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R�esum�e

La m�ecanique quantique pr�edit que pour un syst�eme de deux particules dites intriqu�ees,
on ne peut pas d�ecrire chaque particule ind�ependamment : la mesure d'une observable
physique sur une particule a�ecte �egalement l'autre, quelle que soit la distance entre les
particules, donnant lieu �a l'observation de tr�es fortes corr�elations. Une fa�con de mettre
en �evidence un syst�eme intriqu�e consiste �a r�ealiser ce qu'on appelle un test d'in�egalit�e
de Bell, dont le principe est de mettre en �evidence des interf�erences �a deux particules en
pilotant les corr�elations entre ces particules �a l'aide d'un param�etre de contrôle. La th�eorie
quantique pr�evoit l'observation de corr�elations tr�es fortes, plus fortes que ce qu'on pourrait
obtenir avec la th�eorie classique. Ainsi, si le contraste de l'interf�erence est su�sant, alors
non seulement le syst�eme est intriqu�e, mais en plus il n'existe aucune th�eorie physique
qui puisse expliquer l'observation de corr�elations aussi fortes tout en faisant l'hypoth�ese
de localit�e, selon laquelle des actions e�ectu�ees �a un endroit de l'espace ne peuvent pas
in
uencer instantan�ement un autre endroit de l'espace. On dit alors qu'il y a violation
d'in�egalit�e de Bell.

Si des violations d'in�egalit�e de Bell, dont le principe est rappel�e dans le chapitre 1
de ce manuscrit, ont �et�e mises en �evidence sur di��erents types de syst�emes depuis les
ann�ees 1980 (sur des photons intriqu�es en polarisation, des particules massives intriqu�ees
en spin, ou encore des photons intriqu�es en impulsion), il n'existe �a ce jour aucune preuve
exp�erimentale d'une violation d'in�egalit�e de Bell avec des particules massives intriqu�ees
en impulsion. L'�etude de tels syst�emes repr�esente un enjeu important, car ils font di-
rectement intervenir l'intrication, propri�et�e purement quantique, et la masse, propri�et�e
gravitationnelle. Observer une violation d'in�egalit�e de Bell avec des particules massives
intriqu�ees via un tel degr�e de libert�e externe constituerait une premi�ere �etape vers la
r�ealisation d'exp�eriences visant �a �etablir les liens entre m�ecanique quantique et gravita-
tion. Dans cette optique, le projet d�ecrit dans cette th�ese se propose de mettre en place
un interf�erom�etre de Bell mettant en jeu des atomes d'h�elium m�etastables intriqu�es en
impulsion.

Pour cela, l'id�ee consiste �a s'inspirer de l'interf�erom�etre r�ealis�e en 1990 par J. Rarity et
P. Tapster qui a donn�e lieu �a une violation d'in�egalit�e de Bell avec des photons intriqu�es en
impulsion. Pour adapter ce dispositif avec des atomes, plusieurs �el�ements sont n�ecessaires :
une source de paires d'atomes, des miroirs et s�eparatrices �a atomes avec un param�etre
de contrôle permettant de piloter les corr�elations, et un dispositif de d�etection d'atomes
uniques permettant de calculer les impulsions des atomes d�etect�es et leurs corr�elations.

L'�equipe Optique atomique quantique du Laboratoire Charles Fabry, dans laquelle j'ai
e�ectu�e ma th�ese, est sp�ecialis�ee dans la r�ealisation de condensats de Bose-Einstein avec
des atomes d'h�elium dans son premier �etat excit�e, �etat m�etastable dont la grande �energie
interne permet d'arracher des �electrons �a une surface m�etallique, et donc de d�etecter des
atomes uniques. Grâce �a un syst�eme de d�etection ing�enieux constitu�e d'une galette de
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micro-canaux et de lignes �a retard, il est possible de d�eterminer la position et le temps
d'arriv�ee des atomes d'h�elium qui tombent (par gravit�e) sur le d�etecteur, plac�e sous le site
du pi�egeage des atomes. Comme le d�etecteur est su�samment �eloign�e du pi�ege initial, on
peut alors calculer les impulsions initiales des atomes avant leur chute sur la galette (mesure
par temps de vol). Ce dispositif exp�erimental, pr�esent�e dans le chapitre 2, constitue ainsi
la plateforme id�eale pour r�ealiser des mesures de corr�elations en impulsion entre atomes
individuels.

Le condensat constitue le r�eservoir d'atomes coh�erent �a partir duquel des paires d'atomes
fortement corr�el�ees sont �emises �a des impulsions di��erentes par le processus de m�elange
�a quatre ondes (analogue �a un processus de conversion de fr�equence dans un cristal non
lin�eaire en optique). Les paires �emises doivent v�eri�er les conditions d'accord de phase, qui
correspondent �a la conservation de l'impulsion et de l'�energie. Pour �emettre des paires de
fa�con accordable, on place le condensat dans un potentiel p�eriodique �a l'aide d'un r�eseau
optique mobile, de fa�con �a exploiter le diagramme de bande du r�eseau et ainsi ajuster les
impulsions des paires �emises en pilotant la vitesse du r�eseau. Comme il n'y a pas con-
servation stricte de l'�energie (on applique le r�eseau optique pendant une dur�ee �nie), on
obtient alors une source multimode �emettant plusieurs doublets d'impulsion, de mani�ere �a
ce que l'�etat du syst�eme corresponde �a une superposition d'�etats comprim�es �a deux modes
d'impulsion. Si la population par mode est su�samment faible, alors on peut utiliser cet
�etat comme �etat d'entr�ee d'un interf�erom�etre de Bell.

Cette m�ethode est utilis�ee dans l'�equipe depuis une dizaine d'ann�ees et a donn�e lieu
�a l'observation de fortes corr�elations entre les paires cr�e�ees. Suite �a divers probl�emes
exp�erimentaux, il a �et�e n�ecessaire pendant ma th�ese de param�etrer et caract�eriser �a nou-
veau ce dispositif d'�emission de paires, en termes d'amplitude de corr�elation locale et
crois�ee, de largeur de mode, de population par mode. Ainsi, l'�etude de la fonction de
corr�elation d'ordre 2 et une analyse statistique du nombre d'atomes d�etect�es, pr�esent�ees
dans le chapitre 3, ont permis de caract�eriser un mode d'impulsion et de mettre en �evidence
des corr�elations entre paires. Pour de faibles populations par mode, nous avons mis en
�evidence une variance de la di��erence du nombre d'atomes sub-poissonienne et une vio-
lation d'in�egalit�e de Cauchy-Schwarz, qui sont des signatures de corr�elations quantiques
fortes entre modes d'impulsion de di��erentes paires.

On peut consid�erer en bonne approximation que la source �emet deux atomes jumeaux,
soit dans les modes d�enot�esp et � p, soit dans les modesq et � q. Cette superposition
quantique des �etats �a deux particules jp; � pi et jq;� qi constitue l'�etat intriqu�e dont on va
chercher �a piloter les corr�elations �a l'aide d'un interf�erom�etre. Pour cela, on va m�elanger
des atomes issus de chaque paire pour les faire interf�erer. On formera ainsi deux sous-
parties de l'interf�erom�etre, appel�ees boucles, l'une m�elangeant les atomes des modesp
et � q (boucle B ), et l'autre m�elangeant les atomes des modesq et � p (boucle A). En
pilotant la di��erence de phase entre les atomes de chaque boucle, la m�ecanique quantique
pr�evoit que l'on observe une interf�erence �a deux atomes, c'est-�a-dire une oscillation de
la probabilit�e de mesurer simultan�ement un atomes dans un mode de la boucleA et un
atome dans un mode de la boucleB .

On r�ealise ainsi des miroirs et des s�eparatrices �a atomes en e�ectuant des transferts
coh�erents d'impulsion aux atomes �a l'aide de la di�raction de Bragg. On peut ainsi
transf�erer aux atomes d'une certaine classe d'impulsionp une impulsion 2~k, �x�ee par
la longueur d'onde du laser et l'angle entre les faisceaux. Ce processus de transfert peut
être mod�elis�e comme un syst�eme �a deux niveaux coupl�e par une pulsation de Rabi �a
deux photons. On s�electionne le doublet r�esonant (p; p+ 2~k) en ajustant la di��erence de
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fr�equence entre les faisceaux. Un tel couplage permet ainsi de contrôler les populations
dans les deux modes coupl�es pour former des miroirs et des s�eparatrices �a atomes. De
plus, lors d'une s�eparatrice Bragg, la di��erence de phase entre les atomes transmis et
r�e
�echis est �egale �a la di��erence de phase entre les faisceaux lasers. C'est ce processus
d'impression de phase qui va permettre de contrôler la phase imprim�ee entre les deux
doublets d'impulsion A et B coupl�es par di�raction de Bragg dans l'interf�erom�etre de
Bell, et donc jouer le rôle de param�etre de contrôle des corr�elations. Un contrôle pr�ecis
de la r�e
ectivit�e, de la s�electivit�e et de la phase imprim�ee par la di�raction de Bragg est
n�ecessaire �a la bonne r�ealisation d'un test de Bell. �Etudier l'in
uence de ces param�etres
sur le signal de Bell et v�eri�er que l'on est capable de les contrôler a �et�e au coeur de mon
travail de th�ese, pr�esent�e dans ce manuscrit.

Au cours de ma th�ese, la di�raction de Bragg et son in
uence dans la r�ealisation
d'un interf�erom�etre de Bell ont ainsi �et�e �etudi�ees en d�etails. Le chapitre 4 pr�esente le
sch�ema de principe de l'interf�erom�etre �a deux particules et quatre modes que l'on cherche
�a r�ealiser. Le dispositif est compar�e avec un autre interf�erom�etre r�ecemment rapport�e
dans la litt�erature par un autre groupe de recherche, qui a observ�e des interf�erences �a deux
atomes mais dont le contraste n'�etait pas su�sant pour qu'il y ait violation d'in�egalit�e de
Bell. Dans notre cas, l'objectif principal est de parvenir �a imprimer deux phases di��erentes
sur les deux doublets qui forment l'interf�erom�etre de Bell, ce qui constitue la di�cult�e ma-
jeure de notre dispositif. Pour ce faire, le chapitre 4 d�etaille le formalisme de transition
�a deux photons qui d�ecrit la di�raction de Bragg, et ce formalisme est appliqu�e aux in-
terf�erom�etres atomiques dans le but de d�eterminer les phases en jeu dans l'interf�erom�etre
de Bell.

Dans le chapitre 5 est d�ecrite la strat�egie originale que nous avons �elabor�ee a�n
d'assurer le contrôle de la phase relative entre les deux doubletsA et B . Le principe
consiste �a utiliser le fait que les deux doublets coupl�es par la di�raction de Bragg n'ont
pas la même fr�equence de r�esonance. De cette fa�con, lors de la s�eparatrice, une modula-
tion de la pulsation de Rabi �a deux photons permet d'être r�esonant avec deux doublets,
dont l'�ecart est �x�e en choisissant la fr�equence de la fonction de modulation. Une même
s�eparatrice Bragg joue alors le rôle de deux s�eparatrices, chacune r�esonante avec un dou-
blet. On peut alors, en ajoutant une phase �a l'origine �a cette pulsation de Rabi �a deux
photons, piloter la di��erence de phase imprim�ee entre les deux doublets. Un point impor-
tant est que cette di��erence de phase est le param�etre de contrôle qui permet de piloter
les interf�erences �a deux particules de l'interf�erom�etre de Bell. Ainsi, en modi�ant la phase
�a l'origine de la fonction de modulation, on peut contrôler cette di��erence de phase entre
les deux doublets et ainsi piloter les corr�elations entre les particules d�etect�ees.

En utilisant les mêmes faisceaux pour les deux doublets, cette strat�egie de contrôle de
phase assure que la di��erence de phase imprim�ee entre les deux doublets ne d�epend pas
de la di��erence de phase entre les lasers. Cette r�ejection de mode commun constitue un
avantage pour l'observation d'une interf�erence avec un bon contraste, car l'interf�erom�etre
est ainsi, par construction, insensible aux 
uctuations de phase relatives entre les faisceaux
Bragg, susceptibles de diminuer le contraste des interf�erences.

On peut r�esoudre l'�equation de Schr•odinger num�eriquement pour ces s�eparatrices
Bragg modul�ees a�n d'estimer le contraste des interf�erences Bragg que l'on peut chercher �a
obtenir. En prenant en compte l'in
uence de la classe de vitesse sur le pro�l de r�e
ectivit�e,
on trouve que l'oscillation du param�etre de Bell, qui quanti�e la force des corr�elations,
n'est pas maximale. En e�et, les s�eparatrices r�esonantes avec chacun des deux doublets
ne sont pas ind�ependantes du fait du pro�l de r�e
ectivit�e �evas�e de chaque s�eparatrice en
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fonction de la classe de vitesse. Pour am�eliorer ce contraste, on montre qu'il est possible de
r�ealiser des s�eparatrices et des miroirs dont le pro�l temporel a une forme de sinus cardinal.

Dans le chapitre 6, on d�ecrit la mise en place exp�erimentale des impulsions Bragg
en forme de sinus cardinal, qui n�ecessite un asservissement de la puissance des faisceaux
ainsi qu'un dispositif appel�e phase shifter qui permet d'ajouter des phases de� entre les
faisceaux lasers de fa�con contrôl�ee. Pour d�emontrer notre capacit�e �a contrôler la phase
imprim�ee sur les atomes, on r�ealise une exp�erience de Ramsey, qui consiste �a faire interf�erer
sur le MCP deux condensats qui ont la même impulsion mais qui ne sont pas tomb�es de la
même hauteur. La �gure d'interf�erence ainsi observ�ee peut alors être d�ecal�ee en ajustant
la tension dans le phase shifter.

On r�ealise alors des impulsions Bragg fa�conn�ees, en forme de sinus cardinal, ou modul�ees
sinuso•�dalement, que l'on caract�erise en d�etails. Les r�esultats d�emontrent notre capacit�e
�a contrôler tr�es �nement la classe de vitesse s�electionn�ee pour le transfert Bragg, et vali-
dent le principe des s�eparatrices modul�ees pour avoir deux fr�equences de r�esonance. En
r�ealisant une interf�erence de Ramsey avec de telles s�eparatrices modul�ees, on montre que
les interf�erences se d�ecalent dans des sens oppos�ees entre les doubletsA et B quand on
fait varier la phase �a l'origine de la fonction de modulation, ce qui valide la strat�egie de
contrôle de phase puisqu'on arrive bien �a imprimer une phase oppos�ee sur chaque doublet.

En�n, on r�ealise une exp�erience d'interf�erences �a deux particules de type Hong-Ou-
Mandel �a l'aide de la source de paires, de fa�con �a d�eterminer les temps auxquels on doit
appliquer les impulsions Bragg pour l'exp�erience de Bell. R�ealis�ee pour la premi�ere fois
avec des impulsions en forme de sinus cardinal, cette exp�erience permet en e�et de rep�erer
�a quel moment on doit appliquer la s�eparatrice de Bragg pour que les particules soient
indiscernables. Apr�es cette calibration, pr�esent�ee dans le chapitre 7, l'exp�erience de Bell a
�et�e lanc�ee mais n'a pas donn�e lieu �a l'observation de corr�elations �a deux atomes. Depuis,
des causes probables ont �et�e identi��ees pour expliquer pourquoi le signal de Bell n'a pas
�et�e observ�e. Les r�esultats sont encourageants, et notre capacit�e �a contrôler tr�es �nement
la di�raction de Bragg constitue une �etape importante vers la r�ealisation prochaine d'un
nouveau test de Bell.
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Introduction

A brief history of entanglement

In the 1920s, a group of physicists embarked on the development of quantum theory
to explain certain perplexing observations that de�ed classical models. It was M. Planck
in 1900 who initially introduced the concept of quantized energy to account for blackbody
radiation[1]. Subsequently, A. Einstein proposed a model in 1905 to explain the photo-
electric e�ect[2], employing the idea of light particles and building on Planck's notion of
energy quantization. In 1913, N. Bohr incorporated energy quantization into his renowned
atomic model[3], aiming to elucidate atomic spectra.

Gradually, a mathematical framework emerged to describe a quantum system, char-
acterize its evolution and properties, and account for experimental observations. E.
Schr•odinger and W. Heisenberg signi�cantly contributed to formalizing quantum me-
chanics in complementary ways around 1925, with Heisenberg using matrix notation and
Schr•odinger employing a wave function formulation de�ned in a complex vector space
called a Hilbert space, and governed by the equation now bearing his name. Schr•odinger
demonstrated the equivalence of their two formalisms, and with the contribution of M.
Born in 1926, they established that observables in quantum mechanics are represented by
Hermitian operators, and the squared modulus of the wave function can be interpreted as
measurement probabilities. Shortly thereafter, J. von Neumann formulated a �rst axiom-
atization of quantum mechanics and Dirac introduced the bra-ket notation, simplifying
the mathematical description of quantum concepts.

Thus, a quantum system is represented by a state de�ned in a Hilbert space, and its
evolution is determined by a Hamiltonian, a Hermitian operator that describes the en-
ergies involved between the system and its environment. Very importantly, in quantum
mechanics, not only does the measurement result of an observable have a certain probabil-
ity, equal to one of the eigenvalues of the measured observable, but also the measurement
projects the state of the system onto the associated eigenstate. The future evolution of
the system is described by the Schr•odinger equation, but now with the system's state that
has been projected by the measurement.

The establishment of this formalism by the physicists now recognized as the pioneers of
quantum mechanics was marked not only by a constant concern to account for experimen-
tal results but also by a determination to draw implications from this nascent theory. One
of its strengths lies in its ability to predict experimental outcomes. It is indeed possible to
describe sometimes very simply the evolution of a simple quantum system subject to con-
straints characterized by a potential term in the system's Hamiltonian, which represents
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INTRODUCTION

its energy. Numerous experiments have con�rmed predictions of quantum theory, such as
the Stern{Gerlach experiment (1922) which demonstrated the quantization of the spatial
orientation of angular momentum, and which has allowed, through the measurement of a
particle's spin, for the veri�cation of quantum theory predictions related to the projection
of a quantum state by measurement.

One of the most striking results of quantum mechanics is the phenomenon of entan-
glement, which occurs when a system of two (or more) particles cannot be independently
described but must be considered as an inseparable whole, regardless of the distance be-
tween them. An important consequence is that the measurement result of an observable on
one of these particles will be correlated with the measurement result on the other particle,
sometimes perfectly correlated. This means that, for an entangled system, measuring an
observable on only one of the two particles a�ects the entire system. This can lead to the
observation of very strong correlations in the measurements of the physical properties of
both particles, so strong that they cannot be explained classically.

In 1935, A. Einstein, B. Podolsky, and N. Rosen published a paper[4] in which they
emphasized the inherently counterintuitive nature of this theory, in which the result of a
measurement is intrinsically probabilistic. They gave the example of entangled particles (a
term introduced shortly afterward by Schr•odinger): if one measures the position of one of
the two particles, then one can predict with certainty the position of the other, and likewise
if one measures the momentum of one, one can predict the momentum of the other, as
if the information about the measurement could be instantaneously transmitted from one
particle to the other, which would violate the principle of special relativity, according to
which no information can propagate faster than the speed of light. They drew important
consequences regarding the very nature of quantum theory: either it is incomplete and
there exist hidden variables to which we do not have access and which would allow for
deterministic predictions of measurement outcomes, or the theory is complete, but one
must abandon the assumption of locality, meaning the idea that changes made in one
region of space cannot instantaneously in
uence another distant region. This gave rise to
a famous debate between Einstein and Bohr, advocates of the �rst and second options,
respectively.

The debate remained solely philosophical and a matter of interpretation until 1964
when J. Bell mathematically proved that the assumption of locality is inherently incom-
patible with the predictions of quantum theory[5]. This breakthrough paved the way for
experiments that could settle the dispute between Einstein and Bohr, known as Bell tests.
The idea is, of course, to use a system of entangled particles and highlight correlations so
strong that even a hidden-variable model would not be able to explain them. To achieve
this, one should determine a quantity (called the Bell parameter), from measurements of
correlation properties of the system, that has a limit for local theories but which can be ex-
ceeded by quantum mechanics. It is then said that there is a violation of the Bell inequality.

It is noteworthy that while quantum mechanics can, in speci�c cases, lead to a violation
of the Bell inequality, this is generally not the case. It is not straightforward to demonstrate
quantum measurements outcomes that do not verify the Bell inequality, and special e�orts
are required to achieve it. Following an article by J. Clauser, M. Horne, A. Shimony, and
R. Holt[6], which formulates a Bell inequality in a practical form for experimental testing,
the �rst Bell tests were conducted using photons in the 1970s in the United States by J.
Clauser[7], and E. Fry[8], yielding early results that tended to con�rm the non-local nature
of quantum mechanics. However, these tests had shortcomings, and it was only with the
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experiments conducted by A. Aspect in Orsay from 1975 to 1982[9][10], using a high 
ux
source of entangled photons, that the experimental results highlighted a violation of the
Bell inequality by 40 standard deviations.

Following a scheme initially introduced by D. Bohm, the experiment involves generat-
ing two photons with entangled polarization degrees of freedom. The photons then move
away from each other, and correlations between the polarization measurements of one
photon and the other are studied. With quantum mechanics, it can be shown that the
joint probabilities of measuring both photons in the same polarization state (for instance)
varies sinusoidally with the angle between the two polarizers used for the measurement.
To ensure the fundamentally non-local nature of the measurement result, it is crucial to
separate the two measurement sites by a space-like interval. To do so, the time between
the choice of measurement parameters and the measurement itself must be shorter than
the time it takes for light to travel from one site to the other. To achieve this, Aspect
and his team implemented an ultra-fast switch which would change the polarizer's angles
so that the choice of the measurement angle could be made during the time of 
ight of
the photons[11]. They exhibited a Bell violation by 6 standard deviations, providing, for
the �rst time, solid experimental evidence for the non-local nature of the measurement,
as predicted by quantum mechanics.

Over time, with scienti�c and technological advancements, it became possible to con-
duct further experiments to con�rm this result, using particles other than photons and
exploring di�erent degrees of freedom for entanglement. Let us mention, for example, the
experiment conducted by J. Rarity and P. Tapster[12] in 1990, who successfully performed
a Bell inequality test involving pairs of photons with the same polarization but following
four di�erent optical paths, following an interferometric scheme proposed by M. Horne, A.
Shimony, and A. Zeilinger[13]. In this experiment, the photons are entangled in momen-
tum, marking the �rst Bell test involving an external degree of freedom of the particles.
In 1998, the team of Zeilinger conducted a Bell test similar to the one of Aspect, but
using a quantum process to randomize the choice of the measurement during the time of

ight, de�nitely closing the so-called locality loophole[14]. This progress continued until
2015 when three independent experiments[15][16][17] provided evidence of Bell inequality
violations that ruled out any loopholes. The current consensus is that quantum theory,
never proven wrong so far, has successfully challenged the principle of locality in space-
time through the strong correlation properties inherent in entangled states. Beyond being
mere subjects of study, these states have such unique properties that they can be harnessed
in technological applications, ranging from quantum cryptography to quantum computing.

The ideas of quantum mechanics have progressed, and simultaneously the properties
of quantized light have been studied and used, leading to the emergence of quantum
optics, and to technological developments such as the laser. Not only do we now have a
better understanding of how to prepare, control, and detect photons, but there is also an
improved understanding of the interaction mechanisms between light and matter. This
has paved the way for atomic physics, involving the manipulation of atoms and the study
of their quantum properties. The laser cooling of atoms resulted in the observation in 1995
of a phenomenon predicted by A. Einstein and S. Bose, a phase transition of a bosonic
atomic gas at very low temperature into a state of matter where almost all atoms are in
the same quantum state[18]. This state, known as the Bose-Einstein condensate, enables
the formation of a coherent reservoir of atoms in a speci�c quantum state, making it
possible to conduct experiments that were once merely thought experiments during the
development of quantum theory in the 1920s and 30s.
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Similar to photons, it is then possible to study the quantum properties of atoms, in-
cluding entanglement. But observing non-classical correlations with atoms remains an
experimental challenge, especially when attempting to do so using an external degree of
freedom for entanglement. While successful Bell tests have been conducted with atoms
using their spin, it has not been the case with atoms entangled in momentum, as originally
envisioned by Einstein, Podolsky, and Rosen.

Description of the thesis project

This historically rich context is the framework of my thesis project. The Quantum
Atomic Optics team at the Charles Fabry Laboratory of the Institute d'Optique, that I
joined in March 2020, is specialized in manipulating ultra-cold metastable helium atoms.
These atoms possess the unique feature of having high internal energy, allowing their de-
tection when they collide onto a metallic surface, thereby extracting electrons from it.
An ingenious detection system, called a microchannel plate, then ampli�es the detection
signal using an electron cascade. Coupled with the use of so-called delay lines[19], this
system not only enables the detection of individual atoms but also allows retrieving the
particle velocities before their impact on the plate. This detailed knowledge of the momen-
tum distribution of helium atoms can be leveraged to study their correlation properties.
The experimental platform thus makes it feasible to conduct experiments historically per-
formed with photons, but this time using atoms: this is what is called quantum atomic
optics.

For the past few years, the team has been able to create pairs of twin atoms with di�er-
ent momenta from a Bose-Einstein condensate using a process called four-wave mixing[20].
These atom pairs have led to the observation of non-classical correlations[21], suggesting
that momentum modes are entangled. The goal of my thesis is to implement a Bell in-
terferometer, inspired by the scheme of Rarity and Tapster, to demonstrate a violation of
the Bell inequality with atoms entangled in momentum.

While this experiment is situated in a context with signi�cant implications for the non-
local nature of spacetime, we will not delve into such considerations here. The stringent
experimental constraints do not allow closing the locality loophole. Nevertheless, demon-
strating a violation of the Bell inequality remains an important objective, serving both as
a test for quantum mechanics and as a clear a�rmation that the system subjected to the
Bell interferometer is entangled and exhibits correlations stronger than what could be ob-
tained classically. Such a result would pave the way for a new generation of experiments,
which could further close loopholes and verify the possibility of violating Bell inequalities
with entangled massive particles via an external degree of freedom. This aspect also sparks
the curiosity of another scienti�c community, aiming to study and conduct experiments in-
volving both entanglement and gravity to analyze gravitational decoherence mechanisms,
aiming to develop a theory unifying quantum physics and gravity[22].

My work has involved setting up a Bell interferometer, an objective pursued by the
team for several years but delayed due to technical issues and breakdowns in the exper-
imental platform, which has been in place for many years. I contributed to the upgrade
and modernization of the experiment, aiming to achieve a stable Bose-Einstein conden-
sate to facilitate the reliable and reproducible execution of interferometric experiments.
Subsequently, our team gradually implemented the necessary components for constructing
the interferometer: the atom pairs emission process and the study of their correlations,
followed by the setting up of atom mirrors and beam splitters. I particularly contributed
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to the development of the latter, involving the realization of two-photon transitions to
transfer momentum to atoms through a coherent process known as Bragg di�raction. The
initial interferometric results for testing these mirrors and splitters yielded conclusive out-
comes detailed in this thesis. A �rst Bell test was conducted in October 2023, but no
correlation signal was observed. Encouraging avenues to explain this and continue our
quest for Bell inequality violation will be discussed at the end of this manuscript.

Outline of the manuscript

This manuscript is divided into 7 chapters.

1. Quantum atom optics experiments as probes of non-classical correlations

This introductory chapter presents the framework within which this thesis is situated.
We introduce the concept of correlation in quantum systems along with suitable tools for
their study. The principle of a Bell test is presented using the example of photons, as
this experiment is designed to highlight correlations so strong that they constitute the
signature of the purely quantum phenomenon of entanglement. We show that the recent
developments of quantum atom optics, in particular with metastable helium, make it pos-
sible to perform a similar test with momentum correlated atoms.

2. Experimental setup: preparation of a metastable Helium Bose-Einstein Condensate

In this chapter, we present the experimental setup through which a Bose-Einstein
condensate of metastable helium can be obtained, marking the initial step towards the
realization of a Bell test. The use of a microchannel plate (MCP) combined with delay
lines makes it possible to have a three-dimensional single-atom detector, which enables
the determination of the momentum of each detected atom before their fall on the MCP,
as detailed in this chapter. Additionally, we provide some characteristics of the obtained
condensates through an analysis of the clouds after time of 
ight.

3. Emission of momentum pairs of atoms

In order to emit pairs of correlated atoms, we use the interactions between atoms in
the condensate, which we subject to an optical lattice. We exploit the dispersion relation
of atoms in the lattice to generate pairs of atoms, emitted from the condensate at di�erent
momenta. This phenomenon, known as four-wave mixing, is presented in this chapter,
along with the results obtained during this thesis to characterize the emitted pairs and to
highlight correlations between coupled momentum modes.

4. Interferometer theory: from Bragg di�raction to Bell tests

In this chapter, we delve into greater detail regarding the strategy adopted to set up
a Bell interferometer with momentum correlated atoms, which involves the use of mir-
rors and beam splitters that transfer momentum to atoms by Bragg di�raction. After
discussing a recent test conducted in another con�guration, we provide a presentation of
Bragg di�raction. An important aspect of our setup consists in exploiting the fact that
the two momentum doublets involved in the Bell interferometer do not have the same
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resonance frequency, thus we place particular importance on the spectral dimension of the
Bragg mirrors and beam splitters. To calculate the phase involved in the Bell interferom-
eter, we present basic concepts of atom interferometry allowing for the general calculation
of phase shifts that occur in interferometers, due to the propagation of wavepackets along
with the interaction with light. The results are applied to the well-known case of the
Mach-Zehnder interferometer before being applied to the case of the Bell interferometer.

5. Bragg pulses shaping and phase control for a Bell test

A preliminary step towards the realization of a Bell test is to perform of a Hong-
Ou-Mandel (HOM) interferometer, which allows for the detection of the interferometer
closure. It turns out that, thanks to our multimode source, we can simultaneously im-
plement Bell interferometers alongside an HOM interferometer. Despite the fact that the
Bell phase cannot be controlled, it can provide useful information regarding the possibility
of observing Bell correlations. In this chapter, we use this idea along with the formalism
developed in the previous chapter to discuss past results obtained within the team, be-
fore detailing the strategy adopted to control the Bell phase in a genuine Bell test, which
involves imprinting on the atoms a tunable phase by modulating the amplitude of the
Bragg beam splitter pulse. We also show that it is possible to enhance the Bell correlation
signal by realizing sinc-shaped Bragg pulses. These discussions are based on the results of
simulations I developed during the thesis, which consist in numerically solving the Bragg
coupling equations between momentum states.

6. Experimental preparation of the Bragg pulses: interferometric experiments

In this chapter, we describe the experimental setup of the Bragg pulses and provide
proof of principle of their proper functioning. Using a power feedback control and a phase
shifter, we can shape a Bragg pulse into any desired form, resulting in a Rabi frequency
that can be negative or even complex. To ensure that we control the phase imprinted on
the atoms as desired, we interfere two condensates using a Ramsey-type interferometer,
demonstrating that we can shift the observed interference pattern in a controlled and re-
producible manner. Additionally, we present the results obtained with sinc-shaped pulses,
which we employ in a Mach-Zehnder interferometer in an attempt to measure the value
of gravity.

7. Hong-Ou-Mandel experiment and Bell inequality test

Finally, this last chapter describes the preliminary results recently obtained for an
HOM interferometer realized with sinc-shaped Bragg pulses. A HOM dip has been ob-
served, and its characteristics are discussed. Following these encouraging results, a �rst
Bell test was conducted in October 2023 but did not lead to the observation of Bell corre-
lations. Several possible explanations are provided to try to explain the absence of signal
as several potential sources of errors have been identi�ed since then.
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CHAPTER 1. QUANTUM ATOM OPTICS EXPERIMENTS AS PROBES OF NON CLASSICAL CORRELATIONS

In this chapter, we will introduce the concepts and tools developed by quantum optics
to study light sources and their properties. It will be demonstrated that these tools can also
be employed to describe atomic sources, and we will justify the signi�cance of conducting
quantum optics experiments with atoms.

1.1 Correlations in classical and quantum optics

1.1.1 Correlations in classical optics

Interferences in classical optics

Let us consider a light source that we use as an input in an interferometric device,
whether it be a Michelson interferometer (using amplitude division) or a Young's double-
slit interferometer (using wavefront division). A light detector, capable of measuring light
intensity, is placed at a �xed location in the interference zone (Figures 1.1 and 1.2).

Figure 1.1: Scheme of a Michelson interferometer.A light source sends light onto a 50/50
beam splitter. The two resulting beams are each re
ected o� a mirror and then recombined at the
beam splitter. A photodetector collects the resulting light.

Figure 1.2: Scheme of a Young interferometer. Two light rays originating from the same
source are di�racted by two slits. A detector collects the beams emanating from the two slits.

The total electric �eld at the detector is the sum of the two electric �elds originating
from the two secondary sources permitted by the interferometric device. Let's assume a
non-zero path length di�erence between the two light paths, resulting in a time delay �
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between the interfering waves. The electric intensity at the detector is then expressed as:

I = hjE (t) + E(t + � )j2i (1.1)

where h: : :i corresponds to the time averaging of the detector. Expanding this expression,
we obtain

I = hjE (t)2ji + hjE (t + � )j2i + 2 Re hE(t)E � (t + � )i (1.2)

For a stationary source for which hjE (t)2ji = hjE (t + � )j2i = hjE j2i = I 0, this can be
rewritten:

I = 2 I 0

h
1 + Re

�
g(1) (� )

�i
(1.3)

where

g(1) (� ) =
hE(t)E � (t + � )i

hjE j2i
(1.4)

This function g(1) is called the normalized �rst order correlation function, and contains
crucial information for characterizing the coherence properties of the source. For inter-
ference to occur, it is necessary forg(1) to be di�erent from 0. If E (t) and E(t + � ) are
independent random variables, thenhE(t)E (t + � )i = hE(t)i hE(t + � )i and so g(1) = 0.
This highlights the fact that the �rst order correlation function thus quanti�es the tem-
poral correlation between these two quantities.

Note that g(1) is directly related to the spectral properties of the light source. Indeed, if
we consider a source containing multiple spectral components, there is complete blurring
of interferences beyond a certain delay� , which occurs more quickly as the source is
spectrally rich in spectral components. This is the Wiener-Khintchine theorem, which
expresses the �rst order correlation function as the Fourier transform of the normalized
spectral density s(! ) through the relationship:

g(1) (� ) =
Z + 1

�1
s(! ) ei!� d! (1.5)

Thus, by using only a light sensor and detecting the intensity resulting from an in-
terference signal, one can measure correlation properties related to the amplitude of the
electric �eld. This allows the deduction information about the coherence of the source.

The Hanbury Brown and Twiss experiment

Now, it is possible to go even further by looking at intensity correlations, involving
four values of the electric �eld. This method, introduced by R. Hanbury Brown in order to
measure the angular diameter of stars, involves two detectors and enables the probing of
higher-order correlations. Together with R. Twiss, they conducted a famous experiment,
now known as the Hanbury Brown and Twiss (HBT) experiment[23], to demonstrate the
validity of the idea.

The principle of the experiment is as follows. One studies the light from a star,
considered as an incoherent source with a certain spatial extent. Using �lters, the light
signal is made monochromatic. A beam splitter is used to divide the light beam into
two, directed towards two separate detectors. The light intensity is then measured at two
points, r 1 and r 2, as close to each other than one wants (Figure 1.3).
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Figure 1.3: Scheme of the Hanbury Brown and Twiss setup.A spatially extended source
emits light onto a 50/50 beam splitter. The intensity is collected at each output of the beam splitter,
and a detection system allows access to the correlation signal between these two intensities.

The electrical signals from these two detectors are then combined, providing access to
the second-order correlation function, de�ned as:

G(2) (r 1; r 2) = hI (r 1)I (r 2)i = hE(r 1)E � (r 1)E (r 2)E � (r 2)i (1.6)

To describe the light emitted by the star, one can use the Fraunhofer integral, which
characterizes the electric �eld emitted by a collection of incoherent sources when the
observation distance D is much greater than the wavelength � and the size S of the
source:

E(r ) =
Z

S
E(s) e

i �
�D jr � sj2 ds (1.7)

where s designates a point from the star, which is assumed to be uncorrelated with the
others. It is then possible to apply the central limit theorem to show that the total electric
�eld at each point r results from a Gaussian random process. As a result,G(2) (r 1; r 2) can
be rewritten1

G(2) (r 1; r 2) = hI (r 1)i hI (r 2)i + hE(r 1)E � (r 2)i hE(r 2)E � (r 1)i (1.8)

From the second term, we can identify the spatial analogue of the �rst-order correlation
function de�ned earlier. Using 1.7, we get:

G(1) (r 1; r 2) = hE(r 1)E � (r 2)i =
ZZ

S
hE(s1)E � (s2)i e� i �

�D ( jr 2 � s2 j2 �j r 1 � s1 j2)ds1ds2 (1.9)

Using the fact that each point has no phase relation with another due to the source
incoherence, we havehE(s1)E � (s2)i = I (s1) � s1 ;s2 , so that

G(1) (r 1; r 2) =
Z

S
I (s1) e� 2i �

�D (r 2 � r 1 ):s1 ds1 (1.10)

This is the van Cittert{Zernike theorem, which expresses the �rst-order spatial cor-
relation function as the Fourier transform of the spatial intensity pro�le. Similarly to
the temporal case, the �rst order correlation function contains the information about the

1Using the Gaussian Moment Theorem for this fourth order correlation function in terms of electric
�eld.
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coherence of the source. Indeed, for a homogeneous source intensity,G(1) (r 1 � r 2) decays
on a scale`c called the correlation length of the source, inversely proportional to its size
L .

The expression of the second order correlation function can be normalized by the
product hI (r 1)i hI (r 2)i of the mean intensities, which de�nes the normalized second-order
correlation function, given by:

g(2) (r 1; r 2) = 1 + jg(1) (r 1; r 2)j2 (1.11)

The shape of g(2) (r 1 � r 2) is depicted in Figure 1.4. When r 1 = r 2, it reaches 2,
and decreases gradually asr 1 � r 2 increases. Whenr 1 � r 2 � `c, then g(2) = 1. The
Hanbury Brown and Twiss method thus provides a means to access information about
the spatial coherence of the source. By varying the position of the detectors, one can
obtain the coherence length of the star and consequently deduce its size, which they used
to successfully measure the diameter of Sirius.

1 2

1

2

0
� r
`c

g(2) (� r )

Figure 1.4: Shape of the second order correlation functiong(2) as a function of the detec-
tors position di�erence � r = r 1 � r 2 in the HBT experiment.

1.1.2 Entanglement and correlations in quantum optics

Quantum interpretation of the Hanbury Brown and Twiss e�ect

In the 1950s, the HBT experiment faced signi�cant skepticism[24] due to its surpris-
ing interpretation in terms of photons. With the advent of light detectors based on the
photoelectric e�ect, it was now possible to treat the current received by a sensor as the
probability of detecting a photon, so that I (r ) / P (r ), where P(r ) designates the prob-
ability of measuring one photon at position r . Thus, we can reinterpret the second-order
correlation function in the form:

g(2) (r 1; r 2) =
P(r 1; r 2)

P(r 1)P(r 2)
(1.12)

whereP(r 1; r 2) is the joint probability to detect simultaneously one photon at position r 1

and one photon at position r 2.
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Surprisingly, when r 1 = r 2, as we showed thatg(2) = 2, this would mean that the
probability of detecting two photons at the same position is two times greater than the
probability of detecting them independently, suggesting that the photons \come in pairs".
This can seem false at �rst, since photons emitted at di�erent, possibly very distant, points
of a star, would be a priori considered to be independent.

An explanation of this phenomenon was provided in 1961 by U. Fano[25], using a
simple model consisting of only two points from the source, notedA and B . Two photons
are considered to be emitted from these two source points. When a particle is detected
by one of the two sensors, it is impossible to know which path it took; it could have been
emitted by A or B (Figure 1.5).

Figure 1.5: Input and ouput modes of the beam-spitter.

To account for this, the two-particle state at the detector level must be written as the
superposition of both possibilities, namely:

j i =
1

p
2

(jA; B i + jB; A i ) (1.13)

In this two-particle basis, jA; B i = jAi 1 
 j B i 2 means that particle 1 was emitted by
sourceA while particle 2 was emitted by sourceB . Note that the expression of the state
1.13 is directly related to the indistinguishability of the two particles. Since photons are
bosons, the state must be symmetric with respect to the interchange of the particles, which
justi�es the + sign between the two terms (it would be a � sign for fermions).

The probability of detecting atoms in both detectors noted D1 and D2 is therefore
P(D1; D2) = j hD1; D2j i j 2 so that

P(D1; D2) =
1
2

�
j hD1; D2jA; B i j 2 + j hD1; D2jB; A i j 2

+ 2 Re hD1; D2jA; B i hD1; D2jB; A i )
(1.14)

We observe the emergence of an interference term, which depends on the phase rela-
tionship between the particles. If the two photons are statistically independent, then this
term vanishes when averaging over all the points from the source and we have:

Pind (D1; D2) = P(D1)P(D2) =
1
2

�
j hD1; D2jA; B i j 2 + j hD1; D2jB; A i j 2�

(1.15)

If the two photons are coherent and the distance between the detectors is small enough,
then the interference term is not zero but depends on the distance between the two detec-
tors. When this distance is zero, we gethD1; D2jB; A i = hD1; D2jA; B i , so the interference
is constructive and we obtain

P(D1 = D2) = j hD1; D2jA; B i j 2 + j hD1; D2jB; A i j 2 = 2 Pind (D1; D2) (1.16)
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which is the result we found using a classical reasoning by treating light as a wave.
With this simple two-photon interference model, we can understand the HBT result

as a consequence of the bosonic nature of the two-particle state, leading to what is known
as a bosonic bunching e�ect. Thermal bosons tend to be emitted in pairs, resulting in sig-
ni�cant correlations. This correlation is related to expressing the two-particle state as the
sum of two inseparable terms, leading to interference. Such a state corresponds, in fact,
to what is commonly referred to as an entangled state. This example highlights the im-
portance of entangled states when studying the correlation properties of quantum systems.

Second quantization formalism

To demonstrate this e�ect by treating light in a quantum manner, it is possible to
use the formalism of second quantization by introducing the creation and annihilation
operators ây and â. By modeling the process of photodetection as the transition of an
electron from a bound state to a continuum state in a semiconductor material, it is possible
to show, using the Hamiltonian of the light-atom interaction and Fermi's golden rule, that
the mean transition rate w (and thus the associated photocurrent) for a given state of
light j i is given by[26]:

w / h âyâi = h jâyâj i (1.17)

Here, the notation h: : :i designates the quantum measurement, i.e., the quantum average of
an operator over a statej i . Note that w is actually the quantum version of the normalized
�rst order correlation function g(1) for the annihilation operator, which ultimately involves
counting the number of photons received by a detector, as it can be observed by introducing
the number operator N̂ = âyâ.

Similarly, the joint measurement of photons in two detectors 1 and 2 is related to the
normalized second order correlation function, de�ned as

g(2) (1; 2) =
ĥay

1ây
2â2â1i

ĥay
1â1i hây

2â2i
(1.18)

where ây
i and âi are the creation and annihilation operators of a photon in detector i ,

respectively.
This is the formalism developed by R. Glauber to describe the HBT experiment[27].

More generally, he introduced normalizedn-th order correlation functions as

g(n) (1; 2; : : : ; n) =
ĥay

1ây
2 � � � ây

n� 1ây
n ân ân� 1 � � � â2â1i

ĥay
1â1i hây

2â2i � � � hây
n ân i

=
G(n) (1; 2; : : : ; n)

ĥay
1â1i hây

2â2i � � � hây
n ân i

(1.19)

where G(n) (1; 2; : : : ; n) is the non normalized n-th order correlation function.

Let us conclude on the Hanbury Brown and Twiss experiment. When the two detectors
are at the same position (r 1 = r 2), the second order correlation function is

g(2) (r 1; r 2 = r 1) =
ĥayâyââi

ĥayâi 2 (1.20)
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Using the commutation relation for bosons [âây] = 1, we get

g(2) (r 1; r 2 = r 1) =
ĥay(âây � 1)âi

ĥayâi 2 =
hN̂ 2i � h N̂ i

hN̂ i
2 = 1 +

� 2
N � h N̂ i

hN̂ i
2 (1.21)

where � 2
N is the variance of the number of photons. We can see thatg(2) depends on the

distribution statistics of the source. For a thermal light following Planck's distribution, it
can be shown that the variance is

� 2
N = hN i 2 + hN i (1.22)

By inserting this in equation 1.20, we �nd the bosonic bunching relation:

g(2) (r 1; r 2 = r 1) = 2 (1.23)

Note that, for a laser, the number of photons follows a Poisson law for which� 2
N = hN̂ i ,

so that g(2) (r 1; r 2) = 1.

Notion of entanglement

Let us brie
y present and discuss the concept of entanglement, previously introduced
to describe the bosonic state of two particles. We consider a physical system with two
degrees of freedom, denoted asA and B [28]. The space in which to describe the system
is a tensor product Hilbert space, denoted asE = EA 
 E B . The factorized state

j i = j� i 
 j � i (1.24)

belongs to this space. This means that sub-systemA is in state � and sub-systemB is in
state � . Due to the properties of the Hilbert space, the following state

j i =
1

p
2

(j� 1i 
 j � 1i + j� 2i 
 j � 2i ) =
1

p
2

(j� 1; � 1i + j� 2; � 2i ) (1.25)

also represents a state of the system (where the 1=
p

2 factor is just a normalization factor).
This remark may appear trivial, but its consequences are of utmost signi�cance. Indeed,
this state results in very strong correlations between the degrees of freedomA and B .

Indeed, if we measure both the degrees of freedomA and B , we �nd either � 1 for A
and � 1 for B , with a probability of 1/2, or � 2 for A and � 2 for B , with a probability of
1/2, but the probability of measuring � 1 for A and � 2 for B is zero:

8
>>>>>>>>>><

>>>>>>>>>>:

P(� 1; � 1) = j h� 1; � 1j i j 2 =
1
2

P(� 2; � 2) = j h� 2; � 2j i j 2 =
1
2

P(� 1; � 2) = j h� 1; � 2j i j 2 = 0

P(� 2; � 1) = j h� 2; � 1j i j 2 = 0

(1.26)

Note that the probability of measuring � 1 is given by:

P(� 1) = P(� 1; � 1) + P(� 1; � 2) =
1
2

(1.27)
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and so on for the other probabilities of measuring� 2, � 1, � 2. Now, it is important
to highlight that the conditional probability of measuring � 1, given that � 1 has been
measured, is equal to

P(� 1j� 1) =
P(� 1; � 1)

P(� 1)
= 1 (1.28)

This mathematically evident result nevertheless has very important consequences. In-
deed, if we now consider that the two degrees of freedom are two di�erent particles, possibly
widely separated from each other, it is striking to note that, regardless of the outcome
of the measurement on one of the two particles, the result of the other particle can be
predicted with a probability of 1. This very strong correlation, inherent to the entangled
state in quantum mechanics, lies at the heart of the discussions that took place between
Einstein and Bohr.

As a consequence, one sub-system cannot be described independently from the other,
the system must be considered as an inseparable whole. This non-separability is proper
to quantum mechanics and can be taken as a de�nition for entanglement.

1.2 Experimental evidence of non classical correlations in optics

There are di�erent ways of demonstrating that the correlations in systems of multiple
particles cannot be explained by classical physics. We will mention just a few of them,
which will be of particular importance in the subsequent sections of this manuscript.

1.2.1 Sub-shot-noise measurements

Let us consider a classical source of light, characterized by a Poissonian distribution
law, like a laser. Light can be described as a coherent statej� i , where � is the parameter
of the Poissonian distribution. Recall that j� i is an eigenstate of the annihilation operator
â.

Due to the distribution statistics of the source, when using a photodetector to detect
its light, the rate of photon detection will change from one realization to the other. Its
mean valuew is

w = ĥayâi = h� jâyâj� i = j� j2 (1.29)

This is, by de�nition, the value of the mean number of photons hN i involved in the
measurement. On the other hand, the variance ofw is

V (w) = ( � w)2 = h(âyâ)2i � h âyâi
2

= ĥayâyââ + âyâi � j � j4 = j� j2 (1.30)

where � w is the standard deviation of the intensity measurement. Therefore, the relative
precision of a measurement ofw is:

� w

w
=

1
j� j

=
1

p
hN i

(1.31)

As we can see, the precision is limited by the square root of the number of detected
photons. Even the most stable classical 
ux exhibits such noise. This intrinsic limitation
is called shot noise.
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Figure 1.6: Scheme of a source emitting particles in two opposite directions.

Similarly, let us consider a classical system emitting particles in two di�erent directions,
on which we place two detectorsA and B (Figure 1.6).

In each direction, an average ofhN i particles are emitted. The source follows a Pois-
sonian distribution law, so that the variance of the particles number in each beam is also
equal to hN i , as shown previously. If we consider the photon di�erence �N = NA � NB

measured between the two detectors, the variance of this observable is equal to the sum of
the two variances of the particles number detected in both beams, soV (� N ) = N + N =
2N . Again, this boundary is due to shot noise because of the intrinsic 
uctuations of the
number of photons emitted by the source.

In quantum mechanics, some highly quantum states make it possible to surpass this
classical limit, leading to the observation of what is called a sub-shot noise variance. Let
us consider for instance the twin-Fock state

j i = jN i A 
 j N i B = jN; N i (1.32)

for which there are exactly N photons in beam A and N photons in beam B . For this
state, the average photon number di�erence is obviously

h� N̂ i = hN̂A i � h N̂B i = N � N = 0 (1.33)

but more importantly, its variance is

V (� N̂ ) = h� N̂ 2i � h � N i 2 = hN̂ 2
A i � 2hN̂A N̂B i + hN̂ 2

B i = 0 (1.34)

The variance then drops to zero (for a detector with a perfect quantum e�ciency), which
clearly beats the classical limit.

In practice, achieving such a state is experimentally challenging. However, it is possible
to create states that are linear combinations of Fock states[29][30]. They can be expressed
in the form:

j i =
+ 1X

n=0


 n jn; ni (1.35)

Such states are called two-mode squeezed state. Like twin-Fock states, they lead to
a variance equal to zero for perfect detectors. Note that, in general, it is possible to
reduce the 
uctuation in the number of atoms thanks to what is referred to as squeezing,
which consist in reducing the range of variation in the number of atoms. Such states
have many applications in metrology, since they enable better-than-classical precision
measurements[31][32].

A criterion to determine whether a two-particle state beats the shot-noise limit in this
situation is to look at the normalized variance ~V(� N ) of the photon di�erence:

~V (� N ) =
h� N̂ 2i � h � N i 2

hN̂A + N̂B i
(1.36)
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The limit for a classical source is therefore

~V � 1 (1.37)

If ~V < 1, this is the evidence of a non classical correlation.

1.2.2 Cauchy-Schwarz inequality violation

Let us express the normalized variance in terms of correlation functions. To do so,
we will consider again that both beams are equivalent, so that they have the same mean
number of photons (hN̂A i = hN̂B i ) and the same variance (hN̂ 2

A i = hN̂ 2
B i ). We have

therefore

~V(� N ) =
h(N̂A � N̂B )2i � (hN̂A i � h N̂B i )2

hN̂A + N̂B i
=

hN̂ 2
A i � h N̂A N̂B i

hN̂A i
(1.38)

Note that it can be expressed in terms of second-order correlation function. Indeed,
we have shown previously that

G(2) (A; A ) = ĥay
A ây

A âA âA i = hN̂ 2
A i � h N̂A i (1.39)

using the commutation relation of âA and ây
A for bosons. This is the auto-correlation

function for beam A.
Now, the cross second-order correlation function between the two beams is, when

A 6= B ,

G(2) (A; B ) = ĥay
A ây

B âB âA i = hN̂A N̂B i (1.40)

since the creation and annihilation operators ofA and B commute.
The apparent asymmetry between the two formulas 1.39 and 1.40 arises from consid-

ering the order of operators in the de�nition of the correlation functions. When A = B ,
this results in subtracting a term from the correlation, which is actually equal to the shot
noise. A general way to express correlation functions in terms of number operators is to
specify the preservation of the order of operators, which is written as:

G(2) (A; B ) = h: N̂A N̂B :i (1.41)

where the notation h: � � � :i indicates the normal ordering of the creation and annihilation
operators.

Finally, it can be easily shown that

~V (� N ) =
hN̂ 2

A i � h N̂A N̂B i

hN̂A i
= 1 +

G(2) (A; A ) � G(2) (A; B )

hN̂A i
(1.42)

which can be written:

~V (� N ) = 1 + (1 � C )
G(2) (A; A )

hN̂A i
(1.43)

where

C =
G(2) (A; B )
G(2) (A; A )

=
G(2) (A; B )

p
G(2) (A; A )G(2) (B; B )

(1.44)
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Thus, having a sub-shot noise variance is equivalent to having a coe�cientC > 1,
which corresponds to satisfying the inequality:

G(2) (A; B ) >
q

G(2) (A; A )G(2) (B; B ) (1.45)

This is what is referred to as a violation of the Cauchy-Schwarz inequality. Indeed,
in classical physics, if we consider two random variablesX A and X B , then we necessarily
have:

hX A X B i �
q

hX 2
A i hX 2

B i (1.46)

which, in terms of correlation functions, is equivalent to

G(2) (A; B ) �
q

G(2) (A; A )G(2) (B; B ) (1.47)

With a classical model, it cannot be explained that the cross-correlation is greater than
the square root of the auto-correlations product. A violation of this inequality is then a
signature of a purely quantum e�ect[33][34].

Note that exhibiting a violation of the Cauchy-Schwarz inequality or a sub-shot noise
variance, despite the fact that this means that the correlation is stronger than classical, is
actually not su�cient to claim that the state at play is entangled, as discussed in reference
[35] where the authors formulate the Busch-Parentani criterion of entanglement: apart
from exhibiting a violation of the Cauchy Schwarz inequality, one should also show that
the statistics of the system is Gaussian on the one side, and thatĥay

A âB i = ĥay
B âA i = 0.

1.2.3 Hong-Ou-Mandel e�ect

As discussed in the introduction, another way to probe the correlations of a system is to
perform interference experiments. Thus, there are interferometers which make it possible
to exhibit purely quantum interferences, meaning that the amplitude of the correlation
cannot be explained by classical physics. Among them, one can mention, for example, the
Hong-Ou-and Mandel (HOM) experiment.

Principle

Figure 1.7: Four equiprobable possibilities in a classical point of view.

The Hong-Ou-Mandel e�ect is a two-particle interference phenomenon that occurs
when two indistinguishable bosons are sent into the two input modes of a 50/50 beam
splitter. From a classical point of view, the four possibilities represented in Figure 1.7 are
equiprobable, and one would expect the probability of measuring two particles in di�er-
ent output modes to be equal to the probability of measuring two particles in the same
mode. However, quantum theory can predict a result contrary to classical expectations:
the output modes of the particles will always be identical, meaning that the two bosons
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will emerge from the same output port. In this case, if one measures the probability of
detecting two particles simultaneously at detectors placed on each output port, this prob-
ability must go to zero.

This e�ect was �rst experimentally observed by Hong, Ou, and Mandel in 1987[36]
with pairs of photons emitted by parametric down-conversion (Figure 1.8). The experi-
ment was designed so that the indistinguishability of the two emitted photons could be
tuned by controlling the optical path of the photons with the position of the beam splitter.
If the photons do not overlap on the beam splitter, the particle's paths are distinguish-
able. Therefore, by plotting the coincidence count rate in the output ports as a function
of the beam-splitter position, the authors observed a dip in the coincidence count rate,
which approaches zero when the photons are indistinguishable, a result now known as the
HOM dip. The width of the dip is directly related to the temporal width of the photon
wavepacket, which was what the authors aimed at measuring.

Figure 1.8: Original scheme of the classical HOM experiment (left) and result of the
number of coincidence count as a function of the position of the beam splitter (right).
Taken from [36].

Since this historic experiment, the HOM e�ect has become a textbook example of
quantum interference that cannot be explained by a classical or semi-classical model.

Simple two-particle model

Figure 1.9: Input and ouput modes of the beam-spitter.

Let us consider the situation illustrated in Figure 1.9, where two identical particles in
the two input modes a and b are mixed on a 50/50 splitter. Two detectors are places at
the ouput modes of the beam splitter, written c and d. The input state is

j	 in i = âyb̂y j0; 0i (1.48)
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where j0; 0i denotes the vacuum andây (respectively b̂y) is the particle creation operator
in the mode a (respectively b).

In accordance with the second quantization formalism, one can establish a relationship
between input and output modes using the beam splitter matrix:

�
ĉy

d̂y

�
= Ŝ

�
ây

b̂y

�
with Ŝ =

1
p

2

�
1 iei �

ie� i � 1

�
(1.49)

The unitary character of the matrix Ŝ re
ects the conservation of the particle number
between the input and output states. By inverting Ŝ, the input modes can be expressed
in terms of ĉy and d̂y:

�
ây

b̂y

�
= Ŝ� 1

�
ĉy

d̂y

�
=

1
p

2

�
1 � iei �

� ie� i � 1

� �
ĉy

d̂y

�
(1.50)

where Ŝ� 1 is equal to the conjugate transpose of̂S as it is a Hermitian matrix. The �nal
state of the two-particle system after passing the beam splitter can be expressed as follows:

j	 out i =
1
2

�
ĉy � iei � d̂y

� �
� ie� i � ĉy + d̂y

�
j0; 0i

from which we get

j	 out i =
1
2

�
� ie� i � ĉyĉy + ĉyd̂y � d̂yĉy � iei � d̂yd̂y

�
j0; 0i (1.51)

So far, we have not taken into account the fermionic or bosonic nature of the considered
particles. However, at this stage, it is crucial to note that the commutation relations
di�er depending on whether the particles are bosons or fermions. For bosons, we have
ĉyd̂y = d̂yĉy, so the crossed terms cancel out and equation 1.51 can be rewritten

j	 out i =
1
2

�
� ie� i � ĉyĉy � iei � d̂yd̂y

�
j0; 0i (1.52)

The output state is therefore

j	 out i = �
i

p
2

�
e� i � j2; 0i + e i � j0; 2i

�
(1.53)

From this expression, it is immediately apparent that the probability of measuring both
particles in two di�erent modes is zero, since the remaining terms are squared creation
operators: this is the destructive interference known as the HOM e�ect.2 The number of
joint coincidences in modesc and d can be determined using the second-order correlation
function G(2)

cd , for which we have :

G(2)
cd = ĥcyd̂yd̂ĉi = 0 (1.55)

2 In the case of fermions, Pauli's exclusion principle prohibits two particles from occupying the same
mode. The commutation relations are then given by

ĉy ĉy = d̂y d̂y = 0 and ĉy d̂y = � d̂y ĉy

and equation 1.51 becomes:

j	 out i = ĉy d̂y j0; 0i (1.54)

As expected for fermions, and contrarily to what is observed for bosons, the output particles are never
in the same mode. This e�ect was observed experimentally with single electrons[37] in 2013.
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Indistinguishability

In the previously presented model, the indistinguishability of the two particles is
slightly hidden in the way we express the input state âyb̂y j0; 0i , without distinguishing
particle 1 from particle 2.

Now, suppose that the input particles, for example photons, have orthogonal polariza-
tions denoted asH (for the particule in mode a) and V (for the particule in mode b). In
this case, they are no longer indistinguishable because we have introduced an additional
degree of freedom that would allow us to di�erentiate them after measurement. In this
case, the input state would beây

H b̂y
V j0; 0i , leading to

j	 out i =
1
2

�
� ie� i � ĉy

H ĉy
V + ĉy

H d̂y
V � d̂y

H ĉy
V � iei � d̂y

H d̂y
V

�
j0; 0i (1.56)

The crossed terms ^cy
H d̂y

V and d̂y
H ĉy

V no longer commute, and we do not observe the
destructive interference leading to the Hong-Ou-Mandel e�ect.

Alternatively, we can highlight the distinguishable or indistinguishable character of the
particles by using the formalism of �rst quantization. Again, let us note a and b the input
modes. At the output of the beam splitter, the one-particle input states jai and jbi are
transformed into output states through the matrix relationships

8
>><

>>:

Ŝ jai =
1

p
2

(jai + ie i � jbi )

Ŝ jbi =
1

p
2

(ie� i � jai + jbi )
(1.57)

Now, let us write the two-particle input state in the form:

j	 dis
in i = jai 1 
 j bi 2 = ja; bi (1.58)

where the indices 1 and 2 correspond to the considered particles. This input state corre-
sponds to the distinguishable case, since we know without any ambiguity that the particle
1 is in modea and particle 2 is in modeb. The output state writes :

j	 dis
out i = Ŝ jai 1 
 j bi 2 =

1
2

(jai 1 + ie i � jbi 1)(ie � i � jai 2 + jbi 2)

therefore
j	 dis

out i =
1
2

(ie� i � ja; ai + ja; bi � j b; ai + ie i � jb; bi ) (1.59)

where ja; bi and jb; ai represent two di�erent physical situations: particle 1 in mode a and
particle 2 in mode b on one hand, and particle 1 is in modeb and particle 2 is in mode
a on the other hand. Here, we retrieve the four equiprobable situations corresponding to
the classical intuition.

Similarly, we get

Ŝ jbi 1 
 j ai 2 =
1
2

(ie� i � ja; ai � j a; bi + jb; ai + ie i � jb; bi ) (1.60)

Now, let us consider the case of indistinguishable particles. The statesja; bi and jb; ai
are equiprobable. For bosons, the wavefunction must be symmetric under the exchange
of the two particles, so that the input state is

j	 bos
in i =

1
p

2
(jai 1 
 j bi 2 + jbi 1 
 j ai 2) =

1
p

2
(ja; bi + jb; ai ) (1.61)
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The output state is equal, up to a normalization factor, to the sum of equations 1.59
and 1.60, so in the case of bosons, we �nd:

j	 bos
out i =

1
p

2
(ie� i � ja; ai + ie i � jb; bi ) (1.62)

We see that the two particles are always in the same output mode. Writing the input
state as a bosonic wavefunction of indistinguishable particles made it possible to retrieve
the Hong-Ou-Mandel e�ect.3

This formalism highlights well both the indistinguishability and the bosonic nature of
the Hong-Ou-Mandel e�ect.

Classical limit

In this paragraph, we will compare the HOM e�ect, so far regarded as a purely quan-
tum phenomenon, with a classical model. We have previously seen that a naive model
featuring two incoming classical particles on a beam splitter results in four equiprobable
situations, and consequently, no observed decrease in the number of coincidences between
the two output modes. However, we will demonstrate that such a decrease can actually
be predicted with a classical wave model, up to a certain point. Indeed, let's consider two
incident waves on the beam splitter, with amplitudes denoted asEa and Eb, such as

Ea = E0 ei � a and Eb = E0 ei � b (1.64)

where � a and � b are random phases. The amplitude of the outcoming waves is

Ec =
1

p
2

(Ea + ie i � s Eb) and Ed =
1

p
2

(ie� i � s Ea + Eb) (1.65)

The intensity at the output ports, averaged over the random phases� a and � b, is then

hI ci = hI di = I 0 (1.66)

while the product intensity is

hI cI di =
I 2

0

2
(1.67)

This shows that the amplitude of the product intensity is smaller than the square of
the output intensity from one of the two ports of the beam splitter. This implies that
such a classical wave model allows for the observation of a decrease in the joint detection
probability on channels c and d.

To quantify this destructive interference, we introduce the visibility V of the HOM
signal detection, de�ned as

V = 1 �
G(2)

cd;Ind

G(2)
cd;Dis

(1.68)

3For fermions, the wavefunction must be antisymmetric under the exchange of the two particles, leading
to

j	 fer
in i =

1
p

2
(ja; bi � j b; ai ) and j	 fer

out i =
1

p
2

(ja; bi � j b; ai ) (1.63)
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The quantum model with two indistinguishable bosons ensures thatG(2)
cd;Ind = 0, hence

V = 1: the visibility of the HOM dip is maximal. In the previous classical model, we have:

V = 1 �
hI cI di

hI ci hI di
= 1 �

I 2
0=2
I 2

0
= 0 :5 (1.69)

Therefore, the visibility of the HOM dip with this classical model cannot exceed 0.5,
establishing a classical threshold: an experiment exhibiting visibility greater than 0.5 en-
sures the quantum nature of the input state.

In chapter 7, we will generalize the quantum HOM e�ect for an input state which can
be written in the basis of twin-Fock states. We will see that the visibility of the dip can
actually be related to the Cauchy-Schwarz inequality, such that havingC > 1 is equivalent
to getting V > 0:5: this is again an evidence of a stronger-than-classical correlation. Still,
the most e�ective way to claim that a quantum state is entangled consists in exhibiting a
violation of Bell inequality.

1.3 Bell tests

The intrinsically probabilistic nature of quantum mechanics has consistently sparked
debates among the pioneers of this theory. In particular, starting from a two-particle
entangled state, it is possible to highlight strong correlation between sub-systems, so that
each system cannot be described independently, leading to a famous debate between A.
Einstein and N. Bohr.

1.3.1 EPR argument

In 1935, Einstein, Podolsky, and Rosen published a famous article untitled \Can
Quantum-Mechanical Description of Physical Reality be Considered Complete?" In this
article, they used the formalism of quantum mechanics to highlight a particularly per-
plexing aspect of this theory, known now as the \EPR paradox." In the following, we
will quickly present the EPR argument in its version formulated by D. Bohm[38]. The
following discussion was inspired by a talk by A. Aspect[39].

Figure 1.10: Scheme of the Einstein-Podolsky-Rosen-Bohm experiment.A source emits
polarized photons in two opposite directions. Polarizers placed along each photon's path allow
measurement of its polarization relative to the polarizers' axes. The detection system makes it
possible to determine the coincidence rates between measurement outcomes on both sides.
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Let us consider a source that emits two linearly polarized photons� A and � B in two
di�erent directions, such that the state of the system is given by:

j i =
1

p
2

(jH; H i + jV; Vi ) (1.70)

where the system is de�ned in a Hilbert spaceE = EA 
 E B and H and V represent two
orthogonal linear polarization orientations (horizontal and vertical). As seen previously,
this is an entangled state, since none of the two particles has a well-de�ned polarization
state.

In each direction, a polarizer makes it possible to measure the polarization of each pho-
ton (Figure 1.10). Let a and b denote the polarization axes of each polarizers. Depending
on its polarization, the photons will then follow a di�erent path after the polarizers, de-
noted as +1 if the photon polarization is found parallel to the axis of the polarizer, or � 1
in the other case. Therefore, it is possible to measure the probabilities of single or joint
detections in the output channels of the polarizers. Using the notations de�ned in Figure
1.11, a simple projection gives

8
>><

>>:

j+ i a =
1

p
2

(cos� a jH i + sin � a jV i )

j�i a =
1

p
2

(� sin � b jH i + cos � b jV i )
(1.71)

jH i

jV i

j+ i a

j+ i b
j�i a

� a

� b

� a

Figure 1.11: Orientation of the polarizers axes.

The joint probability of measuring +1 in A and +1 in B is

P++ (a; b) = j h+ + j i j 2 (1.72)

where

j++ i =
1
2

(cos� a jH i + sin � a jV i ) 
 (cos� b jH i + sin � b jV i )

=
1
2

(cos� a cos� b jH; H i + cos � a sin � b jH; V i + sin � a cos� b jV; Hi + sin � a sin � b jV; Vi )

(1.73)

Therefore, we get

P++ (a; b) =
1
2

j cos� a cos� b + sin � a sin � bj2 =
1
2

cos2(� a � � b) =
1
2

cos2(a; b) (1.74)
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Similarly, we �nd

8
><

>:

P++ (a; b) = P�� (a; b) =
1
2

cos2(a; b)

P+ � (a; b) = P� + (a; b) =
1
2

sin2(a; b)
(1.75)

One can also deduce that the single probability of measuring +1 inA is

P+ (a) = P++ (a; b) + P+ � (a; b) =
1
2

(1.76)

and similarly

8
><

>:

P+ (a) = P� (a) =
1
2

P+ (b) = P� (b) =
1
2

(1.77)

It is worth noting that, while an individual polarization measurement yields a random
outcome, there is a clear correlation between the measurements onA and B , which depends
on the relative angle between both polarizers.

Again, this can be explained by the fact that when a polarization measurement is made
at A, the state of the system is immediately projected onto the corresponding eigenstate.
As a result, the polarization measurement atB is then directly determined.

In this whole scheme, the distance between the two measurements does not play any
role. This means that, according to quantum theory, theses results hold true even if the
polarizers are separated by a space like interval. In a way, the instantaneous quantum
projection of the state leads to wonder if the information of the measurement travelled
faster than light between both detectors. This idea was rejected by Einstein, who saw in
this picture an incompatibility with relativity.

In order to overcome this paradox, Einstein's proposed explanation asserts that the
state vector does not contain all the necessary information for the system's description.
According to this concept, often referred to as a hidden variables theory, there would be
parameters that are inaccessible to us, determining the outcomes of a measurement (deter-
mined for instance when the photons pair is created). This would restore the idea that the
result of a measurement is deterministic, while quantum theory is intrinsically probabilis-
tic, but, as proposed by EPR, incomplete. Additionally, it would explain the correlation
between measurement outcomes on two di�erent sub-systems, akin to two celestial objects
whose trajectories are linked by initial conditions. To reconcile the observed results with
the probabilities predicted by quantum mechanics, it is then su�cient to average over the
additional variables.

1.3.2 Bell inequality

Although N. Bohr responded to EPR by rejecting the idea that quantum mechanics
is incomplete, he did not provide conclusive proof. He pointed out that the assumption
of local realism had to be dropped out, so that it can happen that the measurement on
one sub-system can a�ect the other, no matter the distance between the two. For a few
decades, the debate remained a matter of opinion and interpretation, as EPR arguments
do not invalidate the predictions of quantum mechanics but rather attempt to provide an
explanation for the nature of the observed results.
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But this changed in 1964 when J. Bell found a way to experimentally highlight a con-
tradiction between quantum mechanics and a hidden variables theory[5].

Demonstration of a Bell inequality

We introduce a set of parameters denoted as� for hidden variables, in the sense of EPR,
which would thereby ensure that the theory predicting measurement outcomes satis�es the
locality assumption. These parameters are characterized by a probability density� (� ),
de�ned such that

Z
� (� )d� = 1 (1.78)

The result of a polarization measurement inA for instance is then given by a function
A(a; �; � a), which is entirely determined by the parametersa, � , and � a, which respectively
represent the orientation of the polarizer, a hidden variable linking A and B , and an
additional hidden variable related to the detector that could in
uence the measurement
outcome. The function A(a; �; � a) can take the values +1, � 1, or 0 in the case of a
measurement failure that does not yield a result. Performing the measurement of an
observable involves averaging the functionA over the hidden variables, weighted by their
density. Thus, by �rst averaging over the variables � a associated with the detector, we
get

�A(a; � ) =
Z

� a(� a)A(a; �; � a)d� a (1.79)

Noticeably, as � a is a probability density, one can deduce the following inequality

j �A(a; � )j � 1 (1.80)

Similarly, the same reasoning being applied inB , we have

�B (b; � ) =
Z

� b(� b)B (b; �; � b)d� b and j �B (b; � )j � 1 (1.81)

and consequently
j �A(a; � ) �B (b; � )j � 1 (1.82)

One way of characterizing the correlation between the measurements outcomes inA
and B is to de�ne the Bell correlator E as

E(a; b) = hA � B i (1.83)

So that we get immediately

E(a; b) =
Z

� (� ) �A(a; � ) �B (b; � )d� (1.84)

Let us consider a second set of orientations of the polarizersa0 and b0. It is interesting
to look at the quantity s(�; a; a0; b; b0), de�ned as

s(�; a; a0; b; b0) = �A(a; � ) �B (b; � ) � �A(a; � ) �B (b0; � ) + �A(a0; � ) �B (b; � ) + �A(a0; � ) �B (b0; � )

= �A(a; � )
� �B (b; � ) � �B (b0; � )

�
+ �A(a; � )

� �B (b; � ) + �B (b0; � )
�

(1.85)
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Since �A(a; � ) and �B (b; � ) range between -1 and +1 (which is also true fora0 and b0),
then the last expression ofs leads to the inequality

� 2 � s(�; a; a0; b; b0) � 2 (1.86)

This inequality is also veri�ed by the average S of s over the hidden variables� :

� 2 � S(a; a0; b; b0) =
Z

� (� )s(�; a; a0; b; b0)d� � 2 (1.87)

Let us name S the Bell parameter. Using equation 1.84, it can be expressed as a
function of the Bell correlators

S(a; a0; b; b0) = E(a; b) � E (a; b0) + E(a0; b) + E(a0; b0) (1.88)

This demonstration allows us to show that if the outcome of a measurement can be
predicted by a local hidden variable theory, then the result of the measurement ofS for
any quadruplet of angles (a; a0; b; b0) must necessarily satisfy the inequality:

� 2 � S(a; a0; b; b0) � 2 (1.89)

Thus, any experiment yielding a Bell parameter that violates this inequality serves to
verify that the result is not dictated by a local hidden variable theory. Any experiment
aimed at demonstrating a violation of this inequality is then referred to as a Bell test.

It is noteworthy that we have demonstrated here a certain form of Bell inequality
derived by J. Clauser, M. Horne, A. Shimony, and R. Holt[40] (often referred to as the
CHSH version of the Bell inequality), but there exist other versions, involving di�erent
observables. An experimenter may choose to employ a Bell inequality version that is more
favorable given the experimental constraints, as discussed in the thesis of Q. Marolleau[41],
former PhD student in the team.

Violation of Bell inequality predicted by quantum theory

Let us use the de�nition 1.83 of the Bell correlator to calculate what quantum me-
chanics predicts:

E (a; b) = hA � B i

= (+1) � (+1) � j h+ + j i j 2 + ( � 1) � (+1) � j h� + j i j 2

+ (+1) � (� 1) � j h+ � j  i j 2 + ( � 1) � (� 1) � j h� � j  i j 2

= P++ (a; b) + P�� (a; b) � P + � (a; b) � P � + (a; b)

(1.90)

We showed earlier the expressions of the joint probabilities of detection (equation 1.75)
from which we get easily:

E (a; b) = cos(2(a; b)) = cos(2( � a � � b)) (1.91)

where � a and � b are the angles corresponding to the orientations of the polarizersa and
b. If we take the following angles:

� a = 0 � b =
�
8

� a0 =
�
4

� b0 =
3�
8

(1.92)

then we obtain
S(� a; � a0; � b; � b0) = 2

p
2 (1.93)
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This means that quantum mechanics predicts a violation of the Bell inequality by more
than 40%. This highlights the highly non local character of quantum theory.

The experiments conducted by A. Aspect[9][10][11] experimentally demonstrated a
clear violation of Bell's inequality with a setup similar to the one previously presented. The
most famous one is certainly the experiment reported in 1982[11], during which the Orsay
team implemented a device making it possible to choose the orientation angle of polarizers
during the 
ight time of photons, in order to separate the two polarization measurements at
A and B by a space-like interval. Thus, relativity prohibits the transmission of information
between A and B : if there is a violation of Bell's inequality, then it de�nitively implies
that the results of the experiment cannot be associated with a theory assuming locality,
and this is precisely what was observed at that time.

Note that the choice of the polarizers angles was not fully random, introducing a poten-
tial bias in the experiment. The experiment has been reiterated and improved upon since
then, notably in Innsbruck in 1998, where genuine random number generators were uti-
lized, resulting in a violation of Bell's inequality by several tens of standard deviations[42].

1.3.3 The momentum degree of freedom: Rarity-Tapster experiment

The setup described in the previous sections involves pairs of photons whose polar-
ization degree of freedom is entangled. It is worth noting that the Bell test involves four
detection modes: two (+1 and � 1) for the measurement in A, and two others (+1 and
� 1) for the measurement inB . Here, a mode is any possible value taken by a degree of
freedom for a single-particle wavefunction. The + and� modes forA and B are distinct
because they involve di�erent subsystems, making the modes distinguishable.

In this regard, the system designed to demonstrate a violation of Bell's inequalities
di�ers from the one that would be used to highlight the HOM e�ect or a violation of
Cauchy-Schwarz inequalities. Although these experiments also involve two-particle inter-
ference, they only involve two modes, which do not stress out the contradiction between
quantum mechanics and relativity. A two-particle Bell test must involve a two-dimensional
space on each side for each particle, as the measurement should allow the choice between
two non-commuting observables.4

While the Orsay experiments used a source of pairs of correlated photons generated by
non-linear laser excitations of an atomic radiative cascade[44], technological advancements
have led to the emergence of new e�cient sources of entangled photons. For instance, non-
linear splitting of ultraviolet photons has been employed to produce pairs of correlated
photons by optical parametric down conversion[45]. These sources have enabled the im-
plementation of Bell tests on continuous variables[46].

In 1989, M. Horne, A. Shimony, and A. Zeilinger[13] proposed a new scheme of Bell
test involving the momentum of photons instead of an internal degree of freedom like
polarization. The corresponding experiment was successfully conducted shortly thereafter
by J. Rarity and P. Tapster[12], who observed a violation of Bell's inequality by several
standard deviations (S = 2 :21 � 0:02). The principle of the experimental setup will be
brie
y discussed in the following.

In this setup (Figure 1.12), the idea is that all photons have the same polarization, but
their optical paths are di�erent. A source emits pairs of photons through parametric down

4Note that this is only true for a system of two particles, as shown in reference [43].
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Figure 1.12: Scheme of the Rarity-Tapster setup for a Bell experiment with momentum
entangled photons. A source emit two pairs of photons (p; p0) and (q; q0). The photons from a
pair are directed to two di�erent beam splitter, where they are mixed with the photons from the
other pair, forming loops A and B . Photodetectors are placed at each output of the beam splitters
and make it possible to measure the coincidence count rates. In each loop, a phase plate can add
a tunable path length di�erence.

conversion, where the phase-matching conditions (momentum and energy conservation)
implies that the created pairs have di�erent momenta, denoted asp and p0 on one hand,
and q and q0 on the other hand (as mentioned earlier, a Bell test must involve four modes).
In this con�guration, the input state is expressed as follows:

j i =
1

p
2

�
jp; p0i + jq; q0i

�
(1.94)

Then, photons from each pair are made to interfere with photons from the other pair
at two beam splitters, spatially separated. Therefore, there are two loops in the inter-
ferometers, denoted as A and B. These loops are equivalent, except that a phase plate is
added to each loop, inducing a path length di�erence. After that, a detection system and
correlation counter makes it possible to measure the joint probabilities of detection and
then to compute the Bell signal.

As we will see later in this manuscript with a similar setup using atoms, it is easy
to demonstrate that if one looks at the correlations between two modes within the same
loop (for example, p and q), then there is no interference signal observed. However, if one
examines the joint detection probabilities between two modes from two di�erent loops,
then the latter oscillates based on the phase di�erence between the two loops:

Pp;q(� A ; � B ) = P� p;� q(� A ; � B ) =
1
2

cos2(� A � � B )

Pp;� q(� A ; � B ) = Pq;� p(� A ; � B ) =
1
2

sin2(� A � � B )

(1.95)

In the same manner that tuning the relative orientation of the polarizers leads to a
two-particle interference involving polarization, here the relative phase di�erence between
the two loops of the interferometer plays the same role with the momentum degree of free-
dom and leads to the oscillation of the Bell correlator. These are two analogous systems,
for which quantum mechanics predicts that they can demonstration a violation of Bell's
inequality.
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Let us summarize the key elements necessary for setting up experimental platforms
that can lead to the observation of Bell inequalities.

ˆ Firstly, a source of two-particle entangled pairs is required.5

ˆ Secondly, an interferometric set up is needed to observe four-mode correlations, along
with a tunable parameter to control the interference.

ˆ Finally, single-particle detectors are required to calculate the correlations between
the di�erent output ports of the experiment.

These are the three elements that we will need to bring together to conduct a Bell
experiment involving atom pairs entangled in momentum.

1.3.4 From photons to atoms

Following the pioneer experiments with photons, Bell tests have been conducted with
massive particles, leading to the observation of Bell inequality violations. One can for
instance mention Bell inequality violation with mesons in 1999[49], ions in 2001[50], com-
posite systems consisting of an atom and a photon in 2004 [51], atoms in 2007[52] and
nitrogen-vacancy (NV) defects in diamond in 2011[53]. All these experiments involve
internal degrees of freedom of the particles.

Beyond discussing the question of the local or non-local nature of spacetime, which is
increasingly clear since the loophole-free tests of 2015[15][16][17], Bell tests now provide
an e�ective way to study the correlations properties of two-particle quantum sources.
Observing a violation of Bell's inequality implies that the system's state is non-separable,
indicating that the involved modes are entangled. This represents the strongest way to
demonstrate non-classical correlations.

This becomes particularly interesting when involving external degrees of freedom of
entangled massive particles, as they are subject to gravity. This opens the way to exper-
iments involving both entanglement and gravitation. Some theoreticians indeed suggest
that gravitational interaction induces a decoherence phenomenon leading to the disap-
pearance of entanglement[22][54]. An experimental test of this theory involves the use of
systems with a mass much greater than that of two atoms. However, performing a Bell
test with a pair of momentum entangled atoms would represent a signi�cant milestone.

1.4 Quantum atom optics with metastable helium

In this section, we will focus on the experimental realization of the elements necessary
for the Bell interferometer. We will demonstrate that the metastable helium experiment
on which I worked is an ideal experimental platform for conducting so-called quantum
atomic optics experiments, which consist in carrying out with atoms experiments that
were historically performed with photons.

1.4.1 Bose-Einstein condensation and single atom detection

Before creating entangled pairs of atoms, it is essential to have a source of atoms that
can serve as a coherent reservoir of particles in a well-de�ned momentum state. Having
such a source is a fundamental building block when manipulating quantum states. Thanks

5 It is worth noting that it is possible to use systems with more than two particles to demonstrate a
violation of Bell's inequality, and there are Bell inequalities speci�cally designed for such cases [47][48].
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to laser cooling and trapping and evaporative cooling methods developed from the 1980s
onward, it is now possible to form a state of matter called a Bose-Einstein condensate
(BEC) from bosonic atoms[55]. In a BEC, the typical size of the wave function of a
particle is of the same order of magnitude as the typical distance between these particles,
forming a macroscopically degenerate wave function for all particles. This phase transition
to a state with purely quantum properties occurs when the de Broglie wavelength� dB

associated with each particle and the atoms densityn satisfy the relationship

n� 3
dB � 1 (1.96)

with

� dB =
h

p
2�mk Boltz T

(1.97)

wherem is the mass of the particles,kBoltz the Boltzmann constant and T the temperature.
Under standard temperature and pressure conditions, this parameter is on the order of

10� 8 to 10� 6 for a gas. Thus, one has to decrease the temperature while ensuring that the
density remains su�ciently low to avoid the formation of condensed phases. To achieve
this, laser cooling methods are employed, using the radiation pressure exerted by photons
to slow down atoms.

Thus, the choice of the atomic species to be cooled determines the laser cooling setup,
as one needs to select one (or more) atomic transition for e�cient atom-light interac-
tion. Depending on the physical phenomena one aims to study, the choice of atom can
vary. Rubidium is particularly easy to cool and is widely used in the ultracold atom
community. Other alkali atoms possess what is known as Feshbach resonances, allowing
control of atomic interactions by manipulating a magnetic �eld, making them particularly
interesting[56].

The atom chosen by the team for conducting quantum atomic optics experiments is
the helium atom 4He in its 23S1 metastable state. In addition to having atomic transitions
suitable for laser cooling and trapping, this state of helium has a very high internal energy
of 19.82 eV, which is su�cient to extract an electron from a metallic surface when an
atom falls onto it. With an ampli�cation system, it becomes possible to detect individual
atoms. This is the principle behind detectors known as Micro-Channel Plates (MCPs),
which are used to detect energetic particles in various contexts, particularly in high-energy
physics[57].

Under the MCP, it is possible to place conductive lines called delay lines. These
lines transform the electric pulse ampli�ed by the MCP into four signals, whose time
of propagation in each line is recorded. This allows determining the arrival time and
position of the detected particle. By knowing the atom's fall time, one can then calculate
its momentum values in all three spatial directions, as time can be converted into a vertical
position in the free-falling cloud.

Thus, with this detector developed in the early 2000s by the team led by C. Westbrook,
D. Boiron, and A. Aspect at the Laboratoire Charles Fabry of the Institut d'Optique, there
is now a detection technique capable of resolving the momentum of each detected atom.
This makes it an e�cient experimental platform for studying the correlation properties in
momentum of quantum systems composed of multiple particles.

Although helium is more challenging to cool compared to other alkali atoms, the team
successfully achieved a metastable helium condensate in 2001[58]. This quickly led to the
study of correlations in quantum systems, such as a Hanbury-Brown and Twiss experiment,
where a bunching e�ect was observed in a thermal gas but not in a coherent BEC[59].
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Several other experimental platforms have also succeeded in forming helium Bose-
Einstein condensates, at the �Ecole Normale Sup�erieure in Paris[60], in Harvard[61], in
Vienna [62], in Canberra[63], and a second experiment at the Institut d'Optique[64] in the
team led by D. Cl�ement. The experiments still in use aim at studying systems exhibiting
quantum correlations.

1.4.2 Pairs emission and non-classical correlations

Now that we have described how to get a reservoir of atoms in a speci�c momentum
state thanks to the helium BEC (more details about our experimental setup are provided
in Chapter 2), the next step is to generate momentum-correlated pairs of atoms if we want
to use them as the input state for a Bell interferometer. There are various ways to gener-
ate such pairs and to demonstrate quantum correlations on momentum degrees of freedom.

In the C. Regal group, two independent atoms are cooled and trapped in optical
tweezers, enabling control of their momentum[65]. If the optical tweezers are brought
close enough, the resulting double-well trapping potential acts as a beam splitter for the
atoms due to tunnel coupling. This setup was used to demonstrate a Hong-Ou-Mandel
e�ect with independently prepared massive bosons[66], by measuring the number of atoms
in each well after the tweezers were separated again.

According to a protocol from the group of J. Schmiedmayer, it is possible to per-
form a similar experiment by adding an additional degree of freedom in order to have
a two-particle four-mode state[67]. Indeed, twin atoms can be emitted at opposite mo-
menta due to collisions from a 1D BEC in the quasicondensate regime subjected to phase

uctuations[68]. By putting this system in a double-well potential where tunnel coupling
occurs, a two-particle interference was observed when studying the correlations between
atoms with opposite momenta. Such a two-particle, four-mode state could theoretically
lead to a violation of Bell inequality[69], however the observed signal was not signi�cant
enough.

A recent paper by the team of C. Klempt in Hannover[70] reports the creation of
entangled momentum pairs starting from entangled spin pairs of rubidium atoms. An
entanglement transfer[71] is achieved using a two-photon Raman transition that selects
atoms in one of the two entangled magnetic sublevels and transfers them momentum,
thus converting a spin-entangled pair into a momentum-entangled pair. This setup has
exhibited sub-shot noise correlations but, to our knowledge, has not yet been attempted
for a Bell test. Note that they work in a regime with a lot of atoms and do not detect
single particles.

More recently, the group of T. Esslinger in Z•urich demonstrated a new way of emitting
momentum pairs, by coupling atoms from a BEC via a superradiant photon-exchange pro-
cess in an optical cavity[72]. The emitted pairs are correlated both in spin and momentum
and the process is reported to be fast and tunable. The authors showed a good correlation
between the emitted modes, although without exhibiting a purely quantum correlation.

Another approach involves performing parametric excitation, which means periodically
varying the intensity of the trapping laser at a certain frequency to modulate the trapping
frequencies[73][74]. This technique induces the creation of pairs of phonons with opposite
momenta from the BEC and constitutes an acoustic analogue to the dynamic Casimir
e�ect. This technique, �rst demonstrated in our team in 2012[73], has been employed
again in recent years as part of a project that will not be described in this manuscript but
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in the one of V. Gondret, also a PhD student in the team.

Another way of creating pairs is to perform so-called four-wave mixing. This is a pro-
cess similar to parametric down conversion, often used with photons to generate entangled
pairs[75]. The principle behind these techniques is to use a nonlinear process (a� (2) or
� (3) nonlinearity for light) to generate entanglement. Whereas parametric down conver-
sion requires only a single pump photon to generate two correlated photons, four-wave
mixing[76], �rst used with photons in 1985 to generate squeezed states[30], requires two
pump photons to generate two correlated photons.

The four-wave mixing process in a Bose-Einstein condensate will be discussed in more
detail in Chapter 3. Nevertheless, it is possible at this point to identify two distinct
regimes of use for this process, which, like parametric down conversion, must verify en-
ergy conservation and momentum conservation, commonly referred to as phase-matching
conditions. For a process involving four atoms, with momenta denoted aspA and pB for
the atoms in the BEC, and p1 and p2 for the twin atoms emitted by the process, the
following equations must be satis�ed:

(
pA + pB = p1 + p2 Momentum conservation

E(pA ) + E(pB ) = E(p1) + E(p2) Energy conservation
(1.98)

Consider a BEC in an optical dipole trap, for instance. All atoms are in the same
momentum state, i.e., pA = pB = p0. When turning o� the trap, the atoms in the
BEC are in free fall. Apart from gravity, the only energy involved is their kinetic energy
E = p2=2m. The phase-matching conditions can then be expressed as follows:

8
<

:

p0 + p0 = p1 + p2

p2
0

2m
+

p2
0

2m
=

p2
1

2m
+

p2
2

2m

(1.99)

Under these conditions, it is obvious that p1 = p2 = p0, and the four-wave mixing
is a trivial process that re-emits atoms in the same mode as the condensate. Therefore,
an additional element is needed to generate pairs of atoms in momentum modes di�erent
from that of the BEC.

A �rst approach involves having two condensates with di�erent momenta. In this way,
having pA 6= pB allows the formation of pairs of atoms with distinct momenta. To achieve
this, starting from an initial BEC, one can create a copy using a two-photon transition
(involving two laser beams) that transfers half of the atoms to a di�erent momentum
state. Before moving apart, there is an overlap between the two clouds, making possible
the emission of pairs through four-wave mixing.

The principle of the two-photon transition enabling the creation of a copy of a con-
densate, known as Bragg di�raction, will be detailed later. In the center-of-mass frame
of the two condensates, whose momenta are respectivelypA = p and pB = � p, the
phase-matching conditions can be expressed as follows:

8
<

:

pA + pB = 0 = p1 + p2

2
p2

2m
=

p2
1

2m
+

p2
2

2m

(1.100)

where p = jjpjj is the norm of vector p, and so on.
From the �rst equation, we deduce p1 = � p2, suggesting that the correlated pairs have

an opposite momentum, and from the second equation, we get that the normsp1 = p2
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are equal to p. This means that this process emits pairs along a sphere, whose center of
mass is the center of mass of the two BEC (Figure 1.13). This sphere is often called a
scattering halo, since four-wave mixing can actually be interpreted in terms of collisions
between the atoms from the two condensates.

Figure 1.13: Scattering halo resulting from the collision of two BEC. Experimental result
for a single run, where a Bragg�= 2 pulse is applied to a condensate for 10µs immediately after
the trap cuto�. Each dot corresponds to a detected atom. The high-density regions at the poles
are the two condensates.

The collision of BEC was achieved in our team in 2007[77] and resulted in the obser-
vation of non-classical correlations, such as sub-shot noise variance in the di�erence of the
number of atoms detected in two diametrically opposite regions of the sphere[78], as well
as a violation of the Cauchy-Schwarz inequality between these two regions [79].

There is another way to generate pairs through four-wave mixing. In 2005, a theo-
retical article[80] suggests that it would be possible, starting from a single condensate, to
manipulate the phase-matching conditions using an optical lattice. Indeed, by subjecting
the BEC to a standing wave, the energy conservation relation is dictated by the energy
band structure of the lattice, so that the phase matching conditions are

(
2p0 = p1 + p2

2E(p0) = E(p1) + E(p2)
(1.101)

where the momenta are expressed along the direction of the lattice.
This technique, �rst experimentally demonstrated in 2006 by W. Ketterle's group[81],

was implemented in our experiment in 2012[20]. It will be discussed in more detail in
Chapter 3, but it presents several advantages that can be leveraged in a Bell experiment.
Instead of being emitted on a sphere, the correlated pairs are emitted along a single axis.
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The pair source is multimode, ensuring the possibility of working with at least a quadru-
plet of momenta, as required in a Bell experiment. The number of atoms emitted in the
pairs is easily controllable by adjusting the duration of the optical lattice application.
Additionally, one can control the emission density pro�le of the pairs by adjusting the
detuning between the two beams of the optical lattice. This 
exible and tunable source
thus provides the opportunity to conduct interferometric experiments.

1.4.3 Bragg di�raction and atom interferometers

How to make atom mirrors and beam splitters? Looking at the design of the Rarity
Tapster interferometer, we can see that mirrors transfer the photons from one momentum
state to another, while beams splitter enable the mixing of two momentum states. This
concept can be applied to atoms: optics for atoms consist in transferring them momentum.

To vary the momentum of an atom, a two-photon momentum transfer can be achieved
by subjecting atoms to two detuned laser beams with the same polarization, which make
it possible to exchange recoil momentum between photons and atoms. Indeed, an atom
can absorb a photon from one of the beams and re-emit a photon into the other laser
via stimulated emission while de-exciting (Figure 1.14). In doing so, its internal energy
remains the same as the initial state, and the energy di�erence between the absorbed
and emitted photons is converted into kinetic energy, altering its momentum. This pro-
cess, called Bragg di�raction, enables to exclusively manipulating the external degrees of
freedom of the atom while maintaining it in the same electronic state6.

p

E

jgi
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p p + ~k p + 2~k

�

�

jg; pi
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Figure 1.14: Scheme of the two-photon transition process.The atoms are initially in the
momentum state jpi along the direction of the lattice. � is the detuning with the excited state,
while � is the two-photon detuning with the fundamental state jp + 2~ki .

If the lasers are signi�cantly detuned from the transition with the intermediate excited
state, then this state is not populated. In this case, the two ground states can be considered
as a two-level system coupled by an e�ective Rabi frequency. Consequently, starting with
atoms in a momentum state pi , Rabi oscillations can be performed with the momentum
state pf . Depending on the duration of the application of the Bragg beams, a beam splitter

6Note that a similar two-photon coherent process called Raman transition involving two beams of
di�erent polarization is also possible but changes the internal state of the atom.
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for atoms can be achieved by transferring half of the initial population, or a mirror can
be created by transferring the entire initial population.

In this manner, if two laser beams with a wavelength� are directed onto the atoms
in a plane (x; z) and separated by an angle� , the beams form an optical lattice at the
intersection where atoms move along thez direction. Following a single two-photon process
(absorption followed by stimulated emission), the momentum of an atom has been altered
by twice the momentum of a photon projected along thez-axis of the lattice. We denote

k =
2�
�

sin(�=2) (1.102)

the recoil wavevector of a photon projected onto the lattice axis. Consequently, a mo-
mentum kB = 2k is exchanged during the process. In the following of the manuscript, we
will consider that the momentum transfers occur along the vertical direction (because the
lattices were aligned this way), so that the momenta will be written as scalars, equal to
the projections of the corresponding vectors along thisz-axis.

The conservation of energy condition for this two-photon process states that the de-
tuning between the beams must be equal to the di�erence between the �nal kinetic energy
and the initial kinetic energy of the atom:

~(! 1 � ! 2) =
p2

f

2m
�

p2
i

2m
(1.103)

wherepi = p = ~ki is the initial momentum of the atom and pf = ~(ki + kB ) its momentum
after exchanging two photons. Therefore, we get the resonance condition

~(! 1 � ! 2) =
~2k2

B

2m
+

~kB

m
pi (1.104)

This relation indicates that it is possible to select the resonant momentum classpi by
adjusting the detuning between the two lasers.

Finally, note that this is a process during which the phase di�erence between the two
laser beams can also be transferred to the atoms. This mechanism, known as phase im-
printing, can be leveraged in order to vary the phase involved in an atom interferometer.
For a Bell test, it can be used as a way to introduce a control parameter to observe a two-
particle interference between the atoms and allowing the oscillation of the Bell correlator.
A signi�cant part of my thesis work involved determining how to experimentally achieve
this phase control for a Bell interferometer.

Bragg di�raction will be the subject of a detailed study in Chapter 4. First observed
with sodium atoms in 1988[82], it was experimentally tested with condensates in 1999[83].
It is noteworthy that the width of the Bragg resonance varies depending on the power and
duration of the beams. Consequently, Bragg di�raction has been employed to investigate
the momentum distribution of BEC in cases where the resonance width is smaller than
the momentum distribution width of the BEC[84].

The use of Bragg di�raction (as well as Raman transitions) has played a crucial role in
the development of atomic interferometers with light gratings since the 1990s. Following
initial proof-of-concept demonstrations[85][86][87], their application in diverse contexts
and con�gurations has facilitated fundamental tests, including studies of BEC, decoherence
mechanisms, and tests of relativity, as well as the rise of atomic clocks and highly precise
measurements of gravity, rotations, and the �ne-structure constant for instance (a general
introduction to atom interferometry and its applications can be found in reference[88]).
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Finally, it should be mentioned that the precision of the measurement achieved by
counting the number of particles in the output port of an interferometer is a priori lim-
ited by shot noise, a limit known as the Standard Quantum Limit (SQL). As previously
discussed, it is possible to surpass this limit by employing squeezed states, which leverage
entanglement to exceed the SQL by more than 20 dB[89], theoretically approaching the
fundamental Heisenberg limit.

1.4.4 Towards a Bell test

A few references in the literature describe attempts to measure EPR-type correla-
tions with entangled momentum states of atoms. A proposal by the team of A. Zeilinger
in Vienna[90] investigated the possibility of demonstrating two-atom interference in four
momentum modes using a double-double-split experiment setup. Pairs are generated
through four-wave mixing from colliding BECs and directed onto a material grating with
four openings, beneath which lies a MCP. Sizing the slits based on their metastable helium
experiment, the authors showed that the feasibility of observing interference was highly
constrained. However, some experimental constraints could be relaxed with the use of a
ghost imaging setup, a technique that utilizes correlations between two beams to recon-
struct an image in one beam from particles that do not interact with the imaged object.
Although this technique was recently �rst implemented with metastable helium atoms[91],
there has been no attempt to implement the four-momentum-mode correlation observa-
tion proposal, to our knowledge. It is worth noting that the proposal does not constitute
a genuine Bell test but rather a way to observe a quantum two-atom interference.

� p0

p0

p0

� p0

Time

Position

Mirror Beam
splitter

Figure 1.15: Scheme of the atomic Hong-Ou-Mandel interferometer.This representation
corresponds to the trajectories of the atoms in the interferometer. The atoms are labeledp0 and
� p0 corresponding to their momenta in the center-of-mass frame of the pairs. The atoms actually
fall on the MCP due to gravity, but this scheme is represented in the falling frame.

In our team, Bragg di�raction has been implemented to conduct a Hong-Ou-Mandel
type experiment. In this setup, atoms with opposite momenta (p0; � p0) are emitted in
pairs (in the center-of-mass reference frame of the emitted atoms) through four-wave mix-
ing using an optical lattice at 1064 nm. For the interferometer, we use another pair of
beams at 1083 nm to couple the atoms at momentap0 and � p0, so that a Bragg mir-
ror directs the atoms towards a beam splitter (Figure 1.15) where a two-particle inter-
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ference is observed, revealing a distinct Hong-Ou-Mandel dip indicative of non-classical
correlations[92]. This experiment serves as the foundation for a Bell test, where a momen-
tum quadruplet will be involved instead of a pair.

The idea for a Bell test with our setup is to leverage the multimode nature of the pair
source to conduct an experiment similar to the Hong-Ou-Mandel interferometer, but with
an input state composed of two pairs of correlated modes, represented as:

j in i =
1

p
2

(jp; � pi + jq;� qi ) (1.105)

Subsequently, a Bragg mirror pulse redirects the atoms towards two di�erent Bragg
beam splitters, forming loopsA and B , where � p and q are coupled in loopA while � q
and p are coupled in loop B . This con�guration is similar to the setup of the Rarity
and Tapster interferometer for photons. As we will show in Chapter 4, in this case the
two-particle interference can be controlled by tuning the di�erential phase between the
atoms from loopsA and B . The challenge lies in how to create two distinct beam splitters
for A and B , on which di�erent phases must be imprinted. This aspect will be extensively
discussed in the following of this manuscript. The di�culty in achieving this di�erential
phase control is the reason why a Bell experiment with atoms is a lot more challenging
to perform than a Hong-Ou-Mandel experiment, where it is only necessary to couple the
correct momentum modes through Bragg di�raction.

To circumvent this di�culty, a �rst solution is to use the same beam splitter for both
A and B , with its resonance set to a doublet (p0; � p0), akin to a HOM experiment. The
underlying idea is to investigate correlations within non-resonant Bell quadruplets. Indeed,
it will be shown later that Bragg di�raction imprints a phase on non-resonant atoms that
depends on the detuning from resonance, and thus on the momentum class according to
relation 1.104. Therefore, if the correlator varies with the momentum class, one can hope
to measure di�erent correlator values by calculating it for several successive quadruplets
that gradually move away from the resonant doublet. This is not a Bell test since no
control parameter is tuned, but this can lead to a proof of concept.

This study was conducted in our team in 2017 and led to the observation of non-zero
correlators[93], suggesting that the phase imprinted on the atoms is stable and that a Bell
experiment is feasible. These results will be discussed further in the manuscript in light
of new theoretical developments that I have undertaken during my thesis.

Another attempt to perform a Bell test has been recently reported in the literature[94]
by the team of A. Truscott in Canberra, also using a helium BEC for similar reasons as ours.
In this article, pairs are created through collisions between condensates. The originality
lies in using two scattering halos to emit pairs, resulting in a con�guration where it is not
the phase di�erence betweenA and B that is involved in the Bell correlator, but rather
the sum of these two phases. This allows for a Bell test using the same pulse for bothA
and B , by varying the phase imprinted on the atoms during the beam splitter pulse. The
results show a clear oscillation of the Bell correlator, but the amplitude is not su�cient for
a violation of the Bell inequality. This setup will also be discussed later in this manuscript
(section 4.1.3) and compared to our con�guration. It will be demonstrated that while
its main advantage is using the same beam splitter for bothA and B , it may introduce
phase sensitivity issues that might be responsible for the low contrast in the two-atom
interference.
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CONDENSATE

In this chapter, we will brie
y introduce the experimental setup. A more exhaustive
presentation can be found in the thesis of Q. Marolleau[41], previous PhD student in the
team. We will limit ourselves to a general presentation of the detector and the major
cooling steps.

My doctoral work was marked by various experimental di�culties and challenges that
impeded the progress of the experiment towards the realization of a Bell test. In particular,
having a systematic and stable Bose-Einstein condensate with the correct number of atoms
posed a signi�cant challenge. It was necessary to develop new strategies and replace
crucial equipment to ensure the right behavior of each cooling stage. A detailed timeline
is provided in appendix B. The majority of the results in this thesis were obtained during
two periods: the �rst for pair data with a large population in May 2022, and the second
for pair data with a small population and interferometric measurements from April to
September 2023.

2.1 Metastable helium: interest and detection

2.1.1 Metastable helium

Spectroscopy of 4
2He

The most common isotope of helium on Earth is bosonic helium4
2He. Despite having

two electrons, it behaves like a one-electron atom because a state with two excited electrons
would always have higher energy than its auto-ionization energy (24.59 eV).4He has no
nuclear spin and has two con�gurations,para or ortho, where the two electrons respectively
have spins that are anti-parallel (total spin S = 0) or parallel (total spin S = 1).

E (eV)

0

19.82

20.62

20.96

11S0

21S0

23P0;1;2

23S1

23P1

23P2

23P0

1083 nm

Figure 2.1: Simpli�ed energy diagram of 4He.

A simpli�ed energy diagram is provided in Figure 2.1, using spectroscopic notations
n 2S+1 L j [95]. The transition between para and ortho states is prohibited as it does not
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conserve the total spin. Consequently, both states 21S0 and 23S1 are metastable states,
but the singlet state has a lifetime of only 195 ms, whereas the triplet state has a lifetime
on the order of 2 hours[96]. For similar reasons of spin conservation, excited triplet states
preferentially de-excite to the 23S1 state, which can be considered as the ground state in
our experiments, sometimes denoted as He� .

This is the state that is used for a BEC. On one hand, the spin-induced magnetic dipole
of this state enables the use of magnetic trapping techniques. Furthermore, the transition
23S1 �! 23P0;1;2 has a wavelength of 1083 nm, for which commercial lasers (such as
diode lasers or �ber lasers) are available. In particular, theJ ! J +1-type 2 3S1 �! 23P2

transition is employed for the �rst cooling stages, allowing for a classical Magneto-Optical
Trap (MOT) scheme. Some characteristics of He� and the cooling transition are given in
Table 2.1.

Quantity Symbol Value

Mass[97] m 6:646� 10� 27 kg
Lifetime[96] � 7870(510) s

Transition wavelength[98] � 1083.33 nm
Transition width[95] � 2 � � 1:63 MHz

Lifetime � = 1=� 98 ns

Saturation intensity I sat =
�hc �
3� 3 0.167 mW.cm� 2

Doppler limit temperature TD =
~�

2kBoltz
39µK

Recoil momentum krec =
2�
�

5.8µm� 1

Recoil velocity vrec =
~krec

m
92.0 mm.s� 1

Recoil energy Erec =
~2k2

rec

2m
1.8� 10� 10 eV

Recoil temperature Trec =
Erec

kBoltz
2.0µK

Table 2.1: Properties of 4He and cooling characteristics of the 23S1 �! 23P0 transition.

Note that the transition 2 3S1 �! 23P0 is also used in our experiment for Raman and
Bragg transitions. These points will be detailed further in the manuscript.

It is noteworthy that, in comparison to most other atoms used in experiments in-
volving ultracold atoms, the mass of helium atom is particularly low. Consequently, the
recoil velocity of helium is high when interacting with a resonant laser beam, resulting
in improved spatial separation of di�erent velocity classes after time of 
ight. Using an
atom with a low mass is advantageous for the resolution of an experiment which aims at
studying correlations between di�erent velocity classes.
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Collisions

Due to the high atom density in a cold cloud, a frequent mechanism is the occurrence
of collisions between atoms. There are several types of collisions, depending on whether
they are elastic (in this case the total kinetic energy and momentum of the system are
conserved) or inelastic (for which there is a transfer of kinetic energy between the involved
atoms, leading to changes in the energy states of the atoms), and they can induce important
atom losses in the system.

It is noteworthy that a crucial step in forming a BEC is evaporative cooling[55]. This
process involves expelling the hottest atoms from a trap by adiabatically lowering the trap
depth and allowing the remaining atoms to rethermalize through elastic collisions. If there
are too many inelastic collisions, evaporative cooling becomes less e�ective. Therefore, un-
derstanding the collisional mechanisms at play in a cold cloud is essential, especially in
BEC where collisions play a signi�cant role in the atomic cloud properties.

At low temperatures, elastic collisions are exclusively characterized bys-wave scatter-
ing. For He� , it was estimated that this is the case when the temperature is smaller than
8 mK[99]. Below this temperature, the elastic collision rate only depends on the scattering
length a = 7 :5 nm, and the scattering cross-section is� 0 = 8 �a 2.

An important feature of He � is an inelastic process called Penning collisions, which
consist of two-body collisions between metastable atoms leading to the creation of ions:

(
He� + He � ! He + He+ + e �

He� + He � ! He+
2 + e �

(2.1)

This process is characterized by the collision constant� , de�ned as the time constant
related to the two-body losses:

dn
dt

= � 2� (T)n2 (2.2)

where n is the atom density.
The value of � strongly depends on whether the gas is magnetically polarized or not.

If the gas is non-polarized, the� constant is 10� 10 cm3.s� 1[100], which is too high to allow
for Bose-Einstein condensation. However, if the gas is polarized through a magnetic �eld
(in an m = 1 state), the previous collisions are strongly inhibited as they do not conserve
spin[101]. In this case,� equals 10� 14 cm3.s� 1. This losses reduction by four orders of
magnitude is su�cient to enable the formation of a BEC.

Moreover, when the density is high (in a BEC for instance, or close to condensation),
there are also three-body collisions that need to be considered and lead to additional losses:

He� + He � + He � ! He + He+ + He � j � mK + e � (2.3)

The collision constant L associated to this process was measured in our group[102],
and is small enough so that the three body collisions have a small e�ect as long as the
density is below 1013 cm� 3.

2.1.2 Micro-Channel Plate

The internal energy of a metastable helium atom is signi�cant enough to extract an
electron from a metallic surface. To detect an atom, it is therefore necessary to amplify
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this electron signal, and this is the role of the Micro-Channel Plate.

(a) Cutaway drawing of a MCP. (b) Schematic of the electronic cascade inside a channel.

Figure 2.2: Schematic representation of the detector.Images provided by Hamamatsu Pho-
tonics.

A MCP consists of a set of regularly spaced hollow cylindrical channels bonded to-
gether (Figure 2.2). The front (onto which the atoms fall) and back faces are metallized,
allowing for the application of a potential di�erence on the order of 1 kV. Consequently,
when an electron is extracted from the surface by an atom, it is accelerated by the electric
�eld and collides again with the channel wall, inducing the ejection of additional electrons.
This process continues, forming an electron cascade that results in a macroscopic signal.
The typical ampli�cation gain is on the order of 10 4. The channels are tilted relative to
the vertical axis, allowing atoms, which arrive vertically in a good approximation, to fall
directly onto the channel walls.

Like any detector, the MCP has limitations in terms of detection e�ciency, resolution,
and saturation. The quantitative estimation of these features will be discussed later, but
we can already identify some sources of limitation.

ˆ After an electronic discharge, a channel takes some time to become available again
for the detection of a new atom, as it has lost many electrons. This dead time is
responsible for a saturation e�ect in the detector, especially signi�cant when the
atom 
ux is high.

ˆ The MCP indeed has a certain e�ciency, meaning that not all atoms that fall onto
the detector are converted into a useful signal. This is related, on the one hand,
to a quantum e�ciency associated with the process by which an atom leads to the
emission of an electron (measurements have shown a quantum e�ciency on the order
of 60 %[103]), and on the other hand, to the fact that some atoms do not fall into
the channels but onto the solid surface that connects them, and therefore, they are
not ampli�ed. The latter limitation is characterized by the open area ratio (OAR),
which is the fraction of the total MCP surface composed of open channels relative
to the total surface, including the solid walls between the channels. For our current
MCP, this ratio is 90 %. The entrance apertures of the channels are precisely 
ared
to enhance the OAR.

58



CHAPTER 2. EXPERIMENTAL SETUP: PREPARATION OF A METASTABLE HELIUM BOSE-EINSTEIN

CONDENSATE

ˆ The resolution of the MCP is constrained by the geometry of the channels: the larger
the diameter of a channel, the more it covers a signi�cant area. Since the detected
signal is the same for each atom that falls into the same channel, this limits the
transverse resolution of the detector.

The MCP we currently work with was installed in 2019. It has a 8 cm diameter, and its
quantum e�ciency was estimated by the constructor (Hamamatsu) to be around 50%. The
channel diameter is 12µm and each channel is tilted by 20°. The longitudinal resolution
is estimated to be 33µm, while the transverse resolution is 50µm[41].

2.1.3 Delay lines

The MCP is not the only component necessary for a single-atom detection. Actually
in our experiment two MCPs are used in series, concatenated in such a way that each
channel is bent. In this manner, the total gain is 108, meaning that a metastable atom,
at the output of the MCP, generates a cascade of 108 electrons. Beneath the MCP, two
long copper wires, called delay lines, are positioned, wound along theX and Y axes, re-
spectively (Figure 2.3). When the electrons reach the delay lines, they induce an electrical
pulse that propagates along the lines.

Figure 2.3: Scheme of the detection process.A helium atom falling on the MCP leads to an
electronic cascade within a microchannel, resulting in an electric pulse which propagates along the
delay lines. Taken and modi�ed from [104].

At each end of a line, pulse detectors are placed to determine, through a non-linear
process, the moment at which a pulse is detected. For a given pulse, the detection instants
(tX 1 ; tX 2 ; tY1 ; tY2 ) are then measured. Depending on the position and time of the atom's
fall, the distance traveled by the pulse along the line varies, leading to di�erent detection
times. In this way, one can deduce the values of the position and the detection time. The
signal propagation speed along the copper line isc=3, so the transverse speed is

v? =
c

3N
(2.4)

where N is the number of loops (approximately 100 in our setup). In practice, due to
slight di�erences between the lines, the transverse speeds are a bit di�erent. They were
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(a) Top view of the MCP.

(b) Delay lines below the MCP

Figure 2.4: Pictures of the detector.
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calibrated by the constructor:
8
<

:

vx
? = 1 :02 mm.ns� 1

vy
? = 1 :13 mm.ns� 1

(2.5)

Using these values, one can get the instant and position of the impact of a metastable
atom, according to the relations

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

X =
vx

?

2
(tX 1 � tX 2 )

Y =
vy

?

2
(tY1 � tY2 )

T =
1
2

(tX 1 + tX 2 )

T =
1
2

(tY1 + tY2 )

(2.6)

The process to get the detection times of the electrical pulses corresponding to the fall
of an atom is not trivial. The idea is to use a discriminator to detect the arrival time of
a pulse caused by an atom. This pulse is pre-ampli�ed, but the ampli�cation process is
noisy. Importantly, using a simple threshold with a peak detector to deduce the arrival
time of a pulse is not satisfying because the electrical pulses do not all have the same
amplitude (the gain can vary depending on the ampli�cation chain), and such a system
would yield di�erent arrival times for two signals of di�erent amplitudes arriving at the
same moment. To counteract this e�ect, a Constant Fraction Discriminator (CFD) is
employed, leveraging the fact that all pulses have the same shape and allowing access to
the timing at which the input signal is at a certain fraction of its maximum value. This
makes the process independent of the amplitude of the input signal. A logical signal is
then generated, which equals 1 when an electrical pulse above the threshold reaches this
fraction. The signal is then digitally converted using a Time-to-Digital Converter (TDC).
The complete process is represented in Figure 2.5. The details of this detection system
are provided in the thesis of Q. Marolleau[41], along with the procedure to set up the
parameters leading to an e�cient detection of atoms.

CFD TDC Computer

t

VX 1

tx % tx %

1

0
tX 1 (binary)

Figure 2.5: Simpli�ed representation of the electronic detection process.

This detection process is linear only as long as the atom 
ux is not too high. Other-
wise, for dense clouds, an excessively high atom 
ux induces electronic saturation, making
atom counting impossible. In the context of conducting a Bell experiment, this saturation
is not an issue as we will be working with only a few pairs emitted by the condensate.
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Therefore, we can e�ectively proceed with a regime of single-atom detection.

2.1.4 Reconstruction

Once the TDC returns a list of events on each line to the computer, corresponding
to the moments of detection of di�erent pulses, a reconstruction algorithm compares the
detected timings on the four channels to identify correlated events that could be caused by
the arrival of an atom. Indeed, it is possible that a noisy signal exceeds the threshold and
is counted as an event on a channel. Additionally, what is referred to as pulse rebounds
can occur, meaning that when a pulse reaches the end of a line, part of its energy is
re
ected (due to impedance mismatch) and can be detected again. It is common to
observe, after the detection of an atom, another signal of lower amplitude, shifted by a
duration corresponding to twice the propagation time on a line. Most of these rebounds
are eliminated by the detection threshold, but some may persist, counting as false events
that should not be considered.

For this reason, an event reconstruction algorithm is necessary, which seeks genuine
events and consists of a series of �lters and conditions related to the timings on each
channel. The idea is simply to create nested loops to consider all possible quadruplets
that could correspond to an event and ensure that the events meet the following criteria:

ˆ The maximum duration between two events detected on di�erent channels is given
by the propagation time of an electrical signal over a distance equal to the diameter
of the MCP.

ˆ The position (X; Y ) of the atom, calculated from the relationships 2.6, must be such
that the atom is within the disc formed by the MCP.

ˆ The instant T of the atom detection can be calculated in two di�erent ways (equa-
tions 2.6), so we have to ensure that the di�erence between these two calculated
quantities remains below a certain threshold.

This algorithm has been improved in recent years by V. Gondret, who enhanced the last
point to account for additional geometric constraints. Indeed, according to equations 2.6,
the quantity

SMCP = ( tX 1 + tX 2 ) � (tY1 + tY2 ) (2.7)

should be equal to zero. But due to geometry and electronic defects (because of an imper-
fect winding of the delay lines for instance), this value, called o�set, has a slight spatial
dependency over the MCP. Since the variations ofSMCP are stable over time, it is possible
to make a reference o�set map and to compare the value of the o�set for a candidate
quadruplet to the corresponding value on the map. If the di�erence between the two is
too high, then the quadruplet is rejected.

At the end of this reconstruction algorithm, which occurs in real-time during data
acquisition, we have a list of events presumed to correspond to the detection of single
atoms, represented in the form of a list of coordinates (X; Y; T ) specifying the position
and arrival time of the atoms.

In practice, atoms are trapped in a region of space approximately 46 cm above the
MCP, either by a magnetic trap or an optical dipole trap. The trap is abruptly switched
o� and the atoms fall on the MCP due to gravity (Figure 2.6). One can then deduce the
speed of an atom right after the trap is abruptly switched o� from its position and arrival
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Figure 2.6: Schematic representation of atom detection after time of 
ight. A crossed
optical dipole trap (in red) traps a cold atoms cloud (in blue). An atom emitted with a certain
initial velocity from this cloud is detected, after time of 
ight, at precise coordinates on the MCP.

time. Indeed, a simple classical mechanics calculation makes it possible to determine the
initial velocity of the atom before its fall based on its arrival coordinates (X; Y; T ) on the
MCP. By setting the spatial origin at the center of the MCP and the temporal origin at
the moment of trap cuto�, we have the following relationships:

8
>>>>>>><

>>>>>>>:

Vx =
X
T

Vy =
Y
T

Vz =
1
2

gT �
L
T

(2.8)

where L is the vertical distance between the trap and the MCP. It can be obtained by
identifying the mean arrival time of a BEC for instance, which corresponds to an initial
vertical speed equal to zero. Note that to get these equations, gravity was the only force
considered. Although L can be determined using the center of a BEC, these equations
cannot be used to calculate the velocity distribution of a BEC, since its expansion dynamics
is governed by interactions between atoms. As a consequence, relationships 2.8 can only
be used for thermal clouds or dilute gases.

The typical size of the BEC is on the order of 100µm, so that the distance L is
su�ciently large to consider that the MCP is in the far-�eld regime, ensuring that the
detection of atoms emitted from the BEC constitutes more of a measurement of the initial
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momentum than a measurement of the initial position of the atoms. Actually, in the
previous calculation, it is assumed that the initial position is identical for all atoms (the
center of the cloud) which is a good approximation up to a certain point which will be
discussed later in this manuscript (section 7.3.4).

This calculation also assumes that the only force acting on the atoms is gravity. In
reality, we mentioned that atoms are trapped in the magnetic sublevelm = 1, so the atoms
are sensitive to any residual magnetic �eld that may remain in the chamber. Therefore,
just after cutting o� the trap, a Raman transfer is performed using two laser beams and
a so-called compensation coil to de�ne the direction of the magnetic �eld. This enables
a coherent two-photon transfer to the magnetic sublevelm = 0, to make sure that the
falling atoms are not sensitive to magnetic �elds. A few details about the Raman transfer
will be given in section 2.2.3.

2.2 Cooling procedure

In this section, we will recapitulate the key steps that allow us to get a BEC. Once
again, these steps are more detailed in the theses of the previous PhD students in the
team, and are presented here only as an overview. This also provides an opportunity to
mention the technological changes made during my thesis.

2.2.1 Source

In order to prepare helium in the metastable 23S1 state from a bottle of gaseous2
4He

in the ground state, it is not possible to use a laser beam due to the signi�cant energy
di�erence between the two levels. Instead, the idea is to make a plasma using an electrical
discharge, which populates many di�erent excited states, including the desired metastable
state[105].

Ground state helium is transported into a vacuum chamber through a pipe to a glass
tube, in the middle of which there is a conductive tip serving as the cathode. The anode
is a skimmer (a funnel-shaped metal plate with a central hole) positioned opposite the tip,
and the discharge occurs between these two ends (Figure 2.7).

Figure 2.7: Schematic representation of the source.Taken from [41].

To prevent excessive heating of the atoms during plasma creation, the gas passes
through a piece of boron nitride with a small hole, held in place by a copper plate through
which liquid nitrogen circulates. Boron nitride, an electrical insulator but a good thermal
conductor, provides an initial cooling stage, limiting the particle velocity to 1200 m.s� 1
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instead of 2600 m.s� 1[106]. This results in a divergent atom 
ux, which can then be further
cooled using optical methods.

In September 2022, a leak occurred between the pipes transporting liquid nitrogen and
the vacuum chamber. Due to signi�cant thermal constraints, the leak could not be sealed
with vacuum glue. Consequently, the source had to be extracted so that a welding could
be made on a part of the vacuum chamber outside the laboratory. During this operation,
and after approximately 10 years of proper functioning, the source was damaged (the glass
tube and the boron nitride piece are particularly fragile) and had to be replaced.

2.2.2 Cooling atoms down to Bose-Einstein Condensation

After obtaining a helium atom jet, we can interact with the small fraction of atoms in
the metastable state (evaluated at approximately one out of ten thousand) using a laser
tuned to the transition 2 3S1 �! 23P2. The other atoms do not interact with the light
and are gradually absorbed by the vacuum pumps during the process.

To achieve Bose-Einstein condensation, several cooling steps are necessary. The general
principle of these steps is described in references [55] and [107], for example. The speci�c
steps followed in our experiment are detailed in [41].

ˆ First, a pair of retro-re
ected beams is used to form a so-called transverse molasses.
The wavefront of the beams is curved, which leads to a greater reduction of the
transverse velocity of the atoms than a plane wave and thus increase the spatial
density of the atomic jet along the y axis[108].

ˆ The atoms then enter a Zeeman slower: a long tube (2.4 m) in which atoms inter-
act with a beam opposite to their propagation direction, decelerating them through
radiation pressure. To stay at resonance with the decelerated atoms and continue
cooling them during their propagation in the slower, we compensate for the Doppler
e�ect using a solenoid with a varying radius. The magnetic �eld thus created com-
pensates, through the Zeeman e�ect, for the Doppler shift of the slowing atoms. At
the end of the Zeeman slower, the speed of the atoms is about 70-100 m.s� 1.

ˆ Then, we can load the atoms in a Magneto-Optical Trap (MOT), consisting of three
retro-re
ected beams near resonance and a magnetic �eld generated by a pair of
coils in an anti-Helmholtz con�guration. In this so-called science chamber, an in-
frared camera is used for imaging the atomic cloud through 
uorescence/absorption,
providing information about the size and number of atoms during successive cooling
stages. The MOT loading step takes about 1.5 seconds, resulting in approximately
2:109 atoms at a temperature of around 1 mK.

ˆ At the end of the MOT loading, we compress the trap by bringing the frequency of
the beams closer to resonance and reducing their power, further reducing the phase
space density as both the temperature and the volume of the cloud are reduced[109].

ˆ Following the MOT compression, the same beams are employed to create an optical
molasses close to resonance, further cooling the atoms. This step lasts for a few
milliseconds and results in obtaining clouds on the order of 100-200µK.

ˆ The atoms are then transferred into a magnetic trap (without optical con�nement),
in what is called a Io�e-Pritchard trap[110] in a cloverleaf con�guration, composed
of two symmetrical clusters of coils located on either side of the vacuum chamber.
Each cluster consists of one quadrupole with four elliptic coils and two concentric
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Figure 2.8: Schematic representation of the experiment. The helium atoms are brought
in the vacuum chamber from the left of the image where the discharge occurs to form a helium
plasma. The transverse molasses (TM) reduces the transverse velocity of the atoms, which go
to the Zeeman slower (ZS). Once in the science chamber, they are trapped in a magneto-optical
trap (MOT), then in a magnetic trap, and �nally in an optical dipole trap consisting of a vertical
(vODT) and a horizontal (hODT) beam. In the following, we will see that an optical lattice is
used to generate pairs of atoms, with the beams (Latt Down and Latt Up) oriented at a 7° angle
from the vertical axis. After the trap cuto�, the atoms fall onto the MCP placed in the vacuum
chamber beneath the science chamber.

circular coils of di�erent diameters (Figure 2.9). This trap enables the formation of a
quasi-harmonic con�ning magnetic �eld at the center of the chamber. The originality
of this con�guration lies in the ability to control the value of the minimum magnetic
�eld, referred to as the bias �eld. This bias controls the transverse con�nement of
the trap[106].

Figure 2.9: Geometry of a cluster from the Magnetic Trap.

ˆ At the beginning of the magnetic trap, an intense and short laser pulse is used as an
optical pumping beam in order to transfer in the magnetic sub-levelm = 1, which
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is the only state within which the atoms are trapped.

ˆ The magnetic trap is then compressed by ramping down the bias �eld, and a low-
intensity 1D retro-re
ected Doppler beam is applied for 1 s. This results in a temper-
ature decrease as well as an increase of density[111]. At this step, the 3D temperature
of the cloud (100µK) is close to the Doppler limit of 39 µK.

ˆ A second compression of the magnetic trap is then performed to increase the trans-
verse trapping frequency once again. Subsequently, an evaporative cooling step
is carried out using a radiofrequency antenna located within the science chamber,
coupling atoms from the sub-levelm = 1 to the untrapped sub-level m = 0. By
adiabatically lowering the RF frequency, progressively removing the most energetic
atoms from the trap, the remaining atoms rethermalize through elastic collisions and
the cloud gets colder and colder.

At this stage, it is possible to evaporate until there is a transition towards a Bose-
Einstein Condensate (Figure 2.10). The trapping frequencies at this point are! x =
2� � 45 Hz and! y;z = 2 � � 930 Hz. This is how the �rst metastable helium condensate
was obtained in our team[58]. However, some magnetic instabilities in our setup lead
to 
uctuations in the bias �eld, resulting in sometimes signi�cant variations in atomic
density and even the cloud's position. Consequently, achieving a stable condensate
over several hours is not optimal under these conditions, which is why the atoms are
transferred in an optical dipole trap, at a temperature of 30µK, before condensation.

Figure 2.10: Bose-Einstein Condensation in the Magnetic Trap. Each column corresponds
to a given �nal frequency of evaporative cooling, decreasing from left to right. Pictures from the
camera are shown on the top row, while aY-�xed transverse cut is depicted on the bottom row.
We can see, from left to right as the trap depth decreases, a thermal cloud, a thermal/condensate
bimodal pro�le, and a BEC.

ˆ The atoms are then transferred into an intense (a few Watts) and highly red-detuned
(� = 1550 nm) vertical beam, which plays the role of an optical dipole trap (ODT).
After a 500 ms overlap with the magnetic trap, the latter is adiabatically turned o�,
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and approximately 4:107 atoms are loaded without heating the cloud, which remains
at 30µK. A compensation coil is employed to maintain the atoms in the m = 1
magnetic sub-level.

ˆ Then, a second horizontal laser beam at 1550 nm is turned on and intersects the ver-
tical beam at the location of the atoms. Subsequently, evaporation is carried out in
the crossed trap by adiabatically lowering the power of the beams and, consequently,
the trap depth. The role of the horizontal beam is twofold: �rstly, to compensate
for gravity when the power of the vertical beam becomes too low, and secondly,
to increase the oscillation frequency in the vertical axis. Indeed, the longitudinal
trapping frequency of the vertical beam alone is on the order of! z = 10 Hz after
evaporation (compared to ! x;y = 1 :5 kHz for the transverse frequency). As a result,
with only a vertical beam, the highly elongated condensate obtained is actually in a
quasi-condensate 1D regime, exhibiting physics distinct from that of 3D condensates.

Figure 2.11: Summary of the cooling procedure. Above: Temperature as a function of the
density. Below: Number of atoms as a function the the phase space density. Taken from [41].
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A summary graph of the various cooling stages is presented in Figure 2.11, providing
the temperature and atom number at each step. These steps are computer-controlled using
a sequencer that sends instructions and signals to di�erent devices to ensure the sequential
progression of the cooling stages. Thanks to the work of the previous PhD students on the
experiment[112], obtaining a BEC in the ODT now takes approximately 10 to 12 seconds,
compared to around thirty seconds in 2015 when the team conducted the Hong-Ou-Mandel
experiment (and 45 seconds for the \historical" BEC in the magnetic trap). During this
time frame, the experiment faced various breakdowns and technical issues, delaying the
progress of the experiment and preventing the realization of other interference experiments,
including the Bell test, which was the clear objective after HOM.

Particularly, after my arrival in the team, the experiment faced signi�cant 
uctua-
tions of the atom number of various origins (computer bugs, frequency instabilities, power
and polarization 
uctuations), hindering even the loading of a stable MOT. In February
2021, it was decided to make substantial changes, during which we replaced the diode
laser, responsible for the cooling transition, with a narrowband and stable �ber laser.
We speci�cally revamped the frequency locking optical setup. Additionally, we replaced
the aging sequencer, controlled in Matlab and historically developed by the laboratory's
electronic workshop, with a Python-controlled ADWIN sequencer. The development of
object-oriented code to control the experiment took some time, but these changes signi�-
cantly improved the stability of the atomic clouds.

The transition to Python for the sequencer control code was also seized as an oppor-
tunity to write a new program for visualizing and processing data in the laboratory room.
This task was primarily carried out by A. Dareau, a postdoctoral researcher in the team,
for the images received by the camera. I developed the software component responsible
for visualizing the data received from the MCP.

2.2.3 Raman transfer and protective copper plate beam dump

In August 2019, while the team managed to have a BEC in the ODT, the vertical beam
was left at full power (8W at the time) for several seconds. The MCP, positioned below,
could not dissipate the received thermal energy, resulting in a complete and irreversible
loss of detectivity at the center of the detector. The MCP was then replaced by a new
model, which is the one we currently use, expected to increase quantum e�ciency from
25% to 50%. However, even by reducing the initial power and following a standard evap-
oration ramp, the new MCP was damaged again in January 2020, just before my arrival
in the team. It turned out that the new MCP is also more sensitive to thermal stress.
Additionally, the hole radius kept increasing while evaporative cooling was performed,
without any visible asymptotic limit.

After an initial unsuccessful attempt to change the geometry of the ODT (without
using a powerful vertical beam), which proved too sensitive to 
uctuations in the center of
the magnetic trap for stable loading of the optical trap, the solution we opted for involved
two elements:

ˆ adding a copper plate above the MCP, held by a stainless steel arm, to dissipate
thermal energy without deteriorating the detector, like a beam dump in high vac-
uum ;

ˆ implementing a momentum transfer along theX -direction during the Raman trans-
fer, in order to shift the atoms away from the center of the MCP and let them fall
next to the hole and the \shadow" of the copper plate.
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Copper plate beam dump

(a) Side view. (b) View from above.

Figure 2.12: Pictures of the copper plate beam dump, held by a stainless steal arm.

The copper plate consists of a one-inch diameter disk, 6 mm wide, with a surface
treated to di�use laser light. Copper was chosen after preliminary tests on other surfaces
(such as a mirror with a di�using gold coating) due to its excellent thermal conduction
properties. The piece was cut to avoid obstructing the useful area of the MCP and is held
by a stainless steel arm that tilts it 7° relative to the MCP plane, preventing the re
ection
of light onto the atoms.

The piece was installed on the MCP in December 2021. By studying the MCP detec-
tivity map, obtained by allowing a hot cloud to fall across the entire detector, it became
apparent that the copper plate with its stainless steel mounting arm disrupted the electro-
magnetic environment around the MCP, resulting in detectivity variations in the vicinity
of the piece, likely caused by atom deviations. This can be observed by allowing a hot
cloud to fall on the MCP: if its temperature is high enough, the spatial extension of the
cloud after time of 
ight covers the entire detector. It should have very few atoms to
prevent saturation. In practice, we use atoms from a MOT without transverse molasses.
A typical example is given in Figure 2.13.

Initially, it was considered that this e�ect might be of electrical origin. Consequently,
we opened the vacuum chamber again and the stainless steel arm was connected to the
ground, since it was originally in contact with the high-voltage part of the MCP. How-
ever, this change had no e�ect. It was then observed that the detectivity decrease at the
vicinity of the piece was much more pronounced form = 1 clouds than for m = 0 clouds,
suggesting that the e�ect is, in reality, magnetic (Figure 2.13). The SAE 304 stainless steel
used, while less magnetic than conventional stainless steel, is not entirely non-magnetic,
which could explain this observation. It was decided to retain this setup since the atoms
of interest are those transferred by Raman into them = 0 state.

Nevertheless, a deterioration in detectivity around the piece was observed after a year
of operation. The cause of this deterioration is unknown, and regular checks are conducted
to ensure that it does not signi�cantly impact our study of condensates in the useful area.
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Figure 2.13: Detectivity maps of the MCP with the copper plate. Left: Map obtained with
MOT clouds (m = 1). Data averaged over 560 runs. A clear spatial dependency of the detectivity
is observed, especially around the shadow of the beam dump. Right: Map obtained with cold
clouds transferred in m = 0. Data averaged over 29 runs. Despite a lack of statistics, the spatial
e�ects on the detectivity are less visible.

Raman transfer

Like a Bragg transfer, a Raman transfer is a coherent two-photon transition, but it
couples two internal states of the atom. This allows us to transfer atoms from them = 1
state (which allows for the trapping of the atoms in the magnetic trap and has a low
Penning collision rate) to the m = 0 state when they are released from the trap (making
them insensitive to any residual magnetic �elds in the chamber during their fall towards
the MCP). We employ a diode laser at 1083 nm and address the 23S1 ! 23P0 transition
with � � and � polarized beams (Figure 2.14).

E

�

�

m = � 1
m = 0

m = 1
23S1

23P0

m = 0

� ��

Figure 2.14: Energetic diagram of the two-photon transition
process.

The amplitude of the compensation magnetic �eld determines the splitting between the
magnetic sublevels, and consequently, the two-photon resonance condition. The detuning
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� from the excited state is 800 MHz, allowing for adiabatic elimination of the excited state
population to reduce the system to a two-level con�guration betweenm = 0 and m = 1.
This system is coupled by an e�ective Rabi frequency given by:


 2ph =

 � � 
 �

2�
(2.9)

where 
 � � and 
 � are the Rabi frequencies of each beam.

It is possible to use the Raman transition to transfer momentum to the atoms. Indeed,
if both beams make an angle of�=2 with the y axis, momentum conservation imposes that
the transferred atoms acquire an additional momentum alongx equal to 2~k sin(� ), where
~k = 2 � ~=� is the one photon recoil momentum. This e�ect is used to \kick" the atoms
from the BEC along x, so that after a time of 
ight of 300 ms, they are shifted by 13.5 mm
along x (Figure 2.15) for an angle of� = 28°. This displacement is su�cient to avoid the
hole and the shadow of the protective arm while remaining within the MCP diameter.

� � �
�

z
x

y

MCP

BEC (m = 1)

BEC (m = 0)

Copper

Stainless steal

Figure 2.15: Schematic representation of the two-photon
Raman kick as seen from above the science chamber.

We can therefore detectm = 0 atoms on the MCP. The implementation of the copper
plate above the MCP introduces a constraint for characterizing the Raman transfer because
m = 1 atoms falling onto it are not observable. Nevertheless, residual magnetic �elds
induce non-trivial motion in m = 1 atoms, leading to the detection of some magnetic
atoms on the useful part of the MCP. The acceleration caused by residual magnetic �elds
further results in this signal not being detected simultaneously with the atoms transferred
into m = 0.

Subsequently, a Rabi oscillation between the two levels can be realized by varying the
duration of the Raman beam application. The data from the MCP provides a list of atoms
identi�ed by their coordinates ( X; Y; T ). To observe the Rabi oscillation with the m = 0
atoms, one simply needs to count the atoms falling onto the MCP within a short time
range centered 308 ms after the trap is turned o�. For the m = 1 atoms, we count the
number of events within the spatiotemporal range corresponding to the residual atoms.
An example is shown in Figure 2.16. By �nely scanning the duration of the Raman pulse
around the value for which all atoms are transferred, one can precisely determine the
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duration required to achieve the optimal transfer. At resonance, it is possible to transfer
approximately 98% of the atoms for a duration of around 15µs.

Figure 2.16: Rabi oscillations with the Raman beams.

2.2.4 Imaging system

As previously mentioned, an infrared camera is used to image the atoms in the science
chamber (Figure 2.17), providing information on the number of atoms and the cloud size
to ensure the proper progress of the di�erent cooling stages, as long as the size of the cloud
is not too small (which is the case for a BEC in the crossed dipole trap) or the number of
atoms too low.

Figure 2.17: Schematic representation of the imaging setup.Taken and adapted from [41].

The camera is a short-wave infrared InGaAs model (Xeva 320 by Xenics), installed
in 2017 on the experiment. It is positioned at a 45° angle relative to the experiment's
vertical axe, along one of the MOT beams direction (a motorized arm makes it possible
to deploy a retrore
ection mirror during the MOT). A telescope is employed to conjugate
the atoms with the camera CCD sensor. The camera can be used either in 
uorescence
or absorption imaging modes.
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In the case of 
uorescence imaging, resonant light with the transition 23S1 ! 23P2 is
directed onto the atoms for a duration of � = 200 µs using the MOT beams (except the
one along the camera axis). The atoms are then excited and subsequently emit photons
via spontaneous emission, with a rate given by:


 =
�
2

s
1 + s

(2.10)

where s = I=I sat is the resonance saturation parameter. By ensuring that the beam
intensity is su�cient, we have 
 = � =2.

It is possible to estimate the number of atoms in the cloud based on the number
of photons Np detected by the camera, as the number of emitted photons is directly
proportional to the number of atoms N according to the simple relation

Np =
�
2

�N (2.11)

In practice, obtaining a reliable estimation is challenging because it requires estimating
the fraction of emitted photons reaching the detector, and determining the corresponding
solid angle is not straightforward. Additionally, the camera provides an image in grayscale
rather than a count of photons, so a detailed understanding of the camera's (non linear)
conversion chain is necessary. Thus far, this has been the method used to calculate the
number of atoms in a cold cloud, but there is suspicion that the result is consistently
overestimated. Furthermore, the signi�cant duration of the 
uorescence pulse has a me-
chanical e�ect on the cloud, causing its size to increase signi�cantly for atoms trapped in
the dipole trap, thereby distorting the cloud size estimation and therefore potentially the
temperature measurements.

During my thesis, I contributed to the implementation of imaging in an absorption
mode. In this technique, the atoms are illuminated using the beam employed for the
MOT along the camera axis for 18µs. The intensity transmitted after the light passes
through the cloud is directly related to the cloud density by Beer-Lambert's law:

I (x; v) = I 0(x; v) exp
�

� �
Z

n(x; v; u) du
�

(2.12)

where I 0 is the incident intensity, n the atomic density and � = 3� 2

2� the absorption cross
section at resonance. In order to measure the densityn(x; v) of a given cloud integrated
along the u axis, a common way consists in taking three consecutive pictures, a �rst one
in order to collect the intensity I (x; v) with atoms, a second one to measureI 0(x; v) with
light but without atoms, and �nally one without light and without atoms in order to
cancel any background noiseI b(x; v). The density of the cloud is then given by

n(x; v) =
1
�

ln
I 0(x; v) � I b(x; v)
I (x; v) � I b(x; v)

(2.13)

Implementing this type of absorption imaging will enable the camera to be calibrated
more accurately than with 
uorescence, for example by comparing the number of atomsN
calculated by integrating n(x; v) with that expected when N is thermodynamically �xed
(typically a thermal cloud at the condensation threshold). During the Spring of 2022,
this work has been conducted by C. Lamirault, new PhD student in the team, during her
Master internship[113].

One of the main goal is to use this calibration to determine the quantum e�ciency of
the MCP, by dropping onto it a known fraction of atoms by Raman transfer. Preliminary

74



CHAPTER 2. EXPERIMENTAL SETUP: PREPARATION OF A METASTABLE HELIUM BOSE-EINSTEIN

CONDENSATE

results suggest that the quantum e�ciency is of the order of 50%, as measured by the
team of D. Cl�ement[114], but our study needs to be continued at this stage.

2.3 BEC characterization

2.3.1 Stability

One way to monitor the stability of the experiment and the reproducibility of conden-
sate realization consists in iteratively releasing identical clouds onto the MCP and study
the statistics of the detected atoms. In the following, we analyze a dataset for which we
produced a very cold condensate in order to achieve a very low temperature (potentially
at the expense of atom number).

As seen before, a BEC is so dense that it inevitably saturates the detector, making
it impossible to directly determine the number of atoms. Although the total number of
atoms is signi�cantly underestimated, the spatial delineation of the condensate is not af-
fected by saturation. Therefore, it is possible to determine the size and position of the
detected cloud after time of 
ight by �tting the density of detected atoms in each direction.

Figure 2.18: Stability histograms of the BEC. For each experimental run, the center of the
BEC in each direction is determined by a density �t. The histograms show the distribution of the
position and arrival time of this center for the 922 runs considered.

Figure 2.18 shows the statistical distribution of the center of the BEC, which was
determined by a Gaussian �t in each direction. The average value and the standard
deviation of the center of the cloud (along with its size) are given in Table 2.2. The space
origin is the center of the MCP, while the time origin corresponds to the time at which
the optical dipole trap is switched o�. A Raman pulse is performed a few milliseconds
after in order to transfer the atoms in m = 0 and kick them along X . The center of the
BEC is located 12:7 mm away from the center of the MCP, which corresponds to what we
expect given the angle between the two Raman beams.

For our future Bell experiment, we will show that the correlated pairs of atoms are
emitted from the condensate (in an optical lattice) in the vertical direction. Therefore,
it is crucial to have good stability along this axis because instability of the BEC leads to
instability of the pairs, resulting in a signi�cant limitation of our longitudinal resolution.
The arrival time of the cloud should vary little compared to the width of a momentum
mode, which will be determined later in this manuscript. A �rst reference value is provided
in R. Lopes's thesis[115], which estimates the standard deviation of arrival times from the
crossed optical dipole trap to be� (Tmean) = 0 :04 ms (in a setup that allowed observation
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Quantity Mean Standard deviation

X mean -12.7 mm 0.4 mm
Ymean -0.7 mm 0.3 mm
Tmean 307.76 ms 0.03 ms

� X 3.1 mm 0.2 mm
� Y 3.4 mm 0.2 mm
� T 0.15 ms 0.02 ms

Table 2.2: Results of the stability measurements.Mean and standard deviation of the center
of the MCP (up) and of its size (down) in every direction.

of the HOM e�ect with atoms). In our case, we measure� (Tmean) = 0 :03 ms, which is
satisfying.

2.3.2 Number of atoms, temperature, size and chemical potential

For a condensate, one cannot simply deduce the momentum distribution using clas-
sical mechanics relations 2.8 because the expansion dynamics of a BEC are governed by
interactions within the cloud, which cannot be neglected. Nevertheless, it is possible to
infer certain properties of the BEC.

Figure 2.19 presents the density of the detected atoms when a BEC falls onto the MCP,
averaged over 922 runs, in the transverse plane and along the longitudinal axis. On this
latter curve, four zones can be distinguished. In gray, one can observe a residual atom
noise. The blue plateau corresponds to a few atoms emitted via spontaneous emission from
the Raman beam slightly too close to resonance. In green, we observe atoms originating
from a thermal cloud, here �tted by a Gaussian distribution, and in red, the density peak
corresponds to the condensate, which is signi�cantly dominant.

Figure 2.19: BEC after time of 
ight, averaged over 922 runs. Left: Transverse density
pro�le, integrated along the vertical direction. The colormap highlights a Thomas-Fermi parabolic
pro�le. Right: Vertical density pro�le in terms of arrival time, integrated along the transverse
directions. In gray: noise. In light blue: atoms emitted by spontaneous emission. In green: atoms
from the thermal fraction. In red: BEC.

From this pro�le, one can estimate in particular the temperature of the thermal frac-
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tion. Indeed, for an ideal gas where we neglect interactions between atoms, the size of a
thermal cloud after a time of 
ight t is given by a ballistic expansion expression[116]:

� i (t) = � i (0)
q

1 + ! 2
i t2 (2.14)

where i 2 f x; y; zg and ! i is the trapping frequency alongi . The initial size of the cloud
writes

� i (0) =

s
kBoltz T

m! 2
i

(2.15)

For a long time of 
ight, i.e. when ! 2
i t2 � 1, we get

� i (t) =

r
kBoltz T

m
t (2.16)

Along the vertical axis, the size of the cloud is converted into a detection duration on the
MCP, given by � t (t) = � z (t )

gt . The temperature is then equal to

T =
mg2� 2

t

kBoltz
(2.17)

The �tted size from Figure 2.19 equals 0:99 � 0:08 ms, which corresponds to a tem-
perature of T = 45 � 8 nK. Note that, by integrating the area of the thermal �t, one can
deduce an estimation of the number of detected thermal atoms per run, which is equal to
N therm = 12 � 4.

For a BEC, the ballistic expansion expression is not valid because of the interactions in
the cloud, characterized by the chemical potential� . It can be considered that when the
BEC is trapped, the kinetic energy of the atoms is negligible compared to the interaction
energy, so that the BEC is in the so-called Thomas-Fermi regime and the in-trap density
pro�le is given by an inverted parabola:

� TF (r ) =
�

� � U(r )
gGP N

� 1=2

(2.18)

where N is the number of atoms,U(r ) the trapping potential (considered to be harmonic
in our case) andgGP is a coupling constant, proportional to the s-wave scattering lengtha:

gGP =
4� ~2a

m
(2.19)

The chemical potential � is then given by

� =
~�!
2

�
15

aN
��

� 2=5

(2.20)

where

�! = ( ! x ! y ! z)1=3 and �� =

r
~

m�!
(2.21)

When the trap is switched o�, the BEC expands and the interaction energy is converted
into kinetic energy. The expansion dynamics was studied in references [117] and [118]. In
particular, Y. Castin and R. Dum developed an analytic model in the case of a very
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anisotropic trap, for which ! k � ! ? . In this case, the radius R(t) of the BEC in each
direction is given by a scaling law:

8
><

>:

R? (t) = R? (0)
p

1 + � 2

Rk(t) = Rk(0)
h
1 + "2

�
� arctan(� ) � ln

p
1 + � 2

�i (2.22)

where

Ri (0) =

s
2�

m! 2
i

; " =
! k

! ?
; � = ! ? t (2.23)

The size of the cloud after expansion is entirely determined by the chemical potential
and the oscillation frequencies. In our case where the BEC is elongated along the vertical
direction, ! x;y = ! ? while ! z = ! k. Therefore, �tting the condensate with a parabolic
function in each direction using these three parameters as �tting parameters allows us to
infer the characteristics of the BEC. The clouds are �tted for each experimental run. The
results are given in Table 2.3.

Quantity Value

! x;y 2� � (1010� 200) Hz
! z 2� � (87 � 20) Hz

� 149� 9 nK
Rx;y (0) 4 � 1µm
Rz(0) 45 � 13µm

N 15300� 5000

Table 2.3: Oscillation frequencies in the crossed optical dipole trap and characteristics of
the BEC.

The oscillation frequencies found are compatible with measurements performed by
quenching the cloud. From the �tted data, one can deduce the size of the cloud inside the
trap, along with an estimation of the number of atoms, given by

N =
��

15a

�
2�
~�!

� 5=2

(2.24)

We �nd N = 15300 � 800, which is the expected order of magnitude. Note that one can
also deduce the number of atoms in the thermal part of the cloud, from the estimated
temperature and the oscillation frequencies, according to the relationship[119]:

N therm = 1 :202
�

kBoltz T
~�!

� 3

(2.25)

This gives N therm = 11 � 6, which is the same order of magnitude at what was estimated
experimentally by �tting the thermal fraction of the atoms (one should expect to �nd half
of this number due to the quantum e�ciency of the MCP supposed to be around 50%,
this is not exactly the case here but the low number of atoms found in both cases con�rms
the order of magnitude).

Note that these results indicate a very small thermal fraction, on the order of 0.1%.
Such a result may seem surprising, as it can be challenging to have so few thermal atoms.
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In practice, measuring temperatures smaller than the chemical potential, as in our case,
is rare, which explains the signi�cantly condensed fraction we obtain. It is possible that
the temperature of the thermal fraction has been underestimated. Indeed, the elongated
shape of the BEC is such that we are close to a quasi-1D regime, for which the expansion
laws are known to be di�erent from a 3D BEC. Nevertheless, this reinforces the idea that
we are capable of achieving very cold clouds, so cold that we can neglect any thermal
atoms when working in the crossed dipole trap. In particular, we will see that we can
emit atom pairs from the condensate, su�ciently far from the BEC so that there are no
thermal atom in the region of emission.
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The parametric conversion process has been employed in our team in a collision regime
between two condensates since 2007 [120], leading to the observation of non-classical
correlations[21]. As discussed in the introduction, the pairs are then produced on a collision
sphere. The volume of the sphere is determined by the conservation of energy and mo-
mentum, while the number of produced atoms depends on the condensate density, which
remains concentrated at the poles of the sphere. Such a geometry is quite constraining as
it results in the emission of many momentum modes across 4� steradians. An interesting
alternative is to use a one-dimensional optical lattice to generate two correlated atomic
beams. Initially proposed by in 2005 [80] and �rst observed in 2006[81], the idea is to use
the lattice to modify the dispersion relation of the atoms, thus enabling the spontaneous
creation of correlated pairs. This technique was implemented in our experiment in 2012.

In this section, we will present the process of pair creation. An analytical model is
detailed in P. Dussarrat's thesis[121], from which we will summarize the main results here.
We will also present the results obtained from the experiment, consisting of mainly two
datasets. One dataset was obtained in the spring of 2022, with a signi�cant population of
atoms per mode, while the other was obtained in the spring-summer of 2023, with a much
smaller population. We will see that the results have revealed non-classical correlations,
which is encouraging for conducting a Bell test.

3.1 Four-wave mixing

3.1.1 Simple model: emission of two coupled modes

Let us consider a condensate in a dilute regime, meaning that the distance between
atoms is much greater than the typical range of interatomic interaction. This gas is
described by the Gross-Pitaevskii Hamiltonian, which can be expressed in the Heisenberg
picture as follows:

Ĥ =
Z

d3r 	̂ y
�

�
~2

2m
� + V(r ; t) +

g
2

	̂ y	̂
�

	̂ (3.1)

where, 	̂(r ; t) is the �eld operator, m is the mass of the atoms,V (r ; t) is an external
potential, and g is the interaction strength, related to the s-wave scattering length a
through the relation

g =
4� ~2a

m
(3.2)

The interactions within the condensate, described by the interaction Hamiltonian

Ĥ I =
g
2

	̂ y	̂ y	̂ 	̂ (3.3)

can be responsible for the emission of correlated atom pairs. Indeed, let us index by 0 the
momentum mode of the atoms in the condensate, we aim to emit a pair of atoms with
momentum modes indexed by 1 and 2, respectively. Let us decompose the �eld operator
into these three modes, in the form

	̂ =  0â0 +  1â1 +  2â2 (3.4)

The term  0â0 correspond to the BEC, which can be interpreted as a pump signal
which will lead to the emission of scattered modes 1â1 and  2â2. By injecting this �eld
operator into the interaction Hamiltonian 3.3, we obtain many terms. By retaining only
the ones that verify momentum conservation, the remaining terms are:
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ˆ mean-�eld interaction terms

ĤMF = 2g
X

i 6= j

Z
d3r j i j2j j j2ây

i âi â
y
j âj +

g
2

X

i

Z
d3r j i j4ây

i â
y
i âi âi (3.5)

ˆ two four-wave mixing terms

ĤFWM = g
Z

d3r  2
0 �

1 �
2 ây

1ây
2â0â0 + g

Z
d3r  �

0
2 1 2 ây

0ây
0â1â2 (3.6)

Note that the processây
1ây

2â0â0 actually corresponds to the desired pair emission, where
two atoms from the BEC are annihilated while two atoms in momentum modes 1 and 2 are
created. More particularly, if we expressâ0 using the Bogoliubov description â0 =

p
N0 1̂

(where N0 is the number of atoms in the BEC, assumed to remain constant), then the
Four-wave mixing Hamiltonian can be written:

ĤFWM = ~� 1;2ây
1ây

2 + ~� �
1;2â1â2 (3.7)

where

� 1;2 =
gN0

~

Z
d3r  2

0 �
1 �

2 (3.8)

This the typical expression of a so-called squeezing Hamiltonian, resulting in the emis-
sion of correlated pairs[26], expressed with an associated gain of the process� 1;2, depend-
ing on the density, the strength of the interaction, and the overlap integral between the
involved momentum modes.

3.1.2 Phase-matching conditions in a periodic potential

As mentioned, the emitted modes must satisfy the conservation of energy and momen-
tum. This is where the lattice comes into play since the atoms are placed in a periodic
potential. To achieve this, two laser beams are used, forming an angle� between them
and intersecting at the BEC to interfere in the z direction, so that the lattice wavevector
is

klat =
2�
�

sin(� ) (3.9)

The beams do not have the same frequency, so that the instantaneous intensity pro�le
in the BEC is

I (z; t) = I 0 sin2
�

klat z �
�
2

t
�

(3.10)

where � is the beams detuning. The lattice is moving at a speedvlat = �=2klat . In the
lattice reference frame, the atoms (trapped in the optical dipole trap with a zero velocity
in the laboratory frame), acquire a speed equal tov0 = � vlat , so that the momentum of
the atoms in the BEC is

~k0 = �
m�

2klat
(3.11)

In this frame, the potential due to the lattice is

V (r ; t) = V0 sin2(klat z) (3.12)
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Let us neglect (at �rst) the interactions in the condensate. It can be shown that this
is assumption is well veri�ed, provided that a corrective mean-�eld energy is added[122].
Assuming that the optical dipole trap is an in�nite well between � L z=2 and L z=2, where
L z is the size of the BEC, the 1D Schr•odinger equation can then be expressed as:

�
~2

2m
@2	
@z2

+ V0 sin2(klat z)	 = E 	 (3.13)

The dispersion relation is periodic with a period of 2klat . We then restrict ourselves
to the �rst Brillouin zone and work with the quasi-momentum q 2 [� ~klat ; ~klat ] rather
than the momentum in real space. According to Bloch's theorem, we can look for periodic
solutions. So it is possible to decompose the wavevectors of the system in a basis of plane
waves, so that:

	 q(z) = e
i qz
~

X

j

Cj (q)e2ik lat jz (3.14)

By inserting 	 q(z) in the Schr•odinger equation, one gets the system of coupled equa-
tions

E(q)
E lat

Cj =

" �
q

~klat
+ 2 j

� 2

+
V0

2E lat

#

Cj �
V0

4E lat
[Cj � 1 + Cj +1 ] (3.15)

where

E lat =
~2k2

lat

2m
(3.16)

The numerical resolution of these equations equation yields the band structure of the
atoms in the lattice (Figure 3.1). It is possible to limit ourselves to j 2 [� 3; 3] for solving
the system if the lattice is shallow (V0 � E lat ) because the amplitude of the coe�cients
Cj then rapidly decreases withjj j.

Figure 3.1: Band structure of the atoms in a lattice (V0 = 0 :5E lat ).

Let us suppose that the atoms remain in the fundamental band. The atoms in the BEC
have a quasi-momentumq0 and emit a pair with quasi-momenta q1 and q2. Conservation
of energy and quasi-momentum in the lattice then can be expressed as:

(
2E(q0) = E(q1) + E(q2)

2q0 = q1 + q2 [2~klat ]
(3.17)
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In this simple two-mode model, the pair creation process can be interpreted as follows:
the condensate, with quasi-momentumq0, creates two atoms of momentaq1 and q2 sat-
isfying the above relations. For di�erent values of q0, such a solution exists with q1 and
q2 di�erent from q0 due to the periodicity of the dispersion relation (Figure 3.2). In the
lattice, we remain within the �rst Brillouin zone, so the atom for which jqj < ~klat actually
corresponds to a quasi-momentum refolded into the quasi-momentum range [� ~klat ; ~klat ].

Figure 3.2: Schematic representation of the pair creation process.In the lattice frame,
the condensate has a quasi-momentumq0 (blue dot). The blue curve is the fundamental band of
the atoms in the lattice (V0 = 0 :5E lat ). Phase matching conditions allow for the emission of a
pair of atoms with quasi-momenta q1 (red dot) and q0

2 (light green dot). Since q0
2 < � ~klat , the

corresponding quasi-momentum of the atom in the �rst Brillouin zone is q2 = q0
2 + 2~klat (green

dot).

When the lattice is adiabatically turned o�, a so-called band mapping phenomenon
occurs, where the eigenfunction of quasi-momentumq is projected into real space as a
plane wave of momentump, where p is the quasi-momentum of the lattice restricted to
the �rst Brillouin zone. An important consequence is that the two atoms are not emit-
ted on opposite sides of the condensate but on the same side, due to the conservation of
quasi-momentum rather than momentum.

So far, we have neglected interactions in the condensate, but in reality, they must be
taken into account as they are responsible for pair creation. One approach is to add a mean-
�eld term in the energy conservation equation. It can be shown that this approximation
allows us to consider that the non-interacting eigenvectors are the eigenvectors of the
system with good approximation[122]. The mean-�eld corrective interaction term is in
this case 2gn0, where n0 is the density of the BEC, so that the energy conservation
relation is actually

2E(q0) = E(q1) + E(q2) + 2 gn0 (3.18)

The previous reasoning remains valid, but the energy value given by the band diagram
is shifted by an amount that depends on the density of the BEC.

One can then numerically solve the phase-matching conditions to determine the quasi-
momentum of the created pairs for a condensate with initial quasi-momentumq0, a den-
sity n0 and a potential depth V0 (Figure 3.3).
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Figure 3.3: Phase matching conditions.The momentum conservation curve (in blue) is given
by q2 = 2q0 � q1 +2~klat for q0 = � 0:58~klat . The energy conservation curve (in orange) is obtained
by numerically solving the equation 3.18 forq0 = � 0:58~klat , and V0 = 0 :5E lat , in the case where
the mean-�eld term due to interactions is not considered (dashed line) and in the case where we
take it into account with n0 = 1 :3 � 1013 cm� 3 (solid line). The intersection points between these
two curves yield the quasi-momenta of the emitted atoms. The graph is symmetric with respect
to the exchangeq2 $ q1.

Thus, interactions within the BEC, modeled by the mean-�eld term 2 gn0, have the
e�ect of shifting the energy conservation curve as the density increases. Note that, knowing
q0, the density n0 can be determined by measuring the momenta of the pair of atoms.

3.1.3 Output state, density and correlations

Recall that the previous results were obtained by decomposing \by hand" the Hamil-
tonian, introducing modes 0, 1 and 2. Within the framework of this ansatz where we
consider strict conservation of momentum and energy, there is an easy analytical resolu-
tion of the problem. In the Schr•odinger picture, one can solve the 1D Schr•odinger equation
to determine the output state of the system[121], which can be written:

j (T)i =
1

cosh(j� jT)

+ 1X

n=0

ein� � tanhn (j� jT) jn; ni (3.19)

where � � = arg( � ) and T the duration of the optical lattice. This is the expression of a
two-mode squeezed state (TMS), which can be rewritten in the general form:

j (T)i =
p

1 � j � j2
+ 1X

n=0

� n jn; ni (3.20)

where � , called the squeezing parameter, is related to the average populationhN i in the
emitted modes through the relationship:

hN i =
j� j2

1 � j � j2
(3.21)

This quantum state is of particular interest because it is a superposition of twin Fock
states, which are quantum states with very strong correlation properties. In particular,
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as discussed in Chapter 1, the Fock statej1; 1i can lead to the observation of a sub-shot
noise variance or a HOM dip whose contrast cannot be explained by a classical model.
However, experimentally producing twin Fock states is challenging, unlike TMS states. In
practice, since the coe�cients' weight decreases rapidly withn, it is interesting to produce
TMS states with a low population, in order to approach a Fock state j1; 1i .

Similarly, it is possible to determine the expression of the creation and annihilation
operator expressions. In the Heisenberg picture, on gets

8
<

:

â1(t) = â1(0) cosh(j� jt) � iei � � ây
0(0) sinh(j� jt)

â2(t) = â2(0) cosh(j� jt) � iei � � ây
1(0) sinh(j� jt)

(3.22)

From these expressions, typical of the squeezing Hamiltonian 3.7, it is possible to
determine the mean values of several observables of interest. Thus, we �nd again that the
average number of atoms in the pairs is given by:

hN i = ĥay
1â1i = ĥay

2â2i = sinh 2(j� jT) (3.23)

The population in the pairs must therefore increase exponentially with the duration of
the lattice. Of course, this process will be limited by a saturation phenomenon, primarily
related to the depletion of the condensate.

It is also possible to calculate the correlations between the emitted pairs. The local
correlation (or auto-correlation) g(2)

loc = g(2)
1;1 = g(2)

2;2 and the cross-correlation between the

emitted pairs g(2)
cross = g(2)

1;2 are given by

8
>>>>>><

>>>>>>:

g(2)
loc =

ĥay
1ây

1â1â1i

ĥay
1â1i

2 =
ĥay

2ây
2â2â2i

ĥay
2â2i

2 = 2

g(2)
cross =

ĥay
2ây

1â1â2i

ĥay
1â1i hây

2â2i
= 2 +

1
hN i

(3.24)

The normalized local correlation is equal to 2, which corresponds to bosonic bunching.
Indeed, the pair creation process follows a thermal distribution, thus reproducing the
Hanbury Brown and Twiss e�ect.

On the contrary, the cross-correlation is greater than 2, and increases as the average
population decreases. This state intrinsically violates the Cauchy-Schwarz inequality, since
g(2)

cross > g (2)
loc . Again, this suggests that we will have to work with a low population in the

pairs in order to exhibit strong correlations.

3.1.4 Multimode description

In the previous discussion, we have only considered pairs (q1; q2) that strictly satisfy
energy and momentum conservation. Thus, for a condensate at a given velocity in the
lattice's reference frame, only two modes are emitted. In practice, this is not the case,
and the previous reasoning must be generalized to the emission of pairs that do not
strictly conserve energy and momentum. Indeed, the �nite size of the BEC relaxes the
momentum conservation condition, while the �nite duration of the lattice relaxes the
energy conservation.

86



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

The four-wave mixing Hamiltonian is then written in a more general form as follows:

ĤFWM =
X

q1 ;q2

~� (q1; q2)ây
q1

ây
q2

+ ~� � (q1; q2)âq1 âq2 (3.25)

where the gain � is given by

� (q1; q2) =
gN0

~

Z
d3r  (q0)2 � (q1) � (q2) (3.26)

Numerical simulations were conducted by J. Ruaudel[122], and P. Dussarrat devel-
oped in his thesis a perturbative analytical multimode 1D model for a shallow lattice
where the BEC density pro�le can be considered uniform[121]. Recently, P. Paquiez, in-
tern in the team, conducted new numerical analyses to characterize the pair source with as
few approximations as possible to best account for experimental observations[123]. In this
paragraph, we will brie
y summarize the results of the uniform analytical model, which
provides valuable physical insights.

In this model, we can approximate the wavefunction of atoms with quasi-momentum
q as plane waves restricted to the volume of the BEC, which allows for easy calculation of
the gain:

� (q1; q2) =
gn0

~
sinc

�
� q(q1; q2)

L
2~

�
(3.27)

where
� q(q1; q2) = 2 q0 � q1 � q2 (3.28)

which is actually the conservation of quasi-momentum condition. This time, the modulo
does not appear because in a multimode model, a given mode cana priori interact with
all other modes. It can be shown that adding \by hand" a modulo 2~k would lead to the
emission of pairs whenV0 = 0, which is not physical.

Subsequently, by considering non-strict conservation of energy using a perturbative
expansion (where the gain of the process is low, so that�T � 1), we can show that the
number of emitted atoms can be written as

N (q) =
Z

dq0

�q
j� (q; q0)j2j" (q; q0)j2 (3.29)

where �q = 2� ~
L and

"(q; q0) = T sinc
�

� E (q; q0)
T
2~

�
(3.30)

with
� E (q; q0) = 2 E(q0) � E (q1) � E (q2) � 2gn0 (3.31)

The formula 3.29 illustrates that the deviation from both strict conservation of momen-
tum and conservation of energy naturally intervene in the problem to weigh the emission
of pairs. The functions � and " (and hence the number of emitted atoms) are maximal
when the phase-matching conditions are strictly satis�ed, but other modes are emitted
due to the sizeL of the BEC and the duration T of the lattice.

Note that �q = 2� ~
L can be interpreted as the size of a (quasi)-momentum mode since it

is the typical scale for the cancellation of the overlap integral between two wavefunctions:

h	( q)j	( q0)i =
Z L=2

� L=2
dz e

i qz
~ e� iq 0z

~ / sinc
�

(q � q0)
L
2~

�
(3.32)
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We have seen that the typical length scale of the BEC in the vertical axis is on the
order of 100µm. For a lattice wavevector equal to 5.9µm� 1 like in our case, the size of a
mode is then on the order of�q = 0 :01~klat .

The density pro�le as a function of quasi-momentum is shown in Figure 3.4 with
parameters close to the experimental ones. We clearly observe the predominance of two
peaks, corresponding to the strict phase matching conditions. The peaks are much broader
than the typical size of a mode, which also con�rms that the pair source is highly multi-
mode. Similarly to the previous toy model, the number of atoms emitted in pairs grows
exponentially with the duration T of the lattice.

Figure 3.4: Density pro�le along the vertical direction. For each value ofq, the number of
atoms is calculated using the relation 3.29 withq0 = � 0:58~klat , V0 = 0 :5E lat and a mean-�eld
energy term with n0 = 1 :6 � 1013 cm� 3, for three values ofT.

One can also determine the consequences of the multimode nature of the source on the
correlations. The correlation functions can also be calculated analytically, provided that
we assume a strict conservation of quasi-momentum (it can be showed numerically that
the correlation decreases quickly when quasi-momentum is not conserved), and write:

8
>>>><

>>>>:

g(2)
loc = g(2) (q1; q1 + � q) = 1 + sinc 2

�
� q

L
2~

�

g(2)
cross = g(2) (q1; q2 + � q) = 1 +

1
N (q1)

sinc2
�

� q
L
2~

� (3.33)

whereq2 = 2q0� q1. Note that these expressions are only true in the limit whereN (q1) � 1
(which is why we do not �nd g(2) = 2 when N (q1) ! 1 ).

Interestingly, we observe that the width of the correlation (both local and cross) is given
by the size of a mode. For local correlation, this could be expected because it is essentially
a Hanbury Brown and Twiss-type experiment, where the correlation width corresponds to
the coherence length of the source. We can use this relation to experimentally determine
the size of a mode, which in our case is inversely proportional to the size of the BEC.
We can then use this parameter as a control parameter to adjust the size of a mode,
making our source more or less multimode. As we will see later, an advantage of having
a multimode source is the ability to perform multiple interferometers in parallel. It is
worth noting that the width of the cross-correlation is the same as that of the local
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correlation, suggesting that a mode is correlated with only one other mode, given by the
quasi-momentum conservation.

We can still expect to observe stronger cross-correlations than local correlations, al-
lowing us to observe a violation of the Cauchy-Schwarz inequality.

3.2 Experimental procedure and results

3.2.1 Experimental procedure

We use a laser at 1064 nm, far detuned from the atomic transition 23S1 ! 23P2, in
order to neglect spontaneous emission when using long pulses on the order of a millisecond.
Typical parameters used for the optical lattice are given in Table 3.1.

Quantity Symbol Value

Wavelength � lat 1064 nm

Angle between the beams � 83°

Lattice wavevector klat = 2�
� lat

sin � 5.9µm� 1

Lattice periodicity alat = �
k lat

536 nm

Detuning with the excited state � = c
�

1
� lat

� 1
�

�
4:9 THz

Lattice depth V0 0:5E lat

Lattice duration T � 400� 800µs

Lattice detuning � � 100 kHz

Lattice speed vlat = �
2k lat

53 mm.s� 1

BEC quasi-momentum (lattice frame) q0 = m�
2~k lat

� 0:58klat

Table 3.1: Typical values used for the pair creation lattice.

After alignment onto the atoms, we can perform Rabi oscillations between two (ground)
momentum states by using the two beams in the Bragg regime (the principle of which will
be detailed in the next chapter). One can indeed exhibit an oscillation of the population
in each state as a function of the lattice duration. This experimentally allows to determine
the depth of the lattice, given simply by the relation

V0 = 2~
 (3.34)

where 
 is the e�ective two-photon Rabi frequency of this process.
The detuning � between the two beams is controlled by two acousto-optic modulators

(AOMs), each of which receives an RF frequency generated by a synthesizer. The power
of the beams is also controlled by the AOMs because the RF signals pass through RF
attenuators, allowing us to modulate the signal amplitude.

The lattice is switched on when the BEC is in the optical dipole trap, because the high
density in the cloud makes it possible to have enough collisions for the four-wave mixing
to be e�cient. Note that the power of the lattice beams increases adiabatically, in order
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to smoothly load the atoms in the lowest energy band of the lattice. This rising time is of
the order of 50µs.

The lattice is then maintained at constant power for a duration T on the order of
several hundred microseconds, during which the pair creation process occurs. Varying this
duration allows control over the number of emitted atoms per momentum mode.

Then, the beams are turned o� adiabatically, so that the Bloch's states in the lattice
associated to atoms of quasi-momentumq are slowly projected onto free space plane waves
of momentum p. This band mapping is e�cient due to the fact that the lattice depth is
quite shallow so that Bloch's states and plane waves match well. In the following, we will
consider that a mode emitted with a quasi-momentumq in the lattice reference frame is
exactly projected into an atom with momentum p = q � q0 in the laboratory reference
frame.

Experimentally, it is observed that the rising duration and the extinction duration
have a non-trivial in
uence on the density pro�le of emitted atoms, particularly in the
transverse plane where complex structures may appear. In practice, these two durations
are empirically adjusted to ensure that the density pro�le is anisotropic and denser at the
center. A more quantitative discussion on the adiabaticity condition and the in
uence of
ramps can be found in references [115], [121] and [41].

Figure 3.5: Schematic representation of the process of emission and detection of pairs.
The BEC (in blue) is trapped in an optical dipole trap (in red) and subjected to an optical lattice,
leading to the emission of a pair of atoms (red and green dots). After switching o� the trap, the
atoms and the condensate are kicked along thex-axis by a Raman transfer (black arrow), to move
away from the copper plate beam dump before falling onto the MCP (in gray).
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Once the pairs are emitted and the lattice is turned o�, the optical dipole trap is
switched o� abruptly. Right after, a Raman transfer is performed so that most of the
atoms are transferred into the m = 0 state, insensitive to the magnetic �eld, with an
additional momentum along x, which makes it possible to detect them on the MCP after
time of 
ight next to the \shadow" of the copper beam dump (Figure 3.5).

3.2.2 Density and phase-matching

As mentioned previously, due to various experimental issues, a long time has passed
between the last pair production runs on the experiment in 2017 and the reinstallation
of the lattice in the spring of 2022. At that time, we initially worked in a regime where
many pairs were emitted per mode compared to the values used previously.

In the spring of 2023, for a new set of pair data collection, the atom population was re-
duced to approach a quantum behavior that could lead to the observation of non-classical
correlations.

We typically obtain the density pro�les depicted in Figures 3.6 and 3.7. We clearly
observe two main peaks, as predicted by energy and momentum conservation (see Figure
3.4). These peaks are broad and contain many modes, as expected. In this example,
atoms from the pairs fall after the BEC, but we can also change the sign of the detuning,
so that q0 is positive: this way, the folding of the quasi-momentum in the �rst Brillouin
zone occurs in the opposite direction, so thatq1 and q2 < q0, and the pairs fall before the
BEC.

Figure 3.6: Density pro�le along the vertical direction. Up: fundamental band of atoms in
the lattice ( V0 = 0 :5E lat ). Down: Number of atoms measured as a function of their velocity before
time of 
ight. Data averaged over 1600 runs, and integrated along the transverse directions. The
BEC corresponds to a zero velocity in the laboratory frame.
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Figure 3.7: Density pro�les of the emitted pairs. 2D histograms of the pairs' density in
momentum space. Data averaged over 1600 runs, and integrated along the third direction.

From a BEC at q0 = � 0:58~klat , we get the values ofq1 and q2 from a �t of the
density peaks. We �nd q1 = 0 :19� 0:02~klat and q2 = 0 :66� 0:02~klat , which are compat-
ible with quasi-momentum conservation. In the BEC reference frame, the pairs velocities
are V1 = 70:8 mm.s� 1 and V2 = 113:9 mm.s� 1. The expected values given by the phase
matching conditions depend on the BEC density through the mean �eld term in the energy
conservation (equation 3.18).

Figure 3.8: Experimental phase-matching diagram. Quasi-momenta of the pairs as a function
of the quasi-momentum of the BEC. The pairs momenta were determined with Gaussian �ts of the
density pro�le and converted in quasi-momentum in the lattice reference frame. The orange and
green lines depict the numerical resolution of the phase matching conditions, withV0 = 0 :54E lat

(a value determined by a two-photon Rabi oscillation of the lattice beams), in the case where
interactions are not considered (green dashed line) and in the case where we add a mean-�eld term
2gn0 in the energy conservation, with n0 = 1 :3 � 1013 cm� 3.

As we have seen, changing the detuning allows us to varyq0. By scanning the de-
tuning, one can then plot the phase matching graph, which shows the emitted modes as
a function of q0. The results are given Figure 3.8 in the lattice reference frame, along
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with the theoretical predictions for the quasi-momenta of the emitted pairs without mean-
�eld (green curve) and with a mean-�eld term determined with a �t. The values of q1

and q2 were estimated using Gaussian �ts to the density envelope of pairs along thez-axis.

This measurement enables to estimate the atom densityn0 in the condensate using the
mean-�eld term that appears in the energy conservation condition. The �t result leads to
a density n0 = 1 :3 � 0:2 � 1013 cm� 3. This value is the expected order of magnitude and
corresponds to what was �rst measured in 2013[20].

The ability to tune the momentum of emitted atoms represents a major advantage
of this pair creation technique. Indeed, by simply changing the detuning, one can select
which momentum modes are most populated. Thus, we bene�t from a tunable multimode
source of pairs, a property that can be leveraged for experiments such as HOM and Bell.
In the laboratory frame, if one speci�cally chooses the value of� (henceq0) for which the
di�erence p2 � p1 between pairs corresponds to the momentum transferred by a Bragg
pulse, then this ensures that the momentum classes coupled by Bragg are those that best
satisfy the phase matching conditions. This not only ensures that the coupled modes are
the most populated, but also aims to involve pairs with the strongest correlations.

3.3 Second order correlation fonctions

Studying correlations between pairs is a preliminary step to ensure that our atom
beams can be used for a Bell test or any other experiment aiming to exhibit stronger-
than-classical correlations. This not only provides an estimation of the strength of cross-
correlations by examining the second-order correlation function between the atoms from
a pairs, but it also experimentally helps us determine the size of a mode (and thus the
population of atoms per mode) by examining the width of the local correlation.

In the following sections, we will present typical correlation results obtained over the
past months.

3.3.1 Correlations computation

Let us recall that the de�nitions of the correlation functions between atoms of speeds
V1 and V2, respectively non normalized and normalized, are

G(2) (V1; V2) = ĥay
V1

ây
V2

âV2 âV1 i = h: N̂V1 N̂V2 :i (3.35)

g(2) (V1; V2) =
ĥay

V1
ây

V2
âV2 âV1 i

ĥay
V1

âV1 i hây
V2

âV2 i
=

h: N̂V1 N̂V2 :i

hN̂V1 i hN̂V2 i
(3.36)

where the notation h: � � � :i indicate the normal ordering of the annihilation and creation
operators. Here, we suppose thatV1 and V2 correspond to speeds along the vertical
direction.

Of course, the value of the non normalized correlation function depends on the popu-
lation, and thus on the density envelope, whereas this is not the case for the normalized
correlation function. Therefore, in our study, we will prefer to use this second quantity,
which does not depend on the quantum e�ciency of the detector (which is presumably
around 50% but has not been precisely determined to date). We have already seen that
the value of g(2)

loc should be equal to 2 for pairs emitted via a thermal distribution process.
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Similarly, the value of cross-correlationg(2)
cross should be equal to 2 + 1=hN i , where hN i is

the number of atoms per mode.

There are di�erent ways to represent correlations and to compute them. This is not
a straightforward issue: although the previous de�nitions were given in one dimension
(along z which is the axis of interest for us), the g(2) function depends on 6 variables,
corresponding to the momentum coordinates of two vectorsV 1 and V 2. It is necessary to
simplify the problem by eliminating dimensions, which is usually done by averaging over
certain regions of the momentum space, but one has to ensure that a su�cient signal with
a correct signal-to-noise ratio can be obtained.

Counting atoms in momentum boxes

A �rst way to verify that the correlations correspond to what is expected and to iden-
tify modes that are correlated with each other is to create a two-dimensional map showing
g(2) as a function of V1 and V2. In the pairs center of mass reference frame (i.e. in the
frame where the velocity reference is located at the midpoint of the segment separating
the two density peaks), the diagonal then corresponds to the local correlationg(2) (V1; V1),
while the anti-diagonal corresponds, in principle, to correlated modes.

For this purpose, we de�ne an integration volume, which corresponds to a three-
dimensional box in momentum space, within which we count the detected atoms. Since
the MCP provides us with a list ( Vx ; Vy ; Vz) of 3D momenta corresponding to the de-
tected atoms per cycle, it is easy to determine if an atom belongs to a certain range of
three-dimensional velocity, and thus to calculate the number of atoms in that case.

A box corresponds to specifying three widths � Vx , � Vy and � Vz and three centers
Vx , Vy , and Vz in each direction, so the volume in momentum space is given by:

V =
�
Vx �

� Vx

2
; Vx +

� Vx

2

�
�

�
Vy �

� Vy

2
; Vy +

� Vy

2

�
�

�
Vz �

� Vz

2
; Vz +

� Vz

2

�
(3.37)

In each experimental cycle, we then calculate, within two boxes centered on velocities
Vz1 and Vz2 , the number of atoms N (Vz1 ) and N (Vz2 ), as well as the product N (Vz1 ) �
N (Vz2 ). The center of the boxes in the transverse directionsVx1 = Vx2 and Vy1 = Vy2 are
chosen to match the peak density of the emitted pairs. After repeating this process for all
cycles, we compute the average of these three quantities, from which we derive the value
of g(2) , according to the relations

8
>>><

>>>:

g(2) (Vz1 ; Vz2 ) =
hN (Vz1 )N (Vz2 )i

hN (Vz1 )i hN (Vz2 )i

g(2) (Vz1 ; Vz1 ) =
hN (Vz1 )2i

hN (Vz1 )i 2 �
1

hN (Vz1 )i

(3.38)

where h� � �i designates the average over all cycles. In the case of the auto-correlation, we
need to subtract a term corresponding to the shot noise.

The choice of the integration volume is particularly important.

ˆ If the integration volume is small, then there will be, on average, few atoms per
box, leading to signi�cant noise and requiring a large number of experimental cycles
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to achieve a good signal-to-noise ratio. Since modes have a certain width, it is
essential not to choose a box with a width much smaller than the size of the mode,
as this would result in losing information about the correlation. Additionally, the
computation time can be long, and signi�cant memory depth is required for storing
the lists N (Vzi ) and N (Vzi )N (Vzj ) for each cycle.

ˆ If the integration volume is too large, especially larger than the size of a mode, then
there is a risk of averaging atoms that are not correlated, leading to a decrease in
the correlation signal.

In practice, the optimal box size corresponds roughly to the size of a mode. To probe
the correlation along a particular axis, in our case the vertical axis, one can choose boxes
along z slightly smaller than the size of a mode. For ease of readingg(2) maps, it is also
possible to oversample by scanningVz with a step smaller than the size of the box along
this axis.

A typical example of a g(2) map obtained using this method is shown in Figure 3.9.
We have placed ourselves in the pair reference frame, in which atoms with velocityVzi are
presumed to be correlated with atoms with velocity � Vzi .

Figure 3.9: 2D Correlation map in the pairs reference frame. The integration boxes are
� Vz = 1 mm.s� 1, � Vx = � Vy = 10 mm.s� 1. The map is symmetric with respect to the exchange
Vz1 $ Vz2 . The diagonal corresponds toVz1 = Vz2 , highlighting local correlations, and the antidi-
agonal corresponds toVz1 = � Vz2 , highlighting cross-correlations. Dataset of 1012 experimental
runs.

In this example, the density peaks are located at� 32 mm.s� 1, which can be seen on
the map, where the signal-to-noise ratio is better between 25 and 35 mm.s� 1 than between
0 and 20 mm.s� 1. This map was obtained with a dataset with a signi�cant number of
atoms per mode, as we will see later.

A diagonal line corresponding to auto-correlation and an anti-diagonal line correspond-
ing to cross-correlations are observed, while the average value of the rest of the map (apart
from these lines) is around 1, validating the overall appearance of the graph in light of the

95



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

expected results. Thus, our atom source produces atoms correlated in momentum. How-
ever, it is noteworthy that the cross-correlation is not greater than the local correlation,
which seems to tend towards 2 as expected. Indeed, as previously observed in the team,
we never manage to demonstrate a cross-correlation greater than 1.5. This point will be
discussed in the following.

In order to make the analysis more quantitative and get the correlation amplitude and
width (to deduce the mode size), we can then plot one-dimensional curves from theg(2)

map. To calculate the localg(2) curve, for example, the idea is to integrate the correlation
signal with diagonal slices at constantVz1 � Vz2 in a certain velocity range (in the zone of
maximum density, for example) and plot the averaged value along an anti-diagonal axis.
The result is a curve showingg(2) as a function of Vz1 � Vz2 .

Note that this integration operation is performed on the non normalized G(2) map,
and converted into g(2) by performing the same integration on the densities, otherwise the
correlation signal decreases. Mathematically, this corresponds to calculating an integrated
g(2) as

g(2)
loc (�V z = Vz1 � Vz2 ) =

R

 ĥay

Vz
ây

�V z � Vz
â�V z � Vz âVz i dVzR


 N (Vz)N (�V z � Vz)dVz
(3.39)

where 
 is the integration volume in momentum space.

One can proceed similarly in the opposite direction to plot the cross-correlation func-
tion, by integrating the correlation along anti-diagonal slices at constant Vz1 + Vz2 in a
given velocity range and plotting the averaged value along a diagonal axis. In this case,
one getsg(2) as a function of Vz1 + Vz2 , so that

g(2)
cross(�V

0
z = Vz1 + Vz2 ) =

R

 ĥay

Vz
ây

�V 0
z � Vz

â�V 0
z � Vz âVz i dVz

R

 N (Vz)N (�V 0

z � Vz)dVz
(3.40)

Note that �V 0
z = 0 when Vz1 = � Vz2 , corresponding to the anti-diagonal where we

expect to �nd the cross-correlation in the pair reference frame.

Loops over the detected atoms

There is another method for calculating correlations, this time without using boxes,
but rather by directly determining, for each atom, the histogram of velocity di�erences.
This method is described in the theses of M. Schellekens[124], H. Cayla[125] or in reference
[126]. This second way of computing the correlation, potentially longer in computation
time, has the advantage of increasing the signal-to-noise ratio: in the previous method,
by de�ning small density boxes, one potentially excludes correlated atoms that lie beyond
the box boundaries, whereas they can be taken into account in this second approach.

The idea is to consider the correlation function g(2) (�V z) as a histogram of the ve-
locity di�erence between atoms. Once again, we calculate separately the numerator and
denominator of the normalized correlation function. The numerator calculation proceeds
as follows:

ˆ Consider a dataset containingN runs experimental cycles, and suppose we want to
determine the correlation function along z. We start by de�ning two large density
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regions (in three dimensions), corresponding to the two pairs of beams created with
the lattice, denoted A and B , de�ning subsets A and B .

ˆ For a given experimental cycle, we choose an atom labeled 1 in beamA, for exam-
ple. Then we select another atom labeled 2 (in subsetA if we want to study local
correlations, or subsetB if we want to study cross-correlations).

ˆ We de�ne velocity di�erence thresholds � Vx and � Vy such that if jVx1 � Vx2 j � � Vx

and jVy1 � Vy2 j � � Vy , then we note �V z = jVz1 � Vz2 j and increment a histogram
H1(�V z) (or similarly �V 0

z = jVz1 + Vz2 j if one aims at plotting the cross-correlation).

ˆ We repeat the previous operation for all atoms 2 of subsetB : we obtain a full
histogram of velocity di�erences H1(�V z) with respect to atom 1.

ˆ We choose a new atom 1 in subsetA and repeat the operation to obtain a new
histogram of velocity di�erences. We then obtain a set of histograms for all atoms,
which we average to obtain the histogramH r (�V z) of velocity di�erences between
the two beams for one experimental run:

H r (�V z) =
N runsX

i =1

H1;i (�V z)
NA

(3.41)

ˆ We repeat the operation for each experimental cycle and then average the obtained
histograms. The resulting histogram gives the non normalized correlation function
G(2) as a function of the velocity di�erence �V z.

The binning �V z of the histogram along z plays a similar role as the size of the box
along z in the previous algorithm: if the binning is too small, the signal-to-noise ratio is
low, and if it is too large, there is a risk of decreasing the correlation amplitude. The
transverse thresholds � Vx and � Vy also help increase the correlation signal: the smaller
they are, the more assured we are of counting atoms whose velocity di�erence is small,
indicating potential correlation. However, this also reduces the signal-to-noise ratio. This
second method for computing the correlation converges towards the �rst when selecting
density beamsA and B that are the size of a box.

Note that the algorithm developed in the team according to this method by V. Gondret
allows for performing the previous operation directly in all three spatial directions, by
storing a three-dimensional arrayG(2) (�V x ; �V y ; �V z). This enables obtaining correlations
along each axis by integrating over the other two while considering the corresponding
thresholds.

The calculation of the denominator is performed in the same way as the numerator,
but with a dataset where atoms do not exhibit correlations and have the same average
density. Indeed, we havehN (Vz1 )N (Vz2 )i = hN (Vz1 )i hN (Vz2 )i in the case where we con-
sider independent atoms. To achieve this, we mix the di�erent experimental cycles into
a large dataset containing all atoms. The calculation ofG(2) is the same as the numer-
ator, except that for an atom from a given experimental run, atoms from the same run
are not considered (to ensure they do not introduce correlations). Even without this pre-
caution, with a su�cient number of runs, the correlations arising from atoms from the
same run are negligible, allowing to proceed with the previous calculation to determine
the denominator.
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In practice, as this procedure can be very time-consuming, it is possible to randomly
select a subset of the mixed dataset. We can then deduce the normalized correlation
function by dividing the histogram of the numerator by that of the denominator, and
multiplying the result by a normalization factor as the total number of atoms involved in
the calculation of the denominator di�ers from that of the numerator.

Computing the error bars: bootstrapping technique

We need a way to estimate the uncertainty on the computed correlation values. Sup-
pose we want to determine an error bar on theG(2) function from a dataset of N runs

experimental runs. One method is to express the error bars as the inverse of the square
root of the number of events per bin.

Alternatively, one can use a technique called bootstrapping[127], which works as fol-
lows: for each run, we perform a random samplingwith replacementwith the same number
of atoms as the original run. From this sampled run, we then calculate the value of G2.
We repeat this process a certain number of times, and the error bar is then given by the
standard deviation of all the G(2) values obtained in this manner. One can check that the
error bar converges towards a value which is not very di�erent from the one given by the
inverse of the square root of the number of atoms.

This technique can be applied to the calculation of other statistical quantities as well.

3.3.2 Auto-correlation

The results showing the local correlation functions are presented in Figure 3.10. They
were computed using the second method on the same dataset as those appearing on the
g(2) map. Error bars are evaluated using bootstrapping. Note that the curves are symmet-
ric because we actually plotg(2) (j� V j). Beam A corresponds to the density peak center
on � 32 mm.s� 1 while beam B corresponds to the density peak center on +32 mm.s� 1.

Clear local correlations are observed in all three spatial directions. The data are �tted
with Gaussian functions written as follows:

g(2)
�t (j� Vi j) = 1 + A i e

� (� Vi ) 2

2( � i ) 2 (3.42)

where A i and � i correspond to the amplitude and width of the correlation, respectively.
As mentioned previously, we expectA i to reach 1 for the local correlation when

� Vi = 0. This is not exactly the case, although the value of the correlation clearly
exceeds 1.5. This can be explained by the fact that what we compute is an average over
atoms whose velocity di�erence is not exactly zero.

This e�ect can be easily highlighted by gradually reducing the velocity di�erence
thresholds, as depicted in Figure 3.11. Of course, this has the e�ect of decreasing the
signal-to-noise ratio, but successive �ts show that the amplitude A i tends toward 1 in
each case as the size of the integration volume in the transverse plane is reduced.

This validates our HBT-like experiment, which clearly demonstrates that the local
correlation tends toward 2 as � V approaches zero. We can then use this measurement to
determine the size of a mode using the width of the correlation function.
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Figure 3.10: Normalized local correlation functions. The g(2) function is calculated using
the velocity di�erence histogram algorithm. The histogram is calculated for both atomic beamsA
(left) and B (right) and in each direction, using a velocity di�erence threshold in the other axes
of � Vx;y = 2 mm.s� 1 and � Vz = 1 mm.s� 1. Dataset of 1012 experimental runs.

Again, it is important to note that both the width of the correlation and the amplitude,
depends on the integration range. Therefore, we will consider the width of the correlation
as the value toward which � i tends when � V approaches zero. Although it is expected
that the amplitude size of the correlation depends on the integration range in the other
directions (since uncorrelated atoms are taken into account if the velocity di�erence is too
large), it is not obvious to understand why this is also the case (to a lesser extent) for the
correlation function widths.
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Figure 3.11: E�ect of the integration thresholds on the correlation amplitude and width.
Each point corresponds to a 1D correlation function similar to that plotted in Figure 3.10, for
which a Gaussian �t was performed to determine both the width � i and the amplitude A i of the
g(2) function. The velocity di�erence threshold is scanned alongz for the correlation functions
along x and y, while it is varied along x and y for the correlation functions along z.

The results providing the sizes of the modes and the amplitudes for �V = 0 are
presented in Table 3.2, estimated from the curves in Figure 3.11. Slight di�erences are
observed between beamsA and B , but in the transverse plane, the correlation widths in
x and y for the same beam are identical.

Since we have estimated that the size of a mode is inversely proportional to the size
of the BEC in the corresponding direction, we should recover the ratio between the oscil-
lation frequencies from the ratio between the mode sizes. As seen above, the oscillation

100



CHAPTER 3. EMISSION OF MOMENTUM PAIRS OF ATOMS

Quantity Beam A Beam B

� x (mm.s� 1) 6:5 � 0:6 7:4 � 0:6
� y (mm.s� 1) 6:2 � 0:6 7:5 � 0:7
� z (mm.s� 1) 0:61� 0:06 0:65� 0:05

� x;y =� z 10:4 � 0:8 11:5 � 0:7

Ax 0:95� 0:08 1:00� 0:08
Ay 0:92� 0:08 0:96� 0:08
Az 0:93� 0:07 0:92� 0:13

Table 3.2: Local correlation results.Values obtained by when the velocity di�erence thresholds
tend towards zero.

frequencies! x;y = 2 � � 870 Hz and! z = 2 � � 78 Hz were estimated, giving a ratio of the
order of 11.2, which is compatible with the ratio found between the transverse correlation
width and the correlation width along z.

It is not particularly straightforward to determine the absolute size of a mode from
the width of the correlation. The analytical model suggested a sinc2-shaped correlation
resulting from many approximations. We performed Gaussian �ts to account for the
correlation width, but in some cases, it is empirically observed that Lorentzian �ts are
sometimes more appropriate for describing the correlation evolution. It should be noted
that there is an alternative way to determine the size of a mode by studying the pair
emission statistics, which will be addressed in section 3.4.1.

3.3.3 Cross-correlation

Figure 3.12: Cross-correlation map. The integration boxes are � Vz = 1 mm.s� 1, � Vx =
� Vy = 10 mm.s� 1. The calculation step is four times smaller than the size of a box, meaning that
the data is oversampled. Dataset of 1012 experimental runs.

Next, we can analyze the cross-correlation between pairs from beamA and those
from beam B . A zoom-in on the g(2) map presented earlier is shown in Figure 3.12,
clearly indicating a cross-correlation along an antidiagonal. For our future Bell test, it
is important to note that we observe a signi�cant cross-correlation signal over a range of
several mm.s� 1, indicating coupling between multiple modes. We can then use this source
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as a reservoir of correlated pairs that can be used in a four-mode Bell-type interferometer
in a Rarity-Tapster con�guration (this point will be presented in details in section 4.1.1).

The 1D cross-correlation signal (in the z direction) is depicted in Figure 3.13. In
practice, cross-correlation can also be discerned in other directions, but with a poor signal-
to-noise ratio that does not make it possible to conduct a quantitative analysis. However,
along the z direction, we typically obtain the curve shown in the �gure, where a clear
cross-correlation is observed, reaching up to 1:4 � 0:2 as � V 0 tends towards zero.

Figure 3.13: Normalized cross-correlation function alongz. The transverse velocity di�erence
threshold is � Vx;y = 3 mm.s� 1.

Theoretically, it was predicted that for a two-mode squeezed state, the cross-correlation
should rise to 2+1=hN i , wherehN i is the mean number of atoms per mode. However, we
never measure a signal greater than 1.5, and the cross-correlation is systematically weaker
than the local correlation. Data taken with a low atom population did not increase the
value of the observed correlation signal. This may suggest that the pair creation model
di�ers from the one presented previously, and that the system's state cannot truly be
approximated by a superposition of TMS states. However, it is worth noting that the
maximum value obtained in our case is higher than the values obtained by the team a few
years ago, which exhibited correlations on the order of 1.2.

Noticeably, the width of the cross-correlation is larger than the width of the local
correlation in all datasets we have taken, with di�erent population regimes. Here, we �nd
� z;crossed = 1 :21 � 0:08 mm.s� 1. The reasons behind this observed e�ect are not known:
is one mode actually correlated with multiple others? Is there a mechanism between pair
creation and detection that diminishes the amplitude of correlation but widens it?

It is possible that this e�ect is partly due to 
uctuations in the arrival time of the
condensate. Indeed, ifq0 varies, then the doublet (q1; q2) of correlated atoms di�ers. This
e�ect is not visible in local correlations (since q1 is always coupled toq1, regardless ofq0),
but it may be responsible for the broadening of the cross-correlation. A thorough analysis
was conducted by rescaling, for each experimental run, the velocity reference with respect
to the arrival time of the condensate in that particular run, rather than with respect to the
average arrival time as is the case in the analyses presented in this manuscript. However,
this rescaling of arrival times did not signi�cantly reduce the width of the cross-correlation.

Obtaining a cross-correlation signal weaker than local correlation signals prevents
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demonstrating a violation of the Cauchy-Schwarz inequality in the form:

g(2)
cross(� V 0 = 0) �

q
g(2)

loc;A (� V = 0) g(2)
loc;B (� V = 0) (3.43)

But is worth noting that it is possible to use an integrated version of this inequality,
where we consider not just the value of correlation at one point but rather the integral
of the correlation signal within a certain volume of momentum space. By comparing the
integrated cross-correlation value in a box to the localg(2) values in boxes of similar size, it
is possible to demonstrate a violation of the Cauchy-Schwarz inequality. The observation
of a cross-correlation wider than the local correlation supports this approach, which was
used in our team to exhibit a violation of the Cauchy-Schwarz inequality with atoms
emitted by four-wave mixing on collision halos[21]. Such a measurement with our data
will be the subject of section 3.5.2.
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3.4 Counting statistics

3.4.1 Detection probabilities

In this section, we will focus on the population distribution of the atomic beams emit-
ted by four-wave mixing. This study was conducted by the team a few years ago[128],
using a dataset in a regime with fewer atoms, as we will see in the following.

We have already mentioned that the �nal state of the system could be modeled as a
superposition of TMS states, where each pair of modes is described by:

j i =
p

1 � j � j2
+ 1X

n=0

� n jni p1
jni p2

(3.44)

where p1 and p2 are the coupled modes, and the squeezing parameter� is related to the
average populationhN i in each mode through

hN i =
j� j2

1 � j � j2
(3.45)

It is easy to determine the distribution associated with this process for only one
mode[129] by tracing the density matrix corresponding to the TMS state over the other
mode. One gets the probability P(n) of measuring n atoms in one mode, which writes

P(n) = (1 � j � j2)j� j2n =
hN i 2

(1 + hN i )n+1 (3.46)

which is a thermal distribution. Note that this thermal law remains valid when the detector
e�ciency � is not equal to 1: in this case, one has only to replace the average number of
atoms hN i by the averagedetectednumber of atoms � hN i .

Our detector's ability to detect single atoms enables us to highlight this distribution
law: for a dataset consisting of a certain number of experimental runs, we can count,
within a given box, the probability of obtaining n atoms. This even provides us with a
means to estimate the size of a mode, as we will observe a thermal distribution if the size
of the box is smaller or equal to the size of one mode.

We can even go further by examining the statistical distribution for boxes larger than
the size of a mode. Indeed, it is possible to demonstrate that the distribution law obtained
by considering an integration volume containing m modes of identical mean number is
given by[130]

Pmultimode (n) =
�( n + m)

�( n + 1)�( m)

�
1 +

m
hN i

� � n �
1 +

hN i
m

� � m

(3.47)

where � is the Euler Gamma function. Noticeably, this distributions tends to a Poisson
distribution when m is large

PPoisson(n) =
hN i n

n!
e�h N i (3.48)

This suggests that in a large momentum volume the counting events are no more correlated.

The results are presented in Figure 3.14 for the same dataset as before. The distribution
statistics were calculated within a box of transverse size �Vx;y = 12 mm.s� 1 and of size
along z successively equal to �Vz = 1, 3, and 10 mm.s� 1. The box was centered on
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Figure 3.14: Counting statistics for di�erent boxes sizes. For the entire dataset, we determine
the number of occurrences for whichn atoms were detected in a given momentum box, and divide
by the total number of experimental runs. The result is averaged over two boxes of the same
size, juxtaposed along thez-axis so that they have the same average population. The transverse
size of the box is 12 mm.s� 1. The size of the box alongz is 1 mm.s� 1 (top), 3 mm.s� 1 (middle),
10 mm.s� 1 (bottom). The data are compared with the expected theoretical distribution laws for a
similar mean number of atoms with no adjustable parameter. Dataset of 1012 experimental runs.

the peak density1. The experimental results are compared with thermal, Poissonian, and
multimode distribution laws in the last two cases, where we took respectivelym = 3
modes andm = 10 modes. These are not �ts but theoretical laws that depend solely on

1 In reality, for better statistics, we averaged over two successive boxes with similar average populations.
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the average number of atoms detected in the box, which we took as a �xed parameter in
each case.

We observe that the results are consistent with a mode size of 1 mm/s along thez-axis
and 12 mm/s along the x and y axes. A clear thermal distribution law is observed when
the size of the box �ts the size of a mode, while the multimode law matches well the ex-
perimental data when the degeneracy parameterm equals the number of boxes taken into
account. Therefore, this is a strong evidence that the process is characterized by a thermal
distribution law. The ratio between the transverse and longitudinal sizes of the mode is
similar to what we estimated by studying the width of the local correlation function.

From these results, we can easily estimate the number of atoms per mode in each beam
as well as the total number of emitted modes by counting the number of atoms in a box of
the size of one mode, whose position is scanned. The results are presented in Figure 3.15.
We �nd a maximum detected atom number per mode of around 1.7, which is ten times
larger than the average number measured by the team in 2019 (0.158). At that time, the
detector had a quantum e�ciency estimated at 25%, while it is estimated at 50% with the
MCP currently in place in the experiment. The \real" population in our case is thus on
the order of 3.4 atoms per mode, compared to 0.6 in the dataset studied in reference [128].
We thus observe that the pair creation process remains thermal even for a larger number
of atoms.

Figure 3.15: Mean population per mode. Number of atoms in a box of 1 mm.s� 1 along z and
12 mm.s� 1 along x and y.

Furthermore, the multimode character of the source is particularly highlighted when
comparing the width of the population density envelop with the size of one mode: we
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can observe numerous modes in thez direction, and around 5 modes in the transverse
directions. However, it should be noted that the population per mode decreases rapidly if
the box is not located at the density peak.

3.4.2 Joint detection probabilities

Of course, the distribution statistics of atoms in each beam are expected to be cor-
related. The formula of the TMS state directly provides access to the joint detection
probability, which is expressed as:

8
><

>:

P(n; n) = (1 � j � j2)j� j2n =
hN i 2

(1 + hN i )n+1 = P(n)

P(n; m 6= n) = 0

(3.49)

For a TMS state, if there are n atoms in a mode, there are necessarilyn atoms in
the coupled mode. This statistic can be compared, for example, to that given by two
independent thermal processes, given by

Pthermal (n1; n2) =
hNA i 2

(1 + hNA i )n1+1

hNB i 2

(1 + hNB i )n2+1 (3.50)

or by the statistic arising from two independent Poisson processes

PPoisson(n1; n2) =
hNA i n1

n1!
e�h NA i hNB i n2

n2!
e�h NB i (3.51)

where hNB i and hNB i are the mean number of atoms involved in each process. These
distributions laws are plotted in Figure 3.16 for a mean population ofhN i = 3 :4.

Figure 3.16: Joint counting statistics. Theoretical joint probabilities of measuring n1 atoms
in a given mode andn2 atom in a second mode, in the case where the modes are coupled modes
of a TMS (left), independent thermal modes (middle), independent Poissonian modes (right).

However, we must take into account the e�ciency � < 1 of our detector. For the
Poisson and thermal distribution, we only have to replace the absolute number of atoms
by the detected number of atoms, so the behavior of the distribution will not change. On
the contrary, this imperfection of the detector will broaden the joint probability pro�le of
the TMS state: even if we detect n atoms in one mode, we may detectn + 1 or n � 1
atoms in the other mode (and so on) because not all atoms are always detected.
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In his thesis, Q. Marolleau[41] derived the expression giving the joint probability of
detection for a TMS state and a detector of quantum e�ciency � , which is expressed as:

P(n1; n2 � n1) = (1 � j � j2)j� j2n1 � n1+ n2 (1 � � )n1 � n2

�
�

n1

n2

�

2F1
�
n1 + 1 ; n1 + 1 ; n1 � n2 + 1; (1 � � )2j� j2

� (3.52)

where
�

n1

n2

�
is a binomial coe�cient and 2F1 is a hypergeometric function de�ned, for

jzj < 1, by

2F1(a; b; c;; z) =
1X

n=0

a�nb�n

c�n

zn

n!
(3.53)

with z�n is the rising factorial, such that

z�n = z(z + 1)( z + 2) � � � (z + n � 1) (3.54)

Figure 3.17 shows various joint probability distributions for di�erent values of � (for
an average population equal to 3.4 atoms per mode) and shows the broadening of the
signature diagonal of the TMS state.

Figure 3.17: Joint counting statistics for two coupled modes of a TMS state, for di�erent
quantum e�ciencies of the detector. The total average population equals 3.4.

The creation pair datasets allow us to experimentally access this quantity, although
a lot of experimental runs are required to have a clear measurement. We choose two
boxes, labeled 1 and 2, each the size of one mode, centered on speeds which exhibited
cross-correlation on the correlation function analysis. Then, we count the number of
occurrences where we simultaneously measuren1 and n2 atoms, and divide the result by
the total number of experimental runs.

The result is shown in Figure3.18 and compared to the expected joint distribution for
two independent Poisson distributions and for a TMS state with a quantum e�ciency of
0.5, in both cases with an average detected population of 1.7. Note that since we only
have a thousand experimental runs, only the most populated points are accessible as the
others are highly improbable.

The distribution obtained experimentally does not allow for a clear distinction between
the distributions. The overall appearance resembles that of a Poisson distribution, but
P(0; 0) is the most populated, like for the TMS state. The low statistics do not allow for
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Figure 3.18: Measured joint counting statistics in boxes of the size of a mode (upper left),
compared to the expected joint distribution statistics for a TMS state with a quantum
e�ciency of 50% (upper right), independent thermal processes (lower left) and independent
Poissonian processes (lower right). The detected average population is 1.7.

observing additional points on the diagonal, as expected for a TMS state.

In order to increase sensitivity to more atoms, an alternative approach involves consid-
ering larger boxes and averaging the joint detection measurements over several consecutive
boxes. The expected outcome is no longer the distribution of a TMS, but rather that of
a multimode sample characterized by a distribution 3.47 for one mode. However, this for-
mula has not been generalized for two output modes at an imperfect detector, so there is
no theoretical model that we know of to match the expected joint measurements analysis.
Instead, a comparison of the experimental results can be made with the joint distributions
obtained by averaging several TMS and Poissonian distributions in boxes whose popula-
tion is equal to those measured experimentally. The expected theoretical behavior of the
joint distribution should lie between the two.

We typically get the result shown in Figure 3.19, computed for 11 consecutive boxes
(along z) with sizes of � Vz = 7 mm.s� 1 and � Vx;y = 12 mm.s� 1, which correspond to
seven modes.

The obtained result indeed exhibits a trend that lies between the TMS state and the
Poisson distribution. The width of the distribution leans more towards that given by
Poisson, which could be explained by the fact that we considered a box that contains
multiple modes or by a potential overestimation of the quantum e�ciency. Nevertheless,
we still have a non zero probability of measuring atoms along a diagonal trend for high
values of n1 and n2, suggesting that we are indeed observing a stronger correlation than
that expected for two independent Poissonian processes.

A more quantitative analysis, along with datasets containing more experimental runs,
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Figure 3.19: Measured joint counting statistics in 11 boxes of the size of 7 modes (left),
compared to the expected equivalent joint distribution statistics for an independent Poisso-
nian process (center), and a TMS state with a quantum e�ciency of 50%. The theoretical
pro�les are calculated by averaging the joint statistics for processes with the same average
population.

is necessary to further pursue this study.

3.5 Towards non classical correlation e�ects

3.5.1 Sub shot-noise variance

As mentioned in the �rst chapter, it is possible to highlight stronger correlations from
TMS states than what could be observed with a classical system.

A �rst approach involves highlighting sub-Poissonian variance, also called sub-shot
noise variance. Speci�cally, we study the variance of the di�erence in the number of
detected atoms in two di�erent regions A and B of momentum space, normalized by the
mean number of detected atoms:

~V (� N ) =
h� N 2i � h � N i 2

hNA + NB i
(3.55)

with � N = NA � NB . For a classical source, this quantity can not go below 1.
For a TMS state, for which there are consistently as many atoms in one mode as in

its twin mode, this variance is strictly zero when counting the atoms received in a box of
the size of one mode with a perfect detector. However, in practice, one must again take
into account the quantum e�ciency of the detector. In this case, the normalized variance
no longer drops to zero.

In order to account for the imperfect detection e�ciency, one often models the losses
as an additional beam splitter placed before a perfect detector (Figure 3.20). The output
mode â0 can be expressed as a function of the input mode ^a, using

�
â0

â00

�
=

� p
�

p
1 � �

�
p

1 � �
p

�

� �
â
Ô

�
(3.56)

where Ô designates the vacuum operator at the other input of the beam splitter. The
expression of the annihilation operatorâ0 is therefore

â0 =
p

� â +
p

1 � � Ô (3.57)
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Lossless detector

Input mode

Losses

â

â0

â00

Ô

Figure 3.20: Model of an imperfect detector. The atoms are sent to one of two input ports of
a beam splitter, while the other input is the vacuum operator. The beam splitter re
ects a portion
of the input atoms to an output mode â00where they are lost and thus not measured, while the
remaining portion of atoms (mode â0) heads towards a perfect detector which counts all of them.

from which we get:
hN̂ 0

A i = ĥa0ŷa0i = � ĥayâi = � hN̂A i (3.58)

and
hN̂ 02

A i = � 2 hN̂ 2
A i + � (1 � � ) hN̂A i (3.59)

By applying the same reasoning to the detection the atoms from regionB , we also get

hN̂ 0
A N̂ 0

B i = � 2 hN̂A N̂B i (3.60)

One can then determine the variance of the number di�erence betweenA and B , which
writes

V (N̂ 0
A � N̂ 0

B ) = (1 � � )(hN̂ 0
A i + hN̂ 0

B i ) (3.61)

We observe that the normalized variance is thus equal to 1� � . For � = 1, we recover the
limit ~V = 0. For a quantum e�ciency detector of 50%, we therefore expect this normalized
variance to decrease to 0.5. In 2010, the team demonstrated sub-shot noise variance from
pairs of atoms emitted by four-wave mixing on collision spheres[78]. By taking increasingly
smaller diametrically opposed boxes, the normalized variance decreased to 0.75, which was
consistent with the quantum e�ciency of the detector then estimated at 25%. This is the
kind of e�ect we want to highlight.

3.5.2 Cauchy-Schwartz violation

An equivalent formulation of obtaining sub-shot noise variance is the observation of a
violation of the Cauchy-Schwarz inequality. As we have seen, we never observe a cross-
correlation greater than the local correlation; however, we can use an integrated version
of the inequality[21], which can be expressed as:

�g(2)
cross �

q
�g(2)

loc;A �g(2)
loc;B (3.62)

where �g(2) are average values ofg(2) (� Vz) integrated over momentum boxes of the same
size:

�g(2) =
Z

V
d3V g(2) (� V ) (3.63)
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As we have seen, the algorithm that computes the value ofg(2) in boxes directly
provides the corresponding values. In practice, we compute the quantity:

C =
�g(2) (Vz1 ; Vz2 )

p
�g(2) (Vz1 ; Vz1 )�g(2) (Vz2 ; Vz2 )

=
h: N1N2 :i

p
h: N 2

1 :i h: N 2
2 :i

(3.64)

where �g(2) (Vz1 ; Vz2 ) is the value of the normalized correlation function between two boxes
centered on vertical speedsVz1 and Vz2 . N1 and N2 are the atoms counted within these
two boxes. If C > 1, then the cross-correlation is stronger than the local correlations,
indicating a violation of the inequality.

The results of the Cauchy-Schwarz violation analysis will be conducted jointly with
those of the normalized variance, as they represent two equivalent formulations for high-
lighting quantum correlations, yielding similar outcomes.

3.5.3 Experimental results

First, we can plot maps of the normalized variance and the Cauchy-Schwarz coe�cient,
de�ned as a function of two boxes centered on two velocitiesVz1 and Vz2 that are scanned
over the momentum space. The results are presented in Figure 3.21 and exhibit similar
outcomes in both cases.

Note that the dataset presented here is di�erent than the one analyzed before which
does not exhibit any sub-shot noise variance or Cauchy-Schwarz violation, as we will
explain in the following.

Figure 3.21: 2D maps of normalized variance and Cauchy-Schwarz coe�cient.The size of
a momentum box is � Vz = 7 mm.s� 1 and � Vx;y = 30 mm.s� 1. In each box, we calculate both the
normalized variance ~V(Vz1 ; Vz1 ) (left) and the Cauchy-Schwarz ratio C(Vz1 ; Vz1 ) (right). The shot
noise is not removed from theg(2) calculation for the Cauchy-Schwarz ratio, since this process is
not trivial when oversampling.

Along the diagonal, the normalized variance naturally tends towards zero since we are
comparing the di�erence between two similar boxes. We observe a clear e�ect of cross-
correlation along the anti-diagonal, where the normalized variance descends below 1. It
is noteworthy that this e�ect is observed across the entire anti-diagonal, not just at the
peaks of density. This con�rms that we have a highly multimode source with correlations
extending beyond high-density zones.

It is also worth mentioning that these data were obtained with a dataset containing
fewer atoms per mode (on the order of 0.2 detected atoms per mode), as we never observe
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a sub-shot noise variance when the population is high. As the population decreases (which
can be achieved by reducing the duration of the lattice), we begin to detect sub-shot noise
signals at the extremity of the density peaks, in regions of low density, and eventually
across the entire anti-diagonal, as shown in the Figure 3.21. This highlights that the
model asserting the �nal state induced by four-wave mixing is a superposition of TMS
states is a perturbative model: if the population is too signi�cant, this assumption cannot
be maintained. Speci�cally, we cannot demonstrate correlations stronger than classical
when the population is too high. In order to demonstrate a violation of Bell's inequalities,
it will therefore be necessary to work with a set of atoms with few atoms per mode, typ-
ically with the population that allowed the observation of this sub-Poissonian variance.
In the next chapter, we will demonstrate criteria regarding the population per mode to
observe a violation of Bell's inequality with TMS states.

To observe such a signal, it was necessary to choose boxes signi�cantly larger than
the size of a mode (� Vz = 7 mm.s� 1, � Vx;y = 30 mm.s� 1). This was also the case in
the data from 2015 presented by R. Lopes in his thesis[115] and is not fully understood
to date. Furthermore, the variance does not decrease to 0.5 as expected with a quantum
e�ciency detector of 50%. It is uncertain whether this implies that the quantum e�ciency
of the MCP is lower than expected because it aligns with observations using correlation
functions: the observed cross-correlations are not as strong as expected. This could be
due to excessive averaging e�ects, to an unidenti�ed mechanism that weakens correlations
between pairs, or to the fact that even with a low population the atom source is not exactly
a superposition of TMS states.

The map displaying the Cauchy-Schwarz coe�cient exhibits a similar pattern: a vio-
lation of the Cauchy-Schwarz inequality is discernible along the anti-diagonal. Note that
the diagonal should be equal to 1, but this is not the case as we did not remove the shot
noise term, which is a non trivial operation when oversampling.

Figure 3.22: 1D normalized variance and Cauchy-Schwarz coe�cient. The size of a mo-
mentum box is � Vz = 7 mm.s� 1 and � Vx;y = 30 mm.s� 1. One box is �xed, while the position of
the other is scanned. The error bars are evaluated by bootstrapping.

One can also plot 1D curves with the same algorithm: a box is centered on a velocity
Vz1 , and we calculate the value of the normalized variance and the coe�cientC relative
to a box centered on a velocityVz2 , whose position is scanned. The results are shown in
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Figure 3.22 for Vz1 = 28 mm.s� 1 (in the pair's frame), corresponding to the density peak.
The results con�rm that we obtain sub-shot noise variance, which decreases to 0.9 when
the scanned box is centered on� 28 mm.s� 1, con�rming the strong correlation between
the two. The error bars, estimated by bootstrap, unequivocally demonstrate the quantum
nature of the correlation.

Despite the aforementioned points, we have successfully and reproducibly demon-
strated sub-shot noise variance and a violation of the Cauchy-Schwarz inequality, which
are signatures of a process with purely quantum correlations. Therefore, there is hope for
the realization of a Bell test.
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CHAPTER 4. INTERFEROMETER THEORY: FROM BRAGG DIFFRACTION TO BELL TESTS

In this section, we will introduce the Bell interferometer that we aim to implement.
Previous chapters have focused on the source of twin atoms, emitted by four-wave mixing
from a Bose-Einstein condensate. Subsequent chapters will speci�cally focus on the inter-
ferometric sequence itself, which will be executed using Bragg mirrors and beam splitters
that ensure the coherent transfer of momentum between the modes involved in the inter-
ferometer. The ultimate goal is to conduct a Bell inequality test to con�rm or refute the
predictions of quantum mechanics, which anticipates a sinusoidal oscillation of the Bell
correlator as a function of a phase di�erence between the Alice and Bob loops of the inter-
ferometer. The experiment has a dual purpose: to enable a precise control of this phase
and to ensure that the contrast of the two-particle interference is su�cient to exhibit a
violation of the Bell inequality. We will demonstrate that the interferometer con�guration
that we chose o�ers inherent advantages in terms of contrast, but it requires a meticulous
control of the phase involved in the interferometer as a function of the momentum class.

This chapter is divided into �ve parts:

ˆ The �rst section outlines the principle of the Bell interferometer with atoms and the
con�guration we chose, compared to another one already reported in the literature.

ˆ The second part provides a theoretical description of Bragg di�raction, which will
be used to create atom separators and mirrors.

ˆ The third describes how to theoretically address the phase shifts involved in atomic
interferometers, considering especially the phase imprinted on the atoms by the
Bragg pulses out of resonance.

ˆ In the fourth part, the results of the previous section are applied to the well-known
case of a Mach-Zehnder interferometer as an example.

ˆ The �nal part applies the results to the case of the Bell interferometer. The objective
is to determine the phase involved in our Bell test, taking into account the non-
resonant phase shifts, within a model where the wave functions of the atoms are
treated as plane waves.

4.1 Description of the Bell interferometer

4.1.1 Principle

The design of the interferometer we aim to implement is inspired by the one used
by Rarity and Tapster, who conducted a Bell inequality test with momentum entangled
photons[12], as outlined in Chapter 1. In our case, photons are replaced by atoms, there-
fore two major elements di�er. Firstly, mirrors and beam splitters for atoms consist in
performing two-photon transitions that transfer momentum to atoms. Secondly, a method
is needed to independently control the phase imposed on the loopA of the interferometer
and the phase on the loopB . In the Rarity and Tapster's scheme, a phase plate provided
such a phase control. Here, we will see that the phase imprinted by the Bragg beams on
the atoms achieves this phase control.

The scheme of the interferometer is shown in Figure 4.1 in the falling frame, where
the trajectories of the atoms are linear. The atoms are emitted from the BEC by four-
wave mixing at a time that will be considered as the reference timet = 0, at which the
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Figure 4.1: Schematic representation of the Bell interferometer, in the falling frame.The
modes (q;� p) and (p; � q) are coupled pairwise by Bragg di�raction, forming loops A and B of the
interferometer. For each loop, the beam splitter imparts a speci�c phase onto the atoms.

trap is switched o�. From this moment, the atoms are in free fall. Although our pair
source is largely multimode (as seen in Chapter 3), only four modes are necessary for the
implementation of the Bell interferometer. Indeed, these two pairs of atoms will, according
to quantum mechanics, exhibit stronger correlations than what could be obtained with
any classical model. In the following, we will only represent these two pairs of momenta,
since our detector allows us to perform post-selection to focus only on these speci�c modes.

Let us consider a doublet of correlated modesp0 and � p0 (with opposite momenta in
the lattice frame), whose momentum di�erence corresponds to the Bragg momentumpB

transferred to the atoms by a Bragg two-photon transition. This implies that during a
Bragg beam splitter or mirror, these two modes will interchange some or all of their pop-
ulations. In practice, we will ensure that modesp0 and � p0 correspond to the maximum
population of emitted pairs by adjusting the frequency of the lattice (cf section 3.2.2). As
showed in Figure 4.2, due to the properties of the source, the modes involved in the Bell
interferometer are pairs of correlated modes, denoted as (p; � p) on one hand and (q;� q)
on the other, symmetric with respect to the doublet (p0, � p0), such that:

8
>>>><

>>>>:

p = p0 + � p

q = p0 � � p

� p = � p0 � � p

� q = � p0 + � p

and

8
><

>:

p0 = � p0 + pB

p = � q + pB

q = � p + pB

(4.1)

where � p is larger than the size of a mode. Note that the existence �p such that a
quadruplet (� p; � q; q; p) veri�es equations 4.1 is not evident a priori , but is due to the
symmetry properties of our multimode source.

The input state is therefore:

j in i =
1

p
2

(j� p; pi + e i � 0 j� q; qi ) (4.2)
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� p � q q p

B

A
-p0 p0

p

Figure 4.2: Schematic representation of the momentum modes involved in the interfer-
ometer. The modes are depicted by Gaussians within a density envelope. We are working in the
pair's reference frame, meaning that two modes of opposite momenta are pairwise correlated by
the pair creation process. The Bragg pulses couple modes� p and q (loop A) and � q and p (loop
B ).

where � 0 is a phase between the correlated doublets which depends on the pair creation
mechanism, and that we will assume to remain the same over many repetitions of the
experiment. It may depend on the considered quadruplet, and therefore onp and q.

This two-particle four-mode state is the coherent superposition of a state for which
one atom is in modep while the other in the mode � p, and a state for which one atom is
in mode q while the other in the mode � q.

At time t1, a Bragg mirror is applied. Modes� p and q are coupled by Bragg di�rac-
tion, as well as modesp and � q. This con�guration forms two loops in the interferometer,
labeled A and B , respectively (Figure 4.1). In both cases, the trajectories of the modes
intersect at the same momentt2 at which a Bragg beam splitter is applied. The overlap
between the wavepackets of each modes will result in a two-particle interference. It is
important to note that each loop of the interferometer involves two modes that do not
belong to the same pair.

In order to show that this interferometer should theoretically lead to a violation of
Bell inequality, let us calculate the output state of the interferometer. To do so, we will
treat each momentum doublet coupled by Bragg di�raction as a two-level system. A given
doublet is denoted as:

j i = C0 j ~pi + C2 j ~p + ~kB i =
�

C0

C2

�

fj ~pi ;j ~p+ ~kB ig
(4.3)

where C0 and C2 are the amplitudes related to the population of statesj ~pi and j ~p + ~kB i .
In our case, this basis is eitherA = fj� pi ; jqig or B = fj� qi ; jpig . By convention, we
will consider that the state with the lowest momentum corresponds to the 0th order of
di�raction.

The input state j in i is therefore

j in i =
1

p
2

��
1
0

�

A



�
0
1

�

B
+ e i � 0

�
0
1

�

A



�
1
0

�

B

�
(4.4)
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As we will demonstrate later in the manuscript, for a given momentum doublet (labeled
D with D = A or B ), the transfer matrix of a beam splitter between two resonant modes
can be written

Û(D )
S =

1
p

2

�
1 iei � D

ie� i � D 1

�
(4.5)

where � D is the phase di�erence between the two lasers used for the two-photon transfer
involved in the loop D = A or B 1. This phase is imprinted on the atoms, meaning that the
phase di�erence between the lasers beams will lead to an equal phase di�erence between
the re
ected atoms and the transmitted ones. Similarly, the evolution matrix of a mirror
is

Û(D )
M =

�
0 iei � 0

D

ie� i � 0
D 0

�
(4.6)

In the interferometer, after the two Bragg pulses, the output state is

j out i = Û(A ) 
 Û(B ) j in i (4.7)

with
Û(A ) = Û(A )

S Û(A )
M and Û(B ) = Û(B )

S Û(B )
M (4.8)

Given that

Û(D ) =
1

p
2

�
� ei( � D � � 0

D ) iei � 0
D

ie� i � 0
D � ei( � 0

D � � D )

�
(4.9)

the output state can be easily determined, and we �nd2

j out i =
1
2

h
� i

�
ei( � B � � 0

B + � 0
A ) + e i( � 0+ � A � � 0

A + � 0
B )

�
j� p; � qi

+
�

� ei( � 0+ � 0
B � � 0

A ) + e i( � B � � 0
B + � 0

A � � A )
�

jq;� qi

+
�

ei( � 0
B � � B + � A � � 0

A + � 0 ) � ei( � 0
A � � 0

B )
�

jp; � pi

� i
�

ei( � 0
A � � A � � 0

B ) + e i( � 0+ � 0
B � � B � � 0

A )
�

jp; qi
i

(4.10)

Let us assume that the Bragg mirror acts similarly on atoms from loops A and B.
Speci�cally, we have � 0

A = � 0
B , so the previous expression simpli�es to

j out i =
1
2

h
� i

�
ei � B + e i( � 0+ � A )

�
j� p; � qi +

�
� ei � 0 + e i( � B � � A )

�
jq;� qi

+
�

ei( � � B + � A + � 0 ) � 1
�

jp; � pi � i
�

e� i � A + e i( � 0 � � B )
�

jp; qi
i (4.11)

From this expression, we can calculate the joint probabilities of detection, that is to say
the probabilities to measure, after the beam splitter, two atoms in di�erent modes. Note

1For now, we only consider this phase term, without taking into account the phase shifts due to the
position of the center of mass, the detuning, or the wave packet propagation.

2Using
�

a
b

�

fj� pi ; j qig



�

c
d

�

fj� qi ; j pig

= acj� p; � qi + ad j� p; pi + bcjq;� qi + bdjq; pi
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that the joint probabilities P(p; � q) and P(� p; q) of �nding two atoms within the same
loop of the interferometer are zero, which is why the loopsA and B are not interferometers
themselves. If we consider the joint probabilities involving modes from each loop, we have:

P(p; q) = j hp; qj out i j 2 =
1
2

cos2
�

� A � � B

2
+

� 0

2

�
(4.12)

P(� p; � q) = j h� p; � qj out i j 2 =
1
2

cos2
�

� A � � B

2
+

� 0

2

�
(4.13)

P(p; � p) = j hp; � pj out i j 2 =
1
2

sin2
�

� A � � B

2
+

� 0

2

�
(4.14)

P(q;� q) = j hq;� qj out i j 2 =
1
2

sin2
�

� A � � B

2
+

� 0

2

�
(4.15)

We can see that these joint probabilities of detection oscillate as a function of the phase
di�erence � A � � B (for a given value of � 0, which, again, we assume to remain constant
over the realizations of the interferometer). Note that there is no interference e�ect when
looking at the single atom detection probabilities, which are constant:

P(p) = P(p; q) + P(p; � p) =
1
2

(4.16)

The oscillation of the joint probabilities of detection is a quantum two-particle interfer-
ence which can lead to a violation of Bell inequality. A standard version of this inequality
(called the CHSH version)[40] consists in de�ning a Bell correlatorE , as

E = P(p; q) + P(� p; � q) � P (p; � p) � P (q;� q) (4.17)

Using the previous expressions for the probabilities, we get

E(� A ; � B ) = cos (� A � � B + � 0) = cos � (4.18)

We expect that the interferometer leads to an oscillation of the Bell correlator as a
function of � A � � B . This requires us to be able to control the di�erence of imprinted
phases between the loopsA and B . This crucial point will be discussed in detail later in
the manuscript. The unknown value of � 0 adds a phase o�set in the oscillation ofE .

By choosing speci�c values of� A � � B , and therefore tuning �, it is possible to obtain
a Bell parameter S greater than 2:

S = E
�

� (1)
A ; � (1)

B

�
� E

�
� (1)

A ; � (2)
B

�
+ E

�
� (2)

A ; � (1)
B

�
+ E

�
� (2)

A ; � (2)
B

�
= 2

p
2 (4.19)

where we took� (1)
A � � (1)

B = 45°, � (1)
A � � (2)

B = 135°, � (2)
A � � (1)

B = 315° and � (2)
A � � (2)

B = 45°.
The interferometer therefore should lead to a violation of Bell inequality according to

the laws of quantum mechanics.

4.1.2 Assessment of assumptions and visibility of the Bell correlator

At this stage, let us highlight the crucial assumptions made during the previous proof
of principle. It is essential to assess their validity in order to estimate the deviation from
the ideal model that would arise in our experimental setup.
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Input state

The �rst hypothesis to discuss is that of the initial state. It was considered that the
initial state could be written as jp; � pi + e i� 0 jq;� qi . However, as seen in the previous
chapter, the state resulting from the four-wave mixing is more appropriately described as
a superposition of two-mode squeezed states, which can be expressed particularly in the
following form:

j in i =

 
p

1 � j � j2
+ 1X

n=0

� n jni p jni � p

!




 
p

1 � j � j2
+ 1X

n=0

� n jni q jni � q

!

(4.20)

where we restrict ourselves to the mode pairs involved in the Bell interferometer.� and
� are related to the average population per mode through the following relationships:

hni p =
j� j2

1 � j � j2
and hni q =

j� j2

1 � j � j2
(4.21)

We now assume that the population of modesp, � p, and q, � q is the same (in practice,
the frequency of the pair network is chosen to make this the case) so thatj� j = j� j. As
we can see, when the population tends toward zero, the initial state can be rewritten by
retaining only the �rst-order terms in � , such as:

j in i =
hni! 0

(1 � j � j2)
h
j0i + �

�
j1i p j1i � p + e i� 0 j1i q j1i � q

�i
(4.22)

with � 0 = arg( �=� ). By omitting the vacuum part, we recover the Bell state used in the
previous section.

This demonstrates that the ideal case is approached when the population of the two-
mode squeezed states tends towards zero. Indeed, as it will also be demonstrated for the
HOM e�ect, our aim here is to exhibit a two-particle interference e�ect. Thus, the proba-
bility of having two particles in modes p and � p will inevitably lead to a reduction in the
visibility of this interference e�ect.

In practice, in order to exhibit a violation of Bell's inequality, experiments are con-
ducted iteratively. In each experimental cycle, the number of atomsNpi detected in each
mode pi is recorded. The joint probability P(p; � q) of detecting atoms in the modesp
and � q for instance are thus de�ned such that

P(p; � q) =
hNpN � qi

hNpN � pi + hNqN � qi + hNpN � qi + hNqN � pi
(4.23)

and so on forP(p; � p), P(q;� p) and P(q;� q).
These probabilities can be calculated analytically by taking the superposition of two-

mode squeezed states as the input state, as de�ned in equation 4.20, without truncating
the sum over Fock states. This yields[121] the expression for the Bell correlator in the
form:

E = V(hN i ) cos � with V (hN i ) =
1 + hN i

1 + 3 hN i
(4.24)

A visibility term V emerges that tends to reduce the amplitude of the Bell correlator
oscillation as the average populationhN i increases. Consequently, the maximum value of
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the Bell parameter S which can be achieved is

S = 2
p

2
1 + hN i

1 + 3 hN i
(4.25)

The graph of S(hN i ) is presented in Figure 4.3. When working with two-mode squeezed
states, one needs to operate within a speci�c population regime if the goal is to measure
a violation of Bell's inequality.

Figure 4.3: Visibility of the Bell parameter as a function of the mean population, for a
two mode squeezed input state.

In practice, to achieve S > 2, the oscillation amplitude of the correlator V (hN i )
must be greater than 1=

p
2, which corresponds to a population which needs to be lower

than 0:26.
The major challenge in experiments aiming to demonstrate a violation of Bell inequal-

ities is ensuring that the visibility of the signal is su�cient to surpass the classical limit
of S = 2. This requires the preparation of an initial state that closely resembles a Bell
state. In the case of TMS states, this implies working with a low population. However,
this choice will impact the signal-to-noise ratio, as operating below the population limit
of 0.26 atoms per mode means that more than three-quarters of the realizations will occur
without any atoms, thus not contributing to the useful signal.

Note that there are other forms of Bell inequalities than the CHSH inequality used
here[41][131], involving di�erent correlators, which can be exploited to enhance the visi-
bility of the associated Bell correlator.

Re
ectivity of the Bragg pulses

Another potential cause of a decreased visibility of the Bell correlator is a poor quality
of the mirror and Bragg beam splitter properties, meaning transition probabilities that
di�er from 100% for the mirror and 50% for the beam splitter. Analogous to optics, these
parameters are referred to as the \re
ectivity" properties of the Bragg pulses. In practice,
this involves expressing the Bragg transfer matrices in the form:

Û(D )
M ;S =

�
t r ei � D

r e� i � D t

�
(4.26)
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where r and t are re
ectivity and transmittivity coe�cients. We will show in a following
section of the chapter how to write the coe�cients r and t and their impact on the visibility
of the Bell correlator.

Regardless of the speci�c Bell experiment being conducted, this issue is common to
all atomic interferometers, which involve Bragg (or Raman) transitions whose resonance
depends on the momentum class. As the atom source has a certain momentum coherence
width, the re
ectivity of the pulses needs to remain high within a momentum range cor-
responding to the source width in order to optimize the signal. In our case, this requires
the re
ectivity of the Bragg pulses to be good at the scale of a momentum mode, which
determines the integration volume within which the atoms will be counted.

As we will see, Bragg transitions (unlike Raman transitions) enable di�raction towards
more than one di�raction order, in the case where the Bragg power is high, which may be
responsible for an additional re
ectivity decrease which needs to be avoided.

Same mirror but di�erent splitters for A and B

In the chosen con�guration for the interferometer, the decision was made to use the
same Bragg mirror for loops A and B , while two di�erent beam splitters need to be
performed. This has important implications for the constraints on the Bragg pulses.
Speci�cally, the momentum doublet involved in loop A does not have the same Bragg
resonance frequency as beam splitterB , since the resonance frequency depends linearly
on the momentum class.

This implies that the Bragg mirror's resonance width must be su�ciently broad to
e�ectively transfer atoms from doublet A and doublet B without a loss of re
ectivity.
For the mirror, the Bragg resonance must remain e�ective not just over the range of one
momentum mode but at least over a range of three momentum modes, considering that
the chosen modes� p; � q, p, and q are the neighboring modes of the doublet (p0; � p0)
(Figure 4.4).

� p � q q p

Bragg mirror

p

Figure 4.4: Schematic representation of the chosen Bragg transfer for the mirror.The
resonant range of the Bragg transfer is depicted in gray. The same pulse couples modes� p and q
of loop Aand modes� q and p of loop B .

Furthermore, we imposed the phase imprinted by the mirror on the atoms to be the
same for loopsA and B . We will show that this is actually not necessary, provided that
the phase di�erence betweenA and B imprinted by the mirror remains constant. Similar
to the re
ectivity, the phase must remain constant for a given mode, since we will average
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the measured joint probabilities over an integration range corresponding to the size of a
mode: if the phase varies too much within a mode, the Bell interference might vanish.

Regarding the beam splitter, the chosen con�guration is di�erent. In contrast to the
mirror, we aim to imprint di�erent phases on the atoms in loops A and B . Therefore,
it is necessary to make two distinct beam splitters. One possible approach would be to
align two di�erent sets of beams on the spatial regions where the atoms of loopsA and
B intersect since these regions are distinct. In practice, these two intersections are only a
few µm apart, making this approach technically very challenging in terms of beam waist
and alignment.

Instead, we will leverage the fact that doublets A and B have di�erent resonance
frequencies. This will allow us to use the same set of beams forA and B . The objective is
to ensure that these beams have two distinct resonance frequencies, and that the resonance
widths are su�ciently narrow to enable e�cient coupling of one doublet without a�ecting
the other (Figure 4.5). One could also apply this principle to make two resonant mirrors,
each interacting with either the atoms from loop A or B , in the event that the re
ectivity
obtained with a single mirror proves to be insu�cient.

Additionally, we must be able to control the relative phase imprinted between the
doubletsA and B . This is a crucial constraint, as this phase di�erence is the one involved in
the Bell correlator and plays the role of the control parameter of the Bell test. Addressing
this challenge is at the core of the design approach for the Bragg pulses, which will be
further detailed in the following sections of this chapter.

� p � q q p

Beam splitter B

Beam splitter A

p

Figure 4.5: Schematic representation of the chosen Bragg transfer for the beam splitter.
Two distinct beam splitters are actually applied, each resonant with a doublet: � p and q for
doublet A (in green), � q and p for doublet B (in red).

Note that, so far, we have only discussed the control of the phase di�erence� A � � B .
However, to perform a genuine Bell test in the sense of a test of quantum mechanics,
the formal demonstration presented in the introduction requires independent control of
both degrees of freedom, in our case the phases� A and � B . It will be shown later that
achieving such phase control is experimentally more demanding than controlling only the
phase di�erence. In the following, we will thus speci�cally focus on controlling the phase
di�erence between A and B .
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Multiplexing

It is worth noting that we can leverage the multimode nature of the pair source to
conduct multiple Bell experiments in parallel. If the Bragg coupling performance allows,
we could use not just a single quadruplet at a given �p, but several quadruplets for di�erent
values of � p. This would enable a form of multiplexing, where a single experimental
cycle involves conducting multiple Bell experiments, providing a signi�cant statistical
advantage.

However, averaging the results obtained with one quadruplet and those obtained with
another would not be feasible because the phase� 0 arising from the pair creation process
dependsa priori on the speci�c quadruplet considered. Thus, when varying the control
parameter � A � � B for a given quadruplet, the Bell correlator E = V cos(� A � � B + � 0)
oscillates with an initial phase that depends on the speci�c quadruplet under consideration.

Nevertheless, if we manage to observe distinct oscillations with di�erent initial phases
but with a su�cient oscillation amplitude, then it might be feasible to average the results.
This would only be meaningful in observing the oscillation of the Bell correlator, as during
a measurement of the Bell parameterS, the four sets of phases� A � � B leading to a
maximal S would vary depending on the momentum quadruplet. Let us highlight again
that implementing a multiplexing scheme requires maintaining good re
ectivity of the
Bragg mirrors and beam splitters over a momentum range that encompasses all involved
modes.

Additional phases and closure of the interferometer

Even when considering the nature of the quantum input state and the in
uence of the
momentum class on the re
ectivity and the phase imprinted on the atoms by the Bragg
pulses in the Bell interferometer, the previous model remains incomplete. Indeed, it does
not take into account any spatial e�ects. The e�ects neglected by this model are of various
kinds.

We have not yet accounted for the fact that in atomic interferometers, the phase im-
printed on atoms during the Bragg pulse is not solely equal to the phase di�erence between
the lasers, there is also a term corresponding to the product of the Bragg wavevector and
the center of mass of the atoms. This term is, in fact, at the heart of atomic interferometry,
as it enables the measurement of gravity in Mach-Zehnder-type gravimeters.

There is also an additional phase accumulated by the atoms during their free fall,
which depends on their position in the gravitational �eld, hence both their position and
momentum.

We will demonstrate that both these terms can be analytically calculated in simple
cases using a formalism involving wave packets evolving under the in
uence of propagators
that account for gravity and interaction with light.

We will see that these additional phases vanish in the case where the interferometer is
closed, that is to say when the duration between the mirror and the beam splitter is equal
to the duration between the emission of the pairs and the mirror, which gives, with the
previous conventions,t2 = 2 t1. This is the application time of the beam splitter for which
the wavepackets overlap, resulting in the best visibility of two-particle interference. This
idea is similar in other types of interferometers such as the Mach-Zehnder interferometer,
for example.
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In practice, several factors complicate the exact determination of the delay at which
to apply the beam splitter to close the interferometer.

ˆ Firstly, the pair creation process has a duration on the order of a few hundredµs.
Although this is a process with an exponentially increasing gain with the duration of
the optical lattice, leading to the expectation that most pairs are created towards the
end of the lattice application, it is not straightforward to pinpoint a precise moment
when the pairs are emitted (due to saturation e�ects of the four-wave mixing process,
for instance).

ˆ Secondly, the Bragg pulses have a �nite duration. Typically, in atomic interferom-
etry experiments, their duration remains small compared to the free propagation
durations of the atoms. However, if one considers the pulse duration (even assuming
that the emission time of the pairs is precisely known), should the time of applying
the beam splitter be referenced to the beginning, end, or middle of the mirror pulse?

To address these issues experimentally, it is possible to precisely determine the delay
of the beam splitter to close the interferometer by using the same source of pairs and the
same mirror, conducting another two-particle interference experiment involving only two
correlated momentum modes,p0 and � p0: the Hong-Ou-Mandel experiment. As men-
tioned in Chapter 1, such an experiment allows for one to determine conditions under
which two bosons are indistinguishable. By sending two bosons through a beam splitter
and by varying the beam splitter delay, one can identify the delay that achieves the best
overlap between the wave packets by counting coincidences between the modes. Quan-
tum theory predicts that the coincidence rate G(2) (p0; � p0) tends toward zero when the
interferometer is closed, at low population. A more detailed discussion of the HOM e�ect
will be presented in Chapter 6 of this manuscript, and a comprehensive presentation can
also be found in the thesis of R. Lopes[115], who reported the �rst HOM experiment with
atoms in our team.

Thus, a preliminary step in the implementation of the Bell interferometer will involve
conducting an HOM experiment, serving as temporal calibration to determine the timings
ensuring the closure of the interferometer.

Additionally, in the previous model, the Bragg beams are treated as plane waves. But
the wavefront of the Bragg beams can only be considered planar over a limited region
of space, essentially within a cylinder whose length corresponds to the Rayleigh length
and the radius to the beam waist. If atoms move away from this region, it can induce
a di�erential light shift and a�ect the re
ectivity of the pulses and the phase imprinted
on the atoms. This e�ect will be neglected in the following discussions, assuming that
the interferometer is implemented over a su�ciently short time for the atoms to remain
within a region where the wavefront is planar.

A few words about non-locality

In the �rst chapter, it was mentioned that a major contribution of Aspect was to es-
tablish a so-called \sensitive" experiment, capable of potentially violating Bell inequalities
while challenging the locality assumption of the EPR argument. In our experiment, the
two beam splitters are not separated by a spacelike interval. Indeed, considering pairs
p0 and � p0 emitted at speeds of 65 and 115 mm� 1 in the laboratory reference frame, we
can estimate the trajectories of the atoms involved in the Bell interferometer with a clas-
sical model. Assuming a velocity di�erence of� 3 mm.s� 1 relative to the HOM doublet,
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in�nitely thin Bragg pulses, and a typical free propagation time of 1.5 ms, we �nd that
the distance between the atoms from loopsA and B is on the order of 20µm at the �nal
beam splitter (Figure 4.6).

Figure 4.6: Trajectories of the atoms involved in the Bell interferometer in the laboratory
reference frame. The legend indicates, for the considered trajectory, the corresponding loop of
the interferometer as well as the successive momenta of the atoms.

Our experiment will not challenge the locality assumption, even if we achieve a setup
allowing independent control of the phases� A and � B . This is not the goal here. Nev-
ertheless, demonstrating a weak version of Bell inequalities would validate the principle
of Bell interferometers with atoms involving an external degree of freedom, paving the
way for next-generation experiments that could separate the beam splitters by a larger
distance to test the issues of locality.

Our goal in observing a violation of Bell inequality is that it is a strong evidence
of entanglement of the input state, which in itself would be a signi�cant result, since
observing a direct evidence of entanglement in massive particles entangled in momentum
is challenging, as discussed in section 1.4.2.

4.1.3 Comparison with another setup

In this section, we will compare our interferometric setup with another recently re-
ported in the literature that has observed an oscillation of the Bell correlator with a
visibility V = 0 :42 � 0:09. This Bell interferometer is described in the article \A Matter
Wave Rarity-Tapster Interferometer to Demonstrate Non-Locality"[94] published in 2022
by K. Thomas et al. from the He* BEC group at the Australian National University (Can-
berra). Similar to our team, they employ an experiment involving ultra-cold metastable
helium atoms detected by a Microchannel Plate. This article follows a theoretical proposal
published in 2015 by R. Lewis-Swan and K. Kheruntsyan[132].

The fundamental di�erence between our two experiments lies in the pair creation pro-
cess. In both cases, pairs are generated by four-wave mixing due to collisions in the
condensate. In our case, we manipulate the conservation of energy relation using the the
optical lattice's fundamental band to emit pairs along a vertical axis. In the experiment
reported by Thomas et al., on the other hand, pairs are created by collisions between two
condensates[77]. This phenomenon, discussed in the �rst chapter, involves using Bragg
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di�raction to create two condensates moving away from each other, thus generating pairs
of opposing momentum in the center-of-mass frame.

The originality here lies in the fact that the Bragg di�raction resonance is su�ciently
broad to allow the emission of two scattering halos: one between the initial BEC and the +1
di�raction order, and the other between the BEC and the -1 di�raction order (Figure 4.7).
This aspect di�ers from the initial proposal by Lewis-Swan and Kheruntsyan, who only
consider atoms from one scattering halo.

p0

p

q

q0

2~k

Figure 4.7: Schematic representation of the pair creation process used by Thomas et al.
for a Bell interferometer. The dark blue ellipses at the poles of the spheres represent the BECs.
A Bragg pulse applied just after the trap is turned o� allows the transfer of atoms from an initial
BEC (at the center) to two other BECs (at the top and bottom of the spheres). Collisions between
the clouds result, through four-wave mixing, in the emission of atom pairs on spheres whose center
is the center of mass of the two condensates. Two diametrically opposite modes of a sphere are
correlated modes.

The state produced by four-wave mixing results from the same interaction Hamiltonian
as the one used in the previous chapter, so the input state of the interferometer is, as in our
case, a superposition of TMS states. This imposes similar constraints on mode populations
to achieve good correlation properties, along with a good visibility of the Bell correlator.
The emitted pairs occur here in all three dimensions of space within a spherical shell. Such
a system has led to the observation of strong crossed correlations between pairs of opposite
momentum with high g(2) correlation functions[120][133] (up to 102 at low population) and
violations of the Cauchy-Schwartz inequality[133][21].

Here, two scattering halos are emitted and share a pole along the vertical direction
formed by the three BECs (this axis is de�ned by the Bragg transfer, which transfers to
the atoms some momentum in a speci�c direction).

The momentum modes involved in the Bell interferometer are described in Figure 4.7.
The idea is to take a pair of correlated modesp and p0 from the upper sphere and a pair
of modesq and q0 from the lower sphere, with opposite momentum in the initial BEC
reference frame, such thatq0 = � p and q = � p0. The input state is therefore:

j in i =
1

p
2

(jp; p0i + jq; q0i ) (4.27)

The authors do not take into account a possible quadruplet-dependent phase� 0 be-
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tween the two coupled modes, considering that this phase is the same for all quadruplets.
The Bell interferometer must involve two momentum doublets, each involving atoms

in modes that do not belong to the same correlated pair. The velocity di�erence along
the vertical axis between modesp and q is the same as the one between modesp0 and
q0. Therefore, these modes can be coupled pairwise by the same pair of Bragg beams. At
a time t1 after the emission of the pairs, a mirror Bragg pulse is sent to the atoms and
couplesp and q in the so-called Left loop, andp0 and q0 in the Right loop (Figure 4.8).
At time t2 a Bragg beam splitter pulse mixes the modes involved in each of these loops,
and then the atoms fall freely before being detected by the MCP.

p0

p

q

q0

p

q0

p0

q

Mirror

Mirror

Beam
splitter

Beam
splitter

Left
loop

Right
loop

Time
t0 t1 t2

Pairs
Emission Mirror Beam

splitter

Figure 4.8: Schematic representation of the Bell interferometer presented in Thomas et
al.[94]. A �rst Bragg pulse at t = t0 emits pairs of atoms in two collision halos. Then, a
mirror pulse is applied at t1 followed by a beam splitter pulse at t � 2. The diametrically
opposed atoms from the two spheres are thereby coupled by Bragg di�raction, forming a
Left loop for atoms with momenta q and p, and a Right loop for atoms with momenta p0

and q0.

By using the same notation conventions as in the previous section, where we expressed
a momentum doublet coupled by Bragg as a column matrix, the initial state j in i writes
as follows:

j in i =
1

p
2

��
0
1

�

L



�
0
1

�

R
+

�
1
0

�

L



�
1
0

�

R

�
(4.28)

where L = fj qi ; jpig and R = fj q0i ; jp0ig are the basis of the two loops.
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Notably, this state di�ers from the input state of our interferometer (equation 4.4).
Here, the �rst term of the sum involves two atoms that are in the highest momentum state
(p and p0) relative to its Bragg doublet, and the second term includes two atoms that are
in the lowest momentum state (q and q0). In our geometry, on the other hand, each term
involved one atom in the lowest momentum state and one atom in the highest momentum
state. This di�erence has a signi�cant consequence, because if we continue the calculation
as was done in the �rst part of this chapter, then we �nd that this time the joint detection
probabilities and the Bell correlator are expressed in the form:

P(p; q) = P(� p; � q) =
1
2

cos2
�

� L + � R

2

�
(4.29)

P(p; � p) = P(q;� q) =
1
2

sin2
�

� L + � R

2

�
(4.30)

where � L and � R are the phases imprinted by the lasers on the atoms from loopsL and
R respectively. We assumed that the phase imprinted by the Bragg mirror was the same
for each doublet. From these expressions we get

E = cos(� L + � R ) (4.31)

In this con�guration, the Bell correlator does not depend on the phase di�erence
imposed between the two loops, but on their sum. This di�erence lies in the geometry
of the created pairs relative to how modes are coupled by Bragg: the topology of the
interferometer is di�erent from ours (Table 4.1), it is not possible to go continuously from
one con�guration to another.

Con�guration Input state Bell correlator

Thomas et al.[94] j in i =
1

p
2

��
0
1

�

L



�
0
1

�

R
+

�
1
0

�

L



�
1
0

�

R

�
� L + � R

Our setup[93] j in i =
1

p
2

��
1
0

�

A



�
0
1

�

B
+

�
0
1

�

A



�
1
0

�

B

�
� A � � B

Table 4.1: Comparison between the two con�gurations of Bell interferometers. The in-
put state of each interferometer is given in the adapted basis for Bragg di�raction, such that
the top row of each matrix represents the state with the lowest momentum. In the geometry of
the interferometer by Thomas et al., L = fj qi ; jpig and R = fj q0i ; jp0ig , while in our con�gu-
ration, A = fj� pi ; jqig and B = fj� qi ; jpig . The sign between the two phases involved in the
interferometer is not the same in the two con�gurations.

The major advantage is that the same beam splitter can be applied to both loops
(� R = � L ). The Bragg beams are resonant with both doublets, selected to belong to the
equatorial plane of each of the two collision spheres. The phase control is performed by
a two-output RF generator sending a signal to two di�erent acousto-optics modulators
controlling the frequency of each Bragg beam.

The Bell experiment was performed for 9 values of the phase � = 2� L from a BEC
with 14(4) :104 atoms. The mode population ishN i = 0 :15[133], which should be e�cient
to exhibit a violation of Bell inequality for a two-mode squeezed state. The duration be-
tween each Bragg pulse is 240µs, and the intensity pro�les of the Bragg mirror and beam
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splitter are Gaussian-shaped. Their peak re
ectivity is 0.984. The results are given in
Figure 4.9 after averaging over momentum quadruplet located in the equatorial plane of
the scattering halos. Each data point corresponds to about 2900 experimental runs. The
authors emphasize that at the time of the Bragg splitter, the distance between the atoms
from each loop is 62.4µm, corresponding to about four times the correlation length of a
momentum mode.

Figure 4.9: Results of the Bell experiment conducted by the ANU team. Taken from [94].

The results show a signi�cant oscillation of the joint probabilities of detection as a
function of the global phase �, leading to an oscillation of the Bell correlator, but the
visibility of 0.42(9) does not make it possible to reach the value ofS for which a violation
of Bell inequality is observed, despite the low estimated mode population. The authors
�nd indeed S = 1 :1(1).

A model presented in the article takes into account the �nite momentum mode width
by modeling the second order function correlationG(2) as Gaussians. The model also
considers the e�ects of momentum box integration and detector resolution. This led to an
estimated visibility of the Bell correlator which depends on mode population, height and
width of the correlation between opposite momentum modes, along with integration bin
size and detector resolution, which are all experimentally accessible quantities. Neverthe-
less, these re�nements are not su�cient to explain the low measured visibility. The other
possibilities mentioned by the authors (Bragg pulse re
ectivity, false positives dark counts
on the MCP) to account for this low oscillation amplitude appear to have relatively minor
e�ects on the visibility of the Bell signal.

A major drawback of this interferometer, as we understand it, is its high sensitivity to
phase 
uctuations. As previously mentioned, it is the global phase that plays a role in the
Bell signal, i.e., the phase di�erence between the two Bragg laser beams. Since the two
beams do not have the same frequency and ultimately have a certain angle between them
(which determines the Bragg momentum ~kB ), there is inevitably a part of their path
where they are in a di�erent free space. Therefore, the slightest relative phase 
uctuation
between the two beams, typically caused by a mirror vibration on the path of one of
the beams, then appears with a factor of two in the Bell correlator, adding a signi�cant
averaging e�ect.

This e�ect can be estimated by averaging a cosine function within an integration range
corresponding to twice the typical estimated phase 
uctuation. The expected visibility for
a TMS whose mode population is 0.15 isV = 0 :79. In order to estimate the e�ect of phase
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uctuations, it is possible to the compute the averaged function hV cos � i as a function
of �, where h� � �i represents the average of the functionV cos � between � � � � =2 and
� + � � =2. By considering a typical phase 
uctuations between di�erent experimental
runs of � � = �= 2 rad, we �nd that the visibility decreases to V = 0 :50, which is close
to the measured value. Since the authors do not mention any e�ort on stabilizing or
measuring the phase from one experimental run to another, we think that this averaging
e�ect could be part of the reason why the measured visibility is not as high as expected.

Let us point out that this averaging e�ect cannot be explained by phase 
uctuations
of the laser itself, since the Bell correlator depends on the phase di�erence between the
phases of the two beams, so the possible phase 
uctuations of the laser cancel out.

The phase involved in our interferometer, on the contrary, depends on the relative
phase between the two loops� A � � B . Since we aim at using the same laser beams forA
and B , any phase 
uctuation between the two beams present for the atoms from loopA
is also present for the atoms from loopB , and this 
uctuation cancels out. This e�ect is
called common mode rejection and makes the interferometer we intend to perform more
robust to the various phase 
uctuations that could occur in a laboratory. Despite the
experimental challenges of designing di�erent beam splitters forA and B by exploiting
the fact that the doublets do not have the same resonance frequency, the advantage is
signi�cant in the quest to demonstrate a violation of Bell's inequality.

p0

q0

q

p

Figure 4.10: Schematic representation of the pairs involved in the Bell proposal by Lewis-
Swan et al[132]. The atoms coupled by Bragg are located at two latitudes within the same
collision halo. The correlated atoms arep and q0 = � p on one hand, andq and p0 = � q on the
other hand. p and q form the Left loop of the interferometer, while p0 and q0 form the Right loop.

In summary, the interferometer presented by Thomas et al. exhibited the oscillation of
the Bell correlator, but its visibility is not su�cient to claim a violation of Bell inequality.
One potential explanation for this visibility lower than expected is the signi�cant sensi-
tivity of the interferometer to phase 
uctuations. This e�ect is inherent to the chosen
interferometer geometry, especially the involved momentum modes, for which the Bell
correlator depends on the global phase. It is worth noting that the initial proposal[132],
on which the authors rely, has a di�erent geometry, with pairs originating from a single
scattering halo (Figure 4.10). In this case, the interferometer's input state is

j in i =
1

p
2

��
0
1

�

L



�
1
0

�

R
+

�
0
1

�

L



�
1
0

�

R

�
(4.32)

and the correlator then depends on the phase di�erence between the loops. The Bell
correlator is therefore E = cos(� L � � R ). Such an interferometer does not have the
sensitivity to phase 
uctuations like that of the Thomas et al. interferometer, due to
common mode rejection. But it is also more challenging to implement because it requires
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addressing di�erent phases to loopsL and R, either by using di�erent beams (but with very
demanding geometric alignment) or by employing di�erent resonance frequencies (which
necessitates a very precise spectral control and doubletsL and R at di�erent latitudes)

4.2 Theoretical description of the Bragg pulses

In this section, we will introduce the theoretical model describing Bragg di�raction,
which we will use for simulations to determine the characteristics of the mirror and beam
splitter pulses for the Bell interferometer. We focus here on the coherent momentum
transfer process at a given position, without considering the propagation of wave packets,
which will be addressed in section 4.3 about interferometers.

4.2.1 Bragg di�raction of atoms in an optical lattice

Let us consider a BEC of helium atoms in the metastable state 23S1 (m = 0), in
free space and without interactions. Two laser beams are directed onto these atoms in
the (x; z) plane, separated by an angle� B (Figure 4.11). Both beams are� polarized
(corresponding to an amplitude of the electric �eld along the y direction) and originate
from the same laser source with a wavelength� = 1083 nm but have been separated and
prepared at di�erent frequencies ! 1 and ! 2. They intersect on the atoms and interfere,
creating an optical lattice in the vertical direction.

Figure 4.11: Schematic representation of the optical geometry used for the Bragg beams.
The two beams are inclined at an angle� B =2 with respect to the y-axis in the (y; z) plane and
interfere at the location of the BEC in the optical dipole trap.

The total electric �eld on the atoms is

E = E1 + E2 = E1;0 sin (k1 :r � ! 1t + ' 1) uy + E2;0 sin (k2 :r � ! 2t + ' 2) uy (4.33)

where

k1 =
2�
�

�
cos

� B

2
uy � sin

� B

2
uz

�
and k2 =

2�
�

�
cos

� B

2
uy + sin

� B

2
uz

�
(4.34)
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Provided that the amplitude of both electric �elds is the same (E1;0 = E2;0 = E0), the
resulting intensity is

I (z) = jEj2 = 2 I 0 [1 + sin (2kz � � (t))] = 4 I 0 sin2
�

kz �
� (t)

2

�
(4.35)

where we de�ned I 0 = E 2
0 and

k =
2�
�

sin
� B

2
and � (t) = ( ! 2 � ! 1)t + ' 2 � ' 1 (4.36)

It is worth noting that ~k is the elementary momentum exchanged between the photons
and the atoms in the lattice along the vertical direction. The period of the lattice is

alat =
�

2 sin (� B =2)
(4.37)

In our case, the angle between the beams is� B � 31°, giving an interfringe of alat �
2µm, which is small compared to the estimated size of the BEC along the vertical direction.

In order to characterize the dipole atom-light interaction Ĥ i = � d̂:E i , one can in-
troduce the (one-photon) Rabi frequency 
 i for each beam (i = 1 ; 2), which is de�ned
as


 i = �
hgjd̂:E i jei

~
= �

d0E i

~
e� i ' i (4.38)

wherejgi and jei are respectively the ground state and the excited state of the 23S1 ! 23P0

transition, d0 is the associated reduced atomic dipole, and' i is the laser phase.
One can show[134] that, if the detuning � between the laser frequencies and the atomic

transition resonance frequency is high enough, then the population of the excited state is
negligible. The atoms in the standing wave are therefore subject to a potentialĤ I which
is proportional to the local light intensity and can be written

Ĥ I = 2~j
 R j sin2
�

kẑ �
� (t)

2

�
(4.39)

where we de�ned the two-photon Rabi frequency 
 R :


 R =

 1
 �

2

2�
(4.40)

Note that j
 R j is proportional to the intensity of the light on the atoms and can depend
both on time and position. In the following, we will neglect the spatial dependence of 
R ,
assuming that the light is uniform on the atoms (as well asj
 1j = j
 2j), but we will keep
the assumption that this quantity can be time-dependent.

A detailed calculation of the adiabatic elimination of the excited state in our case can
be found in the manuscript of M. Perrier[104]. With � = 2 � � 800 MHz, we will consider
that the approximation is well veri�ed and we will neglect the atoms in the excited state,
as well as spontaneous emission (see section 6.1.4).

We will also neglect the interactions in the BEC, since the Bragg lattice is performed
at least a few hundreds of microseconds after the release of the atoms from the trap,
thus after the time for which the dynamics is dominated by the interactions in the BEC.
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Consequently, by taking into account the gravity �eld, the full Hamiltonian of an atom in
the lattice is

Ĥ =
p̂2

2m
+ mgẑ + 2~j
 R j sin2

�
kẑ �

� (t)
2

�
(4.41)

Using a unitary transformation, it is possible to work in a basis where the gravitational
potential does not appear[135]. Basically this corresponds to work in the reference frame
of the atoms in free fall. After shifting the energy reference by~j
 R j, the Hamiltonian
can then be rewritten

Ĥ =
p̂2

2m
�

~j
 R j
2

�
e2ikẑ� i� (t ) + e � 2ikẑ+i � (t )

�
(4.42)

The operators e� 2ikẑ are translation operators by � 2~k in the momentum space:

e� 2ikẑ jpi = jp � 2~ki (4.43)

We can see from equation 4.42 that the interaction term allows for a momentum trans-
fer of 2~k to the atoms. Bragg di�raction between a momentum state jpi and a momentum
state jp + 2~ki can actually be interpreted as a two-photon process: one photon from beam
1 is absorbed by an atom, which excites it while transferring it a momentum~k, then this
atom emits a photon by stimulated emission in beam 2, which deexcites it to the ground
state while transferring it again a momentum ~k.

In order to determine the evolution of the system, we will expand the state of the
atoms in the basis of momentum states:

j (t)i =
+ 1X

n= �1

C2n (t)e� i E 2n
~ t jp + 2n~ki (4.44)

where

E2n =
(p + 2n~k)2

2m
(4.45)

is the kinetic energy of the atom in the momentum statejp + 2n~ki . Note that C2n is the
amplitude of probability to �nd an atom in the associated momentum state, and n is the
di�raction order.

By inserting the state 4.44 into the Schr•odinger equation with the Hamiltonian 4.42,
one can establish the following relationship between theC2n coe�cients:

i~ _C2ne� i E 2n
~ t = �

~j
 R j
2

�
C2n� 2e� i

E 2n � 2
~ t e� i � (t ) + C2n+2 e� i

E 2n +2
~ t ei � (t )

�
(4.46)

which can be rewritten

_C2n = i
j
 R j

2

�
C2n� 2e� i

E 2n � 2 � E 2n
~ t e� i � (t ) + C2n+2 e� i

E 2n +2 � E 2n
~ t ei � (t )

�
(4.47)

Let us recall that � (t) = ( ! 2� ! 1)t+ ' 2� ' 1. The exponential terms can be expressed in
terms of detuning between the laser frequency di�erence and the Bragg coupling frequency
between the energy levels (Figure 4.12), by de�ning, for each momentum state:

� 2n = ! 2 � ! 1 �
E2n+2 � E2n

~
(4.48)
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Figure 4.12: Energy diagram of the Bragg di�raction process.

This way, equation 4.47 reads

_C2n = i
j
 R j

2

�
C2n� 2e� i � 2n � 2 t e� i( ' 2 � ' 1 ) + C2n+2 ei � 2n t ei( ' 2 � ' 1 )

�
(4.49)

which can be simpli�ed to give

_C2n = i

 �

R

2
C2n� 2e� i � 2n � 2 t + i


 R

2
C2n+2 ei � 2n t (4.50)

where we used the de�nition 4.40 of the two-photon Rabi frequency. Therefore the dy-
namics of the system can be described by the following matrix equation:
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(4.51)

The system was truncated to 5 di�raction orders for readability. This expression shows
that the di�erent momentum states are coupled two by two. The detuning � 2n quanti�es
the deviation from resonance between two levels, and can be expressed as a function of
the initial momentum p:

~� 2n = ~(! 2 � ! 1) �
�

~2k2
B

2m
(2n + 1) +

~kB

m
p
�

(4.52)

where ~kB = 2~k is the momentum transferred during the two-photon transition. When
� 2n = 0, the resonance condition is ful�lled between the momentum statesjp + 2n~ki and
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jp + (2 n + 2) ~ki , leading to an e�cient transfer between the two momentum levels, as we
will see in the following. � 2n can easily be expressed as a function of the� 0 and n:

� 2n = � 0 � 4n
 r (4.53)

where we de�ned


 r =
~k2

m
and ~� 0 = ~(! 2 � ! 1) �

�
~2k2

B

2m
+

~kB

m
p
�

(4.54)

The energy ~
 r corresponds to the two-photon recoil energy transferred to the atoms by
the Bragg lattice. Note that, when � 0 = 0, we recover the resonance condition 1.104
derived in Chapter 1 from momentum and conservation.

Let us highlight that the detuning depends linearly on the initial momentum p of the
atoms. This means that for a given value of! 2 � ! 1, solving the Schr•odinger equation for
one initial momentum classp as a function of the detuning � 0 gives the information about
how the o�-resonant momentum classes will behave in the Bragg process. Experimentally,
it is possible to tune the frequency di�erence! 2 � ! 1 (using one acousto-optic modulator
for each beam for instance) in order to select a speci�c momentum class which will be
resonant for the Bragg transition.

4.2.2 Bragg regime, Kapitza-Dirac regime and Raman-Nath approximation

In this section, we will numerically solve the Bragg system of equations 4.51 and brie
y
discuss the limiting cases in the simple case where 
R is constant and the detuning is �xed.
The goal is to determine the atom population after a Bragg pulse of durationT. We will
assume that the phase di�erence between the lasers' 1 � ' 2 is constant over the duration
of a Bragg pulse, so that the term ei( ' 1 � ' 2 ) in the two-photon Rabi frequency is a global
phase which does not play a role in the population evolution of the system. We will write,
in all the manuscript, 
 R(t) = 
 M for a constant Bragg pulse, where 
M is a real number
corresponding to the amplitude of the two-photon Rabi frequency.

The equation 4.51 can be numerically solved by providing an initial condition and
truncating the matrix to a number of orders to be considered.

We will start from a situation where an atom is in the momentum state jpi , which
determines the order 0 of di�raction. The system is arbitrarily truncated to 11 di�raction
orders, and we will stay in a range of parameters for which Bragg pulses do not transfer
atoms beyond orders -5 and 5. The initial condition for the numerical solution is therefore
(C� 10; : : : ; C� 2; C0; C2; : : : ; C10) = (0 ; : : : ; 0; 1; 0; : : : ; 0).

Let us consider at �rst the case for which the detuning between orders 0 and 1 is
� 0 = 0. The system 4.51 was solved in three cases for di�erent values of 
M compared to
the two-photon recoil frequency 
 r . The population evolution dynamics jC2n (t)j2 is given
as a function of time, which was nondimensionalized by diving it by the typical evolution
time given by the two-photon Rabi frequency�= 
 M . The results are plotted in Figure 4.13.

Two di�raction regimes can be distinguished:

ˆ If the Rabi frequency is small compared to the recoil frequency, only the 0th and
�rst di�raction orders are populated, and their population oscillates regularly over
time. This regime is referred to as the Bragg regime, and we will see later that in
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Figure 4.13: Evolution of the population of 5 di�raction orders as a function of the
pulse duration for di�erent two-photon Rabi frequencies. The results are obtained by solving
equations 4.51. Time is normalized by�= 
 M , so a similar value on the abscissa does not correspond
to the same duration for each plot.

this regime, it is possible to simplify the problem into a two-level system coupled by
Rabi oscillations.

ˆ If the Rabi frequency is large compared to the recoil frequency, more di�raction
orders are populated, and the populations 
uctuate in a non-trivial manner. This
regime is called the Kapitza-Dirac regime (or di�ractive regime), named after the
two physicists who predicted a similar di�raction e�ect of light by electrons[136], a
principle now more widely used to describe the di�raction of a particle by a standing
wave. While some authors refer to this e�ect as di�raction in general, we will limit
ourselves here to stating that this regime corresponds to the case where di�raction
is observed into more than two di�raction orders.

In our case, the Bragg regime is the most suitable for transferring a speci�c momentum
to the atoms in a controlled manner. It is already evident that, in this regime, depending
on the duration of the pulse, it is possible to implement � and �= 2 pulses, thereby real-
izing atom mirrors and beam splitters, respectively. Moreover, in the Bell interferometer,
transferring a part of the atoms into other di�raction orders would be considered as losses
since these atoms would not be involved in the two-atom interference leading to the os-
cillation of the Bell parameter. As seen in Figure 4.13, a two-photon Rabi frequency of
the same order of magnitude as the recoil frequency corresponds to the threshold beyond
which di�raction towards higher orders cannot be neglected.
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Observing many di�raction orders in the Kapitza-Dirac regime can still be useful ex-
perimentally in order to measure precisely the momentum transferred by Bragg di�raction.

Kapitza-Dirac in the Raman-Nath regime

Under some conditions, it is possible to derive an analytical solution for the Bragg
di�raction in the Kapitza-Dirac regime. Indeed, if we suppose that the duration t of the
pulse is small enough to neglect the detuning variation in equation 4.51 (hypothesis on
which we will come back later), then the amplitude coe�cients are given by

_C2n = i

 M

2
(C2n� 2 + C2n+2 ) (4.55)

The solutions of these coupled equations are known and can be written

C2n = i n Jn (
 M t) (4.56)

where Jn is the Bessel function of �rst kind.3 The population of the nth di�raction order
is therefore

P2n (t) = jJn (
 M t)j2 (4.57)

Figure 4.14 shows a comparison of the numerical solution for the populations with

 M = 5
 r with the analytic solution from equation 4.57. One can see that the small
duration approximation holds true for t � �= 
 M . This is referred to as the Raman-Nath
regime, named after the equation that characterizes the system with slightly di�erent
conventions.4

The Raman-Nath approximation actually consists in neglecting the kinetic energy
term in the Hamiltonian, thus assuming that the atoms do not have time to move in
the optical lattice during their interaction. This is much true as long as t is smaller
than the typical oscillation period � osc of the atoms in the lattice. By approximating the
interaction Hamiltonian 4.39 by a squared potential (Ĥ I � ~
 M k2z2), we see that the
typical oscillation frequency ! osc is such that

! 2
osc =

2~
 M k2

m
= 2
 M 
 r (4.58)

from which we obtain

t � � osc =
1

p
2
 M 
 r

(4.59)

which is more general than the conditiont � �= 
 M that we conjectured from the partic-
ular case where 
M = 5
 r .

3The Bessel functions verify the relationship

2J 0
n (t) = Jn � 1(t) � Jn +1 (t)

4Starting from Hamiltonian 4.42 in the space representation, and by decomposing the solution in the
basis of plane waves

 (z) =
X

n

C2n (t)e2i nkz
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Figure 4.14: Comparison of the population evolution of 3 di�raction orders between the
numerical (solid lines) and the analytical solution (dashed lines) for 
 M = 5
 r .

Bragg regime: a two-level system

In this section, we will focus on the Bragg regime, for which only two states are
populated. Let us suppose that the amplitude 
 M of the two-photon Rabi frequency 
 R

is small enough to prevent di�raction towards orders other than 0 and 1. We assume an
arbitrary detuning � 0, but within a range where only orders 0 and 1 are populated. The
multi-level system 4.51 can be truncated to a two-level system, so that

0

@
_C0

_C2

1

A = i

0

@ 0 
 R
2 ei � 0 t


 �
R

2 e� i � 0 t 0

1

A

0

@C0

C2

1

A (4.60)

This can be analytically solved when 
 R and � 0 are constant (laser intensity and
frequency di�erence held constant). The temporal origin is set att = 0, corresponding to
the moments when the lasers are turned on. Initially, all the atoms are in the 0th order
of di�raction, so that C0(0) = 1 and C2(0) = 0.

Starting from equation 4.60, it is possible to express _C0 as a function of C2 and vice
versa. By di�erentiating either of these two relations and using the second one, we obtain
a second-order di�erential equation involving only one of the coe�cients:

•Cn + i � � _Cn +
j
 R j2

4
Cn = 0 (4.61)

with � = � 1 if n = 0 and � = +1 if n = 2. By solving these two decoupled equations, we
get the relationship:

�
C0(t)
C2(t)

�
= U(t)

�
C0(0)
C2(0)

�
(4.62)

where

U(t) =

0

B
B
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�
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A (4.63)
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with 
 =
q

j
 R j2 + � 2
0.

This is the evolution matrix of a two-level system subject to Rabi oscillations. With
the initial conditions previously mentioned, the probability P2(t) = jC2(t)j2 of measuring
atoms in the 1st di�raction order after a pulse of duration t is given by the well known
Rabi formula:

P2(t) =
j
 R j2

j
 R j2 + � 2
0

sin2

 p
j
 R j2 + � 2

0 t
2

!

(4.64)

Let us write the two-photon Rabi frequency in the form 
 R = 
 M ei � , where 
 M is a
real number and � = ' 1 � ' 2 is the phase di�erence between the two Bragg beams. In
the resonant case, for which� 0 = 0, the evolution matrix is

U(t) =

0

B
B
@

cos
�


 M t
2

�
i sin

�

 M t

2

�
ei �

i sin
�


 M t
2

�
e� i � cos

�

 M t

2

�

1

C
C
A (4.65)

This expression highlights the fact that at �xed 
 M , varying the duration t of the
Bragg pulse makes it possible to coherently transfer the atoms from the statejpi to a
superposition of jpi and jp + 2~ki , or even to the state jp + 2~ki only:

ˆ If 
 M t = �= 2, the resonant atoms are transferred from statejpi to an equiprobable
superposition of statesjpi and jp + 2~ki . This is called a �= 2 pulse, for which the
transfer matrix writes:

US(t) =

p
2

2

�
1 iei �

ie� i � 1

�
(4.66)

This is the operator we used in section 4.1 to describe an atom beam splitter.

ˆ Similarly, if 
 M t = � , the resonant atoms are transferred from statejpi to state
jp + 2~ki . This is called a � pulse, and the transfer matrix writes:

UM (t) =
�

0 iei �

ie� i � 0

�
(4.67)

Again, this is the operator we used to describe an atom mirror.

We therefore showed that the Bragg beams act on the atoms like optics would act
on photons, by transferring them momentum in a controlled manner. Furthermore, we
see that Bragg di�raction imprints a phase onto the atoms, corresponding to the phase
di�erence between the two beams at the moment of the Bragg pulse. Starting from atoms
in the 0th di�raction order, C0 can be called the transmission coe�cient while C2 can be
called the re
ection coe�cient, by analogy with optics.

Ultimately, our goal is to determine the evolution of the Bell correlator as a function
of the momentum class. To this end, the �rst step is to have a look at the Bragg transfer
properties (re
ectivity and phase) as a function of the detuning, due to the linear rela-
tionship between the two. From the propagation matrix 4.63, we can clearly see that out
of resonance, the re
ection and transmission coe�cients will depend on the detuning� 0,
both in terms of amplitude and phase.
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4.2.3 O�-resonance Bragg di�raction

From now on, we will consider a multi-level system characterized by equation 4.51. In
Figure 4.15, we plot the probabilities of �nding the atoms in di�erent di�raction orders
for a � pulse (for which the duration T of the pulse isT = �= 
 M ) with di�erent values of

 M =
 r as a function of detuning � 0 (again, � 0 = 0 corresponds to a resonance between the
orders 0 and +1), obtained by solving numerically equation 4.51 for each value of detuning.

Figure 4.15: Populations as a function of detuning for di�erent values of the two-photon
Rabi frequency. The duration of the pulse is T = �= 
 M . The transmission and re
ection
coe�cients C2n are calculated from solving equation 4.51. We use a recoil frequency 
r = 2 � �
6:3 kHz, corresponding to the experimental value.

In the Bragg regime (
 M = 
 r=5), the resonant atoms (� 0 = 0) are transferred to
the +1 di�raction order. The re
ectivity pro�le (i.e., the probability jC2j2 of �nding the
atoms in the n = 1 di�raction order) as a function of detuning has a sinc-squared shape.
By varying the detuning, one can reach a value of� 0 for which the Bragg transition occurs
between the 0 order and the� 1 order. In this case,� � 2 = 0, and the re
ectivity pro�le is
identical to the one observed for the +1 order, both situations being symmetrical. There
is no detuning for which atoms are di�racted to other di�raction orders.

As the two-photon Rabi frequency increases (
M = 
 r ), the resonance peak widths also
increase. The re
ectivity of the +1 order becomes broadened to the point of being close to
the resonance peak of the� 1 order. Under these limiting conditions, there are detunings
for which the population towards, for example, the +2 di�raction order is non-zero.

In the Kapitza-Dirac regime, it no longer makes sense to de�ne the Bragg pulse as
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a � pulse, as even the resonant atoms are transferred to states other than the +1 order.
The resonance peak is broadened to the extent that it overlaps with the resonance towards
the � 1 order and so on, leading to the population of additional di�raction orders.

We see that the distinction between the Bragg regime and the Kapitza-Dirac regime
can be interpreted in terms of resonance width. In the Bragg regime, the two-photon Rabi
frequency is low, so the resonance is well-resolved, and the re
ectivity is narrow around
a well-de�ned momentum level, which is the only one coupled to the initial state. In the
Kapitza-Dirac regime, the Rabi frequency is high, resulting in a broad resonance that
encompasses multiple levels that can be populated because coupling with the initial state
is permitted.

In the following, we will only focus on the Bragg regime. We make sure that the
Rabi frequency remains lower than the recoil frequency (with our parameters, we have

 r = 2 � � 6:3 kHz), so that we work in this regime and can neglect di�raction towards
di�raction orders otherthan the resonant one.

Figure 4.16: Re
ected population jC2j2 as a function of detuning for di�erent values of
the two-photon Rabi frequency. The duration of the pulse is T = �= 2
 M . We use a recoil
frequency 
 r = 2 � � 6:3 kHz, corresponding to the experimental value.

A similar behavior is observed with �= 2 pulses, as seen in Figure 4.16 representing the
population of the +1 di�raction orders for di�erent values of 
 M . The re
ectivity pro�le
has a sinc-squared shape, reaching 0.5 at resonance. As the two-photon Rabi frequency
increases, the width of the resonance peak also increases. Approaching the recoil frequency

 r , the resonance re
ectivity decreases, indicating that there is also di�raction of atoms
towards other di�raction orders.

Expression of the re
ection coe�cient in a perturbative model

The width of the re
ectivity pro�le is, for a constant pulse, entirely determined by the
two-photon Rabi frequency. It is possible to formally show this relationship in a general
case (without assuming that 
 R(t) is constant) by expressing analytically the coe�cients
C2n in a perturbative approach.
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We consider again the case whereC0(0) = 1 and C2n (0) = 0 for n 6= 0. We de�ne the
initial instant as the limit t ! �1 and the �nal instant as the limit t ! + 1 . Making this
choice is not restrictive because the pulses have a �nite durationT, and 
 R = 0 if t =2 [0; T],
so that the only non-zero contribution of the two-photon Rabi frequency contributes to
the result. To determine the �nal state of the system, we integrate equation 4.47, so that
we get

C2n (t ! + 1 ) =
i
2

+ 1Z

�1

C2n� 2(t)
 �
R(t)e� i � 2n � 2 t dt +

i
2

+ 1Z

�1

C2n+2 (t)
 R(t)ei � 2n t dt (4.68)

Let us assume that the coupling is weak, so that at any given time, we can consider
the population of order 0 to be predominant: jC2n (t)j � j C0(t)j � 1. In particular, for
n = 1, we can neglect jC4(t)j compared to jC0(t)j to obtain an analytical expression for
the coe�cient C2 at the �nal state:

C2(t ! + 1 ) �
i
2

+ 1Z

�1


 �
R(t)e� i � 0 t dt (4.69)

Interestingly, this expression shows that the re
ection coe�cient C2(t) can be expressed
as the Fourier transform of the temporal pro�le of the two-photon Rabi frequency:

C2(t ! + 1 ) �
i
2

FT[
 �
R(t)]( � 0) (4.70)

where we de�ned the Fourier transform as

FT[ f (t)]( ! ) =

+ 1Z

�1

f (t)e� i!t dt (4.71)

This relationship sheds light on the re
ectivity curves shown earlier for constant pulses.
Indeed, the Fourier transform of a square signal is a sinc function. The probability of re
ec-
tion jC2j2 as a function of detuning, corresponding to the squared modulus of the Fourier
transform of the Bragg pulse pro�le, thus follows a squared sinc pro�le. This also explains
why the width of the resonance peak is larger when the Rabi frequency is greater, as the
duration of a �= 2 pulse (for instance) is inversely proportional to the Rabi frequency: if

 M is high, then the duration T of the pulse is small, making its Fourier transform broader.

Let us discuss the assumption that led to the derivation of the relation 4.70. It was
necessary to assume thatC0(t) � 1. In general, this holds true only for Bragg pulses for
which the population of the excited state remains low, i.e., for short interaction times.
Strictly speaking, this assumption is not satis�ed for a �= 2 pulse, and even less so for a�
pulse. In these two cases, we cannot assert that the re
ectivity as a function of detuning
is rigorously equal to the Fourier transform of the temporal pulse.

However, we empirically observe that the di�erence between the simulated re
ectivity
pro�le and the pro�le calculated using the Fourier transform 4.70 formula is small. This
will be discussed later in the manuscript when considering time-varying Bragg pulses.
In the case of a constant pulse, the analytical solution of equation 4.63 shows that this
relation is indeed exact, provided that we neglect di�raction towards higher orders (Figure
4.17).

Thus, this perturbative development, even if not rigorously valid for signi�cant trans-
fers, provides an intuitive understanding of the re
ectivity pro�le as a function of detuning.
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Figure 4.17: Comparison between the re
ected population jC2j2 with the perturbative
analytical formula 4.70 as a function of detuning for di�erent values of the two-photon
Rabi frequency. The analytical Fourier relation matches well the numerically solved re
ection
coe�cient, even for a mirror. The di�erence increases when a high two-photon Rabi frequency is
responsible for di�raction into other di�raction orders.

4.3 Phase involved in an interferometer

As we have seen, the interferometer we aim to realize involves the phase imprinted by
the lasers on the atoms. This is the key parameter we seek to control in order to induce
an oscillation of the Bell parameter. This is why it is crucial to consider the phase shift
that have been neglected so far and will play a role in the interferometer.

In the literature, several theoretical studies can be found to provide tools to calculate
the phases involved in interferometers, especially in a Mach-Zehnder con�guration. In
this section, we will introduce the various terms responsible for interferometric phase
shifts and apply them initially to the Mach-Zehnder interferometer, and subsequently to
the Bell interferometer. This will allow us to highlight the similarities and di�erences
between these two interferometers. The advantage of the Mach-Zehnder con�guration is
that it has been extensively studied, both theoretically and experimentally, providing us
with a benchmark for comparison with the Bell interferometer.

Experimentally, a �rst goal in the implementation of custom Bragg pulses for a Bell
test will consist in realizing a Mach-Zehnder interferometer to make sure that the Bragg
pulses behave as expected.

In order to express the phase di�erence between two arms of an interferometer, we
will use the formalism employed since the 2000s by S. Chu and M. Kasevich[137][138].
The convention is to categorize the phase shifts into three groups: the phase shifts �lasers

resulting from the light-matter interaction during Bragg pulses (or Raman pulses in some
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cases), the phase shifts �prop due to the propagation of wave packets in a given potential
(often a gravitational �eld) between pulses, and the phase shifts �sep due to a possible
�nal spatial separation of the interfering wavepackets at the output port.

� = � lasers + � prop + � sep (4.72)

There are various methods to calculate these phases. One alternative approach involves
using the formalism developed by C. Bord�e, who generalized the ABCD matrix formulation
used in optics to the case of atomic interferometers[139][140]. The method presented here
involves calculating the accumulated phase on each arm of an interferometer using path
integrals, a formalism developed by R. Feynman[141] and subsequently applied to atom
interferometers, notably by P. Storey and C. Cohen-Tannoudji[142].

4.3.1 Propagation phase shifts

In this section, we will develop the tools for calculating the accumulated phase of a
wave packet as it propagates through a given potential.

Principle

Let us �rst consider an atom in the momentum mode p propagating without grav-
ity. The dynamics of the system is governed by the Schr•odinger equation, where the
Hamiltonian is here only kinetic energy:

i~
d j (t)i

dt
= Ĥ j (t)i =

p̂2

2m
j (t)i (4.73)

Assuming that the initial state is j (0)i = jpi , the solution to this equation is simply

j (t)i = exp
�

� i
p2

2m~
t
�

jpi (4.74)

This is the well-known result where a phase accumulates while rotating at a frequency
! 0 = p2

2m~. Thus, there is a phase associated with the propagation of a particle in time.
This phase varies depending on the particle's momentum, and these phase shifts need to
be considered when calculating the phase involved in an interferometer.

Standard approach

The previous approach does not account for the spatial dimension. To address the
problem more rigorously, one must consider the propagation of a wave packet in both space
and time. The wave function of the atom has a certain spatial extension� , implying that
the momentum also has a width proportional to 1=� , due to the Heisenberg uncertainty
principle.

To calculate the wave function at a point z in space at time t, it is common to de�ne
the evolution operator Û through the relation

j (t)i = Û(t) j (0)i (4.75)

The wave function evaluated at a point z is then given by

 (z; t) = hzjÛ(t)j (0)i (4.76)
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In the case where the Hamiltonian of the system does not depend on time, the evolution
operator is simply expressed as

Û(t) = exp
�

�
i
~

Ĥ t
�

(4.77)

Let us discuss again the simple case of free propagation without gravity. Once again,
the Hamiltonian contains only a term of kinetic energy, and the most straightforward way
to calculate the wave function at time t from equation 4.76 is to employ a closure relation
using the momentum operator, which is an eigenstate of the system.

 (z; t) =
Z

dp hzjÛ(t)jpi hpj (0)i =
Z

dpexp
�

� i
p2t

2m~

�
hzjpi hpj (0)i (4.78)

from which we get

 (z; t) =
Z

dpexp
�

� i
p2t

2m~

�
exp

�
i
pz
~

�
~ (p;0) (4.79)

where ~ (p;0) is the Fourier transform of the initial wavefunction, i.e., j (0)i in the p-basis
representation.

Let us assume that the initial wavefunction is a Gaussian wave packet, described by
the following relation:

 (z;0) = exp
�

�
(z � z0)2

2� 2

�
exp

�
i
p0

~
(z � z0)

�
(4.80)

meaning that the center of mass of the wave packet is at positionz = z0 and its momentum
is p = p0.

The Fourier transform of the initial wavefunction can be easily obtained, and we �nd

~ (p;0) =
Z

dz  (z;0) exp
�

� i
pz
~

�
= exp

�
� i

pz0

~

�
exp

�
� � 2 (p � p0)2

2~2

�
(4.81)

Finally, after dropping the normalization factor, we get from equation 4.79:

 (z; t) = exp
�

�
p2

0� 2

2~2

�
exp

 

�
1
2

(z � z0)2

� 2 + i ~t
m

!

exp
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0

2~2

� 4

� 2 + i ~t
m

!
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i
p0

~
� 2(z � z0)

� 2 + i ~t
m

!

(4.82)
This expression does not provide any intuition on the propagation of the wave packet

since the center of masszc = z0 + p0 t
m does not appear clearly.

Center of mass approach

An alternative is to use a trick presented in reference [143], which involves introducing
\by hand" the center of mass by de�ning an operator Ĝ such that

Ĝ(t) = exp
�

i
~

Z

�
L c dt

�
exp

�
� i

p̂zc

~

�
exp

�
i
pcẑ
~

�
(4.83)
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where zc, pc and L c are the classical position, momentum and Lagrangian of the system.
The latter is integrated over the classical path �.

Ĝ is a Galilean transformation operator, which consists of a momentum boost, a po-
sition translation, and a phase shift. For any Hamiltonian at most quadratic in ẑ and p̂,
it can be shown that the state at time t is given by

j (t)i = Ĝ(t) j CM (t)i (4.84)

where j CM (t)i is the state in the atom's rest frame. j CM (t)i does not contain any
information about the center of mass of the system but quanti�es the expansion of the
wave packet. It satis�es ĥzi = 0 and hp̂i = 0 and

j CM (t)i = exp
�

� i
p̂2

2m~
t
�

j CM (0)i (4.85)

The �nal wavefunction can be calculated by projecting 4.84 on a position operator,
from which we get, after using two closure relations:

 (z; t) = exp
�

i
~

Z

�
L c dt

�
exp

�
i
pc(z � zc)

~

�
 CM (z � zc; t) (4.86)

This expression actually corresponds to a traveling wave with a de Broglie wavelength
equal to ~=pc, multiplied by an envelope function  CM (z) which expresses the expansion
of the wavefunction. The envelope moves along the classical pathzc and the wave packet
accumulates a phase, given by the classical action of the particle.

Let us consider again the case of a Gaussian wave packet propagating without gravity.
The momentum of the center of mass ispc(t) = p0 and its position is zc(t) = z0 + p0

m t.
The only term in the Lagrangian is again the kinetic energy, so that

exp
�

i
~

Z

�
L c dt

�
= exp

�
i
~

Z

�

p2
0

2m
dt

�
= exp

�
ip2

0t
2m~

�
(4.87)

Now we only have to determine CM (z � zc; t). Assuming that the initial wavefunction
is given by equation 4.80, we can identify the initial center of mass wavefunction using
4.86 at t = 0 so that

 CM (z;0) = exp
�

�
z

2� 2

�
(4.88)

from which we get

~ CM (p;0) = exp
�

�
� 2p2

2~2

�
(4.89)

The center of mass wavefunction at any timet can be calculated easily using~ CM as
seen in equation 4.79:

 CM (z; t) =
Z

dpexp
�

� i
p2t

2m~

�
exp

�
i
pz
~

�
~ CM (p;0) = exp

 

�
1
2

z2

� 2 + i ~
m t

!

(4.90)

One can then deduce the expression of the wavefunction from 4.86:

 (z; t) = exp
�

i
p2

0t
2m~

�
exp

�
i
p0

~

�
z � z0 �

p0

m
t
��

exp

 

�
1
2

�
z � z0 � p0

m t
� 2

� 2 + i ~
m t

!

(4.91)
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Although it may not be obvious at the �rst look, this expression is equivalent to the
relation 4.82 obtained with the previous method, and one expression can mathematically
be deduced from the other. The advantage here is that the result from equation 4.91 is
much more physically insightful than the previous way of writing the wavefunction. Indeed,
as expected, we recover the expression for a Gaussian wave packet with momentump0,
and with its center of mass shifted by p0

m t. We also see that the atom has accumulated

a phase with frequency! 0 = p2
0

2m~, corresponding to its kinetic energy (this term arises
from the integral of the Lagrangian). It is noteworthy that, apart from the phase of the
center of mass, an additional phase must be considered due to the expansion of the wave
packet. But this term is mostly negligible compared to the initial size of the wave packet,
provided that the propagation time t remains small (such that � 2 � ~t=m).

While this calculation may not be particularly useful for calculating the accumulated
phase of a free particle in the absence of gravity, it is a convenient way to introduce the
center of mass in an intuitive way. Note that this method remains valid for Hamiltonians
that contain no terms higher than second order inx̂ and p̂.

Path integral approach

One can extend the previous approach without assuming that the wave packet is
Gaussian. The most widely used approach, developed in a paper by Storey and Cohen-
Tannoudji[142], involves expressing the wave function in terms of the evolution operator
in position representation:

 (z; t) =
Z

dz0 hzjÛ(t)jz0i hz0j (0)i =
Z

dz0K (z; t; z0; 0) (z0; 0) (4.92)

where K (z; t; z0; 0) = hzjÛ(t)jz0i is the quantum propagator, which translates the proba-
bility amplitude of the particle to arrive at position z at time t, given that it started at
position z0 at t = 0.

Feynman's idea is to express this propagator as an integral of the actionS over all
possible paths � connecting the points (z; t) and (z0; 0).

K (z; t; z0; 0) =

(z;t )Z

(z0;0)

Dz(t) exp
�

i
S�

~

�
(4.93)

It can then be shown that the paths with the most weight are paths in the vicinity of
the classical trajectory, in the (classical) limit where S � ~. For a Lagrangian (or a
Hamiltonian) that is at most a quadratic function of ẑ and p̂, the propagator is given by

K (z; t; z0; 0) = F (t; 0) exp
�

i
~

Scl(z; t; z0; 0)
�

(4.94)

where the factor F (t; 0) only depends on time, so it will not add a phase shift between
two di�erent trajectories in an interferometer. Indeed, atomic interferometers consist of
alternating periods of free propagation and pulses where atoms interact with light: in an
interferometer, atoms interact with light at the same time even if they do not have the
same trajectory.

Since the classical action is equal to the integral of the Lagrangian of the system's center
of mass, we retrieve the term introduced in the previous approach which was responsible
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for the phase accumulated by the wave packet. Consequently, the wavefunction can be
expressed as

 (z; t) = F (t; 0)
Z

dz0exp
�

i
~

Scl(z; t; z0; 0)
�

 (z0; 0) (4.95)

Now, if we assume that the initial wavefunction is a plane wave, which can be written

 (z0; 0) = exp
�

ip0z0

~

�
(4.96)

then it can be shown, using an expansion of both the wavefunction and the classical action
around the classical position of the center of massz0, that the �nal wavefunction is

 (z; t) = ~F (t; 0) exp
�

i
~

Scl(z; t; z0; 0)
�

 (z0; 0) (4.97)

This expression clearly shows that the phase accumulated by the �nal wave function is
given by the action along the classical path. This result is exact in the case of a plane wave
at t = 0, and we will consider it to be approximately valid for any initial wave function,
neglecting other phase terms due to the expansion of the wave packet as discussed in the
previous paragraph.

Thus, to calculate the phase of the wavefunction associated with the propagation of
a particle in a given potential, we need to determine the action, i.e., the integral of the
system's Lagrangian, along the classical path:

� path =
1
~

Scl(z; t; z0; 0) =
1
~

Z
L c[z(t); _z(t)] dt (4.98)

We will only consider a particle in a gravitational �eld (without considering a rotating
reference frame for instance), so that the action is

Scl =
Z

L c dt =
Z

(T � V ) dt =
Z

(pdx � E dt) (4.99)

where T = 1
2mv2 and V = � mgz are the kinetic potential energies, whilep = mv and E

are the momentum and the total energy of the center of mass.
We note p0 = mv0 the initial momentum and z0 the initial position, so that the

trajectories and speeds are

z(t) = �
1
2

gt2 + v0t + z0 and v(t) = v0 � gt (4.100)

from which we get the phase associated to the classical path for a wavepacket propagating
from z0 with a speedv0 for a duration t:

� path =
m
~

�
v2

0

2
+ gz0

�
t (4.101)

In the end, to calculate the phase shift associated with the propagation of wave packets
in the interferometer, one will need to compare the accumulated phases along each path
of the interferometer using the relation 4.101.

Note that the separation phase � sep also arises from this Lagrangian propagation for-
malism, as will be demonstrated later on.
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This latter method using path integrals allows for easy calculation of the phase associ-
ated with the trajectory of atoms in an interferometer and is commonly used. However, it
is not general as it neglects phase shifts related to the spatial extension of the wave packet
by essentially considering atoms as plane waves. The corrective terms become apparent
when describing the wave packet using the method outlined by Hogan et al.[143], which
consists in \following" the center of mass of the wave packet.

4.3.2 Light-matter interaction phase shifts

Principle: phase imprinted on plane waves

First, let us revisit the simple case of plane waves discussed in the �rst section of this
chapter, without considering any terms related to space. This will enable us to determine
some of the phase shifts included in �lasers, resulting from the interaction between an atom
with light

The goal is to provide tools to generalize the results found in section 4.1.1 in the case
where the matrices describing Bragg mirrors and beam splitters are expressed in any form.

In our description of the Bell interferometer, we mentioned the principle of phase
imprinting, which we will discuss again in this section. Let us consider the matrix of a
Bragg beam splitter 4.5 for instance, taken at resonance for a�= 2 pulse, acting on an
initial state consisting of an atom in mode p. The output state is

j out i =
�

C0

C2

�
=

p
2

2

�
1 iei �

ie� i � 1

� �
1
0

�
=

p
2

2

�
jpi + ie � i � jp + 2~ki

�
(4.102)

where � = ' 1 � ' 2 is the phase di�erence between the lasers during the pulse duration.
The phase di�erence between modesp + 2~k and p is

� � = arg( C2) � arg(C0) = ' 2 � ' 1

�
+

�
2

�
(4.103)

The �= 2 term from the i factor can be dropped since it cancels out in most interferometer
geometries, and it can be said that the phase di�erence between the lasers is imprinted on
the atoms.

It is possible to calculate the phase shifts induced by Bragg transfers in a more general
case, still within the Bragg regime but without assuming resonance. To this end, we only
need to write the transfer matrix of a Bragg doublet in the general form:

U(T) =
�

tei � 0
ir ei �

ir e� i � te� i � 0

�
(4.104)

wherer and t are real numbers corresponding to the amplitude re
ection and transmission
coe�cients of the pulse. They depend on the duration T of the pulse and on the detuning
� 0, and so do the phases� and � 0. Similarly, we �nd

j out i =
�

C0

C2

�
=

�
tei � 0

ir ei �

ir e� i � te� i � 0

� �
1
0

�
=

�
tei � 0

ir e� i �

�
(4.105)

so the imprinted phase is, in a general case:

� � = arg( C2) � arg(C0) = � 0+ � (4.106)
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For instance, in the speci�c case of a Bragg pulse with a constant two-photon Rabi
frequency, we showed the expression 4.63 of the evolution operator as a function of the
detuning � 0. The corresponding phase terms can be identi�ed with 4.104, and we �nd

� 0 =
� 0T
2

+ tan � 1
�
�

� 0



tan

�

 T
2

��
and � = ' 1 � ' 2 +

� 0T
2

(4.107)

where 
 =
q

j
 R j2 + � 2
0 and T is the duration of the pulse. The phase di�erence between

modesp + 2~k and p, assuming that the atom is initially in mode p, is

� � = ' 2 � ' 1 � � 0T + tan � 1
�

� 0



tan

�

 T
2

��
(4.108)

As we can see, additional phase shifts appear when considering out of resonance mo-
mentum classes.

An additional phase shift which depends on the center of mass

In this paragraph, we will show that there is an additional phase imprinted to the atoms
by the Bragg pulse, which depends on the position of the center of mass. To this end,
we will once again employ the formalism of Hogan et al.[143], as presented previously,
which conveniently brings out the center of mass in the equations. This time, we will
consider the case where the potential only consists of the light interaction term (gravity is
not considered for simplicity, but the same reasoning remains valid and could be applied
similarly).

We will assume that we work in the Bragg regime, so that only two Bragg momentum
levels need to be considered. We will writej0i = jpi and j2i = jp + 2~ki these coupled
levels, as well asE0 = p2

2m and E2 = (p+2 ~k)2

2m their kinetic energy. The interaction term
V(ẑ) in the Hamiltonian was given in equation 4.42:

V (ẑ) = �
~j
 R j

2

�
e2ikẑ� i� (t ) + e � 2ikẑ+i � (t )

�
(4.109)

with � (t) = ( ! 2 � ! 1)t + ' 2 � ' 1 where ! 2 � ! 1 is the frequency di�erence between the
two laser beams.

Here, for a two-level system, we will assume that e2ikẑ j2i = e � 2ikẑ j0i = jvaci where
jvaci is a vacuum state, so that the atom stays within the two-level system.

We will proceed in a manner similar to when introducing Bragg di�raction, i.e., we will
express the wavefunction in thefj 0i ; j2ig basis and then apply the Schr•odinger equation.
The distinction lies in the fact that this time we will use the operator Ĝ, de�ned earlier as
a Galilean transformation operator which explicitly involves the system's center of mass.

j (t)i = C0(t) e� iE 0 t
~ Ĝ(t) j0i + C2(t) e� iE 2 t

~ Ĝ(t) j2i (4.110)

In this case, the statesj0i and j2i play the role of the center of mass statesj CM i .
This notation can seem misleading as these momentum states are plane waves with a
delocalized center of mass. However, we can later generalize the results by decomposing
any wave function onto these momentum states5.

5A more general formulation consists in writing

j (t)i =
Z

dp ~C ( p)
0 (t) e� i p 2 t

2m ~ Ĝ(t) jpi +
Z

dp ~C ( p)
2 (t) e� i ( p +2 ~ k ) 2 t

2m ~ Ĝ(t) jp + 2 ~ki
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The time derivative of i ~ j i is

i~ j _ (t)i =
X

j 2f 0;2g

�
i~ _Cj Ĝ + E j Cj Ĝ + i ~Cj

_̂G
�

e�
iE j t

~ jj i (4.111)

Now, using the fact that i~ _̂G =
p̂2

2m
Ĝ � Ĝ

p̂2

2m
, we get from the Schr•odinger equation

the following relation:

i~
X

j 2f 0;2g

_Cj Ĝ e�
iE j t

~ jj i =
X

j 2f 0;2g

Cj e�
iE j t

~ V(ẑ)Ĝ jj i (4.112)

Then, we left multiply this expression by Ĝy. On the left-hand side, we obtain the iden-
tity, and on the right-hand side, we get the operator ĜyV(ẑ)Ĝ, which can be demonstrated
to be written as:

ĜyV(ẑ)Ĝ = V (ẑ � zc) (4.113)

where zc is the center of mass of the wave packet, sincêG is the Galilean transformation
which moves an operator to the center of mass reference frame. The interaction potential
V (ẑ � zc) can then be rewritten

V (ẑ � zc) = �
~j
 R j

2

�
e2ikẑ� 2ikzc � i � (t ) + e � 2ikẑ+2i kzc+i � (t )

�
(4.114)

For our two-level system fj 0i ; j2ig , we have in particular

V (ẑ � zc) = �
~
 R

2
e� 2ikzc+i( ! 2 � ! 1 )t j2i h0j �

~
 �
R

2
e2ikzc � i( ! 2 � ! 1 )t j0i h2j (4.115)

with 
 R = j
 R jei( ' 2 � ' 1 ) .
In the end, we get from the Schr•odinger equation 4.112 the following relationships:

8
>><

>>:

i~ _C0e� iE 0 t
~ = �

~
 R

2
C2 e� iE 2 t

~ e� 2ikzc+i( ! 2 � ! 1 )t

i~ _C2e� iE 2 t
~ = �

~
 �
R

2
C0 e� iE 0 t

~ e2ikzc � i( ! 2 � ! 1 )t
(4.116)

leading to 8
>><

>>:

_C0 = i
~
 R

2
C2 ei � 0 t e� 2ikzc

_C2 = i
~
 �

R

2
C0 e� i � 0 t e2ikzc

(4.117)

where we used the de�nition of � 0:

~� 0 = ~(! 2 � ! 1) � (E2 � E0) (4.118)

The system 4.117 is identical to the system 4.60 obtained previously for the two-level
system, except for the addition of a phase term 2kzc dependent on the system's center of
mass. This phase will be imprinted onto the atoms, like the phase di�erence of the lasers
' 2 � ' 1, which plays a similar role mathematically.

So far, we have only performed a change of basis. However, we can view this change of
reference frame as the operation of following the wave packet during its propagation. In

153



CHAPTER 4. INTERFEROMETER THEORY: FROM BRAGG DIFFRACTION TO BELL TESTS

contrast, the previous model developed in section 4.2 allowed the calculation of the wave
packet phase at a �xed location, independent of its propagation. To determine what phase
is imprinted to the wave packet, it is necessary to calculate the wavefunctions associated
with the transmitted and re
ected waves.

Transmitted and re
ected wave packets

In the case where the detuning� 0 between the lasers is time-independent and the Bragg
pulse is constant (
 R(t) = 
 M ), we have shown that the system 4.117 could be solved
analytically. Therefore, we use the analytical formula 4.65, only adding the phase term
which depends on the center of mass. Let us assume that initially, the atoms are in thej0i
momentum state (C0(0) = 1, C2(0) = 0). The coe�cients C0 and C2 at the end of the
pulse, in the resonant case (� 0 = 0), are given by

8
>><

>>:

C0(t) = cos
�


 M t
2

�
C0(0)

C2(t) = i sin
�


 M t
2

�
e� i( ' 2 � ' 1 )e2ikzc C0(0)

(4.119)

Now, let us return to the case of Gaussian wavefunctions, which consist in integrating
the previous expressions overp, along with a gaussian density envelope (again, we omit
the normalization factors). We recall that the initial wavefunction can be written as

 (z;0) = e � ( z � z0 ) 2

2� 2 ei p0
~ (z� z0 ) (4.120)

where z0 and p0 are the (mean) position and momentum of the wavepacket at the initial
time.

We will consider separately the transmitted part (staying at momentum p0) and the
re
ected part (with momentum p0 + 2~k) of the wavefunction, which will be noted j t i
and j r i , respectively.

j (t)i = j t (t)i + j r (t)i (4.121)

The transmitted part of the total output state is

j t (t)i =
Z

dp ~C(p)
0 (t) e� i p2 t

2m ~ Ĝ(t) jpi (4.122)

where ~C(p)
0 (t) is the amplitude coe�cient at a momentum p. It is both related to the Bragg

coupling and the momentum distribution of the wave packet. In particular at t = 0, ~C(p)
0 (0)

is the initial momentum distribution at the center of mass (since the operator Ĝ moves to
the center of mass reference frame), which is the Fourier transform of CM (z;0), so that

~C(p)
0 (0) = ~ CM (p;0) = e � � 2p2

2~2 (4.123)

We use the de�nition 4.83 of the Galilean transformation operator Ĝ to get

Ĝ(t) jpi = e i
p2

0
2m ~ t e� i ( p+ pc ) zc

~ jp + pci (4.124)

Therefore, we have

j t (t)i = e i
p2

0
2m ~ t

Z
dp ~C(p)

0 (t) e� i p2 t
2m ~ e� i ( p+ pc ) zc

~ jp + pci (4.125)
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Here, we will assume that all the atoms from the wave packet are resonant with the
Bragg coupling, neglecting the detuning e�ects, so that the Bragg transfer does not depend
on p, and then ~C(p)

0 (t) is the product of the Bragg transmittivity (given by equation 4.119)
with the momentum density envelope:

~C(p)
0 (t) = cos

�

 M t

2

�
~C(p)

0 (0) = cos
�


 M t
2

�
e� � 2p2

2~2 (4.126)

By writing pc = p0 and zc = z0 + p0 t
m , we �nd

j t (t)i = cos
�


 M t
2

�
ei

p2
0

2m ~ t
Z

dpe� � 2p2

2~2 e� i p2 t
2m ~ e� i

( p+ p0 )(z0+
p0 t
m )

~ jp + p0i (4.127)

from which we can deduce the wavefunction

 t (z; t) = cos
�


 M t
2

�
ei

p2
0

2m ~ t e
i p0
~ (z� z0 � p0 t

m )
Z

dpe� � 2p2

2~2 e� i p2 t
2m ~ e

i p
~ (z� z0 � p0 t

m ) (4.128)

Apart from the Bragg transmittivity factor, this is exactly the same calculation as
what was done previously in equation 4.91 to determine the wavefunction of a free wave
packet.

So, as expected, the transmitted part of the wave packet at the end of a Bragg pulse
is equal to what we would �nd without any Bragg pulse, up to a population modulation
determined by the Bragg pulse duration.

The same reasoning can be applied to the part of the wavefunction that is re
ected by
the Bragg pulse:

j r (t)i =
Z

dp ~C(p)
2 (t) e� i ( p+2 ~k ) 2 t

2m ~ Ĝ(t) jp + 2~ki (4.129)

Thus, we �nd a similar expression for the re
ected wavefunction

 r (z; t) = i sin
�


 M t
2

�
e� i � L ei ( p0+2 ~k ) 2

2m ~ t e
i( p0+2 ~k )

~ (z� zc)
Z

dpe� � 2p2

2~2 e� i ( p+2 ~k ) 2 t
2m ~ e

i p
~ (z� zc)

(4.130)
where � L = ' 2 � ' 1 � 2kzc.

This yields the expression for a wave packet propagating at the momentump0 + 2~k,
with a center of masszc. The only di�erence with the propagation of a wave packet at
the same momentum is the Bragg re
ectivity factor sin(
 M t=2) and the additional phase
� L imprinted by the lasers on the atom, which depends on the center of mass of the wave
packet at the time of the pulse. It appears that this phase must be considered in the
calculation of the phase shifts that come into play in an interferometer.

Note that we have not explicitly speci�ed the expression of the center of mass (although
we have assumed that the wave packet has a classical momentumpc = p0 + 2~k). If we do
not consider the interaction term in the Hamilton equations to get the classical trajectory,
we get zc = z0 + (p0+2 ~k)t

m , meaning that the di�racted wave packet departs from the
location of the incident wave packet when the light is turned on.

In fact, it can be shown, by taking into account the o�-resonant e�ects, that the
interaction with light during the pulse alters the trajectory of the center of mass compared
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to the case without light. As a consequence, the re
ected and transmitted wave packets,
if their trajectories after the pulse are extended towards the initial time, do not intersect
at the position of the center of mass of the initial wave packet when the light is turned
on. This point will not be discussed further in the manuscript, but the previous formalism
allows for simulations to account for this e�ect, and analyses are underway in the team to
determine to what extent this deviation by light is measurable with our setup.

In most interferometers, especially the Mach-Zehnder interferometers reported in the
literature, the duration of the Bragg pulses is much shorter than the free propagation
time. Consequently, the interaction time with light is considered negligible. In this case,
the position of the center of mass corresponds to the classical position at the time of the
Bragg pulse.

Atoms in a gravitational potential

In our case, the Bell interferometer occurs along the vertical axis. Therefore, it is
necessary to consider the gravitational potential in the Hamiltonian. An important con-
sequence is that as atoms fall, they will detune with respect to the Bragg resonance. This
Doppler detuning can be corrected by applying a frequency ramp to one of the lasers.

As mentionned in reference [143], the same formalism can be applied when adding
gravity. Starting from the Bragg coupled system from equation 4.117, we have:

8
>><

>>:

_C0 = i
~
 R

2
C2 ei � 0 t e� 2ik(z0+ p0 t

m � 1
2 gt2)

_C2 = i
~
 �

R

2
C0 e� i � 0 t e2ik(z0+ p0 t

m � 1
2 gt2)

(4.131)

where the additional term � 1
2gt2 arises from the acceleration due to gravity. This system

is equivalent to having a detuning which varies linearly with time ~� 0 = � 0 + kgt, which
re
ects the fact that during their fall, the momentum of the atoms changes, causing them
to shift away from resonance.

To counteract this e�ect, it is immediately apparent that if a linear ramp is applied to
the detuning, typically by performing a frequency sweep on one of the two lasers, then one
can compensate for this loss of resonance. The phase that must be added to compensate
for gravity is therefore � comp = � kgt2. Thus, the corresponding frequency ramp to be
applied is given by:

f comp =
d� comp

dt
= � 2kgt (4.132)

The gravity term is compensated when the slope� of the frequency sweep is� =
� 2kg = � kBg. In practice, unless in speci�c cases6, e�orts are made to ensure that this
condition is satis�ed so that the Bragg resonant momentum class moves with the atoms.

4.3.3 Conclusion

In the preceding paragraphs, we have shown the expression of the phase shifts to be
taken into account when calculating the phase involved in an interferometer. We can
di�erentiate between the phase shifts � prop resulting from the propagation of a wave
packet in a gravitational potential and the phase shifts � laser arising from the interaction
between the wave packet and light.

6For instance, in Mach-Zehnder gravimeters aiming at measuring g, the value of the slope � is �nely
scanned in order to precisely spot its value when gravity is compensated.
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ˆ Two wave packets that separate from a certain point and propagate at di�erent
momenta acquire di�erent phases during their respective propagation. Therefore,
there is a phase di�erence associated with this propagation di�erence when the wave
packets meet again to interfere.

We have seen that the phase accumulated by a wave packet can be expressed in the
form:

� path =
1
~

Scl(z; t; z0; 0) =
1
~

Z

�
L c[z(t); _z(t)] dt (4.133)

where
1
~

Z

� 0

L c[z(t); _z(t)] dt =
m
~

�
v2

0

2
+ gz0

�
t (4.134)

for a wavepacket propagating on a path �0 at a speedv0 from a position z0 for a
duration t in a gravitational potential.

The phase di�erence between two wave packets is then

� prop = � path ;2 � � path ;1 (4.135)

ˆ Furthermore, we have seen that when an atom interacts with light during a Bragg
pulse, there is a phase imprinted by the lasers onto the atoms (or more precisely, a
phase di�erence between the transmitted and re
ected atomic beams). At resonance,
this phase can be expressed in the form:

� lasers = � kBzc + ( ' 2 � ' 1) (4.136)

where kB = 2k is the Bragg momentum transferred to the atoms,zc is the center
of mass of the wave packet and' 2 � ' 1 is the phase di�erence between the lasers
at the time of the pulse. Note that in addition to the instantaneous phases' i , a
similar reasoning for a Bragg pulse starting at t = t i also implies the existence of
a term written as ( ! 2 � ! 1)t i = � ! L t i where ! 1;2 are the laser beams frequencies.
This term must be considered in the calculations, and we will see that it cancels out
in the case of closed interferometers.

Out of resonance, additional terms emerge. For example, we have seen that for a con-
stant two-photon Rabi frequency beam splitter in a plane wave model, a correction
must be taken into account:

� lasers = � kBzc + ' 2 � ' 1 + � ! L t i � � 0T + tan � 1
�

� 0



tan

�

 T
2

��
(4.137)

where T is the duration of the pulse.

The objective of this section was to formally highlight the phase shifts involved in
atomic interferometers. The derived expressions will now be used in two di�erent cases: at
resonance and for short pulse durations on one hand, and o�-resonance for �nite-duration
pulses within a model where atoms are treated as plane waves on the other hand.
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4.4 Application to the Mach-Zehnder interferometer

The previous results will be applied to a Mach-Zehnder type interferometer, as depicted
in Figure 4.18. Starting from an initial atomic cloud at a given momentum p, a �rst beam
splitter pulse is applied to split the cloud into two parts, with a momentum p or p + 2~k.
Subsequently, a mirror pulse is introduced to bring the two wave packets together onto a
�nal beam splitter, where the two momentum modes are mixed. The idea is to have two
clouds interfering at a beam splitter, which justi�es the geometry of the interferometer:
the initial pulse allows for amplitude splitting interference by emitting two coherent clouds
from the same atomic source. The mirror pulse is employed to close the interferometer,
so that the two wave packets overlap.

We assume that the interferometer is in a spatial con�guration where the momentum
transferred by Bragg di�raction is in the vertical axis, for which gravity needs to be taken
into account.

p

p

p+ 2~k

p+ 2~k

A

B

I

O

Time

Position
Beam

splitter Mirror
Beam

splitter

Figure 4.18: Schematic representation of the Mach-Zehnder interferometer in the falling
frame.

This atomic interferometer was initially realized by S. Chu and M. Kasevich[86] with
cold atom clouds and Raman beams, and then successfully replicated a few years later
using Bragg di�raction[144] and BECs[145]. It can be used to measure gravitational
acceleration[146], as we will show in the following.

4.4.1 Resonant case with short pulses

First, we will focus on the simple case where all atoms are resonant for the Bragg
pulses in a \closed" interferometer (a concept that will naturally emerge). We assume
that the Bragg pulses are short, meaning that their duration is negligible compared to the
free propagation duration. For now, we do not assume that the atomic wavefunction is a
plane wave, and use the results from the previous section.
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Laser phase

Let us determine the phase due to the interaction between the atoms and the light
pulses.

We have shown that for a given momentum doublet in the basisf p; p+2~kg, the Bragg
transfer matrices of a mirror and a beam splitter can respectively be written, at resonance,

UM =
�

0 iei �

ie� i � 0

�
and US =

p
2

2

�
1 iei �

ie� i � 1

�
(4.138)

where

� = � kBzc + � ! L t i + ( ' 2 � ' 1) (4.139)

Here, zc is the center of mass of the wavepacket subjected to a Bragg pulse. Note
that, in this formalism, the center of mass is obviously not the same for the wave packet
initially transmitted by the �rst Bragg splitter, compared to the one of the wave packet
initially re
ected. Even if we consider only two momentum modes, the same mode can be
involved in the interferometer through two spatially decoupled paths (as seen in Figure
4.19, modep is involved in paths � and � , and similarly, mode p+2~k is involved in paths
� 0 and � 0).

� 0 � 0

�

�

p

p

p+ 2~k

p+ 2~k

A

B

I

O

Figure 4.19: Schematic representation of the modes involved in the Mach-Zehnder in-
terferometer. We distinguish modes with the same momentum but spatially separated. Strictly
speaking, this is a four-input, four-output interferometer, but we only consider one input mode (� )
and two output modes (� and � 0).

Strictly speaking, mode (p) � is coupled with mode (p+ 2~k) � 0, while mode (p+ 2~k) � 0

is coupled with mode (p) � during the Bragg mirror pulse, when accounting for the spatial
dimension, so that two mirror matrices are necessary to describe the whole system:

8
>>>>><

>>>>>:

 
C0;� (t)

C2;� 0(t)

!

=

 
0 iei � A

ie� i � A 0

!  
C0;� (0)

C2;� 0(0)

!

 
C0;� (t)

C2;� 0(t)

!

=

 
0 iei � B

ie� i � B 0

!  
C0;� (0)

C2;� 0(0)

! (4.140)
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To address this issue, it is natural to use 4� 4 matrices, so we can write, for the mirror,

0

B
B
B
B
B
@

C0;� (t)

C2;� 0(t)

C0;� (t)

C2;� 0(t)

1

C
C
C
C
C
A

=

p
2

2

0

B
B
B
B
B
@

0 0 0 iei � 2A

0 0 ie� i � 2B 0

0 iei � 2B 0 0

ie� i � 2A 0 0 0

1

C
C
C
C
C
A

0

B
B
B
B
B
@

C0;� (0)

C2;� 0(0)

C0;� (0)

C2;� 0(0)

1

C
C
C
C
C
A

(4.141)

where the index 2 designates the mirror, and the indexA or B indicates the path of the
interferometer under consideration, upon which the center of mass depends. In the same
basis, the matrices for the two splitters are therefore:

US1 =

p
2

2

0

B
B
B
B
B
@

1 iei � 1 0 0

ie� i � 1 1 0 0

0 0 0 0

0 0 0 0

1

C
C
C
C
C
A

and US3 =

p
2

2

0

B
B
B
B
B
@

0 0 0 0

0 0 0 0

0 0 1 iei � 3

0 0 ie� i � 3 1

1

C
C
C
C
C
A

(4.142)

Starting from a certain initial state j in i , the �nal state is

j out i = ÛS3 ÛM ÛS1 j in i (4.143)

It can be easily demonstrated that in the case of a single input mode, under the
considered conditions where atoms are perfectly resonant and there is no atom leakage
(perfect re
ectivity of the mirror), then it is possible to determine the output state using
2� 2 matrices in a f p; p+ 2~kg basis (without specifying the spatial mode), provided that
the mirror matrix is written as follows:

0

@C0(t)

C2(t)

1

A =

0

@ 0 iei � 2A

ie� i � 2B 0

1

A

0

@C0(0)

C2(0)

1

A (4.144)

The beam splitter matrices are in the usual form given in equation 4.138.

One can then calculate the �nal state for an input state where the atoms are in the
momentum modep:

j out i = ÛS3 ÛM ÛS1

�
1
0

�
=

1
2

�
� ei( � 2A � � 1 ) � ei( � 3 � � 2B )

� iei( � 2A � � 1 � � 3 ) + ie � i � 2B

�
(4.145)

The probability of measuring an atom in modesp and p + 2~k are then respectively
8
>><

>>:

P0 = cos2
�

� 1 � � 2A � � 2B + � 3

2

�

P2 = sin 2
�

� 1 � � 2A � � 2B + � 3

2

� (4.146)

As expected, the populations of the output modes oscillate as a function of the phase
� lasers = � 1 � � 2A � � 2B + � 3 of the interferometer, i.e.,

� lasers = � kB (zc;1 � zc;2A � zc;2B + zc;3) + � ! L (t1 � 2t2 + t3)

+ � ' 1 � 2� ' 2 + � ' 3
(4.147)
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where � ' i = ( ' 2 � ' 1) i is the phase di�erence between the lasers at the timet i of the
pulse i , and zc;1 is the center of mass of the initial wave packet during the �rst beam
splitter, while zc;2A and zc;2B are the centers of mass of the clouds in both paths during
the mirror, and zc;3 is the center of mass of the recombined cloud during the second beam
splitter.

To give an explicit expression of this phase where each term is given by� i = � kBzc;i +
(' 2;i � ' 1;i ), it is necessary to determine the position of the wave packets during the Bragg
pulses, based on their classical trajectories. Let us noteT1 the duration between the �rst
two pulses and T2 the duration between the mirror and the second splitter. The time
origin is set at the moment of the �rst pulse, such that t1 = 0, t2 = T1 and t2 = T1 + T2.
We also write the speedsv0 = p

m and vB = 2~k
m and the initial position of the wavepacket

is z0. With these notations, we have
8
>>><

>>>:

zc;1 = z1

zc;2A = z1 + v0T1 �
1
2

gT2
1

zc;2B = z1 + ( v0 + vB )T1 �
1
2

gT2
1

(4.148)

Note that there are two ways of writing the position of the wave packets during the second
beam splitter, each being given by the path of each cloud:

8
><

>:

zc;3A = zc;2A + ( vc;2A + vB )T2 �
1
2

gT2
2

zc;3B = zc;2B + ( vc;2B � vB )T2 �
1
2

gT2
2

(4.149)

Here, we consider the case where there is a perfect overlap between the wave packets
during the second beam splitter, corresponding tozc;3A = zc;3B = zc;3, i.e., T1 = T2 = T.
The interferometer is then said to be closed, ensuring maximal interference contrast. We
have therefore:

zc;3 = z1 + (2 v0 + vB )T � 2gT2 (4.150)

Since, in this case,t1 � 2t2 + t3 = 0, the phase involved in the Mach-Zehnder interfer-
ometer is then:

� lasers = kBgT2 + � ' 1 � 2� ' 2 + � ' 3 (4.151)

This important result shows that the interference phase depends on gravity and the
duration between successive Bragg pulses. Actually, the atoms are detuned from the Bragg
transition while falling, due to the Doppler e�ect. As mentioned earlier, it is possible to
compensate for this e�ect by sweeping the frequency between the two lasers. As mentioned
earlier, if we note � as the sweep slope, then the additional phase imposed during a pulse
i is expressed as:

� sw;i =
Z t i

0
� 0(t)dt =

Z t i

0
�t 2dt = �

t2
i

2
(4.152)

with t1 = 0 for the �rst splitter, t2 = T for the mirror, and t3 = 2T for the second splitter.
The phase thus added to the total phase � is given by:

� sw =
�
2

(t2
1 � 2t2

2 + t2
3) = �T 2 (4.153)
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so that

� lasers = ( kBg + � )T2 + � ' 1 � 2� ' 2 + � ' 3 (4.154)

If the value of the frequency ramp slope� is equal to � kBg, then the loss of resonance
of the atoms is compensated. This is, in fact, the principle behind cold atom gravimeters,
which involve precisely determining the value of this slope to deduceg.

One can then observe an oscillation of the population in each of the modes: for instance
if the phase di�erences � ' 1 and � ' 2 are kept the same during the �rst two pulses, it can
be done by varying the phase di�erence � ' 3 at the third pulse between each realization of
the experiment. Note that it is necessary for the phase di�erences �' i not to vary during
an experiment, otherwise the interference vanishes.

Propagation phase

Between the pulses, the atoms also acquire a phase. To account for this e�ect, we must
add a term that corresponds to the phase di�erence accumulated by each wave packet in
the gravitational �eld during its propagation.

To do this, as shown earlier, we will calculate the action associated with each path,
maintaining the notations from Figure 4.20, in order to compare the phase accumulated
by each wave packet until the second beam splitter where they interfere.

A

B

I

O

t
T1 T2

Figure 4.20: Schematic representation of the interferometer.Atoms follow either path A or
path B . Here, we assume that the propagation durations are equal, so thatT1 = T2.

On one hand, the phase accumulated by the wave packet that passes through pointA
is expressed as:

� path ;A =
1
~

Z

IAO

L c dt =
1
~

Z

IA

L c dt +
1
~

Z

AO

L c dt (4.155)

Using 4.134 and assuming thatT1 = T2 = T, we get:

� path ;A =
m
~

�
v2

0

2
+ gz0

�
T +

m
~

�
(v0 + vB � gT)2

2
+ gzc;A

�
T (4.156)

where zc;A = z0 + v0T �
1
2

gT2 and vB is the Bragg velocity transferred to the atoms by

the Bragg pulse.
Similarly, we �nd for the other path

� path ;B =
m
~

�
(v0 + vB )2

2
+ gz0

�
T +

m
~

�
(v0 � gT)2

2
+ gzc;B

�
T (4.157)
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where zc;B = z0 + ( v0 + vB )T �
1
2

gT2.

At this stage, it can be noted that an order of magnitude of the action is S � 1:5 �
10� 32 J.s (with z0 = 0, v0 = 0 and T = 1 ms). Therefore, we haveS � ~, justifying
that the dominant contribution in the path integral calculation is the classical solution,
as discussed earlier.

The phase di�erence between the wave packets at the second beam splitter is

� prop = � path ;B � � path ;A =
m
~

�
� vBgT2 + gT(zc;B � zc;A )

�
= 0 (4.158)

Thus, in the case where the interferometer is closed, the phases accumulated by the
two wave packets are equal, and there is no phase shift associated with the propagation
of the wave packets in the population oscillation.

This result is actually general: as long as an interferometer is closed, no phase related
to the propagation of the wave packets comes into play. On the contrary, if the interfer-
ometer is not closed, additional phase shifts appear that tend to decrease the contrast of
interferences, eventually leading to total blurring.

4.4.2 O�-resonant corrective terms - �nite duration pulses

In section 4.2 presenting the Bragg di�raction model, we showed that the matrices
4.138 employed to model the mirror and Bragg beam splitter are, in fact, speci�c cases
of Bragg transfer matrices in the case of resonant square pulses in the Bragg regime. As
mentioned earlier, it is possible to calculate the phases induced by the Bragg transfers in
a general case, still within the Bragg regime but without assuming resonance.

In this section, we will then consider an o�-resonance model with �nite-duration Bragg
pulses. We assume that a frequency sweep on one of the two lasers compensates for grav-
ity. Furthermore, we will assume that atoms behave like plane waves to focus solely on the
corrective phase shifts due to laser-induced phase imprinting. At �rst, we do not assume
that the interferometer is closed.

We write the transfer matrix 4.63 for a Bragg pulse of duration T in the general form:

U(T) =
�

tei � 0
ir ei �

ir e� i � te� i � 0

�
(4.159)

We recall that r and t are real numbers and depend on the durationT of the pulse and
on the detuning � 0, and so do the phases� and � 0.

Note that the expression of a Bragg matrix 4.63 was derived in the rotating frame,
meaning that we had written j (t)i = C0e� i! 0 t jpi + C2e� i! 2 t jp + 2~ki , where ! i = E i

~ .
In a plane wave model, we need to return to the laboratory frame in order to take into
account the propagation phase shift, i.e., the phase accumulated by the atoms due to
their kinetic energy. Therefore, we can rewrite the expression for the evolution matrix as
follows:

U(T) =
�

tei � 0
e� i! 0T ir ei � e� i! 0T

ir e� i � e� i! 2T te� i � 0
e� i! 2T

�
(4.160)

Speci�cally, in the case where there is no light interacting with the atoms, the matrix U
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represents the free propagation matrix

UF (T) =
�

e� i! 0T 0
0 e� i! 2T

�
(4.161)

For better clarity of the results, we will assume that no atoms are transmitted through
the mirrors by setting the diagonal terms to zero. This strong assumption will be re-
laxed later when we will proceed numerically to calculate the phase involved in the Bell
interferometer. Under this assumption, the propagation matrix for a mirror is

UM (T) =
�

0 irM ei � M e� i! 0T

irM e� i � M e� i! 2T 0

�
(4.162)

and for a beam splitter, we have

US(T) =
�

tSei � 0
Se� i! 0T irSei � Se� i! 0T

irSe� i � Se� i! 2T tSe� i � 0
Se� i! 2T

�
(4.163)

Thus, to determine the output state j out i of a Bragg doublet in a Mach-Zehnder
interferometer, constituted by a sequence of beam-splitter - mirror - beam splitter pulses,
one needs to calculate the product

j out i = US2 (TS2)UF2 (T2)UM (TM )UF1 (T1)US1 (TS1) j in i (4.164)

where TS1, TM and TS2 are the durations of the successive Bragg pulses, andT1 and T2

are the durations of the free propagation (Figure 4.21).

j
 R j

t0

BS1

TS1 T1

Mirror

TM T2

BS2

TS2

Figure 4.21: Temporal representation of the Mach-Zehnder interferometer.

Starting from an input state where all the atoms are in momentum p, we �nd

hpj out i = � rM rS1tS2e
i( � 0

S2+ � M � � S1 � ! 0 (TS2+ TM + T2 )� ! 2 (TS1+ T1 ))

� rM rS2tS1e
i( � S2 � � M + � 0

S1 � ! 0 (TS1+ T1+ TS2 )� ! 2 (TM + T2 ))
(4.165)

Assuming that the re
ectivity and transmittivity coe�cients are the same for the �rst
and the second beam splitter (rS1 = rS2 = rS and tS1 = tS2 = tS), we obtain the oscillation
of the population of the p momentum state (for instance):

P0(t) = j hpj out i j 2 = r 2
M r 2

S t2
S cos2

�
�
2

�
(4.166)

where

� = � 0
S1 + � S1 � 2� M � � 0

S2 + � S2 + ( TM + T2 � TS1 � T1)( ! 0 � ! 2) (4.167)
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We thus obtain a somewhat more general result for the phase involved in the Mach-
Zehnder interferometer, with a term related to the phase accumulation due to the kinetic
energy of the atom, and phases originating from the interaction with light.

The phase term due to propagation cancels out in the case whereTS1 + T1 = TM + T2.
This seems to mean that, in this model, the interferometer is closed when the duration
between the start of the �rst pulse and the start of the second pulse is equal to the
duration between the start of the second pulse and the start of the third pulse. This result
may seem counterintuitive, as the closure condition for an interferometer with pulses of a
certain duration is typically represented in relation to the half-duration of a pulse (so that
T1 = T2) rather than its start. This raises the question of the classical time equivalent
to a pulse with a non-zero duration, which originates from a fully quantum phenomenon.
Recall that we do not take into account any spatial e�ect, although they would lead to a
additional phase shifts through the center of mass.

In the model presented here, it is not surprising that this condition related to the
propagation of the wave packets involves the beginning of each pulse. Let us take the
example of a resonant mirror pulse. When expressing the transfer matrix in the form
4.163, if the input state corresponds to an atom in statep, one can see that the transferred
mode starts accumulating phase at the frequency! 2 as soon ast > 0, regardless of the
fact that the transferred population is nearly zero:

j out i =
�

0 iei � e� i! 0 t

ie� i � e� i! 2 t 0

� �
1
0

�
= ie � i � e� i! 2 t jp + 2~ki (4.168)

For any �nite-duration pulse, the phase accumulated in the re
ected mode (for in-
stance) begins to accrue right from the start of the pulse. This is why this initial moment
is involved in the condition TS1 + T1 = TM + T2. But one has to keep in mind that
there is another term related to the beginning of the pulses when taking into account the
interaction with light, through the phase terms � ! L t i . In equation 4.167, we should add

� ! L (t1 � 2t2 + t3) = � ! L (TM + T2 � TS1 � T1) (4.169)

so that the Mach-Zehnder phase is actually

� = � 0
S1 + � S1 � 2� M � � 0

S2 + � S2 + � 0(TM + T2 � TS1 � T1) (4.170)

where we used the de�nition 4.118 of the detuning, i.e.� 0 = � ! L � (! 0 � ! 2).
This result is valid regardless of the type of pulse applied, no matter its temporal

shape. In the speci�c case of a constant pulse, we derived an analytical expression for
the propagation matrix Û, which can be used to identify the expressions of the phases�
and � 0. Using the results from equation 4.107, we have:

� 0 =
� 0T
2

+ tan � 1
�
�

� 0



tan

�

 T
2

��
and � = � ' +

� 0T
2

(4.171)

Assuming that we haveTS1 = TS2 = TS, we �nd

� 0
S1 + � S1 � 2� M � � 0

S2 + � S2 = � ' 1 � 2� ' 2 + � ' 3 + � 0(TS � TM ) + � 0(TM + T2 � TS1 � T1)
(4.172)

from which we can deduce the phase of the interferometer

� = � ' 1 � 2� ' 2 + � ' 3 + � 0(T2 � T1) (4.173)
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We recover the resonant case when� 0 = 0. Note that the well known closure condition
T1 = T2 naturally emerges from this calculation when trying to be less sensitive to the
resonance condition (even without considering the wave packets). It appears that the
condition for the interferometer to be closed is achieved when

d�
d� 0

= 0 (4.174)

4.5 Application to the Bell interferometer

In this section, we will apply the formalism developed earlier to the case of the Bell
interferometer. The ideal case with perfect resonant beam splitters and mirrors was an-
alyzed in the �rst section of this chapter. The input state is the two-particle four-mode
state

j in i =
1

p
2

(j� p; pi + e i � 0 j� q; qi ) (4.175)

where � 0 is the phase di�erence between the two input momentum doublets.
We found that, at resonance, the phase involved in the Bell interferometer is � =

� A � � B + � 0, where � A and � B are the phases imprinted by the splitter on each loop of
the interferometer.

Here, we will incorporate into our analysis the propagation phase, the phase imprinted
by the mirror, the center of mass-dependent phase shift. We will also discuss, in a second
part, the non-resonant corrective terms to be added to the phase involved in the Bell
interferometer in a plane wave model. This last information is crucial for us since we aim
to exploit the fact that the A and B Bragg doublets do not have the same resonance fre-
quency. Therefore, it is necessary to understand the e�ects of a pulse on all velocity classes.

4.5.1 Propagation phase

Let us begin by discussing the phase associated with the propagation of the wave
packets. In the case of Mach-Zehnder interferometers, only two momentum modes are at
play. The term related to the propagation of the wave packets that comes into play in the
interferometer's phase is then equal to the phase di�erence between the two wave packets
when they interfere. We have shown that this phase cancels out when the interferometer is
closed. In contrast, the Bell interferometer involves four momentum modes, and we have
seen that interference can only be observed by looking at two-particle states. How then
can we account for the propagation phase?

If we return to the case of the Mach-Zehnder interferometer, we can write the state of
the system just before the second beam splitter as = C0 jpi + C2 ei� prop jp + 2~ki , where
� prop is the propagation phase di�erence between the two wave packets. The coe�cients
C0 and C2 contain all the phase shifts due to the phase imprinted by the �rst beam
splitter and the mirror pulses. After the second beam splitter, the output state is written
as follows:

j out i =
1

p
2

�
1 iei � 3

ie� i � 3 1

� �
C0

C2 ei� prop

�
=

1
p

2

�
C0 + i C2 ei � 3 ei� prop

iC0 e� i � 3 + C2 ei� prop

�
(4.176)
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This is where the propagation phase comes into play: we can see that it plays a role
similar to the phase imprinted by the third beam splitter. This is the reason why the
propagation phase is often treated independently and then added to the laser phase.

Similarly, for each loop A or B of the Bell interferometer, the phase di�erence due to
the propagation of the wave packets associated with each loop plays a role similar to that
of the beam splitter. We can express it as follows, for the loopA for instance:

j (A )
out i =

1
p

2

 
C0 + i C2 ei � A ei� ( A )

prop

iC0 e� i � 3 + C2 ei� ( A )
prop

!

(4.177)

So, following the same steps as before, the phase that we need to consider for the Bell
interferometer is given by:

� = � A � � B + � (A )
prop � � (B )

prop + � 0 (4.178)

The propagation phases can be calculated in the same manner as for the Mach-Zehnder
interferometer. Consider loop A, for example. Let z0 be the initial position and vq and
v� p the initial velocities, with vq = v� p + vB . We calculate the phase accumulated by
the two wave packets, one going through pathD and the other going through path F
(Figure 4.22). We note zD and zF the position of the center of mass of each wave packet
at the time of the mirror. The pulses are considered short enough to be neglected, and
the duration between each pulse isT.

p

q
� q

� p

p

� q

q

� p

C

D

F

E

I

A

B

t

T1 T2

Figure 4.22: Schematic representation of the Bell interferometer.

The propagation phases are

� (A )
path ;D =

m
~

 
v2

q

2
+ gz0

!

T +
m
~

�
(vp � gT)2

2
+ gzD

�
T (4.179)

� (A )
path ;F =

m
~

 
v2

p

2
+ gz0

!

T +
m
~

�
(vq + gT)2

2
� gzF

�
T (4.180)

so the phase di�erence for loopA is:

� (A )
prop = � (A )

path ;D � � (A )
path ;F = gT2(vp � vq) + gT(zD � zF ) (4.181)
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This expression is unsurprisingly similar to the one obtained for the Mach-Zehnder
interferometer. Again, since zD � zF = ( vq � vp)T (due to the fact that the duration
between each pulse is the same), we get

� (A )
prop = 0 (4.182)

Similarly, it can be shown that, for the same reasons, we have �(B )
prop = 0.

Again, we �nd that for a closed interferometer, the phase related to the propagation
of the wave packets cancels out. We will assume this condition to be satis�ed in the
rest of this manuscript. However, it is worth noting that this formalism would allow the
calculation of the phase involved in a non-closed Bell interferometer. This suggests that
the closure condition is not necessary to perform a Bell test, even though it represents
the most favorable scenario (since, of course, in a non-closed interferometer, there is a
reduction of the interference contrast due to partial overlap of the wave packets). Finally,
let us just mention that we have expressed a classical closure condition, by neglecting the
e�ects related to interaction with light.

4.5.2 Center of mass-dependent imprinted phase

Before determining the phase terms related to non-resonant momentum classes, let us
determine the role of the wave packets center-of-mass phase in the Bell interferometer. As
a reminder, it has been demonstrated that during the interaction with Bragg beams, the
phase di�erence between the re
ected and transmitted beams includes a term written as
� kBz, where z is the position of the center of mass of the wave packet.

Therefore, we will once again compute the output state of the interferometer in the
resonant case, but this time by expressing the propagation matrices in a non-unitary form
(assuming that at resonance, no atoms are transmitted through the mirror). As mentioned
earlier, this approach allows us to account for the spatial position of the momentum modes
involved in the interferometer. We express the mirror and beam splitter matrices for loop
A as follows:

Û(A )
M =

 
0 iei � A

M (zF )

ie� i � A
M (zD ) 0

!

and Û(A )
S =

1
p

2

 
1 iei � A

S (zA )

ie� i � A
S (zA ) 1

!

(4.183)

where each phase term� A (zi ) is the sum of the laser imprinted phase and the center-of-
masszi imprinted phase. Similarly, we have

Û(B )
M =

 
0 iei� B

M (zE )

ie� i� B
M (zC ) 0

!

and Û(B )
S =

1
p

2

 
1 iei � B

S (zB )

i e� i � B
S (zB ) 1

!

(4.184)

Thus, starting from the initial state

j in i =
1

p
2

��
1
0

�

A



�
0
1

�

B
+ e i � 0

�
0
1

�

A



�
1
0

�

B

�
(4.185)

we can calculate the output state j out i using the relation

j out i = Û(A )
S Û(A )

M 
 Û(B )
S Û(B )

M j in i (4.186)
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from which we deduce the phase � on which the Bell interference depends, by calculating
P(p; � p) for instance. We �nd:

� = � A
S (zA ) � � B

S (zB ) + � 0 + � B
M (zC ) � � A

M (zD ) + � B
M (zE ) � � A

M (zF ) (4.187)

Let us calculate only the phase term � com related to the contribution of the center of
mass of the wave packets at play (� = � com + � light ). We have

�
� com

kB
= zA � zB + zC � zD + zE � zF (4.188)

Using the same notation as before, we have

8
>>>>>>>><

>>>>>>>>:

zC = z0 + vpT �
1
2

gT2

zD = z0 + vqT �
1
2

gT2

zE = z0 + v� qT �
1
2

gT2

zF = z0 + v� pT �
1
2

gT2

and

8
<

:

zA = z0 + ( vq + v� p)T � gT

zA = z0 + ( vp + v� q)T � gT
(4.189)

Finally, we �nd
� com = 0 (4.190)

Thus, we conclude that the center-of-mass phase of the interferometer is zero. This is
due to the geometric con�guration of the Bell interferometer, which essentially involves
taking the di�erence between two loops. For the same reason, the phase terms related to
the laser frequency di�erence � ! L cancel out.

Similarly, if a frequency ramp is added to compensate for the Doppler shift due to
gravity, then the additional phase introduced7 cancels out because the phase shift due
to the ramp is the same for A and B , and the equation 4.187 only involves di�erences
between the phases ofA and B .

4.5.3 O�-resonant terms

As emphasized several times before, additional phase terms come into play in the phase
imprinted on atoms whose momentum class is not resonant with the Bragg transition.
Using the previous formalism, it is possible to determine a general expression for the Bell
phase for any momentum class, as a function of the phase imprinted by light on the atoms.

The interest of this formulation is to facilitate the understanding of the phases in-
volved, in order to design Bragg pulses that yield the most e�cient Bell signal. Indeed,
non-resonant terms tend to blur the Bell interference signal, and one of our objectives is
to minimize this e�ect to ensure that the Bell phase does not vary too much with the
detuning as we move away from resonance.

We will proceed in the same way as in Section 4.4.2 for the Mach-Zehnder interferom-
eter. The atom wavefunction is considered as a plane wave, so that we do not take into
account the o�-resonant e�ects related to the center of mass of the wave packets. Once

7For a pulse at t = t i , we have shown that � sw ;i = �
t2

i

2
where � is the slope of the frequency ramp.
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again, we will start by assuming that the mirror's transmissivity is zero, forcing its diago-
nal coe�cients to zero. This is a strong assumption, certainly not valid o�-resonance, but
it will lead to a simpler analytical result for interpretation.

To calculate the Bell phase, we again use the relationship 4.186, but this time the
matrices for mirrors and beam splitters have the more general form:

U(A )
M (T) =

 
0 ir A

M ei � A
M e� i! A

0 T

ir A
M e� i � A

M e� i! A
2 T 0

!

(4.191)

and

U(A )
S (T) =

 
tA
S ei � 0A

S e� i! A
0 T ir A

S ei � A
S e� i! A

0 T

ir A
S e� i � A

S e� i! A
2 T tA

S e� i � 0A
S e� i! A

2 T

!

(4.192)

where T is the duration of the pulse. We included propagation terms e� i!T due to the
kinetic energy of the atoms in order to discuss the interferometer closure condition with
�nite duration pulses. Since the momentum doublets involved are di�erent for A and B ,
we have ! A

0 = ! � p and ! A
2 = ! q, while ! B

0 = ! � q and ! B
2 = ! p. T is the duration

of the pulse, and all the variables are detuning-dependent, from the re
ectivity r and
transmittivity t coe�cients to the phases � and � 0.

The interferometric sequence is represented in Figure 4.23, whereTM and TS are the
durations of the Bragg mirror and beam splitter pulses, andT1 and T2 are the free prop-
agation times.

j
 R j

t0
T1

Mirror

TM T2

BS

TS

Figure 4.23: Temporal representation of the Bell interferometer.

We obtain

h� p; � qj out i = � ir A
M r A

S r B
M tB

S ei( � A
S � � A

M + � 0B
S + � B

M � T1 (! q+ ! � q )� (TM + T2 )( ! � p + ! p ))

� ir A
M tA

S r B
S r B

M ei( � 0A
S + � A

M + � B
S � � B

M + � 0 � T1 (! p + ! � p )� (TM + T2 )( ! q+ ! � q ))
(4.193)

Assuming that r A
S = r B

S and tA
T = tB

S , we get the Bell phase, which can be written:

� = � A
S � � B

S � � 0A
S + � 0B

S +2 � B
M � 2� A

M +( ! q + ! � q � ! p � ! � p)(TM + T2 � T1)+ � 0 (4.194)

We distinguish three kinds of phase shifts.

ˆ First, the phase shifts � A;B
S;M and � 0A;B

S;M are related to the interaction of the atoms
with light. They are known analytically for constant squared pulses, or can be
determined in a more general case by solving the Bragg coupling equation 4.60 of
each momentum doubletA and B for a given pulse.
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ˆ Second, the phase shift proportional toTM + T2 � T1 is related to the propagation of
wavepackets, and corresponds to the phase di�erence accumulated by loopsA and
B in the di�erent momentum modes involved. This phase shift only originates from
the ei!t terms in the evolution matrices. Interestingly, this propagation phase shift
vanishes for T1 = TM + T2. This appears to be a \closure" relation based on the
beginning of the pulses, meaning that the duration between the spatial separation of
the atoms (at the beginning of the interferometer) and the start of the mirror pulse
must be equal to the duration between the start of the mirror pulse and the start of
the beam splitter pulse. The discussion is similar to the case of the Mach-Zehnder
interferometer: in our formalism, the re
ected momentum modes start acquiring
phase as soon as the pulse starts, no matter how small the transferred population
is. So, if we do not consider the additional phase shifts due to the interaction with
light, the modes cross each other at the beginning of the beam splitter pulse. The
interpretation in terms of interferometer closure will be further discussed in the next
chapter, when we will aim at determining the closure relation for the Hong-Ou-
Mandel interferometer.

ˆ Finally, the phase shift � 0 is due to the initial phase shift between the two pairs of
twin momentum modes emitted by the four-wave mixing process. This phase cana
priori depend on the momentum quadruplet considered, but remains constant for a
given quadruplet, whose momentum width corresponds to the size of a mode.
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In this chapter, we will describe the strategy we adopted to carry out a Bell inequality
test and the Bragg pulses we aim at performing.

A �rst attempt to observe a Bell correlator oscillation consists in conducting a HOM-
type experiment to ensure the closure of the interferometer, and to use the data when the
interferometer is closed to focus on non-resonant momentum classes, as the Bell correlator
was shown to depend on the detuning. This experiment was conducted by our team in
2017, and we will brie
y discuss the results obtained at that time.

The terminology used throughout the rest of the manuscript will be as follows: we will
describe an HOM experiment as an interferometer with a single beam splitter, while in a
Bell experiment there are two distinct beam splitters for the A and B momentum doublets.
In the �rst section, we will describe the Bell-type correlations that can be highlighted with
a HOM interferometer. Subsequent sections will be dedicated to the implementation of a
proper Bell interferometer.

Indeed, following this initial test using a HOM interferometer, which provides an insight
into the expected amplitude of the Bell correlator oscillation, the Bell test we aim to
perform requires a control of the phase di�erence betweenA and B , as mentioned in section
4.1.2. The main idea is to leverage the fact that the momentum doublets involved in loops
A and B do not share the same resonance frequency. By implementing a \two-frequency"
beam splitter pulse, we can have two di�erent beam splitters whose characteristics can
be independently controlled, speci�cally the phase imprinted by the light to the atoms of
each doublet.

We will see that a convenient way to realize such two-frequency pulses without being
sensitive to phase 
uctuations consists in shaping the temporal pro�le of the beam splitter
pulse. It also makes it possible to control the phase di�erence imprinted on doubletsA
and B . This technique can be used to perform negative or even complex two-photon Rabi
frequencies, which we will also leverage to enhance the resonance width of mirror and
beam splitter pulses.

The �nal section of this chapter is dedicated to applying these pulses to a Bell inter-
ferometer in a numerical simulation that calculates the Bell oscillator.

5.1 Bell oscillation in an o�-resonant HOM experiment

As mentioned in the introduction, a Hong-Ou-Mandel interferometer can be used to
identify conditions under which two particles are indistinguishable.

In the case under consideration here, two twin atoms are emitted through four-wave
mixing in two di�erent momentum modes, denoted as p0 and � p0 (in the center of mass
reference frame). The momentum di�erence between the two is set equal to the momentum
~kB transferred during a two-photon Bragg transition, such that a mirror pulse couples
p0 and � p0. Following this mirror pulse, the two wave packets then approach each other.
When looking at the probabilities of detection after time of 
ight, maximum amplitude
interference is observed when a beam splitter is applied at the moment when the wave
packets perfectly overlap. This results in a decrease of the probability of measuring two
atoms in the two modes (to zero in the ideal case of a Fock state, as will be discussed in
Chapter 7). Therefore, the time of application of the beam splitter at which this joint
probability of measuring one atom in each modep0 and � p0 is minimal ensures that the
interferometer is closed.

This is strong evidence of two-atom interference, a phenomenon only explainable by
quantum theory when the probability of jointly measuring p0 and � p0 falls below 0:5.
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This experiment was �rst conducted by our team in 2014[92] and successfully replicated
in 2016[121].

The indistinguishability of interfering particles when the beam splitter is applied at
the HOM \dip" ensures that the interferometer is closed. Otherwise, partial overlap
between the wave packets would lead to a loss of contrast. We can then leverage the
fact that the emission of our pair source is multimode to notice that alongside the HOM
interferometer, involving only a doublet (p0; � p0), we also realize a Bell-type interferometer
when considering a quadruplet (p; � p; q;� q) where the momentum modesp and q are
symmetric with respect to the mode p0 (Figure 5.1).

p

q

� q

� p

p

� q

q

� p

Time

Position

Mirror
Beam

splitter

� p0

p0

Figure 5.1: Schematic representation of a Bell-type interferometer realized in parallel with
a HOM interferometer. Representation in the falling frame. The modesp0 and � p0 involved in
the HOM interferometer are depicted with dashed lines. The coupled neighboring modesp and
� p on one hand, andq and � q on the other hand, form a Bell interferometer, for which there is
no control parameter. The observation of a HOM dip ensures that the interferometer is closed.

In fact, our pairs source produces a set of momentum quadruplets corresponding to
various values of � p, where � p = p � p0 = p0 � q. For each value of � p, the associated
quadruplet (p; � p; q;� q) is detuned by � 0 = � kB

m � p with respect to the Bragg resonance,
which corresponds to the momentum doublet (p0; � p0) used for the HOM experiment.

This is not a Bell test in the strict sense, as we cannot control the phases imprinted
on A and B . However, an idea to exhibit Bell correlations is to use the fact that the
phase imprinted by a Bragg pulse depends on the considered momentum classes. Thus,
since the di�erent quadruplets correspond to di�erent detunings, we could measure the
Bell correlator for each available quadruplet to observe a variation of the Bell correlator
as a function of the detuning.

An analysis in this spirit was conducted using the data from the 2016 HOM interfer-
ometer, leading to an article published in 2017[93], that will be discussed in the following.
In this article, three correlator values were calculated for three di�erent quadruplets, and
indeed, a signi�cant variation in the correlator with the momentum quadruplet was ob-
served.
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The new theoretical developments I have conducted during my thesis and presented
in this chapter alter the interpretation of these results, as we will demonstrate that the
closure of the interferometer precisely corresponds to the case where the Bell correlator
does not depend on the detuning. Any variation in the correlator would thus arise from
a quadruplet-dependent phase shift other than that due to the detuning imprinted by the
Bragg pulses.

5.1.1 Description of the Hong-Ou-Mandel e�ect

First, let us demonstrate the HOM e�ect. We will use the same formalism as before,
but, for the sake of simplicity, we will not consider in this section the phase terms associated
with the accumulation of kinetic phase in each mode (in this section only). Therefore, the
resonant matrices for the mirror and the beam splitter are once again:

ÛM =
�

0 iei � M

ie� i � M 0

�
and ÛS =

1
p

2

�
1 iei � S

ie� i � S 1

�
(5.1)

The input state of the HOM interferometer is composed of a pair of atoms in the states
p0 and � p0.

j in i = jp0; � p0i (5.2)

However, as will be discussed in detail in the HOM chapter, this expression is incom-
plete as it does not account for the bosonic nature of atoms. Indeed, the emitted atoms
are indistinguishable, and writing the input state as jp0; � p0i = jp0i 1 
 j� p0i 2 implicitly
suggests that particle 1 is in modep0, and particle 2 is in mode� p0, which corresponds to
treating the particles as distinguishable. To make the input state indistinguishable, and
since our atoms are bosons, the state must be symmetrized:

j in i =
1

p
2

(j1 : p0; 2 : � p0i + j1 : � p0; 2 : p0i ) (5.3)

If we express this initial state as column matrices in the basis of states coupled by
Bragg scattering, we have:

j in i =
1

p
2

��
1
0

�

1



�
0
1

�

2
+

�
0
1

�

1



�
1
0

�

2

�
(5.4)

ÛSÛM

�
1
0

�
=

1
p

2

�
� ei( � S� � M )

ie� i � M

�
and ÛSÛM

�
0
1

�
=

1
p

2

�
iei � M

� ei( � M � � S)

�
(5.5)

Note that j in ;disi =
�

1
0

�

1



�
0
1

�

2
a state of distinguishable particles. At the output

of the interferometer, the state is

ÛM ÛS

�
1
0

�

1



�
0
1

�

2
=

1
p

2

�
� ei( � S� � M )

ie� i � M

�

1



1

p
2

�
iei � M

� ei( � M � � S)

�

2

=
1
2

h
� ie� S j� p0; � p0i + j� p0; p0i � j p0; � p0i � ie� i � S jp0; p0i

i (5.6)

If we calculate the probabilities associated with each basis state, we �nd

P(p0; p0) = P(� p0; p0) = P(p0; � p0) = P(� p0; � p0) =
1
4

(5.7)
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We can see that the output state is associated with four equiprobable probabilities of
�nding the two particles in di�erent output states, as in the intuitive result with classical
particles. In particular, experimentally, the probability Pdi� of �nding two particles in the
two di�erent modes is

Pdi� = P(� p0; p0) + P(p0; � p0) =
1
2

(5.8)

For this state corresponding to distinguishable particles at the input of the HOM inter-
ferometer, no decrease in the joint probability of detecting atoms in di�erent modes is
observed.

Similarly,

ÛSÛM

�
0
1

�

1



�
1
0

�

2
=

1
p

2

�
iei � M

� ei( � M � � S)

�

1



1

p
2

�
� ei( � S� � M )

ie� i � M

�

2

=
1
2

h
� ie� S j� p0; � p0i � j� p0; p0i + jp0; � p0i � ie� i � S jp0; p0i

i (5.9)

Therefore, the output state j out i of the HOM interferometer for the indistinguishable
input state 5.4 is equal to the sum of expressions 5.6 and 5.9. We then obtain:

j out i =
1

p
2

h
� ie� S j� p0; � p0i � ie� i � S jp0; p0i

i
(5.10)

Thus, we can see that the probability of �nding two particles in two di�erent momen-
tum modes is zero:

Pdi� = P(� p0; p0) + P(p0; � p0) = 0 (5.11)

This is the HOM e�ect, which, as observed, is linked to the indistinguishable nature
of bosonic particles. Note that, to account for this e�ect, it was necessary to symmetrize
the input bosonic state.

5.1.2 Analytical results for the Bell correlator

Analytical expression of the Bell correlator

In the following, we return to a more general description of Bragg pulses as discussed
in the previous chapter, where atoms are treated as plane waves, taking into account the
�nite duration of Bragg pulses as well as the o�-resonance terms. As discussed earlier,
the question here is to determine the expression of the Bell correlator associated with the
non-resonant terms of the HOM interferometer.

Calculating the Bell phase involved in the HOM interferometer is a particularly simple
case because, as the Bragg pulses used are constant pulses and similar forA and B , we
have an analytical expression for the transfer matrices and, consequently, for the Bell
correlator. We will reuse the results from the previous chapter, in which we derived a
general expression for the Bell phase, expressed in terms of phases associated with the
re
ection and transmission coe�cients of the Bragg pulse.

� = � A
S � � B

S � � 0A
S + � 0B

S + 2 � B
M � 2� A

M + ( ! q + ! � q � ! p � ! � p)(TM + T2 � T1) + � 0 (5.12)
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where the phase terms� A;B
S;M correspond to the phase imprinted on the re
ected part of the

state while the terms � 0A;B
S are the phase shifts imprinted on the transmitted part. Recall

that this result was obtained for a mirror with a transmission coe�cient being zero for
any momentum class, which is a strong assumption that is valid only over a narrow range
of momentum, as we will see later. We will later numerically calculate the Bell phase
without relying on this assumption. � 0 is the phase di�erence between the two pairs of
the input modes.

For square pulses, we have analytical expressions for the phase shifts due to the inter-
action with light. The distinction between doublet A and doublet B will only lie in the
detuning considered. For the HOM experiment, the resonant doublet (for which� 0 = 0)
is (p0; � p0), so that � 0 = + � for doublet A and � 0 = � � for doublet B . Note that � 0,
determined by the pairs creation process, can also depend on the momentum quadruplet
considered, and therefore on� .

Then, like for the Mach-Zehnder interferometer (equation 4.171), we identify the phases
� and � 0 using the matrix 4:63 obtained for a constant pulse of durationT and two-photon
Rabi frequency 
, leading to the expression:

� 0 =
� 0T
2

+ tan � 1

"

�
� 0

~

tan

 
~
 T
2

!#

and � = � ' +
� 0T
2

(5.13)

with ~
 =
q


 2 + � 2
0 and � ' is the laser phase di�erence between the two beams of the

Bragg pulse. Here, we will consider that the two Bragg pulses have the same two-photon
Rabi frequency, so 
 S = 
 M = 
.

If we apply this formula to the mirror and beam splitter pulses, indexed respectively
by M and S, we obtain:

8
>>>>>>>>><

>>>>>>>>>:
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The Bell phase is therefore

� = � ' A
S � � ' B

S + 2� ' A
M � 2� ' B

S � 2�T M + 2tan � 1

"
�
~


tan

 
~
 TS

2

!#

+ ( ! q + ! � q � ! p � ! � p)(TM + T2 � T1) + � 0(� )

(5.15)

Recall that � ' represents the phase di�erence between the lasers. Since the same
pulses are used for bothA and B , we have � ' A = � ' B , and the laser phase terms cancel
out. Moreover, the propagation phase shift can be expressed in terms of detuning, using
the de�nition ! p = p2

2m~, so that:

~(! q + ! � q � ! p � ! � p) = �
2~kB

m
� p = +2 ~� (5.16)
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Finally, the phase shifts in 2�T M cancel out and the Bell phase is

� = 2 tan � 1

"
�

p

 2 + � 2

tan
� p


 2 + � 2 TS

2

� #

+ 2 � (T2 � T1) + � 0(� ) (5.17)

It is possible to calculate analytically not only the phase involved in the interferometer
but also the amplitude of the Bell correlator. To do so, the previous formalism can
be applied: the output state is calculated using transfer matrices 4.63 whose analytical
expressions are known. Again, for this calculation, we assume the transmission coe�cient
of the mirror to be zero. We obtain:
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>><

>>:

P(p; q) = P(� p; � q) =
1
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�
1 � 4"2

S

�
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where we de�ned
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Ideally (i.e. at the limit to the resonant case where� 0 = 0), " = 0 and RM = 1. Finally,
we get the full expression of the Bell correlator:

E = P(p; q) + P(� p; � q) � P (p; � p) � P (q;� q) = R2
M

��
1 � 4"2

S

�
cos � � 4"2

S

�
(5.20)

Let us de�ne
A(� ) = R2

M

�
1 � 4"2

S

�
(5.21)

the amplitude of the Bell oscillation. Note that, as the considered quadruplet gets further
from the Bragg resonance (i.e. as� , or equivalently � p, increases), the amplitude of the
Bell oscillation will decrease due to the less favorable re
ectivity properties of the mirror
and the beam splitter.

Using the expression 5.20, the Bell correlator can be calculated as a function of the
detuning. However, this requires knowing the durationsT1 and T2 for which the interfer-
ometer is closed. In the following paragraphs, we will study an arbitrary choice ofT2 � T1

to discuss the variation of the correlator before determining in the next section the closure
condition.

As a �rst example, let us consider the caseT2 = T1 � TM . Choosing this condition
consists in studying the case where the phase term of the correlator related to the kinetic
energy of wave packet propagation is canceled out. We takeT1 = 800 µs, which corresponds
to the order of magnitude used in the article [93]. The Bell phase � also depends on the
two-photon Rabi frequency of the beam splitter pulse, so we used the characteristics of
the Bragg pulses described in the article to plot the Bell phase, the joint probabilities of
detection and the Bell correlator (Figure 5.2). The two pulses have a two-photon Rabi
frequency of 5 kHz, so the mirror� pulse is 100µs long while the beam-splitter �= 2 pulse
is 50µs long.
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Figure 5.2: Analytical solution of the Bell interferometer for square pulses. The atoms
transmitted by the mirror are not taken into account. We calculate the Bell phase � that appears
in the Bell correlator, the joint probabilities P++ = P(p; q) + P(� p; � q) and P+ � = P(p; � q) +
P(q;� p), and the Bell correlator E . Each value corresponds to the analytical solution at a �xed
detuning, and the results are plotted as a function of the velocity class �v using � = � kB � v. The
phase� 0 between the pairs is supposed to be zero. The two-photon Rabi frequency of each pulse
is 
 M = 5 kHz, the duration of the �rst free propagation is T1 = 800 µs, and the duration of the
second free propagation isT2 = T1 � �= 
 M .

For now, we also assume that the phase� 0 between the two pairs of emitted modes
is zero. The curves are plotted as a function of the velocity class, �v with respect to
resonance, which depends on the detuning according to the relation� = � kB � v. Note
that, for our Bragg wavevector kB , we have � v (mm.s� 1) � � 2� (kHz).

It can be observed that the Bell phase seems to vary linearly with the detuning. The
slope is such that the phase varies by a bit less than 2� over the velocity range for which
the amplitude A(� v) of the HOM signal, depicted as dashed lines, remains non-zero.
This velocity range, along with the size of a mode over which to integrate the signal,
determines the number of quadruplets that can be used to observe a non-zero correlator.
The challenge of measuring the correlatorE in parallel with a HOM experiment is to
ensure that it is possible to measure non-zero values of the correlator, with the maximum
attainable value being determined by the correlator's amplitude, which depends only on
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the re
ection and transmission coe�cients of the Bragg pulses. As seen in section 4.2.2, the
two-photon Rabi frequency of 5 kHz used in the experiment allows the widest resonance
width possible while remaining within the framework of a two-level system without losses
towards higher di�raction orders.

Note also that resonance corresponds to the HOM e�ect, so thatP+ � vanishes, as will
be discussed in the following paragraph.

Closure of the interferometer

Now, let us ask under what conditions the interferometer is closed, or rather, how
to translate, in our model, the fact that the interferometer is closed (since this is what
the HOM interferometer detects). This question is crucial because, for a �xed value of
T1, it determines the value of T2, which corresponds to the delay at which the beam
splitter is applied. Knowing T2 � T1 is essential for calculating the correlator of the Bell
interferometers realized in the HOM dip for various momentum quadruplets.

The previous model used to calculate the output state of the Bell interferometer can
also be used to determine the HOM dip when operating at resonance. Indeed, our initial
state is a two-particle state with four modes that can be expressed as:

j in i =
1

p
2

(jp; � pi + jq;� qi )

=
1

p
2

��
1
0

�
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�
0
1

�

B
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0
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�
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�
1
0

�

B
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When the momentum di�erence with the HOM doublet � p = p � p0 = p0 � q equals
zero, the previous expression becomes
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There is no phase term� 0 between the two pairs of the quadruplet since they consist
in the same momentum pair. However, the two terms are not the same, as shown in the
second equality, because the state is symmetrized. At resonance, there is no longer a
distinction between doublet A and doublet B , both being subject to the same propagation
matrix, but, the state is symmetrized since, in one term, particle 1 is in mode� p0 and
particle 2 is in mode p0, and vice versa in the other term.

This state is actually the initial state 5.4 that we used to describe the HOM e�ect in
the previous section. For� 0 = 0, this formalism allows us to go continuously from HOM
to Bell as � p increases.

We can then use the previous formalism to simulate an HOM experiment, by taking into
account the o�-resonant terms due to the interaction with light. It has been demonstrated
that, regardless of the value ofT2, at resonance, the joint probability P+ � of detecting
two atoms in two di�erent modes will always be zero. However, in a real experiment, one
does not selectively choose the resonant class with Bragg pulses with in�nite precision: the
signal is always integrated over a certain integration volume, which includes some values
of momentum that are not strictly resonant. Therefore, for a �xed value of T2, we can
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compute the average value~P+ � of P+ � within a velocity range � v0 centered on resonance
and of the size of a mode. We take �v0 = 2 :5 mm.s� 1, which is the size of a mode at the
time of the 2016 HOM experiment (the optical dipole trap was less elongated at that time
than it is nowadays). The graph of ~P+ � as a function of T2, given in Figure 5.3, then
simulates the HOM experiment.

Figure 5.3: Simulation of the HOM experiment with plane waves. The input state is
symmetrized to describe two indistinguishable particles. We calculate, for a given delay of the
HOM beam splitter, the joint probability of measuring an atom in each output mode P+ � =
P(p; � q) + P(q;� p) as a function of the velocity class using� = � kB � v, and average it over a
velocity box of width � = 2 :5 mms� 1, centered on resonance, to get~P+ � . The duration of the �rst
free propagation isT1 = 800 µs, and the two-photon Rabi frequency of each pulse is 
M = 5 kHz.

The results clearly show the emergence of an HOM dip for a certain value ofT2. We
still �nd ~P+ � � 0 for a given delay because when averaging the value ofP+ � over a
velocity range where the detuning does not vary too much, the average value ofP+ � is
approximately equal to its value at resonance, i.e., zero. On the other hand, for others
values ofT2, if the detuning varies signi�cantly within the integration volume, the average
probability value is 0.5, and no HOM e�ect is observed. This occurs when the interferom-
eter is not closed, meaning the phase terms due to the wave packets propagation induce
a phase shift that strongly depends on the momentum class. The width of the HOM dip
thus depends on the integration range: the smaller the integration range for pulse mea-
surement, the larger the width of the dip.

Figure 5.4 shows that the interferometer is closed forT2 = 768 µs. This result can
be corroborated using the expression determined for the Bell phase, as we showed that it
involves determining the value ofT2 for which � does not depend on � . We have:

� = 2 tan � 1

"
�

p

 2 + � 2

tan
� p


 2 + � 2 TS

2

� #

+ 2 � (T2 � T1) + � 0(� ) (5.24)

This result is valid only within a limited range of detuning, for which we can consider
the mirror transmission coe�cient to be zero. Therefore, we can expand the result in the
limit where the detuning tends towards zero, especially for� � 
. We �nd, for the phase,
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Figure 5.4: Simulation of the HOM experiment with plane waves. This is the same calcu-
lation as 5.3, plotted over a smaller beam splitter delay range.

using the fact that 
 TS = �= 2 (for a �= 2 pulse):

� � 2
�



+ 2 � (T2 � T1) + � 0(� ) = 2 �
�

T2 � T1 +
2TS

�

�
+ � 0(� ) (5.25)

At �rst order, if we omit the phase term � 0(� ) associated with the pair source, the
Bell phase varies linearly with the detuning, and the slope is proportional to a term
which depends on the closure of the interferometer. In the vicinity of the resonance, we
have � 0(� ) = 0 since over the momentum range of one mode there is only the doublet
jp0; � p0i which is considered. The relationship 5.25 determines the closure of the HOM
interferometer when accounting for the phase shifts due to the interaction of atoms with
light. We conclude that the interferometer is closed when

T2 = T1 �
2TS

�
(5.26)

and we recoverT2 = 768 µs.
It is interesting to note that in this case,

TM

2
+ T2 +

TS

2
= T1 + TM

�
3
4

�
1
�

�
� T1 + 0 :43TM (5.27)

which means that the duration between the middle of the beam splitter pulse and the
middle of the mirror pulse (TM =2 + T2 + TS=2) is not far from the duration between the
start of the interferometer and the middle of the mirror pulse (T1 + TM =2), as it is often
commonly represented.

The results from this section show that, when the interferometer is closed (forT2 in
the HOM dip), the Bell phase at the vicinity of the resonance does not vary with detuning,
which can be translated by

d�
d�

(� = 0) = 0 (5.28)

We can use the closure condition 5.26 to look at what happens out of resonance when
the interferometer is closed. We �nd the results shown in Figure 5.5, to be compared to
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Figure 5.5: Analytical solution of the Bell interferometer for square pulses. The atoms
transmitted by the mirror are not taken into account. We calculate the Bell phase � that appears
in the Bell correlator, the joint probabilities P++ = P(p; q) + P(� p; � q) and P+ � = P(p; � q) +
P(q;� p), and the Bell correlator E . Each value corresponds to the analytical solution at a �xed
detuning, and the results are plotted as a function of the velocity class �v using � = � kB � v. The
phase� 0 between the pairs is supposed to be zero. The two-photon Rabi frequency of each pulse
is 
 M = 5 kHz, the duration of the �rst free propagation is T1 = 800 µs, and the duration of the
second free propagation is determined by the closure relation 5.26 such thatT2 = 768 µs.

Figure 5.2.

As expected, the tangent to the phase curve � at zero is zero because the interferome-
ter is closed. As one moves away from resonance, the phase varies, but not rapidly enough
for the variation to be signi�cant in the velocity range where the correlator oscillation
amplitude is non-zero. Therefore, without making a substantial error, one can consider
that when the phase around resonance does not vary with detuning, the same holds true
outside of resonance in the range of interest.

Thus, any observed variation of the Bell correlator as a function of the velocity class
(for a closed interferometer) is either due to a decrease in signal amplitude or to the pres-
ence of a phase shift� 0 that depends on the quadruplet used for the Bell calculation (only
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the resonant \quadruplet" has � 0 = 0 since it is actually the ( p0; � p0) doublet that is used
for HOM).

Note that the simulations of this section are incomplete for two main reasons, related
to treating the atoms as plane waves. Firstly, spatial aspects, especially the e�ects of light
on the center of mass, are neglected here. But we showed that the Bell phase depends on
the center of mass when the interferometer is not closed. Therefore, additional phase shifts
would need to be considered to calculate the trueT2 value where the wave packets overlap.
Secondly, this model does not account for the coherence length of the source, which also
a�ects the width of the HOM dip (this was actually the point of the historic Hong, Ou, and
Mandel experiment[36]). The width of the HOM dip determined in our calculation is an
ideal width assuming an in�nite coherence length of the source. Nevertheless, this would
not change our conclusions regarding the timing at which the interferometer is closed.

5.1.3 Numerical simulation

So far, we assumed that the mirror's transmission coe�cient was strictly zero, regard-
less of the detuning. This strong assumption simpli�es the expression of the phase involved
in the Bell interferometer. However, it is also possible to express the Bragg transfer matrix
associated with the mirror without forcing the diagonal terms to be zero. More generally,
it is possible to numerically solve the Bragg coupling system 4.60, not only for a constant
pulse but also for any temporal pulse shape. In this section, we will numerically calculate
the output state of the interferometer and then the Bell correlator for a constant pulse,
without neglecting the losses due to the imperfect re
ectivity of the mirror pulse. Again,
the spatial e�ects related to the center of mass of the wave packets are not taken into
account.

Thus, for each Bragg doublet, we numerically solve the following system:
0

@
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1

A = i

0

@ e� i! 0 t 
 R (t )
2 ei � 0 t e� i! 0 t


 �
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A (5.29)

which is the Bragg coupling system with propagation phases ei!t . The two-photon Rabi
frequency 
 R(t) is equal to zero during free propagation steps, and is constant and equal
to 5 kHz otherwise. For doublet A, we have

8
><

>:

� 0 = �

! 0 = ! � p

! 2 = ! q

(5.30)

while for doublet B , 8
><

>:

� 0 = � �

! 0 = ! � q

! 2 = ! p

(5.31)

The input state is given by 5.22 with � 0 = 0. Note that a �rst step consists in solving
equation 5.29 step by step by setting the mirror's transmission coe�cient to zero, in order
to verify that this numerical solution coincided with the analytical results. The numerical
results are plotted in Figure 5.6 for T1 = 800 µs and T2 satisfying the relation 5.26.

We can be observe that, unlike the case where there are no transmitted atoms, the
probabilities (and consequently the correlator) start oscillating as one moves away from
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Figure 5.6: Numerical solution of the Bell interferometer for square pulses.The parameters
are the same as Figure 5.5, except that the atoms transmitted by the mirror are taken into account.
Top: Joint detection probabilities P++ = P(p; q) + P(� p; � q) and P+ � = P(p; � q) + P(q;� p).
Middle: Bell correlator as a function of velocity class, numerically calculated taking into account
atoms transmitted by the mirror ( tM 6= 0, in blue) and without taking them into account ( tM = 0
in green). The transmitted atoms interfere with the re
ected atoms, leading to oscillations of
the Bell correlator, with amplitudes increasing away from resonance. Bottom: Moving average of
the correlator E , calculated by averaging over a velocity integration box of 2 mm.s� 1, taking into
account the transmitted atoms (in blue) and without considering them (in green). The shaded
areas are error bars representing the standard deviation of the correlator in the considered box.

resonance. This can be explained by the fact that the atoms transmitted by the mirror
will interfere with the atoms of the same momentum, resulting in a blurring of the Bell-
type interference. Indeed, this interference occurs between wave packets with imperfect
overlap: this interferometer is not closed, leading to a signi�cant dependence on detuning
of the added phase, hence a substantial oscillation of the correlator.

The importance of having good re
ectivity, especially from the mirror, is evident: as
soon as atoms are transmitted, parasitic interferences with the transmitted atoms can
occur (Figure 5.7).

Experimentally, it is not possible to �lter out these atoms, as they fall almost simul-
taneously with the atoms in the same momentum mode on the MCP. Thus, the signal
received by the detector corresponds to the average over a certain integration volume of

185



CHAPTER 5. BRAGG PULSES SHAPING AND PHASE CONTROL FOR A BELL TEST

Figure 5.7: Atom trajectories in an imperfect interferometer, taking into account atom
leakage through the mirror. Representation in the laboratory frame. Solid lines represent the
trajectories of o�-resonant atoms in the HOM interferometer, while dotted lines correspond to the
trajectories of atoms transmitted by the mirror, and possibly re
ected again by the beam splitter.
These atoms form spurious interferences with the atoms that contribute to the observation of Bell
correlations, resulting in the appearance of fringes in the correlator. We consider a HOM doublet
at speeds 65 mm.s� 1 and 115 mm.s� 1 in the laboratory frame, and a Bell quadruplet with a velocity
di�erence of � 3 mm.s� 1 relative to the HOM doublet. The typical free propagation time is 800 µs
and Bragg pulses are considered to be in�nitely thin.

the correlator. This is why the moving average of the correlator over a box of 2.0 mm.s� 1

has also been plotted in Figure 5.6, in the ideal case without transmitted atoms (in green)
and with transmitted atoms (in blue). The shaded area represents the standard deviation
of the correlator in the box centered on the corresponding abscissa. It can be seen that the
amplitude of the Bell signal decreases more rapidly and with a larger standard deviation
when transmitted atoms are taken into account.

5.1.4 Discussion of previous results

We can now comment on the results obtained from the study of the 2016 HOM ex-
periment. Measurements o�-resonance were conducted on three quadruplets, integrated
over a box of 2.0 mm.s� 1, centered on � v = 2, 4, and 6 mm.s� 1, respectively. The joint
detection probabilities were also plotted, to make sure that they vary simultaneously two
by two. The results are given in Figure 5.8 as dots.

We observe a signi�cant variation in the correlator across the three analyzed quadru-
plets. Additionally, the values of the joint detection probabilities have been plotted,
revealing similar variations two by two, as expected. This ensures that the correlator
variations are not due to measurement noise, which would result in random values for the
probabilities. Each measurement point corresponds to 2218 repetitions of the experiment.
On the same plot, we have included, for reference, the moving average of the correlator and
of the joint probabilities (for a closed interferometer) integrated over a 2mm/s box, with a
constant � 0 value set at 107°, so that the average of the correlator and joint probabilities
align with the measurement points for the box closest to resonance.

It is observed that assuming a constant� 0, the model for the correlator varies relatively
slowly with the velocity class, even when accounting for transmitted atoms. This fails to
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Figure 5.8: Joint probabilities and Bell correlator as a function of the velocity class, av-
eraged over a velocity box of 2 mm.s� 1. The experimental results are given as blue and orange
dots, while the simulation results are represented in green solid lines. The green shaded areas rep-
resent the standard deviation of the corresponding computed quantity (probability or correlator)
within the integration volume. The value of the calculation parameter � 0, assumed to be constant
for all velocity classes, is adjusted in order to �t the experimental results from the �rst experi-
mental quadruplet considered, centered on �v = 2 mm.s� 1. The signi�cant deviation between the
experimental data and the computed correlator suggests that a phase shift not considered in the
calculation may be responsible for the variation of the Bell correlations observed experimentally.

explain the signi�cant variations observed experimentally. The only plausible explanation
is to consider that the phase � 0 depends on the speci�c momentum quadruplet under
consideration. This would introduce an o�set to the correlator from one quadruplet to
another, providing an explanation for the observed variations inE .

For the quadruplet centered on � v = 6 mm.s� 1, the measured value of the correlator
is 0:51 � 0:20, providing hope for the future observation of a correlator oscillation (once
the control of the phase imprinted on the atoms is achieved) with a signi�cant amplitude.
Even if a correlator amplitude greater than 0.71 is required to demonstrate a violation of
the Bell inequality, exhibiting an oscillation of the Bell correlator would be a promising
�rst step.

The main problem in this measurement using HOM data lies in the inability to control
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the phase imprinted on the atoms, making it impossible to vary it to observe a Bell corre-
lator oscillation. Nevertheless, the previously obtained results by the team are promising
and allow us to assert that it is possible to achieve a non-zero Bell correlator for a given
momentum quadruplet.

In the next section, we will present the strategy devised to carry out a genuine Bell
test by controlling the relative phase imprinted on A and B .

5.2 Bell phase control

As mentioned earlier, we aim to use the fact that doubletsA and B of the Bell in-
terferometer do not have the same resonance frequency to control the imprinted phase.
In this section, we will show that this can be done by modulating the two-photon Rabi
frequency. We will �rst theoretically analyze the desired pulse shape and then discuss its
experimental implementation.

5.2.1 Principle: two-frequency pulses

Since doubletsA and B do not share the same Bragg resonance frequency, the idea
is to send a two-frequency Bragg beam splitter pulse on the atoms. Let us consider the
following pulse:


 R(t) = 
 M ei� '
�

e
i
 D t

2 + e � i
 D t
2

�
(5.32)

where 
 M is the amplitude of the two-photon Rabi frequency, and � ' = ' 2 � ' 1 is
the phase di�erence between the lasers, assumed to be constant during the pulse, whose
duration is noted T. The two additional terms make it possible to shift the resonance
condition by � 
 D=2.

In a �rst approximation, it can be considered that this pulse is equivalent to two
independent pulses: the left term has a resonance shifted by� 
 D=2 while the right term
has a resonance shifted by +
D=2. This can be easily understood by injecting one of these
terms in the two-level Bragg system 4.60:
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This expression, which is valid for a two-photon Rabi frequency 
R(t) = 
 M ei� ' e
i
 D t

2 ,
can be analytically solved with a variable change indicating a resonance frequency shift.
However, when summing two such pulses, the system cannot be analytically resolved
anymore because the pulse depends non-trivially on time. Nevertheless, the system can
be solved numerically, giving, for example, a plot of the re
ection coe�cient associated
with this pulse.

We consider a two-frequency pulse with a two-photon Rabi frequency amplitude of

 M = 1 kHz. The pulse duration is T = �= 2
 M = 250 µs. The Bragg coupling system
from equation 4.60 was solved numerically usingC0(0) = 1 and C2(0) = 0. In Figure 5.9,
the re
ectivity pro�les (i.e., jC2(T)j2) are plotted against the detuning for various values
of 
 D .
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Figure 5.9: Bragg re
ectivity pro�les as a function of the detuning for two-frequency
Bragg beam splitters. jC2j2 is plotted for several values of 
D . The bragg system 4.60 is solved
with C0(0) = 1 and C2(0) = 0 as initial conditions, for a Rabi frequency 
 M = 1 kHz.

It can be observed that when 
 D is signi�cantly larger than 
 M , there are two distinct
re
ectivity peaks, corresponding to two well-de�ned beam splitters with resonances e�ec-
tively shifted by � 
 D=2. The re
ectivity pro�le of each beam splitter has a sinc2 shape,
similar to that of a single pulse. In this case, the two-frequency pulse is equivalent to
implementing two independent beam splitters. As 
 D decreases, the peaks approach each
other until partial and then complete overlap occurs, making them indistinguishable. The
resonant re
ectivity is then di�erent from 0.5, due to some interference between the two
beam splitters. This situation with two overlapped pulses is not suitable for implement-
ing a two-frequency Bell pulse, where the goal is to achieve two independent beam splitters.

Now, let us suppose that we are in the case where 
D is much larger than 
 M , allowing
us to consider the two beam splitters as independent. We introduce a di�erent phase for
each resonance so that the two-photon Rabi frequency is given by:


 R(t) = 
 M ei� '
�

e
i
�


 D t
2 + �

2

�

+ e
� i

�

 D t

2 + �
2

� �
(5.34)

As seen previously, for a single-frequency square pulse, the phase imprinted on the
resonant atoms is equal to the phase di�erence �' between the lasers. Adding these
additional terms, we see that it is possible to imprint a phase � ' + �=2 for the doublet
resonating at � 
 D=2 (left term) and a phase of � ' � �=2 for the doublet resonating at
+
 D=2 (right term).

Thus, if we choose 
D so that the two resonant doublets are the doubletsA and B
involved in the Bell interferometer, we can imprint a di�erent phase on doublets A and
B , such that, at resonance, the Bell phase is:

� = � A � � B + � 0 = � ' +
�
2

� (� ' �
�
2

) + � 0 = � + � 0 (5.35)

Therefore, in principle, at resonance, we may be able to control the phase di�erence
between A and B that plays a role in the Bell correlator, allowing us to observe an oscil-
lation. If the amplitude of this oscillation is large enough, it could lead to the violation of
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Bell's inequality predicted by quantum mechanics.

The importance of studying what happens for non-resonant velocity classes has been
emphasized multiple times. This is particularly crucial because, during an experiment,
we will average the signal over a certain range of momentum. In the following, we will
determine the speci�c parameters to be employed for the Bragg beam splitter and plot
re
ectivity and phase pro�les as functions of the detuning.

5.2.2 Experimental implementation

Now, arises the question arises of how to implement these two-frequency pulses. The
basic experimental setup for realizing a two-photon Bragg transition involves an initial
laser beam split into two to form Bragg beams 1 and 2 (Figure 5.10). Each beam is
prepared with the appropriate power and polarization. The frequency of each beam is
controlled using an acousto-optic modulator, to which an RF signal of frequency! i is
applied. This signal shifts the frequency of the light wave through the di�raction of light
by acoustic waves. The phase of the RF signal determines the phase of the light beam
used for the Bragg transition. The beams are then mixed spatially with a di�erent po-
larization before being separated again while being sent to the atoms with di�erent angles.

Figure 5.10: Experimental setup for a two-photon transition. A laser beam is split into two
by a beam splitter. Each beam passes through an acousto-optic modulator, which allows, using
an RF signal, control over the laser frequency and power. The beams are then recombined on a
second beam splitter before being sent to the atoms.

Three ways of implementing two-frequency Bragg pulses were investigated in our team
over the years. Here, we will provide only a brief introduction to the �rst two, which are
discussed in more detail in the respective theses of M. Perrier[104] and A. Imanaliev[147]
.

ˆ The Bragg resonance frequency is determined by the� 0. To select a speci�c mo-
mentum class, a given frequency di�erence! 1 � ! 2 between lasers is required. Thus,
the �rst idea for implementing a two-frequency Bragg pulse involves splitting the
initial beam into three parts and using not two but three acousto-optic modulators:
one with a frequency! 1 and the other two with frequencies ! 2A = ! 2 � 
 D=2 and
! 2B = ! 2 + 
 D=2, respectively (Figure 5.11). This way, by recombining beamsA
and B , one can obtain light comprising two distinct resonance frequencies.
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Figure 5.11: First experimental solution to implement two-frequency Bragg pulses.One of
the two Bragg beams is itself split into two beams, going each through an acousto-optic modulator,
whose frequency is tuned so that a portion of the light is resonant with doubletA while another
portion is resonant with doublet B .

Although this solution enables the emission of two-frequency pulses, its main draw-
back lies in the fact that, since two di�erent beams and two di�erent acousto-optic
modulators are used for doubletA and doublet B , the phase di�erence imprinted on
the lasers will not be the same. As � ' A and � ' B are distinct, these two terms must
be taken into account in the Bell phase. It is still possible to ensure � ' A = � ' B by
using the same RF source with an adjustable relative phase, or by adding a phase
locking procedure, but this approach remains restrictive as it is sensitive to phase

uctuations and vibrations that occur when beams A and B are separate.

Figure 5.12: Second experimental solution to implement two-frequency Bragg pulses.
Only two acousto-optic modulators are used, but one of them receives a two-frequency RF signal.
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ˆ The second possibility involves mixing two RF signals at di�erent frequencies and
phases, sending the combined signal into a single acousto-optic modulator (Figure
5.12). This AOM would then exhibit two resonance frequencies, each resonant with
a doublet. This technique enables the generation of a two-frequency pulse. To
control the phase imprinted on each loop of the interferometer, it is necessary for
both signals to originate from the same RF source with an adjustable relative phase
between the two output channels.

This technique was implemented in the experiment and yielded initial promising
results[147]. However, despite this, the solution was not chosen at the time because
the AOM used operated in a double-pass con�guration, resulting in a more complex
frequency spectrum on the atoms, i.e., a crosstalk phenomenon that could degrade
signal quality. Transitioning to a single-pass con�guration provided an opportunity
to explore the third possibility for implementing the Bragg two-frequency beam
splitter, an option that was chosen and will be presented in the following sections of
this manuscript.

The third possibility consists in noticing that implementing two-frequency pulses is
equivalent to performing amplitude modulation of a constant pulse. Indeed, the expression
5.34 of the two-photon Rabi frequency we aim to realize can be written in the following
form:


 R(t) = 2 
 M ei� ' cos
�


 D t
2

+
�
2

�
(5.36)

As we can see, it would be su�cient to multiply a constant pulse with a Rabi frequency

 M , and a phase di�erence between the lasers �' , by a periodic signal with a frequency

 D=2 and an initial phase �=2. This can be implemented experimentally if two essential
elements are put in place. Firstly, it is necessary to control the power emitted by the
acousto-optic modulators to give the Rabi frequency (proportional to light intensity) the
desired sinusoidal shape. Secondly, we need to add� phase shifts between the two lasers
phases whenever the modulation signal is negative.

ˆ Regarding the power control, it is possible to control the optical power at the output
of an acousto-optic modulator by adjusting the amplitude of the RF signal sent
to the AOM. Nevertheless, the relationship between the amplitude of the electrical
signal and the di�racted optical power is not linear. Therefore, it is preferable to
implement a feedback control system rather than an open-loop control.

This requires generating a reference signal with the desired shape (which can be
achieved with a computer-controllable signal generator), extracting a portion of the
optical power (using a beam sampler, for example), and providing feedback on the
signal sent to the AOM with a Proportional-Integral (PI) controller. The perfor-
mance of the PI controller must be su�cient to ensure that the power follows well
the setpoint signal.

Of course, the required PI controller bandwidth depends on the modulation fre-
quency and the chosen duration of the Bragg pulses, which will be determined in the
following. Typically, a bandwidth of a few hundred of kHz would be su�cient in our
range of applications. This bandwidth is accessible in the laboratory thanks to the
PID controllers developed by the electronics workshop of the Laboratoire Charles
Fabry.
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To ensure that the light intensity on the atoms has the correct shape, it is necessary to
modulate the power of both beams. Instead of implementing two separate feedback
controls on each arm, we can do it on an upstream acousto-optic modulator, before
the separation of the two Bragg beams, which we use to control the total power
allocated to the Bragg and Raman beams (the Raman beams originate from the
same laser and are separated beforehand). Therefore, a power feedback control
system on this AOM is su�cient to control the shape of the absolute value of the
two-photon Rabi frequency.

ˆ Regarding the phase control, assuming that the phase di�erence �' remains con-
stant during the duration of a pulse, an electronic component called a phase shifter
can be used to add� phase shifts. This device, given an input RF signal, produces
an output signal with a certain phase shift determined by a set voltage.

This phase shifter can be placed on one of the two RF signals sent to a Bragg AOM.
The idea is to generate a set voltage synchronized with the power setpoint to ensure
that � phase shifts occur when the two-photon Rabi frequency should be negative
(Figure 5.13). Similarly, the response bandwidth of the phase shifter must be greater
than a few kHz to make sure that when the phase setpoint is varied, a� phase jump
occurs.

Figure 5.13: Voltage setpoints and two-photon Rabi frequency for a modulated Bragg
pulse. The Bragg power setpoint, combined with � phase shifts, makes it possible to have a
negative two-photon Rabi frequency, so that the modulated Bragg pulse is resonant with two
velocity classes. The phase shifter setpoint is calibrated such that the phase shifter adds a� phase
shift in the RF signal of a Bragg AOM whenever the two-photon Rabi frequency must be negative.

Then, we can shape the two-photon Rabi frequency so that we have:


 R(t) = 2 
 M ei[ ' 2 � ' 1+sgn(
 R (t ))]
�
�
�
�cos

�
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where sgn(
 R(t)) is a function that equals zero when 
 R(t) is positive and � when 
 R(t)
is negative. This is the expression 5.34 of the two-photon Rabi frequency that selectively
imprints a phase � �=2 depending on the resonant doublet. Thus, experimentally, to vary
the Bell phase, it will be su�cient to vary the phase at the origin of this modulation
function.

It is important to note that with this technique, we do not precisely control the absolute
phase imprinted on each doublet but rather the phase di�erence imprinted between these
two doublets. Indeed, the phase imprinted on doubletA, for example, is given by� A =
' 2 � ' 1 + �=2.

While � is a fully tunable parameter, ' 2 � ' 1 is a parameter to which we do not have
direct access. This does not pose a problem for observing oscillations in the Bell correlator
since this term does not come into play. However, to claim that a rigorous Bell test is
conducted, one must be able to independently control� A and � B , which, in our case, vary
jointly with ' 2 � ' 1.

A stronger version of the Bell test, incorporating independent control of' A and ' B , is
currently under investigation in our team. Such a project requires phase control between
the two lasers, which is not necessary in our weaker version. One idea involves observing
the two beams beating and locking this signal to a set value to �x the value of' 2 � ' 1,
enabling control of ' A and ' B at will. Since the frequency of the two beams varies during
the Bragg pulses (due to the frequency sweep which compensates for gravity), it would be
necessary to lock the beatbefore the pulse emission and release the lock at the moment of
the pulse, relying on the assumption that the phase does not vary on the timescale of the
interferometer. We will describe in Chapter 6 experiments showing that this assumption
is well veri�ed.

Let us conclude regarding the experimental implementation of the two-frequency pulses.
By adding the power feedback control and the phase shifter, the resulting two-photon Rabi
frequency that we are able to shape can be expressed in a general form as:


 R(t) = j
 R(t)jei[ ' 2 � ' 1+� ' (t )] (5.38)

where the optical power control shapes the pro�le of the absolute valuej
 M (t)j of the
two-photon Rabi frequency, and the setpoint of the phase shifter controls the phase �' (t)
term imprinted on the atoms over time.

The implementation of the complete setup, as depicted in Figure 5.14, makes it possible
to have a two-photon Rabi frequency of any shape. It can be not only negative, if we
restrict ourselves to � jumps, but also complex if we allow continuous phase variation of
� ' (t). This ability to shape the two-photon Rabi frequency as desired is known as pulse
shaping. This practice, increasingly prevalent in the community, enables the generation of
Bragg pulses with characteristics optimized for speci�c cases. In particular, as discussed
later in this chapter, pulse shaping can be employed to enhance the re
ectivity of Bragg
pulses, improving the visibility of interferometric signals. To our knowledge, there is no
example in the literature where the temporal pro�le of a Bragg pulse is modulated to have
two resonance frequencies, as is the case here. Although this method was developed in a
speci�c context of a Bell interferometer, it would be interesting to reuse the concepts and
tools developed within this framework for application in other contexts.
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Figure 5.14: Experimental setup for pulse shaping. A �rst AOM is used to control the
intensity of the Bragg beams, using a power feedback loop. The setpoint voltage is digitally
generated and controls the amplitude of the RF signal sent to the AOM. In parallel, a phase
shifter receives a setpoint voltage such that a phase jump of� is added to the RF signal sent to an
AOM on the path of one of the Bragg beams, when the two-photon Rabi frequency is supposed to
be negative. The RF signals of frequencies! 1 and ! 2 are generated by the same device.

5.2.3 Re
ectivity and phase of Bragg pulses for a Bell test

We can now attempt to determine the characteristics of the Bragg pulses that we
should use for a Bell test. To do this, it is necessary to establish speci�cations given the
performance we aim to achieve. Let us recall that the Bell correlator we aim at measuring
can be expressed as

E(� v) = A(� v) cos(�(� v)) (5.39)

where � v determines a momentum quadruplet.
Experimentally, we will average this signal for a given quadruplet over a velocity range

corresponding to a mode, approximately in the order of 1 mm.s� 1. Optimizing the per-
formances of the Bragg pulses has a dual purpose: �rstly, to ensure that the re
ectivity
is su�ciently high so that the interference amplitude A(� v) is maximized for our given
population; secondly, to ensure that the imprinted phase �((� v) does not vary too much
on the scale of a mode to avoid blurring the interference.

Regarding the mirror:

ˆ We aim to generate a one-frequency pulse with a resonance broad enough for the
re
ectivity to be closest to 1 over a velocity range corresponding to several pairs of
modes, around 10 mm.s� 1 (i.e., 5 mm.s� 1 on either side of resonance). Otherwise,
atoms transmitted through the mirror start to interfere with the useful signal.

ˆ We have observed that the phase imprinted by the mirror on the atoms plays a role
in the Bell phase expression. Therefore, we also want the phase imprinted by the
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mirror to vary minimally over a velocity range corresponding to a mode, around
1mm/s.

Regarding the beam splitter:

ˆ We aim to create a pulse at two frequencies, each with a resonance broad enough
for the re
ectivity to be close to 0.5 over a velocity range corresponding to several
modes. The two resonance peaks must be su�ciently separated to avoid cross talk
that would harm the re
ectivity of the beam splitters.

ˆ Similar to the mirror, we want the phase imprinted by the beam splitter to the atoms
to not vary signi�cantly over a velocity range corresponding to a mode.

Since we only have an estimate of the atom population per mode due to signi�cant
uncertainty in the quantum e�ciency of the MCP, it is challenging to provide a concrete
quantitative criterion for the re
ectivity needed to observe the Bell inequality violation
predicted by quantum mechanics. Therefore, we will assume that the input state of the Bell
interferometer is a so called \Bell" state, maximally entangled, rather than a superposition
of TMS states. In this manner, the subsequent study will focus on examining the e�ects
of a decrease in Bell contrast solely attributed to the interaction with light, independently
of the quality of the input state.

In the following, we will separately study the mirror and beam splitter pulses to an-
alyze these di�erent criteria. To achieve this, it is su�cient to solve the coupled Bragg
system of equations 4.51, taking into account the possibility of di�raction towards higher
orders. To analyze the performance of each pulse, we initially assume that the input state
is composed solely of modep to numerically determine the re
ectivity and phase pro�les
of a given pulse as a function of detuning. Subsequently, we will plot the Bell correlator
for the selected pulses.

We now turn to the phase imprinted on the atoms. The phase that matters for us
is the Bell phase, which includes not only the Bragg pulses but also free propagation.
Nevertheless, we can examine the phase imprinted by a given pulse by studying the phase
di�erence between the transmitted and re
ected atoms. Indeed, as seen in equation 5.12,
the phase of the Bell correlator depends on such a phase di�erence for a given pulse.

For constant pulses, we have derived an analytical expression for the re
ectivity and
phases pro�les in the framework of a two-level system, using the evolution operator 4.63.
If we assume that the initial state is (C0(0); C2(0)) = (1 ; 0) and that the duration of the
pulse isT, we get:
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If we omit the contribution of the laser di�erence � ' (which cancels out in the Bell

phase since it is the same forA and B ), the imprinted phase by a constant pulse can
therefore be written
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When the detuning � 0 is signi�cantly larger than the two-photon Rabi frequency 
 M ,
we have� 0=
 � 1, so the imprinted phase is, far from resonance:

� � �
� 0 � 


� � 0T +

 T
2

= � � 0T +
� 0T
2

= �
� 0T
2

(5.42)

This phase, linear with detuning, has no physical signi�cance since far from resonance,
there is no interaction between atoms and light, and thus no imprinted phase. In fact,
this term cancels out when considering free propagation terms. Here, to study the phase
imprinted on the atoms by such a pulse, we will add� 0T=2 to neglect this \dynamic"
phase. The idea is to compare the phase imprinted by the light to the situation where
there is no light. Therefore, when solving numerically then-level system 4.51, we will plot

� impr = arg( C2) � arg(C0) +
� 0T
2

(5.43)

This relationship can be generalized to any type of pulse, not necessarily constant, as
the dynamic phase comes from the� 0t=2 terms that are always present in the di�erential
equation. Regardless of the temporal pulse shape, we will subtract this dynamic phase
term in the study of the imprinted phase.

Finally, since the phase imprinted on the transmitted atoms by the mirror is not
relevant for the Bell phase, we will only plot the phase term from the re
ected atoms:

� impr ;mir = arg( C2) +
� 0T
2

(5.44)

Square Bragg mirror

Initially, we can use the mirror chosen for HOM, which is a constant pulse with a two-
photon Rabi frequency 
 M = 5 kHz (and hence, the duration is TM = �= 
 M = 100 µs). It
is worth noting that a larger Rabi frequency results in a broader Bragg resonance, but it
also increases the rate of di�raction towards higher orders, leading to losses in terms of
signal-to-noise ratio. The chosen value of 5 kHz represents a good compromise between
these two aspects.

We will plot the re
ectivity and phase graphs as a function of the initial velocity
class, which varies linearly with the detuning via the relation � v (mm.s� 1) = � 2� (kHz).
The objective is to verify that the performance of the chosen pulse is satisfactory for a
given quadruplet, and if possible, for multiple quadruplets. This assumes the possibility
of multiplexing by conducting several Bell experiments in parallel on various quadruplets,
with each mode represented by a velocity \box" over which to integrate the signal. A
quadruplet is thus formed by two modes symmetric with respect to � v = 0 and by two
other modes shifted by vB . The modes represented in green are the modes for loopA,
while the modes in red are the modes for loopB (Figure 5.15). In the following, we
will consider �ve 1 mm.s� 1 wide quadruplets, labeled by their center which is respectively
equal to � v = 1, 2, 3, 4, and 5 mm.s� 1.

The results for the re
ectivity and phase are given in Figure 5.16. We observe that the
phase imprinted on the re
ected atoms varies little with the velocity class, and it can be
considered constant for integration over a given mode. However, as previously observed,
the re
ectivity decreases quite rapidly with � v. By the �fth box, the re
ectivity of the
mirror is already only 80%. Consequently, it will not be useful to calculate the signal
beyond this point, because of the interferences with the transmitted atoms.
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Figure 5.15: Schematic representation of the modes involved in the Bell interferometer.
The pulse modes are depicted as Gaussians within a density envelope that characterizes the pair
creation process. Modes within the same quadruplet are characterized by the same �lling pattern.
The green area corresponds to the modes resonant with beam splitterA, while the red area
corresponds to the modes resonant with beam splitterB . The Bragg resonance is wide enough to
allow coupling of multiple quadruplets.

Figure 5.16: Re
ectivity and phase pro�les of a Bragg mirror. The Bragg coupling system
4.51 was solved for a square pulse with 
M = 5 kHz and T = �= 
 M in order to get the probability
jC2j2 and the imprinted phase � impr ;mir as a function of the detuning, converted in velocity. The
shaded areas correspond to the �ve quadruplets considered: the green modes correspond to loop
A doublets while the red modes correspond to loopB doublets.
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Modulated Bragg beam splitter

Let us now turn our attention to the Bragg beam splitter. Unlike the HOM beam
splitter, we aim to apply the amplitude modulation method to imprint a di�erent phase
on doublets A and B . The two-photon Rabi frequency is therefore:


 R(t) = 2 
 M cos
�


 D t
2

+
�
2

�
(5.45)

where we omit the global phase ei� ' caused by the laser di�erence, which ultimately
cancels out in our con�guration.

Figure 5.17: Temporal pro�le, re
ectivity and phase pro�les of a Bragg beam splitter. The
Bragg coupling system 4.51 was solved for a square pulse with 
M = 5 kHz (left) and 
 M = 500 Hz
(left) with T = �= 
 M and 
 D = 3 kHz, in order to get the probability jC2j2 and the imprinted
phase� impr as a function of the detuning, converted in velocity.

It quickly becomes apparent that it is not possible to use this method while main-
taining a Rabi frequency amplitude of 
 M = 5 kHz. The duration of such a beam splitter
pulse isT = �= 2
 M = 50 µs. However, our Bragg doublets are separated by approximately

199



CHAPTER 5. BRAGG PULSES SHAPING AND PHASE CONTROL FOR A BELL TEST

6 mm/s, equivalent to 3 kHz. Therefore, we must use a modulation frequency on the order
of 
 D = 3 kHz. The modulation period for such a frequency is about 300µs, which is
signi�cantly higher than the pulse duration. This prevents the modulation from being
adequately de�ned, resulting in the method's failure and, consequently, a re
ectivity that
does not exhibit two distinct peaks for the resonant velocities, as shown in Figure 5.17,
where pulse pro�le, re
ectivity and imprinted phase graphs are plotted for two di�erent
Rabi frequencies and three values of� .

The only solution to increase the \resolution" of the modulation is to extend the
duration of the beam splitter. This has the e�ect of allowing the appearance of two
resonance peaks centered on modes A and B, respectively. Another consequence is that the
resonance peaks are also narrower, which determines the lower limit of the Rabi frequency
that cannot be surpassed if one wishes the re
ectivity to be around 0.5 for two or three
quadruplets. In Figure 5.17, two resonance peaks are clearly visible for 
M = 500 Hz, but
they are not su�ciently separated to be considered independent. This causes a decrease
in re
ectivity compared to the desired value of 0.5, which may result in a reduction in
the contrast of the Bell correlator oscillation. However, it is noticeable that the imprinted
phase di�erence between doubletsA and B depends on the initial phase value� of the
modulation function.

Due to the interference between the two resonance peaks, the imprinted phase di�er-
ence between doubletsA and B (symmetric with respect to � v = 0) is not equal to � .
However, a signi�cant variation in this phase di�erence is noted when � varies. Addition-
ally, on a box scale, the phase only varies by approximately ten degrees. To assess the
e�ectiveness of phase control using this method, one can plot the averaged phase di�erence
betweenA and B over a box of 1 mm.s� 1 as a function of � (Figure 5.18).

Figure 5.18: Imprinted phase as a function of the control parameter� . For a given value
of � and a given quadruplet, i.e. a 1 mm.s� 1 wide velocity box labeled by the value of its velocity
center � v (in mm.s� 1), we plot the imprinted phase di�erence between the doublet A (in green
in Figure 5.17) and the doublet B (in red in Figure 5.17), averaged over the velocity range of the
box. The error bars are given by the standard deviation of the imprinted phase di�erence within
the box.

The curves plotted for the �ve successive quadruplet boxes demonstrate that phase
control operates as intended: there is a one-to-one mapping between� and the imprinted
phase. The relationship is not as linear as desired due to cross-talk between the two
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resonances, but the imprinted phase can still be controlled using the phase at the origin
of the modulation function.

5.2.4 Bell correlator

With these two pulses, the Bell correlator can be calculated and used as a criterion for
the relevance of the selected Bragg pulses for exhibiting a violation of Bell's inequality.
Similar to the approach used for the HOM interferometric sequence, we numerically solve
the Bragg coupling equation 5.29 for each doublet to compute the output state. It is worth
noting that determining the appropriate delay for the beam splitter pulse is not straight-
forward now that its duration has been changed compared to HOM. Experimentally, the
ideal approach would be to conduct an HOM experiment using a beam splitter with the
same duration intended for the Bell experiment.

Assuming that a preliminary HOM experiment is performed with a 5 kHz mirror (100 µs
long), a 500 Hz beam splitter (500µs long), and with T1 = 800 µs, we use the closure
relation 5.26 analytically determined for square pulses to calculate the value ofT2 for
which the HOM interferometer is closed. We �nd T2 = T1 � 2TS=� = 482 µs, which we use
as a parameter for the Bell simulation.

Now, these timings can be used to simulate the proper Bell experiment: this time,T2

is �xed, but the correlator is calculated for di�erent values of � . We take into account the
atoms transmitted by the Bragg mirror.

The simulation results for the Bell correlator are presented in Figure 5.19 for three
values of� . A noticeable variation of the correlator with respect to this control parameter
is observed. However, within a quadruplet, the correlator varies signi�cantly, potentially
reducing the interference contrast during integration over this velocity range.

Figure 5.19: Bell correlator as a function of the velocity class for di�erent values of
the control parameter � . The Bell correlator is computed for a given interferometric pro�le,
corresponding here to one square mirror and one modulated beam splitter. The two-photon Rabi
frequency of the mirror is 
 M = 5 kHz and the one of the beam splitter is 
 M = 500 Hz. The
free propagation durations areT1 = 800 µs et T2 = 482 µs. Varying � only consists in changing
the phase at the origin of the modulated Bragg beam splitter. For the non-resonant quadruplets
(beyond � v = 6 mm.s� 1), the rapid oscillation of the correlator is due to additional phases from
atoms transmitted by the mirror (as discussed in section 5.1.3) but no longer depends on� , which
explains the superposition of the curves.
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Our main concern is to calculate the average value of the correlator within a speci-
�ed box as a function of � . The obtained results are plotted in Figure 5.20 for the �ve
quadruplets considered. The error bars correspond to the standard deviation of the Bell
correlator in the considered integration box for each value of� .

Figure 5.20: Oscillation of the Bell correlator as a function of the control parameter � .
For a given value of � , we compute the correlator E as a function of the velocity class, as shown
in Figure 5.19. Then, we average its value within a velocity box corresponding to a quadruplet,
labeled by the value of its center � v (in mm.s� 1). The error bars equal the standard deviation of
the Bell correlator within the corresponding integration box.

A clear oscillation of the correlator can be observed as a function of� for the various
quadruplets. However, it is interesting to note that the interferometric sequence used
to compute these results exhibits several drawbacks and deviations from the ideal case
initially presented.

ˆ Firstly, the observed oscillation is not exactly sinusoidal. This was actually expected
based on the results from the previous section on phase control, which already in-
dicated that the phase imprinted on the atoms does not vary linearly with � (5.18).
This is because the two beam splitters are not independent, so atoms from doublet
A also experience an imprinted phase that is preferentially imprinted on doubletB .

ˆ For the same reasons, although the correlator's oscillation has a period of approx-
imately 2� , it can be observed that the correlator is not strictly 2� periodic but
rather 4� periodic, despite the initial prediction of an oscillation in the form of
E = A cos(� ). This is due to the modulation function in cos(
 D t=2 + �=2), which is
itself 4� periodic. Because of the cross talk between the beam splitters, the re
ec-
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