process that re-emits atoms in the same mode as the condensate. Therefore,
an additional element is needed to generate pairs of atoms in momentum modes different
from that of the BEC.

A first approach involves having two condensates with different momenta. In this way,
having pA 6= pB allows the formation of pairs of atoms with distinct momenta. To achieve
this, starting from an initial BEC, one can create a copy using a two-photon transition
(involving two laser beams) that transfers half of the atoms to a different momentum
state. Before moving apart, there is an overlap between the two clouds, making possible
the emission of pairs through four-wave mixing.

The principle of the two-photon transition enabling the creation of a copy of a con-
densate, known as Bragg diffraction, will be detailed later. In the center-of-mass frame
of the two condensates, whose momenta are respectively pA = p and pB = −p, the
phase-matching conditions can be expressed as follows:

pA + pB = 0 = p1 + p2

2
p2

2m
=

p2
1

2m
+

p2
2

2m

(1.100)

where p = ||p|| is the norm of vector p, and so on.
From the first equation, we deduce p1 = −p2, suggesting that the correlated pairs have

an opposite momentum, and from the second equation, we get that the norms p1 = p2
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are equal to p. This means that this process emits pairs along a sphere, whose center of
mass is the center of mass of the two BEC (Figure 1.13). This sphere is often called a
scattering halo, since four-wave mixing can actually be interpreted in terms of collisions
between the atoms from the two condensates.

Figure 1.13: Scattering halo resulting from the collision of two BEC. Experimental result
for a single run, where a Bragg π/2 pulse is applied to a condensate for 10 µs immediately after
the trap cutoff. Each dot corresponds to a detected atom. The high-density regions at the poles
are the two condensates.

The collision of BEC was achieved in our team in 2007[77] and resulted in the obser-
vation of non-classical correlations, such as sub-shot noise variance in the difference of the
number of atoms detected in two diametrically opposite regions of the sphere[78], as well
as a violation of the Cauchy-Schwarz inequality between these two regions [79].

There is another way to generate pairs through four-wave mixing. In 2005, a theo-
retical article[80] suggests that it would be possible, starting from a single condensate, to
manipulate the phase-matching conditions using an optical lattice. Indeed, by subjecting
the BEC to a standing wave, the energy conservation relation is dictated by the energy
band structure of the lattice, so that the phase matching conditions are{

2p0 = p1 + p2

2E(p0) = E(p1) + E(p2)
(1.101)

where the momenta are expressed along the direction of the lattice.

This technique, first experimentally demonstrated in 2006 by W. Ketterle’s group[81],
was implemented in our experiment in 2012[20]. It will be discussed in more detail in
Chapter 3, but it presents several advantages that can be leveraged in a Bell experiment.
Instead of being emitted on a sphere, the correlated pairs are emitted along a single axis.
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The pair source is multimode, ensuring the possibility of working with at least a quadru-
plet of momenta, as required in a Bell experiment. The number of atoms emitted in the
pairs is easily controllable by adjusting the duration of the optical lattice application.
Additionally, one can control the emission density profile of the pairs by adjusting the
detuning between the two beams of the optical lattice. This flexible and tunable source
thus provides the opportunity to conduct interferometric experiments.

1.4.3 Bragg diffraction and atom interferometers

How to make atom mirrors and beam splitters? Looking at the design of the Rarity
Tapster interferometer, we can see that mirrors transfer the photons from one momentum
state to another, while beams splitter enable the mixing of two momentum states. This
concept can be applied to atoms: optics for atoms consist in transferring them momentum.

To vary the momentum of an atom, a two-photon momentum transfer can be achieved
by subjecting atoms to two detuned laser beams with the same polarization, which make
it possible to exchange recoil momentum between photons and atoms. Indeed, an atom
can absorb a photon from one of the beams and re-emit a photon into the other laser
via stimulated emission while de-exciting (Figure 1.14). In doing so, its internal energy
remains the same as the initial state, and the energy difference between the absorbed
and emitted photons is converted into kinetic energy, altering its momentum. This pro-
cess, called Bragg diffraction, enables to exclusively manipulating the external degrees of
freedom of the atom while maintaining it in the same electronic state6.

p

E

|g〉

|e〉

p p+ ~k p+ 2~k

∆

δ

|g, p〉

|e, p+ ~k〉

|g, p+ 2~k〉

ω1

ω2

Figure 1.14: Scheme of the two-photon transition process. The atoms are initially in the
momentum state |p〉 along the direction of the lattice. ∆ is the detuning with the excited state,
while δ is the two-photon detuning with the fundamental state |p+ 2~k〉.

If the lasers are significantly detuned from the transition with the intermediate excited
state, then this state is not populated. In this case, the two ground states can be considered
as a two-level system coupled by an effective Rabi frequency. Consequently, starting with
atoms in a momentum state pi, Rabi oscillations can be performed with the momentum
state pf . Depending on the duration of the application of the Bragg beams, a beam splitter

6Note that a similar two-photon coherent process called Raman transition involving two beams of
different polarization is also possible but changes the internal state of the atom.
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for atoms can be achieved by transferring half of the initial population, or a mirror can
be created by transferring the entire initial population.

In this manner, if two laser beams with a wavelength λ are directed onto the atoms
in a plane (x, z) and separated by an angle θ, the beams form an optical lattice at the
intersection where atoms move along the z direction. Following a single two-photon process
(absorption followed by stimulated emission), the momentum of an atom has been altered
by twice the momentum of a photon projected along the z-axis of the lattice. We denote

k =
2π

λ
sin(θ/2) (1.102)

the recoil wavevector of a photon projected onto the lattice axis. Consequently, a mo-
mentum kB = 2k is exchanged during the process. In the following of the manuscript, we
will consider that the momentum transfers occur along the vertical direction (because the
lattices were aligned this way), so that the momenta will be written as scalars, equal to
the projections of the corresponding vectors along this z-axis.

The conservation of energy condition for this two-photon process states that the de-
tuning between the beams must be equal to the difference between the final kinetic energy
and the initial kinetic energy of the atom:

~(ω1 − ω2) =
p2

f

2m
− p2

i

2m
(1.103)

where pi = p = ~ki is the initial momentum of the atom and pf = ~(ki +kB) its momentum
after exchanging two photons. Therefore, we get the resonance condition

~(ω1 − ω2) =
~2k2

B

2m
+

~kB

m
pi (1.104)

This relation indicates that it is possible to select the resonant momentum class pi by
adjusting the detuning between the two lasers.

Finally, note that this is a process during which the phase difference between the two
laser beams can also be transferred to the atoms. This mechanism, known as phase im-
printing, can be leveraged in order to vary the phase involved in an atom interferometer.
For a Bell test, it can be used as a way to introduce a control parameter to observe a two-
particle interference between the atoms and allowing the oscillation of the Bell correlator.
A significant part of my thesis work involved determining how to experimentally achieve
this phase control for a Bell interferometer.

Bragg diffraction will be the subject of a detailed study in Chapter 4. First observed
with sodium atoms in 1988[82], it was experimentally tested with condensates in 1999[83].
It is noteworthy that the width of the Bragg resonance varies depending on the power and
duration of the beams. Consequently, Bragg diffraction has been employed to investigate
the momentum distribution of BEC in cases where the resonance width is smaller than
the momentum distribution width of the BEC[84].

The use of Bragg diffraction (as well as Raman transitions) has played a crucial role in
the development of atomic interferometers with light gratings since the 1990s. Following
initial proof-of-concept demonstrations[85][86][87], their application in diverse contexts
and configurations has facilitated fundamental tests, including studies of BEC, decoherence
mechanisms, and tests of relativity, as well as the rise of atomic clocks and highly precise
measurements of gravity, rotations, and the fine-structure constant for instance (a general
introduction to atom interferometry and its applications can be found in reference[88]).
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Finally, it should be mentioned that the precision of the measurement achieved by
counting the number of particles in the output port of an interferometer is a priori lim-
ited by shot noise, a limit known as the Standard Quantum Limit (SQL). As previously
discussed, it is possible to surpass this limit by employing squeezed states, which leverage
entanglement to exceed the SQL by more than 20 dB[89], theoretically approaching the
fundamental Heisenberg limit.

1.4.4 Towards a Bell test

A few references in the literature describe attempts to measure EPR-type correla-
tions with entangled momentum states of atoms. A proposal by the team of A. Zeilinger
in Vienna[90] investigated the possibility of demonstrating two-atom interference in four
momentum modes using a double-double-split experiment setup. Pairs are generated
through four-wave mixing from colliding BECs and directed onto a material grating with
four openings, beneath which lies a MCP. Sizing the slits based on their metastable helium
experiment, the authors showed that the feasibility of observing interference was highly
constrained. However, some experimental constraints could be relaxed with the use of a
ghost imaging setup, a technique that utilizes correlations between two beams to recon-
struct an image in one beam from particles that do not interact with the imaged object.
Although this technique was recently first implemented with metastable helium atoms[91],
there has been no attempt to implement the four-momentum-mode correlation observa-
tion proposal, to our knowledge. It is worth noting that the proposal does not constitute
a genuine Bell test but rather a way to observe a quantum two-atom interference.

−p0

p0

p0

−p0

Time

Position

Mirror
Beam

splitter

Figure 1.15: Scheme of the atomic Hong-Ou-Mandel interferometer. This representation
corresponds to the trajectories of the atoms in the interferometer. The atoms are labeled p0 and
−p0 corresponding to their momenta in the center-of-mass frame of the pairs. The atoms actually
fall on the MCP due to gravity, but this scheme is represented in the falling frame.

In our team, Bragg diffraction has been implemented to conduct a Hong-Ou-Mandel
type experiment. In this setup, atoms with opposite momenta (p0,−p0) are emitted in
pairs (in the center-of-mass reference frame of the emitted atoms) through four-wave mix-
ing using an optical lattice at 1064 nm. For the interferometer, we use another pair of
beams at 1083 nm to couple the atoms at momenta p0 and −p0, so that a Bragg mir-
ror directs the atoms towards a beam splitter (Figure 1.15) where a two-particle inter-
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ference is observed, revealing a distinct Hong-Ou-Mandel dip indicative of non-classical
correlations[92]. This experiment serves as the foundation for a Bell test, where a momen-
tum quadruplet will be involved instead of a pair.

The idea for a Bell test with our setup is to leverage the multimode nature of the pair
source to conduct an experiment similar to the Hong-Ou-Mandel interferometer, but with
an input state composed of two pairs of correlated modes, represented as:

|ψin〉 =
1√
2

(|p,−p〉+ |q,−q〉) (1.105)

Subsequently, a Bragg mirror pulse redirects the atoms towards two different Bragg
beam splitters, forming loops A and B, where −p and q are coupled in loop A while −q
and p are coupled in loop B. This configuration is similar to the setup of the Rarity
and Tapster interferometer for photons. As we will show in Chapter 4, in this case the
two-particle interference can be controlled by tuning the differential phase between the
atoms from loops A and B. The challenge lies in how to create two distinct beam splitters
for A and B, on which different phases must be imprinted. This aspect will be extensively
discussed in the following of this manuscript. The difficulty in achieving this differential
phase control is the reason why a Bell experiment with atoms is a lot more challenging
to perform than a Hong-Ou-Mandel experiment, where it is only necessary to couple the
correct momentum modes through Bragg diffraction.

To circumvent this difficulty, a first solution is to use the same beam splitter for both
A and B, with its resonance set to a doublet (p0,−p0), akin to a HOM experiment. The
underlying idea is to investigate correlations within non-resonant Bell quadruplets. Indeed,
it will be shown later that Bragg diffraction imprints a phase on non-resonant atoms that
depends on the detuning from resonance, and thus on the momentum class according to
relation 1.104. Therefore, if the correlator varies with the momentum class, one can hope
to measure different correlator values by calculating it for several successive quadruplets
that gradually move away from the resonant doublet. This is not a Bell test since no
control parameter is tuned, but this can lead to a proof of concept.

This study was conducted in our team in 2017 and led to the observation of non-zero
correlators[93], suggesting that the phase imprinted on the atoms is stable and that a Bell
experiment is feasible. These results will be discussed further in the manuscript in light
of new theoretical developments that I have undertaken during my thesis.

Another attempt to perform a Bell test has been recently reported in the literature[94]
by the team of A. Truscott in Canberra, also using a helium BEC for similar reasons as ours.
In this article, pairs are created through collisions between condensates. The originality
lies in using two scattering halos to emit pairs, resulting in a configuration where it is not
the phase difference between A and B that is involved in the Bell correlator, but rather
the sum of these two phases. This allows for a Bell test using the same pulse for both A
and B, by varying the phase imprinted on the atoms during the beam splitter pulse. The
results show a clear oscillation of the Bell correlator, but the amplitude is not sufficient for
a violation of the Bell inequality. This setup will also be discussed later in this manuscript
(section 4.1.3) and compared to our configuration. It will be demonstrated that while
its main advantage is using the same beam splitter for both A and B, it may introduce
phase sensitivity issues that might be responsible for the low contrast in the two-atom
interference.
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In this chapter, we will briefly introduce the experimental setup. A more exhaustive
presentation can be found in the thesis of Q. Marolleau[41], previous PhD student in the
team. We will limit ourselves to a general presentation of the detector and the major
cooling steps.

My doctoral work was marked by various experimental difficulties and challenges that
impeded the progress of the experiment towards the realization of a Bell test. In particular,
having a systematic and stable Bose-Einstein condensate with the correct number of atoms
posed a significant challenge. It was necessary to develop new strategies and replace
crucial equipment to ensure the right behavior of each cooling stage. A detailed timeline
is provided in appendix B. The majority of the results in this thesis were obtained during
two periods: the first for pair data with a large population in May 2022, and the second
for pair data with a small population and interferometric measurements from April to
September 2023.

2.1 Metastable helium: interest and detection

2.1.1 Metastable helium

Spectroscopy of 4
2He

The most common isotope of helium on Earth is bosonic helium 4
2He. Despite having

two electrons, it behaves like a one-electron atom because a state with two excited electrons
would always have higher energy than its auto-ionization energy (24.59 eV). 4He has no
nuclear spin and has two configurations, para or ortho, where the two electrons respectively
have spins that are anti-parallel (total spin S = 0) or parallel (total spin S = 1).

E (eV)

0

19.82

20.62

20.96

1 1S0

2 1S0

2 3P0,1,2

2 3S1

2 3P1

2 3P2

2 3P0

1083 nm

Figure 2.1: Simplified energy diagram of 4He.

A simplified energy diagram is provided in Figure 2.1, using spectroscopic notations
n 2S+1Lj [95]. The transition between para and ortho states is prohibited as it does not

55



CHAPTER 2. EXPERIMENTAL SETUP: PREPARATION OF A METASTABLE HELIUM BOSE-EINSTEIN

CONDENSATE

conserve the total spin. Consequently, both states 2 1S0 and 2 3S1 are metastable states,
but the singlet state has a lifetime of only 195 ms, whereas the triplet state has a lifetime
on the order of 2 hours[96]. For similar reasons of spin conservation, excited triplet states
preferentially de-excite to the 2 3S1 state, which can be considered as the ground state in
our experiments, sometimes denoted as He∗.

This is the state that is used for a BEC. On one hand, the spin-induced magnetic dipole
of this state enables the use of magnetic trapping techniques. Furthermore, the transition
2 3S1 −→ 2 3P0,1,2 has a wavelength of 1083 nm, for which commercial lasers (such as
diode lasers or fiber lasers) are available. In particular, the J → J+1-type 2 3S1 −→ 2 3P2

transition is employed for the first cooling stages, allowing for a classical Magneto-Optical
Trap (MOT) scheme. Some characteristics of He∗ and the cooling transition are given in
Table 2.1.

Quantity Symbol Value

Mass[97] m 6.646× 10−27 kg

Lifetime[96] τ 7870(510) s

Transition wavelength[98] λ 1083.33 nm

Transition width[95] Γ 2π × 1.63 MHz

Lifetime τ = 1/Γ 98 ns

Saturation intensity Isat =
πhcΓ

3λ3
0.167 mW.cm−2

Doppler limit temperature TD =
~Γ

2kBoltz
39 µK

Recoil momentum krec =
2π

λ
5.8 µm−1

Recoil velocity vrec =
~krec

m
92.0 mm.s−1

Recoil energy Erec =
~2k2

rec

2m
1.8×10−10 eV

Recoil temperature Trec =
Erec

kBoltz
2.0 µK

Table 2.1: Properties of 4He and cooling characteristics of the 2 3S1 −→ 2 3P0 transition.

Note that the transition 2 3S1 −→ 2 3P0 is also used in our experiment for Raman and
Bragg transitions. These points will be detailed further in the manuscript.

It is noteworthy that, in comparison to most other atoms used in experiments in-
volving ultracold atoms, the mass of helium atom is particularly low. Consequently, the
recoil velocity of helium is high when interacting with a resonant laser beam, resulting
in improved spatial separation of different velocity classes after time of flight. Using an
atom with a low mass is advantageous for the resolution of an experiment which aims at
studying correlations between different velocity classes.
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Collisions

Due to the high atom density in a cold cloud, a frequent mechanism is the occurrence
of collisions between atoms. There are several types of collisions, depending on whether
they are elastic (in this case the total kinetic energy and momentum of the system are
conserved) or inelastic (for which there is a transfer of kinetic energy between the involved
atoms, leading to changes in the energy states of the atoms), and they can induce important
atom losses in the system.

It is noteworthy that a crucial step in forming a BEC is evaporative cooling[55]. This
process involves expelling the hottest atoms from a trap by adiabatically lowering the trap
depth and allowing the remaining atoms to rethermalize through elastic collisions. If there
are too many inelastic collisions, evaporative cooling becomes less effective. Therefore, un-
derstanding the collisional mechanisms at play in a cold cloud is essential, especially in
BEC where collisions play a significant role in the atomic cloud properties.

At low temperatures, elastic collisions are exclusively characterized by s-wave scatter-
ing. For He∗, it was estimated that this is the case when the temperature is smaller than
8 mK[99]. Below this temperature, the elastic collision rate only depends on the scattering
length a = 7.5 nm, and the scattering cross-section is σ0 = 8πa2.

An important feature of He∗ is an inelastic process called Penning collisions, which
consist of two-body collisions between metastable atoms leading to the creation of ions:{

He∗ + He∗ → He + He+ + e−

He∗ + He∗ → He+
2 + e−

(2.1)

This process is characterized by the collision constant β, defined as the time constant
related to the two-body losses:

dn

dt
= −2β(T )n2 (2.2)

where n is the atom density.

The value of β strongly depends on whether the gas is magnetically polarized or not.
If the gas is non-polarized, the β constant is 10−10 cm3.s−1[100], which is too high to allow
for Bose-Einstein condensation. However, if the gas is polarized through a magnetic field
(in an m = 1 state), the previous collisions are strongly inhibited as they do not conserve
spin[101]. In this case, β equals 10−14 cm3.s−1. This losses reduction by four orders of
magnitude is sufficient to enable the formation of a BEC.

Moreover, when the density is high (in a BEC for instance, or close to condensation),
there are also three-body collisions that need to be considered and lead to additional losses:

He∗ + He∗ + He∗ → He + He+ + He∗|≈mK + e− (2.3)

The collision constant L associated to this process was measured in our group[102],
and is small enough so that the three body collisions have a small effect as long as the
density is below 1013 cm−3.

2.1.2 Micro-Channel Plate

The internal energy of a metastable helium atom is significant enough to extract an
electron from a metallic surface. To detect an atom, it is therefore necessary to amplify
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this electron signal, and this is the role of the Micro-Channel Plate.

(a) Cutaway drawing of a MCP. (b) Schematic of the electronic cascade inside a channel.

Figure 2.2: Schematic representation of the detector. Images provided by Hamamatsu Pho-
tonics.

A MCP consists of a set of regularly spaced hollow cylindrical channels bonded to-
gether (Figure 2.2). The front (onto which the atoms fall) and back faces are metallized,
allowing for the application of a potential difference on the order of 1 kV. Consequently,
when an electron is extracted from the surface by an atom, it is accelerated by the electric
field and collides again with the channel wall, inducing the ejection of additional electrons.
This process continues, forming an electron cascade that results in a macroscopic signal.
The typical amplification gain is on the order of 104. The channels are tilted relative to
the vertical axis, allowing atoms, which arrive vertically in a good approximation, to fall
directly onto the channel walls.

Like any detector, the MCP has limitations in terms of detection efficiency, resolution,
and saturation. The quantitative estimation of these features will be discussed later, but
we can already identify some sources of limitation.

• After an electronic discharge, a channel takes some time to become available again
for the detection of a new atom, as it has lost many electrons. This dead time is
responsible for a saturation effect in the detector, especially significant when the
atom flux is high.

• The MCP indeed has a certain efficiency, meaning that not all atoms that fall onto
the detector are converted into a useful signal. This is related, on the one hand,
to a quantum efficiency associated with the process by which an atom leads to the
emission of an electron (measurements have shown a quantum efficiency on the order
of 60 %[103]), and on the other hand, to the fact that some atoms do not fall into
the channels but onto the solid surface that connects them, and therefore, they are
not amplified. The latter limitation is characterized by the open area ratio (OAR),
which is the fraction of the total MCP surface composed of open channels relative
to the total surface, including the solid walls between the channels. For our current
MCP, this ratio is 90 %. The entrance apertures of the channels are precisely flared
to enhance the OAR.
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• The resolution of the MCP is constrained by the geometry of the channels: the larger
the diameter of a channel, the more it covers a significant area. Since the detected
signal is the same for each atom that falls into the same channel, this limits the
transverse resolution of the detector.

The MCP we currently work with was installed in 2019. It has a 8 cm diameter, and its
quantum efficiency was estimated by the constructor (Hamamatsu) to be around 50%. The
channel diameter is 12 µm and each channel is tilted by 20°. The longitudinal resolution
is estimated to be 33 µm, while the transverse resolution is 50 µm[41].

2.1.3 Delay lines

The MCP is not the only component necessary for a single-atom detection. Actually
in our experiment two MCPs are used in series, concatenated in such a way that each
channel is bent. In this manner, the total gain is 108, meaning that a metastable atom,
at the output of the MCP, generates a cascade of 108 electrons. Beneath the MCP, two
long copper wires, called delay lines, are positioned, wound along the X and Y axes, re-
spectively (Figure 2.3). When the electrons reach the delay lines, they induce an electrical
pulse that propagates along the lines.

𝐸

Surface métallique

Céramique
(verre)

Ligne à retard

He* (19,6 eV)

V1 V2

y

z

v⊥

v⊥
x

He*
He∗

X1 X2

Figure 2.3: Scheme of the detection process. A helium atom falling on the MCP leads to an
electronic cascade within a microchannel, resulting in an electric pulse which propagates along the
delay lines. Taken and modified from [104].

At each end of a line, pulse detectors are placed to determine, through a non-linear
process, the moment at which a pulse is detected. For a given pulse, the detection instants
(tX1 , tX2 , tY1 , tY2) are then measured. Depending on the position and time of the atom’s
fall, the distance traveled by the pulse along the line varies, leading to different detection
times. In this way, one can deduce the values of the position and the detection time. The
signal propagation speed along the copper line is c/3, so the transverse speed is

v⊥ =
c

3N
(2.4)

where N is the number of loops (approximately 100 in our setup). In practice, due to
slight differences between the lines, the transverse speeds are a bit different. They were
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(a) Top view of the MCP.

(b) Delay lines below the MCP

Figure 2.4: Pictures of the detector.
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calibrated by the constructor: v
x
⊥ = 1.02 mm.ns−1

vy⊥ = 1.13 mm.ns−1
(2.5)

Using these values, one can get the instant and position of the impact of a metastable
atom, according to the relations

X =
vx⊥
2

(tX1 − tX2)

Y =
vy⊥
2

(tY1 − tY2)

T =
1

2
(tX1 + tX2)

T =
1

2
(tY1 + tY2)

(2.6)

The process to get the detection times of the electrical pulses corresponding to the fall
of an atom is not trivial. The idea is to use a discriminator to detect the arrival time of
a pulse caused by an atom. This pulse is pre-amplified, but the amplification process is
noisy. Importantly, using a simple threshold with a peak detector to deduce the arrival
time of a pulse is not satisfying because the electrical pulses do not all have the same
amplitude (the gain can vary depending on the amplification chain), and such a system
would yield different arrival times for two signals of different amplitudes arriving at the
same moment. To counteract this effect, a Constant Fraction Discriminator (CFD) is
employed, leveraging the fact that all pulses have the same shape and allowing access to
the timing at which the input signal is at a certain fraction of its maximum value. This
makes the process independent of the amplitude of the input signal. A logical signal is
then generated, which equals 1 when an electrical pulse above the threshold reaches this
fraction. The signal is then digitally converted using a Time-to-Digital Converter (TDC).
The complete process is represented in Figure 2.5. The details of this detection system
are provided in the thesis of Q. Marolleau[41], along with the procedure to set up the
parameters leading to an efficient detection of atoms.

CFD TDC Computer

t

VX1

tx%
tx%

1

0

tX1 (binary)

Figure 2.5: Simplified representation of the electronic detection process.

This detection process is linear only as long as the atom flux is not too high. Other-
wise, for dense clouds, an excessively high atom flux induces electronic saturation, making
atom counting impossible. In the context of conducting a Bell experiment, this saturation
is not an issue as we will be working with only a few pairs emitted by the condensate.
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Therefore, we can effectively proceed with a regime of single-atom detection.

2.1.4 Reconstruction

Once the TDC returns a list of events on each line to the computer, corresponding
to the moments of detection of different pulses, a reconstruction algorithm compares the
detected timings on the four channels to identify correlated events that could be caused by
the arrival of an atom. Indeed, it is possible that a noisy signal exceeds the threshold and
is counted as an event on a channel. Additionally, what is referred to as pulse rebounds
can occur, meaning that when a pulse reaches the end of a line, part of its energy is
reflected (due to impedance mismatch) and can be detected again. It is common to
observe, after the detection of an atom, another signal of lower amplitude, shifted by a
duration corresponding to twice the propagation time on a line. Most of these rebounds
are eliminated by the detection threshold, but some may persist, counting as false events
that should not be considered.

For this reason, an event reconstruction algorithm is necessary, which seeks genuine
events and consists of a series of filters and conditions related to the timings on each
channel. The idea is simply to create nested loops to consider all possible quadruplets
that could correspond to an event and ensure that the events meet the following criteria:

• The maximum duration between two events detected on different channels is given
by the propagation time of an electrical signal over a distance equal to the diameter
of the MCP.

• The position (X,Y ) of the atom, calculated from the relationships 2.6, must be such
that the atom is within the disc formed by the MCP.

• The instant T of the atom detection can be calculated in two different ways (equa-
tions 2.6), so we have to ensure that the difference between these two calculated
quantities remains below a certain threshold.

This algorithm has been improved in recent years by V. Gondret, who enhanced the last
point to account for additional geometric constraints. Indeed, according to equations 2.6,
the quantity

SMCP = (tX1 + tX2)− (tY1 + tY2) (2.7)

should be equal to zero. But due to geometry and electronic defects (because of an imper-
fect winding of the delay lines for instance), this value, called offset, has a slight spatial
dependency over the MCP. Since the variations of SMCP are stable over time, it is possible
to make a reference offset map and to compare the value of the offset for a candidate
quadruplet to the corresponding value on the map. If the difference between the two is
too high, then the quadruplet is rejected.

At the end of this reconstruction algorithm, which occurs in real-time during data
acquisition, we have a list of events presumed to correspond to the detection of single
atoms, represented in the form of a list of coordinates (X,Y, T ) specifying the position
and arrival time of the atoms.

In practice, atoms are trapped in a region of space approximately 46 cm above the
MCP, either by a magnetic trap or an optical dipole trap. The trap is abruptly switched
off and the atoms fall on the MCP due to gravity (Figure 2.6). One can then deduce the
speed of an atom right after the trap is abruptly switched off from its position and arrival
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Figure 2.6: Schematic representation of atom detection after time of flight. A crossed
optical dipole trap (in red) traps a cold atoms cloud (in blue). An atom emitted with a certain
initial velocity from this cloud is detected, after time of flight, at precise coordinates on the MCP.

time. Indeed, a simple classical mechanics calculation makes it possible to determine the
initial velocity of the atom before its fall based on its arrival coordinates (X,Y, T ) on the
MCP. By setting the spatial origin at the center of the MCP and the temporal origin at
the moment of trap cutoff, we have the following relationships:

Vx =
X

T

Vy =
Y

T

Vz =
1

2
gT − L

T

(2.8)

where L is the vertical distance between the trap and the MCP. It can be obtained by
identifying the mean arrival time of a BEC for instance, which corresponds to an initial
vertical speed equal to zero. Note that to get these equations, gravity was the only force
considered. Although L can be determined using the center of a BEC, these equations
cannot be used to calculate the velocity distribution of a BEC, since its expansion dynamics
is governed by interactions between atoms. As a consequence, relationships 2.8 can only
be used for thermal clouds or dilute gases.

The typical size of the BEC is on the order of 100 µm, so that the distance L is
sufficiently large to consider that the MCP is in the far-field regime, ensuring that the
detection of atoms emitted from the BEC constitutes more of a measurement of the initial
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momentum than a measurement of the initial position of the atoms. Actually, in the
previous calculation, it is assumed that the initial position is identical for all atoms (the
center of the cloud) which is a good approximation up to a certain point which will be
discussed later in this manuscript (section 7.3.4).

This calculation also assumes that the only force acting on the atoms is gravity. In
reality, we mentioned that atoms are trapped in the magnetic sublevel m = 1, so the atoms
are sensitive to any residual magnetic field that may remain in the chamber. Therefore,
just after cutting off the trap, a Raman transfer is performed using two laser beams and
a so-called compensation coil to define the direction of the magnetic field. This enables
a coherent two-photon transfer to the magnetic sublevel m = 0, to make sure that the
falling atoms are not sensitive to magnetic fields. A few details about the Raman transfer
will be given in section 2.2.3.

2.2 Cooling procedure

In this section, we will recapitulate the key steps that allow us to get a BEC. Once
again, these steps are more detailed in the theses of the previous PhD students in the
team, and are presented here only as an overview. This also provides an opportunity to
mention the technological changes made during my thesis.

2.2.1 Source

In order to prepare helium in the metastable 23S1 state from a bottle of gaseous 2
4He

in the ground state, it is not possible to use a laser beam due to the significant energy
difference between the two levels. Instead, the idea is to make a plasma using an electrical
discharge, which populates many different excited states, including the desired metastable
state[105].

Ground state helium is transported into a vacuum chamber through a pipe to a glass
tube, in the middle of which there is a conductive tip serving as the cathode. The anode
is a skimmer (a funnel-shaped metal plate with a central hole) positioned opposite the tip,
and the discharge occurs between these two ends (Figure 2.7).

Figure 2.7: Schematic representation of the source. Taken from [41].

To prevent excessive heating of the atoms during plasma creation, the gas passes
through a piece of boron nitride with a small hole, held in place by a copper plate through
which liquid nitrogen circulates. Boron nitride, an electrical insulator but a good thermal
conductor, provides an initial cooling stage, limiting the particle velocity to 1200 m.s−1
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instead of 2600 m.s−1[106]. This results in a divergent atom flux, which can then be further
cooled using optical methods.

In September 2022, a leak occurred between the pipes transporting liquid nitrogen and
the vacuum chamber. Due to significant thermal constraints, the leak could not be sealed
with vacuum glue. Consequently, the source had to be extracted so that a welding could
be made on a part of the vacuum chamber outside the laboratory. During this operation,
and after approximately 10 years of proper functioning, the source was damaged (the glass
tube and the boron nitride piece are particularly fragile) and had to be replaced.

2.2.2 Cooling atoms down to Bose-Einstein Condensation

After obtaining a helium atom jet, we can interact with the small fraction of atoms in
the metastable state (evaluated at approximately one out of ten thousand) using a laser
tuned to the transition 2 3S1 −→ 2 3P2. The other atoms do not interact with the light
and are gradually absorbed by the vacuum pumps during the process.

To achieve Bose-Einstein condensation, several cooling steps are necessary. The general
principle of these steps is described in references [55] and [107], for example. The specific
steps followed in our experiment are detailed in [41].

• First, a pair of retro-reflected beams is used to form a so-called transverse molasses.
The wavefront of the beams is curved, which leads to a greater reduction of the
transverse velocity of the atoms than a plane wave and thus increase the spatial
density of the atomic jet along the y axis[108].

• The atoms then enter a Zeeman slower: a long tube (2.4 m) in which atoms inter-
act with a beam opposite to their propagation direction, decelerating them through
radiation pressure. To stay at resonance with the decelerated atoms and continue
cooling them during their propagation in the slower, we compensate for the Doppler
effect using a solenoid with a varying radius. The magnetic field thus created com-
pensates, through the Zeeman effect, for the Doppler shift of the slowing atoms. At
the end of the Zeeman slower, the speed of the atoms is about 70-100 m.s−1.

• Then, we can load the atoms in a Magneto-Optical Trap (MOT), consisting of three
retro-reflected beams near resonance and a magnetic field generated by a pair of
coils in an anti-Helmholtz configuration. In this so-called science chamber, an in-
frared camera is used for imaging the atomic cloud through fluorescence/absorption,
providing information about the size and number of atoms during successive cooling
stages. The MOT loading step takes about 1.5 seconds, resulting in approximately
2.109 atoms at a temperature of around 1 mK.

• At the end of the MOT loading, we compress the trap by bringing the frequency of
the beams closer to resonance and reducing their power, further reducing the phase
space density as both the temperature and the volume of the cloud are reduced[109].

• Following the MOT compression, the same beams are employed to create an optical
molasses close to resonance, further cooling the atoms. This step lasts for a few
milliseconds and results in obtaining clouds on the order of 100-200 µK.

• The atoms are then transferred into a magnetic trap (without optical confinement),
in what is called a Ioffe-Pritchard trap[110] in a cloverleaf configuration, composed
of two symmetrical clusters of coils located on either side of the vacuum chamber.
Each cluster consists of one quadrupole with four elliptic coils and two concentric
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sé

s
po

u
r

le
re

fr
o
id

is
se

m
en

t
d
e

l’
H

e�
so

n
t
in

d
iq

u
és

:
se

u
ls

le
s

fa
is

ce
a
u
x

d
o
n
t
le

s
d
ir
ec

ti
o
n
s

so
n
t

o
rt

h
og

o
n
a
le

s
a
u

p
la

n
(O

yz
)

n
e

so
n
t

pa
s

a
p
pa

re
n
ts

.
L
a

qu
a
li
té
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Figure 2.8: Schematic representation of the experiment. The helium atoms are brought
in the vacuum chamber from the left of the image where the discharge occurs to form a helium
plasma. The transverse molasses (TM) reduces the transverse velocity of the atoms, which go
to the Zeeman slower (ZS). Once in the science chamber, they are trapped in a magneto-optical
trap (MOT), then in a magnetic trap, and finally in an optical dipole trap consisting of a vertical
(vODT) and a horizontal (hODT) beam. In the following, we will see that an optical lattice is
used to generate pairs of atoms, with the beams (Latt Down and Latt Up) oriented at a 7° angle
from the vertical axis. After the trap cutoff, the atoms fall onto the MCP placed in the vacuum
chamber beneath the science chamber.

circular coils of different diameters (Figure 2.9). This trap enables the formation of a
quasi-harmonic confining magnetic field at the center of the chamber. The originality
of this configuration lies in the ability to control the value of the minimum magnetic
field, referred to as the bias field. This bias controls the transverse confinement of
the trap[106].

Figure 2.9: Geometry of a cluster from the Magnetic Trap.

• At the beginning of the magnetic trap, an intense and short laser pulse is used as an
optical pumping beam in order to transfer in the magnetic sub-level m = 1, which
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is the only state within which the atoms are trapped.

• The magnetic trap is then compressed by ramping down the bias field, and a low-
intensity 1D retro-reflected Doppler beam is applied for 1 s. This results in a temper-
ature decrease as well as an increase of density[111]. At this step, the 3D temperature
of the cloud (100 µK) is close to the Doppler limit of 39 µK.

• A second compression of the magnetic trap is then performed to increase the trans-
verse trapping frequency once again. Subsequently, an evaporative cooling step
is carried out using a radiofrequency antenna located within the science chamber,
coupling atoms from the sub-level m = 1 to the untrapped sub-level m = 0. By
adiabatically lowering the RF frequency, progressively removing the most energetic
atoms from the trap, the remaining atoms rethermalize through elastic collisions and
the cloud gets colder and colder.

At this stage, it is possible to evaporate until there is a transition towards a Bose-
Einstein Condensate (Figure 2.10). The trapping frequencies at this point are ωx =
2π×45 Hz and ωy,z = 2π×930 Hz. This is how the first metastable helium condensate
was obtained in our team[58]. However, some magnetic instabilities in our setup lead
to fluctuations in the bias field, resulting in sometimes significant variations in atomic
density and even the cloud’s position. Consequently, achieving a stable condensate
over several hours is not optimal under these conditions, which is why the atoms are
transferred in an optical dipole trap, at a temperature of 30 µK, before condensation.
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Figure 2.10: Bose-Einstein Condensation in the Magnetic Trap. Each column corresponds
to a given final frequency of evaporative cooling, decreasing from left to right. Pictures from the
camera are shown on the top row, while a Y -fixed transverse cut is depicted on the bottom row.
We can see, from left to right as the trap depth decreases, a thermal cloud, a thermal/condensate
bimodal profile, and a BEC.

• The atoms are then transferred into an intense (a few Watts) and highly red-detuned
(λ = 1550 nm) vertical beam, which plays the role of an optical dipole trap (ODT).
After a 500 ms overlap with the magnetic trap, the latter is adiabatically turned off,
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and approximately 4.107 atoms are loaded without heating the cloud, which remains
at 30 µK. A compensation coil is employed to maintain the atoms in the m = 1
magnetic sub-level.

• Then, a second horizontal laser beam at 1550 nm is turned on and intersects the ver-
tical beam at the location of the atoms. Subsequently, evaporation is carried out in
the crossed trap by adiabatically lowering the power of the beams and, consequently,
the trap depth. The role of the horizontal beam is twofold: firstly, to compensate
for gravity when the power of the vertical beam becomes too low, and secondly,
to increase the oscillation frequency in the vertical axis. Indeed, the longitudinal
trapping frequency of the vertical beam alone is on the order of ωz = 10 Hz after
evaporation (compared to ωx,y = 1.5 kHz for the transverse frequency). As a result,
with only a vertical beam, the highly elongated condensate obtained is actually in a
quasi-condensate 1D regime, exhibiting physics distinct from that of 3D condensates.
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Figure 2.11: Summary of the cooling procedure. Above: Temperature as a function of the
density. Below: Number of atoms as a function the the phase space density. Taken from [41].
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A summary graph of the various cooling stages is presented in Figure 2.11, providing
the temperature and atom number at each step. These steps are computer-controlled using
a sequencer that sends instructions and signals to different devices to ensure the sequential
progression of the cooling stages. Thanks to the work of the previous PhD students on the
experiment[112], obtaining a BEC in the ODT now takes approximately 10 to 12 seconds,
compared to around thirty seconds in 2015 when the team conducted the Hong-Ou-Mandel
experiment (and 45 seconds for the “historical” BEC in the magnetic trap). During this
time frame, the experiment faced various breakdowns and technical issues, delaying the
progress of the experiment and preventing the realization of other interference experiments,
including the Bell test, which was the clear objective after HOM.

Particularly, after my arrival in the team, the experiment faced significant fluctua-
tions of the atom number of various origins (computer bugs, frequency instabilities, power
and polarization fluctuations), hindering even the loading of a stable MOT. In February
2021, it was decided to make substantial changes, during which we replaced the diode
laser, responsible for the cooling transition, with a narrowband and stable fiber laser.
We specifically revamped the frequency locking optical setup. Additionally, we replaced
the aging sequencer, controlled in Matlab and historically developed by the laboratory’s
electronic workshop, with a Python-controlled ADWIN sequencer. The development of
object-oriented code to control the experiment took some time, but these changes signifi-
cantly improved the stability of the atomic clouds.

The transition to Python for the sequencer control code was also seized as an oppor-
tunity to write a new program for visualizing and processing data in the laboratory room.
This task was primarily carried out by A. Dareau, a postdoctoral researcher in the team,
for the images received by the camera. I developed the software component responsible
for visualizing the data received from the MCP.

2.2.3 Raman transfer and protective copper plate beam dump

In August 2019, while the team managed to have a BEC in the ODT, the vertical beam
was left at full power (8W at the time) for several seconds. The MCP, positioned below,
could not dissipate the received thermal energy, resulting in a complete and irreversible
loss of detectivity at the center of the detector. The MCP was then replaced by a new
model, which is the one we currently use, expected to increase quantum efficiency from
25% to 50%. However, even by reducing the initial power and following a standard evap-
oration ramp, the new MCP was damaged again in January 2020, just before my arrival
in the team. It turned out that the new MCP is also more sensitive to thermal stress.
Additionally, the hole radius kept increasing while evaporative cooling was performed,
without any visible asymptotic limit.

After an initial unsuccessful attempt to change the geometry of the ODT (without
using a powerful vertical beam), which proved too sensitive to fluctuations in the center of
the magnetic trap for stable loading of the optical trap, the solution we opted for involved
two elements:

• adding a copper plate above the MCP, held by a stainless steel arm, to dissipate
thermal energy without deteriorating the detector, like a beam dump in high vac-
uum ;

• implementing a momentum transfer along the X-direction during the Raman trans-
fer, in order to shift the atoms away from the center of the MCP and let them fall
next to the hole and the “shadow” of the copper plate.
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Copper plate beam dump

(a) Side view. (b) View from above.

Figure 2.12: Pictures of the copper plate beam dump, held by a stainless steal arm.

The copper plate consists of a one-inch diameter disk, 6 mm wide, with a surface
treated to diffuse laser light. Copper was chosen after preliminary tests on other surfaces
(such as a mirror with a diffusing gold coating) due to its excellent thermal conduction
properties. The piece was cut to avoid obstructing the useful area of the MCP and is held
by a stainless steel arm that tilts it 7° relative to the MCP plane, preventing the reflection
of light onto the atoms.

The piece was installed on the MCP in December 2021. By studying the MCP detec-
tivity map, obtained by allowing a hot cloud to fall across the entire detector, it became
apparent that the copper plate with its stainless steel mounting arm disrupted the electro-
magnetic environment around the MCP, resulting in detectivity variations in the vicinity
of the piece, likely caused by atom deviations. This can be observed by allowing a hot
cloud to fall on the MCP: if its temperature is high enough, the spatial extension of the
cloud after time of flight covers the entire detector. It should have very few atoms to
prevent saturation. In practice, we use atoms from a MOT without transverse molasses.
A typical example is given in Figure 2.13.

Initially, it was considered that this effect might be of electrical origin. Consequently,
we opened the vacuum chamber again and the stainless steel arm was connected to the
ground, since it was originally in contact with the high-voltage part of the MCP. How-
ever, this change had no effect. It was then observed that the detectivity decrease at the
vicinity of the piece was much more pronounced for m = 1 clouds than for m = 0 clouds,
suggesting that the effect is, in reality, magnetic (Figure 2.13). The SAE 304 stainless steel
used, while less magnetic than conventional stainless steel, is not entirely non-magnetic,
which could explain this observation. It was decided to retain this setup since the atoms
of interest are those transferred by Raman into the m = 0 state.

Nevertheless, a deterioration in detectivity around the piece was observed after a year
of operation. The cause of this deterioration is unknown, and regular checks are conducted
to ensure that it does not significantly impact our study of condensates in the useful area.
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Figure 2.13: Detectivity maps of the MCP with the copper plate. Left: Map obtained with
MOT clouds (m = 1). Data averaged over 560 runs. A clear spatial dependency of the detectivity
is observed, especially around the shadow of the beam dump. Right: Map obtained with cold
clouds transferred in m = 0. Data averaged over 29 runs. Despite a lack of statistics, the spatial
effects on the detectivity are less visible.

Raman transfer

Like a Bragg transfer, a Raman transfer is a coherent two-photon transition, but it
couples two internal states of the atom. This allows us to transfer atoms from the m = 1
state (which allows for the trapping of the atoms in the magnetic trap and has a low
Penning collision rate) to the m = 0 state when they are released from the trap (making
them insensitive to any residual magnetic fields in the chamber during their fall towards
the MCP). We employ a diode laser at 1083 nm and address the 23S1 → 23P0 transition
with σ− and π polarized beams (Figure 2.14).

E

∆

δ

m = −1

m = 0

m = 1
23S1

23P0

m = 0

σ−π

Figure 2.14: Energetic diagram of the two-photon transition
process.

The amplitude of the compensation magnetic field determines the splitting between the
magnetic sublevels, and consequently, the two-photon resonance condition. The detuning
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∆ from the excited state is 800 MHz, allowing for adiabatic elimination of the excited state
population to reduce the system to a two-level configuration between m = 0 and m = 1.
This system is coupled by an effective Rabi frequency given by:

Ω2ph =
Ωσ−Ωπ

2∆
(2.9)

where Ωσ− and Ωπ are the Rabi frequencies of each beam.

It is possible to use the Raman transition to transfer momentum to the atoms. Indeed,
if both beams make an angle of θ/2 with the y axis, momentum conservation imposes that
the transferred atoms acquire an additional momentum along x equal to 2~k sin(θ), where
~k = 2π~/λ is the one photon recoil momentum. This effect is used to “kick” the atoms
from the BEC along x, so that after a time of flight of 300 ms, they are shifted by 13.5 mm
along x (Figure 2.15) for an angle of θ = 28°. This displacement is sufficient to avoid the
hole and the shadow of the protective arm while remaining within the MCP diameter.

π σ−
θ

z
x

y

MCP

BEC (m = 1)

BEC (m = 0)

Copper

Stainless steal

Figure 2.15: Schematic representation of the two-photon
Raman kick as seen from above the science chamber.

We can therefore detect m = 0 atoms on the MCP. The implementation of the copper
plate above the MCP introduces a constraint for characterizing the Raman transfer because
m = 1 atoms falling onto it are not observable. Nevertheless, residual magnetic fields
induce non-trivial motion in m = 1 atoms, leading to the detection of some magnetic
atoms on the useful part of the MCP. The acceleration caused by residual magnetic fields
further results in this signal not being detected simultaneously with the atoms transferred
into m = 0.

Subsequently, a Rabi oscillation between the two levels can be realized by varying the
duration of the Raman beam application. The data from the MCP provides a list of atoms
identified by their coordinates (X,Y, T ). To observe the Rabi oscillation with the m = 0
atoms, one simply needs to count the atoms falling onto the MCP within a short time
range centered 308 ms after the trap is turned off. For the m = 1 atoms, we count the
number of events within the spatiotemporal range corresponding to the residual atoms.
An example is shown in Figure 2.16. By finely scanning the duration of the Raman pulse
around the value for which all atoms are transferred, one can precisely determine the
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duration required to achieve the optimal transfer. At resonance, it is possible to transfer
approximately 98% of the atoms for a duration of around 15 µs.
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Figure 2.16: Rabi oscillations with the Raman beams.

2.2.4 Imaging system

As previously mentioned, an infrared camera is used to image the atoms in the science
chamber (Figure 2.17), providing information on the number of atoms and the cloud size
to ensure the proper progress of the different cooling stages, as long as the size of the cloud
is not too small (which is the case for a BEC in the crossed dipole trap) or the number of
atoms too low.

Camera

𝑒⃗𝑦

𝑒⃗𝑧

𝑒⃗𝑥

y

z

u v

x

45°

Figure 2.17: Schematic representation of the imaging setup. Taken and adapted from [41].

The camera is a short-wave infrared InGaAs model (Xeva 320 by Xenics), installed
in 2017 on the experiment. It is positioned at a 45° angle relative to the experiment’s
vertical axe, along one of the MOT beams direction (a motorized arm makes it possible
to deploy a retroreflection mirror during the MOT). A telescope is employed to conjugate
the atoms with the camera CCD sensor. The camera can be used either in fluorescence
or absorption imaging modes.
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In the case of fluorescence imaging, resonant light with the transition 23S1 → 23P2 is
directed onto the atoms for a duration of τ = 200 µs using the MOT beams (except the
one along the camera axis). The atoms are then excited and subsequently emit photons
via spontaneous emission, with a rate given by:

γ =
Γ

2

s

1 + s
(2.10)

where s = I/Isat is the resonance saturation parameter. By ensuring that the beam
intensity is sufficient, we have γ = Γ/2.

It is possible to estimate the number of atoms in the cloud based on the number
of photons Np detected by the camera, as the number of emitted photons is directly
proportional to the number of atoms N according to the simple relation

Np =
Γ

2
τN (2.11)

In practice, obtaining a reliable estimation is challenging because it requires estimating
the fraction of emitted photons reaching the detector, and determining the corresponding
solid angle is not straightforward. Additionally, the camera provides an image in grayscale
rather than a count of photons, so a detailed understanding of the camera’s (non linear)
conversion chain is necessary. Thus far, this has been the method used to calculate the
number of atoms in a cold cloud, but there is suspicion that the result is consistently
overestimated. Furthermore, the significant duration of the fluorescence pulse has a me-
chanical effect on the cloud, causing its size to increase significantly for atoms trapped in
the dipole trap, thereby distorting the cloud size estimation and therefore potentially the
temperature measurements.

During my thesis, I contributed to the implementation of imaging in an absorption
mode. In this technique, the atoms are illuminated using the beam employed for the
MOT along the camera axis for 18 µs. The intensity transmitted after the light passes
through the cloud is directly related to the cloud density by Beer-Lambert’s law:

I(x, v) = I0(x, v) exp

(
−σ
∫
n(x, v, u) du

)
(2.12)

where I0 is the incident intensity, n the atomic density and σ = 3λ2

2π the absorption cross
section at resonance. In order to measure the density n(x, v) of a given cloud integrated
along the u axis, a common way consists in taking three consecutive pictures, a first one
in order to collect the intensity I(x, v) with atoms, a second one to measure I0(x, v) with
light but without atoms, and finally one without light and without atoms in order to
cancel any background noise Ib(x, v). The density of the cloud is then given by

n(x, v) =
1

σ
ln
I0(x, v)− Ib(x, v)

I(x, v)− Ib(x, v)
(2.13)

Implementing this type of absorption imaging will enable the camera to be calibrated
more accurately than with fluorescence, for example by comparing the number of atoms N
calculated by integrating n(x, v) with that expected when N is thermodynamically fixed
(typically a thermal cloud at the condensation threshold). During the Spring of 2022,
this work has been conducted by C. Lamirault, new PhD student in the team, during her
Master internship[113].

One of the main goal is to use this calibration to determine the quantum efficiency of
the MCP, by dropping onto it a known fraction of atoms by Raman transfer. Preliminary

74



CHAPTER 2. EXPERIMENTAL SETUP: PREPARATION OF A METASTABLE HELIUM BOSE-EINSTEIN

CONDENSATE

results suggest that the quantum efficiency is of the order of 50%, as measured by the
team of D. Clément[114], but our study needs to be continued at this stage.

2.3 BEC characterization

2.3.1 Stability

One way to monitor the stability of the experiment and the reproducibility of conden-
sate realization consists in iteratively releasing identical clouds onto the MCP and study
the statistics of the detected atoms. In the following, we analyze a dataset for which we
produced a very cold condensate in order to achieve a very low temperature (potentially
at the expense of atom number).

As seen before, a BEC is so dense that it inevitably saturates the detector, making
it impossible to directly determine the number of atoms. Although the total number of
atoms is significantly underestimated, the spatial delineation of the condensate is not af-
fected by saturation. Therefore, it is possible to determine the size and position of the
detected cloud after time of flight by fitting the density of detected atoms in each direction.
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Figure 2.18: Stability histograms of the BEC. For each experimental run, the center of the
BEC in each direction is determined by a density fit. The histograms show the distribution of the
position and arrival time of this center for the 922 runs considered.

Figure 2.18 shows the statistical distribution of the center of the BEC, which was
determined by a Gaussian fit in each direction. The average value and the standard
deviation of the center of the cloud (along with its size) are given in Table 2.2. The space
origin is the center of the MCP, while the time origin corresponds to the time at which
the optical dipole trap is switched off. A Raman pulse is performed a few milliseconds
after in order to transfer the atoms in m = 0 and kick them along X. The center of the
BEC is located 12.7 mm away from the center of the MCP, which corresponds to what we
expect given the angle between the two Raman beams.

For our future Bell experiment, we will show that the correlated pairs of atoms are
emitted from the condensate (in an optical lattice) in the vertical direction. Therefore,
it is crucial to have good stability along this axis because instability of the BEC leads to
instability of the pairs, resulting in a significant limitation of our longitudinal resolution.
The arrival time of the cloud should vary little compared to the width of a momentum
mode, which will be determined later in this manuscript. A first reference value is provided
in R. Lopes’s thesis[115], which estimates the standard deviation of arrival times from the
crossed optical dipole trap to be σ(Tmean) = 0.04 ms (in a setup that allowed observation

75



CHAPTER 2. EXPERIMENTAL SETUP: PREPARATION OF A METASTABLE HELIUM BOSE-EINSTEIN

CONDENSATE

Quantity Mean Standard deviation

Xmean -12.7 mm 0.4 mm
Ymean -0.7 mm 0.3 mm
Tmean 307.76 ms 0.03 ms

σX 3.1 mm 0.2 mm
σY 3.4 mm 0.2 mm
σT 0.15 ms 0.02 ms

Table 2.2: Results of the stability measurements. Mean and standard deviation of the center
of the MCP (up) and of its size (down) in every direction.

of the HOM effect with atoms). In our case, we measure σ(Tmean) = 0.03 ms, which is
satisfying.

2.3.2 Number of atoms, temperature, size and chemical potential

For a condensate, one cannot simply deduce the momentum distribution using clas-
sical mechanics relations 2.8 because the expansion dynamics of a BEC are governed by
interactions within the cloud, which cannot be neglected. Nevertheless, it is possible to
infer certain properties of the BEC.

Figure 2.19 presents the density of the detected atoms when a BEC falls onto the MCP,
averaged over 922 runs, in the transverse plane and along the longitudinal axis. On this
latter curve, four zones can be distinguished. In gray, one can observe a residual atom
noise. The blue plateau corresponds to a few atoms emitted via spontaneous emission from
the Raman beam slightly too close to resonance. In green, we observe atoms originating
from a thermal cloud, here fitted by a Gaussian distribution, and in red, the density peak
corresponds to the condensate, which is significantly dominant.
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Figure 2.19: BEC after time of flight, averaged over 922 runs. Left: Transverse density
profile, integrated along the vertical direction. The colormap highlights a Thomas-Fermi parabolic
profile. Right: Vertical density profile in terms of arrival time, integrated along the transverse
directions. In gray: noise. In light blue: atoms emitted by spontaneous emission. In green: atoms
from the thermal fraction. In red: BEC.

From this profile, one can estimate in particular the temperature of the thermal frac-
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tion. Indeed, for an ideal gas where we neglect interactions between atoms, the size of a
thermal cloud after a time of flight t is given by a ballistic expansion expression[116]:

σi(t) = σi(0)
√

1 + ω2
i t

2 (2.14)

where i ∈ {x, y, z} and ωi is the trapping frequency along i. The initial size of the cloud
writes

σi(0) =

√
kBoltzT

mω2
i

(2.15)

For a long time of flight, i.e. when ω2
i t

2 � 1, we get

σi(t) =

√
kBoltzT

m
t (2.16)

Along the vertical axis, the size of the cloud is converted into a detection duration on the
MCP, given by σt(t) = σz(t)

gt . The temperature is then equal to

T =
mg2σ2

t

kBoltz
(2.17)

The fitted size from Figure 2.19 equals 0.99 ± 0.08 ms, which corresponds to a tem-
perature of T = 45± 8 nK. Note that, by integrating the area of the thermal fit, one can
deduce an estimation of the number of detected thermal atoms per run, which is equal to
Ntherm = 12± 4.

For a BEC, the ballistic expansion expression is not valid because of the interactions in
the cloud, characterized by the chemical potential µ. It can be considered that when the
BEC is trapped, the kinetic energy of the atoms is negligible compared to the interaction
energy, so that the BEC is in the so-called Thomas-Fermi regime and the in-trap density
profile is given by an inverted parabola:

ΦTF(r) =

(
µ− U(r)

gGPN

)1/2

(2.18)

where N is the number of atoms, U(r) the trapping potential (considered to be harmonic
in our case) and gGP is a coupling constant, proportional to the s-wave scattering length a:

gGP =
4π~2a

m
(2.19)

The chemical potential µ is then given by

µ =
~ω̄
2

(
15
aN

σ̄

)2/5

(2.20)

where

ω̄ = (ωxωyωz)
1/3 and σ̄ =

√
~
mω̄

(2.21)

When the trap is switched off, the BEC expands and the interaction energy is converted
into kinetic energy. The expansion dynamics was studied in references [117] and [118]. In
particular, Y. Castin and R. Dum developed an analytic model in the case of a very
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anisotropic trap, for which ω‖ � ω⊥. In this case, the radius R(t) of the BEC in each
direction is given by a scaling law:

R⊥(t) = R⊥(0)
√

1 + τ2

R‖(t) = R‖(0)
[
1 + ε2

(
τ arctan(τ)− ln

√
1 + τ2

)] (2.22)

where

Ri(0) =

√
2µ

mω2
i

, ε =
ω‖
ω⊥

, τ = ω⊥t (2.23)

The size of the cloud after expansion is entirely determined by the chemical potential
and the oscillation frequencies. In our case where the BEC is elongated along the vertical
direction, ωx,y = ω⊥ while ωz = ω‖. Therefore, fitting the condensate with a parabolic
function in each direction using these three parameters as fitting parameters allows us to
infer the characteristics of the BEC. The clouds are fitted for each experimental run. The
results are given in Table 2.3.

Quantity Value

ωx,y 2π × (1010± 200) Hz
ωz 2π × (87± 20) Hz

µ 149± 9 nK
Rx,y(0) 4± 1 µm
Rz(0) 45± 13 µm
N 15300± 5000

Table 2.3: Oscillation frequencies in the crossed optical dipole trap and characteristics of
the BEC.

The oscillation frequencies found are compatible with measurements performed by
quenching the cloud. From the fitted data, one can deduce the size of the cloud inside the
trap, along with an estimation of the number of atoms, given by

N =
σ̄

15a

(
2µ

~ω̄

)5/2

(2.24)

We find N = 15300 ± 800, which is the expected order of magnitude. Note that one can
also deduce the number of atoms in the thermal part of the cloud, from the estimated
temperature and the oscillation frequencies, according to the relationship[119]:

Ntherm = 1.202

(
kBoltzT

~ω̄

)3

(2.25)

This gives Ntherm = 11± 6, which is the same order of magnitude at what was estimated
experimentally by fitting the thermal fraction of the atoms (one should expect to find half
of this number due to the quantum efficiency of the MCP supposed to be around 50%,
this is not exactly the case here but the low number of atoms found in both cases confirms
the order of magnitude).

Note that these results indicate a very small thermal fraction, on the order of 0.1%.
Such a result may seem surprising, as it can be challenging to have so few thermal atoms.
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In practice, measuring temperatures smaller than the chemical potential, as in our case,
is rare, which explains the significantly condensed fraction we obtain. It is possible that
the temperature of the thermal fraction has been underestimated. Indeed, the elongated
shape of the BEC is such that we are close to a quasi-1D regime, for which the expansion
laws are known to be different from a 3D BEC. Nevertheless, this reinforces the idea that
we are capable of achieving very cold clouds, so cold that we can neglect any thermal
atoms when working in the crossed dipole trap. In particular, we will see that we can
emit atom pairs from the condensate, sufficiently far from the BEC so that there are no
thermal atom in the region of emission.
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The parametric conversion process has been employed in our team in a collision regime
between two condensates since 2007 [120], leading to the observation of non-classical
correlations[21]. As discussed in the introduction, the pairs are then produced on a collision
sphere. The volume of the sphere is determined by the conservation of energy and mo-
mentum, while the number of produced atoms depends on the condensate density, which
remains concentrated at the poles of the sphere. Such a geometry is quite constraining as
it results in the emission of many momentum modes across 4π steradians. An interesting
alternative is to use a one-dimensional optical lattice to generate two correlated atomic
beams. Initially proposed by in 2005 [80] and first observed in 2006[81], the idea is to use
the lattice to modify the dispersion relation of the atoms, thus enabling the spontaneous
creation of correlated pairs. This technique was implemented in our experiment in 2012.

In this section, we will present the process of pair creation. An analytical model is
detailed in P. Dussarrat’s thesis[121], from which we will summarize the main results here.
We will also present the results obtained from the experiment, consisting of mainly two
datasets. One dataset was obtained in the spring of 2022, with a significant population of
atoms per mode, while the other was obtained in the spring-summer of 2023, with a much
smaller population. We will see that the results have revealed non-classical correlations,
which is encouraging for conducting a Bell test.

3.1 Four-wave mixing

3.1.1 Simple model: emission of two coupled modes

Let us consider a condensate in a dilute regime, meaning that the distance between
atoms is much greater than the typical range of interatomic interaction. This gas is
described by the Gross-Pitaevskii Hamiltonian, which can be expressed in the Heisenberg
picture as follows:

Ĥ =

∫
d3r Ψ̂†

(
− ~2

2m
∆ + V (r, t) +

g

2
Ψ̂†Ψ̂

)
Ψ̂ (3.1)

where, Ψ̂(r, t) is the field operator, m is the mass of the atoms, V (r, t) is an external
potential, and g is the interaction strength, related to the s-wave scattering length a
through the relation

g =
4π~2a

m
(3.2)

The interactions within the condensate, described by the interaction Hamiltonian

ĤI =
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂ (3.3)

can be responsible for the emission of correlated atom pairs. Indeed, let us index by 0 the
momentum mode of the atoms in the condensate, we aim to emit a pair of atoms with
momentum modes indexed by 1 and 2, respectively. Let us decompose the field operator
into these three modes, in the form

Ψ̂ = ψ0â0 + ψ1â1 + ψ2â2 (3.4)

The term ψ0â0 correspond to the BEC, which can be interpreted as a pump signal
which will lead to the emission of scattered modes ψ1â1 and ψ2â2. By injecting this field
operator into the interaction Hamiltonian 3.3, we obtain many terms. By retaining only
the ones that verify momentum conservation, the remaining terms are:
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• mean-field interaction terms

ĤMF = 2g
∑
i 6=j

∫
d3r |ψi|2|ψj |2â†i âiâ

†
j âj +

g

2

∑
i

∫
d3r |ψi|4â†i â

†
i âiâi (3.5)

• two four-wave mixing terms

ĤFWM = g

∫
d3rψ2

0ψ
∗
1ψ
∗
2 â
†
1â
†
2â0â0 + g

∫
d3rψ∗0

2ψ1ψ2 â
†
0â
†
0â1â2 (3.6)

Note that the process â†1â
†
2â0â0 actually corresponds to the desired pair emission, where

two atoms from the BEC are annihilated while two atoms in momentum modes 1 and 2 are
created. More particularly, if we express â0 using the Bogoliubov description â0 =

√
N0 1̂

(where N0 is the number of atoms in the BEC, assumed to remain constant), then the
Four-wave mixing Hamiltonian can be written:

ĤFWM = ~κ1,2â
†
1â
†
2 + ~κ∗1,2â1â2 (3.7)

where

κ1,2 =
gN0

~

∫
d3rψ2

0ψ
∗
1ψ
∗
2 (3.8)

This the typical expression of a so-called squeezing Hamiltonian, resulting in the emis-
sion of correlated pairs[26], expressed with an associated gain of the process κ1,2, depend-
ing on the density, the strength of the interaction, and the overlap integral between the
involved momentum modes.

3.1.2 Phase-matching conditions in a periodic potential

As mentioned, the emitted modes must satisfy the conservation of energy and momen-
tum. This is where the lattice comes into play since the atoms are placed in a periodic
potential. To achieve this, two laser beams are used, forming an angle θ between them
and intersecting at the BEC to interfere in the z direction, so that the lattice wavevector
is

klat =
2π

λ
sin(θ) (3.9)

The beams do not have the same frequency, so that the instantaneous intensity profile
in the BEC is

I(z, t) = I0 sin2

(
klatz −

δ

2
t

)
(3.10)

where δ is the beams detuning. The lattice is moving at a speed vlat = δ/2klat. In the
lattice reference frame, the atoms (trapped in the optical dipole trap with a zero velocity
in the laboratory frame), acquire a speed equal to v0 = −vlat, so that the momentum of
the atoms in the BEC is

~k0 = − mδ

2klat
(3.11)

In this frame, the potential due to the lattice is

V (r, t) = V0 sin2(klatz) (3.12)
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Let us neglect (at first) the interactions in the condensate. It can be shown that this
is assumption is well verified, provided that a corrective mean-field energy is added[122].
Assuming that the optical dipole trap is an infinite well between −Lz/2 and Lz/2, where
Lz is the size of the BEC, the 1D Schrödinger equation can then be expressed as:

− ~2

2m

∂2Ψ

∂z2
+ V0 sin2(klatz)Ψ = EΨ (3.13)

The dispersion relation is periodic with a period of 2klat. We then restrict ourselves
to the first Brillouin zone and work with the quasi-momentum q ∈ [−~klat, ~klat] rather
than the momentum in real space. According to Bloch’s theorem, we can look for periodic
solutions. So it is possible to decompose the wavevectors of the system in a basis of plane
waves, so that:

Ψq(z) = e
iqz
~
∑
j

Cj(q)e
2iklatjz (3.14)

By inserting Ψq(z) in the Schrödinger equation, one gets the system of coupled equa-
tions

E(q)

Elat
Cj =

[(
q

~klat
+ 2j

)2

+
V0

2Elat

]
Cj −

V0

4Elat
[Cj−1 + Cj+1] (3.15)

where

Elat =
~2k2

lat

2m
(3.16)

The numerical resolution of these equations equation yields the band structure of the
atoms in the lattice (Figure 3.1). It is possible to limit ourselves to j ∈ [−3, 3] for solving
the system if the lattice is shallow (V0 ≤ Elat) because the amplitude of the coefficients
Cj then rapidly decreases with |j|.
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Figure 3.1: Band structure of the atoms in a lattice (V0 = 0.5Elat).

Let us suppose that the atoms remain in the fundamental band. The atoms in the BEC
have a quasi-momentum q0 and emit a pair with quasi-momenta q1 and q2. Conservation
of energy and quasi-momentum in the lattice then can be expressed as:{

2E(q0) = E(q1) + E(q2)

2q0 = q1 + q2 [2~klat]
(3.17)
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In this simple two-mode model, the pair creation process can be interpreted as follows:
the condensate, with quasi-momentum q0, creates two atoms of momenta q1 and q2 sat-
isfying the above relations. For different values of q0, such a solution exists with q1 and
q2 different from q0 due to the periodicity of the dispersion relation (Figure 3.2). In the
lattice, we remain within the first Brillouin zone, so the atom for which |q| < ~klat actually
corresponds to a quasi-momentum refolded into the quasi-momentum range [−~klat, ~klat].
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Figure 3.2: Schematic representation of the pair creation process. In the lattice frame,
the condensate has a quasi-momentum q0 (blue dot). The blue curve is the fundamental band of
the atoms in the lattice (V0 = 0.5Elat). Phase matching conditions allow for the emission of a
pair of atoms with quasi-momenta q1 (red dot) and q′2 (light green dot). Since q′2 < −~klat, the
corresponding quasi-momentum of the atom in the first Brillouin zone is q2 = q′2 + 2~klat (green
dot).

When the lattice is adiabatically turned off, a so-called band mapping phenomenon
occurs, where the eigenfunction of quasi-momentum q is projected into real space as a
plane wave of momentum p, where p is the quasi-momentum of the lattice restricted to
the first Brillouin zone. An important consequence is that the two atoms are not emit-
ted on opposite sides of the condensate but on the same side, due to the conservation of
quasi-momentum rather than momentum.

So far, we have neglected interactions in the condensate, but in reality, they must be
taken into account as they are responsible for pair creation. One approach is to add a mean-
field term in the energy conservation equation. It can be shown that this approximation
allows us to consider that the non-interacting eigenvectors are the eigenvectors of the
system with good approximation[122]. The mean-field corrective interaction term is in
this case 2gn0, where n0 is the density of the BEC, so that the energy conservation
relation is actually

2E(q0) = E(q1) + E(q2) + 2gn0 (3.18)

The previous reasoning remains valid, but the energy value given by the band diagram
is shifted by an amount that depends on the density of the BEC.

One can then numerically solve the phase-matching conditions to determine the quasi-
momentum of the created pairs for a condensate with initial quasi-momentum q0, a den-
sity n0 and a potential depth V0 (Figure 3.3).
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Figure 3.3: Phase matching conditions. The momentum conservation curve (in blue) is given
by q2 = 2q0−q1+2~klat for q0 = −0.58~klat. The energy conservation curve (in orange) is obtained
by numerically solving the equation 3.18 for q0 = −0.58 ~klat, and V0 = 0.5Elat, in the case where
the mean-field term due to interactions is not considered (dashed line) and in the case where we
take it into account with n0 = 1.3× 1013 cm−3 (solid line). The intersection points between these
two curves yield the quasi-momenta of the emitted atoms. The graph is symmetric with respect
to the exchange q2 ↔ q1.

Thus, interactions within the BEC, modeled by the mean-field term 2gn0, have the
effect of shifting the energy conservation curve as the density increases. Note that, knowing
q0, the density n0 can be determined by measuring the momenta of the pair of atoms.

3.1.3 Output state, density and correlations

Recall that the previous results were obtained by decomposing “by hand” the Hamil-
tonian, introducing modes 0, 1 and 2. Within the framework of this ansatz where we
consider strict conservation of momentum and energy, there is an easy analytical resolu-
tion of the problem. In the Schrödinger picture, one can solve the 1D Schrödinger equation
to determine the output state of the system[121], which can be written:

|ψ(T )〉 =
1

cosh(|κ|T )

+∞∑
n=0

einφκtanhn(|κ|T ) |n, n〉 (3.19)

where φκ = arg(κ) and T the duration of the optical lattice. This is the expression of a
two-mode squeezed state (TMS), which can be rewritten in the general form:

|ψ(T )〉 =
√

1− |α|2
+∞∑
n=0

αn |n, n〉 (3.20)

where α, called the squeezing parameter, is related to the average population 〈N〉 in the
emitted modes through the relationship:

〈N〉 =
|α|2

1− |α|2 (3.21)

This quantum state is of particular interest because it is a superposition of twin Fock
states, which are quantum states with very strong correlation properties. In particular,
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as discussed in Chapter 1, the Fock state |1, 1〉 can lead to the observation of a sub-shot
noise variance or a HOM dip whose contrast cannot be explained by a classical model.
However, experimentally producing twin Fock states is challenging, unlike TMS states. In
practice, since the coefficients’ weight decreases rapidly with n, it is interesting to produce
TMS states with a low population, in order to approach a Fock state |1, 1〉.

Similarly, it is possible to determine the expression of the creation and annihilation
operator expressions. In the Heisenberg picture, on getsâ1(t) = â1(0) cosh(|κ|t)− ieiφκ â†0(0) sinh(|κ|t)

â2(t) = â2(0) cosh(|κ|t)− ieiφκ â†1(0) sinh(|κ|t)
(3.22)

From these expressions, typical of the squeezing Hamiltonian 3.7, it is possible to
determine the mean values of several observables of interest. Thus, we find again that the
average number of atoms in the pairs is given by:

〈N〉 = 〈â†1â1〉 = 〈â†2â2〉 = sinh2(|κ|T ) (3.23)

The population in the pairs must therefore increase exponentially with the duration of
the lattice. Of course, this process will be limited by a saturation phenomenon, primarily
related to the depletion of the condensate.

It is also possible to calculate the correlations between the emitted pairs. The local

correlation (or auto-correlation) g
(2)
loc = g

(2)
1,1 = g

(2)
2,2 and the cross-correlation between the

emitted pairs g
(2)
cross = g

(2)
1,2 are given by

g
(2)
loc =

〈â†1â†1â1â1〉
〈â†1â1〉

2 =
〈â†2â†2â2â2〉
〈â†2â2〉

2 = 2

g(2)
cross =

〈â†2â†1â1â2〉
〈â†1â1〉 〈â†2â2〉

= 2 +
1

〈N〉

(3.24)

The normalized local correlation is equal to 2, which corresponds to bosonic bunching.
Indeed, the pair creation process follows a thermal distribution, thus reproducing the
Hanbury Brown and Twiss effect.

On the contrary, the cross-correlation is greater than 2, and increases as the average
population decreases. This state intrinsically violates the Cauchy-Schwarz inequality, since

g
(2)
cross > g

(2)
loc . Again, this suggests that we will have to work with a low population in the

pairs in order to exhibit strong correlations.

3.1.4 Multimode description

In the previous discussion, we have only considered pairs (q1, q2) that strictly satisfy
energy and momentum conservation. Thus, for a condensate at a given velocity in the
lattice’s reference frame, only two modes are emitted. In practice, this is not the case,
and the previous reasoning must be generalized to the emission of pairs that do not
strictly conserve energy and momentum. Indeed, the finite size of the BEC relaxes the
momentum conservation condition, while the finite duration of the lattice relaxes the
energy conservation.
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The four-wave mixing Hamiltonian is then written in a more general form as follows:

ĤFWM =
∑
q1,q2

~κ(q1, q2)â†q1 â
†
q2 + ~κ∗(q1, q2)âq1 âq2 (3.25)

where the gain κ is given by

κ(q1, q2) =
gN0

~

∫
d3rψ(q0)2ψ∗(q1)ψ∗(q2) (3.26)

Numerical simulations were conducted by J. Ruaudel[122], and P. Dussarrat devel-
oped in his thesis a perturbative analytical multimode 1D model for a shallow lattice
where the BEC density profile can be considered uniform[121]. Recently, P. Paquiez, in-
tern in the team, conducted new numerical analyses to characterize the pair source with as
few approximations as possible to best account for experimental observations[123]. In this
paragraph, we will briefly summarize the results of the uniform analytical model, which
provides valuable physical insights.

In this model, we can approximate the wavefunction of atoms with quasi-momentum
q as plane waves restricted to the volume of the BEC, which allows for easy calculation of
the gain:

κ(q1, q2) =
gn0

~
sinc

(
∆q(q1, q2)

L

2~

)
(3.27)

where
∆q(q1, q2) = 2q0 − q1 − q2 (3.28)

which is actually the conservation of quasi-momentum condition. This time, the modulo
does not appear because in a multimode model, a given mode can a priori interact with
all other modes. It can be shown that adding “by hand” a modulo 2~k would lead to the
emission of pairs when V0 = 0, which is not physical.

Subsequently, by considering non-strict conservation of energy using a perturbative
expansion (where the gain of the process is low, so that κT � 1), we can show that the
number of emitted atoms can be written as

N(q) =

∫
dq′

δq
|κ(q, q′)|2|ε(q, q′)|2 (3.29)

where δq = 2π~
L and

ε(q, q′) = T sinc

(
∆E(q, q′)

T

2~

)
(3.30)

with
∆E(q, q′) = 2E(q0)− E(q1)− E(q2)− 2gn0 (3.31)

The formula 3.29 illustrates that the deviation from both strict conservation of momen-
tum and conservation of energy naturally intervene in the problem to weigh the emission
of pairs. The functions κ and ε (and hence the number of emitted atoms) are maximal
when the phase-matching conditions are strictly satisfied, but other modes are emitted
due to the size L of the BEC and the duration T of the lattice.

Note that δq = 2π~
L can be interpreted as the size of a (quasi)-momentum mode since it

is the typical scale for the cancellation of the overlap integral between two wavefunctions:

〈Ψ(q)|Ψ(q′)〉 =

∫ L/2

−L/2
dz e

iqz
~ e−

iq′z
~ ∝ sinc

(
(q − q′) L

2~

)
(3.32)

87



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

We have seen that the typical length scale of the BEC in the vertical axis is on the
order of 100 µm. For a lattice wavevector equal to 5.9 µm−1 like in our case, the size of a
mode is then on the order of δq = 0.01 ~klat.

The density profile as a function of quasi-momentum is shown in Figure 3.4 with
parameters close to the experimental ones. We clearly observe the predominance of two
peaks, corresponding to the strict phase matching conditions. The peaks are much broader
than the typical size of a mode, which also confirms that the pair source is highly multi-
mode. Similarly to the previous toy model, the number of atoms emitted in pairs grows
exponentially with the duration T of the lattice.
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Figure 3.4: Density profile along the vertical direction. For each value of q, the number of
atoms is calculated using the relation 3.29 with q0 = −0.58~klat, V0 = 0.5Elat and a mean-field
energy term with n0 = 1.6× 1013 cm−3, for three values of T .

One can also determine the consequences of the multimode nature of the source on the
correlations. The correlation functions can also be calculated analytically, provided that
we assume a strict conservation of quasi-momentum (it can be showed numerically that
the correlation decreases quickly when quasi-momentum is not conserved), and write:

g
(2)
loc = g(2)(q1, q1 + ∆q) = 1 + sinc2

(
∆q

L

2~

)

g(2)
cross = g(2)(q1, q2 + ∆q) = 1 +

1

N(q1)
sinc2

(
∆q

L

2~

) (3.33)

where q2 = 2q0−q1. Note that these expressions are only true in the limit where N(q1)� 1
(which is why we do not find g(2) = 2 when N(q1)→∞).

Interestingly, we observe that the width of the correlation (both local and cross) is given
by the size of a mode. For local correlation, this could be expected because it is essentially
a Hanbury Brown and Twiss-type experiment, where the correlation width corresponds to
the coherence length of the source. We can use this relation to experimentally determine
the size of a mode, which in our case is inversely proportional to the size of the BEC.
We can then use this parameter as a control parameter to adjust the size of a mode,
making our source more or less multimode. As we will see later, an advantage of having
a multimode source is the ability to perform multiple interferometers in parallel. It is
worth noting that the width of the cross-correlation is the same as that of the local

88



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

correlation, suggesting that a mode is correlated with only one other mode, given by the
quasi-momentum conservation.

We can still expect to observe stronger cross-correlations than local correlations, al-
lowing us to observe a violation of the Cauchy-Schwarz inequality.

3.2 Experimental procedure and results

3.2.1 Experimental procedure

We use a laser at 1064 nm, far detuned from the atomic transition 23S1 → 23P2, in
order to neglect spontaneous emission when using long pulses on the order of a millisecond.
Typical parameters used for the optical lattice are given in Table 3.1.

Quantity Symbol Value

Wavelength λlat 1064 nm

Angle between the beams θ 83°

Lattice wavevector klat = 2π
λlat

sin θ 5.9 µm−1

Lattice periodicity alat = π
klat

536 nm

Detuning with the excited state ∆ = c
(

1
λlat
− 1

λ

)
4.9 THz

Lattice depth V0 0.5Elat

Lattice duration T ≈ 400− 800 µs

Lattice detuning δ ≈ 100 kHz

Lattice speed vlat = δ
2klat

53 mm.s−1

BEC quasi-momentum (lattice frame) q0 = mδ
2~klat

−0.58 klat

Table 3.1: Typical values used for the pair creation lattice.

After alignment onto the atoms, we can perform Rabi oscillations between two (ground)
momentum states by using the two beams in the Bragg regime (the principle of which will
be detailed in the next chapter). One can indeed exhibit an oscillation of the population
in each state as a function of the lattice duration. This experimentally allows to determine
the depth of the lattice, given simply by the relation

V0 = 2~Ω (3.34)

where Ω is the effective two-photon Rabi frequency of this process.

The detuning δ between the two beams is controlled by two acousto-optic modulators
(AOMs), each of which receives an RF frequency generated by a synthesizer. The power
of the beams is also controlled by the AOMs because the RF signals pass through RF
attenuators, allowing us to modulate the signal amplitude.

The lattice is switched on when the BEC is in the optical dipole trap, because the high
density in the cloud makes it possible to have enough collisions for the four-wave mixing
to be efficient. Note that the power of the lattice beams increases adiabatically, in order
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to smoothly load the atoms in the lowest energy band of the lattice. This rising time is of
the order of 50 µs.

The lattice is then maintained at constant power for a duration T on the order of
several hundred microseconds, during which the pair creation process occurs. Varying this
duration allows control over the number of emitted atoms per momentum mode.

Then, the beams are turned off adiabatically, so that the Bloch’s states in the lattice
associated to atoms of quasi-momentum q are slowly projected onto free space plane waves
of momentum p. This band mapping is efficient due to the fact that the lattice depth is
quite shallow so that Bloch’s states and plane waves match well. In the following, we will
consider that a mode emitted with a quasi-momentum q in the lattice reference frame is
exactly projected into an atom with momentum p = q − q0 in the laboratory reference
frame.

Experimentally, it is observed that the rising duration and the extinction duration
have a non-trivial influence on the density profile of emitted atoms, particularly in the
transverse plane where complex structures may appear. In practice, these two durations
are empirically adjusted to ensure that the density profile is anisotropic and denser at the
center. A more quantitative discussion on the adiabaticity condition and the influence of
ramps can be found in references [115], [121] and [41].

2θ

x

z

y

Figure 3.5: Schematic representation of the process of emission and detection of pairs.
The BEC (in blue) is trapped in an optical dipole trap (in red) and subjected to an optical lattice,
leading to the emission of a pair of atoms (red and green dots). After switching off the trap, the
atoms and the condensate are kicked along the x-axis by a Raman transfer (black arrow), to move
away from the copper plate beam dump before falling onto the MCP (in gray).
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Once the pairs are emitted and the lattice is turned off, the optical dipole trap is
switched off abruptly. Right after, a Raman transfer is performed so that most of the
atoms are transferred into the m = 0 state, insensitive to the magnetic field, with an
additional momentum along x, which makes it possible to detect them on the MCP after
time of flight next to the “shadow” of the copper beam dump (Figure 3.5).

3.2.2 Density and phase-matching

As mentioned previously, due to various experimental issues, a long time has passed
between the last pair production runs on the experiment in 2017 and the reinstallation
of the lattice in the spring of 2022. At that time, we initially worked in a regime where
many pairs were emitted per mode compared to the values used previously.

In the spring of 2023, for a new set of pair data collection, the atom population was re-
duced to approach a quantum behavior that could lead to the observation of non-classical
correlations.

We typically obtain the density profiles depicted in Figures 3.6 and 3.7. We clearly
observe two main peaks, as predicted by energy and momentum conservation (see Figure
3.4). These peaks are broad and contain many modes, as expected. In this example,
atoms from the pairs fall after the BEC, but we can also change the sign of the detuning,
so that q0 is positive: this way, the folding of the quasi-momentum in the first Brillouin
zone occurs in the opposite direction, so that q1 and q2 < q0, and the pairs fall before the
BEC.
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Figure 3.6: Density profile along the vertical direction. Up: fundamental band of atoms in
the lattice (V0 = 0.5Elat). Down: Number of atoms measured as a function of their velocity before
time of flight. Data averaged over 1600 runs, and integrated along the transverse directions. The
BEC corresponds to a zero velocity in the laboratory frame.

91



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

−50 0 50

Vy (mm/s)

60

80

100

120
V
z

(m
m

/s
)

−75 −50 −25

Vx (mm/s)

−40

−20

0

20

40

V
y

(m
m

/s
)

Figure 3.7: Density profiles of the emitted pairs. 2D histograms of the pairs’ density in
momentum space. Data averaged over 1600 runs, and integrated along the third direction.

From a BEC at q0 = −0.58 ~klat, we get the values of q1 and q2 from a fit of the
density peaks. We find q1 = 0.19±0.02 ~klat and q2 = 0.66±0.02 ~klat, which are compat-
ible with quasi-momentum conservation. In the BEC reference frame, the pairs velocities
are V1 = 70.8 mm.s−1 and V2 = 113.9 mm.s−1. The expected values given by the phase
matching conditions depend on the BEC density through the mean field term in the energy
conservation (equation 3.18).
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Figure 3.8: Experimental phase-matching diagram. Quasi-momenta of the pairs as a function
of the quasi-momentum of the BEC. The pairs momenta were determined with Gaussian fits of the
density profile and converted in quasi-momentum in the lattice reference frame. The orange and
green lines depict the numerical resolution of the phase matching conditions, with V0 = 0.54Elat

(a value determined by a two-photon Rabi oscillation of the lattice beams), in the case where
interactions are not considered (green dashed line) and in the case where we add a mean-field term
2gn0 in the energy conservation, with n0 = 1.3× 1013 cm−3.

As we have seen, changing the detuning allows us to vary q0. By scanning the de-
tuning, one can then plot the phase matching graph, which shows the emitted modes as
a function of q0. The results are given Figure 3.8 in the lattice reference frame, along
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with the theoretical predictions for the quasi-momenta of the emitted pairs without mean-
field (green curve) and with a mean-field term determined with a fit. The values of q1

and q2 were estimated using Gaussian fits to the density envelope of pairs along the z-axis.

This measurement enables to estimate the atom density n0 in the condensate using the
mean-field term that appears in the energy conservation condition. The fit result leads to
a density n0 = 1.3± 0.2× 1013 cm−3. This value is the expected order of magnitude and
corresponds to what was first measured in 2013[20].

The ability to tune the momentum of emitted atoms represents a major advantage
of this pair creation technique. Indeed, by simply changing the detuning, one can select
which momentum modes are most populated. Thus, we benefit from a tunable multimode
source of pairs, a property that can be leveraged for experiments such as HOM and Bell.
In the laboratory frame, if one specifically chooses the value of δ (hence q0) for which the
difference p2 − p1 between pairs corresponds to the momentum transferred by a Bragg
pulse, then this ensures that the momentum classes coupled by Bragg are those that best
satisfy the phase matching conditions. This not only ensures that the coupled modes are
the most populated, but also aims to involve pairs with the strongest correlations.

3.3 Second order correlation fonctions

Studying correlations between pairs is a preliminary step to ensure that our atom
beams can be used for a Bell test or any other experiment aiming to exhibit stronger-
than-classical correlations. This not only provides an estimation of the strength of cross-
correlations by examining the second-order correlation function between the atoms from
a pairs, but it also experimentally helps us determine the size of a mode (and thus the
population of atoms per mode) by examining the width of the local correlation.

In the following sections, we will present typical correlation results obtained over the
past months.

3.3.1 Correlations computation

Let us recall that the definitions of the correlation functions between atoms of speeds
V1 and V2, respectively non normalized and normalized, are

G(2)(V1, V2) = 〈â†V1
â†V2

âV2 âV1〉 = 〈: N̂V1N̂V2 :〉 (3.35)

g(2)(V1, V2) =
〈â†V1

â†V2
âV2 âV1〉

〈â†V1
âV1〉 〈â†V2

âV2〉
=
〈: N̂V1N̂V2 :〉
〈N̂V1〉 〈N̂V2〉

(3.36)

where the notation 〈: · · · :〉 indicate the normal ordering of the annihilation and creation
operators. Here, we suppose that V1 and V2 correspond to speeds along the vertical
direction.

Of course, the value of the non normalized correlation function depends on the popu-
lation, and thus on the density envelope, whereas this is not the case for the normalized
correlation function. Therefore, in our study, we will prefer to use this second quantity,
which does not depend on the quantum efficiency of the detector (which is presumably
around 50% but has not been precisely determined to date). We have already seen that

the value of g
(2)
loc should be equal to 2 for pairs emitted via a thermal distribution process.
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Similarly, the value of cross-correlation g
(2)
cross should be equal to 2 + 1/ 〈N〉, where 〈N〉 is

the number of atoms per mode.

There are different ways to represent correlations and to compute them. This is not
a straightforward issue: although the previous definitions were given in one dimension
(along z which is the axis of interest for us), the g(2) function depends on 6 variables,
corresponding to the momentum coordinates of two vectors V1 and V2. It is necessary to
simplify the problem by eliminating dimensions, which is usually done by averaging over
certain regions of the momentum space, but one has to ensure that a sufficient signal with
a correct signal-to-noise ratio can be obtained.

Counting atoms in momentum boxes

A first way to verify that the correlations correspond to what is expected and to iden-
tify modes that are correlated with each other is to create a two-dimensional map showing
g(2) as a function of V1 and V2. In the pairs center of mass reference frame (i.e. in the
frame where the velocity reference is located at the midpoint of the segment separating
the two density peaks), the diagonal then corresponds to the local correlation g(2)(V1, V1),
while the anti-diagonal corresponds, in principle, to correlated modes.

For this purpose, we define an integration volume, which corresponds to a three-
dimensional box in momentum space, within which we count the detected atoms. Since
the MCP provides us with a list (Vx, Vy, Vz) of 3D momenta corresponding to the de-
tected atoms per cycle, it is easy to determine if an atom belongs to a certain range of
three-dimensional velocity, and thus to calculate the number of atoms in that case.

A box corresponds to specifying three widths ∆Vx, ∆Vy and ∆Vz and three centers
Vx, Vy, and Vz in each direction, so the volume in momentum space is given by:

V =

[
Vx −

∆Vx
2

, Vx +
∆Vx

2

]
×
[
Vy −

∆Vy
2
, Vy +

∆Vy
2

]
×
[
Vz −

∆Vz
2
, Vz +

∆Vz
2

]
(3.37)

In each experimental cycle, we then calculate, within two boxes centered on velocities
Vz1 and Vz2 , the number of atoms N(Vz1) and N(Vz2), as well as the product N(Vz1) ×
N(Vz2). The center of the boxes in the transverse directions Vx1 = Vx2 and Vy1 = Vy2 are
chosen to match the peak density of the emitted pairs. After repeating this process for all
cycles, we compute the average of these three quantities, from which we derive the value
of g(2), according to the relations

g(2)(Vz1 , Vz2) =
〈N(Vz1)N(Vz2)〉
〈N(Vz1)〉 〈N(Vz2)〉

g(2)(Vz1 , Vz1) =
〈N(Vz1)2〉
〈N(Vz1)〉2

− 1

〈N(Vz1)〉

(3.38)

where 〈· · ·〉 designates the average over all cycles. In the case of the auto-correlation, we
need to subtract a term corresponding to the shot noise.

The choice of the integration volume is particularly important.

• If the integration volume is small, then there will be, on average, few atoms per
box, leading to significant noise and requiring a large number of experimental cycles
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to achieve a good signal-to-noise ratio. Since modes have a certain width, it is
essential not to choose a box with a width much smaller than the size of the mode,
as this would result in losing information about the correlation. Additionally, the
computation time can be long, and significant memory depth is required for storing
the lists N(Vzi) and N(Vzi)N(Vzj ) for each cycle.

• If the integration volume is too large, especially larger than the size of a mode, then
there is a risk of averaging atoms that are not correlated, leading to a decrease in
the correlation signal.

In practice, the optimal box size corresponds roughly to the size of a mode. To probe
the correlation along a particular axis, in our case the vertical axis, one can choose boxes
along z slightly smaller than the size of a mode. For ease of reading g(2) maps, it is also
possible to oversample by scanning Vz with a step smaller than the size of the box along
this axis.

A typical example of a g(2) map obtained using this method is shown in Figure 3.9.
We have placed ourselves in the pair reference frame, in which atoms with velocity Vzi are
presumed to be correlated with atoms with velocity −Vzi .
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Figure 3.9: 2D Correlation map in the pairs reference frame. The integration boxes are
∆Vz = 1 mm.s−1, ∆Vx = ∆Vy = 10 mm.s−1. The map is symmetric with respect to the exchange
Vz1 ↔ Vz2 . The diagonal corresponds to Vz1 = Vz2 , highlighting local correlations, and the antidi-
agonal corresponds to Vz1 = −Vz2 , highlighting cross-correlations. Dataset of 1012 experimental
runs.

In this example, the density peaks are located at ±32 mm.s−1, which can be seen on
the map, where the signal-to-noise ratio is better between 25 and 35 mm.s−1 than between
0 and 20 mm.s−1. This map was obtained with a dataset with a significant number of
atoms per mode, as we will see later.

A diagonal line corresponding to auto-correlation and an anti-diagonal line correspond-
ing to cross-correlations are observed, while the average value of the rest of the map (apart
from these lines) is around 1, validating the overall appearance of the graph in light of the
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expected results. Thus, our atom source produces atoms correlated in momentum. How-
ever, it is noteworthy that the cross-correlation is not greater than the local correlation,
which seems to tend towards 2 as expected. Indeed, as previously observed in the team,
we never manage to demonstrate a cross-correlation greater than 1.5. This point will be
discussed in the following.

In order to make the analysis more quantitative and get the correlation amplitude and
width (to deduce the mode size), we can then plot one-dimensional curves from the g(2)

map. To calculate the local g(2) curve, for example, the idea is to integrate the correlation
signal with diagonal slices at constant Vz1 − Vz2 in a certain velocity range (in the zone of
maximum density, for example) and plot the averaged value along an anti-diagonal axis.
The result is a curve showing g(2) as a function of Vz1 − Vz2 .

Note that this integration operation is performed on the non normalized G(2) map,
and converted into g(2) by performing the same integration on the densities, otherwise the
correlation signal decreases. Mathematically, this corresponds to calculating an integrated
g(2) as

g
(2)
loc(δVz = Vz1 − Vz2) =

∫
Ω 〈â

†
Vz
â†δVz−Vz âδVz−Vz âVz〉 dVz∫

ΩN(Vz)N(δVz − Vz)dVz
(3.39)

where Ω is the integration volume in momentum space.

One can proceed similarly in the opposite direction to plot the cross-correlation func-
tion, by integrating the correlation along anti-diagonal slices at constant Vz1 + Vz2 in a
given velocity range and plotting the averaged value along a diagonal axis. In this case,
one gets g(2) as a function of Vz1 + Vz2 , so that

g(2)
cross(δV

′
z = Vz1 + Vz2) =

∫
Ω 〈â

†
Vz
â†δV ′z−Vz âδV ′z−Vz âVz〉 dVz∫

ΩN(Vz)N(δV ′z − Vz)dVz
(3.40)

Note that δV ′z = 0 when Vz1 = −Vz2 , corresponding to the anti-diagonal where we
expect to find the cross-correlation in the pair reference frame.

Loops over the detected atoms

There is another method for calculating correlations, this time without using boxes,
but rather by directly determining, for each atom, the histogram of velocity differences.
This method is described in the theses of M. Schellekens[124], H. Cayla[125] or in reference
[126]. This second way of computing the correlation, potentially longer in computation
time, has the advantage of increasing the signal-to-noise ratio: in the previous method,
by defining small density boxes, one potentially excludes correlated atoms that lie beyond
the box boundaries, whereas they can be taken into account in this second approach.

The idea is to consider the correlation function g(2)(δVz) as a histogram of the ve-
locity difference between atoms. Once again, we calculate separately the numerator and
denominator of the normalized correlation function. The numerator calculation proceeds
as follows:

• Consider a dataset containing Nruns experimental cycles, and suppose we want to
determine the correlation function along z. We start by defining two large density
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regions (in three dimensions), corresponding to the two pairs of beams created with
the lattice, denoted A and B, defining subsets A and B.

• For a given experimental cycle, we choose an atom labeled 1 in beam A, for exam-
ple. Then we select another atom labeled 2 (in subset A if we want to study local
correlations, or subset B if we want to study cross-correlations).

• We define velocity difference thresholds ∆Vx and ∆Vy such that if |Vx1−Vx2 | ≤ ∆Vx
and |Vy1 − Vy2 | ≤ ∆Vy, then we note δVz = |Vz1 − Vz2 | and increment a histogram
H1(δVz) (or similarly δV ′z = |Vz1 +Vz2 | if one aims at plotting the cross-correlation).

• We repeat the previous operation for all atoms 2 of subset B: we obtain a full
histogram of velocity differences H1(δVz) with respect to atom 1.

• We choose a new atom 1 in subset A and repeat the operation to obtain a new
histogram of velocity differences. We then obtain a set of histograms for all atoms,
which we average to obtain the histogram Hr(δVz) of velocity differences between
the two beams for one experimental run:

Hr(δVz) =

Nruns∑
i=1

H1,i(δVz)

NA
(3.41)

• We repeat the operation for each experimental cycle and then average the obtained
histograms. The resulting histogram gives the non normalized correlation function
G(2) as a function of the velocity difference δVz.

The binning δVz of the histogram along z plays a similar role as the size of the box
along z in the previous algorithm: if the binning is too small, the signal-to-noise ratio is
low, and if it is too large, there is a risk of decreasing the correlation amplitude. The
transverse thresholds ∆Vx and ∆Vy also help increase the correlation signal: the smaller
they are, the more assured we are of counting atoms whose velocity difference is small,
indicating potential correlation. However, this also reduces the signal-to-noise ratio. This
second method for computing the correlation converges towards the first when selecting
density beams A and B that are the size of a box.

Note that the algorithm developed in the team according to this method by V. Gondret
allows for performing the previous operation directly in all three spatial directions, by
storing a three-dimensional array G(2)(δVx, δVy, δVz). This enables obtaining correlations
along each axis by integrating over the other two while considering the corresponding
thresholds.

The calculation of the denominator is performed in the same way as the numerator,
but with a dataset where atoms do not exhibit correlations and have the same average
density. Indeed, we have 〈N(Vz1)N(Vz2)〉 = 〈N(Vz1)〉 〈N(Vz2)〉 in the case where we con-
sider independent atoms. To achieve this, we mix the different experimental cycles into
a large dataset containing all atoms. The calculation of G(2) is the same as the numer-
ator, except that for an atom from a given experimental run, atoms from the same run
are not considered (to ensure they do not introduce correlations). Even without this pre-
caution, with a sufficient number of runs, the correlations arising from atoms from the
same run are negligible, allowing to proceed with the previous calculation to determine
the denominator.
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In practice, as this procedure can be very time-consuming, it is possible to randomly
select a subset of the mixed dataset. We can then deduce the normalized correlation
function by dividing the histogram of the numerator by that of the denominator, and
multiplying the result by a normalization factor as the total number of atoms involved in
the calculation of the denominator differs from that of the numerator.

Computing the error bars: bootstrapping technique

We need a way to estimate the uncertainty on the computed correlation values. Sup-
pose we want to determine an error bar on the G(2) function from a dataset of Nruns

experimental runs. One method is to express the error bars as the inverse of the square
root of the number of events per bin.

Alternatively, one can use a technique called bootstrapping[127], which works as fol-
lows: for each run, we perform a random sampling with replacement with the same number
of atoms as the original run. From this sampled run, we then calculate the value of G2.
We repeat this process a certain number of times, and the error bar is then given by the
standard deviation of all the G(2) values obtained in this manner. One can check that the
error bar converges towards a value which is not very different from the one given by the
inverse of the square root of the number of atoms.

This technique can be applied to the calculation of other statistical quantities as well.

3.3.2 Auto-correlation

The results showing the local correlation functions are presented in Figure 3.10. They
were computed using the second method on the same dataset as those appearing on the
g(2) map. Error bars are evaluated using bootstrapping. Note that the curves are symmet-
ric because we actually plot g(2)(|∆V |). Beam A corresponds to the density peak center
on −32 mm.s−1 while beam B corresponds to the density peak center on +32 mm.s−1.

Clear local correlations are observed in all three spatial directions. The data are fitted
with Gaussian functions written as follows:

g
(2)
fit (|∆Vi|) = 1 +Ai e

− (∆Vi)
2

2(σi)
2 (3.42)

where Ai and σi correspond to the amplitude and width of the correlation, respectively.

As mentioned previously, we expect Ai to reach 1 for the local correlation when
∆Vi = 0. This is not exactly the case, although the value of the correlation clearly
exceeds 1.5. This can be explained by the fact that what we compute is an average over
atoms whose velocity difference is not exactly zero.

This effect can be easily highlighted by gradually reducing the velocity difference
thresholds, as depicted in Figure 3.11. Of course, this has the effect of decreasing the
signal-to-noise ratio, but successive fits show that the amplitude Ai tends toward 1 in
each case as the size of the integration volume in the transverse plane is reduced.

This validates our HBT-like experiment, which clearly demonstrates that the local
correlation tends toward 2 as ∆V approaches zero. We can then use this measurement to
determine the size of a mode using the width of the correlation function.
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Figure 3.10: Normalized local correlation functions. The g(2) function is calculated using
the velocity difference histogram algorithm. The histogram is calculated for both atomic beams A
(left) and B (right) and in each direction, using a velocity difference threshold in the other axes
of ∆Vx,y = 2 mm.s−1 and ∆Vz = 1 mm.s−1. Dataset of 1012 experimental runs.

Again, it is important to note that both the width of the correlation and the amplitude,
depends on the integration range. Therefore, we will consider the width of the correlation
as the value toward which σi tends when ∆V approaches zero. Although it is expected
that the amplitude size of the correlation depends on the integration range in the other
directions (since uncorrelated atoms are taken into account if the velocity difference is too
large), it is not obvious to understand why this is also the case (to a lesser extent) for the
correlation function widths.
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Figure 3.11: Effect of the integration thresholds on the correlation amplitude and width.
Each point corresponds to a 1D correlation function similar to that plotted in Figure 3.10, for
which a Gaussian fit was performed to determine both the width σi and the amplitude Ai of the
g(2) function. The velocity difference threshold is scanned along z for the correlation functions
along x and y, while it is varied along x and y for the correlation functions along z.

The results providing the sizes of the modes and the amplitudes for ∆V = 0 are
presented in Table 3.2, estimated from the curves in Figure 3.11. Slight differences are
observed between beams A and B, but in the transverse plane, the correlation widths in
x and y for the same beam are identical.

Since we have estimated that the size of a mode is inversely proportional to the size
of the BEC in the corresponding direction, we should recover the ratio between the oscil-
lation frequencies from the ratio between the mode sizes. As seen above, the oscillation
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Quantity Beam A Beam B

σx (mm.s−1) 6.5± 0.6 7.4± 0.6
σy (mm.s−1) 6.2± 0.6 7.5± 0.7
σz (mm.s−1) 0.61± 0.06 0.65± 0.05
σx,y/σz 10.4± 0.8 11.5± 0.7

Ax 0.95± 0.08 1.00± 0.08
Ay 0.92± 0.08 0.96± 0.08
Az 0.93± 0.07 0.92± 0.13

Table 3.2: Local correlation results.Values obtained by when the velocity difference thresholds
tend towards zero.

frequencies ωx,y = 2π × 870 Hz and ωz = 2π × 78 Hz were estimated, giving a ratio of the
order of 11.2, which is compatible with the ratio found between the transverse correlation
width and the correlation width along z.

It is not particularly straightforward to determine the absolute size of a mode from
the width of the correlation. The analytical model suggested a sinc2-shaped correlation
resulting from many approximations. We performed Gaussian fits to account for the
correlation width, but in some cases, it is empirically observed that Lorentzian fits are
sometimes more appropriate for describing the correlation evolution. It should be noted
that there is an alternative way to determine the size of a mode by studying the pair
emission statistics, which will be addressed in section 3.4.1.

3.3.3 Cross-correlation
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Figure 3.12: Cross-correlation map. The integration boxes are ∆Vz = 1 mm.s−1, ∆Vx =
∆Vy = 10 mm.s−1. The calculation step is four times smaller than the size of a box, meaning that
the data is oversampled. Dataset of 1012 experimental runs.

Next, we can analyze the cross-correlation between pairs from beam A and those
from beam B. A zoom-in on the g(2) map presented earlier is shown in Figure 3.12,
clearly indicating a cross-correlation along an antidiagonal. For our future Bell test, it
is important to note that we observe a significant cross-correlation signal over a range of
several mm.s−1, indicating coupling between multiple modes. We can then use this source
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as a reservoir of correlated pairs that can be used in a four-mode Bell-type interferometer
in a Rarity-Tapster configuration (this point will be presented in details in section 4.1.1).

The 1D cross-correlation signal (in the z direction) is depicted in Figure 3.13. In
practice, cross-correlation can also be discerned in other directions, but with a poor signal-
to-noise ratio that does not make it possible to conduct a quantitative analysis. However,
along the z direction, we typically obtain the curve shown in the figure, where a clear
cross-correlation is observed, reaching up to 1.4± 0.2 as ∆V ′ tends towards zero.
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Figure 3.13: Normalized cross-correlation function along z. The transverse velocity difference
threshold is ∆Vx,y = 3 mm.s−1.

Theoretically, it was predicted that for a two-mode squeezed state, the cross-correlation
should rise to 2+1/ 〈N〉, where 〈N〉 is the mean number of atoms per mode. However, we
never measure a signal greater than 1.5, and the cross-correlation is systematically weaker
than the local correlation. Data taken with a low atom population did not increase the
value of the observed correlation signal. This may suggest that the pair creation model
differs from the one presented previously, and that the system’s state cannot truly be
approximated by a superposition of TMS states. However, it is worth noting that the
maximum value obtained in our case is higher than the values obtained by the team a few
years ago, which exhibited correlations on the order of 1.2.

Noticeably, the width of the cross-correlation is larger than the width of the local
correlation in all datasets we have taken, with different population regimes. Here, we find
σz,crossed = 1.21 ± 0.08 mm.s−1. The reasons behind this observed effect are not known:
is one mode actually correlated with multiple others? Is there a mechanism between pair
creation and detection that diminishes the amplitude of correlation but widens it?

It is possible that this effect is partly due to fluctuations in the arrival time of the
condensate. Indeed, if q0 varies, then the doublet (q1, q2) of correlated atoms differs. This
effect is not visible in local correlations (since q1 is always coupled to q1, regardless of q0),
but it may be responsible for the broadening of the cross-correlation. A thorough analysis
was conducted by rescaling, for each experimental run, the velocity reference with respect
to the arrival time of the condensate in that particular run, rather than with respect to the
average arrival time as is the case in the analyses presented in this manuscript. However,
this rescaling of arrival times did not significantly reduce the width of the cross-correlation.

Obtaining a cross-correlation signal weaker than local correlation signals prevents
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demonstrating a violation of the Cauchy-Schwarz inequality in the form:

g(2)
cross(∆V

′ = 0) ≥
√
g

(2)
loc,A(∆V = 0) g

(2)
loc,B(∆V = 0) (3.43)

But is worth noting that it is possible to use an integrated version of this inequality,
where we consider not just the value of correlation at one point but rather the integral
of the correlation signal within a certain volume of momentum space. By comparing the
integrated cross-correlation value in a box to the local g(2) values in boxes of similar size, it
is possible to demonstrate a violation of the Cauchy-Schwarz inequality. The observation
of a cross-correlation wider than the local correlation supports this approach, which was
used in our team to exhibit a violation of the Cauchy-Schwarz inequality with atoms
emitted by four-wave mixing on collision halos[21]. Such a measurement with our data
will be the subject of section 3.5.2.
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3.4 Counting statistics

3.4.1 Detection probabilities

In this section, we will focus on the population distribution of the atomic beams emit-
ted by four-wave mixing. This study was conducted by the team a few years ago[128],
using a dataset in a regime with fewer atoms, as we will see in the following.

We have already mentioned that the final state of the system could be modeled as a
superposition of TMS states, where each pair of modes is described by:

|ψ〉 =
√

1− |α|2
+∞∑
n=0

αn |n〉p1
|n〉p2

(3.44)

where p1 and p2 are the coupled modes, and the squeezing parameter α is related to the
average population 〈N〉 in each mode through

〈N〉 =
|α|2

1− |α|2 (3.45)

It is easy to determine the distribution associated with this process for only one
mode[129] by tracing the density matrix corresponding to the TMS state over the other
mode. One gets the probability P(n) of measuring n atoms in one mode, which writes

P(n) = (1− |α|2)|α|2n =
〈N〉2

(1 + 〈N〉)n+1
(3.46)

which is a thermal distribution. Note that this thermal law remains valid when the detector
efficiency η is not equal to 1: in this case, one has only to replace the average number of
atoms 〈N〉 by the average detected number of atoms η 〈N〉.

Our detector’s ability to detect single atoms enables us to highlight this distribution
law: for a dataset consisting of a certain number of experimental runs, we can count,
within a given box, the probability of obtaining n atoms. This even provides us with a
means to estimate the size of a mode, as we will observe a thermal distribution if the size
of the box is smaller or equal to the size of one mode.

We can even go further by examining the statistical distribution for boxes larger than
the size of a mode. Indeed, it is possible to demonstrate that the distribution law obtained
by considering an integration volume containing m modes of identical mean number is
given by[130]

Pmultimode(n) =
Γ(n+m)

Γ(n+ 1)Γ(m)

(
1 +

m

〈N〉

)−n(
1 +
〈N〉
m

)−m
(3.47)

where Γ is the Euler Gamma function. Noticeably, this distributions tends to a Poisson
distribution when m is large

PPoisson(n) =
〈N〉n
n!

e−〈N〉 (3.48)

This suggests that in a large momentum volume the counting events are no more correlated.

The results are presented in Figure 3.14 for the same dataset as before. The distribution
statistics were calculated within a box of transverse size ∆Vx,y = 12 mm.s−1 and of size
along z successively equal to ∆Vz = 1, 3, and 10 mm.s−1. The box was centered on

104



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

0 5 10

Number of detected atoms

0.0

0.2

0.4

P
ro

b
a
b

il
it

y
Beam A

One mode

Thermal

Poisson

data

0 5 10 15

Number of detected atoms

0.0

0.2

0.4

P
ro

b
a
b

il
it

y

Beam B
One mode

Thermal

Poisson

data

0 10 20

Number of detected atoms

0.0

0.1

0.2

P
ro

b
ab

il
it

y

3 modes

Thermal

Poisson

Multimode

data

0 10 20

Number of detected atoms

0.0

0.1

0.2
P

ro
b

ab
il

it
y

5 modes

Thermal

Poisson

Multimode

data

0 10 20

Number of detected atoms

0.00

0.05

0.10

0.15

P
ro

b
ab

il
it

y

10 modes

Thermal

Poisson

Multimode

data

0 10 20

Number of detected atoms

0.00

0.05

0.10

0.15

P
ro

b
ab

il
it

y

10 modes

Thermal

Poisson

Multimode

data

Figure 3.14: Counting statistics for different boxes sizes. For the entire dataset, we determine
the number of occurrences for which n atoms were detected in a given momentum box, and divide
by the total number of experimental runs. The result is averaged over two boxes of the same
size, juxtaposed along the z-axis so that they have the same average population. The transverse
size of the box is 12 mm.s−1. The size of the box along z is 1 mm.s−1 (top), 3 mm.s−1 (middle),
10 mm.s−1 (bottom). The data are compared with the expected theoretical distribution laws for a
similar mean number of atoms with no adjustable parameter. Dataset of 1012 experimental runs.

the peak density1. The experimental results are compared with thermal, Poissonian, and
multimode distribution laws in the last two cases, where we took respectively m = 3
modes and m = 10 modes. These are not fits but theoretical laws that depend solely on

1In reality, for better statistics, we averaged over two successive boxes with similar average populations.
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the average number of atoms detected in the box, which we took as a fixed parameter in
each case.

We observe that the results are consistent with a mode size of 1 mm/s along the z-axis
and 12 mm/s along the x and y axes. A clear thermal distribution law is observed when
the size of the box fits the size of a mode, while the multimode law matches well the ex-
perimental data when the degeneracy parameter m equals the number of boxes taken into
account. Therefore, this is a strong evidence that the process is characterized by a thermal
distribution law. The ratio between the transverse and longitudinal sizes of the mode is
similar to what we estimated by studying the width of the local correlation function.

From these results, we can easily estimate the number of atoms per mode in each beam
as well as the total number of emitted modes by counting the number of atoms in a box of
the size of one mode, whose position is scanned. The results are presented in Figure 3.15.
We find a maximum detected atom number per mode of around 1.7, which is ten times
larger than the average number measured by the team in 2019 (0.158). At that time, the
detector had a quantum efficiency estimated at 25%, while it is estimated at 50% with the
MCP currently in place in the experiment. The “real” population in our case is thus on
the order of 3.4 atoms per mode, compared to 0.6 in the dataset studied in reference [128].
We thus observe that the pair creation process remains thermal even for a larger number
of atoms.
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Figure 3.15: Mean population per mode. Number of atoms in a box of 1 mm.s−1 along z and
12 mm.s−1 along x and y.

Furthermore, the multimode character of the source is particularly highlighted when
comparing the width of the population density envelop with the size of one mode: we
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can observe numerous modes in the z direction, and around 5 modes in the transverse
directions. However, it should be noted that the population per mode decreases rapidly if
the box is not located at the density peak.

3.4.2 Joint detection probabilities

Of course, the distribution statistics of atoms in each beam are expected to be cor-
related. The formula of the TMS state directly provides access to the joint detection
probability, which is expressed as:


P(n, n) = (1− |α|2)|α|2n =

〈N〉2
(1 + 〈N〉)n+1

= P(n)

P(n,m 6= n) = 0

(3.49)

For a TMS state, if there are n atoms in a mode, there are necessarily n atoms in
the coupled mode. This statistic can be compared, for example, to that given by two
independent thermal processes, given by

Pthermal(n1, n2) =
〈NA〉2

(1 + 〈NA〉)n1+1

〈NB〉2
(1 + 〈NB〉)n2+1

(3.50)

or by the statistic arising from two independent Poisson processes

PPoisson(n1, n2) =
〈NA〉n1

n1!
e−〈NA〉

〈NB〉n2

n2!
e−〈NB〉 (3.51)

where 〈NB〉 and 〈NB〉 are the mean number of atoms involved in each process. These
distributions laws are plotted in Figure 3.16 for a mean population of 〈N〉 = 3.4.

0 5 10 15

n1

0

5

10

15

n
2

TMS

0 5 10 15

n1

0

5

10

15
Thermal

0 5 10 15

n1

0

5

10

15
Poisson

10−2

10−1

J
o
in

t
p

ro
b

ab
il

it
y

Figure 3.16: Joint counting statistics. Theoretical joint probabilities of measuring n1 atoms
in a given mode and n2 atom in a second mode, in the case where the modes are coupled modes
of a TMS (left), independent thermal modes (middle), independent Poissonian modes (right).

However, we must take into account the efficiency η < 1 of our detector. For the
Poisson and thermal distribution, we only have to replace the absolute number of atoms
by the detected number of atoms, so the behavior of the distribution will not change. On
the contrary, this imperfection of the detector will broaden the joint probability profile of
the TMS state: even if we detect n atoms in one mode, we may detect n + 1 or n − 1
atoms in the other mode (and so on) because not all atoms are always detected.
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In his thesis, Q. Marolleau[41] derived the expression giving the joint probability of
detection for a TMS state and a detector of quantum efficiency η, which is expressed as:

P(n1, n2 ≤ n1) = (1− |α|2)|α|2n1ηn1+n2(1− η)n1−n2

×
(
n1

n2

)
2F1

(
n1 + 1, n1 + 1, n1 − n2 + 1; (1− η)2|α|2

) (3.52)

where

(
n1

n2

)
is a binomial coefficient and 2F1 is a hypergeometric function defined, for

|z| < 1, by

2F1(a, b, c, ; z) =
∞∑
n=0

an̄bn̄

cn̄
zn

n!
(3.53)

with zn̄ is the rising factorial, such that

zn̄ = z(z + 1)(z + 2) · · · (z + n− 1) (3.54)

Figure 3.17 shows various joint probability distributions for different values of η (for
an average population equal to 3.4 atoms per mode) and shows the broadening of the
signature diagonal of the TMS state.
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Figure 3.17: Joint counting statistics for two coupled modes of a TMS state, for different
quantum efficiencies of the detector. The total average population equals 3.4.

The creation pair datasets allow us to experimentally access this quantity, although
a lot of experimental runs are required to have a clear measurement. We choose two
boxes, labeled 1 and 2, each the size of one mode, centered on speeds which exhibited
cross-correlation on the correlation function analysis. Then, we count the number of
occurrences where we simultaneously measure n1 and n2 atoms, and divide the result by
the total number of experimental runs.

The result is shown in Figure3.18 and compared to the expected joint distribution for
two independent Poisson distributions and for a TMS state with a quantum efficiency of
0.5, in both cases with an average detected population of 1.7. Note that since we only
have a thousand experimental runs, only the most populated points are accessible as the
others are highly improbable.

The distribution obtained experimentally does not allow for a clear distinction between
the distributions. The overall appearance resembles that of a Poisson distribution, but
P(0, 0) is the most populated, like for the TMS state. The low statistics do not allow for
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Figure 3.18: Measured joint counting statistics in boxes of the size of a mode (upper left),
compared to the expected joint distribution statistics for a TMS state with a quantum
efficiency of 50% (upper right), independent thermal processes (lower left) and independent
Poissonian processes (lower right). The detected average population is 1.7.

observing additional points on the diagonal, as expected for a TMS state.

In order to increase sensitivity to more atoms, an alternative approach involves consid-
ering larger boxes and averaging the joint detection measurements over several consecutive
boxes. The expected outcome is no longer the distribution of a TMS, but rather that of
a multimode sample characterized by a distribution 3.47 for one mode. However, this for-
mula has not been generalized for two output modes at an imperfect detector, so there is
no theoretical model that we know of to match the expected joint measurements analysis.
Instead, a comparison of the experimental results can be made with the joint distributions
obtained by averaging several TMS and Poissonian distributions in boxes whose popula-
tion is equal to those measured experimentally. The expected theoretical behavior of the
joint distribution should lie between the two.

We typically get the result shown in Figure 3.19, computed for 11 consecutive boxes
(along z) with sizes of ∆Vz = 7 mm.s−1 and ∆Vx,y = 12 mm.s−1, which correspond to
seven modes.

The obtained result indeed exhibits a trend that lies between the TMS state and the
Poisson distribution. The width of the distribution leans more towards that given by
Poisson, which could be explained by the fact that we considered a box that contains
multiple modes or by a potential overestimation of the quantum efficiency. Nevertheless,
we still have a non zero probability of measuring atoms along a diagonal trend for high
values of n1 and n2, suggesting that we are indeed observing a stronger correlation than
that expected for two independent Poissonian processes.

A more quantitative analysis, along with datasets containing more experimental runs,
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Figure 3.19: Measured joint counting statistics in 11 boxes of the size of 7 modes (left),
compared to the expected equivalent joint distribution statistics for an independent Poisso-
nian process (center), and a TMS state with a quantum efficiency of 50%. The theoretical
profiles are calculated by averaging the joint statistics for processes with the same average
population.

is necessary to further pursue this study.

3.5 Towards non classical correlation effects

3.5.1 Sub shot-noise variance

As mentioned in the first chapter, it is possible to highlight stronger correlations from
TMS states than what could be observed with a classical system.

A first approach involves highlighting sub-Poissonian variance, also called sub-shot
noise variance. Specifically, we study the variance of the difference in the number of
detected atoms in two different regions A and B of momentum space, normalized by the
mean number of detected atoms:

Ṽ (∆N) =
〈∆N2〉 − 〈∆N〉2
〈NA +NB〉

(3.55)

with ∆N = NA −NB. For a classical source, this quantity can not go below 1.

For a TMS state, for which there are consistently as many atoms in one mode as in
its twin mode, this variance is strictly zero when counting the atoms received in a box of
the size of one mode with a perfect detector. However, in practice, one must again take
into account the quantum efficiency of the detector. In this case, the normalized variance
no longer drops to zero.

In order to account for the imperfect detection efficiency, one often models the losses
as an additional beam splitter placed before a perfect detector (Figure 3.20). The output
mode â′ can be expressed as a function of the input mode â, using(

â′

â′′

)
=

( √
η

√
1− η

−√1− η √
η

)(
â

Ô

)
(3.56)

where Ô designates the vacuum operator at the other input of the beam splitter. The
expression of the annihilation operator â′ is therefore

â′ =
√
η â+

√
1− η Ô (3.57)
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Figure 3.20: Model of an imperfect detector. The atoms are sent to one of two input ports of
a beam splitter, while the other input is the vacuum operator. The beam splitter reflects a portion
of the input atoms to an output mode â′′ where they are lost and thus not measured, while the
remaining portion of atoms (mode â′) heads towards a perfect detector which counts all of them.

from which we get:

〈N̂ ′A〉 = 〈â′†â′〉 = η 〈â†â〉 = η 〈N̂A〉 (3.58)

and

〈N̂ ′2A 〉 = η2 〈N̂2
A〉+ η(1− η) 〈N̂A〉 (3.59)

By applying the same reasoning to the detection the atoms from region B, we also get

〈N̂ ′AN̂ ′B〉 = η2 〈N̂AN̂B〉 (3.60)

One can then determine the variance of the number difference between A and B, which
writes

V (N̂ ′A − N̂ ′B) = (1− η)(〈N̂ ′A〉+ 〈N̂ ′B〉) (3.61)

We observe that the normalized variance is thus equal to 1−η. For η = 1, we recover the
limit Ṽ = 0. For a quantum efficiency detector of 50%, we therefore expect this normalized
variance to decrease to 0.5. In 2010, the team demonstrated sub-shot noise variance from
pairs of atoms emitted by four-wave mixing on collision spheres[78]. By taking increasingly
smaller diametrically opposed boxes, the normalized variance decreased to 0.75, which was
consistent with the quantum efficiency of the detector then estimated at 25%. This is the
kind of effect we want to highlight.

3.5.2 Cauchy-Schwartz violation

An equivalent formulation of obtaining sub-shot noise variance is the observation of a
violation of the Cauchy-Schwarz inequality. As we have seen, we never observe a cross-
correlation greater than the local correlation; however, we can use an integrated version
of the inequality[21], which can be expressed as:

ḡ(2)
cross ≥

√
ḡ

(2)
loc,A ḡ

(2)
loc,B (3.62)

where ḡ(2) are average values of g(2)(∆Vz) integrated over momentum boxes of the same
size:

ḡ(2) =

∫
V

d3V g(2)(∆V ) (3.63)
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As we have seen, the algorithm that computes the value of g(2) in boxes directly
provides the corresponding values. In practice, we compute the quantity:

C =
ḡ(2)(Vz1 , Vz2)√

ḡ(2)(Vz1 , Vz1)ḡ(2)(Vz2 , Vz2)
=

〈: N1N2 :〉√
〈: N2

1 :〉 〈: N2
2 :〉

(3.64)

where ḡ(2)(Vz1 , Vz2) is the value of the normalized correlation function between two boxes
centered on vertical speeds Vz1 and Vz2 . N1 and N2 are the atoms counted within these
two boxes. If C > 1, then the cross-correlation is stronger than the local correlations,
indicating a violation of the inequality.

The results of the Cauchy-Schwarz violation analysis will be conducted jointly with
those of the normalized variance, as they represent two equivalent formulations for high-
lighting quantum correlations, yielding similar outcomes.

3.5.3 Experimental results

First, we can plot maps of the normalized variance and the Cauchy-Schwarz coefficient,
defined as a function of two boxes centered on two velocities Vz1 and Vz2 that are scanned
over the momentum space. The results are presented in Figure 3.21 and exhibit similar
outcomes in both cases.

Note that the dataset presented here is different than the one analyzed before which
does not exhibit any sub-shot noise variance or Cauchy-Schwarz violation, as we will
explain in the following.
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Figure 3.21: 2D maps of normalized variance and Cauchy-Schwarz coefficient. The size of
a momentum box is ∆Vz = 7 mm.s−1 and ∆Vx,y = 30 mm.s−1. In each box, we calculate both the

normalized variance Ṽ (Vz1 , Vz1) (left) and the Cauchy-Schwarz ratio C(Vz1 , Vz1) (right). The shot
noise is not removed from the g(2) calculation for the Cauchy-Schwarz ratio, since this process is
not trivial when oversampling.

Along the diagonal, the normalized variance naturally tends towards zero since we are
comparing the difference between two similar boxes. We observe a clear effect of cross-
correlation along the anti-diagonal, where the normalized variance descends below 1. It
is noteworthy that this effect is observed across the entire anti-diagonal, not just at the
peaks of density. This confirms that we have a highly multimode source with correlations
extending beyond high-density zones.

It is also worth mentioning that these data were obtained with a dataset containing
fewer atoms per mode (on the order of 0.2 detected atoms per mode), as we never observe
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a sub-shot noise variance when the population is high. As the population decreases (which
can be achieved by reducing the duration of the lattice), we begin to detect sub-shot noise
signals at the extremity of the density peaks, in regions of low density, and eventually
across the entire anti-diagonal, as shown in the Figure 3.21. This highlights that the
model asserting the final state induced by four-wave mixing is a superposition of TMS
states is a perturbative model: if the population is too significant, this assumption cannot
be maintained. Specifically, we cannot demonstrate correlations stronger than classical
when the population is too high. In order to demonstrate a violation of Bell’s inequalities,
it will therefore be necessary to work with a set of atoms with few atoms per mode, typ-
ically with the population that allowed the observation of this sub-Poissonian variance.
In the next chapter, we will demonstrate criteria regarding the population per mode to
observe a violation of Bell’s inequality with TMS states.

To observe such a signal, it was necessary to choose boxes significantly larger than
the size of a mode (∆Vz = 7 mm.s−1, ∆Vx,y = 30 mm.s−1). This was also the case in
the data from 2015 presented by R. Lopes in his thesis[115] and is not fully understood
to date. Furthermore, the variance does not decrease to 0.5 as expected with a quantum
efficiency detector of 50%. It is uncertain whether this implies that the quantum efficiency
of the MCP is lower than expected because it aligns with observations using correlation
functions: the observed cross-correlations are not as strong as expected. This could be
due to excessive averaging effects, to an unidentified mechanism that weakens correlations
between pairs, or to the fact that even with a low population the atom source is not exactly
a superposition of TMS states.

The map displaying the Cauchy-Schwarz coefficient exhibits a similar pattern: a vio-
lation of the Cauchy-Schwarz inequality is discernible along the anti-diagonal. Note that
the diagonal should be equal to 1, but this is not the case as we did not remove the shot
noise term, which is a non trivial operation when oversampling.
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Figure 3.22: 1D normalized variance and Cauchy-Schwarz coefficient. The size of a mo-
mentum box is ∆Vz = 7 mm.s−1 and ∆Vx,y = 30 mm.s−1. One box is fixed, while the position of
the other is scanned. The error bars are evaluated by bootstrapping.

One can also plot 1D curves with the same algorithm: a box is centered on a velocity
Vz1 , and we calculate the value of the normalized variance and the coefficient C relative
to a box centered on a velocity Vz2 , whose position is scanned. The results are shown in
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Figure 3.22 for Vz1 = 28 mm.s−1 (in the pair’s frame), corresponding to the density peak.
The results confirm that we obtain sub-shot noise variance, which decreases to 0.9 when
the scanned box is centered on −28 mm.s−1, confirming the strong correlation between
the two. The error bars, estimated by bootstrap, unequivocally demonstrate the quantum
nature of the correlation.

Despite the aforementioned points, we have successfully and reproducibly demon-
strated sub-shot noise variance and a violation of the Cauchy-Schwarz inequality, which
are signatures of a process with purely quantum correlations. Therefore, there is hope for
the realization of a Bell test.
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In this section, we will introduce the Bell interferometer that we aim to implement.
Previous chapters have focused on the source of twin atoms, emitted by four-wave mixing
from a Bose-Einstein condensate. Subsequent chapters will specifically focus on the inter-
ferometric sequence itself, which will be executed using Bragg mirrors and beam splitters
that ensure the coherent transfer of momentum between the modes involved in the inter-
ferometer. The ultimate goal is to conduct a Bell inequality test to confirm or refute the
predictions of quantum mechanics, which anticipates a sinusoidal oscillation of the Bell
correlator as a function of a phase difference between the Alice and Bob loops of the inter-
ferometer. The experiment has a dual purpose: to enable a precise control of this phase
and to ensure that the contrast of the two-particle interference is sufficient to exhibit a
violation of the Bell inequality. We will demonstrate that the interferometer configuration
that we chose offers inherent advantages in terms of contrast, but it requires a meticulous
control of the phase involved in the interferometer as a function of the momentum class.

This chapter is divided into five parts:

• The first section outlines the principle of the Bell interferometer with atoms and the
configuration we chose, compared to another one already reported in the literature.

• The second part provides a theoretical description of Bragg diffraction, which will
be used to create atom separators and mirrors.

• The third describes how to theoretically address the phase shifts involved in atomic
interferometers, considering especially the phase imprinted on the atoms by the
Bragg pulses out of resonance.

• In the fourth part, the results of the previous section are applied to the well-known
case of a Mach-Zehnder interferometer as an example.

• The final part applies the results to the case of the Bell interferometer. The objective
is to determine the phase involved in our Bell test, taking into account the non-
resonant phase shifts, within a model where the wave functions of the atoms are
treated as plane waves.

4.1 Description of the Bell interferometer

4.1.1 Principle

The design of the interferometer we aim to implement is inspired by the one used
by Rarity and Tapster, who conducted a Bell inequality test with momentum entangled
photons[12], as outlined in Chapter 1. In our case, photons are replaced by atoms, there-
fore two major elements differ. Firstly, mirrors and beam splitters for atoms consist in
performing two-photon transitions that transfer momentum to atoms. Secondly, a method
is needed to independently control the phase imposed on the loop A of the interferometer
and the phase on the loop B. In the Rarity and Tapster’s scheme, a phase plate provided
such a phase control. Here, we will see that the phase imprinted by the Bragg beams on
the atoms achieves this phase control.

The scheme of the interferometer is shown in Figure 4.1 in the falling frame, where
the trajectories of the atoms are linear. The atoms are emitted from the BEC by four-
wave mixing at a time that will be considered as the reference time t = 0, at which the
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Figure 4.1: Schematic representation of the Bell interferometer, in the falling frame. The
modes (q,−p) and (p,−q) are coupled pairwise by Bragg diffraction, forming loops A and B of the
interferometer. For each loop, the beam splitter imparts a specific phase onto the atoms.

trap is switched off. From this moment, the atoms are in free fall. Although our pair
source is largely multimode (as seen in Chapter 3), only four modes are necessary for the
implementation of the Bell interferometer. Indeed, these two pairs of atoms will, according
to quantum mechanics, exhibit stronger correlations than what could be obtained with
any classical model. In the following, we will only represent these two pairs of momenta,
since our detector allows us to perform post-selection to focus only on these specific modes.

Let us consider a doublet of correlated modes p0 and −p0 (with opposite momenta in
the lattice frame), whose momentum difference corresponds to the Bragg momentum pB

transferred to the atoms by a Bragg two-photon transition. This implies that during a
Bragg beam splitter or mirror, these two modes will interchange some or all of their pop-
ulations. In practice, we will ensure that modes p0 and −p0 correspond to the maximum
population of emitted pairs by adjusting the frequency of the lattice (cf section 3.2.2). As
showed in Figure 4.2, due to the properties of the source, the modes involved in the Bell
interferometer are pairs of correlated modes, denoted as (p,−p) on one hand and (q,−q)
on the other, symmetric with respect to the doublet (p0, −p0), such that:

p = p0 + ∆p

q = p0 −∆p

−p = −p0 −∆p

−q = −p0 + ∆p

and


p0 = −p0 + pB

p = −q + pB

q = −p+ pB

(4.1)

where ∆p is larger than the size of a mode. Note that the existence ∆p such that a
quadruplet (−p,−q, q, p) verifies equations 4.1 is not evident a priori, but is due to the
symmetry properties of our multimode source.

The input state is therefore:

|ψin〉 =
1√
2

(|−p, p〉+ eiφ0 |−q, q〉) (4.2)
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Figure 4.2: Schematic representation of the momentum modes involved in the interfer-
ometer. The modes are depicted by Gaussians within a density envelope. We are working in the
pair’s reference frame, meaning that two modes of opposite momenta are pairwise correlated by
the pair creation process. The Bragg pulses couple modes −p and q (loop A) and −q and p (loop
B).

where φ0 is a phase between the correlated doublets which depends on the pair creation
mechanism, and that we will assume to remain the same over many repetitions of the
experiment. It may depend on the considered quadruplet, and therefore on p and q.

This two-particle four-mode state is the coherent superposition of a state for which
one atom is in mode p while the other in the mode −p, and a state for which one atom is
in mode q while the other in the mode −q.

At time t1, a Bragg mirror is applied. Modes −p and q are coupled by Bragg diffrac-
tion, as well as modes p and −q. This configuration forms two loops in the interferometer,
labeled A and B, respectively (Figure 4.1). In both cases, the trajectories of the modes
intersect at the same moment t2 at which a Bragg beam splitter is applied. The overlap
between the wavepackets of each modes will result in a two-particle interference. It is
important to note that each loop of the interferometer involves two modes that do not
belong to the same pair.

In order to show that this interferometer should theoretically lead to a violation of
Bell inequality, let us calculate the output state of the interferometer. To do so, we will
treat each momentum doublet coupled by Bragg diffraction as a two-level system. A given
doublet is denoted as:

|ψ〉 = C0 |p̃〉+ C2 |p̃+ ~kB〉 =

(
C0

C2

)
{|p̃〉,|p̃+~kB〉}

(4.3)

where C0 and C2 are the amplitudes related to the population of states |p̃〉 and |p̃+ ~kB〉.
In our case, this basis is either A = {|−p〉 , |q〉} or B = {|−q〉 , |p〉}. By convention, we
will consider that the state with the lowest momentum corresponds to the 0th order of
diffraction.

The input state |ψin〉 is therefore

|ψin〉 =
1√
2

[(
1
0

)
A

⊗
(

0
1

)
B

+ eiφ0

(
0
1

)
A

⊗
(

1
0

)
B

]
(4.4)
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As we will demonstrate later in the manuscript, for a given momentum doublet (labeled
D with D = A or B), the transfer matrix of a beam splitter between two resonant modes
can be written

Û
(D)
S =

1√
2

(
1 ieiφD

ie−iφD 1

)
(4.5)

where φD is the phase difference between the two lasers used for the two-photon transfer
involved in the loop D = A or B1. This phase is imprinted on the atoms, meaning that the
phase difference between the lasers beams will lead to an equal phase difference between
the reflected atoms and the transmitted ones. Similarly, the evolution matrix of a mirror
is

Û
(D)
M =

(
0 ieiφ′D

ie−iφ′D 0

)
(4.6)

In the interferometer, after the two Bragg pulses, the output state is

|ψout〉 = Û (A) ⊗ Û (B) |ψin〉 (4.7)

with

Û (A) = Û
(A)
S Û

(A)
M and Û (B) = Û

(B)
S Û

(B)
M (4.8)

Given that

Û (D) =
1√
2

(
−ei(φD−φ′D) ieiφ′D

ie−iφ′D −ei(φ′D−φD)

)
(4.9)

the output state can be easily determined, and we find2

|ψout〉 =
1

2

[
−i
(

ei(φB−φ′B+φ′A) + ei(φ0+φA−φ′A+φ′B)
)
|−p,−q〉

+
(
−ei(φ0+φ′B−φ′A) + ei(φB−φ′B+φ′A−φA)

)
|q,−q〉

+
(

ei(φ′B−φB+φA−φ′A+φ0) − ei(φ′A−φ′B)
)
|p,−p〉

−i
(

ei(φ′A−φA−φ′B) + ei(φ0+φ′B−φB−φ′A)
)
|p, q〉

]
(4.10)

Let us assume that the Bragg mirror acts similarly on atoms from loops A and B.
Specifically, we have φ′A = φ′B, so the previous expression simplifies to

|ψout〉 =
1

2

[
−i
(

eiφB + ei(φ0+φA)
)
|−p,−q〉+

(
−eiφ0 + ei(φB−φA)

)
|q,−q〉

+
(

ei(−φB+φA+φ0) − 1
)
|p,−p〉 − i

(
e−iφA + ei(φ0−φB)

)
|p, q〉

] (4.11)

From this expression, we can calculate the joint probabilities of detection, that is to say
the probabilities to measure, after the beam splitter, two atoms in different modes. Note

1For now, we only consider this phase term, without taking into account the phase shifts due to the
position of the center of mass, the detuning, or the wave packet propagation.

2Using (
a
b

)
{|−p〉,|q〉}

⊗
(
c
d

)
{|−q〉,|p〉}

= ac |−p,−q〉+ ad |−p, p〉+ bc |q,−q〉+ bd |q, p〉
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that the joint probabilities P(p,−q) and P(−p, q) of finding two atoms within the same
loop of the interferometer are zero, which is why the loops A and B are not interferometers
themselves. If we consider the joint probabilities involving modes from each loop, we have:

P(p, q) = | 〈p, q|ψout〉 |2 =
1

2
cos2

(
φA − φB

2
+
φ0

2

)
(4.12)

P(−p,−q) = | 〈−p,−q|ψout〉 |2 =
1

2
cos2

(
φA − φB

2
+
φ0

2

)
(4.13)

P(p,−p) = | 〈p,−p|ψout〉 |2 =
1

2
sin2

(
φA − φB

2
+
φ0

2

)
(4.14)

P(q,−q) = | 〈q,−q|ψout〉 |2 =
1

2
sin2

(
φA − φB

2
+
φ0

2

)
(4.15)

We can see that these joint probabilities of detection oscillate as a function of the phase
difference φA − φB (for a given value of φ0, which, again, we assume to remain constant
over the realizations of the interferometer). Note that there is no interference effect when
looking at the single atom detection probabilities, which are constant:

P(p) = P(p, q) + P(p,−p) =
1

2
(4.16)

The oscillation of the joint probabilities of detection is a quantum two-particle interfer-
ence which can lead to a violation of Bell inequality. A standard version of this inequality
(called the CHSH version)[40] consists in defining a Bell correlator E, as

E = P(p, q) + P(−p,−q)− P(p,−p)− P(q,−q) (4.17)

Using the previous expressions for the probabilities, we get

E(φA, φB) = cos (φA − φB + φ0) = cos Φ (4.18)

We expect that the interferometer leads to an oscillation of the Bell correlator as a
function of φA − φB. This requires us to be able to control the difference of imprinted
phases between the loops A and B. This crucial point will be discussed in detail later in
the manuscript. The unknown value of φ0 adds a phase offset in the oscillation of E.

By choosing specific values of φA−φB, and therefore tuning Φ, it is possible to obtain
a Bell parameter S greater than 2:

S = E
(
φ

(1)
A , φ

(1)
B

)
− E

(
φ

(1)
A , φ

(2)
B

)
+ E

(
φ

(2)
A , φ

(1)
B

)
+ E

(
φ

(2)
A , φ

(2)
B

)
= 2
√

2 (4.19)

where we took φ
(1)
A −φ

(1)
B = 45°, φ(1)

A −φ
(2)
B = 135°, φ(2)

A −φ
(1)
B = 315° and φ

(2)
A −φ

(2)
B = 45°.

The interferometer therefore should lead to a violation of Bell inequality according to
the laws of quantum mechanics.

4.1.2 Assessment of assumptions and visibility of the Bell correlator

At this stage, let us highlight the crucial assumptions made during the previous proof
of principle. It is essential to assess their validity in order to estimate the deviation from
the ideal model that would arise in our experimental setup.

120



CHAPTER 4. INTERFEROMETER THEORY: FROM BRAGG DIFFRACTION TO BELL TESTS

Input state

The first hypothesis to discuss is that of the initial state. It was considered that the
initial state could be written as |p,−p〉 + eiφ0 |q,−q〉. However, as seen in the previous
chapter, the state resulting from the four-wave mixing is more appropriately described as
a superposition of two-mode squeezed states, which can be expressed particularly in the
following form:

|ψin〉 =

(√
1− |α|2

+∞∑
n=0

αn |n〉p |n〉−p

)
⊗
(√

1− |β|2
+∞∑
n=0

βn |n〉q |n〉−q

)
(4.20)

where we restrict ourselves to the mode pairs involved in the Bell interferometer. α and
β are related to the average population per mode through the following relationships:

〈n〉p =
|α|2

1− |α|2 and 〈n〉q =
|β|2

1− |β|2 (4.21)

We now assume that the population of modes p, −p, and q, −q is the same (in practice,
the frequency of the pair network is chosen to make this the case) so that |α| = |β|. As
we can see, when the population tends toward zero, the initial state can be rewritten by
retaining only the first-order terms in α, such as:

|ψin〉 =
〈n〉→0

(1− |α|2)
[
|0〉+ α

(
|1〉p |1〉−p + eiφ0 |1〉q |1〉−q

)]
(4.22)

with φ0 = arg(β/α). By omitting the vacuum part, we recover the Bell state used in the
previous section.

This demonstrates that the ideal case is approached when the population of the two-
mode squeezed states tends towards zero. Indeed, as it will also be demonstrated for the
HOM effect, our aim here is to exhibit a two-particle interference effect. Thus, the proba-
bility of having two particles in modes p and −p will inevitably lead to a reduction in the
visibility of this interference effect.

In practice, in order to exhibit a violation of Bell’s inequality, experiments are con-
ducted iteratively. In each experimental cycle, the number of atoms Npi detected in each
mode pi is recorded. The joint probability P(p,−q) of detecting atoms in the modes p
and −q for instance are thus defined such that

P(p,−q) =
〈NpN−q〉

〈NpN−p〉+ 〈NqN−q〉+ 〈NpN−q〉+ 〈NqN−p〉
(4.23)

and so on for P(p,−p), P(q,−p) and P(q,−q).
These probabilities can be calculated analytically by taking the superposition of two-

mode squeezed states as the input state, as defined in equation 4.20, without truncating
the sum over Fock states. This yields[121] the expression for the Bell correlator in the
form:

E = V (〈N〉) cos Φ with V (〈N〉) =
1 + 〈N〉

1 + 3 〈N〉 (4.24)

A visibility term V emerges that tends to reduce the amplitude of the Bell correlator
oscillation as the average population 〈N〉 increases. Consequently, the maximum value of
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the Bell parameter S which can be achieved is

S = 2
√

2
1 + 〈N〉

1 + 3 〈N〉 (4.25)

The graph of S(〈N〉) is presented in Figure 4.3. When working with two-mode squeezed
states, one needs to operate within a specific population regime if the goal is to measure
a violation of Bell’s inequality.
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Figure 4.3: Visibility of the Bell parameter as a function of the mean population, for a
two mode squeezed input state.

In practice, to achieve S > 2, the oscillation amplitude of the correlator V (〈N〉)
must be greater than 1/

√
2, which corresponds to a population which needs to be lower

than 0.26.

The major challenge in experiments aiming to demonstrate a violation of Bell inequal-
ities is ensuring that the visibility of the signal is sufficient to surpass the classical limit
of S = 2. This requires the preparation of an initial state that closely resembles a Bell
state. In the case of TMS states, this implies working with a low population. However,
this choice will impact the signal-to-noise ratio, as operating below the population limit
of 0.26 atoms per mode means that more than three-quarters of the realizations will occur
without any atoms, thus not contributing to the useful signal.

Note that there are other forms of Bell inequalities than the CHSH inequality used
here[41][131], involving different correlators, which can be exploited to enhance the visi-
bility of the associated Bell correlator.

Reflectivity of the Bragg pulses

Another potential cause of a decreased visibility of the Bell correlator is a poor quality
of the mirror and Bragg beam splitter properties, meaning transition probabilities that
differ from 100% for the mirror and 50% for the beam splitter. Analogous to optics, these
parameters are referred to as the “reflectivity” properties of the Bragg pulses. In practice,
this involves expressing the Bragg transfer matrices in the form:

Û
(D)
M,S =

(
t reiφD

re−iφD t

)
(4.26)
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where r and t are reflectivity and transmittivity coefficients. We will show in a following
section of the chapter how to write the coefficients r and t and their impact on the visibility
of the Bell correlator.

Regardless of the specific Bell experiment being conducted, this issue is common to
all atomic interferometers, which involve Bragg (or Raman) transitions whose resonance
depends on the momentum class. As the atom source has a certain momentum coherence
width, the reflectivity of the pulses needs to remain high within a momentum range cor-
responding to the source width in order to optimize the signal. In our case, this requires
the reflectivity of the Bragg pulses to be good at the scale of a momentum mode, which
determines the integration volume within which the atoms will be counted.

As we will see, Bragg transitions (unlike Raman transitions) enable diffraction towards
more than one diffraction order, in the case where the Bragg power is high, which may be
responsible for an additional reflectivity decrease which needs to be avoided.

Same mirror but different splitters for A and B

In the chosen configuration for the interferometer, the decision was made to use the
same Bragg mirror for loops A and B, while two different beam splitters need to be
performed. This has important implications for the constraints on the Bragg pulses.
Specifically, the momentum doublet involved in loop A does not have the same Bragg
resonance frequency as beam splitter B, since the resonance frequency depends linearly
on the momentum class.

This implies that the Bragg mirror’s resonance width must be sufficiently broad to
effectively transfer atoms from doublet A and doublet B without a loss of reflectivity.
For the mirror, the Bragg resonance must remain effective not just over the range of one
momentum mode but at least over a range of three momentum modes, considering that
the chosen modes −p, −q, p, and q are the neighboring modes of the doublet (p0,−p0)
(Figure 4.4).

−p −q q p

Bragg mirror

p

Figure 4.4: Schematic representation of the chosen Bragg transfer for the mirror. The
resonant range of the Bragg transfer is depicted in gray. The same pulse couples modes −p and q
of loop Aand modes −q and p of loop B.

Furthermore, we imposed the phase imprinted by the mirror on the atoms to be the
same for loops A and B. We will show that this is actually not necessary, provided that
the phase difference between A and B imprinted by the mirror remains constant. Similar
to the reflectivity, the phase must remain constant for a given mode, since we will average
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the measured joint probabilities over an integration range corresponding to the size of a
mode: if the phase varies too much within a mode, the Bell interference might vanish.

Regarding the beam splitter, the chosen configuration is different. In contrast to the
mirror, we aim to imprint different phases on the atoms in loops A and B. Therefore,
it is necessary to make two distinct beam splitters. One possible approach would be to
align two different sets of beams on the spatial regions where the atoms of loops A and
B intersect since these regions are distinct. In practice, these two intersections are only a
few µm apart, making this approach technically very challenging in terms of beam waist
and alignment.

Instead, we will leverage the fact that doublets A and B have different resonance
frequencies. This will allow us to use the same set of beams for A and B. The objective is
to ensure that these beams have two distinct resonance frequencies, and that the resonance
widths are sufficiently narrow to enable efficient coupling of one doublet without affecting
the other (Figure 4.5). One could also apply this principle to make two resonant mirrors,
each interacting with either the atoms from loop A or B, in the event that the reflectivity
obtained with a single mirror proves to be insufficient.

Additionally, we must be able to control the relative phase imprinted between the
doublets A and B. This is a crucial constraint, as this phase difference is the one involved in
the Bell correlator and plays the role of the control parameter of the Bell test. Addressing
this challenge is at the core of the design approach for the Bragg pulses, which will be
further detailed in the following sections of this chapter.

−p −q q p

Beam splitter B

Beam splitter A

p

Figure 4.5: Schematic representation of the chosen Bragg transfer for the beam splitter.
Two distinct beam splitters are actually applied, each resonant with a doublet: −p and q for
doublet A (in green), −q and p for doublet B (in red).

Note that, so far, we have only discussed the control of the phase difference φA − φB.
However, to perform a genuine Bell test in the sense of a test of quantum mechanics,
the formal demonstration presented in the introduction requires independent control of
both degrees of freedom, in our case the phases φA and φB. It will be shown later that
achieving such phase control is experimentally more demanding than controlling only the
phase difference. In the following, we will thus specifically focus on controlling the phase
difference between A and B.
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Multiplexing

It is worth noting that we can leverage the multimode nature of the pair source to
conduct multiple Bell experiments in parallel. If the Bragg coupling performance allows,
we could use not just a single quadruplet at a given ∆p, but several quadruplets for different
values of ∆p. This would enable a form of multiplexing, where a single experimental
cycle involves conducting multiple Bell experiments, providing a significant statistical
advantage.

However, averaging the results obtained with one quadruplet and those obtained with
another would not be feasible because the phase φ0 arising from the pair creation process
depends a priori on the specific quadruplet considered. Thus, when varying the control
parameter φA − φB for a given quadruplet, the Bell correlator E = V cos(φA − φB + φ0)
oscillates with an initial phase that depends on the specific quadruplet under consideration.

Nevertheless, if we manage to observe distinct oscillations with different initial phases
but with a sufficient oscillation amplitude, then it might be feasible to average the results.
This would only be meaningful in observing the oscillation of the Bell correlator, as during
a measurement of the Bell parameter S, the four sets of phases φA − φB leading to a
maximal S would vary depending on the momentum quadruplet. Let us highlight again
that implementing a multiplexing scheme requires maintaining good reflectivity of the
Bragg mirrors and beam splitters over a momentum range that encompasses all involved
modes.

Additional phases and closure of the interferometer

Even when considering the nature of the quantum input state and the influence of the
momentum class on the reflectivity and the phase imprinted on the atoms by the Bragg
pulses in the Bell interferometer, the previous model remains incomplete. Indeed, it does
not take into account any spatial effects. The effects neglected by this model are of various
kinds.

We have not yet accounted for the fact that in atomic interferometers, the phase im-
printed on atoms during the Bragg pulse is not solely equal to the phase difference between
the lasers, there is also a term corresponding to the product of the Bragg wavevector and
the center of mass of the atoms. This term is, in fact, at the heart of atomic interferometry,
as it enables the measurement of gravity in Mach-Zehnder-type gravimeters.

There is also an additional phase accumulated by the atoms during their free fall,
which depends on their position in the gravitational field, hence both their position and
momentum.

We will demonstrate that both these terms can be analytically calculated in simple
cases using a formalism involving wave packets evolving under the influence of propagators
that account for gravity and interaction with light.

We will see that these additional phases vanish in the case where the interferometer is
closed, that is to say when the duration between the mirror and the beam splitter is equal
to the duration between the emission of the pairs and the mirror, which gives, with the
previous conventions, t2 = 2t1. This is the application time of the beam splitter for which
the wavepackets overlap, resulting in the best visibility of two-particle interference. This
idea is similar in other types of interferometers such as the Mach-Zehnder interferometer,
for example.
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In practice, several factors complicate the exact determination of the delay at which
to apply the beam splitter to close the interferometer.

• Firstly, the pair creation process has a duration on the order of a few hundred µs.
Although this is a process with an exponentially increasing gain with the duration of
the optical lattice, leading to the expectation that most pairs are created towards the
end of the lattice application, it is not straightforward to pinpoint a precise moment
when the pairs are emitted (due to saturation effects of the four-wave mixing process,
for instance).

• Secondly, the Bragg pulses have a finite duration. Typically, in atomic interferom-
etry experiments, their duration remains small compared to the free propagation
durations of the atoms. However, if one considers the pulse duration (even assuming
that the emission time of the pairs is precisely known), should the time of applying
the beam splitter be referenced to the beginning, end, or middle of the mirror pulse?

To address these issues experimentally, it is possible to precisely determine the delay
of the beam splitter to close the interferometer by using the same source of pairs and the
same mirror, conducting another two-particle interference experiment involving only two
correlated momentum modes, p0 and −p0: the Hong-Ou-Mandel experiment. As men-
tioned in Chapter 1, such an experiment allows for one to determine conditions under
which two bosons are indistinguishable. By sending two bosons through a beam splitter
and by varying the beam splitter delay, one can identify the delay that achieves the best
overlap between the wave packets by counting coincidences between the modes. Quan-
tum theory predicts that the coincidence rate G(2)(p0,−p0) tends toward zero when the
interferometer is closed, at low population. A more detailed discussion of the HOM effect
will be presented in Chapter 6 of this manuscript, and a comprehensive presentation can
also be found in the thesis of R. Lopes[115], who reported the first HOM experiment with
atoms in our team.

Thus, a preliminary step in the implementation of the Bell interferometer will involve
conducting an HOM experiment, serving as temporal calibration to determine the timings
ensuring the closure of the interferometer.

Additionally, in the previous model, the Bragg beams are treated as plane waves. But
the wavefront of the Bragg beams can only be considered planar over a limited region
of space, essentially within a cylinder whose length corresponds to the Rayleigh length
and the radius to the beam waist. If atoms move away from this region, it can induce
a differential light shift and affect the reflectivity of the pulses and the phase imprinted
on the atoms. This effect will be neglected in the following discussions, assuming that
the interferometer is implemented over a sufficiently short time for the atoms to remain
within a region where the wavefront is planar.

A few words about non-locality

In the first chapter, it was mentioned that a major contribution of Aspect was to es-
tablish a so-called “sensitive” experiment, capable of potentially violating Bell inequalities
while challenging the locality assumption of the EPR argument. In our experiment, the
two beam splitters are not separated by a spacelike interval. Indeed, considering pairs
p0 and −p0 emitted at speeds of 65 and 115 mm−1 in the laboratory reference frame, we
can estimate the trajectories of the atoms involved in the Bell interferometer with a clas-
sical model. Assuming a velocity difference of ±3 mm.s−1 relative to the HOM doublet,
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infinitely thin Bragg pulses, and a typical free propagation time of 1.5 ms, we find that
the distance between the atoms from loops A and B is on the order of 20 µm at the final
beam splitter (Figure 4.6).
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Figure 4.6: Trajectories of the atoms involved in the Bell interferometer in the laboratory
reference frame. The legend indicates, for the considered trajectory, the corresponding loop of
the interferometer as well as the successive momenta of the atoms.

Our experiment will not challenge the locality assumption, even if we achieve a setup
allowing independent control of the phases φA and φB. This is not the goal here. Nev-
ertheless, demonstrating a weak version of Bell inequalities would validate the principle
of Bell interferometers with atoms involving an external degree of freedom, paving the
way for next-generation experiments that could separate the beam splitters by a larger
distance to test the issues of locality.

Our goal in observing a violation of Bell inequality is that it is a strong evidence
of entanglement of the input state, which in itself would be a significant result, since
observing a direct evidence of entanglement in massive particles entangled in momentum
is challenging, as discussed in section 1.4.2.

4.1.3 Comparison with another setup

In this section, we will compare our interferometric setup with another recently re-
ported in the literature that has observed an oscillation of the Bell correlator with a
visibility V = 0.42 ± 0.09. This Bell interferometer is described in the article “A Matter
Wave Rarity-Tapster Interferometer to Demonstrate Non-Locality”[94] published in 2022
by K. Thomas et al. from the He* BEC group at the Australian National University (Can-
berra). Similar to our team, they employ an experiment involving ultra-cold metastable
helium atoms detected by a Microchannel Plate. This article follows a theoretical proposal
published in 2015 by R. Lewis-Swan and K. Kheruntsyan[132].

The fundamental difference between our two experiments lies in the pair creation pro-
cess. In both cases, pairs are generated by four-wave mixing due to collisions in the
condensate. In our case, we manipulate the conservation of energy relation using the the
optical lattice’s fundamental band to emit pairs along a vertical axis. In the experiment
reported by Thomas et al., on the other hand, pairs are created by collisions between two
condensates[77]. This phenomenon, discussed in the first chapter, involves using Bragg
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diffraction to create two condensates moving away from each other, thus generating pairs
of opposing momentum in the center-of-mass frame.

The originality here lies in the fact that the Bragg diffraction resonance is sufficiently
broad to allow the emission of two scattering halos: one between the initial BEC and the +1
diffraction order, and the other between the BEC and the -1 diffraction order (Figure 4.7).
This aspect differs from the initial proposal by Lewis-Swan and Kheruntsyan, who only
consider atoms from one scattering halo.

p′
p

q

q′

2~k

Figure 4.7: Schematic representation of the pair creation process used by Thomas et al.
for a Bell interferometer. The dark blue ellipses at the poles of the spheres represent the BECs.
A Bragg pulse applied just after the trap is turned off allows the transfer of atoms from an initial
BEC (at the center) to two other BECs (at the top and bottom of the spheres). Collisions between
the clouds result, through four-wave mixing, in the emission of atom pairs on spheres whose center
is the center of mass of the two condensates. Two diametrically opposite modes of a sphere are
correlated modes.

The state produced by four-wave mixing results from the same interaction Hamiltonian
as the one used in the previous chapter, so the input state of the interferometer is, as in our
case, a superposition of TMS states. This imposes similar constraints on mode populations
to achieve good correlation properties, along with a good visibility of the Bell correlator.
The emitted pairs occur here in all three dimensions of space within a spherical shell. Such
a system has led to the observation of strong crossed correlations between pairs of opposite
momentum with high g(2) correlation functions[120][133] (up to 102 at low population) and
violations of the Cauchy-Schwartz inequality[133][21].

Here, two scattering halos are emitted and share a pole along the vertical direction
formed by the three BECs (this axis is defined by the Bragg transfer, which transfers to
the atoms some momentum in a specific direction).

The momentum modes involved in the Bell interferometer are described in Figure 4.7.
The idea is to take a pair of correlated modes p and p′ from the upper sphere and a pair
of modes q and q′ from the lower sphere, with opposite momentum in the initial BEC
reference frame, such that q′ = −p and q = −p′. The input state is therefore:

|ψin〉 =
1√
2

(|p,p′〉+ |q,q′〉) (4.27)

The authors do not take into account a possible quadruplet-dependent phase φ0 be-
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tween the two coupled modes, considering that this phase is the same for all quadruplets.

The Bell interferometer must involve two momentum doublets, each involving atoms
in modes that do not belong to the same correlated pair. The velocity difference along
the vertical axis between modes p and q is the same as the one between modes p′ and
q′. Therefore, these modes can be coupled pairwise by the same pair of Bragg beams. At
a time t1 after the emission of the pairs, a mirror Bragg pulse is sent to the atoms and
couples p and q in the so-called Left loop, and p′ and q′ in the Right loop (Figure 4.8).
At time t2 a Bragg beam splitter pulse mixes the modes involved in each of these loops,
and then the atoms fall freely before being detected by the MCP.

p′
p

q

q′

p

q′

p′

q

Mirror

Mirror

Beam
splitter

Beam
splitter

Left
loop

Right

loop

Time
t0 t1 t2

Pairs
Emission

Mirror
Beam

splitter

Figure 4.8: Schematic representation of the Bell interferometer presented in Thomas et
al.[94]. A first Bragg pulse at t = t0 emits pairs of atoms in two collision halos. Then, a
mirror pulse is applied at t1 followed by a beam splitter pulse at t− 2. The diametrically
opposed atoms from the two spheres are thereby coupled by Bragg diffraction, forming a
Left loop for atoms with momenta q and p, and a Right loop for atoms with momenta p′

and q′.

By using the same notation conventions as in the previous section, where we expressed
a momentum doublet coupled by Bragg as a column matrix, the initial state |ψin〉 writes
as follows:

|ψin〉 =
1√
2

[(
0
1

)
L

⊗
(

0
1

)
R

+

(
1
0

)
L

⊗
(

1
0

)
R

]
(4.28)

where L = {|q〉 , |p〉} and R = {|q′〉 , |p′〉} are the basis of the two loops.
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Notably, this state differs from the input state of our interferometer (equation 4.4).
Here, the first term of the sum involves two atoms that are in the highest momentum state
(p and p′) relative to its Bragg doublet, and the second term includes two atoms that are
in the lowest momentum state (q and q′). In our geometry, on the other hand, each term
involved one atom in the lowest momentum state and one atom in the highest momentum
state. This difference has a significant consequence, because if we continue the calculation
as was done in the first part of this chapter, then we find that this time the joint detection
probabilities and the Bell correlator are expressed in the form:

P(p, q) = P(−p,−q) =
1

2
cos2

(
φL + φR

2

)
(4.29)

P(p,−p) = P(q,−q) =
1

2
sin2

(
φL + φR

2

)
(4.30)

where φL and φR are the phases imprinted by the lasers on the atoms from loops L and
R respectively. We assumed that the phase imprinted by the Bragg mirror was the same
for each doublet. From these expressions we get

E = cos(φL + φR) (4.31)

In this configuration, the Bell correlator does not depend on the phase difference
imposed between the two loops, but on their sum. This difference lies in the geometry
of the created pairs relative to how modes are coupled by Bragg: the topology of the
interferometer is different from ours (Table 4.1), it is not possible to go continuously from
one configuration to another.

Configuration Input state Bell correlator

Thomas et al.[94] |ψin〉 =
1√
2

[(
0
1

)
L

⊗
(

0
1

)
R

+

(
1
0

)
L

⊗
(

1
0

)
R

]
φL + φR

Our setup[93] |ψin〉 =
1√
2

[(
1
0

)
A

⊗
(

0
1

)
B

+

(
0
1

)
A

⊗
(

1
0

)
B

]
φA − φB

Table 4.1: Comparison between the two configurations of Bell interferometers. The in-
put state of each interferometer is given in the adapted basis for Bragg diffraction, such that
the top row of each matrix represents the state with the lowest momentum. In the geometry of
the interferometer by Thomas et al., L = {|q〉 , |p〉} and R = {|q′〉 , |p′〉}, while in our configu-
ration, A = {|−p〉 , |q〉} and B = {|−q〉 , |p〉}. The sign between the two phases involved in the
interferometer is not the same in the two configurations.

The major advantage is that the same beam splitter can be applied to both loops
(φR = φL). The Bragg beams are resonant with both doublets, selected to belong to the
equatorial plane of each of the two collision spheres. The phase control is performed by
a two-output RF generator sending a signal to two different acousto-optics modulators
controlling the frequency of each Bragg beam.

The Bell experiment was performed for 9 values of the phase Φ = 2φL from a BEC
with 14(4).104 atoms. The mode population is 〈N〉 = 0.15[133], which should be efficient
to exhibit a violation of Bell inequality for a two-mode squeezed state. The duration be-
tween each Bragg pulse is 240 µs, and the intensity profiles of the Bragg mirror and beam
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splitter are Gaussian-shaped. Their peak reflectivity is 0.984. The results are given in
Figure 4.9 after averaging over momentum quadruplet located in the equatorial plane of
the scattering halos. Each data point corresponds to about 2900 experimental runs. The
authors emphasize that at the time of the Bragg splitter, the distance between the atoms
from each loop is 62.4 µm, corresponding to about four times the correlation length of a
momentum mode.

Figure 4.9: Results of the Bell experiment conducted by the ANU team. Taken from [94].

The results show a significant oscillation of the joint probabilities of detection as a
function of the global phase Φ, leading to an oscillation of the Bell correlator, but the
visibility of 0.42(9) does not make it possible to reach the value of S for which a violation
of Bell inequality is observed, despite the low estimated mode population. The authors
find indeed S = 1.1(1).

A model presented in the article takes into account the finite momentum mode width
by modeling the second order function correlation G(2) as Gaussians. The model also
considers the effects of momentum box integration and detector resolution. This led to an
estimated visibility of the Bell correlator which depends on mode population, height and
width of the correlation between opposite momentum modes, along with integration bin
size and detector resolution, which are all experimentally accessible quantities. Neverthe-
less, these refinements are not sufficient to explain the low measured visibility. The other
possibilities mentioned by the authors (Bragg pulse reflectivity, false positives dark counts
on the MCP) to account for this low oscillation amplitude appear to have relatively minor
effects on the visibility of the Bell signal.

A major drawback of this interferometer, as we understand it, is its high sensitivity to
phase fluctuations. As previously mentioned, it is the global phase that plays a role in the
Bell signal, i.e., the phase difference between the two Bragg laser beams. Since the two
beams do not have the same frequency and ultimately have a certain angle between them
(which determines the Bragg momentum ~kB), there is inevitably a part of their path
where they are in a different free space. Therefore, the slightest relative phase fluctuation
between the two beams, typically caused by a mirror vibration on the path of one of
the beams, then appears with a factor of two in the Bell correlator, adding a significant
averaging effect.

This effect can be estimated by averaging a cosine function within an integration range
corresponding to twice the typical estimated phase fluctuation. The expected visibility for
a TMS whose mode population is 0.15 is V = 0.79. In order to estimate the effect of phase
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fluctuations, it is possible to the compute the averaged function 〈V cos Φ〉 as a function
of Φ, where 〈· · ·〉 represents the average of the function V cos Φ between Φ −∆ Φ/2 and
Φ + ∆ Φ/2. By considering a typical phase fluctuations between different experimental
runs of ∆ Φ = π/2 rad, we find that the visibility decreases to V = 0.50, which is close
to the measured value. Since the authors do not mention any effort on stabilizing or
measuring the phase from one experimental run to another, we think that this averaging
effect could be part of the reason why the measured visibility is not as high as expected.

Let us point out that this averaging effect cannot be explained by phase fluctuations
of the laser itself, since the Bell correlator depends on the phase difference between the
phases of the two beams, so the possible phase fluctuations of the laser cancel out.

The phase involved in our interferometer, on the contrary, depends on the relative
phase between the two loops φA − φB. Since we aim at using the same laser beams for A
and B, any phase fluctuation between the two beams present for the atoms from loop A
is also present for the atoms from loop B, and this fluctuation cancels out. This effect is
called common mode rejection and makes the interferometer we intend to perform more
robust to the various phase fluctuations that could occur in a laboratory. Despite the
experimental challenges of designing different beam splitters for A and B by exploiting
the fact that the doublets do not have the same resonance frequency, the advantage is
significant in the quest to demonstrate a violation of Bell’s inequality.

p′

q′
q

p

Figure 4.10: Schematic representation of the pairs involved in the Bell proposal by Lewis-
Swan et al[132]. The atoms coupled by Bragg are located at two latitudes within the same
collision halo. The correlated atoms are p and q′ = −p on one hand, and q and p′ = −q on the
other hand. p and q form the Left loop of the interferometer, while p′ and q′ form the Right loop.

In summary, the interferometer presented by Thomas et al. exhibited the oscillation of
the Bell correlator, but its visibility is not sufficient to claim a violation of Bell inequality.
One potential explanation for this visibility lower than expected is the significant sensi-
tivity of the interferometer to phase fluctuations. This effect is inherent to the chosen
interferometer geometry, especially the involved momentum modes, for which the Bell
correlator depends on the global phase. It is worth noting that the initial proposal[132],
on which the authors rely, has a different geometry, with pairs originating from a single
scattering halo (Figure 4.10). In this case, the interferometer’s input state is

|ψin〉 =
1√
2

[(
0
1

)
L

⊗
(

1
0

)
R

+

(
0
1

)
L

⊗
(

1
0

)
R

]
(4.32)

and the correlator then depends on the phase difference between the loops. The Bell
correlator is therefore E = cos(φL − φR). Such an interferometer does not have the
sensitivity to phase fluctuations like that of the Thomas et al. interferometer, due to
common mode rejection. But it is also more challenging to implement because it requires
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addressing different phases to loops L and R, either by using different beams (but with very
demanding geometric alignment) or by employing different resonance frequencies (which
necessitates a very precise spectral control and doublets L and R at different latitudes)

4.2 Theoretical description of the Bragg pulses

In this section, we will introduce the theoretical model describing Bragg diffraction,
which we will use for simulations to determine the characteristics of the mirror and beam
splitter pulses for the Bell interferometer. We focus here on the coherent momentum
transfer process at a given position, without considering the propagation of wave packets,
which will be addressed in section 4.3 about interferometers.

4.2.1 Bragg diffraction of atoms in an optical lattice

Let us consider a BEC of helium atoms in the metastable state 23S1 (m = 0), in
free space and without interactions. Two laser beams are directed onto these atoms in
the (x, z) plane, separated by an angle θB (Figure 4.11). Both beams are π polarized
(corresponding to an amplitude of the electric field along the y direction) and originate
from the same laser source with a wavelength λ = 1083 nm but have been separated and
prepared at different frequencies ω1 and ω2. They intersect on the atoms and interfere,
creating an optical lattice in the vertical direction.

θB

E1(t)

E2(t)

y

z

x

Figure 4.11: Schematic representation of the optical geometry used for the Bragg beams.
The two beams are inclined at an angle θB/2 with respect to the y-axis in the (y, z) plane and
interfere at the location of the BEC in the optical dipole trap.

The total electric field on the atoms is

E = E1 + E2 = E1,0 sin (k1.r− ω1t+ ϕ1)uy + E2,0 sin (k2.r− ω2t+ ϕ2)uy (4.33)

where

k1 =
2π

λ

(
cos

θB

2
uy − sin

θB

2
uz

)
and k2 =

2π

λ

(
cos

θB

2
uy + sin

θB

2
uz

)
(4.34)
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Provided that the amplitude of both electric fields is the same (E1,0 = E2,0 = E0), the
resulting intensity is

I(z) = |E|2 = 2I0 [1 + sin (2kz − φ(t))] = 4I0 sin2

(
kz − φ(t)

2

)
(4.35)

where we defined I0 = E2
0 and

k =
2π

λ
sin

θB

2
and φ(t) = (ω2 − ω1)t+ ϕ2 − ϕ1 (4.36)

It is worth noting that ~k is the elementary momentum exchanged between the photons
and the atoms in the lattice along the vertical direction. The period of the lattice is

alat =
λ

2 sin (θB/2)
(4.37)

In our case, the angle between the beams is θB ≈ 31°, giving an interfringe of alat ≈
2 µm, which is small compared to the estimated size of the BEC along the vertical direction.

In order to characterize the dipole atom-light interaction Ĥi = −d̂.Ei, one can in-
troduce the (one-photon) Rabi frequency Ωi for each beam (i = 1, 2), which is defined
as

Ωi = −〈g|d̂.Ei|e〉
~

= −d0Ei
~

e−iϕi (4.38)

where |g〉 and |e〉 are respectively the ground state and the excited state of the 23S1 → 23P0

transition, d0 is the associated reduced atomic dipole, and ϕi is the laser phase.

One can show[134] that, if the detuning ∆ between the laser frequencies and the atomic
transition resonance frequency is high enough, then the population of the excited state is
negligible. The atoms in the standing wave are therefore subject to a potential ĤI which
is proportional to the local light intensity and can be written

ĤI = 2~|ΩR| sin2

(
kẑ − φ(t)

2

)
(4.39)

where we defined the two-photon Rabi frequency ΩR:

ΩR =
Ω1Ω∗2
2∆

(4.40)

Note that |ΩR| is proportional to the intensity of the light on the atoms and can depend
both on time and position. In the following, we will neglect the spatial dependence of ΩR,
assuming that the light is uniform on the atoms (as well as |Ω1| = |Ω2|), but we will keep
the assumption that this quantity can be time-dependent.

A detailed calculation of the adiabatic elimination of the excited state in our case can
be found in the manuscript of M. Perrier[104]. With ∆ = 2π × 800 MHz, we will consider
that the approximation is well verified and we will neglect the atoms in the excited state,
as well as spontaneous emission (see section 6.1.4).

We will also neglect the interactions in the BEC, since the Bragg lattice is performed
at least a few hundreds of microseconds after the release of the atoms from the trap,
thus after the time for which the dynamics is dominated by the interactions in the BEC.
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Consequently, by taking into account the gravity field, the full Hamiltonian of an atom in
the lattice is

Ĥ =
p̂2

2m
+mgẑ + 2~|ΩR| sin2

(
kẑ − φ(t)

2

)
(4.41)

Using a unitary transformation, it is possible to work in a basis where the gravitational
potential does not appear[135]. Basically this corresponds to work in the reference frame
of the atoms in free fall. After shifting the energy reference by ~|ΩR|, the Hamiltonian
can then be rewritten

Ĥ =
p̂2

2m
− ~|ΩR|

2

(
e2ikẑ−iφ(t) + e−2ikẑ+iφ(t)

)
(4.42)

The operators e±2ikẑ are translation operators by ±2~k in the momentum space:

e±2ikẑ |p〉 = |p± 2~k〉 (4.43)

We can see from equation 4.42 that the interaction term allows for a momentum trans-
fer of 2~k to the atoms. Bragg diffraction between a momentum state |p〉 and a momentum
state |p+ 2~k〉 can actually be interpreted as a two-photon process: one photon from beam
1 is absorbed by an atom, which excites it while transferring it a momentum ~k, then this
atom emits a photon by stimulated emission in beam 2, which deexcites it to the ground
state while transferring it again a momentum ~k.

In order to determine the evolution of the system, we will expand the state of the
atoms in the basis of momentum states:

|ψ(t)〉 =
+∞∑

n=−∞
C2n(t)e−i

E2n
~ t |p+ 2n~k〉 (4.44)

where

E2n =
(p+ 2n~k)2

2m
(4.45)

is the kinetic energy of the atom in the momentum state |p+ 2n~k〉. Note that C2n is the
amplitude of probability to find an atom in the associated momentum state, and n is the
diffraction order.

By inserting the state 4.44 into the Schrödinger equation with the Hamiltonian 4.42,
one can establish the following relationship between the C2n coefficients:

i~Ċ2ne−i
E2n
~ t = −~|ΩR|

2

(
C2n−2e−i

E2n−2
~ te−iφ(t) + C2n+2e−i

E2n+2
~ teiφ(t)

)
(4.46)

which can be rewritten

Ċ2n = i
|ΩR|

2

(
C2n−2e−i

E2n−2−E2n
~ te−iφ(t) + C2n+2e−i

E2n+2−E2n
~ teiφ(t)

)
(4.47)

Let us recall that φ(t) = (ω2−ω1)t+ϕ2−ϕ1. The exponential terms can be expressed in
terms of detuning between the laser frequency difference and the Bragg coupling frequency
between the energy levels (Figure 4.12), by defining, for each momentum state:

δ2n = ω2 − ω1 −
E2n+2 − E2n

~
(4.48)
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Figure 4.12: Energy diagram of the Bragg diffraction process.

This way, equation 4.47 reads

Ċ2n = i
|ΩR|

2

(
C2n−2e−iδ2n−2te−i(ϕ2−ϕ1) + C2n+2eiδ2ntei(ϕ2−ϕ1)

)
(4.49)

which can be simplified to give

Ċ2n = i
Ω∗R
2
C2n−2e−iδ2n−2t + i

ΩR

2
C2n+2eiδ2nt (4.50)

where we used the definition 4.40 of the two-photon Rabi frequency. Therefore the dy-
namics of the system can be described by the following matrix equation:


Ċ−4

Ċ−2

Ċ0

Ċ2

Ċ4

 = i


0 ΩR

2 eiδ−4t 0 0 0
Ω∗R
2 e−iδ−4t 0 ΩR

2 eiδ−2t 0 0

0
Ω∗R
2 e−iδ−2t 0 ΩR

2 eiδ0t 0

0 0
Ω∗R
2 e−iδ0t 0 ΩR

2 eiδ2t

0 0 0
Ω∗R
2 e−iδ2t 0




C−4

C−2

C0

C2

C4

 (4.51)

The system was truncated to 5 diffraction orders for readability. This expression shows
that the different momentum states are coupled two by two. The detuning δ2n quantifies
the deviation from resonance between two levels, and can be expressed as a function of
the initial momentum p:

~δ2n = ~(ω2 − ω1)−
(
~2k2

B

2m
(2n+ 1) +

~kB

m
p

)
(4.52)

where ~kB = 2~k is the momentum transferred during the two-photon transition. When
δ2n = 0, the resonance condition is fulfilled between the momentum states |p+ 2n~k〉 and
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|p+ (2n+ 2)~k〉, leading to an efficient transfer between the two momentum levels, as we
will see in the following. δ2n can easily be expressed as a function of the δ0 and n:

δ2n = δ0 − 4nΩr (4.53)

where we defined

Ωr =
~k2

m
and ~δ0 = ~(ω2 − ω1)−

(
~2k2

B

2m
+

~kB

m
p

)
(4.54)

The energy ~Ωr corresponds to the two-photon recoil energy transferred to the atoms by
the Bragg lattice. Note that, when δ0 = 0, we recover the resonance condition 1.104
derived in Chapter 1 from momentum and conservation.

Let us highlight that the detuning depends linearly on the initial momentum p of the
atoms. This means that for a given value of ω2−ω1, solving the Schrödinger equation for
one initial momentum class p as a function of the detuning δ0 gives the information about
how the off-resonant momentum classes will behave in the Bragg process. Experimentally,
it is possible to tune the frequency difference ω2 − ω1 (using one acousto-optic modulator
for each beam for instance) in order to select a specific momentum class which will be
resonant for the Bragg transition.

4.2.2 Bragg regime, Kapitza-Dirac regime and Raman-Nath approximation

In this section, we will numerically solve the Bragg system of equations 4.51 and briefly
discuss the limiting cases in the simple case where ΩR is constant and the detuning is fixed.
The goal is to determine the atom population after a Bragg pulse of duration T . We will
assume that the phase difference between the lasers ϕ1−ϕ2 is constant over the duration
of a Bragg pulse, so that the term ei(ϕ1−ϕ2) in the two-photon Rabi frequency is a global
phase which does not play a role in the population evolution of the system. We will write,
in all the manuscript, ΩR(t) = ΩM for a constant Bragg pulse, where ΩM is a real number
corresponding to the amplitude of the two-photon Rabi frequency.

The equation 4.51 can be numerically solved by providing an initial condition and
truncating the matrix to a number of orders to be considered.

We will start from a situation where an atom is in the momentum state |p〉, which
determines the order 0 of diffraction. The system is arbitrarily truncated to 11 diffraction
orders, and we will stay in a range of parameters for which Bragg pulses do not transfer
atoms beyond orders -5 and 5. The initial condition for the numerical solution is therefore
(C−10, . . . , C−2, C0, C2, . . . , C10) = (0, . . . , 0, 1, 0, . . . , 0).

Let us consider at first the case for which the detuning between orders 0 and 1 is
δ0 = 0. The system 4.51 was solved in three cases for different values of ΩM compared to
the two-photon recoil frequency Ωr. The population evolution dynamics |C2n(t)|2 is given
as a function of time, which was nondimensionalized by diving it by the typical evolution
time given by the two-photon Rabi frequency π/ΩM. The results are plotted in Figure 4.13.

Two diffraction regimes can be distinguished:

• If the Rabi frequency is small compared to the recoil frequency, only the 0th and
first diffraction orders are populated, and their population oscillates regularly over
time. This regime is referred to as the Bragg regime, and we will see later that in
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Figure 4.13: Evolution of the population of 5 diffraction orders as a function of the
pulse duration for different two-photon Rabi frequencies. The results are obtained by solving
equations 4.51. Time is normalized by π/ΩM, so a similar value on the abscissa does not correspond
to the same duration for each plot.

this regime, it is possible to simplify the problem into a two-level system coupled by
Rabi oscillations.

• If the Rabi frequency is large compared to the recoil frequency, more diffraction
orders are populated, and the populations fluctuate in a non-trivial manner. This
regime is called the Kapitza-Dirac regime (or diffractive regime), named after the
two physicists who predicted a similar diffraction effect of light by electrons[136], a
principle now more widely used to describe the diffraction of a particle by a standing
wave. While some authors refer to this effect as diffraction in general, we will limit
ourselves here to stating that this regime corresponds to the case where diffraction
is observed into more than two diffraction orders.

In our case, the Bragg regime is the most suitable for transferring a specific momentum
to the atoms in a controlled manner. It is already evident that, in this regime, depending
on the duration of the pulse, it is possible to implement π and π/2 pulses, thereby real-
izing atom mirrors and beam splitters, respectively. Moreover, in the Bell interferometer,
transferring a part of the atoms into other diffraction orders would be considered as losses
since these atoms would not be involved in the two-atom interference leading to the os-
cillation of the Bell parameter. As seen in Figure 4.13, a two-photon Rabi frequency of
the same order of magnitude as the recoil frequency corresponds to the threshold beyond
which diffraction towards higher orders cannot be neglected.
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Observing many diffraction orders in the Kapitza-Dirac regime can still be useful ex-
perimentally in order to measure precisely the momentum transferred by Bragg diffraction.

Kapitza-Dirac in the Raman-Nath regime

Under some conditions, it is possible to derive an analytical solution for the Bragg
diffraction in the Kapitza-Dirac regime. Indeed, if we suppose that the duration t of the
pulse is small enough to neglect the detuning variation in equation 4.51 (hypothesis on
which we will come back later), then the amplitude coefficients are given by

Ċ2n = i
ΩM

2
(C2n−2 + C2n+2) (4.55)

The solutions of these coupled equations are known and can be written

C2n = in Jn(ΩMt) (4.56)

where Jn is the Bessel function of first kind.3 The population of the nth diffraction order
is therefore

P2n(t) = |Jn(ΩMt)|2 (4.57)

Figure 4.14 shows a comparison of the numerical solution for the populations with
ΩM = 5Ωr with the analytic solution from equation 4.57. One can see that the small
duration approximation holds true for t� π/ΩM. This is referred to as the Raman-Nath
regime, named after the equation that characterizes the system with slightly different
conventions.4

The Raman-Nath approximation actually consists in neglecting the kinetic energy
term in the Hamiltonian, thus assuming that the atoms do not have time to move in
the optical lattice during their interaction. This is much true as long as t is smaller
than the typical oscillation period τosc of the atoms in the lattice. By approximating the
interaction Hamiltonian 4.39 by a squared potential (ĤI ≈ ~ΩMk

2z2), we see that the
typical oscillation frequency ωosc is such that

ω2
osc =

2~ΩMk
2

m
= 2ΩMΩr (4.58)

from which we obtain

t� τosc =
1√

2ΩMΩr
(4.59)

which is more general than the condition t� π/ΩM that we conjectured from the partic-
ular case where ΩM = 5Ωr.

3The Bessel functions verify the relationship

2J ′n(t) = Jn−1(t)− Jn+1(t)

4Starting from Hamiltonian 4.42 in the space representation, and by decomposing the solution in the
basis of plane waves

ψ(z) =
∑
n

C2n(t)e2inkz
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Figure 4.14: Comparison of the population evolution of 3 diffraction orders between the
numerical (solid lines) and the analytical solution (dashed lines) for ΩM = 5Ωr.

Bragg regime: a two-level system

In this section, we will focus on the Bragg regime, for which only two states are
populated. Let us suppose that the amplitude ΩM of the two-photon Rabi frequency ΩR

is small enough to prevent diffraction towards orders other than 0 and 1. We assume an
arbitrary detuning δ0, but within a range where only orders 0 and 1 are populated. The
multi-level system 4.51 can be truncated to a two-level system, so thatĊ0

Ċ2

 = i

 0 ΩR
2 eiδ0t

Ω∗R
2 e−iδ0t 0

C0

C2

 (4.60)

This can be analytically solved when ΩR and δ0 are constant (laser intensity and
frequency difference held constant). The temporal origin is set at t = 0, corresponding to
the moments when the lasers are turned on. Initially, all the atoms are in the 0th order
of diffraction, so that C0(0) = 1 and C2(0) = 0.

Starting from equation 4.60, it is possible to express Ċ0 as a function of C2 and vice
versa. By differentiating either of these two relations and using the second one, we obtain
a second-order differential equation involving only one of the coefficients:

C̈n + iε δ Ċn +
|ΩR|2

4
Cn = 0 (4.61)

with ε = −1 if n = 0 and ε = +1 if n = 2. By solving these two decoupled equations, we
get the relationship: (

C0(t)
C2(t)

)
= U(t)

(
C0(0)
C2(0)

)
(4.62)

where

U(t) =


[
cos

(
Ωt

2

)
− i

δ0

Ω
sin

(
Ωt

2

)]
e

iδ0t
2 i

ΩR

Ω
sin

(
Ωt

2

)
e

iδ0t
2

i
Ω∗R
Ω

sin

(
Ωt

2

)
e−

iδ0t
2

[
cos

(
Ωt

2

)
+ i

δ0

Ω
sin

(
Ωt

2

)]
e−

iδ0t
2

 (4.63)
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with Ω =
√
|ΩR|2 + δ2

0 .

This is the evolution matrix of a two-level system subject to Rabi oscillations. With
the initial conditions previously mentioned, the probability P2(t) = |C2(t)|2 of measuring
atoms in the 1st diffraction order after a pulse of duration t is given by the well known
Rabi formula:

P2(t) =
|ΩR|2

|ΩR|2 + δ2
0

sin2

(√
|ΩR|2 + δ2

0 t

2

)
(4.64)

Let us write the two-photon Rabi frequency in the form ΩR = ΩMeiφ, where ΩM is a
real number and φ = ϕ1 − ϕ2 is the phase difference between the two Bragg beams. In
the resonant case, for which δ0 = 0, the evolution matrix is

U(t) =

 cos

(
ΩMt

2

)
i sin

(
ΩMt

2

)
eiφ

i sin

(
ΩMt

2

)
e−iφ cos

(
ΩMt

2

)
 (4.65)

This expression highlights the fact that at fixed ΩM, varying the duration t of the
Bragg pulse makes it possible to coherently transfer the atoms from the state |p〉 to a
superposition of |p〉 and |p+ 2~k〉, or even to the state |p+ 2~k〉 only:

• If ΩM t = π/2, the resonant atoms are transferred from state |p〉 to an equiprobable
superposition of states |p〉 and |p+ 2~k〉. This is called a π/2 pulse, for which the
transfer matrix writes:

US(t) =

√
2

2

(
1 ieiφ

ie−iφ 1

)
(4.66)

This is the operator we used in section 4.1 to describe an atom beam splitter.

• Similarly, if ΩM t = π, the resonant atoms are transferred from state |p〉 to state
|p+ 2~k〉. This is called a π pulse, and the transfer matrix writes:

UM(t) =

(
0 ieiφ

ie−iφ 0

)
(4.67)

Again, this is the operator we used to describe an atom mirror.

We therefore showed that the Bragg beams act on the atoms like optics would act
on photons, by transferring them momentum in a controlled manner. Furthermore, we
see that Bragg diffraction imprints a phase onto the atoms, corresponding to the phase
difference between the two beams at the moment of the Bragg pulse. Starting from atoms
in the 0th diffraction order, C0 can be called the transmission coefficient while C2 can be
called the reflection coefficient, by analogy with optics.

Ultimately, our goal is to determine the evolution of the Bell correlator as a function
of the momentum class. To this end, the first step is to have a look at the Bragg transfer
properties (reflectivity and phase) as a function of the detuning, due to the linear rela-
tionship between the two. From the propagation matrix 4.63, we can clearly see that out
of resonance, the reflection and transmission coefficients will depend on the detuning δ0,
both in terms of amplitude and phase.
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4.2.3 Off-resonance Bragg diffraction

From now on, we will consider a multi-level system characterized by equation 4.51. In
Figure 4.15, we plot the probabilities of finding the atoms in different diffraction orders
for a π pulse (for which the duration T of the pulse is T = π/ΩM) with different values of
ΩM/Ωr as a function of detuning δ0 (again, δ0 = 0 corresponds to a resonance between the
orders 0 and +1), obtained by solving numerically equation 4.51 for each value of detuning.
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Figure 4.15: Populations as a function of detuning for different values of the two-photon
Rabi frequency. The duration of the pulse is T = π/ΩM. The transmission and reflection
coefficients C2n are calculated from solving equation 4.51. We use a recoil frequency Ωr = 2π ×
6.3 kHz, corresponding to the experimental value.

In the Bragg regime (ΩM = Ωr/5), the resonant atoms (δ0 = 0) are transferred to
the +1 diffraction order. The reflectivity profile (i.e., the probability |C2|2 of finding the
atoms in the n = 1 diffraction order) as a function of detuning has a sinc-squared shape.
By varying the detuning, one can reach a value of δ0 for which the Bragg transition occurs
between the 0 order and the −1 order. In this case, δ−2 = 0, and the reflectivity profile is
identical to the one observed for the +1 order, both situations being symmetrical. There
is no detuning for which atoms are diffracted to other diffraction orders.

As the two-photon Rabi frequency increases (ΩM = Ωr), the resonance peak widths also
increase. The reflectivity of the +1 order becomes broadened to the point of being close to
the resonance peak of the −1 order. Under these limiting conditions, there are detunings
for which the population towards, for example, the +2 diffraction order is non-zero.

In the Kapitza-Dirac regime, it no longer makes sense to define the Bragg pulse as
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a π pulse, as even the resonant atoms are transferred to states other than the +1 order.
The resonance peak is broadened to the extent that it overlaps with the resonance towards
the −1 order and so on, leading to the population of additional diffraction orders.

We see that the distinction between the Bragg regime and the Kapitza-Dirac regime
can be interpreted in terms of resonance width. In the Bragg regime, the two-photon Rabi
frequency is low, so the resonance is well-resolved, and the reflectivity is narrow around
a well-defined momentum level, which is the only one coupled to the initial state. In the
Kapitza-Dirac regime, the Rabi frequency is high, resulting in a broad resonance that
encompasses multiple levels that can be populated because coupling with the initial state
is permitted.

In the following, we will only focus on the Bragg regime. We make sure that the
Rabi frequency remains lower than the recoil frequency (with our parameters, we have
Ωr = 2π × 6.3 kHz), so that we work in this regime and can neglect diffraction towards
diffraction orders otherthan the resonant one.
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Figure 4.16: Reflected population |C2|2 as a function of detuning for different values of
the two-photon Rabi frequency. The duration of the pulse is T = π/2ΩM. We use a recoil
frequency Ωr = 2π × 6.3 kHz, corresponding to the experimental value.

A similar behavior is observed with π/2 pulses, as seen in Figure 4.16 representing the
population of the +1 diffraction orders for different values of ΩM. The reflectivity profile
has a sinc-squared shape, reaching 0.5 at resonance. As the two-photon Rabi frequency
increases, the width of the resonance peak also increases. Approaching the recoil frequency
Ωr, the resonance reflectivity decreases, indicating that there is also diffraction of atoms
towards other diffraction orders.

Expression of the reflection coefficient in a perturbative model

The width of the reflectivity profile is, for a constant pulse, entirely determined by the
two-photon Rabi frequency. It is possible to formally show this relationship in a general
case (without assuming that ΩR(t) is constant) by expressing analytically the coefficients
C2n in a perturbative approach.
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We consider again the case where C0(0) = 1 and C2n(0) = 0 for n 6= 0. We define the
initial instant as the limit t→ −∞ and the final instant as the limit t→ +∞. Making this
choice is not restrictive because the pulses have a finite duration T , and ΩR = 0 if t /∈ [0, T ],
so that the only non-zero contribution of the two-photon Rabi frequency contributes to
the result. To determine the final state of the system, we integrate equation 4.47, so that
we get

C2n(t→ +∞) =
i

2

+∞∫
−∞

C2n−2(t)Ω∗R(t)e−iδ2n−2tdt+
i

2

+∞∫
−∞

C2n+2(t)ΩR(t)eiδ2ntdt (4.68)

Let us assume that the coupling is weak, so that at any given time, we can consider
the population of order 0 to be predominant: |C2n(t)| � |C0(t)| ≈ 1. In particular, for
n = 1, we can neglect |C4(t)| compared to |C0(t)| to obtain an analytical expression for
the coefficient C2 at the final state:

C2(t→ +∞) ≈ i

2

+∞∫
−∞

Ω∗R(t)e−iδ0tdt (4.69)

Interestingly, this expression shows that the reflection coefficient C2(t) can be expressed
as the Fourier transform of the temporal profile of the two-photon Rabi frequency:

C2(t→ +∞) ≈ i

2
FT[Ω∗R(t)](δ0) (4.70)

where we defined the Fourier transform as

FT[f(t)](ω) =

+∞∫
−∞

f(t)e−iωtdt (4.71)

This relationship sheds light on the reflectivity curves shown earlier for constant pulses.
Indeed, the Fourier transform of a square signal is a sinc function. The probability of reflec-
tion |C2|2 as a function of detuning, corresponding to the squared modulus of the Fourier
transform of the Bragg pulse profile, thus follows a squared sinc profile. This also explains
why the width of the resonance peak is larger when the Rabi frequency is greater, as the
duration of a π/2 pulse (for instance) is inversely proportional to the Rabi frequency: if
ΩM is high, then the duration T of the pulse is small, making its Fourier transform broader.

Let us discuss the assumption that led to the derivation of the relation 4.70. It was
necessary to assume that C0(t) ≈ 1. In general, this holds true only for Bragg pulses for
which the population of the excited state remains low, i.e., for short interaction times.
Strictly speaking, this assumption is not satisfied for a π/2 pulse, and even less so for a π
pulse. In these two cases, we cannot assert that the reflectivity as a function of detuning
is rigorously equal to the Fourier transform of the temporal pulse.

However, we empirically observe that the difference between the simulated reflectivity
profile and the profile calculated using the Fourier transform 4.70 formula is small. This
will be discussed later in the manuscript when considering time-varying Bragg pulses.
In the case of a constant pulse, the analytical solution of equation 4.63 shows that this
relation is indeed exact, provided that we neglect diffraction towards higher orders (Figure
4.17).

Thus, this perturbative development, even if not rigorously valid for significant trans-
fers, provides an intuitive understanding of the reflectivity profile as a function of detuning.
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Figure 4.17: Comparison between the reflected population |C2|2 with the perturbative
analytical formula 4.70 as a function of detuning for different values of the two-photon
Rabi frequency. The analytical Fourier relation matches well the numerically solved reflection
coefficient, even for a mirror. The difference increases when a high two-photon Rabi frequency is
responsible for diffraction into other diffraction orders.

4.3 Phase involved in an interferometer

As we have seen, the interferometer we aim to realize involves the phase imprinted by
the lasers on the atoms. This is the key parameter we seek to control in order to induce
an oscillation of the Bell parameter. This is why it is crucial to consider the phase shift
that have been neglected so far and will play a role in the interferometer.

In the literature, several theoretical studies can be found to provide tools to calculate
the phases involved in interferometers, especially in a Mach-Zehnder configuration. In
this section, we will introduce the various terms responsible for interferometric phase
shifts and apply them initially to the Mach-Zehnder interferometer, and subsequently to
the Bell interferometer. This will allow us to highlight the similarities and differences
between these two interferometers. The advantage of the Mach-Zehnder configuration is
that it has been extensively studied, both theoretically and experimentally, providing us
with a benchmark for comparison with the Bell interferometer.

Experimentally, a first goal in the implementation of custom Bragg pulses for a Bell
test will consist in realizing a Mach-Zehnder interferometer to make sure that the Bragg
pulses behave as expected.

In order to express the phase difference between two arms of an interferometer, we
will use the formalism employed since the 2000s by S. Chu and M. Kasevich[137][138].
The convention is to categorize the phase shifts into three groups: the phase shifts Φlasers

resulting from the light-matter interaction during Bragg pulses (or Raman pulses in some
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cases), the phase shifts Φprop due to the propagation of wave packets in a given potential
(often a gravitational field) between pulses, and the phase shifts Φsep due to a possible
final spatial separation of the interfering wavepackets at the output port.

Φ = Φlasers + Φprop + Φsep (4.72)

There are various methods to calculate these phases. One alternative approach involves
using the formalism developed by C. Bordé, who generalized the ABCD matrix formulation
used in optics to the case of atomic interferometers[139][140]. The method presented here
involves calculating the accumulated phase on each arm of an interferometer using path
integrals, a formalism developed by R. Feynman[141] and subsequently applied to atom
interferometers, notably by P. Storey and C. Cohen-Tannoudji[142].

4.3.1 Propagation phase shifts

In this section, we will develop the tools for calculating the accumulated phase of a
wave packet as it propagates through a given potential.

Principle

Let us first consider an atom in the momentum mode p propagating without grav-
ity. The dynamics of the system is governed by the Schrödinger equation, where the
Hamiltonian is here only kinetic energy:

i~
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 =

p̂2

2m
|ψ(t)〉 (4.73)

Assuming that the initial state is |ψ(0)〉 = |p〉, the solution to this equation is simply

|ψ(t)〉 = exp

(
−i

p2

2m~
t

)
|p〉 (4.74)

This is the well-known result where a phase accumulates while rotating at a frequency

ω0 = p2

2m~ . Thus, there is a phase associated with the propagation of a particle in time.
This phase varies depending on the particle’s momentum, and these phase shifts need to
be considered when calculating the phase involved in an interferometer.

Standard approach

The previous approach does not account for the spatial dimension. To address the
problem more rigorously, one must consider the propagation of a wave packet in both space
and time. The wave function of the atom has a certain spatial extension σ, implying that
the momentum also has a width proportional to 1/σ, due to the Heisenberg uncertainty
principle.

To calculate the wave function at a point z in space at time t, it is common to define
the evolution operator Û through the relation

|ψ(t)〉 = Û(t) |ψ(0)〉 (4.75)

The wave function evaluated at a point z is then given by

ψ(z, t) = 〈z|Û(t)|ψ(0)〉 (4.76)
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In the case where the Hamiltonian of the system does not depend on time, the evolution
operator is simply expressed as

Û(t) = exp

(
− i

~
Ĥ t

)
(4.77)

Let us discuss again the simple case of free propagation without gravity. Once again,
the Hamiltonian contains only a term of kinetic energy, and the most straightforward way
to calculate the wave function at time t from equation 4.76 is to employ a closure relation
using the momentum operator, which is an eigenstate of the system.

ψ(z, t) =

∫
dp 〈z|Û(t)|p〉 〈p|ψ(0)〉 =

∫
dp exp

(
−i

p2t

2m~

)
〈z|p〉 〈p|ψ(0)〉 (4.78)

from which we get

ψ(z, t) =

∫
dp exp

(
−i

p2t

2m~

)
exp

(
i
pz

~

)
ψ̃(p, 0) (4.79)

where ψ̃(p, 0) is the Fourier transform of the initial wavefunction, i.e., |ψ(0)〉 in the p-basis
representation.

Let us assume that the initial wavefunction is a Gaussian wave packet, described by
the following relation:

ψ(z, 0) = exp

(
−(z − z0)2

2σ2

)
exp

(
i
p0

~
(z − z0)

)
(4.80)

meaning that the center of mass of the wave packet is at position z = z0 and its momentum
is p = p0.

The Fourier transform of the initial wavefunction can be easily obtained, and we find

ψ̃(p, 0) =

∫
dz ψ(z, 0) exp

(
−i
pz

~

)
= exp

(
−i
pz0

~

)
exp

(
−σ2 (p− p0)2

2~2

)
(4.81)

Finally, after dropping the normalization factor, we get from equation 4.79:

ψ(z, t) = exp

(
−p

2
0σ

2

2~2

)
exp

(
−1

2

(z − z0)2

σ2 + i~tm

)
exp

(
p2

0

2~2

σ4

σ2 + i~tm

)
exp

(
i
p0

~
σ2(z − z0)

σ2 + i~tm

)
(4.82)

This expression does not provide any intuition on the propagation of the wave packet
since the center of mass zc = z0 + p0t

m does not appear clearly.

Center of mass approach

An alternative is to use a trick presented in reference [143], which involves introducing
“by hand” the center of mass by defining an operator Ĝ such that

Ĝ(t) = exp

(
i

~

∫
Γ
Lc dt

)
exp

(
−i
p̂zc

~

)
exp

(
i
pcẑ

~

)
(4.83)
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where zc, pc and Lc are the classical position, momentum and Lagrangian of the system.
The latter is integrated over the classical path Γ.

Ĝ is a Galilean transformation operator, which consists of a momentum boost, a po-
sition translation, and a phase shift. For any Hamiltonian at most quadratic in ẑ and p̂,
it can be shown that the state at time t is given by

|ψ(t)〉 = Ĝ(t) |ψCM(t)〉 (4.84)

where |ψCM(t)〉 is the state in the atom’s rest frame. |ψCM(t)〉 does not contain any
information about the center of mass of the system but quantifies the expansion of the
wave packet. It satisfies 〈ẑ〉 = 0 and 〈p̂〉 = 0 and

|ψCM(t)〉 = exp

(
−i

p̂2

2m~
t

)
|ψCM(0)〉 (4.85)

The final wavefunction can be calculated by projecting 4.84 on a position operator,
from which we get, after using two closure relations:

ψ(z, t) = exp

(
i

~

∫
Γ
Lc dt

)
exp

(
i
pc(z − zc)

~

)
ψCM(z − zc, t) (4.86)

This expression actually corresponds to a traveling wave with a de Broglie wavelength
equal to ~/pc, multiplied by an envelope function ψCM(z) which expresses the expansion
of the wavefunction. The envelope moves along the classical path zc and the wave packet
accumulates a phase, given by the classical action of the particle.

Let us consider again the case of a Gaussian wave packet propagating without gravity.
The momentum of the center of mass is pc(t) = p0 and its position is zc(t) = z0 + p0

m t.
The only term in the Lagrangian is again the kinetic energy, so that

exp

(
i

~

∫
Γ
Lc dt

)
= exp

(
i

~

∫
Γ

p2
0

2m
dt

)
= exp

(
ip2

0t

2m~

)
(4.87)

Now we only have to determine ψCM(z−zc, t). Assuming that the initial wavefunction
is given by equation 4.80, we can identify the initial center of mass wavefunction using
4.86 at t = 0 so that

ψCM(z, 0) = exp
(
− z

2σ2

)
(4.88)

from which we get

ψ̃CM(p, 0) = exp

(
−σ

2p2

2~2

)
(4.89)

The center of mass wavefunction at any time t can be calculated easily using ψ̃CM as
seen in equation 4.79:

ψCM(z, t) =

∫
dp exp

(
−i

p2t

2m~

)
exp

(
i
pz

~

)
ψ̃CM(p, 0) = exp

(
−1

2

z2

σ2 + i ~
m t

)
(4.90)

One can then deduce the expression of the wavefunction from 4.86:

ψ(z, t) = exp

(
i
p2

0t

2m~

)
exp

(
i
p0

~

(
z − z0 −

p0

m
t
))

exp

(
−1

2

(
z − z0 − p0

m t
)2

σ2 + i ~
m t

)
(4.91)
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Although it may not be obvious at the first look, this expression is equivalent to the
relation 4.82 obtained with the previous method, and one expression can mathematically
be deduced from the other. The advantage here is that the result from equation 4.91 is
much more physically insightful than the previous way of writing the wavefunction. Indeed,
as expected, we recover the expression for a Gaussian wave packet with momentum p0,
and with its center of mass shifted by p0

m t. We also see that the atom has accumulated

a phase with frequency ω0 =
p2

0
2m~ , corresponding to its kinetic energy (this term arises

from the integral of the Lagrangian). It is noteworthy that, apart from the phase of the
center of mass, an additional phase must be considered due to the expansion of the wave
packet. But this term is mostly negligible compared to the initial size of the wave packet,
provided that the propagation time t remains small (such that σ2 � ~t/m).

While this calculation may not be particularly useful for calculating the accumulated
phase of a free particle in the absence of gravity, it is a convenient way to introduce the
center of mass in an intuitive way. Note that this method remains valid for Hamiltonians
that contain no terms higher than second order in x̂ and p̂.

Path integral approach

One can extend the previous approach without assuming that the wave packet is
Gaussian. The most widely used approach, developed in a paper by Storey and Cohen-
Tannoudji[142], involves expressing the wave function in terms of the evolution operator
in position representation:

ψ(z, t) =

∫
dz′ 〈z|Û(t)|z′〉 〈z′|ψ(0)〉 =

∫
dz′K(z, t, z′, 0)ψ(z′, 0) (4.92)

where K(z, t, z′, 0) = 〈z|Û(t)|z′〉 is the quantum propagator, which translates the proba-
bility amplitude of the particle to arrive at position z at time t, given that it started at
position z′ at t = 0.

Feynman’s idea is to express this propagator as an integral of the action S over all
possible paths Γ connecting the points (z, t) and (z′, 0).

K(z, t, z′, 0) =

(z,t)∫
(z′,0)

Dz(t) exp

(
i
SΓ

~

)
(4.93)

It can then be shown that the paths with the most weight are paths in the vicinity of
the classical trajectory, in the (classical) limit where S � ~. For a Lagrangian (or a
Hamiltonian) that is at most a quadratic function of ẑ and p̂, the propagator is given by

K(z, t, z′, 0) = F (t, 0) exp

(
i

~
Scl(z, t, z

′, 0)

)
(4.94)

where the factor F (t, 0) only depends on time, so it will not add a phase shift between
two different trajectories in an interferometer. Indeed, atomic interferometers consist of
alternating periods of free propagation and pulses where atoms interact with light: in an
interferometer, atoms interact with light at the same time even if they do not have the
same trajectory.

Since the classical action is equal to the integral of the Lagrangian of the system’s center
of mass, we retrieve the term introduced in the previous approach which was responsible
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for the phase accumulated by the wave packet. Consequently, the wavefunction can be
expressed as

ψ(z, t) = F (t, 0)

∫
dz′ exp

(
i

~
Scl(z, t, z

′, 0)

)
ψ(z′, 0) (4.95)

Now, if we assume that the initial wavefunction is a plane wave, which can be written

ψ(z′, 0) = exp

(
ip0z

′

~

)
(4.96)

then it can be shown, using an expansion of both the wavefunction and the classical action
around the classical position of the center of mass z0, that the final wavefunction is

ψ(z, t) = F̃ (t, 0) exp

(
i

~
Scl(z, t, z0, 0)

)
ψ(z0, 0) (4.97)

This expression clearly shows that the phase accumulated by the final wave function is
given by the action along the classical path. This result is exact in the case of a plane wave
at t = 0, and we will consider it to be approximately valid for any initial wave function,
neglecting other phase terms due to the expansion of the wave packet as discussed in the
previous paragraph.

Thus, to calculate the phase of the wavefunction associated with the propagation of
a particle in a given potential, we need to determine the action, i.e., the integral of the
system’s Lagrangian, along the classical path:

φpath =
1

~
Scl(z, t, z0, 0) =

1

~

∫
Lc[z(t), ż(t)] dt (4.98)

We will only consider a particle in a gravitational field (without considering a rotating
reference frame for instance), so that the action is

Scl =

∫
Lc dt =

∫
(T − V ) dt =

∫
(p dx− E dt) (4.99)

where T = 1
2mv

2 and V = −mgz are the kinetic potential energies, while p = mv and E
are the momentum and the total energy of the center of mass.

We note p0 = mv0 the initial momentum and z0 the initial position, so that the
trajectories and speeds are

z(t) = −1

2
gt2 + v0t+ z0 and v(t) = v0 − gt (4.100)

from which we get the phase associated to the classical path for a wavepacket propagating
from z0 with a speed v0 for a duration t:

φpath =
m

~

(
v2

0

2
+ gz0

)
t (4.101)

In the end, to calculate the phase shift associated with the propagation of wave packets
in the interferometer, one will need to compare the accumulated phases along each path
of the interferometer using the relation 4.101.

Note that the separation phase Φsep also arises from this Lagrangian propagation for-
malism, as will be demonstrated later on.
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This latter method using path integrals allows for easy calculation of the phase associ-
ated with the trajectory of atoms in an interferometer and is commonly used. However, it
is not general as it neglects phase shifts related to the spatial extension of the wave packet
by essentially considering atoms as plane waves. The corrective terms become apparent
when describing the wave packet using the method outlined by Hogan et al.[143], which
consists in “following” the center of mass of the wave packet.

4.3.2 Light-matter interaction phase shifts

Principle: phase imprinted on plane waves

First, let us revisit the simple case of plane waves discussed in the first section of this
chapter, without considering any terms related to space. This will enable us to determine
some of the phase shifts included in Φlasers, resulting from the interaction between an atom
with light

The goal is to provide tools to generalize the results found in section 4.1.1 in the case
where the matrices describing Bragg mirrors and beam splitters are expressed in any form.

In our description of the Bell interferometer, we mentioned the principle of phase
imprinting, which we will discuss again in this section. Let us consider the matrix of a
Bragg beam splitter 4.5 for instance, taken at resonance for a π/2 pulse, acting on an
initial state consisting of an atom in mode p. The output state is

|ψout〉 =

(
C0

C2

)
=

√
2

2

(
1 ieiφ

ie−iφ 1

)(
1
0

)
=

√
2

2

(
|p〉+ ie−iφ |p+ 2~k〉

)
(4.102)

where φ = ϕ1 − ϕ2 is the phase difference between the lasers during the pulse duration.
The phase difference between modes p+ 2~k and p is

∆φ = arg(C2)− arg(C0) = ϕ2 − ϕ1

(
+
π

2

)
(4.103)

The π/2 term from the i factor can be dropped since it cancels out in most interferometer
geometries, and it can be said that the phase difference between the lasers is imprinted on
the atoms.

It is possible to calculate the phase shifts induced by Bragg transfers in a more general
case, still within the Bragg regime but without assuming resonance. To this end, we only
need to write the transfer matrix of a Bragg doublet in the general form:

U(T ) =

(
teiφ′ ireiφ

ire−iφ te−iφ′

)
(4.104)

where r and t are real numbers corresponding to the amplitude reflection and transmission
coefficients of the pulse. They depend on the duration T of the pulse and on the detuning
δ0, and so do the phases φ and φ′. Similarly, we find

|ψout〉 =

(
C0

C2

)
=

(
teiφ′ ireiφ

ire−iφ te−iφ′

)(
1
0

)
=

(
teiφ′

ire−iφ

)
(4.105)

so the imprinted phase is, in a general case:

∆φ = arg(C2)− arg(C0) = φ′ + φ (4.106)
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For instance, in the specific case of a Bragg pulse with a constant two-photon Rabi
frequency, we showed the expression 4.63 of the evolution operator as a function of the
detuning δ0. The corresponding phase terms can be identified with 4.104, and we find

φ′ =
δ0T

2
+ tan−1

[
−δ0

Ω
tan

(
ΩT

2

)]
and φ = ϕ1 − ϕ2 +

δ0T

2
(4.107)

where Ω =
√
|ΩR|2 + δ2

0 and T is the duration of the pulse. The phase difference between
modes p+ 2~k and p, assuming that the atom is initially in mode p, is

∆φ = ϕ2 − ϕ1 − δ0T + tan−1

[
δ0

Ω
tan

(
ΩT

2

)]
(4.108)

As we can see, additional phase shifts appear when considering out of resonance mo-
mentum classes.

An additional phase shift which depends on the center of mass

In this paragraph, we will show that there is an additional phase imprinted to the atoms
by the Bragg pulse, which depends on the position of the center of mass. To this end,
we will once again employ the formalism of Hogan et al.[143], as presented previously,
which conveniently brings out the center of mass in the equations. This time, we will
consider the case where the potential only consists of the light interaction term (gravity is
not considered for simplicity, but the same reasoning remains valid and could be applied
similarly).

We will assume that we work in the Bragg regime, so that only two Bragg momentum
levels need to be considered. We will write |0〉 = |p〉 and |2〉 = |p+ 2~k〉 these coupled

levels, as well as E0 = p2

2m and E2 = (p+2~k)2

2m their kinetic energy. The interaction term
V (ẑ) in the Hamiltonian was given in equation 4.42:

V (ẑ) = −~|ΩR|
2

(
e2ikẑ−iφ(t) + e−2ikẑ+iφ(t)

)
(4.109)

with φ(t) = (ω2 − ω1)t + ϕ2 − ϕ1 where ω2 − ω1 is the frequency difference between the
two laser beams.

Here, for a two-level system, we will assume that e2ikẑ |2〉 = e−2ikẑ |0〉 = |vac〉 where
|vac〉 is a vacuum state, so that the atom stays within the two-level system.

We will proceed in a manner similar to when introducing Bragg diffraction, i.e., we will
express the wavefunction in the {|0〉 , |2〉} basis and then apply the Schrödinger equation.
The distinction lies in the fact that this time we will use the operator Ĝ, defined earlier as
a Galilean transformation operator which explicitly involves the system’s center of mass.

|ψ(t)〉 = C0(t) e−
iE0t
~ Ĝ(t) |0〉+ C2(t) e−

iE2t
~ Ĝ(t) |2〉 (4.110)

In this case, the states |0〉 and |2〉 play the role of the center of mass states |ψCM〉.
This notation can seem misleading as these momentum states are plane waves with a
delocalized center of mass. However, we can later generalize the results by decomposing
any wave function onto these momentum states5.

5A more general formulation consists in writing

|ψ(t)〉 =

∫
dp C̃

(p)
0 (t) e−i p2t

2m~ Ĝ(t) |p〉+

∫
dp C̃

(p)
2 (t) e−i

(p+2~k)2t
2m~ Ĝ(t) |p+ 2~k〉
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The time derivative of i~ |ψ〉 is

i~ |ψ̇(t)〉 =
∑

j∈{0,2}

(
i~ĊjĜ+ EjCjĜ+ i~Cj ˙̂

G
)

e−
iEjt

~ |j〉 (4.111)

Now, using the fact that i~ ˙̂
G =

p̂2

2m
Ĝ − Ĝ p̂2

2m
, we get from the Schrödinger equation

the following relation:

i~
∑

j∈{0,2}
ĊjĜ e−

iEjt

~ |j〉 =
∑

j∈{0,2}
Cj e−

iEjt

~ V (ẑ)Ĝ |j〉 (4.112)

Then, we left multiply this expression by Ĝ†. On the left-hand side, we obtain the iden-
tity, and on the right-hand side, we get the operator Ĝ†V (ẑ)Ĝ, which can be demonstrated
to be written as:

Ĝ†V (ẑ)Ĝ = V (ẑ − zc) (4.113)

where zc is the center of mass of the wave packet, since Ĝ is the Galilean transformation
which moves an operator to the center of mass reference frame. The interaction potential
V (ẑ − zc) can then be rewritten

V (ẑ − zc) = −~|ΩR|
2

(
e2ikẑ−2ikzc−iφ(t) + e−2ikẑ+2ikzc+iφ(t)

)
(4.114)

For our two-level system {|0〉 , |2〉}, we have in particular

V (ẑ − zc) = −~ΩR

2
e−2ikzc+i(ω2−ω1)t |2〉 〈0| − ~Ω∗R

2
e2ikzc−i(ω2−ω1)t |0〉 〈2| (4.115)

with ΩR = |ΩR|ei(ϕ2−ϕ1).
In the end, we get from the Schrödinger equation 4.112 the following relationships:

i~Ċ0e−
iE0t
~ = −~ΩR

2
C2 e−

iE2t
~ e−2ikzc+i(ω2−ω1)t

i~Ċ2e−
iE2t
~ = −~Ω∗R

2
C0 e−

iE0t
~ e2ikzc−i(ω2−ω1)t

(4.116)

leading to 
Ċ0 = i

~ΩR

2
C2 eiδ0te−2ikzc

Ċ2 = i
~Ω∗R

2
C0 e−iδ0te2ikzc

(4.117)

where we used the definition of δ0:

~δ0 = ~(ω2 − ω1)− (E2 − E0) (4.118)

The system 4.117 is identical to the system 4.60 obtained previously for the two-level
system, except for the addition of a phase term 2kzc dependent on the system’s center of
mass. This phase will be imprinted onto the atoms, like the phase difference of the lasers
ϕ2 − ϕ1, which plays a similar role mathematically.

So far, we have only performed a change of basis. However, we can view this change of
reference frame as the operation of following the wave packet during its propagation. In
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contrast, the previous model developed in section 4.2 allowed the calculation of the wave
packet phase at a fixed location, independent of its propagation. To determine what phase
is imprinted to the wave packet, it is necessary to calculate the wavefunctions associated
with the transmitted and reflected waves.

Transmitted and reflected wave packets

In the case where the detuning δ0 between the lasers is time-independent and the Bragg
pulse is constant (ΩR(t) = ΩM), we have shown that the system 4.117 could be solved
analytically. Therefore, we use the analytical formula 4.65, only adding the phase term
which depends on the center of mass. Let us assume that initially, the atoms are in the |0〉
momentum state (C0(0) = 1, C2(0) = 0). The coefficients C0 and C2 at the end of the
pulse, in the resonant case (δ0 = 0), are given by

C0(t) = cos

(
ΩMt

2

)
C0(0)

C2(t) = i sin

(
ΩMt

2

)
e−i(ϕ2−ϕ1)e2ikzc C0(0)

(4.119)

Now, let us return to the case of Gaussian wavefunctions, which consist in integrating
the previous expressions over p, along with a gaussian density envelope (again, we omit
the normalization factors). We recall that the initial wavefunction can be written as

ψ(z, 0) = e−
(z−z0)2

2σ2 ei
p0
~ (z−z0) (4.120)

where z0 and p0 are the (mean) position and momentum of the wavepacket at the initial
time.

We will consider separately the transmitted part (staying at momentum p0) and the
reflected part (with momentum p0 + 2~k) of the wavefunction, which will be noted |ψt〉
and |ψr〉, respectively.

|ψ(t)〉 = |ψt(t)〉+ |ψr(t)〉 (4.121)

The transmitted part of the total output state is

|ψt(t)〉 =

∫
dp C̃

(p)
0 (t) e−i p

2t
2m~ Ĝ(t) |p〉 (4.122)

where C̃
(p)
0 (t) is the amplitude coefficient at a momentum p. It is both related to the Bragg

coupling and the momentum distribution of the wave packet. In particular at t = 0, C̃
(p)
0 (0)

is the initial momentum distribution at the center of mass (since the operator Ĝ moves to
the center of mass reference frame), which is the Fourier transform of ψCM(z, 0), so that

C̃
(p)
0 (0) = ψ̃CM(p, 0) = e−

σ2p2

2~2 (4.123)

We use the definition 4.83 of the Galilean transformation operator Ĝ to get

Ĝ(t) |p〉 = ei
p20

2m~ te−i
(p+pc)zc

~ |p+ pc〉 (4.124)

Therefore, we have

|ψt(t)〉 = ei
p20

2m~ t

∫
dp C̃

(p)
0 (t) e−i p

2t
2m~ e−i

(p+pc)zc
~ |p+ pc〉 (4.125)
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Here, we will assume that all the atoms from the wave packet are resonant with the
Bragg coupling, neglecting the detuning effects, so that the Bragg transfer does not depend

on p, and then C̃
(p)
0 (t) is the product of the Bragg transmittivity (given by equation 4.119)

with the momentum density envelope:

C̃
(p)
0 (t) = cos

(
ΩMt

2

)
C̃

(p)
0 (0) = cos

(
ΩMt

2

)
e−

σ2p2

2~2 (4.126)

By writing pc = p0 and zc = z0 + p0t
m , we find

|ψt(t)〉 = cos

(
ΩMt

2

)
ei

p20
2m~ t

∫
dp e−

σ2p2

2~2 e−i p
2t

2m~ e−i
(p+p0)(z0+

p0t
m )

~ |p+ p0〉 (4.127)

from which we can deduce the wavefunction

ψt(z, t) = cos

(
ΩMt

2

)
ei

p20
2m~ t e

ip0
~ (z−z0− p0tm )

∫
dp e−

σ2p2

2~2 e−i p
2t

2m~ e
ip
~ (z−z0− p0tm ) (4.128)

Apart from the Bragg transmittivity factor, this is exactly the same calculation as
what was done previously in equation 4.91 to determine the wavefunction of a free wave
packet.

So, as expected, the transmitted part of the wave packet at the end of a Bragg pulse
is equal to what we would find without any Bragg pulse, up to a population modulation
determined by the Bragg pulse duration.

The same reasoning can be applied to the part of the wavefunction that is reflected by
the Bragg pulse:

|ψr(t)〉 =

∫
dp C̃

(p)
2 (t) e−i

(p+2~k)2t
2m~ Ĝ(t) |p+ 2~k〉 (4.129)

Thus, we find a similar expression for the reflected wavefunction

ψr(z, t) = i sin

(
ΩMt

2

)
e−iφL ei

(p0+2~k)2

2m~ t e
i(p0+2~k)

~ (z−zc)

∫
dp e−

σ2p2

2~2 e−i
(p+2~k)2t

2m~ e
ip
~ (z−zc)

(4.130)
where φL = ϕ2 − ϕ1 − 2kzc.

This yields the expression for a wave packet propagating at the momentum p0 + 2~k,
with a center of mass zc. The only difference with the propagation of a wave packet at
the same momentum is the Bragg reflectivity factor sin(ΩMt/2) and the additional phase
φL imprinted by the lasers on the atom, which depends on the center of mass of the wave
packet at the time of the pulse. It appears that this phase must be considered in the
calculation of the phase shifts that come into play in an interferometer.

Note that we have not explicitly specified the expression of the center of mass (although
we have assumed that the wave packet has a classical momentum pc = p0 + 2~k). If we do
not consider the interaction term in the Hamilton equations to get the classical trajectory,
we get zc = z0 + (p0+2~k)t

m , meaning that the diffracted wave packet departs from the
location of the incident wave packet when the light is turned on.

In fact, it can be shown, by taking into account the off-resonant effects, that the
interaction with light during the pulse alters the trajectory of the center of mass compared
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to the case without light. As a consequence, the reflected and transmitted wave packets,
if their trajectories after the pulse are extended towards the initial time, do not intersect
at the position of the center of mass of the initial wave packet when the light is turned
on. This point will not be discussed further in the manuscript, but the previous formalism
allows for simulations to account for this effect, and analyses are underway in the team to
determine to what extent this deviation by light is measurable with our setup.

In most interferometers, especially the Mach-Zehnder interferometers reported in the
literature, the duration of the Bragg pulses is much shorter than the free propagation
time. Consequently, the interaction time with light is considered negligible. In this case,
the position of the center of mass corresponds to the classical position at the time of the
Bragg pulse.

Atoms in a gravitational potential

In our case, the Bell interferometer occurs along the vertical axis. Therefore, it is
necessary to consider the gravitational potential in the Hamiltonian. An important con-
sequence is that as atoms fall, they will detune with respect to the Bragg resonance. This
Doppler detuning can be corrected by applying a frequency ramp to one of the lasers.

As mentionned in reference [143], the same formalism can be applied when adding
gravity. Starting from the Bragg coupled system from equation 4.117, we have:

Ċ0 = i
~ΩR

2
C2 eiδ0te−2ik(z0+

p0t
m
− 1

2
gt2)

Ċ2 = i
~Ω∗R

2
C0 e−iδ0te2ik(z0+

p0t
m
− 1

2
gt2)

(4.131)

where the additional term −1
2gt

2 arises from the acceleration due to gravity. This system

is equivalent to having a detuning which varies linearly with time δ̃0 = δ0 + kgt, which
reflects the fact that during their fall, the momentum of the atoms changes, causing them
to shift away from resonance.

To counteract this effect, it is immediately apparent that if a linear ramp is applied to
the detuning, typically by performing a frequency sweep on one of the two lasers, then one
can compensate for this loss of resonance. The phase that must be added to compensate
for gravity is therefore φcomp = −kgt2. Thus, the corresponding frequency ramp to be
applied is given by:

fcomp =
dφcomp

dt
= −2kgt (4.132)

The gravity term is compensated when the slope α of the frequency sweep is α =
−2kg = −kBg. In practice, unless in specific cases6, efforts are made to ensure that this
condition is satisfied so that the Bragg resonant momentum class moves with the atoms.

4.3.3 Conclusion

In the preceding paragraphs, we have shown the expression of the phase shifts to be
taken into account when calculating the phase involved in an interferometer. We can
differentiate between the phase shifts Φprop resulting from the propagation of a wave
packet in a gravitational potential and the phase shifts Φlaser arising from the interaction
between the wave packet and light.

6For instance, in Mach-Zehnder gravimeters aiming at measuring g, the value of the slope α is finely
scanned in order to precisely spot its value when gravity is compensated.
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• Two wave packets that separate from a certain point and propagate at different
momenta acquire different phases during their respective propagation. Therefore,
there is a phase difference associated with this propagation difference when the wave
packets meet again to interfere.

We have seen that the phase accumulated by a wave packet can be expressed in the
form:

φpath =
1

~
Scl(z, t, z0, 0) =

1

~

∫
Γ
Lc[z(t), ż(t)] dt (4.133)

where
1

~

∫
Γ0

Lc[z(t), ż(t)] dt =
m

~

(
v2

0

2
+ gz0

)
t (4.134)

for a wavepacket propagating on a path Γ0 at a speed v0 from a position z0 for a
duration t in a gravitational potential.

The phase difference between two wave packets is then

Φprop = φpath,2 − φpath,1 (4.135)

• Furthermore, we have seen that when an atom interacts with light during a Bragg
pulse, there is a phase imprinted by the lasers onto the atoms (or more precisely, a
phase difference between the transmitted and reflected atomic beams). At resonance,
this phase can be expressed in the form:

Φlasers = −kBzc + (ϕ2 − ϕ1) (4.136)

where kB = 2k is the Bragg momentum transferred to the atoms, zc is the center
of mass of the wave packet and ϕ2 − ϕ1 is the phase difference between the lasers
at the time of the pulse. Note that in addition to the instantaneous phases ϕi, a
similar reasoning for a Bragg pulse starting at t = ti also implies the existence of
a term written as (ω2 − ω1)ti = ∆ωLti where ω1,2 are the laser beams frequencies.
This term must be considered in the calculations, and we will see that it cancels out
in the case of closed interferometers.

Out of resonance, additional terms emerge. For example, we have seen that for a con-
stant two-photon Rabi frequency beam splitter in a plane wave model, a correction
must be taken into account:

Φlasers = −kBzc + ϕ2 − ϕ1 + ∆ωLti − δ0T + tan−1

[
δ0

Ω
tan

(
ΩT

2

)]
(4.137)

where T is the duration of the pulse.

The objective of this section was to formally highlight the phase shifts involved in
atomic interferometers. The derived expressions will now be used in two different cases: at
resonance and for short pulse durations on one hand, and off-resonance for finite-duration
pulses within a model where atoms are treated as plane waves on the other hand.
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4.4 Application to the Mach-Zehnder interferometer

The previous results will be applied to a Mach-Zehnder type interferometer, as depicted
in Figure 4.18. Starting from an initial atomic cloud at a given momentum p, a first beam
splitter pulse is applied to split the cloud into two parts, with a momentum p or p+ 2~k.
Subsequently, a mirror pulse is introduced to bring the two wave packets together onto a
final beam splitter, where the two momentum modes are mixed. The idea is to have two
clouds interfering at a beam splitter, which justifies the geometry of the interferometer:
the initial pulse allows for amplitude splitting interference by emitting two coherent clouds
from the same atomic source. The mirror pulse is employed to close the interferometer,
so that the two wave packets overlap.

We assume that the interferometer is in a spatial configuration where the momentum
transferred by Bragg diffraction is in the vertical axis, for which gravity needs to be taken
into account.

p
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k
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2~
k

A

B
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Time
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Beam

splitter
Mirror

Beam
splitter

Figure 4.18: Schematic representation of the Mach-Zehnder interferometer in the falling
frame.

This atomic interferometer was initially realized by S. Chu and M. Kasevich[86] with
cold atom clouds and Raman beams, and then successfully replicated a few years later
using Bragg diffraction[144] and BECs[145]. It can be used to measure gravitational
acceleration[146], as we will show in the following.

4.4.1 Resonant case with short pulses

First, we will focus on the simple case where all atoms are resonant for the Bragg
pulses in a “closed” interferometer (a concept that will naturally emerge). We assume
that the Bragg pulses are short, meaning that their duration is negligible compared to the
free propagation duration. For now, we do not assume that the atomic wavefunction is a
plane wave, and use the results from the previous section.
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Laser phase

Let us determine the phase due to the interaction between the atoms and the light
pulses.

We have shown that for a given momentum doublet in the basis {p, p+2~k}, the Bragg
transfer matrices of a mirror and a beam splitter can respectively be written, at resonance,

UM =

(
0 ieiφ

ie−iφ 0

)
and US =

√
2

2

(
1 ieiφ

ie−iφ 1

)
(4.138)

where

φ = −kBzc + ∆ωLti + (ϕ2 − ϕ1) (4.139)

Here, zc is the center of mass of the wavepacket subjected to a Bragg pulse. Note
that, in this formalism, the center of mass is obviously not the same for the wave packet
initially transmitted by the first Bragg splitter, compared to the one of the wave packet
initially reflected. Even if we consider only two momentum modes, the same mode can be
involved in the interferometer through two spatially decoupled paths (as seen in Figure
4.19, mode p is involved in paths α and β, and similarly, mode p+2~k is involved in paths
α′ and β′).

α′ β′

α

β

p

p

p+
2~
k

p+
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k

A

B

I

O

Figure 4.19: Schematic representation of the modes involved in the Mach-Zehnder in-
terferometer. We distinguish modes with the same momentum but spatially separated. Strictly
speaking, this is a four-input, four-output interferometer, but we only consider one input mode (α)
and two output modes (β and β′).

Strictly speaking, mode (p)α is coupled with mode (p+ 2~k)β′ , while mode (p+ 2~k)α′

is coupled with mode (p)β during the Bragg mirror pulse, when accounting for the spatial
dimension, so that two mirror matrices are necessary to describe the whole system:



(
C0,α(t)

C2,β′(t)

)
=

(
0 ieiφA

ie−iφA 0

)(
C0,α(0)

C2,β′(0)

)
(
C0,β(t)

C2,α′(t)

)
=

(
0 ieiφB

ie−iφB 0

)(
C0,β(0)

C2,α′(0)

) (4.140)
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To address this issue, it is natural to use 4×4 matrices, so we can write, for the mirror,
C0,α(t)

C2,α′(t)

C0,β(t)

C2,β′(t)

 =

√
2

2


0 0 0 ieiφ2A

0 0 ie−iφ2B 0

0 ieiφ2B 0 0

ie−iφ2A 0 0 0




C0,α(0)

C2,α′(0)

C0,β(0)

C2,β′(0)

 (4.141)

where the index 2 designates the mirror, and the index A or B indicates the path of the
interferometer under consideration, upon which the center of mass depends. In the same
basis, the matrices for the two splitters are therefore:

US1 =

√
2

2


1 ieiφ1 0 0

ie−iφ1 1 0 0

0 0 0 0

0 0 0 0

 and US3 =

√
2

2


0 0 0 0

0 0 0 0

0 0 1 ieiφ3

0 0 ie−iφ3 1

 (4.142)

Starting from a certain initial state |ψin〉, the final state is

|ψout〉 = ÛS3 ÛM ÛS1 |ψin〉 (4.143)

It can be easily demonstrated that in the case of a single input mode, under the
considered conditions where atoms are perfectly resonant and there is no atom leakage
(perfect reflectivity of the mirror), then it is possible to determine the output state using
2× 2 matrices in a {p, p+ 2~k} basis (without specifying the spatial mode), provided that
the mirror matrix is written as follows:C0(t)

C2(t)

 =

 0 ieiφ2A

ie−iφ2B 0

C0(0)

C2(0)

 (4.144)

The beam splitter matrices are in the usual form given in equation 4.138.

One can then calculate the final state for an input state where the atoms are in the
momentum mode p:

|ψout〉 = ÛS3 ÛM ÛS1

(
1
0

)
=

1

2

(
−ei(φ2A−φ1) − ei(φ3−φ2B)

−iei(φ2A−φ1−φ3) + ie−iφ2B

)
(4.145)

The probability of measuring an atom in modes p and p+ 2~k are then respectively
P0 = cos2

(
φ1 − φ2A − φ2B + φ3

2

)
P2 = sin2

(
φ1 − φ2A − φ2B + φ3

2

) (4.146)

As expected, the populations of the output modes oscillate as a function of the phase
Φlasers = φ1 − φ2A − φ2B + φ3 of the interferometer, i.e.,

Φlasers = −kB(zc,1 − zc,2A − zc,2B + zc,3) + ∆ωL(t1 − 2t2 + t3)

+ ∆ϕ1 − 2∆ϕ2 + ∆ϕ3
(4.147)
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where ∆ϕi = (ϕ2 − ϕ1)i is the phase difference between the lasers at the time ti of the
pulse i, and zc,1 is the center of mass of the initial wave packet during the first beam
splitter, while zc,2A and zc,2B are the centers of mass of the clouds in both paths during
the mirror, and zc,3 is the center of mass of the recombined cloud during the second beam
splitter.

To give an explicit expression of this phase where each term is given by φi = −kBzc,i+
(ϕ2,i−ϕ1,i), it is necessary to determine the position of the wave packets during the Bragg
pulses, based on their classical trajectories. Let us note T1 the duration between the first
two pulses and T2 the duration between the mirror and the second splitter. The time
origin is set at the moment of the first pulse, such that t1 = 0, t2 = T1 and t2 = T1 + T2.
We also write the speeds v0 = p

m and vB = 2~k
m and the initial position of the wavepacket

is z0. With these notations, we have
zc,1 = z1

zc,2A = z1 + v0T1 −
1

2
gT 2

1

zc,2B = z1 + (v0 + vB)T1 −
1

2
gT 2

1

(4.148)

Note that there are two ways of writing the position of the wave packets during the second
beam splitter, each being given by the path of each cloud:

zc,3A = zc,2A + (vc,2A + vB)T2 −
1

2
gT 2

2

zc,3B = zc,2B + (vc,2B − vB)T2 −
1

2
gT 2

2

(4.149)

Here, we consider the case where there is a perfect overlap between the wave packets
during the second beam splitter, corresponding to zc,3A = zc,3B = zc,3, i.e., T1 = T2 = T .
The interferometer is then said to be closed, ensuring maximal interference contrast. We
have therefore:

zc,3 = z1 + (2v0 + vB)T − 2gT 2 (4.150)

Since, in this case, t1 − 2t2 + t3 = 0, the phase involved in the Mach-Zehnder interfer-
ometer is then:

Φlasers = kBgT
2 + ∆ϕ1 − 2∆ϕ2 + ∆ϕ3 (4.151)

This important result shows that the interference phase depends on gravity and the
duration between successive Bragg pulses. Actually, the atoms are detuned from the Bragg
transition while falling, due to the Doppler effect. As mentioned earlier, it is possible to
compensate for this effect by sweeping the frequency between the two lasers. As mentioned
earlier, if we note α as the sweep slope, then the additional phase imposed during a pulse
i is expressed as:

φsw,i =

∫ ti

0
δ0(t)dt =

∫ ti

0
αt2dt = α

t2i
2

(4.152)

with t1 = 0 for the first splitter, t2 = T for the mirror, and t3 = 2T for the second splitter.
The phase thus added to the total phase Φ is given by:

Φsw =
α

2
(t21 − 2t22 + t23) = αT 2 (4.153)
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so that

Φlasers = (kBg + α)T 2 + ∆ϕ1 − 2∆ϕ2 + ∆ϕ3 (4.154)

If the value of the frequency ramp slope α is equal to −kBg, then the loss of resonance
of the atoms is compensated. This is, in fact, the principle behind cold atom gravimeters,
which involve precisely determining the value of this slope to deduce g.

One can then observe an oscillation of the population in each of the modes: for instance
if the phase differences ∆ϕ1 and ∆ϕ2 are kept the same during the first two pulses, it can
be done by varying the phase difference ∆ϕ3 at the third pulse between each realization of
the experiment. Note that it is necessary for the phase differences ∆ϕi not to vary during
an experiment, otherwise the interference vanishes.

Propagation phase

Between the pulses, the atoms also acquire a phase. To account for this effect, we must
add a term that corresponds to the phase difference accumulated by each wave packet in
the gravitational field during its propagation.

To do this, as shown earlier, we will calculate the action associated with each path,
maintaining the notations from Figure 4.20, in order to compare the phase accumulated
by each wave packet until the second beam splitter where they interfere.

A

B

I

O

t
T1 T2

Figure 4.20: Schematic representation of the interferometer. Atoms follow either path A or
path B. Here, we assume that the propagation durations are equal, so that T1 = T2.

On one hand, the phase accumulated by the wave packet that passes through point A
is expressed as:

φpath,A =
1

~

∫
IAO

Lc dt =
1

~

∫
IA

Lc dt+
1

~

∫
AO

Lc dt (4.155)

Using 4.134 and assuming that T1 = T2 = T , we get:

φpath,A =
m

~

(
v2

0

2
+ gz0

)
T +

m

~

(
(v0 + vB − gT )2

2
+ gzc,A

)
T (4.156)

where zc,A = z0 + v0T −
1

2
gT 2 and vB is the Bragg velocity transferred to the atoms by

the Bragg pulse.
Similarly, we find for the other path

φpath,B =
m

~

(
(v0 + vB)2

2
+ gz0

)
T +

m

~

(
(v0 − gT )2

2
+ gzc,B

)
T (4.157)
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where zc,B = z0 + (v0 + vB)T − 1

2
gT 2.

At this stage, it can be noted that an order of magnitude of the action is S ≈ 1.5 ×
10−32 J.s (with z0 = 0, v0 = 0 and T = 1 ms). Therefore, we have S � ~, justifying
that the dominant contribution in the path integral calculation is the classical solution,
as discussed earlier.

The phase difference between the wave packets at the second beam splitter is

Φprop = φpath,B − φpath,A =
m

~
(
−vBgT

2 + gT (zc,B − zc,A)
)

= 0 (4.158)

Thus, in the case where the interferometer is closed, the phases accumulated by the
two wave packets are equal, and there is no phase shift associated with the propagation
of the wave packets in the population oscillation.

This result is actually general: as long as an interferometer is closed, no phase related
to the propagation of the wave packets comes into play. On the contrary, if the interfer-
ometer is not closed, additional phase shifts appear that tend to decrease the contrast of
interferences, eventually leading to total blurring.

4.4.2 Off-resonant corrective terms - finite duration pulses

In section 4.2 presenting the Bragg diffraction model, we showed that the matrices
4.138 employed to model the mirror and Bragg beam splitter are, in fact, specific cases
of Bragg transfer matrices in the case of resonant square pulses in the Bragg regime. As
mentioned earlier, it is possible to calculate the phases induced by the Bragg transfers in
a general case, still within the Bragg regime but without assuming resonance.

In this section, we will then consider an off-resonance model with finite-duration Bragg
pulses. We assume that a frequency sweep on one of the two lasers compensates for grav-
ity. Furthermore, we will assume that atoms behave like plane waves to focus solely on the
corrective phase shifts due to laser-induced phase imprinting. At first, we do not assume
that the interferometer is closed.

We write the transfer matrix 4.63 for a Bragg pulse of duration T in the general form:

U(T ) =

(
teiφ′ ireiφ

ire−iφ te−iφ′

)
(4.159)

We recall that r and t are real numbers and depend on the duration T of the pulse and
on the detuning δ0, and so do the phases φ and φ′.

Note that the expression of a Bragg matrix 4.63 was derived in the rotating frame,
meaning that we had written |ψ(t)〉 = C0e−iω0t |p〉 + C2e−iω2t |p+ 2~k〉, where ωi = Ei

~ .
In a plane wave model, we need to return to the laboratory frame in order to take into
account the propagation phase shift, i.e., the phase accumulated by the atoms due to
their kinetic energy. Therefore, we can rewrite the expression for the evolution matrix as
follows:

U(T ) =

(
teiφ′e−iω0T ireiφe−iω0T

ire−iφe−iω2T te−iφ′e−iω2T

)
(4.160)

Specifically, in the case where there is no light interacting with the atoms, the matrix U
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represents the free propagation matrix

UF(T ) =

(
e−iω0T 0

0 e−iω2T

)
(4.161)

For better clarity of the results, we will assume that no atoms are transmitted through
the mirrors by setting the diagonal terms to zero. This strong assumption will be re-
laxed later when we will proceed numerically to calculate the phase involved in the Bell
interferometer. Under this assumption, the propagation matrix for a mirror is

UM(T ) =

(
0 irMeiφMe−iω0T

irMe−iφMe−iω2T 0

)
(4.162)

and for a beam splitter, we have

US(T ) =

(
tSeiφ′Se−iω0T irSeiφSe−iω0T

irSe−iφSe−iω2T tSe−iφ′Se−iω2T

)
(4.163)

Thus, to determine the output state |ψout〉 of a Bragg doublet in a Mach-Zehnder
interferometer, constituted by a sequence of beam-splitter - mirror - beam splitter pulses,
one needs to calculate the product

|ψout〉 = US2(TS2)UF2(T2)UM(TM)UF1(T1)US1(TS1) |ψin〉 (4.164)

where TS1, TM and TS2 are the durations of the successive Bragg pulses, and T1 and T2

are the durations of the free propagation (Figure 4.21).

|ΩR|

t0

BS1

TS1 T1

Mirror

TM T2

BS2

TS2

Figure 4.21: Temporal representation of the Mach-Zehnder interferometer.

Starting from an input state where all the atoms are in momentum p, we find

〈p|ψout〉 = −rMrS1tS2ei(φ′S2+φM−φS1−ω0(TS2+TM+T2)−ω2(TS1+T1))

− rMrS2tS1ei(φS2−φM+φ′S1−ω0(TS1+T1+TS2)−ω2(TM+T2))
(4.165)

Assuming that the reflectivity and transmittivity coefficients are the same for the first
and the second beam splitter (rS1 = rS2 = rS and tS1 = tS2 = tS), we obtain the oscillation
of the population of the p momentum state (for instance):

P0(t) = | 〈p|ψout〉 |2 = r2
M r2

S t
2
S cos2

(
Φ

2

)
(4.166)

where

Φ = φ′S1 + φS1 − 2φM − φ′S2 + φS2 + (TM + T2 − TS1 − T1)(ω0 − ω2) (4.167)
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We thus obtain a somewhat more general result for the phase involved in the Mach-
Zehnder interferometer, with a term related to the phase accumulation due to the kinetic
energy of the atom, and phases originating from the interaction with light.

The phase term due to propagation cancels out in the case where TS1 + T1 = TM + T2.
This seems to mean that, in this model, the interferometer is closed when the duration
between the start of the first pulse and the start of the second pulse is equal to the
duration between the start of the second pulse and the start of the third pulse. This result
may seem counterintuitive, as the closure condition for an interferometer with pulses of a
certain duration is typically represented in relation to the half-duration of a pulse (so that
T1 = T2) rather than its start. This raises the question of the classical time equivalent
to a pulse with a non-zero duration, which originates from a fully quantum phenomenon.
Recall that we do not take into account any spatial effect, although they would lead to a
additional phase shifts through the center of mass.

In the model presented here, it is not surprising that this condition related to the
propagation of the wave packets involves the beginning of each pulse. Let us take the
example of a resonant mirror pulse. When expressing the transfer matrix in the form
4.163, if the input state corresponds to an atom in state p, one can see that the transferred
mode starts accumulating phase at the frequency ω2 as soon as t > 0, regardless of the
fact that the transferred population is nearly zero:

|ψout〉 =

(
0 ieiφe−iω0t

ie−iφe−iω2t 0

)(
1
0

)
= ie−iφe−iω2t |p+ 2~k〉 (4.168)

For any finite-duration pulse, the phase accumulated in the reflected mode (for in-
stance) begins to accrue right from the start of the pulse. This is why this initial moment
is involved in the condition TS1 + T1 = TM + T2. But one has to keep in mind that
there is another term related to the beginning of the pulses when taking into account the
interaction with light, through the phase terms ∆ωLti. In equation 4.167, we should add

∆ωL(t1 − 2t2 + t3) = ∆ωL(TM + T2 − TS1 − T1) (4.169)

so that the Mach-Zehnder phase is actually

Φ = φ′S1 + φS1 − 2φM − φ′S2 + φS2 + δ0(TM + T2 − TS1 − T1) (4.170)

where we used the definition 4.118 of the detuning, i.e. δ0 = ∆ωL − (ω0 − ω2).
This result is valid regardless of the type of pulse applied, no matter its temporal

shape. In the specific case of a constant pulse, we derived an analytical expression for
the propagation matrix Û , which can be used to identify the expressions of the phases φ
and φ′. Using the results from equation 4.107, we have:

φ′ =
δ0T

2
+ tan−1

[
−δ0

Ω
tan

(
ΩT

2

)]
and φ = ∆ϕ+

δ0T

2
(4.171)

Assuming that we have TS1 = TS2 = TS, we find

φ′S1 +φS1− 2φM−φ′S2 +φS2 = ∆ϕ1− 2∆ϕ2 + ∆ϕ3 + δ0(TS−TM) + δ0(TM +T2−TS1−T1)
(4.172)

from which we can deduce the phase of the interferometer

Φ = ∆ϕ1 − 2∆ϕ2 + ∆ϕ3 + δ0(T2 − T1) (4.173)
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We recover the resonant case when δ0 = 0. Note that the well known closure condition
T1 = T2 naturally emerges from this calculation when trying to be less sensitive to the
resonance condition (even without considering the wave packets). It appears that the
condition for the interferometer to be closed is achieved when

dΦ

dδ0
= 0 (4.174)

4.5 Application to the Bell interferometer

In this section, we will apply the formalism developed earlier to the case of the Bell
interferometer. The ideal case with perfect resonant beam splitters and mirrors was an-
alyzed in the first section of this chapter. The input state is the two-particle four-mode
state

|ψin〉 =
1√
2

(|−p, p〉+ eiφ0 |−q, q〉) (4.175)

where φ0 is the phase difference between the two input momentum doublets.
We found that, at resonance, the phase involved in the Bell interferometer is Φ =

φA − φB + φ0, where φA and φB are the phases imprinted by the splitter on each loop of
the interferometer.

Here, we will incorporate into our analysis the propagation phase, the phase imprinted
by the mirror, the center of mass-dependent phase shift. We will also discuss, in a second
part, the non-resonant corrective terms to be added to the phase involved in the Bell
interferometer in a plane wave model. This last information is crucial for us since we aim
to exploit the fact that the A and B Bragg doublets do not have the same resonance fre-
quency. Therefore, it is necessary to understand the effects of a pulse on all velocity classes.

4.5.1 Propagation phase

Let us begin by discussing the phase associated with the propagation of the wave
packets. In the case of Mach-Zehnder interferometers, only two momentum modes are at
play. The term related to the propagation of the wave packets that comes into play in the
interferometer’s phase is then equal to the phase difference between the two wave packets
when they interfere. We have shown that this phase cancels out when the interferometer is
closed. In contrast, the Bell interferometer involves four momentum modes, and we have
seen that interference can only be observed by looking at two-particle states. How then
can we account for the propagation phase?

If we return to the case of the Mach-Zehnder interferometer, we can write the state of
the system just before the second beam splitter as ψ = C0 |p〉+C2 eiΦprop |p+ 2~k〉, where
Φprop is the propagation phase difference between the two wave packets. The coefficients
C0 and C2 contain all the phase shifts due to the phase imprinted by the first beam
splitter and the mirror pulses. After the second beam splitter, the output state is written
as follows:

|ψout〉 =
1√
2

(
1 ieiφ3

ie−iφ3 1

)(
C0

C2 eiΦprop

)
=

1√
2

(
C0 + iC2 eiφ3eiΦprop

iC0 e−iφ3 + C2 eiΦprop

)
(4.176)
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This is where the propagation phase comes into play: we can see that it plays a role
similar to the phase imprinted by the third beam splitter. This is the reason why the
propagation phase is often treated independently and then added to the laser phase.

Similarly, for each loop A or B of the Bell interferometer, the phase difference due to
the propagation of the wave packets associated with each loop plays a role similar to that
of the beam splitter. We can express it as follows, for the loop A for instance:

|ψ(A)
out 〉 =

1√
2

(
C0 + iC2 eiφAeiΦ

(A)
prop

iC0 e−iφ3 + C2 eiΦ
(A)
prop

)
(4.177)

So, following the same steps as before, the phase that we need to consider for the Bell
interferometer is given by:

Φ = φA − φB + Φ(A)
prop − Φ(B)

prop + φ0 (4.178)

The propagation phases can be calculated in the same manner as for the Mach-Zehnder
interferometer. Consider loop A, for example. Let z0 be the initial position and vq and
v−p the initial velocities, with vq = v−p + vB. We calculate the phase accumulated by
the two wave packets, one going through path D and the other going through path F
(Figure 4.22). We note zD and zF the position of the center of mass of each wave packet
at the time of the mirror. The pulses are considered short enough to be neglected, and
the duration between each pulse is T .
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Figure 4.22: Schematic representation of the Bell interferometer.

The propagation phases are

φ
(A)
path,D =

m

~

(
v2
q

2
+ gz0

)
T +

m

~

(
(vp − gT )2

2
+ gzD

)
T (4.179)

φ
(A)
path,F =

m

~

(
v2
p

2
+ gz0

)
T +

m

~

(
(vq + gT )2

2
− gzF

)
T (4.180)

so the phase difference for loop A is:

Φ(A)
prop = φ

(A)
path,D − φ

(A)
path,F = gT 2(vp − vq) + gT (zD − zF ) (4.181)
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This expression is unsurprisingly similar to the one obtained for the Mach-Zehnder
interferometer. Again, since zD − zF = (vq − vp)T (due to the fact that the duration
between each pulse is the same), we get

Φ(A)
prop = 0 (4.182)

Similarly, it can be shown that, for the same reasons, we have Φ
(B)
prop = 0.

Again, we find that for a closed interferometer, the phase related to the propagation
of the wave packets cancels out. We will assume this condition to be satisfied in the
rest of this manuscript. However, it is worth noting that this formalism would allow the
calculation of the phase involved in a non-closed Bell interferometer. This suggests that
the closure condition is not necessary to perform a Bell test, even though it represents
the most favorable scenario (since, of course, in a non-closed interferometer, there is a
reduction of the interference contrast due to partial overlap of the wave packets). Finally,
let us just mention that we have expressed a classical closure condition, by neglecting the
effects related to interaction with light.

4.5.2 Center of mass-dependent imprinted phase

Before determining the phase terms related to non-resonant momentum classes, let us
determine the role of the wave packets center-of-mass phase in the Bell interferometer. As
a reminder, it has been demonstrated that during the interaction with Bragg beams, the
phase difference between the reflected and transmitted beams includes a term written as
−kBz, where z is the position of the center of mass of the wave packet.

Therefore, we will once again compute the output state of the interferometer in the
resonant case, but this time by expressing the propagation matrices in a non-unitary form
(assuming that at resonance, no atoms are transmitted through the mirror). As mentioned
earlier, this approach allows us to account for the spatial position of the momentum modes
involved in the interferometer. We express the mirror and beam splitter matrices for loop
A as follows:

Û
(A)
M =

(
0 ieiφAM(zF )

ie−iφAM(zD) 0

)
and Û

(A)
S =

1√
2

(
1 ieiφAS (zA)

ie−iφAS (zA) 1

)
(4.183)

where each phase term φA(zi) is the sum of the laser imprinted phase and the center-of-
mass zi imprinted phase. Similarly, we have

Û
(B)
M =

(
0 ieiφ

B
M(zE)

ie−iφ
B
M(zC) 0

)
and Û

(B)
S =

1√
2

(
1 ieiφBS (zB)

ie−iφBS (zB) 1

)
(4.184)

Thus, starting from the initial state

|ψin〉 =
1√
2

[(
1
0

)
A

⊗
(

0
1

)
B

+ eiφ0

(
0
1

)
A

⊗
(

1
0

)
B

]
(4.185)

we can calculate the output state |ψout〉 using the relation

|ψout〉 = Û
(A)
S Û

(A)
M ⊗ Û (B)

S Û
(B)
M |ψin〉 (4.186)
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from which we deduce the phase Φ on which the Bell interference depends, by calculating
P(p,−p) for instance. We find:

Φ = φAS (zA)− φBS (zB) + φ0 + φBM(zC)− φAM(zD) + φBM(zE)− φAM(zF ) (4.187)

Let us calculate only the phase term Φcom related to the contribution of the center of
mass of the wave packets at play (Φ = Φcom + Φlight). We have

−Φcom

kB
= zA − zB + zC − zD + zE − zF (4.188)

Using the same notation as before, we have

zC = z0 + vpT −
1

2
gT 2

zD = z0 + vqT −
1

2
gT 2

zE = z0 + v−qT −
1

2
gT 2

zF = z0 + v−pT −
1

2
gT 2

and

zA = z0 + (vq + v−p)T − gT
zA = z0 + (vp + v−q)T − gT

(4.189)

Finally, we find

Φcom = 0 (4.190)

Thus, we conclude that the center-of-mass phase of the interferometer is zero. This is
due to the geometric configuration of the Bell interferometer, which essentially involves
taking the difference between two loops. For the same reason, the phase terms related to
the laser frequency difference ∆ωL cancel out.

Similarly, if a frequency ramp is added to compensate for the Doppler shift due to
gravity, then the additional phase introduced7 cancels out because the phase shift due
to the ramp is the same for A and B, and the equation 4.187 only involves differences
between the phases of A and B.

4.5.3 Off-resonant terms

As emphasized several times before, additional phase terms come into play in the phase
imprinted on atoms whose momentum class is not resonant with the Bragg transition.
Using the previous formalism, it is possible to determine a general expression for the Bell
phase for any momentum class, as a function of the phase imprinted by light on the atoms.

The interest of this formulation is to facilitate the understanding of the phases in-
volved, in order to design Bragg pulses that yield the most efficient Bell signal. Indeed,
non-resonant terms tend to blur the Bell interference signal, and one of our objectives is
to minimize this effect to ensure that the Bell phase does not vary too much with the
detuning as we move away from resonance.

We will proceed in the same way as in Section 4.4.2 for the Mach-Zehnder interferom-
eter. The atom wavefunction is considered as a plane wave, so that we do not take into
account the off-resonant effects related to the center of mass of the wave packets. Once

7For a pulse at t = ti, we have shown that φsw,i = α
t2i
2

where α is the slope of the frequency ramp.
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again, we will start by assuming that the mirror’s transmissivity is zero, forcing its diago-
nal coefficients to zero. This is a strong assumption, certainly not valid off-resonance, but
it will lead to a simpler analytical result for interpretation.

To calculate the Bell phase, we again use the relationship 4.186, but this time the
matrices for mirrors and beam splitters have the more general form:

U
(A)
M (T ) =

(
0 irAMeiφAMe−iωA0 T

irAMe−iφAMe−iωA2 T 0

)
(4.191)

and

U
(A)
S (T ) =

(
tAS eiφ′AS e−iωA0 T irAS eiφAS e−iωA0 T

irAS e−iφAS e−iωA2 T tAS e−iφ′AS e−iωA2 T

)
(4.192)

where T is the duration of the pulse. We included propagation terms e−iωT due to the
kinetic energy of the atoms in order to discuss the interferometer closure condition with
finite duration pulses. Since the momentum doublets involved are different for A and B,
we have ωA0 = ω−p and ωA2 = ωq, while ωB0 = ω−q and ωB2 = ωp. T is the duration
of the pulse, and all the variables are detuning-dependent, from the reflectivity r and
transmittivity t coefficients to the phases φ and φ′.

The interferometric sequence is represented in Figure 4.23, where TM and TS are the
durations of the Bragg mirror and beam splitter pulses, and T1 and T2 are the free prop-
agation times.

|ΩR|

t0
T1

Mirror

TM T2

BS

TS

Figure 4.23: Temporal representation of the Bell interferometer.

We obtain

〈−p,−q|ψout〉 = −irAM rAS r
B
M tBS ei(φAS −φAM+φ′BS +φBM−T1(ωq+ω−q)−(TM+T2)(ω−p+ωp))

− irAM tAS r
B
S r

B
M ei(φ′AS +φAM+φBS −φBM+φ0−T1(ωp+ω−p)−(TM+T2)(ωq+ω−q))

(4.193)

Assuming that rAS = rBS and tAT = tBS , we get the Bell phase, which can be written:

Φ = φAS −φBS −φ′AS +φ′BS +2φBM−2φAM +(ωq +ω−q−ωp−ω−p)(TM +T2−T1)+φ0 (4.194)

We distinguish three kinds of phase shifts.

• First, the phase shifts φA,BS,M and φ′A,BS,M are related to the interaction of the atoms
with light. They are known analytically for constant squared pulses, or can be
determined in a more general case by solving the Bragg coupling equation 4.60 of
each momentum doublet A and B for a given pulse.
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• Second, the phase shift proportional to TM +T2−T1 is related to the propagation of
wavepackets, and corresponds to the phase difference accumulated by loops A and
B in the different momentum modes involved. This phase shift only originates from
the eiωt terms in the evolution matrices. Interestingly, this propagation phase shift
vanishes for T1 = TM + T2. This appears to be a “closure” relation based on the
beginning of the pulses, meaning that the duration between the spatial separation of
the atoms (at the beginning of the interferometer) and the start of the mirror pulse
must be equal to the duration between the start of the mirror pulse and the start of
the beam splitter pulse. The discussion is similar to the case of the Mach-Zehnder
interferometer: in our formalism, the reflected momentum modes start acquiring
phase as soon as the pulse starts, no matter how small the transferred population
is. So, if we do not consider the additional phase shifts due to the interaction with
light, the modes cross each other at the beginning of the beam splitter pulse. The
interpretation in terms of interferometer closure will be further discussed in the next
chapter, when we will aim at determining the closure relation for the Hong-Ou-
Mandel interferometer.

• Finally, the phase shift φ0 is due to the initial phase shift between the two pairs of
twin momentum modes emitted by the four-wave mixing process. This phase can a
priori depend on the momentum quadruplet considered, but remains constant for a
given quadruplet, whose momentum width corresponds to the size of a mode.
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In this chapter, we will describe the strategy we adopted to carry out a Bell inequality
test and the Bragg pulses we aim at performing.

A first attempt to observe a Bell correlator oscillation consists in conducting a HOM-
type experiment to ensure the closure of the interferometer, and to use the data when the
interferometer is closed to focus on non-resonant momentum classes, as the Bell correlator
was shown to depend on the detuning. This experiment was conducted by our team in
2017, and we will briefly discuss the results obtained at that time.

The terminology used throughout the rest of the manuscript will be as follows: we will
describe an HOM experiment as an interferometer with a single beam splitter, while in a
Bell experiment there are two distinct beam splitters for the A and B momentum doublets.
In the first section, we will describe the Bell-type correlations that can be highlighted with
a HOM interferometer. Subsequent sections will be dedicated to the implementation of a
proper Bell interferometer.

Indeed, following this initial test using a HOM interferometer, which provides an insight
into the expected amplitude of the Bell correlator oscillation, the Bell test we aim to
perform requires a control of the phase difference between A and B, as mentioned in section
4.1.2. The main idea is to leverage the fact that the momentum doublets involved in loops
A and B do not share the same resonance frequency. By implementing a “two-frequency”
beam splitter pulse, we can have two different beam splitters whose characteristics can
be independently controlled, specifically the phase imprinted by the light to the atoms of
each doublet.

We will see that a convenient way to realize such two-frequency pulses without being
sensitive to phase fluctuations consists in shaping the temporal profile of the beam splitter
pulse. It also makes it possible to control the phase difference imprinted on doublets A
and B. This technique can be used to perform negative or even complex two-photon Rabi
frequencies, which we will also leverage to enhance the resonance width of mirror and
beam splitter pulses.

The final section of this chapter is dedicated to applying these pulses to a Bell inter-
ferometer in a numerical simulation that calculates the Bell oscillator.

5.1 Bell oscillation in an off-resonant HOM experiment

As mentioned in the introduction, a Hong-Ou-Mandel interferometer can be used to
identify conditions under which two particles are indistinguishable.

In the case under consideration here, two twin atoms are emitted through four-wave
mixing in two different momentum modes, denoted as p0 and −p0 (in the center of mass
reference frame). The momentum difference between the two is set equal to the momentum
~kB transferred during a two-photon Bragg transition, such that a mirror pulse couples
p0 and −p0. Following this mirror pulse, the two wave packets then approach each other.
When looking at the probabilities of detection after time of flight, maximum amplitude
interference is observed when a beam splitter is applied at the moment when the wave
packets perfectly overlap. This results in a decrease of the probability of measuring two
atoms in the two modes (to zero in the ideal case of a Fock state, as will be discussed in
Chapter 7). Therefore, the time of application of the beam splitter at which this joint
probability of measuring one atom in each mode p0 and −p0 is minimal ensures that the
interferometer is closed.

This is strong evidence of two-atom interference, a phenomenon only explainable by
quantum theory when the probability of jointly measuring p0 and −p0 falls below 0.5.
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This experiment was first conducted by our team in 2014[92] and successfully replicated
in 2016[121].

The indistinguishability of interfering particles when the beam splitter is applied at
the HOM “dip” ensures that the interferometer is closed. Otherwise, partial overlap
between the wave packets would lead to a loss of contrast. We can then leverage the
fact that the emission of our pair source is multimode to notice that alongside the HOM
interferometer, involving only a doublet (p0,−p0), we also realize a Bell-type interferometer
when considering a quadruplet (p,−p, q,−q) where the momentum modes p and q are
symmetric with respect to the mode p0 (Figure 5.1).

p

q

−q

−p

p

−q

q

−p

Time

Position

Mirror
Beam

splitter

−p0

p0

Figure 5.1: Schematic representation of a Bell-type interferometer realized in parallel with
a HOM interferometer. Representation in the falling frame. The modes p0 and −p0 involved in
the HOM interferometer are depicted with dashed lines. The coupled neighboring modes p and
−p on one hand, and q and −q on the other hand, form a Bell interferometer, for which there is
no control parameter. The observation of a HOM dip ensures that the interferometer is closed.

In fact, our pairs source produces a set of momentum quadruplets corresponding to
various values of ∆p, where ∆p = p − p0 = p0 − q. For each value of ∆p, the associated
quadruplet (p,−p, q,−q) is detuned by δ0 = −kB

m ∆p with respect to the Bragg resonance,
which corresponds to the momentum doublet (p0,−p0) used for the HOM experiment.

This is not a Bell test in the strict sense, as we cannot control the phases imprinted
on A and B. However, an idea to exhibit Bell correlations is to use the fact that the
phase imprinted by a Bragg pulse depends on the considered momentum classes. Thus,
since the different quadruplets correspond to different detunings, we could measure the
Bell correlator for each available quadruplet to observe a variation of the Bell correlator
as a function of the detuning.

An analysis in this spirit was conducted using the data from the 2016 HOM interfer-
ometer, leading to an article published in 2017[93], that will be discussed in the following.
In this article, three correlator values were calculated for three different quadruplets, and
indeed, a significant variation in the correlator with the momentum quadruplet was ob-
served.
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The new theoretical developments I have conducted during my thesis and presented
in this chapter alter the interpretation of these results, as we will demonstrate that the
closure of the interferometer precisely corresponds to the case where the Bell correlator
does not depend on the detuning. Any variation in the correlator would thus arise from
a quadruplet-dependent phase shift other than that due to the detuning imprinted by the
Bragg pulses.

5.1.1 Description of the Hong-Ou-Mandel effect

First, let us demonstrate the HOM effect. We will use the same formalism as before,
but, for the sake of simplicity, we will not consider in this section the phase terms associated
with the accumulation of kinetic phase in each mode (in this section only). Therefore, the
resonant matrices for the mirror and the beam splitter are once again:

ÛM =

(
0 ieiφM

ie−iφM 0

)
and ÛS =

1√
2

(
1 ieiφS

ie−iφS 1

)
(5.1)

The input state of the HOM interferometer is composed of a pair of atoms in the states
p0 and −p0.

|ψin〉 = |p0,−p0〉 (5.2)

However, as will be discussed in detail in the HOM chapter, this expression is incom-
plete as it does not account for the bosonic nature of atoms. Indeed, the emitted atoms
are indistinguishable, and writing the input state as |p0,−p0〉 = |p0〉1 ⊗ |−p0〉2 implicitly
suggests that particle 1 is in mode p0, and particle 2 is in mode −p0, which corresponds to
treating the particles as distinguishable. To make the input state indistinguishable, and
since our atoms are bosons, the state must be symmetrized:

|ψin〉 =
1√
2

(|1 : p0, 2 : −p0〉+ |1 : −p0, 2 : p0〉) (5.3)

If we express this initial state as column matrices in the basis of states coupled by
Bragg scattering, we have:

|ψin〉 =
1√
2

[(
1
0

)
1

⊗
(

0
1

)
2

+

(
0
1

)
1

⊗
(

1
0

)
2

]
(5.4)

ÛSÛM

(
1
0

)
=

1√
2

(
−ei(φS−φM)

ie−iφM

)
and ÛSÛM

(
0
1

)
=

1√
2

(
ieiφM

−ei(φM−φS)

)
(5.5)

Note that |ψin,dis〉 =

(
1
0

)
1

⊗
(

0
1

)
2

a state of distinguishable particles. At the output

of the interferometer, the state is

ÛMÛS

(
1
0

)
1

⊗
(

0
1

)
2

=
1√
2

(
−ei(φS−φM)

ie−iφM

)
1

⊗ 1√
2

(
ieiφM

−ei(φM−φS)

)
2

=
1

2

[
−ieφS |−p0,−p0〉+ |−p0, p0〉 − |p0,−p0〉 − ie−iφS |p0, p0〉

] (5.6)

If we calculate the probabilities associated with each basis state, we find

P(p0, p0) = P(−p0, p0) = P(p0,−p0) = P(−p0,−p0) =
1

4
(5.7)
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We can see that the output state is associated with four equiprobable probabilities of
finding the two particles in different output states, as in the intuitive result with classical
particles. In particular, experimentally, the probability Pdiff of finding two particles in the
two different modes is

Pdiff = P(−p0, p0) + P(p0,−p0) =
1

2
(5.8)

For this state corresponding to distinguishable particles at the input of the HOM inter-
ferometer, no decrease in the joint probability of detecting atoms in different modes is
observed.

Similarly,

ÛSÛM

(
0
1

)
1

⊗
(

1
0

)
2

=
1√
2

(
ieiφM

−ei(φM−φS)

)
1

⊗ 1√
2

(
−ei(φS−φM)

ie−iφM

)
2

=
1

2

[
−ieφS |−p0,−p0〉 − |−p0, p0〉+ |p0,−p0〉 − ie−iφS |p0, p0〉

] (5.9)

Therefore, the output state |ψout〉 of the HOM interferometer for the indistinguishable
input state 5.4 is equal to the sum of expressions 5.6 and 5.9. We then obtain:

|ψout〉 =
1√
2

[
−ieφS |−p0,−p0〉 − ie−iφS |p0, p0〉

]
(5.10)

Thus, we can see that the probability of finding two particles in two different momen-
tum modes is zero:

Pdiff = P(−p0, p0) + P(p0,−p0) = 0 (5.11)

This is the HOM effect, which, as observed, is linked to the indistinguishable nature
of bosonic particles. Note that, to account for this effect, it was necessary to symmetrize
the input bosonic state.

5.1.2 Analytical results for the Bell correlator

Analytical expression of the Bell correlator

In the following, we return to a more general description of Bragg pulses as discussed
in the previous chapter, where atoms are treated as plane waves, taking into account the
finite duration of Bragg pulses as well as the off-resonance terms. As discussed earlier,
the question here is to determine the expression of the Bell correlator associated with the
non-resonant terms of the HOM interferometer.

Calculating the Bell phase involved in the HOM interferometer is a particularly simple
case because, as the Bragg pulses used are constant pulses and similar for A and B, we
have an analytical expression for the transfer matrices and, consequently, for the Bell
correlator. We will reuse the results from the previous chapter, in which we derived a
general expression for the Bell phase, expressed in terms of phases associated with the
reflection and transmission coefficients of the Bragg pulse.

Φ = φAS −φBS −φ′AS +φ′BS + 2φBM−2φAM + (ωq +ω−q−ωp−ω−p)(TM +T2−T1) +φ0 (5.12)
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where the phase terms φA,BS,M correspond to the phase imprinted on the reflected part of the

state while the terms φ′A,BS are the phase shifts imprinted on the transmitted part. Recall
that this result was obtained for a mirror with a transmission coefficient being zero for
any momentum class, which is a strong assumption that is valid only over a narrow range
of momentum, as we will see later. We will later numerically calculate the Bell phase
without relying on this assumption. φ0 is the phase difference between the two pairs of
the input modes.

For square pulses, we have analytical expressions for the phase shifts due to the inter-
action with light. The distinction between doublet A and doublet B will only lie in the
detuning considered. For the HOM experiment, the resonant doublet (for which δ0 = 0)
is (p0,−p0), so that δ0 = +δ for doublet A and δ0 = −δ for doublet B. Note that φ0,
determined by the pairs creation process, can also depend on the momentum quadruplet
considered, and therefore on δ.

Then, like for the Mach-Zehnder interferometer (equation 4.171), we identify the phases
φ and φ′ using the matrix 4.63 obtained for a constant pulse of duration T and two-photon
Rabi frequency Ω, leading to the expression:

φ′ =
δ0T

2
+ tan−1

[
−δ0

Ω̃
tan

(
Ω̃T

2

)]
and φ = ∆ϕ+

δ0T

2
(5.13)

with Ω̃ =
√

Ω2 + δ2
0 and ∆ϕ is the laser phase difference between the two beams of the

Bragg pulse. Here, we will consider that the two Bragg pulses have the same two-photon
Rabi frequency, so ΩS = ΩM = Ω.

If we apply this formula to the mirror and beam splitter pulses, indexed respectively
by M and S, we obtain:



φAS = ∆ϕAS +
δTS

2

φBS = ∆ϕBS −
δTS

2

φAM = ∆ϕAM +
δTM

2

φBM = ∆ϕBM −
δTM

2

and


φ′AS =

δTS

2
− tan−1

[
δ

Ω̃
tan

(
Ω̃TS

2

)]

φ′BS = −δTS

2
+ tan−1

[
δ

Ω̃
tan

(
Ω̃TS

2

)] (5.14)

The Bell phase is therefore

Φ = ∆ϕAS −∆ϕBS + 2∆ϕAM − 2∆ϕBS − 2δTM + 2tan−1

[
δ

Ω̃
tan

(
Ω̃TS

2

)]
+ (ωq + ω−q − ωp − ω−p)(TM + T2 − T1) + φ0(δ)

(5.15)

Recall that ∆ϕ represents the phase difference between the lasers. Since the same
pulses are used for both A and B, we have ∆ϕA = ∆ϕB, and the laser phase terms cancel
out. Moreover, the propagation phase shift can be expressed in terms of detuning, using

the definition ωp = p2

2m~ , so that:

~(ωq + ω−q − ωp − ω−p) = −2~kB

m
∆p = +2~δ (5.16)
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Finally, the phase shifts in 2δTM cancel out and the Bell phase is

Φ = 2 tan−1

[
δ√

Ω2 + δ2
tan

(√
Ω2 + δ2

TS

2

)]
+ 2δ(T2 − T1) + φ0(δ) (5.17)

It is possible to calculate analytically not only the phase involved in the interferometer
but also the amplitude of the Bell correlator. To do so, the previous formalism can
be applied: the output state is calculated using transfer matrices 4.63 whose analytical
expressions are known. Again, for this calculation, we assume the transmission coefficient
of the mirror to be zero. We obtain:

P(p, q) = P(−p,−q) =
1

2
R2

M

(
1− 4ε2

S

)
cos2

(
Φ

2

)
P(p,−p) = P(q,−q) =

1

2
R2

M

(
sin2

(
Φ

2

)
+ 4ε2

S cos2

(
Φ

2

)) (5.18)

where we defined

εS =
1

2
− Ω2

Ω̃2
sin2

(
πΩ̃

4Ω

)
and RM =

Ω2

Ω̃2
sin2

(
πΩ̃

2Ω

)
(5.19)

Ideally (i.e. at the limit to the resonant case where δ0 = 0), ε = 0 and RM = 1. Finally,
we get the full expression of the Bell correlator:

E = P(p, q) + P(−p,−q)− P(p,−p)− P(q,−q) = R2
M

[(
1− 4ε2

S

)
cos Φ− 4ε2

S

]
(5.20)

Let us define

A(δ) = R2
M

(
1− 4ε2

S

)
(5.21)

the amplitude of the Bell oscillation. Note that, as the considered quadruplet gets further
from the Bragg resonance (i.e. as δ, or equivalently ∆p, increases), the amplitude of the
Bell oscillation will decrease due to the less favorable reflectivity properties of the mirror
and the beam splitter.

Using the expression 5.20, the Bell correlator can be calculated as a function of the
detuning. However, this requires knowing the durations T1 and T2 for which the interfer-
ometer is closed. In the following paragraphs, we will study an arbitrary choice of T2−T1

to discuss the variation of the correlator before determining in the next section the closure
condition.

As a first example, let us consider the case T2 = T1 − TM. Choosing this condition
consists in studying the case where the phase term of the correlator related to the kinetic
energy of wave packet propagation is canceled out. We take T1 = 800 µs, which corresponds
to the order of magnitude used in the article [93]. The Bell phase Φ also depends on the
two-photon Rabi frequency of the beam splitter pulse, so we used the characteristics of
the Bragg pulses described in the article to plot the Bell phase, the joint probabilities of
detection and the Bell correlator (Figure 5.2). The two pulses have a two-photon Rabi
frequency of 5 kHz, so the mirror π pulse is 100 µs long while the beam-splitter π/2 pulse
is 50 µs long.
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Figure 5.2: Analytical solution of the Bell interferometer for square pulses. The atoms
transmitted by the mirror are not taken into account. We calculate the Bell phase Φ that appears
in the Bell correlator, the joint probabilities P++ = P(p, q) + P(−p,−q) and P+− = P(p,−q) +
P(q,−p), and the Bell correlator E. Each value corresponds to the analytical solution at a fixed
detuning, and the results are plotted as a function of the velocity class ∆v using δ = −kB∆v. The
phase φ0 between the pairs is supposed to be zero. The two-photon Rabi frequency of each pulse
is ΩM = 5 kHz, the duration of the first free propagation is T1 = 800 µs, and the duration of the
second free propagation is T2 = T1 − π/ΩM.

For now, we also assume that the phase φ0 between the two pairs of emitted modes
is zero. The curves are plotted as a function of the velocity class, ∆v with respect to
resonance, which depends on the detuning according to the relation δ = −kB∆v. Note
that, for our Bragg wavevector kB, we have ∆v (mm.s−1)≈ −2δ (kHz).

It can be observed that the Bell phase seems to vary linearly with the detuning. The
slope is such that the phase varies by a bit less than 2π over the velocity range for which
the amplitude A(∆v) of the HOM signal, depicted as dashed lines, remains non-zero.
This velocity range, along with the size of a mode over which to integrate the signal,
determines the number of quadruplets that can be used to observe a non-zero correlator.
The challenge of measuring the correlator E in parallel with a HOM experiment is to
ensure that it is possible to measure non-zero values of the correlator, with the maximum
attainable value being determined by the correlator’s amplitude, which depends only on
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the reflection and transmission coefficients of the Bragg pulses. As seen in section 4.2.2, the
two-photon Rabi frequency of 5 kHz used in the experiment allows the widest resonance
width possible while remaining within the framework of a two-level system without losses
towards higher diffraction orders.

Note also that resonance corresponds to the HOM effect, so that P+− vanishes, as will
be discussed in the following paragraph.

Closure of the interferometer

Now, let us ask under what conditions the interferometer is closed, or rather, how
to translate, in our model, the fact that the interferometer is closed (since this is what
the HOM interferometer detects). This question is crucial because, for a fixed value of
T1, it determines the value of T2, which corresponds to the delay at which the beam
splitter is applied. Knowing T2 − T1 is essential for calculating the correlator of the Bell
interferometers realized in the HOM dip for various momentum quadruplets.

The previous model used to calculate the output state of the Bell interferometer can
also be used to determine the HOM dip when operating at resonance. Indeed, our initial
state is a two-particle state with four modes that can be expressed as:

|ψin〉 =
1√
2

(|p,−p〉+ |q,−q〉)

=
1√
2

[(
1
0

)
A

⊗
(

0
1

)
B

+

(
0
1

)
A

⊗
(

1
0

)
B

] (5.22)

When the momentum difference with the HOM doublet ∆p = p − p0 = p0 − q equals
zero, the previous expression becomes

|ψin〉 =
1√
2

(|p0,−p0〉+ |p0,−p0〉)

=
1√
2

[(
1
0

)
⊗
(

0
1

)
+

(
0
1

)
⊗
(

1
0

)] (5.23)

There is no phase term φ0 between the two pairs of the quadruplet since they consist
in the same momentum pair. However, the two terms are not the same, as shown in the
second equality, because the state is symmetrized. At resonance, there is no longer a
distinction between doublet A and doublet B, both being subject to the same propagation
matrix, but, the state is symmetrized since, in one term, particle 1 is in mode −p0 and
particle 2 is in mode p0, and vice versa in the other term.

This state is actually the initial state 5.4 that we used to describe the HOM effect in
the previous section. For φ0 = 0, this formalism allows us to go continuously from HOM
to Bell as ∆p increases.

We can then use the previous formalism to simulate an HOM experiment, by taking into
account the off-resonant terms due to the interaction with light. It has been demonstrated
that, regardless of the value of T2, at resonance, the joint probability P+− of detecting
two atoms in two different modes will always be zero. However, in a real experiment, one
does not selectively choose the resonant class with Bragg pulses with infinite precision: the
signal is always integrated over a certain integration volume, which includes some values
of momentum that are not strictly resonant. Therefore, for a fixed value of T2, we can
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compute the average value P̃+− of P+− within a velocity range ∆v0 centered on resonance
and of the size of a mode. We take ∆v0 = 2.5 mm.s−1, which is the size of a mode at the
time of the 2016 HOM experiment (the optical dipole trap was less elongated at that time
than it is nowadays). The graph of P̃+− as a function of T2, given in Figure 5.3, then
simulates the HOM experiment.

0 1000 2000 3000 4000

T2 (µs)

0.0

0.2

0.4

0.6
P̃ +
−

Figure 5.3: Simulation of the HOM experiment with plane waves. The input state is
symmetrized to describe two indistinguishable particles. We calculate, for a given delay of the
HOM beam splitter, the joint probability of measuring an atom in each output mode P+− =
P(p,−q) + P(q,−p) as a function of the velocity class using δ = −kB∆v, and average it over a
velocity box of width ∆ = 2.5 mms−1, centered on resonance, to get P̃+−. The duration of the first
free propagation is T1 = 800 µs, and the two-photon Rabi frequency of each pulse is ΩM = 5 kHz.

The results clearly show the emergence of an HOM dip for a certain value of T2. We
still find P̃+− ≈ 0 for a given delay because when averaging the value of P+− over a
velocity range where the detuning does not vary too much, the average value of P+− is
approximately equal to its value at resonance, i.e., zero. On the other hand, for others
values of T2, if the detuning varies significantly within the integration volume, the average
probability value is 0.5, and no HOM effect is observed. This occurs when the interferom-
eter is not closed, meaning the phase terms due to the wave packets propagation induce
a phase shift that strongly depends on the momentum class. The width of the HOM dip
thus depends on the integration range: the smaller the integration range for pulse mea-
surement, the larger the width of the dip.

Figure 5.4 shows that the interferometer is closed for T2 = 768 µs. This result can
be corroborated using the expression determined for the Bell phase, as we showed that it
involves determining the value of T2 for which Φ does not depend on δ. We have:

Φ = 2 tan−1

[
δ√

Ω2 + δ2
tan

(√
Ω2 + δ2

TS

2

)]
+ 2δ(T2 − T1) + φ0(δ) (5.24)

This result is valid only within a limited range of detuning, for which we can consider
the mirror transmission coefficient to be zero. Therefore, we can expand the result in the
limit where the detuning tends towards zero, especially for δ � Ω. We find, for the phase,
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Figure 5.4: Simulation of the HOM experiment with plane waves. This is the same calcu-
lation as 5.3, plotted over a smaller beam splitter delay range.

using the fact that ΩTS = π/2 (for a π/2 pulse):

Φ ≈ 2
δ

Ω
+ 2δ(T2 − T1) + φ0(δ) = 2δ

(
T2 − T1 +

2TS

π

)
+ φ0(δ) (5.25)

At first order, if we omit the phase term φ0(δ) associated with the pair source, the
Bell phase varies linearly with the detuning, and the slope is proportional to a term
which depends on the closure of the interferometer. In the vicinity of the resonance, we
have φ0(δ) = 0 since over the momentum range of one mode there is only the doublet
|p0,−p0〉 which is considered. The relationship 5.25 determines the closure of the HOM
interferometer when accounting for the phase shifts due to the interaction of atoms with
light. We conclude that the interferometer is closed when

T2 = T1 −
2TS

π
(5.26)

and we recover T2 = 768 µs.

It is interesting to note that in this case,

TM

2
+ T2 +

TS

2
= T1 + TM

(
3

4
− 1

π

)
≈ T1 + 0.43TM (5.27)

which means that the duration between the middle of the beam splitter pulse and the
middle of the mirror pulse (TM/2 + T2 + TS/2) is not far from the duration between the
start of the interferometer and the middle of the mirror pulse (T1 + TM/2), as it is often
commonly represented.

The results from this section show that, when the interferometer is closed (for T2 in
the HOM dip), the Bell phase at the vicinity of the resonance does not vary with detuning,
which can be translated by

dΦ

dδ
(δ = 0) = 0 (5.28)

We can use the closure condition 5.26 to look at what happens out of resonance when
the interferometer is closed. We find the results shown in Figure 5.5, to be compared to
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Figure 5.5: Analytical solution of the Bell interferometer for square pulses. The atoms
transmitted by the mirror are not taken into account. We calculate the Bell phase Φ that appears
in the Bell correlator, the joint probabilities P++ = P(p, q) + P(−p,−q) and P+− = P(p,−q) +
P(q,−p), and the Bell correlator E. Each value corresponds to the analytical solution at a fixed
detuning, and the results are plotted as a function of the velocity class ∆v using δ = −kB∆v. The
phase φ0 between the pairs is supposed to be zero. The two-photon Rabi frequency of each pulse
is ΩM = 5 kHz, the duration of the first free propagation is T1 = 800 µs, and the duration of the
second free propagation is determined by the closure relation 5.26 such that T2 = 768 µs.

Figure 5.2.

As expected, the tangent to the phase curve Φ at zero is zero because the interferome-
ter is closed. As one moves away from resonance, the phase varies, but not rapidly enough
for the variation to be significant in the velocity range where the correlator oscillation
amplitude is non-zero. Therefore, without making a substantial error, one can consider
that when the phase around resonance does not vary with detuning, the same holds true
outside of resonance in the range of interest.

Thus, any observed variation of the Bell correlator as a function of the velocity class
(for a closed interferometer) is either due to a decrease in signal amplitude or to the pres-
ence of a phase shift φ0 that depends on the quadruplet used for the Bell calculation (only
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the resonant “quadruplet” has φ0 = 0 since it is actually the (p0,−p0) doublet that is used
for HOM).

Note that the simulations of this section are incomplete for two main reasons, related
to treating the atoms as plane waves. Firstly, spatial aspects, especially the effects of light
on the center of mass, are neglected here. But we showed that the Bell phase depends on
the center of mass when the interferometer is not closed. Therefore, additional phase shifts
would need to be considered to calculate the true T2 value where the wave packets overlap.
Secondly, this model does not account for the coherence length of the source, which also
affects the width of the HOM dip (this was actually the point of the historic Hong, Ou, and
Mandel experiment[36]). The width of the HOM dip determined in our calculation is an
ideal width assuming an infinite coherence length of the source. Nevertheless, this would
not change our conclusions regarding the timing at which the interferometer is closed.

5.1.3 Numerical simulation

So far, we assumed that the mirror’s transmission coefficient was strictly zero, regard-
less of the detuning. This strong assumption simplifies the expression of the phase involved
in the Bell interferometer. However, it is also possible to express the Bragg transfer matrix
associated with the mirror without forcing the diagonal terms to be zero. More generally,
it is possible to numerically solve the Bragg coupling system 4.60, not only for a constant
pulse but also for any temporal pulse shape. In this section, we will numerically calculate
the output state of the interferometer and then the Bell correlator for a constant pulse,
without neglecting the losses due to the imperfect reflectivity of the mirror pulse. Again,
the spatial effects related to the center of mass of the wave packets are not taken into
account.

Thus, for each Bragg doublet, we numerically solve the following system:Ċ0

Ċ2

 = i

 e−iω0t ΩR(t)
2 eiδ0te−iω0t

Ω∗R(t)
2 e−iδ0te−iω2t e−iω2t

C0

C2

 (5.29)

which is the Bragg coupling system with propagation phases eiωt. The two-photon Rabi
frequency ΩR(t) is equal to zero during free propagation steps, and is constant and equal
to 5 kHz otherwise. For doublet A, we have

δ0 = δ

ω0 = ω−p
ω2 = ωq

(5.30)

while for doublet B, 
δ0 = −δ
ω0 = ω−q
ω2 = ωp

(5.31)

The input state is given by 5.22 with φ0 = 0. Note that a first step consists in solving
equation 5.29 step by step by setting the mirror’s transmission coefficient to zero, in order
to verify that this numerical solution coincided with the analytical results. The numerical
results are plotted in Figure 5.6 for T1 = 800 µs and T2 satisfying the relation 5.26.

We can be observe that, unlike the case where there are no transmitted atoms, the
probabilities (and consequently the correlator) start oscillating as one moves away from
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Figure 5.6: Numerical solution of the Bell interferometer for square pulses. The parameters
are the same as Figure 5.5, except that the atoms transmitted by the mirror are taken into account.
Top: Joint detection probabilities P++ = P(p, q) + P(−p,−q) and P+− = P(p,−q) + P(q,−p).
Middle: Bell correlator as a function of velocity class, numerically calculated taking into account
atoms transmitted by the mirror (tM 6= 0, in blue) and without taking them into account (tM = 0
in green). The transmitted atoms interfere with the reflected atoms, leading to oscillations of
the Bell correlator, with amplitudes increasing away from resonance. Bottom: Moving average of
the correlator E, calculated by averaging over a velocity integration box of 2 mm.s−1, taking into
account the transmitted atoms (in blue) and without considering them (in green). The shaded
areas are error bars representing the standard deviation of the correlator in the considered box.

resonance. This can be explained by the fact that the atoms transmitted by the mirror
will interfere with the atoms of the same momentum, resulting in a blurring of the Bell-
type interference. Indeed, this interference occurs between wave packets with imperfect
overlap: this interferometer is not closed, leading to a significant dependence on detuning
of the added phase, hence a substantial oscillation of the correlator.

The importance of having good reflectivity, especially from the mirror, is evident: as
soon as atoms are transmitted, parasitic interferences with the transmitted atoms can
occur (Figure 5.7).

Experimentally, it is not possible to filter out these atoms, as they fall almost simul-
taneously with the atoms in the same momentum mode on the MCP. Thus, the signal
received by the detector corresponds to the average over a certain integration volume of

185



CHAPTER 5. BRAGG PULSES SHAPING AND PHASE CONTROL FOR A BELL TEST

0 2 4

Time (ms)

0.0

0.1

0.2

0.3

0.4

P
os

it
io

n
(m

m
)

Figure 5.7: Atom trajectories in an imperfect interferometer, taking into account atom
leakage through the mirror. Representation in the laboratory frame. Solid lines represent the
trajectories of off-resonant atoms in the HOM interferometer, while dotted lines correspond to the
trajectories of atoms transmitted by the mirror, and possibly reflected again by the beam splitter.
These atoms form spurious interferences with the atoms that contribute to the observation of Bell
correlations, resulting in the appearance of fringes in the correlator. We consider a HOM doublet
at speeds 65 mm.s−1 and 115 mm.s−1 in the laboratory frame, and a Bell quadruplet with a velocity
difference of ±3 mm.s−1 relative to the HOM doublet. The typical free propagation time is 800 µs
and Bragg pulses are considered to be infinitely thin.

the correlator. This is why the moving average of the correlator over a box of 2.0 mm.s−1

has also been plotted in Figure 5.6, in the ideal case without transmitted atoms (in green)
and with transmitted atoms (in blue). The shaded area represents the standard deviation
of the correlator in the box centered on the corresponding abscissa. It can be seen that the
amplitude of the Bell signal decreases more rapidly and with a larger standard deviation
when transmitted atoms are taken into account.

5.1.4 Discussion of previous results

We can now comment on the results obtained from the study of the 2016 HOM ex-
periment. Measurements off-resonance were conducted on three quadruplets, integrated
over a box of 2.0 mm.s−1, centered on ∆v = 2, 4, and 6 mm.s−1, respectively. The joint
detection probabilities were also plotted, to make sure that they vary simultaneously two
by two. The results are given in Figure 5.8 as dots.

We observe a significant variation in the correlator across the three analyzed quadru-
plets. Additionally, the values of the joint detection probabilities have been plotted,
revealing similar variations two by two, as expected. This ensures that the correlator
variations are not due to measurement noise, which would result in random values for the
probabilities. Each measurement point corresponds to 2218 repetitions of the experiment.
On the same plot, we have included, for reference, the moving average of the correlator and
of the joint probabilities (for a closed interferometer) integrated over a 2mm/s box, with a
constant φ0 value set at 107°, so that the average of the correlator and joint probabilities
align with the measurement points for the box closest to resonance.

It is observed that assuming a constant φ0, the model for the correlator varies relatively
slowly with the velocity class, even when accounting for transmitted atoms. This fails to
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Figure 5.8: Joint probabilities and Bell correlator as a function of the velocity class, av-
eraged over a velocity box of 2 mm.s−1. The experimental results are given as blue and orange
dots, while the simulation results are represented in green solid lines. The green shaded areas rep-
resent the standard deviation of the corresponding computed quantity (probability or correlator)
within the integration volume. The value of the calculation parameter φ0, assumed to be constant
for all velocity classes, is adjusted in order to fit the experimental results from the first experi-
mental quadruplet considered, centered on ∆v = 2 mm.s−1. The significant deviation between the
experimental data and the computed correlator suggests that a phase shift not considered in the
calculation may be responsible for the variation of the Bell correlations observed experimentally.

explain the significant variations observed experimentally. The only plausible explanation
is to consider that the phase φ0 depends on the specific momentum quadruplet under
consideration. This would introduce an offset to the correlator from one quadruplet to
another, providing an explanation for the observed variations in E.

For the quadruplet centered on ∆v = 6 mm.s−1, the measured value of the correlator
is 0.51 ± 0.20, providing hope for the future observation of a correlator oscillation (once
the control of the phase imprinted on the atoms is achieved) with a significant amplitude.
Even if a correlator amplitude greater than 0.71 is required to demonstrate a violation of
the Bell inequality, exhibiting an oscillation of the Bell correlator would be a promising
first step.

The main problem in this measurement using HOM data lies in the inability to control
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the phase imprinted on the atoms, making it impossible to vary it to observe a Bell corre-
lator oscillation. Nevertheless, the previously obtained results by the team are promising
and allow us to assert that it is possible to achieve a non-zero Bell correlator for a given
momentum quadruplet.

In the next section, we will present the strategy devised to carry out a genuine Bell
test by controlling the relative phase imprinted on A and B.

5.2 Bell phase control

As mentioned earlier, we aim to use the fact that doublets A and B of the Bell in-
terferometer do not have the same resonance frequency to control the imprinted phase.
In this section, we will show that this can be done by modulating the two-photon Rabi
frequency. We will first theoretically analyze the desired pulse shape and then discuss its
experimental implementation.

5.2.1 Principle: two-frequency pulses

Since doublets A and B do not share the same Bragg resonance frequency, the idea
is to send a two-frequency Bragg beam splitter pulse on the atoms. Let us consider the
following pulse:

ΩR(t) = ΩMei∆ϕ
(

e
iΩDt

2 + e−
iΩDt

2

)
(5.32)

where ΩM is the amplitude of the two-photon Rabi frequency, and ∆ϕ = ϕ2 − ϕ1 is
the phase difference between the lasers, assumed to be constant during the pulse, whose
duration is noted T . The two additional terms make it possible to shift the resonance
condition by ±ΩD/2.

In a first approximation, it can be considered that this pulse is equivalent to two
independent pulses: the left term has a resonance shifted by −ΩD/2 while the right term
has a resonance shifted by +ΩD/2. This can be easily understood by injecting one of these
terms in the two-level Bragg system 4.60:

Ċ0

Ċ2

 =
i

2

 0 ΩMei∆ϕe
i
(
δ0+

ΩD
2

)
t

ΩMe−i∆ϕe
−i

(
δ0+

ΩD
2

)
t

0

C0

C2

 (5.33)

This expression, which is valid for a two-photon Rabi frequency ΩR(t) = ΩMei∆ϕe
iΩDt

2 ,
can be analytically solved with a variable change indicating a resonance frequency shift.
However, when summing two such pulses, the system cannot be analytically resolved
anymore because the pulse depends non-trivially on time. Nevertheless, the system can
be solved numerically, giving, for example, a plot of the reflection coefficient associated
with this pulse.

We consider a two-frequency pulse with a two-photon Rabi frequency amplitude of
ΩM = 1 kHz. The pulse duration is T = π/2ΩM = 250 µs. The Bragg coupling system
from equation 4.60 was solved numerically using C0(0) = 1 and C2(0) = 0. In Figure 5.9,
the reflectivity profiles (i.e., |C2(T )|2) are plotted against the detuning for various values
of ΩD.
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Figure 5.9: Bragg reflectivity profiles as a function of the detuning for two-frequency
Bragg beam splitters. |C2|2 is plotted for several values of ΩD. The bragg system 4.60 is solved
with C0(0) = 1 and C2(0) = 0 as initial conditions, for a Rabi frequency ΩM = 1 kHz.

It can be observed that when ΩD is significantly larger than ΩM, there are two distinct
reflectivity peaks, corresponding to two well-defined beam splitters with resonances effec-
tively shifted by ±ΩD/2. The reflectivity profile of each beam splitter has a sinc2 shape,
similar to that of a single pulse. In this case, the two-frequency pulse is equivalent to
implementing two independent beam splitters. As ΩD decreases, the peaks approach each
other until partial and then complete overlap occurs, making them indistinguishable. The
resonant reflectivity is then different from 0.5, due to some interference between the two
beam splitters. This situation with two overlapped pulses is not suitable for implement-
ing a two-frequency Bell pulse, where the goal is to achieve two independent beam splitters.

Now, let us suppose that we are in the case where ΩD is much larger than ΩM , allowing
us to consider the two beam splitters as independent. We introduce a different phase for
each resonance so that the two-photon Rabi frequency is given by:

ΩR(t) = ΩMei∆ϕ

(
e

i
(

ΩDt

2
+ θ

2

)
+ e
−i

(
ΩDt

2
+ θ

2

))
(5.34)

As seen previously, for a single-frequency square pulse, the phase imprinted on the
resonant atoms is equal to the phase difference ∆ϕ between the lasers. Adding these
additional terms, we see that it is possible to imprint a phase ∆ϕ + θ/2 for the doublet
resonating at −ΩD/2 (left term) and a phase of ∆ϕ − θ/2 for the doublet resonating at
+ΩD/2 (right term).

Thus, if we choose ΩD so that the two resonant doublets are the doublets A and B
involved in the Bell interferometer, we can imprint a different phase on doublets A and
B, such that, at resonance, the Bell phase is:

Φ = φA − φB + φ0 = ∆ϕ+
θ

2
− (∆ϕ− θ

2
) + φ0 = θ + φ0 (5.35)

Therefore, in principle, at resonance, we may be able to control the phase difference
between A and B that plays a role in the Bell correlator, allowing us to observe an oscil-
lation. If the amplitude of this oscillation is large enough, it could lead to the violation of
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Bell’s inequality predicted by quantum mechanics.

The importance of studying what happens for non-resonant velocity classes has been
emphasized multiple times. This is particularly crucial because, during an experiment,
we will average the signal over a certain range of momentum. In the following, we will
determine the specific parameters to be employed for the Bragg beam splitter and plot
reflectivity and phase profiles as functions of the detuning.

5.2.2 Experimental implementation

Now, arises the question arises of how to implement these two-frequency pulses. The
basic experimental setup for realizing a two-photon Bragg transition involves an initial
laser beam split into two to form Bragg beams 1 and 2 (Figure 5.10). Each beam is
prepared with the appropriate power and polarization. The frequency of each beam is
controlled using an acousto-optic modulator, to which an RF signal of frequency ωi is
applied. This signal shifts the frequency of the light wave through the diffraction of light
by acoustic waves. The phase of the RF signal determines the phase of the light beam
used for the Bragg transition. The beams are then mixed spatially with a different po-
larization before being separated again while being sent to the atoms with different angles.

Bragg down
AOM

RF ω1

RF ω2

Bragg up
AOM

Towards 
atoms

Figure 5.10: Experimental setup for a two-photon transition. A laser beam is split into two
by a beam splitter. Each beam passes through an acousto-optic modulator, which allows, using
an RF signal, control over the laser frequency and power. The beams are then recombined on a
second beam splitter before being sent to the atoms.

Three ways of implementing two-frequency Bragg pulses were investigated in our team
over the years. Here, we will provide only a brief introduction to the first two, which are
discussed in more detail in the respective theses of M. Perrier[104] and A. Imanaliev[147]
.

• The Bragg resonance frequency is determined by the δ0. To select a specific mo-
mentum class, a given frequency difference ω1−ω2 between lasers is required. Thus,
the first idea for implementing a two-frequency Bragg pulse involves splitting the
initial beam into three parts and using not two but three acousto-optic modulators:
one with a frequency ω1 and the other two with frequencies ω2A = ω2 − ΩD/2 and
ω2B = ω2 + ΩD/2, respectively (Figure 5.11). This way, by recombining beams A
and B, one can obtain light comprising two distinct resonance frequencies.
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Bragg down
AOM

RF ω1

RF ω2A = ω2-ΩD/2

RF ω2B = ω2+ΩD/2
Bragg up

AOM A

AOM B

Towards 
atoms

Figure 5.11: First experimental solution to implement two-frequency Bragg pulses. One of
the two Bragg beams is itself split into two beams, going each through an acousto-optic modulator,
whose frequency is tuned so that a portion of the light is resonant with doublet A while another
portion is resonant with doublet B.

Although this solution enables the emission of two-frequency pulses, its main draw-
back lies in the fact that, since two different beams and two different acousto-optic
modulators are used for doublet A and doublet B, the phase difference imprinted on
the lasers will not be the same. As ∆ϕA and ∆ϕB are distinct, these two terms must
be taken into account in the Bell phase. It is still possible to ensure ∆ϕA = ∆ϕB by
using the same RF source with an adjustable relative phase, or by adding a phase
locking procedure, but this approach remains restrictive as it is sensitive to phase
fluctuations and vibrations that occur when beams A and B are separate.

Bragg down
AOM

RF ω1

Bragg up
AOM

Towards 
atoms

RF ω2A = ω2-ΩD/2

RF ω2A + ω2B

RF ω2B = ω2+ΩD/2
φ2A

φ2A

φ2B

φ2B

φ1

Figure 5.12: Second experimental solution to implement two-frequency Bragg pulses.
Only two acousto-optic modulators are used, but one of them receives a two-frequency RF signal.
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• The second possibility involves mixing two RF signals at different frequencies and
phases, sending the combined signal into a single acousto-optic modulator (Figure
5.12). This AOM would then exhibit two resonance frequencies, each resonant with
a doublet. This technique enables the generation of a two-frequency pulse. To
control the phase imprinted on each loop of the interferometer, it is necessary for
both signals to originate from the same RF source with an adjustable relative phase
between the two output channels.

This technique was implemented in the experiment and yielded initial promising
results[147]. However, despite this, the solution was not chosen at the time because
the AOM used operated in a double-pass configuration, resulting in a more complex
frequency spectrum on the atoms, i.e., a crosstalk phenomenon that could degrade
signal quality. Transitioning to a single-pass configuration provided an opportunity
to explore the third possibility for implementing the Bragg two-frequency beam
splitter, an option that was chosen and will be presented in the following sections of
this manuscript.

The third possibility consists in noticing that implementing two-frequency pulses is
equivalent to performing amplitude modulation of a constant pulse. Indeed, the expression
5.34 of the two-photon Rabi frequency we aim to realize can be written in the following
form:

ΩR(t) = 2 ΩMei∆ϕ cos

(
ΩDt

2
+
θ

2

)
(5.36)

As we can see, it would be sufficient to multiply a constant pulse with a Rabi frequency
ΩM, and a phase difference between the lasers ∆ϕ, by a periodic signal with a frequency
ΩD/2 and an initial phase θ/2. This can be implemented experimentally if two essential
elements are put in place. Firstly, it is necessary to control the power emitted by the
acousto-optic modulators to give the Rabi frequency (proportional to light intensity) the
desired sinusoidal shape. Secondly, we need to add π phase shifts between the two lasers
phases whenever the modulation signal is negative.

• Regarding the power control, it is possible to control the optical power at the output
of an acousto-optic modulator by adjusting the amplitude of the RF signal sent
to the AOM. Nevertheless, the relationship between the amplitude of the electrical
signal and the diffracted optical power is not linear. Therefore, it is preferable to
implement a feedback control system rather than an open-loop control.

This requires generating a reference signal with the desired shape (which can be
achieved with a computer-controllable signal generator), extracting a portion of the
optical power (using a beam sampler, for example), and providing feedback on the
signal sent to the AOM with a Proportional-Integral (PI) controller. The perfor-
mance of the PI controller must be sufficient to ensure that the power follows well
the setpoint signal.

Of course, the required PI controller bandwidth depends on the modulation fre-
quency and the chosen duration of the Bragg pulses, which will be determined in the
following. Typically, a bandwidth of a few hundred of kHz would be sufficient in our
range of applications. This bandwidth is accessible in the laboratory thanks to the
PID controllers developed by the electronics workshop of the Laboratoire Charles
Fabry.
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To ensure that the light intensity on the atoms has the correct shape, it is necessary to
modulate the power of both beams. Instead of implementing two separate feedback
controls on each arm, we can do it on an upstream acousto-optic modulator, before
the separation of the two Bragg beams, which we use to control the total power
allocated to the Bragg and Raman beams (the Raman beams originate from the
same laser and are separated beforehand). Therefore, a power feedback control
system on this AOM is sufficient to control the shape of the absolute value of the
two-photon Rabi frequency.

• Regarding the phase control, assuming that the phase difference ∆ϕ remains con-
stant during the duration of a pulse, an electronic component called a phase shifter
can be used to add π phase shifts. This device, given an input RF signal, produces
an output signal with a certain phase shift determined by a set voltage.

This phase shifter can be placed on one of the two RF signals sent to a Bragg AOM.
The idea is to generate a set voltage synchronized with the power setpoint to ensure
that π phase shifts occur when the two-photon Rabi frequency should be negative
(Figure 5.13). Similarly, the response bandwidth of the phase shifter must be greater
than a few kHz to make sure that when the phase setpoint is varied, a π phase jump
occurs.
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Figure 5.13: Voltage setpoints and two-photon Rabi frequency for a modulated Bragg
pulse. The Bragg power setpoint, combined with π phase shifts, makes it possible to have a
negative two-photon Rabi frequency, so that the modulated Bragg pulse is resonant with two
velocity classes. The phase shifter setpoint is calibrated such that the phase shifter adds a π phase
shift in the RF signal of a Bragg AOM whenever the two-photon Rabi frequency must be negative.

Then, we can shape the two-photon Rabi frequency so that we have:

ΩR(t) = 2 ΩMei[ϕ2−ϕ1+sgn(ΩR(t))]

∣∣∣∣cos

(
ΩDt

2
+
θ

2

)∣∣∣∣ (5.37)

193



CHAPTER 5. BRAGG PULSES SHAPING AND PHASE CONTROL FOR A BELL TEST

where sgn(ΩR(t)) is a function that equals zero when ΩR(t) is positive and π when ΩR(t)
is negative. This is the expression 5.34 of the two-photon Rabi frequency that selectively
imprints a phase ±θ/2 depending on the resonant doublet. Thus, experimentally, to vary
the Bell phase, it will be sufficient to vary the phase at the origin of this modulation
function.

It is important to note that with this technique, we do not precisely control the absolute
phase imprinted on each doublet but rather the phase difference imprinted between these
two doublets. Indeed, the phase imprinted on doublet A, for example, is given by φA =
ϕ2 − ϕ1 + θ/2.

While θ is a fully tunable parameter, ϕ2 − ϕ1 is a parameter to which we do not have
direct access. This does not pose a problem for observing oscillations in the Bell correlator
since this term does not come into play. However, to claim that a rigorous Bell test is
conducted, one must be able to independently control φA and φB, which, in our case, vary
jointly with ϕ2 − ϕ1.

A stronger version of the Bell test, incorporating independent control of ϕA and ϕB, is
currently under investigation in our team. Such a project requires phase control between
the two lasers, which is not necessary in our weaker version. One idea involves observing
the two beams beating and locking this signal to a set value to fix the value of ϕ2 − ϕ1,
enabling control of ϕA and ϕB at will. Since the frequency of the two beams varies during
the Bragg pulses (due to the frequency sweep which compensates for gravity), it would be
necessary to lock the beat before the pulse emission and release the lock at the moment of
the pulse, relying on the assumption that the phase does not vary on the timescale of the
interferometer. We will describe in Chapter 6 experiments showing that this assumption
is well verified.

Let us conclude regarding the experimental implementation of the two-frequency pulses.
By adding the power feedback control and the phase shifter, the resulting two-photon Rabi
frequency that we are able to shape can be expressed in a general form as:

ΩR(t) = |ΩR(t)|ei[ϕ2−ϕ1+∆ϕ(t)] (5.38)

where the optical power control shapes the profile of the absolute value |ΩM(t)| of the
two-photon Rabi frequency, and the setpoint of the phase shifter controls the phase ∆ϕ(t)
term imprinted on the atoms over time.

The implementation of the complete setup, as depicted in Figure 5.14, makes it possible
to have a two-photon Rabi frequency of any shape. It can be not only negative, if we
restrict ourselves to π jumps, but also complex if we allow continuous phase variation of
∆ϕ(t). This ability to shape the two-photon Rabi frequency as desired is known as pulse
shaping. This practice, increasingly prevalent in the community, enables the generation of
Bragg pulses with characteristics optimized for specific cases. In particular, as discussed
later in this chapter, pulse shaping can be employed to enhance the reflectivity of Bragg
pulses, improving the visibility of interferometric signals. To our knowledge, there is no
example in the literature where the temporal profile of a Bragg pulse is modulated to have
two resonance frequencies, as is the case here. Although this method was developed in a
specific context of a Bell interferometer, it would be interesting to reuse the concepts and
tools developed within this framework for application in other contexts.
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Bragg phase 
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Figure 5.14: Experimental setup for pulse shaping. A first AOM is used to control the
intensity of the Bragg beams, using a power feedback loop. The setpoint voltage is digitally
generated and controls the amplitude of the RF signal sent to the AOM. In parallel, a phase
shifter receives a setpoint voltage such that a phase jump of π is added to the RF signal sent to an
AOM on the path of one of the Bragg beams, when the two-photon Rabi frequency is supposed to
be negative. The RF signals of frequencies ω1 and ω2 are generated by the same device.

5.2.3 Reflectivity and phase of Bragg pulses for a Bell test

We can now attempt to determine the characteristics of the Bragg pulses that we
should use for a Bell test. To do this, it is necessary to establish specifications given the
performance we aim to achieve. Let us recall that the Bell correlator we aim at measuring
can be expressed as

E(∆v) = A(∆v) cos(Φ(∆v)) (5.39)

where ∆v determines a momentum quadruplet.

Experimentally, we will average this signal for a given quadruplet over a velocity range
corresponding to a mode, approximately in the order of 1 mm.s−1. Optimizing the per-
formances of the Bragg pulses has a dual purpose: firstly, to ensure that the reflectivity
is sufficiently high so that the interference amplitude A(∆v) is maximized for our given
population; secondly, to ensure that the imprinted phase Φ((∆v) does not vary too much
on the scale of a mode to avoid blurring the interference.

Regarding the mirror:

• We aim to generate a one-frequency pulse with a resonance broad enough for the
reflectivity to be closest to 1 over a velocity range corresponding to several pairs of
modes, around 10 mm.s−1 (i.e., 5 mm.s−1 on either side of resonance). Otherwise,
atoms transmitted through the mirror start to interfere with the useful signal.

• We have observed that the phase imprinted by the mirror on the atoms plays a role
in the Bell phase expression. Therefore, we also want the phase imprinted by the
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mirror to vary minimally over a velocity range corresponding to a mode, around
1mm/s.

Regarding the beam splitter:

• We aim to create a pulse at two frequencies, each with a resonance broad enough
for the reflectivity to be close to 0.5 over a velocity range corresponding to several
modes. The two resonance peaks must be sufficiently separated to avoid cross talk
that would harm the reflectivity of the beam splitters.

• Similar to the mirror, we want the phase imprinted by the beam splitter to the atoms
to not vary significantly over a velocity range corresponding to a mode.

Since we only have an estimate of the atom population per mode due to significant
uncertainty in the quantum efficiency of the MCP, it is challenging to provide a concrete
quantitative criterion for the reflectivity needed to observe the Bell inequality violation
predicted by quantum mechanics. Therefore, we will assume that the input state of the Bell
interferometer is a so called “Bell” state, maximally entangled, rather than a superposition
of TMS states. In this manner, the subsequent study will focus on examining the effects
of a decrease in Bell contrast solely attributed to the interaction with light, independently
of the quality of the input state.

In the following, we will separately study the mirror and beam splitter pulses to an-
alyze these different criteria. To achieve this, it is sufficient to solve the coupled Bragg
system of equations 4.51, taking into account the possibility of diffraction towards higher
orders. To analyze the performance of each pulse, we initially assume that the input state
is composed solely of mode p to numerically determine the reflectivity and phase profiles
of a given pulse as a function of detuning. Subsequently, we will plot the Bell correlator
for the selected pulses.

We now turn to the phase imprinted on the atoms. The phase that matters for us
is the Bell phase, which includes not only the Bragg pulses but also free propagation.
Nevertheless, we can examine the phase imprinted by a given pulse by studying the phase
difference between the transmitted and reflected atoms. Indeed, as seen in equation 5.12,
the phase of the Bell correlator depends on such a phase difference for a given pulse.

For constant pulses, we have derived an analytical expression for the reflectivity and
phases profiles in the framework of a two-level system, using the evolution operator 4.63.
If we assume that the initial state is (C0(0), C2(0)) = (1, 0) and that the duration of the
pulse is T , we get:C0(T )

C2(T )

 =


[
cos

(
ΩT

2

)
− i

δ0

Ω
sin

(
ΩT

2

)]
e

iδ0T
2

i
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e−i∆ϕ sin

(
ΩT

2

)
e−

iδ0T
2
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 teiφ′

ire−iφ

 (5.40)

with Ω =
√

Ω2
M + δ2

0 .

If we omit the contribution of the laser difference ∆ϕ (which cancels out in the Bell
phase since it is the same for A and B), the imprinted phase by a constant pulse can
therefore be written

∆φ = arg(C2)− arg(C0) = −φ− φ′ = −δ0T

2
+ tan−1

[
δ0

Ω
tan

(
ΩT

2

)]
− δ0T

2
(5.41)
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When the detuning δ0 is significantly larger than the two-photon Rabi frequency ΩM,
we have δ0/Ω ≈ 1, so the imprinted phase is, far from resonance:

∆φ ≈
δ0�Ω

−δ0T +
ΩT

2
= −δ0T +

δ0T

2
= −δ0T

2
(5.42)

This phase, linear with detuning, has no physical significance since far from resonance,
there is no interaction between atoms and light, and thus no imprinted phase. In fact,
this term cancels out when considering free propagation terms. Here, to study the phase
imprinted on the atoms by such a pulse, we will add δ0T/2 to neglect this “dynamic”
phase. The idea is to compare the phase imprinted by the light to the situation where
there is no light. Therefore, when solving numerically the n-level system 4.51, we will plot

φimpr = arg(C2)− arg(C0) +
δ0T

2
(5.43)

This relationship can be generalized to any type of pulse, not necessarily constant, as
the dynamic phase comes from the δ0t/2 terms that are always present in the differential
equation. Regardless of the temporal pulse shape, we will subtract this dynamic phase
term in the study of the imprinted phase.

Finally, since the phase imprinted on the transmitted atoms by the mirror is not
relevant for the Bell phase, we will only plot the phase term from the reflected atoms:

φimpr,mir = arg(C2) +
δ0T

2
(5.44)

Square Bragg mirror

Initially, we can use the mirror chosen for HOM, which is a constant pulse with a two-
photon Rabi frequency ΩM = 5 kHz (and hence, the duration is TM = π/ΩM = 100 µs). It
is worth noting that a larger Rabi frequency results in a broader Bragg resonance, but it
also increases the rate of diffraction towards higher orders, leading to losses in terms of
signal-to-noise ratio. The chosen value of 5 kHz represents a good compromise between
these two aspects.

We will plot the reflectivity and phase graphs as a function of the initial velocity
class, which varies linearly with the detuning via the relation ∆v (mm.s−1) = −2δ (kHz).
The objective is to verify that the performance of the chosen pulse is satisfactory for a
given quadruplet, and if possible, for multiple quadruplets. This assumes the possibility
of multiplexing by conducting several Bell experiments in parallel on various quadruplets,
with each mode represented by a velocity “box” over which to integrate the signal. A
quadruplet is thus formed by two modes symmetric with respect to ∆v = 0 and by two
other modes shifted by vB. The modes represented in green are the modes for loop A,
while the modes in red are the modes for loop B (Figure 5.15). In the following, we
will consider five 1 mm.s−1 wide quadruplets, labeled by their center which is respectively
equal to ∆v = 1, 2, 3, 4, and 5 mm.s−1.

The results for the reflectivity and phase are given in Figure 5.16. We observe that the
phase imprinted on the reflected atoms varies little with the velocity class, and it can be
considered constant for integration over a given mode. However, as previously observed,
the reflectivity decreases quite rapidly with ∆v. By the fifth box, the reflectivity of the
mirror is already only 80%. Consequently, it will not be useful to calculate the signal
beyond this point, because of the interferences with the transmitted atoms.
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Figure 5.15: Schematic representation of the modes involved in the Bell interferometer.
The pulse modes are depicted as Gaussians within a density envelope that characterizes the pair
creation process. Modes within the same quadruplet are characterized by the same filling pattern.
The green area corresponds to the modes resonant with beam splitter A, while the red area
corresponds to the modes resonant with beam splitter B. The Bragg resonance is wide enough to
allow coupling of multiple quadruplets.
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Figure 5.16: Reflectivity and phase profiles of a Bragg mirror. The Bragg coupling system
4.51 was solved for a square pulse with ΩM = 5 kHz and T = π/ΩM in order to get the probability
|C2|2 and the imprinted phase φimpr,mir as a function of the detuning, converted in velocity. The
shaded areas correspond to the five quadruplets considered: the green modes correspond to loop
A doublets while the red modes correspond to loop B doublets.
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Modulated Bragg beam splitter

Let us now turn our attention to the Bragg beam splitter. Unlike the HOM beam
splitter, we aim to apply the amplitude modulation method to imprint a different phase
on doublets A and B. The two-photon Rabi frequency is therefore:

ΩR(t) = 2 ΩM cos

(
ΩDt

2
+
θ

2

)
(5.45)

where we omit the global phase ei∆ϕ caused by the laser difference, which ultimately
cancels out in our configuration.
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Figure 5.17: Temporal profile, reflectivity and phase profiles of a Bragg beam splitter. The
Bragg coupling system 4.51 was solved for a square pulse with ΩM = 5 kHz (left) and ΩM = 500 Hz
(left) with T = π/ΩM and ΩD = 3 kHz, in order to get the probability |C2|2 and the imprinted
phase φimpr as a function of the detuning, converted in velocity.

It quickly becomes apparent that it is not possible to use this method while main-
taining a Rabi frequency amplitude of ΩM = 5 kHz. The duration of such a beam splitter
pulse is T = π/2ΩM = 50 µs. However, our Bragg doublets are separated by approximately
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6 mm/s, equivalent to 3 kHz. Therefore, we must use a modulation frequency on the order
of ΩD = 3 kHz. The modulation period for such a frequency is about 300 µs, which is
significantly higher than the pulse duration. This prevents the modulation from being
adequately defined, resulting in the method’s failure and, consequently, a reflectivity that
does not exhibit two distinct peaks for the resonant velocities, as shown in Figure 5.17,
where pulse profile, reflectivity and imprinted phase graphs are plotted for two different
Rabi frequencies and three values of θ.

The only solution to increase the “resolution” of the modulation is to extend the
duration of the beam splitter. This has the effect of allowing the appearance of two
resonance peaks centered on modes A and B, respectively. Another consequence is that the
resonance peaks are also narrower, which determines the lower limit of the Rabi frequency
that cannot be surpassed if one wishes the reflectivity to be around 0.5 for two or three
quadruplets. In Figure 5.17, two resonance peaks are clearly visible for ΩM = 500 Hz, but
they are not sufficiently separated to be considered independent. This causes a decrease
in reflectivity compared to the desired value of 0.5, which may result in a reduction in
the contrast of the Bell correlator oscillation. However, it is noticeable that the imprinted
phase difference between doublets A and B depends on the initial phase value θ of the
modulation function.

Due to the interference between the two resonance peaks, the imprinted phase differ-
ence between doublets A and B (symmetric with respect to ∆v = 0) is not equal to θ.
However, a significant variation in this phase difference is noted when θ varies. Addition-
ally, on a box scale, the phase only varies by approximately ten degrees. To assess the
effectiveness of phase control using this method, one can plot the averaged phase difference
between A and B over a box of 1 mm.s−1 as a function of θ (Figure 5.18).
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Figure 5.18: Imprinted phase as a function of the control parameter θ. For a given value
of θ and a given quadruplet, i.e. a 1 mm.s−1 wide velocity box labeled by the value of its velocity
center ∆v (in mm.s−1), we plot the imprinted phase difference between the doublet A (in green
in Figure 5.17) and the doublet B (in red in Figure 5.17), averaged over the velocity range of the
box. The error bars are given by the standard deviation of the imprinted phase difference within
the box.

The curves plotted for the five successive quadruplet boxes demonstrate that phase
control operates as intended: there is a one-to-one mapping between θ and the imprinted
phase. The relationship is not as linear as desired due to cross-talk between the two
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resonances, but the imprinted phase can still be controlled using the phase at the origin
of the modulation function.

5.2.4 Bell correlator

With these two pulses, the Bell correlator can be calculated and used as a criterion for
the relevance of the selected Bragg pulses for exhibiting a violation of Bell’s inequality.
Similar to the approach used for the HOM interferometric sequence, we numerically solve
the Bragg coupling equation 5.29 for each doublet to compute the output state. It is worth
noting that determining the appropriate delay for the beam splitter pulse is not straight-
forward now that its duration has been changed compared to HOM. Experimentally, the
ideal approach would be to conduct an HOM experiment using a beam splitter with the
same duration intended for the Bell experiment.

Assuming that a preliminary HOM experiment is performed with a 5 kHz mirror (100 µs
long), a 500 Hz beam splitter (500 µs long), and with T1 = 800 µs, we use the closure
relation 5.26 analytically determined for square pulses to calculate the value of T2 for
which the HOM interferometer is closed. We find T2 = T1− 2TS/π = 482 µs, which we use
as a parameter for the Bell simulation.

Now, these timings can be used to simulate the proper Bell experiment: this time, T2

is fixed, but the correlator is calculated for different values of θ. We take into account the
atoms transmitted by the Bragg mirror.

The simulation results for the Bell correlator are presented in Figure 5.19 for three
values of θ. A noticeable variation of the correlator with respect to this control parameter
is observed. However, within a quadruplet, the correlator varies significantly, potentially
reducing the interference contrast during integration over this velocity range.
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Figure 5.19: Bell correlator as a function of the velocity class for different values of
the control parameter θ. The Bell correlator is computed for a given interferometric profile,
corresponding here to one square mirror and one modulated beam splitter. The two-photon Rabi
frequency of the mirror is ΩM = 5 kHz and the one of the beam splitter is ΩM = 500 Hz. The
free propagation durations are T1 = 800 µs et T2 = 482 µs. Varying θ only consists in changing
the phase at the origin of the modulated Bragg beam splitter. For the non-resonant quadruplets
(beyond ∆v = 6 mm.s−1), the rapid oscillation of the correlator is due to additional phases from
atoms transmitted by the mirror (as discussed in section 5.1.3) but no longer depends on θ, which
explains the superposition of the curves.
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Our main concern is to calculate the average value of the correlator within a speci-
fied box as a function of θ. The obtained results are plotted in Figure 5.20 for the five
quadruplets considered. The error bars correspond to the standard deviation of the Bell
correlator in the considered integration box for each value of θ.
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Figure 5.20: Oscillation of the Bell correlator as a function of the control parameter θ.
For a given value of θ, we compute the correlator E as a function of the velocity class, as shown
in Figure 5.19. Then, we average its value within a velocity box corresponding to a quadruplet,
labeled by the value of its center ∆v (in mm.s−1). The error bars equal the standard deviation of
the Bell correlator within the corresponding integration box.

A clear oscillation of the correlator can be observed as a function of θ for the various
quadruplets. However, it is interesting to note that the interferometric sequence used
to compute these results exhibits several drawbacks and deviations from the ideal case
initially presented.

• Firstly, the observed oscillation is not exactly sinusoidal. This was actually expected
based on the results from the previous section on phase control, which already in-
dicated that the phase imprinted on the atoms does not vary linearly with θ (5.18).
This is because the two beam splitters are not independent, so atoms from doublet
A also experience an imprinted phase that is preferentially imprinted on doublet B.

• For the same reasons, although the correlator’s oscillation has a period of approx-
imately 2π, it can be observed that the correlator is not strictly 2π periodic but
rather 4π periodic, despite the initial prediction of an oscillation in the form of
E = A cos(θ). This is due to the modulation function in cos(ΩDt/2 + θ/2), which is
itself 4π periodic. Because of the cross talk between the beam splitters, the reflec-
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tivity and the phase imprinted on the atoms differ for a phase θ = 0 compared to a
phase θ = 2π.

• The amplitude of the oscillation is indicative of the quality of the mirror and the
beam splitter in the considered box: it is maximal for the 3rd quadruplet, correspond-
ing to the center of resonance. It degrades for boxes 1 and 2, where the reflectivity
of the beam splitter deviates significantly from 0.5, and similarly for boxes 4 and
5, where the quality of the mirror and the beam splitter degrades compared to the
resonance.

• Similarly, as one moves away from the resonance, the reflectivity of the mirror de-
creases. For the quadruplets farthest from the resonance, there are many transmitted
atoms interfering with the useful signal, inducing a significant variation of the cor-
relator with the velocity class. This is reflected in the graph by increasingly large
error bars. This situation is not desirable experimentally as it significantly decreases
the signal-to-noise ratio.

Recall that, for a sinusoidal Bell correlator, the amplitude of the oscillation should
be greater than 1/

√
2 = 0.71 if one hopes to observe a violation of Bell’s inequality. But

when the correlator is not sinusoidal, the angles θ for which the maximum value of the Bell
parameter S can be reached are not obvious, so this condition on the oscillation amplitude
does not hold.

Instead, it is possible to numerically determine the maximum value of S which can be
achieved given a Bell correlator, by trying many sets of phases. The Bell parameter is
defined as

S = E(φA1 − φB1)− E(φA1 − φB2) + E(φA2 − φB1) + E(φA2 − φB2) (5.46)

Numerically, we enumerate all sets of four phases (φA1, φA2, φB1, φB2) where each
value of φ is within the range of 0 to 355° with a 5° increment, and we calculate S knowing
the value of E for all corresponding θ = φA − φB values. We repeat the same procedure
for θ between 360 and 720°. The highest value Smax of S that can be achieved for each
quadruplet is given in Table 5.1. We also calculate an estimation of the error bar on S
using the errorbar ∆E on E, with

∆S =

√∑
i,j

(∆E(φi − φj))2 (5.47)

We note θ1 = φA1 − φB1, θ2 = φA1 − φB2, θ3 = φA2 − φB2 and θ4 = φA2 − φB2. The
results are to be compared with the value Sth that we get by using the optimal angles for
a sinusoidal correlator1.

Two quadruplets can produce a Bell parameter exceeding 2, with a relatively low
error bar. These are the quadruplets for which the correlator has the largest oscillation
amplitude. The values of φA−φB that optimize S differ from the ones typically considered,
due to the unusual shape of the correlator.

It is important to note that this model only accounts for the effects of Bragg pulses on
the correlator amplitude; in a real experiment, there are additional causes for the decrease
of the amplitude of E (and of S, subsequently), especially due to the initial state of the
interferometer not being maximally entangled. We have seen that for a two-mode squeezed

1That is to say φA1 − φB1 = 45°, φA1 − φB2 = 135°, φA2 − φB1 = 315° and φA2 − φB2 = 45°.
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Quadruplet Smax θ1 θ2 θ3 θ4 Sth

1 0.90± 0.30 445° 530° 360° 445° 0.41± 0.45

2 2.60± 0.27 65° 130° 0° 65° 2.46± 0.32

3 2.58± 0.24 400° 495° 665° 400° 0.82± 0.41

4 2.00± 0.62 0° 325° 35° 0° 1.48± 0.57

5 1.82± 0.94 355° 45° 305° 355° 0.56± 0.80

Table 5.1: Values for the Bell parameter.

state, the Bell oscillation amplitude decreases with the atom population per mode. Fur-
thermore, our source of pairs does not truly provide two-mode squeezed states; although
we model the initial state as a superposition of TMS, the g(2) correlation measurements
suggest the state is likely more complex. For these reasons, we will delve a bit further
into the analysis in the next section, in order to bring the Bell parameter even closer to
the ideal value of 2

√
2, with an even smaller variation of the correlator within a quadruplet.

In conclusion, it has been demonstrated that modulating a constant signal by a si-
nusoidal function allows, through the phase at the origin of this function, the control of
the Bell correlator. Although the double-frequency beam splitter used is not ideal, as the
phase imprinted on doublets A and B is not independent, one can still hope to observe a
correlator variation with sufficient amplitude to exhibit a violation of Bell’s inequality for
several momentum quadruplets.

In the following, efforts will be made to improve these results by leveraging the fact
that the techniques employed to create a double-frequency beam splitter (laser power lock
and π phase shifts) can also be used to optimize the reflectivity and phase profiles of the
mirror and the beam splitter.

5.3 Bragg pulse shaping

5.3.1 State of the art, motivation and criteria

Pulse shaping

The perturbative development carried out in section 4.2.3 has demonstrated that, in
the limit where the transfer rate is small, the reflectivity profile as a function of detuning
is equal to the Fourier transform of the temporal profile of the pulse. We will use this idea
to shape a pulse with the most rectangular reflectivity profile possible by examining pulses
whose temporal profiles have the form of a sinc function. Such pulses can be experimentally
realized using the same techniques employed for phase control, enabling access to negative
or even complex two-photon Rabi frequencies. By extending our parameter space in this
manner, we can relax some constraints imposed by square pulses and achieve improved
reflectivity profiles in the desired velocity ranges.

It is important to note that this Fourier transform relationship is not valid when the
transfer rate is significant, which is obviously the case for beam splitters and even more
so for mirrors. Therefore, we will observe significant deviations in the reflectivity profiles
from rectangular shapes. However, the obtained profiles with sinc pulses still improve both
the velocity range with excellent reflectivity and the sharpness of the resonance compared
to square pulses. These aspects are crucial for achieving high-quality Bragg mirrors and
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beam splitters.

As mentioned before, this technique is referred to as pulse shaping. In the literature,
there are some examples where this method is suggested to enhance contrast in atomic
interferometers. In the early 2010s, inspired by techniques used in NMR for manipulating
quantum states[148][149], theoretical work emerged with the aim of enhancing and shaping
the reflectivity profile of two-photon transitions in a controlled manner[150]. The idea is
to generate composite pulses, i.e., a series of pulses with varying phases. In the context of
NMR, these pulses have demonstrated significant robustness to variations in interaction
parameters such as pulse amplitude and frequency, along with the suppression of excitation
sidebands which justifies the growing interest in these methods for atom interferometry
and quantum processing. Indeed, not only can the transfer rate over a given range of
velocity be tuned by shaping the pulse intensity and shape, increasing the interference
contrast, but the temporal shape is expected to affect the response of the interferometer
to phase fluctuations, which is a major source of instability in most atom interferometers.

The first experimental results for studying the reflectivity profiles of these composite
pulses on cold thermal clouds were promising[151]. Such pulses have quickly found ap-
plications in atomic Mach-Zehnder interferometers [152] demonstrating their importance,
especially in interferometers where multiple consecutive transitions are performed to im-
part a large momentum transfer to the atoms[153]. This led to the development of new
procedures to shape the temporal profile of Raman and Bragg pulses by tuning both the
phase and power of the pulses. In particular, Luo et al.[154] proposed using sinc-shaped
pulse profiles to make the reflectivity profile rectangular, while other authors have investi-
gated the possibility of using Gaussian-shaped pulses[155][156]. Note that there are pulses
that are potentially better than sinc-shaped pulses for the mirror in particular[154], which
belong to the BURP family used in NMR[157]. The study of such pulses would constitute
a logical continuation of this work.

A first experimental attempt to use sinc-shaped pulses on thermal cold atoms was
reported by Fang et al.[158] in 2018, introducing the π shifts technique to achieve negative
Rabi oscillations. The authors demonstrated that sinc-shaped profiles (peak Rabi fre-
quency of 12 kHz, duration 300 µs), although challenging to implement, exhibit a broader
resonance width compared to other tested profiles (Gaussian and rectangular). It is worth
noting that the shaped pulses do not lead to an improvement in resonance transfer effi-
ciency but rather an increase in the width of the resonance, so the performance of the
beam splitters and mirrors remained low (up to 0.35 and 0.8 transfer efficiency, respec-
tively).

To our knowledge, there is no other experimental example that specifically employs
pulse shaping techniques for atomic interferometers. Indeed, the pulse shaping approach
falls within the broader scope of seeking to improve the contrast of interferometric sig-
nals. In recent years, another technique has been gaining prominence: optimal control.
The principle involves using an algorithm that, given constraints in terms of reflectivity or
phase, optimizes the temporal profile of a pulse to meet these specifications[159][160]. This
is often achieved by decomposing the profiles into bases of reference functions. The opti-
mization is performed with respect to a cost function that contains information about the
criteria to be met, and the algorithm aims to minimize this function. Beyond constraints
related to interferometric performance, it is also crucial for the algorithm to consider tech-
nical constraints, such as power lock and phase bandwidth, or pulse duration, to ensure
that the pulse profile towards the algorithm converges is experimentally accessible.
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Such optimal control resulting pulses were successfully implemented in Mach-Zehnder
interferometers[161], exhibiting an enhanced contrast and resonance width. With the
rise of interferometers with large momentum transfer, this technique is increasingly be-
ing studied[162][163][164][165] and experimentally applied with promising results[166]. It
serves not only to improve the contrast of interferometric signals but also to enhance their
robustness to phase fluctuations.

Application to our case: sinc-shaped pulses

In our case, the highly specific constraints on phase and reflectivity make it challenging
to use existing algorithms to determine the optimal profile for conducting our Bell inequal-
ity test. However, it would be an interesting project to focus on the use or creation of an
optimal control code. The cost function could be the difference between the Bell correlator
and a sinusoidal function, or even directly related to the Bell parameter S (which would
require a few additional code steps since, if the correlator E is not sinusoidal but takes
another form, the phase values that optimize the Bell parameter must be determined given
the shape of E).

Nevertheless, it is worth noting that one of the advantages of using sinc pulses lies
in the ease of determining the role of various free parameters. This allows convenient
modification of these parameters to alter the profile as desired. It is a user-friendly tool
compared to an optimal control algorithm, the outcome of which would be specific to a
predetermined set of specifications.

Let us express the sinc pulse in the form, for t ∈ [0, T ]:

ΩR(t) = ΩM sinc (ΩS(t− T/2)) (5.48)

The parameters ΩM (depth of the lattice), T (duration of the pulse), and ΩS (sinc fre-
quency) are free, and we aim to determine them using the criteria mentioned earlier.
Initially, we will seek to establish the relationship between these parameters that enables
the creation of mirror and beam splitter pulses. To achieve this, we cannot retain con-
ditions ΩRT = π and ΩRT = π/2, which are only valid for square pulses. Therefore, we
rewrite these conditions in integral form:∫ T

0
ΩR(t) dt = απ (5.49)

where α = 1 for a mirror and α = 1/2 for a beam splitter. This condition can be rewritten
in a dimensionless form by involving the sine integral function, denoted as Si:∫ T

0
ΩR(t)dt = 2

ΩM

ΩS
Si

(
ΩST

2

)
= απ (5.50)

where

Si(x) =

∫ x

0

sin t

t
dt (5.51)

The graph of the sine integral function is provided in Figure 5.21. It is observed that this
function rapidly approaches π/2 when x is sufficiently large. We will use this asymptote
to satisfy condition 5.50. By assuming that the product ΩST/2 is large, we indeed have
Si (ΩST/2) ≈ π/2. This leads to a relationship between ΩS and ΩM that must be satisfied
to achieve a beam splitter or a mirror:
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• For a mirror (α = 1), we must use ΩS = ΩM ;

• for a beam splitter (α = 1/2), we must use ΩS = 2ΩM.
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Figure 5.21: Graph of the sine integral function.

These conditions determine the parameter ΩS. In the following, we will aim to manip-
ulate T and ΩM to meet the specifications in terms of reflectivity and phase described in
section 5.2.3.

5.3.2 Sinc-shaped mirror

In this section, we will study the reflectivity and phase profile of sinc pulses defined
in equation 5.48. For a mirror pulse, we have ΩS = ΩM. Two examples of reflectivity
profiles are provided in Figure 5.22 for ΩM = 5 kHz sinc pulses with respective durations
of T = 0.4 and 1 ms. The reflectivity associated to a constant 5 kHz pulse is shown in
dashed lines.

For a sinc pulse, the full-width at half-maximum of the resonance is mainly determined
by the Rabi frequency amplitude ΩM, provided that the pulse duration T is long enough
for the sinc to be “resolved”, i.e., the duration must be sufficient for the rebounds of
the sinc to appear. The longer the duration, the more rebounds the sinc exhibits, and
the better the reflectivity resembles a rectangular profile. However, significant deviations
from a perfect rectangular reflectivity profile are observed, as expected, since the Fourier
relationship between reflectivity and the temporal shape no longer holds when the transfer
rate is high.

Thus, reflectivity rebounds are observed, more centered on the resonance as T in-
creases. Similarly, the sharpness of the profile increases with the pulse duration. To
compare the different profiles, the following observables are defined, focusing on the width
and sharpness of each profile: W50% and W90% which correspond to the width of the res-
onance at 50% and 90% reflectivity, respectively, and S±(50%) which represents the slope
of the reflectivity curve at 50%:

S± =
d|C2|2
d∆v

(50%) (5.52)

Quantitative comparison of the results obtained for different reflectivity profiles can
be made (Table 5.2). For the pulses considered here, it is observed that the sinc pulse
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Figure 5.22: Pulse shape and reflectivity profile of sinc-shaped mirror pulses. The reflec-
tivity profile |C2|2 is computed as a function of the velocity class from system 4.51 for the two
profiles depicted at the top of the figure for two different pulse durations (T = 0.4 and 1 ms), with
a two-photon Rabi frequencyΩM = 5 kHz. For comparison, the reflectivity profile of a square pulse
with the same two-photon Rabi frequency is shown as a black dashed line.

not only improved the velocity range for which reflectivity is very good (W90% increased
by a factor of 1.3) but also enhanced the sharpness S± of the profile by a factor of 2 to
4 depending on the pulse duration. As we will see in the next section, this improvement
will hold particular significance for beam splitter pulses.

Pulse Width (mm.s−1) Sharpness (%/mm.s−1)

Shape T (ms) W50% W90% S±(50%)

square 0.1 15.5 5.7 ±9.6

sinc 0.4 12.9 8.7 ±23.3

sinc 1 15.9 8.0 ±43.1

sinc 2 14.8 7.1 ±28.2

Table 5.2: Bragg mirror performances for ΩM = 5 kHz.

However, the interest in the sinc pulse for the mirror remains limited. To further in-
crease the resonance quality over a broader velocity range, increasing the two-photon Rabi
frequency would be necessary. But this would lead to an increase in population in higher
diffraction orders, which is not desirable in our case as it would decrease our signal-to-
noise ratio. Nevertheless, quantifying this effect would be interesting, as there might be a
compromise between reducing the signal-to-noise ratio and increasing the mirror quality.
This would require a detailed model of the expected signal-to-noise ratio given the atomic
population per mode, the quantum efficiency of the detector, and the quality of the Bragg
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pulses. Establishing such a model is an ongoing project.

Note that the reflectivity profile not only exhibits rebounds but also small additional
peaks (especially when T is large), which can be likened to Gibbs oscillations that appear
when truncating a signal and calculating its Fourier transform. A simple way to smooth
the signal is through apodization, which involves multiplying the sinc by a windowing
function. This has the effect of reducing Gibbs oscillations by decreasing the amplitude of
the sinc rebounds, making the truncation less abrupt. Smoothing the reflectivity profile
within the velocity range relevant for Bell will also result in smoothing the Bell correlator
within a given integration bin, thus reducing its standard deviation within that quadruplet,
aiming for an improved signal-to-noise ratio.

Thus, one can multiply the sinc by a function written in the form:

w(t) = sinβ
(
πt

T

)
(5.53)

where β denotes the degree of apodization. For β = 0, we have w(t) = 1, while for β = 1,
the window is sinusoidal. For β = 2, it is a Hann-type window, well-known in signal
processing. The reflectivity plots are provided in Figure 5.23 for T = 2 ms.
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Figure 5.23: Comparison between the reflectivity profiles of the sinc-shaped pulses, with
and without apodization. The pulse parameters are the same (T = 2 ms, ΩM = 5 kHz), except
for the degree of apodization β, which equals 0 (in blue) or 2 (in orange).

Apodization might also have the effect of deteriorating the sharpness of the reflectivity
profile. For T = 2 ms and β = 2, we find W90% = 7.7 mm.s−1 , W50% = 15.4 mm.s−1 and
S± = ±20.6%/mm.s−1, so the performances of the mirror are similar than those of the
pulse without apodization. However, it is noticeable that when T is shorter, the window-
ing becomes less beneficial and may even tend to degrade the mirror’s performance. For
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T = 1 ms and β = 2, we find for instance W90% = 7.9 mm.s−1 , W50% = 14.3 mm.s−1 and
S± = ±23.4%/mm.s−1 , which is slighlty lower than the values for β = 0.

Finally, it should be noted that experimentally, it is not particularly relevant to choose
arbitrarily long pulse durations. First, decoherence that can occur if the light-atom in-
teraction is prolonged (due to spontaneous emission). Of course, this is even more true
when the laser intensity is high; hence, the decoherence rate for a sinc-shaped pulse with
duration T remains much lower than for a constant signal of the same duration. In fact,
a sinc shaped pulse can often be considered equivalent to a constant pulse with the same
two-photon Rabi frequency since it is the area under these two temporal signals that is
conserved for a mirror. Furthermore, an excessively long mirror or beam splitter duration
would lead to a significant duration of the Bell interferometer. Since atoms fall freely
during the interferometer, there is a risk of them leaving the beams if the interferometric
sequence is too long.

For all these reasons, we will consider in the following a sinc mirror pulse of two-
photon Rabi amplitude ΩM = 5 kHz with a duration T = 1 ms without apodization. The
reflectivity and phase profiles over the velocity range of interest for Bell are provided in
Figure 5.24, and exhibit a slight improvement compared to the square pulse.
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Figure 5.24: Reflectivity and phase profiles of a Bragg sinc-shaped mirror. The Bragg
coupling system 4.51 was solved for a pulse with ΩM = 5 kHz and T = 1 ms in order to get the
probability |C2|2 and the imprinted phase φimpr,mir as a function of the detuning, converted in
velocity. Again, the shaded areas correspond to the five quadruplets considered: the green modes
correspond to loop A doublets while the red modes correspond to loop B doublets.
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5.3.3 Modulated sinc-shaped beam splitter

The same ideas can be applied to the beam splitter. Rather than multiplying the
constant pulse with a modulation function to create a two-frequency splitter, we will
modulate a sinc function. The idea is to take advantage of the flexibility we have over
the duration of the sinc pulses to resolve the modulation function without deteriorating
the reflectivity of each splitter. The sharpness of the resonance peaks of the sinc pulses
is an advantage in avoiding interference between the two splitters, which will make it
possible to approach the ideal case where the two splitters are independent. To this end,
the expression of the beam splitter is:

ΩR(t) = 2 ΩM sinc (ΩS(t− T/2)) cos

(
ΩDt

2
+
θ

2

)
(5.54)

with ΩS = 2 ΩM.

Let us first consider the case of a single-frequency beam splitter without modulation to
compare the performance of a Bragg splitter with a sinc-shaped splitter against a constant
splitter. The reflectivity graphs for ΩM = 5 kHz are plotted Figure 5.25.
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Figure 5.25: Pulse shape and reflectivity profile of sinc-shaped beam splitter pulses. The
reflectivity profile |C2|2 is computed as a function of the velocity class from system 4.51 for the
two profiles depicted at the top of the figure for two different pulse durations (T = 0.4 and 1 ms),
with a two-photon Rabi frequency ΩM = 5 kHz. For comparison, the reflectivity profile of a square
pulse with the same two-photon Rabi frequency is shown as a black dashed line.

This time, a truly significant difference is observed between the reflectivity profile
obtained for a constant pulse and that obtained for the sinc. This is due to the fact that
the relationship describing reflectivity as the Fourier transform of the temporal signal is
better satisfied for the beam splitter than for the mirror. The considerations regarding
the pulse duration are the same as for the mirror: the longer the duration, the better the
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resolution of the sinc, which has more rebounds, resulting in a more rectangular reflectivity
profile. However, additional small peaks appear in the reflectivity, also due to the rather
abrupt truncation of the sinc. Even more than for the mirror, these Gibbs oscillations
induce a variation in reflectivity at resonance, which will, in turn, lead to a variation in
the correlator. As before, this reflectivity can be smoothed by multiplying the sinc by an
apodization window as defined in equation 5.53. To quantify this effect, one can define
the smoothness s of the pulse reflectivity at resonance as the standard deviation of the
reflectivity profile in a velocity range for which the reflection probability remains within
90% of the desired value of 0.5:

s90% = std(|C2(∆v)|)90% (5.55)

We also use the previous definitions of the width at 50% and 90%, as well as the sharp-
ness at 50%, by redefining them with respect to a probability of 0.5 (which corresponds
to calculating the width at 25% and 45%, and the slope of the reflectivity when it reaches
25%). This allows for a quantitative comparison of the performance of different pulses.
The results are provided in Table 5.3.

Pulse Width (mm.s−1) Sharpness (%/mm.s−1) Smoothness (%)

Shape T (ms) β W50% W90% S±(50%) s45%

square 0.05 0 32.1 11.3 ±2.3 1.1

sinc 0.4 0 35.5 31.8 ±12.1 3.4

sinc 1 0 37.7 28.9 ±25.9 1.9

sinc 2 0 38.6 26.7 ±41.7 1.4

sinc 0.4 2 33.2 23.6 ±5.9 1.0

sinc 1 2 36.2 25.6 ±12.2 1.2

Table 5.3: Bragg performances for ΩM = 5 kHz

Recall that the sharpness parameter is important because we aim to ensure that the
reflectivity profiles of the two Bragg beam splitters separated by ΩD do not overlap: the
greater the sharpness, the more it ensures that the two beam splitters for A and B will
be independent.

It can be observed that the sinc widens the velocity range with excellent reflectivity by
a factor of approximately 3, representing a significant gain. Additionally, the resonance
slope is greater by a factor of at least 5 (up to 20 depending on the pulse duration), which
is a great advantage for subsequently realizing a two-frequency pulse with independent
resonance peaks. Moreover, as expected, the apodization function smoothens the signal
over the resonant range but significantly reduces both the resonant range and the sharp-
ness of the resonance. In the following, we will not seek to smoothen the reflectivity profile.

Let us now return to the two-frequency pulses. We choose a modulation frequency ΩD

of around 3 kHz, corresponding to two resonance peaks centered at ∆v = 3 mm.s−1 and
∆v = −3 mm.s−1. These values correspond to the center of the two velocity zones we aim
to address. Similar to a constant splitter, the resonance for a 5 kHz pulse is currently too
broad, which would lead to interference between the two resonance peaks A and B. To
avoid this, the two-photon Rabi frequency needs to be decreased to narrow the resonance
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width. The primary advantage of the sinc shaped pulse is that this reduction does not
come with a significant decrease in the performance of each splitter.

We choose pulses with a Rabi frequency of ΩM = 800 Hz to maintain good reflectivity
for the five considered quadruplets. We take ΩD = 3.5 kHz and T = 1 ms. The results
are plotted in Figure 5.26 for different values of θ. They are to be compared with those
from Figure 5.17 obtained using a two-frequency beam splitter without a sinc-shaped form.
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Figure 5.26: Temporal profile, reflectivity and phase profiles of a sinc-shaped Bragg beam
splitters, for different values of θ. The Bragg coupling system 4.51 was solved for a sinc pulse
with ΩM = 800 Hz, ΩD = 3.5 kHz and T = 1 ms, in order to get the probability |C2|2 and the
imprinted phase φimpr as a function of the detuning, converted in velocity.

It can be observed that there is still an influence of θ on the reflectivity profiles, but
it remains minor. The reflectivity profile is good (i.e. close to 0.5) and constant for each
quadruplet, except for the quadruplet centered on 1 mm/s, where there is a small inter-
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ference between the two beam splitters. Overall, the reflectivity is much better than with
the square two-frequency pulses, and this is the major advantage afforded by the sinc-
shaped beam splitters. It is also noteworthy that the imprinted phase behaves in a more
controlled manner than with two-frequency constant pulses: the phase difference between
two doublets is constant over the width of a mode and equals to θ, suggesting that the
phase control will be improved.

As done previously, in order to study the quality of phase control, one can examine
the influence of θ on the difference of imprinted phase between doublet A and doublet
B within a given quadruplet, averaged over a mode (Figure 5.27). As expected, the re-
lationship between these two quantities is linear. The most significant deviation from a
linear relationship is observed for the quadruplet centered on 1 mm/s; this is where the
variation in imprinted phase is the most pronounced due to cross talk between the two
beam splitters, arising from a lack of sharpness of the resonance peaks. For the other
quadruplets, however, the phase difference imprinted by light on the doublets A and B is
well controlled by the modulation function’s phase at the origin θ.
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Figure 5.27: Imprinted phase as a function of the control parameter θ for sinc-shaped
beam splitter pulses. For a given value of θ and a given quadruplet, i.e. a 1 mm.s−1 wide
velocity box labeled by the value of its velocity center ∆v (in mm.s−1), we plot the imprinted
phase difference between the doublet A (in green in Figure 5.26) and the doublet B (in red in
Figure 5.26), averaged over the velocity range of the box. The error bars are given by the standard
deviation of the imprinted phase difference within the box.

Thanks to pulse shaping, we have successfully designed pulse profiles that meet our
initial specifications: flat reflectivity and imprinted phase across multiple quadruplets.
Phase control is finely ensured by a parameter that is experimentally easy to manipulate.
Therefore, these pulses can be used to simulate the Bell experiment to determine the
correlator that can be achieved with these pulses.

5.3.4 Oscillation of the Bell correlator

The next step involves simulating a Hong-Ou-Mandel experiment. Indeed, experimen-
tally, we will begin by conducting an HOM experiment to determine the timings ensuring
the closure of the interferometer. As discussed before, if this condition is not met, the
phase of the correlator will exhibit phase terms that potentially vary rapidly with the
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detuning, i.e., with the velocity class considered. This could degrade the quality of the
phase control we aim to achieve.

Since we have increased the pulse durations by switching to sinc-shaped pulses, new
timings must be chosen for the interferometer. In the following, we will assume a free
propagation duration of T1 = 1 ms between the start of the interferometer and the mir-
ror. It is worth noting that experimentally, the instant corresponding to the start of the
interferometer is not clearly defined since the pair creation process takes several hundred
microseconds, which highlights the importance of conducting a HOM experiment.

Thus, we consider a sinc mirror of TM = 1 ms duration with a Rabi frequency of 5 kHz,
and a sinc beam splitter (at a single frequency) of the same duration and Rabi frequency
(with the idea of conducting afterwards a Bell experiment using a Bell two-frequency
splitter that also lasts 1 ms, even if the amplitude and profile are different).

We proceed like in section 5.1.2 to simulate a HOM experiment: given an interfero-
metric sequence corresponding to a certain delay for the beam splitter, we calculate the
probability P+− of measuring two atoms in two different output modes as a function of
the velocity class, and average the result over a box centered on ∆v = 0. By varying the
beam splitter delay, or equivalently, the free propagation time T2, we can then observe a
HOM dip when the interferometer is closed.

Note that, since we are not using constant pulses, we no longer have an analytical
expression for the correlator phase and, consequently, for the joint probabilities. Similar
to a Bell calculation, we perform a numerical resolution of the Bragg coupled equations
5.29 for each considered doublet. We then calculate the two-particle output state and,
subsequently, the joint detection probabilities.
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Figure 5.28: Simulation of the HOM experiment with sinc-shaped pulses. The input
state is symmetrized to describe two indistinguishable particles. We calculate, for a given delay
of the HOM beam splitter, the joint probability of measuring an atom in each output mode
P+− = P(p,−q) + P(q,−p) as a function of the velocity class using δ = −kB∆v, and average it
over a velocity box of width ∆ = 2.5 mms−1, centered on resonance, to get P̃+−. The duration of
the first free propagation is T1 = 1 ms, as well as the duration of each pulse. The Rabi frequency
of each pulse is ΩM = 5 kHz.

Interestingly, we observe a HOM dip for a duration T2 = 500 µs. This precisely corre-
sponds to the delay for which the center of the beam splitter and the initial instant are
symmetrical with respect to the center of the mirror: the closure condition involves the
center of the pulses. We had previously demonstrated for a constant pulse that the delay
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between the initial instant and the center of the mirror pulse was not exactly equal to the
delay between the center of the mirror and the midpoint of the beam splitter.
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Figure 5.29: Absolute value of the two-photon Rabi frequency used for the Bell interfer-
ometer as a function of time. The first propagation duration is T1 = 1 ms, while the second
propagation duration is T2 = 0.5 ms. The mirror is a 1 ms long sinc-shaped pulse of Rabi frequency
ΩM = 5 kHz, the beam splitter is a 1 ms long modulated sinc-shaped pulse of Rabi frequency
ΩM = 0.8 kHz, with a modulation frequency ΩD = 1.3 kHz.

One can then use these timings to simulate the Bell experiment, this time using a
two-frequency pulse. The interferometric sequence is depicted in Figure 5.29 for θ = 0.
We calculate the Bell correlator with respect to the velocity class for different values of θ
(Figure 5.30).

We can observe that the correlator varies less on the scale of a box than in the case
of square pulses, which will enhance the amplitude of the correlator oscillation as well
as the signal-to-noise ratio. Again, the sinc-shaped mirror did not significantly improve
reflectivity, as previously noted, and this is reflected in the observation that once again,
the dynamics of the correlator evolution with velocity are dictated by interferences with
transmitted atoms as one moves away from ∆v = 0.
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Figure 5.30: Bell correlator as a function of the velocity class for different values of the
control parameter θ. The Bell correlator is computed for the interferometric profile represented
in Figure 5.29.
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Now, let us plot the oscillation of the Bell correlator as a function of θ, which was
the main goal of the two previous chapters. The results of the simulation are given in
Figure 5.31. We can observe a clear oscillation of the Bell correlator as a function of θ
for all five quadruplets. This oscillation is much closer to a cosine function than what
was observed with the square pulses. The amplitude of the oscillation remains good
for the five considered quadruplets, or at least for the first three. Beyond that, we are
affected by the poor reflectivity of the mirror, leading to a decrease in reflectivity and,
consequently, a reduction in the contrast of the oscillations. Additionally, there is an
increase in transmitted atoms that interfere with the useful signal, resulting in a decrease
in the signal-to-noise ratio. However, the sinc-shaped pulses have still highlighted very
favorable conditions for demonstrating a violation of Bell inequalities.
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Figure 5.31: Oscillation of the Bell correlator as a function of the control parameter θ
for sinc-shaped pulses. For a given value of θ, we compute the correlator E as a function of
the velocity class, as shown in Figure 5.30. Then, we average its value within a velocity box
corresponding to a quadruplet, labeled by the value of its center ∆v (in mm.s−1). The error bars
equal the standard deviation of the Bell correlator within the corresponding integration box.

It is worth noting that, a priori, averaging all quadruplets together to improve the
signal-to-noise ratio may not be possible. Indeed, the results of the off-resonance HOM
experiment for measuring the Bell correlator as a function of the velocity class have shown
that there might be an additional phase φ0 for each quadruplet that we did not consider
here. This would shift the oscillations of each correlator relative to the others. Neverthe-
less, if we manage to spot several quadruplets for which there is a clear oscillation of the
Bell correlator, we could consider averaging these results (after recentering them on the
same phase at the origin) depending on the oscillation amplitude, in order to enhance the
signal-to-noise ratio during the measurement of the optimal Bell parameter S.
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Again, it is possible to numerically determine the values of θ which will optimize S for a
given correlator. Knowing E(θ), we calculate S for every set of phases (φA1, φA2, φB1, φB2)
by path of 5° and between 0° and 355° on the one hand, and 360° and 715° on the other
hand. The highest values are given in Table 5.4.

Quadruplet Smax θ1 θ2 θ3 θ4 Sth

1 2.56± 0.18 390° 490° 650° 390° 2.33± 0.25

2 2.52± 0.16 680° 590° 405° 675° 2.44± 0.20

3 2.78± 0.14 325° 225° 60° 320° 2.55± 0.15

4 1.87± 0.52 425° 520° 690° 425° 1.75± 0.54

5 1.46± 0.76 435° 510° 360° 435° 1.01± 0.94

Table 5.4: Values for the Bell parameter.

The results indicate that with sinc-shaped pulses, three quadruplets would now yield
a Bell parameter exceeding 2. The maximum value of S, obtained for the quadruplet
centered on 3 mm.s−1, is 2.78, which is very close to the maximum value of 2

√
2. More

importantly, due to the correlator’s reduced variation with the velocity class for each
quadruplet, the error bars on S have been reduced by a factor of 2 compared to square
pulses, potentially enhancing the accuracy of the measurement.

Thus, it has been observed that the pulse shaping technique has improved the perfor-
mances of the Bragg pulses, especially the beam splitter, leading to a correlator oscillation
whose sinusoidal shape is closer to the theoretically expected one. The amplitude of this
oscillation may result in S measurements very close to 2

√
2, suggesting that these pulses

could unequivocally highlight a Bell inequality violation.
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CHAPTER 6. EXPERIMENTAL PREPARATION OF THE BRAGG PULSES: INTERFEROMETRIC EXPERIMENTS

This chapter is dedicated to the experimental implementation of the Bragg beams and
the description of interferometric measurements that were realized as proofs of principle.
The majority of the results presented in this chapter were obtained from April to August
2023 (see Appendix A).

In a first section, we describe the implementation of the experimental setup for the pulse
shaping. To calibrate the phase shifter and ensure that the correct phase is imprinted onto
the atoms, we conduct a series of Ramsey-type interference experiment, which involve two
successive beam splitter pulses, such that the interference pattern between two overlapping
BECs allows us to determine the relative phase between them. This experiment enables
us to calibrate the phase shifter and ensure the proper functioning of the phase control
achieved by modulating the two-photon Rabi frequency. The performance of sinc-shaped
pulses will be compared to square pulses by transferring atoms from a BEC in the magnetic
trap. Finally, we conduct a Mach-Zehnder interferometer to ensure that the sinc-shaped
pulses can lead to the observation of interferences.

6.1 Setup of the Bragg pulses

In this section, we will briefly present the procedure used to set up the Bragg beams.

6.1.1 Optical setup

As for Raman beams, we use the 1083 nm laser diode locked 400 MHz away from
the 23S1 → 23P0 transition by a saturation absorption spectroscopy setup using a helium
discharge cell. The beam is amplified by a 1 W fiber amplifier and further red-detuned from
the atomic resonance by an additional 200 MHz through a first Acousto-Optic Modulator
(AOM), which acts as a gate for Bragg and Raman light. An optical fiber carries the
beam to a breadboard which is described in Figure 6.1.

Following the fiber, a polarization beam splitter splits the beam in two, such that
one of them is used as a Raman beam. A beam sampler then takes 8% of the power
of the remaining beam and sends it to a photodiode. Then, the beam is split again by
two successive polarization beam splitters to form the second Raman beam on the one
hand, and the two Bragg beams on the other hand. Each Bragg beam passes through an
acousto-optical modulator which adds about 200 MHz detuning. The RF signal is sent to
the AOMs by a 2-output Aim-TTI® TGF4242 signal generator which makes it possible
to control the detuning and phase between the two beams. The two Bragg beams with an
orthogonal polarization are then spatially recombined after a non polarizing beam splitter
and directed towards the vacuum chamber, where they are once again separated before
being sent to the atoms, with a relative angle θB ≈ 32 ◦ along the vertical axis. Just before
their separation, a portion of the power is used to observe the beating between the two
beams on a photodiode. The whole point of this optical setup is to make sure that the
optical path taken by each beam is as much as possible the same so that the dephasing
between the two is minimal.

The waists of the beams are the same, equal to 2.8 mm and the power of the beams is
chosen to be equal. The detuning to the atomic transition is ∆ = 800 MHz since the light
passes successively through four 200 MHz AOMs. The polarization axis is determined by
a bias magnetic field which shifts the m = ±1 magnetic levels by a few MHz.
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Figure 6.1: Optical setup for the Bragg beams. AOM stands for Acousto-Optic Modulator,
PBS (respectively BS) stands for Polarizing Beam-Splitter Cube (respectively Beam-Splitter Cube).

6.1.2 Alignment and two-photon resonances

To achieve initial alignment for each beam, a long and powerful Bragg pulse (typically a
few tenths of milliseconds and a few mW) is directed to the atoms from the magnetic trap,
in order to transfer them in non-trapped states by spontaneous emission, thus reducing
the number of atoms in the trap. The temperature of the cloud used for the alignment
is typically a few µK. This way, each beam is aligned by optimizing the number of atoms
removed from the trap. Once the beams are pre-aligned, a two-photon transition towards
the nth diffraction order should be observed for a detuning δ2n corresponding to the
equation derived in section 4.2.1:

~δ2n = ~(ω1 − ω2)−
(
~2k2

B

2m
(2n+ 1) +

~kB

m
p

)
(6.1)

where p is the selected momentum along the vertical axis. In our case, at first the Bragg
pulse is performed right after the atoms are released from the trap, which corresponds to a
momentum p = 0. The atoms, initially in the 0 order diffraction, can then be transferred
into the 2~k = ~kB momentum state (n = 0), or into the −2~k momentum state (n = −1).
The corresponding resonances are

(ω1 − ω2) = ±~k2
B

2m
= ±2π × 12.4 kHz (6.2)

Experimentally, we obtain the resonances showed in Figure 6.2 by counting the atoms
falling on the MCP as a function of time. Since the atoms transferred have a different
speed ±~kB

m , they fall at a different time t±1 ≈ t0±5 ms (with t0 ≈ 308 ms), so counting the
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atoms within a given time range makes it possible to distinguish the different diffraction
orders and count the atoms number (up to a certain level because of the saturation of the
detector when the atomic flux is too high).
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Figure 6.2: Bragg resonances towards orders ±1. The figure is obtained for a Bragg pulse
of 2π × 500 Hz and 1 ms. The relationship between the velocity and the detuning is given by
∆δ = −kB∆v.

Figure 6.2 shows that the resonance towards order -1 is δ−2 = −2π × 15.1 ± 0.1 kHz,
and the resonance towards order +1 is δ+2 = 2π × 9.9± 0.1 kHz. Although the detuning
difference between the two resonances corresponds to what is expected (δ+2 − δ−2 =
2π × 25.0 kHz), the two resonances values are not symmetric. This resonance shift of
2.7 kHz suggests that the momentum of the atoms at the time of the Bragg pulse is about
3.4 mm.s−1 instead of zero.

Such an initial speed may be due to the fact that (1) the atoms are not at equilibrium
in the optical dipole trap, leading to an initial speed when the trap is switched off, (2)
the atoms are accelerated between the release of the trap and the Bragg pulse. The first
hypothesis can be easily tested by varying the duration of the holding duration in the
optical dipole trap, and it was found that the resonance is not affected. The second
hypothesis is more likely, since the cloud, initially in the m = 1 magnetic level, can be
accelerated due to a remnant magnetic field before being transferred in the m = 0 thanks
to the Raman beams. A slight misalignment of the Raman beams could also be responsible
for a momentum transfer along the vertical direction, and this is currently our main lead
to explain the observed shift of the resonances.

6.1.3 Compensating gravity

During their fall, the atoms are accelerated due to gravity. This affects the resonance
condition as a Doppler shift which needs to be taken into account: the detuning towards
a given diffraction order then linearly depends on the time at which the Bragg pulse is
sent to the atoms. In order to stay resonant with the atoms during their fall, a frequency
sweep is applied to one of the Bragg beams so that the Doppler shift is compensated. At
a given time t after the trap cutoff, the speed of the atoms (initially at zero speed) is −gt,
therefore the resonance condition 6.1 is shifted by

δDopp = −kBgt (6.3)
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To this end, we control the RF signal generator to add a frequency sweep on one of
the RF signals sent to the Bragg AOMs. The slope α of the sweep is

α = −gkB = −2π × 4, 87 kHz.ms−1 (6.4)

In our standard use of the Bragg pulses, the resonance is typically a few kHz large. The
previous equation shows that after 1 ms, the resonance has shifted by about 5 kHz, which
shows how quickly the beam would be out of resonance without adding the frequency
sweep.

Adding the sweep corresponds to placing the Bragg lattice formed by the interference
of the two beams in an accelerated frame. It is worth noting that the slope of the chirp
only depends on the Bragg momentum kB and the value of the gravity acceleration g.
Finding the right slope to compensate gravity is therefore a way of measuring g, and this
is actually the principle of Mach-Zehnder gravimeters which will be discussed later in this
manuscript (section 6.4).

Experimentally, we check that the sweep applied to the atoms is the right one by
performing a series of Bragg resonance measurements like the one in Figure 6.2 at different
times after the release of the trap, so that the detuning value for a given resonance remains
the same independently of the Bragg delay[115].

Since the atoms cover a distance z(t) = −1
2gt

2 and the waist of the beams are
w = 2.8 mm, it can be considered that the light intensity seen by the atoms remains
the same for about 20 ms (for which z(t) = 2 mm), which gives an upper limit for the
application of the Bragg pulse.

6.1.4 Rabi oscillations

It is possible to observe Rabi oscillations by scanning the duration of a pulse resonant
with a given diffraction order. Recall that the transfer probability P(t) is expressed as
follows:

P(t) =
ΩM√
δ2 + Ω2

M

sin2

(√
δ2 + Ω2

M

t

2

)
(6.5)

where δ is the detuning, and ΩM the amplitude of the (constant) two-photon Rabi fre-
quency. At resonance, in particular, the number of diffracted atoms should oscillate as a
function of the Bragg duration with the best contrast. By defining the transfer efficiency
ηB = N0/(N0 +Nd), where N0 and Nd are respectively the number of atoms in the BEC
and the number of atoms in the diffracted order, we have

ηB(t) = sin2

(
ΩM t

2

)
(6.6)

Figure 6.3 shows a Rabi oscillation between the diffraction orders 0 and 1. Experimen-
tal data are fitted with a damped oscillating function f(t) = A sin2(2πf0t)exp(−t/τ). The
exponential decay comes from any decoherence effect which is not included in the Rabi
2-level model.

We find in this example that the amplitude of the two-photon Rabi frequency is
ΩM = 2π × 1.21 ± 0.9 kHz. The transfer efficiency is 99.6 ± 0.5 % after a π pulse. In
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Figure 6.3: Rabi oscillations. The normalized diffracted population correspond to the number
of atoms N1 detected in a 0.5 mm.s−1 box centered on the second diffraction order, normalized by
the N0 +N1 where N0 is the number of atoms detected in a 0.5 mm.s−1 box centered on the BEC.

this configuration, a Bragg mirror would correspond to a pulse duration of 413 µs while a
50/50 splitter would correspond to a pulse duration of 207 µs.

For a 2.5 ms long pulse with a two-photon Rabi frequency of 1.21 kHz, the full width
at half maximum of the resonance is of the order of 1.5 kHz, which corresponds to 3 mm/s.
In order to plot the result from Figure 6.3, only a small part of the full momentum distri-
bution was selected, that is to say the atoms were counted within boxes of 0.5 mm/s size in
momentum separated by ~kB. Otherwise, counting the atoms within boxes containing the
whole momentum distribution of the BEC would correspond to averaging over momentum
classes which are not all at resonance with the pulse, leading to a higher damping as well
as a decrease in the fitted two-photon Rabi oscillation.

The typical damping time is τ = 11.6 ± 1.3 ms from Figure 6.3, partly attributed to
spontaneous emission. Indeed, the spontaneous emission rate for a two-level system is

Γsp =
Γ

2

s

1 + s
(6.7)

with s =
1

2

|Ω|2
∆2 + Γ2/4

the saturation parameter, where Ω is the (one-photon) Rabi fre-

quency, Γ the natural width of the excited state. In our case, assuming that both beams
have the same intensity, the one-photon Rabi frequency is Ω =

√
2∆ΩM. The spontaneous

emission rate towards one specific magnetic sub-level must also be multiplied by 2 since
there are two π beams to consider, and by 3 since there can be spontaneous emission
towards the three magnetic sub-levels. Finally, we find s = 1.51 × 10−6 and therefore
Γsp = 46.2 s−1, leading to τsp = 21.6 ms. There is still a factor of 2 with the measured
value, which suggests that there may be other decoherence effects which cause the ob-
served damping. Still, the typical decoherence time is high compared to the duration of a
π or π/2 Bragg pulse of a few kHz.

These results are very encouraging and even better than what was reported by A.
Imanaliev[147], PhD student in the team at the time of the first HOM experiment, who
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found a decoherence time of 5.2 ms and a transfer efficiency of 95%.

6.1.5 Bragg diffraction in the Kapitza-Dirac regime

In order to measure precisely the Bragg momentum as well as checking the vertical
alignment of the beams, it is possible to perform Bragg diffraction in a specific regime of
short and intense pulses called the Kapitza-Dirac regime. The idea is the following: in
these specific conditions, the resonance of the Bragg diffraction is very large in terms of
momentum, which means that the BEC will be resonant with several diffraction orders,
leading to the emission of multiple clouds, each having a momentum separated by ~kB.
This way, one can check the velocity of every diffracted cloud, which makes it possible to
precisely measure the Bragg velocity transferred to the atoms along the vertical direction.
Note that this is also a way to verify the alignment of the beams, because if the Bragg
beams are not perfectly aligned along this axis, there will also be a momentum shift along
the other directions.

Figure 6.4b shows the results obtained with an intense pulse of 10 µs. One can see 7
diffraction orders, whose intensity is modulated by a Bessel envelop |Jn(ΩMt)|2, as shown
in section 4.2.2.
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Figure 6.4: Bragg diffraction in the Kapitza-Dirac regime. Density profiles obtained for a
10 µs Kapitza-Dirac pulse. A fit on the diffraction orders is shown in orange, and gives a Rabi
frequency of ΩM = 36.9± 1.2 kHz.

By fitting the momentum of each cloud in every direction, we find a Bragg speed

vB =
~kB

m
= 49.58± 0.03 mm.s−1 (6.8)

The momentum fit in the others directions gives negligible relative angles of θx =
−0.08± 0.03 ◦ and θy = −0.04± 0.02 ◦, which validates the alignment of the beams.

There is another way of measuring the Bragg velocity by transferring atoms into many
diffraction orders. The idea is to realize a long Bragg pulse with a frequency sweep whose
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slope such that the atoms, once transferred from the diffraction order 0 to the order 1,
are at some point resonant again, this time with order 2 and thus partly transferred to
this order, and so on. With this method, which is related to Bloch oscillations[167], we
were able to observe up to 36 diffraction orders, transferring atoms from zero velocity
to a maximum velocity of 1.5 m.s−1 in 4 ms. This process will not be described in this
manuscript.

6.1.6 Experimental setup for the pulses shaping

As seen in the previous chapter, we want to implement the possibility to have a negative
(or even complex) two-photon Rabi frequency by adding a phase between the two beams.
To this end, we use a Mini-Circuits® SPHSA-251+ phase shifter, which adds a controllable
dephasing between 0 and 180 ◦ on a RF signal. After an electronic calibration voltage-
dephasing, the phase shifter is added on the RF voltage sent to one of the Bragg AOMs
(Figure 6.5).

Bragg down
AOM

Bragg up
AOM

Bragg/Raman
AOM

Phase shifter

TTI Bragg

Bragg phase 
Keysight

Bragg power
Keysight

Bragg/Raman
VCO

PI controller

Bragg/Raman 
photodiode

Bragg beating 
photodiode

Towards
atoms

Vphase

Vpow

t

t

φ

Figure 6.5: Experimental setup for the complex Bragg pulses.VCO stands for Voltage Con-
trolled Oscillator. Keysight® and TTI® are the brands of the devices.

As we also want to shape the Bragg pulse, the power of the Bragg laser must be locked
on a reference signal because of the non-linearity of the power control of a beam by a
Voltage-controlled oscillator. We chose to shape the intensity of the laser by locking the
signal from the Bragg-Raman photodiode to a setpoint voltage signal. We therefore use a
Proportional-Integral (PI) controller after comparing the Bragg photodiode feedback with
the setpoint signal. Then, the output of the corrector is used as input for the VCO which
sends the RF signal to the Bragg-Raman AOM. The voltage setpoints for both Bragg up
and Bragg down AOMs remain constant and maximal during the pulse.

The Bode plot of the power feedback loop is provided in Figure 6.6, showing that the
power closely follows the setpoint as long as the frequency remains below 50 kHz. Beyond
this point, the phase lag between the input and output signals begins to increase, and the
output signal amplitude also rises until it becomes completely distorted around 100 kHz.
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Figure 6.6: Bode diagram of the power feedback loop. Results obtained using sinusoidal
signals. The gain is defined by G = 20,logAout

Ain
where Ain and Aout are the oscillation amplitudes

of the input and output signals, respectively. ∆φ is the phase difference between these two signals.

The voltage setpoint for the Bragg-Raman power as well as the phase shifter setpoint
are generated numerically as lists of points, which are sent by SCPI (Standard Commands
for Programmable Instruments) to two Agilent® signal generators with a maximum of
80000 points. Both devices are triggered at the same time by a logical signal of the
ADWIN® controller when a Bragg pulse is sent to the atoms.

For instance, the voltage setpoint and the phase shifter setpoint are plotted in Figure
6.7 for a 1.5 ms long sinc shaped Bragg beam splitter pulse of 5 kHz. The parameters
of the waveform were determined in section 5.3. The expected Bragg two-photon Rabi
frequency is

ΩR(t) = ΩM sinc (ΩS(t− T/2)) (6.9)

where t = 0 is the beginning of the pulse and T its duration. Recall that in order to have a
beam splitter, we need to have ΩS = 2 ΩM. In our case, in order to imprint the waveform
to the laser beams, the power setpoint needs to correspond to the absolute value of the
signal, and the phase shifter must add a dephasing of π each time the two-photon Rabi
frequency becomes negative.

Now remains the question of the calibration. Regarding the voltage setpoint, getting
the relation between the voltage setpoint and the effective two-photon Rabi frequency is
easy as one only needs to send a constant pulse and make Rabi oscillations, which gives
immediately the Rabi frequency. Besides, the relation between the two quantities is linear
because the two-photon Rabi frequency is proportional to the power of the beam.

Regarding the calibration of the phase shifter setpoint, it is easy to get an electronic
calibration curve by comparing the phase of an input RF signal with the output signal.
But finding a way to check that the phase imprinted on the atoms depends indeed on the
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Figure 6.7: Voltage setpoints and measurement of the optical power (top) and phase
shifter setpoint (bottom) for a sinc-shaped Bragg pulse.

voltage setpoint of the phase shifter would represent a valuable advantage.

In order to be able to evaluate the phase imprinted on the atoms using the phase
shifter, an interference experiment is needed.

6.2 Ramsey interferometer

6.2.1 Principle

The idea of this experiment is to superpose two clouds which do not have the same
phase, and which will therefore interfere. To do so, we perform two successive Bragg 50/50
splitters pulses (π/2 pulses resonant with the BEC) after the atoms are released from the
trap (Figure 6.8). This interferometric scheme using two successives π/2 pulses is named
a Ramsey interferometer.

The first splitter makes a copy of the first cloud by transferring half the atoms (with
initial momentum p) to a momentum state p+ ~kB. Then a second splitter also makes a
copy of each cloud, so that in the end there are two clouds falling with momentum p and
two clouds falling with momentum p+~kB. If the duration between the two pulses is small
enough, the two clouds with the same velocity overlap on the MCP and interfere along the
vertical direction, because due to gravity they did not accumulate the same phase between
the two splitters. This results in an interference pattern as a function of the arrival time
on the MCP.

The observed interfringe should only depend on g and the duration τ between the
two pulses. Now, one should not forget that there is also a phase imprinted on the
reflected atoms by the Bragg splitter. We will show in the next section that a relative
phase between the two beam splitters results in shifting the interference pattern along the
vertical direction.
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Figure 6.8: Principle of the Ramsey interferometer. Starting from a BEC, two successive
Bragg beam splitters are applied to the atoms, resulting in four output clouds. Two clouds with
the same momentum will interfere on the MCP after time of flight when they overlap.

Assuming that the phase imprinted by the Bragg splitter to the reflected atoms re-
mains the same for both splitters, then the interference pattern should not shift from
one experimental run to the other, and the contrast of the interference is expected to be
optimal in these conditions.

On the contrary, if the imprinted phase by the Bragg lasers varies between the two
pulses, then it will result in shifting the interference pattern. Since this variation is un-
wanted and uncontrolled (it may be due to an optical path difference between the two
beams, caused for instance by the vibration of a mirror) it is reasonable to assume that
it would result in a random shift in the interference pattern between each run, which will
lead to a decrease of contrast after averaging over many experimental runs.

This last point has two important consequences:

• First, averaging over many runs will make it possible to determine the phase stability
of the beam splitter between the two pulses, separated by typically a few ms, which
corresponds to the timescale of the Bell interferometer. Let us note that this only
gives an information about the phase difference stability over a few milliseconds.

• Second, using a phase shifter allows us to imprint a different phase between the first
and the second pulse, only by adding a constant voltage setpoint between the two.
This way, we can calibrate the phase shifter on the atoms by measuring the shift in
the interference pattern (which corresponds to the phase difference imprinted to the
atoms between each pulse) as a function of the voltage setpoint.

6.2.2 Calculation

In this section, we will reuse the formalism introduced in Chapter 4 to describe in-
terferometers. The Ramsey interferometer is particularly noteworthy in that it is not a
closed interferometer, as we will see, resulting in the appearance of a phase term related
to the propagation of wave packets to the MCP.
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First, let us consider the interferometer depicted in Figure 6.9. We neglect the duration
of the Bragg pulses and focus only on the resonant case. Let us calculate first the phase
terms related to the light-matter interaction during the Bragg pulses.

α′ β′

α

β p

p

p+ 2~k

p+ 2~k

A

B

I

Position

Time
π

2

π

2

τ

Figure 6.9: Momentum modes involved in the Ramsey interferometer.

This interferometer involves two momentum modes, p and p + 2~k, each of which, at
the interferometer output, is found in two different spatial modes. Like in section 4.4.1
with the Mach-Zehnder interferometer, we will separately describe each mode, indicating
them by α, α′, β and β′. The first beam splitter thus couples (p)α and (p+ 2~k)α′ , while
the second beam splitter couples modes (p)α and (p+2~k)β′ in A and (p)β and (p+2~k)α′

in B. We can thus write, for the first beam splitter:
C0,α(t)

C2,α′(t)

C0,β(t)

C2,β′(t)

 =

√
2

2


1 ieiφ1 0 0

ie−iφ1 1 0 0

0 0 0 0

0 0 0 0




C0,α(0)

C2,α′(0)

C0,β(0)

C2,β′(0)

 (6.10)

where φ1 is the phase imprinted by the first pulse. This defines the matrix US1 of the first
beam splitter. In the same basis, the second beam splitter matrix writes

US2 =

√
2

2


1 0 0 ieiφ2A

0 1 ie−iφ2B 0

0 ieiφ2B 1 0

ie−iφ2A 0 0 1

 (6.11)

Let us consider an input state for which C0,α(0) = 1 while the other modes are not
populated. After the first beam splitter, the state is

C0,α

C2,α′

C0,β

C2,β′

 =

√
2

2


1

ie−iφ1

0

0

 (6.12)
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Then, both clouds accumulated a phase related to the propagation of the wavepack-
ets in different paths and at different velocities. Let us write φpath,A and φpath,B these
propagation phases. Before the first second splitter, the state is therefore

C0,α

C2,α′

C0,β

C2,β′

 =

√
2

2


eiφpath,A

ie−iφ1eiφpath,B

0

0

 (6.13)

Using US2, we can now determine the state ofthe system after the second beam splitter:
C0,α

C2,α′

C0,β

C2,β′

 =
1

2


eiφpath,A

ie−iφ1eiφpath,B

−ei(φ2B−φ1)eiφpath,B

ie−iφ2Aeiφpath,A

 (6.14)

This time, we cannot stop the calculation here, since the modes with the same velocity
interfere after time of flight when they overlap. We need to take into account the propa-
gation phases between the second beam splitter pulse and the arrival time of the clouds
on the MCP, which is obviously not the same for the modes of different velocity.

Let us write T0 the arrival time of the initial BEC center of mass, in the 0 diffraction
order, and T1 the arrival time of the center of mass of the diffracted atoms in the first
diffraction order. If we neglect the fact that the initial position of the clouds with the
same velocity is not exactly the same, we have the equations:

z(T0) = z0 −
1

2
gT 2

0 = 0

z(T1) = z0 −
1

2
gT 2

1 + vBT1 = 0

(6.15)

If we write T1 = T0 + ∆T , and neglect vB compared to gt0 after time of flight (t0 ≈
308 ms), we get from system 6.15 that ∆T = T1−T0 = vB/g. In order to take into account
all velocity classes and not only the center of mass, we will write T the arrival time of the
atoms from the 0 diffraction order, whose histogram is a density envelop centered on T0,
and T ′ the arrival time of the atoms from the first diffraction order, whose histogram is a
density envelop centered on T1

The propagation phases accumulated after the second beam splitter differ for each
mode, because the initial position and the velocity are not the same. The corresponding

phases will be written φ
(0)
A→T , φ

(0)
B→T for the atoms in modes p1 and φ

(2)
A→T ′ , φ

(2)
B→T ′ for the

atoms in modes p+ 2~k. Finally, on the MCP, the state of the system is


C0,α

C2,α′

C0,β

C2,β′

 =
1

2


e

i
(
φpath,A+φ

(0)
A→T

)
ie−iφ1 e

i
(
φpath,B+φ

(2)

B→T ′
)

−ei(φ2B−φ1) e
i
(
φpath,B+φ

(0)
B→T

)
ie−iφ2A e

i
(
φpath,A+φ

(0)

A→T ′
)


(6.16)

1Or, strictly speaking, p−mgt.
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After time of flight, the total population in modes p and p+2~k can then be expressed
as 

|C0|2 = |C0,α + C0,β|2 = sin2

(
∆Φ0

2

)
|C2|2 = |C2,α′ + C2,β′ |2 = cos2

(
∆Φ2

2

) (6.17)

where ∆Φ0 = φB − φ1 + φpath,B − φpath,A + φ
(0)
B→T − φ

(0)
A→T

∆Φ2 = φA − φ1 + φpath,B − φpath,A + φ
(2)
B→T ′ − φ

(2)
A→T ′

(6.18)

Each phase term can be calculated easily. Let us consider at first the phase imprinted
by the lasers. Recall that each phase φ due to the interaction with light includes a term
related to the center of mass of the wavepacket and another related to the phase difference
between the lasers, such that

φ1 = −kBzI + ∆ϕ1 + α
t21
2

φ2A = −kBzA + ∆ϕ2 + α
t22
2

φ2B = −kBzB + ∆ϕ2 + α
t22
2

(6.19)

where z is the position of the center of mass of each wavepacket, ∆ϕ1 and ∆ϕ2 the laser
phase differences during the first and the second beam splitter, respectively. α is the slope
of the frequency ramp used to compensate gravity. and t1 and t2 = t1 + τ the instant at
which the Bragg pulses occur. Let us consider that the velocity of the cloud is v0 (with
v0 ≈ 0): we can deduce zA and zB such that

zA = zI + v0τ −
1

2
gτ2

zB = zI + (v0 + vB)τ − 1

2
gτ2

(6.20)

From these expressions, we getφB − φ1 = −kB(v0 + vB)τ + ∆ϕ2 −∆ϕ1

φA − φ1 = −kBv0τ + ∆ϕ2 −∆ϕ1

(6.21)

So there is a difference of −kBvBτ between the two phases.

Now, let us consider the phase terms related to the propagation of the wave packets
after time of flight. According to the results of Chapter 4, when two atoms fall with the
same velocity from different initial position, the corresponding phase difference, for the
two overlapping clouds in mode p, is given by:

φ
(0)
B→T − φ

(0)
A→T =

m

~

(
v2

0

2
+ gzB

)
T − m

~

(
v2

0

2
+ gzA

)
T (6.22)

from which we get

φ
(0)
B→T − φ

(0)
A→T =

m

~
gT (zB − zA) =

m

~
gTvBτ (6.23)
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where τ is the duration between the two Bragg pulses. Similarly, we have, for the over-
lapping clouds in modes p+ 2~k:

φ
(2)
B→T ′ − φ

(2)
A→T ′ =

m

~
gT ′(zB − zA) =

m

~
gT ′vBτ (6.24)

Thus, the atoms density, both in modes p and p + 2~k, oscillates along the vertical
axis since there is a phase term linearly dependent on the arrival time T (and T ′ for
the diffracted clouds). The interfringe depends on the duration τ between the two beam
splitter pulses.

Note that, if we consider the center of mass of each cloud, we have


φ

(0)
B→T0

− φ(0)
A→T0

=
m

~
gT0vBτ

φ
(2)
B→T1

− φ(2)
A→T1

=
m

~
gT1vBτ =

m

~
g

(
T0 +

vB

g

)
vBτ =

m

~
gT0vBτ + kBvBτ

(6.25)

The phase difference between the two is +kBvBτ .

As a result, when we compare ∆Φ0(T0) and ∆Φ2(T1), the phase shift kBvBτ originat-
ing from the different arrival time of both clouds compensates exactly the term −kBvBτ
which arised from the phase difference imprinted by the lasers as seen in equation 6.21.
Thus, ∆Φ0(T0) = ∆Φ2(T1), meaning that the population of the centers of mass of the two
clouds at different velocities oscillate with opposite phase.

As a conclusion, if we consider (for instance) only the atoms in mode p, the population
is given by

|C0|2 = sin2

(
∆Φ0

2

)
(6.26)

where
∆Φ0 =

m

~
gTvBτ + ∆ϕ2 −∆ϕ1 + φprop,others (6.27)

where φprop,others is a term which encompasses the terms related to the propagation of the
clouds that do not depend on the arrival time (but depend on τ).

Thus, when the atoms fall onto the MCP, we observe an population oscillation as a
function of the arrival time T . This interference pattern is modulated by a density envelope
representing the overlap between the two wave packets.

The atoms with momentum p do not arrive at the same time as the atoms with
momentum p + 2~k; therefore, we should observe two successive interfering clouds, each
presenting an interference pattern whose interfringe Ti ultimately depends only on kB, g
and τ :

Ti =
2π

kBgτ
(6.28)

A particularly interesting point for us is that the laser phase difference between the two
Bragg beam splitters acts as a phase origin of the interference term: by changing this
quantity, we can shift the interference pattern.

Note that the centers of the wave packets of each cloud are in phase opposition, so the
number of atoms arriving at time t writes:{

Np(T ) = A0(T )(1 + cos(kBgτ(T − T0) + ∆ϕ2 −∆ϕ1))

Np+2~k(T ) = A1(T )(1− cos(kBgτ(T − T1) + ∆ϕ2 −∆ϕ1))
(6.29)
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where, for each cloud, A0(T ) and A1(T ) are density envelopes centered on T0 and T1,
respectively, which are the arrival times of the centers of each wave packet. Note that, if τ
is too large, the two wave packets of same momentum start separating, resulting ultimately
in a vanishing of the interference when they do not overlap.

6.2.3 Experimental results

The Ramsey interference experiment was performed using a constant Bragg 50/50
splitter of 1 kHz two-photon Rabi frequency (corresponding to a duration of 250 µs). It
was first conducted without using any phase shifter, so that we expect to have ∆ϕ2 = ∆ϕ1.
If it is not the case due to phase fluctuations between the lasers during the interferometer,
this will result in a loss of contrast of the interferences.

The duration τ between each splitter is typically a few milliseconds (typically τ = 1 ms
corresponds to an interfringe of 0.2 ms in terms of arrival time of the cloud on the MCP).
The range of τ is limited: if τ is too small, then the interfringe is equal to the width of the
cloud and the interference cannot be seen anymore ; if τ is too large, then the interfringe
reaches the resolution limit of the detector along this axis. Moreover, as τ increases, the
separation between the two interfering clouds increases too, leading to a smaller overlap
between them after time of flight and therefore to a loss of contrast.
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Figure 6.10: Ramsey interferences. Data averaged over 24 experimental runs, showing two
interfering clouds with the same interfringe. Here, the BEC is diffracted into the -1 diffraction
order, whose arrival time is ≈ 303 ms.

As expected, interference fringes can be seen on both the BEC and the diffracted cloud,
with a nice contrast, as shown in figure 6.10.

Figure 6.11 shows the interference observed for τ = 1 ms on the diffracted cloud, aver-
aged over 24 runs. A fit of the interference pattern gives access to the interfringe, which
corresponds to the interfringe expected from equation 6.28. The good contrast suggests
that over 24 runs, there was no variation of the phase difference between the first and
the second beam splitter, meaning that the phase difference variation is small over one
millisecond.
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(b) 1D histogram along the vertical axis.

Figure 6.11: Ramsey interferences obtained for τ = 1 ms. Data averaged over 24 experimen-
tal runs. The 1D data is fitted with a sinusoidal function modulated by a gaussian envelope, in
order to measure the interfringe.

The experiment was conducted for different values of τ (as showed in Figure 6.12 for
τ = 2 ms), within a range of 1 to 5 ms. As expected, the contrast of the interference
pattern decreases as τ increases due to the fact that the clouds only partially overlap. At
some point when τ increases, it is even possible to distinguish two envelops corresponding
to the two interfering clouds. In all cases, the observed interfringe corresponds to what is
expected theoretically, as shown in Figure 6.13.
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Figure 6.12: Ramsey interferences obtained for τ = 2 ms. Data averaged over 24 exper-
imental runs. The 1D data is fitted with a sinusoidal function modulated by a gaussian
envelope.
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Figure 6.13: Interfringe of the Ramsey interference. The experimental results are represented
as blue dots, while the expected value from equation 6.28 is shown in orange.

The Ramsey interference was also conducted on a BEC from the magnetic trap (Figure
6.14). Because the confinement along the vertical direction is more important with the
magnetic trap than with the optical dipole trap, the momentum width of the cloud after
time of flight is higher in the vertical direction, leading to the possibility to observe more
interference fringes. To this end, the two-photon Rabi frequency used for the experiment
(5 kHz) was chosen in order to ensure a broad resonance.

In this situation with τ = 2 ms, about 45 fringes are visible, while only a dozen were
observed from a BEC of the optical dipole trap. The contrast also decreased compared
to the one from a BEC of the optical dipole trap, which might be due to the imperfect
reflectivity of the beam splitter over such a wide range of momentum.
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Figure 6.14: Ramsey interferences on a BEC from the magnetic trap. Data averaged over
120 runs.

In order to determine whether the phase difference between the interference patterns
of both clouds corresponds to what is expected (i.e. a π dephasing at the center of mass),
the density profile of the interfering clouds can be plotted from equations 6.29 in the con-
ditions of the experiment. The result was plotted for a Gaussian cloud, whose width in
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Figure 6.15: Density profiles of interfering clouds in two diffraction orders. The interference
pattern of each cloud is fitted (in orange) by a sinusoidal signal modulated by a density envelope.
The fit results (cloud width, amplitude, center) are provided as parameters of the analytical func-
tion given by equation 6.29, depicted in blue. The only unfitted parameter is the phase difference
between the interference pattern of the -1 order clouds and the interference pattern of the 0 order
clouds, which is fixed such that the centers of both wave packets oscillate in opposite phase. The
good match between the fit result and the simulated interference indicates that the centers of mass
have a phase difference of π.

terms of arrival time is 0.35 ms. The density fit of the interference patterns returns the
arrival time of the center of both clouds, as well as the amplitude of the signal. These val-
ues, and the duration τ between each splitter, are used as parameters in the plot depicted
in Figure 6.15. The superposition of the simulated density profiles, whose phase difference
is π at the center of mass, with the fitted density profile confirms the expected result.

The Ramsey interferometer was repeated for τ = 2 ms, and averaged over 350 runs
(corresponding to an hour and a half), in order to make a contrast analysis. For the
first run, the contrast is evaluated to be 91%. We find that there is no significant loss of
contrast, which is equal to 86% after averaging over the 350 runs. This means that there
is no drift of the phase difference between the two pulses separated by 2 ms. Since this
experiment is only sensitive to the difference of phases ∆ϕ2−∆ϕ1 imprinted on the atoms
by each beam splitter, we cannot conclude about the stability of the absolute phase ∆ϕ
between the two Bragg beams, which cancels out in this experiment.

6.2.4 Phase shifter calibration

The second goal of the Ramsey interferometric experiment is to add a tunable phase
between the two splitters in order to shift the interference pattern. It is a way to make
sure that the phase imprinted on the atoms indeed corresponds to the phase difference
between the two lasers. Thus, by adding a π phase shift, it will be possible to implement
negative two-photon Rabi frequencies.

To calibrate the phase shifter, we will use the fact that the interference pattern can be
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expressed as:

∆Φ0 =
m

~
gtvBτ + ∆ϕ2 −∆ϕ1 + φprop,others (6.30)

Until now, without a phase shifter, we had ∆ϕ2 = ∆ϕ1. By sending a non-zero set-
point to the phase shifter between the first and second beam splitters, we can control the
phase difference ∆ϕ2−∆ϕ1, which will shift the interference pattern. We can thus identify
the voltage value for which the pattern has been shifted by π.

The Ramsey sequence was therefore conducted as previously, with the only difference
consisting in adding a constant voltage setpoint to the phase shifter after the first pulse,
for which the setpoint is zero. By scanning the value of the setpoint, the interference
pattern was shifted. The experiment was repeated several times for each value of phase
shifter setpoint, making it possible to fit the data in order to determine the relative phase
imprinted to the atoms between the two pulses. This is a calibration of the phase shifter
for which the phase is evaluated directly on the atoms.

The obtained curve is given in Figure 6.16a. Remarkably, it fits well the electronic
curve which was made only by comparing the phase of the RF output signal with the RF
input signal of the phase shifter. In particular, the voltage setpoint correspond to a π
phase shift was determined. With this value, the interference pattern was shifted by half
an interfringe, as seen in Figure 6.16b.
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Figure 6.16: Phase shifter calibration. The phase of the interference was fitted from the
density profiles along the vertical direction, for a given phase shifter voltage setpoint. Each point
is averaged over 12 experimental runs.
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6.3 Shaped Bragg pulses

6.3.1 Sinc pulses

The previous calibration shows that the implementation of the phase shifter makes it
possible to add a π phase shift on one of the laser beams, and this phase will be imprinted
on the atoms, leading to the possibility of realizing a negative two-photon frequency. As
discussed in the previous chapter (see section 5.3), an interesting shape for the temporal
pulse is a sinc shape, given by :

ΩR(t) = ΩM sinc (ΩS(t− T/2)) (6.31)

where ΩM is the two-photon Rabi frequency amplitude, T is the duration of the pulse and
ΩS is the sinc frequency, which equals ΩM for a mirror and 2ΩM for a beam splitter.

Using the phase shifter and the power control of the Bragg beams, we have performed
a series of sinc-shaped Bragg pulses in order to test the performances of these pulses
compared with constant pulses. The resonance width of the pulses we want to test is
greater than the momentum range of the BEC from the optical dipole trap. In order to
get the reflectivity profile, one solution would be to scan the detuning and measuring the
respective number of atoms reflected and transmitted in a small momentum box. But we
chose a more direct way, which consists in using a BEC from the magnetic trap.

As discussed before, the BEC from the magnetic trap has a broad momentum width
along the vertical axis compared to the BEC from the optical dipole trap. The two-photon
Rabi frequency is such that the width of the resonance is smaller than the width of the
BEC, and the detuning is chosen so that the atoms are transferred into a momentum state
which is initially unpopulated. This way, the profile of the transferred cloud corresponds
to the reflectivity profile, modulated by the initial Thomas-Fermi density profile of the
cloud.

However, this method has drawbacks inherent to using a BEC from the magnetic trap.
Significant fluctuations in atom number and arrival time, along with the presence of a
non-condensed thermal fraction, result in a reduced transfer efficiency when averaging
over multiple cycles, as there are occasionally atoms within the supposedly unpopulated
momentum range where the diffracted atoms are transferred.

The obtained density profiles will be compared with Bragg simulations solving the
Schrödinger equation. So far in this manuscript, the Bragg simulations did not take
into account the initial population of the atoms. Indeed, assuming that all the atoms
are initially in the momentum state p = 0 and plotting the result as a function of the
momentum (or, equivalently, as a function of the detuning) is a good way to determine
the reflectivity profile of a given Bragg pulse, but it does not allow to determine the density
profile of a cloud (with a given initial momentum distribution) after the Bragg pulse.

The simulations were made using a parabolic fit of the cloud density profile as input.
The resonant momentum and the number of atoms are free parameters which were ad-
justed to fit the output density profile with the experimental data. However, the Bragg
wavevector and the pulse shape (power, waveform and duration) are fixed, to best repre-
sent the pulse sent to the atoms.

The obtained density profiles with a two-photon Rabi frequency of 5 kHz are repre-
sented in Figure 6.17 for a sinc-shaped beam splitter, and in Figure 6.18 for a constant
beam splitter. In both cases, the experimental results are in very good agreement with
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the expected profiles. The differences between the simulated profile and the experimen-
tal one may arise from thermally populated atoms initially present in the momentum
range corresponding to diffracted atoms, control loop imperfections smoothing the tempo-
ral profile of the pulse, or imperfect calibration of the power used to generate a 5 kHz pulse.
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Figure 6.17: Bragg sinc beam splitter. The parameters chosen for the Bragg pulse are ΩM =
5 kHz, T = 1 ms. Data averaged over 50 runs.
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Figure 6.18: Bragg constant beam splitter. The parameters chosen for the Bragg pulse are
ΩM = 5 kHz, T = π/2ΩM. Data averaged over 50 runs.

Similarly, figures 6.19 and 6.20 represent the density profiles obtained for a 1.5 kHz
sinc-shaped mirror and a 1.5 kHz constant mirror, respectively. Again, the experimental
results align well with the expected profiles.

To quantitatively express the performances of these different pulses, we arbitrarily de-
fined parameters to account for the experimental characteristics of Bragg transfer. Firstly,
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Figure 6.19: Bragg sinc mirror. The parameters chosen for the Bragg pulse are ΩM = 1.5 kHz,
T = 1 ms. Data averaged over 50 runs.
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Figure 6.20: Bragg constant mirror. The parameters chosen for the Bragg pulse are ΩM =
1.5 kHz, T = 1 ms. Data averaged over 50 runs.

the resonance transfer efficiency ηeff is defined as the ratio of transferred atoms to the ini-
tially populated atoms at resonance :

ηeff =
Ninit −Ntransferred

Ninit
(6.32)

In order to reflect the width of the resonance, we define, on one hand, the half-maximum
width (W50%) of the peak corresponding to the transferred atoms, and on the other hand,
the width at 90% of the same peak (W90%). Finally, to quantify the sharpness S of the
resonance, density profiles were fitted at half-maximum to define a slope, in % per mm.s−1 :

S± =
dN

dVz
(50%) (6.33)
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Pulse
Efficiency(%) Width (mm.s−1) Sharpness(%/mm.s−1)

ηeff W50% W90% S+ S−

Exp. sinc splitter 46± 2 10.4± 0.2 8.8± 0.4 26.3± 2.0 −23.8± 2.0

Sim. sinc splitter 50 10.5 9.2 32.9± 0.5 −28.9± 0.5

Exp. constant splitter 45.6± 2.0 10.0± 0.2 4.0± 0.4 6.6± 2.0 −5.8± 2.0

Sim. constant splitter 50 10.3 4.4 7.2± 0.5 −6.8± 0.5

Exp. sinc mirror 94.4± 2.0 4.2± 0.2 1.9± 0.4 40.6± 2.0 −45.1± 2.0

Sim. sinc mirror 100 4.0 2.0 41.6± 0.5 −42.8± 0.5

Exp. constant mirror 96.6± 2.0 5.0± 0.2 1.5± 0.4 26.3± 2.0 −31.8± 2.0

Sim. constant mirror 100 4.8 1.9 29.8± 0.5 −29.0± 0.5

Table 6.1: Bragg performances for 1.5 kHz mirrors and beam splitters.

The results are given in Table 6.1, both for the simulated profile and the experimental
one. The results confirm a good agreement between the two. A noticeable difference lies
in the transfer efficiency, slightly lower by a few percent than expected. However, this
is mainly explained by the fact that the experiment was conducted using the magnetic
trap. Better efficiencies can be achieved using the optical dipole trap. The measured
widths correspond to the simulated widths. The sharpness values are within the right
order of magnitude, although the measured values sometimes deviate significantly from
the expected slopes. These parameters are, in any case, sensitive to the chosen velocity
range for fitting and the atoms number fluctuations.

Now, let us compare the performance of the constant pulse with that of the sinc pulse.
First, we observe that the full width at half maximum is minimally affected by the pulse
type, which was expected since this width is determined by the integral of the time profile
of the pulse ΩR(t). However, the width at 90% is almost doubled for a sinc-shaped pulse,
which was the primary goal of the pulse shaping. The mirror width is slightly increased
with the pulse shaping, which is of interest even though it’s less pronounced than in the
case of the separator. Once again, this was expected, as we have seen that the relationship
between the reflectivity profile and the Fourier transform of the time profile becomes less
accurate as the population of diffracted atoms increases.

Although the better performances of the sinc-shaped pulse compared to the square
pulse was expected theoretically, it is worth noting that our experimental data match very
well with the expected profiles, even for shaped pulses. Indeed, the performance difference
between the experimental measures and the simulated profiles is similar with square and
sinc pulses. This means the experimental setup we implemented for pulse shaping did not
cause a significant deviation from a perfect sinc-shaped two-photon Rabi frequency.

A similar analysis was conducted with various two-photon Rabi frequencies (from
350 Hz to 8 kHz), as seen in Figures 6.21 and 6.22 for 5 kHz beam splitter and mirror,
respectively. As seen earlier, changing the two-photon Rabi frequency modifies the reso-
nance width: the higher ΩR, the broader the resonant momentum range becomes. The
conclusions of the analysis remain the same: there is no significant loss of contrast when
using shaped pulses, the obtained density profiles are very similar to what we expect the-
oretically and lead to a better width at 90%.
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Figure 6.21: Bragg sinc beam splitter. The parameters chosen for the Bragg pulse are ΩM =
5 kHz, T = 1 ms. Data averaged over 50 runs.
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Figure 6.22: Bragg sinc mirror. The parameters chosen for the Bragg pulse are ΩM = 5 kHz,
T = 1 ms. Data averaged over 50 runs.

In conclusion, this section demonstrates how implementing sinc-shaped Bragg pulses
has provided us with an effective tool to enhance the reflectivity of Bragg pulses within a
resonant range which can be tuned by the two-photon Rabi frequency.

6.3.2 Shaped pulse equivalent time

In most atomic interferometers discussed in the literature, the duration of a single
pulse is significantly shorter compared to the interval between two pulses. For instance,
in cold atom gravimeters, the duration of a pulse is typically around 10 µs, whereas the
interval between two pulses could be 60 ms[168]. In the HOM interferometer[92], the mirror
duration was 100 µs, the beam splitter duration was 50 µs, while the free propagation

243



CHAPTER 6. EXPERIMENTAL PREPARATION OF THE BRAGG PULSES: INTERFEROMETRIC EXPERIMENTS

interval between these two pulses was 500 µs.

With shaped pulses, whose duration is long compared to the duration of a constant
pulse, one can wonder to what extent the duration of the pulse will impact the interfero-
metric performance. What happens when the duration of the pulse is of the same order
of magnitude or even longer than the free propagation time between two pulses? As an
initial insight for a sinc-shaped pulse, it can be affirmed that although the total duration
of the pulse is indeed longer, the power delivered to the atoms is very low for a significant
duration (corresponding to the small rebounds of the sinc function), resulting in a very
weak transfer of atoms to the diffracted state. Therefore, it is possible to evaluate an
effective period of time, smaller than the total duration, within which most of the transfer
occurs.

It is easy to determine numerically the population of the resonant diffracted atoms
during the application of a pulse, as the dynamics is given by the Schrödinger equation
for a two-level system. Experimentally, we can measure the number of diffracted atoms
as a function of the application duration of the pulse by truncating it. The results for a
sinc mirror are given in Figure 6.23, along with the temporal profile of the pulse which
was used for the measurement (5 kHz, 1 ms).
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Figure 6.23: Transfer of atoms during a sinc-shaped pulse. Initially, all the atoms are in
the BEC. A 5 kHz sinc-shaped mirror is applied. The pulse is truncated so that we can determine
the transfer efficiency at a given time. The experimental results are depicted as blue dots, while a
numerical resolution of the Schrödinger equation at resonance is represented in orange.

Both the experimental results and the simulation confirm that the main transfer dy-
namics are restricted to a duration of about 100-200 µs. This typical duration actually
corresponds to the duration of a constant π pulse at the same two-photon Rabi frequency
(100 µs for a 5 kHz constant mirror), which makes sense as two equivalent pulses need to
have the same area under the curve, as discussed in section 5.3. In the case of the sinc
pulse, most of the transfer occurs during the main lobe of the sinc function. Noticeably,
there is a slight broadening of the equivalent duration in the experimental measurements,
possibly due to imperfections in the power lock or because the atoms were counted within
a momentum box that includes atoms slightly off-resonance.
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Hence, as a first approximation, one can consider a sinc-shaped pulse to be equivalent
to a constant pulse with a duration set by the two-photon Rabi frequency (Teq = π/ΩM

for a mirror), and temporally centered on the main lobe of the sinc function, i.e., the
half-duration of the sinc pulse.

6.3.3 Modulated pulses

After confirming that the sinc-shaped pulses behave as expected, the second step in
designing the Bragg pulses for the Bell test is to investigate whether modulating the pulse’s
amplitude enables addressing two distinct momentum classes, as shown theoretically in
section 5.2.3. The experimental setup remains unchanged, the only difference lies in the
voltage setpoints sent to the phase shifter and the Bragg/Raman power lock, as shown in
Figure 6.24. We want to generate a two-photon Rabi-frequency such that:

ΩR(t) = ΩM sinc (ΩS(t− T/2)) cos(ΩDt/2) (6.34)

This setpoint has more angular points, but since ΩS and ΩD are of the same order of
magnitude, there is no particular issue related to the bandwidth of the lock.

0

2

B
ra

gg
p

ow
er

se
tp

oi
n
t

(a
.u

.)

0

1

P
h

as
e

sh
if

te
r

se
tp

oi
n
t

(a
.u

.)

0.0 0.2 0.4 0.6 0.8 1.0

Time (ms)

−2

0

Ω
R

(k
H

z)

Figure 6.24: Voltage setpoint for the Bragg power and the phase shifter, in order to
obtain a modulated sinc-shaped two-photon Rabi frequency. In the pulse represented here,
ΩM = 3 kHz, ΩD = 2.5 kHz, T = 1 ms.

With this kind of pulses, we expect to find two different resonant momentum classes,
separated by ∆v = ΩD/kB. For a same two-photon Rabi frequency, it is necessary to send
twice the power for a modulated pulse than for a simple pulse, due to the relationship
cos θ = (eiθ + e−iθ)/2. Again, we performed such pulses by transferring atoms from the
magnetic trap, since its momentum width makes it possible to directly observe the reflec-
tivity profile, modulated by the initial momentum profile. Alternatively, one could plot
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the reflectivity profile from a BEC with a thinner momentum width only by scanning the
detuning.

−50 0 50

Vy (mm/s)

−50

0

50

V
z

(m
m

/
s)

ΩD = 10 kHz

−50 0 50

Vy (mm/s)

ΩD = 5 kHz

−50 0 50

Vy (mm/s)

ΩD = 2.5 kHz

0 100

Vz (mm/s)

0

200

400

N
u

m
b

er
of

at
o
m

s

0 100

Vz (mm/s)

0 100

Vz (mm/s)

Figure 6.25: Density profiles obtained with modulated sinc-shaped mirrors, for different
values of ΩD.

The obtained profiles are plotted in Figure 6.25 for three values of ΩD from modu-
lated sinc-shaped Bragg pulses. In all three cases, the obtained profiles clearly exhibit
two distinct resonant momentum classes. As anticipated, the separation between the res-
onant momentum ranges decreases as ΩD decreases. The additional modulation applied
to generate these two-frequency pulses did not induce any contrast loss. Similar outcomes
were achieved for modulated square pulses: the results once again display two distinct
resonance peaks separated by a velocity controlled by the parameter ΩD. The difference
from the sinc pulses lies in the peak profile, demonstrating rebounds and a narrower 90%
width in the case of the square pulse.

These preliminary results confirm that modulating a pulse corresponds to addressing
two different momentum classes, separated by ∆v = ΩD/kB. It is worth noting that if
the modulation period becomes comparable to the pulse duration, the double resonance
is no longer resolved, resulting in the merging of the two peaks. This theoretically pre-
dicted outcome is experimentally verified: achieving the density profile from Figure 6.25
with ΩD = 2.5 kHz has necessitated increasing the Bragg pulse duration from 1 ms to 2 ms.

To be more quantitative, we conducted a measurement using atoms from the dipole
trap, scanning the Bragg detuning for each value of ΩD to determine the resonance fre-
quency associated with each peak as a function of ΩD. The idea is to verify that the
modulation frequency indeed corresponds to the frequency difference between the two
resonances.
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Figure 6.26: Transfer efficiency as a function of the detuning for several values of ΩD.
Starting from a BEC in the optical dipole trap, we realize a modulated sinc-shaped mirror of
1 kHz. It is possible to determine the Bragg transfer efficiency for a given detuning by counting the
relative population in the BEC and in the diffracted cloud. Due to the modulation of the Bragg
pulse at a frequency ΩD, we find two resonance peaks separated by ΩD.
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Figure 6.27: Frequency difference between the resonance peaks as a function of ΩD.

The results are shown in Figure 6.26. Two distinct resonances are clearly visible, and
linearly move away from each other as ΩD increases. In Figure 6.27, we plot the difference
between the two resonances, determined by a density fit, as a function of ΩD. We obtain
a straight line with a slope of 1.02± 0.04, providing evidence that the method works: by
modulating a Bragg pulse at a frequency ΩD, we obtain two resonances separated by ΩD.

6.3.4 Phase control

As presented in section 5.2.3, implementing modulated pulses is crucial since this is
how we aim to imprint a phase on the atoms through the phase at the origin of the mod-
ulation function. Confirming that the density profile exhibits two resonances is an initial
step in validating the principle of the modulated pulse. However, this does not provide
us any information about the phase imprinted on the atoms. In order to study the phase
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imprinted on the atoms, conducting interferometric experiments is necessary. Similarly to
the phase shifter calibration, Ramsey-type interferences were performed for this purpose.

The Ramsey experiment was conducted by using two modulated sinc-shaped splitters
separated by a few milliseconds, without varying θ at first, such that each pulse is defined
by:

ΩR(t) = ΩM sinc (ΩS(t− T/2)) cos (ΩDt/2) (6.35)
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Figure 6.28: Ramsey interferences with a modulated Bragg pulse. Data averaged over 350
experimental runs, conducted with sinc-shaped pulses of ΩM = 5 kHz. The Bragg modulation at
ΩD is responsible for the observation of four interference zones, corresponding to the two velocity
classes resonant with A (at 296 and 301 ms of arrival time), and the two other resonant with B (at
298 and 303 ms of arrival time).

We were able to observe interferences in four momentum areas, separated by vB two
by two, meaning that once again the modulation behaves as expected by splitting the
resonance into two terms. Figure 6.28 shows the density profile obtained from a BEC of
the magnetic trap with ΩR = 5 kHz.

Now, we want to determine the impact of a phase θ/2 at the origin of the modulation
term:

ΩR(t) = ΩM sinc (ΩS(t− T/2)) cos (ΩDt/2 + θ/2) (6.36)

We expect the phase imprinted to the atoms to be equal to +θ/2 for the atoms reso-
nant with speed +ΩD/2kB and to −θ/2 for the atoms resonant with speed −ΩD/2kB. As
explained earlier, the Ramsey experiment does not make it possible to directly measure
the phase imprinted to the atoms, since the interfering term actually corresponds to the
difference between the phase imprinted by the first splitter and the phase imprinted by
the second one. But it is possible to proceed similarly to the phase shifter calibration to
verify that one of the two splitters effectively imprints, for each resonance peak, an equal
but opposite phase.

To describe the corresponding Ramsey interferometer, we can use the same formalism
as in section 6.2.2, except that now the Bragg beam splitter has two resonance frequencies.
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Provided that the width of the resonance is small compared to the frequency difference
ΩD, then each resonance can be described independently. We denote by A and B the
velocity doublets resonant with −ΩD/2kB and +ΩD/2kB, respectively.

We want to shift the interference pattern as a function of the phase at the origin θ.
To do so, we will perform two successive sinc-shaped beam splitter pulses, such that:

ΩR1(t) = ΩM sinc (ΩS(t− T/2)) cos (ΩDt/2)

ΩR2(t) = ΩM sinc (ΩS(t− T/2)) cos (ΩDt/2 + θ/2)
(6.37)

The reasoning from section 6.2.2 can be applied to describe the interference, provided
that an additional phase term ±θ/2 is added to the phase imprinted by the light. The
sign ± depends on the doublet A or B considered. In this case, the phase involved in the
Ramsey experiment becomes:

∆ΦA =
m

~
gtvBτ + θ/2 + φprop,others

∆ΦB =
m

~
gtvBτ − θ/2 + φprop,others

(6.38)

where we assumed that the phase difference between the lasers ∆ϕ remains the same
for the two Bragg pulses. As we can see, by scanning the value of θ, we should observe a
shift of the interference pattern, in opposite direction for the A doublet and the B doublet.

In order to have the best contrast when fitting the interference pattern to determine
the differential phase imprinted on the atoms, the experiment was performed from a BEC
of the optical dipole trap. Since the momentum distribution of the BEC is small compared
to the resonance width used for the experiment, we adjusted the detuning by ±ΩD/2 so
that the BEC is resonant either with the vB peak, either with the −vB one. Thus, the
experiment was performed twice, one for each resonance, and each time the phase offset
of the interference pattern was determined using a fit averaged over 15 runs and plotted
as a function of θ (Figure 6.29).

The obtained results show without ambiguity what was expected from the theory.
The slopes of the linear fits of ∆ΦA and ∆ΦB as a function of θ are +0.50 ± 0.02 for A
and −0.51± 0.02 for B, which shows that the differential phase imprinted by the second
splitter adds a phase ±θ/2 to the atoms, where the sign depends on the resonant doublet
considered.

As a consequence, the phase difference between A and B is given by ∆ΦA−∆ΦB = θ.
Experimentally, this is the parameter we want to control for our Bell test. Although this
experiment is an indirect measurement of this phase difference, since it is necessary to re-
alize an initial beam splitter pulse to observe such interferences, this is a promising result
regarding the phase control we want to realize in a Bell interferometer.

This is an important result from this thesis and my work in the team in general,
which shows experimentally that we can control the phase imprinted on the atoms only
by tuning the phase at the origin of the modulation fonction. This is a proof of principle
which validates the way we chose to control the phase in the Bell experiment.
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(a) Fitted phase of the interference pattern for
the cloud resonant with A.
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(b) Fitted phase of the interference pattern for
the cloud resonant with B.

Figure 6.29: Proof of principle for phase control. The interference pattern of a Ramsey
experiment was shifted by scanning the phase at the origin θ/2 of the modulation function. For both
a cloud resonant with A (such that its resonance frequency is −ΩD/2) and a cloud resonant with
B (such that its resonance frequency is +ΩD/2), the interference pattern was fitted to determine
the phase. The results show that the fitted phase of the interference pattern shift in opposite
directions for A and B.

6.4 Mach-Zehnder gravimeter

6.4.1 Principle

To ensure that the sinc-shaped Bragg pulses behave as expected, we opted to realize
a Mach-Zehnder interferometer. The goal is to exhibited one-atom interferences in the
population of the different modes at the output of the interferometer.

Constituted by three successive Bragg pulses, respectively π/2, π, and then π/2, this
setup shares significant similarities with a HOM or a Bell-type interferometer. Indeed,
the initial beam splitter acts as a “source” for a two-input interferometer. The second
pulse acts as a mirror to close the interferometer. Finally, the last splitter allows for the
actual interference to occur. As with a Bell or HOM-type interference, proper closure of
the interferometer is crucial to optimize interference contrast.

In section 4.4, we have shown that starting from a BEC (considered as the zero diffrac-
tion order), the phase involved in the Mach-Zehnder interferometer along a vertical direc-
tion is given by

Φ = (kBg + α)T 2 + ∆ϕ1 − 2∆ϕ2 + ∆ϕ3 (6.39)

where ∆ϕ are the laser phase differences during each pulse, and α is the value of the slope
of a frequency sweep, aiming at compensating gravity.

The population at the output of the interferometer are therefore:
N0 =

N

2
(1− cos Φ)

N1 =
N

2
(1 + cos Φ)

(6.40)
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where N0 and N1 are the number of atoms in the order 0 of diffraction, and in the first
order of diffraction, respectively. N is the total number of atoms.

There are several ways to use a Mach-Zehnder interferometer. For instance, one can
add a phase shifter on the second splitter and vary the phase ∆ϕ3 imprinted at this stage
to shift the interference fringes, altering the relative proportions of the two momentum
classes coupled by Bragg diffraction. However, the current phase shifter at our disposal
only allows for a variation from 0 to π, not from 0 to 2π. Therefore, we decided to perform
a Mach-Zehnder gravimeter, the operation and principles of which are well-documented
in literature[146][169][170].

The principle is as follows[168]: when the interferometer is suitably closed, we scan the
slope α of the frequency sweep and measure the populations N0 and N1. This makes it
possible to observe fringes. By repeating the experiment for different values of T , defined
here as the time between two pulses, fringes with another period become observable. Inde-
pendently of the value of T , a fringe will always have the same shade when the frequency
slope compensates perfectly for gravity such as α0 = −kBg. Thus, by determining with
precision the slope α0 corresponding to this zero-order fringe, one can deduce the value of
the gravitational acceleration, g.

6.4.2 Gravity measurement attempt

The experiment was conducted using 1 ms sinc pulses at 5 kHz for various values of T .
For instance, for respective delays after the trap cutoff of 1.1, 6.1, and 9.1 ms, correspond-
ing to T = 5 ms (see Figure 6.30), clear fringes are visible when the frequency sweep slope
α is scanned. The observed period matches well with the expected one. The contrast is
high (0.8), and, as anticipated, it decreases as the duration T between two pulses increases.
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Figure 6.30: Mach-Zehnder interference fringes.

Such oscillations have been observed for a T ranging between 3 and 8.25 ms. As ex-
pected, the contrast decreases as T increases, indicating that the longer the delay between
two pulses, the more the atoms move away from the region where the beams have a
constant intensity, which affects the quality of the Bragg mirror and beam splitters.

The interference fringes were plotted for several values of T , in order to identify the
zero-order fringe, independant of T and corresponding to a slope α0 = −gkB. For a small
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range of T between 5 and 6 ms, it is possible to identify such a fringe (Figure 6.31). We
find g = 9.823± 0.006 m.s−2, but this value does not match the known value of g in Paris
(g = 9.8089 m.s−2).
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Figure 6.31: Mach-Zehnder gravimeter. N0 is the number of atoms in the 0th diffraction order,
while N2 is the number of atoms in the 1st diffraction order. The Mach-Zehnder oscillations are
obtained for different values of T , defined as the duration between the beginning of two successive
pulses.

Moreover, we found that the slope corresponding to the fringe that we identified as
the zero-order fringe was not constant as T varied. The plot illustrating the slope value
of the zero-order fringe against T is presented in Figure 6.32. The interpretation of this
curve has not yet been definitively established. Two distinct asymptotic behaviors are
noteworthy, suggesting the presence of two terms dependent on T in the expression of the
slope. Note that, as α0 seems to depend on T , it is not even obvious to determine where
the 0th order fringe is located.
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Figure 6.32: Order 0 fringe slope.

The reasons behind this unexpected behavior are not well understood yet. For a given
duration between the pulses, the measurements are well reproducible. Recent results
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suggest that we may be more sensitive than we first thought to the combined effects
of a slight error in the detuning and an imperfect closure of the interferometer. These
two imperfect settings might add a phase term which can shift the interference pattern for
different values of T . Moreover, there might be some unexpected phase exchanges between
the momentum modes when dealing with pulses with a large two-photon Rabi frequency.
Since 5 kHz is not far from the threshold at which there is diffraction into higher orders,
this could also be responsible for a shift in the interference pattern, so no 0th order fringe
can be identified.

Note that an additional phase term is not an obstacle to the successful implementation
of a Bell test conducted at a fixed T , as long as it remains independent of the velocity class
considered. Therefore, we have decided to perform a Hong-Ou-Mandel interferometer.

6.5 Conclusion and outlook

In this chapter, we discussed the experimental implementation of intensity-modulated
Bragg pulses to achieve negative two-photon Rabi oscillations. To do so, we introduced
a power feedback control for the Bragg beams and a phase shifter adding a π phase
shift between the phases of the two laser beams when the Rabi oscillation needs to be
negative. The phase shifter was calibrated using a Ramsey interferometer, for which the
interference pattern could be shifted by the phase difference imposed by the two successive
beam splitters.

Intensity-modulated sinc-shaped Bragg pulses were successfully implemented, and the
obtained density profiles are very promising since we were able to increase the momentum
resonance range without decreasing the transfer performances. Furthermore, modulating
the intensity of a Bragg pulse at a frequency ΩD makes it possible to perform two distinct
resonant pulses whose speed is separated by ΩD/kB. By controlling the phase at the origin
of the modulation function, two different phases can be imprinted on the two resonant
classes, as confirmed by a Ramsey interference where the fringes of each resonance shift
in opposite directions.

The sinc-shaped Bragg pulses were used to conduct a gravity measurement with a
Mach-Zehnder interferometer. Although we observed interferences with good contrast, we
did not manage to measure g due to additional phase terms depending on the duration
T between the Bragg pulses, making it impossible to precisely identify the zeroth-order
fringe needed to measure gravity. Further investigations must be conducted to identify
the reasons for the observed effect, which appears to be reproducible when the value of T
is fixed. This, a priori, allows us to proceed with the Bell experiment.

These results can be leveraged for the Bell experiment we aim to conduct, as the
improved transfer efficiency broadens the momentum range within which we can perform
the Bell test. In a more general context, although we limited ourselves here to a sinc-
shaped modulation as a proof of concept, it will be interesting to explore other modulation
functions to further enhance the mirror quality[154], either using analytical functions or
custom profiles derived from optimal control algorithms[161].
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7.1 The Hong-Ou-Mandel effect with atoms

Since the historic experiment[36], the HOM effect has become a textbook example of
quantum interference that cannot be explained by classical or semi-classical models. It
has been observed in various quantum systems using particles emitted in pairs, including
atoms in our team[92] (an example that will be discussed in the following) and phonons
in trapped ions[171]. Notably, in order to observe a HOM dip, it is not necessary for the
two interfering particles to be emitted in pairs, nor even by the same source, as they only
need to be indistinguishable at the beam splitter. The HOM interference has then become
a standard method for characterizing the purity of single-particle sources or the indistin-
guishability of particles. The HOM effect was reported with single photons emitted one
after the other by a quantum dot[172], as well as photons emitted by independant sources,
such as through spontaneous emission by independently trapped atoms[173], or even with
one photon emitted by a quantum dot and one emitted by the Sun[174], which were made
indistinguishable by a series of filtering and post-selection methods.

An experiment aiming to exhibit a violation of the Bell inequality must rely on a closed
interferometer, otherwise, additional phase terms will blur the interference signal, as dis-
cussed in Chapter 4. Thus, the first step to conduct a Bell test with our setup is to close
the interferometer by performing an atomic Hong-Ou-Mandel interference experiment. In
our case, the indistinguishability between the input particles is tuned by controlling the
moment at which the Bragg splitter is applied. When the particles are indistinguish-
able, the atoms’ wavepackets overlap on the beam splitter and a HOM dip is observed,
which corresponds to the case where the interferometer is said to be closed. Our team
first demonstrated the quantum HOM dip in 2014[92] and subsequently replicated it in
2016[93]. This step is crucial towards a Bell test, since the extended duration of the pair
creation lattice leads to an uncertainty about the moment when pairs are created, which
can be resolved by determining the beam-splitter delay closing the interferometer thanks
to the HOM dip.

Observing a Hong-Ou-Mandel dip with sufficient contrast serves as evidence for the
quantum nature of the interferometer’s input state. While not displaying correlations as
strong as those in a Bell interferometer, this experiment validates the state’s quantum
nature, along with the quality of the sinc-shaped Bragg pulses and therefore confirm the
feasibility of the Bell test.

7.1.1 Generalization for any input state

So far, we have only described the HOM effect between two individual particles, mean-
ing we have considered the input state as the twin Fock state |1, 1〉. It is possible to
generalize the HOM effect to an input state with any two modes. We will see that the
visibility of the signal decreases rapidly with the population, that is, with the number of
atoms per mode.

Let us consider a two-particle input state which can be written in the basis of the twin
Fock states:

|Ψin〉 =
∑
n

P(n) |n, n〉 (7.1)

It was shown[92][175] that the second-order correlation function G
(2)
cd can be expressed
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as:

G
(2)
cd,Ind =

1

4

(
G(2)
aa +G

(2)
bb

)
for indistinguishable particles (7.2)

G
(2)
cd,Dis =

1

4

(
G(2)
aa +G

(2)
bb + 2G

(2)
ab

)
for distinguishable particles (7.3)

leading to a visibility

V = 1− G
(2)
aa +G

(2)
bb

G
(2)
aa +G

(2)
bb + 2G

(2)
ab

(7.4)

In the particular case of a two-mode squeezed state, we have:

|Ψin〉 =
∑
n

tanhn(λ)

cosh(λ)
|n, n〉 (7.5)

as seen in chapter 3, where λ is related to the mean number of particles 〈N〉 through the
relationship 〈N〉 = sinh2(λ). In this case, we getG

(2)
aa = G

(2)
bb = 2 〈N〉2

G
(2)
ab = 〈N〉 (1 + 2 〈N〉)

(7.6)

and therefore 
G

(2)
cd,Ind = 〈N〉2

G
(2)
cd,Dis = 2 〈N〉2 +

〈N〉
2

(7.7)

This leads to the visibility

V = 1− 1

2 + 1
2〈N〉

(7.8)

The graph of the visibility of the HOM dip as a function of the population 〈N〉 is given
in Figure 7.1a.

We can see that, for a TMS, the visibility of the HOM dip is maximal when the mean
number of particles is minimal. It then decreases as 〈N〉 increases, until approaching
0.5,which corresponds to the classical limit. In fact, one can show that even for a Fock
state |2, 2〉, the visibility of the HOM dip is only 0.66[115]. The HOM interference is a
two-particle effect, and its visibility decreases rapidly with the number of particles. For a
TMS, the probability of having more than two particles at the input increases rapidly, as
illustrated in Figure 7.1b, showing the evolution of the probability P(n, 〈N〉) of having n
particles in each input port as a function of the average number of particles 〈N〉. For a
TMS, we have:

P(n, 〈N〉) =

tanhn
[
sinh−1

(√
〈N〉

)]
cosh

[
sinh−1

(√
〈N〉

)]
2

(7.9)

This is why, in order to exhibit a clear two-photon interference signal far from the
classical threshold, one needs to work in a regime where the particle population is low.
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Figure 7.1: Visibility of the HOM dip and probability of having n particles at the input of
the HOM interferometer as a function of the mean number of particles 〈n〉 for a two-mode
squeezed state.

From an experimental point of view, this also reduces the signal-to-noise ratio, as working
with a very low population means that most events will correspond to cases where there
are no particles. Therefore, it becomes necessary to conduct the experiment on a large
statistical sample.

One should note that the visibility of the HOM dip is related to the Cauchy-Schwarz
inequality, as discussed in references [175] and [115]: the visibility of the dip can be
rewritten

V = 1− 1

1 + C (7.10)

where, if we assume that G
(2)
aa = G

(2)
bb ,

C =
G

(2)
ab√

G
(2)
aaG

(2)
bb

(7.11)

The parameter C should be smaller than 1 in any classical model. We retrieve the
classical threshold, since C = 1 leads to a maximal visibility of 0.5. But for stronger
correlations as those expected with quantum mechanics, we expect to have C > 1: this
violation of the Cauchy-Schwarz inequality leads to a HOM visibility smaller than 0.5.

7.1.2 Tuning indistinguishability

The previous results apply to bosons. The historical experiments were conducted with
photons since, historically, it has been easier to manipulate individual photons than single
atoms. Now that Bose-Einstein condensates are widely used as coherent sources of atoms,
atom optics experiments have successfully replicated some of the major results achieved
in photonics, this time with atoms, and the HOM effect is no exception. The challenges of
transitioning from photons to atoms to exhibit a HOM interference with external degrees
of freedom are detailed in the thesis of R. Lopes[115], and we will only summarize here
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the most important points.

• To perform a HOM experiment with atoms, we have, thanks to the optical lattice
(as discussed in Chapter 3), a multimode atom pair source, emitting pairs that can
be modeled as a sum of TMS states. Such an input state, if the population is low
enough, is sufficient to expect a HOM dip with a visibility exceeding the classical
limit.

• The second essential element is the beam splitter. To send atoms, initially moving
in opposite directions in the lattice reference frame, onto the same beam splitter,
mirrors must first be implemented so that atoms can interfere on the beam splitter.
Thanks to Bragg pulses, we are able to realize coherent atom mirrors and beam
splitters with reflectivity properties that are very good over a momentum range
larger than the width of a mode from the source.

• Next, we must be capable of detecting individual atoms and their joint detection
probabilities. This is made possible thanks to the MCP and the delay lines, enabling
the detection of atoms and correlations between them. It is worth noting that this
single detector allows the detection of individual atoms in all modes emitted by the
atom source. In the study of cross-correlations for HOM, we will restrict the analyses
to the modes coupled by Bragg diffraction.

−p0

p0

t

z

Mirror Beam
splitter

τ0 τ = τ0

−p0

p0

−p′0

p′0

t

z

Mirror Beam
splitter

τ0 τ < τ0

Figure 7.2: Schematic representation of the atomic Hong-Ou-Mandel interferometer in
the falling frame. The delay of the second beam splitter is scanned. When the interferometer is
closed (left), the wavepackets of the clouds overlap when the beam splitter is realized, and there is
no way to determine which path was followed by the measured atoms, which are indistinguishable.
When the interferometer is not closed (right), atoms are distinguishable.

• Finally, similarly to the historic 1987 experiment, a means of tuning the distinguish-
able or indistinguishable character of particles is required. In the historic experiment,
this was achieved by controlling the position of the beam splitter. Similarly, in our
case where the beam splitter is in momentum space, tuning the timing at which the
beam splitter is applied allows us to control indistinguishability. Indeed, if the in-
terferometer is closed, the wavepackets associated to each atom overlap on the beam
splitter, and there is no way to determine, at the output of the beam splitter, which
atoms come from which input port (Figure 7.2). Conversely, if the interferometer
is not closed, the wavepackets do not overlap on the beam splitter, and the output
modes vary slightly according to the input mode, eliminating destructive interference
and providing any observation of the HOM dip.
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In our case, implementing a HOM interferometer has a dual purpose: in the event
of observing a HOM dip deep enough to signify purely quantum interference, it serves,
on one hand, to verify that the newly designed sinc-shaped pulses are indeed suitable for
conducting a Bell-type interferometric experiment. It also makes it possible to determine
the beam-splitter timing at which particles are indistinguishable, another key element for
observing oscillations of the Bell parameter.

7.2 Observation of an atomic Hong-Ou-Mandel effect

7.2.1 Experimental preparation

We now have all the necessary experimental components to implement an HOM ex-
periment. The optical lattice enables the emission of correlated pairs of atoms. The Bragg
mirror and beam splitter allow us to set up an interferometer with controllable timings.
Specifically, the delay of the beam splitter can be scanned to tune the indistinguishability
of the atoms. Subsequently, the analysis will consist in examining the cross-correlations

G
(2)
cd as a function of the beam splitter delay in order to look for a HOM dip.

The choice of the experimental parameters is important. In accordance with the anal-
ysis of the pair correlations emitted by the lattice, we opted to operate in a regime with a
low pair density to achieve a significant visibility of the HOM dip. The population of the
pairs is mainly controlled by the duration of the lattice and the initial number of atoms
in the BEC during the lattice, which can be adjusted without modifying the trap con-
finement by tuning the holding duration of the ODT before the application of the lattice.
The chosen population regime allowed the observation of satisfactory cross-correlations
and sub-shot noise variance, and is estimated at 0.28 atoms per mode (0.14 atoms per
mode were measured, and we assume a quantum efficiency of the MCP of 50%). Note
that this population would not be enough to exhibit a violation of Bell inequality, as we
showed in section 4.1.2 that the average number of atoms, for a TMS, has to be smaller
than 0.26. Unlike the 2014 experiment conducted by the team, the primary goal here is not
to maximize the visibility but to determine the timing of the beam splitter for detecting
the closure of the interferometer. Hence, we chose not to further decrease the population
to avoid sacrificing the signal-to-noise ratio.

The depth of the lattice is 0.49Elat, and the detuning between the two beams of the
lattice (δ = 101.8 kHz) was chosen to ensure that the velocity difference between the two
peaks of population density corresponds to the increment of velocity from the two-photon
Bragg transfer. This way, the momentum modes coupled by Bragg diffraction are those
with the highest population, which has a favorable impact on the signal-to-noise ratio (the
mode population values presented in this manuscript hold at peak density).

Regarding the choice of the Bragg pulses, we selected sinc-shaped pulses, with a dura-
tion of 1 ms and a two-photon Rabi frequency of 2π × 5 kHz. This frequency corresponds
to the Rabi frequency used in the previous experiments conducted in the team with square
pulses. If a sinc-shaped Bragg pulse is equivalent to a constant Bragg pulse with the same
two-photon Rabi frequency, one should expect to have a similar result in terms of the
width of the HOM dip (an assumption that will be discussed later).

Another important parameter to set correctly is the Bragg resonance frequency. It
must be ensured that the mirror and the beam splitter couple correlated momentum modes
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(Figure 7.3). One can consider that the width of the mirror pulse resonance (narrower
compared to that of the beam splitter pulse) is sufficient to efficiently couple around 5
pulse modes, each being 1 mm.s−1 large. We assume that, due to the strict conservation
of momentum during the two-photon transition, two coupled modes are systematically
separated by vB = 49.6 mm/s. Thus, it is necessary for us to ensure that the error on the
detuning does not exceed 3 pulse modes, corresponding to 1.5 kHz.

Bragg coupling

p

Bragg coupling

p

Figure 7.3: Schematic representation of the Bragg coupling for two resonance frequencies.
The goal is to couple the correlated momentum modes whose velocity difference equals the Bragg
velocity, represented in pink in the center of each Gaussian (top). If we make an error on the
Bragg detuning such that the resonance is shifted by more than the resonance width (bottom), the
correlated modes we are interested in are not coupled and we cannot observe a HOM interference.

To this end, we use the linear relationship between the detuning and the resonant
velocity. Initially, correlation data (presented in Chapter 3) are used to determine the
velocities Vz1 and Vz2 (in the reference frame of the BEC, for instance) for which the
cross-correlation is maximum. The average between these two velocities corresponds to
the lattice speed vlat, i.e., the axis of symmetry between the coupled modes. Having
precisely determined beforehand (within 0.5 kHz) the detuning corresponding to the BEC
resonance towards the -2 diffraction order, we then have to shift this detuning value in
order to be in resonance with the mode located at vlat + vB/2 :

δHOM = δ
(−2)
BEC + kB (vlat + vB/2) (7.12)

The interferometric sequence used for HOM is illustrated in Figure 7.4. The optical
lattice is adiabatically ramped up for 200 µs and then held for 500 µs. Subsequently, it
is adiabatically turned off in approximately 100 µs, after which both the optical dipole
trap and the lattice are switched off, thus releasing the atoms. After a delay of 1 ms, the
Raman beams are applied to the atoms, transferring them to the m = 0 state, insensitive
to the possible remnant magnetic fields. The duration of the Raman pulse is 14 µs. Then,
1.1 ms after the trap is switched off, the 1 ms long Bragg mirror pulse begins. Finally,
the timing at which the Bragg beam splitter is applied is randomly scanned between 2100
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and 3300 µs, with more points between 2600 µs and 3100 µs. Simultaneously, we took some
data without any Bragg pulse in order to be able to properly determine the pair properties
directly on the dataset used for HOM.

−0.8 0 1 2.1 2.8 3.8

Optical dipole trap

Lattice

Raman Mirror Beam splitter

t (ms)

Figure 7.4: Interferometric sequence used for HOM.

It is noteworthy that these temporal parameters significantly differ from those em-
ployed in the two previous reported realizations of the HOM experiment. The details are
documented in Table 7.1. The longer duration of the sinc-shaped Bragg pulses inherently
requires a longer interferometer than what has been done previously. This implies a greater
uncertainty in estimating the delay of the beam splitter for closing the interferometer.

Parameter This work 2014 experiment[92] 2016 experiment[93]

Lattice delay (µs) 0 -150 0

Lattice rise time (µs) 200 300 100

Lattice duration (µs) 500 350 600

Lattice fall time (µs) 100 50 100

Raman delay (µs) 1000 0 0

Raman duration (µs) 14 300 300

Bragg mirror delay (µs) 1100 300 300

Bragg mirror duration (µs) 1000 100 100

Bragg splitter duration (µs) 1000 50 50

Estimated atoms per mode 0.28(5) 0.8(2) 0.33(7)

Expected visibility 0.74(2) 0.62(2) 0.72(2)

Table 7.1: Comparison of the HOM interferometers. The time reference (t = 0), from which
the delays are defined, corresponds to the time when the trap is switched off. In particular, the
lattice delay corresponds to a waiting time between the end of the lattice and the end of the optical
dipole trap.

The experiment was conducted in September 2023 after several unsuccessful attempts
for which no dip was observed. The reasons for the experiment’s failure are not yet clearly
established, but a significant drift in the intensity of the Bragg beams over the few days
required for acquiring the HOM signals is suspected. This drift results in a substantial
degradation of the dip visibility. The likely cause of this drift, despite the power lock
before the separation of the Bragg beams, is the emergence of power fluctuations at the
Bragg AOMs due to thermal effects.

261



CHAPTER 7. HONG-OU-MANDEL EXPERIMENT AND BELL INEQUALITY TEST

7.2.2 Results: analysis of the HOM dip

In order to observe the HOM effect, correlations between output modes are studied

by calculating the second-order correlation G
(2)
CD. This is done in the same manner as

presented in Chapter 3: for a given beam splitter delay τ , the atoms are counted in boxes
in momentum space at each experimental cycle. The G(2) function is the average of the
product NC ×ND:

G
(2)
CD(τ) = 〈NC(τ)ND(τ)〉 (7.13)

where NC is the number of atoms counted in the box centered on one output mode and
ND is the number of atoms counted in the box centered on the other output mode.

The size of the box should correspond to the size of a mode. If the box is smaller, the
signal-to-noise ratio decreases, and the correlation increases. On the other hand, if it is
larger, averaging over several mode pairs occurs, and visibility decreases. Indeed, only the
mode pair with a velocity difference corresponding to vB will yield maximum visibility.

Since our source is multimode, it is necessary to identify the mode pair that interferes.
This pair is determined by the Bragg resonance and the lattice reference frame. To this
end, correlation maps G(2)(Vz1 , Vz2) were plotted, varying Vz1 and Vz2. We work in the
lattice reference frame, and we expect to observe a decrease in G(2) when the interferometer
is closed, between two modes separated by vB = 49.65 mm/s. To ensure that the results
are not affected by differences in density between different delays, we normalize G(2) by
the product of the average number of atoms in each box to plot the normalized correlation
function g(2):

g
(2)
CD(τ) =

〈NC(τ)ND(τ)〉
〈NC(τ)〉 〈ND(τ)〉 (7.14)

Finally, it is important to keep in mind that the atoms numbers provided here are the
number of detected atoms, reduced by a factor of η compared to the actual number of
atoms involved in the experiment. Normalizing the correlation function renders the result
independent of quantum efficiency.

The maps obtained are shown in Figure 7.5 for three different delays. On these plots,
each point corresponds to the value of g(2) for two boxes of 0.8 mm/s along z and 8 mm/s
along x and y, centered respectively on Vz1 and Vz2 . The speed coordinates along x and
y, identical for both boxes, are chosen to correspond to the density maximum. The plots
are oversampled (as the number of points exceeds the size of the box) to determine the
optimal values of Vz1 and Vz2 for which the correlation decreases. The typical size of the
box is shown in black. These data correspond to a bit more than 1000 experimental runs
for each delay, which took 3 days of data acquisition.

We observe a specific delay (τ = 2800 µs) for which a region exhibits a lower correla-
tion function g(2) than the background. This region corresponds notably to pairs Vz1 and
Vz2 separated by a speed of approximately vB = 49.65 mm.s−1. The reason why the low
correlation area has an elongated shape along the anti-diagonal is a unknown. Indeed, the
corresponding modes (Vz1 = −25.6 mm.s−1 and Vz2 = 25.6 mm.s−1) are correlated modes,
but they should not be coupled by Bragg diffraction if we consider a strict momentum
correlation in the two-photon process.

From these correlation map data, one can calculate, for a given pair Vz1 and Vz2, the
evolution of G(2) and g(2) as a function of the delay. The graphs presented in Figure 7.6
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Figure 7.5: g
(2)
CD(τ) correlation maps for different beam splitter delays τ . The results are

plotted for boxes whose size is given by ∆Vz = 0.8 mm.s−1 and ∆Vx,y = 8 mm.s−1. A typical box

is represented in black. We expect g
(2)
CD(τ) to decrease when the interferometer is closed.

show a distinctive HOM dip. The graphs were calculated with boxes of 0.8 mm.s−1 along z
(which corresponds to the estimated size of a momentum mode), for Vz1 = −24.65 mm.s−1

and Vz2 = 24.65 mm.s−1, which optimized the dip visibility. The speed difference be-
tween these modes is ∆v = 49.3 mm.s−1, which is in good agreement with the two-photon
Bragg speed (vB = 49.65 mm.s−1). A difference of 3% is also reported in the thesis of R.
Lopes[115] who also optimized the visibility by selecting boxes separated by 0.97% of vB.
This point will be discussed in section 7.3.4.
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Figure 7.6: HOM dip. The cross-correlation between Vz1 and Vz2 is plotted as a function of the
beam splitter delay. The center of the boxes are Vz1 = −24.65 mm.s−1, Vz2 = 24.65 mm.s−1,and
the size of the boxes are ∆Vz = 0.8 mm.s−1 and ∆Vx,y = 8 mm.s−1.

The error bars were evaluated by bootstrap after 300 random draws. The evolution
of the bootstrap-estimated error bar was plotted as a function of the number of draws to
ensure the convergence of the bootstrapping technique. In general, the error bar varies as
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the square root of the number of draws.

We obtain similar results with a box width of 1 mm.s−1 instead of 0.8 (Figure 7.7).
Again, a significant HOM dip can be observed. If the size of the box is further increased,
the visibility of the dip decreases significantly (as expected when averaging coincidences
over a speed range larger than the size of a mode). Conversely, if the box size is reduced,
the signal-to-noise ratio decreases, making it challenging to define a background from
which to calculate the visibility.
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Figure 7.7: HOM dip. The cross-correlation between Vz1 and Vz2 is plotted as a function of the
beam splitter delay. The center of the boxes are Vz1 = −24.65 mm.s−1, Vz2 = 24.65 mm.s−1,and
the size of the boxes are ∆Vz = 1 mm.s−1 and ∆Vx,y = 8 mm.s−1.

An exhaustive analysis of the HOM dip can be found in R. Lopes’ thesis[115]. The
HOM dip was fitted with a Gaussian function to deduce the visibility, width, and especially
the center of the dip, that is to say the beam splitter delay corresponding to the situation
where the interferometer is closed. The results of the fit are given in Table 7.2. There is
a trend in which the contrast slightly decreases with the size of the box, while the width
decreases, but it is not statistically significant.

Box width (mm.s−1) Correlation function Visibility Width (µs) Center (µs)

1.0
g2(τ) 0.88(9) 52(15) 2810(30)

G2(τ) 0.88(9) 55(15) 2816(30)

0.8
g2(τ) 0.85(13) 65(25) 2832(50)

G2(τ) 0.86(13) 67(25) 2830(50)

Table 7.2: Fit results of the HOM dip on the G(2) correlation function. The time reference
(t = 0), from which the delays are defined, corresponds to the time when the trap is switched off.
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At this stage, we emphasize that these preliminary data should be approached with
caution. In contrast to the previously reported HOM experiments, only one data point,
obtained for a delay of 2800 µs, stands out due to its significant visibility leading to the
HOM dip. In a somewhat less clear manner, it can be added that the data point at 2900
should also be considered in this context, since the correlation function appears to be lower
than the background value when considering a box size of 0.8 mm.s−1. Despite all other
indicators suggesting the observation of the HOM dip, these limited data must therefore
be considered cautiously, as suggested by the significant error bars which prevent us from
providing a comprehensive quantitative analysis.

The results are compared to those obtained with the previous HOM experiments re-
ported in the team in Table 7.3.

Parameter This work 2014 experiment [92] 2016 experiment [93]

Visibility 0.88(9) 0.65(7) 0.78(6)

Width (µs) 55(15) 70(40) 85(23)

Beam splitter delay (µs) 2816(30) 875(50) 1150(30)

Box width ∆Vz (mm.s−1) 1.0 2.8 2.6

Box width ∆Vx,y (mm.s−1) 8.0 4.8 4.0

Table 7.3: Comparison of the results of the HOM dip on the G(2) correlation function. The
time reference (t = 0), from which the delays are defined, corresponds to the time when the trap
is switched off.

With a box size of 0.8 mm/s, a visibility of 85± 13 % is observed. The expected visi-
bility is 74 % for a population estimated at 0.28 atoms per mode, which is a bit lower but
remains within the error bar. If the number of atoms per mode was not overestimated,
it is possible that taking more data would lead to the detection of more atoms in the dip
which will decrease the visibility.

The width of the dip is 53±17 µs, which is smaller than in previous experiments. This
is not surprising, as we are now working in a more anisotropic trap than a few years ago.
This implies that the size of a mode is smaller, as evidenced by both the width of the dip
and the size of the integration box required to observe a signal. Furthermore, it should be
noted that for the larger box, the width of the dip is smaller, as previously observed. This
is consistent with the HOM dip model developed in Chapter 5: without considering the
size of a mode and assuming it has an infinite coherence length, then the HOM experiment
is equivalent to averaging the Bell correlator in a box centered on resonance. The larger
the averaging box, the more the correlator varies with detuning as one moves away from
the interferometer closure, and thus the HOM dip is narrower.

Finally, we find that the delay (relative to the trap cutoff) at which we observe the dip
is equal to 2813±33 µs for the 1 mm/s box and 2831±51 µs for the 0.8 mm/s box. We can
try to interpret this delay in terms of interferometer closure, particularly to determine the
time at which the initial state is emitted. From experimental analysis, we have seen that
for a sinc-shaped pulse, most atoms are transferred by Bragg diffraction at the time of the
central lobe of the sinc function. Additionally, the study of HOM interferometer closure
based on a plane wave model from Chapter 5 has established that for two sinc-shaped
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pulses, the center of the beam splitter and the initial instant are symmetrical with respect
to the center of the mirror.

In the conducted experiment, the delay of the mirror is 1.1 ms (corresponding to a
central lobe at 1.6 ms, see Figure 7.4), and the delay of the beam splitter is 2.8 ms for
the interferometer to be closed, corresponding to a central lobe at 3.3 ms. Hence, by
subtracting the time interval between the mirror and the beam splitter to the central lobe
of the mirror, we estimate that the initial instant of the interferometer would correspond
to a delay of -0.1 ms, i.e. 100 µs before the trap cutoff. This precisely aligns with the end
of the lattice application, at the moment when its intensity begins to decrease (Figure
7.8). This result provides reassurance regarding the validity of the observed HOM dip:
since the number of created pairs grows exponentially with the lattice duration, we expect
that most pairs are created at the end of the lattice, so the beginning of the interferometer
corresponds precisely to this value. A similar time had been determined during the first
experiment in 2014, but this was not the case in 2016, for unknown reasons.

Mirror splitter
Beam

−0.20 0.35 0.90
t (ms)

2014 experiment

Mirror Beam splitter

−0.425 0.350 1.175
t (ms)

2016 experiment

Mirror Beam splitter

−0.1 1.6 3.3
t (ms)

This work

Figure 7.8: Comparison between the measured closures of the HOM interferometer. In
gray: optical dipole trap is on. In blue: pairs creation lattice. In green: Raman pulse. In red:
Bragg pulses.

In order to get more precise results with smaller error bars, we aimed to add points
to the obtained curve, by conducting the same experiment and adding beam splitter de-
lays. However, after adding the new data to the dataset, the HOM dip lost a significant
visibility, preventing us from completing the analysis. At this stage, we became aware of
the power drift of the Bragg beams mentioned earlier, leading to an important decrease
in the mirror and beam splitter reflectivity. This problem was later corrected through
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digital feedback on the setpoint power at the output of the Bragg/Raman AOM. This was
achieved after calibrating the photodiode that we use to observe the beating between the
two Bragg beams. We were able to exhibit a clear correlation between the measured power
on the amplitude of the beating signal and the number of atoms transferred by a Bragg
mirror. This calibration enabled us to adjust the setpoint power in order to maintain the
good reflectivity of the Bragg pulses.

7.2.3 Ramsey fringes

The next step, like in the 2017 article, is to conduct a study of the correlator’s evolution
not as a function of a control parameter, but of detuning (or, equivalently, the speed class
out of resonance). This would ensure that, like it was the case before, a significantly
non-zero value of the correlator can be distinguished when looking at the out of resonance
quadruplets when performing an HOM interferometer (see section 5.1).

However, we have observed the presence of density fringes along the z-axis in the
velocity profile of the pairs at the output of the interferometer (Figure 7.9). The amplitude
of these fringes seems to increase as we move away from resonance doublet (p0,−p0),
naturally leading to Ramsey fringes, which are observed when two successive beam splitters
are applied to a coherent cloud. Of course, this phenomenon exhibits maximum contrast
when two beam splitters are used, but it remains possible even when a pulse does not have
a reflectivity of 1, which is the case for our mirror that is not perfect out of resonance.
Thus, we attribute the appearance of these fringes to the decreased reflectivity of the
mirror off resonance. The measured fringe spacing is 1.4 mm.s−1, which is consistent with
the expected fringe spacing between two pulses separated by 1.7 ms, as is the case for
Figure 7.9.

−40 −30 −20 −10

Center Vz of the box (mm/s)

0.1

0.2

0.3

M
ea

n
n
u

m
b

er
of

at
om

s

Beam A

10 20 30 40

Center Vz of the box (mm/s)

Beam B

Figure 7.9: Density profile along the vertical direction for τ = 2800 µs. The box width is
∆Vz = 1.6 mm.s−1 and ∆Vx,y = 8 mm.s−1, which corresponds to approximately two modes.

This phenomenon was not noticed at first because when plotting the density profiles
of the HOM dataset, we were averaging the data for different delays, resulting in different
fringe contrasts that were smoothed out.

Importantly, this density issue leads to correlations when examining the joint detec-
tion probabilities. Indeed, to plot the Bell correlator as a function of momentum out of
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resonance, we compute the probabilities

P(p, q) =
〈N(p)N(q)〉

〈N(p)N(q)〉+ 〈N(−p)N(−q)〉+ 〈N(p)N(−q)〉+ 〈N(q)N(−p)〉 (7.15)

and so on for P(−p,−q), P(p,−q) and P(q,−p), where p = p0 + ∆p and q = p0 −∆p.

Since the density varies on a scale similar to that of the size of the box, which is taken
to be equal to that used to observe the HOM dip, the density fringes are visible in the
joint probabilities. As a consequence, plotting the correlator as a function of ∆p results in
the observation of correlations that are not related to the expected Bell interference effect,
or at least not exclusively. The variation of the correlator evidently exhibits correlations
associated with this undesirable effect of density fringes, rendering the analysis conducted
in 2017 impossible.

It would be interesting to understand why this effect was not observed previously: it
was not detected in the analysis of the off-resonance correlator in 2016 but also not reported
during the study of the HOM dip in 2014. This is actually an expected phenomenon when
the reflectivity of the mirror decreases. The quality of the mirror used in the previous HOM
experiments was not superior to that used for the dataset presented in this manuscript. It
is possible that larger phase fluctuations at that time blurred the phenomenon, or that it
was present but a misalignment in the vertical direction of the Bragg beams led to fringes
not only along the z-axis but also along an axis inclined along x or y. This would make it
more difficult to detect if the density profile was traced only in one direction, integrating
over the other two.

Note that this effect is particularly undesirable in the state of the correlator as a
function of ∆p. Nevertheless, it is not problematic for a Bell test in its version where a
control parameter is varied for a given quadruplet. Indeed, when ∆p is fixed, even if there
are fringes when looking at different velocity classes, there is no Ramsey fringes related
variations in density when varying the phase.

7.3 First Bell test attempt

7.3.1 Parameters and procedure

Despite the reservations expressed earlier, the results of the HOM dip were deemed
promising enough for a decision to be made in October 2023 to launch a first Bell test.
The parameters chosen for the delays of the Bragg pulses correspond to those for observing
the HOM dip. The mirror is similar to that used in the HOM experiment, while the beam
splitter is the one determined in Chapter 5. The Bragg parameters are given in Table 7.4.
We use sinc-shaped pulses to optimize the reflectivity of the Bragg pulses, and modulate
the beam splitter to control the phase imprinted on each loop of the interferometer. Recall
that the expressions of the sinc Bragg pulses write, between τ and τ + T ,


ΩR(t) = ΩM sinc

[
ΩS

(
t− τ − T

2

)]
ei∆ϕ for the mirror

ΩR(t) = ΩM sinc

[
ΩS

(
t− τ − T

2

)]
cos

[
ΩD

2
(t− τ) +

θ

2

]
ei∆ϕ for the beam splitter

(7.16)
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where ∆ϕ is the phase difference between the two lasers, which does not need to be locked
in our weak version of a Bell test where we control the phase difference between A and B
but not the absolute phase imprinted on A or B.

The control parameter θ, which is related to the phase at the origin of the modulation
function for the beam splitter, is scanned iteratively for 12 values between 0° and 330°.

Parameter Mirror Beam splitter

Shape sinc sinc

Delay τ (ms) 1.1 2.8

Duration T (ms) 1 1

Two-photon Rabi frequency ΩM (kHz) 5 0.8

sinc frequency ΩS (kHz) 5 1.6

Modulation frequency ΩD(kHZ) − 1.3

Table 7.4: Bragg pulses experimental parameters used for the first Bell test attempt.

The width of the beam splitter is such that four to five Bell interferometers are run
in parallel, meaning that as many quadruplets are coupled by the Bragg pulse and thus
potentially allow the observation of a Bell parameter oscillation. A beat setup between
the two Bragg beams allows for logging of the temporal profile of the beating during the
Bragg pulses. This signal serves both to verify the Bragg power, enabling correction of
power drift effects using a feedback loop, and to fit the beating signal to determine the
global phase φG between the two lasers, which is the only parameter not under control at
this stage.
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Figure 7.10: Histogram of the laser phase difference ∆ϕ measured during the Bell exper-
iment. Data collected over 20 000 experimental runs. ∆ϕ was fitted from a beating setup just
before the beams are directed to the atoms.

A total of approximately 20 000 experimental runs were conducted, with roughly 1200
runs per value of θ. Fits of the global phase show a difference of less than 5° between the
phase determined at the mirror and at the beam splitter, indicating good stability of ∆ϕ
throughout the interferometer duration. However, from one run to another, this phase
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varies significantly, as shown in the histogram in Figure 7.10. The uniform distribution
of this global phase ensures that it does not introduce any particular bias into our analysis.

A thorough analysis of the results was conducted, but unfortunately did not reveal
any oscillation of the Bell parameter. For all considered quadruplets, the joint detection
probabilities did not exhibit similar pairwise evolutions, as one would expect to have
P(p, q) = P(−p,−q) and P(p,−q) = P(−p, q). In the following, we will seek to provide
some insights to explain why the test failed.

7.3.2 Sensitivity to the interferometer closure

The only parameter that changed between the Bell and the HOM experiments is the
delay of the Raman pulse. It was 1 ms for HOM and was decreased for the Bell test so
that the atoms would be immediately transferred into m = 0 at the trap cutoff.

The typical delay for the Raman pulse we use to transfer atoms from m = 1 to m = 0 in
a BEC is indeed on the order of 1 ms. This is because we wait several hundred microseconds
for the cloud to become less dense before transferring it into m = 0, where the rate of
Penning collisions is much higher. A too-dense cloud in the m = 0 state indeed leads to
significant losses, which is why we prefer to wait for an expansion of the cloud in time of
flight before the Raman pulse.

While this is true for the atoms in the BEC, there is no reason to expect collision effects
on the pairs, which are particularly dilute. Therefore, the Raman delay was reduced. But
this may have had significant consequences on the interferometer. Indeed, if there is an
undesirable magnetic force that accelerates the atoms in a particular direction when they
are in m = 1 during their fall, this will result in unexpected propagation terms in the
interferometer, leading to a modification of the interferometer closure condition. Modi-
fying the Raman delay between two experiments thus may be responsible for changing
the closure condition. It has been observed in section 5.1 that if the interferometer is not
closed, the correlator tends to vary more rapidly within a given velocity range, resulting
in decreased visibility and increased error bars.

This effect can be quantified using numerical resolution of the Bell interferometer
presented in Chapter 5 for the case of plane waves. Here, we neglect any spatial effects
related to the propagation of wave packets (which may deviate from reality) and focus
on calculating the Bell correlators for different quadruplets separated from the HOM
resonance by ∆v = 1 , 3, and 5 mm.s−1. The calculation is similar to that used to plot the
correlators with sinc pulses as a function of the control parameter θ, except that this time
we also scan the delay τ of the Bell beam splitter to investigate the consequences of an
imperfect interferometer closure on the oscillation of the Bell parameter. We observe that
while imperfect closure does not affect the shape of the oscillation, it does, as expected,
affect its amplitude and variation within a given momentum range.

Recall that, for a given momentum quadruplet, the Bell oscillation can be written

E(θ) = A cos(θ + φ0)±∆E(θ) (7.17)

where E(θ) and ∆E(θ) are respectively the mean and standard deviation of the Bell
correlator E(p, θ) averaged over a given momentum quadruplet.

In Figure 7.11 is plotted the oscillation amplitude A as a function of the closure delay
∆τc = τ − τc, which corresponds to the difference between the delay τ of the beam splitter
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(scanned) and the delay τc for which we established that the interferometer was closed.
The error bars correspond to the average variation 〈∆E(θ)〉θ of the correlator over a ve-
locity box for the various values of θ.

0

1

2
B

el
l

a
m

p
li

tu
d

e
A Box 1

0

1

2

B
el

l
am

p
li

tu
d

e
A Box 3

−500 −250 0 250 500 750

Closure delay ∆τc (µs)

0

1

2

B
el

l
am

p
li

tu
d

e
A Box 5

Figure 7.11: Simulated amplitude of the Bell correlator oscillation as a function of the
closure delay. For each delay of the beam splitter, a Bell correlator was calculated as a function
of θ, along with the standard deviation of E for each value of θ within an integration box of
1 mm.s−1. Here, we represent the amplitude of E(θ). The error bars correspond to the mean value
of the standard deviation ∆E(θ) within the integration box. This was done for three velocity
quadruplets, labeled by their velocity center ∆v = 1, 3 and 5 mm.s−1 (where ∆v = 0 corresponds
to the HOM resonance).

The results show that the amplitude decreases relatively slowly with the closure delay,
while the error bar, which characterizes the typical variation of the correlator within a
box, also increases relatively slowly compared to the delays involved in the interferometer.
The effects worsen as the considered quadruplet is far from resonance, which makes sense
as the variation of the correlator with the detuning (and thus the velocity class) increases
as one moves away from resonance. In this case, it is the imperfect reflectivity of the
mirror for the Bragg quadruplets that is responsible for this effect.

One could consider that the oscillation of the correlator becomes impossible to de-
tect when the error bar is of the order of the amplitude of the oscillation, which occurs
for a closure delay ∆τc on the order of 500 µs. Thus, it seems that in this model, only
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a significant deviation from interferometer closure would result in a total loss of the signal.

It seems unlikely that the change in the Raman delay would result in such a high
closure delay, so this change may not be the only effect responsible for the fact that no
Bell signal was observed. Nevertheless, since we suspect a misalignment of the Raman
beams, responsible for an additional momentum transfer along the vertical direction, a
change in the Raman delay could also lead to a change in the resonance with the pairs
when choosing the Bragg detuning. It should be noted that to avoid suspecting this effect,
it will be important in future tests to keep the same Raman delay for Bell as was used for
HOM.

Note also that the previous model only takes into account the visibility loss due to the
Bragg pulses, for a perfect Bell state. Therefore, as our input state is supposed to be a
TMS and not a Bell state, the expected amplitude of the oscillation is actually lower than
what was plotted in Figure 7.11 (as discussed in Chapter 4). This negative effect on the
signal detection due to an imperfect input state must be added to those that are taken into
account in the model (imperfect Bragg pulses, imperfect closure of the interferometer).

7.3.3 Sensitivity to the detuning

In the section on the preparation of the HOM experiment, it was mentioned that it
was necessary to precisely determine the Bragg detuning in order to couple the correct
momentum classes. This is even more crucial in a Bell test.

Beam splitter B

Beam splitter A

p

Beam splitter B

Beam splitter A

p

Figure 7.12: Schematic representation of the Bragg coupling for two resonance frequencies.
The goal is to couple a momentum quadruplet, where modes are correlated two by two. This implies
that two correlated modes must be coupled by two different beam splitters. This is the case in
the top scheme, where the detuning is such that the center of the two beam splitters resonances
corresponds to the HOM doublet. If the detuning is shifted by only one mode (bottom scheme),
then the beam splitters do not couple the same modes and no correlation can be observed.

For a Bell test, it is necessary to adjust the detuning between the two lasers so that
the resonant doublet couples the modes used for HOM. For the HOM experiment, it was
acceptable to be off by a few modes on the resonance, as long as the doublet (p0,−p0) was
within the resonance width of the mirror and beam splitter Bragg pulses. In the case of a
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Bell experiment, the error made on the detuning must be smaller than the size of a mode
(Figure 7.12).

Indeed, it is necessary for the Bell beam splitter to be effective that the correct modes
are coupled. It is imposed in the temporal profile of the beam splitter pulse that the two
resonances of A and B are separated by ΩD, so we need to correctly determine the right
detuning to couple p0 and −p0. Even though the width of each beam splitter resonance
(A or B) is wider than the size of a mode, a shift of one mode inevitably leads to the
Bragg coupling of uncorrelated modes, which would result in a complete loss of signal.
Since a mode has a width of 1 mm.s−1, which corresponds to a detuning range of 0.5 kHz,
the detuning must be smaller than this quantity. This is experimentally challenging to
achieve since, so far, even by locating the pair reference frame by studying the center
of the cross-correlations, the uncertainty in the fit center result remains larger than this
value.

7.3.4 Sensitivity to the initial cloud position

Of course, the previous Bragg detuning setup also requires precise knowledge of the
value of the Bragg velocity, as shown by relation 7.12. This velocity has been determined
experimentally using Bragg pulses in the Kapitza-Dirac regime as well as Bloch oscillations
with a good precision.

However, we have recently found out that our velocity measurements exhibited a sys-
tematic error stemming from an effect that we had previously neglected. This systematic
error can be highlighted with a simple experiment, which consists solely of making a short
Bragg beam splitter, resonant with the condensate, for different delays after the trap cut-
off. We can then make a density fit of the two clouds detected on the MCP, and convert
the temporal difference between the two peak centers into velocity, thus determining the
Bragg velocity as a function of the delay. The results are given in Figure 7.13.
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Figure 7.13: Measured Bragg speed as a function of the Bragg delay. The graph indicates a
systematic error when calculating the velocity of atoms, by neglecting their initial position before
time of flight.

We find that the Bragg velocity we measure depends linearly on the application delay
of the beam splitter, which is, of course, not supposed to be the case. In reality, it is
not the Bragg velocity that depends on the delay, but rather our method of calculating
the velocity from the arrival times that was incorrect. This linear dependence can be
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explained using a simple reasoning.

Let us consider a BEC, whose initial velocity is 0 in the laboratory frame. Again, we
consider that the initial time correspond to the optical dipole trap cutoff while the space
origin is the center of the MCP. The trajectory over time of the cloud is:

z(t) = −gt
2

2
+ L (7.18)

where L = gt2BEC/2 is the distance between the trapped cloud and the MCP, with tBEC

being the arrival time of the condensate on the MCP. Atoms detected at time T have an
initial velocity Vz such that

Vz =
1

2
gt− L

t
(7.19)

For the mean velocity of the condensate, we find of course Vz = 0.
Now, at t = τ , we apply a Bragg beam splitter pulse to transfer half of the atoms to

the first diffraction order. The transmitted cloud is not affected by the pulse, and we can
apply the previous result. The reflected cloud follows a trajectory that can be written as,
for t > τ :

z(t) = z(τ)− 1

2
g(t− τ)2 + (v(τ) + vB)(t− τ)

= −gt
2

2
+ vBt+ L− vBτ

(7.20)

This second cloud falls on the MCP at time t1 such that z(t1) = 0. From this relation,
we get

vB =
1

2
gt1 −

L

t1
+
vBτ

t1
(7.21)

Thus, when we calculate the velocity from the equation

Vz = v
(mes)
B =

1

2
gt1 −

L

t1
= v

(mes)
B = vB −

vBτ

t1
(7.22)

we miss a corrective term related to the position of the cloud after the pulse, equal to
vBτ/t1. This term is actually not negligible when the application time of the pulse equals
a few milliseconds: it is equal to 0.8 mm.s−1 for τ = 5 ms, which is approximately the size
of a momentum mode.

In Figure 7.13, the data were fitted with a corrective function ṽ(t), defined as

ṽ(t) = vB

(
1− τ

t1

)
(7.23)

where t1 ≈ tBEC is fixed and vB is a fit parameter. This provides a measurement of vB,
which does not vary as a function of the Bragg delay.

As a result, the velocities of atoms that have been subjected to Bragg pulses are
systematically calculated incorrectly. This can have important consequences, notably on
the determination of the detuning for the Bell experiment if a false value of vB is used. This
must be added to the imprecision of the lattice velocity determination, and both effects
possibly explain why no Bell correlation signal could be observed. In future analyses,
it will be necessary to include these corrections when calculating velocities from arrival
times, particularly when analyzing datasets from HOM or Bell interferometers.
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In this respect, it should be noted that while we found a HOM doublet for velocities v0

and −v0 whose difference was indeed very close to the measured value for vB, a difference
of a few percent between the box centers and vB had been reported in 2014, probably due
to an incorrect estimate of the Bragg velocity, calculated via the Kapitza-Dirac regime of
Bragg diffraction.
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Conclusion and outlook

The aim of this manuscript has been to provide a detailed overview of our quest for
realizing a Bell’s inequality test with momentum correlated atoms.

After several years of experimental problems, the metastable helium experiment I
worked on for my thesis has been improved and modernized, and has yielded promis-
ing results for launching a Bell inequality test, from the stability of condensates to the
correlation properties of pairs created by four-wave mixing. Although the strength of
the correlations observed is not as significant as hoped, we have succeeded in observing
purely quantum correlations, such as a violation of the Cauchy-Schwarz inequality and a
sub-Poissonian variance.

I personally contributed to develop an original strategy to control the phase imprinted
on the two momentum doublets involved in the Bell interferometer, leveraging the fact that
the pairs of modes A and B do not have the same Bragg resonance frequency, allowing
the use of a two-frequency beam splitter to be selectively resonant with A and B. An
important point to avoid sensitivity to laser phase fluctuations is to use the same beams
for A and B and modulate their intensity. I have implemented the appropriate hardware
and conducted experiments that provide proof of concept using Ramsey fringes, whose
interference pattern was shifted in opposite directions for A and B, validating this method.

Although the first Bell test we conducted was not successful, we remain confident
in the forthcoming observation of correlation signals, the amplitude of which may be
sufficient to provide the first direct evidence of Bell inequality violation with massive
particles entangled in momentum. Nevertheless, some points still require clarification and
improvement.

Towards new Bell tests

At the end of 2023, new experimental issues prevented us from continuing interfer-
ometric experiments. We would like to conduct an HOM experiment again, and then
perform a new Bell test, taking into account the errors that have been recently identified,
particularly in our method of calculating velocities from arrival times. Including corrective
terms related to the delay of the Bragg pulses in the datasets analysis poses no significant
issues and would help avoid systematic errors, in the estimation of the Bragg velocity for
instance.

In Chapter 4, we highlighted the advantages of our setup compared to the one used
by the team of A. Truscott to demonstrate Bell correlations[94]. While our setup is much
less sensitive to phase fluctuations, this comes at a certain cost because we need to use
two different resonance frequencies for doublet A and doublet B, which requires precise
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adjustment of the Bragg detuning. In order to be less sensitive to the adjustment of this
parameter, required to couple the correct momentum modes, we would like to increase
the size of the modes along z. As we have seen, this is directly related to the size of the
condensate, and thus to the shape of the optical dipole trap. In recent weeks, an ad-
justable telescope has been implemented on the path of the horizontal beam of the trap.
The objective is to be able to tune its waist and thus decrease the trap’s anisotropy, in
order to increase the size of the modes along z. Datasets of pairs should be collected soon
to study the correlations obtained with this new setup.

Recall that, in the weak version of the Bell test we conducted, we only control the
phase difference between loops A and B. The demonstration of Bell’s inequality strictly
involves independent degrees of freedom for A and B. A genuine Bell test would therefore
require an independent control of the phase imprinted on A and B. This means that we
should control the global phase involved in the Bell test, a phase which is currently left
unconstrained. Implementing such a setup is not particularly challenging. We already
have a beat system in place to measure this global phase, which is the relative phase
between the two Bragg beams. This phase was shown to remain approximately constant
at the timescale of the interferometer. It would be feasible to add a phase-locking system
to control its value. Experimental details are provided in Appendix C.

Interferometric measurements

Some results obtained with the Bragg pulses require further analysis. In particular,
although the Mach-Zehnder experiment we performed aimed at making sure that sinc
pulses could lead to the observation of a significant interference, which was successful,
we would like to understand why the Mach-Zehnder interferometer did not allow us to
determine the value of g properly. It will be necessary to repeat the experiment described
in Chapter 6, comparing the results obtained with a sinc pulse and with a square pulse to
see if the pulse shaping has an impact on the experiment outcome. It would be interesting
to vary the duration of the pulses to determine their influence.

Note that the measuring the interfringe of the interference pattern in the Ramsey
experiment also provides another way of determining gravity. We would like to conduct
such an analysis and compare it with the Mach-Zehnder gravimeter.

Characterization of the detector

The correlations measured between atom pairs are not as strong as expected. In
particular, it is surprising that the normalized variance of the difference in the number of
atoms in pairs does not decrease below 0.85. One would indeed expect it to decrease to
1−η, where η is the quantum efficiency of the detector, estimated at 50%. Is it because of
the bad quality of our quantum state? Is there a mechanism which decreases the strength
of the correlations? Is the quantum efficiency lower than expected?

To verify the last point, we would like to conduct a precise study of the quantum effi-
ciency of the MCP. Such a study requires calibration of the number of atoms by absorption
for a given cloud, from which a very small known fraction of atoms would be extracted via
Raman to avoid saturating the MCP. The ratio between the number of detected atoms
and the number of transferred atoms then directly provides an estimation of the quantum
efficiency of the detector. Preliminary work has been done in this direction but needs to
be continued.
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Furthermore, the size of a mode (≈ 0.8 − 1 mm.s−1) corresponds to an arrival time
difference of ∆t ≈ 80 − 100 µs on the MCP. This is not far from the alleged longitudinal
resolution of the MCP, estimated around 10 µs by geometric considerations. It is obviously
important for our velocity measurements that the width of a mode remains greater than
the resolution, which has not been measured yet. This is why it would be interesting
to experimentally determine the resolution limit of the MCP, in the vertical direction in
particular. This can be done by performing a genuine HBT experiment, using thermal
clouds to determine the width of the second order function correlation. In the case where
the correlation length in one direction is very small, then the width of the measured
g(2) function is dominated by the resolution, which can therefore be measured[59][176].
Using clouds of very different geometries from the magnetic trap and the optical dipole
trap, we have access to the resolution in every direction, which would provide a valuable
characterization of the MCP regarding the precision of our measurements.

Probing strong correlations

A low quantum efficiency would not explain why the normalized second order corre-
lation function is not as high as we expect. Again, it is not obvious to identify the cause
of the decrease in crossed correlation and its broadening. Recent numerical simulations
of the four-wave mixing process with fewer assumptions as possible did not identify any
mechanism which would be responsible for the weak correlations we observe. One last
important hypothesis that remains to be investigated is the fact that the atoms are in
a harmonic trap. Most analytical and even numerical results for BECs in a lattice are
performed in an uniform potential.

We are currently investigating the possibility to implement a Digital Micromirror De-
vice (DMD) on the experiment in order to trap the atoms in a uniform potential (of finite
size). This would also open up a wide range of possibilities for experiments on metastable
helium condensates, as we could create potentials of arbitrary shape. The environment
around the science chamber is already quite constrained due to the numerous optome-
chanical elements already in use, but the addition of a DMD remains feasible.

The addition of a copper plate beam dump to protect the MCP has allowed us to carry
out interferometry experiments successfully, thus advancing toward achieving our objective
of exhibiting Bell correlations. However, this is not the better solution in the long term.
Indeed, we are depriving ourselves of a significant portion of the detector, which restricts
us to working in a reduced area. Furthermore, as observed on the MCP detectivity maps,
the copper plate and its stainless steel arm disturb the electromagnetic environment of
the MCP, resulting in spatial dependence of detectivity around the “shadow” of the beam
dump, potentially reducing the detection efficiency in these areas. For these reasons,
it seems necessary to come up with a strategy for removing the beam dump without
damaging the center of the MCP with a powerful laser beam.

There exists MCPs with a central hole, through which beams can pass. This solution
would enable us to maintain the same transfer and evaporation strategy in the vertical
dipole trap, without the risk of burning the channels around the center. However, it
also deprives us of a potentially interesting central zone. This is why we think about
elaborating a new strategy by changing the orientation of the optical dipole trap. We
could, for example, transfer the atoms from the magnetic trap to an optical trap tilted
by 7 degrees with respect to the vertical, using the same axis as for the lattice beams, so
as to bring the powerful beam out of the chamber without damaging the detector. We
could then either maintain the condensate in this geometry that does not correspond to
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the experiment’s axes, or transfer the atoms to a strictly vertical beam after evaporation,
ensuring that the beam’s power is low. These different possibilities are currently being
studied for a change in the next few years.

Outlook: towards a Bell test at larger scale

In a longer-term perspective, it would be interesting to implement a Bell test similar
to the one proposed in this manuscript, but with the atoms placed further apart at the
time of the beam splitter pulse. As we have seen, the very small distance between the
place the wave packets overlap during the beam splitter, on the order of 20 µm, prevents us
from truly probing the non-local properties of quantum mechanics. However, it would not
be impossible to go further by transferring a large momentum to the atoms in one of the
loops in order to spatially separate it from the first loop. Of course, this process of large
momentum transfer must remain coherent. In recent years, the emergence of enhanced
Bragg pulses has made it possible to achieve such significant momentum transfers. Two
main strategies exist to increase the momentum transferred to the atoms by more than
2~k.

• The first strategy involves performing Bloch oscillations, which consist in loading the
atoms into a Bragg optical lattice, where a frequency ramp between the two beams
allows for adiabatic acceleration of the atoms[167]. This method has recently been
used to transfer momentum up to 408~k to rubidium atoms[177].

• The second strategy is to perform multiple successive Bragg pulses, gradually accel-
erating the atoms. To optimize the momentum transfer of each pulse, it is possible
to work between the Bragg regime and the Kapitza-Dirac regime, in what is known
as the quasi-Bragg regime[178]. This regime allows for the transfer of atoms into
a high diffraction order with a good efficiency using an optimized shaped temporal
profile. Recently, it has been shown that rubidium atoms could be transferred to a
momentum state by more than 200~k[179].

The development of interferometers with large momentum transfer represents a signif-
icant metrological challenge, as substantial spatial separation enhances the sensitivity of
interferometric measurements in many contexts (gravimetry, measurement of fundamental
constants, tests of general relativity). Most interferometers demonstrating large momen-
tum transfer use a large number of atoms and do not allow probing of quantum states.
A first test of quantum superposition between wavepackets separated by a large distance
was reported in 2015[180], but in a single-particle interferometer, which does not settle
the debate on the observation of entanglement in the system[181]. Our setup would solve
this issue by performing a genuine Bell test on spatially separated particles.

In a first step, a spatial separation on the order of a centimeter seems feasible with
our current setup (the atoms must remain within the range of the Bragg beams for the
Bell separator to be applicable, so they should not stray too far beyond the waist of
the beams). We recently achieved what we believe to be the first achievement of large
momentum transfer on helium atoms, which have a very low mass leading to a significant
recoil velocity. Starting from a BEC, we observed 36 orders of diffraction in a regime of
Bloch oscillations, thus transferring to the atoms a velocity on the order of 1.5 m.s−1 within
4 ms. So far, this phenomenon has been used to precisely measure the Bragg velocity in a
context where many diffraction modes were populated, but we could explore more efficient
transfers to a specific diffraction order. In order to selectively transfer a large momentum
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to atoms from one of the two doublets of the Bell interferometer, we can once again exploit
the fact that the Bragg resonance frequency of this doublet is different from that of the
other.

Thus, we could perform a large momentum transfer pulse after the emission of the
pairs to move the atoms from one doublet away from the atoms of the other doublet,
getting closer to a Bell test probing locality. Demonstrating a violation of Bell inequalities
would unequivocally confirm the observation of entanglement between spatially separated
massive particles, paving the way for new tests of quantum gravitation.

280



Appendices

A. Experimental sequences used for the figures . . . . . . . . . . . . . . . . 282

B. Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

C. Experimental setup for a Bell test with global phase control . . . . . . 288

281



APPENDICES

A. Experimental sequences used for the figures

Figure Title Day Sequences

1.13 Scattering halo resulting from the collision of two BEC 2019/08/06 72

2.10 Bose-Einstein Condensation in the Magnetic Trap 2020/09/18 13

2.13 Detectivity map of the MCP with the copper plate (MOT) 2022/07/15 7

2.13 Detectivity map of the MCP with the copper plate (m = 0) 2022/07/07 9

2.16 Rabi oscillations with the Raman beams 2023/09/08 143, 150, 152

2.18 Stability histograms for the BEC 2023/04/03 55

2.19 Average BEC after time of flight 2023/04/03 55

3.6 Density profile along the vertical direction 2023/08/01 18

3.7 Density profile of the emitted pairs 2023/08/01 18

3.8 Experimental phase-matching diagram 2022/05/19 12-54

3.9 Correlation map 2022/05/17 40

3.10 Local normalized correlation functions 2022/05/17 40

3.11 Effect of the integration thresholds on the correlation 2022/05/17 40

3.12 Crossed correlation map 2022/05/17 40

3.13 1D crossed correlation 2022/05/17 40

3.14 Counting statistics 2022/05/17 40

3.15 Mean population per mode 2022/05/17 40

3.21 Maps of normalized variance and Cauchy-Schwarz coefficient 2023/08/04 28

3.22 Normalized variance and Cauchy-Schwarz coefficient 2023/08/04 28

6.2 Bragg resonances towards orders ±1 2023/10/23 6, 8

6.3 Rabi oscillations 2023/04/24 36

6.4 Bragg diffraction in the Kapitza-Dirac regime 2023/04/19 68

6.10 Ramsey interferences 2023/04/12 12

6.11 Ramsey interferences, τ = 1 ms 2023/04/12 12

6.12 Ramsey interferences, τ = 2 ms 2023/04/12 13

6.14 Ramsey interferences on a BEC from the magnetic trap 2023/04/12 84

6.13 Interfrange of the Ramsey interference 2023/04/12 12-16

6.15 Simulation of the interference pattern and density fit 2023/04/12 12

6.16a Calibration curve of the phase shifter 2023/05/10 22-38

6.16b Ramsey interferences shifted by π 2023/05/10 31, 38

6.17 Bragg sinc splitter 2023/08/23 64

6.18 Bragg constant splitter 2023/08/23 67

6.19 Bragg sinc mirror 2023/08/23 65

6.20 Bragg constant mirror 2023/08/23 68

6.21 Bragg sinc splitter 2023/08/23 56

6.22 Bragg sinc mirror 2023/08/23 57

6.23 Classical time for a Bragg pulse 2023/06/30 82

6.25 Bragg modulation 2023/08/23 69, 70, 72

6.26 Bragg modulation 2024/01/11 30

6.27 Bragg modulation 2024/01/11 30

6.28 Ramsey interferences with a modulated Bragg pulse 2023/06/02 27

6.29 Phase calibration 2023/07/06 22, 23

6.30 Mach-Zehnder interference fringes 2023/08/23 12

6.31 Mach-Zehnder gravimeter 2023/08/23 29, 33, 34, 35

6.32 Order 0 fringe slope 2023/08/23 29-49

7.13 Bragg speed measured as a function of the Bragg delay 2024/01/23 33, 46, 47

HOM dataset (Chapter 7): 2023/09/12 - Sequences 37, 39, 40 ; 2023/09/13 - Se-
quences 13, 16 ; 2023/09/14 - Sequences 12, 13.
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B. Timeline

2020End of 2019
MCP

replacement

Towards a BEC in the ODT
• ODT loading
• Evaporation

Covid lockdown
No experimental

activity

Towards a cold cloud
• Optical alignments
• Cooling parameters

optimization

Stability problems
• Unstable number of atoms
• Cooling parameters drift
• Unstable ODT loading
• Fluctuations of the

center of the magnetic trap

Crossed ODT loading

Second hole in the MCP

Implementation of the Raman kick

New strategy for the ODT
(without powerful vertical beam)

Arrival in the team

Vacuum problem (source pumps turned off)

Vacuum problem (source pumps turned off)

Optical alignment of the cooling beams

Electrical problem (power switch failure)

Zeeman slower misalignment

First MOT since March

Implementation of the MOT compression

BEC in the magnetic trap

Bias field instabilities

Raman alignement and optimization

Overheating of the magnetic trap coils

Optical dipole trap loading instabilities
Fluctuations of the center of the magnetic trap

Fluctuations of the number of atoms in the magnetic trap

January

February

March

April

May

June

July

August

September

October

November

December
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2021

Towards a BEC in the ODT
• Installation of
the beam dump

• Loading in the trap
• Evaporation

Technological changes
• New ADWIN controller
• From Matlab to Python

• New cooling laser
• High vacuum beam dump

We decide to make important technological changes

Elaboration of a new strategy for the ODT
(powerful vertical beam and high vacuum beam dump)

First MOT with the new ADWIN controller

First magnetic trap with the new controller

Cooling laser replacement

First MOT with the new cooling laser

First magnetic trap with the new cooling laser

First BEC in the magnetic trap with few atoms

Stable BEC in the magnetic trap

Installation of the copper beam dump in the vacuum chamber

Vertical ODT loading

Horizontal ODT loading

Raman transfer in the magnetic trap
Evaporation in the vertical ODT

January

February

March

April

May

June

July

August

September

October

November

December
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2022

Towards a Bell experiment
• Data acquisition

of the pairs
• Correlations analysis

• Setting up the
Bragg beams

Technical issues
• Laser failure

• Electrical problems
• Vacuum leak
• Broken source

Opening of the science chamber to
electrically isolate the beam dump

First BEC in the vertical dipole trap

Transfers from the vertical to the horizontal trap

First BEC in the crossed dipole trap

First pairs by four-wave mixing

Implementation of absorption imaging
Data acquisition of pairs and correlations analysis

First two-photon Bragg transfer

Rabi oscillations with the Bragg beams

Failure of the Keopsys laser for the ODT

Electrical issue with the power supply of the magnetic trap

Re-installation of the ODT laser

Vacuum issue in the source chamber: leak at a nitrogen inlet pipe

Installation of the new water cooling setup for the IGBTs

Testing different sealants to fix the leak

Frequency sweep to compensate for gravity during Bragg pulses
Vacuum issue in the source chamber again (same leak)

The source is removed to perform a weld to seal the leak

The helium source is damaged when
being reinstalled after the weld

January

February

March

April

May

June

July

August

September

October

November

December
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2023

Towards a Bell experiment
• Data acquisition

of the pairs
• Bragg momentum transfers

• Pulse shaping and
phase control

• Interferometry experiments

New working source

Definitive laser failure for the optical dipole trap

Bragg transfers in the magnetic trap

Installation of a new laser for the ODT

BEC in the crossed ODT
Pairs with the lattice

Implementation of the Bragg power lock and phase shifter
Ramsey interferometer with the Bragg beams
and fringes shifting

Sinc-shaped and modulated Bragg pulses

Ramsey interferometer with shaped pulses: phase control

Pairs with the lattice

First HOM experiment (unsuccessful)

Scattering halos with the lattice beams

to look for correlations

New settings for the CFD and improved reconstruction code
Calibration of the detector quantum efficiency

New HOM experiment (unsuccessful)

First Mach-Zehnder interferometer
New settings for the CFD
First Bloch oscillations (36 diffraction orders)

Successful HOM experiment

First Bell experiment (unsuccessful)

New HOM experiment

Beginning the writing of this thesis manuscript

Data acquisition for the Dynamical Casimir effect

Lattice laser failure
Installation of a telescope on the horizontal dipole trap

January

February

March

April

May

June

July

August

September

October

November

December
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2024

Technical issues
• Lattice laser failure

• Source failure

Towards a Bell experiment
• Data acquisition

of the pairs
• Bragg momentum transfers
• Interferometry experiments

Issues with the helium source (instabilities)

Temporary replacement of the lattice laser with a laser diode

Failure of the helium source

New working source

Data acquisition for the Dynamical Casimir Effect project

Optimization of the ODT

Mach-Zehnder interferometer

Reinstallation of the lattice laser
PhD defense

Pairs with the lattice

Implementation of the new shaped mirrors (reburp and Q3)

Towards a new HOM experiment

January

February

March

April

May

June

July
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C. Experimental setup for a Bell test with global phase control

In this section, we provide some details for a future Bell interferometer experiment
allowing independent phase control of A and B. The realization of such a Bell test, in its
more rigorous formulation, does not pose a major experimental challenge.

The expression of the beam splitter pulse is

ΩR(t) = ΩM sinc

[
ΩS

(
t− T

2

)]
cos

[
ΩD

2
t+

θ

2

]
ei∆ϕ (1)

where ΩM is the two-photon Rabi frequency of the pulse, ΩS is the sinc frequency and
equals 2ΩM, and T is the duration of the beam splitter. ΩD is the modulation frequency
which makes it possible to have a two-frequency pulse since it shifts the Bragg detuning by
±ΩD/2, each frequency being resonant with one or the other of the A and B momentum
doublets. θ is the Bell control parameter, and ∆ϕ is the phase difference between the two
lasers. The imprinted phases on doublets A, resonant with +ΩD/2, and B, resonant with
−ΩD/2, are therefore 

φA =
θ

2
+ ∆ϕ

φB = −θ
2

+ ∆ϕ

(2)

The Bell phase involved the phase difference φA − φB = θ, so an oscillation of the
Bell correlator would only depend on θ and not ∆ϕ: this is a common mode rejection
proper to our configuration. Although this is an advantage in terms of sensitivity to phase
fluctuations, a genuine Bell test requires an independant control of the phases imprinted
on A and B.

The global phase ∆ϕ can be measured using the beating between the two Bragg beams.
The beating signal can be used to lock the value of the global phase on a setpoint value
using a PID controller.

Since the frequency and the temporal profile of the Bragg pulses vary during the
mirror and beam splitter, we are planning to maintain the power and frequency of the
beams constant for the majority of the experiment duration before the interferometer,
while a beam dump would ensure that no Bragg light is received by the atoms. The beat
signal between the Bragg beams could then be locked onto a voltage setpoint to fix the
global phase. This could be achieved by providing feedback on the phase using a phase
shifter added to the current setup, allowing adjustment of the phase of one of the RF
signals used to generate the frequency of a Bragg beam via an acousto-optic modulator
(Figure 1).

The feedback loop would then be interrupted during the Bragg pulses. Determining
the global phase from a fit of the beat signal during the pulses would ensure that it remains
at the desired value during the interferometer (it has been observed that the global phase
vary by less than five degrees between the two pulses, so it can be considered constant
between the interruption of the feedback loop and the beam splitter). A device enabling
intermittent feedback based on a TTL voltage value has been developed by the electronics
workshop of the Institut d’Optique and is currently undergoing testing phase.
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Bragg down
AOM

Bragg up
AOM

Bragg/Raman
AOM

Phase shifter

Phase shifterTTI Bragg

Bragg phase 
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Bragg power
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Figure 1: Optical setup for the Bragg beams.
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H Schmidt-Böcking. A broad-application microchannel-plate detector system for advanced
particle or photon detection tasks: large area imaging, precise multi-hit timing infor-
mation and high detection rate. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 477(1–3):
244–249, January 2002. ISSN 0168-9002. doi: 10.1016/s0168-9002(01)01839-3. URL
http://dx.doi.org/10.1016/S0168-9002(01)01839-3.

[20] M. Bonneau, J. Ruaudel, R. Lopes, J.-C. Jaskula, A. Aspect, D. Boiron, and C. I. Westbrook.
Tunable source of correlated atom beams. Physical Review A, 87(6), June 2013. ISSN 1094-
1622. doi: 10.1103/physreva.87.061603. URL http://dx.doi.org/10.1103/PhysRevA.87.

061603.

[21] K. V. Kheruntsyan, J.-C. Jaskula, P. Deuar, M. Bonneau, G. B. Partridge, J. Ruaudel,
R. Lopes, D. Boiron, and C. I. Westbrook. Violation of the Cauchy-Schwarz inequality with

291

https://link.aps.org/doi/10.1103/PhysRevLett.64.2495
https://link.aps.org/doi/10.1103/PhysRevLett.62.2209
https://link.aps.org/doi/10.1103/PhysRevLett.62.2209
https://link.aps.org/doi/10.1103/PhysRevLett.81.5039
https://link.aps.org/doi/10.1103/PhysRevLett.81.5039
https://www.nature.com/articles/nature15759
https://www.nature.com/articles/nature15759
https://link.aps.org/doi/10.1103/PhysRevLett.115.250402
https://link.aps.org/doi/10.1103/PhysRevLett.115.250401
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
http://dx.doi.org/10.1016/S0168-9002(01)01839-3
http://dx.doi.org/10.1103/PhysRevA.87.061603
http://dx.doi.org/10.1103/PhysRevA.87.061603


BIBLIOGRAPHY

matter waves. Physical Review Letters, 108(26):260401, June 2012. ISSN 0031-9007, 1079-
7114. doi: 10.1103/PhysRevLett.108.260401. URL https://link.aps.org/doi/10.1103/

PhysRevLett.108.260401. arXiv:1204.0058.

[22] Roger Penrose. On gravity’s role in quantum state reduction. General Relativity and
Gravitation, 28(5):581–600, May 1996. ISSN 1572-9532. doi: 10.1007/bf02105068. URL
http://dx.doi.org/10.1007/BF02105068.

[23] R. Hanbury Brown and R. Q. Twiss. Correlation between photons in two coherent beams
of light. Nature, 177(4497):27–29, January 1956. ISSN 1476-4687. doi: 10.1038/177027a0.
URL http://dx.doi.org/10.1038/177027a0.

[24] Alain Aspect. Hanbury Brown and Twiss, Hong Ou and Mandel effects and other landmarks
in quantum optics: from photons to atoms, page 428–449. Oxford University Press, May
2019. doi: 10.1093/oso/9780198837190.003.0012. URL http://dx.doi.org/10.1093/oso/

9780198837190.003.0012.

[25] U. Fano. Quantum theory of interference effects in the mixing of light from phase-independent
sources. American Journal of Physics, 29(8):539–545, August 1961. ISSN 1943-2909. doi:
10.1119/1.1937827. URL http://dx.doi.org/10.1119/1.1937827.

[26] Christopher Gerry and Peter Knight. Introductory Quantum Optics. Cambridge University
Press, October 2004. ISBN 9780511791239. doi: 10.1017/cbo9780511791239. URL http:

//dx.doi.org/10.1017/CBO9780511791239.

[27] Roy J. Glauber. Photon correlations. Phys. Rev. Lett., 10:84–86, Feb 1963. doi: 10.1103/
PhysRevLett.10.84. URL https://link.aps.org/doi/10.1103/PhysRevLett.10.84.

[28] Jean-Louis Basdevant, Jean Dalibard, and Manuel Joffre. Mécanique quantique. Editions
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[107] J. Dalibard. Une brève histoire des atomes froids. Cours du Collège de France, 2015. URL
https://pro.college-de-france.fr/jean.dalibard/index.html.

[108] Guillaume Labeyrie. Deux outils pour l’optique atomique : jet intense d’helium metastable
et miroir a onde evanescente exaltee. PhD thesis, Université Paris XI Orsay, 1998. URL
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PhD thesis, Université Paris-Saclay, 2016. URL http://www.theses.fr/2016SACLO003.
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Titre : Contrôle de phase et façonnage d’impulsion de la diffraction de Bragg pour l’optique atomique
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Résumé : La mécanique quantique prédit le phé-
nomène d’intrication, qui prévoit que pour un sys-
tème de deux particules dites intriquées, on observe
de très fortes corrélations entre les propriétés des
particules.

Une façon de caractériser un système intriqué
est de réaliser un test d’inégalité de Bell. Le projet
décrit dans cette thèse se propose de mettre en
place un interféromètre de Bell mettant en jeu des
atomes d’hélium métastables intriqués en impul-
sion. A partir d’atomes préparés dans un condensat
de Bose-Einstein, des paires d’atomes fortement
corrélées sont émises à des impulsions différentes
par le processus de mélange à quatre ondes, puis
les atomes sont envoyés dans un interféromètre à
deux particules et quatre modes d’impulsion. Pour
cela, on utilise la diffraction de Bragg, pour trans-
férer de l’impulsion aux atomes de façon cohérente

et ainsi former des miroirs et séparatrices à atomes.
Dans cette thèse, on étudie en détails la dif-

fraction de Bragg et son influence dans la réalisa-
tion d’un interféromètre de Bell. On propose une
méthode originale pour contrôler la différence de
phase imprimée sur les atomes entre les deux dou-
blets d’impulsion en jeu, en modulant temporel-
lement l’amplitude de la pulsation de Rabi. Cette
technique est également mise à profit pour façon-
ner le profil temporel des miroirs et séparatrices
Bragg afin d’améliorer leurs propriétés de réflec-
tivité et de phase. De premiers tests interféro-
métriques sont reportés (interféromètres de type
Mach-Zehnder, Ramsey, Hong-Ou-Mandel), vali-
dant la technique de contrôle de phase notamment
et donnant des résultats prometteurs quant à la
réalisation prochaine d’un test de Bell.

Title : Phase control and pulse shaping in Bragg diffraction for quantum atom optics
Keywords : Metastable helium, Bose-Einstein Condensate, Bell’s inequality, Atom interferometer,
Bragg diffraction

Abstract : Quantum mechanics predicts the phe-
nomenon of entanglement, which predicts thatthat
for a system of two entangled particles, very strong
correlations can be observed.

One way to characterize an entangled system is
to perform a Bell inequality test. The project des-
cribed in this thesis aims to set up a Bell interfe-
rometer involving metastable helium atoms entan-
gled in momentum. Starting with atoms in a Bose-
Einstein condensate, pairs of highly correlated
atoms are emitted at different momenta through
the four-wave mixing process. These atoms are
then sent through a two-particle, four-momentum
mode interferometer using Bragg diffraction to co-
herently transfer momentum to the atoms and

create atom mirrors and beam splitters.
In this thesis, we study in detail Bragg dif-

fraction and its influence on the realization of a
Bell interferometer. We propose an original me-
thod to control the phase difference imprinted on
the atoms between the two involved momentum
doublets by temporally modulating the amplitude
of the Rabi frequency. This technique is also used
to shape the temporal profile of Bragg mirrors
and beam splitters to improve their reflectivity and
phase properties. Initial interferometric tests are re-
ported (Mach-Zehnder, Ramsey, Hong-Ou-Mandel
interferometers), validating the phase control tech-
nique in particular and showing promising results
for the upcoming realization of a Bell test.
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