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1.1 Context

Turbulent fluid flows play an important role in many industrial processes, including most
large scale power generation means. Detailed understanding of turbulent flows is not only
important in the context of the optimization of production means such as wind farms,
but essential for nuclear energy production in pressurized water reactors, where thermal
hydraulics plays a central role in safety studies and demonstrations. In the regulatory
context of nuclear power production, Validation, Verification, and uncertainty Quantifi-
cation (VVUQ) aspects must be at the state of the art when fluid flow simulations are
involved. As the flows involved in both normal and accidental conditions can be very
complex, confidence in simulation results relies on both identifying an ranking the ex-
pected flow features, and ensuring the appropriate physical flow features are handled by
the models used. As local CFD simulations are very resource intensive, simpler models
are preferred when sufficient, and more complex ones where necessary. This requires good
expert knowledge of how various modeling options predict different phenomena. Even
though the governing equations for fluid flows have been developed by Navier and Stokes
for more than a century, its modelling was not rendered possible until the 1970s by the
invention of many numerical methods and turbulence models, such as k − ε model, in
computational fluid dynamics (CFD). Even after another half century of exponential de-
velopment of the high performance computing resources, the direct numerical simulation
(DNS) of turbulent flows remains out of reach for the industrial applications owing to
its stochastic nature and the wide range of temporal and spatial scales. To overcome
the computational burden induced by the turbulent structures with universal character-
istics at small scales, large eddy simulation (LES) was proposed to solve the large scale
turbulent structures while modelling the small scale ones, which significant reduces the
computational costs compared to DNS but not cheap enough to be massively employed
in industry.

As a result, the Reynolds-Averaged Navier-Stokes (RANS) simulations supplemented
by turbulence closure models still dominate the engineering design, performance analysis
and optimization of the industrial equipment. Even though different turbulence models
are indiscriminately applied to simulate various flow phenomena, their accuracy in the
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specific scenario is still questionable. For example, the standard k − ε model is valid in
the simple flows but not in complex flows such as the adverse pressure gradient flows,
separation and reattachment, jet impingement. The standard k − ε turbulence model
overestimates the turbulent kinetic energy level at the stagnation point. A modified k− ε
turbulence model with linear production term can avoid this anomaly. While Wilcox’s
k− ω model is superior than k− ε model for the prediction of flow with adverse pressure
gradient, the eddy viscosity in the free stream is very sensitive to the small variation
of ω value which leads to the proposal of Menter’s shear stress transport (SST) k − ω
model. The linear eddy-viscosity models fail to predict the secondary flow in the square
duct flow case, but the quadratic k − ε model and second-order Reynolds Stress models
(RSM) can reproduce this secondary flow structure due to anisotropy. The RSMs solving
six transport equations for the components of Reynolds stresses are deemed more suitable
for anisotropic flows such as swirling flows and secondary flows at the cost of much higher
computational expense than the first-order turbulence models. As shown in Fig. 1.1, the
experimental data shows that the swirling flow inside the vortex generator has the highest
swirling magnitude near the cylinder center indicated by the peak tangent velocity. As
expected, LES well predicts the positions of the peak values and the general profiles of the
tangential velocity. As a comparison to the failure of k−ω SST on predicting the tangent
velocity profile in the center region, Rij − ε SSG can well capture the strong rotation in
the center region though the predicted peak magnitude is lower than the experimental
data. Despite its superiority compared with the first-order turbulence models, RSMs also
have the drawbacks such as the stability problem with regard to the mesh quality.

(a) Vortex generator geometry.

(b) Velocity predicted by LES.

(c) Velocity predicted by Rij − ε SSG.
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(d) Tangent velocity profiles.

Figure 1.1: Tangent velocity profiles predicted by different turbulence models in vortex generator.

1.2 Objectives and strategy

As already shown in the previous section, some turbulence models are better adapted for
various flow phenomena. How to accurately simulate each flow phenomenon requires not
only the knowledge about the underlying physics but also the expertise of the code. At
EDF, various simulation tools have been used and developed for many years, whether
for less detailed but complete system tools, specialized “component level” models, or
general purpose CFD models when detailed flow modeling is needed. Over decades of
development of the finite volume method CFD solver code_saturne, the I8A group of the
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département mécanique des fluides, energie et environnement (MFEE) as the development
team accumulated around 100 verification and validation cases for diverse flow phenomena.
Before the release of each new version of code_saturne, these cases are carefully run
to ensure the correctness of the coding and validity of the models. For each case, the
simulation results obtained with different turbulence models and numerical methods are
compared with the experimental data. These cases can form a potential optimal model
configuration pool as the reference to better simulate corresponding flow phenomenon.
As a long term goal, integrating this expertise into the code to make the simulation more
automatic or to give suggestions to the user can improve user’s confidence on the result.

Deep learning (DL) or machine learning (ML) can be a promising direction to solve
this challenging task. Recently, we have witnessed a great success of ML on the pattern
recognition in images and audios such as YOLO, discovering the potential relationship
from biomedical scans and observations to the pathology, human knowledge integration
such as ChatGPT, recommendation system over films and commercial products, gener-
ated content sush as DALL·E. Nowadays, all these available ML techniques to extract
knowledge from ever-growing data have become the alternatives for the fluid dynamics
community to understand the underlying mechanics. Enthralled by its excellent capabil-
ity of fitting the non-linear relationship between input and output, many CFD researchers
have embraced MLs to address various tasks, such as turbulence models closure, model
form uncertainty quantification, flow fields super-resolution, accelerating or completely
replacing the cumbersome CFD solvers and so on. However, these models are not in
general predictive enough to constitute an alternative to general CFD simulation. These
tools show more short term promise where used to represent complex physical property
behavior or as a component of turbulence or phase change models, but even there, the
lack of explainability of associated simulation results would make their use difficult to
justify in a nuclear safety regulatory context. Whereas when used to assist an engineer
in the identification of flow types, so as to help verifying and checking model choices,
while keeping the human in the loop, AI models could increase engineer productivity and
confidence in simulation results even when using classical simulation tools.

The general roadmap to realize this long term goal is shown in Fig. 1.2. The user sets
the initial configuration of the CFD and launches the calculation. A machine learning
(ML) algorithm identifies whether a certain flow phenomenon exists inside the initial
CFD result based on the selected features characterizing the flow phenomenon. This ML
model can be trained on the dataset formed by the experimental data and high-fidelity
CFD data, especially code_saturne validation cases. Industrial flows can combine several
different flow phenomena, which may each have a small to dominant aspect on the overall
flow. For example, buoyancy phenomena can drive the flow when no other forces are
present, lead to stratifications where the velocity is not strong, or be a negligible factor
when the flow is driven by stronger convection. Presence of vortices related to turbulence
may lead to mixing and prevent a stratification from appearing, and vortices may be
generated both by geometric features such as backward-facing steps or other obstactles
even in low velocity conditions, and by turbulence related to shear in the flow. In our
case, we will start by trying to identify a few different common separate flow phenomena,
such as the presence of large vortices or of stratification, and if that detection is successful,
work on detecting combinations of these features. At this stage, as most basic phenomena
can be present in 2D flows, the lower resulting computational cost, associated turnaround
time, and data volume associated with these flows can allow for more experimentation
and finer analysis. Then, as some features such as secondary vortices may be detected by
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Figure 1.2: General strategy to give suggestions on CFD configuration.

some modeling options, and not reproduced by some simplified turbulence models, we will
test and adapt the detection to at least one such example. If multiple flow phenomena
exist, the phenomena identification and ranking table (PIRT) method can be used to find
out the one that has the greatest impact on the result accuracy.

Based on the detected flow phenomenon, the second machine learning algorithm
trained on the dataset consisting of the configuration knowledge for various flow phenom-
ena can propose to the user the optimal model configuration. The candidate configurations
for the flow phenomena can come from different sources, such as uncertainty quantification
and sensitivity analysis of turbulence models and numerical schemes, expert experience
and code_saturne verification and validation cases. The user finally decides whether to
accept the suggestion, modify the model configuration and relaunch the simulation or to
reject the proposal and keep the initial result.

This manuscript focuses on the first step indicated by the green circle in the figure -
flow phenomena identification. Since local features can not fully characterize certain flow
phenomena which normally have a spatial distribution, it is natural to use the MLs which
are able to process data on meshes. Thus we firstly use convolutional neural network
(CNN) to identify flow structures. Our objective is to detect the presence of a specific
flow phenomenon in the CFD result and distinguish it from the other regions which is
very similar to the object detection/segmentation in computer vision (CV). Different from
the object detection/segmentation in CV, there are several difficulties to overcome:

• Contradiction between small data-set and broad generality. On the con-
trary of the presence of large public dataset in CV, such as MNIST, CIFAR-100,
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ImageNet, etc, no widely accepted data-set exists in CFD community. There will
not be such a dataset coming out in the near future due to several facts. Different
input features are needed for corresponding task-specific algorithm. Higher dimen-
sionality of CFD results data increases the requirement for the data storage and
computation resources. The vast range of influencing parameters, such as different
Re numbers, geometries, mesh topologies, turbulence models, make the large data-
set impossible. Consequently, all the ML applications in fluid dynamics are trained
on the small data-set and lose generality once applied to outlier cases. We would
like to find an algorithm with a good generalizability to scenarios of different Re
numbers, turbulence models, geometry and mesh topologies.

• Adaptability to unstructured meshes. Most of the ML flow detection algo-
rithms are not suitable for unstructured meshes which are usually used for industrial
cases to fit the complex geometries. Deforming the mesh or interpolate data onto
structured meshes is plausible remedy for theses methods but unrealistic and very
complex for intricate geometries. We extend the CNN paradigm to graph neural
networks (GNNs) to resolve this problem.

• Computational efficiency. Computational cost becomes significant for GNNs
compared with CNNs especially for 3D cases with large quantity of cells. An ap-
propriate ML model should not bring excessive cost to the simulation.

1.3 Manuscript organisation

This manuscript is organised as follows:
Chapter 2 introduces the basic knowledge of turbulent flows and its simulation. The

Reynolds-averaged Navier-Stokes (RANS) simulations with the commonly used turbulence
models are described firstly. The main numerical methods employed in the finite volume
method (FVM) solver code_saturne are detailed including time and space discretisation
methods, wall modeling models and the algebraic multigrid method.

Chapter 3 introduces the fundamental concepts of machine learning such as the general
procedure in the supervised training, the typical terminologies in the neural networks are
introduced at the beginning. Two main machine learning algorithms used in this research,
CNN and GNN, are described.

Chapter 4 is a review of the current applications of MLs in CFD domain. Although the
current work is confined to identification of flow phenomena inside the CFD results, the
literature also covers more applications of MLs such as turbulence model closure, surrogate
modelling, flow field super-resolution in the hope that these studies can enlighten the
following researches.

Chapter 5 details how to apply CNN to identify flow phenomena on Cartesian meshes.
The factors that may influence the detecting accuracy are investigated firstly, such as data
interpolation methods and mesh refinement. The feasibility of using CNN to identify the
vortex shedding behind the backward-facing step by CNN is shown. A vortex auto-
labelling algorithm based on the random walking on the directed graph is proposed to
label the vortexes on 2D mesh. The results show that CNN can efficiently and accurately
locate the vortexes based on the rudimentary velocity field. The CNN model can be
easily extended to detect other flow phenomena such as thermal stratification by slightly
modified the architecture.
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Chapter 6 extends the methodology of identifying flow phenomena from Cartesian
meshes in the previous chapter to unstructured meshes by using GNN. Three graph con-
volution kernels, the direct counterparts of the conventional CNN convolution kernel, are
tested on identifying 2D vortexes. The computational cost is more prominent in the GNNs
and can be addressed by using U-Net architecture on the graph hierarchy generated by the
algebraic multigrid method in the code_saturne. A new GNN kernel is proposed which
is more suitable to identify the flow phenomena on graphs derived from CFD meshes and
more computational efficient. The generalization of the proposed framework to 3D flow
phenomena is exemplified on detecting the 3D vortex inside the vortex generator case at
the end.

Chapter 7 concludes the manuscript and points out the future perspectives.
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2 | Fundamental knowledge of compu-
tational fluid dynamics
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The turbulent flow characteristics and its governing equations are firstly described in
this chapter. Though different strategies to simulate turbulent flows exist, we mainly focus
on simulations using Reynolds-Averaged Navier-Stokes (RANS) equations and turbulence
models. Thus RANS equations and the most used turbulence models are reviewed. The
main numerical methods employed in code_saturne are introduced briefly at the end.

2.1 Turbulent flow and its governing equations

2.1.1 Turbulent flow

Most of the engineering flow problems focus on the turbulent flow where the velocity and
other properties vary in a random and chaotic way. The velocity measurement at a point
in the turbulent flow is shown in Fig. 2.1.
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Figure 2.1: Velocity fluctuation in turbulent flow.

The fluctuation of the velocity in the turbulent flow is due to the existence of the eddies
of a wide range of length, time and velocity scales. The length (l), velocity (u) scales of
the largest eddies are of the same order as the velocity scale U and length scale L of the
mean flow. Thus the Reynolds number for the large eddies Rel = ul/ν is large indicating
the largest eddies are dominated by inertia effects and viscous effects are negligible. The
fluctuation of the largest eddies are different in different directions and affected by the
boundary condition, thus anisotropic.

The largest eddies interact with and obtain energy from the mean flow through vortex
stretching. The large eddies are unstable and break up. The energy is transferred from
large eddies to smaller and smaller scales till the smallest scales where the turbulent energy
is dissipated into thermal internal energy. This process is termed as energy cascade.

The characteristic scales of the smallest turbulent motions are called the Kolmogorov
scales including the length (η), time (τη) and velocity (uη) scales formed by the rate of
dissipation of turbulent energy ε and kinematic viscosity ν:

η ≡
(
ν3

ε

)1/4

, (2.1)

τη ≡
(ν
ε

)1/2
, (2.2)

uη ≡ (νε)1/4. (2.3)

The Reynolds number based on the Kolmogorov scales is unity:

Reη =
ηuη
ν

= 1, (2.4)

indicating the inertial and viscous affects are of equal strength. The ratio of the length,
time and velocity scales η, τη, uη of the smallest eddies to the length, time and velocity
scales l, T, u of the largest eddies are estimated as:

η

l
≈ Re

−3/4
l ,

τη
T
≈ Re

−1/2
l ,

uη
u
≈ Re

−1/4
l , (2.5)

which means the length and time scales of the smallest eddies decrease as the large-eddy
Reynolds number Rel increases. The smallest eddies are isotropic, their directionality is
smeared out by the diffusive action of viscosity.
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2.1.2 Governing equations

The incompressible Newtonian fluid flow is governed by the continuity equation and mo-
mentum conservation equations (Navier-Stokes equations):

∂ui
∂xi

= 0 (2.6)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ SMi
. (2.7)

where t, p, ρ, ν, SM are the time, pressure, fluid density, kinematic viscosity, momentum
source term, respectively, and the transport equation for the possible scalar ϕ:

∂ϕ

∂t
+ ui

∂ϕ

∂xi
= Γe

∂2ϕ

∂xi∂xi
+ Siϕ+ Se, (2.8)

where Γe represents the effective diffusivity of ϕ, Siϕ and Se are the implicit and explicit
parts of the source term, respectively.

2.1.3 Reynolds-averaged Navier-Stokes equations

The Reynolds decomposition decomposes instantaneous velocity u(t) into the steady mean
value U and the fluctuating component u′(t):

u(t) = U + u′(t), (2.9)

by time averaging:

U =
1

∆t

∫ ∆t

0

u(t)dt, (2.10)

where the time duration ∆t is selected to be larger than the time scale of the slowest
variation. The time average of the fluctuation part u′(t) is zero:

u′(t) =
1

∆t

∫ ∆t

0

u′(t)dt = 0. (2.11)

The time averages of instantaneous variables ϕ = Φ + ϕ′ and ψ = Ψ + Ψ′ and their
summation, derivatives and integrals are summarized here:

ϕ′ = ψ′ = 0, Φ = Φ, ∂ϕ
∂x

= ∂Φ
∂x

,
∫
ϕdx =

∫
Φdx,

ϕ+ ψ = Φ+Ψ, ϕψ = ΦΨ+ ϕ′ψ′, ϕΨ = ΦΨ, ϕ′Ψ = 0.

Applying the time averaging process to every term in the Navier-Stokes equations we
obtain the Reynolds-averaged Navier-Stokes (RANS) equations for incompressible New-
tonian flow:

∂Ui

∂xi
= 0, (2.12a)

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
−
∂u′iu

′
j

∂xj
+ SMi

. (2.12b)

The extra terms at the right hand side of the RANS momentum equations u′iu′j are called
Reynolds stresses which contains six unknown variables and should be modeled to close
the equation set.
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2.2 Turbulent flow simulation strategies

A typical energy cascade of turbulent flow is shown in Fig. 2.2. The left end part of this
turbulence energy spectrum plot contains the large-scale vortexes which are influenced
by the geometry, extract the energy from the mainstream flow and contain the majority
of the total energy. The right end part of the spectrum contains the smallest eddies at
Kolmogorov scale which account for only a small portion of the total turbulent energy. Be-
tween the energy-containing range and the dissipation range there is an inertial subrange
where the eddies are determined by inertial effects, accept the energy transferred from
the larger eddies in the energy-containing range and further pass it down to the smaller
eddies in the dissipation range. There are three levels of simulating the turbulent flow
depending on to which scale of turbulence it solves: direct numerical simulation (DNS),
large eddy simulation (LES) and simulation of Reynolds-averaged Navier-Stokes (RANS)
equations together with turbulence models.
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Figure 2.2: Turbulence energy wavenumber spectrum.

Direct numerical simulation. The Navier-Stokes equations are solved on spatial
meshes sufficiently fine with sufficiently small time step to resolve the smallest eddies at
Kolmogorov scale. According to Eq. 2.5, both the length scale and time scale of the
smallest eddies increase as the Reynolds number Rel increases. As a result, the total
computational cost of a DNS of three dimensional flow is proportional to Re3l which
constrains the DNS to the flows of low-Reynolds-numbers with simple geometry at the
current stage and even in a foreseeable future.

Large eddy simulation. Instead of spending most of the computational effort on
resolving the small-scale motions with universal character like DNS, LES directly com-
putes the most energetic and anisotropic large-scale motions and models the effect of the
small-scale motions. LES uses the filter operation to decompose the velocity u(x, t) into
the sum of a filtered/resolved component U(x, t) and a residual/subgrid-scale (SGS) com-
ponent u′(x, t). The equations for the filtered velocity component U(x, t) derived from
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Navier-Stokes equations containing the SGS stress tensor are resolved. An eddy viscosity
model (EVM) is used for the modeling of the SGS stress tensor to close the equations.
Though much computational economical compared with DNS, LES is much expensive
than Reynolds stress models, the most complex RANS models, due the facts that the
transient calculation and a small filter width located in the inertial subrange, embodied
in the small cell size, are needed to resolve the transient energetic-containing motions.
Consequently, the applications of LES in the industry is still limited despite the recent
rapid development of high performance computing resources.

RANS simulation. The last category of simulating turbulent flows solves the
Reynolds-averaged Navier-Stokes equations 2.12 and turbulence models - additional trans-
port equations to model the Reynolds stresses. Since RANS simulation models the tur-
bulent motions of all ranges, it is the cheapest method to obtain the time-averaged mean
flow characteristics which are the most important information for most of the engineering
design. A large diversity of turbulence models makes the RANS simulation the most used
method for a broad range of flow phenomena.

2.3 Turbulence models

Many turbulence models have been proposed to close the RANS equations. According to
the number of the extra transport equations to be solved, these models can be divided
into zero-, one-, two- and seven-equation turbulence models. These model can be grouped
into two categories: eddy viscosity models (first-order models) and second-order models,
as shown in Table 2.1.

Table 2.1: Categorisation of turbulence models.

Type Nb. extra transport equations Model

Eddy viscosity model

Zero Mixing length model
One Spalart-Allmaras model

Two k − ε model
k − ω model

Second-order model Seven Reynolds stress model

Despite their computational efficiency, the zero- and one-equation models are limited
to the specific type of flows, due to their incompleteness (from to their simplifying as-
sumptions). For example, the mixing length model (zero-equation) is only suitable for thin
shear layers and the Spalart-Allmaras model (one-equation) is limited to the aerodynam-
ics. In this work, these models are not used and thus omitted here. The seven-equation
models (i.e. Reynolds stress models (RSM)) which solve the transport equations for each
of six component of Reynolds stresses and for another variable to provide the length or
time scale, such as ε or ω are the most complex turbulence models, thus very compu-
tationally heavy. One of the most used RSMs, RSM Speziale, Sarkar and Gatski (SSG)
model, is introduced at the end of this section.

Two-equation turbulence models, such as k − ε, k − ω, are the most used models in
the industrial turbulent flow simulations thanks to their good balance between accuracy,
computational efficiency and wide range applicability. Three most used two-equation
turbulence models are: standard k − ε, Wilcox k − ω and Menter shear stress transport
(SST) k−ω models are introduced firstly in this section. These models adopt Boussinesq
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eddy viscosity assumption which assumes that the Reynolds stresses are proportional to
the rate of deformation of mean flow by making analogy to the viscous stresses:

−u′iu′j = 2νtSij −
2

3
kδij, (2.13)

where νt is the kinetic turbulent eddy viscosity which should be modeled, Sij is strain
rate tensor:

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, (2.14)

k = 1
2
u′iu

′
i is the turbulent kinetic energy per unit mass, and δij is Kronecker delta:

δij =

{
1, if i = j,
0, if i ̸= j.

(2.15)

2.3.1 Standard k− ε model

The standard k − ε model proposed by Launder and Sharma (1974) solves the transport
equations for turbulent kinetic energy and its dissipation rate ε:

∂k

∂t
+ Ui

∂k

∂xi
=

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ 2νtSij · Sij − ε,

∂ε

∂t
+ Ui

∂ε

∂xi
=

∂

∂xi

[(
ν +

νt
σε

)
∂ε

∂xi

]
+ C1ε

ε

k
2νtSij · Sij − C2ε

ε2

k
,

(2.16)

where the kinetic eddy viscosity νt is defined as :

νt = Cµ
k2

ε
. (2.17)

Five empirical adjustable constants are:

Cµ σk σε C1ε C2ε

0.09 1.00 1.30 1.44 1.92

2.3.2 Wilcox k− ω model

Another widely used two-equation turbulence model is k−ω model Wilcox (1993); Wilcox
et al. (1998); Wilcox (1994) which uses the turbulence frequency ω = ε/k as the second
variable. The kinetic eddy viscosity is defined as νt = k/ω. The transport equations for
k and ω are defined as:

∂ρk

∂t
+ Ui

∂k

∂xi
=

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ Pk − β∗kω,

∂ω

∂t
+ Ui

∂ω

∂xi
=

∂

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
+ αSij · Sij − βω2,

(2.18)

where Pk is the production of k:

Pk = 2νtSij · Sij, (2.19)

and the model constants are:

σk σω β∗ α β
2.0 2.0 0.09 0.553 0.075
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2.3.3 Menter SST k− ω model

Menter (1994) proposed a shear stress transport (SST) k − ω model to retain the robust
and accuracy of the Wilcox k− ω model in the near wall region and to take advantage of
the freestream independence of the k− ε in the fully turbulent region. The original k−ω
model reads:

∂k

∂t
+ Ui

∂k

∂xi
=

∂

∂xi

[
(ν + σk1νt)

∂k

∂xi

]
+ Pk − β∗kω,

∂ω

∂t
+ Ui

∂ω

∂xi
=

∂

∂xi

[
(ν + σω1νt)

∂ω

∂xi

]
+
α1

νt
Pk − β1ω2,

(2.20)

The original k − ε model is transformed into k − ω formulation:

∂k

∂t
+ Ui

∂k

∂xi
=

∂

∂xi

[
(ν + σk2νt)

∂k

∂xi

]
+ Pk − β∗kω,

∂ω

∂t
+ Ui

∂ω

∂xi
=

∂

∂xi

[
(ν + σω2νt)

∂ω

∂xi

]
+
α2

νt
Pk − β2ω2 +

2σω2
ω

∂ω

∂xk

∂k

∂xk︸ ︷︷ ︸
Cross diffusion

.
(2.21)

Eqs. 2.20 and 2.21 are multiplied by F1 and (1 − F1), respectively, and are added
correspondingly to give the k − ω SST model:

∂k

∂t
+ Ui

∂k

∂xi
=

∂

∂xi

[
(ν + σkνt)

∂k

∂xi

]
+ Pk − β∗kω,

∂ω

∂t
+ Ui

∂ω

∂xi
=

∂

∂xi

[
(ν + σωνt)

∂ω

∂xi

]
+
α

νt
Pk − βω2 + 2(1− F1)

σω2
ω

∂ω

∂xk

∂k

∂xk
,

(2.22)

where the production of k is:

Pk =

(
νtSij −

2

3
kδij

)
∂ui
∂xj

. (2.23)

Let ϕ represent any constant in Eqs. 2.22, and ϕ1 and ϕ2 the corresponding constants in
Eqs. 2.20 and 2.21, respectively. Then, the relation between them is:

ϕ = ϕ1F1 + ϕ2(1− F1). (2.24)

The constants ϕ1 in Wilcox model are

αk1 σω1 β1 γ1
0.5 0.5 0.075 5/9

The constants ϕ2 in standard k − ε model are:

αk2 σω2 β2 γ2
1.0 0.856 0.0828 0.44

The blending function F1 between k − ω model and k − ε model is defined as:

F1 = tanh(arg41), (2.25)
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arg1 = min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,
4ρσω2k

CDkωy2

]
, (2.26)

where CDkω is positive part of the cross diffusion term:

CDkω = max

(
2ρ

σω2

∂ω

∂xi

∂k

∂xi
, 10−20

)
. (2.27)

The eddy viscosity is defined as:

νt =
a1k

max(a1ω, SF2)
, S = 2

√
2SijSij. (2.28)

The blending function F2 is one for boundary layer flows and zero for free shear layers:

F2 = tanh
[
arg22

]
, arg2 = max

(
2
√
k

β∗ωy
,
500ν

y2ω

)
. (2.29)

The constants of k − ω SST are:

β∗ = 0.09 a1 = 0.31. (2.30)

2.3.4 Reynolds stress SSG model

The Reynolds stress SSG model solves six partial differential equations: one for each of six
independent components of Reynolds stresses u′iu′j along with another transport equation
of the dissipation rate ε:

∂u′iu
′
j

∂t
+ Uk

∂u′iu
′
j

∂xk
= −

∂u′iu
′
ju

′
k

∂xk
+ Pij +Πij − εij +Dij, (2.31)

∂ε

∂t
+ Ui

∂ε

∂xi
= Cε

∂

∂xi

(
k

ε
u′iu

′
j

∂ε

∂xj

)
+ Cε1

Pε
k
− Cε2

ε2

k
, (2.32)

where Pij is the production term:

Pij = −
(
u′iu

′
k

∂Uj

∂xk
+ u′ju

′
k

∂Ui

∂xk

)
, P = u′iu

′
j

∂Ui

∂xj
, (2.33)

Πij is the velocity-pressure-gradient term:

Πij = −
1

ρ

(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
, (2.34)

εij is the dissipation term:

εij = 2ν
∂ui
∂xki

∂u′j
∂xk

, (2.35)

Dij is the diffusion term:

Dij = ν
∂2u′iu

′
j

∂xk∂xk
, (2.36)

In the Reynolds-stress model, Ui, P , u′iu′j and ε are known, thus the two terms on the left
hand side of Eq. 2.31, and the production term Pij are in closed form. The triple velocity
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correlation term u′iu
′
ju

′
k, the dissipation term εij and the velocity-pressure-gradient term

Πij should be modeled.
Daly and Harlow (1970) proposed the following model for the third oder term:

u′iu
′
ju

′
k = −Cs

k

ε
u′ku

′
l

∂u′iu
′
j

∂xl
. (2.37)

Speziale et al. (1991) proposed the following model for the velocity-pressure-gradient
term:

Πij = −(C1ε+ C∗
1P)bij

+ C2ε(bikbkj −
1

3
bmnbmnδij)

+ (C3 − C∗
3

√
bijbij)kSij

+ C4(bikSjk + bjkSik −
2

3
bmnSmnδij

+ C5k(bikΩjk + bjkΩik),

(2.38)

where bij is the anisotropy tensor:

bij =
u′iu

′
j

2k
− 1

3
δij, (2.39)

Sij, Ωij are the mean rate of strain tensor and mean rotation tensor, respectively:

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, Ωij =

1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
. (2.40)

In the high-Reynolds-number flows, the dissipation is isotropic:

εij =
2

3
εδij, (2.41)

Rotta (1951) proposed the following model for the near wall region:

εij =
u′iu

′
j

k
ε. (2.42)

The constants in the model are summarized here:

Cs C1 C∗
1 C2 C3 C∗

3 C4 C5 Cε1 Cε1

0.22 3.4 1.8 4.2 0.8 1.3 1.25 0.4 1.44 1.83
(2.43)

2.3.5 Models for turbulent scalar fluxes

Code_saturne provides several models to estimate the turbulent scalar fluxes such as
simple gradient diffusion hypothesis (SGDH) and generalized gradient diffusion hypothesis
(GGDH).

SGDH. The SGDH is the most commonly used model to estimate turbulent scalar
flux for two-equation turbulence models. Being analogous to Fick’s law of molecular
diffusion, SGDH assumes that the turbulent transport of a scalar ϕ is proportional to the
gradient of its mean concentration:

ϕ′u′i = −
νt
σϕ

∂ϕ

∂xi
, (2.44)
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where σϕ is the turbulent Schmidt number for turbulent mass transfer or turbulent Prandtl
number for turbulent heat transfer.

GGDH. The GGDH takes the anisotropy of the Reynolds stresses on the turbulent
scalar flux as:

ϕ′u′i = −Cϕ
k

ε
u′iu

′
j

∂ϕ

∂xj
, (2.45)

where constant Cϕ = 0.235. GGDH is the most used model for Reynolds stress models.

2.3.6 Turbulence model selection

The choice of turbulence model used in a simulation can have a large impact on the
obtained solution. First-order models such as k−ε and k−ω assume isotropic turbulence
structures, whereas RSM models can handle anisotropic structures (and different variants
of the model can handle isotropic or anisotropic diffusivity).

For some flows with complex vortex interactions, and many flows with junctions for
injection or extraction of fluid, reproducing the correct physical structure may require
using at least an RSM model. While RSM models are usually more precise than first-
order RANS models, they involve a significantly higher computational cost, and tend to be
less stable, especially for lower quality meshes. So for flows where they are not necessary,
using a first order RANS model may be preferred.

To determine which type of model is preferred, or needed, a user may refer to a
validation test suite and a PIRT, representing expert knowledge. In a series of simulations,
running at least one simulation with a different model may help ensure no important flow
phenomena is missed. Using assistance from machine learning could be very useful here,
and is one of the motivating factors of this work.

2.4 Numerical methods in code_saturne

Code_sature is an open-source CFD software developed by EDF for the simulation of the
laminar or turbulent, incompressible or weakly dilatable flows on structured or unstruc-
tured meshes Archambeau et al. (2004). The code is provided with different turbulence
models, from RANS to LES models can be run in parallel with massive number of mesh
cells. Plentiful specific physical modules are developed, such as gas, and coal combustion,
semi-transparent radiative transfer, particle-tracking with Lagrangian modeling, Joule ef-
fect, electrics arcs, weakly compressible flows, atmospheric flows, rotor/stator interaction
for hydraulic machines.

Code_saturne is based on finite volume method (FVM) which consists of three steps:

• Integration of the governing equations over the control volumes of the domain and
over time,

• Discretisation of the integral equations into an algebraic equations system,

• Solving the algebraic equations system by iterative method.

2.4.1 Time discretisation

Code_saturne utilizes a segregated solver based on semi-implicit method for pressure-
linked equations-consistent (SIMPLEC) to solve the time incremental term of the RANS
equations which mainly contains a velocity prediction step and pressure correction step.
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2.4.1.1 Velocity prediction step

The predicted velocity field ũn+1 is obtained by solving the following equation:

ρ
ũn+1
i − uni
∆t

+ ρunj
∂ũn+θ

i

∂xj
= −∂p

n−1+θ

∂xi
+ µ

∂2ũn+θ

∂xj∂xj
− ρ

∂2Rn+θS
ij

∂xi∂xj
+ Sn+θS

M , (2.46)

using θ-scheme:

ũn+θ = θũn+1 + (1− θ)un,


θ = 0, explicit scheme,
θ = 1/2, Crank-Nicolson scheme,
θ = 1, fully implicit scheme.

(2.47)

where Rij is Reynolds stress Rij = u′iu
′
j, and the exponent n + θS indicates the time

extrapolation point for Reynolds stresses and momentum source terms.

2.4.1.2 Pressure correction step

The predicted velocity field is not divergence free. The second step corrects the pressure
by imposing the nullity of the stationary constraint for the velocity computed at time
n+ 1. The following equations are solve:{

ρ(un+1 − ũn+1)/∆t = −∇δP n+θ,
∇ · un+1 = 0,

(2.48)

where u, ∇, ∇· represent velocity vector, gradient and divergence operators, respectively,
and the pressure increment δP n+θ = P n+θ − P n−1+θ. Taking the divergence of the above
equation, the following Poisson equation for the pressure is obtained:

∇ · (∆t∇δP n+θ) = ∇ · (ρũn+1). (2.49)

Then the velocity is corrected by:

un+1 = un − ∆t

ρ
∇δP n+θ. (2.50)

2.4.2 Space discretisation

Code_saturne uses the co-located finite volume method which solves and stores the veloc-
ity, pressure and other scalar variables at the same points - the cell centers. A schematic
of two adjacent cells and their entities in the FVM mesh is shown in Fig. 2.3. On a mesh
with Ncell cells each discretized field ϕ has Ncell degrees of freedom, denoted by ϕi:

ϕi ≡
1

|Ωi|

∫
Ωi

ϕdΩ, i ∈ [1, · · · , Ncell], (2.51)

where Ωi is the volume of the i-th cell. Since the discretized field ϕ is linear in every cell,
ϕi can be identified by the value of the field at I, the cell center of Ωi:

ϕI = ϕi. (2.52)

The face value of the discretized field ϕ on the face defined as:

ϕf ≡
1

|Sf |

∫
f

ϕdS, (2.53)

is linear on the face f , thus Yf is associated to the face center F :

ϕF = ϕf . (2.54)

17



Figure 2.3: Schematic of two internal adjacent cells in the mesh.

2.4.2.1 Velocity prediction step

The integrated form of the Eq. 2.46 reads:

ρ
|Ωi|
∆t

(
ũn+1
i − uni

)
+
∑

j∈V (i)

ũn+θ
fij

(ρu·n)nfij |Sij| = −|Ωi|∇(pi)n−1+θ+
∑

j∈V (i)

(µ∇ũ·n)n+θ
fij
|Sij|+|Ωi|An

i .

(2.55)
The divergence theorem is used for the integration of the convective and diffusive terms:∫

Ωi

∇ · u =
∑
f∈Fi

ufiSfi
. (2.56)

Convective term
For the convective term, the mass flux ρunfij is available from the last iteration, the

value at the interior face ũn+θ
fij

should be evaluated. Code_saturne provides three spatial
discretisation schemes to evaluate the variable ϕfij at the interior face:

• Upwind scheme
The 1st-order scheme reads:

ϕfij =

{
ϕi, if (ρu · n)nfij ≥ 0,

ϕj, if (ρu · n)nfij < 0.
(2.57)

• Centered scheme
The 2nd-order centered scheme reads:

ϕfij = αijϕi + (1− αij)ϕj +
1

2
[∇ϕi +∇ϕj] ·OF, (2.58)

where αij is the weighting factor to measure the cell center I to the face f relative
to the neighbor cell J :

αij =
FJ ′

I ′J ′
, (2.59)

where FJ ′ and I ′J ′ are defined as:

FJ ′ ≡
FJ ′ · Sij

|Sij|
, I ′J ′ ≡

I ′J ′ · Sij

|Sij|
. (2.60)
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• Second order linear upwind (SOLU) scheme
The 2nd-order linear upwind scheme reads:

ϕfij =

{
ϕi +∇ϕi · IF if (ρu · n)nfij ≥ 0,

ϕj +∇ϕj · JF if (ρu · n)nfij < 0.
(2.61)

Diffusive term
The diffusivity µ in the diffusive term should be interpolated from the neighboring cells
to the interior face. Two interpolation methods are available: harmonic interpolation and
arithmetic interpolation:

µfij =

{
µiµj/[αijµi + (1− αij)µj], harmonic mean,

(µi + µj)/2, arithmetic mean. (2.62)

The gradient of a variable on the interior face ϕfij is discretiszed by:

∇ϕfij =

{
(ϕj − ϕi)/I ′J ′, for non-reconstructed field,

[(ϕj − ϕi) + (JJ ′ − II ′) · (∇ϕi +∇ϕj)/2] /I ′J ′, for reconstructed field.
(2.63)

2.4.2.2 Pressure correction step

The Poission equation 2.49 is discretized as:

∆t
∑

j∈V (i)

(∇δp · n)n+1
fij
|Sfij | =

∑
j∈V (i)

(ρu · n)n+1
fij
|Sfij |. (2.64)

Additional filter term of Rhie and Chow Rhie and Chow (1983) is added to the mass flux
to avoid the pressure spatial oscillation caused by the pressure and velocity decoupling:

(ρu · n)fij = (ρu · n)fij + Ffij . (2.65)

2.4.3 Wall modeling

As shown in Fig. 2.4, the turbulent boundary layer can be divided into three layers
in terms of the relation of the dimensionless velocity scale u+ to the dimensionless wall
distance y+: viscous sub-layer, buffer layer and log-law layer.

u+ is defined as:
u+ ≡ u

uτ
, (2.66)

where u is the velocity component projected to the plane tangent to the wall, uτ is the
friction velocity derived from the wall shear stress τw:

uτ =

√
τw
ρ
. (2.67)

y+ is the non-dimensionalized distance of the first layer cell center to the wall:

y+ =
ypuτ
ν

. (2.68)
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Figure 2.4: Velocity profile in the turbulent boundary layer Moser et al. (1999).

P

(a) LR mesh.

P

(b) HR mesh.

Figure 2.5: Two types of meshes in the near wall
region: (a) Low-Reynolds (LR) mesh
and (b) High-Reynolds (HR) mesh.

Viscous sub-layer (y+ < 5): In the
layer directly adjacent to the wall the
flow is dominated by the viscosity, the
dimensionless velocity profile is linear to
the dimensionless wall distance:

u+ = y+. (2.69)

Log-law layer (y+ > 30): Close to
the turbulent core the inertial force is
dominant and the velocity profile is log-
arithmic with respect to wall distance:

u+ =
1

κ
ln(y+) + Clog. (2.70)

where von Karman’s constant κ ≈ 0.41 and Clog = 5.2.
Buffer layer (5 < y+ < 30): The transition region between the above two layers is

called buffer layer.
If the steep gradient in the near wall vicinity should be captured, the first layer cell

center must be small enough to attain y+ < 5 thus leading to the so-called low-Reynolds
mesh, as shown in Fig. 2.5a, which significantly increase the quantity of the mesh cells and
computational cost. In the industrial applications, the high-Reynolds meshes, as show in
Fig. 2.5b, are usually used together with a wall function to estimate the variables near
the wall so that the first layer cell center can be located in the log-law region and as a
result the mesh quantity is significantly reduced. Multiple wall functions are supplied in
code_saturne, such as one friction velocity scale based on wall shear stress, two friction
velocity scales based on both wall shear stress and turbulent kinetic energy, and adaptive
wall functions suitable for all range of y+. More details of these wall functions are referred
to saturne support@edf.fr (2021); Wald (2016).

2.4.4 Algebraic multigrid method (AMG)

AMG Driss et al. (2018) is widely used in CFD codes to accelerate the iteration conver-
gence of the large sparse system of linear equations resulted from the discretisation of
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the second-order elliptic partial differential equations. The general idea is that the high-
frequency of the solution error on the fine mesh will become low-frequency at a coarser
mesh and thus can be easily removed. A hierarchy of successively coarsened graphs should
be constructed to restrict the solution error to the coarsest level where the equations can
be solved directly.

2.4.4.1 General ideas

The following linear algebraic equation system

Ahu
h = bh or

∑
j∈Ωh

ahiju
h
j = bhi (i ∈ Ωh) (2.71)

is resulted from the discretisation of NS equations in the fluid domain, where matrix A
of size n × n contains the coefficients aij (i, j = 1, ..., n), determined by discretisation.
The vector u of length n is composed of the unknown node values of the function to be
solved. The vector b consists of the coefficients resulted by the discretisation and by the
given values on the boundary. The unknown values at the mesh nodes Ω = {1, ..., n} are
denoted by ui(i = 1, ..., n).

The interpolation operator IhH is used to transfer the solution from coarse mesh to the
fine mesh, and the operator of restriction to the coarse mesh level IHh obtained from the
condition obtained using the Galerkin method

AH = IHh AhI
h
H , where IHh = (IhH)

T . (2.72)

The fine mesh solution is obtained from the equation

uhnew = uhold + IhHe
H , (2.73)

where eH is the correction of the solution on the coarse mesh which is obtained by solving

AHe
H = rH or

∑
j∈ΩH

aHij e
H
j = rHi (i ∈ ΩH), (2.74)

where rH = IHh (rhold) and rhold = bh − Ahu
h
old. The error of the numerical solution eh =

uh∗ − uh (the asterisk marks the exact solution) is found using the coarse mesh correction
operator

ehnew = Kh,He
h
old, where Kh,H = Ih − IhHA−1

H IHh Ah, (2.75)

where Ih is the identity operator.
The solution is smoothed using the operator Sh. In the smoothing phase

uh → uh, where hh = Shu
h + (Ih − Sh)A

−1
h bh, (2.76)

where u indicates smoothed solution. Smoothing the solution error yields eh → eh, where
eh = She

h.
The set of coarse mesh variables is split into two disjoint subsets Ωh = Ch∪F h, where

Ch is the set of coarse mesh variables and F h is the set of fine mesh variables. The solution
error eh = IhHe

H is interpolated by the rule

ehi = (IhHe
H)i =

 eHi , if i ∈ Ch,∑
k∈Ph

i

wh
ike− kH , if i ∈ F h, (2.77)
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where P h
i ∈ Ch is the set of variables involved in the interpolation. When the solution

is interpolated from the coarse mesh to the fine mesh, the solution error ehi is set to eHi
if i is a C-variables and it is set equal to a weighted sum of variables from the set P h

i

if i belongs to the subset F . The set P h
i is a small subset of the set of C-variables that

are close to the variable i, which guarantees that the matrix AH is sparse. On the other
hand, the set P h

i contains a sufficiently large number of variables to which i is strongly
coupled.

2.4.4.2 Implementation steps

The set of coarse mesh variables is split into the subsets of C-variables and F -variables.
The mesh level Ωk(k = 1, 2, ...,M − 1) is assigned the subsets Ck and F k. Each mesh
level is also assigned the mesh operators A1, A2, ..., AM (where A1 = A), and also the
interpolation operators P k = Ikk+1 and the restriction operators Rk = Ik+1

k , where k =
1, 2, ...,M − 1. The restriction is the transposed interpolation operator Rk = (P k)T .
To construct the matrix of the system on the coarse mesh level, the Galerkin product
is calculated, RkAkP k. The error on each mesh level is smoothed using the smoothing
operator Sk(k = 1, 2, ...,M − 1). The coarsening procedure is repeated until the size of
the system becomes sufficiently low for the system of difference equations to be solved by
a direct method.

The subsets Ck and F k, as well as the interpolation, restriction, and smoothing oper-
ators, are constructed in the setup phase.

Upon the execution of the setup phase, the solution to the original equation is found
by recursively applying the multigrid procedure. The number of smoothing iterations
and the number of recursive calls of the method on each mesh level are specified. The
sensitivity of the solution phase to the choice of the smoothing procedure is typically
relatively low, and classical iterative methods are usually used.

2.4.4.3 Construction of mesh levels

The convergence of iteratively solving linear algebraic equation system can be accelerated
by considering strong couplings between variables. The nodes in meshes are interpreted
as the nodes of a directed graph related to the given matrix. The mesh node i ∈ Ωh

(associated with the variable uhi ) is connected to the variable j ∈ Ωh if ahij ̸= 0. The set
of variables adjacent to the variable i has the form

Nh
i =

{
j ∈ Ωh : j ̸= i, ahij ̸= 0

}
(i ∈ Ωh). (2.78)

The variable i strongly depends on the variable j, and the variable j strongly affects the
variable i if the magnitude of the matrix element aij is greater than all the off-diagonal
coefficients in the matrix

−aij ≥ θmax
k ̸=i
{−aik} . (2.79)

The parameter 0 < θ ≤ 1 controls the number of strong couplings between variables
(typically, θ = 0.25). The set Si is the set of all variables j that are strongly coupled with
the variable i (the set of variables that strongly affect the variable i)

Si =

{
j : j ̸= i,−aij ≥ θmax

k ̸=i
(−aik)

}
. (2.80)
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The available theoretical approaches are applied to solving scalar second-order elliptic
partial differential equations whose discretisation yields a system of difference equations
with an M-matrix. If there are both negative and positive off-diagonal elements, the
following definitions are used:

a−ij =

{
aij, if aij < 0,
0, if aij ≥ 0,

a+ij =

{
0, if aij ≤ 0,
aij, if aij > 0.

(2.81)

In this case, two disjoint subsets of variables are

N−
i = {j ∈ Ni : a

h
ij < 0}, N+

i = {j ∈ Ni : a
h
ij > 0}. (2.82)

In practice, C/F is constructed in such a way that the set of C-variables is approximately
the maximally independent set (within the set C, the variables have no strong couplings
between themselves), and the F -variables are surrounded by interpolatory C-variables.

2.4.4.4 AMG in code_saturne

Algorithm 1: Algebraic multigrid method (V-cycle). The iteration numbers are
normally set to ν1 = ν2 = β = 1.
1 Pre-smoothing: do ν1 times xl ← S l(xl, bl);
2 Restriction:
3 l = 1;
4 while l + 1 < L do
5 bl+1 ← P T

l (b
l − Alx

l);
6 iterate β times of xl+1 ← S l+1(xl+1, bl+1); l← l + 1;
7 end
8 Solve: ALx

L = bL;
9 Prolongation:

10 while l > 0 do
11 Correction: xl ← xl + Plx

l+1;
12 end
13 Post-smoothing: do ν2 times x1 ← S1(x1, bl).

Code_saturne uses an AMG, similar though not identical to Volkov (2018); Vanek
et al. (1994); Notay (2010), to construct such graph hierarchy based on the coupling
strength of adjacent cells. Two adjacent cells i and j at level l are considered strongly
coupled if alij√

aliia
l
jj

is relatively large and then aggregated. After the automatic coarsening

process, a series of full rank prolongation matrices Pl of size nl × nl+1, l = 1, ..., L− 1, is
created that:

Al+1 = P T
l AlPl. (2.83)

To solve the system Alx
l = bl, an approximate solution xl is obtained by a smoothing

operator S l(xl, bl) which is one of the iterative methods. Then the error P T
l (b

l − Alx
l)

is restricted as the right hand side of the equation to the next coarse graph level Al+1

where this smoothing and restriction procedure is repeated until the largest level L. At
the level L the matrix AL is small enough to be solved using direct methods. The solution
obtained at level L is then prolonged to the finer level L− 1 to correct the solution xL−1:
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xL−1 ← xL−1+PL−1x
L. This prolongation and correction is carried out reversely till level

l = 1. The process of using V-cycle AMG to solve the linear equation system is shown
in algorithm 1. The source code used in code_saturne to generate the mesh hierarchy is
included in B.

2.5 Summary

In this chapter, the characteristics of turbulent flow and its governing equations are intro-
duced firstly. While the high-fidelity simulation strategies, such DNS and LES, can reveal
the stochastic details of turbulent flows, their prohibitive computational cost preclude
extensive application in addressing the three-dimensional flow phenomena encountered in
the industrial cases. On the other hand, RANS simulations in conjunction with turbu-
lence models which focus on the time-averaged mean flow fields can satisfy the engineering
design requirements at the lowest computational expense, thus have been applied widely.
The most used two equation turbulence models and one of the second-order turbulence
models, such as k − ε, k − ω, SST k − ω and RSM SSG, are described.

Code_saturne is an open-source CFD software based on FVM method. The FVM
numerical methods employed in the code including the time and spatial discretisation
methods, semi-implicit method for pressure linked equations and wall modeling, AMG
method to accelerate the convergence of linear equations system, are also reviewed.
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In this chapter, the general training procedure in supervised way is introduced along
with its potential problems, followed by the basic concepts of neural networks. The main
components and popular architectures of convolutional neural networks, the most success-
ful machine learning algorithms in computer vision, are introduced too. Its counterpart
in graph neural networks is searched to overcome CNNs’ inability of process unstructured
meshes by comparing several graph convolution kernels. A brief summary is made at the
end.

3.1 Supervised training

Training procedure. Most of the applications of data-driven algorithms in CFD domain
train the machine learning model in supervised way. Given a data-set D(x,y), a ML
algorithm is supposed to find the mapping function f := x 7→ y from the input x to the
provided ground-truth label/output y by searching the global minimal of the loss function
L. It mainly contains two steps: feedforward calculation from input to prediction and
backpropagation of the error to update trainable parameters. In the feedforward step,
the signals are propagated in the direction from the input layer to the output layer where
the neurons at each layer process the signals according to their trainable weights. At
the output layer, the deviation between the prediction ŷ and the ground-truth label y is
calculated according to the problem-dependent loss function L(ŷ,y). In the latter step,
the gradients of the loss with respect to each trainable variable are calculated using a
gradient descent algorithm and the trainable parameters are updated gradually with the
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given small learning ratio. It is called one training epoch if all the data is fed to the model
and the trainable parameters are updated once accordingly.

x ML model ŷ y

L(ŷ,y)

Feedforward propagation

Back-propagation of error

Figure 3.1: Supervised training of neural networks.

Underfitting and overfitting. A common potential problem for supervised training is
the underfitting and overfitting. The dataset is normally divided into training set and
testing test over which the losses are monitored during the training process, as shown in
Fig. 3.2. At the beginning of the training, both training loss and testing loss decrease. At
this stage, the model is unable to well fit the data which is called underfitting. Overfitting
happens when the training loss continues to decrease while the testing loss increases as the
training continues, indicated by the region colored by yellow color in Fig. 3.2. It signifies
that the model is trapped in local minima where it overfits the training cases and fails
to fit the testing cases. Even though an ideal model should be robust and easy to train,
overfitting is quite common due to the non-convex nature of most of the optimization
problems where many local minima exist. There are several practices which can help the
model avoid this problem, such as early stopping, batch normalization, regularization and
etc. Though the early stopping is widely used to stop the training at the region shaded by
yellow color in Fig. 3.2, it is merely a remedy solution since it prevents further decreasing
the prediction accuracy. A more efficient strategy to evade this problem is the stochastic
training where the trainable parameters are updated over the loss estimated on a batch
of data which contains a certain number of data points. Between training epochs, the
data points are randomly shuffled to form different batches. Compared with feeding on
the entire data-set, the convergence of the training is accelerated feeding on batches since
the trainables are updated many times within one epoch.
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Figure 3.2: Underfitting and overfitting of the supervised training.
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3.2 Basic concepts of neural networks

An artificial neural networks (ANNs), which are analogous to the biological neural net-
works, contain one input layer, one output layer and a certain number of hidden layers.
Each layer contains a series of neurons which receive, process and transfer the signal to
those in the succeeding layer. A multilayer perceptron (MLP) network with one input
layer, one hidden layer and one output layer is shown in Fig. 3.3.

x3

x2

x1

a
(2)
4

a
(2)
3

a
(2)
2

a
(2)
1

w
(1)
11w
(1)
11

w
(1)
12w
(1)
12

w
(1)
13w
(1)
13

ŷ2
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Figure 3.3: A multilayer perceptron with one hidden layer.

The MLP is a fully connected (FC) neural network which means that each neuron in
the preceding layer is connected to all the neurons in the succeeding layer with associated
trainable weight to each connection. The j-th neuron in the (l + 1)-th hidden layer
computes the linear combination of the inputs and the weights firstly:

zl+1
j =

N∑
i=1

wl
jixi + blj, (3.1)

where N is the total number of neurons or inputs in the l-th layer, wl
ji the trainable weight

connecting the i-th neuron in l-th layer to the j-th neuron in the (l + 1)-th layer, blj the
trainable bias of the j-th neuron in the l-th layer, and then applies an activation function:

al+1
j = σ(zl+1

j ), (3.2)

where σ represents a non-linear activation function. Several commonly used activation
functions are listed in Table 3.1 and plotted in Fig. 3.4. The term al+1

j denotes the
activation at the j-th neuron in the (l + 1)-th layer. Similarly, the output layer linearly
combines the hidden features in the previous layer with the corresponding weights:

ŷj =
N∑
i=1

wL
jia

L
i . (3.3)

where L represents the last hidden layer.
Thus the activation in the hidden layer shown in Fig. 3.3 is calculated by:

a21
a22
a23
a24

 = σ



w1

11 w1
12 w1

13

w1
21 w1

22 w1
23

w1
31 w1

32 w1
33

w1
41 w1

42 w1
43


x1x2
x3

+


b11
b12
b13
b14


 , (3.4)
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Logistic sigmoid Hyperbolic
tangent

Rectified linear
unit (ReLU)

Softplus Softmax

1
1+exp(−x)

tanh(x) max(0, x) 1
β
log(1 + exp(βx)) exp(xi)∑

j exp(xj)

Table 3.1: Five most used activation functions σ(x).
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Figure 3.4: Plot of four activation functions.

and the output layer gives prediction by:

[
ŷ1
ŷ2

]
=

[
w2

11 w2
12 w2

13 w2
14

w2
21 w2

22 w2
23 w2

24

]
a21
a22
a23
a24

 . (3.5)

With the supervised training method, a proper loss function or cost function should
be defined depending on the nature of the training task to measure the difference between
the prediction ŷ and the ground-truth label y. For a regression task, the mean squared
error (MSE) loss function are usually selected:

L =
1

N

N∑
i=1

(ŷi − yi)2, (3.6)

where N represents the total number of predictions. All the trainables in the neural
network are updated iteratively to minimize the loss function using back-propagation
algorithm. In back-propagation, the gradient of the loss with respect to each trainable is
calculated by chain rule:

∂

∂x
f(g(x)) =

∂f

∂g

∂g

∂x
. (3.7)

For the weights in the last layer in Fig. 3.3 the gradients are calculated by:

∂L
∂w2

ji

=
∂L
∂ŷi

∂ŷj
∂w2

ji

=
2

N
(ŷj − yj)a2i .

(3.8)
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The gradients with respect to the weights and biases in the first layer are calculated by:

∂L
∂w1

ik

=
∂L
∂a2i

∂a2i
∂z1i

∂z1i
∂w1

ik

=

(
2∑

j=1

∂L
∂ŷj

∂ŷj
∂a2i

)
∂a2i
∂z1i

∂z1i
∂w1

ik

=

(
2∑

j=1

2

N
(ŷj − yj)w2

ji

)
σ′(z1i )xk.

(3.9)

∂L
∂b1k

=
∂L
∂a2i

∂a2i
∂z1i

∂z1i
∂b1k

=

(
2∑

j=1

2

N
(ŷj − yj)w2

ji

)
σ′(z1i ).

(3.10)

Once the gradient of the loss with respect to each trainable is obtained, a new value can
be updated by:

w := w − η ∂L
∂w

, (3.11)

b := b− η∂L
∂b
, (3.12)

where η is the learning rate. A proper learning rate value should be used in order to avoid
no improvement on loss function with very low learning rate value and avoid divergence
with too high value. In practice, the optimization of the loss function is implemented
by more complicated stochastic gradient-based optimization such as stochastic gradient
descent (SGD) Sutskever et al. (2013) and Adam algorithm Kingma and Ba (2014). The
latter, which will be used in the later chapters, dynamically adapts the learning rate for
each trainable based on estimates of first and second moments of the gradients. The
pseudo-code of Adam algorithm is described in Algorithm 2.

3.3 Convolutional neural networks

3.3.1 Main components

A Convolutional neural network (CNN), whichever architecture it employs, mainly con-
tains a cascade of convolutional layers, pooling layers and fully connected layer with
drop-out. As shown in Fig. 3.5, a convolutional layer performs elementwise multi-
plication between the input tensor f l

i,j at location (i, j) and the rectangle convolutional
kernel/filter θ2M+1,2N+1 of shape (2M + 1, 2N + 1) producing the hidden feature f l+1

i,j as
the input for the next layer:

f l+1
ij =

M,N∑
m,n=−M,−N

f l
i+m,j+n ⋆ θ

l
m,n, (3.13)

where ⋆ represents the convolution operation. Each value in the next layer is only con-
nected to a local region, namely the local receptive field, of the previous layer covered by
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Algorithm 2: Adam stochastic optimization method. The variables are: first
moment vector m, second moment vector v, learning rate η, exponential decay
rates for the moment estimates β1, β2, loss function L, trainables θ, timestep
t, gradient g, weight decay λ and term added to denominator for the sake of
stability ϵ = 1e−8.
1 initialize: m0 ← 0, v0 ← 0, t← 0;
2 while θt not converged do
3 t← t+ 1;
4 gt ← ∇θLt(θt−1) + λθt−1 (Get gradients w.r.t. stochastic objective L at time

step t);
5 mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first order moment estimate);
6 vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate);
7 m̂t ← mt/(1− βt

2) (Compute bias-corrected first moment estimate);
8 v̂t ← vt/(1− βt

2) (Compute bias-corrected second moment estimate);
9 θt ← θt−1 − η · m̂t/(

√
v̂t + ϵ) (Update trainables);

10 end
11 return θt;

the shared kernel. Each kernel traverses the entire image at a specified stride to extract a
certain shift-invariant feature pattern, thus leading to significantly reduced number of pa-
rameters. Sometimes in order to keep the image dimension unchanged, zeros are padded
at the borders. The convolutional layers at shallower levels extract low-level features such
as dots, lines and etc, whereas those at higher levels extract high-level features.
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Figure 3.5: Convolution operation between a 5× 5 input tensor padded with zeros at borders and
a 3× 3 kernel with stride of 1 resulting in a 5× 5 output tensor.

Intuitively, stacking more convolutional layers can fulfill feature extraction mission
but inefficiently since high-level features do not need high resolution. Therefore pooling
layers are used to down-sample the data. As shown in Fig. 3.6, two primary types
of pooling are mainly used: max pooling returns the maximum value within the input
tensor covered by the pooling kernel, while average pooling returns the average of the
corresponding patch of the input. Following the pooling layer, the number of values in
the image is reduced by the pooling kernel size, resulting in a significant reduction in
computational complexity. The inverse operation of pooling is upsampling which enlarges
the image size. The most used two upsampling methods, bilinear interpolation and nearest
interpolation, are shown in Fig. 3.7.
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Figure 3.6: Two types of pooling operation of size 2× 2 with stride of 2.
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Figure 3.7: Two types of upsample operation of size 2× 2 with stride of 2.

For image classification tasks, a fully connected layer is usually added to the end of the
model to reshape the image into a column vector of the size corresponding to the number
of categories. To mitigate overfitting, dropout, introduced by Hinton et al. (2012), is
commonly applied in the final fully connected layer during the training stage. Dropout
randomly removes a specified portion of connections between layers at each training epoch,
resulting in error back-propagation not being performed for these removed connections.
By using dropout, the prediction becomes less dependent on specific paths within the
model, thus enhancing robustness.

3.3.2 CNN architectures

During the last decades, CNNs have experienced tremendous successes in numerous appli-
cations, such as image object detection and segmentation, natural language process Chen
et al. (2018), audio classification Nanni et al. (2020); Hershey et al. (2017), etc, with var-
ious task-dependent implementations. Despite different forms, it is clear by looking back
to the CNN development history that its general performance is largely decided by the
architecture and each innovation on the architecture marks a significant improvement on
object detection accuracy. There are three landmarks on the development of CNN archi-
tecture: 1) sequential architecture; 2) skip connection or residual connection architecture
and 3) U-Net architecture.

Sequential architecture. The foundation of CNNs goes back to 1960s where artifi-
cial neural network with manually designed convolution kernels and non-linear activation
function was proposed to extract the basic features, such as dots and line segments, from
images by imitating to the same procedure in biological visual systems Fukushima (1969).
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Later, LeCun et al. (1989) designed a convolution neural network with two convolutional
layers to recognize the handwritten digits by applying back-propagation algorithm using
stochastic gradient search to automatically optimize the trainable weights. Until 2010s,
the depths of CNNs are relatively shallow, such as LeCun et al. (1998, 2010), no more
than five convolutional layers used in AlexNet Krizhevsky et al. (2012) which showed
higher categorical object classification accuracy than other methods in the large data-set
ImageNet. VGG-19, as shown in Fig. 3.8a, Simonyan and Zisserman (2014) demon-
strated that increasing the depth of network till 19 convolutional layers with very small
(3× 3) convolution kernels is conducive for the classification accuracy. However, further
sequentially stack convolutional layers leads to the training convergence problem due to
the vanishing/exploding gradient Bengio et al. (1994); Glorot and Bengio (2010).

(a) VGG-19

(b) ResNet-34

Figure 3.8: Two architectures adapted from He et al. (2016)

Skip connection architecture. In order to exploit the benefit of depth, He et al.
(2016) proposed the residual network (ResNet) featured by the shortcut connections be-
tween every two succeeding layers which avoids the aforementioned optimization con-
vergence problems even for a network of more than 1000 layers, even though such an
unnecessarily deep architecture has higher test error than much shallower counterpart on
small data-set. The ResNet-34 architecture with residual blocks is shown in Fig. 3.8b. A
residual block is a shortcut connection and element-wise addition defined as:

y = F(x, θi) + x, (3.14)

where function F(x, θi) represents the residual mapping. A typical residual has two
convolution layers, F = θ2σ(θ1x) and ReLU activation function is used for σ, as shown
in Fig. 3.9. It was demonstrated that using skip-connection can flat the loss landscape
which enables the training to proceed smoothly Li et al. (2018).

U-Net architecture. Sequentially stacking more convolutional layers in theory lin-
early increases a model’s receptive field, which is defined as the largest region in the input
image from which a certain value in the output can gather information. However this
strategy can quickly meet the performance ceiling showcased in the very deep, over 1000-
layer model in He et al. (2016). It is due to the fact that the effective receptive field (ERF)
is Gaussian distributed, which means that the peripheral pixels have much less influence
on the prediction than the central ones, and much smaller than the theoretical value
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Figure 3.9: Residual block adapted from He et al. (2016)

Luo et al. (2016). Through dilated convolution kernel and down-sampling can efficiently
increase ERF, the former still linearly increases ERF and can not be straightforwardly
implemented in the graph neural networks thus loses the generalization. As a compar-
ison, using down-sampling layers multiplicatively enlarges the ERF and is generalizable
to GNNs. In this regard, U-Net is a very performant architecture which is demonstrated
by the fact that it has been used in many models for different tasks, beyond the original
biomedical image semantic segmentation task Ronneberger et al. (2015), including flow
feature extraction Deng, Bao, Wang, Yang, Zhao, Wang, Bi and Guo (2022), surrogate
model for flow field prediction Yang et al. (2022) and etc.

Figure 3.10: The original 5-depth 23-layer U-Net architecture for biomedical image segmentation
adapted from Ronneberger et al. (2015).

As shown in Fig. 3.10, the original U-net architecture contains one contracting part
(left side) as the encoder and one extracting part (right side) as the decoder. It has 5
depths and 23 convolutional layers, where each of them uses 3× 3 convolutions followed
by ReLU activation function. In the contracting part, 2 × 2 max pooling layer is added
after two consecutive convolutional layers to decrease the image size by a factor of 4
while the number of feature channels doubles from one depth to the next deeper level.
Correspondingly, a 2 × 2 up-sampling layer is used between layers at different depths
to progressively restore the initial image size in the extracting part. One each level,
the skip-connection exists between the leading convolutional blocks at the left side and
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the following convolutional block at the right side which prevents the gradient vanishing
problem.

3.4 Graph neural networks

CNN is designed for processing images, thus not suitable for unstructured data. However,
unstructured data or graph-structured data is omnipresent, such as citation network,
social network and traffic transport system, which graph neural networks (GNNs) can
easily process. GNNs process the features stored on a stack of graph layers using a
certain kernel function. Let G(V , E , A) denote a graph where V is a set of nodes and E
is the set of edges. A ∈ RN×N represents the adjacency matrix and N is the number of
nodes. As shown in Fig. 3.11, the features can be stored on edges and nodes.

Hop=2

Hop=1

V1

V2

V3
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V5
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V7

V8 V9

V10

V11

V12

V13

Figure 3.11: A graph with features stored on both nodes and edges. Circles represent the nodes
and edges represent the connections between nodes. Both nodes and edges can store
features represented by blue and grey squares, respectively. The nodes of 1- and
2-hops away from the center node V 1 are colored in orange and blue respectively.

The diversity of CNNs is manifested by their architectures, as a comparison, the
variety of GNNs is demonstrated in the numerous kernel functions depending on the task.
Here we focus on graph convolutional neural networks. A graph convolution updates the
features from one layer to the next generally following this equation:

f l+1(i) = σ(θ(f l ⋆ gl)(i) + bl), (3.15)

where f l(i) ∈ RCl and f l+1(i) ∈ RCl+1 represent the features on node i at l-th and
(l + 1)-th layer respectively, g is the convolution kernel, θ ∈ RCl×Cl+1 is trainable weights
which change the feature dimension from Cl to Cl+1, b ∈ RCl+1 is the bias, and (f ⋆ g)
represents the convolution operation which has a variety of different forms. The most
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prominent types of graph convolutional kernels are that works on spectral domain and
that on spatial domain. Two spectral graph convolutional kernels, ChebConv Defferrard
et al. (2016) and graph convolutional networks (GCN) Kipf and Welling (2016), and two
spatial graph convolutional kernels, Gaussian mixture model (GMM) Monti et al. (2017)
and SplineCNN Fey et al. (2018), are introduced next. The source code of these kernels
is shown in A.3.

3.4.1 Kernels on spectral domain

ChebConv. Defferrard et al. (2016) extended the convolutional kernel to spectral space
by means of Chebyshev expansion of the graph Laplacian which lowers computational
complexity by avoiding compute the eigenvectors of the Laplacian and yielding spatially
localized filters. The essential operator in spectral graph analysis is the graph Laplacian
defined as L = D − A ∈ Rn×n where D ∈ Rn×n is the diagonal degree matrix with
Dii =

∑
j Aij, and normalized definition is L = In −D− 1

2AD− 1
2 where In is the identity

matrix. The orthonormal eigenvectors {ul}n−1
l−0 ∈ Rn of L are the graph Fourier modes and

the associated ordered real nonnegative eigenvalues {λl}n−1
l=0 ∈ Rn are the frequencies of the

graph. The Laplacian is diagonalized by the Fourier basis U = [u0, ..., un−1] ∈ Rn×n such
that L = UΛUT where Λ = diag([λ0, ..., λn−1]) ∈ Rn×n. The graph Fourier transform of a
signal x ∈ Rn is then defined as x̂ = UTx ∈ Rn, and its inverse as x = Ux̂. The convolution
operator on graph ⋆ is defined in the Fourier domain such that x⋆y = U((UTx)⊙ (UTy)),
where ⊙ is the element-wise Hadamard product. Thus a signal f is filtered by gθ as

gθ(L) ⋆ f = gθ(UΛU
T )f = Ugθ(Λ)U

Tf, (3.16)

where f is the input feature. Evaluating Eq. 3.16 is computationally expensive due to
the quadratic cost of the multiplication with the vector U . To solve this, a recursive fast
filter as the truncated Chebyshev expansion

gθ =
K−1∑
k=0

θkTk(Λ̃) (3.17)

of order K − 1 was proposed, where the parameter θ ∈ RK is a vector of Chebyshev
coefficients and Tk(Λ̃) ∈ Rn×n is the Chebyshev polynomial of order k evaluated at Λ̃ =
2Λ/λmax − In, a diagonal matrix of scaled eigenvalues that lie in [−1, 1]. The filtering
operation can then be written as

gθ(L) ⋆ f =
K−1∑
k=0

θkTk(L̃)f, (3.18)

where Tk(L̃) ∈ Rn×n is the Chebyshev polynomial of order k evaluated at the scaled
Laplacian L̃ = 2L/λmax − In. Since it depends only on nodes that are at most K steps
away from the central node, this filter is K-localized. The computation complexity is
O(K|E|), i.e. linear w.r.t. the filter support’s size K and the number of edges |E|.

GCN. In order to alleviate the problem of overfitting on local neighborhood structures
for graphs with a wide variety of node degree distributions, Kipf and Welling (2016)
proposed GCN by restricting the layer-wise convolution to K = 1 and stacking K such
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layers to convolve Kth-order neighborhood of a node. They further approximate λmax ≈ 2,
thus Eq 3.18 simplifies to

gθ ⋆ f ≈ θ0f − θ1D− 1
2AD− 1

2f,

≈ θ
(
In +D− 1

2AD− 1
2

)
f,

(3.19)

where two free parameters θ0 and θ1 are reduced to a single parameter θ using θ0 = −θ1. To
alleviate the numerical instabilities and exploding/vanishing gradients normally encoun-
tered in deep neural networks, the renormalization trick In + D− 1

2AD− 1
2 → D̃− 1

2 ÃD̃− 1
2 ,

with Ã = A+ In and D̃ii =
∑

j Ãij, leading to

gθ ⋆ f = D̃− 1
2 ÃD̃− 1

2fθ. (3.20)

3.4.2 Kernels on spatial domain

GMM.
Monti et al. (2017) extended the traditional CNN convolution to graphs by using

Gaussian Mixture Model. GMM kernel gathers the hidden features from neighbors to
center node with the following equation:

(f ⋆ g)(i) =
1

K

K∑
k=1

1

|N (i)|
∑

j∈N (i)

f(j) · gk(eij), (3.21)

where hyperparameter K represents the number of directions learned in the kernel, |N (i)|
denotes the degree of node i, the edge eij points from central node i to neighbor node j:

eij = [xj, yj]
T − [xi, yi]

T , (3.22)

and gk(eij) measures the alignment between the edge eij and the k-th direction µk in the
kernel:

gk(eij) = exp

{
−1

2
(eij − µk)

T
∑−1

k
(eij − µk)

}
, k ∈ [1, 2, ..., K] , (3.23)

where two trainables µk and
∑

k represent the learned directions in the kernel and its
variance matrix respectively. The more aligned the edge eij and the k-th learned direction
µk are, the higher gk(eij).

An ideal learned GMM kernel is visualised in Fig. 3.12. The elliptical circles represent
the learnable directions in the kernel which are located at different distances to the center.
All the edges that fall inside the circle are considered to be aligned with the corresponding
direction.

SplineCNN. Fey et al. (2018) generalized the traditional CNN convolution kernel to
interpolate the edge importance from fixed positions to desired positions using B-spline
basis functions with the following equation:

(f ⋆ g)(i) =
1

|N (i)|
∑

j∈N (i)

f(j) ·
∑
k∈K

Bk(eij) · gk, (3.24)

where K is the Cartesian product of the B-spline bases:

K = N1
k1,p
× ...×ND

kD,p, k = (K1, ..., KD), (3.25)
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Figure 3.12: Ideal learned GMM kernel adapted from Monti et al. (2017). (Each elliptical circle
in orange represents a learned direction and all the edges falling inside the circle
are considered aligned with it.

k represents the numbers of control points on each dimension of the D-dimensional kernel,
and gk is the trainables and the control points as well associated with the corresponding
product Bk(e) of the basis functions in K:

Bk(e) = ΠD
d=1N

d
kd,p

(ed). (3.26)

The k-th B-spline basis function of degree p, written as Nk,p(e
d), is defined recursively as

follows:

Nk,0(e
d) =

{
1, if uk ≤ ed < uk+1.
0, otherwise. (3.27)

Nk,p(e
d) =

ed − uk
uk+p − uk

Nk,p−1(e
d) +

uk+p+1 − ed

uk+p+1 − uk
Nk+1,p−1(e

d). (3.28)

where uk is the knot vector and ed is the edge coordinate on d-th dimension.
Different from those used in Fey et al. (2018), multiple knots are used at the ends of x

and y directions to force the interpolated surface to converge to the control points at the
ends. Three example convolution kernel surfaces are visualised in Fig. 3.13. To guarantee
a fair comparison with traditional CNN kernel, SplineCNN kernels are using B-spline of
degree p = 2 with 3 control points are used in all the later experiments.

Figure 3.13: Examples of SplineCNN convolution kernels using B-spline basis of degree p = 2
with control points number K1 = K2 = 3, 4 and 5, from left to right. The orange
points connected by orange wireframe represent the randomly sampled control points.
The curves on the yz-plane and xz-plane represent basis functions for each control
point on corresponding direction.
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3.5 Summary

In this chapter, the supervised training procedure of neural networks along with their
basic concepts are introduced firstly. The main components of convolutional neural net-
works, which are selected as the backbone of our algorithm to detect flow phenomena due
to their effectiveness on extracting spatial features in images, are explained in detail. To
overcome the CNNs’ inability to consume unstructured data a proper graph neural net-
work should be constructed inheriting the merits of CNNs. Therefore, graph convolution
kernels equivalent to that in CNNs are reviewed and will be compared in later chapter.
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4 | Literature review of machine learn-
ing for fluid mechanics

Contents
4.1 Flow phenomena identification . . . . . . . . . . . . . . . . . . 39

4.2 Reduced order model . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Physics-informed Machine learning . . . . . . . . . . . . . . . . 46

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Although the traditional methods in fluid mechanics, such as numerical simulations us-
ing partial differential equation (PDE) solvers and experimental measurement techniques
like particle image velocimetry (PIV), have been widely used to solve various engineering
fluid flow problems, they still face significant challenges. These include difficulties with
inverse problems, experimental data assimilation, hidden pattern finding, and balancing
high accuracy with low computational requirements. In contrast, machine learning (ML)
algorithms, serving as universal approximators, can efficiently address these issues given
sufficient data, which conventional methods can provide. As a result, the fluid mechanics
community has adopted different ML approaches to solve different problems, as sum-
marized in Fig.4.1 by Sharma et al. (2023). For current research, it is necessary and
conducive to have a comprehensive global view of ML applications in fluid mechanics.
This chapter aims to provide extensive overview of how ML is being applied in the field
of fluid mechanics.

This chapter is organized as follows. Section 4.1 covers the latest advancements in
using ML, particularly Convolutional Neural Networks (CNNs), to identify flow phe-
nomenon in CFD results and observed data. Section 4.2 shows how MLs can be employed
as reduced order models (ROMs) to compress CFD data and accelerate engineering de-
sign and optimization. Section 4.3 includes the recent progress in using ML to imporove
and upscale low resolution data to high resolution data. Section 4.4 reviews strategies to
incorporating physical principles into ML models to ensure physics-consistent predictions.

4.1 Flow phenomena identification

Most of the researches that aim at identifying flow phenomena focus on vortex detection
because of both its importance on understanding the flow mechanism and its difficulties
using the current local and global detection methods. Local vortex detection methods,
imply the use of specific criteria such as the Vorticity ω, the Q-criterion, the λ2-criterion
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Figure 4.1: ML applications in fluid mechanics. Adapted from Sharma et al. (2023).

and ∆-criterion, that all rely on the gradient of the velocity field.
The Vorticity ω is defined as:

ω = ∇× u. (4.1)

The Q-criterion Hunt (1987) considers the region

Q =
1

2
(||Ω||2 − ||S||2) > Qthresh (4.2)

as vortex region, where Ω and S are the rotation tensor and strain-rate tensor:

Ω =
1

2
(∇u−∇uT ), S =

1

2
(∇u+∇uT ). (4.3)

λ2-criterion Jeong and Hussain (1995) is the second largest eigenvalue of S2 + Ω2.
∆-criterion proposed by Chong et al. (1990) defines the vortex region as:

∆ =

(
Q

3

)3

+

(
det(∇u)

2

)2

> 0, (4.4)

where det(∇u) is the determinant of velocity gradient tensor. All these methods not only
require a user specified threshold which greatly limits the generality from case to case,
but also generate false and missing detections compared with global methods.

The instantaneous vorticity deviation (IVD) proposed by Haller et al. (2016) is one
of the global detection methods which is defined as the absolute value of the difference
between the vorticity at a point and the spatially averaged vorticity of the global field
larger than a threshold as vortex region:

IV D(x, t) = |ω(x, t)− ω̄(x, t)|. (4.5)

This method should select the IVD-based boundaries on 2D planes that enclose the local
maxima. Though the IVD method is objective, it is computationally intensive and require
too much computing time. As a result, it is not suitable for large-scale applications.
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Figure 4.2: Vortex-U-Net from Deng, Bao, Wang, Yang, Zhao, Wang, Bi and Guo (2022) con-
tains three steps. The preprocessing step transforms non-uniform velocity fields into
uniform vorticity patches as the inputs of the neural networks. The neural network
generates the predicted labels for all input patches. The post-processing step puts to-
gether all predicted label patches to obtain the whole predicted field.

Though there are other ML approaches applied to identify vortex structures such as
recurrent neural network Rajendran et al. (2018), the most successful ones are CNNs Ye
et al. (2019, 2020); Monfort et al. (2017); Deng et al. (2019); Bai et al. (2019); Berenjkoub
et al. (2020); Ströfer et al. (2018); Kim and Günther (2019); Wang, Guo, Wang, Deng,
Wang and Li (2020). Deng et al. (2019) proposed a Vortex-Net model to identify the
vortex region with velocity as input which achieved higher precision and recall on the
identification compared with the local methods and is faster than global methods such
as IVD. Vortex-Seg-Net proposed by Wang et al. (2021) discards the fully-connected
layer in the Vortex-Net to reduce the number of parameters to be more computationally
efficient and deepens the model depth to improve the identification performance. Deng,
Bao, Wang, Yang, Zhao, Wang, Bi and Guo (2022) proposed the Vortex-U-Net model,
as shown in Fig. 4.2, to identify vortex region feeding on local patches in the vorticity
field in 3D cases. The IVD, a global vortex detection method, was used as the ground-
truth label. Vortex-U-Net model achieves higher vortex identification accuracy in terms
of recall and F1 score than the local detection methods and its execution time is two order
of magnitude lower than that of IVD. A multi-view U-Net (MVU-Net) was proposed by
Deng, Chen, Wang, Chen, Wang and Liu (2022) to combine multiple variables while
reducing the model complexity due to the juxtaposition of three identical U-Net models
with each feeding on one of three variables: u, ω and IVD. The comparative work of
Berenjkoub et al. (2020) shows that after being trained on synthetic dataset the 8-layer
U-Net CNN model outperforms both the 2-layer plain CNN model and Resnet20 model
on the accuracy of the vortex boundary extraction. As the most utilized visualization
method to analyze the flow structure in CFD result, streamlining in the entire domain is
computationally prohibitive thus leading to missing some of the prominent flow structures.
The CNN-based deep regression model (DRM) proposed by Lee and Park (2021) reduces
the streamline creation time required to reveal the prominent flow features.

However, the design of the rectangular-like convolution kernel limits the CNNs to only
accept the data stored in Cartesian grid which constrains its generality to the data stored
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in unstructured meshes widely used in the industrial CFD cases. Therefore, most of the
current applications of CNNs on detecting flow phenomena are limited to simple flow
cases. When dealing with the unstructured meshes and complex geometries, either the
mesh deformation Ströfer et al. (2018); Wang, Guo, Wang, Deng, Wang and Li (2020);
Deng, Bao, Wang, Yang, Zhao, Wang, Bi and Guo (2022) or data interpolation Ye et al.
(2020) are used which are cumbersome and inevitably introduce numerical errors.

4.2 Reduced order model

Despite recent advancements in computational resources, high-fidelity simulations like
direct numerical simulation (DNS) and large-eddy simulation (LES) remain prohibitive
for turbulent flows in high Reynolds number regions with complex geometries. Even
simulations with Reynolds-averaged Navier-Stokes (RANS) models, which are less com-
putationally demanding, become costly when optimizing a large number of parameters.
Reduced order models (ROMs), such as proper orthogonal decomposition (POD), can be
used to expand the database from a limited set of full order model results Sinha et al.
(2022).

POD, initially introduced by Lumley (1967), serves to represent the spatio-temporal
velocity field as a combination of an infinite number of spatial structures with ampli-
tudes varying in time, forming linearly uncorrelated modes. The POD modes are ranked
according to the preserved energy, with higher modes being prioritized, and then trun-
cated. However, as the Reynolds number increases, given a fraction of the total energy,
the convergence rate of the truncated POD modes decreases due to nonlinear interactions
among different modes in the turbulent flow - a phenomenon characterized by the slow
decay rate of the Kolmogorov n-width, as noted by Ahmed and San (2020). Milano and
Koumoutsakos (2002) showed for the first time that linear multilayer perceptrons (MLPs)
are equivalent to the POD, whereas nonlinear MLPs are superior in compression and
reconstruction capabilities. A similar conclusion was drawn for CNNs with autoencoder
(AE) architecture later by Murata et al. (2020). Furthermore, Lee and Carlberg (2020)
demonstrated that using deep convolutional autoencoders to project the dynamical sys-
tems onto nonlinear manifolds can outperform the classical linear-subspace ROMs like
POD, even overcoming the Kolmogorov n-width barrier in advection-dominated flows,
albeit at significant higher computational cost.

Plenty of ROMs used CNN-AE as the feature extractor to build low-order models for
different flows, such as advection-dominated systems Maulik et al. (2021), laminar and
turbulent flows Fukami, Hasegawa, Nakamura, Morimoto and Fukagata (2021) and 3D
incompressible and transient flow Akkari et al. (2022). Despite the widely accepted use
of CNN-AEs as ROMs, the comparison study of fully connected neural network (FCNN),
CNN and graph convolutional neural networks (GCNN) against POD show that the su-
perior architecture highly depends on both the size of latent space and the task Gruber
et al. (2022). Other drawbacks of AE architecture, such as the learned entangled latent
and a blindly predefined large enough latent dimension, make the these ROMs physically
uninterpretable and inefficient. Targeting on these problems, β-variational autoencoder
(VAE) introduced by Higgins et al. (2016) was employed by many researchers to disentan-
gle the latent variables by adjusting the Kullback-Leibler (KL) divergence term Kullback
and Leibler (1951) with a weighting factor β in the original VAE Kingma and Welling
(2013) loss function:
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L(x) = 1

Nt

Nt∑
i=1

(x− x̃)2︸ ︷︷ ︸
Reconstruction loss

+
β

2

d∑
i=1

(1 + log(σ2
i )− µ2

i − σ2
i )︸ ︷︷ ︸

- KL divergence

(4.6)

It was found that increasing β suppresses the KL-divergence while the reconstruction loss
increases and the latent variables become more disentangled. Wang et al. (2024) put
forward a CNN-β-VAE model, as shown in Fig. 4.3, to reduce the dimensionality of the
transient fields in the wall-mounted square cylinder. Comparison with the results obtained
by POD method suggest that with the same number of decomposition modes, CNN-β-
VAE can recover more information of the flow field. Increasing the latent dimension
enhances the reconstruction quality while sacrificing the orthogonality of the decomposed
modes. With larger β value, the CNN-β-VAE model tend to learn a more orthogonal
latent space at the cost of lower reconstruction precision. To address the uninterpretabil-
ity problem, Kang et al. (2022) made the latent variables in β-VAE physics aware by
introducing the Gaussian process regression (GPR) to correlate the latent variables with
the input physical parameters. Their results confirmed that the proposed physics aware
β-VAE can pinpoint the latent variables corresponding to the generating factors, such as
Mach number and angle of attack (AoA) in the transonic flow around airfoil case.

Figure 4.3: CNN-β-VAE architecture extracted from Wang et al. (2024).

Most of the ML ROMs focus on the structured meshes using CNNs. When applied to
unstructured meshes where the data reshaping is necessary, the CNN reconstruction accu-
racy degrades. This deficiency of CNN can be overcome by utilising GCNN as evidenced
in framework of Gruber et al. (2022) based on the GCNII graph convolution operation
Chen et al. (2020). More GNN-based ROMs for unstructured meshes can be expected in
the future.
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4.3 Super-resolution

Driven by the various demands in fluid dynamics such as data compression of DNS sim-
ulations, acceleration of high fidelity CFD simulations Kochkov et al. (2021) and recover
more details from sparse and irregular particle image velocity data points Cai et al. (2019);
Morimoto et al. (2021), and benefited from the state of the art development in image
super-resolution Dong et al. (2015); Yang et al. (2019); Lu et al. (2022); Li et al. (2022);
Karras et al. (2017); Ho et al. (2020), different super-resolution models have been proposed
recently to reconstruct high-resolution CFD results from the low-resolution counterparts
Fukami et al. (2023).

Figure 4.4: Schematic of the hybrid Downsampled Skip-Connection Multi-Scale (DSC/MS) model
extracted from Fukami et al. (2019).

As shown in Fig. 4.4, Fukami et al. (2019) devised a hybrid downsampled skip-
connection/multi-scale (DSC/ MS) model to reconstruct the super-resolution results from
low-resolution results. The proposed DSC/MC model demonstrated superiority on the
very coarse cases than traditional methods like bicubic interpolation in recovering more
details. This model is later extended to recover the temporal evolution of flow field
between two time instants Fukami, Fukagata and Taira (2021). Obiols-Sales et al. (2021)
proposed a transfer learning-based super-resolution flow network SURFNet. The tested
two types of transfer learning strategies, one shot transfer learning (OSTL) where the
network is pretrained on the coarsest grid and then transferred to the finest grid dataset in
one shot, while incremental transfer learning (ITL) passes the network gradually through
intermediate resolutions step-by-step from the lowest resolution to the target resolution.
As a comparison of the increasing loss of OSTL method as the resolution ratio increases,
ITL loss remains relatively constant and much lower. Compared with baseline model, the
transfer learning significantly reduces the data collection size and the training time. More
super-resolution works can be found in Zhou et al. (2022); Liu et al. (2020); Xie et al.
(2018); Hu et al. (2024); Bao et al. (2023).

The above direct mapping models suffer from two problems: the reconstructed flow
field does not satisfy the continuity and the reconstruction accuracy degrades once ap-
plied to low-fidelity input that significantly deviates from the training dataset in terms
of resolution or a Gaussian blurring process. While adding physics based loss terms like
continuity loss to the conventional Lp norm loss seems a plausible remedy, Pant and Fa-
rimani (2020); Li and McComb (2022) suggested that such method even deteriorates the
reconstruction accuracy. For the latter problem, these direct mapping models have to be
retrained when a out-of-distribution test data is given. To address these problems, Shu
et al. (2023) cast super-resolution as a problem of denoising and proposed a denoising
diffusion probabilistic model (DDPM) which incorporates the PDE information. This
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diffusion based model is trained to minimize the Kullback-Leibler divergence between the
forward diffusion process and the backward diffusion process. As a result, it is only sen-
sitive to data reconstruction error in the statistical sense with the presence of Gaussian
noise. Compared with direct mapping models, the proposed DDPM achieved similar L2

loss and remains accurate in terms of kinetic energy spectrum and PDE residual loss for
different input data distributions.

While the supervised training requires the paired low resolution input and high resolu-
tion output which hinders the practical application of super-resolution works, the unsuper-
vised training models especially generative adversarial network (GAN) are the promising
ones to avoid this problem. Yousif et al. (2021) designed a multi-scale enhanced super-
resolution generative adversarial network (MS-ESRGAN), as indicated in Fig. 4.5, to
reconstruct the high-resolution wall-bounded turbulent flow fields from sparse informa-
tion. Besides the regular adversarial loss term used in GAN-based models, the other three
loss terms, Lpixel, Lperceptual, Lgradient and LReynoldsStress indicating the pixel-wise regres-
sion difference, extracted features difference, the gradient difference, Reynolds stresses
difference between the generated data and the ground truth data, respectively, are com-
bined and weighted as the discriminator loss function. The model is trained and tested
on two turbulent channel flow DNS results at friction Reynolds numbers Reτ = 180, 550.
The reconstructed fields agree remarkably well the ground-truth data on the Reynolds
stresses, velocity profiles in the boundary layer and the energy spectra as well. Kim et al.
(2021) applied the CycleGAN Zhu et al. (2017) to generate DNS-resolution flow field from
LES-resolution result. CycleGAN outperformed the bicubic interpolation and supervised
method on reproducing the small-scale structures, energy spectra. More GAN-based
super-resolution models were developed for multiphase fluid simulations Li and McComb
(2022), and CFD acceleration Kochkov et al. (2021).

Figure 4.5: MS-ESRGAN architecture adapted from Yousif et al. (2021): (a) generator and (b)
discriminator.
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4.4 Physics-informed Machine learning

While the conventional PDE solvers are widely employed to forward problems, they fall
short when it comes to addressing ill-posed problems such as noisy or incomplete boundary
conditions, assimilating observed data into calculations, or solving inverse problems to
infer model parameters from observations Raissi and Karniadakis (2018). In contrast,
machine learning (ML) models have been employed to address these challenges by finding
hidden patterns in noisy data. However, purely data-driven ML models tend to perform
well only on small training datasets due to their strong universal approximation capability,
but they struggle to generalize to data outside the training distribution. Their predictions
often do not adhere to physical laws such as continuity and momentum conservation. By
incorporating physical knowledge into ML models, these shortcomings can be mitigated.
Embedding Domain knowledge can occur in three key aspects of the ML framework: a)
model input and output, b) model architecture and c) loss function Karniadakis et al.
(2021); Sharma et al. (2023). This integration not only reduces the reliance on large
datasets but also ensures that predictions align with physical principles and exhibit better
generalization to unseen data.

Physics-informed input and output. The first approach involves incorporating
physical intuitions and principles through data preprocessing and feature selection. This
physics embedding strategy is widely employed in the data-driven turbulence modeling.
Ling, Jones and Templeton (2016) compared methods for constructing invariant inputs
against methods using multiple transformations of raw input data for turbulence model-
ing. They found that embedding invariance properties into input features led to better
performance at considerably reduced training cost. This finding is further validated by
the tensor basis neural network (TBNN) introduced by Ling, Kurzawski and Templeton
(2016). Their work used TBNN to model the relationship between five Galilean invariants
and the coefficients of ten tensor basis to reconstruct the Reynolds anisotropy tensor using
a multiplicative layer neural network as shown in Fig. 4.6.

Figure 4.6: Multiplicative layer neural network proposed by Ling, Kurzawski and Templeton
(2016)

In order to take into account the effect of the wall curvature, Xie et al. (2021) used
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a local artificial neural network (LANN) to reconstruct the turbulent heat flux using av-
erage input features transformed into a local reference frame orthogonal to the nearest
wall. The LANN model produced more accurate results than algebraic turbulence models
and closely matched DNS results for periodic hill flow with varying slope ratios at differ-
ent Reynolds numbers. However, directly incorporating Reynolds stress tensors predicted
by ML models into RANS turbulence models can lead to significant velocity deviations,
as errors from high-fidelity data and ML model are amplified Wu et al. (2019); Brener
et al. (2021). Instead of reconstructing Reynolds stress tensors, Cruz et al. (2019) fo-
cused on modeling the Reynolds force vector - the divergence of Reynolds stress tensors -
using a two-layer neural network. This network used the strain rate tensor and the non-
persistence-of-straining tensor proposed by Thompson and de Souza Mendes (2011), and
their divergence as input features. This approach produced smaller propagation errors of
the Reynolds stress tensors in the mean momentum balance equation, leading to a more
accurate secondary flow predictions in the square duct flow compared to using Reynolds
stress tensors directly. Using physics-informed features and labels, as the simplest way
to introduce the physics, is the weakest mechanism to embed physics into the model and
still requires a considerable amount of data.

Physics-informed architecture. The second approach involves embedding physics
into customized functions or architectures of the ML model. Ling, Kurzawski and Temple-
ton (2016) proposed a tensor basis neural network (TBNN) with two multiplicative input
layers to embed Galilean invariance for reconstructing the Reynolds anisotropy tensor. To
ensure translation invariance, transport linearity and Galilean invariance required by the
turbulent scalar transport equation, Frezat et al. (2021) introduced a subgrid transport
neural network (SGNN). This SGNN features customized periodic padding and two par-
allel convolution operators - one without activation for processing velocity and another
for processing the transported scalar. The SGNN framework outperformed algebraic and
non-physical constrained models in predicting turbulent scalar flux in extrapolated flow
regimes and showed better stability as a surrogate model in LES. In contrast to ensur-
ing rotational invariance through data augmentation (extending the dataset by rotating
available data) as done by Frezat et al. (2021), Wang, Walters and Yu (2020) achieved
this by applying the E(2)-CNN proposed by Weiler and Cesa (2019), which outperformed
the baselines trained with data augmentation.

To address different scales in turbulent flow, Wang, Kashinath, Mustafa, Albert and Yu
(2020) developed the Turbulent-Flow Net (TF-Net), as shown in 4.7. This network con-
tains three independent encoders for velocity components at three scales - time-averaged
mean flow w, spatially-filtered large-scale component w̃, and the fluctuating quantity w′ -
and a shared decoder. Each encoder-decoder pair can be seen as a U-Net. This customized
architecture demonstrated significant advantages in predicting turbulent Rayleigh-Bénard
convection flow, reducing root mean square error (RMSE) and flow divergence, and
perserving physical quantities such as turbulence kinetic energy and energy spectrum.
It outperformed both purely data-driven spatiotemporal deep learning models and hybrid
physics-informed deep learning models like the Deep Hidden Physics Model (DHPM) by
Raissi (2018).

Physics-informed loss function. The third strategy incorporates physics directly
into the loss function, a technique often used in the so-called physics-informed neural
networks (PINN) first introduced by Raissi et al. (2017). By integrating the residual
loss of the governing equations, the training process of the neural network is regularized,
resulting in significantly reduced training data and costs. While there is less interest in
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Figure 4.7: Turbulent-Flow Net: three identical encoders to learn the transformations of the three
components of different scales, and one shared decoder that learns the interactions
among three scales to predict 2D velocity field at the next instant. Extracted from
Wang, Kashinath, Mustafa, Albert and Yu (2020).

solving forward problems, which can be addressed using classical PDE solvers, solving
inverse problems - such as deducing physical fields in the entire fluid domain from sparse
observed data - has gained more attention.

Hanrahan et al. (2023) developed a PINN, as shown in Fig. 4.8, to reconstruct
Reynolds stress from sparse experimental data points. The proposed PINN contains
a deep neural network (DNN) to predict the physical quantities field from the coordi-
nates, followed by automatic differential (AD) layers to calculate the derivatives. The
loss function is defined as:

L =
1

Nb

Nd∑
j=1

Nb∑
i=1

|Tij − Ûij|2︸ ︷︷ ︸
LData

+λr
1

Nr

Ne∑
j=1

Nr∑
i=1

ϵ2ij︸ ︷︷ ︸
LPDE

(4.7)

where LData represents the mean square error (MSE) between the network’s predictions
and the training data, and LPDE is the residual loss of the governing equations, which
weighted by the factor λr. The results demonstrated that while the network could predict
the reattachment point from sparse experimental data, it failed to accurately predict
velocity magnitudes in the recirculation region if no data points were provided within this
area. The authors concluded that using PINNs with open RANS equations remains a
data-driven methodology. This means that adjusting network hyperparameters does not
improve prediction convergence; instead, increasing the amount of training data enhances
prediction quality.

The traditional PINNs stuggle with multi-scale problems, such as boundary layer pre-
diction, where high-frequency features in the refined near wall region make it difficult for
the PINNs to converge. To address this, Huang et al. (2024) designed a multi-scale PINN
(msPINN) that includes two independent neural networks for solving outer region and
boundary layer inner region, respectively. While the traditional PINNs fail to capture the
asymptotic velocity profile in the semi-infinite flat plate flow, the msPINN’s predictions
align well with reference numerical results.
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Figure 4.8: The PINN architecture with embedded RANS equations from Hanrahan et al. (2023).

4.5 Summary

Recent fast advancements in neural networks, particularly deep learning, has made it
a powerful alternative for addressing longstanding problems in fluid mechanics. Deep
learning has achieved success in different tasks, including flow phenomena identification,
reduced order modeling, and the super-resolution of the flow field. However, there is no
universally accepted superior design for even the same task, making benchmarking among
different customized models both critical and challenging.

Another issue with deep learning is the generalizability. Data-driven algorithms pro-
vide meaningful predictions when testing data aligns well with training data, but they
lose accuracy and reliability otherwise. Incorporating physics into data, model architec-
ture, and loss function can extend the model’s applicability to broader range of senarios.
However, at this stage, deep learning remains a black box, introducing additional un-
certainty and inexplainability to fluid mechanics when applied directly to CFD solvers.
Users should exercice caution in such applications.
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Deep learning has been employed to identify flow characteristics from Computational
Fluid Dynamics (CFD) results to assist the researcher to better understand the flow field,
to optimize the geometry design and to select the correct CFD configuration for corre-
sponding flow characteristics. Among all the machine learning algorithms, convolutional
Neural Network (CNN) is the most popular algorithm used to extract and identify flow
features. Application of CNNs in CFD domain has at least several differences compared
with feature detection/object identification in the images: 1) depending on the nature of
the task, the input features are different from case to case; 2) CNNs’ generality is limited
not only by the small size of the dataset and 3) CFD simulations have more selections,
such as various mesh refinement levels, different turbulence models and flow regimes,
which significantly confines a trained CNN to the same dataset over which it is trained.

In this chapter, the limitations of CNNs’ application on flow feature identification
is firstly explored through prediction of the pressure distribution around cylinder wall
based on the velocity field in the wake region, concerning their performance on datasets
constructed using different data interpolation methods on different types of meshes and
meshes of varied refinement level. Then the whole process of CNN identification of inde-
pendent vortexes behind 2D backward-facing step is investigated, including ground-truth
label generation, input feature selection and result analysis. The feasibility of using CNN
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to identify other flow phenomena such as thermal stratification region is showcased at the
end.

5.1 Prediction of the pressure around cylinder from velocity field

Many factors may influence the prediction accuracy of a trained machine learning algo-
rithm, such as data sampling strategy, data interpolation method, CFD mesh type and so
on. To investigation to which extent these factors influence model’s accuracy and general-
ity, a series of CNNs are trained on different datasets to predict the pressure distribution
around cylinder based on the velocity field in the wake region. As shown in Fig. 5.1, our
CNN architecture contains two convolutional layers to extract spatial features, a flatten
layer and a dense layer to map the learned hidden features to 32 pressure coefficient,
Cp = p/1

2
ρu2, around the cylinder. The input to the model is velocity components on x

and y directions which are sampled from an array of points in the wake region.

Figure 5.1: CNN model architecture to predict pressure distribution around cylinder. The number
over each block indicates the channel width.

5.1.1 Dataset generation

The transient vortex shedding behind the cylinder is simulated using k−ω SST turbulence
model with the geometry shown in Fig. 5.2. The parabolic velocity profile is imposed at
the inlet boundary: u(y) = 4umy(H − y)/H2, where H is the channel width, um is the
maximum velocity. Ten flow cases with Reynolds number ranging from 103 to 104 with
the interval of 103 are calculated. Reynolds number here is defined as Re = ūD/ν where
D is the cylinder diameter and ū = 2/3u(H/2). The second-order linear upwind (SOLU)
scheme is used for the convective term of momentum equations and turbulence equations.
The second-order Crank-Nicolson time-stepping scheme is used. The time step is set to
0.005s.

As the reference training dataset, the velocity components (U, V ) at 41×17 points, as
shown in Fig. 5.2, in the wake region are sampled from 300 consecutive time steps after
the flow is fully developed are sampled as the input for the CNN model. The pressure
coefficient Cp at 32 points evenly distributed around the cylinder is also extracted as the
ground-truth label. The cases of Re = [1000, 3000, 5000, 7000, 9000] are used to form the
training dataset while cases of Re = [2000, 4000, 6000, 8000, 10000] are used as the test
dataset.
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Table 5.1: Flow around cylinder meshes information.

Mesh type Unstructured Structured
Coarse Medium Fine

Cells 8132 9600 4× 9600 16× 9600

Figure 5.2: Flow around cylinder case geometry and data sampling points.

5.1.2 Results analysis

5.1.2.1 Training details

Each CNN model is trained for 100 epochs using Adam 2 as optimizer with default values
η = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8 adopted in the training. Root mean square
error (RMSE) as loss function:

RSME =

√√√√ 1

n

n∑
i

(yi − ŷi)2, (5.1)

where the y is the ground-truth value and ŷ is the CNN prediction.
The coefficient of determination R2 which measures how well a regression fits the

observed data is used to evaluate the CNN model prediction accuracy:

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳi)2

, (5.2)

where y and ȳ are the observed values and its mean, respectively, and ŷ is the predicted
value.

5.1.2.2 Data interpolation and mesh types

CNN algorithms are suitable for structured data or Cartesian mesh in CFD, while applied
to unstructured mesh data interpolation is inevitable to sample the required input. The
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influence of data interpolation methods on the obtained CNN model over unstructured
mesh should be investigated by being compared with structured mesh. The comparisons
between the ground-truth label sampled from two types of meshes using P0/P1 inter-
polation and the corresponding CNN predictions are visualized in Fig. 5.3a, the mesh
type and data interpolation method have no noticeable influence on the CNN prediction
accuracy. The predicted pressure coefficient at one time step for flows of three Reynolds
numbers is plotted Fig. 5.3b, 5.3c and 5.3d, respectively. The CNN prediction agrees
well with the ground-truth on both the interpolation cases (Re = 2000, 6000) and the
extrapolation case (Re = 10000).

(a) Comparison of CNN prediction trained on dataset sampled using P0/P1 interpolation on struc-
tured/unstructured meshes. (From left to right: P1 interpolation from coarse structured mesh; P0
interpolation from coarse structured mesh; P1 interpolation from unstructured mesh and P0 interpo-
lation from unstructured mesh.)

(b) Re = 2000 (c) Re = 6000 (d) Re = 10000

Figure 5.3: Comparison of ground-truth with predictions of CNNs trained on dataset sampled
using different interpolation methods on coarse structured mesh and unstructured
mesh.

5.1.2.3 Mesh refinement

A trained model loses generality on the data of the mesh different from that used to
form dataset even for the same flow case. The dataset is regenerated using structured
meshes at three refinement levels which contain 16 × 9600, 4 × 9600 and 9600 cells for
fine, medium and coarse meshes, respectively. As shown in Fig. 5.4a, the predictions
of CNN models agree well with the ground-truth values of the dataset on which CNN
model is trained. However, the prediction deteriorates significantly either when the CNN
is trained on fine-mesh dataset and predicts on two coarser meshes, as shown in Fig. 5.4b,
or when the CNN is trained on coarse-mesh dataset and predicts on the other two finer
meshes, as shown in Fig. 5.4c. The predictions of CNNs trained on different datasets at
one time step on flow case with Re = 6000 and medium mesh are shown in Fig. 5.5. A
trained CNN model makes precise prediction on the same dataset over which it is trained
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(Fig. 5.5b, however its prediction degrades significantly when the mesh encountered in
the inference stage is either coarsened (Fig . 5.5a) or refined (Fig. 5.5c), especially in the
vortex detaching region (probe index from 5 to 28). The prediction over medium-mesh
dataset of the CNN trained on fine-mesh dataset correlates with the ground-truth label
better than that of the CNN trained on coarse-mesh dataset, which can be ascribed to
the fact that the CFD result using this coarse mesh is not mesh independent.

(a) CNN trained on the datasets of corresponding meshes.

(b) CNN trained on fine-mesh dataset.

(c) CNN trained on coarse-mesh dataset.

Figure 5.4: Comparison of the ground-truth Cp with the prediction of CNN trained on different
datasets. (From left to right: CNN predictions on fine, medium and coarse resolution
meshes for flow cases with Re = 6000.)
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(a) CNN is trained on fine-mesh
dataset.

(b) CNN is trained on medium-
mesh dataset.

(c) CNN is trained on coarse-
mesh dataset.

Figure 5.5: Comparison of the ground-truth Cp of medium-mesh dataset with CNN predictions
trained on datasets formed by different meshes for Re = 6000 case on one time step.

5.2 Identification of vortex shedding behind backward-facing step

In this section, how to detect vortex regions behind a 2D BFS using CNN model is
described. The input for the CNN model, including CFD simulation and vortex labeling
method, is introduced firstly. A series of potential input sets to characterise vortexes are
selected and compared in terms of the identification performance of the corresponding
trained CNN models. The general steps of flow phenomena identification in the CFD
results by machine learning models is shown in Fig. 5.6.

Pytorch

• CFD simulation

• Output features and graphs B.1

code_saturne

• Features postprocess A.2

• Graphs construction

Features & graphs

• Dataset labeling (VortexA.1)

Label

• CNN/GNN A.3

• U-Net architecture

Machine learning

Identified flow
phenomena

Training

Figure 5.6: Flowchart of flow phenomena identification in the CFD results by machine learning
models.

5.2.1 Dataset generation

In order to generate the dataset, the vortex shedding behind the 2D BFS Le et al. (1997)
is simulated using transient code_saturne solver solving Navier-Stokes equations and
and Rij − ϵ SSG turbulence model. The flow configuration is shown in Fig. 5.7. The
computational domain consists of an inlet section Li = 10h prior to the sudden expansion.
The total length in streamwise direction is Lx = 30h and the vertical height is Ly = 6h.
The mean velocity with the turbulence intensity of 5% of the mean velocity magnitude is
imposed at the inlet boundary. The Neumann condition is imposed at the outlet boundary.
The scalable wall function is applied to the bottom wall. The upper boundary is set to
symmetry boundary condition. The Reynolds number based on step height h and bulk
velocity is Reh = 5100. The total number of computational cells in x direction after the
step is 240 and that in y direction is 220. Only one cell is used for z direction.
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Ten flow-throughs were calculated before outputting the results in order to make sure
the flow field is fully developed. Then the physical fields at 100 time steps with an interval
of 0.1s were output and divided into three groups with the splitting ratio of 80/10/10 for
training, validation and test cases, respectively.

Figure 5.7: Backward-facing step flow configuration.

5.2.2 Vortex labeling

Since the supervised training of the neural networks is adopted in our study, a binary
ground-truth label for each node indicating whether the node is in the vortex region or not
should be provided. One of our contribution of our work is to the proposition of an auto-
labeling method using Depth First Search (DFS) and Biased Random Walking (BRW)
on the directed graph derived from the velocity field. DFS is an algorithm for traversing
or searching tree and graph structured data and is employed for various applications,
such as finding bridges or strongly connected components on the graph, maze generation.
BRW algorithm explores the graph structure by going from one state/node to the next
potential state/node with a probability and it is widely used for the search engine, to
investigate the advertisement diffusion on the social networks, distribution of the animal
community and etc. Here we apply these two algorithms to label the vortex region on
the CFD meshes with velocity field which can be naturally viewed as a weighted directed
graph. As shown in Fig. 5.8, the edge in the directed graph is the shared face of adjacent
cells in the mesh whose direction is from upwind cell to downwind cell according to the
velocity field.

As shown in algorithm 3, this vortex auto-labeling algorithm labels the vortex in 2D
CFD results based on the closure of the streamline in two steps: a) locating the vortex
core with DFS algorithm Jungnickel and Jungnickel (2005); b) enlarging the vortex region
by BRW. The pseudo codes of DFS and BRW algorithms are shown in algorithm 4 and
algorithm 5, respectively.

The vortex core is assumed to exist among a limited number, 4 for 2D structured mesh
and 8 for 2D unstructured mesh, of connected cells. The DFS algorithm traverses all the
nodes on the graph and recursively search the downstream nodes until it goes back to
the beginning node within predefined steps. Once the vortex core is located, the BRW
algorithm enlarges the vortex region starting from the vortex core. The probability of
random walking from central node to a downstream node is proportional to the ratio of
mass flux entering the corresponding downstream node from central node to the total
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Figure 5.8: Directed graph superimposed on streamline background. The red arrows connect the
vortex core cells. The white wire frame is the CFD mesh.

Algorithm 3: Vortex auto-labeling algorithm in 2D CFD cases
input : Nodes V , Mass flux {Mu,v : u ∈ V , v ∈ V}, Neighborhood

N (u) = {v ∈ V :Mu,v > 0}
output: Vortex nodes: Vvortex

1 Build weighted directed graph G = (V , E) with edge weight eu,v =
Mu,v∑

v∈N (u)Mu,v

;

2 initialize vortex core set Vcore;
3 for each u ∈ V do
4 add DFS (G, v, 0) to Vcore;
5 end
6 create working graph Gw ← G;
7 while Gw changes do
8 for icore in Vcore do
9 randomly select a node u from icore;

10 find the loop enclosing u: Lu ←BRW (Gw, u);
11 remove the nodes enclosed by Lu from Gw;
12 end
13 end
14 return Vvortex = G.nodes()− Gw.nodes();

mass flux exiting the central node. One walking path either ends at the beginning node
leading to the success of enlarging the vortex region or ends at the outlet nodes leading
to the failure of enlarging vortex region. To make sure the final labeled vortexes are
separate from each another, a single enlarged vortex region should not contain multiple
vortex cores. The vortex location labeling process is terminated when the searched vortex
boundary is not changed from the last random walking.

The ground-truth labels superimposed on the streamline plot at one time instant
obtained using this method from a structured mesh of 74400 nodes and an unstructured
mesh of 131118 nodes for 2D BFS case are shown in Fig. 5.9. All the cells in vortex
zone are represented by the points over the streamline background. It should be noted
that although the vortex boundary labeled in this method does not precisely reflect the
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Algorithm 4: Depth first search algorithm
input : Graph G, starting node v, depth count d
output: Vortex core nodes

1 d++1;
2 for w in G.adj[v] do
3 if w is unvisited and d < depth then /* Set depth to 4 for structured

mesh, 8 for unstructured mesh. */
4 if DFS (G, w, d) then
5 return list(w, DFS (G, w, d));
6 end
7 else if w is visited then
8 return w;
9 else

10 return None
11 end
12 ;
13 end

Algorithm 5: Biased random walking
input : Graph G, Starting point u
output: Nodes on the loop Vpath enclosing u

1 while step < threshold do /* Threshold depends on mesh size. */
2 add u to path;
3 select next node v in G.adj[u] with possibility P(v) ∝ eu,v;
4 if v in Vcore then
5 return Vpath;
6 end
7 walk to next v : u← v;
8 step++1;
9 end

real vortex shape leading to a noisy dataset, it has the merit of auto-labeling and can
label vortex location for massive snapshots. And we expect that the machine learning
algorithm outperforms the ground-truth label on identifying the vortex position and shape
after trained on this noisy dataset. The auto-labeling algorithms takes 292s and 122s on
average to label vortexes at one time step on the structured mesh and on the unstructured
mesh, respectively.

5.2.3 Input feature selection

To find out the optimal vortex indicators as the input for, five features, summarized in
Table 5.2, were selected such as velocity field, Q-criterion, turbulence intensity, deviation
from shear flow and pressure gradient along streamline. The latter four features are visu-
alised in Fig. 5.10 along with ground-truth label and streamline. Intuitively, the closure
of the streamline is the intrinsic feature and has sufficient information to characterize the
presence of vortex. However, the deterministic methods which derive local value from
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(a) Structured mesh.

(b) Unstructured mesh.

Figure 5.9: Labeled vortex region in 2D BFS case meshes superimposed on streamline background.

the velocity field and its gradient field fail to capture the global view of the streamline
closure, such as the widely accepted vortex indicator Q-criterion Q = ∥R∥2−∥S∥2, where
R = 1

2
(∇U − (∇U)T ) and S = 1

2
(∇U + (∇U)T ). It can be seen from Fig. 5.10a that

Q-criterion has false high value in both the near wall region and the far-wake region in
x > 1.0m. In the vortex region, the turbulence level is generally higher than in the pure
shear flow region which makes the turbulence intensity a natural choice as vortex indi-
cator. The latter two variables are both related to the vortex physics. The deviation
from shear flow characterizes the streamline curvature. The pressure at the vortex center
is lower than the peripheral area which causes two perpendicular characterising lines in
the pressure-gradient-along-streamline field located at the vortex center as shown in Fig.
5.10d. These features are normalized following the practice in Ling and Templeton (2015):
â = ∥α∥

∥α∥+∥β∥ , where α is the original feature, β is the normalization factor.

Table 5.2: Non-dimensional input features characterizing vortex as input for CNNs. The features
are normalized following the practice in Ling and Templeton (2015): â = ∥α∥

∥α∥+∥β∥

Feature α β
Normalized velocity U 0

Q-criterion 1
2
(∥R∥2 − ∥S∥2) ∥S∥2

Turbulence intensity k 0.5UiUi + k

Pressure gradient along streamline Uk
dP
dxk

√
dP
dxj

dP
dxj
UiUi

Deviation from parallel shear flow |UkUl
dUk

dxl
|

√
UnUnUi

dUi

dxj
Um

dUm

dxj

Five combinations of the above mentioned variables, as shown in Table 5.3, are tested.
The original velocity is used as the baseline input set #1. The normalized velocity fields
is used as input set #2 to show investigate the normalization influence. The Q-criterion
is used as single input for input set #3. The last three variables in Table 5.2 form the
input set #4 since each one of them characterizes vortex by a certain spatial pattern, not
by a threshold, The combination of input sets #1 and #4 form the last input set.

A CNN model with a 4-level and 8-layer U-Net architecture containing 55633 trainable
parameters is built to test different input sets. The channel dimensions are shown in Fig.
5.11. The kernel size is 3 × 3 for all convolutional layer. Each input set is tested five
times by training the CNN model for 100 epochs with the parameters initialized using
different random seed each time. The mean and standard deviation of the training loss and
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(a) Q-criterion (b) Turbulence intensity.

(c) Deviation from shear flow. (d) Pressure gradient along streamline.

(e) Ground-truth label. (f) Streamline.

Figure 5.10: The contour plot of four input features â, ground-truth label and streamline of the
BFS test case at time=12.65s.

Table 5.3: Five input sets of vortex indicators.

Input set Features
1 U, V
2 Unorm, Vnorm
3 Q-criterion

4
Turbulence intensity

Deviation from shear flow
Pressure gradient along streamline

5

U, V
Turbulence intensity

Deviation from shear flow
Pressure gradient along streamline

classification evaluation metrics are calculated. Adam optimizer with the initial learning
rate of 10−3 and the weight decay rate of 5 × 10−4 was used. The binary cross entropy
(BCE) was used as the loss function:

BCE = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (5.3)

where N is the number of nodes, yi is the label for node i, 1 for that in vortex region and
0 for that in non-vortex region, and ŷi is the predicted category value by the model at
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node i. The learning rate and weight decay rate are set to 10−3 and 10−5, respectively.
The batch size is set to 5.

Figure 5.11: The 4-level 8-layer U-Net architecture.

5.2.4 Results analysis

As indicated by the training loss histories in Fig. 5.12, all the trainings proceed smoothly.
The input sets #1 #2 and #5 have losses very close to each other and are noticeably lower
than the other two input sets. The input set #3, Q-criterion, has the highest standard
deviation and is the only scenario where the validation loss is higher than training loss.

Figure 5.12: Training loss history CNNs with five input sets. The curve and shaded region rep-
resent the mean and standard deviation of five trainings, respectively.

The output value of CNNs ranges from 0 to 1 indicating the probability whether a
point is in the vortex region. A threshold should be selected to separate non-vortex
region from vortex region. A good model should give consistent predictions within a
large threshold range. A receiver operating characteristic (ROC) curve Fawcett (2006) is
a graphical plot measures the consistency of the diagnostic ability of a binary classifier

62



as the discrimination threshold varies. The ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The ideal prediction model should yield a point in the upper left corner or coordinate
(0,1) in the ROC space, representing no false negatives and no false positives. As shown
in Fig. 5.13, the ROC curves of all input sets are very close and input set #2 is slightly
better than the others. As shown in Fig. 5.14, the shapes of the identified vortexes are
very similar among all input sets except the input set #3 which is the worst.

Figure 5.13: Receiver operating characteristic curves of CNN-Unet with different input sets. (The
curve and shaded region represent the mean and standard deviation of five trainings,
respectively.)

Figure 5.14: Vortexes at time=14.60s identified by CNN-Unet algorithm with different input sets.
(From top to bottom: streamline, input sets from #1 to #5.)
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Since the dataset is a biased one where only a small portion of points belong to
vortex region, therefore the following four classification metrics are used to evaluate the
classification performance: accuracy, precision, recall and F1 score:

Accuracy =
TP + TN

TP + TN + FP + FN
, (5.4)

Precision =
TP

TP + FP
, (5.5)

Recall =
TP

TP + FN
, (5.6)

F1 =
2× Precision×Recall
Precision+Recall

, (5.7)

where TP, TN, FP, FN are the numbers of true positives, true negatives, false positives
and false negatives, respectively. The performances of the CNNs trained on five input sets
are evaluated in the vortex region behind the step [[0, 0.8m], [0, 0.14m]] and summarized in
Table 5.4. The highest and lowest values of each of four classification evaluation metrics
among all input sets are labeled in green and red color, respectively. The input sets
#1 and #2 have close classification performance and are generally better than the other
input sets reflected by the fact that they have no worst mean values for four metrics. The
normalization of the velocity field significantly accelerates the training. The input sets #3
has the highest standard deviations and the longest training time which suggests that the
CNN model struggles to find the correlation between Q-criterion and the ground-truth
label. Compared with input set #1, additional features in input set #5 do not bring
performance improvement but longer training time.

Table 5.4: Classification performance of CNNs trained on five different input sets. (Green: best
value; Red: worst value.)

Input set Accuracy Precision Recall F1 score Time/epoch
1 88.03±0.16 90.86±0.48 61.73±0.81 73.51±0.50 2.63±0.79s
2 88.02±0.27 91.82±0.49 60.92±0.94 73.24±0.74 1.85±0.13s
3 87.83±1.10 89.38±3.97 62.74±7.78 73.22±4.32 4.43±0.34s
4 87.53±0.31 90.42±0.86 60.03±1.23 72.15±0.89 2.42±0.27s
5 87.64±0.12 91.44±0.49 59.68±0.61 72.22±0.37 3.32±1.63s

5.3 Thermal stratification region identification

5.3.1 Dataset generation

To form the training dataset, the transient mixed thermal convection process inside a 2D
square cavity is simulated whose geometry and dimensions are illustrated in Fig. 5.15.
The cavity has the width and height of H. The inlet and outlet are located at the upper
and lower corners of the right side wall, respectively and their width are both 0.1H. The
cavity is initially filled with static fluid at temperature Tc. A jet at velocity of u0 and
temperature Th enters the domain through the inlet and pushes the initial colder fluid
out of the cavity through the outlet. To enlarge the dataset, nine cases including three
Richardson numbers Ri = [1, 10, 760] and three inclination angles α = [0, 10◦, 30◦], are
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Figure 5.15: Schematic of transient mixed convection in a 2D square cavity.

simulated. Richardson number is the measurement of the ratio of natural convection to
forced convection:

Ri =
gβH(Th − Tc)

u20
, (5.8)

where β is the coefficient of thermal expansion of the material. The inclination angle α
represents the angle between gravity direction and −y direction. All fluid properties are
constant except density which is linearly dependent on the temperature:

ρ = ρ0 − βρ0(T − Tc). (5.9)

Table 5.5: Density and labeled thermal stratification region plots for cases with Ri = [1, 10, 760]
and α = 0 at the last time step.

Ri = 1 Ri = 10 Ri = 760
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A duration of 150s is simulated with the time step of 0.1s from which 30 time steps
are sampled to form the dataset. The buoyancy term B = ∇ρ ·g is calculated to label the
thermal stratification region. Due to the simplicity of the geometry and the flow structure,
the cells of the highest 10% buoyancy value are selected as thermal stratification region
for cases with Ri = [10, 760] where the stratification is maintained due to larger buoyancy
force compared with inertial force, while no stable thermal stratification region selected for
case with Ri = 1 since inertial force becomes dominant. The density plots for cases with
Ri = [1, 10, 760] and α = 0 at the last time step and their labeled thermal stratification
regions are shown in Table 5.5.
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5.3.2 Input feature selection and architecture design

Three input sets are tested on the CNN architecture of the previous section: 1) density ρ,
2) buoyancy: B = ∇ρ·g and 3) buoyancy gradient vector: (∇Bx,∇By). These these input
sets for case with Ri = 10 and inclination degree α = 0 at one time step are visualised
in Fig. 5.16. Intuitively, these features well characterise the boundary between hot fluid
and cold fluid.

(a) ρ. (b) B. (c) ∇Bx. (d) ∇By.

Figure 5.16: Features to characterise thermal stratification region for case with Ri = 10 and
inclination degree α = 0 at time t = 125s.

(a) Loss history plots.

(b) ROC plots.

Figure 5.17: Loss history and ROC plots with different inputs and the previous architecture.
(From left to right: input #1, input #2 and input #3.)

However, as shown in Fig. 5.17, training CNN models with these features as input
cannot converge. Take the case of Ri = 1 and inclination angle α = 30◦ for example,
as shown in Fig. 5.18, CNN model may extract the same hidden features at thermal
stratification position A and non thermal stratification position B. What makes these
two positions intrinsically differently from each other is the angle between the gravity
direction and the orientation of the thermal stratification layer, the orientation of the
thermal stratification layer is perpendicular to the gravity direction at position A, while
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these two directions are aligned at position B. Thus, as shown in Fig. 5.19, in order to
inform the CNN model the gravity direction, a second input layer was introduced before
the final output layer with gravity direction as input.

Figure 5.18: The angle between gravity direction and the orientation of thermal stratification
layer distinguishes position A from B.

Figure 5.19: Architecture used to identify thermal stratification region.

The training histories and ROC plots of CNN models identifying thermal stratifica-
tion region with the above-mentioned three input sets are plotted in Fig. 5.20 and the
corresponding identification performances are summarized in Table 5.6. Among three
input sets, no specific one posses significant advantage over the other two in terms of four
classification evaluation criteria.

5.3.3 Generalization on unseen case

The trained CNN model with (∇Bx,∇By) as input is tested in an unseen case - 2D
thermal stratification in T-junction, one of the code_saturne validation cases. As shown
in Fig. 5.21, the hot water enters the pipe from the right inlet while the cold water enters
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(a) Loss history plots.

(b) ROC plots.

Figure 5.20: Loss history and ROC plots with different inputs and the architecture with a gravity
input layer. (From left to right: input #1, input #2 and input #3.)

Table 5.6: CNN identification performance of thermal stratification region with different input
sets. (The best values are labeled in red)

Input Accuracy Precision Recall F1 score
ρ 98.83±0.12 88.06±2.45 90.73±1.42 89.34±0.90
B 98.93±0.09 92.61±2.58 89.43±4.03 90.87±0.99

(∇Bx,∇By) 98.66±0.25 93.72±2.98 77.97±7.23 84.82±3.67

through the middle inlet. Temperature difference of two inlets is 20.24◦C. Hot water
and colder meet at the horizontal part of the pipe and a stable thermal stratified region
forms. Even though a structured mesh is used, the CFD result is interpolated into a
uniformly distributed array of points before being fed to CNN model due to the complex
geometry. CNN successfully identified the interface between cold and hot water for most
time steps as suggested in Fig. 5.21, however it fails to capture the mixing process when
the cold water first encounters the hot water at the T-junction region as shown in Fig.
5.22. The inaccuracy of CNN model can be partly ascribed to the small size dataset and
incompleteness of the input feature. More variables other than buoyancy term, such as
the velocity field, should be considered.

5.4 Summary

In this chapter, possible factors that might influence the performance of the trained CNN
algorithms, such as data interpolation method, mesh type and mesh refinement, are exper-
imentally investigated. As the suggested by the CNN regression of the pressure around
the cylinder based on the velocity field in the wake region, data interpolation method
(P0/P1) and mesh type have negligible influence on the CNN model accuracy. A more
concerning problem for data-driven algorithms is its generality on the dataset different
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(a) Time = 20s. (b) Time = 60s.

(c) Time = 120s. (d) Time = 180s.

(e) Time = 260s. (f) Time = 600s.

Figure 5.21: Comparison between density plots and thermal stratification region identified by
CNN (upper left panel) at different time steps.

(a) Time = 35s. (b) Time = 40s. (c) Time = 45s.

Figure 5.22: CNN fails to capture the thermal stratification region when cold water enters the
horizontal pipe.

from the one over which it is trained. The learned feature pattern by CNN fails to gen-
eralize when the mesh is either refined or coarsened. This is a key difference of using
CNN in CFD domain than in computer vision domain where more options in the CFD
simulation process introduce much larger variance in the dataset, thus causing that most
of the data-driven algorithms are scenario-specific or dataset specific.

In the second section, the possibility of using CNN to detect independent vortex
behind a 2D backward-facing step is explored. A novel vortex labeling method for 2D
mesh based on depth first search algorithm and random walking algorithm on directed
graph is introduced. Experiment shows that CNN is able to identify separated vortexes
from the velocity vector without additional postprocess of the CFD result thanks to its
ability to extract non-local spatial features which may have better generality on cases of
different geometries.

The feasibility of CNN identifying other flow phenomenon such as thermal stratifica-
tion is also demonstrated at the end.
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6 | GNN identification of flow phenom-
ena on unstructured meshes
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In the previous chapter, the flow phenomena identification was conducted on cartesian
meshes which has huge limitations when applied to industrial cases where unstructured
meshes are normally used to fit the curved surfaces. Therefore the pursuit of a method-
ology suitable for unstructured meshes is necessary. Graph neural networks can be a
promising candidate. Unlike the uniqueness of the convolution kernel in CNNs, there are
various graph convolution kernels and their performance should be evaluated firstly. A
proper convolution suitable for CFD meshes kernel should be searched or proposed. A
good architecture for GNN model should be evaluated as well in terms of both compu-
tational efficiency and identification accuracy. This chapter will address aforementioned
problems by firstly introducing the proposed Fast-GMM kernel. The superiority of the
U-Net architecture with graph hierarchy generated from AMG as input is demonstrated
by comparing against other two architectures, skip-connection and sequential-connection
architectures. The generality of the proposed approach to different mesh topologies,
turbulence models at different Reynolds numbers and the kernel differences are experi-
mentally demonstrated. The feasibility of the proposed framework with proposed kernel
identifying 3D vortex is showcased at the end.
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6.1 Proposed Fast-GMM kernel

CNNs are computationally efficient in terms of training time per epoch and training epochs
to achieve convergence due to the structured representation of data. On the contrary,
equivalent GNNs need much more training time per epoch and more epochs before giving
meaningful prediction due to unstructured representation of data, all connections and
relative positions of connected nodes must be explicitly stored. During our previous tests,
we found that GNNs with the GMM kernel require considerable training time per epoch
compared to those with GCN kernels, almost the simplest kernel of GNNs, which further
worsens the efficiency of GNN training. Training efficiency becomes an important concern
since we intend to detect flow phenomena on industrial 3D unstructured meshes in the
future. Its training inefficiency comes from the fact that two variables should be trained
simultaneously, covariance matrix

∑
k and mean direction vector µk. In addition, if a

learned GMM kernel with all the directions µk having the same distribution as the CNN
kernel, shown in Fig. 6.1a, and the covariance matrix

∑
k being 1 is used to distinguish

the directions of a edge distribution as shown in Fig. 6.1b, the obtained eij-µk alignment
matrix as defined in 3.23 has a distribution as shown in Fig. 6.1d. It can be seen that the
alignment matrix obtained by GMM kernel is more diffuse than that obtained by CNN
kernel, which is binary, 1 for most well aligned pair and 0 for not well aligned pairs.

In order to make the training more efficient and improve the resolution of detecting
edge directions, several simplifications are made to the original GMM kernel by using
analogies to the traditional CNN kernel. In the traditional CNN kernel, the relative
directions of the neighboring weight to the central weight are fixed. Take the 3 × 3
kernel for example, the central weight has eight neighboring weights which are fixed
at eight directions evenly distributed around the central weight. Each trainable weight
is uniquely associated to the neighboring pixel on that corresponding direction. The
distance between the central pixel and the neighboring pixel is not learned by the kernel
since in the image all the pixels are equidistant. Therefore, the relative directions of
the neighboring cells, instead of their distances, from the central cell are important in
capturing some spatial patterns residing on the mesh. What is more, the distance between
nodes on the CFD mesh is normalized, which will be introduced in Section 6.2, to avoid
poor generality brought by the cell size variation from one case to another. Thus, the
trainable covariance matrix

∑
k in the original GMM kernel is removed and the trainable

mean vectors are replaced by predefined directions. The square of the min-max scaled
alignment is calculated to make the most aligned eij − µk pair distinguished from the
other non-aligned pairs. Thus, the alignment between the edges and the directions in
predefined template reads:

gk(eij) =

∣∣∣∣(exp(−1

2
(eij − µk)

T (eij − µk)

))∣∣∣∣2
MinMax

, (6.1)

where min-max scaling is defined as:

∥x∥MinMax =
x− xmin

xmax − xmin

. (6.2)

The proposed kernel is termed as Fast Gaussian Mixture Model (Fast-GMM). We keep
one direction in the template for the center node and evenly divide 2π into k−1 directions
for the neighboring nodes. Since the following trainings done on graphs derived from 2D
structured mesh where each center cell has eight neighboring cells, as shown in 6.1a, we
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set the hyperparameter k = 9 which is analogous to the 3×3 convolution kernel in CNNs.
As shown in Fig. 6.1e, the alignment matrix obtained by Fast-GMM is closer to that of
CNN kernel compared with the original GMM. This characteristic enables the Fast-GMM
kernel to have a higher resolution on discerning the edge directions and thus leading to
identify sharper vortex boundary compared to the original GMM which will be shown in
the following.

(a) Kernel directions (b) Edge directions in graph.

(c) Alignment matrix obtained
by CNN kernel.

(d) Alignment matrix obtained
by GMM kernel.

(e) Alignment matrix obtained
by Fast-GMM kernel.

Figure 6.1: Alignment between edges directions and trainable directions obtained by different ker-
nels.

6.2 Framework of graph neural networks

6.2.1 Graph construction

The graphs fed to the GNNs are derived from the CFD meshes where the cells and the
vertices shared by adjacent cells in CFD meshes become the nodes and the edges in graphs.
The derived graph is a dual mesh of the CFD mesh. The input data are stored on the
nodes. To regularize the graph, the normalized direction eij pointing from center node i
to neighbor node j is stored on the edge connecting the two nodes:

eij =
xj − xi

||xj − xi||
(6.3)

where, xi and xj are the center node and neighbor node coordinates, respectively. There
exists one forward edge and one backward edge between two connected nodes since every
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node can be a center node and a self-loop is added to each node with the distance of 0.
Therefore the bi-directed graphs with self-loops are generated, as shown in Fig. 6.2.

Figure 6.2: Bi-directed graph superimposed on streamline background. The red arrows connect
the vortex core cells. The self-loop of each node is not show here. The white wire
frame is the CFD mesh.

GNNs perform feature aggregating and updating on the graphs. The transformation
from CFD mesh to graph is very straightforward. Each cell in a CFD mesh corresponds to
one node in the graph. The connectivity between the nodes in the graph can be obtained
based on either shared vertex or shared face between adjacent cells in the CFD mesh.
The graph derived from a 2D structured mesh based on shared-vertex connectivity is the
natural analogue to the images for CNNs where each node in the graph has eight neighbors
except for those on the border. A directed graph with self-loops is constructed with the
attributes eij stored on the edges representing the relative orientation of the neighbors
to the center. Only the edge direction is kept in order to regularize the graph since the
magnitude of the distance between cells may vary significantly from case to case:

eij =
xj − xi

||xj − xi||
. (6.4)

The velocity direction unorm is stored on the nodes as the node features:

unorm =
u

||u||
. (6.5)

6.2.2 Graph hierarchy generation

Since we intend to use U-net architecture to build the GNN model whose advantages over
other architectures will be shown in the following subsection, a hierarchy of coarsened
graphs to down-sample and up-sample the hidden features should be provided to the
multiple levels in U-Net architecture. Unlike the already existed pooling and unpooling
operations in CNNs, there is no widely accepted down-sampling and up-sampling method
in GNNs. Thus a proper graph coarsening algorithm should be proposed and evaluated
in order to build a mapping relationship between fine and coarse graphs. In the following
trainings, the average down-sampling as shown in Fig. 3.6 and nearest upsampling as
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shown in Fig. 3.7b are used for GNNs. Here, we use the algebraic multigrid method
embedded in code_saturne to generate this hierarchy of graphs and the connectivity be-
tween two successive graphs. The inspiration of using AMG method is that it is originally
designed to accelerate the convergence of linear algebraic equations by removing differ-
ent wave-length components of errors, which we believe will also accelerate the training
procedure. As a byproduct of CFD simulation, using AMG graph hierarchy brings no
additional computational expense.

Fig. 6.3 and Fig. 6.4 respectively show a small portion of the graphs at four levels gen-
erated from 2D structured mesh and unstructured mesh for backward-facing step (BFS)
case based on shared-vertices. The graph of level 1 in Fig. 6.3 is directly generated from
original mesh and the graphs of other levels are generated by the AMG algorithm. Each
node in the graph has a self-loop which is not shown for the clarity of visualization. It
is clear that the graphs are evenly coarsened. The graphs’ information of four levels are
summarized in Table. 6.1.

(a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4

Figure 6.3: The details of graphs generated from the 2D BFS structured mesh at different levels.

(a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4.

Figure 6.4: The details of graphs generated from BFS unstructured mesh at different level.

6.2.3 Architecture selection

The U-Net architecture firstly proposed for biomedical image segmentation Ronneberger
et al. (2015) is adopted because of three merits: 1) training efficiency, 2) accuracy and 3)
stability. The training cost is significantly reduced because it successively down-samples
the data from fine graph level to the next coarse level. Since the input data is down-
sampled, the graph size shrinks and only the main features are kept to the next level.
The same kernel size covers larger regions in coarser levels than in the fine levels, which
enables the model to capture global features. In other words, this architecture is accurate
because it captures the details at shallower levels and global features at deeper levels. The
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Table 6.1: The details of graphs.

Graph Level Nodes Edges Average node degree

mesh
structured

BFS 1 74400 666124 9.0
2 24720 220002 8.9
3 8231 72401 8.8
4 2719 23727 8.7

mesh
unstructured

BFS 1 131118 907510 6.9
2 50780 407126 8.0
3 17127 118619 6.9
4 5596 38384 6.9

skip-connections between the leading contraction blocks and the corresponding trailing
extraction blocks make the training more stable.

As shown in Fig. 6.5a, a four-level 14-layer U-Net architecture is used for GNN
models which is similar to that used in section 5.2 except deeper. To demonstrated the
feasibility and advantage of using U-Net architecture with AMG graph hierarchy, another
two architectures, skip-connection and sequential connection, are constructed. Unlike the
U-Net using a hierarchy of different coarsen levels of graphs, skip-connection architecture
has no down-sampling and up-sampling between different levels of graphs and performs
all the computation on the same graph. Thus, the skip-connection can be viewed as an
intermediate architecture between U-Net and sequential architecture. Further removing
the skip-connection leads to the sequential architecture. The number of trainables for each
architecture is summarized in Table 6.2. All the three architectures have the same number
of convolution layers, the same channel number at the corresponding layers. Compared
with the other two architectures, the sequential one has more trainables which is the
result of removing skip-connections while keeping the channel number at the second half
layers the same as those in the other two architectures. Other hyper-parameters, such as
convolutional kernel and activation function, are kept the same as the U-Net architecture
in section 5.2.

Table 6.2: Parameter details of different architectures.

No. Kernel Architecture Layers Kernel size Trainables
1. GMM U-Net 14 9 86793
2. GMM Skip-connection 14 9 86793
3. GMM Sequential 14 9 111157

The performance of U-Net architecture with AMG graph hierarchy is evaluated on the
data-set introduced in section 5.2 using GMM kernel. As shown in Fig. 6.6, the original
GMM kernel has a large fluctuation on validation loss for all the three architectures
considered. U-Net architecture does not distinguish itself from the other two in term of
training loss history. However, as shown in Table 6.3, it requires significantly less training
time per epoch and inference time per case, only about one third of those of the other two
architectures, while achieving the highest mean values for all four classification evaluation
criteria and smallest standard deviation values except for Accuracy thanks to the usage
of multigrid down-sampling and up-sampling of the hidden features. The model with
sequential architecture has the lowest mean value on four criteria and largest standard
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(a) U-Net architecture

(b) Skip-connection architecture

(c) Sequential architecture

Figure 6.5: Three tested architectures.

deviation values except for Precision even though it has more trainables. As shown in Fig.
6.7, U-Net architecture has a ROC curve closest to the upper left corner while sequential
architecture behaves the worst.

Table 6.3: Performance summary of three architectures on test cases. (Green: best value; Red:
worst value.)

No. Model Accuracy Precision Recall F1 score time/epoch
Training

time/case
Inference

1. GMM-Unet 88.58±0.28 91.15±0.91 63.80±1.31 75.04±0.80 85.5±0.3s 0.498s
2. GMM-Skip 87.75±0.26 88.53±1.55 62.64±1.84 73.33±0.89 244.8±1.0s 1.433s
3. GMM-Sequ 86.40±0.51 86.44±1.40 58.76±3.12 69.88±1.89 250.9±0.8s 1.467s

6.3 2D Vortex identification

6.3.1 Training details

The superiority of our proposed Fast-GMM kernel was demonstrated by comparing it
with CNN, GMM, SplineCNN and GCN convolution kernels on U-Net architecture. The
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Figure 6.6: Loss history of GMM models with three different architectures.

Figure 6.7: Receiver operating characteristic curves of GMM models with different architectures
evaluated on test cases of BFS structured mesh.

main parameters of the tested models are summarized in Table. 6.4. It is noteworthy
that the model with GCN kernel has much less trainables than other models as a result
of its layers and channels being kept the same as other models instead of the trainables.
According to our previous tests, the performance of a GNN model with GCN kernel can
not be improved even if its trainables are increased to the same level of the others by
increasing channel number proportionally at each layer.

To investigate the influence of different convolutional kernels and to show the adapt-
ability of proposed approach to unstructured mesh, all the models are trained five times
with different random seeds for 200 epochs on dataset generated from 2D BFS structured
mesh introduced in section 5.2. The results are summarized in subsection 6.3.2 and 6.3.3,
respectively. For all the GNN based models, the velocity on all the 74400 cells in the BFS
structured mesh were used as the input. For CNN model, only 240 × 80 cells located in
a rectangular region behind the step (0 < x < 8h, 0 < y < h) were used as the input.
Other traininig details are kept the same as those in section 5.2. The vortex identification
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Table 6.4: Summary of hyper-parameters of different models.

No. Kernel Architecture Layers Kernel size Trainables
1. CNN U-Net 14 3*3 85697
2. GMM U-Net 14 9 86793
3. Fast-GMM U-Net 14 9 85697
4. SplineCNN U-Net 14 3*3 85697
5. GCN U-Net 14 - 9793

performances of all the models are evaluated in terms of the four classification metrics:
accuracy, precision, recall and F1 score, on the points in the vortex region behind the
step (0 < x < 8h, 0 < y < h) over test cases to ensure the fairness of the performance
comparison between CNNs and GNNs. To further reveal the generality of different GNN
convolutional kernels, the GNN models are trained on data-set formed by both struc-
tured and unstructured BFS meshes and then tested on unseen cases with different mesh
topologies and different turbulence models at different Reynolds numbers. The results are
included in subsection 6.3.4. Mesh types of the training and testing cases in the following
sections are summarized in Table 6.5.

Table 6.5: Mesh types of the training and testing cases in the following sections.

Training mesh type Testing mesh type
Section 6.3.2 Structured Structured
Section 6.3.3 Structured Unstructured
Section 6.3.4 Structured and unstructured Structured and unstructured

6.3.2 Kernel influence

Since the U-Net architecture leads to faster model training and a more accurate classi-
fication, we continue to test all kernels on this architecture. As shown in Table 6.6, all
the highest values and lowest values for each column are colored in green and red respec-
tively among all models except the one with GCN kernel whose bad performances are
expected. The model with our proposed Fast-GMM kernel outperforms the other models
on all classification evaluation criteria by a large margin, except for precision which is
very close to the highest at the price of slightly larger standard deviation. And it requires
significantly shorter training time compared with those with original GMM kernel and
SplineCNN kernel (even though it is far behind the CNN-Unet model on computational
efficiency), despite its inference time per case being slightly higher than GMM-Unet. The
training time per epoch for CNN-Unet model is at least one order of magnitude lower
not only because it takes one fifth of the points used by GNN models in our training but
also mainly because the connectivity and orientation information between the neighboring
points are already implicitly embedded in the arrangement of the array.

As shown in Fig. 6.8, CNN-Unet model converges the fastest, requiring around 15
epochs to give meaningful classification according to the authors’ experience, while other
GNN model needs at least 5 times as many epochs. The GNN model with our proposed
Fast-GMM kernel converges faster than GMM-Unet and has no fluctuation in validation
loss history. The validation loss curve overlaps the training loss curve for all the models
except the GMM-Unet, which implies that no overfitting happens in the training.
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Table 6.6: Performance summary of five kernel functions on test cases. (Among CNN-Unet,
GMM-Unet, Fast-GMM Unet, SplineCNN-Unet: Green - best value; Red - worst
value.)

No. Model Accuracy Precision Recall F1 score time/epoch
Training

time/case
Inference

1. CNN-Unet 88.88±0.12 91.11±1.61 65.09±1.86 75.89±0.70 5.6±0.3s 0.008s
2. GMM-Unet 88.58±0.28 91.15±0.91 63.80±1.31 75.04±0.80 85.5±0.3s 0.498s
3. Fast-GMM-Unet 89.62±0.32 90.94±1.01 68.27±1.71 77.97±0.92 51.4±0.1s 0.580s
4. SplineCNN-Unet 88.79±1.20 89.99±2.91 65.68±3.05 75.91±2.78 125.8±0.1s 0.831s
5. GCN-Unet 77.74±1.08 66.50±1.68 35.06±7.83 45.32±7.25 62.3±0.8s 0.205s

Figure 6.8: Loss history of five models with U-Net architecture.

The identifications by different models at a given time step in test cases are shown
in Fig. 6.9. Among all the models, CNN-Unet model can identify the vortices with
the sharpest boundary and with the shape closest to the ground-truth, while GCN-Unet
model fails to identify separate vortexes which is as expected. By contrast, GMM-Unet
model identifies the vortices smaller than the ground-truth with diffuse boundary which is
especially visible for the second and last vortices counting from the left. Fast-GMM-Unet
model and SplineCNN-Unet model are the two GNN-based models which can identify the
vortices’ shape closest to those identified by CNN-Unet and to ground-truth.

The performance of the Fast-GMM-Unet model is slightly higher than CNN-Unet
judging from ROC plot shown in Fig. 6.10, and slightly better than both CNN-Unet and
other GNN models. The SplineCNN-Unet model has the largest standard deviation value
for a large range of FPR compared to other direction-aware GNN models which is aligned
with the statistics in Table 6.6.

6.3.3 Adaptability to unstructured mesh

In this section, we demonstrate the generality of our proposed framework and Fast-GMM
kernel to unstructured meshes and case not included in the training. A BFS case at
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Figure 6.9: Comparison of the identificed vortices of five models on test cases of BFS structured
mesh. (From top to bottom: Streamline of vortices in BFS; CNN-Unet; GMM-Unet;
Fast-GMM-Unet; SplineCNN-Unet, GCN-Unet.)

Figure 6.10: Receiver operating characteristic curves of different models with U-Net architecture
evaluated on test cases of BFS structured mesh.

the same Reynolds number as that included in the dataset was simulated with the same
turbulence model using an unstructured mesh. All the models are trained on graphs built
from BFS structured mesh and directly tested on flow field and graphs obtained from
BFS unstructured mesh and unseen periodic hill (PH) structured mesh. The graphs from
unstructured BFS case are shown in Fig. 6.4. The graphs for BFS unstructured mesh are
based on shared-faces since no significant model performance improvement observed when
the connectivity is increased using shared-vertices. All the graphs’ information including
number of nodes, edges and average node degree is summarized in Table 6.1.

The vortices at two time steps identified by GMM-Unet, Fast-GMM-Unet and SplineCNN-
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Unet are shown in Fig. 6.11 together with the streamline plots. While SplineCNN-Unet
model fails to correctly identify the shape of most vortices, both GMM-Unet and Fast-
GMM-Unet models capture the vortices morphology closer to the ground-truth. The
Fast-GMM-Unet model tends to identify larger vortex regions and has the closest identi-
fication to the ground-truth than the other two models. All three models misidentify the
near-wall region at the left as vortex, which could be ascribed to the differences between
the structured mesh included in the dataset and the unstructured mesh. They also strug-
gle to detect the elongated vortices, especially the stretched tail part which is possibly
due to morphological differences between vortices in the dataset and those on this un-
seen unstructured mesh. The vortices’ shapes are more compact on the structured mesh
and more elongated on the unstructured mesh. Even with so many differences between
the cases in the dataset and the unseen case, our proposed framework combined with
Fast-GMM kernel still gives very satisfactory results. Therefore, we have good reasons to
believe that with more cases of unstructured mesh included in the training dataset, the
performance of our model can be further improved.

(a) (b)

Figure 6.11: Comparison of vortices identified by GMM-Unet, Fast-GMM-Unet and SplineCNN-
Unet models on unseen BFS unstructured mesh at two time steps: (a) Time =
14.60s; (b) Time = 14.90s. (From top to bottom: streamline, GMM-Unet, Fast-
GMM-Unet and SplineCNN-Unet.)

6.3.4 Generality analysis

To further evaluate the generality of the proposed approach on detecting vortexes with
respect to different meshes in terms of mesh type, mesh density and mesh aspect ratio for
structured mesh, different turbulence models and different Reynolds numbers, the GMM-
Unet and SplineCNN-Unet models are trained again on the dataset formed by the BFS
results obtained using both BFS structured and unstructured meshes and then tested on
three of code_saturne validation cases: lid-driven cavity flow, heat transfer in a cooling
channel with periodic ribs (RIBS) Rau et al. (1998); Arts et al. (2007), asymmetric plane
diffuser flow Buice (1997); Obi et al. (1993). The main simulation details of these cases
are summarized in Table 6.7. The configuration of three cases are shown in Fig. 6.12.
Lid-driven cavity. The lid-driven cavity flow configuration is shown in Fig. 6.12a. The
top lid moves towards right direction and other walls are static. The no-slip conditions are
applied on the walls. The Reynolds number is 5000. The k−ω SST turbulence model was
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Table 6.7: Simulations details of four cases.

Case Re Turbulence model Mesh
Type AR No. cells(Nx×Ny)

BFS 5100 Rij − ϵ SSG
Structured 3.2 74400

Unstructured - 131118

Cavity 5000 k − ω SST

Structured 1 90000300×300

Structured 1 40000200×200

Structured 1 10000100×100

Structured 1 250050×50

Structured 3 249429×86

Structured 6 250020×125

Structured 9 249914×147

RIBS 30000
k − ϵ LP

Unstructured
Structured

-
3

7735
18296

k − ω SST
Rij − ϵ SSG

Diffuser 18000 k − ω SST
HR structured 0.3 ∼ 47.7 21648328×66

LR structured 0.3 ∼ 119.8 31488328×96

(a) Lid-driven cavity. (b) RIBS.

(c) Diffuser.

Figure 6.12: Configurations of three cases.

used to simulated the cavity flow on the finest mesh which contains Nx×Ny = 300× 300
cells. The velocity field is then interpolated to coarser meshes of different refinement levels
from 2500 to 40000 cells of the same aspect ratio AR = 1, and two meshes of different
aspect ratios from 1 to 9 with the cell number around 2500. The aspect ratio is defined
as the ratio of the cell’s length on the x direction to its width on the y direction.
RIBS. The RIBS configuration is shown in Fig. 6.12b. Air flows from the left to the
right, at the atmospheric pressure and temperature. The left and right boundaries are
set to be periodic. The top and bottom walls are heated while the two ribs are not.
The Reynolds number and Prandtl number are 30000 and 0.71, respectively. The RIBS
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case was simulated using three turbulence models with both structured and unstructured
meshes.
Diffuser. The 2D flow inside a planar asymmetric diffuser, as shown in Fig. 6.12c,
is simulated using k − ω SST turbulence model with fully-developed turbulent inlet at
Re = 18000 based on the bulk inlet velocity and the inlet channel height with two types
of meshes: high-Reynolds (HR) mesh and low-Reynolds (LR) mesh.
Mesh density influence. As show in Fig. 6.13, the vortex regions identified by both

Figure 6.13: Identifications of vortexes on lid-driven cavity meshes of different refinement levels
by GNN models.

GMM-Unet and SplineCNN-Unet in the coarsest mesh are the largest in the coarsest
mesh. The identified regions become smaller as the mesh refinement level increases. The
capability of recognizing a certain pattern of all the pure convolution-based machine learn-
ing models is limited to the size of effective receptive field (ERF). A trained model fails
to correlate two points separated by a distance larger than the ERF which is determined
by both the hyper-parameters of the model and the dataset. As indicated by one typical
snapshot of streamline plot in Fig. 5.7, for the BFS structured mesh, 100 × 40 cells are
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distributed in the vortex region where normally four to five vortexes exist. Thus, a single
vortex in the training dataset covers no more than 25 cells on one specific direction. As a
result, these two models trained on this dataset can only detect the vortexes of comparable
sizes in terms of how many mesh cells they span.
Mesh aspect ratio influence. The aspect ratio of the BFS structured mesh included
in the training dataset is AR = 3.2. As a result, the two models trained on this dataset
well identified the vortexes on the mesh of AR = 3 as shown in Fig. 6.14. As the aspect
ratio deviates from 3.2, their identification performances deteriorate which is more evident
for SplineCNN-Unet. The SplineCNN-Unet model successfully identified three secondary
vortexes in the corners on the mesh of AR = 1, all vortexes on the mesh of AR = 3, and
the primary vortex center on the mesh of AR = 6, but failed on the mesh of AR = 9.
Compared to SplineCNN-Unet, the GMM-Unet model identified more or less the same
vortex region on the four meshes and thus has a better generality to the variation of the
mesh aspect ratio. However, the vortex regions identified by the GMM-Unet model do not
cover the vortex center and have diffuse boundaries compared with the SplineCNN-Unet.

Figure 6.14: Identifications of vortexes on lid-driven cavity meshes of different aspect ratios by
GNN models.

85



Mesh type influence. The mixture of both structured and unstructured meshes in the
dataset poses no problem to the training. As shown in Fig. 6.15, while the SplineCNN-
Unet model better identified the vortex center and shape on the structured mesh compared
with the GMM-Unet model, but degraded more on the unstructured mesh where it only
identified the lower half of the vortexes. The GMM-Unet model once again has better
generality to the mesh type.

(a) Structured mesh.

(b) Unstructured mesh

Figure 6.15: Identified Vortexes by different GNN kernels on RIBS structured and unstructured
meshes. GNN kernels from top to bottom: GMM, SplineCNN and Fast-GMM.
Turbulence models from left to right: k − ϵ LP , k − ω SST and Rij − ϵ SSG.

Turbulence models’ influence. To test the sensitivity of the proposed approach to the
turbulence models, three commonly used models, k− ϵ linear production, k−ω SST and
Rij − ϵ SSG, were selected because we intend to detect the vortexes generated by RANS
turbulence models. As shown in Fig. 6.15, the turbulence models have no visible influence
on the identification performance of the proposed approach. The robustness of our models
to different turbulence models is explainable since they identify the vortexes based on the
topological distribution of the velocity field which is universal among different turbulence
models.
Mesh size scaling influence. As shown in Fig. 6.16, the cell size along the wall normal
direction in the low-Reynolds diffuser mesh increases continuously, while in high-Reynolds
diffuser mesh, the cell size from the first to the second layer perpendicular to the wall
decreases abruptly. As shown in Fig. 6.17, both GMM-Unet and SplineCNN-Unet models
can capture the vortexes on two meshes. On the high-Reynolds mesh, the identified vortex
regions by both models are non-connected while those on the low-Reynolds mesh are closer
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to the real vortex topology. Therefore the proposed approach is quite robust to the mesh
size scaling but sensitive to the abrupt scaling jump.

(a) High-Reynolds mesh. (b) Low-Reynolds mesh

Figure 6.16: Two diffuser meshes.

Figure 6.17: Identified vortexes of differet GNN kernels on two diffuser meshes. GNN kernels
from top to bottom: GMM, SplineCNN and Fast-GMM. Turbulence models from
left to right: high-Reynolds mesh and low-Reynolds mesh.

6.4 3D Vortex identification

In this section, the extensibility of the previous Fast-GMM-Unet model to 3D vortex
identification is demonstrated on the vortex generator case Derksen (2005). The 3D
counter-rotating vortex pair formed due to the injection of a high-velocity jet to the low-
velocity crossflow is simulated as the 3D vortex dataset Karvinen and Ahlstedt (2005).

6.4.1 Dataset generation

The schematic of the computational domain is shown in Fig. 6.18. The computational
domain contains a rectangle part with size of 40D×15D×15D at (x, y, z) directions and
a vertical round pipe with diameter D. The right-ward horizontal crossflow enters the
domain at velocity 1.435m/s from the left inlet located 10D upstream of the branch pipe
through which the jet is injected to the crossflow. The outlet is located 30D downstream
the pipe. The bottom boundary is wall while the rest three side boundaries are set to
symmetry. To obtain a large dataset, a sinusoidal pulsating velocity component is added
to the initial constant jet inlet velocity of 4.98m/s after the static flow field is fully
established leading to the following jet velocity inlet:

wj = 4.95 + sin(
πt

2
). (6.6)
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The Reynolds number ReD based on the jet velocity and pipe diameter is in the range
[6488, 9772]. The mapped inlet boundary is used for two inlets where the velocity profile
at 10D downstream the inlet is mapped to the inlet to obtain a fully developed velocity
profile.

10D 4.5D 24.5D

5
D

Mapped inlet

10
D

Jet inlet
wj = 4.95 + sin(πt2 )m/s

Crossflow inlet
u = 1.435m/s

Mapped inlet

x

z

15
D Outlet

Symmetry

Wall

Figure 6.18: Schematic of the cross-section on OXZ plane through the jet inlet axis of 3D jet-in-
crossflow case.

The jet-in-crossflow case is simulated by two turbulence models, k− ϵ and k−ω SST
using transient solver with a structured mesh of 921600 cells. The results at 20 time
instances evenly distributed within one pulsating period are sampled to form the dataset.
The dataset is further augmented by rotating the results 90◦ around y axis resulting in 80
samples in the final dataset. Cells with Q-criterion larger than 0.01 are labeled as vortex
region. This threshold is selected to remove the false vortex region near the bottom wall.
The labeled vortex regions for two simulations at one time instance are shown in Fig.
6.19.

(a) k − ϵ. (b) k − ω SST .

Figure 6.19: Vortex region labeled using Q-criterion in 3D jet-in-crossflow case obtained by two
turbulence models.
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6.4.2 Results analysis

As shown in Fig. 6.20, a 3D Fast-GMM kernel which contains 9 directions on 3 layers
at Z direction, thus 27 direction in total, is constructed. The 8-layer architecture in
Section 5.2 is utilised instead of the 14-layer architecture in the previous section due
to the consideration of reducing memory consumption as a result of the tripling of the
direction number in the kernel, leading to 166729 trainable parameters. This model was
trained on one GPU node with 4 Tesla V100 GPUs on EDF Cronos cluster for 200 epochs
which took around 1.7 hours.

Figure 6.20: 3D Fast-GMM kernel.

The trained GNN model is tested on identifying the confined swirling flow inside a
vortex generator Derksen (2005). Two inlet scenarios are simulated, one with inlet at the
side slot, as shown in Fig. 6.21, and another one with inlet at the end of the large swirl
tube, as shown in Fig. 6.22.

For the first scenario, GNN model successfully identified the main body of the vortex
in both the swirl tube and exit pipe. However, its identification is not continuous, there
is a clearance between the vortex core and the identified peripheral part of the vortex.
It also misclassified the corner in the inlet slot near the contraction as a vortex region.
While for the case with inlet at the end of the swirl tube there only exist vortexes near
the contraction, the GNN model correctly identified a vortex region near the contraction
but also made wrong classification near the inlet and inside the exit pipe.

6.5 Summary

In this chapter, we proposed a GNN-based framework to identify the flow phenomena
based on CFD computations with the proposed Fast-GMM as the convolution kernel
and U-Net architecture, which accepts unstructured data and therefore can be directly
applied to the CFD results produced from real industrial cases using unstructured meshes.
The Fast-GMM significantly increases the computational efficiency compared with the
original GMM while maintaining a comparable identification performance to that achieved
by the traditional CNNs. The U-Net architecture uses the graph hierarchy generated
by an algebraic multigrid method (which is used in many CFD codes to accelerate the
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(a) Streamline.

(b) Vortex region identified by GNN model.

Figure 6.21: Streamline plot and vortex region identified by GNN on vortex generator case with
side inlet.

convergence of the iterative elliptic solvers), to shorten the training time and thus endows
the framework the potential to be organically integrated into our open source CFD solver
code_saturne in the future. The superiority of the proposed Fast-GMM kernel against the
original GMM, SplineCNN and GCN, and the advantage of U-Net architecture against
skip-connection and sequential architectures are experimentally demonstrated in terms of
identification performance and computational efficiency on detecting vortices in 2D cases
with both structured and unstructured meshes. The proposed framework on detecting
3D vortex is also exemplified in the vortex generator case.
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(a) Streamline.

(b) Vortex region identified by GNN model.

Figure 6.22: Streamline plot and vortex region identified by GNN on vortex generator case with
left inlet.
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7 | Conclusions and perspectives
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7.1 Conclusions

In the current work, state-of-the-art algorithms from the computer vision domain were
adapted to fluid dynamics to identify the flow phenomena on the CFD results.

First of all, a review of machine learning applications in several aspects of fluid dy-
namics, including flow phenomena identification, super resolution, surrogate modelling,
turbulence modelling, reduced order modeling, was conducted. CNNs are widely adopted
in these different tasks because of their capability of processing the spatial features and
good generality.

Before applying the CNN model to identify flow phenomena, the possible influencing
factors on the CNN’s accuracy were explored in regression of the pressure around cylinder
case based on the velocity field in the wake region. We started by using CNNs to detect
the first phenomenon on 2D meshes - the vortex region behind the backward facing step.
An automatic 2D vortex labelling method based on first-depth search and random walking
algorithms was proposed to label the vortex regions on both structured and unstructured
meshes. The potential features characterizing the vortex region were evaluated as input
for the CNN model with U-Net architecture. The results showed that CNN can well
identify the separated vortexes from the normalized velocity field. The extendability of
this model to other flow phenomenon, provided with a properly labelled dataset, was
also demonstrated on thermal stratification, requiring only a slight modification to the
architecture - adding gravity direction.

This CNN-UNet model template was then extended to GNNs in pursuit of directly
consuming data on unstructured meshes. The methodology of constructing the bidirec-
tional graphs from CFD meshes was detailed. Several promising graph convolutional
kernels, such as GMM, SplineCNN and GCN, were compared with the conventional ker-
nel in CNNs on structured mesh. A novel graph convolutional kernel - FastGMM was
proposed by simplifying the original GMM which is more suitable for graphs derived from
unstructured CFD meshes. The results suggested that the proposed FastGMM kernel has
better identification accuracy on unstructured meshes and is more computational efficient.
Inspired by the idea of AMG accelerating the iteration convergence of linear algebraic
equations, the graph hierarchy generated from AMG method was used for the U-Net
architecture to enable the model to gather and update hidden features of multi-scales.
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The results evidenced that the AMG U-Net architecture leads to a higher identification
accuracy and considerable improved computational efficiency compared with sequential-
and skip-architecture. The proposed framework is also able to detect 3D flow phenomena
such as the vortex structure inside the 3D vortex generator case.

7.2 Perspectives

As the first exploration in the département mécanique des fluides, energie et environ-
nement (MFEE) of using ML algorithms to detect flow phenomena in CFD results, some
deficiencies are inevitable and there remain several directions to be explored.

At the current stage, only two flow phenomena were detected, vortex and thermal
stratification regions. In the future, more flow features, such as boundary layer and jet,
can be identified. The grid coarsening could be based on flow phenomenon related systems
instead of that used for the pressure correction. Take the vortex detection for example,
we could merge cells having the most similar values of velocity direction and dynamic
pressure.

CNN/GNN methods are perplexed by the problem induced by the fixed effective re-
ceptive field which is limited by the model hyperparameters such as architecture, kernel
size, and training data. It is a problem when the model is applied to a case with the same
geometry but with meshes of different refinement levels. Including more target flow phe-
nomena of large scales in the training dataset can alleviate this problem to some extend.
There is potential of detecting larger flow structures for the U-Net architecture. Includ-
ing more levels of graphs in the U-Net architecture will enlarge the effective receptive
field. Another possible direction is to compress the flow feature from the original mesh
to deeper graphs and directly perform the feature identification on this deep graph. This
can be combined with other types of neural networks such as transformer or recurrent
neural network. However the former performs the calculation on the entire matrix which
is very expensive, while the latter consumes a series of unlimited number of inputs which
is compatible with non predefined number of depth in AMG hierarchy.

This work adopts supervised training that requires labeled datasets, which are not
easily obtained for flow phenomena identification tasks. Since for the recommendations of
CFD case configuration, we do not need to know exactly where the target flow features are
located, but only some elements/statistics (i.e. strong presence, size, probably some ori-
entation related elements, ...), so the requirements of the input for the machine learning
model may be slightly relaxed (though finer detection is always useful for understand-
ing/debugging what the models does). In the future, unsupervised training algorithms
such as generative adversarial network can be explored.

This work currently focuses on the first step for improving confidence on CFD result
- identifying flow phenomena. There is one possible direction for the second step - giving
suggestions for CFD user to better configure CFD calculation case. Since the model
form uncertainty in the turbulence models’ prediction of Reynolds stress highly influences
CFD result accuracy, it can be used as an indicator of CFD result accuracy. One possible
direction is to build a surrogate model trained on high fidelity dataset formed by DNS
and LES simulations to predict the Reynolds stress from the time averaged flow fields.
The deviation between the Reynolds stress tensor predicted by turbulence model and that
reconstructed by surrogate model indicates whether the result should be trusted.
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A | Machine learning code snippets

The machine learning source code is included in this appendix.
The vortex labeling algorithm code on 2D CFD mesh is shown in ’labelSeparateVor-

tex.py’ A.1.
The input data including flow features, label and mesh information is extracted from

the csv file output by code_saturne and prepared in ’preDataset.py’ A.2. The data is
split into training, tesing and validation datasets and saved into three files respectively
which are readable for pytorch.

The kernel functions and model architecture are written in ’model.py’ A.3. Every
kernel/layer/model is a class. All the parameters related to the kernel/layer/model are
defined in the __init__() property. How the kernel/layer/model calculates the output
features from the input features is defined in forward() function.

The training loop is initiated by running ’train.py’ A.4. This script reads the datasets
and load the models one by one from ’model.py’ A.3. Before entering the training loop, an
optimizer is initialized using Adam algorithm with predefined learning rate. The graphs
and the corresponding flow features in the dataset are fed to the model sequentially. The
loss between the label and the output of the model is calculated and the gradients for all
the trainable parameters are accumulated for every batch of data. After reading a batch
of data, the trainables are updated by optimizer.step() function and the gradient are set
to zero by optimizer.zero_grad(). It is called one training epoch when all the data is fed
to the model one time. At the end of one epoch, the model with updated trainables is
evaluated to obtain the training, testing and validation losses.

The hyperparameters about the model architecture, such as the dimensions of the
hidden feature in each layer, depth of UNet architecture, are defined in ’param.py’ A.5.

Other useful functions are included in ’utils.py’ A.6. The algorithm (binary cross
entropy selected here) used for loss calculation is defined in loss_eval(). The ROC and
the area under ROC are calculated by roc_eval() and auc_eval(), respectively. Four
classficiation evaluation criteria are calculated by metrics(). Other functions are used to
output the loss plot, ROC plot, AUC plot and identified vortex region plot.

Code Listing A.1: labelSeparateVortex.py
1 # Python program to detect cycle
2 # in a graph
3 import os
4 import math
5 import numpy as np
6 import random
7 import pandas as pd
8 from copy import deepcopy
9 import matplotlib.pyplot as plt

10 from collections import defaultdict
11 import networkx as nx
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12 from joblib import Parallel , delayed
13

14

15 def noPtInSet(ptset , pts):
16 no_pt_included = True
17 for ipt in pts:
18 if (ipt in ptset):
19 no_pt_included = False
20 break
21 return no_pt_included
22

23 def allPtInSet(ptset , pts):
24 all_pt_included = True
25 for ipt in pts:
26 if (ipt not in ptset):
27 all_pt_included = False
28 break
29 return all_pt_included
30

31

32 def twoHopsDsPt(graph , pts):
33 ptfound = False
34 for icore in pts:
35 """
36 if (icore in bounds_of_all_vortices):
37 continue
38 """
39 if (ptfound == True) :
40 break
41 for ids_core in list(graph.adj[icore]):
42 if (ptfound == True) :
43 break
44 if (ids_core not in pts):
45 for ids_ds_core in list(graph.adj[ids_core ]):
46 if (ids_ds_core not in pts):
47 start_node = ids_ds_core
48 ptfound = True
49 break
50 if (ptfound == False):
51 print("Starting point is not found !!!")
52 return False
53 else:
54 return start_node
55

56 def delSubgraph(graph , subg):
57 graph.remove_nodes_from(subg)
58 for iedge in list(graph.edges ()):
59 if (iedge [0] in subg or iedge [1] in subg):
60 graph.remove_edge(iedge[0], iedge [1])
61 graph.normFlux ()
62 return graph
63

64

65 def plotBound(coord , bound , core_list , figname):
66 x_min = 0.0
67 x_max = 0.80
68 y_min = 0.00
69 y_max = 0.120
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70 size = 40
71 diag_size = math.sqrt(pow(y_max -y_min , 2)+pow(x_max -x_min , 2))
72

73 fig , ax = plt.subplots(figsize =((x_max -x_min)/diag_size* size , (
y_max -y_min)/diag_size*size),

74 constrained_layout=True)
75

76 bound_coord = coord[bound]
77 ax.scatter(bound_coord [:, 0], bound_coord [:, 1], c=’b’)
78 for i, icore in enumerate(core_list):
79 core_coord = coord[list(icore)]
80 ax.scatter(core_coord [:, 0], core_coord [:, 1], c=’r’)
81 ax.set_aspect(’equal’)
82 plt.xlim(x_min , x_max)
83 plt.ylim(y_min , y_max)
84 #plt.savefig(figname , transparent=True)
85 plt.show()
86 plt.close ()
87 return
88

89 def plotBoundInGraph(g, coord , bound , vortex_core , more_in_list ,
more_out_list , figname):

90 print(" Saving Figure !!!")
91 width = 0.0001
92 scatter_size = 200
93

94 x_min = 0.0
95 x_max = 0.80
96 y_min = 0.00
97 y_max = 0.120
98

99 size = 20
100 diag_size = math.sqrt(pow(y_max -y_min , 2)+pow(x_max -x_min , 2))
101

102 fig , ax = plt.subplots(figsize =((x_max -x_min)/diag_size* size , (
y_max -y_min)/diag_size*size),

103 constrained_layout=True)
104

105 for start in list(g.nodes ()):
106 x = coord[start ][0]
107 y = coord[start ][1]
108 if (x<x_max and x>x_min and y<y_max and y>y_min):
109 for end in list(g.adj[start ]):
110

111 dx = coord[end ][0] - x
112 dy = coord[end ][1] - y
113 length = math.sqrt(pow(dx ,2)+pow(dy ,2))
114

115 arrow_color = ’k’
116 """
117 if (dx >0 or dy >0):
118 arrow_color = ’g’
119 """
120 if (start in bound and end in bound):
121 arrow_color = ’r’
122 if (start in vortex_core and end in vortex_core):
123 arrow_color = ’r’
124
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125 ax.arrow(x, y, dx , dy,
126 width = width , length_includes_head=True ,
127 head_width =0.1* length , head_length=length *0.3,
128 ec=arrow_color , fc=arrow_color)
129

130 if (start in bound ):
131 ax.scatter(x, y, s=scatter_size , c=’r’)
132 elif (start in more_in_list):
133 ax.scatter(x, y, s=scatter_size , c=’g’)
134 elif (start in more_out_list):
135 ax.scatter(x, y, s=scatter_size , c=’b’)
136 else:
137 ax.scatter(x, y, s=scatter_size , c=’k’)
138 #ax.set_xticklabels ([])
139 #ax.set_yticklabels ([])
140 ax.set_aspect(’equal’)
141 plt.xlim(x_min , x_max)
142 plt.ylim(y_min , y_max)
143 plt.savefig(figname , transparent=True)
144 #plt.show()
145 return
146

147 class MyGraph(nx.DiGraph):
148 def __init__(self ,vertices):
149 super(MyGraph , self).__init__ ()
150 self.graph = defaultdict(list)
151 self.upstream = defaultdict(list)
152 self.flux = defaultdict(list)
153 self.V = vertices
154

155

156 def normFlux(self):
157 for inode in self.nodes():
158 sumflux = 0.0
159 for iflu in self[inode]. values ():
160 sumflux = sumflux+abs(iflu[’flux’])
161 for iout in self[inode].keys():
162 self[inode ][iout][’weight ’] = abs(self[inode ][iout][’

flux’])/sumflux
163 return
164

165 def findVortCoreUtil(self , v, visited , depth , max_depth):
166

167 for neighbour in list(self.adj[v]):
168 if visited[neighbour] == True:
169 return True
170 elif depth < max_depth:
171 if self.findVortCoreUtil(neighbour , visited , depth+1,

max_depth) == True:
172 return True
173 return False
174

175 def findVortCore(self , roi = None , max_depth = 4):
176 vort_core_list = []
177

178 if roi == None:
179 roi = range(self.number_of_nodes ())
180
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181 for node in roi:
182 visited = [False] * (self.V + 1)
183 visited[node] = True
184

185 if self.findVortCoreUtil(node , visited , 0, max_depth) ==
True:

186 vort_core_list.append(node)
187

188 graphCopy = deepcopy(self)
189 for inode in self.nodes():
190 if (inode not in vort_core_list):
191 graphCopy.remove_node(inode)
192

193 return list(nx.weakly_connected_components(graphCopy))
194

195

196 def findBoundary(self , start_node =3843):
197 closed = False
198 count = 0
199 while closed == False:
200 loop_list = []
201 loop_list.append(start_node)
202 prev_node = deepcopy(start_node)
203 count = count +1
204 length = 0
205

206 while (True):
207 #print(" start_node ={}, count = {}, node = {}". format(

start_node , count , node))
208 if (len(self[prev_node ]) == 0):
209 break
210 elif (len(self.out_edges(prev_node)) == 1):
211 next_node = list(self.adj[prev_node ])[0]
212 else:
213 next_node = np.random.choice(list(self.adj[prev_node

]),
214 p=[i[’weight ’] for i in self[

prev_node ]. values ()])
215

216 if next_node == start_node:
217 closed = True
218 print("count = {}, closed flag = {}, length = {}".

format(count , closed , length))
219 #print(loop_list)
220 break
221 elif (next_node in loop_list [1:]):
222 break
223 loop_list.append(next_node)
224 prev_node = deepcopy(next_node)
225 length = length +1
226 if (count > 10000):
227 print("#### Maximum searching times 10000 reached! ####"

)
228 loop_list = []
229 break
230 return set(loop_list)
231

232 def insideBoundary(self , bd_ids):
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233

234 bd_coord_ar = np.zeros ((len(bd_ids), 2))
235

236 inside_bound = []
237 for i, ibd_id in enumerate(bd_ids):
238 bd_coord_ar[i][0] = self.nodes[ibd_id ][’coord’][0]
239 bd_coord_ar[i][1] = self.nodes[ibd_id ][’coord’][1]
240

241 barycenter = np.mean(bd_coord_ar , axis =0)
242 print("barycenter = ", barycenter)
243 xc = barycenter [0] *100
244 yc = barycenter [1] *100
245 min_coord = np.min(bd_coord_ar , axis =0)
246 max_coord = np.max(bd_coord_ar , axis =0)
247

248 for ipt in self.nodes():
249 if (self.nodes[ipt][’coord ’][0]> min_coord [0] and
250 self.nodes[ipt][’coord’][0]< max_coord [0] and
251 self.nodes[ipt][’coord’][1]> min_coord [1] and
252 self.nodes[ipt][’coord’][1]< max_coord [1]):
253

254 xp = self.nodes[ipt][’coord ’][0] *100
255 yp = self.nodes[ipt][’coord ’][1] *100
256 outside_flag = False
257 for ibd in range(len(bd_ids)):
258 x0 = bd_coord_ar[ibd ][0] *100
259 y0 = bd_coord_ar[ibd ][1] *100
260 x1 = bd_coord_ar [(ibd +1)%len(bd_ids)][0] *100
261 y1 = bd_coord_ar [(ibd +1)%len(bd_ids)][1] *100
262

263 A = np.array ([[yc-yp , -xc+xp],
264 [y1 -y0 , -x1+x0]])
265 b = np.array ([[-(xc -xp)*yp+xp*(yc-yp)],
266 [-(x1-x0)*y0+x0*(y1 -y0)]])
267 inter = np.linalg.solve(A, b)
268

269 if ((inter[1]-yc)*( inter [1]-yp) <=0 and (inter [0]-xc)
*(inter [0]-xp) <=0):

270 outside_flag = True
271 break
272 del A, b, inter
273 if (outside_flag == False):
274 inside_bound.append(ipt)
275 inside_bound = list(set(inside_bound) - set(bd_ids))
276 return inside_bound
277

278

279 def labelSeparatedVortex(path , step , anchor_pts = [0, 7200]):
280

281 print("LABELING ", os.path.join(path , ’directededge_ ’+step))
282 edges = np.array(pd.read_csv(os.path.join(path , ’directededge_ ’+step

), usecols = [’x’, ’y’],
283 skipinitialspace=True , delimiter=",",

dtype=np.int64))
284 flux = np.array(pd.read_csv(os.path.join(path , ’directededge_ ’+step)

, usecols = [’massflux ’],
285 skipinitialspace=True , delimiter=",",

dtype = np.float64))
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286 coord = np.array(pd.read_csv(os.path.join(path , ’nodes_ ’+step),
usecols = [’x’, ’y’],

287 skipinitialspace=True , delimiter=",",
dtype = np.float64))

288

289 roi = [i for i, item in enumerate(coord) if item [0] < 0.7 and item
[1] < 0.1]

290

291 g = MyGraph(len(edges))
292

293 for i in range(len(coord)):
294 g.add_node(i, coord=coord[i])
295

296 for i, item in enumerate(edges):
297 g.add_edge(item[0], item[1], flux=abs(flux[i][0]))
298

299 g.normFlux ()
300 print("num of nodes = ", g.number_of_nodes ())
301

302 vortex_core = g.findVortCore(max_depth = 6)
303

304 sepCore = deepcopy(g)
305 for inode in g.nodes():
306 if (inode not in vortex_core):
307 sepCore.remove_node(inode)
308 core_list = list(nx.weakly_connected_components(sepCore))
309 print("core_list = ", core_list)
310 plotBound(coord , list(vortex_core), core_list , "figname")
311

312 bound_list = deepcopy(core_list)
313 bound_bk_list = []
314 allbound = []
315

316

317 boundnotchanged = True
318 g_nonvort = deepcopy(g)
319 while (boundnotchanged):
320 for num_core , icore in enumerate(core_list):
321 print("*** number = {}, icore = {}".format(num_core , icore))
322 print(coord[list(icore)[0]][0] , coord[list(icore)[0]][1])
323 if (removed_node[num_core] == 1):
324 startpt = twoHopsDsPt(g, icore)
325 else:
326 startpt = random.choice(list(bound_list[num_core ]))
327

328 bound = g_nonvort.findBoundary(start_node = startpt)
329 print("boundary = ", bound)
330 plotBound(coord , list(bound), core_list , "figname")
331

332 g_temp = deepcopy(g)
333 g_temp.remove_nodes_from(bound)
334 subgraphs = list(nx.weakly_connected_components(g_temp))
335

336 otherCoreInBound = False
337

338 for isubg in subgraphs:
339 if (noPtInSet(isubg , anchor_pts) and allPtInSet(isubg.

union(bound), icore)):
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340 if (noPtInSet(isubg.union(bound), set(vortex_core)-
icore) ):

341 print("rest_core = ", set(vortex_core)-icore)
342 print("## Deleting subgraph ! Deleting points

number = {}##".format(len(isubg)))
343 delSubgraph(g_nonvort , isubg)
344 bound_list[num_core] = deepcopy(bound)
345

346 break
347 else:
348 otherCoreInBound = True
349 print("## Other core in Bound! ##")
350 break
351

352 if (bound_list == bound_bk_list):
353 boundnotchanged = False
354 print("#### All bounds not changed , searching terminated !!

####")
355 else:
356 bound_bk_list = deepcopy(bound_list)
357 print("########## Bound changed , continue searching !!

#########")
358 allbound = [ipt for ibound in bound_list for ipt in ibound]
359

360 delSubgraph(g_nonvort , allbound)
361

362 print("Search completed !!!")
363 return
364

365

366 def createGraph(path , step , anchor_pts = [0, 7200]):
367

368 print("LABELLING ", step)
369 edges = np.array(pd.read_csv(os.path.join(path , ’directededge_ ’+step

), usecols = [’x’, ’y’],
370 skipinitialspace=True , delimiter=",",

dtype=np.int64))
371 flux = np.array(pd.read_csv(os.path.join(path , ’directededge_ ’+step)

, usecols = [’massflux ’],
372 skipinitialspace=True , delimiter=",",

dtype = np.float64))
373 coord = np.array(pd.read_csv(os.path.join(path , ’nodes_ ’+step),

usecols = [’x’, ’y’],
374 skipinitialspace=True , delimiter=",",

dtype = np.float64))
375

376 roi = [i for i, item in enumerate(coord) if item [0] < 0.7 and item
[1] < 0.1]

377

378 g = MyGraph(len(edges))
379

380 for i in range(len(coord)):
381 g.add_node(i, coord=coord[i])
382

383 for i, item in enumerate(edges):
384 g.add_edge(item[0], item[1], flux=abs(flux[i][0]))
385

386 g.normFlux ()
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387 return g
388

389 def mergeNearbyCores(core_list):
390 icore_center = np.zeros ((len(core_list), 2), dtype = np.float64)
391 icore_diam = np.zeros(len(core_list))
392 for i, icore in enumerate(core_list):
393 icore_coord = coord[list(icore)]
394 icore_coord_min = np.min(icore_coord , axis = 0)
395 icore_coord_max = np.max(icore_coord , axis = 0)
396 icore_center[i] = np.mean(icore_coord , axis = 0)
397 icore_diam[i] = np.max(icore_coord_max - icore_coord_min)
398 #print(icore_coord_min , icore_coord_max , icore_center , icore_diam)
399

400 merge_list = []
401 for i in range(len(core_list) - 1):
402 for j in range(i+1, len(core_list)):
403 dist = icore_center[i] - icore_center[j]
404

405 dist = math.sqrt(dist [0]* dist [0]+ dist [1]* dist [1])
406 if (dist < icore_diam[i]+ icore_diam[j]):
407 merge_list.append ([i, j])
408

409 for imerge in merge_list:
410 core_list[imerge [0]] = core_list[imerge [0]]. union(core_list[

imerge [1]])
411 core_list[imerge [1]] = core_list[imerge [1]]. union(core_list[

imerge [0]])
412 index = set(range(0, len(core_list))) - set([ imerge [1] for imerge in

merge_list ])
413 return [core_list[i] for i in index]
414

415

416 def labelIndependentVortex(g, core_list , anchor_pts = [0, 7200]):
417 vortex_core = [ipt for icore in core_list for ipt in list(icore)]
418 bound_list = deepcopy(core_list)
419

420 bound_bk_list = []
421 allbound = []
422

423 removed_node = np.zeros(len(core_list), dtype= np.int32)
424 otherCoreInCount = np.zeros(len(core_list), dtype= np.int32)
425 maxSearchTimeReached = np.zeros(len(core_list), dtype= np.int32)
426

427 boundnotchanged = 0
428 g_nonvort = deepcopy(g)
429 while (boundnotchanged <2):
430 for num_core , icore in enumerate(core_list):
431 if (otherCoreInCount[num_core] >3 or maxSearchTimeReached[

num_core] == 1):
432 continue
433

434 print("*** number = {}, icore = {}".format(num_core , icore))
435 print(coord[list(icore)[0]][0] , coord[list(icore)[0]][1])
436 if (len(bound_bk_list)<len(core_list)):
437 startpt = twoHopsDsPt(g, icore)
438 else:
439 #print(’bound_list = ’, bound_list)
440 #print(’core_list = ’, core_list)
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441 startpt = random.choice(list(bound_list[num_core ]))
442

443 bound = g_nonvort.findBoundary(start_node = startpt)
444 plotBound(coord , list(bound), core_list , "figname")
445

446 g_temp = deepcopy(g)
447 g_temp.remove_nodes_from(bound)
448 subgraphs = list(nx.weakly_connected_components(g_temp))
449 if len(bound) == 0 :
450 maxSearchTimeReached[num_core] = 1
451

452 if (len(subgraphs)==1 and len(bound) > 0): #No points
inside the boundary

453 bound_list[num_core] = deepcopy(bound)
454 else:
455 for isubg in subgraphs:
456 if (noPtInSet(isubg , anchor_pts)):
457 if (noPtInSet(isubg.union(bound), set(

vortex_core)-icore) ):
458 print("rest_core = ", set(vortex_core)-icore

)
459 print("## Deleting subgraph ! Deleting

points number = {}##".format(len(isubg)))
460 delSubgraph(g_nonvort , isubg)
461 bound_list[num_core] = deepcopy(bound)
462 removed_node[num_core] = 1
463 otherCoreInCount[num_core] = 0
464 break
465 else:
466 otherCoreInCount[num_core] =

otherCoreInCount[num_core] +1
467 print("## Other core in Bound! ##")
468 break
469

470 if (bound_list == bound_bk_list):
471 boundnotchanged = boundnotchanged +1
472 print("#### All bounds not changed , searching terminated !!

####")
473 else:
474 bound_bk_list = deepcopy(bound_list)
475 print("########## Bound changed , continue searching !!

#########")
476 allbound = [ipt for ibound in bound_list for ipt in ibound]
477

478 delSubgraph(g_nonvort , allbound)
479 print("Search completed !!!")
480

481 g_temp = deepcopy(g)
482 g_temp.remove_nodes_from(g_nonvort.nodes())
483 subgraphs = list(nx.weakly_connected_components(g_temp))
484

485 pts_idx = []
486 for igraph in subgraphs:
487 if len(igraph )> 8:
488 for ipt in igraph:
489 pts_idx.append(ipt)
490

491 return pts_idx
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492

493 def writeLabel(pts_idx , istep):
494 label = np.zeros ((len(coord), 1), dtype=np.int64)
495 for i, ipt in enumerate( pts_idx):
496 label[ipt] = 1
497

498 np.savetxt(’label_ ’+istep.split(’.’)[0]+’.csv’, label)
499 return
500

501

502 def writePtsFile(pts_idx , istep):
503 pts = np.ones((len(pts_idx), 7))*255
504 for i, ipt in enumerate( pts_idx):
505 pts[i][0] = coord[ipt ][0]
506 pts[i][1] = coord[ipt ][1]
507 pts[i][2] = 0.001
508

509 np.savetxt(’label_ ’+istep.split(’.’)[0]+’.pts’, pts)
510 f = open(’label_ ’+istep.split(’.’)[0]+’.pts’, ’r+’)
511 content = f.read()
512 f.write(str(len(pts_idx))+’\n’+content)
513 f.close()
514 return
515

516 def labelVortex(path , istep , anchor_pts):
517 graph = createGraph(path , istep , anchor_pts = anchor_pts)
518

519 roi = [i for i, icoord in enumerate(coord) if icoord [0] < 0.7 and
icoord [1] < 0.1]

520 core_list = graph.findVortCore(roi , max_depth = 5)
521

522 core_list = mergeNearbyCores(core_list)
523 pts_idx = labelIndependentVortex(graph , core_list , anchor_pts)
524 writeLabel(pts_idx , istep)
525

526 figname = ’label’+istep.split(’.’)[0]+’.png’
527 plotBound(coord , pts_idx , core_list , figname)
528

529 if __name__ == "__main__":
530 path = "../BFS/rij_e/RESU/unstructured_yplus_129830_restart/"
531

532 files = [file for file in os.listdir(path) if file.endswith(’0.csv’)
and file.startswith(’nodes_ ’)]

533 files.sort(reverse=False)
534

535 step = [step.split(’_’)[1] for step in files]
536

537 labelled_steps = [file for file in os.listdir(’./’) if file.endswith
(’0.csv’) and file.startswith(’label_ ’)]

538 labelled_steps = [labelled.split(’_’)[1] for labelled in
labelled_steps]

539

540 step = list(set(step) - set(labelled_steps))
541 step.sort()
542

543

544 print(len(step), ’steps to be labelled ’)
545 print("step = ", step)
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546

547 coord = np.array(pd.read_csv(os.path.join(path , ’nodes_10050.csv’),
usecols = [’x’, ’y’],

548 skipinitialspace=True , delimiter=","))
549

550 anchor_pts = [ipt for ipt , icoord in enumerate(coord) if icoord [1] >
0.2]

551

552 Parallel(n_jobs =30)(delayed(labelVortex)(path , istep , anchor_pts)
for istep in step)

Code Listing A.2: preDataset.py
1 import os
2 import numpy as np
3 import pandas as pd
4 import progressbar
5 from time import sleep
6

7 import torch
8 from params import net_params , input_path
9

10 def load_dataset(files , root):
11 nodepath = root + "graph_data/nodes_"
12 labelpath = root + "label/label_"
13 dataset = dict()
14

15 bar = progressbar.ProgressBar(maxval=len(files),
16 widgets =[ progressbar.Bar(’=’, ’[’, ’]’

), ’ ’, progressbar.Percentage ()])
17 bar.start ()
18 for i, ifile in enumerate(files):
19 bar.update(i+1)
20 sleep (0.1)
21 nd = pd.read_csv(nodepath+ifile+’.csv’, skipinitialspace = "True

",
22 usecols =[’x’, ’y’, ’u’, ’v’, ’turb_inten ’, ’

dev_shear ’, ’p_grad_al_st ’, ’q_criteria ’])
23 label = np.loadtxt(labelpath+ifile+’.csv’).reshape ((-1, 1))
24 label = pd.DataFrame(label , columns =[’label’])
25 nd = pd.concat ([nd , label], axis =1)
26

27 nd = np.array([i for i in np.array(nd.sort_values(by=[’y’, ’x’])
) if i[0] >0])

28

29 xlen , ylen = len(set(nd[:, 0])), len(set(nd[:, 1]))
30 nd = pd.DataFrame(nd, columns = [’x’,’y’, ’u’, ’v’, ’turb_inten ’

, ’dev_shear ’, ’p_grad_al_st ’, ’q_criteria ’,’label’])
31 nd = nd.sort_values(by=[’x’, ’y’])
32

33 coord = np.array(nd[[’x’,’y’]]).reshape ((xlen , ylen , 2))
34 coord = np.moveaxis(coord , -1, 0)
35

36 label = np.array(nd[[’label’]]).reshape ((xlen , ylen))
37

38 dataset[ifile] = {’node_feat ’: nd , ’label ’: label , ’coord’:
coord}

39 bar.finish ()
40 return dataset
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41

42

43 if __name__ == "__main__":
44 rootpath = "/home/h79380/test_cases/saturne_vnv/BFS/rij_e/RESU/

structured_yplus_restart/"
45 path = rootpath + "graph_data/"
46

47 input_files = [file.split(’_’)[-1]. split(’.’)[0] for file in os.
listdir(path) if file.endswith(’0.csv’) and file.startswith(’nodes_ ’)
]

48 input_files.sort(reverse=False)
49

50 train_files = input_files [:80]
51 valid_files = input_files [80:90]
52 test_files = input_files [90:100]
53

54 torch.save(load_dataset(train_files , rootpath), input_path[’train’])
55 torch.save(load_dataset(valid_files , rootpath), input_path[’valid’])
56 torch.save(load_dataset(test_files , rootpath), input_path[’test’])
57 print(’Data loading finishied ’)

Code Listing A.3: model.py
1 import math
2 import numpy as np
3

4 import torch
5 import torch.nn as nn
6 from torch.nn import init
7 import torch.nn.functional as F
8 import dgl.function as fn
9

10 class FastGMMLayer(nn.Module):
11 """
12 [!] code adapted from dgl implementation of GMMConv
13 Parameters
14 ----------
15 in_dim :
16 Number of input self.hidden_dim.
17 out_dim :
18 Number of output self.hidden_dim.
19 dim :
20 Dimensionality of pseudo -coordinte.
21 kernel :
22 Number of kernels :math:‘K‘.
23 aggr_type :
24 Aggregator type (‘‘sum ‘‘, ‘‘mean ‘‘, ‘‘max ‘‘).
25 dropout :
26 Required for dropout of output self.hidden_dim.
27 batch_norm :
28 boolean flag for batch_norm layer.
29 residual :
30 If True , use residual connection inside this layer. Default: ‘‘

False ‘‘.
31 bias :
32 If True , adds a learnable bias to the output. Default: ‘‘True ‘‘.
33

34 """
35 def __init__(self , in_dim , out_dim , dim , kernel , aggr_type , dropout ,
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36 batch_norm , residual=False , bias=True):
37 super().__init__ ()
38

39 self.in_dim = in_dim
40 self.out_dim = out_dim
41 self.dim = dim
42 self.kernel = kernel
43 self.batch_norm = batch_norm
44 self.residual = residual
45 self.dropout = dropout
46

47 if aggr_type == ’sum’:
48 self._reducer = fn.sum
49 elif aggr_type == ’mean’:
50 self._reducer = fn.mean
51 elif aggr_type == ’max’:
52 self._reducer = fn.max
53 else:
54 raise KeyError("Aggregator type {} not recognized.".format(

aggr_type))
55

56 self.mu = torch.zeros(self.kernel , self.dim)
57 for i, theta in enumerate(np.arange(self.kernel -1)*2* math.pi/(

self.kernel -1)):
58 self.mu[i+1, 0] = math.cos(theta)
59 self.mu[i+1, 1] = math.sin(theta)
60

61 self.fc = nn.Linear(in_dim , kernel * out_dim , bias=False)
62

63 self.bn_node_h = nn.BatchNorm1d(out_dim , affine=False)
64

65 if in_dim != out_dim:
66 self.residual = False
67

68 if bias:
69 self.bias = nn.Parameter(torch.Tensor(out_dim))
70 else:
71 self.register_buffer(’bias’, None)
72 self.reset_parameters ()
73

74 def reset_parameters(self):
75 """ Reinitialize learnable parameters."""
76 gain = init.calculate_gain(’relu’)
77 init.xavier_normal_(self.fc.weight , gain=gain)
78 if self.bias is not None:
79 init.zeros_(self.bias.data)
80

81 def forward(self , g, h, vector):
82 h_in = h # for residual connection
83

84 g = g.local_var ()
85 g.ndata[’h’] = self.fc(h).view(-1, self.kernel , self.out_dim)
86 E = g.number_of_edges ()
87

88 # compute gaussian weight
89 gaussian = -0.5 * (( vector.view(E, 1, self.dim) -
90 self.mu.view(1, self.kernel , self.dim)) **

2)
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91

92 gaussian = torch.exp(gaussian.sum(dim=-1, keepdim=True)) # (E, K
, 1)

93

94

95 min_kernel , _ = torch.min(gaussian , 1)
96 max_kernel , _ = torch.max(gaussian , 1)
97 gaussian = (gaussian - min_kernel.view(-1, 1, 1))/( max_kernel -

min_kernel).view(-1, 1, 1)
98

99 gaussian = gaussian **2
100

101 g.edata[’w’] = gaussian
102 g.update_all(fn.u_mul_e(’h’, ’w’, ’m’), self._reducer(’m’, ’h’))
103 h = g.ndata[’h’].sum(1)
104

105 if self.batch_norm:
106 h = self.bn_node_h(h) # batch normalization
107

108 h = F.relu(h) # non -linear activation
109

110 if self.residual:
111 h = h_in + h # residual connection
112

113 if self.bias is not None:
114 h = h + self.bias
115

116 h = F.dropout(h, self.dropout , training=self.training)
117 return h
118

119

120 class FastGMM(torch.nn.Module):
121 def __init__(self , params):
122 super().__init__ ()
123 self.name = ’FastGMM ’
124 self.depth = len(params[’hidden_dim ’])
125

126 self.channel = params[’hidden_dim ’]
127 self.kernel = params[’kernel ’] # for MoNet
128 dim = params[’pseudo_dim_MoNet ’] # for MoNet
129 self.n_classes = params[’n_classes ’]
130 self.dropout = params[’dropout ’]
131 self.batch_norm = params[’batch_norm ’]
132 self.residual = params[’residual ’]
133 self.device = params[’device ’]
134 self.depth = params[’depth ’]
135 self.aggr_type = "mean"
136

137 self.contract = nn.ModuleList ()
138 for idepth in range(self.depth -1):
139 self.contract.append(FastGMMLayer(self.channel[idepth ][0],

self.channel[idepth ][-1], dim , self.kernel , self.aggr_type , self.
dropout , self.batch_norm , self.residual))

140

141 self.bottom = nn.ModuleList ()
142 self.bottom.append(FastGMMLayer(self.channel [-1][0], self.

channel [-1][-1], dim , self.kernel , self.aggr_type , self.dropout , self
.batch_norm , self.residual))
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143 self.bottom.append(FastGMMLayer(self.channel [-1][-1], self.
channel [-1][0], dim , self.kernel , self.aggr_type , self.dropout , self.
batch_norm , self.residual))

144

145 self.expand = nn.ModuleList ()
146 for idepth in range(self.depth -1):
147 if idepth == 0:
148 self.expand.append(FastGMMLayer(self.channel[idepth

][-1]*2, self.channel[idepth ][-1],dim , self.kernel , self.aggr_type ,
self.dropout , self.batch_norm , self.residual))

149 else:
150 self.expand.append(FastGMMLayer(self.channel[idepth

][-1]*2, self.channel[idepth ][0], dim , self.kernel , self.aggr_type ,
self.dropout , self.batch_norm , self.residual))

151

152 self.out = nn.Linear(self.channel [0][-1], 1, bias=True)
153

154

155 def forward(self , case):
156 g = case[’graph ’]
157 coarsen = [torch.tensor(icoarsen) for icoarsen in case[’coarsen ’

]]
158 h = torch.from_numpy(case[’node_feat ’]).float()
159

160 h_concat_depth = []
161 for idepth in range(self.depth -1):
162 h = self.contract[idepth ](g[idepth], h, g[idepth ].edata[’vec

’].float ())
163 h_concat_depth.append(h)
164 h = torch.scatter_reduce(h, 0, torch.matmul(coarsen[idepth

][:, 1:],
165 torch.ones(1, h.

shape[1], dtype=int)),
166 reduce="mean") ### Downsampling

the node features from fine graph to coarse graph
167

168 h = self.bottom [0](g[-1], h, g[-1]. edata[’vec’].float ())
169 h = self.bottom [1](g[-1], h, g[-1]. edata[’vec’].float ())
170

171 for i in range(self.depth -1):
172 idepth = self.depth - 2 - i
173 h = torch.cat((torch.index_select(h, 0,
174 coarsen[idepth ][:, 1]),
175 h_concat_depth[idepth ]),
176 1)
177 h = self.expand[idepth ](g[idepth], h, g[idepth ].edata[’vec’

].float ())
178

179 return self.out(h)
180

181

182 class CNN(nn.Module):
183 def __init__(self , params):
184 super().__init__ ()
185 self.name = ’CNN’
186

187 self.dim = params[’dim’]
188 self.channel = params[’channels ’]
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189 self.depth = len(self.channel)
190

191 self.contract = nn.ModuleList ()
192 for idepth in range(self.depth -1):
193 self.contract.append(nn.Conv2d(self.channel[idepth ][0], self

.channel[idepth ][-1],
194 (3, 3), stride =(1, 1),

padding =(1, 1)))
195

196 self.bottom = nn.ModuleList ()
197 self.bottom.append(nn.Conv2d(self.channel [-1][0], self.channel

[-1][-1], (3, 3), stride =(1, 1), padding =(1, 1)))
198 self.bottom.append(nn.Conv2d(self.channel [-1][-1], self.channel

[-1][0], (3, 3), stride =(1, 1), padding =(1, 1)))
199

200 self.expand = nn.ModuleList ()
201 for idepth in range(self.depth -1):
202 if idepth == 0:
203 self.expand.append(nn.Conv2d(self.channel[idepth ][-1]*2,

self.channel[idepth ][-1], (3, 3), stride =(1, 1), padding =(1, 1)))
204 else:
205 self.expand.append(nn.Conv2d(self.channel[idepth ][-1]*2,

self.channel[idepth ][0], (3, 3), stride =(1, 1), padding =(1, 1)))
206

207 self.out = nn.Conv2d(self.channel [0][-1], 1, (1, 1), stride =(1,
1))

208

209

210 def forward(self , h):
211 h_concat_depth = []
212 for idepth in range(self.depth -1):
213 h = F.relu(self.contract[idepth ](h))
214 h_concat_depth.append(h)
215 h = F.avg_pool2d(h, (2, 2), stride = (2, 2))
216

217 h = F.relu(self.bottom [0](h))
218 h = F.relu(self.bottom [1](h))
219

220 for i in range(self.depth -1):
221

222 order = self.depth - 2 - i
223 idepth = self.depth - 2 - i
224 h = F.interpolate(h,
225 size = (int(self.dim [0]/ pow(2, order)),

int(self.dim[-1]/pow(2, order))),
226 mode=’nearest ’)
227 h = torch.cat(( h_concat_depth[idepth], h), 1)
228 h = F.relu(self.expand[idepth ](h))
229

230 return self.out(h)
231

232 from BsplineInterpolate import BSpline
233 class SplineLayer(nn.Module):
234 """
235 [!] code adapted from dgl implementation of GMMConv
236 Parameters
237 ----------
238 in_dim :
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239 Number of input self.hidden_dim.
240 out_dim :
241 Number of output self.hidden_dim.
242 dim :
243 Dimensionality of pseudo -coordinte.
244 kernel :
245 Number of kernels :math:‘K‘.
246 aggr_type :
247 Aggregator type (‘‘sum ‘‘, ‘‘mean ‘‘, ‘‘max ‘‘).
248 dropout :
249 Required for dropout of output self.hidden_dim.
250 batch_norm :
251 boolean flag for batch_norm layer.
252 residual :
253 If True , use residual connection inside this layer. Default: ‘‘

False ‘‘.
254 bias :
255 If True , adds a learnable bias to the output. Default: ‘‘True ‘‘.
256

257 """
258 def __init__(self , in_dim , out_dim , dim , kernel , aggr_type , dropout ,
259 batch_norm , residual=False , bias=True):
260 super().__init__ ()
261

262 self.in_dim = in_dim
263 self.out_dim = out_dim
264 self.dim = dim
265 self.kernel = kernel
266 self.batch_norm = batch_norm
267 self.residual = residual
268 self.dropout = dropout
269

270

271 if aggr_type == ’sum’:
272 self._reducer = fn.sum
273 elif aggr_type == ’mean’:
274 self._reducer = fn.mean
275 elif aggr_type == ’max’:
276 self._reducer = fn.max
277 else:
278 raise KeyError("Aggregator type {} not recognized.".format(

aggr_type))
279

280 self.weight = nn.Parameter(torch.Tensor(self.kernel , out_dim ,
in_dim))

281 self.bn_node_h = nn.BatchNorm1d(out_dim , affine=False)
282

283 if in_dim != out_dim:
284 self.residual = False
285

286 if bias:
287 self.bias = nn.Parameter(torch.Tensor(out_dim))
288 else:
289 self.register_buffer(’bias’, None)
290 self.reset_parameters ()
291

292

293 def reset_parameters(self):
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294 """ Reinitialize learnable parameters."""
295 gain = init.calculate_gain(’relu’)
296 init.xavier_normal_(self.weight , gain=gain)
297

298 if self.bias is not None:
299 init.zeros_(self.bias.data)
300

301 def forward(self , g, h):
302 h_in = h # for residual connection
303 g.ndata[’h’] = h.view(-1, self.in_dim)
304 E = g.number_of_edges ()
305

306

307 g.apply_edges(lambda edges: {’w’: torch.matmul(edges.data[’BFs’
].view(-1, self.kernel),

308 self.weight.view(
self.kernel , -1)).view(-1, self.out_dim , self.in_dim)})

309 g.update_all(fn.u_dot_e(’h’, ’w’, ’m’), fn.sum(’m’, ’h’))
310 h = g.ndata[’h’]. squeeze ()
311

312 if self.batch_norm:
313 h = self.bn_node_h(h) # batch normalization
314

315 h = F.relu(h) # non -linear activation
316

317 if self.residual:
318 h = h_in + h # residual connection
319

320 if self.bias is not None:
321 h = h + self.bias
322

323 h = F.dropout(h, self.dropout , training=self.training)
324 return h
325

326

327 class SplineCNN(torch.nn.Module):
328 def __init__(self , params):
329 super().__init__ ()
330 self.name = ’SplineCNN ’
331 self.depth = len(params[’hidden_dim ’])
332

333 self.channel = params[’hidden_dim ’]
334 self.kernel = params[’kernel ’] # for MoNet
335 dim = params[’pseudo_dim_MoNet ’] # for MoNet
336 self.n_classes = params[’n_classes ’]
337 self.dropout = params[’dropout ’]
338 self.batch_norm = params[’batch_norm ’]
339 self.residual = params[’residual ’]
340 self.device = params[’device ’]
341 self.depth = params[’depth ’]
342 self.aggr_type = "sum"
343 self.BSpline = BSpline(a = -1, b = 1, deg = 2, kts = 3)
344 self.contract = nn.ModuleList ()
345 for idepth in range(self.depth -1):
346 self.contract.append(SplineLayer(self.channel[idepth ][0],

self.channel[idepth ][-1], dim , self.kernel ,
347 self.aggr_type , self.

dropout , self.batch_norm , self.residual))
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348 self.bottom = nn.ModuleList ()
349 self.bottom.append(SplineLayer(self.channel [-1][0], self.channel

[-1][-1], dim , self.kernel ,
350 self.aggr_type , self.dropout ,

self.batch_norm , self.residual))
351 self.bottom.append(SplineLayer(self.channel [-1][-1], self.

channel [-1][0], dim , self.kernel ,
352 self.aggr_type , self.dropout ,

self.batch_norm , self.residual))
353

354 self.expand = nn.ModuleList ()
355 for idepth in range(self.depth -1):
356 if idepth == 0:
357 self.expand.append(SplineLayer(self.channel[idepth

][-1]*2, self.channel[idepth ][-1], dim , self.kernel ,
358 self.aggr_type , self.

dropout , self.batch_norm , self.residual))
359 else:
360 self.expand.append(SplineLayer(self.channel[idepth

][-1]*2, self.channel[idepth ][0], dim , self.kernel ,
361 self.aggr_type , self.

dropout , self.batch_norm , self.residual))
362

363 self.out = nn.Linear(self.channel [0][-1], 1, bias=True)
364

365

366 def forward(self , case):
367 g = case[’graph ’]
368 coarsen = [torch.tensor(icoarsen) for icoarsen in case[’coarsen ’

]]
369 h = torch.from_numpy(case[’node_feat ’]).float()
370

371 h_concat_depth = []
372 for igraph in g:
373 igraph.apply_edges(lambda edges: {’BFs’: self.BSpline.

Interpolate(edges.data[’vec’][:, 0], edges.data[’vec’][:, 1]).float()
})

374 for idepth in range(self.depth -1):
375 h = self.contract[idepth ](g[idepth], h)
376 h_concat_depth.append(h)
377 h = torch.scatter_reduce(h, 0, torch.matmul(coarsen[idepth

][:, 1:],
378 torch.ones(1, h.

shape[1], dtype=int)),
379 reduce="mean") ### Downsampling

the node features from fine graph to coarse graph
380

381 h = self.bottom [0](g[-1], h)
382 h = self.bottom [1](g[-1], h)
383

384 for i in range(self.depth -1):
385 idepth = self.depth - 2 - i
386 h = torch.cat((torch.index_select(h, 0,
387 coarsen[idepth ][:, 1]),
388 h_concat_depth[idepth ]),
389 1)
390 h = self.expand[idepth ](g[idepth], h)
391
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392 return self.out(h)
393

394 """
395 GMM: Gaussian Mixture Model Convolution layer
396 Geometric Deep Learning on Graphs and Manifolds using Mixture Model

CNNs (Federico Monti et al., CVPR 2017)
397 https :// arxiv.org/pdf /1611.08402. pdf
398 """
399 class GMMLayer(nn.Module):
400 """
401 [!] code adapted from dgl implementation of GMMConv
402 Parameters
403 ----------
404 in_dim :
405 Number of input self.hidden_dim.
406 out_dim :
407 Number of output self.hidden_dim.
408 dim :
409 Dimensionality of pseudo -coordinte.
410 kernel :
411 Number of kernels :math:‘K‘.
412 aggr_type :
413 Aggregator type (‘‘sum ‘‘, ‘‘mean ‘‘, ‘‘max ‘‘).
414 dropout :
415 Required for dropout of output self.hidden_dim.
416 batch_norm :
417 boolean flag for batch_norm layer.
418 residual :
419 If True , use residual connection inside this layer. Default: ‘‘

False ‘‘.
420 bias :
421 If True , adds a learnable bias to the output. Default: ‘‘True ‘‘.
422

423 """
424 def __init__(self , in_dim , out_dim , dim , kernel , aggr_type , dropout ,
425 batch_norm , residual=False , bias=True):
426 super().__init__ ()
427

428 self.in_dim = in_dim
429 self.out_dim = out_dim
430 self.dim = dim
431 self.kernel = kernel
432 self.batch_norm = batch_norm
433 self.residual = residual
434 self.dropout = dropout
435

436 if aggr_type == ’sum’:
437 self._reducer = fn.sum
438 elif aggr_type == ’mean’:
439 self._reducer = fn.mean
440 elif aggr_type == ’max’:
441 self._reducer = fn.max
442 else:
443 raise KeyError("Aggregator type {} not recognized.".format(

aggr_type))
444

445 self.mu = nn.Parameter(torch.Tensor(kernel , dim))
446 self.inv_sigma = nn.Parameter(torch.Tensor(kernel , dim))
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447 self.fc = nn.Linear(in_dim , kernel * out_dim , bias=False)
448

449 self.bn_node_h = nn.BatchNorm1d(out_dim , affine=False)
450

451 if in_dim != out_dim:
452 self.residual = False
453

454 if bias:
455 self.bias = nn.Parameter(torch.Tensor(out_dim))
456 else:
457 self.register_buffer(’bias’, None)
458 self.reset_parameters ()
459

460 def reset_parameters(self):
461 """ Reinitialize learnable parameters."""
462 gain = init.calculate_gain(’relu’)
463 init.xavier_normal_(self.fc.weight , gain=gain)
464 init.normal_(self.mu.data , 0, 0.1)
465 init.constant_(self.inv_sigma.data , 1)
466 if self.bias is not None:
467 init.zeros_(self.bias.data)
468

469 def forward(self , g, h, vector):
470 h_in = h # for residual connection
471 g = g.local_var ()
472 g.ndata[’h’] = self.fc(h).view(-1, self.kernel , self.out_dim)
473 E = g.number_of_edges ()
474

475 # compute gaussian weight
476 gaussian = -0.5 * (( vector.view(E, 1, self.dim) -
477 self.mu.view(1, self.kernel , self.dim)) **

2)
478 gaussian = gaussian * (self.inv_sigma.view(1, self.kernel , self.

dim) ** 2)
479 gaussian = torch.exp(gaussian.sum(dim=-1, keepdim=True)) # (E, K

, 1)
480 g.edata[’w’] = gaussian
481 g.update_all(fn.u_mul_e(’h’, ’w’, ’m’), self._reducer(’m’, ’h’))
482 h = g.ndata[’h’].sum(1)
483

484 if self.batch_norm:
485 h = self.bn_node_h(h) # batch normalization
486

487 h = F.relu(h) # non -linear activation
488

489 if self.residual:
490 h = h_in + h # residual connection
491

492 if self.bias is not None:
493 h = h + self.bias
494

495 h = F.dropout(h, self.dropout , training=self.training)
496 return h
497

498

499 class GMM(torch.nn.Module):
500 def __init__(self , params):
501 super().__init__ ()
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502 self.name = ’GMM’
503 self.depth = len(params[’hidden_dim ’])
504

505 self.channel = params[’hidden_dim ’]
506 self.kernel = params[’kernel ’] # for MoNet
507 dim = params[’pseudo_dim_MoNet ’] # for MoNet
508 self.n_classes = params[’n_classes ’]
509 self.dropout = params[’dropout ’]
510 self.batch_norm = params[’batch_norm ’]
511 self.residual = params[’residual ’]
512 self.device = params[’device ’]
513 self.depth = params[’depth ’]
514 self.aggr_type = "sum"
515

516 self.contract = nn.ModuleList ()
517 for idepth in range(self.depth -1):
518 self.contract.append(GMMLayer(self.channel[idepth ][0], self.

channel[idepth ][-1], dim , self.kernel , self.aggr_type , self.dropout ,
self.batch_norm , self.residual))

519

520 self.bottom = nn.ModuleList ()
521 self.bottom.append(GMMLayer(self.channel [-1][0], self.channel

[-1][-1], dim , self.kernel , self.aggr_type , self.dropout , self.
batch_norm , self.residual))

522 self.bottom.append(GMMLayer(self.channel [-1][-1], self.channel
[-1][0], dim , self.kernel , self.aggr_type , self.dropout , self.
batch_norm , self.residual))

523

524 self.expand = nn.ModuleList ()
525 for idepth in range(self.depth -1):
526 if idepth == 0:
527 self.expand.append(GMMLayer(self.channel[idepth ][-1]*2,

self.channel[idepth ][-1],dim , self.kernel , self.aggr_type , self.
dropout , self.batch_norm , self.residual))

528 else:
529 self.expand.append(GMMLayer(self.channel[idepth ][-1]*2,

self.channel[idepth ][0], dim , self.kernel , self.aggr_type , self.
dropout , self.batch_norm , self.residual))

530

531 self.out = nn.Linear(self.channel [0][-1], 1, bias=True)
532

533

534 def forward(self , case):
535 g = case[’graph ’]
536 coarsen = [torch.tensor(icoarsen) for icoarsen in case[’coarsen ’

]]
537 h = torch.from_numpy(case[’node_feat ’]).float()
538

539 h_concat_depth = []
540 for idepth in range(self.depth -1):
541 h = self.contract[idepth ](g[idepth], h, g[idepth ].edata[’vec

’].float ())
542 h_concat_depth.append(h)
543 h = torch.scatter_reduce(h, 0, torch.matmul(coarsen[idepth

][:, 1:],
544 torch.ones(1, h.

shape[1], dtype=int)),
545 reduce="mean") ### Downsampling
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the node features from fine graph to coarse graph
546

547 h = self.bottom [0](g[-1], h, g[-1]. edata[’vec’].float ())
548 h = self.bottom [1](g[-1], h, g[-1]. edata[’vec’].float ())
549

550 for i in range(self.depth -1):
551 idepth = self.depth - 2 - i
552 h = torch.cat((torch.index_select(h, 0,
553 coarsen[idepth ][:, 1]),
554 h_concat_depth[idepth ]),
555 1)
556 h = self.expand[idepth ](g[idepth], h, g[idepth ].edata[’vec’

].float ())
557

558 return self.out(h)
559

560 from dgl.nn import GraphConv
561 """
562 GCN: Graph Convolutional Networks
563 Thomas N. Kipf , Max Welling , Semi -Supervised Classification with

Graph Convolutional Networks (ICLR 2017)
564 http :// arxiv.org/abs /1609.02907
565 """
566 class GCNLayer(nn.Module):
567 def __init__(self , in_dim , out_dim):
568 super().__init__ ()
569 self.in_dim = in_dim
570 self.out_dim = out_dim
571 self.conv = GraphConv(self.in_dim , self.out_dim , weight=True ,

bias=True , activation=None , allow_zero_in_degree=False)
572 self.act = nn.ReLU()
573

574 def forward(self , g, h):
575 h = self.conv(g, h)
576 return self.act(h)
577

578 class GCN(nn.Module):
579 def __init__(self , params):
580 super().__init__ ()
581 self.name = ’GCN’
582 self.depth = len(params[’hidden_dim ’])
583

584 self.channel = params[’hidden_dim ’]
585 self.kernel = params[’kernel ’] # for MoNet
586 dim = params[’pseudo_dim_MoNet ’] # for MoNet
587 self.n_classes = params[’n_classes ’]
588 self.dropout = params[’dropout ’]
589 self.batch_norm = params[’batch_norm ’]
590 self.residual = params[’residual ’]
591 self.device = params[’device ’]
592 self.depth = params[’depth ’]
593 self.aggr_type = "sum"
594 self.contract = nn.ModuleList ()
595 for idepth in range(self.depth -1):
596 self.contract.append(GCNLayer(self.channel[idepth ][0], self.

channel[idepth ][-1]))
597 self.bottom = nn.ModuleList ()
598 self.bottom.append(GCNLayer(self.channel [-1][0], self.channel
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[-1][-1]))
599 self.bottom.append(GCNLayer(self.channel [-1][-1], self.channel

[ -1][0]))
600

601 self.expand = nn.ModuleList ()
602 for idepth in range(self.depth -1):
603 if idepth == 0:
604 self.expand.append(GCNLayer(self.channel[idepth ][-1]*2,

self.channel[idepth ][-1]))
605 else:
606 self.expand.append(GCNLayer(self.channel[idepth ][-1]*2,

self.channel[idepth ][0]))
607 self.out = nn.Linear(self.channel [0][-1], 1, bias=True)
608

609

610 def forward(self , case):
611 g = case[’graph ’]
612 coarsen = [torch.tensor(icoarsen) for icoarsen in case[’coarsen ’

]]
613 h = torch.from_numpy(case[’node_feat ’]).float()
614

615 h_concat_depth = []
616 for idepth in range(self.depth -1):
617 h = self.contract[idepth ](g[idepth], h)
618 h_concat_depth.append(h)
619 h = torch.scatter_reduce(h, 0,
620 torch.matmul(coarsen[idepth ][:, 1:],
621 torch.ones(1, h.shape[1], dtype=int)),
622 reduce="mean") ### Downsampling the node features from

fine graph to coarse graph
623

624 h = self.bottom [0](g[-1], h)
625 h = self.bottom [1](g[-1], h)
626

627 for i in range(self.depth -1):
628 idepth = self.depth - 2 - i
629 h = torch.cat((torch.index_select(h, 0,
630 coarsen[idepth ][:, 1]),
631 h_concat_depth[idepth ]),
632 1)
633 h = self.expand[idepth ](g[idepth], h)
634

635 return self.out(h)

Code Listing A.4: train.py
1 import os
2 import time
3 import numpy as np
4 import pandas as pd
5 import progressbar
6 from joblib import Parallel , delayed
7 from copy import deepcopy
8

9 import torch
10 import torch.nn.functional as F
11 from sklearn.metrics import roc_auc_score
12

13 from utils import *
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14 from params import input_path , net_params
15 from model import CNN , SplineCNN , GMM , GCN , FastGMM
16

17 def train(net_params , model_name , train_no , out_path , train_input ,
valid_input , test_input , epoch):

18 model = modelSelection(net_params , model_name)
19 optimizer = torch.optim.Adam(model.parameters (), lr = 0.001 ,

weight_decay =5e-4)
20 optimizer.zero_grad ()
21

22 begin_time = time.time()
23 batch_size = 5
24

25 history = np.zeros(( epoch+1, 3))
26 print(’{:^5s}, {:^10s}, {:^10s}, {:^10s}’.format(’Epoch ’, ’Train

loss’, ’Valid loss’,’Time’))
27

28 for iepoch in range(epoch):
29 model.eval()
30 valid_loss = loss_eval(valid_input , model)
31 train_loss_epoch = np.zeros(len(train_input))
32 model.train()
33 tt = time.time()
34

35 for idx , idata in enumerate(train_input):
36 #bar.update(idx +1)
37 #time.sleep (0.1)
38 out = model(train_input[str(idata)])
39 loss = F.binary_cross_entropy(torch.sigmoid(out).reshape(-1,

1),torch.from_numpy(train_input[str(idata)][’label ’]. reshape(-1, 1))
.float())

40

41 train_loss_epoch[idx] = loss
42

43 loss = loss/batch_size
44 loss.backward ()
45 if ((idx+1)%batch_size ==0 or batch_size +1 == len(

train_input)):
46 optimizer.step()
47 optimizer.zero_grad ()
48

49 model.eval()
50 history[iepoch] = [np.mean(train_loss_epoch), valid_loss , time.

time()-tt]
51 print(’{:5d}, {:10.5f}, {:10.5f}, {:10.5f}’
52 .format(iepoch , history[iepoch ][0], history[iepoch ][1],

history[iepoch ][2]))
53

54 np.savetxt(out_path+’/history ’+str(train_no)+’.csv’, history ,
delimiter=’,’)

55 if (iepoch %20==0 or iepoch == epoch -1):
56 torch.save({’epoch ’: iepoch ,
57 ’model_state_dict ’: model.state_dict (),
58 ’optimizer_state_dict ’: optimizer.state_dict (),
59 ’loss’: loss ,},
60 out_path+"/best_model_Train"+str(train_no))
61

62 history[iepoch +1] = [loss_eval(train_input , model), loss_eval(
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valid_input , model), time.time()-tt]
63 print(’{:5d}, {:10.5f}, {:10.5f}, {:10.5f}’
64 .format(iepoch+1, history[iepoch +1][0] , history[iepoch +1][1] ,

history[iepoch +1][2]))
65

66 history = pd.DataFrame(history , columns =[’Train_loss ’, ’Valid_loss ’,
’Time’])

67 history.to_csv(out_path+’/history ’+str(train_no)+’.csv’)
68

69 print(’Total_time = ’, time.time() - begin_time)
70

71 if __name__ == "__main__":
72 train_input_all = torch.load(input_path[’train’])
73 valid_input_all = torch.load(input_path[’valid’])
74 test_input_all = torch.load(input_path[’test’])
75 train_input = {icase: train_input_all[icase] for i, icase in

enumerate(train_input_all) if i < 80}
76 valid_input = {icase: valid_input_all[icase] for i, icase in

enumerate(valid_input_all) if i < 10}
77 test_input = {icase: test_input_all[icase] for i, icase in enumerate

(test_input_all) if i < 10}
78

79 models = [’FastGMM ’, ’GMM’, ’SplineCNN ’, ’GCN’]
80

81 num_training , epoch = (5, 100)
82

83 for imodel in models:
84 out_path = imodel
85 if not os.path.exists(out_path):
86 os.mkdir(out_path)
87

88 file = open(out_path+’/log.txt’, ’w’)
89

90 print("{} training begun".format(imodel))
91 t_start = time.time()
92 Parallel(n_jobs=num_training)(delayed(train)(net_params , imodel ,

itrain , out_path ,train_input , valid_input , test_input , epoch) for
itrain in range(num_training))

93 print("{} training finished".format(imodel))
94

95 file.write(’\nTotal_time = {}\n’.format(time.time()-t_start))
96 logTrainInfo(net_params , imodel , out_path , file , test_input)
97 file.close ()
98 print("All trainings finished")

Code Listing A.5: param.py
1 net_params = {
2 "depth": 4,
3 "hidden_dim": [[ 2, 8],
4 [ 8, 16],
5 [ 16, 32],
6 [ 32, 64]],
7 "kernel": 9,
8 "pseudo_dim_MoNet": 2,
9 "n_classes": 1,

10 "dropout": 0.0,
11 "batch_norm": True ,
12 "residual": False ,
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13 "readout": "mean",
14 "device": "cpu"}
15

16 input_path = {
17 ’train ’: ’../ train_input_AMG_unstructureBFS_uvnorm.pt’,
18 ’valid ’: ’../ valid_input_AMG_unstructureBFS_uvnorm.pt’,
19 ’test’: ’../ test_input_AMG_unstructureBFS_uvnorm.pt’,
20 ’unseen ’: ’../ unseen_input_AMG_unstructureBFS_uvnorm.pt’
21 }

Code Listing A.6: utils.py
1 import os
2 import time
3 import math
4 import json
5 import numpy as np
6 import pandas as pd
7 from copy import deepcopy
8 import matplotlib.pyplot as plt
9

10 from sklearn.metrics import roc_auc_score , roc_curve , RocCurveDisplay
11 from sklearn.preprocessing import LabelBinarizer
12

13 import torch
14 import torch.nn.functional as F
15

16 from model import CNN , SplineCNN , GMM , GCN , FastGMM
17 from params import input_path
18

19

20 def logTrainInfo(net_params , model_name , out_path , file , test_input):
21 model = modelSelection(net_params , model_name)
22

23 LossPlot(out_path)
24 RocPlot(model_name , out_path , net_params , test_input)
25 ClassificationEvaluate(model_name , out_path , net_params , file ,

test_input)
26

27 checkpoint = torch.load(out_path+"/best_model_Train0")
28 model.load_state_dict(checkpoint[’model_state_dict ’])
29 model_parameters = filter(lambda p: p.requires_grad , model.

parameters ())
30 model_identification_plot(test_input , model , out_path ,

identification=False)
31

32 file.write("\nTrainable parameters = {}\n".format(sum([np.prod(p.
size()) for p in model_parameters ])))

33 file.write(json.dumps(net_params))
34 file.write(’\n’+str(model.eval()))
35 return
36

37 def modelSelection(net_params , model_name):
38 if model_name == ’SplineCNN ’:
39 model = SplineCNN(net_params).to(’cpu’)
40 if model_name == ’GMM’:
41 model = GMM(net_params).to(’cpu’)
42 if model_name == ’GCN’:
43 model = GCN(net_params).to(’cpu’)
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44 if model_name == ’CNN’:
45 model = CNN(net_params).to(’cpu’)
46 if model_name == ’FastGMM ’:
47 model = FastGMM(net_params).to(’cpu’)
48 return model
49

50 def loss_eval(dataset , model):
51 average_loss = np.zeros(len(dataset))
52 for i, idata in enumerate(dataset):
53 out = model(dataset[str(idata)])
54 loss = F.binary_cross_entropy(torch.sigmoid(out).reshape(-1, 1),
55 torch.tensor(dataset[str(idata)][’

label’]. reshape(-1, 1)).float())
56 average_loss[i] = loss
57 return np.mean(average_loss)
58

59 def roc_curve(dataset , model , epoch):
60 y_truth = []
61 y_pred = []
62

63 mean_fpr = np.linspace(0, 1, epoch)
64 for idx , casename in enumerate(dataset):
65 idata = dataset[casename]
66 pred = torch.sigmoid(model(idata)).detach ().numpy ().squeeze ()
67

68 truth = idata[’label’]. reshape (-1)
69 try:
70 coord = idata[’coord’]
71 except ValueError:
72 coord = idata[’graph’][0][’coord ’]
73

74 for i in range(len(truth)):
75 if (coord[i][0] >0.0 and coord[i][0] <0.8 and coord[i][1]

>0.0 and coord[i][1] <0.1):
76 y_truth.append(truth[i])
77 y_pred.append(pred[i])
78

79 viz = RocCurveDisplay.from_predictions(np.array(y_truth), np.array(
y_pred))

80 interp_tpr = np.interp(mean_fpr , viz.fpr , viz.tpr)
81 interp_tpr [0] = 0.0
82 return interp_tpr , viz.roc_auc
83

84

85 def auc_eval(dataset , model):
86 average_auc = np.zeros(len(dataset))
87 for i, casename in enumerate(dataset):
88 idata = dataset[casename]
89 pred = torch.sigmoid(model(idata)).detach ().numpy ().squeeze ()
90 average_auc[i] = roc_auc_score(np.array(idata[’label’]).astype(

int), pred)
91 return np.mean(average_auc)
92

93

94 def metrics(dataset , model):
95 metrics = np.zeros((len(dataset), 4))
96 for idx , casename in enumerate(dataset):
97 idata = dataset[casename]
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98 pred = torch.sigmoid(model(idata)).detach ().numpy ().squeeze ()
99

100 truth = idata[’label’]. reshape (-1)
101 try:
102 coord = idata[’coord’]
103 except ValueError:
104 coord = idata[’graph’][0][’coord ’]
105

106 threshold = 0.5
107 TP = TN = FP = FN = 0
108 for i in range(len(truth)):
109 if (coord[i][0] >0.0 and coord[i][0] <0.8 and coord[i][1]

>0.0 and coord[i][1] <0.1):
110 if (pred[i]>threshold and truth[i]>threshold):
111 TP = TP+1
112 if (pred[i]<threshold and truth[i]<threshold):
113 TN = TN+1
114 if (pred[i]>threshold and truth[i]<threshold):
115 FP = FP+1
116 if (pred[i]<threshold and truth[i]>threshold):
117 FN = FN+1
118 metrics[idx] = [TP , TN, FP, FN]
119 metrics = np.sum(metrics , axis =0)
120 accuracy = (metrics [0] + metrics [1])/np.sum(metrics)
121 precision = metrics [0]/( metrics [0]+ metrics [2])
122 recall = metrics [0]/( metrics [0]+ metrics [3])
123 F1 = 2* precision*recall /( precision+recall)
124 return accuracy , precision , recall , F1
125

126 #### Loss history plot ####
127 def LossPlot(out_path):
128 epoch = torch.load(out_path+"/best_model_Train0")[’epoch ’]+1
129

130 hist = np.zeros((5, epoch+1, 2))
131

132 for i in range (5):
133 f = open(out_path+’/history ’+str(i)+’.csv’, "r")
134 if (’loss’ in f.readline ()):
135 hist[i] = np.array(pd.read_csv(out_path+’/history ’+str(i)+’.

csv’, skipinitialspace=True ,
136 usecols =[’Train_loss ’,’Valid_loss ’])

)
137 else:
138 hist[i] = np.array(pd.read_csv(out_path+’/history ’+str(i)+’.

csv’, skipinitialspace=True))[:epoch +1,:2]
139

140 fig , ax = plt.subplots ()
141 ax.set_xlim ([0, epoch])
142 #ax.set_ylim ([0, 0.1])
143 ax.set_xlabel(’Epoch’)
144 ax.set_ylabel(’Loss’)
145

146 labels = [’Training loss’, ’Validation loss’]
147 for i in range (2):
148 plt.fill_between(x=np.arange(hist.shape [1]-1),
149 y1=np.mean(hist[:,1:,i], axis = 0) - np.std(

hist[:,1:,i], axis =0),
150 y2=np.mean(hist[:,1:,i], axis = 0) + np.std(
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hist[:,1:,i], axis =0),
151 alpha =0.25)
152 plt.plot(np.arange(len(np.mean(hist[:,1:,i], axis =0))), np.mean(

hist[:,1:,i], axis =0),
153 label = labels[i])
154 plt.legend ()
155 plt.savefig(out_path+’/Training loss history.png’)
156 plt.show()
157

158 fig , ax = plt.subplots ()
159 ax.set_xlim ([0, epoch])
160 ax.set_ylim ([0., 1.0])
161 ax.set_xlabel(’Epoch’)
162 ax.set_ylabel(’Loss’)
163 return
164

165

166 #### Classification evaluation ####
167 def ClassificationEvaluate(model_name , out_path , net_params , file ,

test_input):
168 model = modelSelection(net_params , model_name)
169

170 file.write("{:^8s}, {:^12s}, {:^12s}, {:^12s}, {:^12s}\n".format("
Train", "Accuracy", "Precision", "Recall", "F1"))

171 eval_metrics = np.zeros ((5, 4))
172 for i in range (5):
173 checkpoint = torch.load(out_path+"/best_model_Train"+str(i))
174 model.load_state_dict(checkpoint[’model_state_dict ’])
175

176 acc , pre , rec , F1 = metrics(test_input , model)
177 eval_metrics[i, :] = (acc , pre , rec , F1)
178

179 file.write("{:^8d}, {:^12.4f}, {:^12.4f}, {:^12.4f}, {:^12.4f}\n
".format(i, acc , pre , rec , F1))

180

181 eval_metrics_mean , eval_metrics_std = (np.mean(eval_metrics , axis =0)
, np.std(eval_metrics , axis =0))

182

183 file.write("{:^8s}, {: >6.2f}{}{: <4.2f}, {: >6.2f}{}{: <4.2f}, {: >6.2f
}{}{: <4.2f}, {:>6.2f}{}{: <4.2f}\n"

184 .format("Summary",
185 eval_metrics_mean [0]*100 , u"\u00B1", eval_metrics_std

[0]*100 ,
186 eval_metrics_mean [1]*100 , u"\u00B1", eval_metrics_std

[1]*100 ,
187 eval_metrics_mean [2]*100 , u"\u00B1", eval_metrics_std

[2]*100 ,
188 eval_metrics_mean [3]*100 , u"\u00B1", eval_metrics_std

[3]*100))
189 return
190

191

192 #### ROC Curve plot ####
193 def RocPlot(model_name , out_path , net_params , test_input):
194 model = modelSelection(net_params , model_name)
195

196 epoch = torch.load(out_path+"/best_model_Train0")[’epoch ’]+1
197
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198 tprs = np.zeros((epoch , 5))
199 aucs = np.zeros (5)
200 for i in range (5):
201 checkpoint = torch.load(out_path+"/best_model_Train"+str(i))
202 model.load_state_dict(checkpoint[’model_state_dict ’])
203 tprs[:, i], aucs[i] = roc_curve(test_input , model , epoch)
204

205 mean_fpr = np.linspace(0, 1, epoch)
206

207 fig , ax = plt.subplots ()
208 ax.plot([0, 1], [0, 1], linestyle="--", lw=2, color="r", label="

Chance", alpha =0.8)
209

210 mean_tpr = np.mean(tprs , axis =1)
211 mean_tpr [-1] = 1.0
212 mean_auc , std_auc = (np.mean(aucs), np.std(aucs))
213 ax.plot(
214 mean_fpr ,
215 mean_tpr ,
216 color="b",
217 label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc , std_auc

),
218 lw=2,
219 alpha =0.8,
220 )
221

222 std_tpr = np.std(tprs , axis =1)
223 tprs_upper = np.minimum(mean_tpr + std_tpr , 1)
224 tprs_lower = np.maximum(mean_tpr - std_tpr , 0)
225 ax.fill_between(
226 mean_fpr ,
227 tprs_lower ,
228 tprs_upper ,
229 color="grey",
230 alpha =0.2,
231 label=r"$\pm$ 1 std. dev.",
232 )
233

234 ax.set(xlim =[-0.05, 1.05],
235 ylim =[-0.05, 1.05])
236 #title=" Receiver operating characteristic example",)
237 ax.set_xlabel("False positive rate")
238 ax.set_ylabel("True positive rate")
239

240 ax.legend(loc="lower right")
241 plt.savefig(out_path+’/receiver operating characteristic.png’)
242 #plt.show()
243

244 np.savetxt(out_path+’/mean_true_positive_rate.csv’, mean_tpr)
245 np.savetxt(out_path+’/standard_deviation_true_positive_rate.csv’,

std_tpr , delimiter=’,’)
246 np.savetxt(out_path+’/aucs.csv’, aucs , delimiter=’,’)
247 return
248

249 def model_identification_plot(dataset , model , out_path , identification=
False):

250 savepath = out_path+’/predictionContour ’
251 if not os.path.exists(savepath):
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252 os.mkdir(savepath)
253 for idx , casename in enumerate(dataset):
254 idata = dataset[casename]
255 pred = torch.sigmoid(model(idata)).detach ().numpy ().squeeze ()
256

257 try:
258 coord = idata[’coord’]
259 except ValueError:
260 coord = idata[’graph’][0][’coord ’]
261

262 size = 20
263 x_min ,x_max ,y_min ,y_max = (0.0, 0.80, 0.0, 0.120)
264 diag_size = math.sqrt(pow(y_max -y_min , 2)+pow(x_max -x_min , 2))
265 fig , ax = plt.subplots(figsize =((x_max -x_min)/diag_size* size , (

y_max -y_min)/diag_size*size),
266 constrained_layout=True)
267 ax.scatter(coord[:, 0], coord[:, 1], c=pred)
268

269 title = title = ’{}-Unet identification of vortex in BFS at time
={:.2f}s’.format(model.name , int(casename.split(’.’)[0]) /1000)

270 ax.set_title(title)
271 ax.set_xlim ([0, 0.7])
272 ax.set_ylim ([0, 0.1])
273 #ax.set_xlabel(’x/m ’)
274 #ax.set_ylabel(’y/m ’)
275 ax.set_aspect(aspect=’equal ’)
276

277 plt.savefig(os.path.join(savepath , title+’.png’))
278 #plt.show()
279 return
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B | Code_saturne code snippets

Two main functions related to the postprocessing of the mesh hierarchy and flow field in
code_saturne are written in the file ’cs_user_postprocess.c’ B.1. The algebraic multigrid
theory for mesh coarsening used in this function is introduced in 2.4.4.

Function cs_post_first_grid_output outputs the mesh structure and flow field vari-
ables at the highest level (the original mesh).

Function cs_post_multigrid_output outputs the mesh structures starting from the
second level and mesh coarsening mapping between two successive levels.

Code Listing B.1: cs_user_postprocess.c
1 #include "cs_defs.h"
2

3 /* ----------------------------------------------------------------
4 * Standard C library headers
5 *--------------------------------------------------------------*/
6

7 #include "stdlib.h"
8 #include "string.h"
9

10 /* ----------------------------------------------------------------
11 * Local headers
12 *--------------------------------------------------------------*/
13

14 #include "cs_headers.h"
15 #include "cs_user_post_variables.h"
16

17 static void *_mg_context = NULL;
18

19

20 typedef struct _cs_grid_t {
21

22 int level; /* Level in multigrid hierarchy */
23

24 bool conv_diff; /* true if convection/diffusion case
,

25 false otherwhise */
26 bool symmetric; /* Symmetric matrix coefficients
27 indicator */
28 bool use_faces; /* True if face information is

present */
29

30 cs_lnum_t db_size; /* Block sizes for diagonal */
31 cs_lnum_t eb_size; /* Block sizes for extra diagonal */
32

33 cs_gnum_t n_g_rows; /* Global number of rows */
34
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35 cs_lnum_t n_rows; /* Local number of rows */
36 cs_lnum_t n_cols_ext; /* Local number of participating

cells
37 (cells + ghost cells sharing a

face) */
38

39 cs_lnum_t n_elts_r [2]; /* Size of array used for
restriction

40 operations ({n_rows , n_cols_ext}
when

41 no grid merging has taken place)
*/

42

43 /* Grid hierarchy information */
44

45 const struct _cs_grid_t *parent; /* Pointer to parent (finer) grid */
46

47 /* Connectivity information */
48

49 cs_lnum_t n_faces; /* Local number of faces */
50 const cs_lnum_2_t *face_cell; /* Face -> cells connectivity (1 to

n) */
51 cs_lnum_2_t *_face_cell; /* Face -> cells connectivity
52 (private array) */
53

54 /* Restriction from parent to current level */
55

56 cs_lnum_t *coarse_row; /* Fine -> coarse row connectivity;
57 size: parent n_cols_ext */
58 cs_lnum_t *coarse_face; /* Fine -> coarse face connectivity
59 (1 to n, signed:
60 = 0 fine face inside coarse cell
61 > 0 orientation same as parent
62 < 0 orientation opposite as

parent);
63 size: parent n_faces */
64

65 /* Geometric data */
66

67 cs_real_t relaxation; /* P0/P1 relaxation parameter */
68 const cs_real_t *cell_cen; /* Cell center (shared) */
69 cs_real_t *_cell_cen; /* Cell center (private) */
70

71 const cs_real_t *cell_vol; /* Cell volume (shared) */
72 cs_real_t *_cell_vol; /* Cell volume (private) */
73

74 const cs_real_t *face_normal; /* Surface normal of internal faces.
75 (shared; L2 norm = face area) */
76 cs_real_t *_face_normal; /* Surface normal of internal faces.
77 (private; L2 norm = face area) */
78

79 /* Parallel / periodic halo */
80

81 const cs_halo_t *halo; /* Halo for this connectivity (
shared) */

82 cs_halo_t *_halo; /* Halo for this connectivity (
private) */

83
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84 /* Matrix -related data */
85

86 const cs_real_t *da; /* Diagonal (shared) */
87 cs_real_t *_da; /* Diagonal (private) */
88

89 const cs_real_t *xa; /* Extra -diagonal (shared) */
90 cs_real_t *_xa; /* Extra -diagonal (private) */
91 cs_real_t *xa_conv; /* Extra -diagonal (except level 0)

*/
92 cs_real_t *xa_diff; /* Extra -diagonal (except level 0)

*/
93

94 const cs_real_t *xa0; /* Symmetrized extra -diagonal (
shared) */

95 cs_real_t *_xa0; /* Symmetrized extra -diagonal (
private) */

96 cs_real_t *xa0_diff; /* Symmetrized extra -diagonal */
97

98 cs_real_t *xa0ij;
99

100 cs_matrix_structure_t *matrix_struct; /* Associated matrix
structure */

101 const cs_matrix_t *matrix; /* Associated matrix (shared)
*/

102 cs_matrix_t *_matrix; /* Associated matrix (private
) */

103

104

105 #if defined(HAVE_MPI)
106

107 /* Additional fields to allow merging grids */
108

109 int merge_sub_root; /* sub -root when merging */
110 int merge_sub_rank; /* sub -rank when merging
111 (0 <= sub -rank <

merge_sub_size) */
112 int merge_sub_size; /* current number of merged ranks
113 for this subset */
114 int merge_stride; /* total number of ranks over

which
115 merging occurred at previous

levels */
116 int next_merge_stride; /* total number of ranks over

which
117 merging occurred at current

level */
118

119 cs_lnum_t *merge_cell_idx; /* start cell_id for each sub -
rank

120 when merge_sub_rank = 0
121 (size: merge_size + 1) */
122

123 int n_ranks; /* Number of active ranks */
124 MPI_Comm comm; /* Associated communicator */
125

126 #endif
127 } cs_grid_user;
128
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129 /* ----------------------------------------------------------------*/
130 /*!
131 * \brief Build a coarse grid based on multigrid coarsening of a

diffusion
132 * type matrix (symmetric matrix).
133 *
134 * \param[in, out] domain pointer to a cs_domain_t structure
135 *
136 * \return multigrid structure.
137 */
138 /* ----------------------------------------------------------------*/
139

140 static cs_multigrid_t *
141 _build_coarse_grid(cs_domain_t *domain)
142 {
143 const cs_mesh_t *m = domain ->mesh;
144

145 const cs_lnum_t n_cells_ext = m->n_cells_with_ghosts;
146 const cs_lnum_t n_i_faces = m->n_i_faces;
147 const cs_lnum_t n_b_faces = m->n_b_faces;
148

149 const cs_mesh_quantities_t *mq = cs_glob_mesh_quantities;
150

151 /* Build face viscosity array */
152

153 cs_real_t *c_visc , *i_visc , *b_visc , *rovsdt , *cofbfp;
154 BFT_MALLOC(c_visc , n_cells_ext , cs_real_t);
155 BFT_MALLOC(i_visc , n_i_faces , cs_real_t);
156 BFT_MALLOC(b_visc , n_b_faces , cs_real_t);
157

158 BFT_MALLOC(rovsdt , n_cells_ext , cs_real_t);
159 BFT_MALLOC(cofbfp , n_b_faces , cs_real_t);
160

161 for (cs_lnum_t cell_id = 0; cell_id < n_cells_ext; cell_id ++) {
162 c_visc[cell_id] = 1.;
163 rovsdt[cell_id] = 1e-7;
164 }
165 for (cs_lnum_t face_id = 0; face_id < n_b_faces; face_id ++) {
166 cofbfp[face_id] = 1.; /* 1 for Neumann , 0 for Dirichlet ? */
167 }
168

169 cs_face_viscosity(m, mq, 0, c_visc , i_visc , b_visc);
170

171 BFT_FREE(c_visc);
172

173 /* Build matrix coefficients */
174

175 cs_real_t *da, *xa;
176 BFT_MALLOC(da, n_cells_ext , cs_real_t);
177 BFT_MALLOC(xa, n_i_faces , cs_real_t);
178

179 cs_sym_matrix_scalar(m,
180 1, /* idiffp */
181 1, /* thetap */
182 cofbfp ,
183 rovsdt ,
184 i_visc ,
185 b_visc ,
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186 da ,
187 xa);
188

189 printf("%g\n", da [1650]);
190

191 /* Free memory */
192

193 BFT_FREE(cofbfp);
194 BFT_FREE(rovsdt);
195

196 BFT_FREE(i_visc);
197 BFT_FREE(b_visc);
198

199 /* Assemble/convert matrix */
200

201 bool symmetric = true;
202

203 cs_matrix_t *a = cs_matrix_msr(symmetric ,
204 1,
205 1);
206

207 cs_matrix_set_coefficients(a,
208 symmetric ,
209 1,
210 1,
211 m->n_i_faces ,
212 (const cs_lnum_2_t *)(m->i_face_cells),
213 da ,
214 xa);
215

216 /* Now build multigrid structure */
217

218 cs_multigrid_t *mg = cs_multigrid_create(CS_MULTIGRID_V_CYCLE);
219

220 cs_multigrid_set_coarsening_options
221 (mg ,
222 4, /* aggregation_limit */
223 CS_GRID_COARSENING_DEFAULT , /* coarsening_type */
224 10, /* n_max_levels */
225 50, /* min_g_rows */
226 0.95, /* p0p1_relax */
227 20); /* postprocess (default 0) */
228

229 int verbosity = 1;
230

231 cs_multigrid_setup(mg,
232 "Graph corsening",
233 a,
234 verbosity);
235

236 BFT_FREE(xa);
237 BFT_FREE(da);
238

239 return mg;
240 }
241

242 /* ----------------------------------------------------------------*/
243 /*!
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244 * \brief This function is called at the end of each time step.
245 *
246 * It has a very general purpose , although it is recommended to handle
247 * mainly postprocessing or data -extraction type operations.
248 *
249 * \param[in, out] domain pointer to a cs_domain_t structure
250 */
251 /* ----------------------------------------------------------------*/
252

253 static void
254 _fine_to_coarse(const cs_multigrid_t *mg ,
255 const cs_grid_t *c,
256 cs_lnum_t stride ,
257 const cs_real_t *f_var ,
258 cs_real_t *c_var)
259 {
260 cs_lnum_t n_f_rows = 0, n_f_cols_ext = 0;
261 cs_lnum_t n_c_rows = 0, n_c_cols_ext = 0;
262 int c_level = 0;
263

264 /* Fine grid info */
265 {
266 const cs_grid_t *f = cs_multigrid_get_grid(mg , 0);
267

268 cs_grid_get_info(f,
269 NULL ,
270 NULL ,
271 NULL ,
272 NULL ,
273 NULL , /* n_ranks */
274 &n_f_rows ,
275 &n_f_cols_ext ,
276 NULL ,
277 NULL);
278 }
279

280 /* Coarse grid info */
281 {
282 cs_grid_get_info(c,
283 &c_level ,
284 NULL ,
285 NULL ,
286 NULL ,
287 NULL , /* n_ranks */
288 &n_c_rows ,
289 &n_c_cols_ext ,
290 NULL ,
291 NULL);
292 }
293

294 /* Loop on stride (assume matrix is scalar , de -interlace
295 variable */
296

297 cs_real_t *b[2] = {NULL , NULL};
298 cs_lnum_t b_size [2] = {n_f_cols_ext , 0};
299

300 BFT_MALLOC(b[0], n_f_cols_ext , cs_real_t);
301
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302 for (cs_lnum_t c_id = 0; c_id < stride; c_id ++) {
303

304 for (cs_lnum_t i = 0; i < n_f_cols_ext; i++)
305 b[0][i] = f_var[i*stride + c_id];
306

307 /* Project one level at a time */
308

309 int i_f = 0, i_c = 1;
310

311 for (int i = 1; i < c_level; i++) {
312

313 i_f = (i-1)%2;
314 i_c = (i)%2;
315

316 const cs_grid_t *g_f = cs_multigrid_get_grid(mg, i-1);
317 const cs_grid_t *g_c = cs_multigrid_get_grid(mg, i);
318

319 cs_lnum_t n_cols_ext = 0;
320

321 cs_grid_get_info(g_c ,
322 NULL ,
323 NULL ,
324 NULL ,
325 NULL ,
326 NULL , /* n_ranks */
327 NULL , /* n_rows */
328 &n_cols_ext ,
329 NULL ,
330 NULL);
331

332 if (n_cols_ext > b_size[i_c]) {
333 b_size[i_c] = n_cols_ext;
334 BFT_REALLOC(b[i_c], b_size[i_c], cs_real_t);
335 }
336

337 cs_grid_restrict_row_var(g_f ,
338 g_c ,
339 b[i_f],
340 b[i_c]);
341

342 const cs_matrix_t *a = cs_grid_get_matrix(g_c);
343 const cs_halo_t *h = cs_matrix_get_halo(a);
344

345 if (h != NULL)
346 cs_halo_sync_var(h, CS_HALO_STANDARD , b[i_c]);
347

348 }
349

350 for (cs_lnum_t i = 0; i < n_c_cols_ext; i++)
351 c_var[i*stride + c_id] = b[0][i];
352

353 }
354

355 BFT_FREE(b[1]);
356 BFT_FREE(b[0]);
357 }
358

359 void
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360 cs_post_first_grid_output(void)
361 {
362 //if (cat_id == CS_POST_MESH_VOLUME){
363 const cs_mesh_quantities_t *mq = cs_glob_mesh_quantities;
364 const cs_mesh_t *m = cs_glob_mesh;
365 const cs_time_step_t *ts = cs_glob_time_step;
366

367 const cs_real_3_t *xyz = (const cs_real_3_t *)mq->cell_cen;
368 const cs_real_3_t *vel = (const cs_real_3_t *)CS_F_(vel)->val;
369

370 const cs_lnum_2_t *edge = (const cs_lnum_2_t *)m->i_face_cells;
371

372 cs_matrix_t *mat = cs_matrix_native(true , 1, 1);
373 const cs_gnum_t *g_cell_id = cs_matrix_get_block_row_g_id(mat);
374

375 /*
376 const cs_mesh_adjacencies_t *ma = cs_glob_mesh_adjacencies;
377 char adj_file [20];
378 sprintf(adj_file , "c2c_rank%d.csv", cs_glob_rank_id);
379 FILE *fadj = fopen(adj_file , "w");
380 for (cs_lnum_t i = 0; i < m->n_cells; i ++){
381 cs_lnum_t s_id = ma ->cell_cells_idx[i];
382 cs_lnum_t e_id = ma ->cell_cells_idx[i+1];
383 for (cs_lnum_t j = s_id; j < e_id; j++){
384 fprintf(fadj , "%8ld %8ld\n ", g_cell_id[i], g_cell_id[ma ->

cell_cells[j]]);
385 }
386

387 cs_lnum_t s_e_id = ma ->cell_cells_e_idx[i];
388 cs_lnum_t e_e_id = ma ->cell_cells_e_idx[i+1];
389 for (cs_lnum_t j = s_e_id; j < e_e_id; j++){
390 fprintf(fadj , "%8ld %8ld\n", g_cell_id[i], g_cell_id[ma ->

cell_cells_e[j]]);
391 }
392 }
393 fclose(fadj);
394 */
395 cs_lnum_t *cell_list = NULL;
396 BFT_MALLOC(cell_list , m->n_cells , cs_lnum_t);
397 cs_lnum_t n_cells = 0;
398 cs_selector_get_cell_list("all[]",
399 &n_cells ,
400 cell_list);
401

402 cs_real_t *q_norm = NULL;
403 BFT_MALLOC(q_norm , n_cells , cs_real_t);
404 cs_post_norm_q_criterion(q_norm);
405

406 /* Output flow field */
407 char nodefile [30];
408 sprintf(nodefile , "nodes_L0_Rank%d_Ts%d.csv", cs_glob_rank_id , ts->

nt_cur);
409 FILE *fnode = fopen(nodefile , "w");
410 fprintf(fnode ,
411 "%10s, %10s, %10s, %10s, %10s, %10s, %10s, %10s\n",
412 "id", "x", "y", "z",
413 "u", "v", "w",
414 "q_norm");
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415 for (cs_lnum_t iloc = 0; iloc < n_cells; iloc ++){
416 cs_lnum_t icel = cell_list[iloc];
417 if (icel < n_cells){
418 fprintf(fnode ,
419 "%10ld , %10.8f, %10.8f, %10.8f, %10.8f, %10.8f, %10.8f, %10.8

f\n",
420 g_cell_id[icel], xyz[icel ][0], xyz[icel ][1], xyz[icel ][2],
421 vel[icel ][0], vel[icel ][1], vel[icel ][2],
422 q_norm[icel]);
423 }
424 }
425 fclose(fnode);
426 BFT_FREE(q_norm);
427

428 /* Output wall nodes */
429 cs_lnum_t n_b_faces = 0, *b_faces = NULL;
430 BFT_MALLOC(b_faces , m->n_cells_with_ghosts , cs_lnum_t);
431 cs_selector_get_wall_face_list (&n_b_faces ,
432 b_faces);
433 cs_lnum_t *b_face_cell =( cs_lnum_t *) m->b_face_cells;
434 char wallfile [30];
435 sprintf(wallfile , "wallnodes_L0_Rank%d_Ts%d.csv", cs_glob_rank_id ,

ts ->nt_cur);
436 FILE *fwall = fopen(wallfile , "w");
437 fprintf(fwall , "%10s\n", "id");
438 for (cs_lnum_t ifac = 0; ifac < n_b_faces; ifac ++){
439 fprintf(fwall , "%10d\n", b_faces[ifac]);
440 }
441 fclose(fwall);
442 BFT_FREE(b_faces);
443

444 /* output edge info */
445 cs_real_3_t coord_min , coord_max;
446 for (int j = 0; j < 3; j++){
447 coord_min[j] = xyz [0][j];
448 coord_max[j] = xyz [0][j];
449 }
450 for (int i = 0; i < n_cells; i++){
451 cs_lnum_t icel = cell_list[i];
452 for (int j = 0; j < 3; j++){
453 coord_min[j] = CS_MIN(coord_min[j], xyz[icel][j]);
454 coord_max[j] = CS_MAX(coord_max[j], xyz[icel][j]);
455 }
456 }
457 cs_parall_min (3, CS_REAL_TYPE , coord_min);
458 cs_parall_max (3, CS_REAL_TYPE , coord_max);
459

460 cs_real_t dist_max = cs_math_3_distance(coord_min , coord_max)/sqrt
(3);

461 char edgefile [30];
462 sprintf(edgefile , "edges_L0_Rank%d_Ts%d.csv", cs_glob_rank_id , ts->

nt_cur);
463 FILE *fedge = fopen(edgefile , "w");
464 fprintf(fedge , "%8s, %8s\n", "node1", "node2");
465 for (int id = 0; id < m->n_i_faces; id++){
466 cs_lnum_t left = edge[id][0], right = edge[id][1];
467 cs_real_3_t left_coord , right_coord;
468 for (int j = 0; j<3; j++){
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469 left_coord[j] = xyz[left][j];
470 right_coord[j] = xyz[right][j];
471 }
472 cs_real_t dist = cs_math_3_distance(left_coord , right_coord);
473 if (right < n_cells && dist < dist_max){
474 fprintf(fedge , "%8ld , %8ld\n", g_cell_id[left], g_cell_id[right

]);
475 }
476 }
477 fclose(fedge);
478 BFT_FREE(cell_list);
479 //}
480 }
481

482 /* ----------------------------------------------------------------
483 * Compute coarse row variable values from fine row values average by

volume
484 *
485 * parameters:
486 * f <-- Fine grid structure
487 * c <-- Fine grid structure
488 * f_var <-- Variable defined on fine grid rows
489 * c_var --> Variable defined on coarse grid rows
490 *--------------------------------------------------------------*/
491

492 void
493 cs_grid_restrict_row_var_weighted_by_volume(const cs_grid_t *f,
494 const cs_grid_t *c,
495 int stride ,
496 const cs_real_t *f_var ,
497 cs_real_t *c_var)
498 {
499 cs_lnum_t f_n_rows = f->n_rows;
500 cs_lnum_t c_n_cols_ext = c->n_elts_r [1];
501

502 const cs_real_t *f_cell_vol = f->cell_vol;
503 const cs_real_t *c_cell_vol = c->cell_vol;
504

505 const cs_lnum_t *coarse_row;
506 const cs_lnum_t db_size = stride;
507

508 assert(f != NULL);
509 assert(c != NULL);
510 assert(c->coarse_row != NULL || f_n_rows == 0);
511 assert(f_var != NULL || f_n_rows == 0);
512 assert(c_var != NULL || c_n_cols_ext == 0);
513

514 /* Set coarse values */
515

516 coarse_row = c->coarse_row;
517

518 cs_lnum_t _c_n_cols_ext = c_n_cols_ext*stride;
519

520 # pragma omp parallel for if(_c_n_cols_ext > CS_THR_MIN)
521 for (cs_lnum_t ii = 0; ii < _c_n_cols_ext; ii++)
522 c_var[ii] = 0.;
523

524 if (db_size == 1) {
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525 for (cs_lnum_t ii = 0; ii < f_n_rows; ii++) {
526 cs_lnum_t i = coarse_row[ii];
527 if (i >= 0)
528 c_var[i] += f_var[ii] * f_cell_vol[ii];
529 }
530 for (cs_lnum_t i = 0; i < c_n_cols_ext; i++) {
531 if (i >= 0)
532 for (cs_lnum_t j = 0; j < db_size; j++)
533 c_var[i] /= c_cell_vol[i];
534 }
535 }
536 else {
537 for (cs_lnum_t ii = 0; ii < f_n_rows; ii++) {
538 cs_lnum_t i = coarse_row[ii];
539 if (i >= 0) {
540 for (cs_lnum_t j = 0; j < db_size; j++)
541 c_var[i*db_size+j] += f_var[ii*db_size+j]* f_cell_vol[ii];
542 }
543 }
544 for (cs_lnum_t i = 0; i < c_n_cols_ext; i++) {
545 if (i >= 0) {
546 for (cs_lnum_t j = 0; j < db_size; j++)
547 c_var[i*db_size+j] /= c_cell_vol[i];
548 }
549 }
550 }
551

552 #if defined(HAVE_MPI)
553

554 /* If grid merging has taken place , gather coarse data */
555

556 if (c->merge_sub_size > 1) {
557

558 MPI_Comm comm = cs_glob_mpi_comm;
559 static const int tag = ’r’+’e’+’s’+’t’+’r’+’i’+’c’+’t’;
560

561 /* Append data */
562

563 if (c->merge_sub_rank == 0) {
564 int rank_id;
565 MPI_Status status;
566 assert(cs_glob_rank_id == c->merge_sub_root);
567 for (rank_id = 1; rank_id < c->merge_sub_size; rank_id ++) {
568 cs_lnum_t n_recv = ( c->merge_cell_idx[rank_id +1]
569 - c->merge_cell_idx[rank_id ]);
570 int dist_rank = c->merge_sub_root + c->merge_stride*rank_id;
571 MPI_Recv(c_var + c->merge_cell_idx[rank_id ]*db_size ,
572 n_recv*db_size , CS_MPI_REAL , dist_rank , tag , comm , &

status);
573 }
574 }
575 else
576 MPI_Send(c_var , c->n_elts_r [0]* db_size , CS_MPI_REAL ,
577 c->merge_sub_root , tag , comm);
578 }
579

580 #endif /* defined(HAVE_MPI) */
581 }
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582

583

584 void
585 cs_post_multigrid_output(cs_domain_t *domain)
586 {
587 cs_multigrid_t *mg = _build_coarse_grid(domain);
588 int max_level;
589 const cs_grid_user *coarest_grid = cs_multigrid_get_grid(mg , -1);
590 cs_grid_get_info(coarest_grid ,
591 &max_level ,
592 NULL ,
593 NULL ,
594 NULL ,
595 NULL , /* n_ranks */
596 NULL ,
597 NULL ,
598 NULL ,
599 NULL);
600 cs_real_t **vel = NULL;
601 BFT_MALLOC(vel , max_level+1, cs_real_t *);
602 vel [0] = (cs_real_t *)CS_F_(vel)->val;
603 for (int ilv = 1; ilv < max_level +1; ilv++){
604 cs_grid_user *f = cs_multigrid_get_grid(mg, ilv -1);
605 cs_grid_user *c = cs_multigrid_get_grid(mg, ilv);
606

607 int stride = 3;
608 BFT_MALLOC(vel[ilv], stride*c->n_elts_r [1], cs_real_t);
609 cs_grid_restrict_row_var_weighted_by_volume(f,
610 c,
611 stride ,
612 vel[ilv -1],
613 vel[ilv]);
614 }
615 for (int f_level = 0; f_level < max_level; f_level ++){
616

617 const cs_grid_user *c = cs_multigrid_get_grid(mg, f_level +1);
618 const cs_grid_user *f = cs_multigrid_get_grid(mg, f_level);
619

620 cs_lnum_t n_c_rows = 0, n_c_cols_ext = 0, n_c_entries = 0;
621 cs_gnum_t n_c_g_rows = 0;
622

623 cs_grid_get_info(c,
624 NULL ,
625 NULL ,
626 NULL ,
627 NULL ,
628 NULL , /* n_ranks */
629 &n_c_rows ,
630 &n_c_cols_ext ,
631 &n_c_entries ,
632 &n_c_g_rows);
633

634 cs_lnum_t n_f_rows = 0, n_f_cols_ext = 0, n_f_entries = 0;
635 cs_gnum_t n_f_g_rows = 0;
636

637 cs_grid_get_info(f,
638 NULL ,
639 NULL ,
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640 NULL ,
641 NULL ,
642 NULL , /* n_ranks */
643 &n_f_rows ,
644 &n_f_cols_ext ,
645 &n_f_entries ,
646 &n_f_g_rows);
647 cs_matrix_t *f_mat = cs_grid_get_matrix(f);
648

649 cs_gnum_t *f_g_c_id = NULL;
650 BFT_MALLOC(f_g_c_id , n_f_rows , cs_gnum_t);
651 const cs_gnum_t *f_g_cell_id = cs_matrix_get_block_row_g_id(f_mat)

;
652 memcpy(f_g_c_id , f_g_cell_id , n_f_rows*sizeof(cs_gnum_t));
653

654 cs_gnum_t *c_g_c_id = NULL;
655 cs_matrix_t *c_mat = cs_grid_get_matrix(c);
656 BFT_MALLOC(c_g_c_id , n_c_cols_ext , cs_gnum_t);
657 const cs_gnum_t *c_g_cell_id = cs_matrix_get_block_row_g_id(c_mat)

;
658 memcpy(c_g_c_id , c_g_cell_id , n_c_cols_ext*sizeof(cs_gnum_t));
659

660

661 /* Export the fine to coarse mesh correspondence */
662 char *f2cfile = NULL;
663 BFT_MALLOC(f2cfile , 40, char);
664 sprintf(f2cfile , "L%dL%d_Rank%d_Ts%d.csv",
665 f_level , f_level+1, cs_glob_rank_id , domain ->time_step ->

nt_cur);
666

667 FILE *f2c = fopen(f2cfile , "w");
668 fprintf(f2c , "%8s, %8s\n", "f_node", "c_node");
669 for (int id = 0; id < n_f_rows; id++){
670 fprintf(f2c , "%8ld , %8ld\n", f_g_c_id[id], c_g_c_id[c->

coarse_row[id]]);
671 }
672 fclose(f2c);
673 BFT_FREE(f2cfile);
674 /* Export the fine to coarse mesh correspondence */
675

676 /* Export the cell connectivities at coarse level */
677 cs_real_3_t coord_min , coord_max;
678 for (int j = 0; j < 3; j++){
679 coord_min[j] = c->cell_cen[j];
680 coord_max[j] = c->cell_cen[j];
681 }
682 for (int irow = 0; irow < n_c_rows; irow ++){
683 for (int j = 0; j < 3; j++){
684 coord_min[j] = CS_MIN(coord_min[j], c->cell_cen[irow *3+j]);
685 coord_max[j] = CS_MAX(coord_max[j], c->cell_cen[irow *3+j]);
686 }
687 }
688 cs_parall_min (3, CS_REAL_TYPE , coord_min);
689 cs_parall_max (3, CS_REAL_TYPE , coord_max);
690

691 cs_real_t dist_max = cs_math_3_distance(coord_min , coord_max)/sqrt
(3);

692 // printf ("graph level = %8d, distance = %8f\n", f_level+1,
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dist_max);
693

694 const cs_lnum_t *row_index , *col_id;
695 cs_matrix_get_msr_arrays(c_mat ,
696 &row_index ,
697 &col_id ,
698 NULL ,
699 NULL);
700 char *edge_coarse_file = NULL;
701 BFT_MALLOC(edge_coarse_file , 40, char);
702 sprintf(edge_coarse_file , "edges_L%d_Rank%d_Ts%d.csv",
703 f_level+1, cs_glob_rank_id , domain ->time_step ->nt_cur);
704

705 FILE *coarse_level = fopen(edge_coarse_file , "w");
706 fprintf(coarse_level , "%8s, %8s\n", "node1", "node2");
707

708 for (int irow = 0; irow < n_c_rows; irow ++){
709 const cs_lnum_t *restrict col_id_irow = col_id + row_index[irow

];
710 const cs_lnum_t n_cols = row_index[irow +1] - row_index[irow];
711 for (int icol = 0; icol < n_cols; icol ++){
712 cs_lnum_t left , right;
713 left = c_g_c_id[irow];
714 right = c_g_c_id[col_id_irow[icol ]];
715 cs_real_3_t left_coord , right_coord;
716 for (int j = 0; j<3; j++){
717 left_coord[j] = c->cell_cen[left *3+j];
718 right_coord[j] = c->cell_cen[right *3+j];
719 }
720 cs_real_t dist = cs_math_3_distance(left_coord , right_coord);
721 if (left < right && dist < dist_max){
722 fprintf(coarse_level , "%8d, %8d\n", left , right);
723 }
724 }
725 }
726 fclose(coarse_level);
727 BFT_FREE(edge_coarse_file);
728 /* Export the cell connectivities at coarse level */
729

730 /* Export the cell coordinates at coarse level */
731 char *coord_filename = NULL;
732 BFT_MALLOC(coord_filename , 40, char);
733 sprintf(coord_filename , "nodes_L%d_Rank%d_Ts%d.csv",
734 f_level+1, cs_glob_rank_id , domain ->time_step ->nt_cur);
735

736 FILE *coord_file = fopen(coord_filename , "w");
737 fprintf(coord_file , "%8s, %12s, %12s, %12s, %12s, %12s, %12s\n",
738 "id", "x", "y", "z", "u", "v", "w");
739 for (int irow = 0; irow < n_c_rows; irow ++){
740 fprintf(coord_file , "%8ld, %12.6f, %12.6f, %12.6f, %12.6f, %12.6

f, %12.6f \n",
741 c_g_c_id[irow], c->cell_cen[irow*3], c->cell_cen[irow

*3+1], c->cell_cen[irow *3+2],
742 vel[f_level +1][ irow*3], vel[f_level +1][ irow *3+1],

vel[f_level +1][ irow *3+2]);
743 }
744 fclose(coord_file);
745 BFT_FREE(coord_filename);
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746 /* Export the cell coordinates at coarse level */
747

748 BFT_FREE(f_g_c_id);
749 BFT_FREE(c_g_c_id);
750 }
751

752 for (int ilv = 1; ilv < max_level +1; ilv++){
753 BFT_FREE(vel[ilv]);
754 }
755 BFT_FREE(vel);
756 /*
757 cs_matrix_dump(cs_grid_get_matrix(c),
758 "coarse_graph_matrix.bd");
759 */
760 //c = NULL;
761

762 cs_multigrid_free(mg);
763

764 _mg_context = mg;
765 }
766

767

768 /* ----------------------------------------------------------------*/
769 /*!
770 * Output the mass flux on each interior face from central cell to

downwind cell
771 */
772 /* ----------------------------------------------------------------*/
773

774 void
775 output_directed_edges(const cs_time_step_t *ts)
776 {
777 const cs_mesh_t *m = cs_glob_mesh;
778

779 const cs_lnum_2_t *restrict i_face_cells
780 = (const cs_lnum_2_t *restrict)m->i_face_cells;
781

782 const int kimasf = cs_field_key_id("inner_mass_flux_id");
783 const cs_real_t *restrict i_massflux =
784 cs_field_by_id(cs_field_get_key_int(CS_F_(vel), kimasf))->val;
785

786 cs_matrix_t *mat = cs_matrix_native(true , 1, 1);
787 const cs_gnum_t *g_cell_id = cs_matrix_get_block_row_g_id(mat);
788

789 char *filename = NULL;
790 BFT_MALLOC(filename , 30, char);
791 sprintf(filename , "directededge_rank%d_ts%d.csv", cs_glob_rank_id ,

ts ->nt_cur);
792 FILE *file = fopen(filename , "w");
793 //FILE *file = fopen (" directed_edge.csv", "w");
794 fprintf(file , "%5s, %5s, %15s\n", "x", "y", "massflux");
795 for (int face_id = 0; face_id < m->n_i_faces; face_id ++){
796 cs_lnum_t ic, id;
797 cs_lnum_t ii = i_face_cells[face_id ][0];
798 cs_lnum_t jj = i_face_cells[face_id ][1];
799 //if (ii >=m->n_cells || jj >=m->n_cells)
800 if (jj >=m->n_cells)
801 continue;
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802 /* Determine central and downwind sides w.r.t. current face */
803 cs_central_downwind_cells(ii,
804 jj ,
805 i_massflux[face_id],
806 &ic , /* central cell id */
807 &id); /* downwind cell id */
808

809 fprintf(file , "%5ld , %5ld, %15.10f\n", g_cell_id[ic], g_cell_id[id
], i_massflux[face_id ]);

810 }
811 fclose(file);
812 BFT_FREE(filename);
813 }
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C | Publications and conferences attended

C.1 Publications

Two articles are published during this research:
1. Lianfa Wang, Yvan Fournier, Jean-François Wald, and Youssef Mesri. "A graph

neural network-based framework to identify flow phenomena on unstructured meshes.".
Physics of Fluids 35, no. 7 (2023).

2. Lianfa Wang, Yvan Fournier, Jean-François Wald, and Youssef Mesri. "Identifica-
tion of vortex in unstructured mesh with graph neural networks.". Computers and Fluids
268 (2024): 106104.

C.2 Conferences attended

During this research, I’ve made oral presentations in three conferences:
1. Identifying flow characteristics with graph convolutional neural networks. 33rd

Parallel CFD international conference, 25-27 May 2022, Alba, Italy.
2. A vortex identification method based on Convolutional Neural Network on un-

structured mesh. Congrès Français de Mécanique 2022, 29 Aug – 02 Sep 2022, Nantes,
France.

3. A GNN-based framework to identify flow phenomena on unstructured meshes. 34th
Parallel CFD international conference, 2023, Online presentation.
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MOTS CLÉS

Identification des phénomènes d’ecoulement; Réseau neuronal convolutif; Réseau neuronal en graphes;
Méthode algébrique multigrille

RÉSUMÉ

La dynamique des fluides numérique (CFD) s’est imposée depuis plusieurs années comme un outil indispensable
pour l’étude des phénomènes d’écoulement complexes en recherche et en industrie. La précision des simulations
CFD dépend de plusieurs paramètres – géométrie, maillage, schémas, solveurs, etc. – ainsi que de connaissances
phénoménologiques que seul un ingénieur expert en CFD peut configurer et optimiser. L’objectif de ce travail de thèse
est de proposer un assistant IA pour aider les utilisateurs, qu’ils soient experts ou non, à mieux choisir les options de
simulation et à garantir la fiabilité des résultats pour un phénomène d’écoulement cible. Dans ce cadre, des algorithmes
d’apprentissage profond sont explorés pour identifier les caractéristiques des écoulements calculés sur des maillages
structurés et non structurés de géométries complexes. Dans un premier temps, des réseaux de neurones convolutifs
(CNN), réputés pour leur capacité à extraire des motifs sur des images, sont utilisés pour identifier des phénomènes
d’écoulement tels que les tourbillons et la stratification thermique sur des maillages structurés en 2D. Bien que les ré-
sultats obtenus sur maillages structurés soient satisfaisants, les réseaux CNN ne peuvent être appliqués qu’à ce type
de maillage. Pour surmonter cette limitation, un cadre de réseau neuronal basé sur les graphes (GNN) est proposé. Ce
cadre utilise l’architecture U-Net et une hiérarchie de graphes successivement déraffinés grâce à la mise en oeuvre d’une
méthode multigrille (AMG) inspirée de celle utilisée dans le code de simulation Code_Saturne. Par la suite, une étude ap-
profondie des fonctions à noyau a été menée selon des critères de précision d’identification et d’efficacité d’entraînement
pour mieux filtrer les différents phénomènes sur maillages non structurés. Après avoir comparé des fonctions à noyau
disponibles dans la littérature, une nouvelle fonction à noyau basée sur le modèle de mélange gaussien a été proposée.
Cette fonction est mieux adaptée à l’identification de phénomènes d’écoulement sur des maillages non structurés. La
supériorité de l’architecture et de la fonction à noyau proposées est démontrée par plusieurs expériences numériques
d’identification des tourbillons en 2D, ainsi que par son adaptabilité à l’identification des caractéristiques d’un écoulement
en 3D.

ABSTRACT

Computational Fluid Dynamics (CFD) has become an indispensable tool for studying complex flow phenomena in both
research and industry over the years. The accuracy of CFD simulations depends on various parameters – geometry,
mesh, schemes, solvers, etc. – as well as phenomenological knowledge that only an expert CFD engineer can configure
and optimize. The objective of this thesis is to propose an AI assistant to help users, whether they are experts or not, to
better choose simulation options and ensure the reliability of results for a target flow phenomenon. In this context, deep
learning algorithms are explored to identify the characteristics of flows computed on structured and unstructured meshes
of complex geometries. Initially, convolutional neural networks (CNNs), known for their ability to extract patterns from im-
ages, are used to identify flow phenomena such as vortices and thermal stratification on structured 2D meshes. Although
the results obtained on structured meshes are satisfactory, CNNs can only be applied to structured meshes. To overcome
this limitation, a graph-based neural network (GNN) framework is proposed. This framework uses the U-Net architecture
and a hierarchy of successively refined graphs through the implementation of a multigrid method (AMG) inspired by the
one used in the Code_Saturne CFD code. Subsequently, an in-depth study of kernel functions was conducted according
to identification accuracy and training efficiency criteria to better filter the different phenomena on unstructured meshes.
After comparing available kernel functions in the literature, a new kernel function based on the Gaussian mixture model
was proposed. This function is better suited to identifying flow phenomena on unstructured meshes. The superiority of
the proposed architecture and kernel function is demonstrated by several numerical experiments identifying 2D vortices
and its adaptability to identifying the characteristics of a 3D flow.

KEYWORDS

Flow phenomena identification; Convolutional neural networks; Graph neural networks; Algebraic multigrid
method
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